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Abstract 

 

The present thesis describes the research activities undertaken by the 

candidate in the frame of his Doctoral program. It addresses key aspect of the 

Calcium looping process for carbon capture and sequestration which are proven 

to affect its feasibility and competitiveness. 

The introduction reports an overview of the current global warming issues 

associated with emissions of greenhouse gases of anthropogenic nature, 

emphasized by the perspective of a persistent strong dependence of the energy 

demand on fossil fuels which are the most important source of CO2 emissions. 

Hence, the portfolio of currently available and perspective Carbon Capture and 

Storage technologies (CCS), aimed at mitigating carbon dioxide emissions, is 

surveyed. Carbon dioxide capture processes are critically presented with a clue 

on their main operational characteristics, strengths and drawbacks. 

The calcium looping cycle is a promising CO2 capture technology which is 

characterized by a comparatively low energy penalty. For this reason, it has 

gained prominence among competing carbon capture technologies. The 

potential of this technology for short- to medium-term application has 

stimulated the interest of the candidate for this topic and has provided the 

motivation for the present study, which has been undertaken in the frame of 

research programs active at the Dipartimento di Ingegneria Chimica, dei 

Materiali e della Produzione Industriale of Università degli Studi di Napoli 

Federico II and of the Istituto di Ricerche sulla Combustione of Consiglio 

Nazionale delle Ricerche. The process is described in detail, with consideration 

of the underlying chemistry and physics as well as of the aspects pertaining to 

chemical reaction engineering. The latter is largely based on the exploitation of 
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the dual interconnected fluidized beds concept, which is currently considered 

the best suited reactor configuration for industrial application. A key aspect of 

the process is represented by the mechanism and extent of sorbent attrition 

phenomena associated with fluidized bed processing, which has been 

thoroughly scrutinized in the present investigation. 

This study addresses specific aspects of the calcium looping technology, 

and is based on a comprehensive experimental campaign carried out with the 

aid of purposely designed lab-scale fluidized bed facilities. In particular, the 

performance of six natural limestones, in terms of CO2 capture capacity and 

attrition tendency, has been investigated and quantified under different 

operating conditions. The effect of the presence of SO2 in the flue gases on the 

performance of limestones as sorbent candidates in Ca-looping has been 

assessed, again, with consideration of both sorption performance and attrition 

tendency. The possibility to use an alternative natural sorbent, namely dolomite, 

has been assessed. Finally, the potential of processes aimed at the regeneration 

of the sorption capacity of spent limestone has been investigated with a specific 

focus on reactivation promoted by water hydration. 

Results show that, under mild calcination conditions, sorbent attrition is 

extensive only during early cycling. The attrition rate progressively declines 

over repeated cycles, also during the calcination stage when the softer CaO is 

produced. It is inferred that combined chemically and thermally induced 

sintering of the sorbent affects the particle structure increasing its mechanical 

strength toward abrasive wear. The CO2 capture capacity of the sorbent decays 

over iterated cycles toward an asymptotic level. This feature, which has already 

been documented in the literature, is possibly related to the very same 

structural modifications that are responsible for the improvement of abrasive 

strength over iterated cycles. Bed temperature and CO2 concentration both 

appear to influence the sorbent behaviour by affecting the parallel course of 
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calcination/carbonation and sintering. In particular, a combination of high bed 

temperature and high CO2 partial pressures during calcination, representative of 

process conditions relevant to oxy-firing in the calciner, significantly enhances 

particle sintering. 

An important aspect that deserves investigation is the effect of the 

presence of SO2 in the flue gases on the performance of the Ca-looping cycle. It is 

well established that SO2 competes with CO2 for the sorbent. This aspect has 

been investigated in the present study with reference to process conditions 

representative of the industrial process. Experimental results confirm the 

detrimental effect of SO2 on CO2 uptake. However the decrease of the CO2 

sorption capacity varies with the SO2 content in the flue gas according to a less-

than-linear dependence: small concentrations of SO2 induce a pronounced 

decrease of the CO2 capture capacity, but only marginal decrements of CO2 

uptake are observed as SO2 concentration is further increased.  

Regardless of the operating conditions, in-bed particle fragmentation of 

limestones is always limited, and the attrition rate turns out to be only 

moderately affected by the presence of SO2. 

The CO2 sorption capacity of the dolomite is much larger than that of the 

limestones, in spite of the lower calcium content of this sorbent, under 

comparable process conditions. The large magnesium content in the dolomite 

hinders particle sintering and preserves the reactivity of Ca over prolonged 

cycling. However, the presence of SO2 significantly depresses the sorbent CO2 

capture capacity. Moreover, contrary to the limestones, the dolomite is subject 

to extensive attrition. 

Experimental results on the regeneration of the sorption capacity of spent 

limestone by water hydration has proven the potential of this technique. 

Microstructural changes in the sorbent properties induced by hydration suggest 
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to hydrate limestone for short times (in the order of a few minutes) to get a 

substantially complete chemical hydration process, avoiding longer hydration 

times that would only imply “cramming” phenomena, lower enhancement in the 

active porosity, increased attrition tendency and reduced reactivation. 
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1. Introduction 

 

1.1. Global warming: an overview 

 

The rising temperatures of the atmosphere and of the ocean, the increase 

of the sea level, the melting of the permanent ice in the Arctic and Antarctic 

regions are unequivocal signs that the global climate is changing (Figure 1.1). In 

particular, the global temperature has increased by 0.74°C over the last 100 

years, with an rate of temperature that has been nearly twice (0.13°C per 10 

years) during the last 50 years when compared with that recorded in the 

previous century. 

Since the start of the industrial era (about 1750) the human activities have 

contributed to the climate change through the emission of greenhouse gases 

(GHG, see Figure 1.2) and aerosols in the atmosphere. GHG and particles 

accumulate in the atmosphere altering the Earth’s energy balance between 

incoming solar radiation and outgoing infrared radiation, in a way that  results 

in global warming. 

The main anthropogenic GHGs are: carbon dioxide, methane, nitrous oxide 

and halocarbons (a group of gases containing fluorine, chlorine and bromine). 

Notably, water vapour is the most abundant and important greenhouse gas, 

which however is only slightly influenced by human activities by methane 

emissions, since this gas is chemically decomposed in the stratosphere 

producing a small amount of water. As regards the effect of aerosols, the third 

assessment report of the Intergovernmental Panel on Climate Change (IPCC, 

2007) stated that suspended particles are able to affect the Earth’s climate in 
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both a direct and indirect way. The direct effect is the same as that of GHGs and 

is related to scattering and absorption of radiation coming from the sun, altering 

the radiative balance of the atmosphere. The indirect effect is due to the 

propensity of these small particles to modify the radiative properties, the 

amount and the lifetime of the clouds. In particular, an aerosol particle acts as a 

cloud condensation nucleus, which is function of size, chemical composition, 

mixing state and environmental conditions (Penner et al., 2001). Moreover, it is 

possible to distinguish between two different indirect effects: the ‘first indirect 

effect’, also known as ‘cloud albedo effect’ or ‘Twomey effect’ (Twomey, 1977, 

Ramaswamy et al., 2001, Lohmann and Feichter, 2005), is related to the cloud 

droplet number concentration and hence on the cloud droplet size. The effect 

induced on liquid water content, cloud height and lifetime of clouds is called 

‘second indirect effect’, ‘cloud lifetime effect’ or ‘Albrecht effect’ (Albrecht, 1989, 

Ramaswamy et al., 2001, Lohmann and Feichter, 2005). 

The increase of the CO2 concentration in the atmosphere is recognized as 

the main responsible for global warming (IPCC, 2007). The CO2 concentration in 

the atmosphere has fluctuated around 280±20ppm for 10,000 years until 1750. 

During the industrial age, such value has undergone an appreciable increase 

reaching a mean value of 367ppm in the 1999 and 379ppm in the 2005 (IPCC, 

2007) (Figure 1.2). 

The Intergovernmental Panel on Climate Change has estimated, by means 

of mathematical models, that the global temperature and the average sea level 

will likely undergo an increase of 1.1-6.4K and 0.18-0.59m, respectively, in this 

century (Blamey et al., 2010a). 

Power plants firing fossil fuels represent the most important source of 

anthropogenic CO2 emissions. The modern society is heavily dependent on 
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relatively cheap and abundant fossil fuels which supply about 85% of the global 

energy demand (Li and Fan, 2008).  

 

Figure 1.1. Observed changes in (a) global average surface temperature, (b) global average sea 
level from tide gauge (blue) and satellite (red) data and (c) Northern Hemisphere snow cover 
for March-April. All changes are relative to corresponding averages for the period 1961–1990. 
Smoothed curves represent decadal average values while circles show yearly values. The 
shaded areas are the uncertainty intervals estimated from a comprehensive analysis of known 
uncertainties (a and b) and from the time series (c) (IPCC, 2007). 

 

The International Energy Agency (IEA) and the European Environment 

Agency (EEA) have estimated that, in the medium term, fossil fuels will still be 

the main energy source. Among them, coal will be characterized by the higher 

demand growth rate, as compared with natural gas and petroleum (IEA, 2008). 
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Coal produces twice as much CO2 compared to natural gas, for the same 

produced energy, resulting in a significant increase of CO2 emissions. It is 

estimated that the CO2 emissions will increase from 29 billion tons per year, in 

1997, up to 40 billion tons per year in 2030 (Li and Fan, 2008). 

  

 

Figure 1.2. Atmospheric concentrations of important long-lived greenhouse gases over the last 
2,000 years (IPCC, 2007). 

 

Renewable energy sources represent an option for lowering the 

greenhouse gas emissions and entail a broad class of technologies such as 

bioenergy, direct solar energy, geothermal energy, hydropower, ocean energy 

and wind energy. Though a growing number of renewable energy technologies 

are reaching technical maturity and are being deployed at significant scale, 

others are in an earlier phase of technical maturity and commercial deployment 

or can only meet the needs of specialized niche markets. On a global basis, it is 

estimated that renewable energy accounted for 12.9% of the total 492 Exajoules 
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of primary energy supply in 2008. In particular, this percentage value varies 

substantially by country and region (IPCC, 2011). Moreover, the global energy 

demand could increase up to 45% in 2030, and this demand cannot be fulfilled 

by utilization of renewable energies only.  

In addition to availability and cost, other factors hinder the exploitation of 

renewable energy sources. Among these factors, discontinuity or seasonality of 

their production and issues associated with energy distribution and dispatching 

play key roles. 

In a scenario of continuing generation of anthropogenic CO2, there is a 

urgent need to develop technologies to mitigate the climate change by limiting 

its emissions to the atmosphere. This urgency has stimulated the development 

of different concepts to remove CO2 from flue gases generated at power plants, 

collectively classified as Carbon Capture and Storage (CCS) technologies (IPCC, 

2005; Steeneveldt et al., 2006). As far as CO2 sequestration is concerned, three 

main methods are been proposed: geological storage, ocean storage and mineral 

carbonation (IPCC, 2005). 

 

Figure 1.3. Geological CO2 storage in the suboil. 
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The CO2 geological storage involves a preliminary step of gas compression 

up to a supercritical state and the subsequent injection of the dense fluid in deep 

geological formations. This CO2 storage method is the most accredited because 

evidence from oil and gas fields indicates that hydrocarbons and other gases and 

fluids, including CO2, can remain trapped for millions of years (Magoon and Dow, 

1994; Bradshaw et al., 2005). At depths below about 800m the pressure has 

values which permit to keep the CO2 in a liquid state with a liquid-like density 

which provides for an efficient utilization of the underground space, considering 

that in these conditions CO2 has a volume 500 times lower than in ambient 

conditions. Moreover, this technology can take advantage of the accumulated 

experience on the technique called Enhanced Oil Recovery (EOR) which is used 

to improve oil extraction injecting CO2 in the oilfields. Another option is CO2 

injection into deep saline formations which could have a higher storage capacity 

than oilfields. These formations are widespread and contain enormous 

quantities of water, which is unsuitable for agriculture or human consumption. 
Unfortunately, the features of these formations are not well-known and there is 

a need for further characterization. CO2 could also be injected into permeable 

rocks (called reservoir or storage rocks), with elevated storage capacity thanks 

to their extensive porosity. The low CO2 density leads to a filling of the upper 

layers of the storage rock (see Figure 1.3a), but its migration to the surface is 

hindered by a dense and gastight rock called seal rock, as shown in Figure 1.3b. 

Geological storage of CO2 is comprehensively surveyed by Benson (2005). 

Ocean storage is accomplished by injecting CO2 into the sea, at depths 

exceeding 3,000m, where CO2 is denser than sea water forming a ‘’CO2 lake’’ 

(IPCC, 2005). Numerical models indicate that deep ocean storage could isolate 

CO2 from the atmosphere for several centuries (Hoffert et al., 1979; Kheshgi et 

al., 1994). This method could require the utilization of a ship or a submerged 

pipeline for CO2 transportation. In particular, pipelines, for oil and gas 
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applications, are reaching ever-greater depths, but not enough for ocean storage. 

Unfortunately, studies have demonstrated that extensive CO2 sequestration 

might give rise to remarkable changes in sea chemistry, in particular could harm 

marine organisms (Pörtner et al., 2004). Ocean storage presents many open 

issues which need further understanding. 

Mineral carbonation (or mineral sequestration) is accomplished by letting 

CO2 react with metal-oxide bearing materials, thus forming the corresponding 

carbonates and a solid byproduct, silica for example. In nature such a reaction is 

called silica weathering and occurs on a geological time-scale. The purpose is to 

fix the CO2 as carbonates (Seifritz, 1990; Dunsmore, 1992; Lackner et al., 1995), 

stable compounds which would provide storage capacity on a geological time-

scale. Suitable materials could be the natural and abundant silicate rocks, olivine 

and serpentine materials or alkaline industrial residues, such as slag from steel 

production or fly ash. In particular, there are two different ways to use silicate 

rocks for carbonation: in the ex-situ method, carbonation occurs in a chemical 

plant after mining and pre-treating the silicates, while in the in-situ method, CO2 

is injected in a silicate-rich geological formation or into alkaline aquifers. From a 

thermodynamic point of view, inorganic carbonates represent a lower energy 

state than free CO2; therefore the carbonation reaction is exothermic and can 

theoretically yield energy. However, the kinetics of natural mineral carbonation 

is slow; hence all currently implemented processes require energy intensive 

preparation of the solid reactants to achieve reasonable conversion rates and/or 

additives that must be regenerated and recycled using external energy sources. 

The in-situ carbonation is very similar to geological storage, while the ex-situ 

carbonation involves several steps and hence economic/energy penalties such 

as mining, transportation, grinding, activation (when necessary), disposal of 

carbonates and byproducts. Industrial residues can be carbonated in the same 

plant where they are produced. Despite this potential penalty, the interest in this 
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storage method stems from two important aspects: i) the abundance of metal 

oxide bearing materials; in particular, magnesium and calcium silicate deposits 

are sufficient to fix the CO2 that could be produced from the combustion of all 

fossil fuels resources; ii) the possibility to fix CO2 permanently in stable solids, 

which can be stored in an environmentally suitable location.  

An alternative sequestration method is represented by the industrial use 

of CO2 as a gas or a liquid or as a feedstock for production of chemicals (IPCC, 

2005). CO2 is an industrial gas which has a large use for production of several 

chemicals, such as urea, refrigeration systems, inert agent for food packaging 

and many other applications. Large amounts of CO2 are used for Enhanced Oil 

Recovery in the United States. Much of the CO2 used commercially derives from 

synthetic fertilizer and hydrogen plants which use either chemical or physical 

solvent scrubbing systems. Other sources include the fermentation of sugar to 

produce ethyl alcohol and the production of sodium carbonate from limestone. 

In some countries (United States, Italy, Norway and Japan) CO2 is extracted from 

natural CO2 wells. It is also recovered during the production and treatment of 

raw natural gas which often contains CO2 as an impurity. Furthermore, a number 

of processes, for productions of chemicals and polymers, are considering the use 

of CO2 to substitute CO, CH4 and CH3OH as a source of carbon. Moreover, CO2 

could be used for production of fuels, such as biomass production. By 

photosynthesis, solar energy can convert water and CO2 into organic compounds 

like starch, which can produce fuels like CH4, CH3OH, H2 or biodiesel (Larson, 

1993). Despite this potential, the contribution of industrial uses of captured CO2 

to the mitigation of climate change is expected to be small. 

Another important aspect of the CCS technology is the transportation of  

CO2 from the emission sites to the storage sites, which can occur in three 

different states: gas, liquid and solid. Commercial transport uses tanks, ships and 

pipelines for gaseous and liquid CO2. The gas compression, and hence the 
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volume reduction, is necessary to avoid large facilities for gas transportation by 

pipelines. Volume can be further reduced by liquefaction which is a strategy 

used for transportation of liquefied petroleum gas or liquefied natural gas by 

ship. These technologies can be transferred to liquid CO2 transport. Solidification 

would require much more energy as compared with the other options. 

The use of CO2 pipelines is not new: they now extend over more than 2500 

km in the western USA, where they carry 50 MtCO2 yr-1 from natural sources to 

enhanced oil recovery plants (IPCC, 2005). Conveyed CO2 should be dry and 

containing a small quantities of contaminants (such as H2S) in order to minimize 

pipeline corrosion. However, it is possible to design a corrosion resistant 

pipeline which could operate safely with a gas that contains water and other 

contaminants. Obviously, a transportation infrastructure, which carries CO2, 

requires an extended network of pipelines, which ensures the needed safety, 

particularly in highly populated zones. From this viewpoint, existing experience 

has been carried out in zones with low population densities, while the safety 

issue could become more complex in populated areas. 

 

1.2. Carbon capture technologies 

 

CO2 capture can be accomplished according to four possible approaches 

(IPCC, 2005; Figueroa et al., 2008; Kanniche et al., 2010): 

 post-combustion; 

 pre-combustion; 

 oxy-fuel combustion; 

 chemical-looping combustion. 
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Pre-combustion capture is characterized by three steps (Figure 1.4): step 

1: the production of synthesis gas; step 2: CO2 removal; step 3: combustion of 

hydrogen. The most efficient path to pre-combustion capture is represented by 

the Integrated Gasification Combined Cycle (IGCC) technology, which combines a 

gasification process with a gas turbine cycle. The process starts with a partial 

oxidation of the solid fuel at elevated temperatures (> 800°C), with oxygen 

(coming from an air separation unit) and steam, producing a raw syngas. The CO 

in the syngas can be converted to CO2 and H2 via the water-gas shift reaction. 

The produced stream contains an elevated amount of CO2, which can be 

removed by chemical or physical processes, and further purified from polluting 

compounds, such as H2S, HCl, ammonia and Hg. Finally, the H2-rich stream is 

send to a gas turbine for energy production. After separation, CO2 is sent to a 

compression unit and is ready for sequestration (Amann et al., 2009). 
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Figure 1.4. Typical scheme of a pre-combustion process 
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The IGCC process represents a new technological frontier because it 

permits to overcome the main problem of the gas turbines: to run with clean 

fuels avoiding erosion and fouling of the internal parts of the system. This 

feature is due to the easy management of pollutants in the IGCC; the utilization 

of an air separation unit, and hence the absence of N2, involves a higher partial 

pressure of the pollutants than in traditional power plants, hence a more 

efficient removal. When compared with direct combustion, drawbacks of IGCC 

have been represented by larger capital-intensity and lower availability, which 

can both be overcome by better understanding and optimization of the 

technology.  

Air
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H2O CO2

N2 CO2 Capture 
Unit 
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Figure 1.5.  Typical scheme of a post-combustion process 

 

Post-combustion capture consists in the treatment of the exhaust gases 

produced by combustion of fossil fuels (Figure 1.5). Its main advantage is the 

possibility to easily retrofit existing power plants. This technology is based on 

CO2 separation from the flue gas, with a typical CO2 content of 10-20% by 

volume, using a variety of processes such as chemical absorption, adsorption, 

membrane or cryogenic separation. At present, chemical absorption is the most 

widely used technology. This process employs the reaction of an aqueous alkali 

solvent with CO2. MEA (monoethanolamine), MDEA (methyldiethanolamine) and 
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DEA (diethanolamine) are currently the main chemical absorbents of interest for 

CO2 separation (Aaron and Tsouris, 2005). Amines capture CO2 from the flue gas 

at low temperature and release it after heating (stripping), producing an almost 

pure CO2 stream. Figure 1.6 shows a typical amine scrubbing system (Rochelle, 

2009). CO2 is captured at ambient temperature by amines which are regenerated 

by steam at temperatures of 100-120°C, obtaining a pure CO2 stream after water 

condensation. Unfortunately, these absorbents have an elevated energy demand 

for their regeneration and are degraded by the impurities contained in the 

exhaust gas; hence they are used to treat very clean gas mixtures containing only 

small quantities of impurities such as dust, SOx, NOx, H2S and oxygen. 

 

 

Figure 1.6. Amine scrubbing system for CO2 capture. 

 

Oxy-fuel combustion (or oxyfiring) is based on combustion of fuels using 

pure oxygen (up to 97%) as oxidant. Oxy-fuel combustion overcomes the issues 

associated with the presence of nitrogen in the reaction environment, so that the 

flue gas will be composed mainly of CO2 and water (Figure 1.7). The next step is 

to separate water from CO2 by condensation, yielding an almost pure CO2 stream 

ready for sequestration. Part of the exhaust gas is recycled to the combustion 
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chamber in order to control the temperature level. Oxyfiring requires an air 

separation unit to provide nearly pure oxygen for combustion. This process is 

conceptually very simple. Existing combustion plants can be in principle 

retrofitted for oxyfiring, though problems might arise due to air intake and 

leakage. The oxygen production step represents the most significant energy 

penalty for this technology (Buhre et al., 2005; Toftegaard et al., 2010). 
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Figure 1.7. Typical scheme of a oxy-fuel combustion process. 

 

Chemical looping combustion (Mattison and Lyngfelt, 2001; Lyngfelt et al., 

2008; Wang and Anthony, 2007) is an innovative and very challenging 

combustion technology with inherent CO2 sequestration, which has attracted 

much attention over the last years. The concept is based on the utilization of 

solid oxygen carriers (OC) which promote fuel oxidation without direct contact 

with atmospheric oxygen. Typical OCs consist of an active phase, which could be 
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a suitable metal oxide, supported on an inert material for ensuring chemical, 

thermal and mechanical stability (Adànez et al., 2004, 2012; Wolf et al., 2005; 

Johansson, 2007). The process involves two reaction steps: 

 

1. CnH2m + (n+½m)MexOy = nCO2 + mH2O + (n+½m)MexOy-2 

 

2. MexOy-2 + O2 = MexOy 

 

where CnH2m is a generic fuel, while MexOy and MexOy-2 are the metal oxide in the 

oxidized and reduced form, respectively. The process involves cyclic steps of OC 

reduction by the fuel and oxidation by atmospheric air, which take place 

iteratively in the Fuel Reactor (reaction 1) and in the Air Reactor (reaction 2) 

(Figure 1.8). The oxidation of the carrier is exothermic, whereas the reduction 

step is endothermic, with the remarkable exceptions of CuO (de Diego et al., 

2004) and Mn2O3 which are characterized by an exothermic reduction stage. The 

key issue of this technology is to find suitable OCs (active phase and support) for 

the process. Several metal oxides have been proposed in the literature to be 

used as OC (Wolf et al., 2005; Johansson, 2007; Chandel et al., 2009, Lyngfelt et 

al., 2008, Adánez et al., 2004): candidate carriers are nickel, cobalt, copper, iron 

and manganese oxides. Alternative CLC concepts are based on the use of 

sulphate/sulphide cycles (Wang and Anthony, 2008) or on alternated oxygen 

chemisorption/desorption on carbon (Salatino and Senneca, 2009).  

Features required for a good OC are (Adánez et al., 2012): 

 high reactivity with the fuel and oxygen in the temperature range of 

interest for the process; 
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 high oxygen ratio (moles of oxygen which the carrier is able to exchange 

per mole of metal oxide); 

 low propensity to attrition/fragmentation and agglomeration phenomena; 

 inexpensiveness and environmental friendliness. 
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Figure 1.8. Typical scheme of a chemical looping combustion process. 

 

 

1.3. The Calcium Looping Cycle 

 

The calcium looping cycle is a post combustion process which uses CaO-

based sorbents, typically derived from natural limestone, to capture CO2 from 

flue gas (Shimuzu et al., 1999; Dean et al., 2011a; Stanmore and Gilot, 2005; 
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Alonso et al., 2010; Blamey et al., 2010b). The process is based on the reversible 

carbonation reaction: 

3. CaO(s) + CO2(g) → CaCO3(s) 

Carbonation (ΔHr,298K = -182.1kJ/mol) proceeds at a satisfactory rate at 

temperatures in the range 650–700°C (Fennel et al., 2007a; Sun et al., 2007a), 

while the reverse calcination reaction is carried out at 850–950°C. The calcium 

oxide sorbent is repeatedly cycled between two reactors (Figure 1.9). In one 

reactor (the carbonator) carbonation of CaO particles occurs, capturing CO2 from 

the flue gas. The sorbent particles are then circulated to another reactor (the 

calciner) where calcination takes place. The regenerated CaO particles are 

returned to the carbonator, leaving a concentrated stream of CO2 ready for 

sequestration. Because of the deactivation of sorbent material, the process needs 

a continuous or periodic feeding of fresh sorbent (make-up) and a purge for 

deactivated (spent) one, as shown in the Figure 1.9. 
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Figure 1.9. Typical scheme of a calcium looping process under oxy-firing condition in the 
calciner. 
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The endothermicity of the calcination reaction and the temperature 

difference between sorbent streams entering and leaving the calciner imply the 

necessity to provide an energy input to the calciner. Shimizu et al. (1999, 2002) 

have proposed to oxyfire coal (auxiliary fuel) in the calciner with O2 provided by 

an external air separation unit, whose estimated size would be approximately 

one third of that required for an oxy-fuel power plant. This option involves 

temperature and CO2 concentrations in the calciner typical of oxyfiring, which 

have important consequences on sorbent deactivation, hence on process 

efficiency. 

Calcium looping can also be implemented in a pre-combustion version 

(Harrison, 2008), known as sorption-enhanced gasification. In this version the 

carbonator can be operated as a gasifier-carbonator, where gasification of a 

solid fuel and in situ uptake of the generated CO2 are accomplished at the same 

time. This option could have some advantages: 

  The CO2, produced by gasification, is continuously removed from the 

reaction environment by the sorbent, so the gasification is driven towards 

a higher production of H2; 

 The carbonation, being an exothermic process, could provide the heat 

needed for the gasification reaction; 

 Calcium carbonate and calcium oxide promote the destruction of tars 

(Florin and Harris, 2008) which are a severe issue when using hydrogen. 

 

Figure 1.10 (McBride et al., 2002) reports the partial pressure of CO2 

corresponding to the thermodynamic equilibrium of the calcination reaction, as 

a function of temperature. Several analytical expressions have been proposed to 

describe this curve. Selected equations are given in Table 1.1. 



Calcium looping for CCS-ready combustion of solid fuels                                              1.Introduction 

22 
 

 

Table 1.1. Selected equations expressing CO2 partial pressure at equilibrium for calcination. 

4.     

  
             

     

        Baker, 1962 

5.     

  
             

     

        Silcox et al., 1989 

 

Operating conditions in the calciner must be chosen so as to promote 

calcination and to reach a compromise between achieving acceptable reaction 

rates and preventing sorbent deactivation (which are both enhanced at high 

temperature). As far as operation of the carbonator is concerned, a compromise 

must be found between two factors: fast carbonation rate, promoted at high 

temperature, and elevated carbonation degree, promoted at low temperature 

(as shown by the equilibrium conditions for calcination reaction in Figure 1.10). 

 

Figure 1.10. Equilibrium partial pressure of gaseous CO2 and H2O above CaO as a function of 
temperature (McBride et al., 2002) 
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As regards reaction kinetics, the calcination reaction is characterized by a 

complex kinetic expression, which depends on three factors (Stanmore and 

Gilot, 2005): CO2 concentration, which inhibits the reaction; particle size, which 

can determine both thermal and diffusive limitations; catalysis/inhibition 

induced by impurities. Blamey et al. (2010a) have shown that there are two CO2 

pressure ranges which have different effect on the calcination rate: for 

    
         

  
, where     

 denotes the CO2 partial pressure and     

  
 the 

equilibrium partial pressure of CO2 at a certain temperature, the calcination rate 

is practically independent from CO2 partial pressure; when     
         

  
, a 

parabolic relationship is observed between calcination rate and CO2 partial 

pressure, after which a linear dependence on      

  
     

  is found. A possible 

explanation of this behaviour is that calcination is quickly completed at low CO2 

partial pressure. On the contrary, in a reactor at atmospheric pressure with a 

CO2 concentration lower than 100%, calcination needs a higher temperature to 

take place at an appreciable rate (Blamey et al., 2010a). 

Carbonation is characterized by an initial fast stage, controlled by chemical 

reaction, followed by a very slow one, controlled by diffusion phenomena 

(Blamey at al., 2010a; Bhatia and Perlmutter, 1983). The resulting final 

carbonation degree is typically much lower than 100%. 

One of the most important advantages of this process derives from the 

utilization of limestone which ‘'…is one of the cheapest industrial chemicals (after 

water) and is environmentally benign’’ (E. J. Anthony). Moreover, the process has 

a lower energy penalty than amine scrubbing: it is in the order of 6-8% for 

calcium-looping and 9.5-12.5% for amine-based system (Dean at al., 2011a). A 

further advantage could be represented by the lower capital and operational 

costs than the traditional amine-based system. A preliminary economic analysis 

(MacKenzie at al., 2007) shows that the cost for CO2 capture is about 19.75 
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US$/ton CO2 for the calcium-looping process, which is fairly low if compared 

with those of the amine system (32.5-80 US$/ton CO2, data refer to year 2005). 

In addition, there is the possibility of an integration of the calcium-looping 

process with the cement industry (Abanades et al., 2005; Bosoaga et al., 2009), 

which is the most important CO2 producer after the energy industry. Indeed, the 

spent sorbent coming from calcium-looping process may be used as a raw 

material determining various energetic/environmental benefits. Some studies 

have demonstrated that spent sorbent produces a clinker with comparable 

features to commercial cement (Dean et al., 2001b). This integration might 

reduce CO2 emissions related to these processes.  

 

 

Figure 1.11. Iterated calcination/carbonation cycles of limestone in a TGA (Blamey et al., 
2010a) 

 

1.4. Sorbent deactivation 

 

Several studies have been carried out on sorbent deactivation under 

alternated calcination/carbonation cycles (Blamey et al., 2010a; Curran et al., 
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1967; Barker, 1973; Silaban e Harrison, 1995; Abanades, 2002; Abanades e 

Alvarez, 2003; Grasa e Abanades, 2006). Sorbent deactivation entails a 

progressive drop in the CO2 capture capacity, defined as the amount of captured 

CO2 per amount of sorbent. Figure 1.11 shows a typical trend of the mass of 

sorbent (in percentage), under repeated calcination/carbonation cycles. It is 

clear that the mass increase after each carbonation step is reduced upon 

iterating cycles, ultimately reaching an asymptotic value of about 8-10% of the 

initial value (Grasa and Abanades, 2006). Similarly, Figure 1.12 shows such a 

decrease in terms of the maximum value for CaO conversion degree (indicated 

as XCaO). “Maximum conversion” is defined as the calcium conversion degree 

reached after the rapid stage of the carbonation reaction. Figure 1.12a reports 

XCaO for an elevated number of cycles, highlighting the presence of a 

residual/asymptotic value equal to about 0.075 (Grasa and Abanades, 2006). 

Figure 1.12b shows the sharp decay after the first 40 cycles.  

The causes of sorbent deactivation lie in two different effects. The first one 

is related to the reaction pathway between CO2 and CaO. It is interesting to 

underline that CaO, obtained by calcination, is more porous (Barker, 1973) and 

reactive toward CO2 than natural lime. This is likely due to the presence of a 

network of small pores formed after calcination (Sun et al., 2007a). It was 

estimated that carbonation takes place in pores with a maximum dimension of 

150nm (Fennel et al., 2007b). Carbonation yields a solid product which has a 

higher molar volume than CaO, so that a carbonate layer is generated on the 

external particle surface and on the internal surface of the pores, resulting in 

pore hindrance and in trapping of un-reacted CaO inside the particles. Some of 

these pores remain closed even after calcination, entailing a permanent decrease 

of reactive surface. 
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Figure 1.12. Sorbent conversion vs number of cycles for the experiment (Grasa e Abanades, 
2006). 

 

The main cause of the CO2 capacity decay has been identified in sorbent 

sintering and in the associated changes of pore size, which depends on the 

process temperature and on the duration of the cycles. Sintering causes changes 

in the pore shape and in the pore size, as well as an increase in the grain size. In 

particular, sintering promotes an abatement of the small pores (<220 nm) and 

the formation of a network of macropores with size >220 nm. In this way, the 

surface area/volume ratio decreases with the number of cycles. The formation of 

macropores occurs by means of a mechanism of volume diffusion, determined 

by the minimization of the surface energy, which promotes a decrease of particle 

porosity (Fennel et al., 2007b; Manovic et al., 2009). In other words, the CaO 

sintering generates a variation of surface texture of limestone from rough to 

smooth (Abanades et al., 2004; Abanades e Alvarez, 2003; Sun et al., 2007b).  
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Figure 1.13. Schematic representation of the textural transformation of the CaO sorbent over 
iterated cycles. The CaO phase is shaded light grey and the CaCO3 phase is shaded dark grey 
(Lysikov et al., 2007). 

 

 

Figure 1.14. SEM images of particles of Purbeck limestone. On the left side: external surface of a 
particle calcined once. On the right side: interior of a particle calcined 20 times and 
recarbonated 19 times. All images were taken with the same magnification, the scale bar 
corresponding to 5 mm (Fennell et al., 2007b). 

 

Figure 1.13 shows a schematization of the sorbent behaviour during 

repeated cycles. The initial sorbent, that is after the first calcination, has many 

pores with small size and very rough surface (Figure 1.13a). The following 

carbonation is not complete because of pore sealing and sintering process 

(Figure 1.13b). Some pores remain closed during the consecutive calcinations 

(Figure 1.13c-d) and this process goes on up to obtaining a sorbent with low 

reactivity and a rigid structure (Figure 1.13e). It is possible to observe this 
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structure change in Figure 1.14. The image on the left side shows a particle after 

the first calcination which appears rough and full of many small pores. On the 

right side, a particle after 20 calcinations and 19 carbonations is reported, which 

shows a smoother surface and few pores with large size. 

As shown in Figure 1.15, sintering induces significant effects above 975°C, 

in inert atmosphere, producing a strong reduction of surface area and porosity 

in a short time (15 min) (Borgwardt, 1989a). Further studies of Borgwardt 

(1989b) confirm that sintering is promoted by the presence of CO2 and H2O. The 

effect of temperature on sintering is very clear in Figure 1.16, where the CO2 

capture capacity (indicated as a percentage uptake capacity) of the Havelock 

limestone is reported, as a function of the number of cycles, at atmospheric 

pressure, with a CO2 concentration of 15% but at different calcination 

temperatures. Ultimately, sintering is promoted during calcination, i.e. at high 

temperature, inducing a fast decay of CO2 capture capacity, while carbonation 

has a negligible effect on sintering (Sun et al., 2007c). 

German (1976) has proposed a model to describe the sintering process: 

6. (
    

 
)
 

      

where   is the specific surface area at time  ,    is the initial specific surface area 

and    is a rate constant which includes diffusion coefficient (a function of 

temperature), surface tension and other constants. The exponent   is 

mechanism dependent and is found in the case of CaO to be 2.7 (Borgwardt, 

1989a) 
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Figure 1.15. Porosity and surface area of 2 mm limestone-derived CaO particles after 15 min 
heating under a nitrogen atmosphere (adapted from Borgwardt, 1989a). 

 

 

Figure 1.16. Decay of CO2 capture capacity over iterated cycles at different temperatures 
(Blamey et al., 2010a). 
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1.5. Sorbent deactivation induced by sulphation  

 

Another problem related to the decay of the CO2 capture capacity is 

represented by the possible presence of SO2 in the flue gas processed in the 

carbonator, which reacts with lime to form CaSO4. Furthermore, SO2 is generated 

during combustion of coal which typically has sulphur content up to 8% by 

weight (Smith, 2007). Hence, SO2 is also present in the calciner where, as 

discussed previously, an auxiliary fuel, such as coal, is oxyfired to sustain 

calcination. The reaction between lime and SO2 is already used in the in situ 

desulphurization of flue gas in fluidized bed combustors, using natural sorbents 

such as limestone and dolomite. 

Direct sulphation of limestone: 

7. CaCO3(s) + SO2(g) + ½ O2(g) → CaSO4(s) + CO2(g)     ΔHr, 298K=-324 kJ/mol 

occurs when the CO2 partial pressure in the reactor does not permit the 

calcination of CaCO3 (Smith, 2007). Otherwise, indirect sulphation of CaO takes 

place: 

8. CaO(s) + SO2(g) + ½ O2(g) → CaSO4(s)      ΔHr, 298K=-502  kJ/mol 

Unfortunately, sulphation is irreversible in the temperature range of interest so 

that lime reacted with SO2 is permanently lost (Anthony and Granatstein, 2001). 

On the other hand this reaction, even if reduces the CO2 capture capacity of the 

sorbent, is not completely undesired as it may be directed to remove SO2 from 

the flue gas whose emissions have stringent legal limitations. 

Several studies have been carried out on the indirect sulphation of sorbent 

(Anthony at al., 2007), which confirm that sorbent calcination is faster than 

sulphation. Furthermore, the higher molar volume of CaSO4 compared to CaO 
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and CaCO3 induces pore plugging with a core-shell structure (Dam-Johansen and 

Østergaard; 1991). The sulphation effects depend on the particle size: for large 

particles sulphation produces an unreacted core of CaO (Figure 1.17a); if a 

network of large pores is present, a number of small unreacted cores are formed 

(Figure 1.17b), while if the particles are sufficiently small, then the sulphation is 

uniform (Figure 1.17c). 

Moreover, the sulphated external layer hinders intraparticle diffusion of 

CO2 (Stanmore and Gilot, 2005; Blamey et al., 2010b; Montagnaro et al., 2010, 

Anthony and Granatstein, 2001; Scala et al., 2008; Ryu et al., 2006), determining 

a loss of CaO available for CO2 capture. The extent of this loss depends on the 

properties of the sorbent and on CO2 partial pressure in the system (Grasa at al., 

2006). In particular, it was observed that high CO2 concentrations promote 

slower deactivation (Sun et al., 2007b). The competition between reaction with 

CO2 and SO2 depends on the morphology of the calcined sorbent (porosity, grain 

size etc.) and on the properties of the sulphated particles. It is important to 

underline that sorbent deactivation (promoted by sintering) could results in 

improved capture of SO2 (Grasa at al., 2008), due to the presence of large pores 

in the sorbent which has undergone many carbonation/calcination cycles (Li et 

al., 2005b).  

A useful method to prevent sorbent deactivation by SO2 is to use spent 

sorbent reactivated by hydration. Hydration, with either liquid water or steam, 

represents an efficient method to regenerate the ability of spent sorbent to 

uptake both CO2 and SO2, because it generates a better sorbent morphology 

(Manovic and Anthony, 2007b; Manovic et al., 2008b) in terms of pore surface 

area, which promotes CO2 capture (Alvarez and Abanades, 2005), and size 

distribution of pores, which facilitates SO2 capture (Ives at al., 2008). 

 



Calcium looping for CCS-ready combustion of solid fuels                                              1.Introduction 

32 
 

 

Figure 1.4 Schematic sequence of sulphation of three different types of sulphated limestone 
particles (Laursen et al., 2000). 

 

 

1.6. Synthetic and natural alternative sorbents 

 

The use of dolomite, rather than limestone, to accomplish flue gas 

desulphurization during fluidized bed combustion has been reported in the 

literature (Stantan, 1983; Anthony and Granatstein, 2001; Scala and Salatino, 

2003). Dolomites are generally more reactive (on a Ca molar basis) than 

limestone with a more elevated resistance toward sintering, but their use 

implies a larger mass feed rate necessary to obtain a required Ca/S feed ratio. 

Moreover, dolomites show a higher propensity toward attrition/fragmentation 

phenomena. 

Most of the experimental work on calcium looping reported to date has 

been directed to characterize the performance of limestones. Only a few studies 

have considered dolomite, whose potential has been characterized either in 

thermo-gravimetric (Silaban et al., 1996; Chrissafis et al., 2005; Chen et al., 
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2009) or in fluidized bed (Fang et al., 2009) reactors. Early studies showed that 

dolomite provides larger active surface area than limestone, a feature that 

results in improved carbonation (Silaban et al., 1996; Chrissafis et al., 2005).  

The decomposition of MgCO3 to MgO and CO2 occurs, from a 

thermodynamic viewpoint, at about 305°C at atmospheric pressure with a CO2 

concentration of 100%v/v. The reverse reaction with 10%v/v of CO2 requires a 

temperature below about 247°C which is incompatible with the temperature of 

a carbonator (650-700°C). Accordingly, MgO does take part in CO2 absorption in 

the carbonator, as carbonation is fully hindered at temperatures typical of the 

carbonator. However this oxide plays an important role in calcium looping, as it 

has a structure-stabilizing effect that provides a higher cyclic stability of calcium 

compounds compared to raw limestone. As a consequence, most dolomites show 

a higher long-term CO2 capture capacity than limestone. The structure-

stabilizing effect of MgO is made evident by the following features: i) the sorbent 

porosity is preserved over iterated cycles by the framework of the unreacted 

MgO; ii) MgO has a higher melting point than CaO and, therefore, effectively 

prevents sorbent sintering.  

A recent study and patent by Iyer and Fan (2006) reports on the use of 

waste from food manufacture, like mussel or chicken-egg shells. These waste 

material are characterized by high calcium content and remarkable particle 

strength. Ives et al. (2008) repeatedly cycled mussel shells and chicken-egg 

shells under mild conditions in an atmospheric pressure fluidized bed reactor, 

and found that both sorbents displayed similar reactivity upon cycling compared 

to the reference Purbeck limestone, despite showing different initial pore size 

distributions.  

Synthetic sorbents can exhibit a higher reactivity than natural limestone 

thanks to better tailored microstructural properties. Fan and co-workers 
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(Agnihotri et al., 1999; Gupta and Fan, 2002) developed a wet precipitation 

process to produce a precipitated calcium carbonate (PCC) with a high surface 

area. This sorbent features a large extension of mesopores which are less 

subjected to pore closure than micropores. Other researchers have synthesized 

sorbents based on dispersing CaO on various inert supporting materials: Li et al 

(2005a, 2006) with mayenite (Ca12Al14O33), Aihara et al. (2001) with CaTiO3. The 

use of synthetic sorbents in calcium looping is attractive but is generally 

associated with availability and cost issues. Li et al. (2008a) have reported that 

modification of dolomite using acetic acid yielded a sorbent with significantly 

higher activity than that of the original sorbent. An independent study showed 

that carbonation of CaO, when modified using a solution of ethanol and water, 

was more complete than for CaO hydrated with distilled water (Li et al., 2008b). 

Doping of limestones with aqueous solutions (0.002–0.5 M) of different salts 

such as Na2CO3 or NaCl yields only marginal improvements in the long-term 

reactivity (Fennel et al., 2007b). In some cases doping of natural sorbents 

induced a decrease of the sorbent reactivity, as was the case for Salvador et al. 

(2003) who used aqueous solutions of Na2CO3 or NaCl. The utilization of high-

capacity sorbents entails a reduction of the make-up (Rodriguez at al., 2008), 

hence an improvement of the process economics. However, chemical or physical 

treatments of the sorbent involve costs, and their practical feasibility can only be 

assessed by specific economic analysis (Lisbona et al., 2010). 

 

1.7. Sorbent reactivation and pretreatment 

 

Several studies have investigated measures to reactivate spent sorbents or 

to reduce the decay of the capture capacity. Among the proposed techniques one 

might recall thermal preactivation and reactivation of sorbent by hydration. 
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Studies on thermal pretreatment (Lysikov et al., 2007; Manovic and Anthony, 

2008a) have showed that thermally treated sorbents are more reactive than 

untreated ones for a higher number of cycles. Chen et al. (2009) found that 

thermally preactivated particles can retain a more elevated asymptotic value of 

the capture capacity as compared with untreated material. Moreover, thermal 

pretreatment is generally effective in reducing sorbent attrition phenomenon. 

Different optimal pretreatment conditions may apply for different sorbents, 

related also to the presence and nature of impurities and structural differences.  

Hydration is currently considered a relatively cheap, and hence a 

promising way to reactivate spent sorbents for SO2 capture (Montagnaro et al., 

2004, 2006a, 2008; Anthony et al., 2007; Smith, 2007). This process relies on the 

CaO conversion to Ca(OH)2, according to the following reaction: 

9. CaO(s) + H2O(g, l) → Ca(OH)2(s)      ΔHr, 298K=-67.0 kJ/mol 

This reaction increases the molar volume (from 16.9 cm3/mol (CaO) to 33.7 

cm3/mol (Ca(OH)2), (Dam-Johansen e Østergaard, 1991)) of the CaO-rich core of 

spent sorbent particles, producing cracks and fissures in the external sulphate 

layer. Upon injection of the hydrated sorbent into the hot reactor, dehydration 

produces a sorbent with elevated surface area and porosity. Montagnaro et al. 

(2008) discussed strengths and drawbacks of this reactivation method for 

desulphurization process. In particular, hydration by liquid water requires 

shorter reaction times (in the order of minutes) than steam hydration (in the 

order of hours). Moreover, reactivation by liquid water determines sulphur 

redistribution inside the particles, contributing to an increase of the capture 

capacity of the reactivated sorbent. This redistribution is related to ion mobility 

in the aqueous phase associated with a solubilisation-precipitation mechanism 

driven by concentration gradients (Scala et al., 2001). The ion mobility could be 

responsible for the observed changes of pore volume along with hydration. This 

‘’cramming’’ phenomenology, consisting of coalescence of fine pores into larger 
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ones, broadly resembles pore volume changes associated with high-temperature 

sintering. 

However, hydration emphasizes the attrition propensity of the particles, 

probably because of the lower hardness of Ca(OH)2 than CaO/CaCO3 

(Montagnaro et al., 2006b; Materić et al., 2010). 

Hydration takes place both on calcined and carbonated sorbents, but 

recent studies have demonstrated that calcined sorbents are more reactive, 

because they have a higher surface area and a better reactivity toward CO2 

(Manovic and Anthony, 2007b; Fennel et al., 2007a). 

CARBONATOR
T=650-700°C

CaO(s) + CO2(g) → CaCO3(s)

Ca(OH)2(s) → CaO(s) + H2O(g) 

Flue gas
(with CO2) 

CO2

CaO 

CaO/CaCO3 

Flue gas 
(without CO2)

Fresh
limestone

(make-up) Spent
sorbent 

CALCINER
T=850-950°C

 CaCO3(s) → CaO(s) + CO2(g)

ASUAuxiliary 
Fuel O2

Air

N2

HYDRATOR
CaO(s) + H2O(g,l) → Ca(OH)2(s) 

Reactivated
sorbent 

 

Figure 1.18. Typical scheme of a double-loop calcium looping process based on sorbent 
reactivation by hydration. 

 

The use of hydration as a reactivation strategy for spent sorbents in the 

context of CO2 capture has been recently proposed (Hughes et al., 2004; Fennell 
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et al., 2007a; Manovic and Anthony, 2007b; Manovic et al., 2008a, 2008b; Sun et 

al., 2008; Zeman, 2008; Arias et al., 2010; Blamey et al., 2010b; Wu et al., 2010; 

Martínez et al., 2011). It has been shown that the reactivity of spent sorbent can 

be nearly doubled after hydration (Fennel et al., 2007a; Manovic and Anthony, 

2007a, 2008b). Fennel et al. (2007a) concluded that the sorbent activity is 

closely related to the total volume of pores.  

Zeman (2008) has proposed the addition of a third reactor in the calcium 

looping process where hydration occurs (Figure 1.18). The spent sorbent is 

retrieved from the calciner, hydrated in the hydrator and send to the carbonator 

(Arias et al., 2010). In this way a CaO-rich sorbent is hydrated and the 

endothermic dehydration occurs in the carbonator simultaneously with the 

exothermic carbonation. Different operating condition for the hydration process 

are reported in the literature: steam hydration at high pressure (Manovic e 

Anthony, 2007b, 2008, 2009); steam hydration at atmospheric pressure 

(Manovic e Anthony, 2007a; Manovic et al., 2008a, 2008b; Sun et al., 2008; Wu et 

al., 2010; Martínez et al., 2011); steam hydration at atmospheric pressure and 

presence of CO2 (Zeman, 2008); hydration by wet air (Fennel et al., 2007a); 

hydration by liquid water (Sun et al., 2008). Hydration conditions determine 

sorbents with different surface area and porosity, and hence with different 

performances. The steam hydration of CaO can take place at temperatures up to 

520°C, but with relevant rates only up to 400°C, at atmospheric pressure (Zsako 

and Hints, 1998). 

The disadvantages of hydration lie in the utilization of a third reactor 

(hydrator), which involves an increase of plant costs. Moreover, the reactor size 

depends on the hydration degree, on the residence time of the particles and on 

the flow rate of the spent sorbent to be reactivated. All these variables must be 

optimized, in order to make the hydration process economically more attractive 

than other options, such as the use of a high flow rate of make-up sorbent. 
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1.8. Calcium-Looping reactor configuration 

 

The typical reactor configuration for the calcium looping process consists 

of two interconnected fluidized beds. This configuration permits the circulation 

of the solids between the reactors and ensures an intimate contact between the 

solid and gas phases. The fluidizing gas in the carbonator is the flue gas coming 

from the combustion process, while the fluidizing gas in the calciner may be 

either CO2 recycled from the outlet gas or a CO2/H2O mixture. 

One of the issues related to this technology is the optimization of the 

reactor configuration and of the material loss due to attrition phenomena 

(Blamey et al., 2010a, Curran et al., 1967; Barker, 1973; Silaban e Harrison, 

1995; Abanades, 2002; Abanades e Alvarez, 2003; Grasa e Abanades, 2006). 

The applicability of calcium looping has been successfully proved in lab-

scale experiments (Abanades et al., 2004). In the next step it is necessary to 

further develop and optimize the process at the semi-industrial or 

demonstration scale before the technology will finally be applied to large scale 

power plants. In order to scale up calcium looping at larger scale, a 1MWth pilot 

plant has been design and constructed close to a 50 MWe CFB power plant in La 

Pereda (Spain), in the framework of the CaOling project (Sánchez-Biezma et al., 

2012). In this facility the CO2 capture efficiencies were larger than 90%, while 

SO2 capture in the CFB carbonator was larger 95%. A 1 MWth pilot plant was 

erected at the Technische Universität Darmstadt. Calcium looping experiments 

were performed in this test facility (Kremer et al., 2012). CO2 capture efficiencies 

larger than 80% were achieved in the carbonator. Taking the oxyfuel-fired 

calciner into account the pilot plant was operated with total CO2 capture rates 

exceeding 90%. It was shown that CO2 capture can be limited by either chemical 

equilibrium or chemical kinetics. 
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1.9. Attrition phenomena 

 

Particles in a fluidized bed are subject to attrition phenomena which 

produce both coarse and fine fragments. The latter may be dragged out 

(elutriated) from the reactor by the fluidizing gas, with a consequent material 

loss from the bed. Therefore, it is necessary to evaluate the fines generation rate 

to correctly design a fluidized bed calcium looping system. 

Attrition is due to both the abrasion and the fragmentation of the sorbent 

particles (Werther and Reppenhagen, 2003). Abrasion refers to the removal of 

asperities from the particle surface yielding fine fragments which does not 

involve a significant size change of the parent particle. On the contrary, 

fragmentation entails a breakage which affects the entire particle with a 

significant decrease of the average particle diameter; consequently, a 

pronounced change of the particle size distribution occurs (Figure 1.19). 

The propensity to attrition, which is certainly dependent on the 

mechanical properties of the material, are also strongly related to process 

conditions and parallel course of chemical reactions. The only reliable way to 

assess attrition under realistic process conditions is to carry out tests under 

conditions simulating real fluidized bed operation. 

Based on studies performed on several limestones in a bubbling bed, 

Salatino and coworkers (Scala et al., 1997 and 2000; Di Benedetto and Salatino, 

1998) classified sorbent attrition on the basis of the breakage mechanisms and 

on the size of the generated fragments, as summarized in Table 1.2: primary 

fragmentation, which occurs immediately after the injection of the particles in 

the hot bed, is due to the thermal stress and internal particle overpressure as 

result of the CO2 release, and produces both coarse and fine fragments; attrition 
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by abrasion generates fine fragments and is due to the impacts among the 

particles and the reactor internals; secondary fragmentation takes place with 

the same mechanism of the attrition by abrasion, but yields coarse fragments.  

Table 1.2. Classification of Attrition Phenomena Occurring to Limestone (adapted from Scala et 
al., 1997) 

Attrition  
Phenomenon 

Cause Product 

Primary fragmentation 
Carbon dioxide release 

Thermal shock 
Coarse and fine particles 

Secondary fragmentation Impacts Coarse particles 
Attrition by abrasion Surface wear Fine particles 

 

Figure 1.19. Attrition modes and their effects on the particle size distribution (q3 = mass 
density distribution of particle sizes dp) (Werther and Reppenhagen, 2003). 

 

Studies carried out on several sorbents, during calcination-sulphation 

processes (Scala et al., 2000) display large elutriation rates at the beginning of 

the calcination stage. Figure 1.20 shows that the elutriation rate E of fine 

particles (evaluated during calcination and the following sulphation) has a 

decreasing exponential trend, with an initial peak. This peak is due to both the 

rounding-off of the rough surface, with a consequent decrease of the surface 

asperities, and fines generation caused by primary fragmentation. The former 
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highly depends on the type of sorbent; the latter is common for all limestones. 

Moreover, primary fragmentation influences the elutriation rate along a twofold 

pathway: on the one hand it directly generates elutriable fines, on the other it 

produces coarse fragments with many asperities, which can undergo further 

rounding-off. Fines generation by primary fragmentation occurs in short times 

after the sorbent injection into the hot reactor, while attrition by abrasion takes 

place along the whole particle residence time in the reactor. 

 

  

Figure 1.20. Sorbent elutriation rate during subsequent limestone calcination and sulphation 
for two different sorbents (Scala et al., 2000). 

 

Elutriation is characterized by a smaller rate during sulphation compared 

with calcination because of the formation of a sulphated external layer which 

presents a high resistance toward abrasion. Altogether, calcination and 

sulphation affect the mechanical properties of particles (Scala et al., 2000, 2007; 

Chen et al., 2007), determining the mechanism and the extent of attrition.  
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Impact tests have showed that calcination, sulphation and re-carbonation 

strongly affect the fragmentation degree. In particular, raw limestone displays a 

better resistance than the calcined material (Scala et al., 2000, 2007; Scala and 

Salatino, 2003). 

 

Figure 1.21. Phenomenological model of sorbent particle sulphation/breakage (Scala et al., 
2008). 

 

Salatino and co-workers (Scala et al., 2008) have shown that there is a 

relationship between attrition propensity of particles and their microstructure. 

Attrition and fragmentation during calcination and sulphation in a fluidized bed 

are more extensive for limestones with small and non polydispersed pores. This 

finding is probably due to a different thickness of the sulphated external layer. 

This layer is thicker for limestones with large and polydispersed pores and 

hence it has a stronger mechanical resistance, as schematized in Figure 1.21. The 

higher propensity toward attrition phenomena promotes a further exposition of 

the unreacted core of CaO increasing the sorbent capture capacity. This 
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underlines the important role of attrition phenomena to increase the capture 

capacity. 

The sorbent attrition, widely studied for desulphurization processes in 

fluidized bed, is very important for the calcium-looping process (Fennell et al., 

2007b; Jia et al., 2007; Koppatz et al., 2009; Charitos et al., 2010; González et al., 

2010). Unfortunately, there is a lack of data on attrition of limestones during 

repeated cycles of calcination and carbonation (Blamey et al., 2010a). 
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2. Objectives and contribution to 
knowledge of the present work 

 

The objective of the present study is to investigate specific features of the 

calcium looping concept which have been proven to have a key impact on the 

feasibility and competitiveness of this technology. 

The research activity was focused on the characterization of attrition 

phenomena and of the CO2 capture capacity of a set of natural sorbents. The 

calcium looping process has been simulated in a lab-scale bubbling fluidized bed 

with repeated calcination/carbonation cycles under realistic conditions. The 

following key aspects have been specifically scrutinized: 

 the influence of multiple cycles of alternated calcination and 

carbonation on limestone performance, as related to process 

temperatures and reaction environments; 

 the comparison of the performance of different natural limestones. 

 the effect of the presence of SO2, assessed by quantifying the 

influence of the parallel course of sulphation on the CO2 sorption 

capacity and mechanical resistance to attrition of the sorbent. 

 the potential of using alternative natural sorbents, like dolomite. 

 

Moreover, the issue of the possible re-use of spent sorbent has been 

addressed. Feeding of make-up sorbent and disposal of the spent one represent 

critical aspects relevant to the economics and environmental compatibility of 

the calcium looping process. The potential of regenerating the sorption capacity 

of spent sorbents by water hydration has been assessed. The effectiveness of 

sorbent reactivation and the physico-chemical and microstructural changes 
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induced by hydration have been examined by means of a combination of 

different experimental techniques. Moreover, the reactivated sorbent 

performances, in terms of CO2 capture capacity and attrition propensity, have 

been evaluated. 

The research program has been developed in the Dipartimento di 

Ingegneria Chimica, dei Materiali e della Produzione Industriale of Università 

degli Studi di Napoli Federico II and of Istituto di Ricerche sulla Combustione of 

Consiglio Nazionale delle Ricerche in Naples. Most of the research activities have 

been carried out in the framework of the European Commission – Research 

Fund for Coal and Steel Contract no. RFCR-CT-2010-00013 (CAL-MOD) 

(http://cal-mod.eu-projects.de). 
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3. Experimental 

 

3.1. Materials and experimental set-up 
 

Six high-calcium limestones (calcite > 94% by weight) and one dolomite 

coming from different European countries (Italy, Germany, Greece and Poland) 

have been used in calcium looping tests. The chemical composition of the 

sorbents is given in Table 3.1. 

 

Table 3.1. Chemical composition of sorbents (% by weight) 

Sample Origin SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O SO3 TiO2 LOI Sum 

Massicci 
Italy 1.11 0.37 0.14 54.53 0.44 0.06 0.02 0.00 0.02 43.13 99.82 

Schwabian 

Alb 

Germany 3.51 0.50 0.18 53.64 0.51 0.08 0.02 0.00 0.02 41.94 100.40 

EnBW 
Germany 0.30 0.13 0.08 56.01 0.26 0.00 0.02 0.00 0.01 43.50 100.31 

Xirorema 

Sand 

Greece 0.83 0.26 0.36 55.13 0.56 0.00 0.01 0.00 0.02 42.87 100.04 

Tarnow 

Opolski 

Poland 1.73 0.34 0.39 54.04 0.94 0.00 0.02 0.00 0.02 42.64 100.12 

Czatkowice 
Poland 3.91 0.39 0.31 52.88 0.99 0.00 0.02 0.00 0.03 41.43 99.96 

Redziny 

(dolomite) 

Poland 0.91 0.22 0.25 31.80 20.90 0.00 0.00 0.00 0.02 45.12 99.21 

 

Experiments were carried out in a stainless steel (AISI 240) bubbling 

fluidized bed reactor, 40 mm ID operated at atmospheric pressure (Figure 3.1). 

The reactor consists of three sections: a) the preheater/premixer section of the 

fluidizing gas, 0.66 m high; b) the fluidization column, 0.95 m high; c) the brass 

two-exit head placed on top of the reactor with a hopper to feed the solids in the 

reactor and connected with the exhaust line. 
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The gas distributor is a perforated plate with 55 holes of 0.5 mm diameter 

in a triangular pitch. The reactor is electrically heated with two semi-cylindrical 

furnaces placed around the upper part of the preheater/premixer and the lower 

part of the fluidization column. A type-K thermocouple, located 40 mm above the 

gas distributor, allows measuring the reactor temperature. The thermocouple is 

connected with a PID temperature controller (Ascom SN) which regulates the 

electrical power supply for the furnaces. The two-exit head is used to convey 

flue gases through either of two cylindrical sintered brass filters, whose 

filtration efficiency is 1 for > 10 μm-particles. Alternated use of the filters 

enables time-resolved capture of elutriated fines at the exhaust. Gases are 

supplied to the reactor by means of three mass flow meters/controllers 

(Bronkhorst EL-Flow). Downstream of the two-exit head, a fraction of the 

exhaust gas is continuously sampled to measure CO2 and SO2 concentrations 

with a NDIR analyser (ABB AO2020-uras 14) in order to monitor the progress of 

reactions. Concentration signals are logged on a PC at a sampling rate of 1 Hz. 

 

3.2. Procedures 

3.2.1. Procedure for the calcium looping tests  

 

Five calcination/carbonation cycles were carried out in all the 

experiments (except for reactivation tests whose procedure is discussed in 

detail below, see § 3.7), using an initial amount of 20 g of fresh limestone, sieved 

in the range size 400-600 μm. Limestone was diluted in a bed of sand to avoid 

excessive temperature variations during calcination and carbonation reactions. 

The bed consisted of 150 g of silica sand in the size range 850-1000 μm and the 

fluidizing velocities were 0.7 and 0.6 m/s in the calcination and in the 

carbonation stages, respectively; these velocities ensure bubbling fluidization in 
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the bed. In particular, the difference in the size between sorbent material and 

sand permits an easy separation among them at the end of each stage.  It should 

be underlined that the presence of sand may somewhat enhance sorbent 

attrition as discussed by Scala et al. (1997). 

 

Figure 3.5. Experimental apparatus. (1) gas preheating/premixing section; (2) electrical 
furnaces; (3) ceramic insulator; (4) gas distributor; (5) thermocouple; (6) fluidization column; 
(7) two-exit head; (8) sintered brass filters; (9) hopper; (10) SO2 scrubber; (11) stack; (12) 
cellulose filter; (13) membrane pump; (14) gas analyzer; (15) personal computer; (16) 
manometer; (17) mass flow meter/controller; (18) PID controller. 
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Before each test the reactor was charged with silica sand and heated up to 

the desired temperature using air as fluidizing gas. When the set temperature 

was reached, the bed was fluidized with the gas mixture chosen for the 

calcination and the limestone particles were injected in the reactor by means of 

the hopper placed on the two-exit head. After injection, the sorbent underwent 

rapid heating from ambient temperature to the reactor temperature, resulting in 

a thermal shock. The progress of calcination was followed during the run by 

measuring the CO2 concentration at the exhaust by means of the analysers. The 

run ended when calcination was almost complete (specifically when the fast 

calcination stage was over): 

 

10.     

         

    

 

At this point the bed was rapidly discharged and cooled down. The sand 

was separated from the limestone by sieving and re-injected in the fluidized bed 

reactor. The temperature of the bed was then set to the carbonation 

temperature. When the new temperature was reached the carbonation reaction 

was started by fluidizing the bed with the gas mixture containing CO2, and 

injecting the calcined sorbent particles through the hopper. The progress of 

carbonation was followed during the run by measuring the CO2 concentration at 

the exhaust by means of the analysers. Again, the run ended when carbonation 

was almost complete (when the fast carbonation stage was over), except for 

some tests (see § 3.4) where the effect of a prolonged sulphation during 

carbonation was investigated and in this case the run ended when sulphation 

was almost completed: 

 

11.     
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The bed was rapidly discharged and cooled down (in 100% CO2 to avoid 

possible calcination). The procedure described before was then repeated in all 

the cycles. The same duration of the first calcination stage was used for the 

successive calcination stages, and the same criterion was applied for the 

duration of the carbonation stages. 

It must be noted that, because of the above procedure, the limestone 

particles underwent a more severe thermal shock than that occurring in a real 

calcium looping process, where the particles are not cooled down to ambient 

temperature. This implies that sorbent attrition rates measured in this 

investigation are likely to somewhat overestimate particle attrition.  

 

 

Figure 3.6. The alternated use of filters for the measurement of fines elutriation rate. 

 

3.2.2. Evaluation of attrition/fragmentation phenomena  

 

During the experiments the rates of fines generation were determined by 

measuring the amount of fines carried over by the fluidizing gas and elutriated 

from the reactor. The assumption underlying this procedure was that the 

residence time of elutriable fines in the reactor could be neglected and that the 

elutriation rate could be assumed to be equal to the rate of fines generation by 
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attrition at any time during limestone conversion. Elutriated fines were collected 

by means of the two-exit head previously described by letting the flue gas flow 

alternately through sequences of filters for definite time periods, as shown in the 

Figure 3.2. The difference between the weight of filters after and before 

operation, divided by the time interval during which the filter was in operation, 

gave the average fines elutriation rate E(t) relative to that interval: 

12.      
  

  
 

where    is the difference between the mass of the filter after and before its 

utilization and    is time interval of utilization. 

The Particle Size Distribution (PSD) of the sorbent was determined by 

sieving the sorbent material after each calcination and carbonation stage. Before 

evaluating the PSD, the sorbent material was separated from sand by means of a 

710 μm-sieve. Sieving was carried out gently to avoid further attrition of the 

particles, but rapidly, because of the propensity of the calcined sorbent to 

absorb moisture when in contact with ambient air. The sieve size ranges used 

for the PSD evaluation are the following: 

Size range  [μm] 

0 – 53 

53 – 112 

112 – 180 

180 – 212 

212 – 250 

250 – 300 

300 – 350 

350 – 400 

400 – 600 

 

Moreover, from the PSD analysis it was possible to determine the mean 

Sauter diameter    of the distribution: 
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13.    
 

∑
  
  

 

 

where xi is the mass fraction of particles having mean diameter di. 

 

 

3.2.3. Evaluation of the CO2 capture capacity 

 

The CO2 capture capacity of the sorbent during the carbonation stage was 

evaluated from the CO2 concentration profile at the exhaust by means of the gas 

analyzer. The total amount of CO2 uptaken during the experiment, divided by the 

initial amount of sorbent, gave the sorbent capture capacity. In particular, it is 

possible to calculate the CO2 capture capacity (or calcium conversion to 

carbonate) expressed as moles of CO2 captured per moles of Ca as: 

 

14.            
∫ [    

       
      ]  

 

 

  
 

      

           

 

 

where     

   and     

    the inlet and outlet CO2 mass flow rates respectively and m0 

the initial mass of sorbent,       
 and     

 are the molecular weights of CaCO3 

and CO2 respectively and       
 is the CaCO3 mass fraction of the sorbent.  In 

particular, the mass flow rates are calculated from the inlet and outlet CO2 

concentrations (    

   and     

   ) and the volumetric flow rates (    and     ), so 

that the integral in the equation 14 becomes: 
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Moreover, knowing           , it is possible to calculate the CO2 capture capacity 

expressed as mass of CO2 captured per mass of initial sorbent from            

and vice versa: 

 

16.                                 
           

      

 
∫ [    

       
      ]  

 

 

  
 

 

From a practical point of view, the integral is discretized and substituted by the 

summation: 

 

17. ∫ [    

       

      ]  
 

 
 ∑ [    

       

       ]   
  

   
 

 

where    is the total time of a single stage of calcination or carbonation, while     

is the time interval which, as discussed previously, is equal to 1 s for all tests. 

For all tests the inlet CO2 concentration during the carbonation stage was set at 

15-16%v/v, in order to simulate realistic values of CO2 concentrations in flue 

gases. 

 

3.2.4. Evaluation of the calcium conversion degree to 

sulphate  

 

When SO2 is present during the tests, the calcium conversion degree to 

sulphate was calculated from the SO2 concentration profile at the exhaust 
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measured by the gas analyzer. Because the sulphation reaction is irreversible in 

the temperature range of interest for the calcium looping process, in each stage 

the conversion degree           
  is evaluated by two terms: an integral, which 

takes into account the conversion degree for the current stage of calcination or 

carbonation plus a term which refers to the cumulative conversion degree 

reached in the previous stage: 

 

18.           
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where     

   and     

    are the inlet and outlet SO2 mass flow rates, respectively, m0 

is the initial mass of sorbent,       
 and     

 are the molecular weights of 

CaCO3 and SO2 respectively and       
 is the CaCO3 mass fraction of the sorbent, 

while           
    is the conversion degree reached in the previous stage. As 

discussed about the evaluation of CO2 capture capacity, also in this case the mass 

flow rates are calculated from the inlet and outlet SO2 concentrations (    

   and 

    

   ) and the volumetric flow rates (    and     ) and it is also possible to 

express the SO2 capture capacity in terms of mass of SO2 captured per mass of 

initial sorbent using           
 : 

 

19.                                
  

           

      

 

 

Again the integral is approximated by summation: 
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Table 3.2. Operating conditions of the calcination/carbonation experiments on Massicci 
limestone for conditions 1, 2 and 3. 

Calcination/ 

Carbonation 
Condition 1 Condition 2 Condition 3 

Duration [min] 15/15 35/15 20/15 

Temperature [°C] 850/700 850/700 900/700 

Inlet CO2 [%v/v]  0/16 20/16 44/16 

 

 

3.3. Effect of temperature and CO2 partial pressure 
during calcination  

 

In order to evaluate the influence of the calcination temperature and of the 

reaction environment (in particular the effect of CO2 concentration during the 

calcination stage) on sorbent attrition/fragmentation and CO2 capture capacity, 

a preliminary experimental campaign on Massicci limestone was carried out, 

whose operative conditions are given in Table 3.2, Conditions 1, 2 and 3. The 

carbonation conditions are the same for the three investigated conditions, while 

during the calcination conditions there are significant differences. In particular, 

comparing condition 1 and 2 there is a different inlet CO2 concentration during 

the calcination stage that involves a more extended calcination time, which 

passes from 15 min (Condition 1) up to 35 min (Condition 2), due to a slower 

reaction rate. This parameter, as it will be shown in the next section, has 

relevant consequences on the capture capacity and on the attrition phenomena.  

The higher calcination temperature (900°C) for Condition 3 was used to 

study its effect on the sintering process of particles; in this regard the inlet CO2 

concentration during the calcination stage (44 %v/v) was chosen such as to 
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limit the effects due to a too rapid calcination reaction. In particular, the ratio 

between CO2 partial pressure and the CO2 equilibrium pressure (this latter 

calculated by equation 5) is the same (0.4 atm/atm) for Condition 2 and 3, which 

ensures the same driving force for the calcination reaction. 

 

Table 3.3.  Operating conditions of the calcination/carbonation experiments with SO2 during 
carbonation using Massicci limestone. 

Calcination/ 

Carbonation 
0 ppm 110 ppm 1800 ppm 1800 ppm CS 

Duration [min] 35/15 35/15 35/15 35/45 

Temperature [°C] 850/700 

Inlet CO2 [%v/v]  20/16 

Inlet SO2 [ppmv] 0/0 0/110 0/1800 0/1800 

 

 

3.4. Effect of SO2 during carbonation 

 

The presence of SO2 in the flue gas (during the carbonation stage), at 

different concentrations, was investigated on the Massicci limestone, whose 

chemical composition is reported in Table 3.1. The conditions are indicated by 

the inlet SO2 concentration used during the carbonation stage (0, 110, 1800 ppm 

and 1800 ppm CS) as reported in Table 3.3. 

In particular, two SO2 concentrations were tested (110 and 1800 ppmv), 

representing typical values of pre-desulphurized and uncontrolled flue gas, 

respectively. Results of these tests were compared with those obtained in a test 

without SO2 (0 ppm) in the same conditions. In particular, the temperatures and 

the inlet CO2 concentrations during calcination and carbonation stages were the 
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same for all conditions investigated (see Table 3.3). Some tests at 1800 ppmv 

SO2 were also repeated using a longer duration of the carbonation stage (45 min 

instead of 15 min) in order to investigate the effect of a more extensive particle 

sulphation (as discussed in § 3.2.1). These tests (1800 ppm CS) were indicated 

with the acronym CS (complete sulphation). 

 

Table 3.4. Operating conditions of the calcination/carbonation experiments on the six different 
limestones under oxy-firing conditions during calcination. 

Calcination/ 

Carbonation 

Without SO2 

NO SO2 

With SO2 

intermediate 

conditions 

With SO2 

severe  

conditions 

Duration [min] 20/15 20/15 20/15 

Temperature [°C] 940/650 940/650 940/650 

Inlet CO2 [%v/v]  70/15 70/15 70/15 

Inlet SO2 [ppmv]  0/0 750/75 1500/1500 

 

 

3.5. Oxy-firing conditions and the effect of SO2 using 
limestone as sorbent  

 

Attrition and capture capacity of the six different limestones (Table 3.1) 

were studied during calcium looping cycles under realistic conditions 

representative of a process with calcination in an oxy-firing environment. The 

operating conditions are given in the Table 3.4. In particular, it was found in 

preliminary tests that a bed temperature as high as 940°C was necessary to 

calcine the limestone at reasonable rates in an environment containing 70% v/v 

CO2. (Figure 3.3).  



Calcium looping for CCS-ready combustion of solid fuels                                    3. Experimental 
 

58 
 

The bed temperature and CO2 inlet concentration during the carbonation 

stage were 650°C and 15%v/v respectively. The effect of SO2 on calcium looping 

was studied under two conditions (Table 3.4): intermediate conditions (75ppm 

SO2 during carbonation and 750ppm SO2 during calcination) simulating CO2 

capture from already desulphurized flue gas and calcination in an oxy-fired 

calciner burning medium-sulphur coal; severe conditions (1500ppm SO2 during 

both carbonation and calcination) simulating CO2 capture from uncontrolled flue 

gas and calcination in an oxy-fired calciner burning high-sulphur coal. Calcium 

conversion to sulphate during calcination/carbonation was evaluated from SO2 

concentration profiles at the exhaust.  
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Figure 3.3. Measured CO2 outlet concentration during preliminary calcination experiments at 
different bed temperatures and 70% CO2 inlet concentration with Massicci limestone. 
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3.6. Oxy-firing conditions and the effect of SO2 using 
dolomite as sorbent 

 

The Polish dolomite Redziny was used in these tests, whose chemical 

composition is reported in Table 3.1. In particular, the dolomite was studied 

during calcium looping cycles under the same realistic conditions, 

representative of a process with calcination in an oxy-firing environment, used 

to study the six limestones (see Table 3.4) and under the same inlet SO2 

concentrations: intermediate conditions and severe conditions.  Moreover, to 

make clear the results proposed in the next section, they were compared with 

those of the limestones (in terms of capture capacity and attrition propensity) 

studied in the same conditions. Also for the dolomite, the initial amount of tested 

sorbent was 20 g sieved in the size range 400-600 μm and capture capacity, PSD 

and fines generation were evaluated after each stage of calcination and 

carbonation. 

 

3.7. Reactivation by hydration 

 

The raw sorbent used in these tests was Massicci limestone. The test rig 

was a bubbling FB lab-scale reactor described above (see § 3.1). Details on the 

sorbent properties are reported in Table 3.1. The procedure for preparation of 

the spent sorbent is essentially the same used for the other tests, with the only 

exception related to the cycle number: indeed, in this case a cyclic sequence of 

five calcination/four carbonation stages was performed (instead of five 

complete cycles) retrieving, in this way, a high CaO-based sorbent after the 5th 
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calcination. The operating conditions are those reported in the Table 3.4 for the 

tests without SO2 (NO SO2), starting with 20 g of raw sorbent in the size range 

400-600 μm. 

Deactivated sorbent particles (spent sample, retrieved after the 5th 

calcination) were reactivated by liquid-phase hydration in a thermostatic bath 

kept at 25°C. Batches of spent sorbent (10 g) blended with a large excess of 

distilled water (water/solid weight ratio=25) were charged to sealed 

polyethylene bags and put in the thermostatic bath for curing times of 10, 30 

and 60 min (samples water hydrated WHY_10, WHY_30 and WHY_60, 

respectively). At the end of each hydration experiment, samples were retrieved 

from the bags, vacuum filtered, left overnight at 110°C and then stored in a 

desiccator. Sorbent particles were characterized by means of the following 

experimental techniques: i) non-isothermal thermogravimetric (TG) analysis, 

from room temperature to 1000°C at a heating rate of 10°C/min under inert 

atmosphere (Ar) in a Netzsch STA409CD apparatus; ii) scanning electron 

microscopy (SEM) analysis, performed at magnifications up to 3000× in a FEI 

Inspect apparatus; iii) porosimetric analysis, carried out in a Micromeritics 

AutoPore IV apparatus for pore sizes ranging from 3 nm to 100 μm. In 

particular, TG analysis allowed calculating the hydration degree   : 

 

21.    
    

 

    
  

 

where nCaOH is the number of CaO moles reacted by hydration starting from the 

number of CaO moles present in the spent sorbent (    
 ). Reactivated (WHY) 

material, sieved again in the particle size range 400-600 μm, was re-injected in 

the FB reactor for a new series of looping tests (now starting from the 5th 
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carbonation step and ending to the 8th carbonation step), under the same 

operating conditions held before reactivation. Care was taken to make sure that 

the mass of CaO (not carbonated) available for the 5th carbonation, i.e. the first 

stage after reactivation, was the same as that remaining in the sample after the 

5th calcination, i.e. the last stage before reactivation. Again, the capture capacity, 

the PSD and the fines generation were evaluated after each stage of calcination 

and carbonation. 
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4. Results and discussion 

 

4.1. Effect of temperature and CO2 partial pressure 
during calcination 

4.1.1. CO2 Capture Capacity 

 

Figure 4.1 reports the sorbent capture capacity (as gCO2/initial gSorbent) and 

the calcium conversion degree to carbonate as a function of the number of 

cycles, for the conditions 1, 2 and 3 (see Table 3.2 reported here for 

convenience).  

Table 3.2. Operating conditions of the calcination/carbonation experiments using Massicci 
limestone for conditions 1, 2 and 3. 

Calcination/ 

Carbonation 
Condition 1 Condition 2 Condition 3 

Duration [min] 15/15 35/15 20/15 

Temperature [°C] 850/700 850/700 900/700 

Inlet CO2 [%v/v]  0/16 20/16 44/16 

 

As expected, the capture capacity decreases with the number of cycles 

towards an asymptotic value. It is noted that the highest capture capacity was 

obtained in condition 1, i.e., when calcination was carried out in air. In condition 

2 (calcination in 20% CO2), a slightly lower capacity was found during all the 

cycles. A possible explanation for this result lies in the experimental evidence 

that the presence of CO2 during calcination enhances sintering (Borgwardt, 

1989). A higher calcination temperature (condition 3) determines a significant 

fall in the capture capacity at each cycle. This result underlines the important 

role of the thermal history of the sorbent particles. Again, this behaviour can be 
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explained by an enhancement of sintering at higher temperature. It is also 

interesting to note that in this case, the capture capacity reaches a plateau 

already after the fourth cycle. 
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Figure 4.1. CO2 capture capacity and calcium conversion degree to carbonate of the sorbent as a 
function of the number of cycles for the three experimental conditions investigated (Table 3.2).  

 

4.1.2. Particle Size Distribution 

 

Figure 4.2 reports the cumulative particle size distributions (PSDs) of the 

limestone during a test in condition 1. The PSD was evaluated after every 

calcination and carbonation stage, but in the figure, only the PSDs after the first 

calcination, the third carbonation, and the fifth carbonation were plotted, for 

clarity, since all the other PSDs were very similar to each other. It can be 

observed that the PSD does not change appreciably during the cycles, indicating 

a limited occurrence of particle fragmentation. Indeed, the qualitative features of 
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the PSD after the first calcination remain approximately constant after the 

following cycles.  
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Figure 4.2. Cumulative particle size distribution (PSD) of the sorbent during a test in condition 
1 (Table 3.2), after 1st calcination, 3rd carbonation, and 5th carbonation. Left: complete PSD. 
Right: PSD for particles with a size below 400 μm (fragments). 

 

The only significant difference is the amount of fines (<100 μm) appearing 

after the first calcination that was not found in the following cycles, as shown by 

the changing of mean Sauter diameter   , which passes from 323 μm, after first  

calcination, to 438  μm, after the third carbonation. This result is more evident in 

the right-hand panel of Figure 4.2, where the PSD refers only to particles 

(fragments) with a size below 400 μm. By “fragments” are indicated all the 

collected particles whose size falls below the lower limit of the feed size interval: 

accordingly all the collected particles finer than 400 μm were classified as 

“fragments” in the context of the present study. Generation of fines is mostly due 

to particle rounding off of the fresh particles during the first calcination (Scala et 

al., 1997). When rounding off is complete, less fines are generated by attrition, as 

will be shown in the next paragraph. It should be noted that the fines generated 

during the first calcination stage were re-injected (after the PSD analysis) in the 

reactor together with the coarser particles in the next carbonation stage, where 
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they were eventually elutriated together with the newly attrited fines. In the 

whole discharge–injection procedure, the loss of fines was always very limited. 

Tests carried out under the other two experimental conditions showed the same 

qualitative trend.  

Figure 4.3 compares the measured PSDs of the sorbent particles after the 

fifth carbonation in tests under the three operating conditions investigated. It 

can be observed that all the PSD curves have a similar shape, with only slight 

differences in the amount of produced fragments. Altogether, analysis of the PSD 

curves indicates that, irrespective of the operating conditions, only limited 

particle fragmentation occurs, in particular about 70% of the particles preserve 

their initial sizes (400-600 μm) and the PSD remains approximately constant 

over the cycles. 
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Figure 7.3. Cumulative particle size distribution (PSD) of the sorbent during tests in all 
experimental conditions investigated (Table 3.2), after 5th carbonation. Left: complete PSD. 
Right: PSD for particles with a size below 400 μm (fragments). 

 

Comparing the PSDs among them (Figure 4.3), it is possible to note that 

condition 1 shows a higher fragmentation than the others (  =432 μm), while 

condition 2 exhibits a lower quantity of generated fragments (  =456 μm). A 

possible explanation of such differences can be imputed by a combination of CO2 

concentration and temperature during the calcination. In particular, under 
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condition 1 inside the particles elevated overpressures are generated, due to a 

fast release of CO2 during calcination, which entail a higher primary 

fragmentation than the other conditions; this fast release is induced by the 

absence of CO2 in the calcination environment and further consequences of this 

are shown in the section on the elutriation rate (see § 4.1.3). The lower 

fragmentation under condition 2 is likely due to the presence of CO2 (20% v/v), 

which determines a slower CO2 release and a more pronounced sintering 

process (as disclosed by data on CO2 capture capacity in § 4.1.1), which in turn 

increases the particle hardness. On the contrary, a faster CO2 release and a more 

elevated thermal shock after the particle injection into the bed, due to the 

increase of calcination temperature (condition 3), promote a more elevated 

primary fragmentation than in condition 2. 

 

4.1.3. Elutriation Rate 

 

Figure 4.4 reports the fines elutriation rate E (as mass of elutriated 

material per minute) as a function of time, measured in a test carried out in 

condition 1. Similar results were obtained in the other two conditions. As a 

general trend, it is noted that the fines elutriation rate decreases with the 

number of cycles. This suggests that hardening of the particle surface takes place 

over the cycles, which is consistent with the progressive sintering of the sorbent. 

In each cycle, the elutriation rate shows a typical trend with a peak of fines 

generation at the beginning. This peak is caused by a combination of the 

following effects: rounding off of the rough particles (Scala et al., 1997), thermal 

shock after injection in the hot bed, and elutriation of re-injected fines (if any). 

During calcination, a further process is the rapid release of CO2 that causes 

overpressures inside the particles (see § 4.1.2) and may change the mechanical 

properties of the solid. Figure 4.4 shows a remarkable feature: during the first 
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calcination, the elutriation rate shows a slightly different trend with a peak 

shifted to about 2 min after the beginning of the test. This behaviour was not 

observed in tests carried out under conditions 2 and 3, where CO2 was present 

in the inlet gas stream and calcination was slower (Table 3.2). This finding 

suggests that the peak might be related to the large rate of CO2 release during 

calcination in condition 1.  
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Figure 4.8. Sorbent elutriation rate as a function of time during alternated calcinations and 
carbonations for a test in condition 1 (Table 3.2). 

 

Figure 4.5 reports the measured fines elutriation rate and CO2 

concentration at the exhaust during the first calcination stage in condition 1 

(where the gas sampling line delay time of 13 s was taken into account). The 

figure clearly shows that the peak of the elutriation rate occurs approximately at 

the same time as the CO2 concentration peak. Figure 4.6 reports the total amount 

of fines, as % mass of elutriated fines per mass of initial sorbent, collected during 

each calcination and carbonation stage as a function of the number of cycles. In 

all conditions, the amount of fines decreases with the cycle number. When 

considering that the calcination stages have a different duration under the 
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different experimental conditions (Table 3.2), the average fines elutriation rate 

is approximately the same during the calcination and the carbonation stages.  
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Figure 4.9. Sorbent elutriation rate and measured CO2 outlet concentration as a function of time 
during the 1st calcination stage for a test in condition 1 (Table 3.2). 

 

The largest amount of fines was obtained in the tests carried out in 

condition 1 (Figure 4.6-top). Fines generation was much smaller under 

condition 2 (Figure 4.6-center), where the only difference was the presence of 

20% CO2 in the fluidizing gas during calcination. This behaviour is most likely 

due to the absence of CO2 during calcination in condition 1, which determines on 

the one hand a fast release of CO2 and a consequent higher overpressure in the 

particles, and on the other hand a less pronounced sintering. When the 

calcination temperature is increased to 900 °C (condition 3, Figure 4.6-bottom), 

a larger amount of fines was collected when compared with results obtained 

under condition 2. Again, this behaviour should be related to the faster release 

of CO2 due to the higher temperature, and possibly to a more pronounced 
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thermal shock. On the basis of the above results, an average limestone loss rate 

by elutriation from a dual fluidized bed system can be estimated in the range 

0.05–0.2%/h for Massicci limestone. The calculation was made from results 

reported in Figure 4.6, excluding data relative to the first two cycles for each 

condition. 
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Figure 4.10. Total amount of elutriated fines as a function of number of cycles in each 
calcination and carbonation stage for the condition 1 (top), condition 2 (center) and condition 
3 (bottom) (Table 3.2). 
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4.2. Effect of SO2 during carbonation 

4.2.1. Calcium conversion to sulphate 

 

Figure 4.7 reports the SO2 capture capacity of the sorbent and the calcium 

conversion degree to sulphate as a function of the cycle number, for tests carried 

out in conditions given in the Table 3.3 (reported here for convenience).  

Table 3.3.  Operating conditions of the calcination/carbonation experiments with SO2 during 
carbonation on Massicci limestone. 

Calcination/ 

Carbonation 
0 ppm 110 ppm 1800 ppm 1800 ppm CS 

Duration [min] 35/15 35/15 35/15 35/45 

Temperature [°C] 850/700 

Inlet CO2 [%v/v]  20/16 

Inlet SO2 [ppmv] 0/0 0/110 0/1800 0/1800 

 

 

At the end of the 5th carbonation stage the cumulative calcium conversion 

to sulphate (CaSO4) was about 1.5%, 27% and 14% for conditions investigated, 

respectively. The significant difference between the measured conversion at 110 

ppm SO2 and those found at 1800 ppm SO2 is clearly a consequence of the SO2 

concentration level, differing by more than one order of magnitude. Finding a 

mechanistic explanation for the measured difference between conversion of 

calcium to sulphate in conditions 1800ppm and 1800ppm CS is less 

straightforward. Tests in conditions 1800ppm were performed using a duration 

of the carbonation stage of 15 min. This time was long enough to obtain almost 

full carbonation of the sorbent, while complete sulphation was only approached. 

On the other hand, at the end of the carbonation stage during tests in condition 
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1800ppm CS the duration (45 min instead of 15 min) was long enough to bring 

both carbonation and sulphation to near-completion. This was clearly visible in 

the SO2 concentration profiles measured at the exhaust (not reported here), and 

was reflected by the difference between the sorbent sulphation degrees after the 

first cycle, as shown in Figure 4.7 (5.8% and 6.2% in conditions 1800ppm and 

1800ppm CS, respectively).  
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Figure 4.11. SO2 capture capacity and calcium conversion degree to sulphate of the sorbent as a 
function of the number of cycles, at different inlet SO2 concentrations during the carbonation 
stage (Table 3.3). 

 

From the second cycle on, calcium conversion to sulphate in condition 

1800ppm was always larger than that measured in condition 1800ppm CS. It 

may be speculated that the more prolonged sorbent sulphation in condition 

1800ppm CS is responsible for a stronger sorbent deactivation due to pore 

plugging and ‘‘chemical sintering’’ (to an extent that is only partly reflected by 

the marginal increase of the Ca sulphation degree) which is retained in the 
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subsequent cycles. The formation of a more compact CaSO4 layer would hinder 

effective SO2 diffusion inside the sorbent particle, even after the subsequent 

calcination stages. This mechanistic explanation is consistent with experimental 

findings of Sun et al. (2007b). A further explanation could be related to 

fragmentation phenomena, in fact, as reported in the § 4.2.3, condition 1800 

ppm shows a more pronounced fragmentation than condition 1800 ppm CS, 

yielding in this way additional available surface for sulphation. 

 

4.2.2. CO2 capture capacity 

 

Figure 4.8 reports the sorbent CO2 capture capacity (as gCO2/initial gSorbent) 

and the calcium conversion degree to carbonate as a function of the number of 

cycles, for the four conditions investigated reported in the Table 3.3. The capture 

capacity decreased with the number of cycles (from 0.18–0.26 to 0.036– 0.098 

gCO2/ initial gSorbent). It is noted that the largest capture capacity was obtained in 

condition 0ppm, i.e. when carbonation was carried out without SO2. The 

presence of SO2 in the gas (conditions 110ppm, 1800ppm and 1800ppm CS) 

determined a significant fall in the capture capacity at each cycle. The higher the 

SO2 concentration, the lower was the carbonation capacity (0.098, 0.044 and 

0.036 gCO2/initial gSorbent after the 5th cycle for SO2 concentration equal to 0, 110 

and 1800 ppm, respectively). This behaviour can be explained by the formation 

of a calcium sulphate shell around the particles that hinders the diffusion of CO2 

in the pores of the sorbent. However, the effect of the SO2 concentration level 

was not as large as expected. This seems to indicate that, in these conditions, 

even a small quantity of SO2 is sufficient to significantly hinder the CO2 capture 

capacity of the sorbent, since no remarkable changes occurred when increasing 

the SO2 concentration from 110 to 1800 ppm. Also the duration of sulphation did 

not influence the CO2 capture capacity to any significant extent: after the first 
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cycle results of tests in conditions 1800ppm and 1800ppm CS are nearly the 

same. 
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Figure 4.12. CO2 capture capacity and calcium conversion degree to carbonate of the sorbent as 
a function of the number of cycles. In the legend: SO2 concentration during carbonation stage 
(Table 3.3). 

 

4.2.3. Particle size distribution 

 

Figure 4.9 reports the cumulative particle size distributions (PSDs) of the 

limestone after the tests in the four conditions given in the Table 3.3. The PSD 

was evaluated after every calcination and carbonation stage, but in the figure 

only the PSDs after the 5th carbonation were plotted, for clarity, since all the 

other PSDs were very similar to each other. It can be noted that the PSD does not 

change appreciably as a result of the cycles, indicating a limited occurrence of 

particle fragmentation. Tests carried out under the four experimental conditions 

investigated showed the same trend, with only slight differences in the amount 
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of produced fragments. This indicates that the presence of SO2 has only a minor 

influence on particle fragmentation. Notably, tests carried out in condition 

1800ppm showed a slightly larger amount of fragments, as shown by the value 

of   =394 μm, which is lower than the others, whose values are included in the 

range 456-463 μm. This seems to indicate a lower resistance of particles that 

have undergone sulphation at high SO2 concentrations. However, when 

sulphation was carried out for a longer time (condition 1800ppm CS), particle 

fragmentation was less pronounced. Probably, for the same sulphation time 

(conditions 110 ppm and 1800 ppm), low SO2 concentrations produce a thin 

external sulphate layer which is not able to change significantly the 

fragmentation propensity. On the other hand, for the same SO2 concentration 

(conditions 1800 ppm and 1800 ppm CS), prolonged sulphations generates a 

more compact and harder sulphate layer. 
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Figure 4.13. Cumulative particle size distribution of the sorbent during tests in all experimental 
conditions investigated, after 5th carbonation. In the legend: SO2 concentration during carbonation stage 

(Table 3.3). 
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Figure 4.14. Fractional (percent) sorbent loss in elutriated fines as a function of the number of 
cycles in each calcination and carbonation stage for the four conditions investigated (Table 
3.3). 

 

4.2.4. Elutriation rate 

 

Figure 4.10 reports the fractional sorbent loss in fines (expressed as per 

cent mass of elutriated fines referred to the mass of sorbent initially loaded in 

the reactor) collected during each calcination and carbonation stage as a 

function of the number of cycles for the four conditions investigated (Table 3.3). 

The amount of fines decreased with the cycle number under all the conditions 

tested. This suggests that hardening of the particle surface takes place over the 

cycles, which is consistent with the progressive sintering of the sorbent. Once 

the extent of elutriation is related to the different duration of the calcination and 

carbonation stages in the tests (Table 3.3), the average fines elutriation rate 

turns out to be nearly the same during calcination and carbonation. Comparison 

of the results under the four operating conditions indicates that the elutriation 
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rates are similar, slightly larger when SO2 is present in the gas during 

carbonation. Similarly to the CO2 capture capacity, experimental results indicate 

that even a small quantity of SO2 induces an appreciable change of the attrition 

behaviour of the sorbent. This result is probably caused by the lower hardness 

of calcium sulphate at the particle surface as compared with calcium carbonate 

or by negative synergistic effects between the two calcium compounds with 

respect to resistance to wear. Again, a moderately larger attrition rate was 

recorded in condition 1800ppm. It is likely that in this condition a surface layer 

containing a large amount of sulphate but in a poorly structured and less 

compact form is generated. 

 

4.3. Oxy-firing conditions and the effect of SO2  

4.3.1. CO2 capture capacity 

 

Figure 4.11 reports the sorbent CO2 capture capacity as a function of the 

number of cycles for the six limestones tested under the operating conditions 

given in Table 3.4 (reported here for convenience).  

Table 3.4. Operating conditions of the calcination/carbonation experiments with the six 
different limestones under oxy-firing conditions during calcination. 

Calcination/ 

Carbonation 

Without SO2 

NO SO2 

With SO2 

intermediate 

conditions 

With SO2 

severe  

conditions 

Duration [min] 20/15 20/15 20/15 

Temperature [°C] 940/650 940/650 940/650 

Inlet CO2 [%v/v]  70/15 70/15 70/15 

Inlet SO2 [ppmv]  0/0 750/75 1500/1500 
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Figure 4.15. CO2 capture capacity of the six limestones as a function of the number of cycles for 
experiments carried out without SO2 (left) and with SO2 under intermediate conditions (center) 
and severe conditions (right) (Table 3.4). 
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Results of tests with or without SO2 are compared. As expected, the 

capture capacity decreases with the number of cycles for all the limestones 

reaching an asymptotic value already after the fourth cycle. This residual 

capture capacity (0.02-0.07 gCO2/initial gSorbent in the tests without SO2, Figure 

4.11–top) is much lower than that typically found under milder conditions (of 

the order of 0.1-0.2 gCO2/initial gSorbent as reported by Blamey et al., 2010a). The 

explanation for this result lies in the combination of high temperature and high 

concentration of CO2 during calcination that significantly enhances sintering 

(Borgwardt, 1989). The relative ranking of the six limestones, from the best to 

the worst capture capacity, is: EnBW, Czatkowice, Xirorema Sand, Tarnow 

Opolski, Schwabian Alb and Massicci. 
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Figure 4.16. Cumulative calcium conversion degree to sulphate of the six limestones as a 
function of the number of cycles under intermediate conditions (left) and severe conditions 
(right). Each data point represents conversion after half cycle (Table 3.4).  

When a high SO2 concentration is present in the gas flow a further 

decrease of the CO2 capture capacity (of the order of 3-6 times) is found for all 

the limestones (Figure 4.11–bottom). The residual capture capacity was 0.004-

0.02 gCO2/initial gSorbent in this case. This behaviour can be explained by the 

progressive formation of a calcium sulphate shell around the particles that 

hinders intraparticle diffusion of CO2 in the pores of the sorbent (Sun et al., 

2007). On the other hand, when a low SO2 concentration was used in the tests 
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(Figure 4.11–center) results were closer to those obtained in tests without SO2. 

This is somewhat different from results reported before (see § 4.2.2) under 

milder temperature conditions for Massicci limestone. It could be speculated 

that at very high temperatures (during calcination) sintering dominates the 

deactivation behaviour of the limestone, unless very high SO2 concentrations are 

used. Morphological analysis of the used limestone particles seems to confirm 

this hypothesis (Itskos et al., 2012). It is interesting to note, however, that the 

relative ranking of the six limestones towards CO2 capture is not significantly 

altered by the presence of sulphur dioxide.  

Figure 4.12 reports the calcium conversion degree to sulphate during the 

tests, as calculated from the SO2 concentration profiles at the exhaust (note that 

since SO2 is present both during calcination and carbonation, each data point 

represents conversion to sulphate after half cycle). The extent of calcium 

conversion to sulphate in each stage clearly depends on the relevant SO2 

concentration in the gas phase. It appears that at both SO2 levels investigated the 

three best performing limestones with regard to CO2 capture capacity (EnBW, 

Xirorema Sand and Czatkowice) are those sulphating to a lower extent. 

 

4.3.2. Particle size distribution 

 

Figure 4.13 compares the measured cumulative particle size distributions 

(PSDs) of the six limestones after the fifth carbonation stage in tests carried out 

under the operating conditions reported in Table 3.4, with or without SO2 in the 

fluidizing gas. The PSD was evaluated after every calcination and carbonation 

stage for each limestone. However, only the PSDs recorded after the fifth 

carbonation were plotted in the figures, for clarity, since all the other PSDs were 

very similar to one another. 
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Figure 4.17. Cumulative particle undersize distribution of the six limestones after the 5th 
carbonation stage for experiments carried out without SO2 (top) and with SO2 under 
intermediate conditions (center) and severe conditions (bottom)  (Table 3.4). 
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It can be observed that all the PSD curves have a similar shape, with only 

slight differences in the amount of produced fragments among the six 

limestones. The presence of SO2 appears to slightly reduce the extent of 

fragmentation for all the limestones. Altogether, analysis of the PSD curves 

indicates that particle fragmentation is limited, as witnessed by the small 

amount of retrieved particles with size < 400 μm. Figure 4.13 shows that the 

fractional amount of fragments is within the range 20-30% of the initial sample 

mass for tests without SO2, decreasing to 15-20% for tests with SO2. As regards 

the fragmentation propensity, the relative ranking of the six limestones (in 

terms of increasing fragmentation) is: EnBW, Massicci, Tarnow Opolski, 

Xirorema Sand, Czatkowice and Schwabian Alb. 

 

4.3.3. Elutriation rate 

 

Figures 4.14-4.16 reports the cumulative mass of elutriated fines (as % of 

the initial mass) collected during each calcination and carbonation stage as a 

function of the number of cycles, in tests carried out under the operating 

conditions reported in Table 3.4, with or without the presence of SO2. As a 

general trend, it can be noted that for all the limestones the fines elutriation rate 

is relatively large only during the first cycle and decreases with the number of 

cycles. This suggests that hardening of the particle surface takes place over the 

cycles, which is consistent with the progressive sintering of the sorbent.  

Comparison of the results with and without SO2 shows two different 

trends. When low SO2 concentrations were used, the fines elutriation rate 

slightly increased. This is most likely due to a sintering-retarding effect of 

calcium sulphate on the particle surface (Itskos et al., 2012). On the other hand, 

when high SO2 concentrations were used, the fines elutriation rate slightly 
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decreased. In this case it appears that a more compact calcium sulphate shell is 

formed increasing the hardness of the particles.  
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Figure 4.18. Percent mass of elutriated fines for the six limestones as a function of the number 
of cycles during experiments carried out without SO2 (Table 3.4). 

 

The average fines elutriation rate is similar during the calcination and the 

carbonation stages for all the limestones. This indicates that sintering is able to 

harden the particles irrespective of the chemical composition (CaO or CaCO3). 

However, it was noted that in the tests without SO2 the elutriation rate was 

slightly larger during the carbonation stage, while the opposite was true in the 

tests with SO2 (at both concentration levels). This is clearly visible in Figure 4.17, 
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reporting a comparison of the measured fines elutriation rate (E) as a function of 

time during tests without SO2 and in severe conditions (see Table 3.4) for 

Tarnow Opolski limestone.  
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Figure 4.19. Percent mass of elutriated fines for the six limestones as a function of the number 
of cycles during experiments carried out with SO2 under intermediate conditions (Table 3.4). 

 

Similar results were obtained for all the other limestones tested. In each 

cycle the elutriation rate shows a typical trend with a peak of fines generation at 

the beginning. This peak is caused by a combination of the following effects: 

rounding off of the rough particles (Scala et al., 1997), thermal shock after  
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Figure 4.20. Percent mass of elutriated fines for the six limestones as a function of the number 
of cycles during experiments carried out with SO2 under severe conditions (Table 3.4). 

 

injection in the hot bed, and elutriation of re-injected fines (if any). During 

calcination, a further process is the rapid release of CO2 that causes 

overpressures inside the particles and may change the mechanical properties of 

the solid. Inspection of Figure 4.17 indicates that in the tests without SO2 the 

fines elutriation rate is always larger during the carbonation stages. This can be 

easily explained by considering that at the beginning of carbonation a more 

porous and softer CaO particle produced in the previous calcination stage is 

injected in the bed. On the other hand, in the tests with SO2 the fines elutriation 
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rate is larger during the calcination stages. It is likely that in this case the 

calcium sulphate shell forming around the particles provides a similar surface 

hardness to the sorbent in both stages. The measured increase of the elutriation 

rate during the calcination stage is to be ascribed by the rapid CO2 evolution 

from the particle that is able to crack the sulphate shell.  
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Figure 4.21. Sorbent elutriation rate as a function of time measured during experiments 
carried out without SO2 (top) and with SO2 under severe conditions (bottom) for Tarnow 
Opolski limestone (Table 3.4). 

 

Figure 4.18 reports a comparison of the measured fines elutriation rate as 

a function of time during tests in intermediate and severe conditions (see Table 

3.4) for Massicci limestone. Again, similar results were obtained for all the other 

limestones tested. This Figure shows another interesting trend: under low-SO2 

conditions the fines elutriation rate presents a first increasing trend with the 

cycle number, thereby decreasing towards a low asymptotic value. On the 

contrary, under high-SO2 conditions this maximum is not found, and a 

continuously decreasing trend is always observed. A possible explanation of this 
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trend relies on the different sorbent sulphation rate in the two cases. Under low-

SO2 conditions, in the first cycles slow sulphate formation induces an 

enhancement of the sorbent attrition rate due to the lower hardness of calcium 

sulphate at the particle surface as compared with calcium carbonate, or by 

negative synergistic effects between the two calcium compounds with respect to 

resistance to wear (see § 4.2.4). At later stages, when a sufficiently compact 

sulphate layer at the particle surface establishes, the attrition rate decreases. 

Under high-SO2 conditions, instead, a hard and compact sulphate layer is already 

established in the first cycles leading to a continuous decrease of the elutriation 

rate. 
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Figure 4.22. Sorbent elutriation rate as a function of time measured during experiments 
carried out with SO2 under intermediate conditions (top) and severe conditions (bottom) for 
Massicci limestone (Table 3.4). 

 

On the whole, as regards the surface abrasion propensity, the relative 

ranking of the six limestones (in terms of increasing abrasion) is: Czatkowice, 

EnBW, Tarnow Opolski, Schwabian Alb, Xirorema Sand and Massicci. On the 

basis of the above results, an average limestone loss rate by elutriation from a 

dual fluidized bed system can be estimated in the range 0.3-0.5%/h under 
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realistic conditions (a larger value of 1.3%/h was evaluated for Massicci). These 

values are lower than the 2%/h found by Charitos et al. (2010) during 

continuous operation of a 10kWth dual fluidized bed facility. It must be 

underlined, however, that in this plant the calciner was operated as a high 

velocity riser (4-6 m/s), and that a limestone with a smaller particle size (200-

400 μm) was used in the experiments. On the whole, as discussed by Charitos et 

al. (2010), these figures would not represent a process limitation, since they are 

well below the expected sorbent make-up rate required to maintain sufficient 

sorbent activity. 

 

4.4. Oxy-firing conditions and the effect of SO2 using 
dolomite as sorbent 

4.4.1. CO2 capture capacity  

 

Figure 4.19 reports the CO2 capture capacity of the dolomite as a function 

of the number of cycles, tested under the operating conditions given in Table 3.4 

(reported here for convenience).  

Table 3.4. Operating conditions of the calcination/carbonation experiments with the six 
different limestones under oxy-firing conditions during calcination. 

Calcination/ 

Carbonation 

Without SO2 

NO SO2 

With SO2 

intermediate 

conditions 

With SO2 

severe  

conditions 

Duration [min] 20/15 20/15 20/15 

Temperature [°C] 940/650 940/650 940/650 

Inlet CO2 [%v/v]  70/15 70/15 70/15 

Inlet SO2 [ppmv]  0/0 750/75 1500/1500 
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Results of tests with or without SO2 are compared. The figure also reports 

for the same tests the calcium conversion to carbonate for each cycle (right axis). 

As expected, the capture capacity and the Ca conversion decreased with the 

number of cycles, approaching an asymptotic value after the fifth cycle. The 

residual capture capacity (0.12 gCO2/ initial gsorbent in the tests without SO2) was 

larger than that typically found for limestone under the same operating 

conditions (0.02-0.07 gCO2/gsorbent, § 4.3.1), in spite of the lower Ca content of the 

sorbent and of the high temperature and CO2 concentration during calcination. 

This result highlights the positive effect of the large magnesium content of the 

dolomite in preserving Ca reactivity and reducing particle sintering. The residual 

Ca conversion was as high as 50%, as compared with values below 15% for 

limestone under the same operating conditions). 
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Figure 4.19. CO2 capture capacity and calcium conversion to carbonate of the dolomite as a 
function of the number of cycles for experiments carried out without and with SO2 (Table 3.4). 
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When SO2 was present a further decrease of the CO2 capture capacity and 

of the Ca conversion of the dolomite (of the order of 2-3 times) was found. This 

behaviour can be explained by the progressive formation of a calcium sulphate 

shell around the particles (both during calcination and carbonation) that hinders 

intraparticle diffusion of CO2 in the pores of the sorbent. The residual capture 

capacity of the dolomite was 0.04-0.06 gCO2/initial gsorbent in this case, 

corresponding to a residual Ca conversion of about 20%. Noteworthy, this CO2 

capture capacity was still larger than that of limestone under the same operating 

conditions (0.004-0.04 gCO2/initial gsorbent, § 4.3.1). 
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Figure 4.20. Calcium conversion degree to sulphate of the dolomite as a function of the number 
of cycles (each data point represents conversion after half cycle) (Table 3.4). 

It is interesting to note that results under low-SO2 and high-SO2 conditions 

were very similar to each other for the dolomite, indicating that even a small 

quantity of SO2 is sufficient to significantly hinder the CO2 capture capacity of the 

sorbent. This result was similar to that obtained with a limestone under mild 

conditions (see § 4.2.1), but was different from that found for a number of 
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limestones under the same operating conditions (high temperature and high 

CO2) reported in the § 4.3.1. In fact, in that case it was observed that when a low 

SO2 concentration was used in the tests, limestone capture capacity results were 

closer to those obtained in tests without SO2 rather than to those obtained in 

high-SO2 tests. Altogether these results suggest that when SO2 is present the CO2 

capture capacity of the sorbent is determined by the competition between 

sulphation and sintering. All factors reducing the effect of sintering (high Mg 

content, low temperature and CO2) enhance the relative effect of particle 

sulphation with respect to sintering. 

Figure 4.20 reports the cumulative calcium conversion degree to sulphate 

during the tests, as calculated from the SO2 concentration profiles at the exhaust 

(note that since SO2 is present both during calcination and carbonation, each 

data point represents conversion to sulphate after half cycle). The extent of 

calcium conversion to sulphate in each stage clearly depends on the relevant SO2 

concentration in the gas phase, and it is approximately the same as that found 

for limestone under the same two operating conditions (§ 4.3.1).  

 

 

4.4.2. Particle size distribution  

 

Figure 4.21 compares the measured  cumulative particle size distributions 

(PSDs) of the dolomite after the fifth carbonation stage in tests carried out under 

the operating conditions reported in Table 3.4, with or without SO2 in the 

fluidizing gas. In the same figure, the shaded area contains all the experimental 

results obtained with a number of limestones under the same operating 

conditions (§ 4.3.1), for reference. Contrary to limestone, particle fragmentation 

was extensive for the dolomite. The presence of SO2 appears to slightly reduce 
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the extent of fragmentation. The fractional amount of fragments after the 5th 

cycle was 65% of the initial sample mass for tests without SO2, decreasing to 

55% for tests with SO2. This mass fraction of fragments was about three times 

more than that found for limestone. It is recalled here that by “fragments” we 

mean all the collected particles whose size falls below the lower limit of the feed 

size interval: accordingly all the collected particles finer than 400 μm were 

classified as “fragments” in the context of the present study. 

Dolomite Redziny

d [ m]

0 100 200 300 400 500

C
u

m
u

la
ti

v
e

 P
S

D
 #

0.0

0.2

0.4

0.6

0.8

1.0

No SO2

Intermediate Conditions

Severe Conditions

Limestone

(All conditions)

 

Figure 4.21. Cumulative particle undersize distribution of the dolomite after the 5th 
carbonation stage for experiments carried out without and with SO2 (Table 3.4). The shaded 
area represents results for limestone under the same conditions. 

 

Figure 4.22 compares the PSDs of the dolomite after the 1st calcination, the 

3rd carbonation and the 5th carbonation stages for experiments carried out under 

severe conditions. Similar results were obtained under the other two conditions 

tested. The PSD curves are very close to one another indicating that particle 

fragmentation was mostly active upon the 1st calcination. The most likely reason 
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for this result is that decomposition of magnesium carbonate only occurs during 

this stage, since magnesium does not contribute to the CO2 capture process 

during the carbonation stages. 
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Figure 4.22. Cumulative particle undersize distribution of the dolomite after the 1st 

calcination, the 3rd carbonation and the 5th carbonation stage for experiments carried out 

under severe conditions (Table 3.4). 

 

4.4.3. Elutriation rate 

 

Figure 5 reports a comparison of the measured dolomite fines elutriation 

rate as a function of time in tests carried out under the operating conditions 

reported in Table 3.4, with or without SO2 in the fluidizing gas. In each cycle the 

elutriation rate shows a typical trend with a peak of fines generation at the 

beginning. This peak is caused by a combination of the following effects: 

rounding off of the rough particles (Scala et al., 1997), thermal shock after 

injection in the hot bed, and elutriation of re-injected fines (if any). During 
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calcination, a further process is the rapid release of CO2 that causes 

overpressures inside the particles and may change the mechanical properties of 

the solid. In all conditions the fines elutriation was relatively large during the 

first cycle and significantly decreased from the second cycle on. In fact, 

hardening of the particle surface takes place over the cycles, as a consequence 

the progressive sintering of the sorbent. This result is also consistent with the 

PSD data showing that significant fragmentation occurred during the 1st 

calcination stage. Particle fragmentation enhances attrition in two ways (Scala et 

al., 2000): on the one hand it may directly lead to the generation of elutriable 

fragments; on the other it gives rise to relatively coarse fragments with a highly 

angular shape, which are therefore more prone to surface wear.  
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Figure 4.23. Dolomite elutriation rate as a function of time measured during experiments 
carried out without SO2 (top) and with SO2 under intermediate conditions (center) and severe 
conditions (bottom) (Table 3.4). 
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Figure 4.24.  Average fines elutriation loss for dolomite as a function of the number of cycles for 
experiments carried out without SO2 (top) and with SO2 under intermediate conditions (center) 
and severe conditions (bottom) (Table 3.4). 

 

It can be noted that for the dolomite the average fines elutriation rate was 

approximately the same during the calcination and the carbonation stages. This 

indicates that the combination of the large MgO content and of the hardening 

effect of sintering/sulphation were able to make the particle surface properties 

independent of the calcium chemical form (CaO or CaCO3). Comparison of the 
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results with or without SO2 indicates that the elutriation rates were similar, 

slightly lower when SO2 was present in the gas (except during the 1st calcination 

stage). 

Figure 4.24 reports the cumulative mass of elutriated fines (as % of the 

initial mass) collected during each calcination and carbonation stage as a 

function of the number of cycles, in tests carried out under the operating 

conditions reported in Table 3.4, with or without the presence of SO2. On the 

basis of these results, an average sorbent loss rate by elutriation from a fluidized 

bed system can be estimated of the order of 2.0%/h for dolomite, as compared 

to a typical value of 0.3-0.5%/h for limestone (§ 4.3.1). This result can be 

attributed to two concurring factors. On the one side, sintering appears to be 

reduced for this sorbent, making the particles softer than limestone. On the 

other side, as discussed before, the extensive particle fragmentation (Figure 

4.21) increases the sorbent surface area subject to attrition in the bed. 

 
4.5. Reactivation by hydration 

4.5.1. Microstructural characterization of reactivated sorbent 

Table 4.1. Hydration degree for reactivated Massicci limestone and total cumulative specific 
porosity and for sizes < 200 nm for spent and reactivated Massicci limestone. 

Material 
Hydration 

Degree 

Total cumulative 

specific porosity 

Cumulative specific porosity 

for sizes < 200 nm 

Spent - 253 mm3 g–1 65 mm3 g–1 

WHY_10 52.4% 571 mm3 g–1 215 mm3 g–1 

WHY_30 54.6% 601 mm3 g–1 198 mm3 g–1 

WHY_60 55.2% 590 mm3 g–1 181 mm3 g–1 

 

Table 4.1 reports the hydration degree and specific porosity data for the 

spent Massicci limestone and for the three different hydrated sorbent (WHY_10, 
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WHY_30 and WHY_60). Procedure and conditions for preparation of spent 

material are reported in the specific section (see § 3.7); a summary is given in 

Table 4.2. 

Table 4.2. Operating conditions for preparation and for subsequent hydration of the spent 
material 

Conditions for preparation 

of spent material 

(five calcination/four carbonation) 

Conditions for hydration of spent material 

Duration [min] 20/15 Duration [min] 
10, 30, 60 (WHY_10, 

WHY_30, WHY_60) 

Temperature [°C] 940/650 Temperature [°C] 25 

Inlet CO2 [%v/v] 70/15 Water/solid ratio [g/g] 25 

 

TG analysis of the samples indicated that the spent sorbent was mostly 

composed of CaO with some residual CaCO3 (9.8%wt) that was left unconverted 

after the last (5th) calcination. The hydration degree of the water-reactivated 

samples increased from 52.4% for WHY_10 to 55.2% for WHY_60, suggesting 

that chemical hydration is fairly fast and practically complete after the first 10 

min. Further increase of hydration degree was likely hindered by the spent 

sorbent chemical (e.g., presence of residual CaCO3) and physical (e.g., reduced 

porosity of the sintered spent sample) properties. Figure 4.25 reports selected 

SEM micrographs of the samples. Visual comparison of the morphology of Spent 

and WHY samples indicates that hydration brought about an increased degree of 

“softness” of the external surface of the samples. Quantitative considerations 

were obtained by analyzing porosimetric results (Table 4.1), which were 

referred to the pore size range finer than 200 nm, since it has been reported in 

the literature (Fennel et al., 2007a, Sun et al., 2008) that this is the range mostly 

affected by sintering/deactivation phenomena upon cycling. Therefore, in order 

for hydration to be effective, it must restore this “fine” porosity. The cumulative 

specific “fine” porosity was 65 mm3/g for spent sorbent, and the hydration 
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treatment was effective in increasing this porosity: 215 mm3/g (WHY_10), 198 

mm3/g (WHY_30) and 181 mm3/g (WHY_60). The hydration treatment was 

therefore able to induce an intra-particle pore regeneration process which 

underlies reactivation. Moreover, the most pronounced increase in the <200 nm-

porosity was observed just after 10 min-hydration, while longer hydration times 

resulted into a slight decrease in porosity with respect to that measured for 

WHY_10. This should be related to the competing effects of particle swelling 

(related to the chemical hydration process and, therefore, significant only during 

the initial hydration period and low-temperature cramming/chemical sintering 

phenomena (relevant for longer hydration times and already observed in 

(Montagnaro et al., 2004) when hydrating spent sorbents from flue gas FB 

desulphurization). Hydration results indicated that the most interesting 

reactivated sample is WHY_10, which was subjected to further Calcium-Looping 

tests. To assess the effect of the hydration time, the performance of WHY_10 was 

compared with that of the potentially less interesting WHY_60 sample. 

 

 

 

Figure 4.25. SEM micrographs of spent sorbent (left), and WHY materials at two different times 
(center, 10 min; right, 60 min). 

 

 



Calcium looping for CCS-ready combustion of solid fuels                    4. Results and discussion 

98 
 

4.5.2. CO2 capture capacity 

 

Figure 4.26 shows the CO2 capture capacity values, as mass of CO2 

captured per mass of sorbent initially injected into the bed, obtained for 

WHY_10 and WHY_60, as a function of the number of carbonation stages and 

with reference to a 0.03 gCO2/initial gSorbent baseline, the value obtained after the 

4th carbonation, i.e. the last carbonation before hydration for Massicci limestone 

in the same conditions reported in the Table 4.2. 
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Figure 4.26. CO2 capture capacity for the reactivated WHY_10 and WHY_60 samples as a 
function of the number of carbonation stages (the 5th carbonation is the first carbonation step 
after hydration). 

 

Results confirmed the effectiveness of the hydration treatment in 

regenerating the sorbent activity toward CO2 capture. The capture capacity 

decreased from 0.35 to 0.08 gCO2/initial gSorbent (WHY_10) and from 0.19 to 0.03 

gCO2/initial gSorbent (WHY_60) along with the carbonation stages, highlighting that 
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deactivation phenomena occurred also for the reactivated materials. In 

particular, at the 8th carbonation WHY_60 reaches the same value of raw 

Massicci after the 4th carbonation canceling the reactivation effect, while it 

seems that WHY_10 shows a more durable reactivation than WHY_60. Moreover, 

WHY_10 sample resulted more effective in CO2 capture capacity than WHY_60, 

and this should be mostly ascribed to the larger porosity achieved when 

hydrating for short hydration times, so to exploit the “chemical” hydration effect 

without suffering the long-term “physical” cramming effect. 

 

4.5.3. Particle size distribution 

  

Figure 4.27 reports the cumulative particle size distributions (PSD) for 

WHY_10 and WHY_60 after 5th carbonation (the first after reactivation), 6th 

calcination and 8th carbonation. As described in the procedure section (see § 

3.7), the initial size range for the hydrated sorbent is 400-600 μm. 

For WHY_10, PSD results showed that particle fragmentation was limited 

during the 5th carbonation, when compared with the following cycles, in 

particular the percentage of fragments (<400 μm) represents the 14% of the 

total sorbent.  

Fragmentation phenomena undergo an appreciated increase during the 6th 

calcination (i.e., the first calcination after reactivation), with a fractional mass of 

fragments of about 30%. This was ascribed to the more severe conditions to 

which the reactivated sorbent underwent upon its first calcination, in terms of 

thermal shock. For all the other cycles, the PSD did not show significant changes, 

even if a somewhat larger fragmentation tendency was observed along the 

cycles: altogether, an amount of fragments in the range 14-38% was recorded. 

Similar considerations hold for WHY_60 (Figure 4.27-bottom): about 15% of 
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fragments after the 5th carbonation, about 26% of fragments after the 6th 

calcination and, in general, an amount of fragments in the range 15-34%. it is 

important to underline that WHY_10 and WHY_60 show a very similar 

fragmentation propensity. In particular, slight differences are appreciable after 

the 6th calcination, where WHY_10 is a little more fragile. Comparing the 

fragmentation propensity of reactivated sorbent with spent one (Figure 4.28) it 

is clear that hydration involves a particle embrittlement. Probably, this 

behaviour is related to the higher porosity of reactivated materials which 

increases particle fragility. 
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Figure 4.27. Cumulative particle size distribution (PSD) for the reactivated WHY_10 (top) and 
WHY_60 (bottom) samples after the 5th carbonation, the 6th calcination and 8th carbonation 
stage. 



Calcium looping for CCS-ready combustion of solid fuels                    4. Results and discussion 

101 
 

 

d [ m]

0 100 200 300 400 500

C
u

m
u

la
ti

v
e

 P
S

D
 #

0.0

0.2

0.4

0.6

0.8

1.0

5th Carbonation-raw

8th Carbonation-WHY_10

8th Carbonation-WHY_60

 

Figure 4.28. Cumulative particle size distribution (PSD) for the raw Massicci limestone after the 
5th carbonation and for the reactivated materials WHY_10 and WHY_60 after the 8th 
carbonation. 

 

4.5.4. Elutriation rate 

 

Figure 4.29 reports elutriation fine data for the reactivated materials (as 

% of the initial mass), collected during each calcination and carbonation stage as 

a function of the number of cycles.  In particular, these values are compared with 

elutriation amount of raw material in the same conditions in the previous cycles. 

The loss of elutriated material during each calcination and carbonation stage 

was 0.880.14% and 0.700.43%, respectively, for WHY_10, and 0.900.60% 

and 1.000.55%, respectively, for WHY_60. The cumulative loss of elutriated 

fines after 3 complete calcination/carbonation stages (therefore, discarding the 

datum relative to the 5th calcination) was 5.36% and 6.17% for WHY_10 and  
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Figure 4.29. Percent mass of elutriated fines for the raw Massicci limestone and for the 
reactivated materials WHY_10 (top) and WHY_60 (bottom) as a function of the number of cycles 
during experiments. 

 

WHY_60, respectively. It is possible to see that, except for the first cycles, for the 

reactivated materials the amount of elutriated fines is higher during the 

carbonation stage. Moreover, this behaviour is the same as for the raw material 
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and the possible explanation was already discussed in § 4.3.3. In general, 

WHY_10 and WHY_60 show a moderate increase toward attrition tendency, in 

percentage terms, than raw Massicci. This is probably due to a soaking effect 

which produces a softer particle surface, as shown by the SEM micrographs (see 

Figure 4.25), and since this effect is time-dependent it exhibits more pronounced 

consequences for WHY_60. These results suggest that CO2 capture capacity and 

attrition propensity are linked one to the other showing that the sorbent should 

be hydrated for times long enough to get a substantially complete chemical 

hydration, but short enough to avoid soaking and cramming phenomena. 
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5. Conclusions 

 

Results obtained in the frame of the present Doctoral Thesis are hereby 

summarized. They provide a valuable basis for the design of Ca-looping 

processes, with specific reference to sorbent propensity to attrition and 

fragmentation, to the mutual interaction between CO2 and SO2 uptake, to the 

performance of dolomitic sorbents as alternative to the more usual limestones, 

to the potential of spent sorbent reactivation by water hydration to reduce the 

consumption of make-up sorbent. The main conclusions are detailed in the 

following sections. 

 

5.1. Effect of temperature and CO2 partial pressure 
during calcination 

 

The effects of the calcination temperature and of the CO2 partial pressure 

during the calcination stage on CO2 capture capacity and attrition propensity of a 

Ca-based sorbent have been investigated. Experiments have been carried out 

with the Italian Massicci limestone during calcium looping cycles under 

relatively mild conditions. Results showed that the limestone exhibited the 

typical decrease of the uptake capacity with increasing number of cycles. The 

presence of CO2 during calcination and especially a higher calcination 

temperature determine a decrease of sorbent capacity for all the cycles, most 

likely due to the enhancement of particle sintering. Analysis of the particle size 

distribution (PSD) of the bed material over repeated calcination/carbonation 

cycles indicated that particle fragmentation was very limited in all the 

conditions investigated. The fines elutriation rate was relatively large during the 
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first cycle and decreased with the number of cycles. The presence of CO2 during 

calcination led to a significant decrease of fines generation, while a higher 

calcination temperature produced an increase of the particle attrition rate. 

These results may be explained by the competition of two opposed effects: on 

the one hand sintering brings about hardening of the particle surface; on the 

other side a faster release of CO2 leads to higher internal overpressures and, in 

turn, to increased propensity to particle breakage. 

 

 

5.2. Effect of SO2 during carbonation 

 

The CO2 capture capacity and the attrition propensity of an Italian 

limestone (Massicci) have been assessed in the presence of SO2 (during the 

carbonation stage) during calcium looping cycles under relatively mild 

conditions. Results showed that the presence of SO2 in the flue gas significantly 

decreased the sorbent CO2 capacity, most likely because of the formation of an 

impervious CaSO4 layer at the periphery of the particles. The effect of the SO2 

concentration level (110 versus 1800 ppm), however, was less pronounced than 

expected. In particular, results showed that even a small quantity of SO2 is 

sufficient to significantly hinder the CO2 capture capacity of the sorbent. Analysis 

of the particle size distribution of bed material over repeated 

calcination/carbonation cycles indicated that particle fragmentation was very 

limited in all the conditions investigated. The fines elutriation rate was relatively 

large during the first cycle and decreased with the number of cycles. The 

presence of SO2 during carbonation determined a limited increase of particle 

attrition. The interplay between the extent of calcium sintering and the 

properties of the sulphate layer formed on the surface of the sorbent particles 
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control the attrition propensity of the limestone. Results obtained with 1800 

ppm SO2 showed departures from the other conditions as regards: cumulative 

particle size distribution of fragments, cumulative elutriated material over five 

repeated cycles, degree of SO2 uptake over repeated cycles. The departure was 

particularly noticeable as results were compared with those obtained under 

1800 ppm CS conditions (i.e. when the duration of the carbonation stage was 45 

min instead of 15 min, and sulphation approached completion). An explanation 

is based on the speculation that a poorly structured and less compact sulphate 

layer is formed during the 1800 ppm tests as compared with that formed than 

during the 1800 ppm CS tests. This feature would affect the propensity to 

generate fragments and attritable material and the capacity to further uptake 

SO2 at the same time. 

 

5.3. Oxy-firing conditions and the effect of SO2  

 

The CO2 capture capacity and the attrition propensity of six high-calcium 

European limestones were assessed under cyclic calcination/carbonation 

conditions in a lab-scale fluidized bed reactor under realistic conditions 

representative of a process with calcination in an oxy-firing environment. 

Results showed that the CO2 capture capacity decreased with the cycles, as 

expected. The presence of a high CO2 concentration during calcination (70%) 

and a high calcination temperature (940°C) determined a significant decrease of 

the sorbent capacity, due to the enhancement of particle sintering. The analysis 

of the PSD of bed material over repeated calcination/carbonation cycles 

indicated that particle fragmentation was limited for all the limestones. The 

fines elutriation rate was relatively large only during the first cycle and 

decreased with the number of cycles, since the combined chemical-thermal 
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treatment affected the particle structure making it increasingly hard. The 

presence of a high SO2 concentration had a detrimental effect on the CO2 capture 

capacity of all limestones, while a low SO2 concentration had a more limited 

effect. Attrition was only slightly affected by the presence of SO2. On the basis of 

the experimental data reported in this work, the residual CO2 capture capacity 

after the first few cycles is of the order of 0.01-0.05 gCO2/initial gCaCO3 depending 

on the SO2 concentration. The average limestone loss rate by elutriation can be 

estimated to be of the order of 0.5%/h under realistic conditions, and should not 

represent a process limitation. 

 

5.4. Oxy-firing conditions and the effect of SO2 using 
dolomite as sorbent 

 

The CO2 capture capacity and the attrition propensity of a dolomite were 

assessed during multiple calcination/carbonation cycles in a lab-scale fluidized 

bed reactor under conditions representative of a process with calcination in an 

oxy-firing environment. In addition, the effect of the presence of SO2 in the flue 

gas was investigated. The performance of the dolomite was compared with that 

of limestone tested under the same operating conditions. 

Results showed that the CO2 capture capacity decreased with the cycles, as 

expected. The present experimental conditions, consisting of a high CO2 

concentration during calcination (70%) and a high calcination temperature 

(940°C), are known to determine a significant decrease of the CO2 capacity of 

limestone due to the enhancement of particle sintering. This effect, however, 

was less important for the dolomite tested in this work. The CO2 capture 

capacity of the dolomite was always larger than that of limestone, and remained 

relatively large along the cycles in spite of the lower calcium content of the 
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sorbent. This result highlights the positive effect of the large magnesium content 

of the dolomite in reducing the particle sintering effect. The presence of SO2 

significantly depressed the CO2 capture capacity, most likely because of the 

formation of an impervious CaSO4 layer on the surface of the particles. 

The analysis of the particle size distribution (PSD) of the bed material over 

repeated calcination/carbonation cycles indicated that, contrary to limestone, 

particle fragmentation was extensive for the dolomite, especially upon the first 

calcination stage. The fines elutriation rate was also large during the first cycle 

and decreased with the number of cycles, because of the combined effect of early 

particle fragmentation and of the chemical-thermal treatment that affected the 

particle structure making it increasingly hard. Conversely, attrition was only 

slightly affected by the presence of SO2.  

 

5.5. Sorbent reactivation 

The CO2 capture capacity and the propensity to attrition of an Italian 

limestone (Massicci) reactivated by water hydration were investigated. Tests 

consisted of calcination/carbonation cycles carried out in a lab-scale fluidized 

bed reactor under realistic conditions representative of a process with 

calcination in an oxy-firing environment. 

The hydrated spent sorbent displayed enhanced CO2 capture capacity 

which, as expected, underwent deactivation over iterated 

calcination/carbonation cycles. The extent of reactivation depends on the 

hydration time: short hydration times give rise to more efficient regeneration of 

the sorption capacity avoiding sorbent “cramming” which is instead observed 

upon longer hydration. Porosimetric analysis showed the relevance of sorbent 

porosity, highlighting the important role of small pores (<200 nm). Sorbent 
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reactivation brings about a moderate increase of attrition. Again, the hydration 

time affects attrition: longer hydration times apparently emphasize the 

propensity to sorbent abrasion. 

Results provide a valuable basis for the design of a “double loop” process, 

where, in conjunction with looping between the calciner and the carbonator, 

spent sorbent is continuously regenerated by water hydration. 
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