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ABSTRACT 

The acquisition of cell polarity, which includes the establishment of the tight junction 

barrier, polarized assembly of the cytoskeleton and appropriate organization of 

membrane traffic, requires external cues, that in epithelial cells are represented by the 

interaction of cells with their neighbors and with the extracellular matrix. The Rho 

family of small GTPases, regulate many biological processes including cell cycle 

progression, apoptosis, migration and intercellular adhesion. 

We focused on the analysis of the role of Rac1 protein in the acquisition and 

maintenance of the polarized phenotype in the FRT rat thyroid epithelial cell line. In 

this work a novel experimental approach, i.e. the use of an inducible dominant-negative 

form of the Rac1 protein, ER-Rac1N17, was used to demonstrate the involvement of 

this small GTPase in the epithelial polarization process and to unravel its mechanism of 

action. 

Oriented cell migration, transepithelial resistance acquisition, and formation of 

polarized cysts in suspension cultures were investigated. All these parameters are 

related to the polarized phenotype and were found to be affected after inhibition of Rac1 

activity. To unravel the molecular mechanism by which Rac1 affected cell polarity, we 

investigated the establishment of E-cadherin-dependent cell-cell contacts, which is 

another key event in the process of epithelial polarization, by calcium switch assays. We 

determined the dynamics of subcellular localization of Rac1 and of E-cadherin 

molecules to understand if, and how, the two proteins were intimately related 

functionally. We conclude that Rac1 inhibition affects cell polarity by impairing E-

cadherin recycling to the plasma membrane. 
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INTRODUCTION 

 
1. 1 Cell polarity 
 
Polarization of cells is a fundamental process in biology, which reflects asymmetric 

organization of cellular components and structures. The establishment and 

maintenance of cell polarity involves many processes such as signaling cascades, 

membrane trafficking events and cytoskeleton dynamics, all of which need to be 

coordinated in a highly regulated manner. The polarity is observed in most 

differentiated cells including epithelial cells with apical-basal polarity, neurons in 

which signals propagate in one direction from dendrites to axons, and migrating cells. 

Other cells such as blood cells do not show any explicit polarity, but can express it 

when they interact with other cells or when they migrate. Cell polarity is involved in 

many processes including differentiation, proliferation and morphogenesis both in 

unicellular and multicellular organisms. In a wide range of elementary cellular 

processes, many constituents of the cell, such as plasma membrane proteins, 

organelles, and cytoskeleton components are organized asymmetrically within the 

cells. This asymmetrical pattern of organization is enhanced by cell differentiation 

processes resulting in dynamic cell compartments specialized in complex vectorial 

functions. The polarity can be defined in two different ways depending of the point of 

view from which we analyze the phenomenon: structural and functional polarity. In 

the first case, cell polarity is defined as the asymmetric distribution of proteins and 

membrane lipids, the oriented distribution of organelles and cytoskeleton elements. In 

the second, it consists in the property to perform tasks in an oriented manner, such as 

the transport of ions, the transfer of proteins and migration. These properties coexist in 

most polarized cells such as epithelial cells, in which the polarized phenotype is 

morphologically visible: 1) in the functional specializations of the apical surface, as 

invaginations (microvillus or cilia); 2) in the position of the Golgi into the apical zone; 

3) in the accumulation of the products secreted into the apical cytoplasm; 4) in the 

specializations of the lateral surface (i.e. the presence of numerous cell junctions, 

which bind tightly cells to each other and make tissue compact and resistant to 

trauma).The polarized distribution of functions in polarized cells requires the 

coordinated interaction of three machineries that regulate the basic mechanisms of 

intracellular protein trafficking and distribution. First, intrinsic protein-sorting signals 

6



INTRODUCTION

and cellular decoding machineries regulate protein trafficking to plasma membrane 

domains; second, intracellular signaling complexes define the plasma membrane 

domains to which proteins are delivered; and third, proteins that are involved in cell–

cell and cell–substrate adhesion orientate the three-dimensional distribution of 

intracellular signaling complexes and, accordingly, the direction of membrane traffic. 

The integration of these mechanisms into a complex and dynamic network is crucial 

for normal tissue function and is often defective in disease states. The establishment of 

the polarized phenotype occurs in several steps and generates reorganization both of 

the cytoskeleton and the cell surface. Isolated, dispersed cells are non-polarized, but 

when such cells are seeded in a culture dish, the initial events observed are attachment 

of the cells to the substratum and establishment of cell-cell contacts (Rodriguez-

Boulan and Nelson 1989). The attachment of non-polarized single cells of epithelial 

origin to the substrate generates a signal to form an immature surface containing 

specific apical markers (Vega-Salas, Salas et al. 1987); basolateral membrane proteins 

are, at this stage, randomly distributed at the entire cell surface. The molecular 

mechanism of this process involves redistribution of membrane proteins via 

cytoskeleton rearrangements. Once acquired, the polarity is maintained through 

several mechanisms. The first is the formation of tight junctions, which, besides 

constituting a sealing element in the barrier function of epithelia, acts as a fence to 

prevent intermixing of membrane proteins and lipids in the apical and basolateral 

membranes (Gumbiner 1987). Second, membrane components can be maintained by 

anchorage to components of the sub membranous cytoskeleton (Nelson and Veshnock 

1987), by interaction with extracellular matrix components (Parry, Cullen et al. 1987), 

or by bind with CAMs of neighbouring cells (McNeill, Ozawa et al. 1990) and by 

association with immobile glycolipids domains. In fact, many membrane proteins 

occur in microdomains both in apical and the basolateral plasma membrane.  

1.2 The polarity in epithelial cells 
The epithelial cells are contiguous, working closely together and are connected to each 

other by junctional complexes that make possible the realization of barriers with 

selective permeability. Epithelial sheets cover organs and body cavities, such as the 

lung, gut or skin. They thereby impart mechanical protection or mediate secretion, 

absorption and sensory functions. The epithelial cells are highly polarized. The 
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intrinsic polarity of epithelial cells is essential to their physiological function and is 

often disrupted in human disease. Deregulation of cell polarity can cause disorders and 

cancer. In disease states, such as cancer, epithelial cells lose polarity (through 

epithelial–mesenchymal transition (EMT), remove from multicellular interactions, 

migrate and then reintegrate into a second tissue, in which they undergo structural and 

functional reorganization to reside at the new site. The plasma membrane of polarized 

epithelial cells is divided into two distinct domains: the apical domain and basolateral 

domain (Simons and Fuller, 1985; Simons, 1993), which are morphologically, 

functionally and biochemically different (Rodriguez-Boulan, 2005).The apical region 

is defined as the area lying above the tight junctions and contains the apical membrane 

facing the lumen or the outer surface, it has, often, specialized structures such as 

eyelash or a brush border and is rich in sphingolipids (glycosphingolipids and 

sphingomyelin). The basolateral region is below the tight junctions and contains the 

basolateral membrane, which is in contact with adjacent cells and the underling ECM. 

Intracellular junctions, such as tight junctions and adherens junctions, separate Apical 

and basolateral domains. Tight junctions form a barrier for proteins and lipids in the 

membrane, thereby maintaining distinct compositions of apical and basolateral (Figure 

1) plasma membrane domains.  (Matter and Mellman, 1994; Mostov et al., 2000). The

different composition of two domains is continuously supported by intracellular 

sorting mechanism witch regulate the insertion of new proteins and degradation of old 

proteins in specific plasma membrane domains. This process requires two fundamental 

requirements: the presence of signals on protein sorting and recognition of these 

signals by a cellular machinery of "sorting" able to decipher them allowing, therefore, 

to selectively direct the newly synthesized protein to the different domains of the 

membrane plasma. Through a series of studies based on both a biochemical approach 

that of imaging in living cells, it was hypothesized that the sorting of proteins to the 

two compartments of the plasma membrane takes place in trans Golgi (TGN).  (Matter 

and Mellman, 1994; Mostov et all., 2000). All proteins destined for the plasma 

membrane are synthesized in the endoplasmic reticulum and traveling together 

through the different tanks of the Golgi apparatus (Figure 2), where, thanks to the 

presence of specific signals of sorting, are incorporated into different vesicles and 

separately relayed to the apical domain and basolateral membrane (Wandinger-Ness et 

al., 1990; Rodriguez-Boulan and Powell, 1992; Keller et al., 2001; Kreitzer et al., 
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2003). Basolateral sorting motifs, with some exceptions are found in their cytoplasmic 

tail and are composed of amino acid primary sequences, many of which fit the 

consensus sequence for binding to adaptor protein (AP) complexes. In contrast to 

basolateral sorting signals, apical targeting motifs were found throughout the length of 

membrane proteins: in ectodomain, the transmembrane and the cytoplasmic tail 

section. Sorting to the apical surface appears to be mediated by three main types of 

signals: 1) domains of N-and / or O-glycosylation, recognizable by cellular lectins 

(Fiedler and Simons, 1995; Yeaman et al., 1997; Naim et al., 1999; Rodriguez-Boulan 

and Gonzalez, 1999), 2) discrete signals contained in the cytoplasmic tail of 

transmembrane proteins in seven sections (Chuang and Sung, 1998; Sun et al., 1998), 

and 3) incorporation of apical proteins in lipid microdomains enriched in 

glycosphingolipids and cholesterol, called rafts, at the level of the Golgi (Kundu et al., 

1996; Lin et al., 1998) (Figure. 3). In epithelial cells, the apical domain is particularly 

rich in glycolipids, cholesterol, H/K ATPase and ionic channels. The basolateral 

domain contains proteins involved in communication with adjacent cells. The 

thyrocytes, thyroid epithelial cells, are an excellent example of a polarized epithelial 

cell. In vivo, the thyrocytes are organized into follicles, structures spheroidal closed 

bounded by a monolayer of cells resting on basement membrane. The follicles 

represent the functional unit of the thyroid because they are able to perform the 

essential functions of the entire gland and to produce hormones (Cleats et al, 1986). 

Into the lumen of the follicle is secreted thyroglobulin and iodine are secreted, it, 

thanks to a peroxides in the apical membrane, binds to thyroglobulin and allows the 

formation of thyroid hormones. Iodide is transported across both the basolateral and 

the apical plasma membrane. The basolateral membrane contains two components 

essential for the execution of thyroid-specific functions: the TSH receptor and the 

iodide pump (Westermark, Westermark et al. 1986). At this surface the thyroid 

hormones are also released after their liberation from intracellular degradated 

thyroglobulin.  The apical secretion of thyroglobulin, iodine direct transport from base 

to apical, the internalization of iodined thyroglobulin and secretion of thyroid 

hormones from the basolateral membrane are all expressions of the phenotype of these 

polarized epithelial cells. 
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Fig. 1 Image of an epithelial cell.  The ephitelial plasma membrane  is divided in two 
surfaces an apical surface facing the lumen and a basolateral surface contacting adjacent 
cells and the extracellular matrix. The main role of the tight junctions is to prevent the 
mixing of proteins and lipids between the two surfaces.  
 
 

                     
 

 
 
Fig. 2 Transport from the Golgi apparatus. The proteins are sorted in the trans Golgi 
network hanks to the recognition of specific signals into vesicles and transported to their 
final destination. 

 

 

1.3 Protein complexes involved in the acquisition of cell polarity 
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molecules are conserved throughout evolution and can react to extrinsic or intrinsic 

polarity cues (for example, growth factor gradients or the microtubule cytoskeleton, 

respectively). By assembling multiprotein complexes, they induce downstream 

signaling to trigger the establishment of cellular asymmetry. There are three protein 

complexes responsible for the development and maintenance of apical-basolateral 

polarity: the complex PALS1-PATJ-Crumbs (CRB complex called), the complex 

Par3-aPKC PAR6 (called complex MLP) and the Scribble complex-DLG-LGL. 

Knockdown of either PALS1 or PATJ in epithelia causes a delay in tight junction 

formation (Straight et al. 2004; Shin et al. 2005). Cells deficient in Crb3 fail to form 

tight junctions and do not polarize properly (Karp et al. 2008; Whiteman et al. 2008). 

These three complexes have a different localization in cells. The first two are localized 

in the apical region of the membrane; the third is concentrated along lower side of the 

membrane. In some processes of polarization they cooperate in the induction of 

polarity, whereas in other systems can also act as antagonists 

 

1.3.1 The PAR complex  
In recent years, the PAR complex has emerged as a central player in the mechanisms 

that regulate cell polarity in the different types. (Wodarz A 2002; Kemphues K 2000). 

It was initially described in the nematode C. elegans and later in the fruit fly D. 

melanogaster and vertebrates. The PAR complex is composed of two scaffold proteins 

PAR3 and PAR6 and a serine threonine kinase aPKC (atypical protein kinase). This 

complex is evolutionally conserved from worms to vertebrates. In particular, PAR6 

has a molecular weight of 37 kDa and contain three conserved domains that mediate 

the interactions with the other member of the complex. A Phox / Bem 1 (PB1) domain 

located at the N-terminal that binds to other PB1-domain-containing proteins 

including aPKC, the adjacent CRIB domain that binds to Cdc42 or Rac exclusively in 

their activated GTP-bound state. Lastly, PDZ domain that allows interaction to other 

proteins with PDZ PAR3 (Joberty, Petersen et al. 2000; Hung and Sheng 2002). PAR 

6 proteins do not include enzymatic domains and they function by bringing together 

several proteins at a specific localization such as tight junctions or the leading edge of 

a migrating cell etc. The exact function of PAR6 has not yet been elucidated, but since 

Garrard et al. (Garrard, Capaldo et al. 2003) established that Cdc42-GTP can induce a 

conformational change in PAR6B, Gao and Macara (Gao and Macara 2004) proposed 
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a functional model for PAR6, in which the N-terminal folds back and interacts with 

the CRIB-PDZ domain. Cdc42-GTP binding to PAR6 results in the unfolding of 

PAR6, thus exposing the PALS1 binding site (PDZ domain inPAR6). The key 

function of PAR6 should be to allow the interaction between aPKC and its 

downstream effectors such as PAR3 and LGL. (T. Yamanaka 2003). Phosphorylation 

of LGL will result in its detachment from the aPKC/PAR6 dimer, leading to the 

formation of another functional complex: PAR6/PAR3/aPKC (Yamanaka, Horikoshi 

et al. 2003). PAR3 has been extensively studied in epithelial cells. PAR3 proteins are, 

partially, located in cell-cell contact regions and colocalized with ZO1 at tight 

junctions. It contains three PDZ domains and the first of these interacts with PAR6. It 

seems likely that the starting point required for PAR3 to target the tight junctions is its 

ability to form homodimer via its N-terminal region and to bind to the junctional 

adhesion molecules (JAMs); this association seems to be required for the correct 

association of PAR3 at the apical side of the cell–cell contact region during the 

process of polarization (Mizuno, Suzuki et al. 2003). PAR3 may then be stabilized 

upon binding directly to JAM via its first PDZ domain, and these two proteins may 

then be co-distributed to the sites of cell–cell contact (Ebnet, Suzuki et al. 2001). Once 

PAR3 occupies this site, it can play the role of a scaffold in the recruitment of proteins 

involved in the formation of the junctions, such as PAR6 or aPKC. Many studies have 

in fact shown that overexpression or depletion of PAR3 in epithelial cells leads to the 

disruption of tight junctions. Moreover, beyond to the members of PAR complex, 

PAR3 interacts with and other proteins such as Tiam1 or LIMK2 and these 

interactions seem to be dependent on its phosphorylation state (Hurd et al, 2003, Wang 

et al, 2006). Unlike convetional PKCs,  αPKC  (75 kDa ) is unique in having a PB1 

domain in the N-terminal, which interacts with PAR6 (Bose et al, 2006; Assemat et al, 

2007). Moreover it is the only members of the PAR complex showing catalytic 

activity thanks to catalytic domain at the C-terminal region conserved among PKC 

proteins. This domain is known to phosphorylate several proteins such as PAR3 and 

LGL. In MDCK epithelial cells, aPKCs localize with the other members of the PAR 

complex at tight junctions (Izumi, Hirose et al. 1998); As Cdc42-GTP binds to PAR6, 

it seems likely that Cdc42-GTP may form a complex with aPKC via the adaptor 

PAR6.  The expression of Cdc42-GTP leads to the translocation of aPKC from the 

nucleus to the cytoplasm and cell periphery, where the complex will be involved in 
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tight junction formation. Cdc42 is activated upon E cadherin mediated cell–cell 

adhesion, resulting in phosphorylation and thus activation of aPKC, and this chain of 

events is crucial to tight junction formation. 

 
1.3. 2 The Crumbs complex 
The Crumbs complex was identified in the epithelia of Drosophila and subsequently in 

vertebrates. Mammalian CRB are transmembrane proteins, whereas the other proteins 

present in this complex, PALS1 and PATJ, are cytoplasmic scaffolding proteins.  CRB 

proteins have a transmembrane domain and a cytoplasmic domain very well 

conserved. In the cytoplasmic tails, CRB protein contains two motives: a FERM (band 

4.1-ezrin-radixinmoesin) protein-binding domain consisting of 12 amino acids 

containing a GTY motif  and a PDZ-binding domain consisting of ERLI residues. The 

FERM domain is a protein–protein interaction domain which exists in various 

proteins, many of which serve as adapters linking transmembrane proteins to the 

cortical actin cytoskeleton. In addition to playing a role in the formation of tight 

junctions, CRB is involved in the differentiation of the apical membrane (Fogg, Liu et 

al. 2005) and contributes to stabilizing apical cell junctions. PALS1 (77 kDa) is a 

scaffold protein that has multiple protein-protein interaction domains. It consists of 

two L27 domains, a PDZ domain, an SH3 domain, a hook domain and a GUK domain. 

PALS1 binds CRB and PATJ ( M.H. Roh et al 2002) with its a PDZ domain and the 

first L27 domain respectively. Knockdown of PALS1 in MDCK cells leads to tight 

junction and polarity defects (Straight, et al, 2004) and to the mis-targeting of E-

Cadherin to the cell membrane (Wang, et al, 2007). The PATJ L27 domain present at 

the N-terminal is followed by up to ten PDZ domains. The 6th and 8th PDZ modules 

of PATJ interact directly with ZO3 and Claudin1, respectively, via the PDZ-binding 

domain present at the C-terminal ends of these proteins. The fact that over expression 

or down regulation of PATJ in epithelial cells disrupts the tight junction-specific 

localization of ZO1, ZO3 and Occludin, suggests that PATJ might be involved in 

stabilizing tight junctions (Lemmers, Medina et al. 2002; Michel, Arsanto et al. 2005). 

 

1.3.2 The Scribble complex 
The Scribble complex comprises three proteins SCRIBBLE, Lgl (Lethal giant larvae) 

and Dlg (Discs large) which are all thought to behave as scaffold proteins and regulate 
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protein-protein interactions (Humbert, P. et al 2003; Bilder, D 2004) SCRIBBLE and 

DLG co-localize to the lateral membrane and similarly Lgl is predominantly localized 

basolaterally in ephitelial cells. The exact nature of the physical interactions between 

SCRIB, LGL and DLG has not yet been clearly defined. SCRIB (175 kDa) is a large 

cytoplasmic multidomain protein that plays many roles in flies and mammals. It has 

16 LRR at its N-terminal, followed by 2 LAP-specific domains (LAPSD), a linker 

region, 4 PDZ domains and a C-terminal lacking any identifiable motives. Navarro et 

al have established that the LRR repeats occurring in SCRIB determine its ability to 

target the basolateral epithelial membranes. SCRIB binds directly to the C-terminal 

motif of ZO2 via its PDZ domains 3 and 4, theSCRIB/ZO2 interaction probably takes 

place at the cell junctions before ZO2 is segregated in the tight junctions of the apical 

membrane (Metais, Navarro et al. 2005). Suppression of SCRIB expression in MDCK 

cells causes a delay in tight junction assembly and affects the epithelial morphology. 

Mammalian DLG shows three PDZ domains, a SH3 domain, a hook domain and a 

GUK domain. The formation of a polarized epithelial cell layer with functional tight 

junctions requires spatio-temporal coordination of the activity of the polarity 

complexes that that regulate the establishment and maintenance of the apical polarity 

in the cell. Nevertheless their localizations are different (CRB and PAR complexes are 

restricted to the apical region of the lateral memabrane whereas SCRIB complex is 

concentrated along the lateral membrane. E-cadherin/E-cadherin interactions in the 

cell–cell adhesion region trigger Cdc42 GTP activation (Kim 2000) and the 

phosphorylation of aPKC, which in turn phosphorylates LGL. Phosphorylated LGL 

dissociates from PAR6/aPKC dimer and distributes to the lateral membrane, where it 

could interact with DLG and SCRIB (Plant, Fawcett et al. 2003), aPKC is then able to 

interact with and phosphorylate PAR3, allowing the formation of the active PAR 

complex at the apical junctions. A direct connection therefore exists between the 

activity of the basolateral complex containing LGL and the active apical PAR 

complex. aPKC is required for the stable localization of PAR3, and PAR3 

phosphorylated at S827 residue accumulates at tight junctions (Nagai-Tamai, Mizuno 

et al. 2002; Suzuki, Ishiyama et al. 2002). Once it has been phosphorylated at the S827 

residue, PAR3 therefore dissociates from aPKC and this protein is able to bind directly 

to the CRB cytoplasmic tail that contains two threonine residues (T6 and T9) in an 

evolutionarily conserved region, which are potential targets for aPKC 
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phosphorylation. CRB binds to PAR6 directly or via PALS1, to promote the 

differentiation of the premature junctional structure into mature epithelial structures. 

SCRIB complex restricts the localization of CRB and PAR complexes to the apical 

region of epithelial cells, where they may act together to regulate tight junctions 

formation (Hurd, Gao et al. 2003; Lemmers, Michel et al. 2004) (figure 3) 

 
Fig. 3 Conserved proteins of the partitioning defective (PAR), Scribble and Crumbs 
complexes guide the establishment of cell polarity in various organism. In polarized 
mammalian epithelial cells, the PAR3 and Crumbs-3 complexes localize predominantly 
to tight junctions, whereas components of the Scribble complex show basolateral 
localization. PAR-3, PAR-6 and aPKC  are ubiquitously expressed and function in 
various cell polarization processes. The kinase activity of aPKC is required for a 
functional PAR complex, and aPKC-mediated phosphorylation of target proteins is a 
key event of downstream polarity signalling. The Crumbs complex comprises the 
transmembrane protein Crumbs and the cytoplasmic scaffolding molecules PALS1 and 
PATJ .PATJ is thought to connect the Crumbs-3 complex with structural tight-junction 
proteins in polarized epithelial cells. In vertebrates, Scribble binds directly to Lgl and 
indirectly to Dlg. Several molecular interactions between the three complexes have been 
identified2. Mutual exclusion of the Scribble complex and the apical junctional 
complexes controls apico–basal polarity, and aPKC-mediated phosphorylation of LGL2 
and PAR1. (taken from Sandra Iden and John G. Collard 2008). 

 

1. 4 Cell-cell junctions and cell polarity. 
The integrity of the epithelial cell layer(s) that protects multicellular organisms from 

the external environment is maintained through the formation of several intercellular 

junctional complexes including tight junctions (TJ), adherens junctions (AJs), and 

desmosomes, whereas gap junctions provide for intercellular communication. Another 

important factor is adhesion to a basement membrane composed of extra-cellular 

matrix proteins. The transmembrane proteins constituting these junctions are linked to 
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components of the cytoskeleton, thereby establishing connections to other cell-cell and 

cell-substratum adhesion sites. In addition, a growing number of cytoplasmic 

scaffolding molecules associated with these junctions are involved in regulating such 

diverse processes as transcription, cell proliferation, cell polarity, and the formation of 

a regulated diffusion barrier.  TJs and AJs are differentially distributed along the 

intercellular cleft. TJs form an apical rim, whereas AJs are localized basolaterally 

below TJs. TJs and AJs are highly regulated dynamic structures,whose pivotal 

regulatory partners,among many other regulators, include Rho family GTPases, which 

control both the actin cytoskeleton and the integrity of intercellular junctions.  

Tight junctions (TJ) are localized at the most apical part of epithelial cells, and form 

a network of close contacts between membranes of adjacent cells. TJs control the 

paracellular transport of ions, water, solutes andcells, and in addition they constitute a 

fence separating apical and basolateral membrane proteins. TJs are formed of two 

types of membrane proteins, occludin and claudins, which are associated with 

cytoplasmic proteins, linking TJs to the actin cytoskeleton. The tight junctions are 

composed of a network of sealing filaments. Each sealing strand is composed of a long 

line of transmembrane adhesion molecules immersed in each of the two interacting 

membranes. The extracellular domains of these proteins are united directly with one 

another to occlude the intercellular space. 

Occludin is a protein of 65 kDa contain four transmembrane domains and two 

extracellular loops. The C-terminal domain, localized in the cytoplasm, directly binds 

to ZO-1 (zonula occludens), which in turn associates with the apical actin. This region 

is rich in phosphorylation sites (tyrosine, serine, and threonine) which can be modified 

by kinases or phosphatases. Non-phosphorylated occludin is distributed on basolateral 

membrane and in cytoplasmic vesicles, whereas phosphorylated occludin is localized 

in TJs, leading to a decreased paracellular  permeability. 

Claudins, similar to occludin, has four transmembrane domains with two extracellular 

loops and a C-terminal cytoplasmic domain, which binds through PDZ binding motifs 

to ZO proteins, to PATJ). Claudins recruit occludin to tight junctions. They are the 

major components of TJ strands and have a determinant role in the barrier function. 

They form paracellular channels, which are selective for ions through their first 

extracellular loop (Harstock and Nelson, 2008). 
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ZO (Zonula occludens) proteins (ZO-1; ZO-2; ZO-3) are scaffolding proteins linking 

TJ proteins to the actin cytoskeleton, and also linking TJs to AJs.  The ZO family 

proteins belong to the family of guanylate kinases (MAGUKs) and are composed of 

three domains: a PDZ domain that allows ZO proteins binding to claudins, an SH3 

domain responsible for binding to α-catenin and guanylate kinase (GUK) domain, 

which lacks catalytic activity, but interaction with other proteins, such as occludins 

(Gonzalez-Mariscal, Betanzos et al. 2000). ZO Proteins colocalize with E-cadherin in 

primordial junctions in not polarized cellsbut succesively they concentrate in tight 

junctions by interacting with occludins and claudins, thus allowing the maturation of 

this adhesions. 

Junctional adhesion molecules (JAM) (32 kDa) contain a transmembrane segment, 

an extracellular domain encompassing two immunoglobulin-like subdomains, and a 

short cytoplasmic tail. JAMs function as cell–cell adhesion molecules through their 

extracellular domains, which are capable of homophilic interaction and can form 

heterophilic associations with various ligands such as integrins. In addition, JAMs 

associate with intracellular partners such as ZO-1 and the protease-activated receptor 

PAR-3  (Figure  4). 

 

Adherens junctions. A key event in epithelial polarization is the establishment of E-

Cadherin–dependent cell-cell contact. AJs result from the complex association of 

multiple components and play a pivotal role in the initiation of intercellular contacts 

between neighboring cells and in stabilizing adhesion. Moreover, AJs are 

multifunctional structures involved in the control of the actin cytoskeleton, focal 

adhesion, intracellular signaling, andtranscription regulation. The core of the Adherens 

junction includes interactions among transmembrane glycoproteins of the classical 

cadherin superfamily, such as E-cadherin, and the catenin family members includine 

p120-catenin, β-catenin, and α-catenin. Together, these proteins control the formation, 

maintenance and function of adherens junctions. 
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Fig. 4 Schematic representation of the basic structural transmembrane components 
of tight junctions. ZO-1 or ZO-2 is important for clustering of claudins and occludin, 
resulting in the formation of tight junctional strands. The ZOs and cingulin can 
provide a direct link to the actin cytoskeleton. (taken by Carien M. 2007). 
 
 

E-cadherin Cadherins (120 kDa) contain only one transmembrane segment and five 

extracellular repeat domains, which form Ca++-dependent homophilic interactions with 

cadherins from the same or adjacent cells.  Other members of this family are N-

(neural), P (placental), and R(retina), VE (vascular endothelia)-cadherin (Gooding JM, 

2004).  Cadherins have five characteristic extracellular cadherin (EC) repeat domains. 

These domains form trans-cadherin interactions between neighboring cells and initiate 

weak  cell-cell adhesion. Binding of Ca2+ to each EC domain is required for the 

correct conformational organization of the cadherin extracellular domain and allows 

cadherin to arrange into a rigid and organized structure that is resistant to proteolysis. 

The cytoplasmic domain of E-cadherin can be divided in two portions: the carboxi 

terminal “catenin binding domains (CBD) for β-catenin and the juxtamembrane 

domain that binds p120-catenin and and Hakai, an E3-ubiquitin ligase.  These domain 

allows to cadherin to bind proteins that regulate E-cadherin endocytosis, recycling and 
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degradation, intracellular signaling and gene transcription, and local control of the 

actin cytoskeleton (Halbleib JM, 2006). E-cadherin has an important role in cell–cell 

adhesion as well as in the stabilization of epithelial cell phenotype. Decreased 

cadherin function induces disassembly of cell–cell adhesion and disturbs cadherin-

mediated signaling, while leading to de-differentiation from an epithelial to a 

mesenchymal phenotype, as well as to an increased cell migration characteristic of 

invasive tumor cells (E. Lozano, 2003) 

Catenins mediate the interplay between a cadherin complex and the actin 

cytoskeleton, and also govern several signaling pathways that control morphogenesis 

and tissue homeostasis. The catenin family comprises p120-catenin, β-catenin and α-

catenin.  

p120-catenin  (120 kDa)—p120-catenin was first identified as a substrate for Src- 

tyrosine receptor kinase and later defined as a member of the catenin family based on 

sequence homology to an armadillo domain of β-catenin .  p120 binds to the juxta- 

membrane domain of E-cadherin and stabilize E-cadherin at the plasma membrane 

during the formation of cell-cell contacts Phosphorylated p120 binds to E-cadherin 

with high affinity and thus prevents its endocytosis and degradation, or it increases the 

recycling of internalized E-cadherin to membranes. One possible mechanism of 

targeting cadherin for degradation involves Hakai, an E3-ubiquitin ligase, which binds 

E-cadherin in a Src-dependent manner. Expression of Hakai increased both the 

ubiquitination and rate of E-cadherin endocytosis. In addition, p120 modulates the 

actin cytoskeleton through inactivation of RhoA and activation of Rac and Cdc42. 

β-catenin (88 kDa)— β -catenin is characterized by 13 repeats of a characteristic 

armadillo domain of ~42 amino acids that form triple α-helix. Beta-catenin binds the 

C-terminal cytoplasmic domain of E-Cadherin when phosphorylated on three serine 

by  CKII and GSK-3β In contrast, tyrosine phosphorylation of β-catenin by Src, Abl, 

or EGF receptor at Y489 or Y654 disrupts binding to Cadherin. It is proposed that the 

E-cadherin/β-catenin interaction occurs in the endoplasmic reticulum (ER) and is 

required for cadherin exit from the ER (Chen YT 1999). Normally cytosolic levels of 

β-catenin are low due to rapid targeting of excess β-catenin to the proteosome (Aberle 

H, 1997). β-Catenin also binds to α-catenin in a mutual exclusive manner. 

α-catenin (120 kDa)— α-Catenin contains three vinculin homology domains and 

differs considerably in sequence from the other catenins . α-catenin is the link between 
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the cadherin/beta-catenin complex and the actin cytoskeleton. It  exists both as 

monomers and dimers. Recently, it has been shown that monomeric α-catenin binds to 

β-catenin and not to actin, and inversely dimeric α-catenin associates with actin 

filaments but not with β-catenin and appears to compete binding of the Arp2/3 

complex. Indeed actin filaments bound to α-catenin can no longer associate with the 

Arp2–3 complex, thereby suppresses actin polymerization (Drees F, 2005). This 

allosteric switch between monomeric and dimeric states appears to be the molecular 

explanation for the lack of simultaneous binding of α-catenin to both β-catenin and 

actin filaments. Moreover, α-catenin binds to other actin-binding proteins: ZO-1, a 

linker between AJ and TJ structures (Figure 5). 

 

 
Fig. 5 a) Cadherin, a calcium-dependent adhesion molecule, is linked to bundles of actin 
filaments through b-catenin and a-catenin. Cadherins can dimerize in cis and trans, thereby 
forming rigid adhesions. b) the E-cadherin molecule is composed of repeated extracellular 
cadherin (EC) domains (or cadherin repeats), which mediate calcium-dependent homophilic 
interactions; a transmembrane domain (TMD); a juxtamembrane domain (JMD); and a distal -
catenin-binding domain (D-b-D). ( taken by Masaki Fukata & Kozo Kaibuchi 2001) 

 

 

Extra-cellular matrix adhesion. Epithelial cells polarize in response to cell– cell and 

cell–matrix adhesion. There has been much recent progress in understanding the 

general polarizing machinery of epithelia, but is unclear how this machinery is 

controlled by the extracellular environment.  Epithelial cells interact with the ECM via 

integrins receptors. Integrins are crucially important because they are the main 

receptor proteins that cells use to both bind to and respond to the extracellular matrix. 

Integrins are single-pass transmembrane receptors that bind several proteins of ECM 

such as collagen laminin and fibronectin (Figure 6). Its cytoplasmatic domain interacts 

with many proteins, including talin, to assemble large plaques called focal adhesions 
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(Critchley, D. R. 2000) that rappresent the centers where many tyrosine kinasi are 

recruit to allow cells to exert traction forces on their substrates. Cell extracellular 

matrix adhesiond did not appear to be essential for epithelial polarity but it determines 

the orientation of polarity. Indeed, cells that are allowed to form epithelial cysts in the 

absence of integrins have their polarity axis inverted (Nitsch and Wollman, 1980; 

Ojakiann and Schwimmer, 1994). Integrins do not possess enzymatic activity, 

however, activation and/or ligand binding induces integrin clustering that leads to the 

recruitment of multiple signalling molecules and actin filaments (Hynes 2002). 

Integrin-mediated adhesion provides signals that control cell motility, proliferation, 

survival, differentiation, and gene expression (Giancotti and Ruoslahti, 1999). In 

addition, integrin signals are frequently required for coupling growth factor receptors 

to downstream effectors. Recent work has focused on the activation of signalling by 

the small GTPase Rac1 in response to integrin-mediated cell adhesion to the 

extracellular matrix (ECM). These small GTP-binding proteins in turn regulate cell 

adhesion and changes in cell morphology by triggering dynamic changes in the actin 

cytoskeleton. Integrin activation of Rac1 and Cdc42 signaling induces the formation 

of lamellapodia and filopodia, which are necessary for cell spreading. Activation of 

Rac by integrins upon fibronectin binding induces GTP loading, similar to the 

activation triggered by growth factor receptors; but distinct from growth factor 

regulation, integrins also target Rac to specific plasma membrane microdomains, 

where Rac can interact with its downstream effector molecule PAK to induce 

signalling(Del Pozo 2004; Guan 2004). Binding between Rac and the lipid bilayer is 

regulated by RhoGDI, which keeps Rac soluble in the cytoplasm by shielding the 

isoprenoid moiety (Hoffman, Nassar et al. 2000). RhoGDI binds Rac in the cytosol to 

prevent both membrane and effector binding.the hypothesis is that  integrins would 

locally increase the affinity of the plasma membrane for Rac, favouring RhoGDI 

displacement and allowing Rac effector binding (Del Pozo, Kiosses et al. 2002) in the 

vicinity of focal adhesions. 
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Fig. 6  The integrin family is composed of 24 αβ heterodimeric members . An integrin 
molecule is composed of two noncovalently associated transmembrane glycoprotein 
subunits called α and β. By binding to a matrix protein outside the cell and to the actin 
cytoskeleton (via the anchor proteins indicated) inside the cell the protein serves as a 
transmembrane linker. The α and β subunits are held together by noncovalent bonds, 
The α subunit is made initially as a single 140,000-dalton polypeptide chain, which is 
then cleaved into one small transmembrane domain and one large extracellular domain 
that contains four divalent-cation-binding sites; the two domains remain held together 
by a disulfide bond. The extracellular part of the β subunit contains a single divalent-
cation-binding site, as well as a repeating cysteine-rich region, where intrachain 
disulfide bonding occurs. 

 

1.5 Epithelial apico–basal cell polarity formation. 

Formation of apico–basal polarity has been studied intensively in mammalian 

epithelial cells, and many proteins have been identified. The maturation of primordial 

adhesions to linear apico–basal polarized cell–cell contacts with discrete adherens and 

tight junctions requires a gradual and sequential mechanism, consisting of various 

stages and achieved by the cooperation of the three complexes that regulate cell 

polarity: the apical PAR3 and Crumbs-3 complexes and the basolateral Scribble with 

the proteins involved in cell-cell contacts. The establishment of epithelial cell–cell 

contacts and the subsequent apico–basal polarization requires E-cadherin-mediated 

cell–cell adhesion. The first event is given by the formation of lamellipodia and 
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filopodia of adjacent cells that assemble to primordial adhesions. These structures 

allow to two neighbour cells to move and come into contact with each other. 

Following this step nectin–afadin are the first complexes, which assemble at the 

primary cell–cell contacts. The nectin–afadin complex is involved in Ca++-

independent intercellular adhesion and plays a role in the organization of AJs and TJs. 

Nectin  contains a single trans-membrane domain, an extracellular region containing 

three immunoglobulin-like domains, and a cytoplasmic extension. Nectin binds to the 

cytoplasmic C-terminus of afadin through a PDZ domain, and afadin binds actin 

filament. Nectin–afadin form dimers and nectin molecules from neighboring cells 

associate with each other through at least the first immunoglobulin-like domain. 

Subsequently they recruit E-cadherin, that expand the lateral surface and allow the 

concentration of all the proteins that will form the tight junctions in this domain. These 

primordial junctions fuse and mature in AJs along the basolateral side of neighboring 

cells. Finally, at the apical side the JAM proteins assemble and allow the recruitment 

of claudins, occludins, thereby stabilizing cell-cell junctions.  

RhoGTPases plays a role in the formation of AJs. They control the formation and 

maintenance of cadherin-mediated intercellular junctions. The homophilic interaction 

of E-cadherin molecules results in a local activation of Rac1 and Cdc42 and inhibition 

of RhoA. Rac1 seems to have a major role in controlling AJs. The presence of active 

Rac1 and its downstream effectors was demonstrated, in the early contact zone 

between cell-cell, suggesting that activation of Rac1 promotes the early stages of 

adhesion (Price, Leng  et al 1998). How Rac1 is activated at cell–cell junctions have 

been identified in some cell types: it has been reported that E-cadherin-mediated cell–

cell adhesions stimulate phosphatidylinositol 3-kinase (PI3K) activity in MDCKII 

cells. Moreover, PI3K has been shown to interact with E-cadherin (Pece et al. 1999) 

and β-catenin (Espada et al. 1999). Because PI3K is thought to function upstream of 

Rac1, these observations indicate the possible involvement of PI3K in E-cadherin-

dependent Rac1 activation. Activation of Rac1 through PI3K by E-cadherin-mediated 

cell–cell adhesions seems to require at least two steps : (1) Rac1 recruitment to sites of 

cell–cell contacts, and (2) Rac1 activation by a GEF. It has been suggested that Tiam1 

is the GEF recruited in the sites of primordial adhesions  through its interaction with 

phospholipids produced by active phosphatidylinositol-3-kinase (PI-3 kinase). The 

polarity complex, Par3-Par6-aPKC, interacts with the plasma membrane through the 
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binding of Par-3 with JAM-A protein, (Itoh, Sasaki et al. 2001). Par3 directly interacts 

with Tiam1 that actives Rac1. Binding of Rac1-GTP to PAR6 allows PAR6 to activate 

aPKC. This results in a translocation of occludins, claudins and JAM in the apical 

membrane with the subsequent formation of tight junctions. In conclusion, the 

activation of Rac1 mediated by Tiam1 is required for the formation of tight junctions 

and the activation of these proteins occurs upstream from the activation of the 

complex polarity Par. The polarity complexes function to determine the site of the 

tight junction in the process of cell polarization, indeed, CRB and PATJ play an 

important role in the correct localization of tight junction proteins at the apical side of 

adherens junctions (Figure  8). 

 

 
 

Fig 7 Apico–basal polarization. The first step is the formation of the first cell-cell 
contacts (primordial junctions), which occur following the formation of lamellipodia 
and filopodia , in the second step nectins are recruited, leading to the formation of the 
first type of cell-cell junctions (primordial junctions). These junctions are then stabilized 
by recruiting the E-cadherin structural proteins, those that form adheren junctions (AJs) 
and tight junctions (TJs)) and signalling proteins, including -catenin, b-catenin, afadin 
and ZO1, are recruited to immature cell–cell contacts. Transmembrane proteins of the 
junctional adhesion molecule (JAM) and nectin family are  implicated in localizing 
PAR complex to primordial adhesions. Rho GTPases are activated downstream of 
cadherin clustering. Through association with PAR3, TIAM1 couples E-cadherin-
dependent RAC1 activation to activation aPKC, thereby inducing phosphorylation of 
downstream targets and subsequent polarization and maturation into fully polarized 
epithelial (taken by Sandra Iden, 2008) 

 
1.6 RHO GTPases 
 Approximately one percent of the human genome encodes proteins that regulate or 

are regulated by direct interaction with members of the Rho family of small GTPases. 

Through a series of complex biochemical networks, these highly conserved molecular 

switches, control some of the most fundamental processes of cell biology common to 
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all eukaryotes, such as morphogenesis, polarity, movement, and cell division. Rho 

GTPases are members of the Ras superfamily of monomeric 20–30 kDa GTP-binding 

proteins. More than 100 small G-proteins have been identified in eukaryotes from 

yeast to human. The members of this superfamily are structurally classified into at 

least five families: the Ras, Rho, Rab, Sar1/Arf, and Ran families(revieved by Takaj et 

al 2001). Among these, the best characterized members are Rho, Rac and Cdc42. 

According to the structures of small G-proteins, they have two interconvertible forms: 

GDP-bound inactive and GTP-bound active forms. An upstream signal stimulates the 

dissociation of GDP from the GDP-bound form, which is followed by the binding of 

GTP, eventually leading to the conformational change of the downstream effector-

binding region so that this region interacts with the downstream effectors(s). The rate-

limiting step of the GDP/GTP exchange reaction is the dissociation of GDP from the 

GDP-bound form. This reaction is extremely slow and therefore stimulated by a 

regulator, guanine nucleotide exchange factor (GEF) of which activity is often 

regulated by an upstream signal. GEP first interacts with the GDP-bound form and 

releases bound GDP to form a binary complex of a small G-protein and GEF. Then, 

GEF in this complex is replaced by GTP to form the GTP-bound form. Have been 

identified 30 guanosine nucleotide exchange factors (GEFs). They can be divided into 

2 large families. One group is defined by the presence of two characteristic domains, 

which account for the catalytic activity. These GEFs contain a catalytic Dbl homology 

(DH) domain, which is almost invariantly followed by a pleckstrin-homology (PH) 

domain. The PH domain interacts with phospholipids, which may activate the catalytic 

DH domain of GEFs and localise them to the plasma membrane (Mertens, Roovers et 

al. 2003; Rossman, Der et al. 2005). The second group of GEFs for Rho GTPases 

consists of proteins related to Dock180 (dedicator of cytokynesis 180). These proteins 

contain a Dock-homology region-2 (DHR2 or CZH2) domain, which makes these 

proteins catalytically active (Brugnera, Haney et al. 2002; Meller, Merlot et al. 2005). 

Besides promoting the exchange of nucleotides, GEFs contain various additional 

domains and are able to influence and determine the signalling route downstream of 

Rho GTPases by direct binding to different effector molecules, or to serve as scaffold 

proteins that associate with components of downstream effector signalling pathways 

(Mertens, Roovers et al. 2003; Rossman, Der et al. 2005). The GTP-bound form is 

converted by the action of the intrinsic GTPase activity to the GDP-bound form, 
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which then releases the bound downstream effectors. The GTPase activity of each 

small G-protein is relatively very slow and is stimulated by GTPase-activating 

proteins (GAPs) ,which increase the intrinsic rate of GTP hydrolysis. About 60 GAPs 

have been identified (Moon and Zheng  2003; Tcherkezian and Lamarche-Vane 2007) 

all characterized by an arginine residue, called arginine finger, which interact with the 

active site of small GTPase(Bos et al 2007). Most GAPs are specific for each member 

or subfamily of small G-proteins (M.S. Boguski, F. McCormick 1993) , but some 

GAPs, such as p190, a GAP active on Rho/Rac/Cdc42 proteins, show wider substrate 

specificity (J. Settleman 1992).in this way , one cycle of activation and inactivation is 

achieved and small G proteins serve as molecular switchas that trasduce an upstream 

signal to a downstream effector. The GDP/GTP exchange reactions of Rho/Rac/Cdc42 

and Rab proteins are furthermore regulated by another type of regulator: Rho GDP 

dissociation inhibitors (GDI) (T. Sasaki, 1990; T. Ueda 1990). These proteins inhibit 

both the basal and GEF-stimulated dissociation of GDP from the GDP-bound form 

and keeps the small G-protein in the GDP-bound form. The binding of GDI to a Rho 

GTPase occurs through an immunoglobulin-like C-terminal domain, and that a 

hydrophobic pocket in this domain can accommodate the geranyl-geranyl lipid, whilst 

a flexible N-terminal domain inhibits GDP  GTP exchang. Rho GTPases are able to 

interact with membranes via a post-translational C-terminal geranylgeranyl lipid 

modification. So Rho GDI proteins are involved not only in the regulation of their 

activation but also in their translocation between the cytosol and the membrane (T. 

Sasaki 1998; Y. Takai 1995). Furthermore, GDIs are able to interact with active, GTP-

bound GTPases, preventing hydrolysis and interaction with downstream effectors. 

Association with GDIs thus keeps Rho GTPases in the cytoplasm, inactive or unable 

to signal towards downstream effectors (Robbe, Otto-Bruc et al. 2003). 

Phosphorylation of Rho GDIs may lead to dissociation of the complex and allow Rho 

GTPases to translocate from the cytoplasm to the plasma membrane, where they can 

be activated by GEFs and bind effectors. Specific signals mediated by integrins or 

other proteins, promote the dissociation of GDI from the Rho GTPase protein. The 

activation state of all Rho GTPases is dependent on the balance of the activities of 

their regulators (GEFs, GAPs and GDIs). Thus, the local amount of GTP-bound 

protein and the time during which the protein is active determines the downstream 

signalling at specific sites in cells. With a few exceptions, Rho family members have a 
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N-terminal portion that interacts with trinucleotides GTP and GDP, followed by the 

switch I and switch II regions essential for binding to effector proteins and a C-

terminal sequence that ends with a CAAX motif (Wherlock and Mellor 2002). Post-

translational modifications of Rho GTPases at the C-terminus, such as prenylation 

(farnesylation or geranylgeranylation) or palmitoylation, determine their intracellular 

localization (Figure. 8) 

 
Fig. 8 Regulation of small G-protein activity: GDP-bound inactive GTPases are 
localized mainly in the cytosol, maintained thereby GDIs masking the C-terminal tail 
required for plasma membrane localisation. Guanine nucleotide exchange factors 
(GEFs) release guanosine diphosphate (GDP) from Rho GTPases promoting the binding 
of guanosine triphosphate (GTP) and activation of Rho GTPases. GDP dissociation 
inhibitor (GDI) inhibits the dissociation of GDP from Rho GTPases and thus prevents 
association of GDP-GTPase to cell membrane. GTPase activating proteins (GAPs) 
stimulate the intrinsic GTPase activity of Rho GTPases and convert GTP-bound form of 
Rho GTPases to inactive GDP-GTPases. In resting cells Rho GTPases exist mostly in 
GDP-bound form and in complexes with Rho GDI in the cytosol. The GTP-bound form 
of Rho GTPases is associated with cell membranes . (Saskia , Ellenbroek et al. 2007) .  
 

 
1. 7 Functions of Rho GTPase 
Multiple small G-proteins form a signal cascade and thereby transduce their signals to 

the downstream effectors. Given the involvement of Rho GTPases in such a wide 

variety of important cellular processes, it is not surprising that 30 or more potential 

effectors for Rho, Rac and Cdc42 have been identified These proteins interact 

specifically with the GTP-bound form of the GTPase. The conformational differences 

between the GTP and GDP-bound forms are restricted to switch regions I and II. 

Effector proteins, therefore, had to utilize these differences to discriminate between 
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the GTP- and GDP- bound forms. Numerous point mutations have been introduced 

into Switch I of Rho, Rac and Cdc42 the effector region. The most common 

mechanism of effector activation by Rho GTPases appears to be the disruption of 

intramolecular auto-inhibitory interactions to expose functional domains within their 

effector protein (L.Bishop and A. Hall 2000; Fig. 9) 

 
Fig. 9  General model for activationof effector proteins (1)Binding of RhoGTPase to 
effector relieves an anto-inhibitory  intramolecular interaction (2)The effector remains 
active until GTP hydrolysis  takes place. (3) Alternatively a modification of the effector 
may maintain activity even after dissociation of the GTPase. (4) Inactivation of the 
effector occurs though removal of modification Y, allowing the effector to reenter its 
inactive conformation. (taken by A.L.Bishop and A. Hall 2000). 

 

1. 7. 1 Regulation of the actin cytoskeleton  
Reorganization of the actin cytoskeleton plays crucial roles in many cellular functions 

such as cell shape change, cell motility, cell adhesion, and cytokinesis. The actin 

cytoskeleton is composed of actin filaments and many specialized actin-binding 

proteins (Small JV 1994 ; Zigmond SH 1996). Filamentous actin is generally 

organized into a number of discrete structures : 1) actin stress fibers: bundles of actin 

filaments that traverse the cell and are linked to the extracellular matrix through focal 

adhesions; 2) lamellipodia: thin protrusive actin sheets that dominate the edges of 

cultured fibroblasts and many migrating cells; membrane ruffles observed at the 

leading edge of the cell result from lamellipodia that lift up off the substratum and fold 

backward; and 3) filopodia: fingerlike protrusions that contain a tight bundle of long 

actin filaments in the direction of the protrusion. For the most part, this regulation of 
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actin polymerization is orchestrated by Rho/Rac/Cdc42 proteins. Rho proteins regulate 

stress fiber formation  while Rac proteins regulate ruffling and lamellipodia formation, 

and Cdc42 regulates filopodium formation (Figure 11). 

 
Fig.10  Mode of action of Rho/Rac/Cdc42 proteins in cytoskeletal reorganization. A: 
mode of action of Rho proteins.B: mode of action of Rac proteins. C: mode of action of 
Cdc42. Rho, Rho proteins; Rac, Rac proteins.(Yoshimi Takai 2001). 

 
These actin dynamics are regulated by coordinated activation of different signalling 

pathways downstream of the small GTPases. RhoA can interact with its effector 

ROCK protein, which can subsequently activate myosin light chain kinase, leading to 

activation of myosin (by phosphorylation) and increasing contractility and formation 

of stress fibres. Furthermore, RhoA can stimulate actin polymerization via its effectors 

mDia1 and mDia2 proteins, which catalyze F-actin assembly in filopodia and lamellae 

(Hotulainen and Lappalainen 2006; Gupton, Eisenmann et al. 2007). Most recently, N-

WASP, a ubiquitously expressed Cdc42-interacting protein and the Arp2/3 complex, 

has been shown to participate in the downstream cascade of Cdc42 for the Cdc42-

induced actin polymerization. N-WASP has a pleckstrin homology (PH) domain that 

binds PIP2, and a Cdc42/Rac interactive binding (CRIB) domain. The binding both of 

GTP-Cdc42 and PIP2 to N-WASP activate N-WASP by stabilizing the active 

conformation of this molecule. The C-terminus of N-WASP thereby binds the Arp2/3 

complex, that generates new barbed ends stimulating its ability to nucleate actin 

polymerization. Therefore, the interaction of N-WASP with the Arp2/3 complex 
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directly connects the Cdc42-mediated signal transduction pathway to the stimulation 

of actin polymerization. Several other potential effectors of Cdc42 and Rac proteins 

have also been identified. Among them, the family of serine/threonine protein kinases 

known as PAKs could be the most likely candidate. Thus, it is likely that PAK 

proteins are involved in mediating the effect of Cdc42/Rac proteins on the 

cytoskeleton. In addition, POR1 (partner of Rac ) a 34-kDa protein, interacts 

specifically with GTP-Rac proteins, and is implicated to mediating Rac protein-

dependent membrane ruffling Another protein with a potential role in cytoskeletal 

organization is IQGAP. IQGAP interacts with both GTP-Rac1 and GTP-Cdc42 and 

localizes to membrane ruffles. IQGAP has been shown to be localized in cell–cell 

adhesion sites. It has been suggested that activated Cdc42 or GTP-Rac1 block the 

ability of IQGAP to inhibit assembly of a cadherin-catenin complex promoving 

adherens junctions formation (S. Kuroda, 1998). 

 

1.7.2. Regulation of the microtubule cytoskeleton 
Similar to actin filaments, microtubules have an intrinsic polarity, with a minus end 

and a dynamic plus end, usually at the cell periphery. The intracellular organization of 

microtubules makes a major contribution to cell polarity and to the distribution of 

intracellular organelles, such as the Golgi and mitotic spindle. Small Rho GTPases are 

important regulators of the microtubule cytoskeleton, via regulation of activity of 

several downstream effector proteins. Microtubules play a major role in defining cell 

shape and polarity through the specific interaction of their plus ends with proteins at 

the cell cortex. This plus end capture of microtubules has been attributed to a number 

of plus end–binding proteins, whose activities are influenced by Rho GTPases. CLIP-

170, for example, can simultaneously bind to microtubules and to the scaffold protein 

IQGAP, a Rac/Cdc42 effector that is enriched at the leading edge of migrating cells. 

Expression of constitutively active Rac or Cdc42 enhances the ability of CLIP-170 to 

bind to IQGAP, thereby promoting plus end capture (M. Fukata et al. 2002). 

Interestingly, mDia is a downstream effector protein of RhoA, which is involved in 

both the regulation of the actin cytoskeleton as well as the microtubule cytoskeleton. 

Both Rac1 and Cdc42 can influence microtubule stability also by mediating PAK 

signalling to stathmin, an important microtubule destabilizing protein (Daub, Gevaert 

30

javascript:void(0);


INTRODUCTION 

et al. 2001). RhoA can promote the formation of stable and aligned microtubules via 

signalling through mDia (Palazzo, Cook et al. 2001; Yamana, Arakawa et al. 2006). 

 
1. 7. 3 Rho GTPases and cytoskeleton-dependent processes 
Dynamic rearrangements of the cytoskeleton and cell adhesion are required for various 

cellular processes, such as shape changes, migration, and cytokinesis and cell polarity. 

Reorganization of actin filaments and cell-substratum contacts is believed to be 

involved in cell motility. Membrane ruffling is observed at the leading edge of motile 

cells and is also thought to be essential for cell motility. A force arising from actin 

polymerization appears to drive lamellipodia protrusion. This process is thought to be 

regulated by Rac. A force derived from myosin II triggered by MLC phosphorylation, 

in the area of membrane ruffling and in the posterior region of motile cells may also 

contribute to the cell movement (K.Kaibuchi 1999). Adhesive structures such as tight 

junctions (TJs), adherens junctions (AJs) and desmosomes are linked to the 

cytoskeleton and determine epithelial morphology and functionality and therefore play 

an essential role in the maintenance of tissue architecture (Halbleib and Nelson 2006). 

Rho GTPases have been shown to regulate the formation and maintenance of these 

adhesive structures (AJs and TJs) (Mertens, Pegtel et al. 2006). Interestingly, Rho 

GTPase signalling can contribute not only to stabilisation but also to disassembly of 

AJs leading to EMT. RhoA signalling via mDia and subsequent actin polymerisation 

is required for formation and maintenance of AJs, whereas RhoA signalling through 

ROCK results in disruption of AJs caused by increased contractility (Sahai and 

Marshall 2002). Various studies have suggested that Rho GTPase signalling is 

required for the regulation of membrane-trafficking processes such as exocytosis, 

endocytosis and phagocytosis, processes which are dependent on actin and 

microtubule dynamics and essential for establishment of asymmetrical distribution of 

proteins in polarized cells (Symons and Rusk 2003). 

 

1.8 Rac1 
Rac with Rho and Cdc42 is one of the most extensively studied members of Rho 

GTPases family and it was initially discovered as Ras-related C3 botulinum toxin 

substrate 1 in 1989. There are three  distinct Rac isoforms encoded by different genes: 

Rac1-2 and 3, which share between 89-93% amino acid sequence identify (Didsbury 
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et al 1989; Wherlock and Mellor , 2002). Rac1 and Rac3 are ubiquitously expressed 

and therefore regulate a wide variety of cellular processes, while Rac2 is 

predominantly expressed in cells of the hematopoietic lineage. Rac can be found in the 

cell in two forms: an active form GTP-binding ligand and an inactive GDP-bound 

form. In response to extracellular signals, interconversion between these two states is 

made by the GEF that convert Rac in an active form, while the GAP report it in an 

inactive state (Van Aelst and D'Souza-Schorey 1997; Etienne-Manneville and Hall 

2002). Thus it acts as molecular switches cycling between an active GTP ‐bound and 

an inactive GDP ‐bound fo        

addition, Rac in the cytoplasm is sequestered by GDI that bind and mask its group 

prenilico responsible for its localization to the plasma membrane. The dissociation of 

GDI allows Rac to translocate to the membrane and be functionally active. It has been 

shown that the signal transduced by integrins promotes the dissociation of the complex 

Rho GDI-Rac and the recruitment of Rac on the plasma membrane. Like most other 

GTPases, these proteins adopt different conformations depending on the bound 

nucleotide, the main differences lying in the conformation of two short and flexible 

loop structures designated as the switch I and switch II region.).  

 

1.8.1 Rac1: effectors and functions 
Rac1 has been shown to play a fundamental role in a wide variety of cellular 

processes, including actin cytoskeletal reorganization, cell transformation, the 

induction of DNA synthesis, superoxide production, axonal guidance and cell 

migration. Rac1 is implicated in reorganization of the actin cytoskeleton, specifically 

lamellipodia formation, which is thought to contribute to cell movement (Ridley, 

Paterson et al. 1992). Rac1 was shown to reside at the leading edge of migrating cells, 

and microtubule growth can activate Rac1 to promote lamellipodial protrusion. The 

actin-rich lamellae formed at the leading edge in fibroblasts are similar to the 

membrane dynamics at developing cell-cell contacts in epithelial cells, where actin is 

recruited to physically strengthen adherens junctions (Vasioukhin, Bauer et al. 2000; 

Ehrlich, Hansen et al. 2002). The main effectors of Rac involved in this process are: 

PAK (p21-activated kinase), PI4-P5K, WAVE (family verprolin-homologous protein) 

belonging to the family of proteins WASP, IQGAP and SRA1 (Rac1 associated 

protein) (Jaffe and Hall, 2005). Each of these effectors contributes to the 
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reorganization of the actin cytoskeleton through different mechanisms. IQGAP  and 

SRA1 directly interact with actin filaments in vitro. IQGAP connects actin filaments 

with microtubule stabilizing it, while SRA1 forms a complex with WAVE, which 

activates Arp 2/3 complex. PI4-P5K directly interacts with Rac-GTP by determining 

the increase in the levels of PIP2, with consequent release of the proteins involved in 

the mechanism of capping'' of actin. TIAM1 is the main GEF that regulates actin 

polymerization Rac-mediated. The actual model proposed is that TIAM1 binds ARP 

2/3 and following this link, TIAM actives Rac. After this activation Rac1 binds 

WAVE complex and promotes actin filaments nucleation through ARP 2/3 complex 

with subsequent lamellipodia formation. Finally, another effector of Rac1 is a serine 

threonine kinase PAK, located at the level of the ruffle membrane. PAK1 binds Rac1 

in aGTP-dependent manner, potently stimulating PAK kinase activity and leading to 

cytoskeletal dynamics, adhesion, and transcription. PAK, activated by Rac1, induces 

the phosphorylation of proteins involved in the reorganization of the actin 

cytoskeleton promoting the lamellipodia formation(Bishop and Hall, 2000). Rac1 has 

been shown to mediate actin polymerization in other cell types including stimulated 

blood platelets, lymphocytes, mast cells, and endothelial cells. The actin 

polymerization machinery is another mediator between Rac1 activation and E-

cadherin-mediated cell–cell adhesion. Recruitment and activation of Rac1 and Cdc42 

by homophilic E-cadherin ligations can induce actin polymerization through the 

Arp2/3 complex and WAVEs or WASP. Together with other actin-binding proteins 

such as cortactin, polymerized actin filaments reinforce cadherin-mediated adhesions 

(Gates and Peifer 2005; Scott and Yap 2006). Another mechanism of AJ control by 

Rac1 includes its binds to IQGAP1. IQGAP1 is localized to sites of cell-cell contact in 

epithelial cells and it negatively regulates E-cadherin-mediated cell-cell adhesion by 

interacting with b-catenin. In this way it induces the dissociation of a-catenin from b-

catenin. Rac1 positively regulate cadherin-mediated cell-cell adhesion by inhibiting 

the interaction of IQGAP1 with b-catenin. Rac in the GTP-bound form interaction 

with IQGAP1 and thus prevent the association of IQGAP1 with β-catenin, which 

results in the stabilization of cadherin–catenin complex. In the GDP-bound form  Rac 

do not interact with IQGAP1, which associates with β-catenin, thereby displacing α-

catenin from its binding to β-catenin. This leads to a dissociation of α-catenin linked to 

actin filaments from the cadherin–catenin complex, conferring a weak adhesive 
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activity (J. Noritake, 2004). Based on these studies E-cadherin exists in a dynamic 

equilibrium between the E-cadherin-β-catenin-α-catenin complex and the E-cadherin- 

α -catenin-IQGAP1 complex at sites of cell-cell contacts. When the amounts of 

activated Rac1 increases, Rac1 binds IQGAP1, thereby inhibiting its bind to β-catenin 

and IQGAP1 cannot dissociate α -catenin from the cadherin-catenin complex leading 

to strong adhesions.. By contrast, when the amounts of inactivated Rac1 increases, 

IQGAP1 is freed from Rac1 and interacts with β-catenin to dissociate β-catenin from 

the cadherin- α -catenin-complex , resulting in weak adhesions (Figure 11). Because 

actin cytoskeletal dynamics are intimately linked to vesicular trafficking, it is not 

surprising that Rac1 has been implicated in this process. Rac1 is also involved in one 

or more steps of the phagocytosis process by mediating localized polymerization of 

actin at the membrane to promote the internalization of attached particles and 

microorganisms. 

 
Fig.11. E-cadherin exists in a dynamic equilibrium between the E-cadherin–b-catenin–
a-catenin complex and the E-cadherin–b-catenin–IQGAP1 complex at sites of cell–cell 
contact. The ratio between the two complexes could determine the strength of E-
cadherin-mediated cell–cell adhesion. Rac1/Cdc42 and IQGAP1 can serve as positive 
and negative regulators of cadherin activity, respectively. E-cadherin;  a-catenin; b-
catenin 

 

Rac1 is implicated in reactive oxygen species (ROS) generation in primary cells via 

NADPH oxidase o via Nox and it can regulate different functions such as transcription 

factor activation, proliferation, transformation, apoptosis. In addition to its effects on 

the actin cytoskeleton, Rac1 signaling can affect cell growth through a variety of 

mechanisms. Rac1 signals through PAK to activate c-Jun Nterminal kinase (JNK), 

placing Rac1 between Ha-Ras and MEKK in a signaling cascade from growth factor 

receptors and v-Src to JNK activation Rac1 has also been shown to influence nuclear 

signaling through its effectors MLK2/3, which have been shown to activate the JNK 

pathway (Teramoto, Coso et al. 1996). Rac1 signaling can be important for cellular 
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transformation via modulation of anti-apoptotic and cell cycle machineries. Rac1 

positively regulates transcription at NFkB transcription factor-dependent promoters 

and facilitates phosphatidylinositol-3 kinase (PI3K)-dependent activation of AKT 

ser/thr kinase, thereby permitting the survival of transformed cells (Perona, Montaner 

et al. 1997). Rac1 can also influence transformation through regulation of cyclin D1, a 

cell cycle protein that is frequently overexpressed in cancer (Westwick, Lambert et al. 

1997; Joyce, Bouzahzah et al. 1999) (Figure 12).  

 
Fig. 12 Rac1 signaling model. Rac1 is a signal transducer and receive information via 
activated GEFs from a several extracellular stimuli such as receptor kinases, G protein-
coupled receptors, and integrins. The GTP-bound Rac1 adopts an active conformation 
capable of binding effector molecules such as IQGAP, IRSp53/WAVE, PAK, MLK2/3, 
and p67phox. These effectors regulate many cellular functions, such as cytoskeleton 
remodeling, microtubule stability, gene transcription, and superoxide production (this 
picture was taken from Bosco, Mulloy et al. 2009). 
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                   2 AIM OF THE PROJECT 

 
The aim of this project is to analyze the role of the small Rho GTPase Rac1 in the 

acquisition of the polarized phenotype in epithelial cells. The small GTPases Rac1 is a 

member of the family of Rho GTPases, monomeric proteins of 20-30 kDa, which 

belong to the superfamily of the Ras GTP-binding proteins. They act in the cell as 

molecular switches cycling between a GTP-bound active state and a GDP-bound 

inactive state. Two classes of regulators control the nucleotide state: GEFs (guanine 

nucleotide exchange factors), which promote the exchange of GDP for GTP, and 

GAPS (GTPase-activating proteins) that enhance the intrinsic GTPase activity of Rho 

GTPases. Only in the GTP-bound state these proteins are able to bind effectors 

proteins and transduce signals from a large variety of membrane receptors, including 

adhesion receptors (such as integrins), and G-protein coupled receptors, that in turn 

have been implicated in many cellular process such as gene transcription, vesicle 

trafficking and cytoskeleton assembly. Moreover, it was recently shown that Rac1 and 

its effectors are key regulators of microfilament and microtubule dynamics and, 

consequently, are crucially involved in polarity signalling.  

We used as a model system FRT cells (an epithelial cell line derived from Fisher rat 

thyroid), because they are highly polarized and have been well characterized in our 

laboratory. In particular, I worked to develop a system of inducible inactivation of 

Rac1 in order to study the effects that follow the activation of this protein. My first 

aim has been to stably transfect FRT cells with a cDNA encoding a dominant negative 

form of Rac1 fused to the ligand-binding domain of the estrogen receptor ER (ER-

Rac1N17). 

The chimeric protein ER-Rac1N17 contains a threonine to asparagines substitution at 

residue 17 which abolishes the protein’s affinity for GTP and reduces the affinity for 

GDP. For this reason ER-Rac1N17 is always in a nucleotide free state or in its 

inactive, GDP-bound state. As a consequence, it might bind strongly Rac1GEFs, 

competing with endogenous Rac1 and inhibiting it. Rac1N17-Rac1GEFs complex is a 

non productive complex unable to generate a downstream response (L.Bishop and 

A.Hall). The activation status of the chimeric protein ER-Rac1N17 can be perfectly 

manipulated through the use of 4-OH-tamoxifen but several minutes are required to 

see the effect. The binding of the ligand to the estrogen receptor induces the 
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translocation of the chimeric protein ER-RacN17 to the membrane where it can 

interact with its many effectors.  

In my thesis project I tested the hypothesis that a reduced Rac1 activity caused 

defeacts in the polarization of the FRT cell line.  

To this aim, we analyzed the effects of the ER-Rac1N17 protein, activated upon 4-

OH-tamoxifen addition, on some parameters related to the epithelial polarized 

phenotype: 1. the ability to heal a wound in a confluent monolayer by directional 

migration; 2. the acquisition of trans-epithelial resistance (TER) by confluent 

monolayers grown on filters; 3. cell aggregation and formation of polarized cysts in 

suspension culture.  

Cell migration of individual cells or groups of adherent cells is a polarized process 

because migrating cells exhibit a front rear polarized morphology. It has been shown 

that directional migration of many cell types requires coordinated crosstalk between 

Rho GTPases and polarity proteins. To study the effects of the ER-Rac1N17 on cells 

migration we performed the wound healing test on confluent monolayers in plastic 

dishes.  

Rac1 might play a role in the acquisition and maintenance of cell polarity by 

regulating the formation of junctionals complexes. The turnover of junctionals 

complexes anchoring adjacent epithelial cells and their integrity is crucial for the 

acquisition of the polarized phenotype. Tight junctions are responsible of for the 

establishment of a selective epithelial barrier and are essential to avoid the mixing of 

membrane lipids and proteins between the apical and the basolateral domains. We 

hypothesized that Rac1 plays a role in regulating the formation and integrity of 

junctionals complexes. This process can be monitored by measuring the level of TER, 

which is the resistance that the epithelial monolayer opposes to the passage of ions and 

represents an index of the degree of polarization of the cell monolayer. When 

epithelial cells are grown on top of filters in bicameral systems they undergo 

sequential stages of functional maturation, that lead to junction establishment and 

reinforcement.  

A characteristic morphogenetic event that can be observed when FRT epithelial cells 

are grown as aggregates in suspension culture is aggregate compaction and their 

evolution into polarized three-dimensional structures, named cysts (or inverted 

follicles). The ability to form cysts is linked to the acquisition of a polarized 
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phenotype: cells are connected by adherens and tight junctions, segregate membrane 

proteins in distinct plasma-membrane domains, and vectorially pump fluid inside the 

follicular lumen. We decided to investigate the effect of Rac1 inhibition on the 

morphogenetic ability of FRT cells to develop these polarized cysts.  

To unravel the molecular mechanism by which Rac1 affects the acquisition and 

maintenance of cell polarity, we investigated the establishment of E-cadherin-

dependent cell-cell contacts, which is another key event in the process of epithelial 

polarization. We determined the dynamics of subcellular localization of Rac1 and of 

E-cadherin molecules to understand if, and how, both proteins are intimately related 

functionally. We performed several experiments to prove that Rac1 inhibition impairs 

E-cadherin ability to form functional contacts. 

Overall, in this work a novel experimental approach, i.e. the use of an inducible 

dominant-negative form of the Rac1 protein, has been used to demonstrate the 

involvement of this small GTPase in the epithelial polarization process and to unravel 

its mechanism of action. 
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3.1 Goals of the project and model systems 
 

Epithelial polarity is a complex phenomenon directed by external cues, such as cell-

cell and cell-matrix interactions, and addressed to the acquisition of a unique 

cytoarchitecture that concerns the specialized organization of organelles, plasma 

membrane, and cytoskeleton. 

Rac1 belongs to the Rho GTPases family and through its effectors regulates 

microfilament and microtubule dynamics (ref review). Since epithelial polarization 

leads to drastic changes in the cytoskeleton organization (Mays et al, 1994; Bacallao 

& MacNeill, 2009; Weisz and Rodriguez-Boulan, 2009; Datta et al, 2011) it has been 

hypothesized that Rac1 could play a crucial role in this process. Indeed, several 

findings showed that the establishment of the initial zone of cell-cell contacts requires 

the local activation of Rac (Ehrlich et al, 2002; Hoshino et al, 2004; Lambert et al; 

2002) which, driving the formation of actin-based protusions (Ridley 2006), can 

promote the formation of new E-cadherin-based contacts between neighboring cells. 

In addition, Rac can also stimulate the activity of PI3K and the Cdc42- and Arp2/3-

mediated actin nucleation, as well as the recruitment of cortactin (Vasioukinin et al, 

2000; Ehrlich et al, 2002), all of which may help to promote an increase of the zone of 

cell-cell contacts. Together with Cdc42, Rac appears also to contribute to the assembly 

of functional tight junctions (Chen and Macara 2005; Mertens et l, 2005). Although all 

these findings support a critical role of Rac in epithelial polarization, it is not clear 

how and at which steps Rac regulates this process.  

The present project was mainly focused on the analysis of the role of the Rac1 protein 

in the acquisition and maintenance of the polarized phenotype in epithelial cells. One 

of the potential ways to study the function of a protein is to block its activity within 

cells. The use of dominant-negative mutants can be a simple tool to achieve this task. 

These mutated proteins interfere with the function of their normal cellular counterparts 
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or with proteins that interact with them. To study whether and how Rac1 is implicated 

in the acquisition of a polarized phenotype we decided to use its dominant negative 

form (Rac1N17). A model of how the dominant negative RasN17 functions has been 

previously proposed by Feing (Feing LA, 1999) and Bishop and Hall have speculated 

that it was the same for Rac1N17 (Bishop L and Hall A, 2000). 

Rac1N17 protein contains a threonine to asparagine substitution at residue 17. As a 

consequence it has a higher affinity for GDP than for GTP and fails to bind 

downstream effectors in vivo. The threonine residue at position 17 binds magnesium 

ions (Mg2+) that will be located in the nucleotide-binding pocket of both GTP- and 

GDP-bound Rac1. Rac1N17 exhibits reduced Mg 2+ binding (Paduch et al, 2001; ma la 

dimostrazione formale è solo per Ras, lo lasciamo lo stesso?). Proper binding of Mg2+ 

may be necessary to Rac1 in order to reach an active conformation, because the 

effector domain also binds this tethered Mg2+ when Rac1 switches to the active state. 

However, Rac1N17 has another important property: it binds more tightly to 

Rac1GEFs than wild-type Rac1. Indeed, GDP-bound Rac1 binds to Rac1GEFs with 

low affinity. This binding promotes the release of bound GDP, leading to a high 

affinity transient binary complex between nucleotide-free Rac1 and the RacGEF. This 

complex would be very stable in cells except for the fact that nucleotides have a higher 

affinity for nucleotide-free Rac1 than does RacGEF. As GTP is present at higher 

concentrations than GDP, GTP quickly binds nucleotide-free Rac1 and displaces the 

RacGEF. Rac1N17 binds more strongly to RacGEFs than does normal Rac, for two 

reasons. First, Rac1N17 shows severely reduced affinities for nucleotides, thus 

guanine nucleotides are less likely to displace RacGEFs from these mutants in the 

cells. Second, the nucleotide-free form of the mutant has higher affinity for RacGEFs 

than does wild-type Rac. Rac1N17/ Rac1GEFs complex is a non-productive complex 

unable to generate a downstream response. 

As a model cellular system we used FRT cells, an epithelial cell line derived from 

Fischer rat thyroid, that are well polarized both morphologically and functionally 

(Nitsch L et al., 1985) and have been well characterized in our laboratory (Nitsch, et 

al, 1985, Zurzolo et al, 1991, 1994, 1996). FRT cells are metabolically 

dedifferentiated, but still express the thyroid-specific transcription factor Pax8 (Mascia 
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A et al. 1997). When cultured to confluency FRT cells become polarized and are 

connected by a continuous belt of tight junctions (Zurzolo et al, 1991, 1996).  

In agreement with previously data showing that Rac1 regulates cell proliferation 

through a variety of mechanisms (Bosco et al, 2009) and that Rat 2 fibroblasts 

expressing Rac1N17 are arrested in G2/M (Moore et al, 1997), we found that the 

expression of Rac1N17 in FRT cells impairs their growth (Mascia, personal 

communications). Thus, we were not able to obtain FRT cell clones stably expressing 

Rac1N17 and, therefore, we concluded that cells cannot tolerate a prolonged 

expression of inhibitory Rac1 mutant. For this reason we generated an inducible 

chimeric protein (ER-Rac1N17; Fig. 1A) by fusing Rac1N17 downstream of the 

ligand-binding domain (ER) of the murine mutant estrogen receptor (G525R; 

Littlewood TD, 1995). This mutant no longer binds natural estrogens (which are 

normally present in the serum of the culture medium), possess no TAF-2 

transactivation activity, and it is responsive only to activation by the synthetic steroid  

4-OH-tamoxifen (Littlewood TD, 1995), therefore overcoming all possible drawbacks 

related to the use of hormone-binding domain as a switch (Figure 1). 

 

 
Fig. 1 Schematic drawing of inducible (ER-Rac1N17) and non-inducible 
(Rac1N17) dominant-negative form of Rac1. a) ER-Rac1N17 contains the 
hormone binding domain of mutated murine estrogen receptor (which is responsive 
only to 4-OH-Tamoxifen [4-OHT])  fused to the mutant form of Rac1, Rac1N17. 
Upstream of ER domain there is the AU1 tag which consists of a small peptide of 
six amino acids (DTYRYI) b) Rac1N17 construct bears a FLAG tag at the N-
terminus.  
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3.2 Transfection of ER-Rac1N17 in FRT cells and analysis of its  
expression 
 
My first aim has been to stably transfect FRT cells with the cDNA encoding the 

chimeric protein ER-Rac1N17 under the control of the cytomegalovirus promoter. 

After neomicin selection we isolated many resistant clones: a lot of them resulted 

completely negative, other ones displayed low percentage of positive cells. Totally, it 

was rather difficult to obtain pure positive clones possibly because the overespression 

of Rac1N17, although inducible, could display a residual activity not compatible with 

cell survival. Nevertheless, by cloning dilution we were able to obtain several clones 

expressing the chimeric protein at different detectable levels and almost in all cells as 

assessed both by western blot analysis and by indirect immunofluorescence assays 

(Fig. 2a, b). To discriminate between the transfected chimeric protein and endogenous 

Rac1 we used an antibody against the AU1 tag (Fig. 1a), a peptide of 6 aminoacids 

(DTYRYI) derived from the protein of the bovine papilloma virus 1 (BPV1) or an 

antibody against the ER domain itself. As shown in Fig. 2a, ER-Rac1N17 migrated in 

the gel according to its molecular weight (57kDa). Moreover the clones displayed a 

good fluorescent signal (Fig. 2b).  

To better understand how we could manipulate the system, we performed kinetics of 

stimulation with 4-OH-tamoxifen. To this aim, cells were grown on glass slides for 

two days and incubated with 4-OH-tamoxifen (100 nM in the culture medium) for 

various times: 10 ', 30 ', 1 h, 5 h, 10h e 24h. At intervals, cells were fixed and stained 

with anti-AU1 antibodies for immunoflurescenze. ER-Rac1N17 was diffusely 

distributed in the cytosol in the absence of 4-OH-tamoxifen. A period of 30 minutes 

incubation with 4-OH-tamoxifen was sufficient for a detectable fraction of the ER-

Rac1N17 protein to reach the plasma membrane and by 1 hour the protein localized on 

the plasma membrane of all cells, at sites of cell-cell contacts. Hence, ER domain 

prevents Rac1N17 mutant to move to the cell surface; conformational changes, due to 

4-OH-tamoxifen binding, lead to its translocation. Taken together these data indicate 

that the activation status of ER-Rac1N17 can be manipulated through the use of 4-OH-

tamoxifen and that the activation  occurs within minutes.  
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Fig. 2 a) Western blot analysis of FRT cells stably expressing ER-Rac1N17. Cells 
were grown on dishes to confluency and lysed in RIPA buffer. Proteins were separetd 
by SDS-PAGE and revealed by using a specifc antibody against AU1 tag. b) 
Immunofluorescence assay of FRT cells stably transfected with ER-Rac1N17. Cells 
were treated with 4-OH-tamoxifen for 1 hour, fixed with 4% paraformaldehyde for 20', 
permeabilized with 0.3% TX100 for 5’ and stained with the AU1 antibody. Note that 
ER-RAcN17 is expressed at different detectable levels in the clones.  
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Fig 3. Kinetics of induction of ER-Rac1N17 with 4-OH-tamoxifen. FRT cells 
expressing ER-Rac1N17 were stimulated for various times with 100nM 4-OH-
tamoxifen (10 ', 30, '1h, 5h, 10h, 24h) and then fixed and analized by 
immunofluorescence (a).  Note that after 30 ', in almost all cells, the majority of ER-
Rac1N17 is localized  in the plasma membrane at cell-cell contacts. Alternatively cells 
were lysed and samples separated in SDS-PAGE and revealed with an anti-ER 
antibody (b). Quantification of three independent experiements is shown. Bars, SD.  

c) 

46



RESULTS 

Note that there is a gradual increase of protein levels over time. c) Cells were 
incubated 24 and 48 hours with 4-OH-tamoxifen and then treated as in b. Note that 
expression levels of the chimeric protein are higher in presence of tamoxifen.   

 

 

 

 
Moreover we observed that, upon 4-OH-tamoxifen binding, the chimeric protein was 

mostly localized on the plasma membrane like the endogenous Rac1 (Fig. 3a). Indeed, 

in confluent wild-type FRT cells Rac1 was present both in the cytoplasm, either as 

diffuse or in small clusters, and on the plasma membrane, at sites of cell-cell contacts. 

Similarly, in non-confluent cells (where cells form colonies of different size) Rac1 

was localized at the cell surface in lamellipodia and membrane ruffles, which are 

peripheral membrane structures related to the migratory activity of the cells, and 

eventually end up with fusion of the colonies. Furthermore the localization of ER-

RacN17 was comparable to that of non-inducible dominant-negative form of Rac1 

(Flag-Rac1N17; Fig. 3b), thus indicating that the fusion with ER-domain does not 

alter the behavior of the mutant protein.  These data also indicate that Rac1 

recruitment to the plasma membrane occurs independently of its nucleotide-bound and 

active state as previously described for inhibitory mutants of Ras (Feig, 1999).  All 

these results suggest that the chimeric protein is a good tool to study the role of Rac1 

in the polarization process.  

 

 
.Fig  4. a) Immunofluorescence of Rac1 protein in FRT cells.  Confluent and 
non-confluent (at the stage of small colonies) FRT cells were fixed and stained 
with anti-Rac1 antibody.  Note that Rac1 is localized both on the plasma membrane 
and in the cytoplasm. b) Immunofluorescence of Flag-Rac1N17. After fixation, 
cells were stained with an anti-FLAG antibody and revealed with a FITC-conjugated 
secondary antibody.  

 

a) b) 

47



RESULTS 

Interestingly, by investigating the expression of ER-RacN17 upon tamoxifen 

incubation (Fig.  3b, c) we found that an increase of protein levels occurred over time 

as it was strongly evident after 24 and 48 hours of treatment (Fig. 3c). This could 

imply that the binding with tamoxifen stabilizes the protein preventing its degradation 

as it has previously proposed for an inducibile, dominant-negative mutant of Ras (De 

Menna et al. 2012) and suggests an additional mechanism by which the ER-domain 

could act. 

The change in the distribution ER-Rac1N17 in the cells after 4-OH-tamoxifen 

stimulation was also examined by a membrane/cytosol fractionation assay. The 

relative amount of ER-Rac1N17 that was associated to membrane fractions and to 

cytosolic fractions, in controls and in 4-OH-tamoxifen stimulated cells, was examined. 

In this experiments FRT cells stably transfected with ER-Rac1N17, grown on dishes 

for 48 hours, were stimulated with 4-OH-tamoxifen for 1 hour. In good agreement 

with immunofluorence data, in the absence of 4-OH-tamoxifen the protein wass 

distributed mainly in the cytosolic fraction while, after 1 hour of tamoxifen treatment, 

about 90% of the total protein was found in the membrane fraction (Fig. 5).  

 

 
Fig. 5 Membrane/cytosol fractionation assay. FRT cells stably expressing FRT-
ER-Rac1N17, grown on dishes to confluency, were incubated for 1h with 4-OHT 
and, then, homogenized with a cell scraper in hypotonic buffer. After nuclei 
sedimentation, samples were centrifuged at 33,000 rpm for 30 min at 4°C in order to 
separate cytosolic fraction (supernatant) from membrane fraction (pellet). The latter 
was resuspended and solubilized in 2X Laemmli buffer. The samples were then 
subjected to western blot analysis loading on the gels the same amount of the two 
fractions.  As controls the distribution of E-cadherin and GAPDH (a membrane and 
cytoslic protein, respectively) were analyzed. Note that upon 4-OHT incubation ER-
RacN17 translocates from cytoplasm (Cyt) to the membrane fraction (M).  
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We then asked whether the effects of 4-OH-tamoxifen stimulation would be 

maintained. To this aim, 4-OH-tamoxifen was added to the cultures for 1 hour and 

several washings with culture medium were made to completely remove 4-OH 

tamoxifen. Cells were fixed and stained with the anti-AU1 antibody either 24 or 48 

hours after further culture in normal culture medium. It turned out that both after 24 

and 48 hours ER-Rac1N17 was still localized on the plasma membrane, at sites of 

cell-cell contacts. There are two possible explanations for this results. The first is that 

we cannot really remove 4-OH-tamoxifen and that it has a half-life sufficiently long to 

continue to activate ER-Rac1N17. The second is that ER-Rac1N17, once it is 

activated, remains on plasma membrane for long time and has a long half-life. To 

distinguish between these two hypotheses it would be useful to analyze the half-life of 

the chimeric protein and compare it to the endogenous one. 

 
 

 
 
Fig. 6) Analysis of the effects of tamoxifen removal on ER-Rac1N17 distribution. ER-
Rac1N17 expressing cells were treated 1h with 4-OHT. Then, 4-OHT was removed by several 
washings with culture medium and cells were fixed after 24h and 48h, and ER-Rac1N17 
distribution was analyzed by immunofluorecence assay. Note that upon tamoxifen removal in a 
high percentage of the cells ER-RacN17 is still present on plasma membrane.   

 
 
 

3.3 Consequences of the expression of the dominant-negative form of 
Rac1 on the endogenous Rac1 protein  
 

As previously found for other GTPases (Feig et al 1999), it is expected that inhibitory 
mutants should act by interfering with the activity of the wild-type protein. Hence, we 
investigated whether and how the expression of ER-RacN17 has an effect on 
endogenous Rac1 (Fig. 7). We found that Rac1 is expressed at comparable levels both in 
absence and in presence of 4-OH-tamoxifen (Fig. 7a), indicating that the stable 
expression of the mutant does not affect the synthesis and/or the turnover of 
endogenous Rac1. Moreover ER-RacN17 expression does  
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d) 

 
 

 
Fig.7 Analysis of the effects of the expression of dominat-negative Rac1 in FRT 
cells.  (a) amounts of Rac1 in FRT-ER-Rac1N17 cells. FRT cells stably expressing 
FRT-ER-Rac1N17, grown on dishes or on coverslips up to confluency, were  incubated  
with 4-OHT for the indicated times and subjected to western blotting (a) or 
immunofluorescence assay (b). Briefly,  at the end of each time point, cells were lysed 
with Ripa Buffer and, after SDS-PAGE separation, proteins were revealed using an anti-
Rac1 antibody. Alternatively cells were fixed and permeabilized with methanol/Triton 
X100 and stained with specific antibodies against ER and Rac1 (which reveals both ER-
RacN17 and endogenous Rac1). Note that the expression of dominant-negative mutant 
does not affect either the expression levels of Rac1 or its localization (compare the 
signal of Rac1 in transfected and untrasfected cells). (c) Upon 4-OHT incubation (1h) 
cells were lysed and fractionated as described in Fig. 5. The samples were then 
subjected to western blot analysis.  Note that in absence and presence of 4-OHT Rac1 is 
distributed both in cytosol (Cyt) and in membrane fraction (right  panel) as in wild-type 
cells (lefts panel). (d) The acrivity of Rac1 is measured through a GTPase pull down 
assay by using glutathione beads coupled to Cdc42/Rac1 interactive binding region 
(CRIB).  After precipitation, samples were revealed by immunoblotting with an anti-
Rac1 antibody. 1/10 of lysates before GST pull down were loaded on the gel and 
revealed with anti Rac antibody (totals). A decrease of Rac1 activity was observed after 
3 hours of 4-OHT incubation.  
 

 
 
 

alter the localization of endogenous Rac1 (Fig. 7b), which, as in wt FRT cells (Fig. 

4a,b), is distributed both on the cytoplasm and on the plasma membrane. Consistently, 

we found that both in absence and in presence of 4-OH-tamoxifen Rac1 resulted in 

cytosol and membrane fraction (Fig. 7c, right panel) in a ratio similar to that observed 

51



RESULTS 

in wild-type cells (Fig. 7c, left panel). By GFT-CRIB pull down assay we measured 

the activity of Rac1 in controls and after induction of the mutant expression. We found 

that the amount of active Rac1 decreased in the cells  after 3 hours of 4-OH-tamoxifen 

stimulation (Fig. 7d), indicating that the expression of a dominant negative of Rac1 

interferes with the activity of the wild-type endogenous protein. Moreover these 

results further confirm that the ER-Rac1N17 mutant represents a good experimental 

tool.  

 

3.4 Analysis of the role of  Rac1 in the acquistion of cell polarity 

 

In order to investigate the role of Rac1 in the acquisition of the polarized phenotype 

we examined the effects of the ER-Rac1N17 induction on parameters related to cell 

polarization such as directional migration, trans-epithelial resistance (TER) acquisition 

by confluent monolayers grown on filters, cell aggregation and formation of polarized 

cysts in suspension culture. 

 

3.4.1 The dominat-negative Rac1 reduced the migratory ability of 
cells. 
 

Cell migration is a multistep process involving changes in the cytoskeleton, cell-

substrate adhesions and the extracellular matrix component. Cell migration is 

generally initiated in response to extracellular stimuli, like diffusible factors, signals 

on neighboring cells and/or signals from the extracellular matrix. The idea that Rho 

family GTPases could regulate cell migration is well established and is derived, on 

one side, from the observation that they mediate the formation of specific actin 

containing structures such as lamellipodia (Etienne-Manneville and Hall, 2002) and, 

on the other side, because they regulate several other processes relevant to cell 

migration, including cell-substrate adhesion, cell-cell adhesion, protein secretion and 

vesicle trafficking. The epithelial cells do not migrate as single cells but rather migrate 

as sheets or clusters. Upon scratching of an in vitro cell monolayer, the synchronized 

movement of the cell sheet is induced. As with single cells, the migrating sheet detects 

the direction of migration and polarizes with the protrusive activity constrained to the 
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front. Interaction with neighbors can provide additional directional cues to cells in the 

monolayer. We therefore decided to analyze whether Rac1 inhibition affected cell 

migration. To this aim we performed wound-healing assays, which are simple, low-

cost and well-developed methods to study directional cell migration in vitro based on 

three main steps: i) creation of  "wound" in a cell monolayer with a micropipet tip;  

ii) capturing of images at the beginning, and at regular intervals, until the wound is 

closed; iii) measuring the distance between the two sides of the wound over time, thus 

determining the ability to heal the wound. In our experiments cells were grown to 

confluency and, 24 hours after plating, they were shifted to a serum free medium for 

the rest of the experiment in order to prevent cell proliferation. In this way, the repair 

of the wound can be attributed exclusively to the cell migratory capability and not to 

their replication. We performed the assay with or without 4-OH-tamoxifen, which was 

added to the culture medium immediately after making the wound. We monitored the 

repair of the wound by observing the cells with phase contrast microscopy and taking 

pictures at different times. We found that wild-type FRT cells completely repaired the 

wound within 48 hours both in the presence or absence of 4-OH-tamoxifen indicating 

that tamoxifen, per se, does not influence the migration of FRT cells.  In FRT cells 

stably expressing ER-Rac1N17 there was a significant delay in the healing of the 

wound upon 4-OH-tamoxifen-treatment in contrast to untreated cells that behaved as 

wild-type cells (Fig. 8b). These results indicate that the over-expression of a 

dominant-negative form of Rac1 significantly delays the closure of the wound do to a 

slower cells migration that is likely do to Rac1 inactivation. 
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Fig. 8  Evaluation of the effect of ER-Rac1N17 expression on the migratory 
properties of FRT cells. FRT (a) or FRT-ER-Rac1N17 (b) cells were seeded on plastic 
dishes to confluency and 24h after plating a scratch on the monolayer was performed 
with a tip. The healing of the wound was monitored over time in the absence (Ctr) or in 
the presence of 4-OHT. Pictures were taken by phase contrast microscopy immediately 
after the scratch (Time 0) and 24h and 48h later. Representative fields of the scratch are 
shown for each time point. Pixel densities in the wound areas was measured using the 
Cella software (Olympus Biosystem Gmb) and expressed as percentage of wound 
aperture (normalized respect to the initial size of the wound posed as 100%) vs time. 
Error bars, mean ± SD. Rac1 inhibition by the activation of ER-Rac1N17 reduces the 
migratory ability of FRT cells. 

 
3.4.2 The inhibition of Rac1 impairs the acquisition of transepithelial 
resistance (TER). 
 

Transepithelial resistance (TER) measurements have become universally established as 

the most convenient and non-destructive method to evaluate and monitor the 

polarization process in epithelial cells. The confluency and tightness of the cellular 

monolayers is quickly determined by the increase in TER values. This event correlates 

with tight junction formation and the corresponding decrease in tight junction 

paracellular permeability. TER is the measure of the resistance that the epithelial 

monolayer opposes to the passage of ions and it increases during the days in culture up 

to reaching a plateau.  FRT cells can reach quite high TER values (Zurzolo et al, 1991) 

if compared to other commonly used epithelial cell lines (i.e. MDCK, Caco2). TER was 

measured in FRT ER-Rac1N17cell monolayers grown on transwell filters (support of 

election for polarized growth), in the absence or presence of 4-OH-Tamoxifen treatment, 

by utilizing the Millicel-ERS resistance monitoring apparatus. In a first set of 

experiments 4-OH-Tamoxifen was added 24 hours after plating, when cells were not 

completely polarized yet. First, it was verified that tamoxifen did not influence the 

acquisition of TER in FRT cells (Fig. 9a -grey curve). We found that the tamoxifen-

activation of ER-Rac1N17 prevented the achievement of high TER values and, 24 hours 

after the addition of 4-OH-tamoxifen, the TER dropped to very low levels (Fig. 9b). In 

contrast, in untreated cells (Fig. 9b, black curve) TER increased over time and, four days 

after plating, reached very high, plateau values similar to wild-type FRT cells (Fig. 9a). 

These results indicate that the inactivation of Rac1 impairs the expression of high TER 

values. Moreover, to better understand the role of Rac1 in the acquisition of TER  we 

repeated this experiment measuring the TER at early time-points (Fig. 9c). We found 
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that 5 hours after 4-OHT incubation the TER started to decrease and it progressively fell 

down until it reached a value similar to the empty filter, at 24 hours (Fig. 9c). This 

correlates with the fact that the activity of Rac1 initiates to decrease 3 hours after 

tamoxifen incubation (Fig. 7d) and, beside, suggests that it exists a threshold value, in 

terms of number of inactive Rac1 molecules, which must be exceeded to impair this cell 

function.  
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Fig 9. Rac1 inhibition affects TER acquisition in cells grown on filters in bicameral 
systems. (a-c) FRTwt and ER-Rac1N17 cells were grown on transwell filters and, 24h 
after plating, 4-OHT was added. The experiments were made both in presence (grey 
lines) and absence (black lines) of 4-OHT. (d) 4-OHT was added at the moment of 
seeding the cells and TER was mesured after 24 hours.  Note that the expression of the 
dominant negative form of Rac1 prevents the achievement of high TER values.   
 

 

Since cell monolayers oppose resistance to ion passage already at 24-hours after 

seeding (Fig. 9A-C), in order to test whether Rac1 plays a role in the first steps of 

acquisition of TER (with respect to its maintenance), tamoxifen was added directly at 

the time of plating and TER was measured thereafter. In this condition the cells were 

unable to achieve a significant TER value compared to controls, that did not show any 

impairment in TER acquisition. This result suggests that prolonged Rac1 inhibition 
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affects the ability of cells to acquire transepithelial resistance and, therefore, to 

polarize.  
 

 

  3.4.3 The inhibition of Rac1 affected polarized cyst formation 

 

Most epithelial organs consist of monolayers of cells that adhere to each other through 

cell–cell junctions. These monolayers are arranged in follicular or tubular structures 

that enclose a central lumen and are surrounded by a basement membrane. Individual 

epithelial cells establish the apical domain next to the lumen, indicating a link between 

cellular polarity and tissue structure. The characteristic morphogenetic event  that can 

be observed when FRT epithelial cells are grown as aggregates in suspension culture, 

is that the aggregates undergo compaction and then evolve into polarized three-

dimensional structures, indicated as cysts (or inverted follicles) (Tacchetti et al, 1991). 

The ability to form cysts is linked to the acquisition of a polarized phenotype: cells are 

connected by tight junctions, segregate membrane proteins in distinct plasma-

membrane domains, and vectorially pump liquid inside the follicular lumen. Rac1 is 

known to be necessary to orient epithelial polarity throughout the polarization process 

and it has been shown to promote tubulocystic structures in the MDCK cellular system 

(O’Brien et al, 2001). To examine the role of Rac1 during cyst morphogenesis we 

plated cells expressing ER-Rac1N17 in suspension on agarose-coated dishes with or 

without 4-OH-tamoxifen and we monitored the cells over time. As shown in Fig 10, 

FRT cells formed cysts already at 24 hours after plating. Cists were stable and could 

be kept in suspension culture for long time (Fig 10). We found that FRT cells stably 

expressing ER-RacN17 behaved similar to wild-type cells when cultured in the 

absence of tamoxifen, while upon 4-OHT stimulation, cells aggregated, but this 

aggregates did not develop into polarized cysts (Fig. 10). These phenomena were more 

evident at 48h. 
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Fig. 10) Rac1 inhibition affects polarized cysts formation. wt FRT or FRT stably 
transfected with ER-Rac1N17 were plated in suspension on agarose coated dishes in 
absence or presence of 4-OHT. The cultures were monitored at intervals for the 
presence of cysts and pictures at different times were acquired by phase-contrast 
microscopy. Note that in FRT cells, both in absence and in presence of 4-OHT, cysts 
form at 24 hours and they are stable structures. In contrast, the 4-OHT induction of 
dominant negative form of Rac1 impairs the formation of cysts.  

 

The above results clearly show that the expression a dominat-negative form of Rac1 

affects directional migration, acquisition of TER, cyst formation, all parameters 

related to cell polarization. Thus, altogether these data clearly indicate that Rac1 plays 

a critical role in the acquisition of the polarized phenotype.  Next aim is to understand 

how Rac1 regulates cell polarization and by which molecular mechanisms.  

Cells are attached to one another at their lateral membranes. The lateral membrane is 

characterized by a series of junctions, including adherens junctions, which perform 

multiple functions, including initiation and stabilization of cell-cell adhesion, and tight 

junctions, which separate the basolateral surface from the apical surface. Adherens 

junctions (AJ) consist of the transmembrane protein E-cadherin, and intracellular 

components, p120-catenin, α-catenin and β-catenin. Tight junctions (TJ) consist of the 

transmembrane proteins occludin and claudin, and the cytoplasmic scaffolding 

proteins ZO-1, 2, and 3.  The formation of junctional complex anchoring adjacent 

epithelial cells and their integrity is crucial for the acquisition and maintenance of 
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polarity. TJ are responsible of selective epithelial barrier and are essential to avoid 

mixing lipids and proteins between apical and basolateral domains. 

The cell-cell adhesion mediated by E-cadherin of adjacent cells is the first step of 

polarization process, which is abolished upon addition of antibodies anti-cadherin. 

Recent evidence suggests that Rac1 has a role in regulating the formation and integrity 

of these complexes, although the molecular details are unknown. 

The over expression of a dominant negative Rac1 mutant (Rac1N17) results in the 

dislocation of AJ components and F-actin from preformed adhesion in MDCK cells 

and in primary keratinocytes cells. It has been shown that Rac1 interacts with complex 

Par3/Par6/αPKC through its GEF, Tiam1, participating in the mechanism of formation 

of tight junctions. 

Formation of the Adherens junction leads to assembly of the tight junction, but E-

Cadherin is not required to maintain tight junction.   

 

3.5 Rac1-GFP and E-cadherin co-localized on the plasma membrane 
at regions of cell-cell contacts 
 
E-cadherin is the major adhesion receptor present in the membrane of epithelial cells 

and plays a fundamental role in establishing and maintaining homotypic cell-cell 

adhesion between cells, thereby contributing to the organization of tissues (Tackeichi 

et al, 1988). Control of cadherin localization at the membrane is crucial for the 

determination of local adhesive properties. Cell-cell junctions are permanently formed, 

renewed or disassembled in order to respond to the different metabolic cell 

requirements. Therefore, cell-cell junctions have to be plastic and dynamic, and this 

implies a continous remodeling of their membrane organization.  

We analyzed the distribution of E-cadherin in FRT cells. As expected, E-cadherin was 

mainly localized on the plasma membrane predominantly at cell-cell contacts (Fig. 

11). A significative amount of the protein is also distributed in the perinuclear region, 

in a compartment with morphological features of the Golgi complex, as it is likely for 

a secretory proteins. In order to understand the relationship between E-cadherin and 

Rac1 we investigated the distribution of E-cadherin in  FRT cells stably transfected 

with the DNA encoding the chimeric protein Rac1-GFP. Confocal microscope images 

showed that Rac1-GFP, similarly to endogenous Rac1, localized predominantly on the 
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lateral domain of the cells. Interestingly, we found that, at steady state, Rac1-GFP co-

localized with E-cadherin at cell-cell contacts, as evidenced by the overlapping of 

green and red signal (Fig. 11), indicating that Rac1 and cadherin are in the same 

compartments. Moreover this suggests that Rac1 can control the E-cadherin activity.  

 
Fig. 11) Distribution of Rac1-GFP and E-cadherin in FRT cells.  FRT cells stably expressing Rac1-
GFP were fixed and stained with monoclonal anti-E-cadherin antibody. Rac1-GFP and E-cadherin are 
mainly localized at the plasma membrane. The two proteins co-localize at the level of cell-cell contacts 
as evident in the merge.   

 

3.6 Rac1 inhibition affects E-cadherin function 
 

Effect of Rac1 mutant on E-cadherin distribution. 
To understand how Rac1 could modulate the activity of E-cadherin we analyzed the 

effects of Rac1 inhibition on the E-cadherin plasma membrane localization and 

dynamics. To this aim we performed immunofluorescence assays on FRT-ER-

Rac1N17 cells grown both on transwell filters (Fig. 12a) and on glass cover slips (Fig. 

12b).  After 24 and 48 hours of 4-OH-tamoxifen treatment we found that Rac1 

inhibition led to different signal morphology in E-cadherin distribution. While control 

cells exhibited the characteristic localization of E-cadherin prevalently on cell contact 

sites, treated cells displayed an irregular signal and a strong reduction of fluorescence 

signal (more evident after 48h of treatment, Fig. 12), indicating that the amount of 

surface cadherin was reduced. This is consistent with previous observations showing 

that frequently there is a decrease of the surface expression of E-cadherin in epithelial-

mesnchymal transition as in the progression of many metastic carcinomas (Thiery et 

al, 2002). This findings, together with the fact that the total levels of E-cadherin were 
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unchanged (Fig. 12 c), suggests that inhibition of Rac1 could affect E-cadherin 

redistribution.   

     
     

        

           C) 
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Fig. 12) Effect of Rac1 inhibition on the distribution of E-cadherin. FRT-ER-Rac1N17 
monolayers, grown on transwell filters (a) or on 12-mm diameter glass cover slips (b), were 
stimulated with  4-OHT for the indicated times and then fixed and stained with anti-E-cadherin 
antibody. Images were acquired by confocal microscopy by using the same settings (laser power, 
gain, etc) and the xy images shown were taken in the comparable Z-plane. Alternatively, cells were 
lysed in RIPA buffer and samples, after SDS-PAGE separation, were immunoblotted and analysed 
for E-cadherin (c). 
In both culture conditions Rac1 inactivation alter the E-cadherin distribution and overall, after 48h 
of induction, there is a great reduction of E-cadherin signal at cell-cell contacts. In contrast the total 
amount of E-cadherin is unchanged. 

 

Effect of Rac1 mutant on detergent solubility of E-cadherin.  

In epithelial cells with mature cell-cell junctions, a significant fraction of TJ and AJ 

proteins partitions into a TX-100-insoluble pool that may reflect binding with the 

cytoskeleton or protein oligomerization (Wong et al 1997). Since inactivation of Rac1 

enhanced paracellular permeability (Fig. 10) and induced E-cadherin redistribution 

(Fig. 11), we analyzed the TX-100 solubility profiles of this protein.  

In untreated cells the amount of E-cadherin predominantly partitioned to the TX-100 

insoluble pool (Fig. 13). The induction of Rac1N17 induces a shift into the TX-100-

soluble pool as also further emphasized by densitometric estimation of the ratio of 

TX-100-insoluble to -soluble pool (Fig. 13). These results indicate that a significant 

fraction of TX100-insoluble E-cadherin is bound with the actin cytoskeleton and is 

influenced by Rac1 inactivation, which possibly could cause a decrease in cell-cell 

adhesion.  On the other hands, these data suggest that active Rac1 is required to ensure 

functional adherens junctions by controlling the E-cadherin dynamics.  
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Fig. 13. Triton X-100 (TX-100) solubility profile of E-cadherin in FRT-cells expressing Rac1 
mutants. FRT monolayers were induced to express mutant GTPases for 24 h. Cells were incubated 
at 4°C with extraction buffer containing 1% TX-100. A: TX-100-insoluble (I) and -soluble (S) 
fractions were analyzed by SDS-PAGE and immunoblotted for E-cadherin. Quantification of 3 
independnet experiments is shown, ±SD.  
Note that Rac1 inhibition results in an increase of E-cadherin soluble to TX-100 extraction.  

 

3.7 Rac1 activation is crucial for the early steps of epithelial cell 
polarization 
 
The above results indicate that Rac1 inactivation affects the distribution of E-cadherin 

as its binding to cytoskeleton implying that Rac1 modulates the functions of E-

cadherin and, consequently, of adherens junctions. However our analysis is performed 

at steady-state and, although adherens junctions are dynamically renewed in mature 

adhesions, we can underestimate the multifaceted role of Rac1 in the acquisition of 

polarized phenotype. Hence, to better understand the role of Rac1 in cell polarization, 

we investigated the effects of Rac1 inactivation during the early phases of this process. 

To this aim we performed calcium switch experiments, which represent a simple 
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method to transiently and reversibly impair cell-cell adhesion (Gonzalez-Mariscal et 

al, 1985; Pece et al, 1999). Cells were plated on transwell filters and, 24 hours after 

seeding, were incubated for 1 hour with EGTA, a Ca2+ chelator, in serum free media. 

As previously found in MDCK cells (Gonzalez-Mariscal et al, 1985), this treatment 

led to a drastic drop of TER (Fig. 13a) also in FRT cells, indicating that adhesion 

junctions were disassembled. Indeed as shown in Fig. 13b, cells lost contact with 

neighboring cells and they became rounded. Moreover, E-cadherin, which was 

localized at sites of cell-cell contact in cells cultured in normal Ca2+ levels (Fig. 13b, 

left), translocated from sites of cell-cell contacts to the cytosol and became diffusely 

distributed in FRT cells treated with EGTA (Fig. 14b, middle).  After the restoration 

of Ca2+,  cell-cell contacts were re-established (Fig 14b, right), TER was recovered to 

values comparable to control cells (Fig 14a) and E-cadherin could again be detected at 

sites of cell-cell contact (Fig. 14b, left); by 5 hours after Ca2+ restoration the rescue 

was complete.  FRT-ER-RacN17 cells behave as wild-type FRT cells upon Ca-switch 

and restoration (Fig. 14c,d). By contrast, 4-OH-tamoxifen induction of ER-Rac1N17 

cells during the Ca2+ restoration impaired the recovery of TER (Fig. 13c), which 

remained at values comparable to that of empty filters (≈ 120 ohm). Although the cells 

formed new cell contacts, the amount of E-cadherin that re-localized at these sites was 

drastically reduced (Fig.14d,e).  
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Fig. 14 Effects of Rac1 inactivation upon Ca2+ switch assay. FRT cells (a-b) and FRT-ER-Rac1N17 
cells (c-e) were incubated with EGTA for 1h to disrupt cell-cell adhesion and then cells were incubated in 
culture medium containing calcium. TER was measured after EGTA tretamente and after Ca-restoration 
for the indicated times (a, c,). Alternatively cells were fixed and stained with an anti-E-cadherin antibody 
followed by a TRITC-conjugated secondary antibody and with anti-ER antibody followed by a FITC-
conjugated secondary antibody (b, d).  Quantization of fluorescence of E-cadherin signal was performed 
by using Zeiss software in two independent experiments (e). Error bars, mean ± SD. 
Note that Rac1 inactivation impairs the recovery of TER upon Ca-restoration and results in a reduced 
recruitment of E-cadherin at cell-cell contacts. 
 

 
Interestingly, by combining fractionation assays with the calcium switch experiment 

(Fig. 15), we found that upon Ca2+ restoration endogenous Rac1 partitioned prevalently 

into the membrane fractions  (with a ratio higher than at steady-state; compare with Fig. 

7c), suggesting that it was strongly recruited to the plasma membrane. This is in 

agreement with previous data showing that Rac1, together with E-cadherin, becomes 

relocalized at cell-cell contacts after Ca-restoration (Nagakawa et al 2001). By contrast, 

upon 4-OH-tamoxifen stimulation, endogenous Rac1 failed to be enriched in the 

membrane fraction (Fig. 15), indicating that the induction of dominat-negative mutant 

prevents its membrane recruitment. Moreover, these results suggest that Rac1 is crucial 

to recruit E-cadherin to cell-cell contact sites during the first steps of adhesion junction 

formation. 

Altogether these data indicate that the activation of Rac1 is crucial during the first steps 

of cell polarization. Consistently with data obtained at steady-state (Fig. 12), it is clear 

that the expression of a dominant negative mutant affects E-cadherin distribution and 

dynamics. This, in turn, could be critical for the homeostasis of adherens junctions.   

 

 
Fig.15) Membrane/cytosol fractionation assay upon calcium-switch. FRT-ER-
Rac1N17 cells grown on filter were treated for 1h with EGTA, 24h after plating. After 
Ca-restoration (5 hours) cells were homogenized and centrifuged to separate cytosol and 
membrane fractions as described in Fig 5. Samples were immunoblotted with specific 
antibodies against ER or Rac1.  Upon 4-OH-tamoxifen stimulation, endogenous Rac1 
failed to be enriched in membrane fraction. In contrast, as shown in Fig. 5, the 
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dominant-negative mutant is purified mainly in the membrane fraction in the presence 
of 4-OH-tamoxifen.  

 

3.8 Rac1 inhibition affects E-cadherin traffic and membrane 
organization 
 
On the basis of the above data it appears clear that active Rac1 is required for E-

cadherin organization and dynamics, both essential to the maintenance of epithelial 

integrity during tissue homeostasis and remodeling (Baum et al, 2011). E-cadherin 

dynamics is mediated through several mechanisms such as diffusion, trafficking in 

function of the biological system. In mature junctions, membrane E-cadherin is 

quickly renewed by endocytosis in many cell type (De beco et al, 2012).  

Thus, we asked how Rac1 inhibition impairs E-cadherin distribution/organization.  By 

biochemical assays of endocytosis, we found that a chemical inhibitor of Rac1 activity 

affected the kinetics of E-cadherin internalization (data not shown). In particular, 

while in control cells we detected the maximum rate of E-cadherin endocytosis after 

30 min, there was a shift upon Rac1 inhibition, suggesting that E-cadherin was 

accumulated in the cells. We are currently repeating these experiments in FRT ER-

RacN17 cells and preliminary results seems to confirm those obtained by chemical 

inhibition.  

E-vadherin was constitutively internalized into early endosomes and recycled back to 

the plasma membrane of polarized cells (Le et al, 1999). It is likely that Rac1 

inhibition prevented its normal recycling. This could be a crucial step for the 

acquistion and/or maintenance of the polarized phenotype. To test this hypothesis we 

performed calcium switch assay in the presence of cycloheximide, which was added 

two hours before EGTA treatment (the time necessary to empty Golgi apparatus from 

E-cadherin signal). We found that after Ca-restoration E-cadherin was relocated to the 

plasma membrane also in presence of cycloheximide, indicating that the E-cadherin 

derived from the intracellular pool which formed during junction disruption (Fig. 16). 

In contrast, upon Rac1N17 mutant induction, a low amount of E-cadherin was re-

localized to the surface (Fig.16), supporting the hypothesis that Rac1 inactivation 

blocks E-cadherin recycling.   
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Fig. 16 Calcium switch assay in presence of cycloheximide. FRT-ER-Rac1N17 cells 
were subjected to calcium switch and restore as aforementioned.  Two hours before 
EGTA treatment, cells were incubated with cycloheximide (CHX) to block protein 
synthesis and during Ca2+ chelation and restoration. After fixation, cells were stained 
with anti E-cadherin antibody followed by a FITC-conjugated secondary antibody. 
Serial confocal sections were collected from top to bottom of cell monolayers. E-
cadherin recruited to plasma membrane after restoration derived from intracellular pool. 
 

 

Moreover, it is plausible that E-cadherin accumulated intracellularly upon ER-

Rac1N17 activation were degraded. We observed no change in the total amount of E-

cadherin assayed by western blotting in untreated and tamoxifen-treated cells after  

Ca2+ chelation and restoration (Fig. 17).  Interestingly, upon ER-Rac1N17 activation, 

we detected an increase of degradation products (Fig. 17, middle gel). Indeed we 

found an increase of two specific bands, 35 KDa and 20KDa (Palacios F. 2005), 

revealed by using an antibody directed against the cytoplasmatic domain of E-cadherin 
 

71



RESULTS 

 
 

Fig. 17. Rac1N17 leads to E-cadherin degradation. FRT-ER-Rac1N17 cells, grown 
as a monolayer on plastics were subjected to calcium switch assay as aforementioned. 
Cells, were lysed in RIPA buffer and examined for E-cadherin degradation by resolving 
proteins by SDS-PAGE. Samples were immunoblotted with anti-E-cadherin antibody. 
The molecular weight of the degradation fragments are indicated (35 KDa; 20KDa). We 
used tubulin as normalization. 

 

 

 

In order to investigate wheter Rac1 inactivation could influence the membrane 

organization of E-cadherin, we combined Triton X-100 extraction assays with the 

calcium switch experiments. As at steady-state, upon Ca2+ chelation and restoration in 

untreated cells E-cadherin predominantly partitioned to the TX-100 insoluble pool 

(Fig. 18). By contrast, the dominant-negative induction prevented E-cadherin 

insolubility to detergent extraction (Fig. 18) and accumulation in Triton X-100-soluble 

fraction. These data provide strong evidence that Rac1 inactivation affects the 

membrane organization of E-cadherin that possibly, as consequence, is not anymore 

functional.  
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Fig. 18) Triton X100 extraction assay after calcium-switch Cells, grown as 
monolayer in plastic dishes, were subjected to calcium-switch both in presence and 
absence of tamoxifen. Samples were extracted in Triton X100 and separated in 
soluble and insoluble fractions as aforementioned. Immunoblot analysis showed a 
change in the TX-100-insoluble (I) profiles of E-Cadherin when Rac1 was inhibited.  

 

 

Finally, we demonstrated by Co-IP assay that Rac1 and E-cadherin did not physically 

interact with each other, indicating that Rac1 regulates E-cadherin functions through 

its effectors.  

. 
  
 

 
 

Fig 19) Rac1 ad E-cadherin co-immunoprecipitation assays. Cells expressing ER-
Rac1N17 were lysed in RIPA Buffer and incubated overnight with anti-Rac1 or anti-E-
caderin. Immunoprecipitates were collected using protein beads and resolved by SDS-
PAGE. The proteins were probed with anti E-cadherin or anti-Rac1 antibodies.  

 

 

 

3.10 Rac1 affects the maintenance of polarized phenotype in epithelial 
cells 
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Once we demonstrated that Rac1 is involved in the acquisition of polarized phenotype 

we asked whether it might have a role in the maintenance of cell polarity. To this aim 

we tested the effects of Rac1 inhibition on the integrity of polarized monolayers and  

preformed cysts. To this aim, the tamoxifen induction was performed when cells, after 

5 days of culture, reached the maximum polarization state (as evident by the fact that 

TER is at plateau) or, alternatively, when cells, grown on coated agarose dishes, 

formed functional cysts (Fig.20 and  21). As shown in Fug 20, TER dropped upon 24h 

with tamoxifen, whilst in control cells TER remained to plateau values (≈ 2000 ohm). 

Consistently, dominant negative induction collapsed the cysts (Fig. 21), indicating that 

Rac1 inactivation also affects the maintenance of polarized phenotype. Thus, these 

data suggest that Rac1 is implicated both in the acquisition and maintenance of cell 

polarity. While Rac1 seems regulate the cell polarization modulating the E-cadherin 

and, in turn, the adherens junctions functions, it could directly control the integrity of 

tight junctions or through E-cadherin mediated cell-cell adhesion. We are currently 

investigating these aspects.   
 

 

 

 
Fig. 20 Activation of ER-Rac1N17 by 4-OHT affect TER maintenance. FRT cells 
stably expressing ER-Rac1N17 were grown in polarized condition on transwell filters 
for five days and then 4-OHT was added . The experiments were made both in presence 
(red line) and absence (black line) of 4-OHT. TER measurements were conducted every 
24 h. High values of transepithelial resistance (TER), generated in absence of 4-OHT 
and this, correlate with the acquisition of a full polarized phenotypes  of cells. ER-
Rac1N17 activation by 4-OHT led to TER dropped. 
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Fig. 21 Activation of ER-Rac1N17 by 4-OHT affect cysts maintenance. FRT-ER-
Rac1N17 cells were plated in suspension on agarose coated and 24 hours from plating 
when cists are formed 4-OHT was added . The experiments were made both in presence 
and absence of 4-OHT. When we inactivated Rac1 cysts collapsed 
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5.1 FRT cells like a cellular model to study cell polarity  
 

As a model system we used FRT cells, an epithelial cell line, which was derived from 

rat thyroid. FRT cells are well polarized both morphologically and functionally but do 

not express tissue-specific properties (Nitsch, et al, 1985, Zurzolo et al, 1994, 1996). 

They are metabolically dedifferentiated, but still express the thyroid-specific 

transcription factor Pax8 (Mascia A et al. 1997). They are connected by a continuous 

belt of tight junctions (Zurzolo et al, 1996). When FRT cells are cultured to 

confluency as monolayers on filters, they become polarized and develop very high 

transepithelial resistance (TER). In cultures on plastic dishes, FRT cells have the 

ability to form domes that correspond to domains of the epithelial layer where cells 

detach from the plastic, due to transepithelial transport of ions and water, and 

accumulation of fluid underneath the cell layer (Nitsch et al. 1985; Garbi et al. 1996). 

In suspension culture they form cysts in which a polarized monolayer of cells has the 

apical surface facing the outside. 

 

 

5.2 Aspects investigated and results obtained 
 

Epithelial cells have a polarized organization of the plasma membrane, cytoskeleton 

and cytoplasmatic organelles. Loss of polarity may lead to human diseases and it is a 

crucial step in the progression of cancer. The major cause of mortality in cancer 

patients is metastasis. In order to metastasize cancer cells must acquire mutations that 

disrupt epithelial structure, resulting in an epithelial-mesenchymal transition (EMT). 

Because the metastasis is the primary cause of death, it is important to understand the 

molecular mechanisms by which epithelial polarity is established and maintained.  

The acquisition of cell polarity requires external cues, including interaction of cells 

with their neighbours and with the extracellular matrix, and involves the coordinated 

action of several proteins able to decrypt and translate these external signals. 

Downstream of cell-cell adhesion, several pathways act to establish and maintain a 

polarized cellular architecture. The Rho small G protein family, consisting of the Rho, 

Rac and Cdc42 subfamilies, regulates many biological processes including cell cycle 
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progression, apoptosis, migration and intercellular adhesion. We focused here on the 

analysis of the role of Rac1 protein in the acquisition and maintenance of the polarized 

phenotype in the FRT rat thyroid epithelial cell line. Our goal was to understand how 

signals transduced via Rac1 plays a role in these processes.  To this aim, we used an 

inducible dominant-negative form of Rac1, ER-RacN17, which was stably expressed 

in FRT cells. Several aspects, including directional migration, TER acquisition, cell 

aggregation and formation of polarized cysts, were investigated. 

In this thesis we demonstrated that ER-Rac1N17 activation upon 4-OH-tamoxifen 

treatment reduced the wound healing efficiency in a scratch test, interfered with the 

acquisition of transepithelial resistance by confluent monolayers on filters, and 

impaired cyst formation by cells in suspension culture. We investigated the molecular 

mechanisms by which these processes occur.  Epithelial cells establish stable contacts 

between individuals cells, and between individual cells and the extracellular-matrix, in 

order to maintain a fully polarized state.  Cell-cell and cell-matrix adhesion processes 

are mediated by specific cell adhesion molecules (CAMs). The principal CAM of 

epithelial cells is E-cadherin which is organized in adherens junctions. Cell-cell 

adhesion mediated by E-cadherin is a critical step in the polarization process.  

We decided to demonstrate here that Rac1 regulates the early phases of cell-cell 

adhesion formation. To this aim firstly we analyzed the distribution of E-cadherin and 

Rac1 in FRT cells. We found co localization between Rac1 and E-cadherin at sites of 

cell-cell contact, suggesting that Rac1 concentrated at the plasma membrane, in 

association with the adherens junctions. Strikingly, we found a progressive loss of E-

cadherin from the plasma membrane upon inhibition of Rac1 by the ER-Rac1N17 

activation with 4-OH-tamoxifen. 

To examine the effects that the loss of Rac1 activity has on the formation of cell–cell 

contacts, calcium switch experiments were performed. We found that E-cadherin 

traslocates to the cytosol during disruption of cell-cell adhesion by Ca2+  chelation 

with EGTA and reappeared at the sites of cell adhesion after Ca2++ restoration. 

Activation of ER-Rac1N17 by 4-OH-tamoxifen during Ca2++ restoration led to a high 

decrease of the protein at the sites of cell-cell contacts, although it did not completely 

abolish the reappearance of E -cadherin on the plasma membrane. How does Rac1 

inhibition correlate with changes in E-cadherin engagement? In agreement with the 

results we obtained by immunoflurescence microscopy, the detergent solubility assay 
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(Triton X-100 extraction assay) during calcium switch experiments indicated that the 

amount of the cytoskeleton-associated E-cadherin decreased upon ER-Rac1N17 

activation by 4-OH-tamoxifen, suggesting that Rac1 is important to maintain 

functional E-cadherin (i.e. attached to actin filaments, in adherens junction) on the 

plasma membrane. To better understand the effect of ER-Rac1N17 during adherens 

junctions de novo formation, we combined calcium switch experiments with the 

membrane/cytosolic fractionation assay. We found that during Ca2++ readdition in the 

absence of 4-OH-tamoxifen, endogenous Rac1 mainly partioned in the membrane 

fraction while in the presence of 4-OH-tamoxifen it significantly shifted to the 

cytosolic fraction suggesting that ER-Rac1N17, when activated by 4-OHT treatment, 

partially displaces the endogenous Rac1 from the membrane. These results also 

suggest that Rac1 localization to the plasma membrane is important to recruit E-

cadherin to cell-cell contact sites during the first steps of cell-adhesion. 

Adherens junctions depend on the rapid turnover of E-cadherin; it can be speculated 

that Rac1 regulates this process. Calcium switch assays performed in the presence of 

cycloheximide indicated that the E-cadherin which reached the plasma membrane 

after calcium readdition derived from the preexisting pool and not from de novo 

synthesis. E-cadherin translocated into the cell and formed intracellular pools as a 

consequence of junction disruption. We think that ER-Rac1N17 activation upon 

tamoxifen might affect E-cadherin recycling. 

 

 

5.3 Use of dominant-inhibitory mutant of Rac1 
 

One of the most powerful ways to study the function of a protein is to specifically 

block its activity within cells. We generated a novel inducible system to suppress 

RAC1 activation and to study its consequences during the acquisition of the polarized 

phenotype. We fused a dominant-negative form of Rac1, Rac1N17, downstream of the 

ligand-binding domain (ER) of the murine mutant estrogens receptor, which is 

responsive to activation by 4-OH-tamoxifen only. Usually, dominant-inhibitory 

mutants interfere with the function of their normal cellular counterparts or with 

proteins that interact with them. The Rac1N17 protein contains an asparagine 
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substitution that abolishes the protein affinity for GTP and reduces the affinity for 

GDP. As a consequence of that, the mutant protein fails to bind downstream targets in 

the cell because it cannot bind GTP in vivo. When expressed in cells, it binds to 

RacGEFs more strongly than does normal Rac and forms 'dead-end' complexes.  

Among the first results we obtained is the demonstration, by immunoflurescence 

assay, that upon tamoxifen incubation a significant amount of ER-Rac1N17 moved 

from the cytosol to the plasma membrane, at sites of cell-contacts. This suggested that 

Rac1 recruitment to membranes occurs independently of its nucleotide-bound and 

active state.  As indicated in the results, this effect is observed within an hour. Once 

stimulated, ER-Rac1N17 protein remains stably associated to the membrane. 

Crystallographic and NMR analysis of Rac1 have revealed that the conformational 

difference between the GTP and GDP-bound form are restricted in two regions named 

Switch I and Switch II.  Switch I and Switch II regions, with β1, β2 and β3 regions, 

form a pocket in which GEF binds thus promoting the activation of Rac1 (Vetter IR 

2001). However, little is known about the construct we used. We speculate that the ER 

domain masks this binding site for GEFs. After binding to 4-OH tamoxifen, the 

protein is subjected to a conformational change, the GEF domain becomes accessible 

and, possibly, dissociation from RhoGDIs occurs.  RhoGDIs produce both negative 

and positive actions: they inhibit the intrinsic GDP/GTP exchange of Rac1, favoring 

the maintenance of GTPase in the inactive conformation. In addition, they use a deep 

hydrophobic cavity to trap the Rac1 prenyl group, thus keeping the GTPase away from 

the membrane (Xosè R. Bustelo 2012). We hypothesize that ER-Rac1N17 traslocates 

to the membrane to binds to GEFs that are located there (Angeliki Malliri, 2004).  

Our results indicate that the chimeric protein ER-Rac1N17 behaves like the 

endogenous protein and that its activation state can be perfectly manipulated through 

the use of tamoxifen. Standard protocols to measure the Rac1GTPase activity after 

incubation with 4-OH-tamoxifen were performed showing that the ER-Rac1N17 

chimera is able to inhibit the activity of endogenous Rac1. Therefore, the expression 

of this chimeric protein is an excellent tool to study the role of Rac1 in the processes 

of polarization.  
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Effect of ER-Rac1N17 activation on the acquisition of the polarized 
phenotype in FRT cells 

 

Polarized migration. The cytoskeletal rearrangements caused by the activation of 

RhoGTPases play a key role in cell motility that requires the coordinated and 

polarized fulfilment of several processes. Cell migration is the net effect of Cdc42 and 

Rac1 mediated expansion of cellular protrusions in the direction of migration (the 

front of the cell) and RhoA driven retraction of membrane at the trailing edge (the rear 

of the cell) (Iden and Collard, 2008). Cells that migrate have a front-rear-polarized 

morphology with asymmetric distribution of surface receptor, adhesion proteins and 

cytoskeletal components. Recent study in fibroblasts indicated that RhoGTPases 

collaborate with polarity proteins to control directional cell migration. Components of 

the PAR, Scribble and Crumbs complexes localize to the leading edge and regulate 

front-rear polarization, and apparently crosstalk directly to Rho GTPases through the 

modulation of their GEFs (Iden and Collard, 2008). Some effectors of Rac1 have been 

found to specifically mediate cell motility such as PAK, that is a protein kinase 

playing an important role in the cytoskeletal-mediated changes affecting cell motility, 

or IQGAP and Par6 that promote motility through disruption of the normal 

organization of neighbouring cells. More evidence for the roles of Rac1 in cell 

motility comes from fibroblasts deficient for the tumour suppressor gene Pten.  These 

cells are more motile and contain higher levels of Rac1GTP than wt cells.  The motile 

behaviour of these cells can be suppressed by dominant-negative mutant forms of 

Rac1 (Liliental, J. 2000).  Ridley et al have proposed that Rac1 is necessary for the 

HGF-induced motility in MDCK cells.  FRT cells, as other types of epithelial cells, 

move as groups of adherent cells, as possibly do epithelial cells in vivo during tissue 

morphogenesis. The observations we made by wound healing assay indicated that 

when ER-Rac1N17 is activated in FRT cells, they manifest a reduced migratory 

activity and a delay in closing the wound, in agreement with the bulk of evidences that 

Rho GTPases regulate cell motility.  

Abnormal cell migration is a characteristic of malignant cancer cells and is one 

component of metastatic process, the principal clinical problem in cancer. 

RhoGTPases are most likely to contribute to cancer cell migration and invasion. 
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Expression of Rho family proteins is deregulated in some tumors and correlates with 

progression of disease (Sahai and Marshall, 2002). Recently Sanz-Moreno and all 

(Sanz-Moreno et al, 2008) show that mesenchymal-type movement in melanoma cells 

is driven by activation of Rac1 through a complex containing NEDD9, a recently 

identified melanoma metastasis gene, and DOCK3, a Rac1-GEF. Once activated, Rac 

signals through WAWE2 directing mesenchymal movement. Moreover,  the  over-

expressed of rac1 has been found in various tumors and accumulating evidence 

indicate that Rac1-dependent cell signaling is important for malignant transformation 

(Gomez  PT 2005 ) as in the progression of testicular ( Kamai T 2004 )gastric( Pan Y, 

2004), and breast cancer (Schnelzer A). To understand the mechanisms by which cells 

migrate might be of help to develop specific drugs that interfere with the metastatic 

process.  Rho GTPases might involve in all stages during cancer progression.  They 

can affect tumor cells through modulation of gene transcription, cell division and 

survival, intracellular transport of signaling molecules or modifying the interaction of 

cancer cells with surrounding stromal cells. To analysis of how Rho GTPases work in 

cells and contribute to tumors is very complex but at the same time promising for 

potential future therapeutical intervention. 

 

Acquisition of transepithelial resistance (TER). To understand the role of Rac1 in 

the process of cell polarization, we analyzed the effect of its inhibition on the 

acquisition of TER, that represents an index of the degree of polarization of the cell 

monolayer. FRT cells can reach quite high TER values if compared to other 

commonly used epithelial cell lines such as MDCK and Caco2. The observations 

made on TER acquisition indicated that the incubation of FRT- ERac1N17 cells with 

4-OH tamoxifen impairs the increase of transepithelial resistance, and a significant 

decrease of TER values is shown within 24h after the addition of 4-OH tamoxifen by 

monolayers that had already acquired a high TER. This decrease persists over time 

and is virtually irreversible. Indeed, even if we performed several washings to 

eliminate 4-OH tamoxifen from the culture, the TER did not increase but maintained 

low values, comparable to those of an empty filter. When 4-OH tamoxifen was added 

at the plating time, the monolayers were unable to achieve a significant TER value. 

These data indicate that the inhibition of Rac1 affects the ability of cells to acquire 

TER and, therefore, to reach their final mature polarized phenotype. Using MDCK 
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cells that expressed constitutively-active or dominant-negative forms of Rho family 

GTPases, it was previously demonstrated that Rho family proteins are involved in the 

early development of epithelial cell polarity and in the maintenance of the tight 

junction (Jou TS, 1998). Rac1 inhibition might interfere with the machinery and/or 

with the formation of stable junctionals complexes at the plasma membrane. 

 

Formation of tree-dimensional structures in suspension culture. Rat thyroid 

epithelial cells from fresh tissue, grown in suspension culture, are capable to 

reorganize into follicle-like structures (Nitsch and Wollman PNAS 1980) that express 

most, if not all, properties of thyroid follicles in vivo (Tacchetti et al. 1986). Under 

similar culture conditions, in medium with high concentration of serum and in the 

absence of a surrounding, adhesive gel (such as collagen), the thyrocytes reorganize 

into cystic structures with polarity inverted with respect to follicles, the apical domain 

facing the outside (the culture medium) (Nitsch and Wollman, JCB 1980). FRT cells 

in suspension culture are also capable of forming cystic structure, whose polarity can 

be manipulated by the presence of different types of gels (Garbi et al, 1987). An 

advance in the study of cytogenesis derived from the analysis of a similar in vitro 

model system in which collagen gel cultures of MDCK epithelial cells were used. 

Indeed, Wang and coll. reported that MDCK cells, just like FRT cells, form cysts with 

inverted polarity with the apical pole facing the free cellular surface of the cyst 

periphery when grown in suspension culture (Wang et al. 1990). The role of 

RhoGTPases in the three-dimensional organization of these epithelial cysts was 

studied in a report demonstrating that the expression of dominant-negative Rac1 

caused an inversion of cyst polarity due to abnormal basolateral laminin assembly 

(Lucy Erin O’Brien 2001). Other groups demonstrated that Rac1 plays a role in the 

reorientation of polarity. MDCK inside-out cysts expressing a dominant-negative form 

of Rac1 failed to re-orient polarity when embedded in collagen, suggesting that Rac1 

plays a critical role in signaling cues from the ECM to orient the cells. Rac1 might 

control extracellular matrix-induced reorientation of apico–basal polarity in three-

dimensional cultures of epithelial cysts in a PI3K- and aPKC-dependent manner (Liu 

et al. 2007).  

To examine the role of Rac1 during cyst morphogenesis we used FRT cell lines that 

expressed the conditional dominant-negative mutant ER-Rac1N17. The results 
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obtained suggested that Rac1 activity is necessary to promote formation of polarized 

structures. Treatment with 4-OH tamoxifen, in fact, inhibited the formation of 

polarized structures. The mechanism by which this occurs remains to be established. 

On question is whether tight junction formation is perturbed under this condition. 

Many studies suggest that the activity of the Rho family GTPases must be carefully 

balanced to preserve tight junctions and adherens junctions integrity (Mertens 2006) 

 

 

5.5 Rac1 inhibition and polarized traffic of E-cadherin 

 

The establishment of epithelial cell–cell contacts and the subsequent apico–basal 

polarization requires E-cadherin-mediated cell–cell adhesion. Several studies indicate 

that Rho family GTPases controls cadherin-mediated cell–cell adhesions.  During the 

very early phases of generation of polarity, Cdc42 and Rac-1 are activated by the 

initiation of cell contacts formed by trans-interactions of nectins and cadherins 

(Fukuhara A, and al. 2003; Kukuhara T. and al. 2004). Indeed, E-cadherin-mediated 

cell interactions result in the rapid activation of Cdc42 in MCF-7 epithelial cells (Kim 

et al. 2000) and Rac1 in MDCK cells (Yamada and Nelson, 2007). and homophilic 

ligations of E-cadherin has  been shown to recruit and to activate Rac1 at adhesion 

sites in MDCKII cells (Betson et al. 2002; Braga et al. 1997; Nakagawa et al. 2001; 

Noren et al. 2001). How Rho family GTPases control E-cadherin-mediated 

intercellular adhesions remains an interesting question. It has been reported that the 

maturation of primordial adhesions to linear apico–basal polarized cell–cell contacts 

with discrete adherens and tight junctions requires the stimulation of aPKC by 

crosstalk between Rho GTPases and the PAR complex. Binding of Rac1–GTP to 

PAR6 releases an intrinsic ability of PAR6 to activate aPKC, the interaction between 

TIAM1 and PAR3 couples RAC1 activation and loss of TIAM1 impairs the 

establishment of functional tight junctions in keratinocytes. 

Braga and colleagues (Braga et al. 1997) found that the Rho family GTPases affect the 

formation of cell–cell junctions. When dominant-negative Rac1 (Rac1N17) is 

microinjected into keratinocytes, cadherin accumulation is inhibited at sites of cell-cell 

contacts. Subsequent studies from Takaishi and colleagues (1997) revealed that 

overexpression of constitutively active Rac1 (Rac1V12) in MDCKII cells promotes 
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basal accumulation of E-cadherin, beta-catenin, and actin filaments at sites of cell-cell 

contacts, whereas overexpression of Rac1N17 reduces their accumulation.  

We examined E-cadherin localization following Rac1 inhibition. By immunofluorence 

assay we demonstrated a decreased level of plasma membrane E-cadherin following 

long-term incubation with 4-OH tamoxifen and hypothesized that this effect of 

inhibition of Rac1 on E-cadherin membrane localization could represent the molecular 

basis of the defect in cell polarization we evidenced by monitoring the TER. We 

investigated the role of Rac1 on the localization of E-cadherin by the calcium-switch 

assay, during the early steps of cell-cell contact formation. We demonstrated that 

GFP-Rac1 colocalized with  E-cadherin  at  sites of cell-cell contacts and translocated 

to the cytosol during disruption of E-cadherin mediated cell-cell adhesion by calcium 

chelation. Upon re-establishment  of  cell-cell  adhesion  Rac1  relocalized,  together  

with  E-cadherin,  at  sites  of  cell-cell  contacts.  When we performed the calcium 

switch assay in the presence of 4-OH tamoxifen, we found a strong reduction of the 

signal due to membrane-cadherin compared to control cells w/o 4-OH tamoxifen. 

Calcium-switch assays performed in the presence of cycloheximide demonstrated that 

the E-cadherin which reached the plasma membrane after calcium readdition derived 

from preexisting pool where it possibly relocalized after junction disruption. A similar 

decrease of E-cadherin on plasma membrane was found, in fact, after incubation with 

cycloheximide. These data suggested that Rac1 could regulate the rapid turnover of E-

cadherin to and from the lateral surface. Indeed, to maintain the dynamics of epithelial 

monolayer, E-cadherin is rapidly removed from plasma membrane and then 

subsequently recycled back to the cell surface to reform new cell-cell contacts. Wang 

and collaborators (Wang et al. 2005) showed that both Rac1 and Cdc42 are involved 

in the polarized trafficking of E-cadherin in MDCK kidney cells, determining efficient 

post-Golgi sorting of E-cadherin and its delivery to the lateral cell surface. Reduced 

surface staining of E-cadherin have been described in polarized MDCK cells after the 

knock-down of Rac-1 using small interfering RNA (Noritake et al. 2004). The data 

obtained in the FRT system of polarized cells and presented here are consistent with 

these observations.  

Rac1 activation was shown to inhibit endocytosis of E-cadherin and to stabilize the 

protein on the plasma membrane. An important role has been proposed for the 

Rac/Cdc42-IQGAP1 system in the dynamic organization and maintenance of the E-
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cadherin-based adherens junctions (Izumi et al., 2004; ). IQGAP1 is known to 

negatively regulate E-cadherin mediated cell-cell adhesion by interacting with beta-

catenin and thereby stabilizing cadherin-mediated cell-cell contacts. It has been 

suggested that activated GTP-Rac1 blocks the ability of IQGAP to inhibit assembly of 

a cadherin-catenin complex promoting adherens junction formation (S. Kuroda, 1998). 

We suppose that when ER-Rac1N17, upon activation with 4-OH tamoxifen, promotes 

an increase in the amount of inactivate Rac1, IQGAP is free from Rac1 and dissociates 

beta-catenin from the cadherin-catenin complex, destabilizing the adherens junctions.  

To support this hypothesis we analyzed, by detergent solubility assay (Triton X100 

extraction assay), the amount of cytoskeleton-associated E-cadherin during calcium-

switch experiments and we demonstrated a significant decrease upon ER-Rac1N17 

activation by 4-OH-tamoxifen. Possibly Rac1 is important to build-up functional 

adherens junctions. 

It has been reported that E-cadherin-mediated cell-cell adhesions stimulate 

phosphatidylinositol 3-kinase (PI3K) activity in MDCKII cells (Pece et al. 1999). 

Moreover, PI3K has been shown to interact with E-cadherin (Pece et al. 1999). Since 

PI3K is thought to function upstream of Rac1 (Kotani et al. 1994), these observations 

indicate the possible involvement of PI3K in E-cadherin-dependent Rac1 activation.  

Activation of Rac1 through PI3K by E-cadherin-mediated cell-cell adhesions seems to 

require at least two steps: (1) Rac1 recruitment to sites of cell-cell contacts, and (2) 

Rac1 activation by a GEF that responds to PI3K products. Consistently, Rac1 rapidly 

accumulates at the sites of E-cadherin engagement (1 – 3 min), and this accumulation 

is independent on Rac1 GTP binding/hydrolysis (Perez et al. 2008). Considering that 

Tiam1 is localized at sites of cell-cell contacts and functions downstream of PI3K, 

Tiam1 appears to act as a Rac1 GEF that functions downstream of E-cadherin 

engagement. Another possible mechanism might be the capacity of ER-Rac1N17 to 

sequester on plasma membrane Rac1GEF TIAM1 preventing PI3K pathway 

activation. 

Moreover, a molecular and functional link between Rac1 and Rab7 has been proposed 

since active Rac1, via its effectors Armus, is able to locally inactivate Rab7 and to 

facilitate E-cadherin degradation in lysosomes (Frasa et al., 2010). Preliminary  results 

on  FRT  thyroid  epithelial  cells  are  in  good  agreement  with  these  data  since the 

inhibition of Rac1 promotes E-cadherin internalization and increase of E-cadherin 
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degradation products. 

Overall, these results represent a strong evidence for a predominant function of Rac1 

in the formation of epithelial apico–basal polarization.  

 

 

5.6 Rac1 inactivation affects the maintenance of a polarized 
phenotype in FRT epithelial cells. 
 
Apical-basal polarity of epithelial cells is maintained through TJs, which function as 

intercellular barriers that regulate paracellular permeability by segregating the plasma 

membrane into two compartments. Rac and Cdc42 regulate TJ functions in epithelial 

cells. Indeed, it has been demonstrated that constituvely active mutant of Rac alters the 

TJ organization in MDCK cells (Tzuu-Shuh Jou 1998), while a dominant negative 

mutant of Rac also causes a redistribution of claudin-1 and -2 in addition to JAM-1 

(Popoff MR, 2009).  The Par polarity complex, which consists of Par3, Par6 and 

atypical protein kinase C (aPKC),  localize to primordial TJs and has been shown to be 

required for their maturation from primordial AJs in epithelial cells (Macara, 2004). 

Cadherin transduces signal to activate Rac1, which result in the local activation of the 

Par polarity complex stimulating the assembly of TJs. Recently, two different studies 

in epidermal keratinocytes  showed that the Rac1-specific GEF Tiam1 acts upstream 

of  Par polarity complex during this process. Indeed, Tiam1 directly associates with 

Par 3 controlling TJs assembly. Tiam1-deficient cells form normal primordial 

adhesions but they impaired in TJ maturation. Reconstitution of Rac1 activity by 

expression of exogenous Tiam1 or dominant-active Rac1V12, but not by a Tiam1 

mutant unable to activate Rac1, fully restores TJs biogenesis in Tiam1-deficient cells 

(Mertens A.E. , 2005). Here we demonstrated that Rac1 inactivation leads to 

disruption of polarized structures (Figs. 20, 21). Indeed the inhibitory mutant of Rac1 

induced the collapse of cysts as well as the integrity of cell monolayers as shown by 

the drastic drop of TER.  Our data are consistent with recent findings showing that the 

inactivation of Rac1 leads to the dispersion of apical markers in cyst structures (Yagi 

S., 2011) implying that Rac1 can regulate the TJ functions. However, the same authors 

found that Rac1 suppression exclusively at the apical membrane is required for the 

maintenance of cyst structure, suggesting that the activity of Rac1 might be spatial and 

temporal regulated: Rac1 activity is homogenous at very early stages of cystogenesis, 
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DISCUSSION 

whereas at the late stages its activity is higher at the lateral than at the apical 

membrane (Yagi S., 2011). Further studies will be necessary to better understand how 

and by which molecular mechanisms Rac1 could contribute to maintain the polarized 

phenotype.   
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5 MATERIALS AND METHODS  

 

5.1 Cell culture 
 

For the experiments have been used epithelial cells of rat thyroid Fischer (FRT).Cells 

were cultured in Petri dishes from 100 to 35 mm of diameter and were kept in an 

incubator at 37°C in a humidified atmosphere containing 5% CO2 and 95% air. FRT 

cells were maintained in F12Coon’s (Euro Clone) medium supplemented with 5% 

Fetal Bovine Serum FBS (GIBCO). Colture medium was changed every three days.  

Growth was monitored daily by phase contrast microscopy. When the cells reached 

confluence were washed once with a solution of trypsin 0.3%, glucose 0.1%. 2 mM 

EGTA in PBS pH7.3 (7.13 mM KCl, 1.47mM KH2PO4 137mm NaCl, Na2 HPO4 7 

H2O 8.6). Incubated with the same trypsin solution for 10-15 minutes at 37° C and 

then resuspended in the medium culture and centrifuged at 1000 rpm for 4 minutes. 

The pellet was resuspended again in F12 Coon’s medium containing 5% Fetal Bovine 

Serum, and the cells were plated in Petri dishes. 
 

 

5.2 Plasmids and transfection 
 

FRT cells were stably transfected with the plasmid encoding the chimeric protein ER-

Rac1N17 consists of a fragment (inserted into Bgl II/EcoRI sites) encoding amino 

acids 281-599 of a tamoxifen-responsive mutant of the murine estrogen receptor ERTM 

fused to a fragment (inserted into Eco-Not I sites) encoding the protein Rac1N17 

cloned into pCEFL AU1 expression vector under the CMV promoter. The construct is 

in frame with the leader sequence and the tag, which is represented by a small peptide 

of six amino acids (DTYRYI) that is recognized by specific antibodies. Rac1N17 

protein is in frame with ER. Plasmid contains the internal resistance to neomycin for 

selection in eukaryotic cells. Without 4-OH-tamoxifen the protein is inactive. 4-OH 

tamoxifen (100 nM) interacts with the hormone-binding domain, and it induced rapid 

and prolonged protein activation. For stable transfections experiments FRT cells were 

90



MATERIALS AND METHODS 

plated at 20% confluency in 100-mm dishes and transfected with 4 µg/dish of plasmid 

encoding the chimeric protein ER-Rac1N17. 
 

 
Fig.1 Schematic view of pCEFL AU1 ER. It contains a sequence of mutated murine 
estrogen receptor responsive to 4-OH-tamoxifen, it is fused to a fragment encoding the 
protein Rac1 N17 cloned into the vector pCEFL AU1 under the CMV promoter. 
Plasmid contains the internal resistance to neomycin for selection in eukaryotic cells. To 
obtain stable transfectants, the cells were co-transfected with 4 μg of the plasmid 
containing AU1-ER-Rac1N17 cDNA .Transfection was performed with lipofectin. 
Neomycin resistant clones were selected in Coon’s modified Ham’s F12 medium 
containing 5% FBS and (?) μg/ml of neomycin  

 

 

FRT parental cells were also stably transfected with the plasmid expressing pFLAG 

Rac1N17 or EGFP-Rac1 

 

5.3 Immunofluorescence 
 

The immunoflurescenze assay allows localizing a protein of interest within a 

biological sample by recognition of its epitope by a specific antibody. The primary 

antibody is then revealed by another antibody which may be conjugated with a tracer. 

The tracers used in this assay are fluorochromes, molecules which affected by a light 

of a determinate wavelength, emitted light of higher wavelength. If the tracer is 

directly bound to the specific antibody against the protein of interest we speak of 

direct immunoflurescenze, if it is bound to a secondary antibody directed against the 

primary antibody we talk about of indirect immunoflurescence. Immunoflurescence 

studies were performed on cells seeded into 12-mm diameter glass cover slips or on 

top of filters in bicameral systems in medium containing 5% Fetal Bovine Serum for  

several time. A secondary antibody labeled with fluorochromes is used to recognize a 
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primary antibody against protein of interest. Cells were fixed for 20 minutes in PBS 

containing 4% paraformaldehyde (Sigma-St. Luis, MO-USA), washed two times for 5 

minutes in NH4Cl 50mM, permeabilized with PBS containing Triton X-100 0,3% for 

5-7 minutes and successively washed three time with PBS. Alternatively, in indirect 

immunofluorence assay on polarized cells they were fixed and permeabilized with 

methanol- acetone 1:1 solution for 2 minute at -20° C and cells were washed three 

times with PBS. After incubation for 20 minutes in a solution containing 1% BSA 

(bovine serum albumin) in PBS, cells were incubated 1h in humidified atmosphere 

with the primary antibody at room temperature and after 3 washing with PBS/BSA 0, 

5% they were incubated in humidified atmosphere at room temperature with the 

appropriate secondary antibodies conjugated to TRITC (rhodamine tetrametilata) or 

fluorescein (FITC) diluted 1:50 in PBS. After final washes with PBS, the cover slips 

were mounted on a microscope slide using a 50% solution of glycerol in PBS and 

examined with a confocal laser scanner microscope Zeiss 510LSM. The λ of the 

Argon ion laser was set at 488nm that of the HeNe laser was set at 543nm. 

Fluorescence emission was reveled by BP 505-530 band pass filter for Alexa Fluor 

488 and by BP 560-LP band pass filter for Alexa Fluor 543. Double staining 

immunoflurescenze images were acquired simultaneously in the green and red 

channels at a resolution of 1024x1024 pixels. 
 

 

5.4 Antibodies and reagents 
 

The following antibodies were used: the mouse mAb anti-AU1 that recognizes a six 

amino acid epitope (DTYRYI) in the AU1 ER-RAC1 (N17) protein (MMS-130R, 

Covance). Because of the small size of the epitope, it is unlikely to alter the activity of 

the cloned sequence.; the rabbit polyclonal ERα Antibody (MC-20):sc542 (Santa 

Cruz) against a peptide mapping at the C-terminus of ERα of mouse origin; the mouse 

mAb anti-Rac1 (clone 23A8) against recombinant protein containing the full length 

Rac1 (Upstate); mouse mAb anti E-Cadherin against amino acid 735-883 in the C-

terminal  domain of human E-Cadherin (BD, Transduction Laboratories); Secondary 

antibodies for indirect immunoflurescenze conjugated to TRITC (rhodamine 

tetrametilata) or fluorescein (FITC) have been used correctly. 
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Secondary antibodies for Immunoblotting anti-mouse and anti-rabbit conjugated with 

horseradish peroxidase (Amersham Pharmacia-Buckinghamshire, UK).To inhibit 

endogenous Rac1 the specific inhibitor, NSC23766 (Calbiochem) at a dose of 100-150 

μM was used. NSC23766 is a cell-permeable pyrimidine compound that specifically 

inhibits Rac1 GDP/GTP exchange activity by interfering with the interaction between 

Rac1 and Rac specific GEFs, Trio and Tiam1 (Gao et al.,2004). To activate the AU1 

ER-RAC1(N17) protein 4-OH-Tamoxifen (Sigma Aldrich) was used. It is an active 

metabolite of tamoxifen which binds estrogen receptors (ER) and estrogen-related 

receptors (ERR) with estrogenic and anti-estrogenic effects. Cell culture reagents were 

purchased from Gibco Laboratories (Grand Island, NY).  

 

 

5.5 Immunoblotting 
 

Cells were seeded to confluence in 100 mm diameter dishes or on filters. Cell culture 

dishes were placed on ice and were washed two times with ice-cold phosphate-

buffered saline (PBS) (KCl 13.7 mM, KH2PO4 1.47mM NaCl 137mM, Na2 HPO4 7 

H2O 8.06). Cells were lysated with RIPA buffer [150 mM sodium chloride, 50 mM 

Tris-HCl, pH 7.4, 1 mM ethylenediamine tetra acetic acid (EDTA), 1 mM 

phenylmethylsulfonyl fluorite (PMSF), 1% Triton X-100, 1% sodium deoxycholic 

acid, 0.1% sodium dodecylsulfate (SDS), 5 μg/ml aprotinin and 5 μg/ml leupeptin] for 

5 min a 4°C by shaking. The lysated was cleared by centrifugation at 3000 rpm for 5 

min. Protein concentration was determined with the Bio-Rad protein assay. The 

lysated was boiled for 5 min in 1x SDS sample buffer (50 mM Tris-HCl pH 6.8, 

12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 5% 

betamercaptoethanol. Proteins were separated by SDS-PAGE, transferred on 

Cellulosenitrate, membrane (Schleider and Schuell, Keene, NH) 2h at 350 mA 

constant. The nitrocellulose was blocked  1h by incubation with TTBS (50 mM Tris, 

pH 7.9, 150 mM NaCl and 0.05% Tween 20) 5% milk at room temperature and 

successively immunoblotted  with the primary antibody diluted in TTBS 5% milk. The 

antibodies against the proteins of interest were all used diluted 1:1000 or 1:3000 and 

incubated one hour at room temperature. The nitrocellulose was washed five times (5 

min each) in TTBS, and the appropriate peroxidase-conjugated anti-rabbit IgG or anti-
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mouse IgG, were used. Then, the membrane was washed again four times (5 min each) 

in TTBS. The blots were developed with the ECL system (Supersignal West Pico, 

Celbio, PIERCE, Rockford, IL, USA). 
 

 

5.6 Immunoprecipitation 
 

FRT expressing ER-Rac1N17 protein were growth in 100-mm dishes or on filters in 

bicameral systems for 24 or 48h; after they were washed twice with ice-cold 

phosphate-buffered saline (PBS) and were lysed 5 minutes on ice with RIPA buffer. 

Cells were collected by scraping in eppendorf. The lysates were incubated over night 

at 4 °C with anti-Rac1(4µg) or anti-E-Cadherin(2µg)  antibodies. The 

immunocomplex were incubated with protein A Sepharose beads for 2 h at 4°C and , 

then, were centrifugated at 14000 rpm at 4°C for 2 min in a refrigerated centrifuge. 

The supernatant was removed and used as control, the pellet was resuspended and 

solubilized in leamly 2X. Immunocomplex was subjected to SDS-PAGE followed by 

immunoblotting with anti-Rac1 or anti-E-Cadherin antibodies 

 

 

5.7 Bicameral culture system and TER measurements 
 

Acquisition and the maintenance of cell polarity by epithelial cells in monolayer 

culture might be monitored by measuring the transepithelial resistance (TER), which 

is generated when cells are grown on top of filters in bicameral systems. Filters are 

composed of some inert materials as polycarbonate and nitrocellulose and glued on 

rings in plastic, which are placed in conventional culture wells. Filters have pores of 

0.4 μm and a diameter of 24 mm. This system allows creating two compartments 

above and below the filter, and culture medium is added to both compartments of the 

system. The development of this technique has made it possible to study in detail 

mechanism governing epithelial polarity, occluding barrier function and vectorial 

transport in epithelial cells. Since FRT cells are derived from thyroid follicular 

epithelium the cell layer on the filter can be considered to represent the wall of a 

follicle which has been opened and laid on top of the filter with the luminal surface 
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TER values are expressed as Ohms. In this report TER measurements were performed 

in order to define the degree of polarization of the cells when endogenous Rac1 

activity was experimentally inhibited by dominant negative ER-Rac (N17) protein 

induction. This system allows creating two compartments above and below the filter 

and the culture medium was added to both compartments. 

 

 

5.8 Suspension cultures 
 

To performed suspension cultures, confluent monolayers of FRT cell line were 

trypsinized and the single cell suspension (2x102) was plated on regular 35-mm tissue 

culture dishes previously coated by a thin layer of 1% agarose (Sigma) in H2O to 

prevent cell attachment to the dish. Agarose was heated for 30 min at 100°C. While 

still hot, 1 ml of the solution was added to each plastic tissue culture dish and allowed 

to sit for about 10 sec. The agarose solution was then aspirated and the dishes were left 

at room temperature until the remaining thin layer of agarose solidified. Dishes were 

washed with medium before use. In this condition FRTwt cells and ER-Rac1N17 

expressing cells first aggregate e successively they form polarized three-dimensional 

structures, known as cysts, formed by a single layer of tightly connected cells 

delimiting a central cavity (lumen) that could be seen by phase contrast microscopy. 

Most lumens were surrounded by a single layer of cells, but in some places additional 

cells were evident. The normal polarity of thyroid epithelial cells reverses when 

follicles are in suspension culture. During the polarity reversal, the cells remain 

attached to their neighbors. The surface features characteristic of the region of the cell 

next to the lumen (tight junction and microvilli) appear on the cell surface next to the 

medium and the surface features characteristic of the region of the cell next to the 

medium appear in the inside of the cyst. The polarity inversion involves changes first 

in the surface features of the epithelial cell and then in the position of cytoplasm 

organelles. Our experiments were performed both in presence and in absence of 

tamoxifen in order to analyze the effect of Rac1 inhibition on formation of this 

polarized structure. 
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5.9 Wound healing assay 
 

The wound healing assay allows studying cell migration. It is simple, inexpensive, and 

one of the earliest developed methods to study directional cell migration in vitro. This 

method mimics cell migration during wound healing in vivo. The basic steps involve 

creating a “wound” in a cell monolayer, capturing the images at the beginning and at 

regular intervals during cell migration to close the wound, and comparing the images 

to quantify the migration rate of the cells. It is important that all the cultures are 

confluent at the start of the experiment. Therefore cells were grown to confluence in 

F12 Coon’s medium containing 5% FBS medium and then were maintained in serum 

free medium for 24h. The monolayers were scratched with a sterile, disposable 1000 

ml plastic pipette tip, the cells were washed 3 times and monolayers were 

photographed at different time intervals after the initial scratch to monitor the velocity 

of cell migration. Photographs were taken at 10 X magnification using phase-contrast 

microscopy immediately after wound incision and 24h and 48h later. Pixel densities in 

the wound areas was measured using the Cella software (Olympus Biosystem Gmb) 

and expressed as percentage of wound aperture where 100 % is the value obtained at 

Time 0. In this thesis the wound healing test was adopted to monitor the migratory 

activity in cells expressing the dominant negative form of Rac1. Experiments were 

performed with or without 4-OH tamoxifen. 

 

 

5.10 Expression and purification of recombinant GST-PAK-CD 

fusion proteins 
 

E. coli BL21 cells transformed with the GST-fusion constructs is grown for 16-18 h in 

bacterial dishes with LB/agar/ with ampicillin (100 μg/ml) at 37°C. One colony was 

picked and was grown in 3 ml of LB/ampicillin for 6-8h. Then, 10 μl of bacterial 

suspension were diluted in 200 ml of LB/ampicillin and let to grown for 16-18h and 

successively in 2L of the same solution for about 1h to permit to bacteria to achieve 
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the appropriate optical density value (about 600), in fact bacteria scatter light in 

proportion to their numbers and this is an important factor to induce recombinant 

proteins expression. Expression of recombinant protein is induced by addition of IPTG 

1 mM and further incubation in Luria broth (LB)/ampicillin at 37°C for 3h. Cells are 

harvested by centrifugation (30 min at 3000 rpm), resuspended in 40 mL bacterial 

lysis buffer (TRITON X100 10%, EDTA 1mM, Aprotinin 40μg/ml, 3mM PMSF), and 

then sonicated (3×30 s, 50% cycle, mark 4). Cell lysates are centrifuged at 4°C for 45 

min at 4000 rpm, and the supernatant is incubated with glutathione-coupled Sepharose 

4B beads (Amersham) for 1 h at 4°C (in a ratio of 1ml of 50% bead slurry per 20mL 

of supernatant). Protein bound to the beads is washed 3 times in cell lysis buffer. The 

Amount of bound fusion protein is estimated by comparing to bovine serum albumin 

(BSA) standards resolved in parallel on a 12% reducing polyacrylamide gel, and 

afterwards stained with Coomassie blue. Protein bound to the beads was conserved at -

20°C.  

 

 

5.11 GTPase activity assays.  GST-Pull-Down 

 
To evaluate the rate of Rac1 activity in several experimental situations it was used a 

GST-Pull-Down assay. This assays is based on the use of a chimeric protein consisting 

of the glutathione-binding moiety of glutathione-S-transferase (GST) fused to part of 

an effectors molecule which binds to the GTPase in its GTP-bound form. The complex 

of fusion protein and GTPase is then isolated from a cell lysated by immobilization 

(“pull down”) of the GST moiety on a Sepharose substrate to which glutathione has 

been adsorbed. Finally, following elution from the glutathione Sepharose, the captured 

GTPbound GTPase is detected by Western blotting. For the Rac activity assays, the 

CRIB domain of the kinase PAK was fused to GST (GST-PAK-CD). An equivalent 

number of cells (3x106) were analyzed for each different sample. Cell-culture dishes 

were placed on ice, and cells were washed with ice-cold phosphate-buffered saline 

(PBS) 2 times, then, cell-lysis buffer, RIPA buffer (see SDS PAGE and Western Blot) 

was added in the dishes (500 μL–1 mL). A cell scraper were used to harvest cell 

lysates, and they were incubated with lysis buffer, in tubes eppendorf, for 15 min at 
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4°C in shaking and were then centrifuged for 5 min at 3000rpm at 4°C. Protein 

concentration was determined in supernatant with the Bio-Rad protein assay. Aliquots 

was taken from the supernatant (100 μg of total protein) and were incubated with 

bacterially produced GST-PAK1-CD protein bound to glutathione-coupled Sepharose 

at 4°C for 30. The beads and proteins bound to the fusion protein were washed 3 

timesin an excess of cold cell-lysis buffer, eluted in Laemmli sample buffer, boiled for 

5 min, and then analyzed for SDS-PAGE and Western blotting using mouse mAb anti-

Rac1 diluted 1:1000 (UpstateBiotechnoloy). ECL detection followed the incubation 

with a HRP-conjugated secondary antibody (diluted 1.1000) (Figure 13). 

 

 
Fig. 13 Outline of the experimental scheme used to isolate Rac1 in his active GTP-
bound state. Cell lysated is mixed with GST-fusion protein attached to glutathione-
bearing Sepharose beads. Centrifugation of the Sepharose beads is followed by washing 
and elution of the captured active-Rac in sample-loading buffer. Protein is then resolved 
by SDS-PAGE and Western Blot. 

 

 

5.12 Precipitation of proteins with trichloroacetic acid (TCA). 

 
To experimental samples TCA at 15% of concentration was added. Then, samples 

were incubated on ice in the cold room for 2 hours or alternatively over night at 4°C; 

then they were centrifuged at 14,000 rpm at 4 ° C for 30 minutes; successively they 
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were washed three time with 0,5 ml of cold acetone and centrifuged again for 2 

minutes. Supernatant was aspirated and the residue acetone was evaporated under a 

stream of air; the pellet was resuspended with 2X Laemmli sample buffer in agitation 

on the thermo mixer at 33 ° C for 30 minutes; the pH is neutralized with vapors of 

ammoniac. 

 

5.13 Calcium switch assay 
 

FRT wt and FRT ER-Rac1N17 expressing cells were seeded as monolayers into 

dishes or on filters and cultured for 24 or 48h. E-cadherin mediated cell-cell contacts 

were disrupted by treatment with EGTA to a final concentration of 4Mm for 1h at 

37°C. Therefore, intracellular contacts were allowed to re-establish in the presence of 

fresh calcium-containing medium for 5h at 37°C. In this report this assay was 

performed to study the effect of Rac1 inhibition on the early phases of cell-cell 

contacts formation to study its rule in the acquisition of cell polarity. For this reason 

the readdition of calcium to the cells was performed both in presence and in absence 

of 4-OH-tamoxifen. At 5h after calcium restoration cells were lysed on ice and 

assayed for extraction Triton X-100 assay or membrane/cytosolic fractionation assay. 

To determinate whether de novo protein synthesis or E-cadherin of recycling was 

recruited to plasma membrane upon calcium switch assay we performed calcium 

switch assay in presence of cycloheximide to block protein synthesis. Cells were 

incubated with medium without serum containing 150 uM cycloheximide at 37°C for 

2h before switching cells to low-calcium medium, time necessary to empty Golgi 

apparatus from E-Cadherin signal.   

 

 

5.14 Extraction in Triton X-100. 
 

Confluent monolayers of FRTwt and FRT-ER-Rac1N17 cells were grown on 100 mm 

diameter dishes or on filters in bicameral systems for 24 or 24h. Then, cells were 

washed two times with ice-cold phosphate-buffered saline (PBS) and were incubated 

20’ on ice with 500 µl of extraction buffer (150 mM NaCl, 25 mM Hepes pH 7.5; 1% 
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Triton-X100 and protease inhibitors). Cells lysates were centrifuged at 14000 rpm in 

Eppendorf 5417R centrifuge for 2 min. at 4 ° C to separate the soluble proteins from 

the insoluble to the detergent Triton X-100. The supernatants represented the TX-100-

soluble fraction (S) and were collected in new tubes eppendorf and subjected to low-

speed centrifugation to remove cell debris. The pellets, which represent the TX-100-

insoluble fraction (I), were solubilized in 100 uL of solubilization buffer (50 mM Tris-

HCl pH 8.8, 5 mM EDTA and 1% SDS) and were shacked in term mixer at 30°C. 

When the pellet was solved was boiled at 100°C for 3’. Subsequently, pellets were 

resuspended using an insulin syringe fitted on Aug 22Ga until was completely solved 

(10 times) and then was diluted with 400 μl of extraction buffer. To both TX-100-

soluble fraction and TX-100-insoluble fraction trichloroacetic acid was added. Equal 

volumes of each fraction were analyzed by SDS-PAGE and Immunoblotting for E-

Cadherin protein. 

 

 

5.15 Membrane-cytosolic fractionation assay  
 

FRT expressing ER-Rac1N17 protein were growth in 60-mm dishes or on filters in 

bicameral systems for 24 or 48h and then were treated 1h with tamoxifen; after they 

were washed twice with ice-cold phosphate-buffered saline (PBS) and were lysed 5’ 

on ice with 1ml of hypotonic buffer (7.4 10 Mm TRIS Ph, 1,5 MgCl2 mM, 5 mM 

KCl, 1 mM DTT, 0,2 mM Na2VO3   1 mM phenylmethylsulfonyl fluorite (PMSF) 

1μg/ml aprotinin and 1μg/ml leupeptin). Cells were collected by scraping and cell 

lysates were homogenized 15 times in the Douncer Homogenizer. Homogenates were 

centrifuged at 3000 rpm for 5 min to pellet nuclei and intact cells, and supernatants 

were then centrifugated at 33000 rpm at 4°C for 30 min in a refrigerated 

ultracentrifuge (TL100) to sediment plasma membranes. The cytosol-containing 

supernatant was removed and total protein was precipitate with TCA. Pellet, which 

rappresented memfrane fraction was resuspended and solubilized in leamly 2X. 

Membrane and cytosol fractions were then assayed for equal volumes were analyzed 

by Western blotting. The membrane fractions were verified to be free of 

contaminating cytosol by immunoblotting for the cytosolic marker GDPH. 
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Treatment with 1h of Tamoxifen is sufficient to transfer a detectable fraction of the 

ER-Rac1N17 protein from cytoplasm to the membrane. 
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