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Abstract  

 

Obesity is a multifactorial disorder influenced by the interaction of 
genetic, behavioral and environmental factors, control of appetite and energy 
expenditure, and the availability of high-calorie food.  

Adipocyte and adipose tissue dysfunctions are the primary defects in 
obesity and may link obesity to such disorders as increased insulin resistance, 
type 2 diabetes, fatty liver disease, hypertension, dyslipidemia, atherosclerosis 
and cancer.  

Bariatric procedures have been shown to be more effective in the 
management of morbid obesity than lifestyle interventions and 
pharmacotherapy. The aim of this study was to investigate if the significant and 
sustained weight loss after laparoscopic adjustable gastric banding (LAGB) 
resulted in an improvement in the metabolism of obese subjects in terms of 
serum biochemical parameters and phenotypic characteristics (cell size and 
number) of subcutaneous adipose tissue (SAT). Moreover, we investigated if 
miRNA based regulation of gene expression could be involved in the 
mechanisms underlying the weight loss.  

We evaluated 20 severely obese subjects before LAGB (T0, mean 
body mass index [BMI] 44.9 kg/m2) and after the loss of >30% excess weight 
(T1, mean BMI 31.5 kg/m2). We also evaluated 10 normal weight subjects. We 
collected SAT and serum samples from all subjects. Conventional biochemical 
parameters were measured by routine laboratory procedures, and leptin and 
adiponectin by Luminex xMAP technology. Five-micron sections were 
prepared from all paraffin-embedded SAT blocks. Slides were then stained 
with hematoxylin & eosin. Macrophagic infiltration were evaluated by CD68 
immunohistochemical analysis. 

Levels of insulin, homeostasis model assessment-insulin resistance, 
triglycerides and liver markers as well as the leptin/adiponectin ratio were 
significantly lower at T1 vs T0 (p<0.05). The number of SAT adipocytes was 
greater and their size smaller at T1 than at T0 (p<0.05). Moreover, the 
morphological characteristics of SAT adipocytes at T1 did not differ from 
those of control adipocytes (p=0.89).  Weight loss induced by bariatric surgery 
resulted in a significant reduction in the inflammation level, as measured by 
CD68 score. We found that 4% of miRNAs was differently expressed in T1 vs 
T0, of these 3% was up-expressed and 1% was down-expressed. Bioinformatic 
analysis of deregulated miRNAs showed several target genes which were 
involved in relevant pathways among which: pathways in cancer, regulation of 
endocytosis, MAPK signaling, TGF-beta signaling. 

LAGB induces an improvement in the obese metabolic status, which 
could result in a decreased risk of obese-associated diseases. Moreover, the 
normalization of adipocyte features at T1 vs T0 suggests a regression of SAT 
inflammation. Furthermore, our data support that the improvement of the 
metabolic status induced by bariatric surgery in our obese patients could be 
obtained also by miRNA-based regulation of gene expression. 
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1. Background 

 
In the last decades, the rate of obesity in industrialized countries is 

constantly raised. Obesity prevalence has increased from 15% to 34% among 
adults and from 5% to 17% among children and adolescents (Freedman 2011). 
In European Union, close to 14% population is obese (Mooney 2010). In 
particular, 10.3% of adult Italian population resulted to be obese (OECD 
obesity update, 2012). This epidemic growth of obesity is mainly due to 
changes in dietary habits, particularly in the high availability of high-calorie 
palatable foods. Moreover, in the last years the consumption of snacks and 
caloric beverages has also increased (St-Onge et al 2003). Changes in diet are 
often also accompanied by a reduction in physical activity. In fact, Only 22% 
of American children follow the recommendations on baseline levels for 
physical activity and 25% are classified as completely sedentary (Burgeson et 

al 2001). The environmental / behavioral component is believed to affect the 
etiopathogenesis of obesity for the 60-70%, while the remaining 30-40% is due 
to alteration in the genetic counterpart (Clement and Ferré 2003). With few 
exceptions, obesity is a complex multifactorial disease, and interindividual 
variations of this phenotype are due to the action of multiple genes and 
environmental factors. Studies of families, twins and adopted children, indicate 
that obesity is in part heritable (Miller et al 2004, Damcott et al 2006). 
Individual factors, both genetic and psychological, interact with environmental 
factors in the genesis of obesity. In evolutionary terms, the genetic 
predisposition to fat accumulation is a mechanism implemented in conditions 
of food’s abundance to ensure survival during times of food shortage 
(Schwartz et al 2000, Bellisari et al 2008).  

The severity of obesity is evaluated calculating the Body Mass Index 
(BMI), which is obtained dividing the weight in kilograms by the square of the 
height in meters of the subject under consideration: a BMI greater than 30 is 
indicative of moderate obesity, values greater than 40 are instead indicative of 
severe obesity. Being overweight or obese increases the risk of morbidity and 
mortality caused by the onset of other diseases such as type 2 diabetes mellitus, 
hypertension, heart disease and neoplasias (Chen et al 1999). 

A complex physiological system balances energy intake and energy 
expenditure, including afferent and efferent signals to the central nervous 
system (Woods and D’Alessio 2008). The signals coming from the periphery 
are constituted by gastrointestinal hormones (ghrelin, GLP-1, Peptide Y, 
cholecystokinin, pancreatic polypeptide, etc..), adipokines released from 
adipose tissue and hormones, such as insulin, produced by other tissues. 

Studies on genetically obese mice (ob/ob) led in 1994 to the 
identification of leptin, a major player in body weight regulation. This protein 
was the first to be identified among a long series of peptidic products secreted 
by adipose tissue that today is considered a true endocrine organ. The 
molecules synthesized and secreted by adipose tissue are collectively called 
"adipokines". Different cell types contribute to the secretion of these 
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molecules; for example, a considerable number of adipokines related to 
inflammation was found in the vasculo-stromal fraction and in the matrix of 
adipose tissue, which is rich in cells of the immune system.  

One of the major peripheral signals is represented by leptin, 
produced by adipose tissue and regulating the sense of satiety by acting on the 
melanocortin circuit. Leptin acts through its receptors (ObRb) in two different 
subpopulations of neurons in the arcuate nucleus. One of this expresses both 
orexigenic neuropeptides: Neuripeptide Y (NPY) and Agouti Related Protein 
(AgRP), whose expression is reduced by leptin (Schwartz et al 2000); the other 
population expresses both anorexigenic neuropeptides: Cocaine and 
Amphetamine Related Transcript (CART) and α-MSH peptide, derived from 
the proteolytic processing of the POMC gene (proopiomelanocortin), operated 
by enzymes proconvertasi (PC1 and PC2). The expression of POMC is induced 
by leptin (Schwartz et al 2000). AgRP and α-MSH compete, at hypothalamic 
level, for binding to melanocortin receptors (MC-Rs), in particular for subtype 
4 (MC4R). The interaction between the central circuits and peripheral signals 
produces, under normal conditions, a coordinated response to any change in 
nutritional status (Figure 1). 

 
Figure 1. Melanocortin circuit. 

 
At level of arcuate nucleus, a complex neuronal network decodes the afferent signals from the periphery 
of the body. In particular, leptin produced by adipose tissue activate the transcription of the anorexigenic 
peptides POMC/CART, causing a reduction of food intake and an increase of energy expenditure. On the 
other hand, leptin suppress the transcription of orexigenic AGRP/NPY peptides. At central level, 
adiponectin has opposite effects than leptin on peptides regulating appetite and energy expenditure. 
 
 

Severe monogenic obesity in humans is associated with mutations in 
POMC, PC1, PC2, and MC4R genes (Bellisari et al 2008, Chen et al 1999, 



7 

 

Farooqi et al 2000, Krude et al 1998, Raffin-Sanson et al 2003, Echwald et al 
1999, Challis et al 2002, Miraglia del Giudice et al 2001). These observations 
suggest that this pathway is important for energy homeostasis and that it is 
strictly regulated. In parallel, leptin also acts on the CNS inducing release of 
noradrenaline. Noradrenaline exerts its action on adipose tissue by binding to 
β3-adrenergic receptors, so activating lipolysis in white adipose tissue (WAT) 
and thermogenesis in the brown adipose tissue (BAT). The latter mechanism is 
responsible for the increase in energy expenditure. 

Concerning leptin, its serum concentration and its expression in 
adipose tissue are directly proportional to the levels of adiposity and changes in 
body weight, making the hormone a good indicator of the deposits of fat in the 
body. The absence of both leptin or its receptor causes hyperphagia and obesity 
in animal models and in humans; however, such mutations are rare in obese 
patients. The serum leptin levels show a circadian rhythm with a peak between 
11:00 p.m. to 1:00 a.m., after which the circulating leptin decreases until late 
afternoon. The pulsatile secretion nature of leptin may be due to the capacity of 
the adipocytes to store significant amounts of the hormone in subcellular 
compartments, such as the endoplasmic reticulum. The secretion also shows a 
clear sexual dimorphism with higher values in females than in males (Vázquez-
Vela et al 2008).  

There are 5 different isoforms of the leptin receptor (Ob-Ra, b, c, d, 
e). Ob-Rb, the long isoform and metabolically active receptor, is characterized 
by the presence of a long intracytoplasmic region containing several domains 
responsible for signal transduction. It is present in high concentrations in the 
brain (30-40% of all receptors), and in particular in the areas responsible for 
regulating energy intake, such as the arcuate, dorsal and ventromedial 
hypothalamic nuclei (Galic et al 2010). At low concentrations (approximately 
5-8% of the total), Ob-Rb is found also at level of peripheral tissues, such as 
adipose tissue, ovary, testes, placenta, peripheral blood mononuclear cells, 
chondrocytes and in skeletal muscle and heart. Like other cytokine receptors of 
class I, Ob-Rb lacks intrinsic tyrosine kinase activity and therefore requires the 
recruitment of kinase belonging to the Janus family (Jaks). These kinases 
phosphorylate the signal transducer and activator of transcription STAT, 
inducing dimerization and translocation to the nucleus, so causing in the 
hypothalamus transcriptional suppression of orexigenic genes (Galic et al 
2010). Moreover, leptin activates also the IRS-PI3K (insulin receptor substrate-
phosphoinositide-3-kinase) pathway, which seems to act at the level of adipose 
tissue in suppressing lipogenesis. The block of leptin signaling is mediated by 
the activation of the phosphatase PTP-1B (Protein Tyrosine Phosphatase 1B) 
and SOCS-3 (Suppressors of cytokine signaling 3) that interferes with the 
phosphorylation of Jak2. A fat-rich diet increases the expression of these two 
proteins thus decreasing the action of leptin in target tissues (leptin-resistance); 
this alteration is often observed in obesity (Galic et al 2010). In particular, in 
liver, leptin causes an increased expression of PPARα, a protein that affects 
lipid metabolism. Leptin-resistance is often associated with hyperleptinemia, 



8 

 

which favors the accumulation of ectopic fat in the liver, skeletal muscle, heart 
and pancreas. Leptin-resistance was therefore proposed  as an important cause 
of adipocyte dysfunction and deposition of lipids in not-adipose tissue (Galic et 

al 2010). 
Adiponectin is another protein secreted from adipose tissue. It is a 

protein of 30 kDa secreted by adipocytes whose circulating levels are 
decreased in presence of obesity and insulin resistance. Adiponectin is present 
in the blood in different isoforms: trimeric (low-molecular weight LMW), 
hexameric (two homotrimers) and multimeric (from 12 to 18 monomers, high 
molecular weight-HMW) which have different biological functions. The HMW 
form has an insulin-sensitizing effect, while the LMW form exerts its effects 
centrally. The monomer is composed of three functional domains: an N-
terminal variable region, an α helix collagen-like region characterized by  
repetitions of the sequence GXX necessary for polymerization, and a C-
terminal globular domain of about 140 amino acids. After the synthesis, it 
undergoes extensive post-translational modifications, such as hydroxylation 
and glycosylation, in particular at level of the collagenous domain (Galic et al 
2010).  

Adiponectin binds to its receptors ubiquitously expressed, AdipoR1 
and AdipoR2, so activating AMP dependent kinase. The first receptor is 
expressed primarily in skeletal muscle, the second is more expressed in the 
liver, both are also present in the hypothalamus where colocalize with the 
leptin receptor. In hypothalamus, adiponectin has opposite effects to leptin, 
through the activation of orexigenoic genes and the silencing of anorexigenic 
ones. At peripheral level, the adiponectin is involved in the phosphorylation of 
the insulin receptor and its substrate, a necessary mechanism for the 
translocation of GLUT4 transporter to the cell membrane of muscle and liver 
(Vázquez-Vela et al 2008). A third adiponectin receptor, T-cadherin (also 
known as cadherin13-CDH13) has been recently identified (Hug et al 2004). 
This receptor can bind the MMW and HMW forms of adiponectin but not the 
trimeric or globular species. 

In humans, adiponectin levels inversely correlate with insulin 
resistance and the metabolic syndrome and are also decreased in the presence 
of obesity, type 2 diabetes and atherosclerosis. Adiponectin also counteracts 
the effects of TNF-α, a pro-inflammatory molecule, inhibiting the expression 
of adhesion molecules in endothelial cells, thereby diminishing the atherogenic 
risk. Adiponectin exerts its vasoprotective effects also through the increased 
production of nitric oxide, or by modulating the expression of scavenger 
receptors (Galic et al 2010). 

In mammals, it is possible to recognize two distinct populations of 
adipocytes. The one forms the so-called white adipose tissue (White Adipose 
Tissue, WAT) and is characterized by the presence within the cell cytoplasm a 
single large vacuole containing lipids which occupies about 80% of the cell 
volume, confining the nucleus and the other organelles to the periphery of the 
cell. The other population form the brown adipose tissue (Brown Adipose 
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Tissue, BAT), and is instead characterized by the presence within cells of 
numerous lipid droplets of small size and several mitochondria. Moreover, 
based on the localization of WAT, it is possible to identify a subcutaneous 
adipose tissue (SAT) and a visceral adipose tissue (VAT).  

SAT deposits covers the whole body surface: in women they are 
particularly developed in gluteal-femoral region and breast, while in men they 
are present mainly in the abdomen and around the muscles of the limbs. VAT 
is largely localized in the mesenteric and omental regions, while smaller 
deposits are also present in the epicardial region and in the mediastinum. 
WAT contains in addition to mature adipocytes, several multipotent 
mesenchymal stem cells (MSCs) and pre-adipocytes. The increase of the 
deposits of TG, in conditions of positive caloric balance, produces a 
hypertrophy of the adipose cell. When these cells reach a critical volume, the 
differentiation of mesenchymal cells is subsequently stimulated (adipogenesis). 
Adipocyte differentiation is an important component of hyperplasia of adipose 
tissue.  

Adipocytes are the main cellular component of adipose tissue, and 
they are crucial for both energy storage and endocrine activity. The other cell 
types that are present are precursor cells (including pre-adipocytes), fibroblasts, 
vascular cells and immune cells, constituting the stromal vascular fraction of 
adipose tissue. Vascular cells include both endothelial and vascular smooth 
muscle cells, which are associated with the major blood vessels. The blood 
vessels in adipose tissue are required for the proper flow of nutrients and 
oxygen to adipocytes, and they are the conduits that allow for the distribution 
of adipokines. Other active adipose tissue components include macrophages 
and T cells, which have major roles in determining the immune status of 
adipose tissue.  

Factors that are secreted by these different cellular components are 
critical for maintaining homeostasis in adipose tissue and throughout the body 
(Vázquez-Vela et al 2008).  

Examples of intercellular communication between different adipose 
tissue cell types include the counter-regulation between adiponectin and 
tumour necrosis factor (TNF), and between secreted frizzled-related protein 5 
(SFRP5) and WNT5a. Under conditions of obesity, the pro-inflammatory 
factors (TNF and WNT5a) predominate (Vázquez-Vela et al 2008). 

With limited obesity, it is likely that the tissue retains relatively 
normal metabolic function and has low levels of immune cell activation and 
sufficient vascular function. However, qualitative changes in the expanding 
adipose tissue can promote the transition to a metabolically dysfunctional 
phenotype. Macrophages in lean adipose tissue express markers of an M2 or 
alternatively activated state, whereas obesity leads to the recruitment and 
accumulation of M1 or classically activated macrophages, as well as T cells, in 
adipose tissue (Ouchi et al 2011).  

Anti-inflammatory adipokines, including adiponectin, are 
preferentially produced by lean adipose tissue. During obesity, adipose tissue 
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generates large amounts of pro-inflammatory factors, including leptin, resistin, 
retinol-binding protein 4 (RBP4), lipocalin 2, angiopoietin-like protein 2 
(ANGPTL2), tumour necrosis factor α (TNF-α), interleukin-6 (IL-6), IL-18, 
CC-chemokine ligand 2 (CCL2), CXC-chemokine ligand 5 (CXCL5) and 
nicotinamide phosphoribosyltransferase (NAMPT, visfatin). Obese individuals 
with adipose tissue in a metabolically intermediate state have improved 
metabolic parameters, diminished inflammatory marker expression and better 
vascular function compared with individuals that have metabolically 
dysfunctional adipose tissue. Metabolically dysfunctional adipose tissue can be 
associated with higher levels of adipocyte necrosis, and M1 macrophages are 
arranged around these dead cells in crown-like structures (Romeo et al 2012, 
Gil et al 2011, Ouchi et al 2011). 

Beside the rare monogenic forms of obesity, accounting in humans 
for 0.5-6% of all obesity forms (Ramachandrappa and Farooqi 2011), several 
sequence variations in DNA of obese patients have been described in different 
genes, causing alterations in central regulation of food intake – energy 
expenditure balance (Yang et al 2007). In the last years, a growing number of 
publications on the role of epigenetic modifications on obesity insurgence have 
been produced. Among epigenetic mechanisms in regulating gene expression, 
microRNAs have recently emerged as an important class of mRNA expression 
regulators. MiRNAs are found in all multicellular organisms, from plants to 
humans, and in many instances are highly conserved through evolution. For 
this reason they are likely to be important for normal cellular function.  

MiRNA biogenesis can be briefly summarized as follows (Figure 2). 
A primary miRNA, which may be several thousands of bases long, is cleaved 
in the nucleus by a protein complex containing the enzyme Drosha to give a 
precursor miRNA of around 70 nucleotides in a stem-loop structure. This is 
then transported out of the nucleus into the cytoplasm and further processed by 
the enzyme Dicer to give a short double-stranded miRNA complex, which 
contains the mature miRNA strand and a passenger strand (miRNA*), which is 
normally degraded. The mature miRNA is incorporated with the Argonaute 
subfamily of proteins into the RNA-induced silencing complex (miRISC). In 
this complex, the mature miRNA is able to regulate gene expression, binding 
through partial complementary generally, for the most part to the 3’- 
untranslated region (3’-UTR) of target mRNAs, and leading at the same time to 
some degree of mRNA degradation and translation inhibition. The most 
stringent requirement for this interaction is a contiguous and perfect Watson-
Crick basepairing of the miRNA 5’nucleotides 2-8, representing the “seed 
region” nucleating the interaction (Rottiers and Naar 2012). 

 
 
 
 
 
 



11 

 

 
Figure 2. MiRNAs biogenesis. 

 
MicroRNAs (miRNAs) are transcribed as precursor RNAs from intergenic, intronic or polycistronic 
genomic loci by RNA polymerase II (Pol II). The primary miRNA (pri-miRNA) transcript forms a stem–
loop structure that is recognized and processed by the Drosha/DGCR8 complex or the spliceosome in the 
nucleus. The precursor (pre-miRNA) hairpins from both canonical and non-canonical miRNA pathways 
are then transported by an exportin 5 and RAN-GTP-dependent process to the cytosol, where they are 
processed by the Dicer/TRBP RNase III enzyme complex to form the mature double-stranded ~22‑
nucleotide miRNA. Argonaute proteins unwind the miRNA duplex and facilitate incorporation of the 
miRNA-targeting strand into the AGO-containing RNA-induced silencing complex (RISC). The RISC–
miRNA assembly is then guided to specific target sequences in mRNAs. Image from Mol Cell Biol 2012. 
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MiRNAs are likely to be predominantly fine tuners of gene 
expression, but there is some evidence that on reaching a critical threshold, 
they may highly repress protein production and in so doing act as ‘switches’. 

Each miRNA may fine tune the expression of hundreds or even 
thousands of proteins, and it is estimated that over 60% of mammalian mRNAs 
are conserved targets for miRNAs. Additionally, each mRNA may be targeted 
by many miRNAs. This system therefore potentially has enormous regulatory 
capacity, but also possesses a complexity that can make it difficult to clarify. 

 
Treatment of obesity is principally based on diet and physical 

exercise; however, in case of pathological obesity, in which repeated dietetic-
pharmacological and behavioral attempts failed, bariatric surgery represents the 
best approach aimed to the largest excess weight loss (EWL), resulting in 
improved longevity.  

In particular, laparoscopic adjustable gastric banding (LAGB) is 
among the widespread possibilities for volumetrically reducing the stomach, to 
induce rapid and early satiety. Moreover, this procedure allows for controlled 
weight loss without major alterations to the structure and function of the 
gastrointestinal tract. Compared to other more invasive surgical procedure, 
such as Roux-en-Y gastric bypass and biliopancreatic diversion,  LAGB has 
proved to be effective with less perioperative morbidity and mortality. This 
procedure, in more than 95% of cases in literature is performed by laparoscopy 
(Kral et al 2007). The average %EWL at 1 year and 5 years is 41% and 55.4%, 
respectively, with a large variability in literature related to selection of patients 
(Kral et al 2007). 
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2. Aims 

 

Therapeutic options for obesity treatment, including lifestyle 
interventions and pharmacotherapy, are limited, because long-term 
maintenance of weight loss often fails. Instead, a significant and durable 
weight loss is obtained by bariatric surgery, that is the most successful clinical 
intervention leading to an improvement in obesity-related comorbidities 
(insulin resistance, glucose metabolism, hyperlipidemia and inflammatory 
profile).  

The aim of the present study is to test if the sustained weight loss, 
following the LAGB, could ameliorate the obese metabolism in term of: 

- Improvement of the lipid and glucose metabolism, and/or the 
liver function evaluated by hepatic markers.  

- Normalization of serum levels of main adipocytokines and 
leptin/adiponectin ratio before (T0) and after (T1) LAGB. 

- Normalization of Adiponectin and adiponectin receptors 
(AdipoR1 and AdipoR2) gene expression in SAT at T1 (after LAGB) 
compared with T0 (before LAGB). 

- Normalization of the SAT phenotype (number and size of 
adipocytes and inflammatory cell presence) at T1 (after LAGB) compared with 
T0 (before LAGB). 

- Normalization of the SAT miRNAs expression profiling and of 
miRNAs-deregulated pathways after LAGB respect to before LAGB, also 
compared with controls.  
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3. Patients and Methods 

 
Patients and controls 

 

We evaluated 20 severely obese subjects before LAGB (T0, mean 
body mass index [BMI] 45 kg/m2) and after the loss of ≥30% excess weight 
(T1, mean BMI 32 kg/m2). We also evaluated 10 normal weight subjects. We 
collected perioperatively SAT and serum samples from all subjects. 

The families of all subjects had lived in Southern Italy for at least 
three generations and all subjects gave their informed consent to the study. The 
research was approved by the Ethics Committee of the Faculty of Medicine, 
University of Naples Federico II, and was carried out according to the Helsinki 
II Declaration.  

Main electrolytes, serum glucose, total cholesterol,  triglycerides, 
aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline 
phosphatase (ALP), γ-glutamyl transferase (GGT), lactate dehydrogenase 
(LDH), cholinesterase (CHE), creatine kinase (CK), amylase (AMS), urea, 
creatinine, uric acid (UA), total bilirubin (T-bil), total protein (TP), albumin, C 
reactive protein (CRP) and insulin were measured by routine laboratory 
methods. Insulin resistance was estimated according to the homeostasis model 
assessment (HOMA) and the formula: fasting insulin (mIU/l) × fasting glucose 
(mmol/l)/22.5. A HOMA lower or greater than 1.95 defined insulin sensitivity 
or resistance, respectively (Messier et al 2010, Bonora et al 1998, Labruna et al 
2011). 

Serum leptin and adiponectin were measured by Luminex xMAP 
Technology on a BioRad Multiplex Suspension Array System (BioRad, Hemel 
Hempstead, Herts), according to the manufacturer’s instructions. We also 
calculated the leptin/adiponectin (L/A) ratio. 

Serum protein electrophoresis was performed by capillary 
electrophoresis. 

 
 

Hematoxylin & eosin staining 

 
The hematoxylin and eosin (H&E ) stain uses two separate dyes, one 

staining the nucleus and the other staining the cytoplasm and connective tissue. 
Hematoxylin is a dark purplish dye that will stain the chromatin (nuclear 
material) within the nucleus, leaving it a deep purplish-blue color. Eosin is an 
orangish-pink to red dye that stains the cytoplasmic material including 
connective tissue and collagen, and leaves an orange-pink counterstain. This 
counterstain acts as a sharp contrast to the purplish-blue nuclear stain of the 
nucleus, and helps identify other entities in the tissues such as cell membrane 
(border), red blood cells, and fluid. 

The process of performing the H&E stain is relatively simple. After 
the tissue has been paraffin embedded, sectioned (five-micron sections), placed 
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on a slide and the slide dried in an oven, the slide is taken through brief 
changes of xylene, alcohol and water to ‘hydrate’ the tissue. This process is 
called ‘running the slides down to water’ and must be done to give the cells an 
affinity for the dyes. The slides are then stained with the nuclear dye 
(hematoxylin) and rinsed, then stained in the counterstain (eosin). They are 
then rinsed, run in the reverse manner from the run down (taken back through 
water, alcohol, and xylene), then cover slipped. 

For each samples three different fields were evaluated from two 
different operators. Adipocytes were counted in the same area and the average 
of the three different fields was calculated.  

 
 

CD68 evaluation by immunohistochemistry 

 
The CD68 protein was identified by immunohistochemical analysis 

on formalin-fixed paraffin-embedded adipose tissue blocks. Sections 5-µm 
thick were cut from the formalin-fixed tissue blocks, dewaxed in xylene 
analogs (Bio-Clear Bio-Optica, Milan, Italy) and rehydrated with graded 
ethanol concentrations.  

The sections were incubated for 45 min at 97°C in citrate buffer pH 
6 (DAKO, S2369) in order to retrieve immunogenicity. Endogenous 
peroxidase activity was blocked by immersing slides in 3% hydrogen peroxide 
methanol for 10’. Aspecific antigen sites were blocked by incubating at room 
temperature for 30’ with background reducing components (DAKO).  

The primary antibodies used in the immunohistochemical staining 
was anti-CD68 mouse monoclonal antibody (1:500 Abcam). Tissue sections 
were incubated at room temperature for 1 h with primary antibodies. Staining 
was carried out with LSAB+System-HRP (DAKO); the signal was developed 
using diaminobenzidine (DAB) chromogen as substrate (DAKO). The tissue 
sections were then lightly counterstained with Mayer’s hematoxylin and cover-
slipped.  

The following scoring system was used: score 0, no staining; 1+, 
incomplete staining; 2+, strong and complete staining (Barros-Silva et al 

2009). Two independent observers evaluated the immunohistochemical slides 
and manually counted the number of macrophages stained in each tissue. 
 

 

MiRNA expression profile in SAT 

 
Total RNA (including miRNAs) was purified from SAT using the 

mirVanaTM miRNA isolation kit (Ambion) and its concentration was evaluated 
by NanoDrop® ND-1000 UV-Vis spectrophotometer (NanoDrop 
Technologies, Wilmington, DE, USA).  

TaqMan low density arrays (TLDA), micro fluidic cards were used 
to detect and quantify mature miRNAs according to manufacturer’s 
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instructions. Each TLDA Human MicroRNA Panel v1.0 card contained 365 
preloaded human miRNA targets and two endogenous controls (small 
nucleolar RNAs: RNU48 and RNU44). TLDAs were prepared in two-steps. In 
the first step, 640 ng of total RNA were reverse transcribed in eight multiplex 
reverse transcriptase (RT) reaction pools using stem loop RT primers specific 
for mature miRNA species. Then, each of the resulting eight cDNA pools was 
diluted, mixed with TaqMan Universal PCR master mix, and loaded into one of 
the eight fill ports on the TLDA microfluidic card. The card was centrifuged 
for 2 min at 1200 rpm to distribute samples to the multiple wells of the fill 
ports and sealed to prevent well-to-well contamination. Finally, the cards were 
processed on an 7900 HT Real-Time PCR System (Applied Biosystems). The 
miRNA expression values were normalized to RNU48 (endogenous control), 
and relative expression values were obtained using the ∆∆CT method (Relative 
Quantification, RQ=2-∆∆CT) with Sequence Detection System (SDS) v2.3 and 
RQ Manager 1.2 software (Applied Biosystems).  

 
 

Analysis of miRNA targets 

 
After miRNA expression profiling, we predicted the pathways that 

were likely to be differently regulated in obese patients before and after 
bariatric surgery by TargetScan Release 5.0 (http://www.targetscan.org) 
algorithm (Grimson, 2007- Friedman, 2009). This algorithm assigns a “total 
context score” for each predicted target. Predicted target genes with a “total 
context score” <-0.30 were then combined and analyzed using the KEGG 
database (http://www.genome.ad.jp/kegg/) so identifying the biological 
pathways involving the target genes of our selected miRNAs. By this latter 
program we selected the biological pathways that contained at least two 
predicted genes to be miRNA-altered in obese samples with a statistically 
significant probability p<0.05. 
 
 
Western blot analysis 

 

Protein evaluation by Western blot was performed in 3/20 obese 
patients before and after bariatric surgery with 35 µg of total proteins separated 
by SDS-PAGE (13% polyacrylamide gel) and electroblotted onto hydrophobic 
polyvinylidene difluoride (PVDF) membranes (Amersham) for 19 h at 33 V. 
Blots were blocked with 5% BSA in TBS buffer with 0.1% Tween 20 for 2 h at 
room temperature. Immunoblotting was performed with the specific polyclonal 
antibody: rabbit anti-PPARα (dilution 1:800), and rabbit anti-actin (dilution 
1:800) (Abcam, Cambridge, UK) for 4 h. For the following incubation with 
primary antibody, membrane was washed in TBS buffer with 0.1% Tween 20 
and incubated for 45 min IgG-HRP-conjugated secondary antibody (dilution 
1:10000). Immunoreactive bands were visualized with the chemiluminescence 
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reagent kit (ECL Western blotting detection reagents, GE Healthcare). We used 
the same membrane for each immunoblot, washing it in TBS buffer with 0.1% 
Tween 20 for 10 min after each experiment. After each immunoblot, the 
membrane was exposed to X-ray film (Amersham) for different times. The 
images of three different exposures were captured by Gel Doc XR (Bio-Rad) 
and quantitated with the Quantity One software (Bio-Rad). 

Each protein band was contained within a rectangular area, identical 
for each sample, and background values were subtracted from each band. The 
triplicate sample values were normalized to the corresponding triplicate actin 
values. Then, the mean values from the different ratio calculations were 
calculated for each sample. The data were expressed as percent relative 
expression, the sample with the highest expression of PPARα having been set 
as 100%. The obtained data were used to obtain the corresponding box plots 
and p-values (Student’s t test) in the Microsoft Excel software. 

 

 

Statistics 

 
Data are reported as mean ± SD, unless differently stated. Between 

groups comparison were performed by unpaired or paired Student’s t test, as 
appropriate. Multiple groups comparisons were performed by ANOVA or χ2 
test; multiple comparisons were corrected by Bonferroni test. Differences were 
considered statistically significant at a p level <0.05. 
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4. Results 

 

Improvements of clinical, biochemical and metabolic parameters 

 
All the investigated parameters are shown in Table 1, and are 

reported as mean ± SD. After the achievement of the therapeutic goal 
(EWL≥30%), we observed a significant weight loss ranging from 16.0 to 67.0 
kg, corresponding to a mean weight loss of 38.7 ± 13.7 kg in study patients 
(n=20), with a significant change in weight (p<0.0001) (mean ± SD: 128.2 ± 
28.1, and 89.7 ± 24.7 Kg, at T0 and at T1, respectively). Also BMI changed 
significantly (p<0.0001),  from 44.9 ± 7.8 to 31.5 ± 7.7, at T0 and  at T1 
respectively.  

Based on the HOMA index >1.95, 15/20 patients at T0 were 
classified as insulin resistant subjects (mean/SD: HOMA 3.3 ± 1.3), whereas at 
T1, the number of insulin resistant obeses reduced significantly (p=0.004), in 
fact only 5/20 patients still presented HOMA index > 1.95 (mean/SD: HOMA 
1.7 ± 0.8). To HOMA values contribute both glucose and insulin 
concentrations, indeed, we observed a significant reduction both of glucose 
levels (mean/SD: from 86.3 ± 12.9 mg/dL at T0 to 79.6 ± 11.7 mg/dL at T1 
(p=0.03), and of insulin levels (mean/SD: from 17.1 ± 11.3 at T0 to 8.6 ± 4.1 at 
T1) (p= 0.007). 

Also lipid metabolism, as evaluated by serum cholesterol and 
triglycerides levels, showed an improvement at T1. In particular, we observed a 
statistically significant reduction of triglycerides (mean/SD: from 119.5 ± 75.4 
to 70.6 ± 22.7 mg/dL at T0 and T1, respectively) (p=0.004), while only a very 
slight reduction in cholesterol levels (mean: 188.8 mg/dL at T0 vs 183.0 mg/dL 
at T1, p=n.s.). 

Surgery-induced weight loss resulted in a significant improvement of 
liver function as evaluated by AST, ALT, ALP and GGT serum concentrations. 
In fact, we observed a significant reduction (~30%) of AST (mean/SD: 24.4 ± 
13.8 U/L vs 17.2 ± 3.9 U/L at T0 and T1, respectively; p=0.025), (~40%) of 
ALT (mean/SD: 23.5 ± 14.8 U/L vs 14.2 ± 6.8 U/L at T0 and T1, respectively; 
p=0.041), and (~40%) of GGT (mean/SD: 23.2 ± 16.6 U/L vs 14.1 ± 6.5 U/L at 
T0 and T1, respectively; p=0.007).  

Total protein and albumin levels did not change after the bariatric 
surgery intervention, indicating that this surgical procedure did not cause a 
malnourishment state. But, by protein electrophoresis, we observed a reduction 
in α1 globulins (mean/SD: 5.1 ± 0.8 % vs 4.5 ± 0.6 %, at T0 and T1, 
respectively; p=0.007) and in β1 globulins (mean/SD: 8.4 ± 2.1 % vs 6.2 ± 0.6 
%, at T0 and T1, respectively; p<0.0001), and an increase in β2 globulins 
(mean/SD: 4.1 ± 1.3 % vs 5.1 ± 1.3 %, at T0 and T1, respectively; p<0.0001). 
Median PCR values were a bit, but not statistically significant lower at T1 vs 
T0 (median values: 7.6 mg/L vs 3.4 mg/L, at T0 and T1, respectively). 
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Table 1. Clinical and biochemical parameters of the analysed patients  
(n=20) before (T0) and after (T1) laparoscopic gastric banding. 

T0 T1 T0 vs T1 

  Mean SD Mean SD p° 

Age (years) 37.00 13.17 38.67 12.78 0.000 

Weight (kg) 128.21 28.16 89.69 24.76 0.000 

EWL (%)     62.53 20.82   

BMI (kg/m2) 44.91 7.85 31.56 7.79 0.000 

Na+ (mmol/L) 140.68 2.16 141.94 1.71 0.168 

K+ (mmol/L) 4.42 0.45 4.39 0.56 0.926 

Ca++ (mg/dL) 9.63 0.55 9.26 2.40 0.565 

Phosphorus (mg/dL) 3.58 0.75 3.44 0.45 0.642 

Fe (µg/dL) 92.22 34.99 93.06 28.08 0.636 

Glucose (mg/dL) 86.32 12.91 79.63 11.74 0.031 

Insulin (mU/L) 17.10 11.53 8.67 4.17 0.007 

HOMA 3.27 1.31 1.69 0.80 0.004 

Cholesterol  (mg/dL) 188.83 40.91 183.00 42.94 0.318 

Triglycerides  (mg/dL) 119.50 75.42 70.59 22.77 0.004 

AST (U/L) 24.42 13.89 17.24 3.98 0.025 

ALT (U/L) 23.56 14.83 14.24 6.85 0.041 

ALP (U/L) 78.44 23.50 70.47 24.02 0.013 

GGT (U/L) 23.28 16.67 14.13 6.58 0.007 

LDH (U/L) 396.26 90.45 353.29 79.79 0.084 

CHE (U/L) 9215.11 2270.51 8490.27 1475.32 0.087 

CK (U/L) 149.26 101.04 115.40 91.62 0.368 

AMS (U/L) 46.39 13.75 58.88 21.06 0.001 

Urea (mg/dL) 32.05 11.83 30.35 8.64 0.502 

Creatinine  (mg/dL) 0.76 0.12 0.78 0.11 0.805 

UA  (mg/dL) 5.58 1.65 4.59 1.20 0.001 

T-bil  (mg/dL) 0.75 0.47 0.90 0.87 0.224 

TP  (g/dL) 7.56 0.32 7.47 0.58 0.489 

Albumin  (g/dL) 4.41 0.33 4.53 0.23 0.056 

Albumin (%) 55.63 3.72 56.93 3.68 0.050 

alfa1 (%) 5.06 0.81 4.49 0.64 0.007 

alfa2 (%) 10.22 1.96 10.18 1.62 0.923 

beta1 (%) 8.38 2.10 6.24 0.65 0.000 

beta2 (%) 4.11 1.38 5.21 1.39 0.000 

gamma (%) 16.60 2.51 16.92 2.68 0.405 

A/G 1.27 0.20 1.34 0.23 0.043 

CRP (mg/L)* 7.6 12.0 3.4 7.5 0.108 

Adiponectin (µg/mL) 11.17 5.67 25.68 12.91 0.002 

Leptin (ng/mL) 31.47 19.70 8.91 6.65 0.011 

L/A 3.82 1.50 0.28 0.25 0.003 

Abbreviations: EWL: excess weight loss; BMI: body mass index; HOMA: homeostasis model assessment; AST: 
aspartate aminotransferase;  ALT: alanine aminotransferase; ALP: alkaline phosphatase; GGT: γ-glutamyl transferase; 
LDH: lactate dehydrogenase; CHE: cholinesterase; CK: creatine kinase; AMS: amylase; UA: uric acid; T-bil: total 
bilirubin; TP: total protein; CRP: C reactive protein; A/G: albumin/gamma globulin ratio; L/A: leptin/adiponectin ratio; 
°: statistically significant difference at paired Student’s t test are in bold; 
*: data reported as median value and interquartile range. 
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Adiponectin and leptin before and after LAGB 

 
LAGB surgery was accompanied by a significant increase in 

adiponectin serum levels after the therapeutic goal achievement (mean/SD: 
11.1 ± 5.6 µg/mL at T0 vs 25.7 ± 12.9 µg/mL at T1, p=0.002.) (Table 1, Figure 
4). SAT adiponectin (ADIPOQ), adiponectin receptor (ADIPOR) 1 and 
ADIPOR2 mRNA expression were about doubled at T1 respect to T0 (Figure 
3). In particular, ADIPOQ/GAPDH cDNA ratio increased at T1 1.8 fold than 
T0 (T0 value set equal to 1), while ADIPOR1/GAPDH and 
ADIPOR2/GAPDH cDNA ratios increased 1.7 and 2.2 fold, respectively. 

 
 
Figure 3. ADIPOQ, ADIPO-R1 and 2 mRNAs expression levels in SAT from 
obese patients at T1 (T0 mRNA value set equal to 1). 

 
Data are reported as mean RQ ADIPOQ or ADIPO-R1 or ADIPO-R2/GAPDH cDNA ratio. Error bars 
represent SEM. 

 
 
 
Concerning leptin, in the present study, weight loss resulted in a 

significant decrease in serum leptin levels (mean/SD: 31.4 ± 19.7 ng/mL at T0 
vs 8.9 ± 6.6 µg/mL at T1; p=0.011) (Table 1, Figure 4).  

In parallel to variations observed in adiponectin and leptin 
concentrations, we found a decrease in the L/A ratio whose values significantly 
changed (mean/SD:  3.8 ± 1.5 at T0 vs 0.3 ± 0.2 at T1, (p=0.003) (Table 1, 
Figure 4). 
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Figure 4. Adiponectin, leptin and L/A ratio in obese patients before and after 
surgery. 

 
 

miRNA expression profile 
 

We explored miRNA expression profile in 5/20 of our patients. 
Results were normalized toward miRNA expression profile obtained in 2 
normal weight control subjects. Of the investigated miRNAs, 151/377 (40%) 
resulted to be not expressed, 22% was not differently expressed between obese 
and control subjects, while 31% resulted to be higher and 7% lower in the 
obese patients than in controls (Figure 5). The expression profile of 96% of the 
tested miRNA was unchanged between T0 and T1; for the remaining miRNAs 
(8/206), in respect to control subjects, we found the following differences 
(Figure 6): 

• 1/8 becomes down-expressed; 
• 7/8 become up-expressed. 

 
Figure 5. Differently expressed miRNAs in SAT from obese patients before 
bariatric surgery (T0) in comparison to baseline levels evaluated in controls. 
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Figure 6. Differently expressed miRNAs in SAT from obese patients after 
bariatric surgery (T1) in comparison to baseline levels evaluated at T0. 

 
 
Figure 7. MiRNA whose expression changed after LAGB. 

 
Data are reported an mean logRQ values. Error bars represent SEM. 

 
Among the up-expressed miRNAs, we observed that the expression 

of some of those resulted to be reduced, even if not at a statistically significant 
levels, after surgery. In particular, we focused our attention on miR-519d, that 
was previously studied by our group. MiR-519d expression resulted to be 
reduced by half after weight loss (mean/SD logRQ: 2.0 ± 1.5 vs 1.6 ± 1.1 at T0 
and T1, respectively). 
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Pathways 

 

By bioinformatics analysis, we found that up-expressed miRNAs at 
T1 regulate biological pathways reported in Table 2. The most represented 
pathway is composed by genes involved in cancer regulation (including 25 
genes regulated by miRNA up-expressed), followed by endocytosis (16 genes) 
and MAPK signaling (12 genes) pathways. Moreover, there are many miRNA-
regulated genes involved in different pathways related to cell-cell interaction 
and cell structure maintenance. 

 
Table 2. Pathways predicted by TargetScan analysis as potentially regulated by 
up-expressed miRNAs after LAGB. 

KEGG 
pathway 

Gene Symbol Gene description 

C
an

ce
r 

re
gu

la
ti

on
 

WNT10B wingless-type MMTV integration site family, member 10B 

LAMC1 laminin, gamma 1 (formerly LAMB2) 

FOXO1 forkhead box O1 

FZD4 frizzled family receptor 4 

TGFA transforming growth factor, alpha 

WNT7A wingless-type MMTV integration site family, member 7A 

E2F3 E2F transcription factor 3 

PTCH1 patched 1 

TGFBR1 transforming growth factor, beta receptor 1 

TCEB1 
transcription elongation factor B (SIII), polypeptide 1 (15kDa, 
elongin C) 

FOS FBJ murine osteosarcoma viral oncogene homolog 

TGFBR2 transforming growth factor, beta receptor II (70/80kDa) 

FZD6 frizzled family receptor 6 

MITF microphthalmia-associated transcription factor 

IGF1 insulin-like growth factor 1 (somatomedin C) 

SMO smoothened, frizzled family receptor 

KITLG KIT ligand 

GSK3B glycogen synthase kinase 3 beta 

MET met proto-oncogene (hepatocyte growth factor receptor) 

ZMAT3 zinc finger, matrin-type 3 

PMAIP1 phorbol-12-myristate-13-acetate-induced protein 1 

SESN1 sestrin 1 

RAP1B RAP1B, member of RAS oncogene family 

RAPGEF1 Rap guanine nucleotide exchange factor (GEF) 1 

CALM1 calmodulin 1 (phosphorylase kinase, delta) 
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E
nd

oc
yt

os
is

 

ARAP2 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 2 

RAB11FIP4 RAB11 family interacting protein 4 (class II) 

STAMBP STAM binding protein 

TGFBR1 transforming growth factor, beta receptor 1 

RAB5A RAB5A, member RAS oncogene family 

CAV3 caveolin 3 

TGFBR2 transforming growth factor, beta receptor II (70/80kDa) 

RAB11A RAB11A, member RAS oncogene family 

GIT2 G protein-coupled receptor kinase interacting ArfGAP 2 

ASAP2 ArfGAP with SH3 domain, ankyrin repeat and PH domain 2 

VPS37D vacuolar protein sorting 37 homolog D (S. cerevisiae) 

ASAP1 ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 

FLT1 
fms-related tyrosine kinase 1 (vascular endothelial growth 
factor/vascular permeability factor receptor) 

ADRB1 adrenoceptor beta 1 

MET met proto-oncogene (hepatocyte growth factor receptor) 

SMURF1 SMAD specific E3 ubiquitin protein ligase 1 

M
A

P
K

 s
ig

na
li

ng
 p

at
hw

ay
 

NF1 neurofibromin 1 

CACNA1E calcium channel, voltage-dependent, R type, alpha 1E subunit 

CACNB2 calcium channel, voltage-dependent, beta 2 subunit 

RAP1B RAP1B, member of RAS oncogene family 

NLK nemo-like kinase 

DUSP9 dual specificity phosphatase 9 

TGFBR1 transforming growth factor, beta receptor 1 

FOS FBJ murine osteosarcoma viral oncogene homolog 

TGFBR2 transforming growth factor, beta receptor II (70/80kDa) 

STMN1 stathmin 1 

PPM1B protein phosphatase, Mg2+/Mn2+ dependent, 1B 

DUSP1 dual specificity phosphatase 1 

U
bi

qu
it

in
 m

ed
ia

te
d 

pr
ot

eo
ly

si
s UBE2D2 ubiquitin-conjugating enzyme E2D 2 

UBE2A ubiquitin-conjugating enzyme E2A 

TCEB1 
transcription elongation factor B (SIII), polypeptide 1 (15kDa, 
elongin C) 

UBE2E3 ubiquitin-conjugating enzyme E2E 3 

UBE2D1 ubiquitin-conjugating enzyme E2D 1 

UBE2R2 ubiquitin-conjugating enzyme E2R 2 

SMURF1 SMAD specific E3 ubiquitin protein ligase 1 
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UBE2K ubiquitin-conjugating enzyme E2K 

A
xo

n 
gu

id
an

ce
 

GSK3B glycogen synthase kinase 3 beta 

UNC5C unc-5 homolog C (C. elegans) 

SEMA3C 
sema domain, immunoglobulin domain (Ig), short basic domain, 
secreted, (semaphorin) 3C 

SEMA4C 
sema domain, immunoglobulin domain (Ig), transmembrane 
domain (TM) and short cytoplasmic domain, (semaphorin) 4C 

MET met proto-oncogene (hepatocyte growth factor receptor) 

EFNB1 ephrin-B1 

SEMA6C 
sema domain, transmembrane domain (TM), and cytoplasmic 
domain, (semaphorin) 6C 

SRGAP1 SLIT-ROBO Rho GTPase activating protein 1 

C
yt

ok
in

e-
cy

to
ki

ne
 r

ec
ep

to
r 

in
te

ra
ct

io
n 

FLT1 
fms-related tyrosine kinase 1 (vascular endothelial growth 
factor/vascular permeability factor receptor) 

KITLG KIT ligand 

CCL21 chemokine (C-C motif) ligand 21 

IL25 interleukin 25 

TGFBR1 transforming growth factor, beta receptor 1 

ACVR2B activin A receptor, type IIB 

MET met proto-oncogene (hepatocyte growth factor receptor) 

TGFBR2 transforming growth factor, beta receptor II (70/80kDa) 

W
nt

 s
ig

na
li

ng
 p

at
hw

ay
 GSK3B glycogen synthase kinase 3 beta 

NLK nemo-like kinase 

WNT10B wingless-type MMTV integration site family, member 10B 

FZD4 frizzled family receptor 4 

PPP2R5D protein phosphatase 2, regulatory subunit B', delta 

FZD6 frizzled family receptor 6 

WNT7A wingless-type MMTV integration site family, member 7A 

N
eu

ro
tr

op
hi

n 
si

gn
al

in
g 

pa
th

w
ay

 

SH2B3 SH2B adaptor protein 3 

GSK3B glycogen synthase kinase 3 beta 

NTRK3 neurotrophic tyrosine kinase, receptor, type 3 

RAPGEF1 Rap guanine nucleotide exchange factor (GEF) 1 

CALM1 calmodulin 1 (phosphorylase kinase, delta) 

RAP1B RAP1B, member of RAS oncogene family 

C
el

l 
ad

he
si

on
 

m
ol

ec
ul

es
 

NLGN4X neuroligin 4, X-linked 

NFASC neurofascin 

MPZ myelin protein zero 
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NCAM2 neural cell adhesion molecule 2 

NRCAM neuronal cell adhesion molecule 

CDH5 cadherin 5, type 2 (vascular endothelium) 

A
dh

er
en

s 
ju

nc
ti

on
 

NLK nemo-like kinase 

TGFBR1 transforming growth factor, beta receptor 1 

MET met proto-oncogene (hepatocyte growth factor receptor) 

TGFBR2 transforming growth factor, beta receptor II (70/80kDa) 

SSX2IP synovial sarcoma, X breakpoint 2 interacting protein 

T
G

F
-b

et
a 

si
gn

al
in

g 
pa

th
w

ay
 

TGFBR1 transforming growth factor, beta receptor 1 

FST follistatin 

ACVR2B activin A receptor, type IIB 

SMURF1 SMAD specific E3 ubiquitin protein ligase 1 

TGFBR2 transforming growth factor, beta receptor II (70/80kDa) 

T
yp

e 
II

 
di

ab
et

es
 

m
el

li
tu

s PRKCE protein kinase C, epsilon 

KCNJ11 potassium inwardly-rectifying channel, subfamily J, member 11 

CACNA1E calcium channel, voltage-dependent, R type, alpha 1E subunit 

 
 
 

Western blot 

 
On the basis of previous results obtained by our group regarding the 

role of up-expressed miR-519d in the down-regulation of PPARα expression, 
we studied if the expression of this protein normalized after surgery. We 
performed a western blot analysis of PPARα in 3/10 patients previously 
screened for miRNAs and found the PPARα/actinin ratio more than doubled 
(mean/SD: 0.72 ± 0.4 vs 1.84 ± 0.3, respectively; p=0.01) paralleling the miR-
519d reduction from T0 to T1 (Figure 8). 

 
Figure 8. Western blot analysis of PPARα from SAT of obese patients at T0 
and T1. 
A.        B. 

 
 

 
 

Panel A: western blot image; panel B: relative quantitation of PPARα/actinin ratio at T0 and T1, p=0.01. 
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Improvement in SAT histology 

 
Paired SAT biopsies were available from 10/20 patients before 

bariatric surgery and after the achievement of the therapeutic goal. Weight loss 
induced by bariatric surgery resulted in a significant reduction in the 
inflammation level, as measured by CD68 score (Figure 9).  
 
Figure 9. CD68 score measured in SAT samples from controls (CO) and obese 
patients (at T0 before and at T1 after LAGB). 

 
Bars represent the percentage of subjects with no (0), incomplete (1) or complete (2) staining for CD68. 
Differences in score distribution between the three groups of subjects resulted to be statistically 
significant at χ2 test (p=0.003). 

  
We also observed an increase in adipocytes number and a reduction 

of the cell size at T1 compared to T0 (Figure 10). In particular, cells number 
significantly increased (mean/SD: 31.6 ± 6.1 at T0 vs 57.7 ± 2.4 at T1, 
p<0.0001), while cell diameter significantly reduced (mean/SD: 14.6 ± 0.8 µm 
at T0 vs 7.6 ± 0.3 µm at T1, p<0.0001) (Figure 11). At T1, we did not observed 
any statistically significant difference in cells number and cell diameter in SAT 
between obese and control subjects. 

 
Figure 10. SAT biopsies from controls (CO) and obese patients (T0 and T1). 

 
Bars correspond to 100 µm. 
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Figure 11. Comparison of cells number and cell diameters between controls 
(CO) and obese patients (T0 and T1). 

 
*statistically significant difference between T0 and T1 and between T0 and CO; p<0.0001. 
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5. Discussion 

 
In this study, we found that LAGB-induced weight loss caused in 

obese patients an improvement in biochemical, hormonal, and histological 
markers. Moreover, we found that this bariatric surgery procedure induced a 
modification in SAT miRNA expression profile in the analyzed patients. 

Many studies have shown that resolution of obesity related 
comorbidities depends on significant and sustained weight loss and excess 
weight loss (Dixon et al 2008; Dixon et al 2013; Schauer et al 2003, Cobourn 
et al 2013). Results of a controlled study found that, among individuals who 
have had diabetes for less than 2 years, the disease remits in most patients who 
lose at least 10 % of their body weight following LAGB (Dixon et al 2003). 
None of our patients was diabetic at T0; however, on the basis of HOMA 
index, 15/20 patients at T0 were classified as insulin resistant. After weight 
loss, only 5/20 patients had a HOMA > 1.95; therefore, we observed a 
resolution of insulin resistance in 66% of our patients.  

In agreement with our results, two recent prospective studies 
exploring mechanisms of type 2 diabetes remission have demonstrated that 
early improvements of insulin sensitivity and intracellular glucose disposition 
were secondary to caloric restriction shortly after surgery and from the amount 
of weight lost over time (Camastra et al 2011, Nannipieri et al 2011).  

The importance of insulin resistance is well known as it relates to the 
metabolic syndrome (Razani et al 2008), and insulin resistance is even 
implicated in the pathogenesis of nonalcoholic fatty liver disease (Duseja et al 
2007, Jaskiewicz et al 2008).  

In a study by Nadler et al, it was demonstrated that LAGB improves 
glucose metabolism in morbidly obese adolescents as well, reducing the risk of 
developing the consequences of insulin resistance (Nadler et al 2009). Patients 
may expect improved metabolic function, as demonstrated by improvement in 
liver function enzymes, serum lipid levels, and measures of glucose 
homeostasis, without significant nutritional deficiencies. Based on these 
results, several authors proposed LAGB as a therapy for type 2 diabetes and for 
preventing insulin resistance complications (Moo and Rubino 2008, Inge et al 
2009). 

Concerning inflammatory markers, we found that LAGB induced an 
improvement in CRP circulating levels and a reduction of the α1 fraction 
percentage, as measured by protein capillary electrophoresis. This result is in 
agreement with those obtained by other authors (Widhalm et al 2004, Conroy 

et al 2011), that reported a reduction of CRP after bariatric surgery both in 
adults and adolescent obese patients. This result is really impressive, as CRP is 
an inflammatory biomarker that independently predicts future vascular events 
(Al-Qahtani 2007), and its decrease has been associated with reductions in the 
occurrence of adverse cardiovascular outcomes (Ridker et al 2008). LAGB-
induced weight loss appears to eliminate some risk factors associated to 
obesity, in addition to reducing CRP levels, all of which may lead to improved 
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cardiovascular health in patients underwent bariatric surgery (Moschen et al 
2010, O’Brien et al 2013). 

In previous studies of our group (Labruna et al 2009, Labruna et al 
2011) we demonstrated that a high serum L/A ratio was a marker of “at risk” 
obesity, i.e. a type of obesity associated with metabolic impairment, and a good 
predictor of metabolic syndrome and non-alcoholic fatty liver disease 
insurgence in morbid obese patients. Moreover, L/A ratio has also been 
reported as a useful index to evaluate insulin resistance in the absence of 
hyperglycemia (Inoue et al 2006) and as a predictor for carotid atherosclerosis 
in healthy males (Norata et al 2007). 

In the present study, we found that leptin levels significantly 
decrease in T1 compared to T0. This result is in agreement with those 
previously reported in several papers, in which leptin serum level was reduced 
after bariatric surgery (van Dielen et al 2002, Faraj et al 2003), even if with 
greater reduction following a RYGB versus gastric banding (Trakhtenbroit et 

al 2009). It has been proposed that after bariatric surgery, the changes in 
cytokines and hormones derived from adipose tissue and the GI tract appear to 
impart a significantly greater physiological effect than the restrictive and 
malabsorptive effects alone would predict (Edwards et al 2011). Reduction in 
circulating levels of leptin has been associated in a decreased expression of ob 
gene in adipose tissue of patients undergoing bariatric surgery (Greco et al 
2002, Knerr et al 2006). Unluckily, we do not have data on leptin expression at 
level of adipose tissue, but it is possible to argue such described mechanism 
acting also in our patients. 

In parallel with leptin reduction, we observed an increase in 
adiponectin concentration in our patients after bariatric surgery. Adiponectin is 
a well described anti-inflammatory and anti-atherogenic factor. We evaluated 
the response of the adiponectin and adiponectin receptors, AdipoR1 and 
AdipoR2, to metabolic changes induced by LAGB. We found an increase not 
only in adiponectin serum levels, but also in adiponectin gene expression in 
SAT from obese patients at T1. However, the link between circulating level of 
this protein and SAT adiponectin mRNA expression appears to be 
controversial (Savu et al 2009, Garaulet et al 2004, Osei et al 2005). Also 
studies of changes in the gene expression of AdipoRs have been controversial. 
AdipoRs have been reported to be both positively and negatively associated 
with obesity and insulin resistance (Wang et al 2002, Bluher et al 2006, 
Civitarese et al 2004). However, in the present study we found that, 
independently from the receptor’s isoform, adiponectin receptors mRNA 
expression increased in SAT samples from obese patients after bariatric 
surgery. Two different function and regulation were described for ADIPOR1 
and 2: ADIPOR1 is likely involved in the insulin-sensitization function of 
adiponectin, and ADIPOR2 might be more involved in the pathways involved 
in energy homeostasis (Yamauchi et al 2007, Rasmussen et al 2006, Bjursell et 

al 2007). This could reflect the improvement that we observed in our patients 
both in insulin-resistance and in lipid metabolism. 
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In the present study, we observed a different miRNA expression 
profile in SAT from patients before and after bariatric surgery. In particular, 
3% of the expressed miRNA appear to be up regulated after LAGB, while 1% 
are down regulated after weight loss. MiR101 was described to be a regulator 
of innate immune response to microbial infection (Zhu et al 2010). Zhu et al 
demonstrated that miR101 directly targets mkp-1 to regulate the activation of 
MKP phosphatese and subsequent production of cytokines in response to LPS 
stimulation (Zhu et al 2010). Moreover, it was proposed as an important 
protective factor against liver damage induced by COX2 activator in mice 
(Yoshioka et al 2011). All together, these results could suggest that in our 
patients LAGB could be responsible of a liver-protective effect and of a 
restoration of innate immune system regulation by inducing an up-regulation of 
miR-101. 

Mir-625 is another miRNA we found up-regulated in our patient at 
T1. It resulted down-regulated in chronic liver disease (Katayama et al 2012) 
and it was suggested to have a protective influence on the development of non-
small cell lung cancer (Roth et al 2012). We could argue that this miRNA 
could exert a protective liver function also in our tested patients after weight 
loss. 

Interestingly, among the target genes of miR-34c-5p, MAPT is a 
microtubule-associated protein which promotes the assembly of tubulin into 
microtubules, indicating a possible role for this miRNA in cytoskeleton 
assembly and regulation (Wu et al 2013).  

Two of the differently expressed miRNA between T0 and T1 
comparison, miR-370 and mR-379, were described to have a role in lipid 
metabolism. In particular, miR-370 targets carnitine palmitoyl transferase 
(Cpt1a), a mitochondrial enzyme that mediates the transport of long-chain fatty 
acids across the membrane by binding them to carnitine, thereby reducing fatty 
acid oxidation (Iliopoulos et al 2010). Notably, transfection of the human 
hepatic cell line HepG2 with miR-370, upregulates the expression of miR-122 
leading to an increased expression of lipogenic genes including SREBP1c and 
DGAT2, suggesting that miR-370 provides an additional point of regulation of 
this pathway (Iliopoulos et al 2010). Gao et al showed that plasma levels of 
miR-122 and miR-370 are increased in patients with hyperlipidemia and 
positively correlated with total cholesterol, triglycerides and LDL-cholesterol 
levels (Gao et al 2012). Furthermore, the increased levels of miR-122 and miR-
370 were associated with CAD presence. These results appear to be in contrast 
with our ones, even if it must be noted that we performed a gene expression 
study at level of adipose tissue and what we observed could not reflect what 
Gao et al observed at level of blood streaming. 

Concerning miR-379, Chartoumpekis et al observed an up-
regulation of this miRNA in adipose tissue from mice during obesity 
development. This contrasting data could be due to the different examined 
species (Chartoumpekis et al 2012). 



32 

 

Interestingly, we found that LAGB induced weight loss caused a 
decrease in miR-519d expression in SAT from studied patients. 

By a previous study of our group (Martinelli et al 2010), we know 
that miR-519d was overexpressed and protein levels of PPARα, one of the 
predicted miR-519d targets, were reduced in SAT from obese vs nonobese 
subjects. MiR-519d was found to suppress PPARα translation and increased 
lipid accumulation during adipocyte differentiation. Moreover, PPARα is 
highly expressed in tissues that rely on fatty acid oxidation as their primary 
energy substrate, namely, heart, liver, and skeletal muscle (Braissant et al 
1996), where, under stress conditions, it appears to mediate the balance 
between cellular fatty acid metabolism and glucose homeostasis (Leone et al 
1999). In vitro, the effect of miR-519d on adipogenesis was similar to that of 
miR-143, a well-known marker of adipogenesis (Esau et al 2004). Our 
previous findings suggested that miR-519d overexpression and alteration of 
PPARα protein expression could be associated with obesity, so the reduction 
we observed in miR-519d after bariatric surgery, and the subsequent PPARα 
increment, could reflect an improvement in lipid metabolism and adipose tissue 
functionality.  

In the presence of its endogenous ligands, i.e. fatty acids, PPARα 
form heterodimers with the retinoid X receptor-α, and binds to the peroxisome 
proliferator–response elements in the promoter regions of target genes so 
increasing their transcriptional activation (Cho et al 2008, Cresci 2007). The 
target genes of PPARα are primarily those involved in energy metabolism and 
substrate utilization, namely, genes involved in fatty acid uptake, fatty acid 
esterification, fatty acid β-oxidation, glucose oxidation, mitochondrial 
transport, and energy uncoupling (Cresci 2007).  

Furthermore, PPARα was found to prevent adipocytes hypertrophy 
and to reduce inflammation in white adipose tissue (Tsuchida et al 2005). 

MiR-519d was also reported to be a part of a microRNA signature of 
pluripotency in human embryonic stem cell cultures (Bar et al 2008). So, the 
higher miR-519d expression in SAT from obese vs nonobese subjects and the 
miR-519d’s role in preadipocyte differentiation are in line with an altered 
microRNA-based adipocyte differentiation mechanism in obesity. 

Obesity is characterized by increased fat mass and energy storage in 
adipose tissue. Increased fat mass can be due to increases in the size of 
adipocytes (adipocyte hypertrophy), or expanding the numbers of adipocytes 
(adipocyte hyperplasia) (Rosen and MacDougald 2006). In addition, obesity is 
strongly associated with inflammation and insulin resistance. Larger fat cells 
are closely linked to greater fat mass and the production of inflammatory 
cytokines (Rosen and MacDougald 2006); moreover, they attract macrophages 
leading to adipocyte necrosis and release of fatty acids into circulation so 
contributing to excess fat deposition in the liver (Rosen and MacDougald 
2006). Nevertheless, alterations in adipocyte turnover rate, differentiation and 
apoptosis could all contribute to changes in fat mass underlying obesity. 
However, recent findings suggest the turnover rate of pre-adipocytes in humans 
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is very low, amounting to 10% self-renewal every year (Arner et al 2010), and 
several studies have suggested pre-adipocyte differentiation may be impaired 
in obese humans (Gustafson et al 2009, Permana et al 2004, Isakson et al 
2009). Our results demonstrate that excess weight loss induced by LAGB 
caused not only a reduction in fat cells dimension, but also a reduction of 
macrophage infiltration in subcutaneous adipose tissue, so reducing the 
inflammatory level. Interestingly, a number of miRNAs have been described to 
have a role in adipocytes differentiation and morphology of adipose tissue 
(McGregor and Choi 2011, Kloting et al 2009). In particular, miR-95 
expression was described to be negatively associated with mean adipocyte 
volume both in SAT and in VAT (Kloting et al 2009). In our study, we found 
that miR-95 expression increased from T0 to T1 even if not at a statistically 
significant level. This is in line with what we observe histologically by H&E 
staining. 

Several pathways that we identified as potentially deregulated by 
differently expressed miRNAs, have been described as associated to obesity 
insurgence and maintenance. Several genes involved in endocytosis have been 
studied in the last years during obesity. RAB7 was described to have a role in 
early and late endocytic processes in the regulation of fat storage and as a 
target of tubby, an important locus for the regulation of fat storage in humans 
(Mukhopadhyay et al 2007). We found other members of RAB family 
deregulated by up-expressed miRNAs. In particular, RAB11A protein may 
lead to increased glucose uptake and to increased triglyceride synthesis, as 
described in a previous study by our group (Capobianco et al 2012). Moreover, 
Arf6 is a novel regulator of adrenergic-stimulated and basal lipolysis via its 
influence on receptor trafficking that was proposed as an important regulator of 
lipolysis in vivo (Liu et al 2010). We found that both adrenergic receptor beta 
1 and two Arf6 interactors (ASAP1 and ASAP2) could be potentially regulated 
by up-expressed miRNAs as predicted by TargetScan analysis. 

Also the MAPK pathway was previously associate to obesity, being 
MAPKs able to regulate adipogenesis at each steps of the process, from stem 
cells to adipocytes (Bost et al 2005), together with the ubiquitin mediated 
proteolysis pathway, that resulted deregulated during obesity (Das et al 2007). 
Among genes included in the axon guidance pathway, SRGAP1 is a protein 
interactor of ROBO1, a gene previously reported as associated to BMI (Vehof 
et al 2011). 

Concerning neurotrophin signaling pathway, it includes several 
genes involved in the transmission of molecular signaling activates by 
neurotrophins. These latter are known to have a wide range of roles in 
development and function of the nervous system. One of these, BDNF, plays a 
part in the control of energy balance by the central nervous system (Schwartz 
and Mobbs 2012). Beside the direct involvement of BDNF in obesity, our 
results indicate that miRNAs could have a role in mediate the association 
between neurotrophins and obesity in humans. 
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Cell adhesion molecules have been described to be associated with 
measures of obesity (Miller and Cappuccio 2006). We found that several genes 
coding for cells adhesion molecules expressed in CNS or in vascular 
endothelium are potentially target of up-expressed miRNAs after LAGB.  

It was described that TGF-β signaling regulates glucose tolerance 
and energy homeostasis. In particular, Smad3 (a target of TGF-β) KO mice  
were protected from diet induced obesity and diabetes (Yadav et al 2011). We 
found that both TGFBR1 and 2 (TGF-β receptors) are target genes of up-
expressed miRNA, their expression possibly being down-regulated. This could 
cause a damping of signaling transduction so exerting a protective role against 
obesity. 

All together, our results highlight the complex web of interacting 
genetic and epigenetic factors concurring to human obesity. 
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6. Conclusions 

 
In this study we characterized from a biochemical, genetic and 

histological point of view a group of severe obese patients before and after 
bariatric surgery.  

We found that excess weight loss induced by LAGB caused an 
improvement in metabolic pathways in all patients, as supported by significant 
decreased serum levels in T1 vs T0 samples of insulin, HOMA, triglycerides, 
hepatic markers and leptin/adiponectin ratio. Moreover, we found a significant 
increase in mRNA expression of adiponectin, ADIPOR1 and ADIPOR2 in 
SAT at T1 compared to T0. This suggest that bariatric surgery could exert an 
anti-inflammatory and vascular protective function partially mediated by 
adiponectin. The improvements of the inflammatory profile is also highlighted 
by the reduction of macrophage infiltration at level of SAT, as shown by the 
reduction in CD68 signals in biopsies from patients after weight loss. 
Furthermore, surgery have a role in phenotypic modulation of SAT causing a 
reduction of cell diameters and an increase of cells number. 

Concerning miRNAs, we found a subgroup of miRNAs whose 
expression profile is influenced by surgery. These dysregulated miRNAs in 
SAT are possibly involved in the pathogenesis of obesity. Pharmacologically 
targeting of such miRNAs could address to specific therapeutic interventions 
aimed to silence (in the case of overexpressed miRNA) or to overexpress (in 
the case of downregulated miRNA) these small regulatory molecules and so to 
prevent the insurgence of obesity-related diseases. 
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ABSTRACT. Background and aims: Non-alcoholic fatty liver
disease (NAFLD) and metabolic syndrome (MS) are well-rec-
ognized complications of obesity. This study was designed
to evaluate the role of the UCP1 –3826 A>G polymorphism,
adiponectin levels, leptin/adiponectin ratio (L/A), and main
biochemical parameters in 102 unrelated severely obese
adults [61 females and 41 males, median body mass index
(BMI) = 47.8 kg/m2] with NAFLD, with (MS+) or without MS
(MS–) from Southern Italy. Subject and methods: The UCP1
polymorphism was tested by the TaqMan method, main bio-
chemical parameters by routinary methods, adiponectin,
and leptin serum levels by enzyme-linked immunosorbent
assay. MS was diagnosed according to the American Heart
Association criteria, liver steatosis was detected by ultra-
sound. Results: MS was present in 53% male and 66% fe-
male obese patients. Only total cholesterol (p=0.04 males
and p=0.002 females) and L/A ratio (p=0.03 males) differed
between MS+ and MS– obese patients. At multivariate anal-

ysis, severe liver steatosis was significantly associated with:
UCP1 (AG+GG) genotypes [odds ratio-confidence interval
(OR-CI): 4.25; 1.12-16.13], MS (OR-CI: 8.47; 1.78-40.25), low
adiponectin levels (OR-CI: 0.92; 0.87-0.98), high alanine
aminotransferase levels (OR-CI: 1.03; 1.00-1.06), age (OR-
CI: 1.08; 1.00-1.15), and male gender (OR-CI: 10.78; 1.61-
71.96). Conclusion: In addition to traditional factors, total
cholesterol and L/A ratio appear to contribute to MS char-
acterization in severe obesity. Furthermore, the UCP1
(AG+GG) genotypes and low adiponectin levels could pre-
dispose to a more severe liver steatosis independently of
MS presence. Based on our data, polymorphic UCP1
(AG+GG) obese patients with low adiponectin levels appear
to be high-risk subjects for worsening of liver steatosis, a
NAFLD, possibly requiring a second-step evaluation by liv-
er biopsy.
(J. Endocrinol. Invest. 32: 525-529, 2009)
©2009, Editrice Kurtis

INTRODUCTION

The prevalence of obesity [body mass index (BMI) ≥30
kg/m2] is increasing worldwide and it is estimated that
up to 9% and 30% of adults in Italy and in the United
States respectively are obese (1-3). Severe obesity (i.e.
BMI>40 kg/m2) has also reached a dramatically high lev-
el and now affects about 1-2% of the adult European and
4% of the US population (2). Obesity, and in particular
severe obesity, is associated with an increased risk of car-
diovascular disease (CVD), sudden death, Type 2 dia-
betes, hypertension, liver steatohepatitis, and dysfunc-
tions involving the endocrine and reproductive systems,
bone metabolism, inflammation, immunity, and some
types of cancer (4, 5). In 1998, the World Health Organi-
zation described the “metabolic syndrome” (MS) as a
cluster of metabolic risk factors, namely, abdominal obe-
sity, dyslipidemia (hypertriglyceridemia and low HDL-
cholesterol concentrations), elevated blood pressure and
hyperglycemia, to identify subjects at a higher risk of CVD

(6). These criteria have been updated by the American
Heart Association (AHA) (7).
Recently, leptin/adiponectin (L/A) ratio has also been re-
ported as a useful index to evaluate insulin resistance in
the absence of hyperglycemia (8) and as a predictor for
carotid atherosclerosis in healthy males (9).
Non-alcoholic fatty liver disease (NAFLD) is a well-recog-
nized complication of obesity, which is associated with
MS, and with a risk of cirrhosis and liver cancer (10, 11).
Liver biopsy is the only diagnostic test that can, within the
NAFLD spectrum, reliably distinguish simple steatosis
from steatosis with necroinflammatory changes and hep-
atocellular injury [i.e., non-alcoholic steatohepatitis
(NASH)]. However, because this differentiation does not
affect the management of obese patients, liver biopsy is
not routinely performed, and the first-step evaluation of
the liver is based on biochemical and imaging studies (11).
The prevalence of NAFLD and MS is expected to increase
with increasing excess body fat (10, 12). NAFLD is associ-
ated with decreased levels of adiponectin, a protective
adipokine that inhibits such pro-inflammatory cytokines as
tumor necrosis factor α and nuclear factor κβ (11). Fur-
thermore, low adiponectin expression in intra-abdominal
adipose tissue of morbidly obese patients may predispose
to the progressive form of NAFLD, namely NASH (13).
A number of genes have been associated with human
obesity phenotypes, including those encoding the ther-
mogenic uncoupling proteins (UCP) (3). The reduced
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thermogenesis caused by UCP1 genetic variants has
been implicated in increased susceptibility to obesity par-
ticularly when associated with aging and a high fat diet
(14, 15). UCP1 is expressed only in mitochondria from
brown adipose tissue where it uncouples respiration from
ATP synthesis and dissipates energy as heat (14). The hu-
man UCP1 gene has been mapped to the long arm of
chromosome 4 (16). An A>G point mutation at –3826 bp
upstream from the UCP1 TATA box promoter has been
related to changes in mRNA expression in intraperitoneal
fat (16). Although the association between this UCP1
polymorphism and human obesity is controversial, it is
clear that the minor variant allele is related to an in-
creased propensity to gain weight over time (16).
The aim of this study was to evaluate, in a large population
of severely obese adults from Southern Italy, the role of
the UCP1 –3826 A>G gene polymorphism, adiponectin,
and L/A ratio as risk factors in the onset of the obesity-as-
sociated complications, namely MS and liver steatosis.

MATERIALS AND METHODS

Study population

We studied 102 unrelated Caucasian adult patients [61 females
(F) and 41 males (M), aged ≥18 yr] with severe obesity (median
BMI =47.9 kg/m2 males and 47.7 kg/m2 females) from South-
ern Italy. The population was recruited at the obesity outpa-
tient clinic of the Department of Clinical and Experimental
Medicine, University of Naples “Federico II”, Italy, from 2005 to
2006. Clinical and biochemical data were obtained from each
patient at the first admission. All patients underwent screen-
ing for known obesity-related complications and CVD in a Day
Hospital. Patients with previous CVD or cerebrovascular events,
and alcohol abusers (i.e. alcohol consumption >20 g/day) were

excluded from the study. Over 90% of patients had a family
history of: obesity plus hypertension plus diabetes (52%), obe-
sity (20%), hypertension (11%), diabetes (6%), hyperlipidemia
(1%) or neoplasia (1%). We measured the following parameters
in each individual: BMI [weight/height2 (kg/m2)], blood pres-
sure and heart rate (following 5-min sitting). The general and
biochemical characteristics of the population studied are re-
ported in Table 1. As liver steatosis is 5-fold more frequent in
obese patients than in lean individuals (17), we performed ul-
trasound liver examination in all patients. An Esaote Biomedi-
ca Apparatus (Firenze, Italy) equipped with a convex 3-5 MHz
probe was used and the test imaging was read by two opera-
tors unaware of the laboratory data of the patients. Liver steato-
sis was also graded semiquantitatively on a scale of 0-3 (0= ab-
sent; 1= mild; 2= moderate; 3= severe) according to Savery-
muttu et al. (18) on the basis of abnormally intense, high-level
echoes arising from the hepatic parenchyma, liver-kidney dif-
ference in echo amplitude, echo penetration into the deep por-
tion of the liver and clarity of liver blood vessel structure (19,
20). Healthy Caucasian normal-weight controls (M=29, F=66,
BMI>20 and <25 kg/m2) from the same geographic area were
also recruited at the Ambulatory Medicine Service of the “Fed-
erico II” University Hospital. A venous blood sample was col-
lected from each patient and control subject in the morning at
8.00 h after an overnight fast.

Laboratory investigations

Main biochemical and hormonal parameters [total cholesterol,
HDL-cholesterol, triacylglycerols, aspartate aminotransferase
(AST), alanine aminotransferase (ALT), γ-glutamyl-transferase
(GGT), glucose, total proteins and insulin] were measured by
routine laboratory methods. Insulin resistance was estimated ac-
cording to the homeostasis model assessment (HOMA) and
the formula: fasting insulin (mIU/l)/[22.5 × e–ln(mmol/l glucose)].

Males Females

Age (yr) 34.5 18.0-57.0 31.0 18.4-67.0

BMI (kg/m2) 47.9 38.7-93.4 47.7 40.0-76.0

Systolic blood pressure (mmHg)a 130.0 105.2-179.5 120.0 94.0-160.0

Diastolic blood pressure (mmHg)b 85.0 55.6-110.0 80.0 60.0-100.0

Heart rate (b/min) 80.0 56.4-108.0 76.0 57.9-100.0

Adiponectin (µg/ml) 17.2 3.3-57.1 20.2 3.3-48.3

Leptin (ng/ml)c 56.8 3.7-212.8 138.9 40.4-240.2

L/A ratio 3.3 0.02-50.0 5.8 0.9-50.0

Glucose (mmol/l) 5.2 3.2-10.6 4.9 3.6-7.7

Insulin (mIU/l)a 27.9 9.3-75.0 19.2 7.1-55.5

HOMAd 6.3 1.6-18.6 4.2 1.4-12.7

Total cholesterol (mmol/l)e 4.5 3.1-6.1 4.8 2.9-6.7

HDL cholesterol (mmol/l)c 1.0 0.6-1.5 1.2 0.9-1.9

Triacylglycerols (mmol/l) 1.3 0.4-3.5 1.4 0.6-3.2

AST (U/l)a 28.0 13.0-93.8 20.0 11.0-67.5

ALT (U/l)c 44.0 17.2-176.2 24.0 9.1-111.0

GGT (U/l)c 38.0 16.0-333.0 22.0 7.3-154.3

Total proteins (g/dl) 7.5 6.9-8.3 7.4 6.7-8.3

Statistically significant differences at Mann-Whitney test: ap=0.001; bp=0.004; cp<0.0001; dp=0.002; ep=0.011. BMI: body mass index; L/A: lep-
tin/adiponectin; HOMA: homeostasis model assessement; AST: aspartate aminotransferase; ALT: alanine aminotransferase; GGT: γ-glutamyl transferase.

Table 1 -Main general and biochemical characteristics (median value and 2.5th-97.5th percentiles) of 102 severely adult obese patients
(males=41; females=61).©
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Total serum adiponectin and leptin concentrations were mea-
sured in duplicate in obese and control subjects by an enzyme-
linked immunosorbent assay (LINCO Research, Mo, USA), using
monoclonal anti-human adiponectin and leptin antibodies. We
also calculated the L/A ratio.
Genomic DNA was extracted from whole blood (Nucleon
BACC-II; Amersham Science Europe). The UCP1 –3826 A>G
gene polymorphism was assayed with the Real Time TaqMan
method. We used two fluorescent probes: one specific for the
wild-type allele (VIC-CAGTTTGATCAAGTGCAT-Q-MGB, where
VIC is the fluorescent reporter dye, Q the quencher molecule
and MGB an enhancer of stabilization of the DNA-probe du-
plex), and one specific for the mutant allele (FAM-
CAGTTTGATCGAGTGCAT-Q-MGB, where FAM is the fluores-
cent marker). We used the Primer Express software (Applied
Biosystems, Foster City, CA) to design the PCR primers (for-
ward: 5’-CTTGGGTAGTGACAAAGTAT-3’; reverse: 5’-CT-
TAAGGGTCAGATTTCTAC-3’). Reaction mixtures were assem-
bled in a 384-well plate using a Biomek 2000 Workstation (Beck-
man Instruments, Fullerton, CA). Each well contained 40 ng ge-
nomic DNA, 36 nM primers, 8 nM probes, and 2.5 µl TaqMan
Universal Master Mix (Applied Biosystems, Foster City, CA) in a
total reaction volume of 5 µl. We also tested negative and pos-
itive controls (i.e. no DNA sample and homozygote and het-
erozygote samples for the UCP1 –3826 A>G polymorphism pre-
viously typed by sequence analysis on an ABI Prism 3100 Ge-
netic Analyzer, Applied Biosystems, Foster City, CA). Real Time
PCR was run on an ABI Prism 7900HT instrument and data were
analyzed with the Sequence Detection System (SDS 2.1) and
the SDS Enterprise Database (Applied Biosystems). The ampli-
fication protocol consisted of: 50 C for 2 min; 95 C for 10 min;
92 C for 15 sec and 60 C for 1 min for 40 cycles; final exten-
sion at 60 C for 1 min; final soak at 25 C.
MS was diagnosed according to the recently defined AHA cri-
teria. Namely, the syndrome was diagnosed if 3 out of 5 criteria
were present (7). All patients and controls gave their informed
consent to the study, which was carried out according to the
Helsinki II Declaration.

Statistics

For each investigated parameter we calculated the median val-
ue and the percentile (2.5th-97.5th) range. The Mann-Whitney
test and/or χ2, when necessary, were used for between-group
comparison. Differences were considered significant at p level
<0.05. Binomial logistic analysis was used to investigate the as-
sociation between MS or liver steatosis severity (severe vsmod-
erate steatosis) and the UCP1 –3826 A>G polymorphism, and
in relation to biochemical and clinical characteristics. Allele fre-
quencies were estimated by gene counting. Agreement with
Hardy-Weinberg equilibrium was tested with a χ2 goodness-of-
fit test. Statistical analyses were carried out with the SPSS pack-
age for Windows (Ver.15; SPSS Inc. Headquarters, Chicago, Ill).

RESULTS

The main biochemical values obtained in male and fe-
male obese patients are reported in Table 1. MS was
more prevalent in severely obese females (66%) than in
males (53%) and a sex-dependent contribution was ob-
served for hypertension (73% M and 31% F, p<0.001),
dyslipidemia (54% M and 69% F, p=0.01) and hyper-
glycemia (34% M and 23% F, p=0.04), apart from waist

circumference, which was well above normal limits in all
subjects.
Further, among other tested biochemical parameters, on-
ly total cholesterol and L/A levels differed significantly be-
tween patients MS+ and MS– [respectively, median total
cholesterol: (M), 4.4 mmol/l vs 4.6 mmol/l, p=0.04; (F),
4.7 mmol/l vs 5.1 mmol/l, p=0.002; median L/A ratio: (M)
3.7 vs 1.5, p=0.03; (F), 5.5 vs 6.6, p=ns). Among MS–
obese patients 68% were insulin resistant (HOMA>4).
Liver steatosis was investigated by ultrasound and was
present in all obese patients, it was severe in a higher
percentage of MS+ vs MS– subjects (39% vs 20%,
p=0.005) and more frequent in males than in females
(57% vs 29%, p=0.0001). In obese with severe liver
steatosis at univariate analysis we observed significantly
higher median concentrations of AST, ALT, GGT, insulin,
glucose, L/A ratio, and significantly lower HDL-choles-
terol, adiponectin concentrations and AST/ALT ratio than
in obese with mild/moderate liver steatosis (respectively,
28.0 U/l vs 21.0 U/l, p<0.0001; 42.5 U/l vs 27.0 U/l,
p=0.001; 35.0 U/l vs 24.0 U/l, p=0.004; 28.4 mmol/l vs
19.2 mmol/l, p<0.0001; 5.2 mmol/l vs 5.0 mmol/l,
p=0.03; 7.7 vs 4.0, p=0.007; 1.06 mmol/l vs 1.13 mmol/l,
p=0.006; 12.7 µg/ml vs 24.2 µg/ml, p=0.001; 0.7 vs 0.8,
p=0.03).
Table 2 shows the genotype and allele frequencies of the
UCP1 –3826 A>G polymorphism in our obese patients
and control subjects; genotype frequencies were in
Hardy-Weinberg equilibrium (p=0.9). UCP1 (AG+GG)
genotypes were more frequent in patients with severe
liver steatosis than in those with mild/moderate liver
steatosis (21/31; 65% vs 30/70; 43%, p=0.0003). UCP1
(AG+GG) genotypes did not differ among MS+ and MS–
obese patients (46% vs 56%; ns). Binomial logistic re-
gression showed that severe liver steatosis in obese pa-
tients was associated with the UCP1 (AG+GG) geno-
types, low adiponectin levels, high ALT levels, age, MS,
and male sex (Table 3).

DISCUSSION

The prevalence of MS in our severely obese subjects (M:
53% and F: 66%) was comparable to those reported in
the QUOVADIS (Quality of Life in Obesity: Evaluation and
Disease Surveillance) study (53%), a multicenter evalua-
tion carried out in Italy (21) and slightly higher than in the
general populations of European and US Caucasians of a
similar age range (22).
We detected higher L/A ratio in obese male MS+ than
in obese male MS– patients (3.7 vs 1.5) as previously re-
ported for MS+ and MS– non-obese male patients (0.79

UCP1 UCP1
genotypes no. (%) allele (%)

Obese Controls Obese Controls

AA 51 (50.0) 52 (54.8) A 0.71 0.72

AG 42 (41.2) 33 (34.7) G 0.29 0.28

GG 9 (8.8) 10 (10.5)

b

Table 2 - Genotypes and allele frequencies of UCP1 –3826 A>G
in obese patients (no.=102) and controls (no.=95).
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vs 0.52) (9). Increased fat content is associated with in-
sulin resistance in Type 2 diabetic patients (23). In our se-
vere obese group 68% of MS– patients had HOMA>4.
These data agree with the lipotoxicity theory, namely that
increased and prolonged exposure to excessive free fat-
ty acids results in decreased insulin secretion (22). In a
chronic context such as severe obesity, lipids accumulate
in muscle, liver, and pancreatic islet cells, and this event
has been implicated in impaired insulin signaling and in-
sulin secretion (24). In fact, in Zucker diabetic fatty rats,
islet lipid accumulation precedes the development of di-
abetes (24). Further, insulin resistance and systemic hy-
pertension features of the MS are also independently as-
sociated with advanced forms of NAFLD (25, 26).
Steatosis is frequent in obesity (27), particularly in severe
obesity (12). Ultrasound studies showed that all our pa-
tients were affected by NAFLD, which was more severe in
MS+ than in MS– obese patients. As a rule, imaging stud-
ies cannot predict the severity of NAFLD, which ranges
from simple steatosis to steatohepatitis. However, no
guidelines recommend liver biopsy in obese patients, ex-
cept in the setting of persistent hypertransaminasemia
or if it is necessary to rule out a cause of NAFLD other
than MS or insulin resistance (11). In our obese popula-
tion, the lack of risk factors other than MS, insulin resis-
tance or persistent hypertransaminasemia did not justify
liver biopsy.
There is compelling evidence that decreased adiponectin
levels are involved in the development of NAFLD (28) in
close association with insulin resistance, independently
of obesity (29, 30). In our adult severely obese patients,
serum adiponectin values were lower in patients with se-
vere than in those with mild/moderate liver steatosis, and
severe liver steatosis was also associated with older age
and higher ALT transaminases. Recently, data obtained in
an experimental model showed that adiponectin is a key
regulator for the progression of hepatic fibrosis toward
steatohepatitis (31).
The frequencies of the UCP1 AG and GG genotypes in
our obese patients (respectively 41.2% and 8.8%) were
similar to those reported for other Caucasians, namely
between 29% and 42% for UCP1 AG and between 4%
and 15% for UCP1 GG (16, 32-37), but lower than those
reported in Japanese and Korean populations (respec-
tively, 45-54% for AG and 23-27.5% for GG) (16, 38-40).
An interesting finding of our study is that liver steatosis
was more severe in obese patients bearing UCP1
(AG+GG) genotypes compared to those bearing the

UCP1 AA genotype (odds ratio=4.25). This finding may
suggest a genetic association between liver steatosis in
obese subjects and the G allele. Interestingly, in-
traperitoneal fat UCP1 mRNA expression was found to
be lower in obese subjects bearing the –3826 G poly-
morphism than in subjects with two wild-type alleles
(16). Moreover, in a murine model, hepatic UCP1 over-
expression reduced fat in the liver and adipose tissue,
thereby improving insulin resistance in mice with high-
fat-diet-inducing diabetes and obesity (41). Recently,
the UCP1 gene was found to be expressed in the vis-
ceral adipose tissue of adult lean and obese patients in
which brown adipocytes were dispersed among white
adipocytes in a ratio of 1 to 100-200 (42). Interestingly,
after dieting and a BMI reduction, UCP1 mRNA levels
remained lower in obese than in lean subjects, which
supports a genetic predisposition in obesity to a low
energy dispersion (42).
In conclusion, in addition to traditional factors, total
cholesterol and L/A ratio appear to contribute to MS
characterization in severe obesity. Further, the UCP1
(AG+GG) genotypes and low adiponectin levels could
predispose to a more severe liver steatosis independently
of MS presence. Based on our data, polymorphic UCP1
(AG+GG) obese patients with low adiponectin levels ap-
pear to be high-risk subjects for worsening of liver steato-
sis or NAFLD, possibly requiring liver biopsy aimed to
promote preventive interventions.
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INTRODUCTION

 e obese phenotype is widely heterogeneous: it includes an 
 “at-risk” phenotype and a so-called “metabolically healthy phe-
notype” (MHO) that is present in 10% to over 30% of the obese 
population (1). “At-risk” obese subjects are characterized by insu-
lin resistance and by higher visceral fat and plasma lipid levels 
compared with MHO subjects, although both groups have a high 
BMI and fat mass (2). Low visceral fat (2) and early obesity onset 
(<20 year of age) (3) accounted for 22% and 13% respectively 
of the insulin sensitivity observed in MHO patients, but 65% of 
the phenotype remained unexplained (2).  e MHO phenotype 
has been well described in mild obesity (4,5), in postmenopausal 
obesity (3,6), and in a randomly selected  population (7), but not 
in young severely obese people (8).

In the attempt to identify biochemical markers of the MHO 
and “at-risk” obese pro#les, we measured several serum adi-
pose and gastrointestinal hormones in a young severely obese 
 population from Southern Italy.  e identi#cation of an “at-risk” 
pro#le, particularly in young subjects, could have important 

implications in their clinical management. In fact, “at-risk” 
obese subjects need aggressive treatment to prevent or delay 
obese-associated metabolic complications, whereas attempts to 
loose weight might be potentially harmful, or not e$ective in 
MHO individuals (9,10).

METHODS AND PROCEDURES
Study population
We studied 160 unrelated white young adults (mean age ± s.d. = 25.2 ± 9.6 
years; mean BMI [95% con#dence interval (CI)] = 44.9 [43.6−46.3] kg/
m2; 65% women) from Southern Italy who had su$ered from obesity for 
at least 5 years.  e population was recruited at the Obesity Outpatient 
Clinic of the Department of Internal Medicine, Federico II University 
Hospital, Naples, Italy. Clinical, functional, and biochemical data were 
obtained from each patient at the baseline. Secondary causes of obesity 
were excluded, and no patient was an alcohol abuser or under phar-
macological treatment for any disease. We measured: BMI (weight/
height2; kg/m2), waist circumference (WC; cm), blood pressure (systo-
lic blood pressure and diastolic blood pressure; mm Hg) and heart rate 
(beats/min) in each individual a*er they had been sitting for 5 min; 
we also recorded smoking habits and body composition (fat mass and 
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Table 1 Physical and biochemical characteristics (mean and 95% CI) in MHO and “at-risk” severely obese young patients from 

Southern Italy

Characteristicsa

MHO (n = 34) M vs. F “At risk” (n = 126) M vs. F MHO vs. “at risk”

Mean 95% CI P valuec Mean 95% CI P valuec P valuec

Age (years)b 22.6 19.7–25.5 Ns 25.8 24.1–27.6 Ns Ns

BMI (kg/m2)b 41.1 38.9–43.3 Ns 46.1 44.5–47.7 Ns 0.003

WC (cm)b 122.5 118.0–127.0 Ns (M) 140.8

(F) 128.6

135.2–146.5

124.8–132.3

<0.0001 Ns

RQ 0.9 0.82–0.89 Ns 0.9 0.85–0.88 Ns Ns

FFM (%) (M) 56.3

(F) 50.0

50.4–62.2

47.9–52.1

0.010 (M) 53.9

(F) 50.2

52.2–55.6

48.9–51.3

0.001 Ns

FM (%)b (M) 43.6

(F) 49.9

37.7–49.6

47.9–52.1

0.010 (M) 46.1

(F) 50.1

44.4–47.8

48.9–51.3

<0.0001 Ns

SBP (mm Hg)b 119.4 117.7–121.1 Ns 122.1 120.5–123.7 Ns Ns

DBP (mm Hg) 77.4 75.7–79.1 Ns 78.7 77.6–79.8 Ns Ns

Heart rate (beats/min) 76.8 74.4–79.2 Ns 78.6 77.5–79.8 Ns Ns

Glucose (mmol/l) 4.1 3.9–4.3 Ns 4.7 4.5–4.9 Ns <0.0001

Total cholesterol (mmol/l) 4.3 3.9–4.7 Ns (M) 4.4

(F) 4.6

4.1–4.7

4.4–4.8

0.041 Ns

HDL cholesterol (mmol/l) (M) 1.0

(F) 1.2

0.8–1.2

1.1–1.3

0.032 (M) 1.0

(F) 1.2

0.9–1.1

1.1–1.3

0.007 Ns

Triglycerides (mmol/l)b 1.0 0.8–1.2 Ns 1.5 1.4–1.7 Ns <0.0001

AST (U/l) (M) 25.9

(F) 18.6

20.6–31.2

17.2–19.9

0.002 (M) 35.1

(F) 23.8

25.4–44.9

20.8–26.8

<0.0001 (F) 0.029

ALT (U/l) (M) 39.3

(F) 20.9

28.7–49.9

18.0–23.9

<0.0001 (M) 52.2

(F) 30.7

41.1–63.2

26.3–35.1

<0.0001 Ns

GGT (U/l)b (M) 29.4

(F) 15.1

20.2–38.7

13.2–17.0

<0.0001 (M) 34.5

(F) 29.3

24.4–44.6

21.4–37.2

0.002 (F) 0.001

FLIb 86.7 81.4–92.1 Ns 94.4 92.7–96.1 Ns <0.0001

Fibrinogen (µmol/l) 11.2 10.5–12.0 Ns 12.0 11.6–12.5 Ns Ns

Creatinine (µmol/l) (M) 79.5

(F) 61.8

70.7–88.4

53.0–62.0

<0.0001 (M) 70.7

(F) 61.8

61.8–79.5

53.0–62.0

<0.0001 (M) 0.042

Urea (mmol/l)b 4.6 4.2–5.0 Ns 5.1 4.9–5.3 Ns 0.039

C-peptide (ng/ml) 2.4 2.1–2.7 Ns (M) 4.4

(F) 4.0

4.0–4.7

3.7–4.4

0.046 <0.0001

Insulin (mIU/l) 8.7 7.8–9.7 Ns 23.9 21.8–26.0 Ns <0.0001

HOMA 1.5 1.4–1.7 Ns (M) 4.5

(F) 3.8

4.0–4.9

3.5–4.1

0.009 <0.0001

Glucagon (ng/ml) 0.96 0.91–1.02 Ns 0.94 0.91–0.97 Ns Ns

Ghrelin (pg/ml) 122.0 104.4–139.7 Ns 116.5 105.8–127.3 Ns Ns

GIP (pg/ml) 61.2 50.8–71.5 Ns 55.1 50.5–59.8 Ns Ns

GLP-1 (ng/ml) 1.1 0.8–1.3 Ns 0.9 0.8–1.1 Ns Ns

IL-6 (pg/ml) 14.1 11.4–16.8 Ns 12.5 11.2–13.7 Ns Ns

TNF  (pg/ml) 39.7 30.5–48.8 Ns 36.7 32.3–41.0 Ns Ns

Leptin (ng/ml) (M) 4.3

(F) 6.9

2.1–6.4

5.6–8.3

0.010 (M) 6.9

(F) 8.2

5.8–7.9

7.3–9.0

Ns (M) 0.023

Adiponectin (µg/ml) 28.0 24.7–31.3 Ns 24.1 22.3–25.8 Ns Ns

L/A ratiob 0.25 0.19–0.31 Ns 0.37 0.32–0.41 Ns 0.003

Adipsin (ng/ml) 592.2 507.9–676.4 Ns 503.3 460.7–545.9 Ns Ns

Visfatin (ng/ml)b 7.6 6.0–9.2 Ns 5.8 5.1–6.5 Ns 0.026

ALT, alanine aminotransferase; AST, aspartate aminotransferase; DBP, diastolic blood pressure; F, females; FLI, fatty liver index; FFM, fat free mass; FM, fat mass; GIP, gastric 

inhibitory peptide; GGT, -glutamyl transferase; GLP-1, glucagon-like peptide-1; HOMA, homeostasis model assessment; IL-6, interleukin-6; L/A, leptin/adiponectin ratio; 

M, males; MHO, metabolically healthy obese subjects; Ns, not significant; RQ, respiratory quotient; SBP, systolic blood pressure; TNF , tumor necrosis factor- ; WC, waist 

circumference.
aReported as mean and 95% confidence interval (CI). bVariables used in the logistic model to assess their association with the “at-risk” characteristic in our obese popula-

tion. cAt Mann–Whitney or Student’s t-test, as appropriate.
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fat free mass using the bioelectrical impedance technique).  e physi-
cal and biochemical characteristics of the population are reported in 
Supplementary Table S1 online. A venous blood sample was collected 
from each patient at 8.00 am a*er an overnight fast.  e families of 
all subjects had lived in Southern Italy for at least three generations 
and all subjects gave their informed consent to the study.  e research 
was approved by the Ethics Committee of the Faculty of Medicine, 
University of Naples Federico II, and was carried out according to the 
Helsinki II Declaration.

Laboratory investigations
Serum glucose, total cholesterol, high-density lipoprotein cholesterol, 
triglycerides, aspartate aminotransferase, alanine aminotransferase, 
γ-glutamyl transferase (GGT), #brinogen, creatinine, urea, C-peptide 
and insulin were measured by routine laboratory methods. Insulin resist-
ance was estimated according to the homeostasis model assessment and 
the formula: fasting insulin (mIU/l) × fasting glucose (mmol/l)/22.5. 
We calculated the fatty liver index (FLI) according to the formula 
FLI = (e0.953 × ln (triglycerides) + 0.139 × BMI + 0.718 × ln (GGT) + 0.053 × waist circumference−15.745)/
(1 + e0.953 × ln (triglycerides) + 0.139 × BMI + 0.718 × ln (GGT) + 0.053 × waist circumference−15.745) × 100 
as a measure of hepatic steatosis (11).

Serum glucagon, ghrelin, gastric inhibitory peptide, glucagon-like 
peptide-1, interleukin-6, tumor necrosis factor-  (TNF ), leptin, adi-
ponectin, adipsin, and visfatin were measured by Luminex xMAP Tech-
nology on a BioRad Multiplex Suspension Array System (BioRad, Hemel 
Hempstead, Herts), according to the manufacturer’s instructions. We also 
calculated the leptin/adiponectin (L/A) ratio.

 e study population was divided into two groups: MHO individu-
als, i.e., subjects who were “insulin sensitive” and had no more than one 
risk factor (hypertension or dyslipidemia); and “at-risk” individuals, i.e., 
subjects who were “insulin-resistant” with or without other risk factors, 
namely, hypertension, dyslipidemia, and hyperglycemia. A homeostasis 
model assessment index (HI) lower or greater than 1.95 de#ned insulin 
sensitivity or resistance, respectively (6,12).

Statistics
Data are reported as mean ± s.d. or the 95% CI. Angular transformation 
(arcsin of the square root) of the L/A ratio was applied before statisti-
cal analyses.  e unpaired Student’s t-test, the Mann–Whitney test or 
the χ2-test were used for between-group comparisons, as appropriate. 
Di$erences were considered statistically signi#cant at a P level <0.05. 
Binomial logistic regression analysis was used to investigate the asso-
ciation between the biochemical and clinical characteristics and the 
“at-risk” condition, as previously de#ned.  e odds ratio relative to clin-
ically meaningful di$erences for the continuous variables are reported. 
To explore the possibility of missing a potential association due to the 
loss of information consequent to the introduction of the binary cat-
egorization of the HI in the logistic analysis, a multiple linear regression 
analysis was performed using the continuous HI as dependent variable 
for the same set of independent variables used in the logistic regression 
analysis. Both forward and backward procedures were used for model 
selection and gave concordant results. Statistical analyses were carried 
out with the SPSS package for Windows (ver. 17; SPSS, Chicago, IL).

RESULTS

A family history of obesity was recorded in 31.5% indi-
viduals, of concomitant obesity + hypertension + diabetes 
in 53% and hypertension alone in 6.2%.  irty-four indi-
viduals (21.3%) were classi#ed “MHO”.  ere were no sig-
ni#cant di$erences between “at-risk” and MHO individuals 
regarding sex, smoking habit, and family history of obesity. 
Only 6.3% of insulin-resistant “at-risk” individuals were 
also hyperglycemic. Mild hypertransaminasemia was also 
present in 52/160 (32.3%) of the study population: 37.3% of 
the “at-risk” group and 11.8% of the MHO group (P = 0.004). 

Hypertension (mean systolic blood pressure/diastolic blood 
pressure >133/89 mm Hg) was present in 11% of our “at-risk” 
patients; moreover, these patients also had a higher mean L/A 
ratio and HI values (hypertensive vs. normotensive patients, 
L/A ratio: 0.46 vs. 0.35, P = 0.038; HI: 5.3 vs. 3.9, P = 0.002). 
However, all our hypertensive obese patients belonged to the 
“at-risk” group.

Levels of GGT (women, P = 0.001) and of urea (P = 0.027) 
were higher in the “at-risk” than in the MHO group.  e FLI 
was higher in the “at-risk” group (94.4), as expected, given the 
liver involvement, than in the MHO group (86.7) (P < 0.0001). 
Table 1 shows the mean serum levels of adipokines and hor-
mones measured in MHO and “at-risk” individuals together 
with the other physical and biochemical parameters measured 
in this study.  e “at-risk” individuals had, at univariate analy-
sis, higher mean levels of BMI (P < 0.0001), leptin (P = 0.039, 
men) and L/A ratio (P = 0.003), and lower mean levels of visfa-
tin (P = 0.026) than the MHO group.

 e variables used in the logistic model to assess their asso-
ciation with the “at-risk” phenotype in our obese population 
are indicated in Table 1 (variables “b” labelled).  e #nal model 
showed a Nagelkerke R2 = 0.19, and only two variables were 
retained as signi#cant: the L/A ratio (odds ratio/95% CI = 
1.44/1.07−1.94), and the serum concentration of triglycerides 
(odds ratio/95% CI = 1.87/1.19−2.94).  e #nal multiple lin-
ear regression model resulted in the addition of gender to the 
other signi#cant factors, i.e., the L/A ratio and serum triglyc-
erides.  e overall adjusted R2 was equal to 0.195, indicating 
that both the logistic and the multiple linear models are, in 
practice, equivalent.

DISCUSSION

 e characterization of several serum adipokines and gas-
trointestinal hormones in the young severely obese popula-
tion reported herein suggests that the serum L/A ratio, serum 
triglycerides, male sex, and the HI could be useful markers for 
the diagnosis of “at-risk” obese patients. Based on an almost 
complete absence of traditional risk factors for cardiovascu-
lar and metabolic diseases (1,2,6,13), a variable proportion 
(between 10% and 30%) of obese subjects is classi#ed “MHO”. 
Using an HI <1.95 as classi#cation criterion (3), we found a 
prevalence of 21.3% of MHO patients in our young severely 
obese patients.  is prevalence was similar to or lower (from 
24.4% to 31.7%) than those obtained in mild and/or severe 
older obese subjects in other European and non-European 
populations (3,4,7,8,14). Besides the use of di$erent criteria 
to classify MHO, these di$erences could be explained by the 
di$erent age, female/male ratio, and classes of obesity inves-
tigated. In fact, the prevalence of uncomplicated obesity was 
reported to be higher in a very young (16–29 years) obese 
population than in other age groups, independent of BMI cat-
egory (8). Our patients had been obese for at least 5 years, 
but the MHO group was 3 years younger than the “at-risk” 
group.  is #nding suggests that juvenile onset obesity rap-
idly progresses toward a more severe phenotype as observed 
in older obese populations (4,5,7,8,14).
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Levels of the two inXammatory markers interleukin-6 and 
TNF  did not di$er between the MHO and the “at-risk” 
groups in our obese population.  is #nding is in agreement 
with some reports (15,16) but not with others (6,7,17). It is 
possible that the discrepancy stems from the young age of the 
population we studied.

 e young age of our patients might also explain the rela-
tively low percentage of hypertensive subjects in our popula-
tion. In a previous study of a nonobese male population of our 
geographical area, hypertension was associated with decreased 
insulin sensitivity (18). However, the L/A ratio remained 
signi#cantly higher in the “at-risk” group than in the MHO 
group, also when hypertensive patients were excluded from the 
statistical analysis (0.35 vs. 0.25, P = 0.008).  is suggests that 
factors other than hypertension are at play during the onset of 
insulin resistance in young obese subjects. Furthermore, the 
low high-density lipoprotein cholesterol levels in our MHO 
and “at-risk” subjects probably reXects the similar sedentary 
lifestyle of our subjects.

In agreement with a lower hepatic insulin resistance and 
a lower liver fat content in MHO patients observed in post-
menopausal women (19), in the general population (11) and 
by us in a middle-aged obese population (20), the levels of FLI, 
an index of liver steatosis, were higher in “at-risk” individuals 
than in the MHO group (P < 0.0001).  is could be due to 
the fact that trapping of free fatty acids is impaired in “at-risk” 
individuals (19). Furthermore, in overweight patients, the L/A 
ratio was reported to be higher in nonalcoholic steatohepati-
tis than in simple steatosis, irrespective of insulin resistance 
(21). In our study, the L/A ratio was not correlated with FLI, 
although the latter was signi#cantly higher in “at-risk” than in 
MHO patients.  is observation could be due to the lower sen-
sitivity of FLI compared to liver biopsy, which is not routinely 
performed in severe obesity, in diagnosing liver steatosis (21).

In our study, the serum L/A ratio, serum triglycerides, and 
male sex were the most signi#cant parameters associated 
with “at-risk” obesity; indeed they accounted for 19.5% of the 
insulin-resistant phenotype.  e L/A ratio was reported to be 
negatively correlated with insulin sensitivity indexes in a large 
population of nonobese and nondiabetic individuals (22), and 
we previously demonstrated that this ratio contributed to the 
metabolic syndrome in severe obesity (20).

Brochu et al. found that visceral adipose tissue plays a rele-
vant role in insulin resistance insurgence (3). We are unable to 
evaluate the relative e$ect of this tissue or of the L/A ratio on 
insulin resistance because we did not measure visceral adipose 
tissue in our population. However, the lack of a signi#cant 
association between WC, a rough index of visceral adipos-
ity, and the BMI, an index of total adiposity, with the HI in 
both the logistic and the multiple regression models probably 
indicates that, in this selected population with severe obes-
ity, the L/A ratio is a better marker of “at-risk” obesity than 
either WC or BMI.  is observation is supported by the fact 
that the association of WC and BMI with HI becomes statisti-
cally signi#cant (P = 0.031 and P = 0.042, respectively) when 
the adipokines are not included in the model. Consequently, 

the L/A ratio-HI association that we observed is independent 
of both WC and BMI.  e apparent discrepancy between our 
#ndings and those of Brochu et al. is probably due to the dif-
ferences between the two examined populations, namely mean 
age (MHO vs. “at risk”, Brochu et al: 58.0 vs. 58.6 years; our 
data: 22.6 vs. 25.8 years), gender composition, (Brochu et al. 
100% females, in our population 65% females) and underlying 
 physiopathologic conditions (severity of obesity and postmen-
opausal condition) and to di$erent methodological aspects.

In conclusion, we demonstrate that a high serum L/A ratio 
and high levels of serum triglycerides may be markers of “at-
risk” obesity, independent of WC and BMI, in young severely 
obese population.

SUPPLEMENTARY MATERIAL

Supplementary material is linked to the online version of the paper at http://

www.nature.com/oby
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Brown adipose tissue, where Uncoupling Protein 1 (UCP1) activity uncouples mitochondrial respiration, is an important site
of facultative energy expenditure. This tissue may normally function to prevent obesity. Our aim was to investigate by sequence
analysis the presence of UCP1 gene variations that may be associated with obesity. We studied 100 severe obese adults (BMI
> 40 kg/m2) and 100 normal-weight control subjects (BMI range = 19–24.9 kg/m2). We identified 7 variations in the promoter
region, 4 in the intronic region and 4 in the exonic region. Globally, 72% of obese patients bore UCP1 polymorphisms. Among
UCP1 variants, g.IVS4−208T>G SNP was associated with obesity (OR: 1.77; 95% CI = 1.26–2.50; P = .001). Further, obese
patients bearing the g.−451C>T (CT+TT) or the g.940G>A (GA+AA) genotypes showed a higher BMI than not polymorphic
obese patients (P = .008 and P = .043, resp.). In conclusion, UCP1 SNPs could represent “thrifty” factors that promote energy
storage in prone subjects.

1. Introduction

Brown adipose tissue (BAT) plays an important role in
energy expenditure [1]. Its thermogenic activity requires not
only the presence of a dense vascularisation and sympathetic
innervation, but also the expression of Uncoupling Protein 1
(UCP1) [2, 3]. UCP1 is localized on the inner mitochondrial
membrane where it uncouples oxidative metabolism from
ATP synthesis, resulting in the dissipation of energy through
the release of heat [4]. In humans, BAT exerts its function
especially during the first years of life and decreases with age
[5]. However, several metabolic active depots of BAT have
been recently demonstrated also in adult humans [6–8]. It

has been calculated that BAT malfunction could lead to a
weight gain of 1-2 kg/yr [9]. These data suggest that BAT
specific proteins, such as UCP1, could be involved in obesity
onset so representing a possible target of pharmaceutical
interventions in this field [10, 11]. In the last years, UCP1 loss
has been associated with obesity susceptibility in UCP1−/−

mice, particularly during aging and a high-fat diet [12,
13]. We previously described the association between the
variation −3826A>G in the UCP1 promoter and a severe
fatty liver steatosis during obesity [14]. The aim of this study
was to search for further gene alterations associated with
obese phenotype in the UCP1 gene (ENSG00000109424) by
sequence analysis.
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Table 1: General and biochemical characteristics of obese patients
and control subjects.

Obese patients Control subjects

(n = 100) (n = 100)

Females (%) 60 64

Age (years) 32.1± 10.9 33.3± 8.1

BMI∗ (kg/m2) 47.9± 6.9 22.8± 2.1

Adiponectin∗ (µg/mL) 31.6± 30.0 53.8± 38.6

Leptin∗ (ng/mL) 119.6± 72.4 21.9± 18.7

Resistin (ng/mL) 12.2± 8.4 12.7± 7.9

Glucose∗ (mmol/L) 4.9± 0.8 4.5± 0.4

Total cholesterol (mmol/L) 4.7± 1.1 5.0± 0.7

Triacylglycerols∗ (mmol/L) 1.5± 0.6 0.9± 0.3

AST∗ (U/L) 26.5± 16.7 19.8± 5.6

ALT∗ (U/L) 39.8± 35.0 22.5± 12.9

GGT∗ (U/L) 35.3± 26.0 17.4± 10.4

Creatinine (mg/dL) 0.9± 0.2 0.7± 0.1
∗

Statistically significant difference between obese and control subjects, P <
.001 at Mann-Whitney test. Biochemical parameters were measured by
routine laboratory methods. Adipokines concentrations were measured by
ELISA assay (LINCO Research, Mo, USA). Values are expressed as mean ±
SD.

2. Materials and Methods

We studied 200 age-matched unrelated Caucasian subjects
from Southern Italy: 100 adult severe obese patients (60%
female, mean ± SD: BMI = 47.9 ± 6.9 kg/m2; age =

32.1 ± 10.9 years) and 100 unrelated adult normal-weight
subjects (64% female, mean ± SD: BMI = 22.8 ± 2.1 kg/m2;
age = 33.3 ± 8.1 years). The patients were recruited at the
obesity outpatient clinic of the Department of Clinical and
Experimental Medicine, University of Naples Federico II,
Italy, from 2007 to 2008, whereas control subjects were
recruited at the Department of Preventive Medical Science
of the Federico II University Hospital. Clinical and bio-
chemical data were obtained from each patient on their first
admission. The general and biochemical characteristics of
the studied populations are reported in Table 1. All patients
and controls gave their informed consent to the study, which
was carried out according to the Helsinki II Declaration. The
research was also approved by the Ethics Committee of the
School of Medicine, University of Naples Federico II.

Genomic DNA was extracted from whole blood (Nucl-
eon BACC-II; Amersham Science Europe). UCP1 5′ flank-
ing region, exons and intron-exon junction regions were
amplified by ten sets of primers (primers ID: RSA000984680,
RSA000984677, RSA000984675, RSA000984673, RSA00098
4666, RSA000990288, RSA000990284, RSA000990283, RSA0
00990281, and RSA000990278 http://www.ncbi.nlm.nih.gov/
sites/entrez). PCR products were sequenced on ABI Prism
3130 Genetic Analyzer (Applied Biosystems, Foster City,
CA). PCR conditions were 96◦C for 5 min; than 94◦C for 30
sec, 60◦C for 45 sec and 72◦C for 45 sec, for 40 cycles; final
extension at 72◦C for 10 min; final soak at 25◦C.

The mean value and the standard deviation (SD) were
calculated for each investigated parameter. The Mann-
Whitney test and/or χ2, when necessary, were used for
between-group comparisons. Differences were considered
significant at P level <.05. Linkage analysis was performed
by using Haploview 4.0 software [15]. Binomial logistic
regression analysis was used to investigate the association
between the biochemical and genetic characteristics (i.e.,
glucose, total cholesterol and triacylglycerols concentrations
and AST activity; g.−451C>T, g.940G>A, g.IVS4−208, and
g.6537A>T polymorphisms) and the condition of being
obese, after adjustment for age and sex.

Statistical analyses were carried out with the PASW
package for Windows (Ver.18; SPSS Inc. Headquarters,
Chicago, Ill).

3. Results and Discussion

Adiponectin and leptin concentrations were statistically dif-
ferent (P < .001) between obese and control subjects (mean
level ± SD respectively: adiponectin 31.6± 30.0 µg/mL ver-
sus 53.8 ± 38.6 µg/mL; leptin 119.6 ± 72.4 versus 21.9 ±
18.7 ng/mL). Higher concentrations or activities of glucose,
triacylglycerols, AST, ALT and GGT were measured in obese
patients than in controls (P < .001) (Table 1).

We identified 15 sequence variations in UCP1 gene
(Table 2): 7 in the promoter region (3/7 described for the
first time), 4 in the intronic regions (1/4 described for the
first time) and 4 in the exonic regions (2 in the 5′ UTR; 2 in
the translated region). Globally, 72% of obese patients bore
one or more UCP1 polymorphisms.

There were no differences in genotype frequencies
between obese and control subjects at level of the detected
SNPs, except for g.IVS4−208T>G polymorphism more
frequent in obese than in control subjects (P = .002). After a
permutation test with 100000 permutations, the association
of the polymorphic allele with the obese phenotype remained
statistically significant (P = .017). Subjects bearing this
polymorphism (TG or GG) were at high risk for obesity (OR:
1.774; 95% CI = 1.26–2.50, P = .001). At binomial logistic
regression analysis, the g.IVS4−208 (TG+GG) genotype
was confirmed to be statistically associated in our patients
with obesity independently of sex and age (OR: 22.0; 95%
CI = 5.6–87.1). This SNP did not alter the splicing site
nor the branch site [16, http://www.umd.be/HSF/], and
the polymorphic allele did not change the ∆G of the
predicted mRNA secondary structure by mfold analysis
(http://mfold.bioinfo.rpi.edu), suggesting that the stability
of the polymorphic mRNA is the same as the wild-type.
The G allele may be a marker linked to other gene variants
promoting energy storage as well as fat accumulation in
prone subjects.

The novel UCP1 variants g.−637T>C, g.−206C>A, and
g.IVS2+174T>A, each of them present in a single obese
patient, were not associated with differences in clinical
and/or biochemical parameters measured in the obese and
control populations. Among them, only the g.−206C>A
occurred in a conserved region indentified by cisRED algo-
rithm (http://www.cisred.org/) as a cis-regulatory element
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Table 2: UCP1 sequence variations and their frequencies in obese and control subjects.

Polymorphisms Obese patients Control subjects

n = 100 n = 100

Position rs# wt HE HO wt HE HO

g.−637T>C1 99 1 0 100 0 0

g.−451C>T rs36207410 82 16 2 86 14 0

g.−412A>C rs3811787 57 36 7 49 43 8

g.−372A>C rs1800660 97 3 0 97 3 0

g.−206C>A1 99 1 0 100 0 0

g.−56C>T rs3749539 91 9 0 90 10 0

g.−17C>G1 94 6 0 94 6 0

g.12A>C rs10011540 91 9 0 90 10 0

g.21G>A rs1800661 86 13 1 79 21 0

g.940G>A (p.A64T) rs45539933 92 8 0 91 9 0

g.IVS2+138C>T rs7688743 80 15 5 70 27 3

g.IVS2+174T>A1 99 1 0 100 0 0

g.IVS2+201T>G rs2071416 79 21 0 77 22 1

g.IVS4−208T>G2 rs1494808 45 44 11 69 23 8

g.6537A>T (p.M229L) rs2270565 89 11 0 87 13 0
1
New variants; 2More frequent polymorphism in obese patients (P = .002) than in controls. wt: wild-type homozygous subjects; HE: heterozygous and HO:

homozygous subjects at level of the detected variant.

(craHsap157022), and we could hypothesize to alter the
interaction with transcriptional factors.

Regarding the previously described UCP1 polymor-
phisms, a higher mean BMI was observed in our obese
patients bearing the g.−451C>T (CT+TT) than in not
polymorphic obese patients (resp., 52.6 ± 7.4 kg/m2 versus
47.0 ± 6.6 kg/m2, P = .008).

The amino acidic substitution p.M229L (g.6537A>T) in
the fifth helix of the protein is due to an A>T transversion in
the 5th exon of the UCP1 gene [17]. Mori and colleagues [18]
found a higher frequency of the Leu allele of the p.M229L
(g.6537A>T) polymorphism in a Japanese obese population
with Type II diabetes, indicating this gene variation as
a diabetes-associated SNP, while other studies failed to
demonstrate such association [9, 19, 20]. In our study we
found that patients carrying the polymorphic allele for the
p.M229L polymorphism showed a slightly higher mean BMI
than the wild-type patients (50.6 kg/m2 versus 47.6 kg/m2,
resp.) while no difference were found at level of glucose and
insulin concentration or regarding the homeostatic model
assessment (HOMA) index (a measure of insulin sensitivity)
(data not shown). This difference could be due to the lower
mean age of our studied subjects (32.1 years in our patients
versus 58.6 years in Mori et al. [18]), since Type II diabetes is
more frequent in middle aged than in young adult patients.

Further, the haplotype investigation by Haploview soft-
ware showed a significant linkage disequilibrium among the
three SNPs g.−56C>T (a), g.12A>C (b) and g.940G>A (c)
(a-b: log likelihood ratio, LOD = 27.5; r2

= 1; b-c and a-
c: LOD = 22.6; r2

= 0.9); however no statistically significant
association was observed between obesity and this haplotype,
the frequency of this latter being the same in obese and
control subjects (8.0% versus 9.0%, resp.).

The g.12A>C polymorphism is located in the insulin
response sequence (IRS). In in vitro experiments, the DNA
mutated C allele was demonstrated to reduce the transcrip-
tion of UCP1 by 40% respect to the wild-type allele. This
variation was hypothesized to impair the affinity of the
transcription factors for the consensus motif of IRS [18].
Further, this SNP was previously indicated as contributing
to hepatic lipid accumulation and altering insulin sensitivity
in Japanese individuals with Type II diabetes mellitus
(NIDDM) [18]. In our population, the lack of association
of this SNP with any obesity-related phenotype could be
due to the younger mean age of our patients respect to
those investigated by Fukuyama et al. [21] (32.1 years versus
56.6 years, resp.) and to different ethnic background of the
studied groups.

The amino acidic substitution p.A64T (g.940G>A) in the
first matrix loop of the protein is due to a G>A transition in
the 2nd exon of the UCP1 gene [17].

Cha et al. [22] reported in a Korean female population
an association between the mutated allele and a higher blood
pressure. In our population, polymorphic patients compared
to wild-type patients showed a higher mean BMI (52.0 ±
6.4 kg/m2 versus 47.5± 6.9 kg/m2, P = .043) but only a trend
toward a higher mean systolic blood pressure (130.0 mmHg
versus 124.4 mmHg, resp.). This difference does not raise
the statistically significant level probably due to the lower
number of patients in our examined casistic.

4. Conclusions

Functional activity of BAT has been recently demonstrated
in adult humans [6–8] and its amount is inversely related to
body fat percentage [23]. We do not have any information
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in our patients about BAT amount. However, variations in
the BAT marker UCP1 gene were present in most of our
obese patients. These variations could represent common
factors contributing to the development of obesity, partic-
ularly, g.−451C>T, g.940G>A, and g.IVS4−208T>G could
represent “thrifty” factors that promote energy storage. The
precise role in obesity of these variants should be investigated
in a larger casistic.
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Four novel UCP3 gene variants associated with
childhood obesity: effect on fatty acid oxidation
and on prevention of triglyceride storage
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Istituzioni e dei Sistemi Territoriali, Università degli Studi di Napoli ‘Parthenope’, Naples, Italy; 5Dipartimento di Pediatria,
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Objective: The objective of the study was to look for uncoupling protein 3 (UCP3) gene variants in early-onset severe childhood
obesity and to determine their effect on long-chain fatty acid oxidation and triglyceride storage.
Methods and results: We identified four novel mutations in the UCP3 gene (V56M, A111V, V192I and Q252X) in 200 children
with severe, early-onset obesity (body mass index-standard deviation score 42.5; onset: o4 years) living in Southern Italy. We
evaluated the role of wild-type (wt) and mutant UCP3 proteins in palmitate oxidation and in triglyceride storage in human
embryonic kidney cells (HEK293). Palmitate oxidation was B60% lower (Po0.05; Po0.01) and triglyceride storage was higher
in HEK293 cells expressing the four UCP3 mutants than in cells expressing wt UCP3. Moreover, mutants V56M and Q252X
exerted a dominant-negative effect on wt protein activity (Po0.01 and Po0.05, respectively). Telmisartan, an angiotensin II
receptor antagonist used in the management of hypertension, significantly (Po0.05) increased palmitate oxidation in HEK293
cells expressing wt and mutant proteins (Po0.05; Po0.01), including the dominant-negative mutants.
Conclusions: These data indicate that protein UCP3 affects long-chain fatty acid metabolism and can prevent cytosolic
triglyceride storage. Our results also suggest that telmisartan, which increases fatty acid oxidation in rat skeletal muscle, also
improves UCP3 wt and mutant protein activity, including the dominant-negative UCP3 mutants.

International Journal of Obesity advance online publication, 19 April 2011; doi:10.1038/ijo.2011.81
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Context: Human uncoupling protein 3 (UCP3) is the muscle-

specific mitochondrial transmembrane carrier that uncouples

oxidative adenosine-5’-triphosphate (ATP) phosphorylation.

Introduction

Human uncoupling protein 3 (UCP3) is a member of a family

of mitochondrial inner membrane anion carrier proteins

that uncouples the oxidative phosphorylation from adeno-

sine-5’-triphosphate synthesis.1,2 The UCP3 gene consists of

seven exons, six of which encode a transmembrane region. It

encodes two forms of transcripts: a full-length messenger

(UCP3L) and a short isoform (UCP3S) that lacks the sixth

transmembrane domain; the two messengers are equally

expressed in skeletal muscle.3 The UCP3 protein is more

abundant in glycolytic, type 2 human muscle fibers than in

oxidative, type 1 human muscle fibers. It is also expressed,

although at lower levels, in cardiac muscle and white adipose

tissue.4,5 Several lines of evidence suggest that UCP3 is

related to cellular fatty acid metabolism rather than to

mitochondrial uncoupling of oxidative phosphorylation. In

fact, UCP3 messenger expression in skeletal muscle is rapidly

upregulated during fasting, acute exercise and high dietary

intake of fat,6–9 and declines in situations in which fat

oxidative capacity is improved, such as after endurance

training or weight reduction, and in type 1 muscle fibers that

are characterized by a high rate of fat oxidation.10,11 The
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UCP3 gene has recently been proposed as a candidate gene

for obesity.12

In the present study, we looked for UCP3 variants in a

cohort of severe obese children (body mass index-standard

deviation score 42.5) with early-onset obesity (mean age 4

years) living in Southern Italy. We found four novel

mutations in the UCP3 gene, all in the heterozygous state.

We conducted a functional analysis of wild-type (wt) and

mutant UCP3 proteins to assess their role in long-chain fatty

acid b-oxidation and triglyceride storage.

We also investigated the association between the ÿ55C/T

polymorphism in the UCP3 gene promoter and BMI in our

cohort, because only recent studies found an association

between the UCP3 ÿ55 C/T polymorphism and BMI in some

populations.

Telmisartan and valsartan are two angiotensin II receptor

blockers frequently used to ameliorate hypertension in

patients who are prone to visceral obesity, metabolic

syndrome and diabetes.13 Recently, telmisartan, but not

valsartan, was found to improve long-chain fatty acid

oxidation in rat skeletal muscle14 and to reduce lipid

accumulation in liver.13 It also ameliorates hypertension,

improves glucose and lipid metabolism and protects against

visceral fat accumulation. In this paper, we also tested the

effects of telmisartan treatment on UCP3 wt and mutant

protein activity in HEK293 cells.

Subject and methods

Subjects

Between 2003 and 2005, 200 obese children (107 girls

(53.5%) and 93 boys (46.5%); 1.5–10 years of age) were

recruited by the outpatient clinic of the Department of

Pediatrics, ‘Federico II’ University of Naples and by the

Department of Pediatrics, A. Cardarelli Hospital, Naples,

Italy. All children were Caucasian and lived in the Campania

region (Southern Italy). Inclusion criteria were obesity

classified as BMI (weight/height2) 495th centile, obesity

onset o10 years of age and absence of any syndromic or

endocrine form of obesity. As controls, 100 (54 males and 46

females) normal-weight healthy individuals (BMI o25kgm–2;

aged 24.2±3.4 years), previously enrolled by us,15 under-

went genetic testing for obesity.

Written informed consent was obtained from participants

and/or their parents. The study was approved by the ethics

committee of the School of Medicine, University of Naples

‘Federico II’ and was conducted in accordance with the

principles of the Helsinki II Declaration.

Physical measurements

A trained dietitian measured the height, weight and waist

circumference (recorded to the nearest 0.1 cm, 0.1 kg and

0.1 cm, respectively) of the enrolled children. Waist was

measured with a flexible steel tape measure while children

were in the standing position after gentle expiration. BMI

percentiles for age and BMI-standard deviation scores were

determined based on the Center for Disease Control

normative curves.16 Blood pressure was measured with an

aneroid sphygmomanometer on the left arm with the

subject supine after 5min of rest, with an appropriately

sized cuff.17 Systolic (Korotkoff phase I) and diastolic blood

pressure (Korotkoff phase V) were measured three times and

the average was used for analysis.

Laboratory measurements

After a 12-h overnight fast, plasma glucose and insulin, and

serum triglycerides, total cholesterol and high-density

lipoprotein cholesterol were measured in enrolled children.

Insulin resistance was calculated with the homeostasis

model assessment of insulin resistance (HOMA-IR) index

(fasting insulin� fasting glucose/22.5), as described by

Matthews et al.18 HOMA-IR X2.5 was considered an index

of impaired insulin sensitivity. The general characteristics of

the obese children are reported in Table 1.

Body composition was evaluated with bioimpedance

analysis (STA/BIA; Akern, Florence, Italy) in children carry-

ing a UCP3 mutation and in their matched controls.

DNA amplification and genotyping

Genomic DNA was obtained from whole blood of obese and

non-obese subjects using Nucleon BACC-2 (GE Healthcare

Europe–Amersham, Little Chalfont, UK). The UCP3 gene was

amplified in a final volume of 50 ml containing 50ng of

genomic DNA; 1U of Taq DNA polymerase (Invitrogen S.r.l.,

Table 1 Clinical and biochemical characteristics of the severely obese

children (n¼200) genotyped

Parameters Mean values±s.d. Normal value range

Age (years) 5.5±3.2

BMI (kgm–2) 26.4±3.7

BMI-SDS 3±0.75 (o2)

Waist-to-hip ratio 0.97±0.06 (o0.88)

Hip circumference 79.8±9.2 (o57.1 cm)

SBP 94.5±13.7 (o111mmHg)

DBP 61.5±7.1 (o71mmHg)

Triglycerides 82.5±41.8 (o103mgdl–1)

Cholesterol 160.6±31.9 (o180mgdl–1)

LDL cholesterol 95.9±30.0 (o130mgdl–1)

HDL cholesterol 46.9±11.1 (4 36mgdl–1)

AST 27.8±5.4 (10–40U l–1)

ALT 24.8±10.2 (o40U l–1)

TSH 2.7±1.2 (0.54–4.53 mUml–1)

FT3 4.4±0.5 (3.0–9.1 pmol l–1)

FT4 1.2±0.2 (0.85–1.75 ngdl–1)

HOMA 2.2±1.4 (o2.5)

Insulin 10.82±41.8 (o28 mUml–1)

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransfer-

ase; BMI-SDS, body mass index-standard deviation score; DBP, diastolic blood

pressure; FT3, free triiodothyronine; FT4, free thyroxine; HDL, high-density

lipoprotein; HOMA, homeostasis model assessment; LDL, low-density lipo-

protein; SBP, systolic blood pressure; TSH, thyroid-stimulating hormone.

Values are means±s.d.; numbers in parenthesis indicate the normal range

corrected for the sample mean age (5.5±3.2 years).
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Milan, Italy); 200mM of each deoxynucleotide triphosphate,

50mM KCl, 10mM Tris-HCl (pH 8.8), 2.5mM MgCl2,

0.2mgml–1 bovine serum albumin (BSA) and 200nM of the

specific primers. The primers used for UCP3 gene sequencing

are here reported:

PCR fragments were separated by electrophoresis on a

1.5% agarose gel and purified. The two strands were

sequenced (BigDye Terminator v3.1 cycle sequencing meth-

od on an ABI-Prism 3100 Genetic Analyzer; Applied

Biosystems, Foster City, CA, USA).

Cloning of human wt and mutant UCP3 complementary
(c)DNAs in a eukaryotic expression vector

Total mRNA from a human osteosarcoma cell line (Saos-2)

expressing UCP3 protein was reverse transcribed using oligo

(dT). UCP3L and UCP3S cDNAs were amplified in PCR reactions

using the same 50-primer (CTTCCAGGACTATGGTGG) but

different 30-primers: GTTCAAAACGGTGATTCCCG for UCP3L

and GAAAGAAGCCCCTGTTCTCTG for UCP3S, respectively.19

UCP3L and UCP3S cDNAs were inserted into the mammalian

expression vector p3xFLAG-CMV-7.1 (Sigma-Aldrich S.r.l.,

Milan, Italy) downstream from the N-terminal 3� FLAG

epitope and then sequenced in both directions. QuickChange

site-directed mutagenesis kit (Stratagene Inc., La Jolla, CA, USA)

was used to generate the four mutants (V56M, A111V, V192I

and Q252X) from the cloned wt UCP3L cDNA according to the

manufacturer’s protocol. Recombinant constructs were purified

using a Qiagen column (Qiagen S.p.A., Milan, Italy) and

sequenced on both strands.

Cell culture and UCP3 protein expression

HEK293 cells were grown in Dulbecco’s modified Eagle’s

medium supplemented with 10% fetal bovine serum,

100unitsml–1 penicillin and 100 mgml–1 streptomycin

(Invitrogen S.r.l.) at 37 1C with 5% CO2. The plasmids

expressing the wt or the mutated UCP3 proteins were

transiently transfected in HEK293 cells using Lipofectamine

2000 reagent (Invitrogen S.r.l.) according to the manufac-

turer’s instructions. The pRL CMV vector (Promega Italia

S.r.l., Milan, Italy) expressing the Renilla luciferase cDNA

(Rluc) reporter gene was co-transfected (0.1 mg) and used as

internal control reporter to verify transfection efficiency.

All the experiments were performed at 24h post-transfec-

tion: at this time, we verified that the wt and mutants UCP3

proteins were expressed in appreciable amounts and cor-

rectly localized in the mitochondria. We also performed a

cell-viability test, using Trypan blue (Sigma-Aldrich S.r.l.)

according to the manufacturer’s protocol and we observed

100% cell viability at 24h post-transfection.

Preparation of mitochondrial and submitochondrial extracts
and western blot

HEK293 cells were transiently transfected with plasmids that

express wt or mutant UCP3 proteins. At 24h after transfec-

tion, cells were washed in phosphate-buffered saline (PBS)

pH 6.9 (Sigma-Aldrich S.r.l.), harvested and mitochondrial

protein extracts were prepared using the Qproteome Mito-

chondria Isolation Kit (Qiagen S.p.A.) according to the

manufacturer’s instructions. Submitochondrial protein ex-

tracts were prepared from mitochondria freshly isolated as

described above. Briefly, mitochondria were resuspended in a

hypotonic medium (10mM KCl, 2mM HEPES, pH 7.2) and

incubated for 20min on ice to swell mitochondria and break

the outer mitochondrial membrane, thereby releasing

proteins from the intermembrane space. The swollen mito-

chondria were subsequently centrifuged at 11 200 r.p.m. and

the supernatant (containing the soluble intermembrane

space proteins) and the pellet (containing proteins on or

associated with the inner mitochondrial membrane and

matrix) were collected. Protein concentration was deter-

mined using the Bio-Rad protein assay kit (Bio-Rad Labora-

tories S.r.l., Segrate, Milan, Italy).

For western blot analysis, 40 mg of mitochondrial and

submitochondrial protein fractions were run on a 12%

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

gel and transferred to a nitrocellulose membrane (GE

Healthcare Europe–Amersham). Membranes were incubated

for 1h and 30min at room temperature with specific

antibodies and then incubated for 1h with antibody–horse-

radish peroxidase-conjugated anti-mouse Ig (1:3000 Sigma-

Aldrich). Immunoreactive bands were visualized with the

enhanced chemiluminescence reagents kit (ECL; GE Health-

care Europe–Amersham) according to the manufacturer’s

instructions. We used antitumor necrosis factor type 1

associated protein, TRAP-1 antibody (1:1000; Santa Cruz

Biotechnology Inc., Santa Cruz, CA, USA), anti-COX-IV

mouse monoclonal antibody (1:1000; Santa Cruz Biotech-

nology Inc.), anti-FLAG antibody (1:5000) and anti-tubulin

antibody (1:500; Sigma-Aldrich S.r.l.).20,21

Palmitate oxidation and telmisartan treatment

Wt and mutant UCP3 proteins were expressed in HEK293

cells to evaluate the role of UCP3 in long-chain fatty acid

Promoter-Fw 50-GCGTCCACAGCTTAAAGGAG-30

Promoter-Rev 50-GAACAAGGAGAAGGGAGAGG-30

UCP3-F2 50-ATCACTCCATCAGCCTTCTC-30

UCP3-F2 50-TCTTTGTCAGGGTTCTGAGG-30

UCP3-F3 50-CAGCATGGTTGTTCTCAGGC-30

UCP3-F3 50-TGCCTCTGAGTCTAGACTTC-30

UCP3-F4 50-AGGAGGTCTGAGTGGACATC-30

UCP3-F4 50-GTCAGTGAAGTATCTTTGGTTGTG-30

UCP3-F5 50-CATTTCTCCCATTTCCCATTCC-30

UCP3-F5 50-TCCTTCTAAAACCCAGTTGCC-30

UCP3-F6 50-TTGGGGACAAACAGTGCATAC-30

UCP3-F6 50-GTACTCTTCACCGCTACATC-30

UCP3-F7 50-GAGAGCACACGCATCTGTTG-30

UCP3-F7 50-TCTGTGTCCATGTGTGCGTG-30
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oxidation. HEK293 cells were seeded into 24-well plates and

transiently transfected with either wt or mutant UCP3-

expressing constructs alone or with wt and mutant UCP3-

expressing constructs in equal amounts (1:1 ratio), such that

the amount of DNA transfected each time was the same

(namely, 0.8 mg). The pRL CMV vector was also co-trans-

fected. Palmitate oxidation was measured as reported else-

where.22 Briefly, 24h after transfection, cells were washed

with PBS and incubated with 500 ml of preincubation

medium (Krebs Ringer Bicarbonate Medium; Sigma-Aldrich

S.r.l.) containing 0.5 g l–1 BSA (fatty acid free; Sigma-Aldrich

S.r.l.) for 1h. After preincubation, the medium was removed

and 200 ml of incubation medium (110 mmol l–1 palmitate,

16.7Ciml–1 [3H] palmitate and 0.5 g l–1 BSA in PBS) were

added to each well, which were incubated at 37 1C for 2h.

The incubation medium was transferred to columns contain-

ing B3ml of Dowex-1 ion-exchange resin (Sigma-Aldrich

S.r.l.) previously charged with 1.0mol l–1 NaOH and washed

with MilliQ water until the eluate had the same pH as the

water. Then, each well was washed once with 300 ml of PBS

that was collected and applied to the columns. The columns

were finally washed with 2ml of water. The resin binds the

nonmetabolized palmitate and allows the tritiated water

produced by b-oxidation to pass through. The eluate (2.5ml)

was collected in a scintillation vial. Then, 6ml of scintilla-

tion cocktail (Picofluor 40; Packard Instruments Co Inc.,

Downers Grove, IL, USA) was added to each vial and the vials

were counted in a liquid scintillation counter Tri-CARB 1500

(Packard Instrument Co Inc.). For each sample, counts per

min (c.p.m.) were normalized to the luciferase activity

determined by the Dual-Luciferase Reporter Assay System

(Promega Italia S.r.l.), according to the manufacturer’s

instructions. The background signal was determined on

untransfected control cells.

To evaluate the effects of the angiotensin II antagonist

telmisartan on long-chain fatty acid b-oxidation in the

presence of wt and mutated UCP3 proteins, HEK293 cells

were transfected with wt UCP3L-expressing construct alone

or co-transfected with wt and mutant UCP3-expressing

constructs in equal amounts (1:1 ratio). At 24h after

transfection, cells were incubated first with 500 ml of

preincubation medium for 1h at 37 1C and then with

200 ml of a medium containing 110 mmol l–1 palmitate and

0.5 g l–1 BSA in PBS for 3h. After the first 30min, telmisartan

(Sigma-Aldrich S.r.l.) was added to the medium at a final

concentration of 10 mM,
14 and the incubation was continued

for an additional 1h and 30min. During the last 1h of

incubation, [3H] palmitate (16.7Ciml–1) was added to the

cells. Lastly, palmitate oxidation was measured in the

medium, as reported above.

Oil Red O staining

Intracellular triglyceride accumulation was determined by

Oil Red O staining. Briefly, HEK293 cells were seeded in poly-

D-lysine eight-well culture slides (VWR International S.r.l.,

Milan, Italy), and transiently transfected with either wt or

mutant UCP3-expressing plasmids alone or with wt and

mutant UCP3 constructs in a 1:1 ratio, such that the amount

of DNA transfected each time was the same (namely, 0.4mg).

At 24h after transfection, cells were treated with 500mM and

1mM palmitate (Sigma-Aldrich, S.r.l.) complexed with BSA for

24h. Then, cells were washed twice with PBS, fixed in a 10%

formalin-containing PBS solution for 15min and stained

with Oil Red O working solution (5mg Oil Red O mlÿ1

isopropanol) for 15min at room temperature. Cells were

counterstained with hematoxylin and then covered with a

coverslip. The stained lipids were viewed and photographed

using a phase-contrast microscope (Leica Microsystems S.r.l.,

Milan, Italy) at �40 magnification. The number of Oil Red

O-stained lipid droplets/number of cells were counted. At least

five randomly chosen fields were counted for each sample.

Statistical analysis

Allele frequencies were calculated by allele counting, and the

deviation from Hardy–Weinberg equilibrium was evaluated

by w
2 analysis. The difference between metabolic and

anthropometric variables in the two groups, wt and hetero-

zygous mutation carriers, was evaluated by one-way analysis

of variance. The statistical analysis was performed with SPSS

software, version 10 (IBM, Chicago, IL, USA). The data

relative to functional analysis are shown as mean±s.d. and

were analyzed with the Student’s t-test. Differences were

considered statistically significant at a P-value of o0.05.

Results

Clinical, biochemical and genetic features of study participants

All clinical and biochemical parameters were within refer-

ence intervals for the mean age of the sample (Table 1). The

200 obese children had only high BMI-standard deviation

score (mean 3) and waist-to-hip ratio (mean 0.97) values as

expected in a sample with an average age of 5.5 years and

early-onset obesity o4 years. Clinical (BMI, diastolic and

systolic blood pressure) and biochemical characteristics

(serum total cholesterol, triglycerides, glucose, aspartate

aminotransferase and alanine aminotransferase) of the

control normal-weight young subjects were in the reference

range for the mean age of the sample (24.2 years).15

To determine whether UCP3 gene variants contribute to

the early-onset of obesity, we genotyped the cohort of

severely obese children and 100 normal-weight non-diabetic

subjects living in Southern Italy. We found three novel

missense (V56M, A111V and V192I), one non-sense (Q252X,

which generates a truncated protein) and two silent (S101S

and A122A) mutations in the obese children and one

polymorphism (V9V) in two normal-weight and two obese

children. We also found a nucleotide change (10 372 C/T) in

intron 4 in one obese child (Table 2). All mutations are in the

heterozygous state; mutations A111V, V192I and Q252X
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were found in three unrelated probands; mutation V56M

was found in two male siblings and in an unrelated girl

(Table 2). We also analyzed the ÿ55C/T polymorphism in the

promoter region of the UCP3 gene in the obese and control

groups. The genotype distribution for UCP3 ÿ55C/T (CC, CT,

TT) was in Hardy–Weinberg equilibrium. Genotype and

allele frequencies did not differ between obese and non-

obese subjects (Table 2).

To exclude the involvement of other obesity gene variants

in the increased fat mass in our obese subjects, we genotyped

them for POMC, MC4R and UCP1 variants, but found no

mutations.

The parents of the 200 obese children were invited to

undergo genotyping to determine the mode of transmission

of mutations in families, but only the parents of the girl

carrying mutation V56M consented to genotyping. As

shown in Figure 1, the mother, who was severely obese

(BMI 50.6), carried mutation V56M in the heterozygous

state, similar to her daughter. Furthermore, she had waist

circumference of 114 cm (normal 80 cm) and was affected

by type 2 diabetes and hypertension. Mutation V56M was

absent from the father, who was overweight (BMI 29.4) and

also affected by type 2 diabetes, hypertension and dyslipi-

demia. Their daughter was severely obese (BMI 43.5); of her

two sisters, one was overweight (BMI 26.3) and the other was

obese (BMI 33.8), but they were not available for genotyping.

Interestingly, the three children carrying mutation V56M

had a much higher percentage of fat mass (B50.0%) than the

children carrying other UCP3 gene mutations (between 36

and 45%). Furthermore, the girl carrying mutation V56M

(see Figure 1) had elevated systolic blood pressure

(130mmHg), low levels of high-density lipoprotein choles-

terol (39mgdl–1), high levels of low-density lipoprotein

cholesterol (113.4mgdl–1) and a high HOMA index (11.3).

Hence, this girl had three components of the metabolic

syndrome, as did her parents, plus insulin -resistance.

Table 2 Mutations and polymorphisms detected in the UCP3 gene in severely obese children (n¼200) and non-obese controls (n¼ 100) living in Southern Italy

Region Nucleotide change Amino-acid change Obese, n (%) Control group, n (%)

UCP3 variants

50-UTR ÿ55 C/C; C/T; T/T F 143 (75.6); 44 (23.3); 2 (1) 65 (73.6); 22 (25.3); 1 (1.1)

Exon 2 8990 G/A V9V 2 (1) 2 (2)

Exon 3 9666 G/A V56M 3 (1.5) F

Exon 3 9832 C/T A111V 1 (0.5) F

Exon 3 9576 C/T S101S 1 (0.5) F

Exon 4 10 099 C/T A122A 1 (0.5) F

Exon 5 11 449 G/A V192I 1 (0.5) F

Exon 6 12 105 C/T Q252X 1 (0.5) F

Intron 4 10 372 C/T F 1 (0.5) F

Abbreviations: UCP3, uncoupling protein 3; UTR, untranslated region.

Figure 1 Pedigree of the family with the V56Mmutation. The arrow indicates the female proband carrying the V56Mmutation. Status for BMI (kgm–2), % fat mass

(% FM), type 2 diabetes mellitus (type 2 DM), blood pressure, dyslipidemia and HOMA are indicated.
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Involvement of UCP3 wt and mutant proteins in long-chain
fatty acid metabolism

We investigated the effects of wt UCP3 proteins and V56M,

A111V, V192I and Q252X mutant proteins on long-chain

fatty acid oxidation and triglyceride storage in HEK293 cells.

HEK293 cells are, at present, the most widely used cell line

for in vitro studies in which expression plasmids are

transfected in order to produce proteins (also channel

proteins) and to study their activity. Wild-type long and

short UCP3 isoforms and mutant proteins were expressed in

HEK293 cells that lacked endogenous UCP3 protein in the

mitochondria. First, we evaluated the correct targeting of wt

and mutant proteins in the inner membrane and matrix

(IMM) using mitochondrial and sub-mitochondrial protein

fractions from HEK293-expressing wt or mutated UCP3

proteins. Both wt UCP3L and UCP3S isoforms were correctly

localized in the IMM, and were absent in the intermembrane

space (Figure 2a, lanes 2–4 and 17–19, respectively).

Similarly, all UCP3 mutant proteins were correctly localized

in IMM, and were absent in the intermembrane space

(Figure 2a, lanes 7, 10, 13, 16 and lanes 6, 9, 12, 15,

respectively).

We next evaluated the b-oxidation capacity of palmitate, a

long-chain fatty acid, in HEK293 cells expressing wt or

mutant UCP3 proteins and treated with 3H-labeled palmi-

tate. Palmitate b-oxidation capacity was evaluated by

measuring tritiated water produced by cells and it was

expressed as a percentage of UCP3L activity, taken as 100%.

The UCP3S isoform retained 55% of UCP3L activity

(Figure 2b); moreover, palmitate oxidation was significantly

reduced in HEK293 cells expressing the mutated proteins. In

particular, V56M and Q252X mutants retained only 40 and

35% of UCP3L activity, respectively. A111V and V192I

retained B45% of UCP3L activity (Figure 2b).

Because all mutations were found in the heterozygous

state, we tested the possibility that mutated proteins can

Figure 2 Sublocalization (a) and activity (b) of wt and mutant UCP3 proteins. (a) Western blot of mitochondrial (MIT) and submitochondrial (intermembrane

space (IMS) and IMM) protein extracts (40 mg) obtained from untransfected HEK293 cells (lane 1, Ctrl) and from HEK293 cells expressing wt UCP3L (lanes 2–4) and

V56M (lanes 5–7), A111V (lanes 8–10), V192I (lanes 11–13) and Q252X (lanes 14–16) mutant proteins. Protein extracts from cells expressing wt UCP3S (lanes

17–19) are also shown. A specific anti-FLAG monoclonal antibody was used to reveal wt and mutant UCP3 proteins. Anti-Trap-1 and anti-COX-IV antibodies were

used as control for IMM localization. (b) Activity of wt and mutant UCP3 proteins calculated as percentage of 3H-labeled palmitate oxidation. Percentage of

palmitate oxidation capacity of wt UCP3 isoforms (UCP3L, white bar and UCP3S, light gray bar) and of V56M, A111V, V192I and Q252X mutant proteins (black

bars) in HEK293 cells. We assigned an arbitrary value of 100% to UCP3L isoform activity. Palmitate b-oxidation capacity was also assayed in HEK293 cells

coexpressing UCP3L isoform and mutant proteins in equal amounts (V56M/UCP3L, A111V/UCP3L, V192I/UCP3L, Q252X/UCP3L and UCP3S/UCP3L, gray bars).

Data represent the means±s.d. of four different experiments. *Po0.05 and **Po0.01 represent statistical differences vs UCP3L.
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exert a dominant-negative effect on wt UCP3L activity. We

choose to refer all successive analyses to long isoform of

UCP3 (UCP3L) activity in that the UCP3L protein is the only

isoform detectable in the human skeletal muscle also using

such large amounts of protein mitochondrial extracts as

15mg.5 To this aim, we co-transfected equal amounts of

UCP3L-expressing construct with constructs expressing

V56M, A111V, V192I or Q252X in HEK293 cells, and

evaluated the dominant-negative effect of mutated proteins

on UCP3L activity by determining palmitate b-oxidation

capacity. V56M and Q252X mutants exerted a dominant-

negative effect on UCP3L activity, whereas A111V and V192I

activity were rescued by UCP3L co-transfection (Figure 2b).

Also, the UCP3S isoform activity was only partially rescued

in co-transfected cells mimicking a slight dominant-negative

effect on UCP3L activity (Figure 2b).

Interestingly, the V56M mutant protein was associated

with higher BMI, percentage of fat mass and HOMA and

insulin values in obese children carrying UCP3 mutations.

To evaluate the role of long and short wt UCP3 isoforms in

the prevention of triglyceride storage, we treated HEK293

cells expressing wt UCP3 isoforms (long and short) or

mutant proteins with 500 mM or 1mM palmitate and

evaluated triglyceride storage by Oil Red O staining. Similar

results were obtained with either palmitate concentration.

The number of Oil Red O-positive spots was significantly

lower in cells expressing the UCP3L isoform than in

untransfected cells (Control (Ctrl); Figures 3a and b, compare

UCP3L with Ctrl). As expected, neither the UCP3S isoform

nor the four mutant proteins prevented triglyceride storage

(Figures 3a and b), although at different extent, as shown by

the higher number of Oil Red O-positive spots compared

with UCP3L-expressing cells. Again, as expected, UCP3L co-

transfection partially rescued the activity of the A111V and

V192I mutant proteins as well as UCP3S isoform but did not

affect the activity of the V56M and Q252X dominant-

negative mutant proteins (Figure 3b). Interestingly, subjects

carrying V56M or Q252X dominant-negative mutations had

the highest plasma non-esterified fatty acid values, mild liver

steatosis and higher fat mass and lower free fat mass values

(data not shown).

Telmisartan improved palmitate oxidation capacity in HEK293
cells coexpressing UCP3L and mutant proteins

Telmisartan, 10 mM, increases fatty acid oxidation in skeletal

muscle by activating the peroxisome proliferator-activated

receptor-g pathway.14 Therefore, we evaluated whether

telmisartan improves palmitate b-oxidation capacity in cells

coexpressing the UCP3L isoform and mutated UCP3 pro-

teins. HEK293 cells were transiently transfected with UCP3L-

expressing construct alone or co-transfected with constructs

expressing the UCP3L and V56M, A111V, A192I and Q252X

mutant proteins in equal amounts in order to mimic the

heterozygous state of probands. Telmisartan, 10 mM, was

added to the culture for 3h and long-chain fatty acid

b-oxidation capacity was evaluated in the presence of

tritiated palmitate. Palmitate oxidation capacity was calcu-

lated as percentage with respect to UCP3L-expressing cells in

the absence of telmisartan taken as 100% (Figure 4, UCP3L).

We found that 10 mM telmisartan increased b-oxidation

capacity in cells expressing UCP3L, by B40% with respect

to untreated cells. b-Oxidation capacity was also significantly

higher in telmisartan-treated cells coexpressing UCP3L and

all mutant proteins than in the untreated counterpart cells

(Figure 4, compare gray with black bars). Interestingly,

telmisartan increased b-oxidation capacity by approximately

two- to three-fold in cells coexpressing UCP3L and the

dominant-negative mutants Q252X and V56M.

Discussion

Different functional roles have been postulated for UCP3:

UCP3 has been implicated in fatty acid metabolism in

conditions of excess mitochondrial fatty acid supply;23,24

UCP3 is involved in body energy balance. In fact, mice

overexpressing human UCP3 have a lower body weight than

wt mice.25–28 Furthermore, observational studies in humans

showed that UCP3 protein expression was reduced by 40%

after weight loss in type 2 diabetic patients,11 and UCP3

protein expression was negatively correlated with BMI in

non-diabetic obese subjects.29

In humans, UCP3 expression is restricted to skeletal

muscle. Because skeletal muscle is responsible for most of

the daily energy expenditure, and a reduction in energy

expenditure is a risk factor for the development of obesity,30

UCP3 has been indicated as an obese susceptibility gene.

Furthermore, the UCP3 gene was mapped on chromosome

11q13, in a region that has been linked to obesity and

hyperinsulinemia.31

Several UCP3 gene variants have been implicated in

obesity in humans.32–34 The most extensively studied UCP3

variant is the ÿ55C/T polymorphism in the promoter region.

The association of this polymorphism with overweight is

controversial. In fact, it was associated with elevated UCP3

mRNA expression in male non-diabetic Pima Indians,35 with

an increased BMI in a French population,36 with an

increased hip-to-waist ratio in women of Asian origin37 and

with BMI and diabetes mellitus in a German population.38

Conversely, the ÿ55C/T polymorphism was associated with a

lower BMI in a UK population39 and in US Caucasian and

Spanish populations,40,41 whereas no association was found

between ÿ55C/T and BMI or percentage of body fat in

Danish obese and control subjects.42,43 In our cohort, we

found no association between ÿ55C/T and BMI, which is in

agreement with Dalgaard and Berentzen.42,43

Only few studies have been reported so far on the positive

association between UCP3 mutations and obese phenotype,

but no functional analyses were performed in eukaryotic

cells.32–34 Hence, the functional analysis of the wt and

Effects of UCP3 variants on fatty acid metabolism
CV Musa et al

7

International Journal of Obesity



mutant UCP3 proteins identified in our severely obese

children is the first attempt made in eukaryotic cells

to unravel the role of UCP3 in handling long-chain

fatty acids.

In our experimental system, the UCP3 short isoform is

localized in the IMM and shows a slight dominant-negative

effect on UCP3 long isoform activity. Further experiments

are required to validate the functional activity of the short

isoform of UCP3, also in muscle cells. Similarly, it will be

necessary to define in vivo the expression and the localiza-

tion of the Q252X mutant protein, which lacks the sixth

transmembrane domain.

Figure 3 Triglyceride storage of wt and mutant UCP3 proteins. (a) Oil Red O staining of HEK293 cells expressing wt UCP3L and UCP3S isoforms and mutant

V56M, A111V, V192I and Q252X UCP3 proteins treated with 1mM palmitate. Red points indicate triglyceride depots; �40 magnification. Ctrl indicates HEK293

cells not expressing UCP3 protein. (b) The number of Oil Red O-positive spots/number of cells is reported. Control (heavy gray bar) represents number of Oil Red

O-spots/number of cells in HEK293 not expressing UCP3 protein. Black bars represent Oil Red O-spots/number of cells in HEK293 expressing wt UCP3L or UCP3S

isoforms or V56M, A111V, V192I and Q252X mutant proteins; light gray bars represent Oil Red O-spots/number of cells in HEK293 coexpressing UCP3L isoform and

UCP3S isoform or mutant proteins in equal amounts (UCP3S/UCP3L, V56M/UCP3L, A111V/UCP3L, V192I/UCP3L and Q252X/UCP3L). Data represent the

means±s.d. of five different fields. #Po0.001 vs Control; *Po0.05, **Po0.01, ***Po0.005, ****Po0.001 vs UCP3L-expressing cells.
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The crystallographic structure of the UCP3 protein is not

available, and hence we are not able to correlate the

mutations identified with the UCP3 protein structure.

Regarding the structure, we can only speculate on the type

of amino acid substitution and/or on UCP3 domains in

which the changed amino acids are located. All the data

reported in our paper regarding the domains and the

transmembrane structures of the UCP3 protein were ob-

tained from the UniProT database. V56M is a mutation that

consists of a substitution of a non-polar amino acid in an

amino acid that is also non-polar. V56 amino acid, highly

conserved in eukaryotes, falls in a domain (Ith solute

carrier¼ solcar repeat) involved in transporting fatty acid

anions from the mitochondrial matrix into the intermem-

brane space. V192I is a substitution of a non-polar amino

acid in a hydrophobic amino acid. V192 amino acid, highly

conserved in eukaryotes, falls in the fourth transmembrane

domain included in the II solcar repeat. Despite the fact that

these two variants are located in important regions involved

in the transport of anions of fatty acids, they affect

differently the activity of UCP3L.

Similarly, we do not know if the Q252X variant is

essentially the same as making cells homozygous for UCP3S.

What we know is that in our experimental system, both the

Q252X mutant and the UCP3 short isoform are localized in

the mitochondria associated with the inner membrane

(IMM), but they show a different effect on UCP3L isoform

activity. In particular, the UCP3S isoform retained 55% of

UCP3L activity, whereas the Q252X mutant retained only

35% of UCP3L activity. However, as we mentioned pre-

viously,

in vivo, we never detected the UCP3S isoform in mitochon-

drial extracts from skeletal muscle biopsies. Moreover, we

have no data in vivo regarding the expression of the Q252X

mutated protein because muscle biopsies of the subject

carrying the Q252X mutation are not available.

UCP3 expression increases glucose metabolism and pro-

tects against hyperglycemia.25,44 Moreover, UCP3 messenger

and protein expression was found to be decreased in muscle

tissue of pre-diabetic and diabetic subjects.45,13 Because of

the early onset of obesity in our cohort (mean age 4 years),

we found no correlation between the HOMA index and the

activity of mutated UCP3 protein. However, the HOMA

index was elevated in two subjects carrying mutation V56M

(11.24 and 3.05, respectively, compared with the mean value

of 2.2 in our obese cohort), as were insulin plasma

concentrations (53.9 and 14.7, respectively, vs 10.82). We

re-examined the female proband carrying mutation V56M

10 years after the first observation when she was 17 years old.

She was still obese (BMI 47.6) and reported diet-resistant

weight gain. These data suggest a link between V56M and

severe human obesity, and extend our knowledge about the

role of UCP3 in fatty acid oxidation and in the prevention of

triglyceride storage. Interestingly, the highest percentage of

fat mass was found among obese subjects carrying the V56M

and Q252X dominant- negative mutants.

Telmisartan is both a selective peroxisome proliferator-

activated receptor modulator and an angiotensin II receptor

blocker.13,14,46–49 Recently, it was found to be effective in the

treatment of hypertension, to improve glucose and lipid

metabolism and to protect against diet-induced weight gain

and visceral fat accumulation. Telmisartan also increased

fatty acid metabolism in murine muscle myotubes by

decreasing acetyl CoA carboxylase 2 expression, thereby

resulting in inhibition of fatty acid synthesis and stimulation

of fatty acid oxidation.49 Finally, studies conducted in

Figure 4 Effects of telmisartan treatment on palmitate oxidation activity of wt and mutant UCP3 proteins. Oxidation of 3H-labeled palmitate in HEK293 cells

expressing either UCP3L isoform or UCP3L and mutant UCP3 proteins in equal amounts (V56M/UCP3L, A111V/UCP3L, V192I/UCP3L and Q252X/UCP3L), in the

absence (black bars) or presence (gray bars; þT) of telmisartan treatment. Data represent the means±s.d. of four different experiments reported as a percentage of

the value obtained for UCP3L-expressing cells in the absence of telmisartan treatment (UCP3L black bar) to which we assigned an arbitrary value of 100%. *Po0.05

and **Po0.005 vs UCP3L; #Po0.05, ##Po0.005 and ###Po0.001 vs corresponding black bar (–T).
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humans showed that telmisartan positively affected HbA1c,

total and low-density lipoprotein cholesterol and hyperten-

sion in type 2 diabetes patients.50–52 Consequently, telmi-

sartan could be used to treat obese, type 2 diabetes with

hypertension and hence reduce the risk of cardiovascular

diseases.

In conclusion, our data support the notion that protein

UCP3 is involved in long-chain fatty acid metabolism in

mitochondria and in the prevention of cytosolic triglyceride

storage. We also provide evidence that telmisartan improves

palmitate oxidation in cells expressing the dominant-

negative UCP3 mutant proteins V56M and Q252X. Further

experiments are needed in order to test if telmisartan may be

useful in subjects in whom fatty acid metabolism is severely

impaired.

Our future aim is also to enlarge our cohort study and to

investigate if the activity of mutant-negative UCP3 proteins

is correlated with dietary fat intake and/or with the degree of

daily physical activity.
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Abstract  

Maternal obesity is associated to increased fetal risk of obesity and other metabolic diseases. Human 

amniotic mesenchymal stem cells (hA-MSC) have not been characterized in obese women. The aim of 

this study was to isolate and compare hA-MSC immunophenotypes from obese (Ob-) and normal 

weight control (Co-) women to identify alterations possibly predisposing the fetus to obesity. We 

enrolled 16 Ob- and 7 Co-women at delivery (mean/SEM pre-pregnancy BMI: 40.3/1.8 kg/m
2
 and 

22.4/1.0 kg/m
2
, respectively) and 32 not pregnant women. hA-MSCs were phenotyped by flow 

cytometry; several maternal and newborn clinical and biochemical parameters were also measured. The 

expression of membrane antigen CD13 was higher on Ob-hA-MSCs than on Co-hA-MSCs (P=0.0043). 

Also serum levels of CD13 at delivery were higher in Ob- versus Co-pregnant women and correlated 

with CD13 antigen expression on Ob-hA-MSCs (r
2
=0.84, P<0.0001). Adipogenesis induction 

experiments revealed that Ob-hA-MSCs had a higher adipogenic potential than Co-hA-MSCs as 

witnessed by higher PPARg and aP2 mRNA levels (P=0.02 and P=0.03, respectively) at post-induction 

day 14 associated with increased CD13 mRNA levels from baseline to day 4 post-induction (P<0.05). 

Adipogenesis was similar in the two sets of hA-MSCs after CD13 silencing, whereas it was increased 

in Co-hA-MSCs after CD13 overexpression. CD13 expression was high also in Ob-h-MSCs from 

umbilical cords or visceral adipose tissue of not pregnant women. In conclusion, antigen CD13, by 

influencing the adipogenic potential of hA-MSCs could be an in-utero risk factor for obesity. Our data 

strengthen the hypothesis that high levels of serum and MSC CD13 are obesity markers.  
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Introduction  

The increase in the incidence of obesity in pregnant women in the last two decades has paralleled that  

observed in the general population [1-3]. Although maternal fat stores increase in all pregnant women, 

irrespective of pre-pregnancy weight [4], the storage capacity of subcutaneous adipose tissue (SAT) is 

impaired, and fat predominantly accumulates in visceral adipose tissue (VAT) [5]. VAT is an important 

risk factor for metabolic imbalance in human subjects, also during pregnancy [6-8]. In fact, maternal 

obesity is related to offspring obesity [9], and there is an increased risk of adverse outcomes for both 

mother and child [10-13]. Moreover, the risk of childhood obesity was quadrupled if the mother was 

obese before pregnancy [14], which suggests that the in utero environment is obesogenic. In mammals, 

the placenta is the main interface between fetus and mother; it regulates intrauterine development and 

modulates adaptive responses to suboptimal in utero conditions [15,16]. 

Placenta is also an important source of stem/progenitor cells [17-19]. In particular, human 

amniotic mesenchymal stem cells (hA-MSCs) have been shown to differentiate into cell types of 

mesenchymal origin such as chondrocytes, adipocytes and osteocytes [20-22]. The phenotype of hA-

MSCs from normal pregnant women has been characterized and found to differ in terms of cytokine 

expression from that of pregnant women affected by preeclampsia [23]. Thus far, little is known about 

hA-MSCs from obese women.  

The aim of this study was to characterize hA-MSCs from term placenta of obese (Ob-) women and 

to test their adipogenic potential with respect to that of normal weight control (Co-) women. We also 

measured several maternal and newborn clinical and biochemical parameters, and looked for 

correlations between these parameters with the hA-MSC immunophenotype. We found that the Ob-hA-

MSC immunophenotype was characterized by increased expression levels of the CD13 surface antigen 

that correlated with maternal CD13 serum levels. Adipogenesis was higher in Ob-hA-MSCs than in  

Co-hA-MSCs, and returned to the control value after CD13 silencing. On the other hand, CD13 
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overexpression increased the adipogenic potential of Co-hA-MSCs. Our findings suggest that CD13 

could contribute to obesity programming in the fetus and indicates that maternal serum CD13 is an 

obesity risk marker.  

 

Materials and methods 

Patients and controls 

Sixteen Ob- (age range: 26–39 years) and seven Co-pregnant women, (age range: 26–38 years), pre-

pregnancy BMI (mean/SEM) 40.3/1.8 kg/m
2 

and 22.4/1.0 kg/m
2
, respectively and thirty-two not 

pregnant women (16 obese and 16 normal weight, BMI >30 kg/m
2 

and <25 kg/m
2
, respectively) were 

recruited at the Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, 

University of Naples “Federico II”. The clinical, personal and family history of the 23 women was 

recorded during a medical interview conducted by an expert upon hospitalization. Data relative to each 

pregnancy follow-up and delivery were also recorded. The general characteristics of the newborn and 

clinical data (birth weight, length, head circumference, Apgar score) were recorded at birth.  

 

Sample collection  

Two fasting peripheral blood samples were collected in the morning from not pregnant women and 

from Ob- and Co-pregnant women, immediately before delivery. One sample was used for DNA 

extraction, whereas the other was centrifuged at 2,500 rpm for 15 min and serum was stored at -80°C 

until further processing. At delivery, placentas were collected by C-section from each enrolled women 

and immediately processed. Bioptic samples of visceral adipose tissue (VAT) were also collected from 

not pregnant obese and control women during obstetric surgery (ovarian cysts). All patients and 

controls gave their informed consent to the study and both parents gave consent for their newborns. 
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The study was performed according to the Helsinki II Declaration and was approved by the Ethics 

Committee of our Faculty.  

 

Biochemical evaluations  

The main serum biochemical parameters were evaluated by routine assays. Leptin and adiponectin 

were measured in maternal serum with Luminex xMAP Technology on a BioRad Multiplex 

Suspension Array System (Bio-Rad, Hemel Hempstead, Herts., UK), according to the manufacturer’s 

instructions. The ratio leptin/adiponectin (L/A) was also calculated.  

 

Aminopeptidase N/CD13 ELISA assay  

Aminopeptidase N (APN)/CD13 serum levels were measured by ELISA (Life Science, Houston). 

Briefly, the microtiter plate was pre-coated with a specific anti-CD13 antibody. Standards or samples 

were then added to the appropriate microtiter plate wells with a biotin-conjugated polyclonal antibody 

preparation specific for CD13. Next, avidin conjugated to horseradish peroxidase was added to each 

microplate well and incubated for 15 min at room temperature. A TMB substrate solution (3,3´,5,5´-

tetramethylbenzidine) was then added to each well. The enzyme-substrate reaction was terminated by 

the addition of a sulphuric acid solution and the color change was measured spectrophotometrically at a 

wavelength of 450 nm. The amount of CD13 in each sample was determined by comparing the 

absorbance of the sample to a standard curve. 

 

Cell isolation from placenta tissue 

Placentas were collected and immediately processed, according to Parolini et al. [24]. After removal of 

the maternal decidua, the amnion was manually separated from the chorion and extensively washed 5 

times in 40 mL of phosphate-buffered saline (PBS) containing 100 U/mL penicillin, 100 μg/mL 

 Page 5 of 36 

S
te

m
 C

el
ls

 a
n
d
 D

ev
el

o
p
m

en
t

H
ig

h
 A

m
in

o
p
ep

ti
d
as

e 
N

/C
D

1
3
 L

ev
el

s 
C

h
ar

ac
te

ri
ze

 H
u
m

an
 A

m
n
io

ti
c 

M
es

en
ch

y
m

al
 S

te
m

 C
el

ls
 a

n
d
 D

ri
v
e 

T
h
ei

r 
In

cr
ea

se
d
 A

d
ip

o
g
en

ic
 P

o
te

n
ti

al
 i

n
 O

b
es

e 
W

o
m

en
 (

d
o
i:

 1
0
.1

0
8
9
/s

cd
.2

0
1
2
.0

4
9
9
)

T
h
is

 a
rt

ic
le

 h
as

 b
ee

n
 p

ee
r-

re
v
ie

w
ed

 a
n
d
 a

cc
ep

te
d
 f

o
r 

p
u
b
li

ca
ti

o
n
, 
b
u
t 

h
as

 y
et

 t
o
 u

n
d
er

g
o
 c

o
p
y
ed

it
in

g
 a

n
d
 p

ro
o
f 

co
rr

ec
ti

o
n
. 
T

h
e 

fi
n
al

 p
u
b
li

sh
ed

 v
er

si
o
n
 m

ay
 d

if
fe

r 
fr

o
m

 t
h
is

 p
ro

o
f.



6 

6 

 

streptomycin and 250 μg/mL amphotericin B (all from Sigma-Aldrich, Missouri) after which it was 

mechanically minced into small pieces [24]. Amnion fragments were digested overnight at 4°C in 

ACCUMAX
®
 reagent (Innovative Cell Technology, San Diego), a combination of DNase, protease and 

collagenolytic enzymes [25], containing 100 U/mL penicillin, 100 μg/mL streptomycin and 250 μg/mL 

amphotericin B. The next day, digestion enzymes were inactivated with complete culture medium 

constituted by low glucose D-MEM (Sigma-Aldrich) supplemented with 10% of heat-inactivated 

bovine serum (FBS), 1% of non-essential amino acids and 2% of Ultraglutamine (all from Lonza, 

Basel, Switzerland). After centrifugation at 300g for 10 min, cell pellets and digested tissue fragments 

were seeded in a cell culture dish (BD Falcon, New York) in complete culture medium and incubated at 

37°C in 5% CO2. One week later, digested tissue pieces were removed from the dish and discarded, and 

isolated cells formed distinct fibroblast colony-forming units. When the colonies reached 70% 

confluence, they were washed with PBS and detached with trypsin/EDTA (Sigma-Aldrich), counted 

and reseeded in complete medium for expansion at a concentration of about 5,000/cm
2 

[24].  

 

Cell preparation  

hA-MSCs were expanded for several passages. Absence of mycoplasma contamination was assessed as 

described previously [26]. The population-doubling level was calculated for each subcultivation with 

the following equation: population doubling= [log10 (NH) ─ log10 (NI)]/ log10 (2), where NI is the cell 

inoculum number and NH is cell harvest number [27]. The increase in population doubling was added 

to the population doubling levels of the previous passages to yield the cumulative population doubling 

level. When 70%-80% confluent cultures reached about 4 population doublings they were detached 

with trypsin/EDTA, resuspended in PBS with 10% FBS, and processed for flow cytometry, DNA and 

RNA extraction. Cellular viability was assessed by both Trypan blue dye exclusion and the analysis of 

light scatter proprieties in flow cytometry, and it was never lower than 90%.  
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Using the above cell isolation and preparation procedures, h-MSCs were also isolated from umbilical 

cord (hUC-MSCs) of one obese and one control pregnant woman. 

 

Isolation of visceral adipose tissue mesenchymal stem cells (hVAT-MSCs) 

Briefly, VAT bioptic samples were washed with phosphate buffered saline (PBS) containing 100 U/mL 

penicillin, 100 μg/mL streptomycin and 250 μg/mL amphotericin B (all from Sigma-Aldrich), minced 

into small pieces and digested with 1.5 mg/ml collagenase type I (GIBCO, USA) at 37C°. The 

digestion enzymes were inactivated with FBS. After centrifugation at 1500g for 5 min, cell pellets and 

digested tissue fragments were washed and seeded in a cell culture dish (BD Falcon, New York) in 

complete culture medium and incubated at 37°C in 5% CO2. When the colonies reached 60-70% 

confluence, they were washed with PBS and detached with trypsin/EDTA (Sigma-Aldrich), counted 

and reseeded in complete medium for expansion at a concentration of about 5,000/cm
2 

[28]. 

 

DNA typing  

The fetal origin of both amnion and hA-MSCs was verified by DNA typing. Genomic DNA was 

extracted from the mother’s peripheral blood, from amnion samples and from hA-MSCs using the 

Nucleon BACC2 extraction kit (Illustra DNA Extraction Kit BACC2, GE Healthcare, Calfont St. Giles, 

Bucks., UK). DNA concentration was evaluated using the NanoDrop® ND-1000 UV-Vis 

spectrophotometer (NanoDrop Technologies, Wilmington, DE). Genomic DNA (1 ng) was amplified in 

a final volume of 25 µL using the AmpFlSTR® Identifiler™ PCR Amplification Kit (Applied 

Biosystems, Foster City). The AmpFlSTR® Identifiler™ PCR Amplification Kit is a short tandem 

repeat (STR) multiplex assay that amplifies 15 repeat loci and the Amelogenin gender determining 

marker in a single PCR amplification using a primer set labeled with four fluorescent molecules. The 

amplification was performed with the GeneAmp PCR System 9700 (Applied Biosystems) instrument. 
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PCR products were then analyzed by capillary electrophoresis on the ABI Prism 3130 Genetic 

Analyzer (Applied Biosystems) together with an allelic ladder that contained all the most common 

alleles for the analyzed loci that were present in Caucasian populations and both a negative- and a 

positive-quality control sample. Typically, 1µL of each sample was diluted in 18.7µL of deionized 

formamide; each sample was supplemented with 0.3µL of an internal size standard (LIZ 500 Applied 

Biosystems) labeled with an additional fluorophore. The samples were denatured at 95 °C for 4 min 

and then placed in the auto sampler tray (maximum of 96 samples) on the ABI Prism 3130 for 

automatic injection in the capillaries. The data were analyzed by Gene Mapper Software (Applied 

Biosystems). 

 

Immunophenotyping of h-MSCs by flow cytometry 

We analyzed the expression of 38 hematopoietic, mesenchymal, endothelial, epithelial and no-lineage 

membrane antigens on the surface of hA-MSCs, hUC-MSCs and hVAT-MSCs by four-color flow 

cytometry (Table 1). The antibody cocktails contained in each tube are detailed in Supplementary 

Table 1. All monoclonal antibodies (MoAbs) were from Becton Dickinson (San Jose) except anti-

CD338-APC, which was from R&D (Minneapolis), anti-CD-133-PE and anti-CD271-APC MoAbs, 

which were from Milenyi Biotec (Bergisch Gladbach, Germany). For all antibody staining 

experiments, at least 1x10
5 

hA-MSCs isolated from each placenta sample were incubated at 4°C for 20 

min with the appropriate amount of MoAbs, washed twice with PBS and finally analyzed with an 

unmodified Becton-Dickinson FACSCanto II flow cytometer (Becton-Dickinson, San Jose), that was 

set up according to published guidelines [29]. For each sample the respective control was prepared in 

order to determine the level of background cellular autofluorescence without antibody staining. 

CaliBRITE beads (Becton-Dickinson, catalog no. 340486) were used as quality controls across the 

study as described elsewhere [30, 31], according to the manufacturer’s instructions. Daily control of 
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CaliBRITE intensity showed no change in instrument sensitivity throughout the study. The relative 

voltage range for each detector was assessed una tantum using the “eight-peak” technology (Rainbow 

Calibration Particles, Becton-Dickinson, catalog no. 559123) at the beginning of the study. 

Compensation was set in the FACS-DiVa (Becton-Dickinson) software, and compensated samples 

were analyzed. Samples were acquired immediately after staining using the FACSCanto II instrument, 

and at least 10,000 events were recorded for each monoclonal combination. Levels of CD antigen 

expression were displayed as median fluorescence intensity (MFI). The FACS-DiVa software (Becton-

Dickinson) was used for cytometric analysis. 

 

Differentiation potential towards the adipogenic lineage 

hA-MSCs and hVAT-MSCs were cultured in low glucose D-MEM (Sigma-Aldrich) supplemented 

with 10% of FBS, 2% of ultraglutamine and 1% of non-essential amino acids at 37°C in 5% CO2 (all 

from Lonza, Basel, Switzerland). The cells were passaged twice before the addition of differentiation 

medium composed of DMEM with the addition of 10% FBS, 1 µM dexamethasone, 0.5 mM 3-

isobutyl-1-methylxhantine, 200 µM indomethacin and 10 mg/mL insulin. Media were changed every 

two days and cells were either stained or collected for RNA extraction. 

 

CD13 RNA interference and overexpression 

hA-MSCs plated at a density of 5,000 cells/cm
2
 were transfected using 20 mL Lipofectamine 2000 

according to the manufacturer’s instructions (Invitrogen, Paisley, UK) with 8 mg short hairpin RNAs 

(shRNAs)-expressing plasmids (Open Biosystem, Huntsville) or with 8 mg pCMV-Sport 6 Vector 

(Invitrogen, Paisley, UK), to silence or to overexpress CD13 mRNA, respectively. Transfected cells 

were induced to differentiate towards the adipogenic lineage up to 4 days.  
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Effect of IFN-g on the expression of CD13 on the surface of h-MSCs 

The expression of CD13 on the surface of Co- and of Ob-h-MSCs isolated from amnion, umbilical cord 

and VAT was measured after exposure of cells to 0.8 and 12.5 ng/mL IFN-g at 37° C for 24 h, using 

untreated Co- and Ob-h-MSCs as controls. At the end of incubation, the cells were harvested by 

trypsin, washed in PBS, counted, and adjusted to the same concentrations of 1x10
5 

h-MSCs. 

Subsequently, their immunophenotype was examined by flow cytometry. 

 

Adipocyte staining  

After 14 days of differentiation, the adipocyte cultures were stained for lipid droplets, which are an 

index of differentiation. The cells were washed in PBS and fixed in 10% formalin for 1 h. Then they 

were washed in PBS and the lipids were stained for 15 min with Oil-red-O prepared by mixing 

vigorously three parts of stock solution (0.5% Oil-red-O in 98% isopropanol) with two parts of water 

and then eliminating undissolved particles with a 0.4-mm filter. Cells were then washed with water and 

the number of adipocytes was evaluated with a microscope. Relative lipid levels were assessed by 

redissolving the Oil-Red-O present in stained cells in 98% isopropanol and then determining 

absorbance at 550 nm. 

 

RNA isolation 

Total RNA was purified from hA-MSCs isolated from term placentas of Co- and of Ob-pregnant 

women using the mirVana
TM

 miRNA isolation kit (Ambion, Austin) and its concentration was 

evaluated with the NanoDrop® ND-1000 UV-Vis spectrophotometer (NanoDrop Technologies, 

Wilmington).  
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Quantitative real-time polymerase chain reaction (qRT-PCR) of mRNAs 

Real-time quantitative PCR was carried out on the Applied Biosystems 7900HT Sequence Detection 

system (Applied Biosystems). cDNAs were synthesized from 2 mg of total RNA using hexamer random 

primers and M-MuLV Reverse Transcriptase (New England BioLabs, Beverly). The PCR reaction was 

performed in a 20 µL final volume containing cDNA, 1X SYBR Green PCR mix, 10 µM of each 

specific primer. Supplementary Table 2 lists the oligonucleotide primers used for PCR of selected 

genes: peroxisome proliferator-activated receptor gamma (PPARg), CD13, protein homologous to 

myelin P2 (aP2), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The PCR conditions for 

reverse transcription were: stage 1: 50°C, 2 min; stage 2: 95°C, 10 min; stage 3: 95°C, 15 s; 60°C, 1 

min/40 cycles; and stage 4: 95°C, 15 s; 60°C, 1 min. Levels of target genes were quantified using 

specific oligonucleotide primers and normalized for GAPDH expression. 

 

Statistical analysis  

The parameters investigated were expressed as mean and standard error of the mean (SEM) (parametric 

distributions) or as median value and 25
th

 and 75
th

 percentiles (non parametric distributions). Student’s 

“t” and Mann-Whitney tests were used to compare parametric and nonparametric data, respectively. P 

values <0.05 were considered statistically significant. Correlation analysis was performed with the 

SPSS package for Windows (ver. 18; SPSS Inc., Headquarters, Chicago). 
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Results 

The clinical and biochemical characteristics of the mothers and their newborns are reported in Table 2 

(A and B, respectively). Weight gain was lower (P=0.025) and diastolic blood pressure was higher 

(P=0.039) in Ob- than in Co-pregnant women. Both leptin concentration (P<0.0001) and the L/A ratio 

(P<0.0001) were higher in Ob- than in Co-pregnant women at delivery. Biometric characteristics did 

not differ significantly between Ob- and Co-newborns. 

 

Isolation of hA-MSCs 

We isolated hA-MSCs from the mesenchymal layer of amniotic membranes obtained from our Ob- and 

Co-pregnant women at delivery. The fetal origin of all isolated hA-MSCs was confirmed by STR 

typing of DNA of the mother and of the hA-MSCs. Mycoplasma contamination of cultures was 

checked and excluded (data not shown). All isolated hA-MSCs were characterized by a high 

proliferation potential and collected after 4 population doublings. Morphologically, cultured Ob- and 

Co-hA-MSCs showed a similar fibroblastic-like morphology after 4 population doublings 

(Supplementary Fig. 1).  

 

Immunophenotyping of h-MSCs 

The antigenic mosaic displayed by Ob- and Co-hA-MSCs is shown in Table 3. Seventeen of the 38 

antigens investigated were not expressed on the surface of hA-MSCs (hematopoietic antigens: CD14, 

CD15, CD16, CD19, CD28, CD33, CD34, CD45 and CD117; the endothelial marker PECAM-1/CD31; 

and no-lineage markers: thrombospondin receptor/CD36, Bp50/CD40, Prominin-1/CD133, MDR-

1/CD243, NGFR/CD271, ABCG-2/CD338 and HLA-DR). Both Ob- and Co-hA-MSCs were positive 

for the following mesenchymal markers: CD9, CD10, CD13, CD26, CD29, CD44, CD47, CD49d, 

CD54, CD56, CD58, CD71, CD81, CD90, CD99, CD105, CD151, CD166, CD200 and HLA-ABC. A 
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very weak positivity for the epithelial antigen E-cadherin/CD324 was also observed. Interestingly, 

CD13 expression was significantly higher in Ob-hA-MSCs than in Co-hA-MSCs, i.e., MFI: 9,802.0 

and 3,950.0, respectively (P=0.0043) (Table 3 and Fig. 1A). The immunophenotype characterization 

confirmed the mesenchymal origin and the higher CD13 expression in hVAT-MSCs and hUC-MSCs 

from Ob- than from Co-women (hVAT-MSCs - MFI: 8,200.0 vs 1,100.0 and hUC-MSCs - MFI: 

4,965.0 vs 3,155.0, respectively). 

 

APN/CD13 serum levels  

We first measured baseline serum levels of CD13 in a small group of not pregnant obese and normal 

weight women and found significantly higher values in the obese subset (medians: 6.00 U/L and 1.00 

U/L, P=0.02, respectively) (Fig. 1B). The serum levels of CD13 were also significantly higher in Ob- 

than in Co-pregnant women at delivery (medians: 24.00 U/L and 7 U/L, P=0.002, respectively), (Fig. 

1B). CD13 levels were significantly higher in Ob- and Co-pregnant women than in not pregnant Ob- 

and Co-women: 4 (P=0.0003) and 7 times (P=0.003), respectively. Furthermore, in Ob-pregnant 

women, serum CD13 levels were significantly correlated to the levels of CD13 on the surface of hA-

MSCs (r
2
=0.84; P<0.0001) (Fig. 1C).  

 

CD13 h-MSC expression and adipogenic differentiation 

To investigate whether CD13 is involved in adipogenesis, we cultured Ob- and Co-hA-MSCs for 14 

days in adipogenic induction medium. At the end of incubation, the adipogenic potential, as measured 

by PPARg and aP2 mRNA levels, was higher in Ob- than in Co-hA-MSCs. In fact, as shown in Fig. 2A 

and 2B, the mean RQs at day 14 were 0.04 and 0.02, respectively for PPARγ (P=0.02), and 0.02 and 

0.01, respectively for aP2 (P=0.03). The same results were obtained with Oil-Red staining; in fact, 

staining was more intense in Ob- than in Co-hA-MSCs at day 14 of differentiation [Abs (550 nm) = 0.6 
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and 0.4, P=0.02, respectively] (Fig. 2C). During adipogenesis, CD13 mRNA levels remained higher in 

Ob- than in Co-hA-MSCs. CD13 silencing by shRNA in Ob-hA-MSCs resulted in a switch-off of 

CD13 mRNA expression, as evaluated by RT-PCR (Fig. 3A), and, at the same time, the adipogenic 

potential of these cells did not differ from that observed in Co-hA-MSCs, as shown by similar 

PPARg mRNA levels measured in silenced Ob-hA-MSCs and in Co-hA-MSCs (P=0.71) (Fig. 3B). In 

agreement to CD13 involvement in adipogenesis, we overexpressed CD13 in Co-hA-MSCs (mRNA 

CD13 mean RQ=7.23) and observed at day 4 of differentiation that PPARg mRNA levels were higher 

in treated (mean RQ=0.015) than in untreated (mean RQ=0.001) Co-hA-MSCs. The adipogenic 

potential at day 14 was also higher in Ob- than in Co-hVAT-MSCs isolated from not pregnant women 

[aP2: RQs were 0.050 and 0.036; Oil-red-O Abs (550 nm): 0.559 and 0.437, respectively].  

 

Upregulation of CD13 h-MSC expression by IFN-g 

We next evaluated if CD13 expression could be upregulated in h-MSCs by IFN-g as occurs in murine 

cellular models [32]. To this aim, we treated the Co- and Ob-hA-MSCs with 0.8 ng/mL or 12.5 ng/mL 

IFN-g for 24 h. We found that CD13 expression was significantly higher on membranes of Co-hA-

MSCs treated with 12.5 ng/mL IFN-g (P=0.04) than in untreated cells, whereas there was a slight, not 

significant, increase in treated Ob-hA-MSCs (Supplementary Fig. 2) versus the untreated counterpart 

cells. In addition, IFN-g treatment (12.5 ng/mL at 37° C for 24 h) induced the increase of CD13 

membrane expression in hVAT-MSCs (Ob- and Co-MSCs: 39% and 8%, respectively) and in Co-hUC-

MSCs (4%) versus the untreated counterpart cells, but not in Ob-hUC-MSCs. Our results suggest that 

high levels of INF-g drive the up-regulation of CD13 expression in Co-h-MSCs, irrespective of their 

source and of pregnancy, whereas its effect on Ob-h-MSCs CD13 expression during obesity is 

ambiguous.  
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Discussion 

Human amniotic membrane is a readily available source of abundant fetal MSCs that are free from 

ethical concerns [33]. hA-MSCs isolated from normal weight healthy women at delivery have been 

characterized [24, 34, 35], but, to our knowledge, the features of hA-MSCs from obese women are 

largely unknown. In this study, we used flow cytometry to characterize hA-MSCs isolated at delivery 

from two groups of women: pre-pregnancy normal weight and pre-pregnancy severely obese women. 

The immunophenotypic characterization confirmed the mesenchymal origin of the isolated cells [36]. 

In particular, the distribution of CD56 was in agreement with the placental origin of the isolated hA-

MSCs. In fact, this marker is absent from bone marrow [34] and from adipose tissue-derived 

mesenchymal stem cells [37]. Similarly, the endothelial marker PECAM-1/CD31, and the 

hematopoietic antigens CD14, CD15, CD16, CD19, CD28, CD33, CD34, CD45 and CD117 were 

absent from isolated Ob- and Co-hA-MSCs. Staining for the E-cadherin/CD324 epithelial antigen was 

very weak in our Ob- and Co-hA-MSC preparations; the co-expression of epithelial, albeit at a low 

intensity, and mesenchymal markers on our h-AMSCs was in agreement with previous findings [38, 

39]. Overall, our results are similar to those reported by Parolini et al. [24] and/or Roubelakis [35] 

regarding the expressed (CD49d, CD90, HLA-ABC, CD13, CD56, CD105, CD166, CD10, CD29, 

CD44 and CD54) and not expressed (PECAM-1/CD31, HLA-DR, CD14, Prominin-1/CD133, 

NGFR/CD271, CD34 and CD45) membrane-bound antigens in hA-MSCs. We found that the Ob-hA-

MSC immunophenotype is characterized by a significantly higher expression of the APN/CD13 antigen 

with respect to the Co-hA-MSC phenotype. Besides amnion, CD13 was overexpressed in h-MSCs 

isolated from umbilical cord in obese womenand in those isolated from VAT in not pregnant women.  

Type II metalloprotease APN/CD13 (EC. 3.4.11.2) is a heavily glycosylated membrane-bound 

protein (~ 960aa, ~ 150 kDA) that is encoded by the human ANPEP gene located on chromosome 15 

(q25-q26) [40]. This protein exists also in a soluble form. APN/CD13 is a ubiquitous enzyme present in 
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a wide variety of human organs, tissues and cell types including placenta, human umbilical vein 

endothelial cells, monocytes, lymphocytes T, hypothalamus, and epithelial intestinal cells [41]. It has 

various mechanisms of action: enzymatic cleavage of peptides, endocytosis and signal transduction 

[42]. APN/CD13 is involved in inflammation, cellular differentiation and proliferation, apoptosis, cell 

adhesion and motility [42]. Dysregulated expression of membrane and/or soluble forms of APN/CD13 

has been observed in many diseases [43], but until now it has never been associated with obesity. Here, 

we provide the first demonstration that the CD13 antigen is increased on hA-MSCs during obesity and 

could play a role in adipogenesis. In fact, we first detected a higher adipogenic potential in Ob- than in 

Co-hA-MSCs after 14 days of adipogenic differentiation and then observed that the adipogenic 

potential of Ob-hA-MSCs was comparable to that of Co-hA-MSCs after CD13 silencing. Conversely, 

the adipogenic potential increased in Co-hA-MSCs after CD13 overexpression. Furthermore, we 

provide evidence that INFg upregulated CD13 expression in Co-hA-MSCs.  

Intriguingly, in Ob-pregnant women APN/CD13 serum levels at delivery were higher than in Co-

pregnant women and correlated with CD13 surface Ob-hA-MSC expression (r
2
=0.89, P<0.0001), 

which support the hypothesis that the placenta is the major source of the high CD13 levels measured in 

maternal serum [44]. We also found that leptin concentration and the L/A ratio were increased in Ob-

maternal serum at delivery. This finding confirms the concept that these two parameters are obesity risk 

markers [45, 46]. 

In conclusion, this characterization of Ob-hA-MSCs shows that antigen CD13, by influencing the 

adipogenic potential of these cells, could be  an in-utero risk factor for obesity. Our data strengthen the 

hypothesis that high serum CD13 and mesenchymal stem cell CD13 are markers of obesity.  
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Legends  

FIG. 1. Expression of CD13 antigen in control (Co-) and obese (Ob-) pregnant women. A: Ob-hA-

MSCs expressed significantly higher amounts (at Mann-Whitney test) of CD13 surface antigen 

compared with Co-hA-MSCs (P=0.0043); B: serum levels of CD13 were significantly higher both in 

Ob- than in Co-not pregnant women (P=0.02) and in Ob- than in Co-women at delivery (P=0.002); C: 

Serum CD13 levels were correlated with CD13 surface expression levels in Ob-pregnant women 

(r
2
=0,84; P<0.0001). The box plots provide a vertical view of the data expressed as median, 25th 

percentile, 75th percentile and extreme values. 

 

FIG. 2. Adipogenic potential in Ob-hA-MSCs and in Co-hA-MSCs. The statistically significant 

higher mRNA expression levels of PPARg (P=0.02) (A) and of aP2 (P=0.03) (B) measured 14 days 

after the adipogenic induction, indicated increased adipogenesis in Ob- versus Co-hA-MSCs. (C) The 

higher adipogenesis in Ob- than in Co-hA-MSCs was also confirmed by Oil-Red staining [Abs (550 

nm) = 0.6 and 0.4, P=0.02, respectively].  

 

FIG. 3. Role of CD13 in adipogenesis. (A) mRNA expression levels of CD13 were significantly 

higher in Ob- than in Co-hA-MSCs at day 0 (P=0.02), day 2 (P=0.02) and day 4 (P=0.04) when 

cultured with adipogenic medium. CD13 mRNA expression was switched-off in Ob-hA-MSCs after 

CD13 silencing with shRNA. (B) At day 4 of adipogenic induction, PPARg mRNA expression levels 

that were significantly higher in Ob-hA-MSCs than in Co-hA-MSCs (P=0.01), decreased to the levels 

detected in Co-hA-MSCs after CD13 silencing (P=0.71), which indicates that CD13 enhances 

adipogenesis in hA-MSCs. n.s.: not statistically significant difference. 
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Table 1. Surface immunophenotypic profile investigated in hA-MSCs by flow cytometry 

Fluorochrome CD 

Antigen 

Other Names Molecular 

Weight 

(kDa) 

Cell expression Function 

FITC CD9 Tspan-29 24-26 Platelets, pre-B cells, activated T cells Adhesion, migration, platelet activation 

APC CD10 CALLA 100 B/T precursors, stromal cells Endopeptidase 

PE CD13 APN 150 Granulocytes, monocytes and their precursors, 

endothelial cells, epithelial cells, mesenchymal stem 

cells 

Metalloproteinase 

PE CD14 LPS-R 53-55 Monocytes, macrophages Receptor for LPS/LPB complex  

APC CD15 Lewis X _ Granulocyte, monocyte, epithelial cells Cell adhesion 

PE CD16 FCγRIIIa 50-65 Neutrophils, NK, macrophages Low affinity with FCγ receptor, mediates 

phagocytosis 

APC CD19 Bgp95 95 B cells, not on plasma cells Signal transduction 

FITC CD26 DPP IV 110 Mature thymocytes, T, B, NK cells Exoprotease, co-stimulation  

APC CD28 Tp44 44 Most T cells, thymocytes, NKs and plasma cells Co-stimulation 

APC CD29 VLA β1-chain 130 T, B, granulocytes, monocytes, fibroblasts, 

endothelial cells, NKs , platelet 

Adhesion activation, embryogenesis and 

development 

FITC CD31 PECAM-1 130-140 Monocytes, platelets, granulocytes and endothelial 

cells 

Cell adhesion 

APC CD33 My9 67 Monocytes, granulocytes, mastocytes and myeloid 

progenitors 

Cell adhesion 

APC CD34 My10 105-120 Hematopoietic stem cells and progenitors, endothelial 

cells 

Cell adhesion 

APC CD36 Platelet GPIV 85 Platelets, monocytes, macrophages, endothelial cells, 

erythroid precursors 

Adhesion and phagocytosis 

FITC CD40 Bp50 48 Monocytes, macrophages, B cells, endothelial cells, 

fibroblasts, keratinocytes 

Co-stimulation to B cells, growth, 

differentiation and isotype switching 

APC CD44 H-CAM 90 Leukocytes, erythrocytes and epithelial cells Rolling, homing and aggregation 

Per Cp CD45 LCA 180-220 Hematopoietic cells, except erythrocytes and platelets Critical for T and B cell receptor 

mediated activation 

FITC CD47 IAP I 50-55 Hematopoietic, epithelial, endothelial and brain 

mesenchymal cells 

 Adhesion 

FITC CD49d VLA-4 150 B cells, T cells, monocytes, eosinophils, basophils, 

NKs, dendritic cells 

Adhesion, migration, homing, activation 

APC CD54 ICAM-1 80-114 Epithelial and endothelial cells monocyte. Low on 

resting lymphocytes, upregulate on activated 

T cell activation 

PE CD56 NCAM 175-220 Neural,  tumors, embryonic tissue, NK Homophilic and heterophilic adhesion 

PE CD58 LFA-3 40-70 Leucocytes, erythrocytes, epithelial endothelial cells 

and fibroblasts 

Costimulation 

FITC CD71 Transferrin recepor 95 Reticulocytes, erythroid precursor Controls iron intake during cell 

proliferation 

APC CD81 TAPA-1 26 B and T cells, monocytes, endothelial cells Signal transduction 

FITC CD90 Thy-1 25-35 Hematopoietic stem cells, neurons, mesenchymal 

stem cells 

Inhibition of hematopoietic stem cells 

and neuron differentiation 

PE CD99 MIC2 32 Leucocyte, NK, monocytes, endothelial and epithelial 

cells 

Leucocyte migration, T cell activation, 

cell adhesion 

PE CD105 Endoglin 90 Endothelial and  mesenchymal stem cells, erythroid 

precursors, monocytes  

Angiogenesis, modulates cellular 

response to TGFβ1 

PE CD117 c-kit 145 Hematopoietic stem cells and progenitors Crucial for hematopoietic stem cells  

PE CD133 Prominin-1 120 Hematopoietic stem cell, endothelial, epithelial and 

neural precursors 

Unknown function, stem cell marker 

PE CD151 PETA-3 32 Endothelial and epithelial cells, megakaryocytes, 

platelets 

Adhesion 

PE CD166 ALCAM 100-105 Neurons, activated T cells, epithelial cells, 

mesenchymal stem cells 

Adhesion, T cell activation 

PE CD200 OX-2 33 B cells, activated T cells, thymocytes, neurons 

endothelium 

Down-regulatory signal for myeloid cell 

functions 

FITC CD243 MDR-1 170 Stem cells, multi drug resistant tumors Influences the up-take, distribution, 

elimination of drugs  

APC CD271 NGFR 75 Neurons, stromal and dendritic follicular cells Low affinity for NGF receptor 

APC CD324 E-cadherin 120 Epithelial, keratinocytes, platelet Adhesion, growth, differentiation 

APC CD338 ABCG-2 72 Hematopoietic stem cells, liver, kidney, intestine, side 

population of stem cells 

Absorption and excretion of xenobiotics 

FITC HLA-

ABC 

Class I MHC 46 All nucleated cells and platelets Antigen presentation   

FITC HLA-DR Class II MHC 30 B cells, monocytes, myeloid progenitors, activated T 

and dendritic cells  

Antigen presentation   
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Table 2. Clinical and biochemical characteristics of obese (Ob-) and normal weight control (Co-) pregnant 

women at delivery and their newborns. 

 

 

 

Data are expressed as mean (SEM) (parametric distributions). 

Statistically significant difference at Student t test: 
a
 P<0.0001, 

b
 P =0.025 and 

c
 P=0.039. 

d
 median value and 25

th
–75

th
 percentiles (non parametric distributions). 

A     

Mother’s parameters Ob-pregnant women (n=16) Co-pregnant women (n=7) 

Age (years) 32.6 (0.9) 30.7 (1.5) 

Weight (kg)
 a
 110.1 (5.4) 65.2 (3.6) 

Height (m) 163.3(1.6) 169.0 (1.7) 

BMI pre-pregnancy (kg/m
2
) 

a
 40.3 (1.8) 22.4 (1.0) 

Weight gain in pregnancy 
b
 8.4 (1.3) 14.3 (1.8) 

Systolic blood pressure (mmHg)  124.3 (2.7) 117.1 (5.1) 

Diastolic blood pressure (mmHg) 
c
 82.5 (2.2) 74.2 (2.0) 

Frequency cardiac 79.6 (1.7) 79.0 (3.7) 

Gestational age 38.4 (0.3) 38.7 (0.2) 

Glucose (mmol/L)  4.3 (0.1) 4.0 (0.3) 

Total cholesterol (mmol/L) 6.9 (0.4) 7.3 (0.1) 

Triglycerides (mmol/L) 2.8 (0.2) 2.3 (0.3) 

AST (U/L) 15
 d
 (12.2-26.5

d
) 14.8 (0.7) 

ALT (U/L) 13
 d
 (9.2-17.7

d
) 12.1 (1.1) 

ALP (U/L) 124.2 (11.1) 115.0 (12.6) 

GGT (U/L) 11.0 (1.7) 8.8 (1.5) 

Leptin (L) (ng/ml) 
a
 38.5 (2.2) 15.2 (3.3) 

Adiponectin (A) (mg/ml) 6.0 (0.7) 7.5 (1.4) 

L/A 
a
 7.7 (0.6) 2.6 (0.5) 

B     

Newborn features Ob-newborns (n=16) Co-newborns (n=7) 

Birth weight (kg) 3162 (0.1)  3401 (0.1) 

Length (cm) 49.6 (0.7)  50.8 (0.7) 

Head circumference (cm) 34.0 (0.4)  34.8 (0.3) 

Apgar 1’ 7.0
 d
 (7.0-8.0 

d
) 7.8 (0.2) 

Apgar 5’ 9.0
 d
 (8.5-9.0 

d
) 8.7 (0.1) 
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Table 3. Immunophenotyping of hA-MSCs isolated from obese (Ob-) and control (Co-) pregnant women 
 

 Ob-hA-MSCs  

 

Co-hA-MSCs   

Not expressed antigens  
    

Fluorochrome  Antigen  MFI 25th-75th Percentiles   MFI 25th-75th  Percentiles p Value 

FITC CD31 364.0 278.3-511.3   306.5 286.8-368.0 0.3254 

  CD40 444.0 336.5-568.3 
 

388.0 357.0-457.8 0.4824 

  CD243 363.0 292.3-528.3 
 

307.5 274.0-378.3 0.2061 

  HLA-DR 355.0 283.8-530.0 
 

297.0 272.5-374.8 0.2415 

  NC  325.0 250.0-516.3   279.0 218.8-418.8 0.4260 

PE CD14 166.5 125.5-197.8   134.5 124.5-157.8 0.2815 

  CD16 36.0 11.5-71.7 
 

65.5 50.5-72.0 0.2407 

  CD117 142.5 109.5-189.3 
 

121.0 116.0-176.8 0.6065 

  CD133 95.5 80.5-112.8 
 

87.5 76.50-110.5 0.5423 

  NC  115.5 91.75-181.5   102.5 93.25-135.0 0.5427 

APC CD15 122.0 91.0-283.5   122.5 80.0-162.5 0.6065 

  CD36 241.5 194.0-388.5 
 

200.5 145.5-267.3 0.2417 

  CD271 208.0 127.0-296.5 
 

170.0 127.5-233.3 0.6065 

  CD338 200.5 106.5-373.0 
 

107.5 101.8-146.8 0.1223 

  CD19 192.0 154.0-241.3 
 

144.0 120.3-182.2 0,1012 

  CD28 91.0 5.2-228.5 
 

85.5 0-122.0 0.1722 

  CD33 147.5 10.0-189.5 
 

105.5 90.0-132.3 0.6734 

  CD34  186.5 105.0-241.5 
 

133.0 17.5-206.0 0.4250 

  NC  169.0 99.5-244.8   92.0 64.0-204.0 0.2061 

Per Cp CD45 215.5 133.8-251.3   167.0 146.0-208.0 0.6734 

  NC  305.0 252.0-483.3   288.5 261.3-348.8 0.7431 

Expressed antigens  
    

Fluorochrome  Antigen  MFI 25th-75th Percentiles   MFI 25th-75th  Percentiles p Value 

FITC CD9 3,538.0 2,172.0-6,871.0   2,156.0 1,743.0-3,495.0 0.2417 

  CD26 1,287.0 651.8-3,235.0 
 

1,308.0 742.3-1,920.0 0.9626 

  CD47 1,339.0 980.3-2,312.0 
 

1,287.0 1,106.0-1,344.0 0.4824 

  CD49d 1,185.0 946.8-1,393.0 
 

941.0 708.3-1,140.0 0.2061 

  CD71 1,271.0 796.5-2,147.0 
 

1,093.0 897.0-1,538.0 0.7431 

  CD90 37,140.0 22,740.0-52,690.0 
 

36,210.0 21,640.0-50,260.0 0.8149 

  CD324 517.0 463.0-551.0 
 

436.0 375.0-545.0 0.3027 

  HLA-ABC 9,363.0 4,033.0-14,180.0   5,424.0 3,987.0-6,539.0 0.1223 

 NC  325.0 250.0-516.3   279.0 218.8-418.8 0.4260 

PE CD13 9,802.0 6,786.0-17,130.0   3,950.0 3,634.0-4,961.0 0.0043 a 

  CD56 496.0 293.8-711.0 
 

528.0 151.0-1,048.0 0.9626 

  CD58 2,432.0 1,723.0-2,792.0 
 

2,009.0 1,798.0-2,459.0 0.5427 

  CD99 405.0 296.5-586.3 
 

467.5 360.5-651.0 0.3736 

  CD105 652.0 507.0-1,329.0 
 

790.0 746.0-847.8 0.6734 

  CD151 16,010.0 10,970.0-21,430.0 
 

19,410.0 11,090.0-23,690.0 0.4260 

  CD166 5,215.0 3,551.0-7,382.0 
 

4,634.0 3,962.0-5,608.0 0.6734 

 CD200 722.5 205.8-1,699.0   1,137.0 631.5-1,444.0 0.3736 

  NC  115.5 91.7-181.5   102.5 93.2-135.0 0.5427 

APC CD10 1,247.0 999.3-2,319.0   1,890.0 1,122.0-3,031.0 0.3736 

  CD29  45,150.0 25,130.0-54,610.0 
 

24,240.0 17,660.0-40,000.0 0.0832 

  CD44 11,440.0 8,186.0-16,290.0 
 

7,259.0 6,613.0-9,753.0 0.0678 

  CD54 9,910.0 5,404.0-14,260.0 
 

10,660.0 9,486.0-24,670.0 0.3736 
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FIG. 1. Expression of CD13 antigen in control (Co-) and obese (Ob-) pregnant women. A: Ob-hA-MSCs expressed significantly higher amounts (at Mann-
Whitney test) of CD13 surface antigen compared with Co-hA-MSCs (P=0.0043); B: serum levels of CD13 were significantly higher both in Ob- than in 

Co-not pregnant women (P=0.02) and in Ob- than in Co-women at delivery (P=0.002); C: Serum CD13 levels were correlated with CD13 surface 

expression levels in Ob-pregnant women (r<sup>2</sup>=0,84; P<0.0001). The box plots provide a vertical view of the data expressed as median, 25th 
percentile, 75th percentile and extreme values. 
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FIG. 2. Adipogenic potential in Ob-hA-MSCs and in Co-hA-MSCs. The statistically significant higher mRNA expression levels of PPARγ (P=0.02) (A) 

and of aP2 (P=0.03) (B) measured 14 days after the adipogenic induction, indicated increased adipogenesis in Ob- versus Co-hA-MSCs. (C) The higher 
adipogenesis in Ob- than in Co-hA-MSCs was also confirmed by Oil-Red staining [Abs (550 nm) = 0.6 and 0.4, P=0.02, respectively]. 
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FIG. 3. Role of CD13 in adipogenesis. (A) mRNA expression levels of CD13 were significantly higher in Ob- than in Co-hA-MSCs at day 0 (P=0.02), day 

2 (P=0.02) and day 4 (P=0.04) when cultured with adipogenic medium. CD13 mRNA expression was switched-off in Ob-hA-MSCs after CD13 silencing 

with shRNA. (B) At day 4 of adipogenic induction, PPARγmRNA expression levels that were significantly higher in Ob-hA-MSCs than in Co-hA-MSCs 
(P=0.01), decreased to the levels detected in Co-hA-MSCs after CD13 silencing (P=0.71), which indicates that CD13 enhances adipogenesis in hA-MSCs. 

n.s.: not statistically significant difference. 

 Page 31 of 36 

S
te

m
 C

el
ls

 a
n
d
 D

ev
el

o
p
m

en
t

H
ig

h
 A

m
in

o
p
ep

ti
d
as

e 
N

/C
D

1
3
 L

ev
el

s 
C

h
ar

ac
te

ri
ze

 H
u
m

an
 A

m
n
io

ti
c 

M
es

en
ch

y
m

al
 S

te
m

 C
el

ls
 a

n
d
 D

ri
v
e 

T
h
ei

r 
In

cr
ea

se
d
 A

d
ip

o
g
en

ic
 P

o
te

n
ti

al
 i

n
 O

b
es

e 
W

o
m

en
 (

d
o
i:

 1
0
.1

0
8
9
/s

cd
.2

0
1
2
.0

4
9
9
)

T
h
is

 a
rt

ic
le

 h
as

 b
ee

n
 p

ee
r-

re
v
ie

w
ed

 a
n
d
 a

cc
ep

te
d
 f

o
r 

p
u
b
li

ca
ti

o
n
, 
b
u
t 

h
as

 y
et

 t
o
 u

n
d
er

g
o
 c

o
p
y
ed

it
in

g
 a

n
d
 p

ro
o
f 

co
rr

ec
ti

o
n
. 
T

h
e 

fi
n
al

 p
u
b
li

sh
ed

 v
er

si
o
n
 m

ay
 d

if
fe

r 
fr

o
m

 t
h
is

 p
ro

o
f.



3
2
 

3
2
 

 

 

 
P

a
g

e
 3

2
 o

f 3
6

 

Stem Cells and Development
High Aminopeptidase N/CD13 Levels Characterize Human Amniotic Mesenchymal Stem Cells and Drive Their Increased Adipogenic Potential in Obese Women (doi: 10.1089/scd.2012.0499)

This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.



3
3
 

3
3
 

 

 

 P
a
g

e
 3

3
 o

f 3
6

 

Stem Cells and Development
High Aminopeptidase N/CD13 Levels Characterize Human Amniotic Mesenchymal Stem Cells and Drive Their Increased Adipogenic Potential in Obese Women (doi: 10.1089/scd.2012.0499)

This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.



34 

34 

 

Supplementary Figures legend 

 

Supplementary Figure 1: Morphology of hA-MSCs isolated from pregnant women. A similar 

fibroblastic-like shape was observed in three Ob- (A) and three Co- (B) hA-MSCs  after 4 population 

doublings by phase contrast light microscopy (magnification 10x). 

 

Supplementary Figure 2: CD13 expression on Co- and Ob-hA-MSCs treated with 0.8 ng/mL or 

12.5 ng/mL IFN-g for 24 h. CD13 expression significantly increased on membranes of Co-hA-MSCs 

treated with 12.5 ng/mL IFN-g (P=0.04) versus untreated counterpart cells, whereas there was a slight, 

not significant increase, in treated Ob-hA-MSCs versus untreated cells.  
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Supplementary Table 1: Antibody cocktails contained in each tube for hA-MSCs 

immunophenotyping by flow cytometry. 

Tube CD Antigens 

1 Anti-CD90-FITC (clone 5E10)/anti-CD13-PE (clone L138)/anti-CD45-PerCP (clone 2D1)/anti-CD34-APC (clone 

8G12) 

2  Anti-HLA-DR-FITC (clone l243)/anti-CD14-PE (clone MΦP9)/anti-CD45-PerCP (clone 2D1)/anti-CD29-APC 

(clone MAR4) 

3 Anti-CD243-FITC (clone17F9)/anti-CD56-PE (clone MY31)/anti-CD45-PerCP (clone 2D1)/anti-CD44-APC (clone 

g44-26) 

4  Anti-CD324-FITC (clone 36)/anti-CD105-PE (clone 266)/anti-CD45-PerCP (clone 2D1)/anti-CD338-APC (clone 

5D3) 

5 Anti-CD71-FITC (clone L01.1)/anti-CD56-PE (clone MY31)/anti-CD45-PerCP (clone 2D1)/anti-CD28-APC (clone 

CD28.2) 

6 Anti-CD90-FITC (clone 5E10)/anti-CD200-PE (clone MRC OX-104)/anti- CD45-PerCP (clone 2D1)/anti-CD33-

APC (clone p67.6) 

7  Anti-HLA-A,B,C-FITC (clone G46-2.6)/anti-CD16-PE (clone B73.1)/anti-CD45-PerCP (clone 2D1)/anti-CD36-

APC (clone CB38 NL07) 

8 Anti-CD90-FITC (clone 5E10)/anti-CD200-PE (clone MRC OX-104)/anti-CD45-PerCP (clone 2D1)/anti-CD34-

APC (clone 8G12) 

9 Anti-CD9-FITC (clone ML-13)/anti-CD133-PE (clone ACC133/1)/anti-CD45-PerCP (clone 2D1)/anti-CD10-APC 

(clone HI10A) 

10 Anti-49d-FITC (clone R1-2)/anti-CD58-PE (clone L306.4)/anti-CD45-PerCP (clone 2D1)/anti-CD271-APC (clone 

ME20.4-1.H4) 

11 Anti-CD31-FITC (clone WM59)/anti-CD117-PE (clone 104D2)/anti-CD45-PerCP (clone 2D1)/anti-CD81-APC 

(clone JS-81) 

12 Anti-CD26-FITC (clone L272)/anti-CD99-PE (clone TU12)/anti-CD45-PerCP (clone 2D1)/anti-CD19-APC (clone 

SJ25C1) 

13 Anti-CD40-FITC (clone 53C)/anti-CD151-PE (clone 14A.H1)/anti-CD45-PerCP (clone 2D1)/anti-CD54-APC 

(clone HA58) 

14 Anti-CD47-FITC (clone B6H12)/anti-CD166-PE (clone 3A6)/anti-CD45-PerCP (clone 2D1)/anti-CD15-APC 

(clone HI98) 

  

FITC: fluorescein isothiocyanat; PE: R-Phycoerythrin; PerCP: peridinin-chlorophyll-protein complex; APC: 

allophycocyanin  
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Stem Cells and Development
High Aminopeptidase N/CD13 Levels Characterize Human Amniotic Mesenchymal Stem Cells and Drive Their Increased Adipogenic Potential in Obese Women (doi: 10.1089/scd.2012.0499)

This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.
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Abstract 

Objective: MC4R, SIRT1 and FTO variants are associated with severe obesity and metabolic 

impairment in various populations. We investigated the association of common MC4R, SIRT1 and 

FTO variants with obesity and metabolic syndrome (MS) in a large group of severely obese young 

adults from southern Italy. 

Subjects and Methods: 1000 morbidly obese subjects (62% women, mean body mass index [BMI] 

46.5 kg/m2, mean age 32.6y) and 100 normal weight healthy controls whose families had lived in 

southern Italy for at least 2 generations were recruited. Single-nucleotide polymorphisms (SNPs) 

rs12970134, rs477181, rs502933 (MC4R locus), rs3818292, rs7069102, rs730821, rs2273773, 

rs12413112 (SIRT1 locus) and rs1421085, rs9939609, 9930506, 1121980 (FTO locus) were 

genotyped by Taqman assay; blood parameters were assayed by routine methods; fat mass, free fat 

mass, respiratory quotient, basal metabolic rate (BMR) and waist circumference were also 

determined. 

Results: The frequency of 5 SNP genotypes differed significantly between obese and control 

subjects: rs12413112 (p=0.037) in the SIRT1 gene, rs1421085 (p=0.003), rs9939609 (p<0.0001), 

rs9930506 (p<0.0001) and rs1121980 (p=0.007) in the FTO gene. Binomial logistic regression 

confirmed the association of rs9939609 (FTO) with obesity. In fact, the AA mutated homozygous 

genotype conferred an odds ratio (OR) of 3.79 (1.91-7.50) for obesity. Binomial logistic regression 

analysis showed that the TA heterozygous genotype of the rs9939609 SNP in the FTO gene was 

associated with the presence of MS in our patients (OR/95% CI: 2.53/1.16-5.55). 

Conclusions: The FTO rs9939609 SNP and male gender accounted for 11.6% of obese phenotype 

whereas FTO rs9939609 SNP, total cholesterol, BMR and age accounted for 21.3% with the MS 

phenotype. Our results enlarge the knowledge on genotype susceptibility for obesity and for MS in 

relation to a specific geographical area of residence. 

 

Key words: Morbid obesity; SNPs; FTO, MC4R, SIRT1, metabolic syndrome. 



INTRODUCTION 

Obesity is a condition in which the imbalance between energy intake and expenditure causes 

excessive fat accumulation and predisposes to a high risk of metabolic diseases and premature 

death.
1
 Human obesity is due to a complex interaction among environmental, behavioral, 

developmental and genetic factors. The latter account for 40-70% of the obese phenotype.
2
 

Rare monogenic forms of obesity are mainly caused by impairment of the leptin-melanocortin 

hypothalamic circuit due to mutations in genes involved in food intake, particularly leptin and its 

receptor (LEPR), proopiomelanocortin (POMC) and melanocortin receptor 4 (MC4R).
3
 

Genomewide association studies have shown that polymorphisms in the latter and in other genes are 

involved in common obesity or in obese-associated diseases. Globally, at least 50 genetic loci, each 

exerting a small effect, appear to contribute to common obesity insurgence.
4
 Among the 

polymorphisms identified by genome-wide association studies, those in the MC4R, in the Fat Mass 

and Obesity (FTO) and in the Sirtuin1 (SIRT1) genes regulate energy metabolism and/or insulin 

sensitivity and/or adipogenesis
5-7

. 

In this study we investigated the association of three common variants in the MC4R locus 

(rs12970134, rs477181, rs502933), five common variants in the SIRT1 gene (rs3818292, 

rs7069102, rs730821, rs2273773, rs12413112) and four in the FTO gene (rs1421085, rs9939609, 

rs9930506, rs1121980) with several parameters associated to obesity and the metabolic syndrome 

(MS), in a large population of morbidly obese young adults whose families have lived in southern 

Italy for at least 2 generations. 

 

PATIENTS AND METHODS 

Subjects 

Control subjects (n=100, 33% women, mean/SEM body mass index [BMI] 23.2/0.28 kg/m2, 

mean/SEM age 29.9/1.03 y) and morbidly obese patients (n=1000, 62% women, mean/SEM BMI 

46.5/0.23 kg/m2, mean/SEM age 32.6/0.36 y) respectively were recruited at the Department of 



Preventive Medical Science and at the Obesity Outpatient Clinic of the Department of Clinical and 

Experimental Medicine, University of Naples Federico II (Italy), from 2007 to 2008. The families 

of all subjects had lived in the same region of south Italy for at least two generations. All patients 

and controls gave their informed consent to the study, which was carried out according to the 

Helsinki II Declaration. The research was approved by the Ethics Committee of the School of 

Medicine, University of Naples Federico II. 

Two blood samples (one for biochemical analysis and one for DNA extraction) were obtained 

from each enrolled subject after an overnight fast. Biochemical parameters were measured 

enzymatically with routine methods on an automated analyzer (Hitachi 747; Boehringer Mannheim, 

Germany). The HDL-cholesterol concentration was determined enzymatically by measuring 

cholesterol in the supernatant after precipitation with phosphotungstate. Insulin resistance was 

estimated in obese subjects according to the homeostasis model assessment (HOMA) and the 

formula: fasting insulin (mU/L) X fasting glucose (mmol/L)/22.5. We also calculated the fatty liver 

index (FLI) according to the formula FLI = (e0.953 × ln (triglycerides) + 0.139 × BMI + 0.718 × ln 

(GGT) + 0.053 × waist circumference−15.745)/ (1 + e0.953 × ln (triglycerides) + 0.139 × BMI + 

0.718 × ln (GGT) + 0.053 × waist circumference−15.745) X100 as a measure of hepatic steatosis.
8
 

The clinical and anamnestic data of each obese subject were collected and the main metabolic 

parameters were evaluated. In particular, fat mass (FM) and fat free mass (FFM) measurements 

were obtained by bioimpedentiometric analysis (Sta/BIA Akern, Firenze, Italy), and respiratory 

quotient (RQ) and basal metabolic rate (BMR) by indirect calorimetry (Sensor Medics Vmax29, 

Anaheim, USA). The BMI was calculated as ratio weight (kg)/height (m
2
). Systolic and diastolic 

blood pressure and cardiac frequency (beats/min) were collected by standard procedures. 

The presence of MS, a cluster of metabolic risk factors, namely, abdominal obesity, dyslipidemia 

(hypertriglyceridemia and low HDL-cholesterol concentrations), elevated blood pressure and 

hyperglycemia, as defined by the American Heart Association criteria, was diagnosed if 3 out of 5 

criteria were present.
9
 



 

DNA extraction and real time Taqman assay 

Genomic DNA was extracted from peripheral blood samples with the Nucleon BACC2 kit 

(Amersham Life Science, Little Chalfont, Bucks, UK) and all the SNPs ( MC4R locus: rs12970134, 

rs477181, rs502933; SIRT1 gene: rs3818292, rs7069102, rs730821, rs2273773, rs12413112; FTO 

gene: rs1421085, rs9939609, rs9930506, rs1121980) were assayed, in duplicate, by the real time 

Taqman assay (Applied Biosystems, Foster City, CA, USA). Briefly, two probes are used in a 

biallelic system; one probe is specific for the wild type allele and the other is complementary to the 

mutant allele. The alleles are distinguished with fluorogenic probes, which consist of an 

oligonucleotide with a fluorescent reporter dye (VIC or FAM) a non-fluorescent quencher and a 

minor groove binder (MGB). The latter molecule forms a hyperstabilized duplex with 

complementary DNA thereby increasing the capacity of the hybridization probe to discriminate the 

SNP. The Primer Express program (Applied Biosystems) was used to design the PCR primers and 

the MGB TaqMan probes. Reaction mixtures were assembled in a 384-well plate using a Biomek 

2000 Workstation (Beckman Instruments Inc., Fullerton, CA, USA). Together with samples from 

obese and control subjects, we tested negative (i.e., no DNA sample) and positive (i.e., 

homozygotes and a heterozygote, for the SNP) controls. The positive controls had been previously 

typed by sequence analysis on an ABI 3100 Genetic Analyzer (Applied Biosystems). Real-time 

PCR was performed on an ABI Prism 7900- HT instrument with the Sequence Detection System 

(SDS 2.1) and the SDS Enterprise Database (Applied Biosystems). 

 

Statistical analysis 

Genotype frequencies were calculated by allele counting, and departure from Hardy-Weinberg 

expectation was evaluated by χ
2
 analysis. The mean value and the standard error of the mean 

(SEM) were calculated for each investigated parameter. The Student t test and/or χ
2
, where 

appropriate, were used for between-group comparisons. Differences were considered statistically 



significant at a p<0.05 level. Multiple comparisons were corrected by using the Bonferroni test. 

Binomial logistic regression analysis was used to investigate the association between the 

biochemical, clinical and genetic characteristics and the obese phenotype or the presence of MS, as 

described above. Linkage analysis was performed with Haploview software (version 4.2). 

Statistical analyses were carried out with the PASW package for Windows (Ver.18; SPSS Inc. 

Headquarters, Chicago, Ill, USA). 

 

Results 

The clinical and biochemical characteristics of the obese subjects (62% women) are reported in 

Table 1. Metabolic syndrome was present in 37.2 % of our obese subjects, and was significantly 

more frequent in men than in women (43% versus 34%; p=0.006). The genotype frequencies of the 

investigated SNPs in the MC4R, SIRT1 and FTO genes were in Hardy-Weinberg equilibrium (0.11< 

p <0.9) and are reported in Table 2. To verify that our control group, albeit small, could be 

considered representative of the Caucasian population, we compared the genotype frequencies of 

each SNP in our controls to those reported in the National Center for Biotechnology Information 

database (www.ncbi.nlm.nih.gov, accessed October 2012) and found no statistically significant 

differences (Supplemental Table 1), which suggests that our control group is indeed representative 

of the Caucasian population. 

The χ
2
 test revealed that the genotype frequency of 5 polymorphisms differed significantly 

between obese and control subjects: rs12413112 (p=0.037) in the SIRT1 gene, rs1421085 

(p=0.003), rs9939609 (p<0.0001), rs9930506 (p<0.0001) and rs1121980 (p=0.007) in the FTO gene 

(Table 2). These associations remained statistically significant also after a permutation test with 

100,000 permutations (0.0006<p<0.03). In particular, the recessive allele, G, of rs12413112 in 

SIRT1 was negatively associated with the obese phenotype, suggesting that this allele plays a 

protective role in obesity insurgence. Haplotyping with the Haploview software showed a 

significant linkage disequilibrium between rs12413112 and rs7069102 in SIRT1, and rs2273773 and 



rs3818292 also in SIRT1; a significant linkage disequilibrium was also found among the three 

tested SNPs in MC4R (Figure 1). The AC haplotype of the first two SNPs in SIRT1 was negatively 

associated with the obese phenotype (p=0.01; p=0.04 after 100,000 permutations), whereas only a 

weak association was found between the GTA haplotype in MC4R and obesity (p=0.04, not 

confirmed after the permutation test). 

Binomial logistic regression analysis, after correction for age and sex, confirmed that 

rs9939609 (FTO), the heterozygous and mutated homozygous genotypes, and male sex were 

associated with obesity (Table 3A). In particular, patients bearing the TA heterozygous genotype 

had an OR equal to 2.51 (95% CI: 1.43-4.46), whereas patients bearing the AA mutated 

homozygous genotype had an OR of 3.79 (1.91-7.50). Our results demonstrate that the FTO 

rs9939609 SNP and male gender accounted for 11.6% of the obese phenotype (according to the 

Nagelkerke model). Binomial logistic regression analysis showed that the TA heterozygous 

genotype of the rs9939609 SNP in the FTO gene was associated with the presence of MS in our 

patients (OR/95% CI: 2.53/1.16-5.55), whereas only weak associations were found for total 

cholesterol, BMR and age (Table 3B). The final model showed a Nagelkerke R
2
 = 0.213, which 

indicates that the tested clinical, biochemical and genetic variables accounted for 21.3% of the MS 

phenotype. 

 

Discussion 

We evaluated 12 common obesity-related variants in the SIRT1, FTO and MC4R genes in a large 

population of morbidly obese young adults from southern Italy to identify variants specifically 

correlated to the obese phenotype or to obesity-associated metabolic complications such as MS. The 

prevalence of MS in our obese subjects (37.2 %) was comparable to those reported in a multicenter 

study carried out in Italy (38%)
10

 and in European and US Caucasian populations of a similar age 

range.
11

 This suggests that obesity and MS could result from a similar unhealthy lifestyle in these 

populations. 



Among the investigated polymorphisms in SIRT 1, rs2272773 was associated with BMR in a 

Finnish population
12

 and with BMI in a Dutch population;
13

 rs7069102 was associated with obesity 

in a Belgian population;
14

 and in the same Belgian study, rs3818292 was associated to visceral fat 

only in obese males.
14

 Finally, 4 of the 5 SIRT1 variants that we analyzed were found to be 

associated with a metabolic and lifestyle intervention program in a cross-sectional study.
15

 In our 

obese subjects the rs3818292, rs7069102, rs730821, rs2273773, rs12413112 polymorphisms were 

not correlated with BMI, BMR, abdominal adiposity or lifestyle at multivariate regression analysis. 

This discrepancy could be due to differences in the populations investigated. In fact, the patients in 

the Finnish, Dutch and Belgian studies differed from our obese subjects in terms of age and BMI. 

Differently, our data coincide with those of Clark et al.
16

 who found a positive association between 

the recessive allele, G, of rs12413112 in SIRT1 and the non-obese phenotype, which indicates that 

this allele plays a protective role also in our study population. 

Mutations in the MC4R gene account for about 4-5% of monogenic forms of human obesity,
17

 

and for 2.5% in our population.
18,19

 The three common variants in the MC4R locus, rs12970134, 

rs477181, rs502933, that we investigated, were recently reported to be associated with BMI, waist 

circumference and insulin resistance in a Indian-Asian population,
20

 and with obesity in a Scottish 

population.
21

 In our study, there was a significant linkage disequilibrium among the three tested 

MCR4R SNPs; haplotype GTA was only weakly associated with morbid obesity, but we found no 

association with MS. Again, a different genetic background and different clinical characteristics 

could explain our discordant data concerning the relevance of these polymorphisms in glycemic 

control. 

Based on genome-wide association studies conducted in various populations, FTO appears to 

be the gene most often related to obesity development.
22

 In particular, SNP rs9939609, located 

within the first intron of the FTO gene, has been reported to be closely associated with BMI in 

obese children and adults in Europe.
22-24

 Moreover, a positive association was recently reported 

between the rs9939609 FTO genetic variant and risk for obesity and type 2 diabetes in East and 



South Asians.
25

 In addition, SNP rs9939609 was reported to be associated with increased 

cardiovascular risk and diabetes in the Finnish Diabetes Prevention Study.
26

, Furthermore, in all 

previous studies the FTO rs9939609 SNP association with obesity and metabolic impairment was 

affected by age, gender, or ethnic background, as well as by physical activity and educational 

level.
23, 27-35

 

In our study, all the 4 FTO polymorphisms investigated were significantly associated with the 

obese phenotype (0.0001<p<0.003). In particular, the homozygous genotype variants of all FTO 

SNPs were at least 1.5-fold higher in the obese subjects than in the control group. The presence of 

the AA genotype in the rs9939609 FTO SNP conferred the highest risk for obesity (OR=3.79 - 95% 

CI: 1.91-7.50), followed by male gender (OR =3.46- 95%CI: 2.07-5.79). Interestingly, the 

rs9939609 FTO SNP was a strong risk factor for MS in our population (OR=2.53- 95% CI: 1.16- 

5.55); in fact, the TA heterozygous genotype, together with total cholesterol, BMR and age 

accounted for 21.3% of this syndrome. Our data are in agreement with the recently reported 

associations between rs9939609 and MS in European and in other ethnic groups.
36-38

 

In conclusion, we identified a strong association between the A allele in the FTO rs9939609 

SNP and MS in a population of morbidly obese subjects living in southern Italy. This confirms that 

the A allele conferred a greater susceptibility to develop MS also in our study population. Our data 

also revealed that the FTO rs9939609 SNP and male gender accounted for 11.6% of obese 

phenotype whereas FTO rs9939609 SNP, total cholesterol, BMR and age accounted for 21.3% with 

the MS phenotype. Our results enlarge the knowledge on genotype susceptibility for obesity and 

for MS in relation to specific geographical area of residence. 
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Figure 1. Linkage disequilibrium (D’) plot of SIRT1 (panel a), FTO (panel b) and MC4R (panel c) 

polymorphisms. The numbers in the squares are the D’ values expressed as percentage; shades of 

grey represent r
2
 (white: r

2
=0; black: r

2
=1). 

 

 

 

 

 

 

 

 

 

 



Table 1. General and biochemical characteristics of studied obese patients (n=1000). 

 

  Mean SEM 

Age (years) 32.62 0.36 

Height (m) 1.67 0.00 

Weight (kg) 129.14 0.71 

BMI (kg/m2) 46.50 0.23 

WC (cm) 131.81 0.68 

Hips circumference (cm) 135.30 1.36 

W/H ratio 0.98 0.01 

RQ 0.86 0.00 

BMR (kcal) 2386.86 18.94 

FFM (%) 52.09 0.24 

FM (%) 47.89 0.24 

SBP (mmHg) 124.86 0.40 

DBP (mmHg) 79.83 0.27 

Cardiac Frequency (beats/min) 78.44 0.26 

Glucose (mmol/L) 5.13 0.04 

Total Cholesterol (mmol/L) 4.74 0.03 

HDL-Cholesterol (mmol/L) 1.18 0.01 

Triglycerides (mmol/L) 1.51 0.03 

AST (U/L) 25.80 0.42 

ALT (U/L) 37.68 0.86 

GGT (U/L) 32.69 1.02 

CHE (U/mL) 10065.10 68.07 

Total Bilirubin (µmol/L) 9.92 0.17 

Uric Acid (mmol/L) 0.35 0.01 

Albumin (g/dL) 4.37 0.01 

Total Protein (g/dL) 7.55 0.01 

Creatinin (µmol/L) 71.6 0.88 

Urea (mmol/L) 5.26 0.04 

ALP (U/L) 100.72 7.47 

Cortisol (µg/L) 122.45 1.62 

C-Peptide (ng/mL) 4.16 0.05 

Insulin (mU/L) 21.61 0.43 

HOMA 5.07 0.13 

FLI 94.79 0.57 

 

SEM: standard error of the mean; BMI: Body Mass Index; WC: Waist Circumference; W/H: 

waist/hip; RQ: respiratory quotient; BMR: basal metabolic rate; FFM: fat free mass; FM: fat mass; 

SBP: systolic blood pressure; DBP: diastolic blood pressure; AST: aspartate transaminase; ALT: 

alanine transaminase; GGT: γ-glutamyl transferase; CHE: cholinesterase; ALP: alkaline 

phosphatase; HOMA: homeostatic model assessment; FLI: fatty liver index. 
 

 



Table 2. Genotype frequencies of the tested SNPs in obese and control subjects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C: controls; O: obese subjects; WT: wild type; Het: heterozygous; Hom: homozygous for the 

variant; OR (95% CI): Odd ratio (95% Confidence Interval). p<0.05 indicates statistically 

significant difference at χ
2
 test 

 

    WT Het Hom p 
S

IR
T

1
 

rs3818292 
C 81.0% 19.0% 0.0% 

  
O 85.6% 14.1% 0.3% 

rs7069102 
C 40.0% 52.0% 8.0% 

  
O 46.9% 45.8% 7.3% 

rs730821 
C 59.0% 39.0% 2.0% 

  
O 64.4% 33.2% 2.5% 

rs2273773 
C 84.0% 16.0% 0.0% 

  
O 81.6% 18.4% 0.0% 

rs12413112 
C 71.0% 27.0% 2.0% 

0.037 
O 81.3% 17.6% 1.1% 

F
T

O
 

rs1421085 
C 29.0% 47.0% 24.0% 

0.003 
O 16.0% 45.9% 38.1% 

rs9939609 
C 36.0% 46.0% 18.0% 

<0.0001 
O 16.3% 48.3% 35.4% 

rs9930506 
C 35.0% 46.0% 19.0% 

<0.0001 
O 18.0% 50.4% 31.6% 

rs1121980 
C 29.0% 48.0% 23.0% 

0.007 
O 16.7% 47.3% 35.9% 

M
C

4
R

 

rs12970134 
C 54.0% 32.0% 14.0% 

  
O 46.3% 41.7% 12.0% 

rs477181 
C 36.0% 46.0% 18.0% 

  
O 36.7% 47.0% 16.3% 

rs502933 
C 37.0% 46.0% 17.0% 

  
O 36.8% 47.3% 15.9% 



 

Table 3. Association of the tested SNPs with the obese phenotype (A) and with the presence of 

metabolic syndrome (B) at binomial logistic regression analysis. 

A 

  Genotype b p OR(95%CI) 
Nagelkerke 

R
2
 

Male gender   1.24 <0.0001 3.46(2.07-5.79) 

0.116 
rs9939609 (FTO) 

TA 0.93 0.001 2.51(1.43-4.46) 

AA 1.33 <0.0001 3.79(1.91-7.50) 

B 

Total Cholesterol   0.01 0.001 1.01(1.00-1.02) 

0.213 
BMR   0.01 0.003 1.01(1.00-1.01) 

rs9939609 (FTO) TA 0.93 0.02 2.53(1.16-5.55) 

Age   0.03 0.03 1.03(1.01-1.06) 

 

Tested variables: Model A: rs3818292, rs730821, rs12413112, rs1421085, rs9939609, rs9930506, 

rs1121980, rs12970134, sex and age; Model B: rs3818292, rs730821, rs12413112, rs1421085, 

rs9939609, rs9930506, rs1121980, rs12970134, sex, age, BMR, FFM, FM, RQ, total cholesterol, 

AST, ALT, GGT, total protein, urea and uric acid.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Table 1. Minor allele frequencies of the tested SNPs found in our population 

compared with those reported into the National Center for Biotechnology Information (NCBI) 

database. 

 

 

 

 

 

 

 

 

 

 

 

MAF: minor allele frequency. 

 

 

  SNP 
Minor 

Allele 
MAF 

NCBI 

MAF 

S
IR

T
1
 

rs3818292 G 0.09 0.08 

rs7069102 C 0.34 0.32 

rs730821 C 0.22 0.18 

rs2273773 C 0.08 0.08 

rs12413112 A 0.16 0.14 

F
T

O
 

rs1421085 C 0.48 0.46 

rs9939609 A 0.42 0.45 

rs9930506 G 0.42 0.48 

rs1121980 A 0.47 0.48 

M
C

4
R

 

rs12970134 A 0.29 0.28 

rs477181 T 0.41 0.35 

rs502933 A 0.41 0.35 


