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“Essentially, all models are wrong, but some are useful.”

“Remember that all models are wrong; the practical question is how wrong do they have

to be to not be useful.”

George E. P. Box
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Critical systems are present in our daily life and affect many aspects providing essential

support to several human activities; they are employed in several application domains,

providing support to economic activities, transportation, communication, health-care.

Such systems must meet strict non-functional requirements, including dependability re-

quirements, and should be able to cope with competitive market needs. Their criticality

implies the necessity to meet several requirements, often dictated by international stan-

dards, whose fulfillment must be demonstrated in order to achieve necessary certifica-

tions. Quantitative evaluations are hence needed to assess and demonstrate compliance

with target requirements, since design phases of the lifecycle.

For this purpose modeling approaches have been investigated during the years; their

aim is to have a model of the overall system which allows to assess and demonstrate

these properties. It is commonly known that the adoption of formal models in industry,

although if strongly recommended when not mandatory, is slowed down by difficulties

dictated both by the complexity of the models (which reflects the complexity of the

systems) and by the need to have skilled staff in the usage of formal languages. For

this reason, also if the academic research trends have focused on complex modeling ap-

proaches and techniques, formal models are not so used in industries: in particular only

combinatorial models are widely adopted, thanks to their intuitive representation. The

great simplifications introduced by combinatorial models lead to approximated results,

hence system designers do not trust in them. In the last years the need of a “model

engineering” is noticed: there is the necessity to define appropriate methodologies and

processes to support development activities of complex models, aiming at improving the

model quality/cost ratio. In this way three main research trends have been introduced:

formal models generation, multiformalism, and compositional approaches.

This thesis aims at defining a methodology for quantitative analysis of critical system

that can integrate Model-Based evaluations, conducted by using formal models, with
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Model-Driven Engineering (MDE) paradigms, taking advantage of the actual research

trends. More in detail, according to such approach, critical systems properties can be

assessed starting from high level models expressed in proper languages (usually called

Domain Specific Modeling Languages - DSMLs), and defining automatic transforma-

tion chains, able to generate formal models. The methodology is implementable into

cost-effective processes in order to reduce time-to-market specifically during verification

stages of critical system development lifecycles. Such objective will be achieved by both

improving usability and re-usability of typical Model-Driven artifacts. The adoption of

this methodology for railway system dependability analysis may lead to an estimated

costs reduction of approximately 30%. The usage of a high-level central language signif-

icantly decreases also the training time of new analysts, as they only need to learn the

DSML usage (properly developed for the application domain).

This thesis defines also two high-level modeling languages: the first, CIP VAM, has

been defined to model vulnerability aspects of physical infrastructures, while the second,

DAM-Rail, allows the dependability modeling in railway domain.

Another important contribution of this thesis is given in the definition of new methods

and formal operators: in detail a reference model architecture for performability and

Quality of Service evaluation is defined, as well as the formal concept of Model Template

is introduced (to enable model reuse). At last two techniques which deals with scalability

are addressed: stub and reduced models.

Even if the focus is on quantitative evaluation, the proposed methodology is useful also

for the complete design (based on centralized informations), hence it is possible to extend

it for automatic generation of documents and, more generally, of all those artifacts which

support system development.

The proposed approach has been applied with different goals to case studies coming

from three different domains: railway systems, conferencing systems, and sensor net-

work. These systems have different and complementary properties in terms of number

of involved components, scalability, etc. Produced models are described, and obtained

results are shown and commented.

The thesis is structured in three Parts, each one composed of three Chapters. The first

Part introduces the problems, explores related works and points out open issues. In de-

tail, Chapter 1 introduces critical systems and outlines the state of the art, in Chapter

2 Model-Driven approaches are described in order to introduce their key concepts, while

Chapter 3 describes two languages found in literature (i.e. MARTE and DAM). The

second Part describes the proposed approach, defines the two high-level modeling lan-

guages and introduces the above mentioned methods, formal operators and techniques.



In detail Chapter 4 describes the proposed approach and shows a simple example of its

application, Chapter 5 defines the above mentioned high-level modeling languages (i.e.

CIP VAM and DAM-Rail), Chapter 6 addresses defined methods and formal operators.

The last Part shows the application of the proposed approach to real world systems. In

detail Chapter 7 applies the methodology to railway systems, Chapter 8 applies it to

conferencing systems while Chapter 9 adopt the methodology for performance modeling

of wireless sensor networks. Chapter 10 end the thesis, giving some conclusive remarks.
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Chapter 1

Introduction to Critical Systems

Critical systems are present in our daily life and affect many aspects providing essen-

tial support to several human activities, from transportation to industrial automation

systems. Often a critical system is also complex since these systems are typically a

multifaceted amalgamation of technical, information, organization, software and human

(users, administrators and management) resources. Complexity of such systems comes

not only from its involved technical and organizational structure but mainly from com-

plexity of information processes that must be implemented in the operational environ-

ment (data processing, monitoring, management, etc.). critical systems, often, need to

meet several requirements, often dictated by international standards, whose fulfillment

must be demonstrated in order to achieve necessary certifications. The application of

formal methods in industry (highly recommended, if not mandatory) is slowed down by

models complexity and heterogeneity, and by the need to have high skilled personnel

involved in model development. In other words, there is a request for modeling method-

ologies and supporting tools which can hide the complexity of the modeling process,

without losing expressive power and solving efficiency.

In this Chapter we introduce critical systems, their characteristics, the issues related to

their implementation and the need for quantitative evaluations of their properties.

1.1 Critical Systems

There is a surprising amount of disagreement concerning the definition of a critical sys-

tem that involves a diversity in development methodologies. In [1] critical systems are

classified according to the development approach, and four different view are described:

the first, which can be called the dependability approach, is oriented to the develop-

ment of ultra-reliable and fault-tolerant systems; another, which we can refer to as the

2
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safety approach, is oriented to the development following the principles of system safety

engineering; the third is the security approach aimed at developing systems that pre-

vent unauthorized disclosure of informations; at last the real-time approach has the aim

to develop system strongly constrained to deadlines of performed activities. With this

in mind, the same author gives a definition of critical systems as the one that derives

from the system safety engineering tradition: “a critical (computer) system is one whose

malfunction could lead to unacceptable consequences”. The same definition of critical

systems is shared by J. C. Laprie, as reported in [2].

The typology of “unacceptable consequences” depends on the application context and

could include substantial financial losses, environmental damages, injuries or death of

human beings. One of the criteria by which critical systems can be classified is therefore

dictated by the kind of consequences that result from their failure:

• safety critical : systems whose failures can result in physical damage to human

lives and the surrounding environment which, in turn, can result in personal injury

and/or loss of lives;

• security critical : systems whose failures does not ensure the integrity and confi-

dentiality of managed data;

• mission critical : systems whose failures do not ensure the mission accomplishment;

• business critical : systems whose failures causes significant losses in economic terms

or a great damage in terms of commercial and business appearance.

Examples of safety critical systems are those controlling airplanes, medical devices or

nuclear control centre; between security critical systems can be found banking systems,

which allows you to make online transactions: any alteration of sensitive information

relating to customers’ accounts due, for example, to hackers intrusion, involving a breach

of confidentiality and integrity, can lead to disastrous consequences. Navigation systems

of a spacecrafts without crew can be classified as mission critical systems, since its loss

will not damage in terms of human lives, but certainly causes serious damage for the

company appearance; web-hosting systems can be classified as business critical since a

failure can cause the impossibility to reach stored websites and the payment of penalties

to clients.

Obviously this classification, also if diffused, it is not universally accepted: some varia-

tions to this classification are adopted, but all of them are based on the analysis of the

failure consequences. Furthermore a system cannot be classified in a mutually exclusive

way in one of this category, since it can belong contemporary to more than one category:
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an example is a railway system that is mission critical from the service point of view

but it is also safety critical since a failure can cause several damages to environment

and people and lastly it can be business critical since its dependability attributes are

strictly related to economic penalties to pay in case of not reached targets.

Critical systems are expected to satisfy a variety of specific characteristic, that we can

address as “critical properties”. These characteristics are strictly related one to each

other, since an improvement of one of them can have an impact on others (Figure 1.1).

Figure 1.1: Attributes of a Critical System

Between critical properties, those requiring analysis and assessment concern both perfor-

mance characteristics and the dependability attributes. While the performance is strictly

related to the service levels provided by the system, the dependability of a system is

formally defined as the ability of a system to provide a service that can be considered

reasonably trusted [2, 3]. The dependability has several sub-attributes, in part listed be-

low, with respect to the different meanings of service and a system trustworthiness, the

most important attributes are those summarized in the acronym RAMS (i.e. reliability,

availability, maintainability and safety):

• availability : ability to provide the service when required, an index of which is the

asymptotic Availability (A);

• reliability : ability to provide service continuously over time, whose index is the

Mean Time To Failures (MTTF);

• maintainability : ability to be subjected to maintenance actions (repairs, reconfig-

urations), an index of which is the Mean Time To Repair (MTTR);

• integrity : ability to deny undesired modifications of stored information;

• confidentiality : ability to deny access to unauthorized personnel (including attack-

ers or even accidental intruders) from stored information;
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• security : absence of catastrophic behavior for the data system environment in

which the system works;

• safety : absence of catastrophic behavior for people and environmental things, an

index of which is the Mean Time Between Hazardous Events (MTBHE).

1.2 Analysis of Critical Systems

Critical systems have not only to satisfy several properties simultaneously, they also

must demonstrate their compliance with quantitative targets; the analysis, prediction

and assessment are fundamental for their proper operation and effective use, which shall

convince about their suitability for the tasks, increasingly crucial and critical, for which

we use them. During the last 20 years, a multitude of methods and tools supporting eval-

uation of critical systems have been proposed. Since qualitative observations are more

subjective and can be affected by people interpretations, the focus of these approaches is

on quantitative evaluations: the aim is to quantitatively assess a specific characteristic

of the system. Quantitative evaluations are performed using scientific tools and mea-

surements while qualitative ones are also harder to reproduce with accuracy: two people

qualitatively evaluating the same thing may end up with different, and also conflicting,

results, while quantitative evaluations shall lead to the same result, also if performed

by different people and in different time. The main benefit of quantitative evaluation

is that they help to remove human bias from a statistic, making it more reliable than

informations gathered qualitatively. For this reason critical systems needs to rely on

quantitative analysis, when it is possible. Furthermore, the use of quantitative methods

becomes mandatory for the analysis of properties that are subject of a contract and/or

norms: in this cases it is important to formally demonstrate the compliance with target

values. Example of properties which need quantitative assessment are dependability

attributes, previously described.

The two main approaches for quantitative evaluation are the usage of models and direct

measurement (often in test environments) [4]. While the firsts require a model of the

system behavior, the latter approaches are based on the development of the system or

of its prototypes. With specific focus on the latter, in literature we often talk about

“formal Model-Based” when we want to address the use of formal models (where the

word “formal” is used in the sense explained in the following). The following subsections

will give a brief overview on these methods, offering a wider focus on the firsts.
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1.2.1 Direct measurement

The direct measurement allows to use a hand-held instrument to directly measure a

feature of the system; this technique gives an answer to your data straight from the ex-

periment rather than calculating values relying on system models. The direct measure-

ment approach faces two difficulties: the first is on the accuracy of the test environment

in terms of reproduction of the circumstances that will be encountered during service;

the second regards large number of tests required in a great part of situations. If we

are looking for very rare failures occurring in specific service circumstances, it will be

necessary to subject the system to tests in a highly realistic test environment. Further-

more, it will be clearly necessary to submit the system to very large numbers of tests

(proportional to the expected value) and, if we are dealing with a reactive system, then

a test input must be a whole trajectory of inputs that drives the system through many

states. If we are dealing with a component of a larger system, then it will also be neces-

sary to conduct tests under conditions of single and multiple failures of components that

interact with the system under test. Obviously, it is very expensive to set up and run

such a test environment, and very time consuming to generate the large and complex

sets of test inputs required. As an example, imagine we wish to analyze a failure rate of

a component of approximatively 10−6 failures per hour: we need to test the component

for about 1 million of hours to see one failure, and, after a failure, it is necessary to reset

the state of the component to enable another failure occurrence. Failure, at last, can be

also caused by a failure of another system component, so the design of test environments

is not so trivial.

1.2.2 Formal Models

Formal models are used to provide a rigorous definition of the concept of proof. They

are able to combine low-level informations (such as failure rate at component level) with

the aim to evaluate the characteristic under analysis. Obviously the system complexity

is reflected in model complexity: the greater is the accuracy of the model, the greater is

the model complexity (both in their development and in their solution). They must rely

on an unambiguous specification of the system both in terms of variables (states) than in

those regarding operations (functionalities). A model solution can be performed through

analytical and simulative approaches. The characteristics of these two methods are

specular: the advantages of the analytical solutions reside essentially in their capability,

where it is possible, to furnish an exact solution of the model, while the simulative

approach can provide a solution in whatever situation (also where the firsts fail) but

they are affected from an error that is in inverse proportionality with the number of

simulations, hence the time of the solution process.
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Between formal models, Combinatorial and State-based models are distinguished.

Combinatorial models adopt a logic connection between events: they allows to obtain

quantitative measures specifying the system failure condition from failures of its sub-

components in the most convenient way. In detail, this type of models allow to calculate

the probability that occur a certain event, usually called top event, from more simple

events (basic events) connected through logical relationship. In the dependability anal-

ysis, events represent the operational state of the system or of its components, as the

probability to provide correctly a service or the occurrence probability of catastrophic

events. The state of the system can be described from two points of view: it is possi-

ble to describe the conditions of properly functioning, or it is possible to describe the

conditions that lead to a system failure. It is commonly known that the second choice

is more convenient than the first [5]: it is easiest to determine the conditions leading to

a system failure than those maintaining the system up and properly running, especially

if we consider different service levels. Example of formalisms supporting these methods

are Reliability Block Diagrams, Fault Trees and Reliability Graphs.

On the other hand State-based models describe the system as a finite state space,

transitions between these states and randomly distributed sojourn times in the states.

Additionally, a reward function associates a numerical value (e.g. 0 for a failed state and

1 for good state in the simplest case) to each state. State-based models are supported

by Markov Chains: they are mathematical formalism that undergoes transitions from

one state to another, between a finite or countable number of possible states. It is a

random process in the simplest version characterized as memoryless: the next state de-

pends only by the current state and not by the sequence of events that preceded it. This

formalism helps evaluation of the probability to be in a state j after k step. Markov

chains are commonly used to dependability evaluations of systems whose components

exhibit strong dependencies. With respect to combinatorial models, they cannot assume

the total component independence. Used alone, these methods may lead to optimistic

predictions for the system reliability and safety parameters. Some of the advantages are

simplistic modeling approach, redundancy management techniques and possibility to in-

sert failure coverage. Alternatives to Markov Chains are Petri Nets [6], widely used for

modeling and evaluation of dependability, performance and performability of critical sys-

tems. This formalism allow to model the structure of a system or its behavior over time,

including sequencing, parallelism, competition, distribution, non-determinism, synchro-

nization, cooperation, randomness and time. Petri Nets describe quantitative aspects

both in terms of graphical representation (similar to flowcharts or block diagrams) and in

terms of mathematical models (for example, by means of state equations or mathemat-

ical equations). Some extensions of Petri Nets have been proposed over time: starting
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from Petri Nets with priority mechanisms, it have been added probabilistic and tempo-

ral annotations. Among the most common formalisms we remember: Stochastic Petri

Net (SPN) [7], Generalized Stochastic Petri Net (GSPN) [8], Stochastic Reward Net

(SRN) [9] and Stochastic Activity Network (SAN) [10]. These formalism can model

both exponential and non-exponential temporal delays. Some tools support the analy-

sis of the different formalisms: between them, the Möbius [11] framework support the

analysis of SANs and it will be used for most quantitative models evaluation in this

thesis.

1.2.3 Multi-formalism

With increasing complexity of the system under analysis, a single modeling formalism

is revealed often inadequate: in particular some real-world systems are characterized by

the inability of a single formalism to capture all the properties of a system, therefore the

application of formal methods focuses on a few characteristics at a time, often maintain-

ing a level of abstraction that is not always satisfactory for the validation of the system.

The multi-formalism approach allows the realization of models with different indepen-

dent formal techniques, exploiting advantages of each of them. It offers the opportunity

to choose the most appropriate modeling technique to represent different components of

a real system in order to build a single model. This obviously requires both a theoretical

effort, which provides the foundation for integration and interoperability between differ-

ent formalisms, and the definition and the development of tools and environments for

modeling and solving multi-formal models. It is possible to recognize two approaches to

multi-formalism: explicit and implicit. The first approach makes visible multi-formalism

to the user level, which can choose to use explicitly different formal models to describe

different parts of the model; the latter is achieved by the use of the framework in order

to solve the model and it is not visible to the user, which describes the model through

a formal language that allows you (implicitly) to define which parts are intended to be

expressed in different formalisms.

The SMART project [12] integrates the following formalism: Stochastic Petri Net,

Markov Chain in Continuous Time and Discrete in a unique environment modeling.

The various models can exchange data during the process of analysis.

SHARPE [13] is a tool for the reliability and performability analysis that integrates

different formalisms such as Fault Trees, Generalized Stochastic Petri Nets, some types

of Queuing Networks and Markov Processes; also this environment allows the exchange

of information and results between the various models during the analysis phase.
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The Möbius approach [11] is more general than the other two providing a three-stage

approach to model development: the first stage is the development of an atomic model

in a specific formalism, such as Stochastic Activity Network (SAN), Bucket and Balls

Formalism and Performance Evaluation Process Algebra (PEPA). The second stage is

the development of a composed model where sub-models can be both atomic models

and other composed models. To this aim the approach uses two operators: the replica

and the join of sub-models. The third stage consists in building a reward model that is

the process with which reward variables, defined on atomic models, are evaluated. Each

reward variable is evaluated, with a specific confidence level, starting from analysis of

the model, and it can refer to a interval-of-time or to a instant-of-time. The solution

of the model is performed by different solvers that are available in Möbius framework,

translating the overall composed model into a specific Abstract Functional Interface

(AFI): this approach give extensibility features to the approach, allowing the definition

of new formalisms and solvers which can be added to the framework. Obviously, even

if the AFI is sufficiently general to allow the definition of different formalisms, it does

not allow the definition of a whatever formalism but they remain confined to a set of

“compatible” formalisms.

AToM3 [14] implements a modeling approach based on meta-modeling and processing

techniques including graphs. It allows to model different system components using

different formalisms and its user interface provides a graphical editor for each defined

formalism. The models can be translated from a formalism to another thanks to a

special grammar on graphs, which defines the transformation rules. The analysis can be

performed either applying simulative techniques but also translating all the models in a

common formalism and subsequently applying the solver specific.

The DEDS (Discrete Events Dynamic Systems) approach [15] provides a framework for

the construction of performance models of discrete-event systems through a graphical

interface. The used formalisms are: Queuing Network, Petri Net, Coloured Petri Net.

The analysis is performed by translating all the sub-models in a formalism similar to

that of Petri Net: the resulting model is then analyzed through the construction of the

state space.

OsMoSys (Object-based multi-formaliSm MOdelling of SYStems) [16] is a multi-formalism

and multi-solution framework for the model-based analysis of systems. The model-

ing methodology, also referred to as OMM (OsMoSys Multiformalism Methodology),

is based on the meta-modeling and meta-languages principles (there are three levels of

models: models, meta-model, meta-meta-model). This methodology is applicable to

graph-based formalisms such as Petri Net, Fault Tree and Bayesian Network, and im-

poses further aspects of object-orientation. Furthermore OsMoSys is highly extensible
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since the developer is able to integrate his own formalism, opportunely producing the

XML description of the formalisms he needs.

OsMoSys is also a multi-solution framework since it integrates not only different kinds

of formalism, but it provides the possibility to choose which solver shall be used for a

specific formalism (e.g numerical, analytical, symbolic, etc.). This aspect of OsMoSys

is also named OMF (OsMoSys Multisolution Framework). The different solvers are

integrated in OsMoSys through the use of adapters, that are ad-hoc software entities

which can perform the interaction between the specific solver and OsMoSys through a

common interface. The solution process is based on the coordination of these adapters

performed by a workflow engine.

1.3 Research trends in quantitative evaluation

Research trends in quantitative evaluation are essentially the following:

• divide-and-conquer : this approach focuses on methods and techniques for devel-

oping models through the composition of several sub-models, each one modeling

a manageable portion of the system;

• multi-formalism and multi-paradigm: this technique explores the possibility of

combining sub-models developed through different formalisms and modeling paradigms

towards an overall model of the system;

• automatic generation: this technique aims at generating formal models, suitable

for the analysis, from high-level specifications.

In the first approach a model consists of several sub-models tied together by appropriate

rules and composition operators: in order to provide appropriate methods for solving

sub models and aggregating results, composition techniques and operators definition are

necessary. In [17] a comprehensive review of the state of the art in such techniques is pre-

sented. These methods include techniques to limit the size of the state space (largeness

avoidance) and techniques to manage the size of the models (largeness tolerance).

The second approach has been discussed sufficiently in Section 1.2.3.

The third approach deals with the generation of formal models from high-level spec-

ifications. As surveyed in [18], scientific community has also explored such way and

several approaches are present in literature: in [19, 20] the generation of Fault Tree

and Dynamic Fault Tree models from a set of UML diagrams is described; in [21] UML
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Diagrams are used to generate Timed Petri Nets-based models; generation of Stochastic

Reward Nets from Statechart and Activity Diagrams are presented respectively in [22]

and [23]. In [24] the automatic generation of Repairable Fault Trees is obtained starting

from an high-level system description compliant with the DAM profile (Section 3.2).

Another example is in [25] where Stochastic Reward Nets are generated starting from a

SysML description of a system with rejuvenation.

1.4 Evaluation of Critical Systems in industrial context

The evaluation of critical systems in industrial context is necessary to control the be-

haviour of the system during all the lifecycle, to predict the impact of different archi-

tectural choices, to estimate critical properties that need to be compared with target

values defined in contracts or in regulations. Often direct measurement cannot be per-

formed on real critical systems, since their complexity and high development costs do

not permit the production of prototype artifacts. It is possible only to apply test cases

in test environments, but their accuracy, in terms of reproduction of the operation cir-

cumstances, needs to be verified. These tests often regard functional properties of the

system and of the sub-systems, while non-functional properties are assessed using ana-

lytical or model-based approaches, and follows specific lifecycles defined by international

norms (e.g. CENELEC 50126 [26]). In particular, models are mainly adopted during

the verification of design constraints and for the prediction of performance and depend-

ability parameters, in relation to structural changes and implementable strategies during

degradation situations.

To date analytical models are preferred in industrial field: their usage has the enormous

advantage of making unnecessary the presence of skilled personnel on formal languages,

but they are based on assumptions that are difficult to prove (e.g. strong indepen-

dence assumptions among the system components) and excessive simplifications of the

consequences of failures on the service performed by the system. These disadvantages

instead, represent the advantages of the formal models: their application makes feasible

the contemplation of internal dynamics, even if complex, and can lead to more accurate

results. For this reason they are used in safety analysis, where a formal proof of the

compliances is required.

Between formal models, the combinatorial methods are the most used since they are

very user-friendly: the graphical representations of these models are very intuitive, and

models can be step-wisely refined and can be easily modified. State-based models, also

if more powerful, are not so used leading to impossibility to model partial component

failures. As a consequence, models of systems are often too simplified and therefore
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results are overlay approximated with respect to the real behavior (the modelers tend to

produce excessively conservative models, underestimating the interest parameters, and

promising values too low than those allowed by technology). If underestimation can

be tolerated in safety analysis, it can not be the same for the performability analysis:

the underestimation of service availability indexes will primarily cause the proposal of

too low values in tender phase, hence a reduced probability to win the contract against

competitors. The approximation is a problem also during design stages since it does not

allow to discriminate between different solutions, and designers do not trust in these

results.

At last, the analysis of the Quality of Service as a measure of the service offered to

system users, is almost never considered in industry: the QoS is thought as a direct

consequence of the performability level reached by the system. In particular, in [27], the

level of QoS expected defines the metrics and target values of performability indexes;

the system, during the service, reaches certain levels of performability, measured ac-

cording to the defined metrics, which are considered as directly connected to QoS levels.

This relationship need to be verified: this is very difficult since performability can be

quantitatively measured while QoS could depend on qualitative evaluations.

Furthermore the techniques showed in Section 1.3, as stated also in [28], are rarely

adopted into a broader industrial development process: the development of business

transformations is not engineered enough and it is often related to a specific appli-

cation domains, resulting in inflexibility and low reusability. There is the lack of a

general framework in which Model-Driven approaches support formal Model-Based anal-

ysis. This need has been collected from several European project as SATURN (SysML

bAsed modeling, architecTUre exploRation, simulation and syNthesis for complex em-

bedded systems [29]) and the ARTEMIS JU-CHESS (Composition with guarantees for

High-integrity Embedded Software components aSsembly [30]) whose goal is to create a

framework for critical system analysis using model-driven approaches, that support the

entire development cycle of systems.

1.5 Evaluation of properties during the lifecycle of the sys-

tem

The high levels of complexity make the design and the development extremely difficult.

Maintenance is necessary to ensure that the predetermined requirements continue to be

met during the service. In fact, during the design of a critical system, system behaviour

should be coherently analysed: critical properties must be coherently assessed during all
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the lifecycle of the system, to evaluate the impact of different choices on overall system

characteristics. Critical systems are, therefore, a challenge for the design, construction

and operation, requiring an engineering approach that covers the entire lifecycle of the

system: the System Engineering [31]. This approach consists in:

• identification and quantification of system goals;

• development of alternative conceptual projects;

• selection and implementation of the best solutions;

• verification of the project with respect to its requirements;

• evaluation of the system capacities to reach the defined targets.

The overall aim is to ensure system development and integration to meet the needs and

expectations of stakeholders, within acceptable limits of cost (in terms of Total Cost of

Ownership, Life Cycle Cost, etc.), time and risk. Among the basic concepts of System

Engineering we can remember:

• Holistic view of the system: the understanding of the system can not be based on

the understanding of the individual parts, but on a global vision considering the

problem as a whole, i.e. the whole lifecycle of the system;

• Emergent behaviors: the behavior of the system is not the sum of the behavior of

its parts, but the interaction of these results in the manifestation of behaviors and

properties not directly related to the individual parts;

• System boundary: the boundary of the system need to be extended during the

analysis to include interactions with other systems that can influence behavior;

• Multiview and multiobjective analysis: the system shall be considered from differ-

ent points of view with different objectives in order to obtain a better comprehen-

sion of the whole system.

The various development stages are often regulated by international standards; these

standards impose verification processes on the client and/or certification authorities,

called to verify adherence of the system to the standards and verify proof of the reliability

degree of the product according to qualitative and, especially, quantitative analysis. For

these reasons the lifecycle of a critical system can be considered critical itself. Each

organization has its own vision of the concept of System Engineering and proposes a
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different model of the system lifecycle. There are, then, various models including: EIA-

632, EIA/IS-632, Vee proposed by INCOSE, 61508 (safety) and CENELEC EN 50126.

These models can be cascaded, iterative, incremental and evolutionary.

The proposed lifecycle are extension of the waterfall model and some of them are based

on the V-Model: instead of descending along a straight line, after the step of construction

goes back with a typical shape of a V. Typical phases V-Model are outlined below:

1. Requirements Definition: this specifies the set of elicited requirements for the

system which may include individual actions to be carried out by main components.

2. Functional Design: the system is designed in terms of models, diagrams. The

logical structure of the system is designed in this phase.

3. System Partitioning : the system design is broken up into a number of independent

modules which can be developed separately by a number of suppliers.

4. Hw/Sw Development : the individual sub-systems are developed and implemented

by the various subsystem suppliers. Note that some modules may still be developed

in-house by the system integrator.

5. Testing : each subsystem is tested in isolation to ensure that it fulfills the require-

ments laid down.

6. Functional Integration: subsystems which work together to provide some function

are integrated together and tested to ensure that they fulfill the requirements for

that function and that they will operate correctly as an integrated unit.

7. Integration: the separate systems are integrated together to produce the complete

system architecture. The full architecture is then tested to ensure that all of the

systems operate correctly as a complete implemented architecture.

As a practical example, in the following, the model proposed by CENELEC EN 50126

norm is described; this model is applied for the assurance of RAMS properties in Euro-

pean railway systems.

1.5.1 CENELEC 50126 lifecycle

The CENELEC EN 50126 [26] is an European Standard that defines a process, based on

the system lifecycle and tasks within it, for managing RAMS: its adoption leads to the

development of railway which achieve specific RAMS requirements. The lifecycle defined

in this norm facilitates the assessment of RAMS interactions between elements of a
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complex railway applications. The same norm promotes co-operation between a railway

authorities and railway support industry in the achievement of an optimal combination

of RAMS and cost for railway applications.

The model of the lifecycle proposed by CENELEC standard EN 50126 is shown inFig-

ure 1.2.

Figure 1.2: V-model defined in CENELEC EN 50126

The typical structure based on a “V” organizes development phases into levels of com-

plexity with the most complex item on top and least complex item on bottom. This

places the design next to verification in the sense that the acceptance activities are

intrinsically linked to those of development.

This model defines 14 phases in the lifecycle, starting from the concept to the decommis-

sioning of a railway system, specifying inputs, requirements, deliverables and verification

technique of each phase. These phases can be grouped into four macro-phases, which

are:

• Definition: the objective of this phase shall be to develop a level of understanding

of the system sufficient to enable all subsequent RAMS lifecycle tasks to be satis-

factorily performed. In this phase are defined: the mission profile, the boundaries,

the application conditions influencing the characteristics of the system. At last,

also in this phase, the overall RAMS requirements for the system are defined as

well as the overall demonstration and acceptance criteria for RAMS for the system.
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• Design: during this phase the overall RAMS requirements are apportioned to all

subsystems and specific acceptance criteria are defined at subsystem level; subsys-

tems conforming to RAMS requirements are hence created and their compliance

with RAMS target is demonstrated through the usage of proper formal models

(combinatorial as Reliability Block Diagrams, Fault Trees and also state-based

models).

• Testing : after the realization of the subsystems, the objectives of this phase are

to validate that the total combination of sub-systems, components and external

risk reduction measures comply with the RAMS requirements for the system; in

this phase RAMS specific characteristic are collected in order to assess compliance

with the overall RAMS requirements of the complete system, and hence accept

the system for entry into service.

• Operation: the objective of this phase shall be to operate (within specified limits),

maintain and support the total combination of subsystems, components and exter-

nal risk reduction measures such that compliance with system RAMS requirements

is maintained; the RAMS performance of the system shall be monitored in order

to maintain confidence in the system.

1.6 Thesis contribution

The original contribution of this thesis is in the definition of a structured approach

to quantitative analysis of a critical system. In particular, to cope with the prob-

lematic of industrial adoption of formal Model-Based quantitative analysis, this thesis

combined formal Model-Based analysis with a Model-Driven approach aiming at de-

veloping necessary formal models. More in detail, according to such approach, critical

systems properties can be assessed starting from high level models expressed in proper

languages (usually called Domain Specific Modeling Languages - DSMLs), and defining

automatic transformation chains, able to generate formal models. The methodology is

implementable into cost-effective processes in order to reduce time-to-market specifi-

cally during verification stages of critical system development lifecycles. Such objective

will be achieved by both improving usability and re-usability of typical Model-Driven

artifacts.

Another important contribution of this thesis is in the definition of a structured method-

ology to the development of formal models of the system under analysis: a reference

architecture that organizes formal models is defined.
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This thesis defines also th new formal operator of Model Template, and new techniques

are addressed in order to help modelers during the model development phase.

Even if the focus is on quantitative evaluation, the proposed Model-Driven methodology

is useful also for the complete design (based on centralized information), hence it is

possible to extend it for automatic generation of documents and, more generally, of all

those artifacts which support system development.



Chapter 2

Model-Driven approaches

Model-driven engineering (MDE) is a software development methodology which focuses

on creating and exploiting domain models (that are representations of knowledge and

activities that govern a particular application domain), rather than on the computing

(or algorithmic) concepts. Model-driven engineering technologies offer a promising ap-

proach to alleviate the complexity of platforms and express domain concepts effectively,

supporting the automatic generation of artifacts. This Chapter outlines the history

of Model-Driven, starting from software engineering area (where it bore) and arriving

to system engineering. Concepts of language definition and transformations are also

pointed out with a specific focus on UML profiling technique.

2.1 Model-Driven principles

During the past five decades, software developers have tried to create abstractions that

help them to code in terms of what they wanted to design rather than relying on what

the developing environment offered them [32]. Since the dawn of software engineering,

such abstractions included both languages and technology platforms. For example, the

first programming languages, such as assembler or Fortran, abstracted developers from

complexities of programming directly in machine language. Similarly, the first operat-

ing systems such as OS/360 and Unix, abstracted developers from the complexities of

hardware programming. Despite that these languages and platforms increased the level

of abstraction, they had always the goal to the elaboration. In particular they provided

abstractions in the solution space (i.e. within the domain of the processing technolo-

gies) instead that in the direction of the problem space, which expresses the project

in terms of concepts belonging to the application domain, which may be for example

telecommunications, health care, biology, etc.

18
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The successive efforts were directed towards the creation of new technologies with the

aim to increase even more the level of abstraction in software development. An effort

in this direction occurred in the ’80s with the introduction of the so-called Computer-

Aided Software Engineering (CASE), which focused on the development of methods and

software tools that would allow developers to express their projects in terms of general-

purpose graphical representations, such as state machines, structure diagrams, dataflow

diagrams. One of the objectives of CASE was to permit further analysis of graphics

programs that involve less complexity than conventional general-purpose programming

languages. Another objective was to synthesize implementation artifacts from graphical

representations to reduce the effort of coding, debugging and manual porting. Although

CASE tools attracted great attention in the literature, it have not been widely adopted

in practice. A problem was that the graphic representation of general purpose language

for writing programs with CASE tools was not well supported by underlying platforms,

which were largely single-node operating systems, such as DOS, OS/2 or Windows (which

lacked support for major property management of QoS such as fault tolerance and

security). The amount and complexity of the generated code, needed to compensate

the scarcity of the underlying platforms, was beyond the understanding of translation

technology available at the time, which made it difficult the development, the debug,

and the evolution of CASE tools and of the applications created with these tools.

Another problem with CASE was its inability to manage complex mechanisms of large

scale production, in a wide range of application domains. In general, CASE tools did not

support the design concurrency, so they were limited to programs written by one person

or by a team that serialize their access to the files used by these tools. Furthermore, due

to the lack of powerful middleware platforms, the CASE tools were targeted to propri-

etary execution environments, which made it difficult to integrate the code generated by

them with other software languages and technologies. The CASE tools did not support

effectively either the application domains because their graphic representations, based

on one-size-fits-all, were too general and not customizable.

As a result, CASE had a relatively weak impact on the development of commercial

software of the ’80s and ’90s also because focused on a few application domains such

as that of call processing in telecommunication systems, which is well represented, for

example, as state machines. The usage of CASE were limited to a subset of tools that

allow designers to draw diagrams of software architectures, that the programmers used as

a reference during code editing. Since there was a direct relationship between diagrams

and implementations, developers were not inclined to update diagrams coherently with

the code, especially during the latter stages of the projects.
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The innovations of the languages and platforms in last two decades have helped the

increase of the level of abstraction, removing some of the limitations of previous CASE

tools. For example, today’s developers typically use the object-oriented programming

languages such as C++, Java or C#, instead of Fortran or C. Today’s class libraries

and application frameworks reuses and minimize the need to reinvent the services that

are common to specific domain such as transactions, fault tolerance, security or man-

agement of distributed resources. Hence, thanks to the maturation of third-generation

programming languages and of the reusable platforms, developers are better equipped

to hide the complexities of older technologies. Despite these advances, several problems

remain. At the center of these problems there is the complexity growth of the platforms,

which have developed faster than the masking capacity of general-purpose languages.

For example, the most popular middleware platforms such as J2EE, .NET and CORBA,

contain thousands of classes and methods with many intricate dependencies, which re-

quire hard planning and development effort. Furthermore, since these platforms are

evolving rapidly and new platforms appear with regularity, developers spend a lot of

time performing manual porting of application code on different platforms or developing

new versions of the same platform.

An important problem is that most of the applications and codes for the platforms are

written and maintained using the third-generation programming languages, which still

have difficulties to take off in terms of time of deployment, configuration and guaranteed

quality. For example it is certainly difficult to write Java or C# code that unfold in

a correct and optimal distributed systems on a large scale with hundreds, and also

thousands, of interconnected software components.

With these kinds of problems, the software industry is reaching the maximum complexity

in the technologies of the next-generation platforms (such as web services) have become

so complex that developers spend years to manage these APIs platforms and usage

patterns, and often they become familiar only with the subset of the platforms they use

regularly. In addition, the third-generation programming languages require developers

greater focus on small details of the implementation, instead of letting them focus on

issues such as accuracy or performance management.

This fragmented view makes it possible for developers to have a difficulty understanding

of what portion of their applications will be susceptible to side effects, coming from

changes in user requirements, environments and/or languages. The lack of a global

overview, often leads developers to implement sub-optimal solutions that sometimes

duplicate unnecessarily code, violate architectural principles and complicate the system

evolution and its quality.
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2.2 Model-Driven Engineering

A promising approach that is able to cope with the increasing complexity of platforms,

and with the inability of third-generation programming languages to easy the complex-

ity and express domain concepts in a light weight fashion, is to develop Model-Driven

Engineering technologies. These technologies bring together two important aspects:

• domain-specific modeling languages (DSMLs), which formalize the application

structure, behavior, and requirements within a specific domain. The DSMLs are

described using meta-models (or domain models), which define the relationships

between concepts in a domain, specifying the semantics and constraints that exist

between these concepts. Developers use the DSMLs for building applications that

use elements captured by meta-models, and express their designs in a declarative

way rather than imperative;

• transformation engines and generators that analyze certain aspects of models and

synthesize different types of artifacts, such as source code, simulation inputs, XML

deployment descriptors, or representation of models. The ability to represent arti-

facts from models helps to ensure consistency between applications and analysis of

information with the functional requirements and quality requirements captured

by models.

New MDE technologies try to put into practice all efforts performed to increase the level

of abstraction that have occurred so far. For example, instead of using general-purpose

notations that rarely express concepts belonging to the application domain, the DSML

may be constructed on an ad hoc basis through the meta-modeling exploiting precisely

semantics and syntax of the domain of interest. Having graphical elements that are

related directly with the familiar concepts of the application domain not only helps to

lower learning curve, but it also helps the experts until user requirements are met with

greater precision. In addition, MDE tools impose specific constraints for the application

domain, so model can be verified, and errors are prevented, since the first phases of the

project lifecycle.

2.2.1 Model-Driven terminology

In the last decade different methods based on models, that differ in some small but

essential details, has followed one another. To better clarify these issues, we report

those that are so-called the “manifest” of such methods, and provide a temporal and

contextualization of their meaning [33].
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• Model-Driven Architecture (MDA): the first white paper of the OMG refers to

MDA appeared in 2000. Later, in 2003, it was published the current version of the

standard [34]. All model-driven initiatives follow the principle that “everything is

a model”. The current definition of MDA is present in [35] which states: “MDA

is an OMG initiative that proposes to define a set of non-proprietary standards

that will specify interoperable technologies with which to realize model-driven

development with automated transformations. Not all of these technologies will

directly concern the transformations involved in MDA. MDA does not necessarily

rely on the UML, but, as a specialized kind of MDD (Model Driven Development),

MDA necessarily involves the use of model(s) in development, which entails that

at least one modeling language must be used. Any modeling language used in

MDA must be described in terms of the MOF language, to enable the metadata

to be understood in a standard manner, which is a precondition for any ability to

perform automated transformations”.

• Model-Driven Development (MDD): the MDD was defined the first time in 2003 [36].

“Model-Driven Development is simply the notion that we can construct a model

of a system that we can then transform into the real thing”. An important differ-

ence between MDA and MDD that can be seen from the definitions is that MDD

does not adhere to any standard OMG, but the main contribution of MDD lies in

flexibility in defining development processes.

• Model-Driven Engineering (MDE): three years later, in 2006, in the homonym

article [32], MDE is defined as: “Model-Driven Engineering technologies offer a

promising approach to address the inability of third-generation languages to alle-

viate the complexity of platforms and express domain concepts effectively”. From

this definition we can understand how MDE is the evolution of CASE tool. The

MDE initiative proposes a process definition wider and not limited to the devel-

opment as for MDD; MDE methods and techniques are not only applicable to

software systems but also to critical systems. In particular, the effort must be

oriented to support the quantitative analysis, since they play a crucial role in the

system lifecycle, in order to formalize and automate this activity. There are great

benefits: the paradigm of systems design “construct-by-correction”, typical of pro-

cesses based on testing and verification of the late-time properties of a system,

can be replaced by paradigms “correct-by-construction” where, the construction

(and verification) of an initial model of the system and verification of automatic

transformations involves a final model (in other words the system) automatically

corrected. The effort of verification can thus be concentrated in the initial stages

of the system lifecycle. Within the quantitative evaluation, outlined above, and

within the scope of the techniques and methods of the MDE, a first scenario of
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application of these techniques to critical systems is clearly defined: there is the

possibility to increase the spread of formal methods in industrial development pro-

cesses in real systems. In fact, the ability to define high-level languages closer to

the user (for abstraction and ease of use) as well as the ability to automatically

generate models (formal models for quantitative analysis) from the first allows the

usage of formal methods in a “transparent” way.

The schema of what said up to now is reported in Figure 2.1.

Figure 2.1: Model-Driven initiative representation

2.3 Domain Specific Modeling

DSM (Domain Specific Modeling) means a set of procedures and modeling artifacts

that are specific to a given application domain [37]. They are different from existing

techniques for general purpose since they use in the modeling directly concepts that

belong to the application domain. These concepts and methodologies have been in-

troduced to increase the level of abstraction with respect to the current programming

languages. With the term application domain is intent both a technical domain such as

persistence, user interface, communications, transactions, and a functional domain as a

business domain of telecommunications, banking, insurance or retail sales. In particular

the formers can be addressed as “horizontal” domains while the latter as “vertical”. In

practice, each DSM solution focuses on very small domains because in doing so we have

a better chance to automate procedures.

In DSM, the models can be used to generate code as well as for the implementation,

testing and debugging of applications. The models are the primary source of changes.

However, the code does not disappear for all professionals involved, because there is a
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need of developers able to implement generators, provide framework and create reusable

components and libraries.

One of the significant benefits of a DSM approach is that the concepts of the domain are

already known and used by those who use the DSM solution: the semantics is considered

known and developers do not need further concepts for the application domain which

they are interested.

The DSM revisits the concepts of generators and transformations: generators provide

the same type of automation given in the past (an example of generators are obviously

compilers), but in the context of a specific application domain. This automation allows

developers to focus primarily on the most important issues and on the functionality of

the application rather than on implementation details.

In DSM large part of the testing is actually carried out prior to the modeling stage, be-

cause the language itself contain the rules and constraints of the domain. The rules must

be in the modeling language to avoid generating code from incorrect models. Therefore,

since the code is generated, the most common programming errors are eliminated.

The difference between a DSM approach and MDA is visible especially in the so-called

agile development processes, in particular during the maintenance phase, where changes

need to be performed on models previously created. In the MDA approach, main dif-

ficulties reside in making changes to models that have been partially created by the

generators. The architecture of a DSM is essentially composed of three entities:

• the language. A domain-specific language provides an abstraction mechanism

which allows to deal with complexity in a specific domain. This is done by provid-

ing concepts and rules in a language that represent “something” in the application

domain, rather than “concepts” of a given programming language. In general, the

main domain concepts are mapped to objects of the modeling language (i.e. ele-

ments that can be instantiated at modeling level), while others will be captured as

properties of these objects, connections, or links. The language is defined through

a meta-model with the relative notation and supporting tools.

• the code generator. A generator specifies how the informations that are extracted

from the models are transformed into code. In the simplest case, each symbol of

a modeling language produces a fixed code, including the values entered in the

symbol as arguments. The generator can also produce different code depending

on the values of the symbol, the relationships they have with other symbols, or

other information in the model. This code will be linked with the framework and

compiled into an executable program. During the creation of a working DSM
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solution, the aim is that after the generation, the generated code should not be

no more manually changed or extended. The generated code is then simply a sub-

product intermediate on the way to the finished product, as, for example, the file

*.o are during the C compilation.

• the domain framework. A domain framework provides the interface between the

generated code and the underlying platform. In some cases, no additional coding

operation is necessary: the generated code can directly call the components of the

existing platform, whose services are sufficient. Often, however, you want to define

additional code or utility components to make the generated code simpler. This

framework can vary in the format and it can go from components to individual

groups of statements of the programming language that can be commonly found

in the code in the selected domain. These components may already exist from

previous developments.

The generated code is not run by itself, but together with additional code in a given

target runtime environment. This objective is provided with the platform code (the

code that is already available with the target). This is used regardless of how the

implementation is realized: manually or by means of generators. The developed product

can use a selected part of a larger platform (for example, J2EE), a whole platform or

several platforms.

2.3.1 Language

The language provides an abstraction for the development and it is the most visible arti-

fact for developers. In DSM it is used to define specifications that manual programmers

would treat as source code. If language is built correctly, it allows you to apply terms

and concepts of a particular domain. This means that a domain-specific language is

probably useless in other domains. For domain-specific languages, the same definitions

that are adopted to languages in general can be applied. The modeling languages are

composed of syntax and semantics. On the syntax, we can further distinguish between

abstract and concrete syntax. The first indicates the structure and grammar rules of the

language, while the second defines symbols of the notation and form of representation

of the language. To increase the abstraction and to generate more complete code, it is

usually necessary to extend both syntax and semantics.

The syntax. The syntax specifies the conceptual structure of a language: the constructs

of a modeling language, their properties and their mutual connections. The syntax of a

modeling language indicates something more than the classic “reserved words”: it also
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covers the grammar rules that must be followed when specifying models. In DSM these

rules belong to the domain and are defined according to domain concepts. The rules are

necessary to avoid to generate code from models with errors. The availability of these

rules during the modeling phase, makes easier the implementation of the generators

which therefore do not need to check the correctness of input models. In DSM rules

are checked, as far as possible, during the early stages so as to detect and prevent

errors in the moments in which their solution is inexpensive. Typically it is preferred

to insert rules in the language rather than generators. This is most evident in the case

where there are different generators starting from the same model: it is best to check

the pattern once rather than doing it for each generator. The rules of the language

typically impose constraints on how models should be created: they define allowed

values, relations between concepts and how certain concepts should be used. The rules

can vary from strict correctness rules and consistency checks on the models to rules

that guide modelers, rather than impose, a particular way to model. Once the rules are

defined, the modeling language ensures that all developers follow the same domain rules.

Finally, if the spectrum of applications needs to be extended, the modeling language can

be extended together.

The semantics. All concepts of the models represent something: they have a semantics.

When you add an element in a model or a link between two elements, you create meaning

in the model. In DSM, the semantics of the modeling language comes directly from the

problem domain. Instead, in general-purpose languages, the semantics do not map

specific problem domain, but is left to the developers to make the connections between

semantics and concepts of the language of a given application domain, and often this

connection is not well documented: as might be expected at this point, different people

perform different connections, resulting in different models for the same problem. The

semantics of the problem domain is not the only source of semantics for a DSM. As with

all modeling languages, you must also recognize the semantic side implementation: how

the modeling constructs are mapped in a given solution domain. This is usually called

mapping operations. It is important to remember that syntax and semantics defined in a

purely abstract way are not enough to define a language: the models need to be managed

through a visual formalism. It therefore requires a concrete syntax in addition to the

abstract: what is usually done, is to combine a textual and graphical representation.

2.3.2 Code generator

In DSM code generators convert the models into code that can be interpreted or com-

piled and executed. They provide a wide degree of automation contributing to the

productivity and increasing the entire quality of the DSM approach. The generated
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code is typically complete from the point of view of the modeler. This means that the

code is complete, runnable, and of good quality, in other words after generation, the

code does not need to be changed or to be completed in any of its parts. This is pos-

sible because the generator (and the modeling language) is built to meet the demand

of a small application domain. Obviously not all the code needed is generated. For

this you need a domain framework and a target environment. The generators can be

classified into declarative, operational and mixed. This classification is based on the

approach used to specify the generators. Declarative approach describes the mapping

between the elements of the source meta-model and the target programming language.

The operational approaches, such as graph transformation rules, define the steps needed

to produce the target code from a given source model. Basically, a code generator is a

robot that accesses models, extracts informations and transforms them into a specific

syntax. This whole process is driven by the meta-model, by the language modeling with

its concepts, rules and semantics, and by the syntax required by the framework and

from the target platform. The main problem of code generators is that they are not able

to cope with the stringent requirements of size and execution efficiency which are key

issues when developing software for devices with limited memory and limited processing

capacity; this is the same problem that you have using compilers with efficiency of the

compiled code: when the code produced by a generator is written by an experienced

developer, this will produce higher quality code.

Different uses of code generators. Code generators can be used in alternative ways

than the pure creation of executable code. In DSM, the generators can be also used

to control the consistency and completeness of projects. This is necessary because it

typically does not make sense and is often not even possible to put all the rules in

a meta-model and to check them during each modeling activities. An example is the

control of a model to verify if it is incomplete and to propose possible actions necessary

to make it complete. The generators can also be used to produce prototypes instead

for the production of code. The prototypes are usually used to give initial feedback and

generators can produce prototypes for a target platform and in a programming language

totally different than the final one. At this stage the generators do not require optimized

code but the generated prototype needs only to show the functionality, usability and the

main characteristics of the system under development. The generators can also be used

to produce documentation from the same underlying models from which they produce

code. The undisputed advantage is that the documentation does not need to be updated

manually during the development phase.
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2.3.3 Domain framework

A domain framework provides the interface between the generated code and the under-

lying target environment. It is not always necessary, in fact, for example, the generated

code can invoke directly an interface of the target environment. First of all it is neces-

sary to describe how the target environment is seen: it appears as a set of layers, some

of which are optional (Figure 2.2).

Figure 2.2: Target environment architecture

Starting from the bottom it is possible to appreciate as the abstraction level is gradually

raised up. A framework can be seen as something that goes beyond the collection of

libraries. It is an abstract specification of a type of application and it relies on a certain

programming model that the developer must follow. Frameworks are typically classified

into white-box and black-box. In a white-box framework user adds functionalities to

the existing code: this requires that some implementation details are known and well

understood. On the other hand, in a black-box framework, its internal implementation

is not visible and new functionalities are developed separately.

2.3.4 DSM development process

The DSM process can be seen as composed of four main steps: initial development, de-

ployment, operation, and maintenance. All these steps require, in order, the realization

of the following acts or artifacts:

• concept proof. The concept proof is necessary if the application feasibility of the

DSM methodology towards a specific application domain must be proved to third-

party (the employer, for example). For this demonstration you choose a well-

defined application domain where the boundaries are well defined in order to de-

velop quickly a concept proof. The DSM solution should not be necessarily wide

but still large enough to give a concrete demonstration for the selected domain;
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• the pilot project. When the feasibility study of the DSM approach has been verified,

it follows a pilot project. In the pilot project a first version of DSM is defined,

implemented and tested. At this stage DSM users are more involved and some of

them are using your solution in an real world example. The pilot project helps

in estimating the effects of an DSM and prepares the third part to an integration

with existing design patterns through the creation of tutorials and sample projects,

training materials and coaching to people who already have experience in the DSM

field;

• usage of the DSM solution. The deployment phase is when the DSM solution

is adopted in production conditions. From now on the third party start getting

the benefits of having raised the level of abstraction and of having automated the

production process;

• maintenance. The DSM solution typically remains fixed; it needs to be upgraded

when requirements change or when the organization finds a better way to use

the DSM solution itself. Typical examples are the generation of code for other

output as metrics or simulation tools. The developers of the DSM solution update

and share languages, generators and domain frameworks to modelers as long as

they do not remain static. The DSM solution reaches the end of its development

cycle when applications are no longer developed but there is only bugs correction,

or when there is a new target environment and the applications require radical

changes that go beyond the original DSM solution.

In literature other techniques supporting DSM development are addressed: two of them

are language inheritance and formalism hierarchies. In [38] a very deep analysis of inher-

itance mechanisms has been done with particular reference to programming languages

while in [39] the focus shifts to models and metamodels. In [40] authors define sev-

eral composition operators for metamodels and in [41] a focus on embedded systems is

done: here a series of techniques in DSMLs families creation have been addressed such

as importation or extension.

2.4 UML and UML Profiles

The Unified Modeling Language (UML) [42] is a well known general purpose stan-

dardized modelling language for software system specification. The system structure is

typically specified by a Component Diagram and/or a Class Diagram. The behavioural

view of the system is instead specified using Use Cases, Activity Diagrams, Sequence
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Diagrams and State Machines, or a combination of them. UML is a semi-formal specifi-

cation language: the semantics of UML diagrams is expressed in natural language while

the abstract syntax is provided in terms of UML meta-models. A UML meta-model is

actually a Class Diagram that represents the UML concepts and their relationships as

meta-classes and meta-associations, respectively. Constraints on the meta-classes and

meta-associations are expressed with OCL [43].

UML can be extended through the profiling mechanism that allows to customize UML

for a particular domain or platform; this mechanism is defined in the UML Infrastruc-

ture. The UML profiling is actually a lightweight meta-modelling technique to extend

UML, since the standard semantics of UML model elements can be refined in a strictly

additive manner. Since this extension mechanism is part of the standard UML, it can

be supported by the tool for UML. This feature is one of the main advantages of UML

profiles compared to the other mechanisms of customization of UML that are not part of

the standard UML and therefore are not supported by the UML tool [44]. Another im-

portant advantage of the profiling mechanism UML is that it avoids to redefine concepts

already defined in UML. A UML profile is represented by a UML package stereotyped

by tag “profile”. There are three extension mechanisms used to define a UML profile:

stereotypes, tagged value and OCL rules:

• the stereotype is the main construct for the specification of a UML profile. It is a

particular type of UML class (actually it is a specialization of the class metaclass

from the UML metamodel). Semantics and notation of a stereotype are therefore

very similar to those of a UML class. Stereotypes are identified by a unique name,

and represent a set of extensions that are applied to the classes of the extended

metamodel. The extended metaclasses are identified by means of extension rela-

tions which connect the stereotypes to that extend metaclasses. The steretypes can

be seen as semantic specialization, to define the extensions made by the stereotypes

tagged value and OCL rules are used;

• a tagged value is a property (specialization of the property metaclass) that belongs

to a stereotype. A tagged value is a new property that is added to the extended

metaclass from the stereotype that owns the tagged value. According to the latest

UML specification, the type of tagged value can be specified from other classes or

stereotypes. So the tagged value can be used to define new attributes, but also for

the definition of new associations between classes in the extended metamodel.;

• OCL rules are defined by the Objec Constraint Language [43]. Each OCL rule is

applied to a specific stereotype and it is used to control the interaction between

different conceptual constructs (extended metaclasses). Although the name OCL
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refers only to the constraint definition, the latest OCL specifications stipulate

that it can also be used as a query language and as language for functions and

operations specification.

For example, in Figure 2.3, the Resource stereotype extends the Class meta-class, then

the former can be applied to a class in a Class Diagram. In this example resMult and

isProtected are tags.

<<stereotype>>
Resource

resMult: Integer
isProtected: Boolean

UML::Classes::Kernel::Class
<<metaclass>>

<<resource>>
Processor

Meta-model level:
stereotype definition

System model level:
stereotype application

{resMult=2, 
  isProtected=true}

Figure 2.3: UML stereotypes, tagged values and their application

UML 2 has introduced significant changes to profiles, eliminating the ambiguities (in-

tentionally or not) that have introduced in previous versions, to avoid the restriction

of developers [45]. Through these changes and clarifications, the extension mechanisms

through the profiles have reached a better definition for the benefit of a uniform usability.

Among them, the most important new features include:

• availability of a more extensive and precise definition of profiles and stereotypes.

Hence a stereotype in UML 2 is semantically very close to the concept of metaclass;

several ambiguity in the original definition has been specified;

• introduction of formal rules for writing OCL constraints linked to stereotypes;

• adding a new notation for stereotypes that is more scalable than the previous one;

• extension and clarification of the semantics of the application and removal of pro-

files to UML models;

• defining rules for the profile and contents representation through XMI formalism;
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• during the definition of a profile it is possible that it is based only on a subset

of UML metamodel (rather than the complete metamodel), resulting in a DSML

much more compact and simple;

• ability to create new associations between stereotypes and other elements of meta-

models. This allows stereotypes to have associations that do not exist for their

reference metaclasses;

• introduction of a default mechanism that avoids modelers from stereotyping each

element modeling;

• generalization of the profiles mechanism as well as the UML context so that it can

be used with any modeling language that is based on MOF.

2.4.1 A structured approach to the definition of UML Profiles

Although the number of available profiles is increasing, in literature, there are a discreet

number of articles that guide the developer in the production of UML profiles. The pro-

file realization is a difficult activity, without following a structured design process, the

result may be inaccurate and can cause uncertainty in model analysis and the transfor-

mation processes. Among these we refer with greater interest to [45, 46]. The definition

of a UML profile involves the construction of two separate but related artifacts: a do-

main model (or meta-model) and the profile itself. A deep knowledge of the domain and

a strong familiarity with the UML meta-model are of vital importance for the definition

of a profile.

[45] identifies a process which begins with the definition of a domain model which is then

translated into a profile. Sometimes it may be necessary iteration between the domain

model and profile due to the high complexity of the model or because it is far enough

from the UML specification. The main purpose of a domain model is to specify what

shall be represented in the DSML and how. Experiences in the definition of profiles

indicate that it is better if the first domain model defines just the concepts that are

closely to the application domain itself, without taking care of adaptations to the UML,

which will be mapping at a later stage. This allows for proper separation of concerns

and ensures that the design of the original DSML is not contaminated by contingencies

relating to the mapping of the profile. A meta-model is a specification of DSML cleaned

from the information that the user profile can provide. In practice it may sometimes

not be possible to map precisely a model to its UML meta-model as the latter may

have some constraints, attributes, or relationships that are in conflict with the domain

model. When this happens, you may want to adjust the domain model with a small
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loss of expressive power. Of course, if the profile is far from UML meta-model, it may

be that the approach based on profiles is not the correct one for that particular DSML

and therefore can be advisable to follow other paths such as the definition of a DSML

from scratch. The domain model is a meta-model of the DSML which should include

the following key elements:

• a set of basic language constructs that represent the essential concepts of the

domain. For example a DSML used to model a multi-tasking operating system

should contain linguistic concepts as task, processor, scheduler, queues of processes,

priority, and so on;

• a set of valid relationships that exist between the aforementioned domain con-

cepts. In the operating system example, a scheduler may have multiple queues of

processes, each with its own priority level;

• a set of constraints which determine how the language constructs can be combined

to produce valid models. For example, a constraint may specify that at most

one process at a time can be running on each processor. The combination of

relationships and constraints makes the fairness rules (well-formedness) of a DSML.

Together with language constructs they represent the abstract syntax of the DSML;

• a concrete syntax or notation for the DSML. This is the graphic and/or textual

abstract notation. Note that it need not necessarily to be derived from formalisms

similar to UML

• the semantics that is the meaning of the language. This is instead a mapping

between the elements of the abstract syntax and the related domain entities that

syntactic elements represent;

The abstract syntax of a DSML is usually expressed using the OMG MOF language. In

principle it is possible to use other languages for meta-modeling, but MOF has the certain

advantage of being easily translated into UML profiles. The language that is typically

adopted to express domain constraints is OCL because it was specifically designed to

be used with MOF and because it is supported by many tools that deal with UML.

Once the domain model is complete, the mapping process to the UML meta-model can

start. This can be done through a meticulous analysis of all domain concepts and a

precise identification of the correct UML constructs that are best suited to represent

them. Generally we follow some guidelines:

1. select a UML meta-class whose semantics are as close as possible to the semantics

of the domain concept to which it refers. This is very important since the semantics
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of UML concepts is often constructed through tool for UML and also because the

UML modelers expect a stereotype inherits the semantics of its origin meta-class.

It is also to remember that a mapping purely on the syntactic level can lead to

confusion or misinterpretation from the tool;

2. check that all the constraints that are applied to the source meta-class are not in

contrast one with each other. Note that it may not be sufficient to check only the

origin meta-class, but also super-classes must be checked, where present;

3. check if any of the meta-class attributes needs to be refined. This is a way to add

to basic concepts the specific semantics coming from the application domain;

4. check if the specific meta-class has associations that cause conflicts with other

meta-classes. These could be, for example, the case of conceptual associations

that are inherited from UML that can contradict the specific semantics of the

domain.

[46] retrace the same process and defines four phases, depicted in Figure 2.4, that are:

• rough description of the domain. It identifies the domain entities, the relationships

that exist between them, the rules that connect the structure and behavior of those

entities. The result of this step is a conceptual model domain, often expressed with

a UML class diagram.

• a reduction of the problem space. The model defined in the previous step is refined

and only the useful concepts to the solution are retained. The result of this step

is a complete conceptual model of solution.

• a first version of the profile, the “Profile Skeleton”. Each entity identified in the

previous step is transformed into a stereotype that extends one or more UML

meta-class. Tagged-values and constraints are defined and initialized, the latter

using OCL.

• analyze the consistency of the produced profile and to perform a profile optimiza-

tion. This optimization is actuated reviewing the association and reducing the

number of stereotypes (e.g mapping some concepts to complex datatypes).

Figure 2.4: Profile definition process
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2.5 Model transformations

The transformation is a key concept in the MDE context. They allow to obtain a model

automatically from another, for example they are useful to change the formalism and

to generate a formal model starting from a UML model. The standard of OMG, in

his paper [34], specifies the need for change to move from platform-independent models

to platform-specific models, raising the level of abstraction during the modeling phase,

then reducing it for a specific platforms, during the development stages.

The transformations can be grouped into two categories:

• Model-to-Model (M2M) transformations;

• Model-to-Text (M2T) transformations.

M2M transformations aim at transforming the model in other model, expressed for

example in a different formalism. The main motivation of their need is that the new

model enables to perform analysis that are not feasible in the previous formalism. In

the approach proposed in thesis these transformations will be widely adopted.

M2T transformations are typically performed by queries. The query mechanism allows

users to obtain from the model some textual informations. The needs for M2T transfor-

mations are identified in the need to produce, for example, automatic reports extracting

relevant informations from the models, or to provide structured data to perform the

processing with other software tools. This thesis will use M2T transformations in order

to produce textual input files for the modeling tools needed for the analysis.

An example of language used to write M2M and M2T transformation is the ATLAS

Transformation Language (ATL) defined in the ATLAS Model Management Architec-

ture (AMMA) [47] platform. ATL is a hybrid language, i.e. it is both a declarative

language and imperative one. ATL is applied in a pattern of transformation shown in

Figure 2.5.

In the pattern depicted by the figure, a source model Ma is transformed into a target

model Mb, according to the rules defined in the transformation mma2mmb.atl, written

in ATL. The transformation can be seen as model since it is software. Source and

target models, as well as the transformation definition are conform to their respective

meta-models: MMa, MMB and ATL. All meta-models in this example are conform to

MOF meta-meta-model (obviously this relationship is not strictly necessary, other meta-

meta-models are of course usable). This schema, even though it is designed for ATL, it

is generally enough to be adopted by all other transformation languages.



Chapter 2. Model-Driven engineering 36

Figure 2.5: ATL transformation schema

ATL, as mentioned before, is a mixed language which contains declarative and impera-

tive parts, nevertheless the ATL philosophy encourages the use of the declarative style

in specifying transformations. However, sometimes it is difficult to provide a solution

completely declarative in a transformation problem. In this case it is possible to use char-

acteristics of the imperative language. ATL transformations are unidirectional, source

models are read-only and the transformations produce write-only destination models.

The implementation of a bidirectional transformation makes necessary to realize a pair

of transformations, one for each direction.

2.6 Formal Model-Based and Model-Driven

Both in formal Model-Based and in Model-Driven, models play a fundamental role in

the creation and management of a system. Model-Based is the formalized application of

modeling to support system requirements, design, analysis, verification and validation

activities beginning in the conceptual design phase and continuing throughout develop-

ment and, later, life cycle phases. With respect to evaluation of critical systems, formal

Model-Based uses a model of a proposed system to obtain prediction about usability

measures, by calculation or simulation. In addition, the content of the model itself con-

veys useful information about the relationship between user’s task and system design.

The goal of formal Model-Based evaluation is to get some results before the implemen-

tation of the system or of its prototype. The model itself summarizes the design and

the characteristic of the system that will be implemented.
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The Model-Based has a wider application range than the Model-Driven; the first narrow

to the latter when the concept of transformations between models is used. The Model-

Driven approach consists in starting from a certain type of initial model and generate

from it, in an automatic manner, other models which describe the system from various

points of view. In the evaluation of critical systems, transformations between models

can help in carrying out particular types of analysis. Starting, for example, from a

structural model of the system which shows its main components, and considering their

interactions to realize a functionality, it is possible to obtain by means of a transformation

documentation of the system itself or even a useful model for the analysis of system

failures (e.g a Fault Tree).
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Languages for modeling critical

systems: MARTE and DAM

Recently, the literature has proposed several languages oriented to the modeling of

critical systems, in particular focusing on their non-functional properties. In this context,

a central role is played by the UML language since it is a modeling de-facto standard and,

secondly, since it is the language that better fit the definition of new languages through

the already described profiles mechanism (Section 2.4). As mentioned above, in order

to address the need to represent requirements and all the information for quantitative

analysis, it is therefore necessary to increase the expressive power of UML by introducing

new notations.

The type of the specific domain of analysis determines the particular informations to

represent with stereotypes. Depending on this, schedulability quantitative analysis may

be carried out, rather than the performance or dependability. As an example, in the

case of performance analysis, it is necessary to describe resources and services (operation

offered by the resources) and to characterize them with those informations such as the

usage rate of a resource, the response time and the throughput of a service. Obviously

those information can belong to two types: quantitative, when they describe quantities

(such as energy, size or time) that can be measured (through enumeration, comparison

or in an absolute way) and expressed using numerical values, and qualitative, when these

features can not be measured numerically. Sometimes, in the firsts, numerical value has

a significance if they are also specified whit the measurement unit, while the latter can

be described by their typology (e.g. a frequency can be qualitatively characterized as

sporadic or periodic).

Different profiles presented in literature address information necessary for quantitative

evaluation of critical systems. Between them, those that have been widely analyzed

38
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are those regarding the security and the protection of critical infrastructures and those

aimed to the performance and dependability of critical systems. The main profile in

those areas, is MARTE (Modeling and Analysis of Real-Time Embedded System) [48]:

this is a OMG standard profile created as the evolution of the SPT profile, dedicated

to the Scheduling, Performance and Time. [18] presents the Dependability Analysis

and Modeling profile for the analysis of quantitative dependability of software systems

modeled in UML; this profile inherit some concepts of the MARTE profile in fact the

name of the profile is MARTE-DAM (or simply DAM). [49] shows a UML profile (called

UML-CI) for the management of critical infrastructures; the management of a urban

wireless network infrastructure is presented as case study. In [50] a DSML is created

for the purpose of modeling for risk analysis and the tools that adopt this language are

presented. There are also mechanisms for the consistency control of likelihood.

Since MARTE and DAM are the basis of the new languages proposed in this thesis, in

the following sections additional details about them will be added.

3.1 MARTE

The UML Profile for Modeling and Analysis of Real-Time and Embedded systems (MARTE)

[48] is an OMG-standard profile that customizes UML for the modelling and analysis

of Real Time and Embedded Systems; it is able to capture non-functional properties

(NFP) of a system under analysis, such as timing or performance-related properties; it

is useful in all the development cycle, from specification to verification and validation

phase. MARTE adopts a component-based paradigms since component architectures

are increasingly used in RTE execution platforms and this paradigm is applicable to

different stages of the project. Component concept is also used to structure both system

and software engineering processes.

The MARTE domain model is reported in Figure 3.1: there are three packages which

describe all the concepts required for modelling and analysis of real time and embedded

systems. In particular the MARTE Foundation contain all the concepts needed to model

a generic resource or a generic component. This package includes the main concepts of

non-functional properties modelling. The MARTE Design Model package specializes the

first for modelling purpose, adding a distinction between the modelling of hardware and

software resources. The MARTE Analysis Model adds those concept useful for analysis

purpose, such as schedulability and performance analysis, but allows also for a generic

quantitative analysis of any other property.
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Figure 3.1: MARTE domain model

The MARTE Profile has been obtained extending UML with new modelling capabilities

(Figure 3.2). It is divided into four packages: three of them corresponds to the three

packages defined in the domain model while the fourth, MARTE annexes, provides the

specification language and the library of the MARTE model.

Figure 3.2: MARTE profile

The MARTE profile consists of several sub-profiles: in particular, the Time package is

very important for real-timing modelling purpose. MARTE defines three basic models

of time: Chronometric, Logical and Synchronous. The first concerns mainly the abso-

lute time (for example the delay, the duration and the time clock), the second ordered

events (for example, it defines that the event 1 occurs before the event 2) and the third

introduces the concept of simultaneity (for example, it defines that the first event to

happen at the same time of the event 2).
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Another important package is the GRM (General Resource Modeling) that provides the

basic abstractions for high-level modeling through generic concepts of real-time applica-

tions: resources, services, etc.

The Alloc (Allocation) package is useful to model the allocation of the application ele-

ments on the available resources. In MARTE the allocation concept is the association

between an application and execution platform (both defined in MARTE). The appli-

cation elements can be UML elements that are used to model an application, both

structural and behavioral aspects. An execution platform instead is represented as a set

of connected resources where each resource provides services to support the execution

of the application. So resources are basic structural elements, while the services are

behavioral elements.

Specifically for the analysis aim, MARTE contains a general package called General

Quantitative Analysis Model (GQAM): the object of this package is to represent some

general analysis concepts and describe how the system behaviour uses resources; al-

though different domains have different terminology, concepts, and semantic, they also

share some foundational concepts which are expressed in GQAM. A specific analysis

domain can be defined through specialization of GQAM; concretely, MARTE addresses

the schedulability analysis and the performance analysis by defining two separated sub-

profiles specializing the GQAM package.

A key feature of MARTE is the NFP framework and its Value Specification Language

(VSL). The former provides a general framework to annotate UML models with non

functional properties, defining the necessary data-types for the definition of a specific

analysis domain. In particular, a data-type is characterized by several properties, such

as the origin (which allows the modeler to specify whether a non-functional property is

a requirement or a metric to be estimated), the type of statistical measure associated to

an NFP (e.g., mean), the type of the quality order relation in the value domain of an

NFP, for comparative analysis purposes. Instead the VSL has been defined in MARTE

in order to specify expressions for constraints, properties, and stereotype attributes. In

fact, this expression language enables the values specification, at model level, in tagged

values, body of constraints, and in any UML element according to a well-defined syntax.

The VSL allows to express values using a scientific notation, to specify the upper and

lower bounds of an interval, to declare variables, etc.
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3.2 DAM

The Dependability Analysis and Modeling [18] (DAM) profile was created with the aim of

providing a standard support for the dependability analysis of software systems: this pro-

file is a specialization of general concepts for quantitative analysis provided by MARTE-

GQAM. The DAM profile is presented with an accurate level of detail for two reasons:

the first is that the definition of this profile follows what explained in the previous Chap-

ter and, secondly, since this profile will be extended with new concepts in the following

Chapters.

DAM is conceived by following the systematic approach already described: first, a de-

pendability domain model was built; later, the domain model is mapped onto UML

extensions (i.e., stereotypes, tags and OCL constraints).

In the initial phase a very accurate study of the dependability concepts and of exist-

ing profiles have been carried out. The result of this phase was a list of requirements

to satisfy in the profile DAM. These requirements include the identification of the de-

pendability context, of the upper and lower bounds for dependability requirements, of

the metrics to estimate and properties to verify. In addition, two fundamental aspects

are taken into account: faults and their relationships, and for repairable systems, the

repair/recovery processes. Finally, the last requirement provides for the description of

the redundant structures which can be present in the system. In the following phase

the DAM domain model has been realized, this diagram describes the basic concepts

inserted in DAM. After the complete assessment of the domain model, its concepts have

been mapped the UML extensions were a set of stereotypes that extend UML language

constructs and a specific library for the dependability analysis have been defined. The

last phase involve the assessment of the DAM profile.

3.2.1 The DAM domain model

The DAM domain model, that is the class diagram representing concepts that are the

basis of the dependability analysis, is structured into packages (Figure 3.3). The sys-

tem modelling view adopted by DAM is the component-based approach, similarly to

MARTE, from which DAM depends.

The main package is the System which describes the model under analysis; this package

is decomposed in turn in two sub-packages: the Core and the Redundancy packages

which describe respectively the system and, where present, the internal structure of fault

tolerant components. The Threats model add threats to the system. The Maintenance

package includes also maintenance concepts.
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Figure 3.3: DAM domain model

The Core model is reported in Figure 3.4: it introduces the general concepts that allow to

fully describe a reliable system from the structural and behavioral points of view. Each

system is considered as a set of components (hardware or software): each component

can be composed of other components, and different components are bounded together

by connectors in order to interact. The system delivers a set of high-level services.

Such services, which may be required from any component, are provided by one or

more components of the system. A component provides or requires at least one service

(as indicated by the constraint). A service can be composed as the aggregation of basic

services and can be also detailed as a sequence of steps. The core domain model depends

from two packages defined in MARTE and, specifically, from the General Resource

Modeling (GRM) and from the General Quantitative Analysis and Modeling (GQAM).

In fact some conceptual classes specialize some conceptual classes defined in MARTE.

Some elements of the core model have attributes that represent requirements, metrics,

properties or input parameters of a dependability analysis.

The redundancy package contains a domain model to represents redundant structure as

a set of fault tolerant components. A hardware/software redundant structure, shown in

Figure 3.5, increases the system fault tolerance and it is made of components, named

generically FT components. In particular, a fault tolerant component can be a spare,

a variant, that provides the same services of a main component but with a different

design, a controller, responsible for the co-ordination of the variants, or an adjudicator,

that manage the consensus of two or more outputs among the N-variants. .

The system can be affected by threats, i.e. faults, errors, impairments according to

the definition given in [51]. A fault is the original cause of errors and it affects system

components. Errors are related to steps and they can be propagated from the faulty

component to other components it interacts with. Errors may cause impairments (haz-

ards affecting safety, failures otherwise) at different levels: at step level, when the service

provided by the component becomes incorrect; at component level, when the component

is unable to provide service; at service level, when the failure is perceived by external
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Figure 3.4: System::Core domain model

Figure 3.5: System::Redundancy domain model

users. The Threats model is shown in Figure 3.6. In this model there is also a fault

generator, useful when you want to model the fault injectors.

The Maintenance domain model (Figure 3.7) includes concepts that are necessary to

support the evaluation of system dependability. Given that during the servicing opera-

tion the system is not available or is only partially available to users, the time required

to carry out such operations has a strong impact on the system availability. In partic-

ular the maintenance actions restore the system affected by threats. According to [51],
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Figure 3.6: Threats domain model

repairs of system components involve the participation of external agents (e.g., repair-

man, test equipment, etc.), while recovery of services does not require the intervention

of the latter. The model also includes the replacement steps of components and spares

and the reallocation steps of services on spares.

3.2.2 The DAM Profile

The DAM profile has been defined by mapping, systematically, the concepts of the DAM

domain model onto UML extensions and onto MARTE concepts. It includes a set of

DAM extensions (stereotypes and tags) and a DAM library containing dependability

specific types. To maintain a small (and usable) set of stereotypes, only a subset of

conceptual classes of the domain model were mapped to stereotypes but, when it had

been possible, complex datatypes have been defined. The DAM profile is formed by

two packages (Figure 3.8 (a)): the DAM UML Extensions and the DAM Library. The
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Figure 3.7: Maintenance domain model

first contains all the stereotypes, obtained as UML extensions and MARTE inheritances,

defined by DAM; the latter is the model library in which datatypes are defined. The

DAM Library is structured in turn as two packages(Figure 3.8 (b)): the Basic DA Types

and the Complex DA Types.

Figure 3.8: DAM profile

To maintain the traceability of the DAM stereotypes and datatypes, it was decided to

use the same name of the conceptual classes defined in the DAM domain model, adding

the prefix Da. As an example the Figure 3.9 shows the set of stereotypes obtained by

mapping conceptual classes belonging to the Core package of the DAM domain model.

In the figure, five different stereotypes are showed: DaComponent, DaService, DaStep,

DaConnector and DaServiceRequest. In particular, while the first three inherit from

MARTE stereotypes, the last two extend UML metaclasses since the concepts they

represent are not present in MARTE. Each stereotype defines its own tagged-values
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and, where present, inherits those defined in the MARTE stereotype from which it

inherits. The same approach has been used to define other stereotypes belonging to

other packages.

Figure 3.9: Core package of the DAM profile

The DAM Library imports NFPs and reuse the VSL defined in the MARTE profile.

The complex datatypes represent those conceptual classes that have been not mapped

to stereotypes: these datatypes come from the Threat and Maintenance packages of the

DAM Domain Model. Example of complex datatypes are the DaFault, DaError and the

DaFailure that map respectively the Fault, Error and Failure conceptual classes. Each

datatype shows, as properties, the attributes of the conceptual classes. On the other

hand, the basic dataypes are simply enumerative types (defining frequencies, failure

detectability, etc.) or valued types (Figure 3.10)
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Figure 3.10: Basic datatypes in DAM Library
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Chapter 4

A Model-Driven Approach for

Quantitative Analysis

This chapter has the objective to describe the steps necessary to move towards a Model-

Driven approach for quantitative analysis of critical systems. The proposed approach

integrate the formal Model-Based analysis (i.e. quantitative analysis performed with

a formal modeling approach) with the benefits given by Model-Driven which support

automatic generation of formal models starting from an high-level description of the

system. In detail the approach combines the three different techniques described in Sec-

tion 1.3, in order to exploit the benefits brought by each of them: divide-and-conquer,

multi-formalism/multi-paradigm and automatic generation. According to Model-Driven

paradigm (Chapter 2), the system under analysis can be described by using high-level

specifications expressed in Domain Specific Modeling Languages (DSMLs), automatic

transformation chains are able to generate formal models. Note that, also if used some-

times as interchangeable, there is a slight difference between DSL and DSML: the second

specifically addresses modeling languages, while the first is a more general concept and

can be applied, for example, also to programming languages.

The proposed methodology is implementable into cost-effective processes in order to re-

duce time-to-market, specifically during the verification stages of development lifecycles.

The definition of DSMLs and model transformations can not be a handcrafted discipline,

but must be ruled by mechanisms and techniques with the aim of improving reuse. The

originality of the proposed approach is in combining the three main research trends,

previously listed, in a comprehensive methodology based on Model-Driven principles

and that are able to generate single or multi-formalism, and component-based formal

models by means of transformational techniques. This approach follows and deepens

what described in [52], adding new details and shades, coming from the application of

50
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the methodology to real-world systems of different applicative domain, as it will be de-

scribed in Part III. The main innovation resides in the extension of horizontal languages

with vertical one; furthermore new high-level modeling languages have been defined

(Chapter 5) as well as new formal operators and techniques (Chapter 6). Next sections

show the proposed approach and its application to a first simple application domain.

4.1 Description of the approach

In this Section the proposed approach is described. Figure 4.1 depicts the conceptual

schema behind the approach; it is a three stages approach in order to combine hetero-

geneity, compositionality and automatic generation of formal modeling.

High Level
stage

Formal
stage

Multi-Formal
stage

level 1
M2M

level 2
M2M

level 3
M2M

M1

M2 M2’

M1’

M1 op M2’

Figure 4.1: Conceptual schema of the methodology

The stages are described in a top-down manner. The first stage (high-level stage) covers

all phases of high-level modeling of the system and its requirements. In order to establish

an automated method, it is necessary that all models comply with languages whose

syntax has been formally defined. At this stage, the creation of high-level models requires

the use of a DSML that can be eventually defined from existing ones and/or using the

UML profiling technique. The definition of the DSML requires that language engineers

carefully analyze considered domain aspects in order to define and realize a proper meta-

model; system modelers shall use the defined DSML and create a model of the system

under analysis by specifying peculiar characteristics (properly integrated into the DSML

itself).

At the second stage (formal stage) several formal models can be automatically generated

on the basis of the high-level one: each of the generated models can be expressed in a

different formal language. In this context “formal” means that these languages are

based on strong mathematical bases (both combinatorial and state-based formalisms).
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Examples of formalisms that can be used at this stage range from combinatorial to state-

based: Fault Tree, Queuing Networks, Process Algebras, Petri Nets and their extensions.

The choice of the language depends on the specific characteristics of the system, and

on the type of the requirements whose fulfillment has to be verified through formal

modeling.

At the third stage (multi-formal stage) single-formalism models are composed in order

to create a multi-formal model of the entire system. If quantitative analysis can be

performed using a single-formalism model, then the third stage is not necessary. The

multi-formal stage is instead necessary for quantitative analysis that require an overall

and multi-aspect model of the system, in this case a single-formalism model can not

be sufficient to allow the required analysis. The importance of having a multi-formal

approach makes possible to have an unique model of the overall system, which expresses

its peculiar aspects by choosing the best fitting formalism. This level allows not only

a multi-formal description of the system, but also the definition of a model solution

process that is able to analyze efficiently each sub-model with the most appropriate

solver and aggregates the results in an appropriate manner (as performed by the Os-

MoSys framework). The relationships among high-level model subparts are mapped into

compositionality operators, which define the rules of passing parameters and/or results

between models.

Model-to-model (M2M) transformations allow the generation of models from others. In

this approach the following kinds of M2M transformations are defined:

• Level 1 M2M transformations: they are used to generate formal models from high-

level specifications, allowing to pass from the first to the second modeling stage.

• Level 2 M2M transformations: they are used to perform translations between

formal models inside the second stage. Such passage is often desirable in order to

simplify the final multi-formal model and therefore the solution process (e.g. FTs

can be expressed through SANs). It is important to clarify that this transformation

passage is optional, not strictly required by the approach.

• Level 3 M2M transformations: they generate a multi-formal model by adding

compositional operators among the models produced at the second stage. In order

to accomplish to this purpose, these transformations have as inputs both formal

models and the high-level model developed at the first stage, since some required

information may not have been translated into the second stage models.

At the end additional Model-to-Text (M2T) transformations can be used to transform

both single and multi-formal models (those belonging to second and third stage) into
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the specific syntax of the analysis solver: as an example SAN models can be transformed

into the concrete syntax of the Möbius tool, i.e. into a set of XML files, written in the

concrete syntax understood by the tool.

4.2 Enabling techniques

In order to be feasible and cost-effective, the proposed methodology should be supported

by proper techniques which make possible a high-level of automation. In this Section

these techniques are addressed.

4.2.1 Extending languages

The first technique here applied is the DSML construction. The DSML must be suitable

to describe all the aspects of the system, needed during the following analysis activities.

If, for example, an availability analysis is needed, the high-level model must contain

all the information regarding the context (e.g. mission time, environmental condition,

etc.) as well as components failure rates and their failure modes. Another example

could be the performability analysis: in this case the high-level model shall contain not

only the information needed by the availability analysis, but also information regarding

services performed by the system. In the last case, service information strictly depend

on the application domain: the performability analysis of railway systems require the

annotation of travel times between stations, dwell times at a station, acceleration and

braking characteristics, and each failure must express its effects on the service in term

of consequences on the movement capacity and/or caused delay.

For these reasons it is important to highlight that horizontal and vertical DSMLs [53]

can be useful but with different characteristic: the horizontal DSMLs can allow the

modeling of those concepts that are common to several application domains such as

data modeling, testing, performance; they are characterized by high usability and low

re-usability; vertical DSMLs focus on specific business contexts (telecommunication,

railway, automotive, etc.) and can support the annotation of characteristics of the

specific application domain. It is possible to use new language able to join the advantages

of both the two kinds of languages by means of language composition techniques: this is

obtained starting from a more general horizontal DSML, adding those vertical concepts

and features needed during the analysis phase.

In the example described in Section 4.5, in fact, the horizontal DSML DAM (described in

Section 3.2) is extended with elements of a vertical domain (the production cell domain).
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At UML profile level, stereotypes belonging to vertical DSML own the tagged value of

the inherited stereotypes of the horizontal DSML, producing a more usable profile for

the domain modelers.

4.2.2 Inheriting transformations

In the previous Subsection it has been pointed out that new languages can be obtained

specializing horizontal DSML with new vertical concepts. This conduct to problems in

the transformation development: new domain specific concepts require the implemen-

tation of new transformations, which cannot be reused in other application domains.

Hence it is necessary to understand how extension of an horizontal DSML can be ex-

ploited in order to achieve a greater level of reuse of model transformations. It is possible

to refer to a mechanism that tries to exploit the relationship between a base language

and a derived language in order to define relationship between rules in base and derived

transformations: the transformation inheritance. Such methodology is fully explained

in [54] and can be summarized in Table 4.1 where four cases of language elements inher-

itance / transformation rules inheritance are described. The description refers to the

following case: assuming A′ as a language extension of A, we want to understand the

inheritance relationships between A− to−B and A′ − to−B transformations.

Table 4.1: Summary of transformation inheritance methodology

Name Language Elements Transformation Rules

addition A′ extends A by adding a new
element

a new rule, that maps the new
source element onto the target
one, must be defined

redefinition
(new context)

an element in A is inherited
without changes but it may be
used within a new context in
A′

the rules in A−to−B, related
to the translation of inherited
elements, are extended and/or
partially redefined in A′−to−
B

redefinition
(old context)

an element defined by A as-
sumes a new meaning within
A′, but the context in which
it is used does not change

the rules in A−to−B, related
to the translation of inherited
elements, must be redefined

full reuse an element defined in A is in-
herited by an element of A′

without modifications

the rules in A−to−B, related
to the translation of inherited
elements, are fully reused by
A′ − to−B

The addition case requires to add, to an existing transformation, all those rules that

maps new stereotypes into target elements. The redefinition situations require just to

refine or redefine all those rules where source elements muted from their initial meaning.
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The full reuse does not need implementation of new rules since the new language inherits

entirely from the previous one without any meaning mutation.

From a more technical point of view, two main mechanisms have been defined in litera-

ture for transformation composition that we can exploit for implementing transformation

inheritance: module superimposition [55] (that allows for overlaying several transforma-

tion definitions and executing them as they were a single transformation, well supported

by the most important transformation languages, including Atlas Transformation Lan-

guage (ATL) [55]) and rule overriding (that substitutes an existing rule by a new one

with the same name).

4.3 A reference architecture

In Figure 4.2 an overview of a possible architecture supporting the proposed methodology

is reported. This architecture can be characterized as three-layers, three-tiers and three-

users.

The three tiers (Editing Tier, Transformation Tier and Analysis Tier) represent the

three phases of the generative approach. The first tier concerns to all those phase of

model editing: in the proposed approach, the system high-level model must be produced.

Since formal and multi-formal models are automatically obtained through transforma-

tions, the second tier regards these models. The third tier include all phases of the

analysis (including the quantitative evaluation with analysis tools) that are the man-

agement of the concrete formal sub-models (those written in the specific syntax of the

analyzer tool), the solution description and the evaluation of results.

The three users are the languages and transformations developers, respectively Language

Engineer, Software Engineer, and System Modeler. The role of the first is to develop,

manage and maintain the DSML and the language editor: he needs to individuate

domain specific concepts, insert them in the DSML and check the coherence of syntax

and semantics. The role of the second user is to define transformations: he starts from

the DSML and develops all the transformation needed by the approach (those generating

formal and multi-formal models, backward transformations aimed at refining high-level

models with results obtained at the analysis tier).

Finally there are three horizontal layers (Artifact Layer, Tool Layer and Repository

Layer) that represent the objects involved in each tier. The first layer is related to all

those artifact that shall be produced during the application of the approach: different

model are required at each stage of the methodology, starting from high-level model

and formal models, reaching concrete sub-models (and input files) for the analysis tools.
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Figure 4.2: Reference architecture
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At the second layer all the necessary tools are enclosed: there is the one supporting

the DSML that can be any tool supporting the UML profiling technique, when this

has been the adopted technique to develop the language; there is the transformation

environment supporting their execution; there are all those tools required for the model

analysis and described in the solution process engine. At the third layer there are all the

repositories which can be used to store the information used/generated by the approach:

these information can be also used to store some historical information (e.g. different

versions of the system model following the design refinement and optimization as well

as the different solution obtained during the system lifecycle).

Some existing tools (open-source and/or commercial) can be used in some points of the

architecture: e.g. Papyrus, EMF/GMF, can be used as effective model editors; ATL

for Eclipse can be used as transformation environment; Möbius can be used as tool

supporting Fault Tree and SAN analysis; OsMoSys Multisolution Framework (OMF)

elements can exploit the roles of tool and repository layers for multi-formal models.

4.4 Model transformations: from DAM to RFTs and BNs

To allow the approach adoption for the quantitative analysis of real-world systems, it

is necessary to implement transformations from high-level DSMLs to destination for-

malisms. The work presented in this thesis offers two different transformations, which

allow the automatic generation of formal models from UML dependability models, prop-

erly realized applying the DAM profile (Section 3.2).

DAM models may be automatically translated into formal models: this translation is

performed by means of M2M transformations; in addition, according to the process

described in Section 4.1, some M2T transformations are needed in order to serialize

the obtained formal models into a concrete syntax, specific of the analysis tools. M2M

transformations are defined on source and target meta-models. Here the source DSML

is DAM, whereas we need Repairable Fault Trees (RFTs) and Bayesian Networks (BNs)

as destination formalisms. Let us define the meta-models for both RFTs and BNs.

RFTs have been introduced to allow complex repair policies modeling and evalua-

tion [56]. RFTs integrate Generalized Stochastic Petri Nets (GSPNs) and Fault Trees

(FTs): repair policies are represented by nodes, called Repair Boxes (RBs), which en-

capsulate a GSPN model. The RBs are connected to a FT which describes the faults

that may happen and their contribution to the occurrence of top event. A RB is applied

to an event, and models a repair action that can be performed on the related system

component. A simplified RFT meta-model is shown in Figure 4.3.
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Figure 4.3: The RFT simplified meta-model

BNs allow to easily model common modes of failure and multi-state systems [57]. A

BN is a probabilistic graphical model which is used to represent a set of random vari-

ables and their conditional dependencies through a Directed Acyclic Graph. Each node

in the graph represents a random variable, while the edges between nodes represent

probabilistic dependencies among the corresponding random variables. The conditional

dependencies in the graph may be estimated by well known statistical and computational

methods. A simplified BN meta-model is shown in Figure 4.4.

Figure 4.4: The BN simplified meta-model

One of the most critical issue in the application of transformational processes to critical

systems is the correctness assessment of the transformations themselves. Different ap-

proaches have been proposed in scientific literature spanning from testing [58] to formal

verification [59] but the problem still remains an open issue. This thesis does not focus

on transformation verification: the transformations here introduced have been tested on

some significant examples and then applied to the case studies. Future research effort

will be spent on transformation assessment.

4.4.1 DAM2RFT transformation

DAM2RFT transformation generates RFTs from UML models, properly annotated with

DAM stereotypes and tags. It exploits the strict relationship existing between FTs and
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RFTs and the dependency relations existing among the DAM packages, as depicted in

Figure 4.5. Hence, we adopt a divide-et-impera approach which exploits transformation

composition and reuse, by applying module superimposition. In practice, superimposi-

tion allows for defining a new transformation from existing ones by the union of their

set of rules. Hence, first a transformation from DAM to FT (dam2ft in Figure 4.5) is

realized with the aim to generate the Fault Tree structure of the RFT model from the

System and Threats domain models; then the proper rule set for the generation of Re-

pair Boxes and related arcs from the Maintenance domain model is defined and dam2rft

is obtained by superimposition.

dam2ft

dam2rft

Figure 4.5: DAM-to-RFT transformation schema

In details, dam2ft works as follows: the Top Event is associated with the failure of the

system which provides the service (specified by the Use Case Diagram). Events and

gates are created from the Component Diagram by recursively applying the following

rules:

1. for each DaComponent : if fault is null, one Middle Event is created; however, if

fault is not null, one Middle Event and m Basic Events are created where m is the

resource multiplicity (resMult);

2. for each DaSpare: if fault is not null, m Basic Events are created where m is the

resource multiplicity (resMult);

3. for each Middle Event (created from a DaComponent) an Gate is created and arc

to the Middle Event is set:

• an OR gate if DaComponent does not belong to a DaRedundantStructure;

• an AND gate if DaComponent belongs to a DaRedundantStructure and FTlevel =

1;

• a KooN gate if DaComponent belongs to a DaRedundantStructure and FTlevel =

k, k > 1;
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4. when a sub-component relationship exists between a DaComponent X and a con-

tained DaComponent Y and Y contains other elements, an arc is created from

the Middle Event generated by Y to the Gate that is input of the Middle Event

generated by X;

5. when a sub-component relationship exists between a DaComponent X and a con-

tained DaComponent/DaSpare Y and Y contains no other element, an arc is cre-

ated from the Basic Event generated by Y to the Gate that is input of the Middle

Event generated by X.

The transformation implemented by dam2rft works under the hypothesis that the DAM

specification includes a model of the repairing process of a sub-component and informa-

tion about its steps (this can be expressed by means of a State Machine Diagram, an

Activity Diagram, or a Sequence Diagram). The existence of a repair model associated

to a DaComponent is annotated by a DaActivationStep stereotyped element. First a

RB is generated for each replica of DaComponent and of its DaSpare, if any. The RB is

filled with information about the MTTR and the resources (the repairmen) needed to

accomplish the activity. This information is retrieved by the diagram used to describe

the repair dynamics and by navigating the Component Diagram.

Finally, each RB is connected to the Fault Tree generated by dam2ft through repair

arcs between: (1) RB and its triggering event, i.e. the Middle Event or Basic Event,

from which the RB has been generated (the sub-system to be repaired); (2) RB and

all the Basic Events that are present in the sub-tree whose root is the RB triggering

event. Once the RFT model has been generated, a GSPN model is derived by applying

another M2M transformation in order to allow easy analysis of this formal model. The

description of this last transformation is reported in [54].

4.4.2 DAM2BN transformation

DAM2BN transformation generates BNs from UML models, properly annotated with

DAM stereotypes and tags. This transformation woks under the hypothesis that the

DAM specification includes, beyond a Use Case and a Component Diagram, also a

behavioral model of the service, and specifically a State Machine Diagram which models

the state transition caused by classes of failures. In details, dam2bn works according to

the following rules:

1. for each DaComponent one BN node is created; the values of the random variable

associated with the node are the elements of the DaComponent ’s failure array plus
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one (the nominal service mode); the Conditional Probability Table (CPT) is built

according to its tagged values:

• if a failure element has a not null occurrenceRate, this rate is used to deter-

mine the probability associated with the value of the node;

• if a failure element has a not null condition, this condition defines the truth

table used to determine the CPT;

2. for each DaRedundantStructure one BN node is created; the associated random

variable has just two values corresponding to nominal and failure service modes

and its CPT is built according to the rules defined in [60]. An arc is added from

the node corresponding to the DaRedundantStructure and the node corresponding

to the DaComponent which contains the DaRedundantStructure;

3. for each DaService one BN node is generated; the values of the random variable

values and/or the CPT associated with the node are calculated from the states in

the State Machine Diagram associated with the DaService;

4. if a usedResources tagged value of DaService is assigned, it is used to determine the

BN nodes that must be connected to the one BN node translating the DaService;

then proper arcs between such nodes are added;

5. if a UML dependency between two DaServices is found, it is used to connect their

associated BN nodes;

6. for each DaRedundantStructure, the CPT of the related BN node is determined

(in analogy to what specified at point 1.b) from the condition tagged-value in the

DaSteps contained in the State Machine.

4.4.3 M2T transformations

M2T transformations are necessary to finalize the M2M transformation chains, in order

to allow the usage of existing solver tools. After the two M2M transformations pre-

viously introduced, two M2T are necessary: the former transforms GSPN models into

GreatSPN [61] input file format, the latter generates JavaBayes [62] compatible files

from a BN model. The two transformations are implemented by means of ATL queries.
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4.5 An example from automation domain

To give greater a practical impact of the proposed approach, this Section introduces an

example taken from Flexible Manufacturing Systems (FMS) domain. In Figure 4.6, a

simple FMS production cell is depicted.

Entry Exit

M1 machine M2 machine M3 machine

R1 robot R2 robot

Buffer

Figure 4.6: Simple flexible production cell

The production cell, depicted in the figure, is composed of entry and exit areas, buffer

for temporary storage of unfinished parts, machines for their manufacture and robots

for their handling. Raw materials and unfinished parts are loaded/unloaded into the

cell through entry and exit areas; in this example we suppose that these two elements

have infinite capacity to produce/consume parts. Materials are worked by machines that

are able to accomplish some kinds of transformation on initial material. Materials can

be moved only by armed robots that transfer parts from/to machines and other places

inside the cell. At last semi-finished parts, that need to be further worked by machines,

can be temporary stored into buffers (with a finite capacity). In particular we suppose

that the robot R1 is fault-prone and can be repaired. We are interested in generating a

model that can give us quantitative informations on the performance of the production

cell in presence of failure of the only robot R1 (i.e. a performability model). At this

purpose we need to create a multi-formal model, composed of a performance GSPN

submodel of the entire cell and a reliability FT model of the R1 robot.

The quantitative evaluation of the performability of the system follows the stage of the

proposed approach, that are: (1) definition of a proper domain model, (2) implemen-

tation of a DSML, (3) creation of an high-level model of the system to analyze. Then

the model is transformed by (4) Level 1 M2M transformations, in order to generate

formal models belonging to the the second stage. Finally the generated formal models

are transformed into a multi-formal model by the (5) Level 3 M2M transformations. In

the proposed example no Level 2 M2M transformations are required since there is not

the necessity to change model formalism; for example, using them we could translate

the FT model into a GSPN, in order to compose the two models generating a single

GSPN global model.
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4.5.1 Definition of the Domain Model

In Figure 4.7 the domain model is depicted: this class diagram reports all the concepts

needed to describe the application domain. Focusing on production cell package, the

five elements of the FMS description are represented by means of five conceptual classes

and two abstract ones. The abstract classes are Worker, that represents the general

characteristic of performing objects as robots and machines, and Stage, that is related

to material transformation and storing entities. Stages are connected between them in

order to define a workflow of the material: the workflow is modeled by the flow self-

association of the Stage class. The serves association, between the Robot conceptual

class and the flow association, represents the movement of materials: in fact since Stage

elements are unable to move material by themselves, Robots are needed in order to

“serve” material flows. Two properties are present in the domain model: the rate of

Worker, which defines the production rate of machines and robots, and the capacity,

which represents the maximum amount of material units that can be stored in buffers.

Workers are fault-prone, thus it is natural to exploit existing languages that already

capture dependability aspects. For this reason the domain model depends from the

DAM domain model. In this way, Worker inherits from the Component conceptual

class of the DAM domain model: this concept of DAM represents objects characterized

by mean-time-to-fail (MTTF) and mean-time-to-repair (MTTR).

DA domain model Production Cell

Worker

+rate: Real

Robot

Stage

Machine Buffer

+capacity: Int

Exit

Entry
flow

 former

0..*

 latter

0..*
serves

 server

0..*

 served

0..*

Component

Figure 4.7: FMS domain model

4.5.2 Implementation of the DSML through the UML profiling tech-

nique

According to the domain model previously described, a UML profile can be developed.

More in detail, the FMS profile imports the DAM profile, since the DAM profile is

entirely reused for dependability modeling (Figure 4.8). The FSM profile contains the
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production cell package, in which all stereotypes and tagged values related to production

cell domain model are defined. In particular we define the five stereotypes related to the

five conceptual classes, individuated by the domain model, which are: Machine, Robot,

Buffer, Entry and Exit. Two abstract stereotypes (Worker and Stage) have been also

defined to facilitate the overal structure, according to the one used in the domain model.

Lastly, the Worker stereotype inherits from the DAM::DaComponent stereotype since

it describes a faulty component.

Figure 4.8: FMS Profile: package structure

4.5.3 Creation of the high-level model

The high-level model shall represent a production cell. Of course we implement the

model using the FSM profile previously defined, to annotate all the characteristic that we

need to model. The model consists of two UML diagrams: a class diagram (Figure 4.9)

and a composite structure diagram (Figure 4.10). The first describes the layout of the

production cell and highlights its elements by means of UML stereotypes and tagged

values belonging to production cell package; the second diagram models dependability

aspects of the robot R1 (the one that is fault-prone). The robot R1 consists of three main

components: a mechanical arm, a microcontroller and a power group. These elements

are specified by means of DAM stereotypes; in particular we use: the DaComponent

stereotype to specify elements that are characterized by a MTTR and/or a MTTF; the

DaRedundantStructure stereotype in order to model redundant fault-tolerant structures

and the DaSpare stereotype to model spare components.

4.5.4 Level 1 Model2Model transformation

In order to generate formal models, the target languages must be formalized according

to model transformation techniques. Since we are interested in generating both a GSPN

and a FT model, the syntaxes of these languages have to be defined in proper meta-

models. Then two model transformations are created in order to proper translate a UML

model. First the fault tree model, as in Figure 4.11, can be generated on the basis of

robot structure, by means of the dam2ft transformation that has been already defined

and implemented in [54].
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Figure 4.9: Model of the production cell
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Figure 4.10: Model of the faulty robot structure

Moreover the fms2gspn transformation is used to generate the GSPN performance model

of the production cell. This transformation consists of several rules, each of which

triggers on a stereotype of production cell package (Robot, Machine, Buffer, flow, etc.)

generating for each of them a GSPN subnet such as the one depicted in Figure 4.13 for

the faulty Robot. All the subnets are linked together in order to produce a single GSPN

performance model. The result of this transformation is depicted in Figure 4.12.

4.5.5 Level 3 Model2Model transformation

The FT and GSPN model are now ready to be transformed into a multi-formal one. In

order to make this passage two sources of information are necessary. From the high-level

model we understand which of the formal models are tied together: in the example, the

R1 robot represents a single model element that is characterized by both performance

and reliability aspects. Moreover the nature of the formal models (i.e. the formalisms in

which they are expressed) determines how these models are tied together: in the example,

the occurrence probability of the top event of the fault tree gives the rate of the transition

of the subnet related to R1 robot. The formalization of this connection is made by means
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Figure 4.11: Fault Tree model of robot structure

K

Figure 4.12: GSPN model of the production cell

of a compositional operator. In particular, according to the OsMoSys methodology,

we encapsulate the models described before by means of the Copy-Elaborated-Result

(CER) operator. According to the semantics of this operator, the result of the analysis

of a FT model is copied as parameter of GSPN one. The resulting model (depicted in

Figure 4.14) can be further analyzed by means of a proper automated solution process.
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Figure 4.14: Multi-formal model



Chapter 5

New high-level modeling

languages

The application of the approach described in Chapter 4 starts from the modeling of

the system and its requirements in a DSML (high-level stage, described in Section 4.1).

The modeling and analysis of different properties of the systems requires the usage of a

specific DSML. With reference to the case study shown in Section 4.5, for example, it is

important to note that the DSML has been created extending the horizontal language

DAM, able to model dependability and maintainability aspects, while the modeling of

domain specific features, as the worker rate or the buffer capacity, requires the special-

ization of the horizontal DSML with vertical concepts.

Obviously, the set of horizontal languages is not complete, since some critical properties

have not been addressed in existing DSMLs. From the other side different application

domains requires to be extended with new vertical concepts. Hence there is the need of

both new horizontal and vertical languages: in this Chapter two new high-level languages

are hence proposed: DAM-Rail and CIP VAM. The first language extends DAM with

specific concepts coming from the railway domain, while the second is a new high-

level modeling language which is able to capture vulnerability characteristics of physical

infrastructures. These languages will be used in Part III of this thesis to support high-

level modeling and quantitative analysis of real-world systems during high-level stage.

68
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5.1 RAM modeling and analysis in railway domain: DAM-

Rail

The high-level modeling of RAM (Reliability, Availability, Maintainability) attributes

of critical systems cannot exclude the application of the DAM UML profile as horizon-

tal language. However, its application in railway domain, has shown the necessity to

specialize it with vertical concepts: to this aim we successfully specialize DAM for the

railway domain, creating the DAM-Rail language.

The objective of the DAM-Rail profile is to provide railway modelers with specific con-

cepts, close to their experience and skills, that cannot be represented at DAM level.

Of course, DAM stereotypes must still be used to model general structures: in fact the

metro driverless vehicle model, in Section 7.2, makes use of both DAM and DAM-Rail

stereotypes since, in this case, the focus is on railways service degradation categories.

5.1.1 DAM-Rail domain model

DAM-Rail adds railway concepts to DAM. Its domain model is organized as depicted

in Figure 5.1. It consists of two main packages: System and O&M. System describes

the structural features of the railway domain, O&M deals with the modeling of the

railway Operation & Maintenance. The System package is, in turn, structured in several

packages, each one addressing a specific technology.

Figure 5.1: DAM-Rail package structure.

According to a classical railway organization, we identify eight sub-packages:

1. RollingStock includes concepts and their attributes for a complete vehicle descrip-

tion (e.g. vehicle length and engine power);

2. Track contains concepts related to the infrastructure as well as track elements (e.g.

segment, crossing and point);
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3. Signalling encompasses concepts of the signalling system (e.g. fixed and moving

block);

4. TP includes concepts related to traction power (e.g. traction transformer, catenary

and third rail);

5. PS contains concepts related to power supply (e.g. station cabinet and medium-

voltage converter);

6. SCADA deals with supervisory control and data acquisition modeling (e.g SCADA

rack and server);

7. PSD includes concepts related to platform screen doors subsystem (e.g doors en-

gine and screen);

8. TLC contains concepts related to telecommunications technologies (e.g. terrestrial

trunked radio and on-board system).

Hence a single package can be considered a “technological” DSML itself. As an example,

an excerpt of the RollingStock package is shown in Figure 5.2: it describes the portion

of domain concepts that will be used in Section 7.2 to implement the metro driverless

model, needed to perform quantitative availability evaluation.

The concepts included in the RollingStock package concern with the vehicle and its

subcomponents. They are:

• Vehicle: it expresses the railway vehicle concept, characterized by the number of

cars, the length and other attributes (not shown in the Figure 5.2);

• Pantograph: it describe the pantograph, which capture energy from the power

line and transfer it to the engine; it is characterized, for example, by the distance

between the vehicle and the catenary;

• Engine: it is used to annotate specific features of the engine, such as its power;

• Wheel : it describes the wheels of a vehicle, specifying its characteristics as the

diameter and the border thickness;

• AirCompressor : it represents the air compressors unit installed on a vehicle, spec-

ifying, for example, its pressure;

• GasTank : it expresses the gas tank concept, describing the power measured as

British Thermal Units (BTUs).
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Each of them extends the Component class of DA domain model of DAM, by adding the

specific attributes representing domain specific features. In a similar way other packages

have been defined.

The O&M package deals with railway concepts of Operation & Maintenance, focusing

primarily on the features to be considered in the evaluation of railway services. It is im-

portant to consider that, in the railway domain, a common approach defines degradation

categories for each service. Figure 5.2 depicts also an excerpt of this package including

the degradation categories (Service Modes - SMs) related to the services provided by

vehicles. In detail:

• DelaySM may be used to specify the expected minimum and maximum delays at

the end of the trip (for example, concerning the transport service, a “good” level

is when the delay is minor than 3 minutes, while an “acceptable” level is when the

delay is included between 3 and 10 minutes);

• SpeedSM may be used to specify the maximum speed (ratio) reached by the vehicle

(for example it is “good” with a maximum speed of 100% and “acceptable” with

a maximum speed of 60%);

• CoolnessSM may be used to specify the refrigeration ratio inside a car (for example

it is “good” when is 100% and “acceptable” when 60%);

• PowerCaptureSM may be used to specify the power capture capability ratio of

a vehicle from the electrified line (for example it is “good” when is 100% and

“acceptable” when 60%).

Notice that, by inheritance, the relationships between components and services are de-

rived from DAM, as well as their threats characterization. Similarly, the impact of

impairments on services is already fully modeled in DAM (through the two associations

between Component and Service and between Service and Step) and it does not require

to be specialized in DAM-Rail (see Figure 5.2).

5.1.2 DAM-Rail profile

The DAM-Rail packages are directly mapped into the DAM-Rail profile. The con-

cepts introduced by RollingStock and O&M are mapped, one by one, on UML exten-

sions through stereotypes: each stereotype inherits from DAM::DaComponent or from

DAM::DaStep stereotypes. For example the Engine conceptual class, belonging to the

DAM-Rail domain model, is translated into the Engine stereotype in the DAM-Rail
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Figure 5.2: DAM-Rail RollingStock and O&M packages (excerpt)

profile inheriting from DAM::DaComponent, as well as the DelaySM conceptual class is

translated into the DelaySM stereotype inheriting from DAM::DaStep.

In Table 5.1 a partial list of the DAM-Rail stereotypes (those shown in Figure 5.2) and

their attributes is reported.

Table 5.1: DAM-Rail stereotypes and tags (portion).

Stereotype Inherits / Extends Tags: type

System::RollingStock

Vehicle DAM::DaComponent / - cars: Integer[0..1]

length: NFP Length[0..1]

Pantograph DAM::DaComponent / - vehicleCatenaryDistance: NFP Length[0..1]

Engine DAM::DaComponent / - power: NFP Power[0..1]

Wheel DAM::DaComponent / - diameter: NFP Length[0..1]

borderThickness: NFP Length[0..1]

AirCompressor DAM::DaComponent / - pressure: NFP Real[0..1]

GasTank DAM::DaComponent / - BTUs: Integer[0..1]

O&M

DelaySM DAM::DaStep / - MinDelay: NFP Duration[0..1]

MaxDelay: NFP Duration[0..1]

SpeedSM DAM::DaStep / - MaxSpeed: NFP Real[0..1]

MaxSpeedRatio: NFP Percentage[0..1]

CoolnessSM DAM::DaStep / - CoolnessRatio: NFP Percentage[0..1]

PowerCaptureSM DAM::DaStep / - PowerCaptureRatio: NFP Percentage[0..1]

5.2 Vulnerability high-level modeling and analysis: the

CIP VAM language

The vulnerability high-level modeling of Critical Infrastructures (CIs) has been not suc-

cessfully treated in literature. Several approaches have been taken from the literature

to model CIs under several aspects but, at best of our knowledge, few works focus on

the design and development of DSMLs for modeling CIs vulnerability and protection.
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In [63] UML-CI is introduced, a UML profile aiming at defining different aspects of an

infrastructure organization and behavior. Other works address several issues not specif-

ically related to CIs. For example, the CORAS language is oriented to risk analysis

of changing systems [50], UMLsec allows for expressing security information in system

specification [64].

For these reason we propose to extend directly UML with new vulnerability and protec-

tion modeling capabilities through the definition of a new UML profile named CIP VAM

profile (Critical Infrastructure Protection, Vulnerability Analysis and Modeling). The

original contribution of CIP VAM is to correlate both infrastructure and attack with

the protection system, applied to defend the assets. The CIP VAM language is gen-

eral, i.e. it may be applied to the protection of physical assets: it can be considered an

horizontal language similarly to the DAM language.

With the aim to provide the language with a clear structure and with all the information

needed to its complete definition, the definition of CIP VAM has followed three main

steps:

1. identification of the main levels in which the domain under study could be logically

decomposed, in order to separate the concepts belonging to different semantic

concerns;

2. characterization of the entities and concepts involved at each level; this step has

been performed by identifying and studying the main available sources of informa-

tion: information retrieved from public databases, interviews with domain experts,

current literature (CIs modeling, domain specific modeling languages and depend-

ability profiles, protection systems and localization models, attacks classification);

3. identification of the relationships between the domain levels and of the consequent

dependencies among concepts and entities across the levels.

Three different levels have been identified:

• the Infrastructure level models assets (under physical, functional and economic

aspects) that must be protected and their relationships;

• the Attack level deals with attacks and sabotages that can occur against an in-

frastructure;

• the Protection level focuses on devices and techniques used to protect assets.
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Since we choose to design and implement CIP V AM using UML, a UML profile has

been developed, according to the guidelines provided in [45, 65]. At first the definition of

the Vulnerability Analysis domain model was given. That means to define a conceptual

model for each level (from step 1), including the main language constructs representing

the essential concepts (characterized in step 2) and the set of valid relationships that

must be considered between the above domain concepts (identified in step 3). Of course,

the domain conceptual model also includes the set of constraints that drive the way in

which the language constructs may be combined to build models, the concrete syntax of

CIP V AM and its semantics, i.e. the correspondence between the elements of the ab-

stract syntax and the domain entities which are represented by the syntactical elements

of UML.

Once the conceptual model was completed, the domain models have been mapped to the

Vulnerability Analysis Modeling Profile (the CIP VAM profile), by identifying for each

domain concept the most suitable UML notation. In the next subsections we introduce

the Vulnerability Analysis domain model and the CIP V AM profile.

5.2.1 The Vulnerability Analysis domain model

CIP VAM is organized in three packages (Figure 5.3), each one related to one of the

three levels Infrastructure, Attack and Protection. The CIP VAM domain model is

general enough, i.e. it may be applied to the protection of physical assets of whatever

application domain. In detail:

• the Infrastructure package provides a full description of the physical system to be

analyzed; in particular, it contains asset and environmental related concepts. At

the state we specifically cope with physical assets, nevertheless CIP VAM can be

easily extended to include non-physical assets;

• the Attack package introduces the threats due to attack events conducted against

the assets within the infrastructure;

• the Protection package introduces protection related concepts and provides a de-

scription of techniques and countermeasures which may be applied to defend an

asset.

Dependencies between packages stand for relationships between concepts from the in-

volved levels. It means that at least one model element of one package requires at least

one model element of the other package for its specification or implementation, or rather

the complete semantics of the depending element is either semantically or structurally
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Figure 5.3: Package organization of CIP VAM domain model

dependent on the definition of the supplier element. Three different dependency rela-

tionships are present. Within this context, the target of an attack is always an asset,

hence a relationship exists from Attack to Infrastructure. The Protection package has

dependencies relationships with both Infrastructure and Protection packages because a

protection is applied to a specific asset against one (or more) class of attacks. More

details about the dependency relationships will be given in the following, during the

description of the model elements belonging to these packages.

Infrastructure package.

The first of the three levels introduced in CIP VAM is the Infrastructure level. It is easy

to understand that to study and analyze a CI, it is necessary to decompose and represent

it as a set of smaller subcomponents. More precisely criticality and vulnerability levels

associated to a CI is strongly affected by the criticality and vulnerability levels of the

CI subcomponents, even if it is not given by the sum of the values associated with

the components. For this reason the Infrastructure level has the aim of studying and

analyzing the main subsystems and subcomponents of a CI.

The Infrastructure domain model is depicted in the Figure 5.4. Following the descrip-

tion of the package scope of modeling given before, this model formalizes the elements

concerning with physical infrastructure modeling. In detail, four main concepts have

been identified: Site, Interface, Object and Service. These concepts are represented by

four UML classes of the conceptual class diagram. The Site class shows the subSites

self-association: it is a UML composition due to the fact that a contained site has no

reason to exist without the external container, in other words the elimination of the

more external site provokes the elimination of the internal sub-sites. Similarly, the Ser-

vice class has a self-association named subService: also in this case a contained service

has no reason to exist without the external container. On the contrary, the subObject

association is a UML aggregation of two objects, in the sense that a contained element

can be autonomous and independent from the container.
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Figure 5.4: Infrastructure domain model

Another UML aggregation is named location: this aggregation expresses the physical

location of several objects inside a site. Two different association are established be-

tween object and service named provides and requests: they model the situation of an

object that can provide and/or requests different services. A UML association is estab-

lished between the Site and the Interface: the exposure association models the interfaces

between sites, as the doors between two rooms, or an intersection of different corridors.

Notice that Asset conceptual class plays a particular role in the infrastructure model:

it encompasses the concepts needed to vulnerability analysis and it may be “applied” to

sites, interfaces, objects and services. Specifically, an asset is characterized by the fol-

lowing attributes: economic value (value), likelihood that an attack is successful given

that it is attempted (vulnerability), probability of an attack (attackProb), quantita-

tive estimate of potential for an unwanted outcome (risk), qualitative estimate of risk

(riskLevel). Sites, interfaces, objects and services may be assets if an economic value is

given to them: the constraint on the Asset class (the note on the Asset in Figure 5.4)

guarantees that if one instance of Asset exists then exactly one association is established

with an instance of either Site, or Interface, or Object, or Service.

Attack package.

The second of the three levels introduced in CIP VAM is the Attack level. This level

allows to represent the main concepts concerning attacks and sabotages that can occur

against a CI. Obviously, this level is in a strict relationship with the Infrastructure one,

since the objective of an attack is to damage, destroy, sabotage an asset causing a loss

that can be economically quantifiable (given the asset specification). The effect of an

attack, if it is successful, against the asset depends from its nature and from the asset

characteristics. In fact, it is impossible to destroy a service inside a CI, while it is
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possible to cause a failure in it; from the other hand it does not make sense to provoke

a failure in a physical site, where it is possible to damage or to violate it, if not public.

The Attack domain model is depicted in Figure 5.5. It depends on the Infrastructure

package since some model elements belonging to the latter are necessary to properly

define some model elements of the first. The main class of this package is Attack, which

depends on Asset (from the Infrastructure package) through the Threat association.

Threat models effects that the attack wants to cause on the asset. The Attack shows

also the self-aggregation subAttacks due to the fact that it can be specified by a compo-

sitional relationship. The attack is also associated with the Action class, representing

its compositional nature.

Figure 5.5: Attack domain model

Both Attack and Action concepts can be characterized over time by a temporal duration

(i.e., the time elapsed between the start and the end of the attack/action); Attack is

also characterized by tactic, that is the nature of the attack (kidnapping, armed attack,

sabotage, etc.). The impact of the actions on the asset is modeled by the Impairment

class.

The propagation self-association indicates how a damage can propagate to other impair-

ments, with a given probability and under specific conditions.

Attacker models the misactors which perform the actions. An attacker is characterized

by: number of physical people performing an action (multiplicity), psychological predis-

position to overcome deterrents and defence systems (firmness), capability exploited in

carrying out an attack effectively (skill). Weapon represents the weapon used by the

attackers to perform the actions. A weapon is characterized by its failure probability

(failureRate), for example a bomb that does not explode, and by its type (weapon-

Nature). A ternary association models the relationship among Attacker, Action, and

Weapon.
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A Trigger is an event enabling an action: since it is also an action, it is in a specialization

relationship with the Action class. It has an occurrence probability (occurrenceProb-

ability). The association triggeredBy relates the Action class with the Trigger class,

specifying which are the objects, instances of the latter class, that enable the execution

of an object, instance of the first class. One of the main assumption at the base of

this domain model is that CIP VAM does not want to model all the possible attack

brought to all the assets of the CI but rather than quantify a modeled attack against

a single asset. For this reason multiplicity of the Threat association class is 1-to-n and

not m-to-n.

Protection package.

The third level of the CIP VAM domain model is the Protection level. A huge number

of protection and defence mechanisms can be employed in the design of a CI security

system. Most of them are devoted to the detection of specific kinds of attack. This

level wants to represent the entire set of protection systems nowadays available in CIs.

Obviously, this level is in a strict relationship with both the Infrastructure and the

Attack levels since the aim of a generic protection system is to protect the asset against

the attacks. All these systems must be installed within a RIS; with respect to physical

protection all the available technologies can be applied both on a site, an object and an

interface.

The Protection domain model is depicted in Figure 5.6. At this step of the study,

protection procedures are not considered, but the proposed framework can be easily

expanded to support such facilities.

Figure 5.6: Protection domain model

Protection is an abstract class modeling a protection/defence system: it is characterized

by a cost and the probability to be effective against an attack (succesProb). A protection
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may be applied (through an instantiation point) to a site, an interface, an object or a

service in order to protect an asset. InstantiationPoint also specifies the position of the

application point of the protection system (e.g., the height where a closed circuit video

camera is applied on a wall) and the direction. The abstract concept of Protection is

specialized by two concrete classes: Guard and Device. Guard models the presence of

one or more guards or, in general, of a security service based on human personnel. In

turn, Device, that is characterized by a failure probability (failureRate) and a nature,

is further specialized by the classes Barrier, Sensor, and Deterrent. A barrier has the

aim to lock an interface (to which it is associated), or to increase the time and the

difficulty to overcome it. The attribute timeToOvercome specifies the crossing time of

the barrier. A sensor is characterized by the maximum extension of the area covered

by the sensor (range), and by its false positive/negative rates (fpr, fnr). A deterrent is

whatever is able to demoralize an attacker from performing a malicious action and it

may be characterized by the condition under which the deterrence has effect (condition).

5.2.2 The CIP VAM Profile

In this Section the mapping from the conceptual domain model to a concrete UML

profile is described. Each class, as well as its attributes, associations and constraints,

is considered, and the most suitable UML concepts are identified, according to the

guidelines expressed in [45, 65]. The outcome of this iterative process is the CIP VAM

profile which provides the UML extensions to be used to represent vulnerability and

protection aspects in a UML model. These extensions allow to refine standard UML

semantic adding specific concepts for vulnerability analysis of CI. The CIP VAM profile

includes the definition of stereotypes, tagged values and constraints together with a

library of specific data types. The profile consists of the CIP VAM Library and a set of

CIP VAM UML extensions as shown in Figure 5.7.

Figure 5.7: CIP VAM profile

The UML extensions package contains the stereotypes, their attributes (tagged values)

and the constraints which extend the UML meta-model.
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The CIP VAM Library defines the whole set of basic and complex data types neces-

sary to the correct definition of the tagged values while the CIP VAM UML extensions

encompasses the set of stereotypes and constraints necessary to extend the UML meta-

model.

As explained here below, the CIP VAM Library imports the MARTE Library that is

part of the MARTE UML profile [48]. Specifically, CIP VAM uses MARTE’s primitive

types and its capability to specify quantitative and qualitative Non-Functional Proper-

ties (NFP) through its Value Specification Language (VSL). In addition the CIP VAM

profile uses the Measurement Units package to represent quantity, measure, unit, unit

conversion for the most used physical quantities such area, length, time, energy, etc.

The CIP VAM Library.

The CIP VAM Library defines basic, geometric and structured data types and it is

structured into three packages, BasicDT, GeometricDT and StructuredDT, respectively

(see Figure 5.7). Obviously the last package imports the other two in the sense that the

definition of some properties in its specified, depends on the namespace of the other two

packages.

The CIP VAM Library is composed as following: a set of simple enumerations are defined

in BasicDT (Figure 5.8(a)); the geometric data types in GeometricDT are necessary in

order to model physical structures and spaces, e.g. the localization of objects inside

a space and the dimension of both objects and sites (Figure 5.8(b)); the Structure

package defines complex data types by aggregating BasicDT and GeometricDT types

(Figure 5.8(c)). Both GeometricDT and StructuredDT use types defined in the MARTE

Library.

BasicDT. The BasicDT (Figure 5.8(a)) defines the following enumerations:

• RiskLevel represents a qualitative classification of the degree to which an asset

might be exposed to potential losses. Possible values are: negligible, acceptable,

tolerable and unacceptable.

• ProtectionNature represents the nature of a protection. Possible values are: acous-

tic, biological, chemical, electric, magnetic, mechanical, optical, radiation, thermal.

• Tactic is the physical nature of the weapon used to bring on the attack (or a

single action inside a complex attack). Possible values are: armed attack, arson,

barricade, bombing, hijacking, hostage, intrusion, kidnapping, sabotage, suicide.
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Figure 5.8: CIP VAM Library : (a) Basic enumeration types, (b) Geometric data
types, (c) Structured data types
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• ActionKind allows to discriminate between simple actions and triggers. In fact

possible values are: action and trigger.

• Level represents a generic qualitative level, it is used in different parts of the profile

such as motivation and skill levels of both attackers and human defenders. Possible

values are: very low, low, medium, high and very high.

• WeaponNature represents the nature of a weapon. Possible values are: chemical

agent, explosives, firebomb, firearms, radiological agent.

GeometricDT. The geometric data types are necessary in order to model physical

structure and spaces: the localization of objects inside a space and dimension of both

objects and site. Figure 5.8(b) represents the GeometricDT : both enumeration and

structured data types are present. In detail:

• PolygonType is an enumeration of simple geometrical 2D shapes. Possible values

are: polygon, circle, rectangle and square.

• Point represents a point in a 3D space. It is a datatype (a tuple) having three

different fields:

– X : x-axis coordinate of the point. It is a real value and it is optional since

the point can only have y and z coordinates;

– Y : y-axis coordinate of the point. It is a real value and it is optional since

the point can only have x and z coordinates;

– Z : z-axis coordinate of the point. It is a real value and it is optional since

the point can only have x and y coordinates.

• Shape represents a 2D shape. It is a datatype (a tuple) having several fields:

– type: it is a Poligontype variable and assigns the type to the shape. It is

optional since the shape can be of a type not in the PolygonType set of

values;

– vertices: list of Points that constitute the border of the shape; vertices have

an undefined number of Points;

– area: value that represents the numerical value of the area of the shape;

– perimeter : value that represents the length of the border of the shape;

– centre: it is a Point that represents the barycentre of the shape;

– length: length of the shape;

– width: width of the shape;
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– radius: for circular shape, it indicates the radius of the shape.

• Solid represents a 3D geometrical volume. It is a datatype (a tuple) having three

different fields:

– base: shape describing the base of the solid;

– height : value that represents the measure of the vertical dimension of the

solid;

– volume: it represents the volume of the solid.

StructuredDT. The StructuredDT package is related to complex datatypes, created

reusing those defined in BasicDT and GeometricDT packages. Figure 5.8(c) depicts the

structure of this package.

The types contained in this package are the following.

• Weapon represents a weapon used as a tool in an attack phase (an action). It is a

dataType having two different fields:

– failureRate: rate of failure of the weapon;

– nature: physical nature of the weapon (kidnap, firearm, etc...) determined

according to the AttackNature type previously expressed.

• Asset is the data type related to the economic values and risk of an asset:

– value: economic value of the asset;

– vulnerability : probability of being damaged given an attack;

– AttackProb: quantification of the probability being attacked;

– Risk : quantification of the risk associated with the asset (according to the

well-assessed formula Risk = attackProb *Vulnerability*damage);

– riskLevel : qualitative level of the risk.

• Application represents the localization of the installation of a protection onto an

item (site or object):

– position: physical location of the application;

– direction: orientation of the protection (let us consider as an example a cam-

era that wants not only the point on which it has been fixed but also the one

where the camera looks to);

– installation: Item on which the protection is installed.
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• Threat represents a threat brought by an attack to an asset:

– name: name of the threats;

– target : item representing the asset toward which the attack is brought;

– effect : percentage of the value of the asset damaged by a successful threat.

• Impairment specializes Threats by adding some properties:

– latency : that is the latency of the propagation of the Impairment to other

affected Impairments;

– for each propagation we have (as three arrays):

∗ propEffect : affected Impairment;

∗ propProb: probability of having a propagation on the affected Impair-

ment;

∗ propCond : condition under which we have the propagation of the Im-

pairment.

The CIP VAM UML extensions.

The CIP VAM UML extensions represent the subset of the CIP VAM profile that de-

fines the stereotypes, the tagged values and their constraints. This package import the

complete CIP VAM Library, using the namespace defined by the latter as types for some

properties.

The CIP VAM UML extensions are organized according to the domain model structure

(Figure 5.3). An overview of the CIP VAM UML extensions is shown in Figure 5.9.

Transforming a domain model into a UML profile is not an automatic task. First,

the domain model concepts have been classified according to the taxonomy expressed

in [65]: abstract, firm, uncertain or parametric1. The firm classes are directly mapped

into stereotypes while ad-hoc solutions are adopted for the other classes. In a second

stage, for each stereotype obtained from a firm class the actual UML meta-classes ex-

tended by the stereotype is identified. Such activity is performed both by imaging which

UML construct a modeler would choose and by looking at similar UML profiles. As an

example, Object and Service extend UML Classifier, since it is reasonable that an object

can be represented by a UML Component or a Class; in addition, Service extends the

UML Use Case.

Some optimizations are now possible: (1) abstract stereotypes are used to group common

features. An example is the Item stereotype of the Infrastructure package that has been

1Abstract classes refer to accessory concepts, firm classes are used as language constructs, uncer-
tain classes sort indeterminate concepts, and parametric classes categorize concepts that can change
depending on the sub-problem domain.
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Figure 5.9: Overview of the UML extensions: (a) Infrastructure package, (b) Attack
package, (c) Protection package
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introduced in order to not replicate the Asset tagged-value in all the concrete stereotypes

of the package: however no UML Classifier can be tagged with the Item stereotype; (2)

optimization patterns are used, such as the hiding of existing concepts: a class of the

domain model can be translated into a datatype (this is the case of Asset) and an

“is-a” relationships can collapse into just one stereotype to which a “kind” attribute is

added belonging to an enumerative type. A example of this last case is the hierarchy

Action and Trigger of the Attack package that is translated into the Action stereotype

and its ActionType tagged-value which can be set to action or trigger. Notice that

some relationships included in the domain model have not been translated into profile

elements since we choose to rely on the existing UML notation when this is appropriate,

as prescribed in [45]. An example of this case is the subService association that is

implemented by means of the �include� relationship between use cases and the owner

attribute of Classifier.

Before the description of the profile levels, some considerations are due in order to define

how some concepts of the domain model have been not directly covered by stereotypes:

• subSites, subObjects, subServices, subAttacks: these associations are implemented

by exploiting the including mechanisms that are present in UML such as nested

classifiers (for subSites and subObjects) and inclusion of Use Cases (for subServices

and subAttacks);

• the association between Action and Attack: it can be implemented by nesting

classifiers and/or UML Actions inside a Use Case;

• value site, value object, value service, value interface: all these associations are

implemented by the asset tagged value in the Item stereotype.

Infrastructure. This package implements concepts of the Infrastructure domain model.

Figure 5.9(a) depicts the UML extension structure for Infrastructure related information.

while detailed information are in Table 5.2.

Attack. This package implements concepts of the Attack domain model. Figure 5.9(b)

depicts the structure of the UML extensions for the Attack package providing general

information while more details are in Table 5.3.

Protection. This package implements concepts of the Protection domain model. Fig-

ure 5.9(c) depicts the structure of the UML extensions for the Protection package pro-

viding general information while more details are in Table 5.4.
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Table 5.2: Details of the UML extensions for the Infrastructure package

Item Item is a generalization of all the main concepts of the Infras-
tructure domain model inserted in order to optimize the profile.
There is no direct mapping from this stereotype and a domain
model concept (thus its abstract nature).

extensions Classifier

generalizations None

tagged-values

Asset Optional asset variable indicating the economic value of the item,
its risk and other properties according to the Asset data type.

Service Service implements the correspondent domain concept.

extensions Classifier (via Item), Use Case

generalizations Item

tagged-values

ProvidedBy It implements the provides association between a Service and an
Object which offers the Service.

ExecProb The probability to be executed by external agents. It implements
the homonymous attribute of the domain model class.

Physical Physical stands for all the Items that are characterized by phys-
ical properties such as shape and location. All the Items except
Services are Physical. Physical is an abstract stereotype, there is
no related domain concept.

extensions Classifier (via Item)

generalizations Item

tagged-values

Shape 2D shape of the Physical element. It implements the homonymous
attribute of the domain model classes Site, Object and Interface.

Volume 3D shape of the Physical element. It implements the homonymous
attribute of the domain model classes Site, Object and Interface.

Site Site implements the correspondent domain concept.

extensions Classifier (via Physical)

generalizations Physical

Object Object implements the correspondent domain concept.

extensions Classifier (via Physical)

generalizations Physical

tagged-values

Multiplicity It describes the number of the Objects of a specified kind.

Location It implements the location association between an Object and a
Site which contains the Object.

Requests It implements the requests association between an Object and a
Service which is requested by the Object.

Interface Interface implements the correspondent domain concept.

extensions Classifier (via Physical)

generalizations Physical

tagged-values

Exposures It implements the exposures association between a Site and an
Interface which is attached to the Site.
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Table 5.3: Details of the UML extensions for the Attack package

Attack Attack is a stereotype that implements the homonymous concept
of the related domain class.

extensions Use Case, Activity Node, Classifier

generalizations None

tagged-values

Duration Time elapsed between the start and the end of the Attack. It
implements the homonymous attribute of the related domain con-
cept.

Tactic Tactic of the Attack.

Threat Threat brought to related Asset. It implements the Threat asso-
ciation class between Attack and Asset.

Attacker Data related to the Attacker that initiates the Attack. It imple-
ments the Attacker associated to the Attack.

Action Action is a stereotype that implements the homonymous concept
of the related domain class.

extensions Activity Node, Classifier

generalizations None

tagged-values

Duration Time elapsed between the start and the end of the Action.

Kind Tagged value that implements the Trigger generalization.

Effects List of the Impairments caused by the Action.

Failure Percentage of failure of the Action.

TriggeredBy It implements the triggeredBy association between Trigger and
Action.

OccurrenceProb Occurrence probability of the Trigger.

Weapon The Weapon that is used to bring on the action by the attacker.

Attacker Data related to the Attacker that initiates the Action.

Attacker This stereotype implements the Attacker concept of the domain
class.

extensions Actor, Classifier

generalizations None

tagged-values

Multiplicity Number of Attackers.

Motivation Capability of the Attackers to resist to dissuasion actions per-
formed by defence systems.

Firmness Capability to accomplish at the attacking Action.
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Table 5.4: Details of the UML extensions for the Protection package

Protection Protection is an abstract stereotype that summarizes all the ex-
tension points and tagged-values common to all the concepts for
the Protection domain class. It implements the Protection class
of the domain model.

extensions Classifier

generalizations None

tagged-values

Cost Cost of the Protection system.

SuccessProb Success probability of the Protection system.

Protects It implements the protection association between Protection and
Asset.

Counteracts It implements the counteraction association between Protection
and Action.

Exposes It implements the expose association between Protection and
Weapon.

Application It implements the association between Protection and Installation-
Point.

Guard Guard is a stereotype that implements the homonymous concept
of the related domain class.

extensions Classifier (via Protection)

generalizations Protection

tagged-values

Multiplicity Number of Guards.

Firmness Capability of the Guard to resist to attacking Action.

Skill Capability to accomplish at the protecting Action.

Protection
Device

ProtectionDevice implements the Device class in the domain
model.

extensions Classifier (via Protection)

generalizations Protection

tagged-values

Nature Technical nature of the ProtectionDevice system.

FailureRate Failure rate of the ProtectionDevice system.
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Sensor Sensor implements the homonymous class in the domain model.

extensions Classifier (via ProtectionDevice)

generalizations ProtectionDevice

tagged-values

Range Action range of the Sensor.

Fpr False positive ratio; percentage of false alarms generate by the
Sensor.

Fnr False negative ratio; percentage of malicious Actions that have not
been sensed.

Latency Time elapsed between the start of an Action and the detection by
the Sensor.

Deterrent The Deterrent stereotype implements the homonymous domain
model class.

extensions Classifier (via ProtectionDevice)

generalizations ProtectionDevice

tagged-values

Condition Condition for which the Deterrent is effective for blocking the At-
tacker.

Barrier The Barrier stereotype implements the homonymous domain
model class.

extensions Classifier (via ProtectionDevice)

generalizations ProtectionDevice

tagged-values

Condition Condition for which the Barrier is effective for the Attacker.

TimeToCross Time necessary to penetrate the Barrier.



Chapter 6

New methods, formal operators

and techniques

The formal modeling of critical systems (formal stage of the approach, presented in

Section 4.1) requires the usage of structured approaches able to support and facilitate

the model development. A modeling approach could be based on the OsMoSys (Object-

baSed multi-formalism MOdeling of SYStems) modeling methodology [16], which adopts

a component-based vision of the systems. The vision underlying OsMoSys is to apply

the concepts of component software engineering to the development of formal models

in order to provide a practical support to model engineering. According to OsMoSys

methodology, a model is an object of a Model Class which encapsulates the details of its

implementation (the model structure is expressed by a formal language). Hence, models

are assumed as components which communicate via interfaces. An interface is a subset

of elements of the model structure which may be used to exchange information among

models (such as values of parameters, indexes or the overall state of a model). The role

of the interfaces has already been addressed in [66, 67].

The OsMoSys methodology may be very effective in modeling critical systems, since the

component-based approach emphasizes the separation of concerns. Nevertheless, the

modeling of critical systems is characterized by a variable number of replicated objects,

as well as by the heterogeneity in physical characteristics and behaviors of the involved

components. Hence we need to extend OsMoSys by defining new formal operators which

easily provide a specification for generating models on the basis of a set of parameters.

Furthermore we need to introduce new modeling techniques which help the modelers

during the development of models.

This Chapter introduces new methods, operators and techniques to support the devel-

opment of formal models. These innovations will be applied in Part III to support the

91
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quantitative analysis of real-world systems, during the formal stage. In detail a new

component-based architecture for performability and QoS evaluation is proposed: this

architecture provides a structured approach to formal modeling of critical systems, in-

tegrating behavioral, environmental and dependability-related aspects. Then the new

Model Template operator is introduced: this formal operator helps the reuse, increas-

ing the abstraction level given by the Model-Class in OsMoSys. In the last part of

this Chapter two effective techniques are presented to cope with model scalability: Stub

Models and Reduced Models. These techniques allow to significantly reduce the number

of submodels, properly substituting them with “equivalent” models. These techniques

provide similar advantages of the analogous ones applied in software development. They

can be adopted by modelers during model development (to validate a single submodel)

or during their analysis (to reduce solving times).

6.1 Performability and QoS quantitative evaluation: a com-

ponent - based architecture

Performability and Quality of Service (QoS) certainly represent the most important is-

sues that critical system designers have to consider. In fact only the achievement of

acceptable performability and quality of service levels will let these systems to be com-

petitive and dependable. These systems, in fact, need to assure an high-level of fault

tolerance to fulfill the requested level of service, under the defined environmental condi-

tions and also in presence of failures. While QoS can be influenced by users qualitative

evaluation, the Performability is often expressed through mathematical formal, known as

Service Availability (SA) indexes. As it is evident, SA is strongly related to the depend-

ability of components, since their failure will tend to reduce system functionalities and,

consequently, its operational availability. SA is usually represented by mathematical

indexes often described by the ratio between performed (actual) and target (designed)

service. In particular such indexes are defined and specified within contracts between

customers and systems designers or manufacturers. These indexed are strictly dependent

on the reference application domain: a common SA index adopted in railway domain is,

for example, the punctuality defined as the ratio between the number of on-time trips

and the total number of trips arrived at a certain station. In particular punctuality can

be expressed as: punctuality = (ts−tl)
ts
· 100 where ts is the number of scheduled trips

within a certain time period and tl is the number of lost trips (i.e. the number of trips

which does not arrive at the considered station) calculated over the same time interval.

Anyway in order to guarantee acceptable SA levels, high-dependable components (i.e.

high reliable and maintainable items) are commonly adopted. This is partially true since
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the SA is highly influenced by performed operational strategies: in a critical system

different operational strategies can be applied with the aim to minimize failures effects

on SA.

Formal models can be adopted to perform an accurate assessment of SA levels and quan-

titative aspects of QoS, induced by system design and operational alternatives; they need

to consider the overall interactions among different items composing a system, specific

operational strategies, failure probabilities and the users’ behavior. For this reasons this

Section proposes an integrated architecture to model and analyze system operations and

to assess consequently both SA and QoS levels. In particular, the proposed architecture

is suitable for simulative approaches. Outputs returned by such model architecture can

be analyzed with three different goals:

1. they assess the impact of disturbances on service estimating the variation induced

on SA and QoS;

2. they estimate the efficiency of different alternative system configurations, allowing

to choose the one that has the greater impact on cost reduction;

3. they are able to support the identification of the optimal configuration of the plants

and of operation and maintenance staff.

Figure 6.1: Overview of the model architecture

The necessity to estimate a non-defined (and project dependent) set of SA (and quanti-

tative QoS) indexes makes necessary the decomposition of the architecture in a central

model that can be analyzed through customizable evaluators, each one is able to mea-

sure a specific parameter. The explicit architecture is depicted in Figure 6.1: the core

component is the kernel of the architecture and it reproduces system operational con-

ditions service taking into account any kind of stochastic disturbance on service; the
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Simulation Log Files developed in output, in a very large number, contain all relevant

information of a single simulation (e.g. the list of all instant of arrival and departure of

each train at each station); a group of evaluator make use of Simulation Log Files to

evaluate interest parameters.

The proposed model architecture needs to encompass several characteristics of a critical

system concerning with four different aspects: system service, operational strategies,

environmental conditions and state of subsystems (in terms of service modes). For this

reason the core component is structured as the composition of four cooperating modules,

as depicted in Figure 6.2.

Figure 6.2: Internal organization of the core component

Each module cooperates with the system service one since the latter is able to integrate

external influences and controls, modeling their impact on service. In the following

paragraphs each module is described.

Operational strategies module.

This module is responsible for the implementation of operational strategies. Operational

strategies depend on the specific system and can range from routing rules for network

systems to timetables and service management strategies for transportation systems, to

control part of embedded systems, etc. The isolation of this module, with respect to

the others, adheres to a system decomposition in control part vs operative part

(classically adopted in embedded systems).

Environmental conditions module. This module is dedicated to the environment

modeling, which surrounds and influences the system under analysis. It shall model

all the influence aspects, from users’ behavior to field data, from malicious users to

terroristic attacks. The isolation of this module, with respect to the others, adheres to

a system decomposition in environment vs system.
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State of subsystems module. The state of subsystems module deals with the model-

ing of operating mode of all subsystems involved in service fulfillment (when performa-

bility evaluation is required). In particular, this module contemplates the evolution

between different operating modes according to the failure rates and probability of state

passing of each failure-prone component. The isolation of this module, with respect to

the others, adheres to a system decomposition in state vs behavior.

System service module. This module models the system service. Inputs of this

module are all physical, mechanical and technological characteristics of the system com-

ponents, allowing to represent service performed by the system. Such module collabo-

rates with the others, considering the information coming from them to analyze system

service.

6.2 Enabling model reuse: the Model Template operator

This Section describes the new operator of Model Template, a new formal operator which

extend OsMoSys with the aim to summarize a set of models sharing a common structure

in an unique concept. The most widespread meaning of “template” is that coming from

Class Template in programming languages (typically C++); in this context, a Class

Template represents a class where some attributes are typed with a generic type T

showing a common behavior for all the possible T. Moreover, in this context, it is also

possible to parametrize a class template by non-type parameter (usually an integer) that

implies the parametrization of data structure belonging the class, according to the value

of the parameter.

Starting from these general considerations, Model Templates may introduce a powerful

feature in formal modeling, they allow to specify, with a single model description, an

entire family of related models characterized by a common behavior. Similarly to Class

Templates introduced by programming languages, Model Templates require one or more

type parameters to specify how to generate a specific instance from a generic model

template. The type parameters refer to the type of one or more elements of the model

structure, including the type (i.e., the Model Class) of submodels. It is also possible to

use non-type parameters, i.e., to specify the number of replicas of a subset of elements

(including submodels). The complete definition of Model Templates in OsMoSyS is

part of an ongoing work. To date we have specified, inside the OsMoSYS methodology,

the concept of Model Templates with non-type parameters; the formalization of type

parameters is scope of future works.
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Some research papers proposing template based approaches have been published, all

limited to some extent: in [68] typed parameters template are introduced for Petri Nets

models. In [69] the focus shifts onto Stochastic Activity Networks and on the possibility

to change the behavior of the model according to non-type parameter values. Other

works focus on the possibility to both replicate and join submodels inside a compositional

approach [70, 71]. To the best of our knowledge, there are no works trying to overcome

the limitations of specific formalisms (Petri Nets and SANs), or even to define the

“generic” concept of Model Template.

In order to define the Model Template according to the OsMoSys notation, some prelim-

inary definitions are due. Formally, a Model Class MCF is a triplet (T, S, SM) where:

T is the class name, S is the graph structure of the class, SM is a set of submodels.

MCF is compliant with a formalism F and its structure S is a graph of elements of F .

Specifically, from now on we will call N the set of nodes and E the set of edges of S.

For example, if a Model Class is compliant with the Petri Nets formalism, its structure

will comprise Place, Transition (the nodes of the graph) and Arc (its edges). It holds:

S = ExternalS∪InternalS ; ExternalS∩InternalS = � where ExternalS is the subset

of the interface elements of the Model Class, while InternalS is the subset of elements

that are encapsulated by the class. Both external and internal elements in S may have

a set of attributes denoted PS . It holds: PS = EPS ∪ IPS , where EPS is the set of the

attributes that may be set when an object of type N is instantiated, and IPS is the set

of attributes that are statically defined by the class definition.

Let us define a Model Template MTF as a pair (MCF , PAR) where MCF is a Model

Class and PAR is a set of non-type parameters:

PAR = {p1, p2, . . . pn}, n > 1.

Definition 6.1. A non-type parameter is a triplet pi = (li, SSi, fi), where li is the

name of the parameter; SSi is a subgraph of S, SSi = (NNi, EEi) with NNi ⊆ N and

EEi = {e = (m,m1) ∈ E|m,m1 ∈ NNi}.

A synthetic notation for the Model Template is MTF < l1, l2, . . . ln >.

Definition 6.2. An instancing function is fi : N −→M1
F where M1

F is the set of the

Model Classes compliant with the formalism F .

An instancing function fi must specify how the Model Template should be (automat-

ically) instantiated by using the non-type parameters. A synthetic notation for an in-

stance is MTF < v1, v2, . . . vn > where vi is the value on which fi is computed.
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Figure 6.3: A Model Template example

An example is depicted in Figure 6.3, in which a simple case of replication is shown.

A Model Template is on the left (Figure 6.3(a)), let it be:

MTsample = (MCsample, {pn, pm})

where: pn = (n, SSn, fn) and pm = (m,SSm, fm) are the non-type parameters. The

subsets of the model structure in the dashed boxes (SSn and SSm) may be replicated

and a template model may be generated by providing the value of the two non-type

parameters. Both subnets include a submodel (the white square). The model template

is denoted by MTsample < n,m >. MTsample < 2, 3 > is shown in Figure 6.3(b), where

the model is obtained by specifying the values 2 and 3 for the number of replicas of SSn

and SSm, respectively1. In this example we use a simple instancing function that copies

a sub-graph as many times as indicated in the parameter value: all the replicas are then

connected to the rest of the model by replicating arcs connecting the sub-graph with the

rest of the structure, too. In the example, the subgraph SSn and the arc from A to D

are replicated twice. Of course, a renaming function is also needed to avoid conflicting

names.

The instancing functions must be provided in order to state how the template models

have to be generated. In the example a simple instancing function is used which allows

for replication of a part (or the whole) of the model structure. It is defined by induction

as follows.

We denote as MTF < x > a Model Template with a parameter (x, SSx, f) where

SSx = (NNx, EEx). Let EEx be the subset of Ex connecting nodes of NNx and of

N −NNx.

• S1 = S: the function does not change anything in the structure of the Model Class;

1Note that E is an interface element: this approach can be used to replicate model interfaces, too.
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• ∀v ≥ 2, let f(v − 1) = (Tv−1, SSv−1, SMv−1) and f(v) = (Tv, SSv, SMv):

1. Tv is calculated by a renaming function;

2. NNv = NNv−1 ∪ NNx and EEv = EEv−1 ∪ EEx ∪ EEx, i.e., the graph

generated at v is built by joining the one generated at v − 1 with a new

replica of SSx and the arcs connecting the new replica with the rest of the

structure (not included in SSx);

3. SMv = SM

Notice that it might hold that SSx = S, thus allowing for the replication of an entire

model.

6.3 Dealing with scalability: Stub Models and Reduced

Models

In many cases the complete model of the entire system under analysis suffers from

scalability. The adoption of the OsMoSys approach, that is the decomposition of the

system according to a component-based view, does not increase the scalability. This

problem can be critical during the solving phase, involving enormous difficulties or not

allowing the solution. Especially when the solution process is conducted by simulation,

an enormous memory usage can be required by solvers: if we consider a sensor network,

for example, the model of the single node must be replicated N times where N represents

the number of nodes in the network; and if increase the level of detail, developing M

submodels for each node, then the complete model is composed of N*M submodels.

The solution of the model requires greater simulation times and memory space with

the increasing of system dimensions: thus call for the introduction of scalable solutions.

These problems are due to the increasing number of submodels and the huge use of hard-

solving elements (such as the usage of data structures or matrices). A possible solution

to deal with memory usage relies on storing data in a database, while keeping in memory

just the references to the tuples. This strategy requires formalisms and tools which make

possible to access data stored in databases. A formalism suitable for this strategy is the

one of Stochastic Activity Networks that, with supported by the Mobius framework,

allows to use C++ code in the model (implementing queries in the gate elements), but

it is very hard to implement. Moreover, this strategy is not effective enough for our scope

because it just helps overcome the memory consumption issue, while leaving unaffected

the computation time. Also the concept of Model Template, described in the previous

Section, helps the modeling phase but not the solution process.
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Therefore, we propose two different approaches to cope with scalability issues: (i) stub

models, that replace some levels of peer stack with simplified models, and (ii) reduced

models, that take the place of the entire peer stack. These two techniques are not

mutually exclusive and can be jointly used. They introduce different approximation

levels that we have analyzed, by means of simulations, in the case studies: in fact we

show obtained results in the Chapter 8, applying both of them, during the quantitative

evaluation of a real-world system.

6.3.1 Stub Model

A stub model, as in software development techniques, may simulate the behavior of an

existing, more detailed, model or be a temporary substitute for a yet to be developed

model, hence reducing the complexity of a complete one. The stub models can be used to

perform analysis circumscribed at a set of (and also a single) Model Class by simulating

the behavior of the remaining ones.

The use of stubs is applicable in a model with a layered structure: clearly, a stub for a

generic model layer must exhibit the same interface of the models it replaces. An example

is reported in Figure 6.4, where a stub model substitutes a set of models maintaining

compliance with the interfaces of those to which it is connected: M1 and M2. If M1

and M2, for example, represent two node in a network, a stub model can substitute the

entire set of network models with a single transition that fires with the transmission

delay.

M1 M2

stub

Figure 6.4: Stub Model

Stub models, like the complete one, do not prevent from identifying a single element

of a replica allowing to assign it a different behavior. They are able to reduce memory
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occupation for the substituted models; though they still entail a significant computa-

tional complexity. The approximation introduced by a stub model is proportional to its

ability to represent the missing levels: the greater the accuracy of the model, the lower

the error on results.

The adoption of stubs can be useful for two different purposes:

1. to focus on the model of a specific level, in which case a stub acts as a substitute

for the models of the lower levels;

2. to build a smaller scale model of the overall conferencing system, by considering

just one or few levels both for participants and for the server.

6.3.2 Reduced Model

In many cases the analysis of a critical system with a component-based approach can

lead the connection of several submodels. But sometimes the analysts need to have

informations about just few part of the complete systems: for this reasons it is possible

to simplify several portion of the models, collapsing them in a simple model. Obviously

this reduction is possible when the formalism allows a great expressive power. Also in

this case the SAN formalism is suitable for this technique. An example, taken from

the application to real case study, is reported in Figure 6.5 where a set of clients, in a

network model, is modeled by a trivial SAN where the greater part of the behavior is

implemented through the input and output gates.

Figure 6.5: The client reduced model
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Chapter 7

Railway Systems

Railway system are surely critical systems since they need to assure high-level of depend-

ability against possible failures, to provide high levels of service both for passengers and

goods, to reduce the vulnerability of their infrastructures against criminal actions. Ac-

cording to the classification given in Section 1.1, they can be classified as business, safety

and security critical systems since the impact of failures can induce negative impacts

on all these aspects. Railway systems can be classified also as complex systems, since

they require complex interactions between heterogeneous components, both hardware

and software, as well as with continue and discrete temporal evolution. This complexity

makes the design, construction and maintenance very difficult, in particular with the

aim of controlling both the QoS and the performability: it is necessary a continue as-

sessment during all the lifecycle, during also the service phase. From the vulnerability

point of view, a railway system need to be equipped with complex protection systems,

to avoid criminal attacks and/or to reduce their impact. Also protection systems need

to be adequately designed since preliminary phases of the lifecycle, especially in case

of limited economic resources: the answer to the question of whether the railways are

sufficiently protected is not unique/absolute, but it depends on the relationships that

exist among the three main aspects that are the core of the problem: the infrastructure,

the protection system and the possible attack scenarios.

The achievement of sufficient QoS levels is influenced by the attainment of acceptable

performability levels. More and more often target values are subject of contracts for de-

signer companies, and their attainment is strictly connected with economic bonus (when

exceeded) and penalties (when not reached). Furthermore the achievement of good QoS

levels increases the system competitiveness in the people transportation domain. This

is another hard task due to the presence of several inter-correlated and time-varying

phenomena.

102
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Criticality and complexity of such systems has conducted, over years, to the birth of

a new engineering: the “railway systems engineering”. This discipline deals with the

design, construction and operation of all types of railway systems. It involves the coop-

eration of a wide range of engineering disciplines, including civil engineering, computer

engineering, electrical engineering, mechanical engineering, industrial engineering and

production engineering. Also business economy is highly involved since the total costs

of a system are very high.

Between railway systems, metro systems are sometimes seen as simplified railways since

they are built only for passenger transportation, with reduced lengths and similar ve-

hicles are used; this is not true because high capacities and frequencies are required,

stressing the involved components. Failures can have serious consequences since their

impact is felt by a lot of trips, and some restore strategies can be difficult to implement

(e.g. the recovery of a stopped train through diesel vehicle, after the loss of power supply,

requires the removal from the line of a huge number of vehicles).

This Chapter shows how the proposed methodology has been applied successfully to

these systems; it is composed of three main parts: in the first part it shows how the

proposed approach has been successfully adopted for quantitative availability evaluation

of metro subsystems, starting from high-level models developed using the DAM-Rail

language. In the second part of this Chapter performability evaluations are shown with

the aim to show the potentialities of the approach. In the last part, the application of the

same methodological approach for the vulnerability evaluation of railway infrastructure

systems is shown: in this case the CIP VAM language has been used to produce high-

level models of security-critical physical infrastructures. The transformations towards

formal models for quantitative vulnerability analysis are also addressed.

7.1 U-Rail : UML model-driven methodology for non-functional

properties analysis in railway domain

U-Rail (Figure 7.1) is a model-driven methodology specific for railway systems, increas-

ing the assessment process efficiency of non-functional properties, allowing the automatic

generation of formal models (combinatorial and state-based) and other process artifacts

needed in both tender and certification phases. The U-Rail core is the modeling of a

railway system (both under structural and functional aspects) using high level model-

ing languages: DAM-Rail for dependability attributes and CIP VAM for vulnerability

modeling. Since both languages have been created extending UML with profiling tech-

nique, they can be used singly or together (in fact a UML model is conformant to one
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language or to both of them). The combined usage of both language helps the reuse: if

we take, as an example, the vehicle, there is a need to evaluate its availability since it

has a great impact on the performability of the railway service but it is also a vulnerable

infrastructure.

Figure 7.1: U-Rail methodology

Following the stages of the general approach, the first step of U-Rail is the representation

of the system by the realization of a UML system model that captures dependability and

vulnerability aspects of the system itself. The conformity to the DAM-Rail language

allows the highly-fashion annotation of several RAM features such as:

• components, redundancy, part-of relationship;

• RAM targets, function dependency;

• failure rates and modes;

• O&M strategies, service restore and component repair procedures;

• headway, track features, speed profiles.

The conformity to the CIP VAM language allows the highly-fashion annotation of several

vulnerability features such as:

• economic values of critical assets;

• vulnerability targets;
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• attacks and threat propagations;

• technical features of protection systems.

Automatic transformations are then defined to generate both (multi-)formal models and

technical documents. Formal models can be used to assess quantitative properties while

technical documentation describing the system can be automatically updated. Model

transformations can also feedback the results of analyses to railway engineers integrating

them into the UML model; hence the results are visible into the high-level model that

acts also as the interface between engineers and formal models.

The third pillar of U-Rail is constituted by a model repository where existing UML

models of both entire systems and their subsystems can be stored. This allows to:

• trace model changes during the system evolution;

• reuse assessed UML model where new projects start;

• extract historical data and information about developed projects.

The proposed approach can help the usage of formal models in industry, developing not

only a complete model-based approach, but also a model-driven process able to generate

automatically formal models. Furthermore the proposed methodology can be combined

with standard practices that drive development and verification, so its adoption in in-

dustrial processes does not need expensive extra-efforts, but it can support also the

automatic generation of the required technical reports in the standard formats.

The adoption of U-Rail methodology may lead to an estimated costs reduction of ap-

proximately 30% just for RAM activities. In order to provide an example, on the basis of

typical project schedule and scope of work, during the design phase, for RAM activities

about 2.000 hours are planned, consequently the reduction is quantifiable in about 600

hours. Considering a average cost of 70 Euros/hour, the reduction is of about 42.000 Eu-

ros for every project. The usage of a high-level central language significantly decreases

also the training time of a new RAM analyst and the editing time of a new technical

document. An improvement in RAM team reactivity during the project lifecycle is also

observable. During the Design stage, an approximately estimation of the cost reduction

is about of the 20% of the total cost for this stage. Furthermore U-RAM enables the

industries to help “non expert” customers in new systems design and in performance

requirements definition.

Preliminary applications have been conducted in order to generate Bayesian Network

model of a driverless vehicle (Section 7.2), applying the transformations defined in Sec-

tion 4.4. Future evolutions of the U-Rail are: the development of a second version of
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DAM-Rail that will focus on the integration with Stochastic Activity Network models

and MetroModelSim (Section 7.3) for performance evaluation.

7.2 Availability modeling of a railway system

The main service provided by a metro system is the transport of passengers. This

service is evaluated through mathematical expressions, defined by the customer needs

and specified in a tender document. As an example, in this case study, we adopt the

Operating System Service Availability (A) as a service measure, that is: 0 6 A 6 1,

A = 1−
∑

i di
Nsec , where di is the delay, recorded in seconds, measured at terminal station

at the end of the i-th trip (varying i from 0 to the number of trips performed in a day);

and Nsec is the total daily service time expressed in seconds. In this case study let us

assume a target value for the A of 97.0%, with a 18 hours daily service and a headway

between trips of 360 seconds (180 nominal trips). For the overall system we need to

demonstrate that a trip arrives on time with a probability of 98.8% and delayed with a

probability of 1.2%, in particular with a probability of 0.6% the delay must be shorter

than 3 minutes, with a probability of 0.45% the delay can be longer than 3 minutes but

shorter than 10 and with a probability of 0.15% the delay can be longer than 10 minutes

(with a maximum of 75 minutes). With the aim of classifying the effects of a failure

on the transport service, three failure consequence classes (FCCs) are hence defined.

Note that these classes, depending on the specific formula, are not common to different

projects. The three failure consequence classes here defined are reported in Table 7.1.

Table 7.1: Transport: failure consequence classes.

FCC Definition

Negligible (NG) A failure that causes a delay to service shorter than 3 minutes.

Tolerable (TL) A failure that causes a delay to service longer than 3 minutes and
shorter than 10 minutes.

Intolerable (NTL) A failure that causes a delay longer than 10 minutes.

The main service transport is performed by the cooperation of a set of basic services,

offered by the different subsystems (e.g. power supply, signalling and vehicle fleet).

Without losing generality, here we suppose that the set of basic services, provided by

the vehicle fleet, are movement, conditioning and powerCapture. As for the transport

service, also for the basic services some failure consequence classes are defined (see

Table 7.2).

The vehicle fleet consists of 13 vehicles, ten of them are used for service, one is a hot

spare (ready to be used) and two are under maintenance. Each vehicle consists of several

components whose failures have an impact on the vehicle availability, and consequently

on the system Operation Service. For brevity’s sake here we restrict our study to the
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Table 7.2: Vehicle services: failure consequence classes.

FCC Definition Effects

movement service

Return To Depot (RT) A failure that causes the return to the depot
at the end of the trip without service delays
(100% of max speed).

Transport.NG

Partial Block (PB) A failure that causes the landing of passengers
at the first station and return to the depot at
reduced speed (40% of max speed).

Transport.TL

Total Block (TB) A failure that causes a total block of the vehicle
(0% of max speed) and the need for a thrust.

Transport.NTL

conditioning service

Acceptable (AC) A failure affecting one conditioner of a single
car (coolness ratio reduced at 60%).

No Effect

Down (DW) A failure affecting both conditioners of a single
car (coolness ratio at 0%).

Transport.NG

power capture service

Down (DW) A failure where vehicle is not turned on by
power supply

Movement.TB
Conditioning.DW

components and failure modes listed in Table 7.3 which reports just a fragment of the

FMEA (Failure Modes and Effects Analysis) document of the vehicle subsystem.

Table 7.3: Vehicle FMEA Fragment.

Level Component Failure Mode Failure

rate [h−1]

num

/ tot

Effects

1 Electric Unit - - -/1 -

2 Pantograph Unit - - -/2 -

3 Pantograph Loss of contact 2.5E-6 1/2 PowerCapture.NM

2/2 PowerCapture.DW

1 Traction Unit - - -/1 -

2 Engine Unit - - -/2 -

3 Engine Short circuit 8.3E-6 1/2 Movement.PB

2/2 Movement.TB

Mechanical breakdown 1.2E-5 1/2 Movement.PB

2/2 Movement.TB

1 Undercarriage - - -/1 -

2 Wheel Unit - - -/12 -

3 Wheel Crack 2.5E-7 1/2 Movement.PB

2/2 Movement.TB

Border breakdown 2.5E-7 1/2 Movement.PB

2/2 Movement.TB

1 Air Conditioning - - -/1 -

2 Air Unit - - -/3 -

3 Air Compressor Electrical 5E-7 1/2 Conditioning.AC

2/2 Conditioning.DW

Over Temperature 2.5E-7 1/2 Conditioning.AC

2/2 Conditioning.DW

Gas Tank Pressure Loss 2.7E-8 1/1 Conditioning.DW
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7.2.1 Vehicle DAM-Rail model

Modelling this case study requires the application of stereotypes coming from DAM and

DAM-Rail to annotate service modes and vehicle component features. The Use Case

Diagram representing services (stereotyped as DAM::DaService) is shown in Figure 7.2.

The actor user of the metro system is associated with the transport service, which is

the only service perceived by him. Indeed, as said before, the transport service strictly

depends on the vehicle movement and vehicle conditioning services, which in turn depend

on the powerCapture service. The tagged value usedResources denotes, for each service,

which components provide that service. The transport does not specify this tagged value

because this service is provided by the cooperation of the basic ones.

Figure 7.2: Use Case of Services.

Each use case is associated to a State Machine Diagram, which models the state passing

between the different service modes. The service modes expected for a single service

correspond to the failure consequence classes of the service, i.e. each state depends on

the consequences of a failure, hence the nominal state represents the service mode free of

failures. As an example, the top of Figure 7.3 depicts the State Machine Diagram of the

transport service: the four states model the Nominal (NM) service mode and the other

three service modes saying the degradation level of the service. Similarly, the bottom

of the Figure 7.3 depicts the State Machine Diagram for the conditioning service. The

entry action of the latter diagram expresses the effects of the vehicle conditioning service

degradations on the transport service, according to Table 7.2; in the same diagram, the

states representing degraded service modes need to specify the tagged values failure to

express the relationships between the failure occurrences and the state passing.

The Component Diagram in Figure 7.4 provides the description of the vehicle structure

previously described in Table 7.3.

The slice of the complete Component Diagram, which refers to the AirConditioning

subsystem, is reported in Figure 7.5. The slice points out the tagged values. At the
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Figure 7.3: Transport and Conditioning State Machine Diagrams.

Figure 7.4: Driverless vehicle Component Diagram.

lowest level the basic components are GasTank and AirCompressor : some tags, in par-

ticular failures modes, including their occurrence rate, have been annotated for both

these components. The AirCompressor is enclosed in the ComRed redundant structure.

Leveling up, at the AirUnit level, two failures have been annotated. Notice that the

dependency on the failures of the basic components is modelled by a “condition” ex-

pression in the DAM Backus-Naur Form (BNF) syntax. At last, AirConditioning, which

is the usedResource of the conditioning service (Figure 7.2), has been annotated with

two failures which reference to the state of the air conditioning unit to the conditioning

service, provided by itself.
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Figure 7.5: Air conditioning.

7.2.2 Applying DAMRail2BN transformation

Figure 7.6 depicts the application of dam2bn to the AirConditioning component of the

vehicle.

1.a

conditioning Vehicle

AirConditioning
powerCapture

AirUnit1

AirCompressor1GasTank

AirUnit2
AirUnit3

AirCompressor2

ComRed
1.b

2

3

4

5

6

Figure 7.6: DAM-to-BN transformation steps.

It works according to the rules described in Section 4.4: Rules 1 and 2 are applied to

the Component Diagram in Figure 7.4, Rules from 3 to 5 are applied to the Use Case

Diagram in Figure 7.2, Rule 6 is applied to the State Machine Diagram of the service

in Figure 7.3. For each basic component, Rule 1 generates a number of nodes equal to

the value specified by ResMult, hence GasTank is translated into one node (dotted line

1.a) and AirCompressor generates two nodes. According to the failure tagged value, the

random variable values associated to the GasTank node are two (nominal service mode
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and pressure loss), while the random variable values associated to the AirCompressor

node are three (nominal service mode, electrical failure and over temperature). Rules 1

and 2 also generate the AirUnit nodes: the value 3 specified in the tagged value ResMult

replicates three times the structure, one for each AirUnit (dotted line 1.b). Rule 1 and 2

also generate the arcs between nodes. Similarly the nodes AirConditioning and Vehicle

and their related arcs are generated from the Component Diagram. The usedResources

tagged value of the conditioning service is used to generate the node conditioning and the

link from the AirConditioning node to the conditioning node. Through the application

of the Rules from 3 to 5, the same node also takes a contribution from the powerCapture

node, according to the relationships between services. Analogously dam2bn works to

generate the BN model of the movement service. Finally the CPTs are generated ac-

cording to the application of the Rule 6. The entire Bayesian Network is created for the

service transport, on which, in a second step, the M2T transformation has been applied

in order to generate the concrete file for the JavaBayes tool. Analysis results, performed

with the JavaBayes tool, show how the vehicle dependability is compliant to the foreseen

targets.

7.3 MetroModelSim : performability and QoS quantitative

analysis of metro systems

QoS offered to customers hence represents the main purpose for which a metro System

is built and it needs to be considered by operators [72]. The QoS is a measure of the

“customer satisfaction”, which involves other different issues such as: the tickets cost,

waiting time at stations, total on-board travel time, and quality parameters like clean-

ness, safety level, travel time variability and so on. According to classical literature in

the field of transportation engineering [73], customers’ satisfaction is maximized when

the so called “user’s generalized cost” is minimized, where the independent variables

are bounded among a certain set of discrete alternatives. Specifically for a single pas-

senger, the generalized cost (Ci), choosing an alternative i, can be expressed as a linear

combination of the K attributes (XK,i) concerning that alternative, weighted by their

respective homogenization coefficients βK,i, which mostly represent specific costs of the

attribute: Ci =
∑

K βK,i · XK,i. As previously mentioned, for a single customer at-

tributes XK,i can represent both quantitative variables as well as qualitative variables

correctly discretized.

The perceived QoS is strongly dependent on performability levels delivered by the sys-

tem. This measure does not concern just with “the ability to perform”, but it would

estimate “the ability to maintain performance, also degraded, in presence of failures”,
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properly combining System performance with its dependability. Performability indexes

are expressed through mathematical formulas referred to the offered service, measur-

ing both the correct and the degraded service carried out by the System; these indexes

are defined in tender documents and may vary for the specific project. They are of-

ten described by the ratio between performed (actual) and target (designed) service; as

an example, a common performability index is given by “punctuality (P)”, which can

be defined as P =
(
ts−tl
tl

)
· 100, where ts is the number of scheduled trips within a

certain time period and tl is the number of lost and delayed trips (i.e. the number of

not-realized trips or trips that arrive over a certain delay threshold at the measurement

station) calculated over the same time interval. Performability indexes are commonly

known as “RAM indexes” due to the strict relationships with Reliability, Availability,

Maintainability features of the dependability.

The European Standard CENELEC EN 50126 (see Section 1.5.1) defines a complete

process for the management of RAMS in railway systems. If, on one hand, this norm is

well focused on the process, on the other hand it does not impose a specific approach for

the quantitative evaluation, leaving wide margin to adopt an appropriate methodology

depending on the adopted formulas that, as said previously, are specific for the project.

To date, the performability evaluation of a metro system, during decisional stages, is

carried out through analytical approaches at system level, combining results of combi-

natorial models applied on subcomponents. As already explained in Section 1.4, this

is due to the presence of not skilled personnel in the usage of state-based models; this

approach, obviously, lead to a poor accuracy of the analysis with respect to the real

behaviour, with an enormous underestimation of performability levels that can cause

also loss of tenders for new metro system where high performability levels are required.

To better clarify which are the industrial assumption, let’s make the following example:

after a failure stopping a vehicle, the entire system is assumed as down for a long interval

of time, and the service during this period is considered completely unperformed. With

a more accurate model, it should be possible to model complex dynamics such as the

degraded “shuttle service” (a set of trains traveling in a portion of the entire line).

A lot of service models have been presented in the classical literature in transportation

domain, commonly classified in three categories according to the level of detail: macro-

scopic, mesoscopic, and microscopic. As an example, in [74], a model-based approach

for large-scale railways, based on a compositional approach, has been exploited; all the

basic models are developed using Petri Nets formalism but they are not able to rep-

resent failures and to evaluate dependability attributes. To the best of our knowledge,

there are not noteworthy experiments oriented to the performability evaluation in metro
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systems, hence combining service models at system level with dependability models at

sub-system level.

7.3.1 Model architecture for performability and QoS evaluation in

metro systems

The integrated architecture proposed in Section 6.1 has been adopted. In particular the

core provides the analysis of daily service, logging important informations (e.g. the list

of all instant of arrival and departure of each train at each station) into the simulation log

files. The four components of the core are particularized into the following (Figure 7.7):

operational strategies, state of subsystems, passengers travel demand and movement on

track.

Figure 7.7: Core component organization

The first module is responsible for the implementation of operational strategies con-

trolled by computer-based control centre. In particular, it is possible to distinguish three

main functionalities: the respect of the timetable, the execution of ordinary strategies

and the implementation of the recovery strategies, when needed. The module autho-

rizes train departures according to timetable and obviously respecting signalling system

aspects which safely regulates train movements on the track. Moreover such module

enables the activation of apposite train movements which aim at performing specific

operational strategies mostly addressed to restore ordinary service after a component

failure.

The state of subsystems module deals with the simulation of operating mode of all sub-

systems involved in service fulfilment. In particular, this module simulates the evolution

between different operating modes according to the failure rates and probability of state

passing of each failure-prone component (vehicles, on board signalling system, central

signalling system, infrastructure, etc.). The model relies on Bayesian Networks, con-

structed as that reported in Section 7.2 (properly translated into Stochastic Activity

Networks through Level 2 M2M transformations), where top nodes represent different

operating modes of the component and arcs represent the component failures. Obviously

this module allows to simulate the nominal operation, in case, for example, of timetable

validation, setting just all the failure probabilities to zero.
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The passengers travel demand module is dedicated to the simulation of passengers travel

demand. In particular passengers origin-destination matrix relative to a certain time pe-

riod, is considered as input data. Such module is constituted of an assignment model

which by means of consistency equations calculates, during simulation, passengers board-

ing and alighting flows at stations, returning as output the on-board flows for each station

and for each train run.

The Movement on track module is responsible for simulation of train movements on

track. Inputs of this module are all physical and mechanical characteristics of both track

and vehicles. Such module assumes the master role during simulation, collaborating with

other modules. A classical compositional strategy based on the cooperation of basic

elements (e.g. stations, block sections, terminals, pocket tracks, etc.) is used; thanks to

well-defined composition rules, these basic elements can be joined together in order to

produce the track layout you want to simulate in an enough simple way. To simulate both

ordinary and degraded train service, a dynamic integration between different simulation

approaches has proved to be an effective solution to overcome the limits of applicability

of models at high level of detail, but computationally inefficient (i.e. microscopic), and

models unable to describe local and transient train dynamics even though very efficient

(i.e. mesoscopic). In fact a combined approach, which dynamically integrates micro-

and mesoscopic models allows to efficiently simulate large-scale networks or deal with

a large number of simulations (e.g. when performing probability analyses), preserving

the accuracy needed to evaluate QoS and SA. In particular, the mesoscopic approach is

implemented by means of Stochastic Activity Networks (SAN) formalism and uses timed

transitions to model travel times between stations, whilst the microscopic approach,

designed in C++, explicitly simulate train dynamics integrating the Newton’s motion

formula .

7.3.2 Quality of Service and Service Availability evaluation in railway

systems

To clearly understand the usefulness of the adopted simulation architecture, it is neces-

sary to implement a practical application on a case study, in particular a Mass Rapid

Transit system has been considered. As shown in Figure 7.8, this network is consti-

tuted of a 12 km long double-track layout with 15 stations and two terminals to let

trains change their path or reverse direction. An ETCS level 1 signalling system type

regulates train movements on the track. Furthermore a pocket track to store away cor-

rupted trains is located between station 7 and 8. Scheduled train headway is set to 6

minutes while train dwell times are all equal to 20 seconds for each station. The depot

is pinpointed between first and second station, it has three connections with the line:
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one is used for entering vehicles in service, another one is used instead to allow the

service entrance of hot spare vehicles, and the last one is used for train admission to the

depot. Total train running time (including dwell times at stations) is 1251 sec. for 1-15

direction and 1257 sec. for 15-1 direction. Minimum train inversion time at is about

20 sec. at terminal 15 and 140 sec. at terminal 1, while the maximum synchronization

time awaited at terminals to perform a constant headway is 66 sec.

Figure 7.8: Schematic layout of the system

Passenger travel demand considered for the line is reported in terms of on-board pas-

sengers flows (both for 1-15 and 15-1 direction) referring to a working-day peak-hour in

the morning. As can be seen, the maximum passenger flow assessed for 1-15 direction

is equal to 8500 pax/h, while for the opposite direction (15-1) this value is 3189 pax/h

(Figure 7.9).

Figure 7.9: Passenger travel demand

In this application a total time interval of 3 hours has been observed, considering that

hourly passenger flows previously described, preserve exactly the shown trend within

each hour of the considered period. According to the scheduled train headway defined

by timetable, a total of 30 train runs for each direction have been analyzed. In particular

during ordinary service conditions, simulation outputs return total on-board passengers

flows for each train run and for each inter-station track (Figure 7.10). As can be seen,

each train run shows the same passengers load (in fact on-board passengers diagrams

relative to each train run are overlapped).

In particular no limits have been set for train capacity (i.e. the maximum number of

passengers that a train can contain). Moreover for the calculation of the users generalized

cost the total journey time (i.e. the sum of the on-board travel time and the average

waiting time at stations) has been considered as cost function attribute, using a value of

the specific cost β of 5euros/h. Within ordinary service the total passengers generalized
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Figure 7.10: On-board passengers for each train run, during ordinary service condition

cost estimated over all passengers flows during the entire time interval is 63893 euros.

Successively a failure scenario has been considered, supposing that the second train

run along 15-1 direction experiences a breakdown after his departure from station 15

causing a degraded functioning state of the train no. 1 which increases the respective

travel time of 2 times. Then in such conditions three different recovery strategies have

been analyzed and for each one the effects on both QoS offered to passengers and SA

have been assessed. Descriptions and simulation results obtained for each strategy are

reported in the following paragraphs.

First operational strategy: return to depot and successively substitution

This strategy consists in keeping on service the corrupted train in degraded conditions,

until it reaches the depot near station no. 1. Once this has entered the depot it is

substituted by a hot spare vehicle (train no. 9) which starts its service from station no.

1 (obviously along 1-15 direction). As shown in Figure 7.11, due to the higher travel time

experienced by the broken vehicle, a consistent delay is transferred to other trains. The

delay suffered by trains induces a passenger overloading of runs (Figure 7.12), especially

for those which enter on service after the occurring of the failure event.

Figure 7.11: System operation for the first recovery strategy

Moreover this effect is obviously higher for train runs along 1-15 direction (because of

the higher demand level) and slowly tend to fade away after the entrance of the spare.
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Anyway for this strategy the total generalized cost estimated is 83905 euros. Therefore

with respect to ordinary service conditions such strategy determines an increase in the

total generalized cost (i.e. a decrease in passengers satisfaction) of about 31%. The effect

induced by such strategy on SA has been detected through measuring the punctuality

index at terminal station no. 1. In particular such index is equal to 76.57%.

Figure 7.12: On-board passengers for each train run for the first recovery strategy

Second operational strategy: preventive insertion

Such strategy instead considers that a minute after the failure has occurred a hot spare

from the depot is put on service from station no.1 along 1-15 direction, while the cor-

rupted train, although is degraded, continues its service along 15-1 direction until it

reaches station no. 1 and enters the depot.

Figure 7.13: System operation for the second recovery strategy.

As in the first strategy, also for this one a passenger overloading of train runs happens

(Figure 7.14) especially for 1-15 direction, but in this case train loading rates are lower,

since the delay transferred from the corrupted train to other trains is lower. However

for this second strategy the assessed total passengers generalized cost is 70614 euros.

This means that with respect to regular conditions such strategy induces an increase of

about 11% of the total generalized cost. The immediate introduction of the spare vehicle

makes punctuality index be 83.23%, reducing the lost runs from 6 to 4 (Figure 7.13).
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Figure 7.14: On-board passengers for each train run for the second recovery strategy

Third operational strategy: store away on pocket track

The last analyzed strategy consists in keeping on service the broken train in degraded

conditions along 15-1 direction, until it reaches section between station 8 and 7 where

it is stored away on the pocket track there located. Then a hot spare from the depot is

put on service from station no.1 along 1-15 direction (Figure 7.15).

Figure 7.15: System operation for the third recovery strategy

This highlights that such strategy strongly mitigates the impacts of train knock-on delays

transferred from the corrupted train to the other runs (Figure 7.16). Anyway the total

passengers generalized cost calculated for this strategy is 64234 euros, and with respect

to ordinary conditions determines a cost increase (i.e. a satisfaction decrease) of only

0.5%. The value of the punctuality index during the considered simulation period is

94,57%, but higher costs for the installation of the pocket track are necessary to put in

practice this strategy.

7.3.3 Quality of Service vs Service Availability: a case study

QoS perceived by passengers of a railway system is strongly dependent on the levels of

provided service availability. In particular passengers’ satisfaction is related to the gap
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Figure 7.16: On-board passengers for each train run for the third recovery strategy

between expected (ideal) and perceived (actual) levels of QoS. In turn perceived QoS

strongly depend on the discrepancy between targeted and performed SA levels achieved

by service providers. Such relationship is clearly described in Figure 7.17, as illustrated

by AFNOR, the French Organization for Standardization [27]. As can be seen there is a

conjunction between elements related to customers (expected and perceived service) and

elements pertaining to service providers (targeted and delivered service) which close in

a loop, and only if this loop is retained the service is considered as successfully offered.

Figure 7.17: Service level loop in railway transportation systems (AFNOR, 2006)

For instance in a railway passenger system, it seems clear that passengers’ satisfaction

levels will increase only if railway actors are able to decrease the gap between objective

and supplied service availability. But this relationship need to be verified and demon-

strated. For this reason we implemented the following failure management strategies on
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the same system previously presented (Section 7.3.2):

1. Strategy 1: one minute after the failure has occurred, a spare from the depot (train

no. 9) is put on service starting from station no. 1 along direction 1-15, while the

corrupted train, although in a degraded state, continues its service until it returns

to station no. 1 and enters the depot (where it is stored away).

2. Strategy 2: the broken train is kept on service until it reaches the pocket track

(between stations 8 and 7) where it is stored away. A minute later a spare from

the depot (train no. 9) is put on service starting from station no. 1 along 1-15

direction.

In the case of a failure causing the train performance reduction of 25% we have the

following results.

The application of strategy 1, with respect to the previous scenario causes only slightly

knock on-delays (Figure 7.18). In fact a light passenger overloading of train runs is

observed (Figure 7.19). Punctuality index assessed is 92.64%, while the total generalized

cost is 64952 euros, causing an increase of passengers cost (i.e. a decrease of passengers

satisfaction) of only 1.66% with respect to ordinary conditions.

Figure 7.18: Train trajectories (Strategy 1)

As in the results obtained in Section 7.3.2 strategy 2 minimizes knock-on delays (Fig-

ure 7.20), in fact the punctuality index is 95.56%, but here the total passengers general-

ized cost is 65605 euros determining an increase of 2.68% with respect to normal service

(see overloading of Run 3 in Figure 7.21). It is very important to notice that for this

failure scenario, strategy 2 induces a lower QoS perceived by passengers, although it is

more efficient from the SA (i.e. system performance) point of view, since when train

performances are reduced only slightly (as in this case) it can be more convenient for

passengers to have light increases of on-board running times rather than alight from the

corrupted train run and wait for the next run. This proves that a design or operational

intervention, which presents the highest performance efficiency, not always coincides
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Figure 7.19: On board pax flows for each train run (Strategy 1)

with the one which assures the highest QoS levels: in the considered example,in fact,

users prefer to reach the destination with short delays than unboarding and boarding

the successive run (also if the total delay is minimized).

Figure 7.20: Train trajectories (Strategy 2)

Figure 7.21: On-board pax flows for each train run (Strategy 2)
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7.4 Vulnerability modelling and analysis of railway infras-

tructure systems

Railway systems are also security critical systems, then they need to obtain an acceptable

level of its physical infrastructures. The vulnerability quantitative evaluation can be

performed using the same approach: formal models can be developed with the aim to

give a measure of vulnerability while Model-Driven can generate these models.

In this Section the CIP VAM profile is applied to vulnerability and protection modeling

of a railway station. The physical layout of the station, potential attack scenarios and

protection systems are modeled in order to provide a high level representation to be

used for the subsequent analysis phase. For the sake of brevity only an excerpt of the

model is presented.

SIDE ENTRANCE 2 WINDOW 2

STREET

STREET

STREET

SHOP1

WINDOW 1SIDE ENTRANCE 1

TRACK 2

TRACK 1

INFO POINT

TURNSTILES2

MAIN ENTRANCE

ATRIUM

PLATFORM1

PLATFORM2

PLATFORM3

WAITING AREA

TURNSTILES1
TUNNEL

SHOP3

SHOP4

SHOP2 SECURITY GUARD

SECURITY GUARD

SECURITY GUARD

CAMERA1

CAMERA2

LOCK SYSTEM

LOCK SYSTEM

CAMERA3

Figure 7.22: Layout of the Station

Figure 7.22 depicts the station layout; it has three accesses from the street: a main

entrance and two side entrances. The station is internally divided into two functional

areas: an atrium (on the right), that is freely accessible, and a waiting area (on the

left), that can be accessed only by crossing turnstiles. Close to the two lines of turnstiles

there is an info point that host security personnel. Four shops are located in the station:

two of them are accessible from the atrium while the others from the waiting area. Two

tracks host the two railroads, three platforms allow easy access to the vehicles, which

arrive and leave the station through a tunnel. The protection systems are highlighted

in red. Three video-cameras monitor the main entrance and the turnstiles, which are

also equipped with a lock system controlled from the info point. Four security guards

are also present: two of them supervise the platforms and the waiting area, the others

control the access to the waiting area from the info point.

Infrastructure model.
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Figure 7.23 (a) depicts the UML model of the station by the constructs provided by

the Infrastructure package. The station is modeled by the stereotype Site, it in turn

contains several sub-sites (shops, atrium, waiting area, etc.). The associations represent

the interfaces of the station on the street and the tunnel (three entrances, two windows

and two portals). Notice that passengers inside the station have been represented by

the stereotype Object through a member Person (with multiplicity tag equal to $n)

defined inside the station specification. The tagged values related to the Shop4, Person

and SideEntrance2 have also been shown in the figure. Those related to Shop4 show

that CIP VAM is able to represent geometrical features: shape annotates the length of

5 meters, the width of 3 meters and the rectangle shape of the shop, adding also the

measure of the perimeter; volume adds information about the height. The tagged value

asset identifies the assets to protect. In this example, it is applied on the Site Shop4,

on the Object Person and, as described in the following, on the element modeling the

service provided by the station. The probability of an attack against the shop is 0.1,

the economic value of the shop is $shop4value and the risk level is acceptable. On the

contrary, the probability of an attack against persons is 0.99, the value of each person

is $personValue and the risk level is unacceptable.

Figure 7.23 (b) depicts the StopInStation service provided by the two objects RailRoad1

and RailRoad2. This relationship is expressed by the tagged value providedBy, related

to the StopInStation use case. This service is included by the RailwayOperation since it

needs the correct execution of StopInStation to be properly carried out. Both services are

assets since there is an economic loss due to potential unexpected stops: these values are

$stopValue and $operationValue for the station stop service and the railway operation

service, respectively.

Attack model.

Let us consider the following attack scenario (Figure 7.24 (a)): a terrorist wants to

detonate a bomb set down close to the turnstiles (inside the shop4 or onto the platform3).

Two use cases (stereotyped as �attack�) are created, both of them including the

intrusion in waiting area attack. The tagged values associated to the actor Terrorist

expresses that the attacks can be conducted by just one terrorist exploiting medium

skill and medium firmness. The tactic tagged value is set to intrusion for the use case

representing the intrusion in the waiting area while it is bombing for the others. The

value of threat in place a bomb in shop4 use case models the destruction chain of the

successful execution of this attack: the explosion inside the station will propagate to

all the members included in Station: hence there will be a destruction of the shop4

with an economic loss of $shop4value, the loss of lives (person) with the economic loss

of $personValue (multiplied by $n) and the destruction of the two railroads with the
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Figure 7.23: UML Diagrams of the station infrastructure: (a) structural view (b)
service provided

loss of the service StopInStation, provided by them, and the consequent loss of the

RailwayOperation.

Figure 7.24: Attacking station: (a) Attacks Use Case Diagram, (b) Intrusion Activity
Diagram

The intrusion in waiting area attack scenario is then detailed by means of the Activity

Diagram depicted in Figure 7.24 (b). The action sequence models the possibility to reach

the waiting area by crossing one of the two entrances, or by forcing a window after 10
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p.m. (when the station is closed). This last condition is expressed by the trigger tagged

value, while the effects of this action are modeled through the effects tagged value.

Protection model.

Figure 7.25 depicts the UML model of the protection systems developed in the station.

In particular the model highlights how the tagged values can express the technical speci-

fications of the protection systems. The counteracts tagged value lists the actions against

which the protection systems are effective (e.g. the action reach waiting area may be

detected by the camera and the lock system), while the exposes tag adds information

about the nature of the attack it suits.

Figure 7.25: UML view of some station protections

Formal model generation.

In this last paragraph we want to highlight a possible way of using the CIP VAM profile

in the vulnerability analysis of a critical infrastructure: proper Level 2 M2M transforma-

tions can be defined to translate a UML model (composed of Infrastructure, Attack and

Protection submodels) into a formal model suitable for analysis. In this case a Bayesian

Network (BN) model can be obtained from the UML model in order to perform vulnera-

bility analysis. Here we sketch a simple example to show that infrastructure, attack and

protection models concur to the definition of a BN model to evaluate the vulnerability

of the station.

Let us consider the intrusion in waiting area attack: Figure 7.26 shows a fragment of

the BN suitable to evaluate the vulnerability of the station from this attack. The three

dashed boxes represent portions of the BN obtained from the information of the UML

submodels linked by the dotted line. Starting from the activity diagram in Figure 7.25,

a BN node is generated for each activity: when two activities are adjacent, there is a

dependency (arc) between the nodes (e.g. approach the station and cross side entrance);

when a decision node is present, several nodes can have the same parent node/activity.

The Infrastructure package is used to reason about co-location of both attacking events

and protection system in the same place: as example attack going on is a node that

means the continuation of the attack when the cross side entrance branch of the activity

diagram is considered. Let us note that the attack going on depends on three nodes that

model the presence of the attack inside that area (cross side entrance), the firmness of

the guard (guard) and of the attacker (attacker): a proper Conditional Probability
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Table (CPT) is written to determine the output distribution of the attack going on

node from the other three. The Protection submodel can be used to evaluate the effect

of the reliability and of the trustworthiness of a sensor on the detection of attacking

event. Table 7.4 represents the CPT of the attack going on2 node (o) whit respect the

force window 1 (e) and camera 3 (s) nodes.

Figure 7.26: Portion of the Bayesian Network obtainable from the case study

Table 7.4: CPT of attach going on2

e s o(true) o(false)

true ok 1-fnr fnr

true ko 0 1

false ok fpr 1-fpr

false ko 0 1



Chapter 8

IMS-Compliant Conferencing

System

The IP Multimedia Subsystem (IMS) [75] is an architectural model for Next Generation

Networking (NGN). This architecture has been designed for the convergence of all de-

vices for telecommunications on an infrastructure based on IP network that is capable

of providing advanced multimedia services on top of both mobile and fixed networks.

IMS makes extended use of Voice over IP (VoIP) technologies and open IP protocols

aiming at supporting heterogeneous devices in the exploitation of the entire portfolio

of available multimedia services, which entails support for roaming as well as for flex-

ible and transparent adaptation to context changes. Conferencing services are one of

the most challenging among those engineered on top of such framework. They offer ad-

vanced communication experience to end-users exploiting a combination of audio, video,

instant messaging, desktop sharing and other media, and impose a number of stringent

requirements to the underlying network infrastructure. Due to its recent birth, the IMS

architecture is currently far from reaching its steady-state with respect to the complete

definition of the overall infrastructure and related standards. Furthermore, to date only

a few early trials and deployments of the architecture are underway. A crucial point

in the different system implementations is a systematic approach to the performance

assessment.

The considered system has been already the subject of a thorough experimental bench-

marking campaign carried out on a real testbed [76, 77] aimed at conducting a per-

formance and scalability analysis. Experimental results showed that as the number

of users increases, CPU utilization of the centralized server becomes the most critical

performance index, since such server is responsible for the management of both the

signaling dialogs with each conferencing client and the media streams mixing function.

127
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This led the developers to focus on the performance of the media plane, which defi-

nitely represents the limiting factor as far as scalability is concerned. The mentioned

experimentations required a lot of efforts: for each trial, a real laboratory testbed has

been properly set up and a realistic set of conferencing sessions has been reproduced

over it. A common approach to performance evaluation of networked systems which

does not require real testbed implementations is of course based on the usage of network

simulators. Nevertheless the current leading network simulators (such as ns-2, ns-3,

OPNET Modeler, etc.) do not offer complete support for IMS [78]; in particular, they

do not support the modeling of the media plane through embedded components, but

usually rely on third-party implementations of some of the required IMS media plane

functions. Compared with the experimental and the simulation approaches, formal mod-

eling presents several advantages. It allows for performance evaluation and performance

prediction thus supporting the early phases of the development of the system and provid-

ing the possibility to easily evaluate several conference blueprints. This also allows for

sensitivity and stability analysis on a number of parameters, including those associated

with Quality of Service, which gives the service providers an effective means to plan and

schedule conferences according with the expected QoS levels. A further advantage in

using formal modeling is the possibility to model and analyze anomalous behaviors due

to attacks, faults, overloads or degraded operating modes.

This Chapter shows the performance assessment of these systems, performed at formal

stage of the proposed approach. In the modelling phase, advantages given by the formal

concept of Model Template (Section 6.2) have been exploited. After a brief description of

the conferencing framework, to provide the reader with the needed background informa-

tion, the models organization is presented; then the SANs library models are described

and finally some obtained results are presented. The validation of the model has been

performed through a comparative analysis with the results of an experimental campaign

conducted over a real-world testbed implementation of an IMS conferencing framework.

8.1 System description

A conferencing platform offers advanced conferencing features: system users, named

“participants” or “conferencing clients”, are enabled to create and join conferences in-

volving any kind of media stream, including audio and video, as well as instant messag-

ing or even gaming. Different conference kinds (“blueprints”) are supported and can be

highly customized by users aiming to create conferences best fitting their needs. The sys-

tem is conceived to be scalable, i.e., able to support an increasing number of conferencing

clients. This property is obtained by a proper cooperation mechanism among different
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“centralized conferencing islands”, which will be illustrated afterwards. In Figure 8.1 an

IMS network suited for the provisioning of conferencing services is shown.

Figure 8.1: IMS network

As already mentioned, the conferencing system has the considerable advantage of being

realized by exploiting standard architectural design specifications and protocols, de-

ployed by eminent standardization organizations of both the Internet and the Telecom-

munication communities, namely the 3GPP and the IETF (Internet Engineering Task

Force). As for the IMS specification, it complies with the standard defined in the 3GPP

document [79] describing how IMS logical elements can be orchestrated in order to

make the IMS network capable to support conferencing services. On the IETF hand,

the system is an actual implementation of the RFC document dedicated to Centralized

Conferencing (also known by the acronym “XCON”) [80], that defines both the proto-

cols and the components needed to fit advanced conferencing service requirements. For

the sake of conciseness, we herein describe only the main concepts and entities of the

aforementioned standards that are relevant for this work.

Based on the mentioned 3GPP specification, two logical planes can be identified: the

“control plane” and the “media plane”. The control plane deals with issues related

to the set-up of the multi-media multi-user communication, as well as those related to

overcoming the heterogeneity of both the access networks and the end-user devices. The

media plane faces all the matters related to the media flows transmitted and received

by users, such as, for example, the transcoding across different media formats and the

switching of different media streams among conferencing participants.
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The most important entities for our work are:

• User Equipment, UE : the device used by the conferencing user to participate in

the conference;

• Application Server, AS : the server-side entity responsible for the implementation

of the conferencing application logic;

• Media Resource Function Controller, MRFC : the logical entity devoted to control

operations on media streams according to information provided by the AS;

• Media Resource Function Processor, MRFP : the entity in charge to perform media

processing by acting as a media mixer.

According to the IETF XCON standard, the conferencing application logic involves dif-

ferent functionality, including the signaling management for the call set-up, the delivery

of conference notifications to participants, the creation and modification of conference

instances according to user preferences, the handling of moderation and so on.

Given this bird’s-eye overview of the main reference standards, we now provide further

details of the real-world conferencing system we took under analysis. In such system,

the AS provides all the XCON functionality. Moreover, it acts as a MRFC by managing

the MRFP, which is implemented as a different component that we will call from now on

“media mixer”. According to the identified logical entities, the IMS elements have been

replaced in the system with real-world components, either by properly extending existing

open source components (like, e.g., in the case of the Application Server elements), or

by creating them from scratch (like, e.g., in the case of the media mixer). The resulting

IMS compliant architecture, as well as its implementation details, are introduced in [76,

77, 81].

In what follows, two different conferencing scenarios are considered: a centralized con-

ferencing scenario and a distributed conferencing scenario. The second one has been

introduced in order to improve the scalability of the conferencing framework. A recent

implementation of such scenario has been proposed in [81].

8.1.1 Centralized Conferencing Scenario

Figure 8.2 presents a simplified view of the system, showing the main IMS components

we mentioned before. We refer to such IMS cloud as to a “centralized island” of the

system, since all signaling messages from conferencing clients are directed to the same

centralized AS and hence realize, at the level of the control plane, a typical star topology.
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Being the center of such topology, the AS is also called “conferencing focus”, or simply

“focus”.

AS

MRFC
MRFP 

(media mixer)

Conferencing

Server

Participant

Participant

Participant

Participant

Participant
control dialogs

media dialogs

Figure 8.2: A view of the conferencing system

On the basis of the adopted conference blueprint, the AS issues commands to the media

mixer, which is the system entity in charge of performing the audio and video mixing

functions needed to deliver to each conference user the proper mixed stream, according

to her/his preferences as well as to the supported capabilities of the device she/he uses.

The multimedia streams generated and/or consumed by each participant are in fact

always exchanged with the media mixer, hence realizing a star topology also on the

media plane.

The AS and the media mixer can be logically grouped into an integrated server-side

logical entity, called “Conferencing Server”, making available all the functions needed

to provide the conferencing service, both on the control plane and on the media plane.

8.1.2 Distributed Conferencing Scenario

We herein move the attention to the distributed scenario, in which several centralized

conferencing clouds are interconnected and cooperate in order to provide the conferenc-

ing service in a distributed manner (Figure 8.3).

Under the assumption that all conference participants refer to the focus in the home

network of the conference initiator, which we call the “main” focus, the IMS centralized
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Figure 8.3: Distributed conferencing scenario

conferencing solution keeps on working also in the scenario where the conference par-

ticipants belong to networks owned by different telecom operators. Though, in a fully

distributed scenario, the above case should be dealt with by providing each involved

network with a specific focus managing the associated local users who subscribed to

the conference. It is up to the main focus in the conference initiator’s home network

to provide all other focus entities with up-to-date conference information. Such foreign

focus entities thus play a twofold role. On one hand, they act as a regular conference

focus for the participants belonging to their underlying managed network; on the other

hand, they appear as normal participants to the focus in the conference initiator’s home

network.

Similarly, on the media plane, multiplexing/demultiplexing of multimedia streams gen-

erated by local users is up to each local media mixer. The resulting stream coming

from foreign media mixers to the main media mixer (i.e., the mixer located in the island

where the distributed conference has been created) is handled in the same way as the

media flow of an ordinary conferencing client. In order to achieve consistency in a con-

ference involving more islands, a dedicated communication channel exists between each

pair of focus entities participating in the conference (“Server to Server (S2S) Channel”

in Figure 8.3). Such channel is used to exchange conference information, as well as to

manage synchronization issues.
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8.2 Model Development Process

Multimedia conferencing systems have already been a playground for the application of

formal modeling. Several works focused on the orchestration of the different building-

blocks a multimedia conferencing platform relies on, as it is the case in [82]. In the

cited work, the authors mainly use Petri Nets and related modeling languages to per-

form composition correctness validation. Other researchers leverage Petri nets to model

conferencing media flows characteristics, as well as time synchronization mechanisms.

These approaches are definitely more relevant to our work, since we are concerned with

media plane modeling rather than compositional aspects. In [83] authors use TPNs to

properly describe the temporal scheduling of the multimedia presentation process, within

the inter- and intra-streams synchronization constraints. TPN models of such mecha-

nism are used to support the implementation of a system capable to control streams

synchronization in a video conferencing application. As opposed to the mentioned work,

we do not analyze media streams management to drive the construction of a system

from scratch, but rather to model the workload of an existing conferencing media mixer

and study its performance.

Since our goal is to provide a flexible tool for the evaluation of performance and scalabil-

ity, we use SAN models to describe the conferencing server behavior, while dealing with

users mixing preferences and coping with the diversity of the involved media and re-

lated codecs. SANs are more suitable than TPNs to our aims because of their modeling

power and efficiency. Specifically, they provide the basic modeling mechanisms to easily

integrate, in the models, data structures representing messages, as well as to replicate

and compose submodels.

In this Section we present the development process adopted to build the performance

model of the conferencing system described in Section 8.1. The modeling process is

founded on the approach described in Part II: it is compositional and hierarchical, and

promotes model reuse. To support the modeling phase, Model Templates have been

applied, while to come wit scalability problems Stubs and Reduced Models have been

developed (since the required analysis need to be performed on servers).

8.2.1 Separation of Concerns: Modeling Levels

In Figure 8.4 the structure of both the Participant (Client Side) and the Conferencing

Server (Server Side) entities is shown. Since we deal with performance and scalability

analysis of the system, we concentrate the modeling efforts on the media plane: in

fact experimental campaigns showed that operations like transcoding and mixing of the
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Figure 8.4: Reference modeling schema of conferencing systems

participants’ media streams are the most demanding ones in terms of required resources

and hence have the strongest impact on the overall system performance.

Client Side is composed by the following levels:

• User : at this level the media streams are produced (output streams) or consumed

(input streams). The user is characterized by the role she/he plays in the confer-

ence (moderator, speaker, observer, etc.) and by the load that she/he produces.

• Application: at this level the streams are encoded/decoded. For example, the ap-

plication samples and encodes the audio signal coming from the user’s microphone.

The production rate of the messages depends on the type of encoding (i.e., codecs

adopted), as well as on both the power and the number of CPUs.

• Device: this level is in charge of bundling output streams into packets or viceversa

(i.e., assembling input streams). At this level the features of the participant’s

communication device (the User Equipment) are taken into account. The main

parameters are the power and the number of CPUs.

• Access network : it represents the access network of the device and is characterized

by its connection speed.

Server Side levels are the following ones:
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• Management : it includes the server-side functionality for the provisioning of the

conferencing service on the media plane in each centralized conferencing cloud.

More precisely, as already mentioned, we skip the modeling of the Application

Server component, while stressing the details of the media mixer component in

charge to perform media streams management on the basis of the particular kind

of conference.

• Device: is the same as the client-side one.

• Access network : is the same as the client-side one.

8.3 Modeling the Conferencing Framework

This Section details how the modeling approach is applied to generate the SAN models

of the conferencing system. Models are described according to a bottom-up approach:

first, we introduce the models realizing each level of the conferencing system in isolation

(Figure 8.4); then, we show how they are composed in order to obtain the models of

both the Client Side and the Server Side. Some of the models described in this Section

are template models, since they are obtained by instantiating specific Model Templates

(specifically, User, Management, Client Side and Server Side). The subnets we will

introduce to perform the composition in Subsection 8.3.6 are template models, too. The

remaining models (Application, Device and Access Network) are not templates. For the

sake of conciseness, only the formalization of the User Model Template is reported in

the following.

8.3.1 User Level

In the conferencing context a user has the same behavior independently from the spe-

cific medium she/he uses (audio, video, etc). This behavior may be modeled by a

state machine: a User Model Template that produces and consumes a generic multi-

media stream UserSAN = (UserMCSAN , {(K,S, fK)}) is shown in Figure 8.5, where

UserMCSAN = (userMedia, S,∅): the SM set of UserMCSAN is empty and fK is the

instancing function described in the previous Section. User has one parameter K that

represents the number of the media streams related to the user. Note that SSK=S, i.e.,

this is the trivial case in which the entire structure of UserMCSAN must be replicated.

Hence, UserSAN < 1 > coincides with the Model Class UserMCSAN . In order to show

the flexibility of this mechanism, Figure 8.6 shows the template model UserSAN < 2 >

modeling a user who makes use of both video and audio.
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The interface of this model is represented by the two places MediaInbound and Me-

diaOutbound, respectively for inbound and outbound traffic. The user may be in a

Producing or in a Waiting state (i.e., “talking” and “not talking” for the audio me-

dia) represented by ordinary places. The timed transitions (P2W and W2P) model the

switch between the two states. When the transition P2W fires, a token is removed from

the MediaOutbound place by the output gate OG0. On the contrary, when the transition

W2P fires, a token is added to the place MediaOutbound by the gate OG1.

SSk

Figure 8.5: The User Model
Template

Figure 8.6: The audio conference user
model

8.3.2 Application Level

At this level, we model the behavior of the encoding and decoding processes, on both

Client and Server Sides. For each medium associated with the Participant, two differ-

ent models are created, one for each stream direction: inbound-decode and outbound-

encode. Therefore, we have a number of instances of the inbound and outbound Ap-

plication model depending on the media enjoyed by the participant The two patterns

of inbound and outbound application models are depicted in Figure 8.7 and Figure 8.8,

respectively. The former model is able to maintain a token in the output place starting

from a set of structured tokens (messages) arriving at the app in place. The latter is

instead devoted to the production of structured tokens to be put into the app out place,

with the presence of an incoming media flow being represented by a token in the input

place. In detail, the interfaces of the inbound application model are represented by the

places output and app in: a structured token in app in indicates the presence of a mes-

sage ready to be decoded; after the decoding process (that keeps the CPU busy), the

decoded data are ready to be played out. On the left of the image there is a watchdog

that is responsible for maintaining the token in the output place: two places playing

and noPlaying with the connected transitions and gates implement the state machine

related to the watchdog.

A specular behavior is manifested by the outbound application model. A token in the

input place indicates the presence of an external flow that needs to be encoded. In this

case, IG1 enables the sampling transition that fires after a sample length and produces
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Figure 8.7: The inbound Application model

a new sample in the samples place. Upon arrival of a specific number of tokens in the

samples place, depending on the encoding standard used, IA1 is enabled and, if the

CPU is not busy, the generation of a message is activated. After a predefined processing

time, Tcpu fires and the message is made available at the output interface app out.

Figure 8.8: The outbound Application model

8.3.3 Device Level

The device layer is responsible for the decomposition of all output streams produced by a

Participant, encoded with application messages, into one or more packets, or, viceversa,

for the assembly of input packets into application messages. All the application level

media streams are conveyed in an outbound Device model that decomposes each message

into a number of packets, according to the length of the message itself, assigning to each

of them an incremental identifier. Therefore, each packet is characterized by the message

number and packet number that allow receivers to assemble the packets into application

messages. Figure 8.9 depicts the SAN model of the device on both Client Side and Server

Side: this model can be connected either to a network layer model or to an application

layer working in both inbound and outbound configurations. The model interface resides

in the dev in (input) and the dev out (output) places. In detail, the two input gates,

IG1 and IG2, verify either the presence of a message (in the output configuration) or

the arrival of the last frame of a message (in the input configuration) on the dev in

place. These two gates are able to recognize the direction in which the model has been

assembled thanks to the packet number: if this value is not specified (or it is set to

a meaningless conventional value, like, e.g., 0) it means that the model is working in

outbound configuration, inbound otherwise. When an application message is (packets

are) ready to be decomposed (assembled), the User Equipment processes it (them) until

the related packets are (application message is) put into the output interface.
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Figure 8.9: The Device model

8.3.4 Access Network Level

The network layer is responsible for getting packets from a source peer (Conferencing

Server or Participant) and transferring them to the backbone network, when in outbound

configuration, or viceversa, when in inbound configuration. The transfer time depends

on the nature of the communication medium (Wireless, Wired, DSL, UMTS, etc.) to

which the User Equipment is connected. Figure 8.10 depicts the SAN model of the

access network: as for the device model, it is generic in the direction of communication

(inbound/outbound) and the transfer time actually represents a parameter of the model.

The interfaces of this model reside into net in (input) and net out (output) places,

respectively.

Figure 8.10: The Access Network model

8.3.5 Management Level

The Management level is specific to the Conferencing Server and it is not present in the

model on the Client Side. This level is responsible for transcoding between the different

media codecs adopted by participants, as well as for forwarding messages to them, by re-

lying on stored information about the conference (that the Conferencing Server needs to

keep in memory). The overall model of this level instantiates the aforementioned appli-

cation model templates (inbound and outbound) to transcode messages, in conjunction

with another model, described in this paragraph, that deals with the generation and

transmission of messages. The overall Management model, like the application models,

is specific to the particular media and can hence be instantiated ST times (ST being

the number of media streams involved in the conference). Figure 8.11 depicts the SAN

representation of this additional model.

Given its function, the additional model offers two interfaces to the device level (app in

and app out), as well as four connection points with the inbound application model

(app in inbound and decodedMessages) and with the outbound application model (samples outbound

and app out), both used for potential messages transcoding. When a new message arrives
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Figure 8.11: The Server Side Management additional model

at the server application level on the interface app in, IG1, IA1, OG1 check whether

the codec used in the message is the standard codec chosen for the conference. In this

case the message is put into the decodedMessages place; otherwise, it may be transferred

to the inbound application model through the app in inbound place. The transcoded

messages produced by the inbound application model are put into the decodedMessages

place, where the CPU finds only messages encoded with the standard codec, which are

elaborated and sent to all participants through OG2. Before putting messages into the

app out place, the server checks the codec of choice for each participant and, if not

consistent with the standard one, it puts the samples into the samples outbound place

(connected to the outbound application model) for the correct message encoding.

8.3.6 Composed Models

The aim of this Subsection is twofold: it first shows how composition has been applied

and then how it has been implemented in the Möbius framework. A two-level composi-

tion strategy has been implemented: an “intra-stack” composition to create Participant

and Conferencing Server composed models, and an “inter-stack” composition at a higher

level to create the overall conferencing system model. The “intra-stack” compositions

representing the Client Side and the Server Side model stacks are shown in Figure 8.12

and Figure 8.13, respectively.

Starting from the top of the Figure 8.12, the Model Template described in Subsec-

tion 8.3.1 is used inside the User level according to the parameter K (the number of

involved media). At the Application level, several models described in Subsection 8.3.2

are used. The number of inbound and outbound application model replicas is determined

from N and M, representing, respectively, the number of received and transmitted media

streams. The two values of N and M can be different (and not equal to K) in those cases

when a client is producing but not receiving a specific medium (like, e.g, for a mobile

phone, not equipped with a camera, which is not capable to generate its own video

stream, but can nonetheless receive video sent by other participants). In the simplest

case of an audio conference where all participants can both listen and speak we have

K = M = N = 1. Both at device and at access network levels two models, according to

the direction of the media flows, are instantiated. It is clear that the whole Participant

model is itself a Model Template since entire submodels can be replicated. Figure 8.13
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User<K>
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Participant<N,M>

access network

...

app_in_N app_out_1 app_out_M

device

Figure 8.12: Client Side stack Model Template

app_in_1

Management<X>

access network

app_in_X app_out_1 app_out_X

device

Figure 8.13: Server Side stack Model Template
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depicts the “intra-stack” composition at Server Side where the different part is repre-

sented by the Management model (since Server Side and Client Side use the same Device

and Access Network models). The model is in charge of representing the Conferencing

Server’s audio and video mixing functions: in order to capture such concepts, the model

is built by using hierarchical composition. In fact, transcoding media streams may be

necessary depending on the adopted encoding-decoding formats, as well as on the ca-

pabilities of the involved devices. Encoding and decoding are modeled by using the

application model templates (respectively app out and app in) described in the previ-

ous paragraph. These are model templates in X parameter, that is the number of the

different encoders and decoders used in the conference.

The “intra-stack” composition is performed by place superpositions, where it is naturally

possible, or by using some interconnection SANs: Figure 8.14 shows the Model Template

of the interconnection network between device and application models on the inbound

branch of both Participant Side and Server Side. Figure 8.15 shows the real instantiation

obtained by replicating, for two media (audio and video), the SSn subgraph. The latter

model allows to connect the device level of a Participant/Conferencing Server to the

two inbound application models. It basically represents a simple messages separator,

working in accordance with the media to which they refer.

SSn

Figure 8.14: The Device-
to-Application composition

network Model Template Figure 8.15: A Device-to-Application compo-
sition network model

The “inter-stack” composition, starting from the definition of conference deployment (in

terms of the number of conference participants, as well as overall Conferencing Server

configuration), joins all the instances of the peers stack model (Participants and Con-

ferencing Server) through a proper network, on the basis of a provided topology.

The two composition steps described above are implemented into the Möbius framework

by means of the Rep and Join operators. The set of participants is created by replication

and instantiation of the entire Client Side model stack. Figure 8.16 shows an example

of an overall composed model of a centralized audio conferencing system. The “intra-

stack” composition has been implemented through the participant and server Join

models; similarly, the“inter-stack” composition is given by the combined action of both

the Rep (to replicate participants) and the system Join model (acting as a top level

joining all the involved entities). To identify single participants, by assigning a specific

id to each of them, a simple idAssignment model has been implemented. This model is
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similar to the one proposed in [71] and allows to associate an index to each participant

instance. Indeed, having non-anonymous participants is critical when, for example, a

measure on a specific instance is requested or a different behavior must be modeled for

it. The composition SAN is in this case trivial, since different models have to share some

communication places.

intra-stack composition intra-stack composition

inter-stack composition

Figure 8.16: The overall composed system model

8.4 Stub and Reduced Models

This Section explains how stub and reduced models have been used to solve scalability

issues.

Stub models have been implemented given the layered structure of the model. Devel-

oped stub models acts as a substitute for the models of the lower levels: for example

at application level a stub model must encapsulate the behavior of device and access

network levels, exposing the same interface to the upper levels. A trivial SAN can be

implemented, where a timed activity can represent the delay as seen by applications;

this activity fires with a distribution which approximates the sum of the real ones.

The reduced model can be connected directly to the Conferencing Server model stack

generating the load related to n participants without instantiating all of them. This

model is depicted in Figure 8.17: (i) the distribution function of the production transition

models the average rate with which messages are produced by a single participant;

(ii) the activeClients place is used to store, at each instant of time, the number of

transmitting participants; (iii) the verifyClients input gate checks the presence of at least

one token in the associated place and is used to either increase or decrease the number

of active participants, for example in case of configurations involving moderation; (iv)
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the generateMessages output gate injects packets into the network. Obviously it does

not allow to conduct performance evaluations at the client side.

Figure 8.17: The client reduced model

8.5 Obtained results

This Section assesses the proposed approach by means of experimental campaigns. Our

objectives are: i) validation of the proposed models through a comparison with real data;

ii) assessment of the scalability of the modeling methodology; iii) analysis of its power

and flexibility when addressing different conference configurations (e.g., with/without

transcoding, with/without moderation, etc.).

Table 8.1: System parameters

Parameter Description Value

pkts per msg Packets generated at device level for each
application level message.

1

sample len Duration of a single audio sample (ac-
cording to G.711 specification).

0.125 ms

samples per msg Samples contained in an application level
message (according to G.711 specifica-
tion).

160

sample dim Dimension of an audio sample 8 bit

app in Tcpu mean
app out Tcpu mean

Mean CPU time needed to decode/en-
code a message at the application level.

1.3E-4 ms

app in Tcpu var
app out Tcpu var

Variance of CPU time needed to de-
code/encode a message at application
level.

1.3E-5 ms

mngmt Tcpu mean Mean of CPU time spent by the server
to generate a single application message

1.3E-4
ms/msg

mngmt Tcpu var Variance of CPU time spent by the server
to generate a single application message

1.3E-5
ms/msg

dev Tcpu mean Mean CPU time to decompose/recom-
pose a message at device level.

0.6E-6 ms

dev Tcpu var Variance of CPU time to decompose/re-
compose a message at device level.

0.6E-7 ms

net band Upstream/downstream bandwidth
needed for a message

67 Kbit/s

To this purpose and according to related works [76, 77] we choose CPU usage of the

Conferencing Server (for an audio conference) as a key performance indicator. Such
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measure is usually computed with respect to the number of participants connected to

the conferencing system. Before showing the results of our analysis, a description of

the system configuration parameters used in the trials must be given (Table 8.1). For

the sake of coherence, such parameters have been chosen according to the above cited

works. The first two objectives are fulfilled in Subsection 8.5.1 and the third one in

Subsection 8.5.2

8.5.1 Validation with Real Data

This group of simulations aims at demonstrating the equivalence between our models and

real experimental data. In order to achieve this goal, we compared the estimated CPU

usage obtained by solving models with the values reported in [76, 77]. This validation

requires a high level of scalability in terms of number of participants: for this reason, we

introduce at first a comparative analysis of the complete model with stub and reduction

approaches to evaluate their scalability features.

Figure 8.18: Scalability analysis:
CPU usage

Figure 8.19: Scalability analysis:
simulation time

Complete vs stub vs reduced model. Based on the specific well-defined reference

scenario, the three models are compared: a complete model obtained by composing the

server stack with the replicas of the participant stack; a model obtained by substitution

of the device and access network levels with stub SAN models; a model built using

reduction techniques as defined in Section 8.4. The accuracy of the stub and reduced

models compared to the complete one, that is the estimated CPU usage of the Confer-

encing Server against the number of connected participants, is reported in Figure 8.18.

The simulation times associated with these studies are instead reported in Figure 8.19.

The two analyses have been conducted for a number of participants between 5 and 110:

a quick look at the graphs tells us that the reduced model is able to analyze up to 110

participants within reasonable simulation time. The complete model is instead capable

to arrive at a maximum of 75 participants on the computer used for the simulation

(Intel(R) Core(TM) 2 Duo @ 2.53GHz, 2 GB RAM) due to RAM saturation during the

solving phase. The reduced model scales very well in simulation time and, according
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to the first diagram, it is also as accurate as the complete model for the considered

conference scenario. The drawback in its use resides in the potentially unsatisfactory

level of detail: some analyses that require non-anonymous participants (e.g., the QoS

of the conference as perceived by end-user), cannot be conducted because of its limited

description of the participants’ model stacks. On the contrary, a stub solution seems

to best strike the balance between accuracy, simulation time and level of detail. In

particular, the considered stub models superpose communication places without intro-

ducing CPU effort at device and network levels: the accuracy can be further improved

by constructing more realistic (yet less performing) stub networks.

Figure 8.20: Reduced model vs real data: centralized scenario

Reduced model vs real data. We compare the solutions obtained with the reduced

model with the real experimental data for the two different configurations described in

Section 8.1: a) centralized scenario, where a single focus acts as the Conferencing Server

for a number of participants varying from 25 and 300; b) distributed scenario, where

a “two islands” configuration is used for load balancing purposes (150 participants per

focus). The results are reported in Figure 8.20 and Figure 8.21, respectively. In both

scenarios the reduced model fits well the real measured data.

Figure 8.21: Reduced model vs real data: distributed scenario
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8.5.2 Evaluating Power and Flexibility

So far we have validated our approach both in terms of accuracy of the results and

scalability. The next two experiments point out the power and flexibility of the proposed

modeling approach by evaluating the system’s performance under different conference

configurations. More precisely, we evaluate the effects of moderation and transcoding

on the CPU usage of the central Conferencing Server for an audio conference. The

aforementioned experiments are conducted by varying two key simulation parameters:

the probability of being muted by the moderator and the probability of a flow to be

transcoded. For both of them, we employed complete models, limiting to a value of 50

the number of participants. In the performed simulations, all participants use identical

devices and present the same probability to talk and probability to have their flows

be transcoded. However, the adoption of a complete stack model allows us to assign

different behaviors and different devices to each user. This paves the way for further

analysis that can be realized by introducing heterogeneity in the composition of the

participants set. Moreover, this enables future works on performance studies conducted

from a user’s perspective, by focusing on parameters like, e.g., the performance of user

devices, endpoint CPU utilization, perceived delay, etc..

Complete model: moderation-based conference. In this study, starting from a

sample conference, we evaluate the difference between the CPU usage of the Confer-

encing Server either in the presence or in the absence of moderation. According to the

User model described in Section 8.3, the evaluation can be characterized by the Prel

parameter, that is the probability to release a conversation when talking (or, similarly,

to be muted by the moderator in a moderation-based conference). Several values of the

Prel parameter have been used for the analysis. Figure 8.22 and Figure 8.23 show the

results of these simulations, by highlighting a reduction on the CPU usage as long as

the Prel parameter increases. This is clearly due to the reduced number of incoming

audio flows to be processed.

Figure 8.22: CPU usage vs number
of users for different Prel values

Figure 8.23: CPU usage vs Prel for
different conference sizes



Chapter 8. IMS-Compliant Conferencing System 147

Complete model: conference with transcoding. In the last experiment we evaluate

the potential impact due to the presence of transcoding. We suppose that a portion

Cdtrcd of participants does not need any transcoding, while the remaining part requires

that the Conferencing Server transcodes messages (which increases server CPU usage).

Several values of Cdtrcd have been used. The results are shown in Figure 8.24 and

Figure 8.25. We can notice how the CPU workload is progressively lighter as long as

the number of participants needing server-side transcoding decreases (i.e., by increasing

the value of the Cdtrcd parameter).

Figure 8.24: CPU usage vs number
of users for different Cdtrcd

Figure 8.25: CPU usage vs Cdtrcd
for different conference sizes



Chapter 9

Wireless Sensor Networks

A Sensor Network (SN) is composed of independent nodes that interact with aiming at

collecting informations on the surrounding environment. The devices that make up the

network are named “sensor nodes” and are equipped with a number of sensors of a het-

erogeneous nature. Between them, Wireless Sensor Networks (WSNs) are of particular

interest; in them the devices are able to communicate without the use of cables. Among

their advantages, it is important to remember a more simple installation and a more

simple network topology adaptation (consequent to both mobility of individual nodes

and nodes failures).

There are several applications of sensor networks, from fire prevention to ocean moni-

toring. The common feature of the different applications, however, is the design phase,

where some basic parameters (density and number of nodes, sampling period, etc.) need

to be defined, assessing their impacts on the system properties (i.e. performability, en-

ergy consumption). The main problem of sensor networks is the energy consumption:

it becomes the first issue on which focus the design of the overall network. In fact, in

real application, the recharge or replacement of the batteries is often forbidden, both

for accessibility and cost motivations. In addition, sensor networks need to be tolerant

with respect to failures of nodes or communication between them.

For this reason these systems can be classified as mission-critical systems since they

need to operate for a determined time period, ensuring defined performability levels.

This Chapter shows how the formal stage of the proposed approach can be applied

also to the performance assessment of these systems. After a brief description of the

sensors networks, to provide the reader with the needed background information, the

models organization is presented; then the SANs library models are described and finally

obtained results are presented.

148



Chapter 9. Wireless Sensor Networks 149

9.1 System description

In actual SNs, the nodes are not simply transducers of physical quantities, but are more

complex systems that integrate also storage, computing capacities, and communication

interfaces. A generic sensing application, which requires the monitoring of a specific

field, is characterized from the covered area: from a radius of a few centimeters up to

entire geographical regions. Furthermore own characteristics of application fields are not

known. For example, the application may require the collection of data on the ocean floor

at unknown depths: the water pressure makes impossible for a diver to dive and explore

the depth. The design of a sensor node have to take into account this characteristics

to be able to work also in this condition. The density of sensor nodes in the operating

environment is also crucial: it can range from some units to hundreds for a small area.

This parameter is strongly dependent on the application: for example, in fire monitoring,

the density is a variable parameter, as well as crucial, since there are some areas where

firing probability is higher than others. This depends on environmental factors such as

ground humidity, wind, etc. Choosing the density according to these parameters makes

the dissemination less expensive and increases the effectiveness of the application itself.

Both transmissive protocol and sensor nodes shall guarantee a good robustness degree

with respect to the environment, physical damages or failures of other nodes. The latter

issue gives a measure of tolerance, i.e. the ability of the sensor network to continue its

service after failures.

Figure 9.1 depicts the functional architecture of a sensor node. Each sensor node is an

embedded circuit in which one or more I/O peripheral are represented by a sensor; the

communication is given to another dedicated subsystem. The processing unit, named

processing elements, is responsible for executing the user program, opportunely stored

on the node. The processing element manages the on-board sensors (also if not natively

integrated), controls the memory unit, and drives the communication subsystem.

A sensor is a component that physically performs the conversion of a physical quantity

into a signal of any other nature. In most cases the sensor is an electric transducer,

i.e. it is a system that receives as input a physical quantity of a process bringing back

the value by an electrical signal. The transduction is performed by additional electrical

elements, such as signal amplifiers, voltage regulators, filters, etc. A sensor provides an

analog or digital interface. In the first case the signal need to be processed by a A/D

converter which perform the quantization and the sampling of the source quantity.

The network infrastructure requires that all the sensor nodes, after the sampling, collect

data and send them to a central node, named sink. When needed, this node can act

as a protocol bridge towards other networks. Conventionally communication between
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Figure 9.1: functional architecture of a sensor node

sensor nodes are performed through wired or wireless networks. The use of the first

avoid power limitations, since it is possible to provide each sensor node with a power

supply lines; the latter requires nodes to be equipped with power supply (e.g. through

batteries), allowing larger network radius without the enormous environmental impacts

given by cables. The network topology can be configured, ranging from a star topology

(i.e. each sensor node is directly connected to the sink) to a generic tree (i.e. some nodes

play also as data forwarders).

The communication and sensor subsystems are controlled by the processing element.

Its main objective is to execute a program that contains instructions for managing the

sensors, communications, power and other tasks relevant to the specific application. The

processing element, typically, consists of a processor, a nonvolatile memory containing

the instructions of the program to execute, and a volatile memory. In an abstract way the

processing element can be thought as a component that allows communication elements

to receive data collected by the sensors.

Currently, various types of sensor nodes have been designed. The most known families

are:

• Mica (Mica, Mica2, Mica2dot, MicaZ);

• Telos (Telos, TelosA, TelosB, TmoteSky);

• Intelmote2;

• Eyes (EyesIFX, EyesIFXv1, EyesIFXv2).

The architecture is in the greatest part similar since they are evolution of the Mica node,

designed by the Berkeley University in California. The most used node, in recent years,
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is the Mica2, which, although passed, is still the reference platform for researchers. The

reference architecture of the analysis is the TelosB, that is described in the following

Subsection.

9.1.1 TelosB node description

The revision B of the Telos architecture, with respect to the previous one, brings an im-

provement in performance, functionalities and expansions [84]. The Telos architecture

exploits standards as USB and IEEE 802.15.4 to interact with other devices. It is pro-

duced in two versions: the first is a simple Mote (without embedded sensors), while the

other is equipped with an embedded sensor suite (i.e. humidity, temperature and light

sensors). The usage of these standards and the native integration of humidity, tempera-

ture and light sensors ensures a flexible interconnection with other devices which allows

a wide range of applications in mesh networks. With the help of the TinyOS operating

system, the Telos manages also wireless protocols for communication. Figure 9.2 shows

the internal architecture of the Telos revB.

Figure 9.2: Telos revB architecture

The TelosB is equipped with the following components:

• Power : the power supply of the Telos is given by two AA-size batteries. However,

for the programming phase of the microcontroller and the external flash, a voltage

of at least 2.7V is necessary. If the Telos node is connected to the USB port, the

power supply for programming and for its operation is given by a computer; in this
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case the operating voltage is 3V and batteries are not needed. Inside the node the

input voltage must not exceed 3.6V, otherwise it could damage the radio module

or other components.

• Microcontroller : the low-power needed by the Telos is mainly due to the low power

consumption of the Texas Instruments MSP430 F1611, with a RAM of 10kB and

a flash of 48kB. This 16-bit RISC processor allows to operate for years with a

single pair of AA batteries. The MSP430 has an internal digital control oscillator

(DCO), which can operate up to 8MHz. The DCO can be activated from sleep

mode in 6µs, but typically it requires only 292ns at common temperature. When

the DCO is off, the MSP430 works with an external clock to 32768Hz. Although

the frequency of the DCO changes with the voltage and the temperature, it can

be calibrated using an 32kHz oscillator. In addition to the DCO, the MSP430 has

an 8-ports Analog Digital Converter (ADC); one of the internal ports can be used

to read and monitor the battery voltage through a specific purpose sensor. There

are a variety of peripherals including SPI, UART, digital I/O ports, watchdog

timer, and Timer. The F1611 includes also a DAC with two input of 12 bits, a

voltage supervisor, and 3 ports for the DMA controller. Figure 9.3 shows the main

components of the MSP430 controller.

Figure 9.3: MSP430 F1611 microcontroller

• Radio: the Telos is equipped with the Chipcon CC2420 radio module. The CC2420

adheres to the IEEE 802.15.4 standard and provides some functions at both PHY

and MAC layers. The CC2420 is highly configurable in order to support several

applications. The CC2420 is controlled by the MSP430 microcontroller through
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the SPI port, a set of digital I/O lines and interrupt lines. The radio module can

also be switched off by the microcontroller in order to limit energy consumption.

At last, the output power is programmable, allowing a variable transmission radius.

• Antenna: the Telos has a built-in antenna at 2.4GHz which allows transmission

of up to 125m, but can mount an external antenna (SMA connector) to perform

those functions that are not supported by default.

• External Flash: the Telos Revision B uses the 40MHz ST M25P80 Flash for exter-

nal data. The flash has a capacity of 1024kB and is separated into 16 segments,

each one of 64Kb.

• Humidity and temperature sensors: the humidity/temperature module is optional

and is produced by Sensirion AG. The SHT11 and SHT15 can be mounted directly

on Telos. Both sensors are calibrated and produce a digital output thanks to an

integrated AD converter. The sensor is manufactured using a CMOS process and

is coupled with a 14-bit A/D converter.

• Light sensor : this module is also optional and can be mounted directly on Telos.

It has two photodiodes produced by Hamamatsu Corporation. The default diodes

are the S1087 for the detection of photosynthetically active radiation, and the

S1087-01 to detect the visible spectrum, including infrared.

• Connectors Expansions: the Telos has two expansion connectors and a pair of

jumpers that can be configured so that additional devices (analog sensors, LCD

display and digital devices) can be mounted on the board. On the opposite side of

the USB connector, there are a 10-pins and a 6-pins connectors (Figure 9.4). The

10-pin connector, as well as in Telos revision A, provides additional digital and

analog inputs; the additional 6-pin connector provides access to exclusive features

of the revision B, such as the two additional A/D inputs which can be reconfigured

via software.

9.2 Modeling approach

A sensor network shall be properly designed in order to estimate and assess critical char-

acteristics (e.g. dependability, performance, performability, security, etc.) with reference

to networks parameters (e.g. node density, node positions, application algorithms, etc.).

This leads to two main questions: how to assess such measures? and by what means?

the answer is simple. If the system exists and is running, then the easiest way is to

apply the direct measurement approach, measuring interest parameters directly on the
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Figure 9.4: additional inputs of the Telos revB

real system. If the system does not exist or is not complete (this happens for exam-

ple during the design of a new sensor network), it becomes almost necessary to adopt

a formal model-based approach able to predict these parameters. This Section apply

the proposed approach, realizing a general model of a sensor network, according to the

component-base vision adopted by OsMoSys. After the definition of the sensor node the

method runs along four phases:

1. decomposition into components: starting from the structure of the sensor network,

individual elementary subcomponents have been identified. Three modeling levels

have been defined: (1) software level, (2) hardware level, (3) network level. In

particular the first can be detailed as on-board software and timer; the second as

the composition of bus unit, microcontroller unit, storage unit, radio unit, sensing

unit and additional inputs; the last level is given by the network subsystem. At the

end 9 subcomponents have been identified, each one is translated into a submodel;

2. characterization of the individual components: for each submodel, the proper in-

terfaces characterizing the components (in terms of interface elements and data

types) have been defined;

3. definition of the compositions: the composition relationships between the indi-

vidual components have been defined in order to carry out the composed system

model;

4. definition of the behaviors: on the basis of the model complexity and of the prop-

erties to measure, the formal language is chosen.
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This modeling approach highlights an important advantage that resides in the possibility

of creating a single submodel changing the formalism and the development technique,

without modifying interfaces, behaviors and/or compositions. Figure 9.5 shows the 9

subcomponents, highlighting for each one the proper interfaces.

Figure 9.5: Reference modeling schema of WSNs

9.3 Generalization techniques in SAN formalism

SAN formalism has been chosen for the great modeling power and for the possibility to

introduce code. Furthermore the potentialities of the Möbius modeling frameworks are

exploited during model development, in particular introducing extended places which

allow to manage complex structured data, even if with some limitations. Several lines

of code in gates are necessary to manage complex data structures, this guarantees not

only flexibility and scalability increments, but also location of useful information of the

sensor node.

The model of a sensor network need to deal with a fundamental issue: the components

heterogeneity. In fact, a single network can integrate nodes with different software

and hardware, or nodes that have substantially the same hardware but with different

configurations. In the following paragraphs, the most important aspects on different
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hardware and software of a sensor node are addresses and a solution, exploiting the

SAN formalism, is given.

9.3.1 Generalization of features

In a sensor node each components is characterized by specific properties that make it

dissimilar from another component of the same type. Being a network composed of

a large number of sensor nodes, each component of a node need to be “configured” in

order to express his particular behavior. The following list give an idea of the parameters

needed by each one:

• Analog sensor:

– mode: synchronous or asynchronous;

– StartUp delay: time needed to activate the sensor;

– sampling period: useful if the sensor operates in synchronous mode;

– power required to generate a sample;

• Digital sensor:

– in addition to the properties of the analog sensor, it has the following prop-

erties

– buffer size of pending requests, if present;

– reference to the A/D converter;

– resolution for the digital conversion, plus any additional fiels (e.g. parity,

CRC);

– conversion delay which depends also on the sensor generating samples;

• bus:

– transmission delay;

• microcontroller:

– A/D conversion delay (for operations performed by the integrated A/D con-

verter);

– resolution of digital samples;

– CPU frequency;

– operation stack size;

• memory:
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– number of memories per node;

– reading and writing delays for each memory;

• radio:

– size of send buffer;

– size of receive buffer;

– reading and writing delays;

– sending times (different from the link delays);

• ReadDoneSW:

– number of measures to be stored before the generation of a packet;

– timers;

– packet size;

– type of node (peripheral or sink);

• Network:

– network topology;

– listen time (with CSMA/CA protocol);

– collision probability;

– link delays;

– maximum waiting time for acknowledgments;

– maximum number of transmission attempts.

These informations are assigned to each atomic model using some configuration places:

complex data structures have been defined and each atomic model reads its own pa-

rameters. The values are initialized using specific custom initializations, and can be

dynamically modified to model runtime reconfigurations (e.g. the sampling period of a

specific node can be time-dependent, the processing time of a sample can increase after

the adoption of a different cryptography algorithm, etc.).

9.3.2 Generalization of behaviors

To avoid the limitation of models to represent specific components, some generalizations

have been introduced. Also the configuration of the behaviors can be specified through

initialization code and can be dynamically changed. Note that the introduces general-

ization are configurable at node level: it is not necessary that all nodes share the same
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behavior. These generalizations have been solved using complex model structures and

code. In detail:

• Analog sensor: it can operate in synchronous or asynchronous mode;

• Digital sensor: as analogue, digital sensor also can operate in synchronous and

asynchronous mode; digital sensors can have size-variable buffers of pending re-

quests; a certain number of sensors can share one A/D converter;

• Bus: it is characterized by the parallelism, from which transfer time can be eval-

uated;

• Memory: each memory unit can be structured as a variable set of physical mem-

ories, each of them is characterized by its own access times.

9.3.3 Identification of a single replica

The specification of different characteristics for each model need to identify a each atomic

in a replica: for this reason a numeric id is necessary. A possible solution, observed

in [71], consists in a small model that is able to set the id instantaneously, at the

start of the analysis. As an example, Figure 9.6 shows the model developed for digital

sensors: CountDigitalSensors contains many tokens as the number of replicas; this place

is shared with all replicas. A token in the Start place means that the id has not been set:

the firing of the instantaneous activity setupIndex enable the execution of the setIndex

output gate, which properly sets the id number, storing tokens in the indexDigitalSensors

place.

Figure 9.6: Identification of a single replica

9.3.4 Submodel connectivity

Any component-based model needs to allow the composition and the communication

between atomic models. The basic communication methods, allowed also in the SAN

formalism, is the place superposition. The issue becomes more complicated when, in-

stead of connecting two simple components, you must connect a replica of a replica of

a component with another component (e.g. replica of sensor model, replicated for all
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the nodes). In this case the place superposition is not enough. As an example, suppose

that we need to model 3 nodes, where the first is equipped with 5 sensors, the second

with 2 and the third with 3. And it’s not enough: if we have to explain that the fourth

sensor of the first node is connected to the third analog input of the microcontroller? It

becomes more difficult!

A first solution, adopted in the previous Chapter, consists in the modeling of the most

complex structure, after which the portion not needed in the single replica are “switched

off”. In the described example it would work as: we develop a model of the node with 5

sensors (the maximum number in the example) and, while the first node uses all them,

the second uses only two and the third three. This solution implies an excessive resource

waste, that can make the solving phase impracticable, given the high heterogeneity of a

network.

For this reason, another solution has been implemented. As explained in the previous

paragraph, each replica has its own identifier. Taking advantage of this, a model can

access to one or more fields of vector (using the id as pointer) and read specific values.

In relation to the previous example, between the configuration parameters of a sensor,

it have been stored the index of the microcontroller to which it is connected. We need a

n-dimensional vector, where n is the number of nodes of the global network. Each field

of this vector is x-dimensional vector (where x represent the microcontroller inputs),

and each single field is a data structure (Figure 9.7).

Figure 9.7: Reference modeling schema of WSNs

Hence the sensor 4 and the node 1 works as follows:

1. the sensor 4 reads from ConfSensor which is its identifier extracting information

about the node and the input (Node 1 and In 3);
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2. the sensor 4 write on InAnalogMicrocontroller, through the pointer taken from

ConfSensor, the informations of the structure relative to node 1 and input 3;

3. the microcontroller, knowing its identifier, reads from InAnalogMicrocontroller in

first position and takes the measurement from the third input.

This method, also if presented as a solution to connect analog sensors and microcon-

troller, has been adopted for any other connections between replicas.

9.4 Modeling WSNs

This Section shows the SAN models developed according to the well-defined interfaces

of each component, using techniques and methods showed in the previous Section.

9.4.1 Timer

The timer, presented in Figure 9.8, it works as follows: the input gate IG1 read from

the confTimer if it is active or not; in the positive case, the timed activity Sampling is

invoked after each period defined in confTimer; the output gate GenerateRead generates

a Read operation, corresponding to the request for a sample, which is stored in the stack.

Each timer generates a Read for the device with the same id.

Figure 9.8: Timer model

9.4.2 Microcontroller

The model of microcontroller can be structured as two distinct sections that work in-

dependently: the stack management and the read done generation. The first is showed

in the Figure 9.10. The input gate operation checks if there are request for sampling on

the stack. In the positive case the activity delayinit locks the CPU and fetches the next

operation to be performed from the stack. Within the stack you can find three types

of operations: (1) request for generation of a sample, in which case the specific sensor

is activated through the extended place activateSensors; (2) a sensor is ready to send

a measurement to the microcontroller, in which case an enabling signal is sent through

the sensorsReady place; (3) a packet have been reached from the network.
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Figure 9.9: Microcontroller model (2)

The second portion of the model (Figure 9.10), is able to generate read done. If a digital

sample has been received it shall be only pre-processed, while in case of analog samples

the process is identical with the exception of a digital conversion (and additional time).

Of course, once converted, the sample is stored in the SampleDigital place. The output

Gate generateReadDone puts sensor identifier in the readDone place.

Figure 9.10: Microcontroller model (2)

9.4.3 ReadDoneSW

The ReadDoneSW sends a packet to the next hop after the sampling of a given number

of samples. This model is structured as two independent sections. A first section (Fig-

ure 9.11), checks how many samples have been generated by a device after receiving a

read done: when the microcontroller sect readDone, input gate ctrlReadDone activates

the transition IA2 can fire. After its fire, the output gate selectOP can insert a token

in SaveToMemory (asking for the storage of the sample) or insert in fetchNumSample

the number of samples that shall be sent. In the latter case, after the complete read,

the input gate endFetch activate the transition IA4 which ask radio for sending.

The second section is the management of packets receivedfrom the network (Figure 9.12).

When a token is present in packageReceived, the output gate ctrlRadioIn occurs if the

board is a sink node or not. If it is not a sink, the packet can be memorized or forwarded.

In the other case, the packet is handled and eliminated from the model.
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Figure 9.11: ReadDoneSW model (1)

Figure 9.12: ReadDoneSW model (2)

9.4.4 SensorAnalog

The component SensorAnalog, depicted in Figure 9.13, is modeled to operate in two

ways: synchronous (generating samples each period, defined in cycleSampling); asyn-

chronous (waiting to receive a request from the microcontroller through activeSensors).

In both cases a startup delay represents the time required to activate the hardware com-

ponent, when it is in the sleep state. The output gate pendingRequests brings the sensor

in the active state and inserts a request in bufferPendingRequests. After the sampling

delay it (1) generates an analogue measurement and stores it in SampleAnalogGener-

ated ; (2) inserts in the stack operation the signal of a ready measure; (3) waits to

receive a signal from the microcontroller on sensorsReady ; (4) moves the measure to

inAnalogMicrocontroller ; (5) shut off the device if there are no more pending requests.

Figure 9.13: SensorAnalog model

9.4.5 Memory

Memory model (Figure 9.14) allows the operations on physical memories: write, read

and fetch (read and delete). In the first case, after the firing of delayCpuStored, save
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verifies which is the free memory to store the sample; if no space is available the sample

is eliminated, properly logging this information. In the fetch and read cases, a sample

is transferred into sampleInMemory if present.

Figure 9.14: Memory model

9.4.6 Radio

The Radio component shown in Figure 9.15, performs radio functions: when a token is

present in sendRadio, the output gate releaseCPU R puts the complete package inside

the radioBufferSend and finally releases the CPU. Then the radio module send the

packet to network elements through SendPackage. If a packet is received from the

network within PackageReady, it is taken and inserted directly within radioBufferReceive

generating an entry within the stack.

Figure 9.15: Radio model

9.4.7 Bus

The bus model is shown in Figure 9.16: when a digital measure is present in the bus

place, ctrlBus activates the transition delayTransfer. When it fres, ctrlBus moved the
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sample in inDigitalMicrocontroller.

Figure 9.16: Bus model

9.4.8 Network

The networks protocol adopted in a WSN is the ZigBee, which requires low power con-

sumptions allowing low transfer rates. The network module, depicted in Figure 9.17,

models this protocol. When an incoming packet is present, ctrlNetworkIn and Access-

Channel model the CSMA/CA protocol. If nearest nodes are transmitting, the transmis-

sion is delayed since the channel is busy. If the next hop is receiving but the transmitting

node does not sense this, it tries to send the package and, with a probability Collision-

Probability the message is lost, otherwise it is correctly delivered. When the next hop

receives the packet in networkOut it sends an ack to the transmitting node; otherwise

the transmitting node retries to send the packet for a finite number of attempts.

Figure 9.17: Network model

9.4.9 SensorDigital

The component SensorDigital presented in Figure 9.18, has a similar behavior to Sena-

sorAnalog. The substantial difference is in the generation of the measure. In fact, while
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for the analog measurement device is generated automatically after a given delay, in

SensorDigital, it must wait for an A/D conversion. Multiple devices can share the same

A/D converter: inADC store a n-dimensional vector, where n is the total number of

A/D converters.

Figure 9.18: SensorDigital model

9.4.10 Composed model

The composed model cannot be the replication of a board since, as said previously, this

solution lead to an excessive resource waste in the solution phase. Suppose, for example,

to model a network of 100 nodes, of which 99 are composed of one device analog, one

digital and one bus, and the last node is composed of 50 analog devices, 100 digital and

30 bus. It would mean a composition of 100 nodes each consisting of 50 analog devices,

100 digital and 30 bus. The model would continue to operate but during the simulation,

the software should allocate data structures in memory and submodels, risking that

it runs out very quickly to the point of not being able to even start the simulation.

A solution adopted for this purpose, has been to exchange Rep and Join operators as

shown in Figure 9.19:

Figure 9.19: Composed Model

In this way all devices and buses, are replicated only as many times as necessary. For

the specific example we will have exactly 149 analog device models, 199 digital device

models and 129 bus models instead of 5000 analog device models, 10000 digital device

models and 3000 bus models.
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9.5 Obtained results

After the successful model validation, conducted with real data coming from real sys-

tems, the models have been used to assess the performability of the following case study:

we want to model a monitoring system that need to constantly control the temperature

in many points of a surface. It is necessary to consider two performance measures such

as the number of packets that the sink node is able to process and, the physical delay

that elapses between the instant in which the measurement is sampled and the one in

which it is processed.

Three different network topologies have been evaluated; results are combined with the

aim to evaluate the following QoS formula:

QoS = α · (1−%LP ) + β · (1− PD−PDmin
PDT

) + γ · (1− SP−SPmin
SPT

)

where:

• %LP is the percentage of lost packets;

• PD is the physical delay;

• PDmin is the technological delay;

• PDT is the tolerable physical delay;

• SP is the sampling period;

• SPmin is the technological sampling period;

• SPT is the tolerable sampling period;

• α, β, γ are multiplicative factors.

The reference system is the Telos revB node. The number of nodes varies from 10 to

60 and the sampling period varies from 1 to 15 seconds. The transmission delay is 1ms,

while the processing time at sink has been assumed equal to 100ms.

Topology 1: all nodes are directly connected to the sink

In the Figure 9.20 the percentage of packets processed by the sink node (ratio of those

received by the sink divided by the total number of generated packets) is expressed

varying the sampling period of each temperature sensor located on each node. As can

be seen from the graph, with a short sampling period, the percentage of packets processed

by the sink node is relatively low (for a period of 1s it is 16%), while increasing sampling

periods increases until reaching approximately 94% (at a sampling period of 15s).
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Figure 9.20: Topology 1: %processed samples vs sampling period

This phenomenon is justified by the limited size of the buffer of the radio module. When

packets are generated with a frequency that does not give the possibility to insert all

them in the buffer, they are discarded. In fact, for a short sampling period, the sink

node is busy, increasing also physical delays (mean time elapsed between the instant of

measure generation and the processing at sink). In Figure 9.21 this trend is depicted.

From this graph, we observe an increase of 13ms of the physical delay with respect to

the one showed with a sampling period of 1 and 15 seconds. In fact at a sampling period

of 1 second a lot of packets are discarded, while those sent are characterized by a short

temporal delay.

Figure 9.21: Topology 1: physical delay vs sampling period

A further analysis is carried out by setting the sampling period equal to 1s and varying

the number of active sensors (from 10 to 60). The trend of processed samples and delays

are showed respectively in Figure 9.22 and Figure 9.23.

Topology 2: unbalanced tree
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Figure 9.22: Topology 1: %processed samples vs #sensors

Figure 9.23: Topology 1: physical delay vs #sensors

In this case, 30 nodes are connected to a forwarder node and the remaining 30 are

connected directly to the sink. Each forwarder node accumulates 5 measures, evaluate

their average, send this value to the sink node. In this way, a lesser number of measures

arrives at sink node.

Figure 9.24 shows the percentage of packets processed by the sink while Figure 9.25 shows

the physical delay, varying the sampling period. An overall performance improvement

is highlighted: with a sampling period equal to 4s the percentage of received packets

reaches 80%. In the worst case the physical delay increases linearly with the increasing

of the sampling period: this is due to the fact that the forwarder node needs to wait 5

samples before sending the measure to the sink.
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Figure 9.24: Topology 2: %processed samples vs sampling period

Figure 9.25: Topology 2: physical delay vs sampling period

The percentage of processed samples with respect to the number of sensors is higher

than that coming from the other topology: Figure 9.26 shows this trend. With 60 active

sensors, for example, the 28% of processed packets is measured while, with the previous

topology, this value does not exceed the 16%. Figure 9.27 shows that the upper limit of

physical delay decreases with the number of sensors until it reach an asymptotic trend.

Topology 3: balanced tree

In this case, 12 groups of 5 nodes are connected to 12 forwarders, and each forwarder

sends packets to the sink node. Also in this case each forwarder node accumulates 5

measures, evaluates their average, sends this value to the sink node.

Figure 9.28 shows the percentage of packets processed by the sink while Figure 9.29

shows the physical delay, varying the sampling period. This topology does not increase

the overall performances, indeed the worst case of physical delay is worse than the

previous one.
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Figure 9.26: Topology 2: %processed samples vs #sensors

Figure 9.27: Topology 2: physical delay vs #sensors

Figure 9.28: Topology 3: %processed samples vs sampling period

Figure 9.30 and Figure 9.31 show the percentage of processed samples and physical delay

with respect to the number of sensors
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Figure 9.29: Topology 3: physical delay vs sampling period

Figure 9.30: Topology 3: %processed samples vs #sensors

Figure 9.31: Topology 3: physical delay vs #sensors

QoS evaluation

This paragraph evaluates the QoS coming from the topologies before presented. Figures

from 9.32 to 9.37 depict the trends of the QoS varying the network topology, the sampling

period and the number of sensors.

From these graphs it is clear that the star topology suffers of the known bottleneck limit.

So the best topology is a layered network. The proposed approach is able to quantitative
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Figure 9.32: Topology 1: QoS vs sampling period

Figure 9.33: Topology 1: QoS vs #sensors

Figure 9.34: Topology 2: QoS vs sampling period

Figure 9.35: Topology 2: QoS vs #sensors
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Figure 9.36: Topology 3: QoS vs sampling period

Figure 9.37: Topology 3: QoS vs #sensors

evaluate different topologies, allowing to discriminate between different alternatives, such

as balanced and unbalanced trees. If we analyze the best cases of Figure 9.34 and 9.36,

we appreciate that the highest quality is reached with a sampling period equal to 3s.

In this case the balanced tree (Topology 3) assures a QoS of 2.5, higher than that

observed with the unbalanced tree that is 2.42 (Topology 2). But if we consider also the

worst case, we observe that the balanced tree guarantees a lower QoS than that of the

unbalanced tree (1.6 and 2.2 respectively). At last we can say that the choose of the

best performing topology depend on a set of parameter (e.g. number of nodes,sampling

period, etc.), the evaluation of the best case does not imply the finding of the optimal

solution since the worst case can be critical. In fact, unbalanced trees can guarantee, in

certain conditions, QoS levels higher that those obtained with balanced trees.



Chapter 10

Conclusions

This thesis has presented a novel approach for quantitative analysis of critical systems

which integrates Model-Based analysis (performed through formal models) with Model-

Driven paradigm and techniques, exploiting benefits of multiformalism, submodel com-

position and automatic model generation. Quantitative analysis may be performed

by generating formal models from high-level specifications, through the definition of

Model-to-Model and Model-to-Text transformations. An important point is related to

the enabling techniques that make the methodology more attractive to the industrial

settings: MDE approaches are rapidly evolving since they promise modelers reduction

of inconsistencies that can occur between the artifacts created in a manual develop-

ment and analysis process. The methodology has been applied to three different critical

systems in order to show its effectiveness: railway systems, conferencing systems and

wireless sensor networks.

The application of the proposed approach to the real world systems make necessary the

development of two specific high-level modeling language. The first is DAM-Rail, that

is a specialization of the DAM language, and is able to model dependability aspects of

railway systems. The second is CIP VAM that want to model vulnerability of critical

infrastructures, belonging to different application domains. Both of them have been

developed, into a cost-effective way, using the UML profiling technique. Furthermore

new methods, formal operators and techniques are addressed in order to support not

only the high-level modeling but also the formal stage.

The proposed technique have been applied to different situation coming from three

different applicative domains. In detail performance and performability studies have

been conducted for railway systems, conferencing systems and wireless sensor networks;

the availability quantitative evaluation of a modern metro driverless vehicle is shown as

well as the vulnerability modeling of a railway station.
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Future research, will be focused on the extension of the propose languages: DAM-Rail

can be extended for safety modeling and analysis while CIP VAM can be adopted for

cyber security analysis. Furthermore automatic generation of Model Classes from Model

Templates through the definition of instancing functions will be fully implemented.

From a more theoretical aspect the foundation of DSML definition and the relationships

between Model-Driven Architecture and Model-Driven Engineering will be investigated:

since DSML development is still an emerging discipline with few established guidelines

and patterns, we experienced that the relationships between the standard OMG’s Model-

Driven Architecture and the Model-Driven Engineering meta-modelling stacks have not

been clarified enough.

Future research efforts will investigate also on the application of the same methodology

to other case studies coming from the addressed or from other domains.
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