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Riassunto 

 

La ricerca di prodotti naturali svolge un ruolo importante sia nella definizione della 

loro funzione biologica che nella scoperta di nuove molecole. Ad oggi molti farmaci o 

principi attivi utili alla salute umana sono di origine naturale. Per di più, i prodotti 

naturali sono stati ampiamente utilizzati per chiarire complessi meccanismi cellulari 

che portano alla identificazione di importanti obiettivi di intervento terapeutico. 

Questo progetto di dottorato è finalizzato alla sintesi di prodotti naturali bioattivi e/o 

composti analoghi. In particolare, lo scopo è quello di mettere a punto nuove 

metodologie di sintesi di composti a scheletro lignanico a partire da furani.  

I lignani sono metaboliti secondari ampiamente diffusi nel mondo vegetale. Nelle 

piante i lignani partecipano ai meccanismi difensivi contro l’aggressione dei 

microrganismi ma, ancor più importante, anche il corpo umano può beneficiare delle 

loro proprietà antibatteriche, antifungine ed antifeedant. Oltre che in ambito 

erboristico, infatti, i lignani rappresentano delle sostanze di enorme interesse anche in 

campo farmacologico, come antiossidanti, antivirali, immunosoppressori. Importanti 

studi preliminari su alcuni tipi di lignani ne hanno evidenziato un certo ruolo nei 

meccanismi di prevenzione del cancro, in particolare del seno e del colon.  

La struttura dei lignani deriva da unità fenilpropanoidiche (C6-C3), legate tra loro in 

diversi possibili modi, e che possono essere variamente sostituite ed ossidate. Isolare 

questi composti da fonti naturali è un processo lungo e dispendioso in termini di lavoro 

e di costi, e spesso le rese sono molto basse per scopi applicativi. Data, però, la loro 

importanza in termini di bioattività sono sempre più intensi gli studi per ottenerli 

mediante sintesi parziale o totale.   

In questo progetto di dottorato è stato individuato il 2-aril-3,4-dicarbossimetilfurano 

come utile precursore di scaffolds C6C3-C3C6 da funzionalizzare per ottenere 

strutture lignan simili. Nella prima parte del lavoro è stato sviluppato un approccio 

sintetico per la preparazione di 2-aril-4-aroilfurani, a partire dall’acido 4-furoico 

(preparato per idrolisi basica selettiva del precursore) mediante acilazione di Friedel-

Crafts (FC) utilizzando anidride triflica (Tf2O). Questo reattivo è risultato vantaggioso 

perché consente di lavorare con tempi di reazione brevi e senza l’uso di altri 

catalizzatori acidi. Inoltre, lavorando ad opportune temperature, la reazione è risultata 

altamente regioselettiva, favorendo la formazione dei prodotti 4-acilati desiderati o 

degli isomeri 3-acilati, che comunque si ritrovano in miscela. La procedura è stata 
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estesa a sistemi aromatici opportunamente sostituiti con alcuni dei gruppi tipici di 

lignani naturali. 

Alcuni 2-aril-4-aroilfurani sono stati funzionalizzati mediante reazioni di riduzione e/o 

fotoossigenazione. In particolare, l’idrogenazione Pd-catalizzata effettuata in differenti 

condizioni ha portato ad una serie di prodotti, tra cui un tetraidrofurano la cui struttura 

è analoga a quella di un analogo lignano naturale bioattivo, il Taxiresinolo. Per 

l’ossidazione, invece, è stata applicata la fotoossigenazione sensibilizzata da coloranti,  

una valida procedura alternativa ai metodi classici, sia dal punto di vista della green 

chemistry, sia per il coinvolgimento di specie eccitate, come l’ossigeno singoletto 

(1O2), la cui reattività spesso differisce da quella allo stato fondamentale. Nonostante 

l’importanza della reazione dei furani con 1O2 sia ampiamente riconosciuta, sono 

spesso riscontrati nuovi risultati e spunti sintetici dovuti alla versatilità degli intermedi 

biciclici che si formano, chiamati endoperossidi. A tal proposito, poiché gli -

arilfurani sintetizzati in questo lavoro rappresentano dei sistemi mai studiati 

precedentemente in quest’ambito, è risultato ancora più interessante sottoporli a 

fotoossigenazione e successiva elaborazione degli endoperossidi ottenuti. In 

particolare, la riduzione con Et2S ha portato ad 1,4-enedioni, che in casi di particolare 

sostituzione si convertono spontaneamente in strutture lattoniche. Mentre il 

trattamento basico con Et2NH ha portato ad acidi 4-oxo-alchenoici, invece che a         

-idrossilattoni come ci si aspettava per quanto riportato in letteratura. I risultati 

ottenuti, quasi sempre sorprendenti, sono attribuibili alla particolare sostituzione dei 

furani e all’elevata coniugazione dei sistemi stessi. 

In un secondo momento è stata messa appunto una procedura 3-step one-pot a partire 

sempre dal precursore 2-arilfuranico, fotoossigenato e trattato con base per dare 

l’acido acrilico. Quest’ultimo è stato sottoposto all’acilazione mediata da Tf2O che nel 

precedente approccio sintetico aveva portato a risultati promettenti. In questo caso, 

però, sono stati ottenuti furanoni 5,5- e 3,5-disostituiti, ugualmente interessanti perché 

la loro struttura combina il motivo strutturale del furanone, ampiamente diffuso in 

prodotti naturali e sintetici con proprietà antibiotiche, antifungine, anticancro, e quello 

di alcuni lignani rari recentemente isolati, come ad esempio il Sacidumlignano D. 

Anche questa procedura è stata applicata su una serie di substrati arilici 

opportunamente sostituiti, cercando di ottimizzare le condizioni ed ottenere rese più 

alte con rapporti isomerici a favore dei prodotti 5,5-disostituiti. In particolare, nel 
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tentativo di ottimizzare i risultati ottenuti rientra anche l’utilizzo di una base non 

nucleofila come la 2,6-lutidina, nella reazione di acilazione che ha portato ai medesimi 

prodotti in rese totali più alte, ma con minore selettività.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 8

Abstract 

The chemistry of natural products has made tremendous progress in their fields and 

has developed a repertoire of transformations to achieve their respective target 

compounds. Lignans have attracted a great deal of interest over the years due to their 

wide occurrence in plants and the broad range of biological activities. Lignans show an 

enormous structural diversity, although their molecular backbone consists only of two 

phenylpropanoidic (C6-C3) units. They possess significant pharmacological 

properties, including antitumor, antioxidant, antiviral and cardiovascular actions. 

Isolation of lignans from plant materials remains highly labor intensive process and the 

yields are generally low. Therefore, continuous efforts for the development of 

synthetic methods are made.  

In this PhD thesis a strategy allowing the preparation of some furans as precursors of 

lignan-like compounds is reported. The choice of substituted furan system as starting 

material for lignan-like compounds is based on two reasons. Firstly, polysubstituted 

furans are important building blocks for the synthesis of natural and non-natural 

products, thanks to their ability to undergo a broad range of reactions. Moreover, 

suitable substituted furans consist of C6C3-C6C3 useful scaffolds. This have a 

prominent role in synthetic chemistry particularly in oxidation to versatile 1,4-

enedione or to furanone ring.  

Easily accessible 2-aryl-3,4-dicarboxymethyl furans were recognized as starting 

precursors of 4-aroyl-2-phenyl furans, interesting products characterized by a -’ 

linked C6C3-C3C6 backbone typical of lignans. In this thesis a regiodivergent 

synthetic approach via trifluoromethanesulfonic anhydride (Tf2O)-mediated acylation 

is described. Tf2O is of high current interest in Friedel-Crafts (FC) acylation of 

carboxylic acids and other substrates. The reaction takes place under neat condition 

and at low temperatures. Compared to classical FC acylation this route avoids the 

strong acid conditions and it is highly selective since it reduces the formation of the 

regioisomer 3-aroyl-2-aryl furan, generally found.  

Stimulated by the evident potentiality of the Tf2O-mediated acylation, this procedure 

was explored on 4-oxo-2-alkenoic acids, previously prepared by photooxygenation 

followed by basic treatment. 5,5- And 3,5-diarylfuranones have been obtained in a 

three-step one-pot manner, then, triflic anhydride-mediated acylation of activated 
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aromatic substrates. These products appear of particular interest since they combine 

the presence of a carbon skeleton of some recently isolated rare lignans and a furanone 

moiety. Furanone structural motif is prevalent in bioactive natural and synthetic 

products that have shown a wide range of activities, and it is often found in lignan 

derivatives.  
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I - Introduction 
 

Natural products have always sparked much interest because of their important 

properties. For centuries, a lot of molecules of natural sources have been used in folk 

medicine, in cosmetics and nutrition. Many of them have been useful to better 

understand some complex cellular and biological processes  [1]. The perspective to 

evaluate a vast number of biologically active natural compounds yet to be discovered 

and studied seems to be really attractive. Furthermore, natural compounds give new 

ideas for novel synthetic strategies. Anyway, in the last decades, natural products 

turned out to be useful as remedy in human health and as suggestion for the design of 

potential pharmacological molecules, especially in anticancer and antiviral fields. 

Already in 2006, the FDA (Food and Drug Association) estimated that almost the 70% 

of worldwide approved drugs were: natural products, semi-synthetic products with a 

natural core, mimetics of natural products [2a]. These data are in increasing evolution 

(Figure 1) and a significant number of natural product drugs are actually produced by 

microbes and/or microbial interactions [2b]. 

Secondary metabolites are organic compounds that are not directly involved in 

organisms’ normal growth, development or reproduction. They are often restricted to a 

narrow set of species within a phylogenetic group. These compounds usually have an 

important function, since they are used as defenses against predators, parasites and 

diseases, for interspecies competition, and to facilitate the reproductive processes 

(coloring agent, attractive smells).  
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Figure 1. All new approved drugs  

 

1. Lignans 

Lignans are a wide class of secondary metabolites occurring in plant woody tissues 

and roots, and in a wide variety of foods, including seeds (flax, pumpkin, sunflower, 

sesame), cereals (rye, oats, barley, wheat, oat), fruits (particularly berries), and 

vegetables [3].  

Plant lignans are the main source of phytoestrogens in diets for people who do not 

consume soy food. The daily phytoestrogen intake by postmenopausal women in the 

U.S. was estimated to be less than 1 mg/day, with 80% from lignans and 20% from 

isoflavones [4].  

 

1.1 Structure of lignans 

Lignans derive from the oxidative dimerization of two phenylpropanoid (C6-C3) units, 

and numerous new compounds with structures correlated to lignans are continuously 
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found. The two phenylpropanoids units reveal different degree of oxidation and 

substitution, thus lignans show an enormous structural diversity.  

Lignans can be classified in classical lignans (Figure 2), which have the units linked in 

-’(8-8’) positions, and neolignans (Figure 3) whose coupling patterns differ from 

such a -’ linkage [5]. The units can be linked also by an oxygen atom, as in the 

subclass of oxyneolignan (Figure 3).  
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Figure 2. Basic structure of lignans and examples of classical lignans 
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The main lignans found in knotwood extracts are, for example, Hydroxymatairesinol, 

Secoisolariciresinol, Pinoresinol, and Lariciresinol (Figure 2) of which some are 

important dietary lignans found also in our everyday diet.  
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Figure 3. Examples of neolignan and oxyneolignan structures 

 

Typical substituents on 3,4,5 positions of aromatic rings are AcO-, OH- and MeO- 

groups, in variable number. Really, a further classification for classical lignans may be 

considered (Figure 4): dibenzylbutans (CL1), dibenzylbutyrrolactons (CL2), 

arylnaphtalenes (CL3), dibenzocyclooctadienes (CL4), 2,6-diarylfurofurans (CL5) 

and substituted tetrahydrofurans (CL6a-c) [6]. 
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Figure 4. Classification of classical lignans 

 

1.2 Biosynthesis of lignans  

Lignans and lignins are the major metabolic products of phenylpropanoid metabolism 

in vascular plants. In wood plants, they typically account for more than 20% of the 

weight of angiosperms and over 25% of that of the gymnosperms. Together, they 

constitute some of the most expensive metabolic products generated by plants [7], and 

derive from the shikimate-chorismate pathway [8] which produces the aromatic amino 

acids, phenylalanine and tyrosine [9]. The extension of the phenylpropanoid pathway 

in vascular plants, from phenylalanine onwards, ultimately leads to both the 

dimeric/oligomeric lignans and the polymeric lignins. 

Recently, the biosynthesis of lignans has been revised in relation to the discovery of 

the dirigent proteins that guide phenolic radical coupling [10]. Lignans are obtained 

mainly via differential partitioning of the monolignol, coniferyl alcohol, to yield the 

lignan Pinoresinol, which, in turn, serves as the precursor of both Secoisolariciresinol 
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and Matairesinol (Figure 2). They are biosynthesized in the cell cytoplasm through the 

action of enzymes of the phenylpropanoid pathway, in which Phenylalanine Ammonia 

Lyase (PAL) catalyzes the initial step of the secondary metabolism and Pinoresinol 

Lariciresinol Reductases (PLR) accelerates the final steps of biosynthesis of lignans.  

In plants, lignans show up as glicosides strongly connected to fiber constituents, and 

are taken in diets as inactive products. Afterwards, they are converted into 

phytoestrogens by removal of sugar residue by -galactosidase of intestinal bacteria. 

Active forms of lignans are the Enterolactone and Enterodiol (Figure 5).  
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Figure 5. (-)-Enterolactone and (-)-Enterodiol 

  

1.3 Bioactivities of lignans 

Lignans play a leading role in plant defense, as suggested by their potent biocidal [11], 

antiviral, antioxidant [11a, 12], fungicidal, antibacterial properties and cytotoxic 

activities against pathogens [13]. Antioxidant mechanism and free radical-scavenging 

properties of lignans were reported [14]. According to the obtained results lignans 

have shown to be promising antioxidants, mainly due to their good stability.  
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The most significant aspect of lignans and lignins lies in the fact that, in their absence, 

vascular plants would not easily survive. Indeed, the continued existence of all 

terrestrial animal forms somehow or other depends on vascular plants and, hence, on 

the lignan/lignin biosynthetic pathway. Moreover, it is the differential expression of 

this pathway that is largely responsible for most of plant biodiversity. The variable 

deposition of these substances, in terms of their amount and specific composition, can 

dramatically alter the wood tissues of plants, as well as affect other properties, such as 

heartwood color, durability and rot resistance, and even their aromatic fragrance.  

In the last years, much attention has been drawn to lignans thanks to their biological 

activities. Studies have also shown that high levels of lignans can support healthy 

weight and glucose metabolism, reducing the risk of insulin sensitivity, metabolic 

syndrome and diabetes [15].  

Thanks to the powerful antioxidant and anti-inflammatory properties of lignans, they 

are also useful in the prevention of heart diseases. A recent study [16] reported that the 

main lignan in flaxseed, secoisolariciresinol diglycoside (SDG), was responsible for 

slowing the progression of plaques and decreasing oxidative stress, which harms the 

blood vessels’ lining. The aryl naphthalene lignin justicidin B, without any chiral 

center, attracts interest, because of its fungicidal and antiprotozoal properties [17]. It 

shows antiviral and anti-inflammatory activities as well as inhibition of platelet 

aggregation [18]. In addition, it is used as a lead compound for the design of 

antirheumatic drugs [19].  

Recent studies report that lignans play an important role in mechanisms preventing 

tumors. Mammalian lignans such as Enterodiol and Enterolactone, for instance, hinder 

prostate and breast cancers [20]. In particular, Enterolactone, the primary lignan that 

circulates in our blood, produces a weak estrogenic activity. Many reports have 
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revealed that high levels of Enterolactone in our blood help to reduce risk of breast 

[21], prostate [22] and colon cancers [23], and cardiovascular diseases [24]. It is 

thought that these phytoestrogens work by mimicking estrogenic activity and 

preventing the formation of blood vessels to tumors, restricting, thus, their growth. 

Besides, they disrupt tumor cell multiplication in DNA.  

One of the most diffuse lignans, interesting for cytostatic activity, is Matairesinol 

whose antitumoral properties against breast and colon cancers also are known [25]. 
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1.4 Synthesis of lignan structures 

Direct extraction from plants has been the classical way to obtain lignans. However, 

this process, added to structural characterization and low yields, is considered quite 

laborious and expensive [26]. Thus, for a long time, several total and semi-synthetic 

approaches have been proposed.  

One of the most used methodologies to synthesize lignans is enzymatic or chemical 

oxidative dimerization of derivatives of cinnamyl alcohol and cinnamic acid. Although 

enzymatic phenoxy radicals coupling leads to well-defined products, they can’t be 

practically used for the mechanism has been unclear and the availability of the enzyme 
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is low. Chemical coupling has been performed using several oxides agents such as 

FeCl3 or TTFA (thallium trifluoroacetate) [27], or chiral auxiliary in the asymmetric 

synthesis [28].  

The possibility to prepare some lignans by environmentally-friendly approaches such 

as photo-induced synthetic methods was reported [29]. Formation of cyclic lignans 

under light-promoted oxidation is achieved using selective and green conditions. 

Applying photo-oxidation to isoeugenol and derivatives in presence of peroxides it is 

possible to obtain pinoresinol, dehydrodiconiferyl alcohol and dehydrodiisoeugenol 

(Scheme 1).  
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Scheme 1. Light-promoted oxidation of coniferyl alcohol and isoeugenol 

 

Many synthetic strategies have been proposed for matairesinol and some oxygenated 

analogues, and radical reactions are often recognized in their total synthesis and 

analogue dibenzylbutyrolactones [30]. A more recent paper [31] has reported a novel 
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approach involving a stereoselective radical cyclization of intermediates i-i’ (Scheme 

2).  

Matairesinol is also a useful starting material for the synthesis of Enterolactone and 

enterodiol [32]. Enantiopure products were obtained by a simple procedure of only a 

few steps (Scheme 3). 
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Scheme 2. Synthetic approach for dibenzylbutyrolactones 
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2. Aim of the project 

2.1 Synthetic strategy 

A novel approach to obtain lignan structures could be based on the use of synthons 

with a -’ linked (C6-C3) backbone. For this purpose furan systems f1-3 (Figure 6) 

were recognized as suitable scaffolds for further elaboration of lignan structures.  
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Figure 6. Suitable furan structures for the synthesis  
of -’ lignan-like compounds 

 

Structural motives of furans and derivatives, as tetrahydrofurans, furofurans and 

furanones (Figure 2), are widely occurring in lignans. Moreover, furans have also a 

prominent role in synthetic chemistry, due to their ability to undergo a broad range of 

reactions [33]. 

 

3. Furans 

Furans are heterocycles widely distributed in a large number of natural and synthetic 

substances, endowed with interesting biological activities [34].  
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3.1 Furan derivative structures in lignans 

Antioxidant activity of some furan derivative lignans may be explained in relation to 

their structural similarity to L-ascorbic acid, which is one of the most common 

antioxidants. Indeed, some of lignans studied showed an equally good or even better 

radical-scavenging capacity [14, 36]. 

Furans find a large number of applications as drugs, pesticides, cosmetics, detergents. 

Some examples of furans and derivatives with important bioactivities or properties are 

reported in Figure 7. The benzofuran a is used in the treatment of diabetes [37], while 

b is a diterpenic furan, extracted from fruit of Vitex rotundifolia, and useful to prevent 

cardiovascolar disorders [38]. Compounds c and d are, instead, efficacious pesticides, 

respectively of natural and synthetic origins [39].  
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 Figure 7. Examples of bioactive furans and derivatives  

 

Due to its ability to undergo a wide range of reactions, this heterocycle is widely used 

in the synthesis of natural and non-natural products [33, 34a]. 
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Typical reactions of furans are electrophilic substitutions, Diels-Alder reaction, metal-

catalyzed reductions and oxidations. 

The reduction of furans can be carried out under classical metal-catalyzed 

hydrogenation. Typical catalysts used are Pd/C, Raney nickel and rhodium on alumina 

[40]. 

Several procedures for the oxidation of furans are reported, and lead to various 

structures, e.g. diepoxides, 1,4-enediones, furanones. The latter, in particular, show a 

very interesting structural motif, widely occurring in bioactive natural and synthetic 

products [35a, 41]. The biological importance has induced to develop novel 

methodologies for their synthesis. Furthermore, furanone structure is a very common 

backbone of bioactive lignans, as previously shown, for instance, in Figure 2. 

Similarly enediones are compounds of great synthetic interest and a variety of 

approaches has been developed for the synthesis of this skeleton [42]. Indeed, by 

virtue of their multifunctional composition, 1,4-enediones could serve as versatile 

precursors for heterocycle synthesis, Diels-Alder cycloaddition, Michael addition, as 

well as many other useful transformations [42, 43]. 

One of the most used oxidation procedures of furans is the dye-sensitized 

photooxygenation.  

 

3.2 Dye-sensitized Photooxygenation of furans 

The dye-sensitized photooxygenation is based on the irradiation of substrate in 

presence of catalytic amount of a dye, which usually is a substance easily excited by 

the absorbance of visible radiations (sunlight), and in coming back to the ground state 

molecule, it releases the absorbed energy to oxygen that changes its state converting to 

singlet state (Scheme 4). 
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1S=dye; S*= excitated dye
 

Scheme 4. Formation of singlet oxygen via sensitizer  

 

Dye-sensitized photooxygenation appears a very promising oxidation route for several 

advantages as use of molecular oxygen, atom economy, high selectivity of singlet 

oxygen so that it is widely recognized as efficient and environmentally friendly. 

Singlet oxygen is a very reactive species that adds to unsaturated systems to give 

peroxides and hydroperoxides.  

Photooxygenation of furans has been studied extensively from mechanistic and 

synthetic viewpoints. Singlet oxygen adds to furans in a quantitative and concerted 

reaction leading to 2,3,7-trioxabicyclo[2.2.1]-heptenes also named endoperoxides [44]. 

These intermediates are generally highly thermally unstable and can afford 

characteristic rearranged products. The thermal stability of the furan endoperoxides 

appears to depend on the -substituent and follows the order Me > Ph > H > OMe [44, 

45]. The presence of an electron-withdrawing group at the  position in the furan ring 

enhances the thermal stability of the corresponding endoperoxides, which may be 

stable enough to be isolated and characterized by analytical and spectroscopic data 

[46]. The subsequent rearrangements of the intermediate endoperoxide depend on the 

nature of the -substituents as well as on reaction conditions [44, 45, 47]. Epoxides, 

diepoxides, enol esters, enediones, ketoesters, epoxyfuranones, furanones are only 

some of the products obtainable from the photooxygenation of furans (Scheme 5).  
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Scheme 5. Possible rearrangements of furanssendoperoxide 
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II – Results and Discussion 

 
In the first stage of this project, the synthetic targets considered were the 3,4-

diaroylfurans type F1: 

 

O

Ar Ar'

OO

F1

3,4-diaroylfurans

3 4

 

In order to obtain them a methodology involving a Diels-Alder reaction on 4-

phenyloxazole and diaroylacetylens was recognized (Scheme 6) [48]. Indeed, by a 

retro-Diels-Alder reaction, the bicyclic intermediate gives furan F1 and benzonitrile, 

which is a better leaving group than starting diaroylacetylene. Indeed, a simple 

procedure has been reported in literature for symmetric and asymmetric alkynyl 

ketones [49] from alkynylsilanes and halides acids by one-step iodine-catalyzed.  
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Scheme 6. Retro-synthetic analysis of 3,4-diaroylfurans 
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1. Synthesic approach for 3,4-diaroylfurans 

4-Phenyloxazole 1 [50] was prepared by starting from 2-bromoacetophenone and 

ammonium formate in presence of formic acid (Scheme 7): 

 

N

O

Ph
O

Br
HCOOH, HCOONH4

reflux, 2h

1   

Scheme 7. Synthesis of 4-phenyloxazole 1 

 

The reaction was conducted in reflux condition and monitored by TLC analysis. After 

2 hours, the reaction mixture was worked-up and chromatographed on silica gel 

column. The 1H-NMR spectrum of product (21% yield) agreed with that reported for 

4-phenyloxazole.  

In order to obtain symmetric diaroylacetylenes 2, the mentioned method was 

considered (Scheme 8).  

 

 

Ar Cl

O

TMS TMS

+

2

I2 (5% mol)
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O

Ar

O

Ar

2
  

Scheme 8. Synthesis of symmetric diaroylacetylens 2  

 

To prepare lignan-like backbone structures opportunely substituted, different aryls 

were considered. In the first experiments 4-methoxybenzoyl chloride (anisoyl 
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chloride) was used as aryl substrate, which would have the simplest substituent. 

Therefore the one-step procedure was applied to bis-(trimethylsilyl)-acetylene and 

anisoyl chloride (2 eq) in presence of catalytic amount of iodine (Scheme 9). The 

reaction was conducted in argon atmosphere and in dry DCM. After 20 hours the 

reaction mixture was worked-up and chromatographed on silica gel column to give a 

product identified as 3 by comparison of reported NMR data [51]. 

 

+

TMSTMS

I2 (5 mol%)

DCM, r.t.

O

MeO

Cl O

MeO
TMS

3  

Scheme 9.  Synthesis of trimethylsilyl-monoacyl acetylene 3 

 

Attempts to apply the same iodine-catalyzed reaction to 3 as starting compound for the 

synthesis of the corresponding diacylated products were unsuccessful and 3 was 

recovered unreacted. Thus, other types of reactions were performed to introduce the 

second anisoyl group on 3, such as a classical Friedel-Crafts acylation procedure with 

Lewis acid AlCl3 as catalyst or a reaction catalyzed by Pd(PPh3)2Cl2 and CuI in Et3N 

[52]. In both cases no reaction occurred.  

The same negative results were obtained performing the iodine-catalyzed reaction with 

other aroyl substrates, such as 3,4-dimethoxy-phenyl and 3,4,5-trimethoxy-phenyl 

chloride.  

The disappointing results that were obtained induced us to use a different method, 

based on the reaction of anisaldehyde with bis-(trimethylsilyl)-acetylene in the 

presence of tetrabutylammonium fluoride (TBAF) (Scheme 10) [53]. Indeed it is 
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known that in basic conditions the protecting group TMS can be eliminated because of 

the major strength of silicon-fluoride bond than that silicon-carbon [54]. Therefore, the 

TBAF was added dropwise to the cooled mixture of aldehyde and bis-TMS-acetylene 

in anhydrous tetrahydrofuran. The reaction was completed in few minutes as shown by 

TLC analysis which evidenced the disappearance of the aldehyde and the formation of 

several UV-visible products. Work-up and purification on silica gel column led to the 

identification of only two products. Compound 4 (20% yield) its the 1H-NMR 

spectrum showed the presence of a benzylic proton at 5.43, and in the ESI-MS 

spectrum the molecular peak [M+] a m/z 442 (Scheme 10) was present. The diol 

product 4’ was present in very small amount.  

Product 4 was oxidized in mild conditions bypassing the desilylation step. For this 

purpose the oxidant MagtrieveTM was used (Scheme 10), a very common suitable 

reagent for selective oxidation of primary and secondary alcohols. MagtrieveTM is a 

magnetically retrievable oxidizing agent based on reduced form of tetravalent 

chromium dioxide (CrO2). It can be easily removed by simple magnetic separation 

because of ferromagnetic properties [55]. The oxidation reaction was carried out in 

reflux of toluene for 30 minutes, until the TLC showed the disappearance of 4. Once 

MagtrieveTM was removed, the reaction mixture was worked-up and purified by silica 

gel column chromatography. GC-MS analysis of isolated product of showed a 

molecular peak [M+] at m/z 294, and NMR data were consisted of the structure 5. 1H-

NMR spectrum was very similar to that of 4 but the singlet of benzylic proton at 5.43 

was absent. 13C-NMR spectrum showed seven signals, in particular singlets at 175.1 

and 86.0 were attributed to quaternary carbonyl and an acetylenic carbons respectively. 

However the yield (11%) were not satisfactory for an efficient synthetic strategy.  
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Scheme 10. Synthesis of diaroylacetylenes 5 

  

2. Synthesic approach for 2-aryl-4-aroylfurans 

These results induced us to consider structures CL6-b (Figure 4) as lignan target, in 

particular the furan derivative f2 (Figure 6). For this purpose 2-aryl-3,4-

dicarboxymethylfurans 6 were recognized as starting products for 4-aroyl-2-arylfurans 

8 as suggested by a retro-synthetic analysis (Scheme 11). Indeed, easily accessible 

furans 6 [56] can be hydrolysed to 4-furoic acids 7, which should lead to 8 via 

acylation reaction. 
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4-aroyl-2-arylfuran furoic acid
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Scheme 11. Retro-synthetic analysis of 4-aroyl-2-arylfurans 8 from 2-arylfurans 6 

 

The 2-phenyl-3,4-dicarboxyfuran 6a was prepared following a reported procedure 

[56]: a DABCO-catalyzed reaction of dimethyl acetylenecarboxylate (DMAD) with α- 

bromoacetophenone, in the presence of anhydrous K2CO3 (Scheme 12): 
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Scheme 12. Synthesis of 2-phenylfuran 6a  

 

After work-up the reaction residue was chromatographed on silica gel leading to 6a in 

low yields. Thus, in order to minimize the degradation process of the product, due to 

the modest acidity of silica, rapid chromatography on flash silica gel column was 

conducted under nitrogen pressure and 2-phenylfuran 6a was isolated in 85% yield.  

Successively, a selective basic hydrolysis in methanol and KOH (1 eq) was performed 

on furan 6a. The reaction was conducted at room temperature for 15 hours, leading to 

4-furoic acid 7a in 88% yield (Scheme 13). The regioselectivity in position 4 was 



 31

expected because the possibility to hydrolyze asymmetric diesters on less hindrance 

position is reported [57]. 

O

MeO
O O
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KOH 
 (1 eq)

MeOH, r.t.
O

MeO
O O
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Scheme 13. Synthesis of 4-furoic acid 7a  

 

Monoacid 7a was treated with SOCl2 in dry DCM, and the corresponding chloride 7’a 

was subjected to AlCl3-catalyzed Friedel-Crafts acylation reaction [58]. Benzene and 

anisole were used as aromatic substrates (Scheme 14) and the reaction conditions are 

summarized in Table 1.  

The reaction with benzene was conducted in reflux conditions over night, but no 

complete conversion of chloride occurred. The work-up and purification led to a 

mixture of acylated products: the expected 4-benzoylderivative 8b and isomer 3- 

benzoylderivative 9b, in 7:3 ratio. 



 32

O

OMe
OO

O
Ph

MeO
O O

OMe

8a 9a

O

OMe
OO

OMe

o-9a

MeO

PhPh

O

MeO
O O

OH

Ph

7a

 SOCl2,DCM  ArH, AlCl3

8 9

O

MeO
O O

Ar

Ph
O

Ar
O O

OMe

Ph
O

MeO
O O

Cl

Ph

7'a
a: Ar = 4-MeOPh
b: Ar = Ph

+
24 h 24 h

Scheme 14. Halogenation of monoacid 7a and Friedel-Crafts acylation reaction on 
chloride 7’a 

 

Table 1. Halogenation of monoacid 7a and Friedel-Crafts acylation reaction  
on crude chloride 7’a 

 
Halogenation  

of 7’a 
Acylation on 7’a 

SOCl2 

(Eq) 

T 
(°C) 

ArH Solvent
AlCl3 

(Eq) 
T (°C) 

Time TOT 

(h) 
Yield TOT 

1.2  reflux Benzene DCM 1.2  reflux 48  
60% 

(8b : 9b = 67 : 
33) 

1.2  reflux Anisole DCM 1.2  r.t. 48  
82% 

(8a : 9a : o-9a)  
68 : 24 : 8) 

 

This result was evidenced by 1H-NMR spectrum analysis, where two singlets at  7.79 

and  8.11 can be attributed respectively to isomers 8b and 9b[58]. The similar 

chromatographic behavior of two isomers made difficult the separation of them and 

pure 8b was recovered in poor amount.  

Slightly better results were obtained in reaction with more nucleophilic anisole. This 

reaction could be conducted at room temperature. The 1H-NMR spectrum of reaction 

mixture showed three singlets at  7.74,  8.02 and 8.11, respectively attributed to H-
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5 protons of 8a, 9a and o-9a in about 68:24:8 ratio. Both para- and orto-substituted 3-

aroylisomers 9a formed besides the expected 8a: the para-isomer 9a is favored 

compared to orto-substituted o-9a because of steric effects.  

The formation of both 3-aroyl and 4-aroylfurans, starting from the 4-acyl chloride  

(X=Cl) could be explained considering that ester and carbonyl chloride groups are 

sufficiently close to favor the cyclization which leads to intermediates I e II (Scheme 

15) as reported in literature [58]. This interchange is probably due to the required long 

reaction times.  

All the efforts to improve regioselectivity working at lower temperatures failed, 

because of the very sluggish activation of the furan reactant. These disappointing 

results induced to explore different acylation procedures reported in the literature. On 

the other hand great attention in Friedel-Crafts acylation for the synthesis of aromatic 

ketones is given to their usefulness as intermediates in the preparation of fine 

chemicals and pharmaceuticals [59].  

The classical procedure uses acylic chlorides and Lewis acids in excess, thought the 

work-up is tedious and not environmentally friendly. In order to avoid these problems, 

several methods based on the use of acylant agents such as carboxylic acids, 

anhydride, esters have been tested [60]. Currently, there is a great interest for FC 

acylation, with the aim to minimize some drawbacks of the classical procedure, such 

as the use of acid chlorides and, generally, high amounts of the metallic oxophilic 

promoters which cause strongly acidic conditions [61]. New methodologies involve 

carboxylic acids as acylating agents in the presence of Lewis acid or Brønsted 

acid……  
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Scheme 15. Interchange mechanism between the ester function and the leaving group 
by a ring-chain tautomerism 

 

acid catalysts [62], or using anhydrides as activating agents in combination with a 

catalyst such as p-trifluoromethylbenzoic anhydride and SiCl4-AgClO4 [63], 

trifluoroacetic anhydride and H3PO4 [64] or AlPW12O40 [65]. A recent methodology 

applied to acetic and benzoic acids employs trifluoromethylsulfonic anhydride (triflic 

anhydride) without the use of a catalyst and works in short times and in a large range 

of temperatures [66]. Anyway, to our knowledge, this methodology has not been 

applied to furoic acid. Thus, to improve the regioselective synthesis of 4-aroylfurans 8, 

acid 7 underwent the study in several conditions based on recent literature. 

In initial experiments, an acylation reaction was performed on monoacid 7a with 

cyanuric chloride, which is generally used to convert in the corresponding chloride in 

mild conditions and short times carboxylic acids [67]. In this procedure (Scheme 16) 

monoacid 7a, dissolved in a 0.1 M solution of DCM, is activated by dropwise addition 
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of pyridine in presence of cyanuric chloride After few minutes at reaction mixture 

AlCl3 and aromatic compound are added. The reaction was performed by using both 

benzene and anisole. Unfortunately, after 15 hours, isomeric ketones were obtained in 

small quantity in both cases, and a part of the starting product was recovered. 
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N N
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MeO
O O
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 acylation products in traces

a: ArH = anisole, r.t.
b: ArH = benzene, 40 °C

 

Scheme 16. Acylation of acid 7a via cyanuric chloride  

 

A recent efficient procedure for the synthesis of aromatic ketones from both aliphatic 

and aromatic carboxylic acids performs FC acylation reaction in the presence of 

P2O5/SiO2 [68]. Furthermore, this system (P2O5 on silica gel) is easy to prepare and 

handle, and can be removed from the reaction mixture by simple filtration. The 

procedure applied on acid 7a reaction led to only polymeric material (Scheme 17). 

Probably furan system is quite sensible to the strongly acid conditions [69]. 

+
 P2O5 / SiO2
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O O
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Scheme 17. Acylation of acid 7a using P2O5/SiO2 
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Hence, in the search of milder conditions, the use of triflic anhydride as promoter 

appeared a promising method [66]. According to literature data, Tf2O forms an 

intermediate mixed anhydride in short times and a broad range of temperature. 

Acylation was performed on acid 7a in the presence of Tf2O and benzene (100 eq) 

(Scheme 18), but no satisfactory results were obtained (Table 2), and reaction didn’t 

go on to completion. Instead higher yields and selectivity were obtained using anisole 

(100 eq). The analysis of Table 2 shows that 4-aroylderivative 8a is the main product 

in neat conditions. Apparently the solvent has no effect on total yields, while it favors 

the formation of 3-substituted furan regioisomers (9a, and o-9a in traces).  

This different reactivity in use of anisole and benzene can be related to the previously 

analyzed mechanism (Scheme 15). Mixed anhydride is less reactive than acylic 

chloride, so the nucleophilic aromatic substitution reaction is obtained only with an 

activated substrate as anisole.  

On these considerations, a further aim was to explore the reaction in order to get better 

yields and/or selectivity for 4-aroylfuran 8a.  
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 Scheme 18. Acylation of monoacid 7a via Tf2O  

 

Table 2. Acylation of monoacid 7a via Tf2O with benzene and anisole 
 

 

 

 

All experiments were performed on acid 7a, by changing parameters such as 

temperature, neat conditions or in the presence of a solvent (generally 

dichloromethane), concentration and order of reagents addition. All conditions and 

results are reported in Table 3. Thus, reactions are conducted in DCM (entries 1-5) and 

in neat conditions (entries 6-14), at 40 °C (entries 1-3), at room temperature (entries 4-

5) or in 0-30 °C range (entries 8-14). In neat conditions anisole was used in large 

excess (65 eq) related to the acid and Tf2O was successively added to the reaction. On 

the contrary, in the presence of solvent anisole/DCM 1 : 1 was used (entries 1, 4), or a 

0.1 M solution of anisole in DCM was added dropwise (entries 2, 3 and 5). In (1-5) 

ArH Solvent Tf2O (Eq) T (°C) Time (h) Yield (8a : 9a) 

Benzene DCM 1.1 r.t. 24 — 

Benzene — 1.1 80 24 20% (50 : 50) 

Anisole DCM 1.1 r.t. 2 70% (35 : 50 : 15) 

Anisole — 1.1 r.t. 2 72% (67: 24 : 9) 



 38

experiments anisole was added to a DCM solution of acid 7a activated by 1.1 eq of 

Tf2O, while at lower temperatures, more equivalents of Tf2O were used (entries 10, 

12-14).  

Table 3. Acylation conditions of acid 7a with anisole via Tf2O 

  Entry Solvent T (°C) Tf2O (Eq) Time (h) Yield (8a : 9a : o-9a) 

 In solvent 
1 DCM 40 1.1 2  74% (21 : 63 : 16) 
2 DCM/ArHa 40 1.1 2  90% (11 : 52 : 37) 

3 
DCM/ArH  

10 eqa 
40 1.1 3  50% (23 : 69 : 8) 

4 DCM r.t. 1.1 2  70% (36 : 50 : 14) 

5 
DCM/ArH  

5 eqa  
r.t. 1.1 4  98% (0 : 72 : 28) 

 Neat conditions 
6 — r.t. 1.1 2  72% (67 : 24 : 9) 

7 
Anisole 

dropwise 
r.t. 1.1 2  62% (66 : 28 : 6) 

8 — 0 1.1 3  78% (76 : 19 : 5) 

9 
Anisole 

dropwise 
0 1.1 3  63% (76 : 19 : 5)  

10 — 0 1.5 3  97% (77 : 17 : 6) 
11 — -10 1.1 3  62% (71 : 24 : 5) 
12 — -10 1.5 3  91% (80 : 13 : 7) 
13 — -30 2.0 15  57% (86 : 11 : 3) 
14 — [-30 ÷ -20] 2.5 15  98% (85 : 10 : 5) 

a Dropwise addition of anisole (0.1 M solution in DCM)   

In this case a mixture of acylated regioisomeric products was obtained as in reaction 

with SOCl2. Starting from the unique acid 7a, there is a competition between 4-

aroylfurans 8a, 9a and o-9a isomers exists. At room temperature, the reaction led to an 

almost equimolar mixture of regioisomers 8a and 9a. In neat conditions, where anisole 

in excess acts as solvent, the selectivity for 8a is favored at low temperature.  

The results obtained can be explained as supposed for 4-aryl chloride (Scheme 15). In 

this case 4-aryl triflate (, X = OTf) in equilibrium with 3-aryl triflate (', X = OTf), 

through the cyclic intermediates can evolve in regioisomers 8a and 9a. At low 

temperature the product 8a was formed as major product compared to isomer 9a. 

Cyclization process that leads to intermediates is promoted by higher temperatures and 
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diluted solutions. Hence, thus the equilibrium between mixed anhydrides  e ’ 

occurs. The Dropwise addition of aromatic substrate (anisole) at room temperature led 

to almost quantitative formation of 9a. These experimental evidence suggest that  is a 

more reactive intermediate. 

 

2.1 Tf2O-mediated FC acylation of other arylic substrates 

Promising results obtained induced us to explore the method on a range of other arylic 

substrates. In particular, compounds were considered with suitable substitution on 

aromatic ring for the synthesis of 4-aroylfurans, lignan-like precursors. Experiments 

on acid 7a were performed starting from the best conditions for anisole, and further 

attempts were made in order to increase the regioselectivity of acylation in favor of 

one of the diaroylfuran products. 

In the first attempt, it was used as arylic substrate 1,2-dimethoxybenzene (Scheme 15). 

The obtained results confirmed the role of temperature in regioselectivity, as already 

suggested by data of anisole. In particular low temperatures favored high total yield of 

4-aroylfuran, that is the required product with a suitable substitution on furan (Table 

4). Natural lignan derivatives present substituents in positions 4, 3 and 4, or 3,4,5 

derived for their biosynthetic pathway [6].   
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Scheme 19. Acylation on acid 7a con 1,2-dimethoxybenzene via Tf2O 
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Table 4. Acylation conditions of acid 7a via Tf2O with 1,2-dimethoxybenzene 

 Entry  Solvent T (°C) Tf2O (Eq) Time (h) Yield (8c : 9c) 

1 DCM r.t. 1.1 3  87% (42 : 58) 

2 DCM/ArH 5 eqa r.t. 1.1 3  63% (11 : 89) 

3 DCM/ArH 5 eqa r.t. 1.5  3  86% (11 : 89) 

4 DCM [-30 ÷ -20] 2  15  90% (84 : 16) 
a Dropwise addition of 1,2-dimethoxybenzene (0.1 M solution in DCM)  

Reaction with 1,2-benzodioxole (Scheme 20) gave satisfactory results in formation of 

both 3-aroyl and 4-aroylfurans, through in lower yields (Table 5). 

Differently, acylation with 1,2,3-trimethoxybenzene (Scheme 21) led to high yield, but 

the selectivity for 4-aroylfuran 8e is reduced at low temperatures (Table 6).  
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Scheme 20. Acylation on acid 7a via Tf2O with 1,2-dibenzodioxole  

 

Table 5. Acylation conditions of acid 7a via Tf2O with 1,2-dibenzodioxole 
 
 
 
 
 
 
 
 

 
 
a Dropwise addition of 1,2-dibenzodioxole (0.1 M solution in DCM) 

 

  Entry Solvent T (°C) Tf2O (Eq) Time (h) Yield (8d : 9d) 

1 DCM r.t. 1.1  1  56% (25 : 75) 

2 DCM/ArH 3 eqa r.t. 1.1  4  41% (0 : 100) 

3 DCM/ArH 5 eqa r.t. 1.1  4  46% (0 : 100) 

4 DCM/ArH 10 eqa r.t. 2  15  56% (0 : 100) 

5 — -15 2.5  15  68% (80 : 20) 

6 DCM -30 2.0  15  60% (81 : 19) 
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Scheme 21. Acylation on acid 7a via Tf2O with 1,2,3-trimethoxybenzene 

Table 6. Acylation conditions of acid 7a via Tf2O with 1,2,3-trimethoxybenzene 
 

 Entry Solvent T (°C) Tf2O (Eq)  Time (h) Yield (8e : 9e) 

1 DCM r.t. 1.1  2  84% (57 : 43) 

2 
DCM/ArH 

 10 eqa 
r.t. 2  3  65% (20 : 80) 

3 DCM [-30 ÷ -20] 2  15  98% (67 : 33) 

4 DCM 40 1.1  3  65% (20 : 80) 
aDropwise addition of 1,2,3-trimethoxybenzene (0.1 M solution in DCM) 

Combination of para- and orto-directing effects due to the position of methoxyl 

groups on benzene ring as in ketones 8e e 9e. Unfortunately, this 2,3,4-substitution 

pattern on aromatic ring is not common in the natural lignan structure [6].  

Acylation reaction on 1,3,5-trimethoxybenzene gave products 8f e 9f in good yields 

(Scheme 22, Table 7), and high regioselectivity for the 4-aroyl furan was observed 

performing reaction in specific conditions. The 2,4,6-substitution pattern on aromatic 

ring of products occurs more in neolignan than in lignan structure [6].  

All products were isolated by chromatography on silica gel and characterized by 1H 

NMR, 13C NMR, ESI-MS spectroscopy. In particular, spectrum 1H-NMR of 

compound 8 have signal of H-5 as a singlet in chemical shifts range 7.68 - 7.79 ppm, 

while for the regioisomer 9 this signal are at lower fields (7.95 - 8.11 ppm). This 

difference in values is due to the anisotropy of aromatic ring, in compounds 8, that 

causes shielding effects on the close proton to the aroyl group [70].  
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Scheme 22. Acylation on acid 7a via Tf2O with 1,2,3-trimethoxybenzene  

Table 7. Acylation conditions of acid 7a via Tf2O with 1,3,5-trimethoxybenzene 

  Entry Solvent T (°C) Tf2O (Eq) Time (h) Yield (8f : 9f) 

1 DCM r.t. 1.1  3  50% (100 : 0) 

2 DCM -30 2  4  54% (100 : 0) 

3 DCM/ArH 5 eqa r.t. 1.1  3  81% (25 : 75) 
aDropwise addition of 1,3,5-trimethoxybenzene (0.1 M solution in DCM) 

The analysis of experimental data revealed the possibility to obtain 4-aroylfurans 8 or 

3-aroylfurans 9 through a one-pot procedure of acylation via Tf2O on 4-furoic acid 7a. 

The regioselectivity of reaction can be addressed choosing different reaction 

conditions.  

Reaction times are considerably reduced by comparison wuth the classical Friedel 

Crafts acylation, and work conditions have no effects on them. Dichloromethane 

turned out to be the best choice to carry out mentioned reactions. Different solvents 

such as benzene, tetrahydrofuran, acetonitrile, p-dioxane are used in order to get higher 

yields. Anyway, in the first case yields were lower than 80%, whereas in the other 

solvents no acylation products was formed. The Friedel-Crafts acylation method via 

Tf2O for 4-aroylfurans 8 revealed satisfactory for the most aromatic substrates. Some 

exceptions are observed, for example on reactant  1,2,3-trimethoxybenzene, the 

reaction behaved in good yields but low selectivity for isomer 8e (Table 6). 
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2.2 Tf2O-mediated FC acylation on 2-(4-methoxyphenyl)furoic acid 7b 

In order to investigate the possible effects of a substituted aromatic ring of starting 

furan, the novel procedure was applied on 2-(4-methoxyphenyl)furoic acid 7b 

(Scheme 23). The DABCO-catalyzed reaction of dimethyl acetylene carboxylate with 

2 eq of 2’-bromo-4-methoxyacetophenone, led to the best yield (66%) in presence of 

CsCO3 anhydrous instead of K2CO3. Afterwards, the selective hydrolysis of furan 6b 

was performed in MeOH and 1.0 eq of KOH 2.5 N for about 3 hours (Scheme 23). 

Monoacid 7b was obtained in 70% yield. 

As for acid 7a, the classical Friedel-Crafts acylation, using SOCl2 and AlCl3, was 

performed on acid 7b. Nevertheless, this approach led to an equimolar mixture of two 

regioisomers 8’a and 9’a. So, the procedure via Tf2O was explored in several reaction 

conditions (Table 8). Based on satisfactory results obtained for monoacid 7a in anisole 

strong excess of arene and low temperatures were used. The best selectivity for 8’a 

was resulted in entries 2 and 5 (Table 8). Yield of mixture of products was 69%, while 

isomeric ratio 8’a:9’a was 1.6:1. On the basis of mechanistic hypothesis it is possible 

to address reaction to the formation of 8’a, by controlling the temperature.  

Although several attempts were performed by tuning the reaction conditions 

(temperature, presence or absence of solvent, equivalents and order of reagents 

addition), actually regioisomeric excess of 8’a was not as satisfactory as could be 

expected, especially considering the laborious purification of products. Moreover, 

since acid 7b is poorly soluble in anisole it was not possible to work at temperatures 

lower than -30 °C. Reaction in solvent (Table 8, entry 1) in reflux condition led to 

quite exclusively formation of 9’a. 
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Scheme 23. Acylation on acid 6b via Tf2O with anisole 

 

Table 8. Acylation conditions of acid 7b via Tf2O with anisole 

Entry Solvent Tf2O 
(Eq) 

Anisole 
(Eq) 

T 
(°C) 

Time 
(h) 

Yield 
% 

8’a:8’a:o-9’a 8’a:9’a 

1 DCM 1.1 5/DCMa 40 rf 4 23 0:4.47:1 0:4.47 

2 — 1.2 10 0 4 64 8.4:5.09:1 1.67:1 

3 — 1.2 25 -10 3.5 23 2.6:3:1 1:1.6 

4 — 1.5 65 -15 72 80 4.45:3.4:1 1.3:1 

5 — 2.5 65 -15 72 69 7.3:4.45:1 1.6:1 

6 — 2.5 65 -30 o.n. 62 7.7:5.2:1 1.47:1 

7 DCM 2.5 5 -30/-10 28 69 1:4.2:1 1:4.2 

8 DCM 2.5 5 -20 o.n. 30 1.6:3.3:1 1:2.06 

9 DCM 2.5 5 -15/-20 o.n. gel — — 

10 DCM 1.1 5/DCMa r.t. 4 56 1:9.92:1.9 1:9.92 

 o.n. = overnight, rf = reflux ; aDropwise addition of anisole (0.1 M solution in DCM)  
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The acylation procedure was performed on acid 7b with 1,3,5-trimethoxybenzene 

(Scheme 24, Table 9), too. The reactions were conducted in DCM, at different 

temperatures.  
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 Scheme 24. Acylation on acid 7b via Tf2O with 1,2,3-trimethoxybenzene  

 

However, in both cases results were not very satisfactory in terms of isomeric ratio.  

Table 9. Acylation conditions of acid 7b via Tf2O with 1,2,3-trimethoxybenzene 

Entry Solvent Tf2O (Eq) T (°C) Time (h) Yield (8’f : 9’f) 

1 DCM 1.2 -20 23 63% (1.27 : 1) 

2 DCM 1.2 r.t. 22 79% (3.76 : 1) 

 

2.3 Conclusion  

A strategy allowing the preparation of either 3-aroyl-2-phenyl- or 4-aroyl-2-phenyl 

furans, starting from a unique easily accessible mono-acid precursor 6, has been 

recognized. This method is based on tunable Tf2O-mediated FC-acylation and takes 

advantage of a ring-chain tautomeric interchange occurring on the acylating agent. In 

particular, temperature turned out to have important effects on regioselectivity. The 

methodology has been explored on different arylic substrates with typical lignan 

substitutions. The best conditions leading to a series of ’lignan-like precursors 8a-

f derivatives are characterized by low temperatures (Table 13). 
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The method turns out suitable also for regioisomers 9a-f, whose formation is favoured 

by higher temperatures (Table 14). 

However, less satisfactory appear the results obtained starting from an electron-rich 2-

arylfuran.  

Table 10. The best Tf2O-mediated FC-acylation conditions for 8a-f  

Entry Solvent 
T 

(°C) 
Tf2O 
(Eq) 

Time 
(h) 

Total yield 
(yield 8) 

a anisole — [-30 ÷ -20] 2.5 15 98% (8a 83%) 

c 1,2-dimethoxybenzene DCM [-30 ÷ -20] 2 15 90% (8c 76%) 

d 1,2-benzodioxole — -15 2.5 15 68% (8d 54%) 

e 1,2,3-trimethoxybenzene DCM [-30 ÷ -20] 2 15 98% (8e 66%) 

f 1,3,5-trimethoxybenzene DCM -30 2 4 54% (8f 54%) 

 

Table 11. The best Tf2O-mediated FC-acylation conditions for 9a-f  

 

 

 

 

 

 

3. Application of some synthetized furans in the synthesis of 
functionalized lignan-like compounds 

4-Aroyl-2-phenyl-3-methoxycarbonyl furans 8 are very interesting products, since they 

possess a typical lignan scaffold (Figure 8). 

Entry T (°C) Tf2O (Eq) Time (h) Total yield (yield 9) 

a anisole r.t. 2.5 15 98% (9a 98%) 

c 1,2-dimethoxybenzene r.t. 2 15 63% (9c 56%) 

d 1,2-benzodioxole r.t. 2.5 15 56% (9d 56%) 

e 1,2,3-trimethoxybenzene 40 2 15 65% (9e 52%) 

f 1,3,5-trimethoxybenzene r.t. 2 4 81% (9f 61%) 
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Figure 8. Some examples of natural tetrahydrofuran lignans with anti-inflammatory 
and antimicrobial activities. 

 

Hence, the possibility to functionalize these products towards lignan-like compounds 

was explored. In particular, hydrogenation and/or photooxygenation reactions were 

considered. 

 

3.1 Hydrogenation of 8a 

The hydrogenation of the furan moieties of the obtained 4-aroyl furans 8 would thus 

offers a versatile and straightforward route to lignan derivatives or analogues thereof. 

To test this synthetic opportunity, model furan 8a was hydrogenated under different 

temperature conditions and at high pressure (100 atm) with Pd on carbon, as already 

reported for 2-arylfuran-3,4-dicarboxylate esters [57]. Tuning the temperature was 

indeed useful for obtaining furan derivatives with a differentiated profile of functional 

groups or the corresponding tetrahydrofuran (Figure 9). In the latter the carbonyl 
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function also underwent reduction to methylenic group because of its di-benzylic 

character [71].  

Furan ring can be readily saturated to yield tetrahydrofuran without ring opening 

through Pd/C-catalysed hydrogenation in methanol, at low hydrogen pressure and high 

reaction temperatures [72]. Moreover, it is reported that 2-arylfuran-3,4-dicarboxylate 

esters can be subjected to a very similar procedure, but at higher pressure in order to 

avoid the reduction of aryl ring too [40]. On this considerations, the model furan 8a 

was hydrogenated, in MeOH dry with 10% Pd/C (Table 10). Preliminary results have 

evidenced that too high pressures led to the formation of many by-products. After 

several attempts conducting the reduction at 100 atm the to a less complex mixture of 

products. Tuning the temperature, furan derivatives with a different functional groups 

(10 and 11, Figure 9) or the corresponding tetrahydrofuran 12 were obtained. These 

results have induced to investigate the best reaction conditions to promote the 

synthesis of tetrahydrofuran system 12.  

Performing the hydrogenation reaction at room temperature, only reduction of the 

carbonyl function to hydroxyl group occurs to give 10 which, in turn, was converted in 

moderate yield to 11 increasing the temperature up to 50 °C. This result can be in 

according with that is reported hydrogenolysis of the hydroxyl group [71]. 

O

MeO2C OMe

O

MeO2C OMe

12

O

OMe

10 11

HO

MeO2C
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Figure 9. Hydrogenation main products 

Hydrogenation of the furan ring led to 12 and occurs at high temperature with high 

stereoselectivity, evidencing a non-conjugated hydrogenation mechanism [40]. 

This hydrogenation product 12 is an analogue of tetrahydrofuran plant lignans with 

antimicrobial (Taxiresinol, Figure 8) and anti-inflammatory activities (Magnone A, 

Magnone B, Lariciresinol glycoside, Figure 8) [5].  

 

Table 12. Conditions of hydrogenation reaction on product 8a 

Entry Pressure (atm) T (°C) Time (h) Products 

1 100 100 7 12 (50%) and by-products 

2 100 150 4 12 (40%) and by-products 

3 120 ÷ 100 156 3 12 (40%) and by-products 

4 100 80 6 12 (54%) 

5 100 50 12 10 (40%) + 11 (35%) 

6 100 r.t. 12 10 (90%) 
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Scheme 23. Hydrogenation reactions on 8a to 12 

 

3.2 Photooxygenation of some furan systems  

As previously mentioned in the introduction, furans can be easily oxidized and the 

possibility to apply photooxygenation reactions to obtained furans was explored. 
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Although the power of the reaction furans with 1O2 is widely recognized [44, 45, 73], 

new findings are often come up due to the versatility of furan endoperoxides. It has to 

be noted that peroxides of -aryl-’-unsubstituted furans were not previously 

examined. In particular, we focused on two general applications of the 

photooxygenation of furans for the preparation of enediones and 4-

hydroxybutenolides, compounds of great synthetic interest. Cis-1,4-enediones are 

prepared by low temperature treatment of furan endoperoxides with reductants such as 

triphenylphosphine or dialkyl sulphides. They generally form almost quantitatively 

and hence used without isolation. Butenolides are obtained by oxygenation of  and 

,’-unsubstituted furans through a Kornblum-DeLamare rearrangement of the related 

endoperoxides which occurs in the presence of a base [74], in a basic solvent as 

acetone [75], water or ionic liquids [76]. 

Initial experiments were explored on 2-phenylfuran 6a and the reactivity of 

corresponding endoperoxide 13 was examined in different conditions (Scheme 24). 

The photooxygenation reaction was performed in classical conditions such as low 

temperature (-20 °C), DCM as solvent (usually 10-2 M) and methylene blue (MB) as 

sensitizer, sunlight lamp, dry oxygen flux. The reaction was easily followed by 1H 

NMR analysis. Formation of the endoperoxide 13a was confirmed by the appearance 

of a characteristic signal at  6.80 (typical of acetalic proton in unsatured bicyclic 

structures [47b, 77] (while singlet of furan system’s H-5 is at  7.96). The completion 

of reaction occurred in about 3 hours. Experimental measures for 1H NMR analysis 

were rapidly and possibly made at low temperature in order to inhibit the thermal 

degradation of endoperoxide 13a. However, it exhibited a quite thermal stability due to 

the presence of two electron-acceptor groups in -position [46]. 
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Scheme 24. Dye-sensitized photooxygenation of 2-phenylfuran 6a  

Attempts were performed on endoperoxide 13 to evaluate thermal reactivity of this 

intermediate (Scheme 25). However, keeping it for long time at room temperature a 

complex mixture of products quite difficult to be identified was obtained, as well as 

warming it rapidly until 80 °C in CCl4.  

 

3.2.1 Et2S reduction  

As expected, treatment in situ with Et2S of the endoperoxide 13a kept at -20°C 

(Scheme 25) led quantitatively to an enedione identified as aldehyde 14a by 

spectroscopic analysis. 1H NMR spectrum showed a singlet at  9.68. However, 

monitoring by NMR the stability of 14a, a slow complete conversion into lactone 15a 

was observed. Indeed, 1H NMR spectrum of sample (kept at room temperature for 

about 3 hours) showed the singlet 4.68, related to H-4 double bond, while the 

aldehydic signal was disappeared, and 13C NMR showed two carbonylic signals for the 

ester groups and a lactone carbone.  
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Scheme 25. Et2S reduction on endoperoxide 13  

The possible mechanism which explains the formation of lactone, reported in Scheme 

26, suggests that a conversion of enedione in epoxide occurs, as observed in other 

compounds [78]. Then, the epoxide spontaneously converts in the cyclic structure 15 

according to its spectral data [79].  
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Scheme 26. Rearrangement of aldehyde 14 into the lactone 15 

 

The procedure on analogue 4-methoxyphenylfuran 6b led to the same results: after 

formation of aldehyde 14b, it rearrange in corresponding lactone 15b (Scheme 26). 

Afterwards, the methodology was extended also on 4-aroyl furans 8a, 8f, 8’a, and 

hydrogenated systems 10 and 11, chosen in order to obtain lignan-like structures.  
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Except for 10, whose endoperoxide degraded, even at low temperature, in unidentified 

products, all furan systems were quantitatively converted into the corresponding 

endoperoxides 13 (Scheme 27), which showed a quite thermal stability, as it was 

evidenced for furans 6. The reduction with Et2S on 2-aryl-4-aroylfurans 8a, 8’a and 8f, 

led to the acrylic aldehydes 14, but no spontaneous conversion into the lactones 15 was 

observed, though the products were kept in the solvent at room temperature for some 

days.  
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Scheme 27. Photooxygenation followed by Et2S reduction on furans 8a, 8’a, 8f, 10 
and 11  

 

The reduction with Et2S, instead, led to a mixture of products different from the 

expected aldehyde (as evidenced by NMR spectra of mixture). The purification of 
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mixture by TLC led to two butenolidic products identified as -hydroxylactone 16 

(25% yield) and lactone 17 (18% yield) by NMR analysis. The formation of the latter 

is due to the rapid cyclization of the intermediate aldehyde. Product 16 should be 

formed by a Kornblum-DeLamare rearrangement, likely promoted by Et2S acting as 

base instead of reductant.  

 

3.2.2 Basic treatment  

In the first experiment the procedure was applied on furan 6a (Scheme 28).  
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Scheme 28. Photooxygenation followed by base treatment in situ with Et2NH on 
furans 6a,b 

 

Once formed endoperoxide 13a, 1.2 eq of diethylamine was added and mixture leaved 

to room temperature for about 30 minutes (Scheme 28). However, the addition to the 

endoperoxide 13 at low temperature led exclusively to an opened oxidized structure 

instead of the expected lactone (Scheme 25). Indeed, in 1H NMR spectrum of mixture, 

the predicted singlet of H-5 at about 5 ppm was absent. Moreover, 13C NMR showed 

two carbonyl signals at δ 192.5 and 166.9, assigned to an aromatic ketone and a -

COOH group, respectively. Mass analysis confirmed that product was the acrylic acid 

18a. Actually, this unusual result can be explained by considering the base-mediated 

conversion of -hydroxylactones into the corresponding open structures (Figure 10) 

[80]. 
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Figure 10. Conversion of -hydroxylactone in carboxylic acid 

 

In our case it is likely that -hydroxylactone, once rapidly formed, rearranges to the 

acid open form due to the particular substitution and high conjugation. The same result 

was obtained also with tertiary amines, as Et3N or DABCO, or in different slightly 

basic solvents, as water and acetone. Anyway, the best choice turned out to be Et2NH 

which can be removed under reduced pressure in presence of phosphorous anhydride.  

The procedure on analogue 4-methoxyphenylfuran 6b led to acrylic acid 18b (Scheme 

28). 

Afterwards, extending the methodology on furans 8a, 8f, 8’a, 11 (already studied in 

Et2S reductions) the same result was obtained (Scheme 29).  
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Scheme 29. Photooxygenation followed by base treatment in situ with Et2NH on 
furans 8a, 8’a, 8f, and 11 

 



 56

So we decided to apply the novel Tf2O-mediated acylation on opened acid 18a, in an 

attempt to improve the synthesis of -’ lignan structures.  

 

 

3.3 Conclusion 

In order to obtain functionalized lignan-like compounds, the synthetized furans 

underwent further reactions. In particular, hydrogenation reaction on 4-anisoyl-2-

phenyl furans 8a led to tetrahydrofuran 12 analogue of some bioactive natural lignans 

in useful yield. 

Photooxygenation reaction was explored, followed by Et2S reduction and/or basic 

treatment in situ on -aryl-’-unsubstituted furans, not previously studied. 

Endoperoxides 13 exhibited a quite thermal stability due to the presence of two 

electron-acceptor groups in -position. In particular, two general procedures for the 

preparation of enediones and 4-hydroxybutenolides were applied. The-aryl 

substitution of furans and their high conjugation gave interesting results. Et2S 

reduction of endoperoxides led to expected adehydes 14 whose particular substitutions 

can favour a rearrangement to lactone structures. Basic treatment with Et2NH led 

exclusively to open acid structures probably formed by conversion from the expected 

-hydroxylactones.  
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4. Preparation of 5,5- and 3,5-diarylfuranones by three-step one-pot 
procedure  
 

Results previously obtained gave a suggestion to verify the application of acrylic acids 

prepared. Hence, starting from furans 6 attempts to reach the synthesis of -’ lignan 

structure anyway applying the novel Tf2O-mediated acylation on acids 18 (Scheme 

30). 
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Scheme 30. Strategy to obtain -’ lignan structure applying the novel Tf2O-mediated 
acylation on acids 18 

 

Initially, the investigation of the Tf2O-catalyzed acylation was tested on pure acid 18a 

by using anisole as aryl reagent (Scheme 31). 
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Scheme 31. Tf2O-catalized acylation on acrylic acid 18a with anisole 

The reaction was carried out in the best conditions observed for monoacid 7a: low 

temperature and absence of solvent. Thus, the acid 18a was dissolved in 35 eq of 

anisole, and then 2.5 eq of Tf2O were added at -20 °C. The reaction was conducted at 

temperature for 20 hours leading to a mixture of cyclic acylated products identified as 

the 5,5-diarylfuranone 19a and the two 3,5-diarylfuranones 20a and o-20a (Scheme 

31) by NMR analysis. The 13C spectrum of each product showed three esters signals 

(in a range of  170-160.0), and a quaternary carbon at higher field, respectively at 

91.9, 63.8 and 63.1 for isomers 19a, and 20a and o-20a. 

The regioisomeric ratio was in favor of 5,5-disubstituted 19a, whereas the other ones 

were obtained in traces (Table 11, entry 1). The formation of cyclic products, though 

starting from open acid, might be explained supposing an intramolecular addition of 

the carbonyl to the activated carboxylic function (Scheme 32). Thus, an intermediate 

like the pseudo anhydrides 21 (or a carbocation) undergo the attack of arene substrate 

(anisole).  
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Scheme 32. Proposed conversion of acid 13a to furanones 13a and 15a. 

 

Really, the formation of pseudo anhydrides 21 is supported by 1H NMR spectra 

acquired immediately after the addition of Tf2O. A shift at higher field of ortho aryl 

protons was observed by indicating the possible presence of the pseudo anhydrides. 

This hypothesis accords with analogue results of FC acylation on phthalic acids [81] or 

alkylated acrylic acids [82], both leading to the 5-arylfuranones.  

Diarylfuranones 19a and 20a appear of particularly interesting, since they combine the 

presence of a furanone moiety and a carbon skeleton of some recently isolated rare 

lignans [83]. Moreover, the structure of 5,5-diarylfuranone 19a reminds 

Sacidumlignan D (Figure 11), which is a peculiar rearranged tetrahydrofuran lignan 

[84]. 

O

HO OMe

MeO

MeO

HO

MeO

  

Figure 11. Sacidumlignan D, a lignan with a rare structure. 



 60

 

Hence, and considering that 3-arylfuranones have rarely been obtained by FC-

acylation [85], the idea to explore the procedure seemed quite attractive.  

In order to evaluate a possible effect of solvents, the reaction was performed in DCM 

by using an excess of anisole (5 eq) and 2.5 eq of Tf2O, but the result did not change 

while it appeared to slightly increase the amounts of 3,5-diarylfuranones 20a and       

o-20a (Table 11, entry 2). A lower yield (42%) was also obtained by using highly 

polar solvent such as acetonitrile, while nitromethane gave a very complex reaction 

mixture. Further experiments changing the stoichiometry were unsuccessful. The 

reaction was indeed repeated in the same conditions by using equimolecular amounts 

of 18a and anisole in the presence of 1.5 eq of Tf2O in dichloromethane, giving poor 

yield (27%). It is likely that the formation of 3,5-diaylfuranone 6a is promoted by the 

presence of the aroyl group, which directs the aryl addition also to the 3-position by 

means of conjugation and/or steric effects [85].  

Since the purification of acrylic acid is difficult, acylation reaction was performed on 

crude acid 18a. It is previously left in vacuum in presence of P2O5 to remove Et2NH. 

Analogue results, in terms of yields and isomeric ratio were obtained respect to those 

of pure acid. Hence, this induced to explore the one-pot 3-steps procedure starting 

from 2-arylfurans 6. In particular furans 6a-c were considered to investigate the 

reactivity of the substrate, changing the para group on phenyl: methoxyl group (b) and 

bromide (c) respectively electron-donor and -attractor. 

4.1 The three-step one-procedure on other arylic substrates 

The acylation was explored by using not only anisole but also other aromatic 

substrates, with lignan-typical aryl substitution, such as 1,2-dimethoxybenzene, 1,2-
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benzodioxole and phenol (Scheme 33). Generally, both solvent conditions and low 

temperatures were used in these reactions, but some exceptions exist due to particular 

physical properties of arenes. For instance, the low melting point of 1,2-

dimethoxybenzene induced to operate at temperature over 10 °C (Table 13, entries 3-4, 

9-10), whereas in other cases only reactions in solvent could be carried out. Indeed, for 

solid phenol (Table 13, entry 6) necessarily required to be dissolved, while working 

with 1,2-benzodioxol in neat conditions reaction mixture became after few minutes 

highly viscous and difficult to follow.  

Since all acrylic acids 18 forms in quantitative yields (Scheme 33, step i), the acylation 

showed that neat conditions and low temperatures favor the 5,5-diarylfuranones 19 

except for the reaction with 1,2-dimethoxybenzene (Table 13, entries 3, 4). On the 

other hands the use of solvent generally decreased the total reaction yield and, in some 

cases, led to an inversion of regioselectivity (compare entries 7-8, 12-13 in Table 13). 

In all cases diarylfuranones 19 and 20 were formed. Starting from furans 6a and 6b 

with anisole o-isomers 20 were also found. The molecular structures were elucidated 

by 1H and 13C NMR spectroscopy, 2D NMR experiments and MS data. As shown in 

Table 13, the nature of the aryl substituent on acids 18 has no effect on the furanone 

formation while the use of the solvents generally decreases the yield. Low 

temperatures and absence of solvent favor 5,5-diarylfuranones 19 as showed 

comparing entries 1-2, 6-7, 12-13. In some cases, the use of solvent was effective to 

reverse the regioselectivity of the acylation in favor of 3,5-diaryl isomers 20 (Table 13, 

entries 6-7). 
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Scheme 33. One-pot procedure on furans 6a-c to furanones 19 and 20. 

Table 13. One-pot preparation of furanones 19 and 20 

FC Acylation Conditions 
 

Entry Solvent T (°C) / Time (h) 

Yield TOT 

(from 6) 
19 : 20 

1 - r.t./20 52% 88 : 12a 

d 
2 DCM -15/2.5 48% 83 : 17a 

3 - r.t. /18 37% 57 : 43 e 

4 DCM 0 ÷ 10/2 39% 61 : 39 

f 5 DCM r.t./20 34% 55 : 45 

g 6 DCM r.t./2.5 39% 46 : 54 

7 - -20/21 72% 60 : 40 
h 

8 DCM -20/21 40% 20 : 80 

9 - r.t./1.5 89% 23 : 77 
i 

10 DCM -10/2 50% 18 : 82 

l 11 DCM -10/20 98% 6 : 94 

12 - r.t./18 53% 77 : 23a 

m 
13 DCM -10/2.5 35% 45 : 55a 

a) In these cases o-20 was also obtained, in the (20:o-20) ratios: entry 1 (1:11), entry 2 
(7:10), entry 11 (10:13) and entry 12 (20:35) 
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This also occurs independently from the reaction conditions in the presence of the both 

highly activated acid 18c and aromatic compounds like 1,2-dimethoxybenzene (entries 

9-10). The acylation on acrylic acids 18 led to products generally with lower yields 

than the one applied on furoic acid 7 (all over 50%). This result could be connected to 

the generation of triflic acid in the reaction mixture. Performing acylation reaction in 

presence of a non-nucleophilic base, it seemed useful to control this problem. Thus, on 

the basis of literature data [86], 2,6-lutidine was chosen for this purpose. The one-pot 

procedure was repeated using in the acylation reaction, the base in equimolar quantity 

in respect to Tf2O and the same reaction conditions, shown in Table 13, for each prove 

respectively. The reaction was not applied in the cases leading yet to high yields 

(Table 13, entries 9 and 11). Results obtained with and without 2,6-lutidine are 

reported in Table 14. 

 

Table 14. One-pot preparation of furanones 19 and 20 using 2,6-lutidine  

FC Acylation Conditions 
 

Entry Solvent T (°C) / Time (h) 

Yield TOT 

(from 6) 
19 : 20 

1 - r.t./20 52% 88 : 12a 

d 
2 DCM -15/2.5 48% 83 : 17a 

3 - r.t. /18 37% 57 : 43 e 

4 DCM 0 ÷ 10/2 39% 61 : 39 

f 5 DCM r.t./20 34% 55 : 45 

g 6 DCM r.t./2.5 39% 46 : 54 

7 - -20/21 72% 60 : 40 
h 

8 DCM -20/21 40% 20 : 80 

9 - r.t./1.5 89% 23 : 77 
i 

10 DCM -10/2 50% 18 : 82 

l 11 DCM -10/20 98% 6 : 94 

12 - r.t./18 53% 77 : 23a 

m 
13 DCM -10/2.5 35% 45 : 55a 
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The comparison of these data shows that higher total yields were really obtained using 

a non-nucleophilic base, whereas the product ratio was little, if at all, altered.  

 

4.2 Conclusion  

A three-steps one-pot mild procedure for highly functionalized 5,5- and 3,5-

diarylfuranones was developed.  

This methodology involves the same starting precursors 6 and Tf2O-mediated Friedel-

Crafts acylation used in first described procedure. Performing the reaction on crude 

acrylic acids 18a-c, cyclic acylated products 19 and 20 were obtained instead of 

expected open structures. Probably this result is due to an intramolecular cyclization 

that occurs on activated and highly conjugated system. 

Actually, furanones 19 obtained appear of particular interest since they combine the 

presence of the interesting butenolide moiety and a carbon skeleton of a recently 

isolated rare lignan as the Sacidumlignan D. 
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III – Experimental Section 
 

1. Methods and materials 

NMR spectra were recorded on 500 MHz spectrometer; 1H NMR recorded at 500 MHz 

and 13C recorded at 126 MHz. Chemical shifts (δ) are reported in ppm relatively to the 

residual solvent signal (CDCl3: δH 7.26, δC 77.0). All reactions involving air or moisture 

sensitive reagents were carried out under dry argon or nitrogen atmosphere using 

commercially dry solvents (Sigma-Aldrich 99.7%) stored over molecular sieves.  

Thin layer chromatography (TLC) was performed on aluminum plates precoated with 

Merck Silica Gel 60 F254 as the adsorbent (0.25, 0.50, 1.0 and 2.0 mm). Spots were 

visualized by UV light and developed with 10% H2SO4 ethanolic solution. The plates 

were heated to 130 °C. Flash column chromatography was conducted on Kieselgel 60, 

230-400 mesh (Merck), at medium pressure. Column chromatography was conducted on 

Silica Gel 0.06-0.20 mm mesh (Merck Kieselgel). HPLC analysis on a reverse phase C-

18 Phenomenex column 250 x 10 mm (10 m), and it was performed by LC-8A 

Shimadzu with a SPD-10A UV-visible detector. 

The Methylene Blue-sensitized photooxygenations were performed in Pyrex flasks, by 

irradiation with an external 650-W halogen lamp (Osram, 650 W), thermostat Criocool 

(Neslab).  
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2. General experimental procedures 

2.1 Synthesis of phenyloxazole 1 

-bromo-acetophenone (650 mg, 3.28 mmol) and ammonium formate (750 mg, 11.9 

mmol) were dissolved in 4 mL of formic acid al 98%. The reaction mixture was stirred 

at room temperature in reflux conditions for 2 h. 

Work-up: the reaction mixture was diluted with H2O (10 mL) and KOH 1.0 M until pH ~ 

6, than it was extracted with Et2O (x3). The organic layers were collected, dried over 

anhydrous Na2SO4, filtered and concentrated to give a residue that was purified by flash 

column chromatography (Et2O/PE 15%, Et2O 100%). Yield: 21% 

 

2.2 Synthesis of 1-(4-methoxyphenyl)-3-(trimethylsilyl)propan-2-yne-1-one 3 

In an argon atmosphere, iodine (30 mg, 0.118 mmol) was dissolved in 13 mL of DCM 

dry, and 307 µL (2.4 eq, 1.36 mmol) of bis-(trimethylsilyl)-acetylene were added. After 

5 min p-methoxybenzoyl cloride (441 µL, 3.26 mmol) was added dropwise at 0 °C. The 

reaction mixture was stirred in argon pressure, at room temperature, over night.  

Work-up: the reaction was quenched by addition of H2O, and the reaction mixture was 

extracted with DCM (x3). The organic layer was collected, dried over anhydrous 

Na2SO4, filtered and concentrated to give a residue that was purified by flash column 

chromatography (EtOAc/PE 3÷5%). Yield: 68% 

2.3 Synthesis of 1,4-bis(4-methoxyphenyl)but-2-yne-1,4-ditrimethylsilyl-ether 4  

In THF dry (15 mL) 307 µL (1.36 mmol) of bis-(trimetilsilyl)-acetylene and 165 µL 

(1.36 mmol) of p-anisaldehyde were dissolved. After few minutes 68 µL (0.068 mmol) 

of TBAF 1.0 M were added dropwise at 0 °C. The reaction was conducted in stirring, at 

-20 °C, for about 20 min. 
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Work-up: the solvent was removed in vacuo and the reaction residue was extracted with 

H2O and Et2O (x3). The organic layer was collected, dried over anhydrous Na2SO4, 

filtered and concentrated to give a residue that was purified by flash column 

chromatography (EtOAc/PE 2÷5%). Yield: 20% 

2.4 Synthesis of 1,4-bis(4-methoxyphenyl)but-2-yne-1,4-dione 5 

The product 4 (70 mg, 0.158 mmol) was dissolved in toluene (5 mL), and 1.450 g of 

Magtrieve was added. The reaction mixture was stirred in reflux conditions for about 30 

min.  

Work-up: the Magtrieve was removed by decantation, and the reaction residue was 

filtrated on Celite eluting with DCM. The product 5 was purified by silica gel TLC (0.5 

mm) in EtOAc/PE 10%. Yield: 11% 

 

2.5 Synthesis of 2-aryl-3,4-dicarboxymethylfuran 6 

(2.7 mmol) of -bromo-arylketone and 0.27 mmol of DABCO were dissolved in DCM 

(10 mL). The reaction mixture was stirred at room temperature for 30 min, than 2.7 

mmol of K2CO3 anhydrous and 1.35 mmol of DMAD were added. The reaction was 

conducted over night (~15 h) in stirring.  

Work-up: the reaction mixture was extracted with H2O and DCM (x3). The organic layer 

was collected, dried over anhydrous Na2SO4, filtered and concentrated to give a residue 

that was purified by flash column chromatography under dry nitrogen pressure. The 

eluent depended on product: 6a with Et2O/Hex 15% (85% yield), 6b with EtOAc/Hex 

10% (66% yield), 6c with EtOAc/PE 10% (40% yield).  
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2.6 Synthesis of 2-aryl-3-methoxycarbonyl-4-furoic acid 7 

1.0 mmol of 2-aryl-3,4-dicarboxymethylfuran 7 were dissolved in 6 mL of MeOH. Than 

400 µL (1 eq) of KOH 2.5 N were added and the reaction mixture was stirred at room 

temperature over night.  

Work-up: the solvent was removed by rotavapor and the reaction residue was extracted 

with Et2O and H2O (x3). The organic layer was collected, dried over anhydrous Na2SO4, 

filtered and concentrated to give the unreacted furan 6, while the aqueous one was 

acidified by dropwise add of HCl 2 N until acid 7 was precipitated. The precipitate was 

recovered by centrifugation, washed with H2O, and crystallized to obtain 7a (in 

MeOH/H2O 6:4, 88% yield) and 7b (in MeOH/H2O 4:6, 70% yield).  

 

Friedel-Crafts acylation on acids 7 

2.7 Classical procedure with SOCl2 

2-Phenyl-4-furoic acid 7a (0.85 mmol) was co-evaporated several times with dry toluene 

and than dissolved in DCM (8 mL). To this solution are added 70 µL (1.2 eq 1.02 mmol) 

of SOCl2 were added in nitrogen atmosphere. The reaction mixture was stirred, in reflux 

conditions, over night. Then, the solvent was removed in vacuo, and the 1H-NMR 

analysis of the reaction residue confirmed the quantitive conversion in the acyl chloride 

7’a.  

The product 7’a was dissolved in dry DCM (4 mL) in nitrogen atmosphere. Then 

anhydrous benzene (2 mL) and 1.2 eq AlCl3 (139 mg, 1.02 mmol) were added. The 

reaction mixture was stirred, in reflux conditions, but after about 20 h the TLC analysis 

showed the uncompleted conversion of acyl chloride. The reaction was quenched by 

dropwise addition of H2O.  

Work-up: the reaction mixture was extracted with DCM (x3). The organic layer was 

washed with aq. NaHCO3 and brine, dried over anhydrous Na2SO4 and purified by flash 
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column chromatography. A mixture of acylated products were obtained: 8b and 9b with 

Et2O/PE 5% (60% yield). 

 

2.8 Friedel-Crafts acilation with cyanuric chloride on 7a 

2-Phenyl-4-furoic acid 7a (0.41 mmol) were co-distilled several times with dry toluene 

and than dissolved in 3 mL of dry DCM. To this solution 118 mg cyanuric chloride (1.6 

eq) and 34 L (1 eq) of pyridine in DCM were added. After about 15 minutes, 70 mg 

(1.2 eq) of AlCl3 and 73 L (2 eq) of benzene, were added to the reaction mixture. The 

mixture was stirred at room temperature  

Work-up: The reaction was quenched by addition of aq. Na2CO3 2.5% and extracted 

with DCM. The organic phase was dried over anhydrous Na2SO4, and the solvent 

removed under reduced pressure. The residue was subjected to 1H-NMR analysis which 

showed the presence of products 8b and 9b only in traces. The same results were 

obtained in anisole leading to 8a and 9a. 

 

2.9 Friedel-Crafts acilation with P2O5/SiO2 on 7a 

2-Phenyl-4-furoic acid 7a (0.24 mmol) was co-evaporated several times with dry toluene 

and than dissolved in 5 mL of dry benzene. Than, at this solution 110 mg (1 eq) of 

P2O5/SiO2, previously prepared, was added. The reaction mixture in the heterogeneous 

phase was stirred at room temperature overnight.  

Work-up: The reaction mixture was diluted with EtOAc and filtered on paper. The 

organic phase was washed with aq. NaHCO3 2.5% and dried over anhydrous Na2SO4. 

The solvent was removed under reduced pressure and the reaction residue 1H-NMR 

analysis showed the presence of polymeric material instead of 8b and 9b. 
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Tf2O-mediated procedure  

2.10 Synthesis of 4-aroyl-2-arylfurans 8a-f, 8’a,f  

In a typical experiment 0.2 mmol of 7 was co-evaporated times with toluene, the residue 

was dried and then mixed under nitrogen with the desired arene and dissolved in 1 mL of 

DCM, excepted for anisole and 1,2-benzodioxole where the substrate was directly 

dissolved (1 mL). The reaction mixture was stirred at the reported temperature for few 

minutes. Triflic anhydride (2 or 2.5 eq, see Tables 3-9) was then added. After the 

complete conversion of the reactant the mixture was diluted with Et2O (20 mL) and 

washed with saturated NaHCO3 solution. The organic layer was collected, dried over 

anhydrous Na2SO4, filtered and concentrated to give a residue that was purified by 

column chromatography (mixture of Et2O/PE). 

 

2.11 Synthesis of 4-aroyl-2-arylfurans 9a-f, 9’a,f 

In a typical experiment 0.2 mmol of 7a were co-evaporated thrEt2O times with toluene, 

the residue was dried and dissolved in 1 mL of DCM. Than Tf2O (0.22 mmol) was 

added and a solution of the desired arene (1 mmol) in 2 mL of DCM was then added 

dropwise in 2 h by a syringe-pump. The reaction mixture was stirred at room 

temperature one more hour was then added. After the complete conversion of the 

reactant the reaction was diluted with Et2O (20 mL) and washed with saturated NaHCO3 

solution. The organic layer was collected, dried over anhydrous Na2SO4, filtered and 

concentrated to give a residue that was purified by column chromatography (mixture of 

Et2O/PE). 

 

2.12 Hydrogenation of 8a 

Compound 8a (0.3 mmol) was dissolved in dry MeOH (40 mL) and 10% Pd/C catalyst 

(20 mg) was then added under nitrogen atmosphere. Hydrogenation was performed at 
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100 atm and high temperature (for details, sEt2O Table 10).  

Work-up: after releasing the pressure, the mixture was filtered and the solvent was 

removed in vacuo. The products were purified by flash chromatography (PE/Et2O 10 ÷ 

30%). Yields: 10 (90%), 11 (35%) and 12 (54%) 

 

Dye-sensitized photooxygenation 

2.13 Preparation of endoperoxides 13  

A solution of dry furan (0.5 mmol) in anhydrous DCM (27.8 mL, 0.018 M) was 

irradiated at -20 °C in the presence of methylene blue (MB, 1 mg, 3×10-3 mmol) while 

dry oxygen was bubbled through the solution. The progress of the reaction was checked 

by periodically monitoring (1H-NMR) until the disappearance of starting furan (typically 

2-3 h) and the intermediate endoperoxide 13 was identified by 1H-NMR.  

 

 

Figure 12. Criocool, acetone bath and thermostatically controlled visible lamp 
used to conduct photooxygenation reactions. 

 

2.14 In situ reduction of endoperoxide 13 with Et2S 

Once the conversion of furan into endoperoxide 13 was complete (see 2.10.1) the 

irradiation was stopped, and keeping the system at temperature (-20 °C), Et2S (65 L, 

0.6 mmol, 1.2 eq respect to the furan moles) was added, and the mixture was kept at 

room temperature for 2-3 h.  
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Work-up: the excess of Et2S and the solvent were removed in vacuo, and the reaction 

residue was purified on TLC (MeOH/DCM 2%).  

 

2.15 In situ basic treatment on endoperoxide 13 

Once the conversion of furan into endoperoxide 13 was complete the irradiation was 

stopped, and keeping the system at temperature (-20 °C), Et2NH (62 L, 0.6 mmol, 1.2 

eq respect to the furan moles) was added, and the mixture was kept at room temperature 

for 30 min.  

Work-up: the solvent was evaporated and the crude acrylic acid 18 was purified on silica 

gel (Acetone/MeOH) or dried in the presence of anhydrous P2O5 for 5 h in order to 

remove Et2NH in the one-pot procedure. 

 

2.16 Synthesis of 5,5- and 3,5-diarylfuranones 19 and 20  

Crude reagent 18a-c (0.493 mmol) was dissolved in aromatic compound (35 eq, neat 

conditions), or in dry solvent (DCM, 2 mL) and then aromatic compound (5 eq) was 

added. The mixture was cooled to -20 °C and Tf2O (1.23 mmol, 2.5 eq) was added 

dropwise at this temperature. The resulting mixture was stirred under N2 atmosphere at 

the temperature and for the time reported in Table 11. In the acylation with phenol 

(Table 13, entry 6), Tf2O was added dropwise in the acrilic acid 18a solution (dry DCM, 

2 mL) cooled at −20 °C. The mixture was stirred for 30 min, then phenol was added and 

the resulting mixture warmed to r.t. for 2.5 h.  

Work-up: the reaction mixture was washed with saturated aq. NaHCO3 solution and 

extracted twice with Et2O. The organic layers were collected, dried over anhydrous 

Na2SO4, filtered and concentrated to give a residue that was chromatographed on silica 

gel with a gradient of PE and EtOAc. Mixture of p- and o-isomers 20 and o-20 (Table 
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13, d and m) were subsequently separated by HPLC using RP-18 column and 

H2O:MeOH:MeCN as eluent. 

 

2.17 Synthesis of 5,5- and 3,5-diarylfuranones 19d-m, 20d-m using 2,6-lutidine  

Crude reagent 3 (0.493 mmol) was dissolved in aromatic compound (35 eq, neat 

conditions), or in dry solvent (DCM, 2 mL) and then the aromatic compound (5 eq) was 

added. The mixture was cooled to −20 °C and Tf2O (2.5 eq, 1.23 mmol) added dropwise 

at this temperature. Then 2,6-lutidine (143 L, 1.23 mmol, 2.5 eq) was added at the 

same temperature. The resulting mixture was stirred under N2 atmosphere at the 

temperature and for the time reported in Table 14. 

Work-up: the reaction mixture was washed with saturated aq. NaHCO3 solution and 

extracted twice with Et2O. The organic layers were collected, dried over anhydrous 

Na2SO4, filtered and concentrated to give a residue that was chromatographed on silica 

gel with a gradient of PE and EtOAc. Mixture of p- and o-isomers 20 and o-20 (Table 

11, d, m) were subsequently separated by HPLC using RP-18 column and 

H2O:MeOH:MeCN as eluent. 
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3. Spectroscopic data  

4-Phenyloxazole (1) 

N

O  

Yellow oil. 1H-NMR (200 MHz, CDCl3) δ 7.94 (brs, 2H, H-Furan), 7.76 (dd, J = 7.0, 

1.8 Hz, 2H, Ar-H), 7.41 (t, J = 7.0 Hz, 2H, Ar-H), 7.31 (t, J = 7.0 Hz, 1H, Ar-H); 13C-

NMR (50 MHz, CDCl3) δ 150.9, 139.8, 133.3, 130.4, 128.2, 127.6, 125.0; ESI-MS: 

m/z = 146.0 [M+H]+. 

 

4-Methoxybenzoyl trimethylsilyl acetylene (3)  

O

TMS
H3CO

 

Yellow oil. 1H-NMR (500 MHz, CDCl3) δ 8.08 (d, J = 9.0 Hz, 2H, Ar-H), 6.92 (d, J = 

9.0 Hz, 2H, Ar-H), 3.85 (s, 3H, -OCH3), 0.29 (s, 9H, TMS); 13C-NMR (126 MHz, 

CDCl3) δ 176.2, 164.6, 131.0, 129.9, 113.7, 101.8, 99.5, 55.5, -0.7; ESI-MS: m/z = 

236.0 [M+H]+. 
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Bis-trimethylsilyl ether of 1,4-bis(4-methoxyphenyl)but-2-yne-1,4-diol (4) 

OTMS

H3CO

OCH3

OTMS  

Yellow oil. 1H-NMR (200 MHz, CDCl3) δ 7.39 (d, J = 8.8 Hz, 2H, Ar-H), 6.86 (dd, J 

= 8.8 Hz, 2H, Ar-H), 5.50 (s, 1H, H-7), 3.80 (s, 3H, -OCH3), 0.15 (s, 9H, TMS); 13C-

NMR (50 MHz, CDCl3) δ 159.2, 133.6, 127.8, 113.6, 86.3, 64.4, 55.2, 0.2; ESI-MS: 

m/z = 443.0 [M+H]+. 

1,4-Bis(4-methoxyphenyl)but-2-yne-1,4-diol (4’) 

OH

H3CO

OCH3

OH  

Yellow oil. 1H-NMR (200 MHz, CDCl3) δ 7.28 (dd, J = 8.6 Hz, 2H, Ar-H), 6.83 (dd, 

J = 8.6 Hz, 2H, Ar-H), 5.56 (s, 1H, H-7), 3.83 (s, 3H, -OCH3); 
13C-NMR (50 MHz, 

CDCl3) δ 159.1, 133.3, 127.3, 113.5, 86.6, 64.4, 55.2; ESI-MS: m/z = 299.3 [M+H]+. 

 1,4-bis(4-methoxyphenyl)but-2-yne-1,4-dione (5)  

O

H3CO

OCH3

O  

Yellow oil. 1H-NMR (200 MHz, CDCl3) δ 8.15 (d, J = 9.0 Hz, 2H, Ar-H), 6.99 (d, J = 

9.0 Hz, 2H, Ar-H), 3.89 (s, 3H, -OCH3); 
13C-NMR (50 MHz, CDCl3) δ 175.1, 165.5, 

132.3, 130.0, 114.3, 86.0, 55.7; ESI-MS: m/z = 295.0 [M+H]+. 



 76

Dimethyl 2-phenylfuran-3,4-dicarboxylate (6a) 

O

H3CO OCH3

OO

 

Yellow oil. IR (KBr) 3151, 2955, 1717, 1552, 1441, 1282, 1151, 771, 693 cm-1; 1H-

NMR (200 MHz, CDCl3) δ 7.96 (s, 1H, H-Furan), 7.70 (m, 2H, Ar-H), 7.40 (m, 3H, 

Ar-H), 3.09 (s, 3H, -OCH3), 3.84 (s, 3H, -OCH3); 
13C-NMR (50 MHz, CDCl3) δ 

165.1, 162.5, 154.3, 146.5, 130.0, 129.7, 129.0, 126.6, 120.0, 113.8, 53.0, 52.2; ESI-

MS: m/z = 261.5 [M+H]+.  

Dimethyl 2-(4-methoxyphenyl)furan-3,4-dicarboxylate (6b) 

O

H3CO OCH3

OO

H3CO  

Yellow oil. 1H-NMR (500 MHz, CDCl3)  7.91 (s, 1H, H-Furan), 7.67 (d, J = 9.0 Hz, 

2H, Ar-H), 6.94 (d, J = 9.0 Hz, 2H, Ar-H), 3.89 (s, 3H, -OCH3), 3.85 (s, 3H, -OCH3), 

3.84 (s, 3H, -OCH3); 
13C-NMR (126 MHz, CDCl3)  165.1, 162.6, 160.4, 154.9, 

145.9, 128.4, 121.6, 119.9, 114.3, 112.3, 55.5, 52.7, 52.1; ESI-MS: m/z = 291.0 

[M+H]+. 

 

Dimethyl 2-(4-bromophenyl)furan-3,4-dicarboxylate (6c) 

O

H3CO OCH3

OO

Br  
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Yellow oil. 1H-NMR (500 MHz, CDCl3)  7.95 (s, 1H, H-Furan), 7.57 (d, J = 8.5 Hz, 

2H, Ar-H), 7.55 (d, J = 8.5 Hz, 2H, Ar-H), 3.90 (s, 3H, -OCH3), 3.85 (s, 3H, -OCH3); 

13C-NMR (126 MHz, CDCl3)  164.5, 162.0, 153.1, 146.4, 131.9, 128.0, 127.9, 127.5, 

123.8, 119.9, 52.7, 52.0; ESI-MS: m/z = 340.1 [M+H]+. 

 

4-(Methoxycarbonyl)-5-phenylfuran-3-carboxylic acid (7a) 

O

H3CO OH

OO

 

Yellow oil. IR (KBr) 3400-3200, 1740, 1694 cm-1; 1H-NMR (500 MHz, CDCl3) δ 

8.26 (s, 1H, H-Furan), 7.63 (m, 2H, Ar-H), 7.48 (m, 3H, Ar-H), 3.87 (s, 3H, -OCH3); 

13C-NMR (126 MHz, CDCl3) δ 167.1, 164.5, 160.0, 150.5, 130.3, 129.2, 129.0, 128.2, 

120.3, 110.2, 53.1; ESI-MS: m/z = 247.2 [M+H]+.  

4-(Methoxycarbonyl)-5-(4-methoxyphenyl)furan-3-carboxylic acid (7b) 

O

H3CO OH

OO

H3CO
 

Yellow oil. IR (KBr) 3400-32010, 1742, 1692 cm-1. 1H-NMR (200 MHz)  8.21 (s, 

1H, H-Furan), 7.56 (d, J = 9.0 Hz, 2H, Ar-H), 6.96 (d, J = 9.0 Hz, 2H, Ar-H), 3.85 (s, 

3H, -OCH3), 3.84 (s, 3H, -OCH3); 
13C-NMR (50 MHz)  167.4, 162.6, 161.8, 160.8, 

150.1, 130.5, 121.2, 120.2, 113.6, 109.0, 55.3, 53.0; ESI-MS: m/z = 277.0 [M+H]+. 
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Methyl 2-phenyl-4-(chlorocarbonyl)-3-furoate (7’a) 

O

H3CO Cl

OO

 

1H-NMR: (200 MHz, CDCl3) δ 8.22 (s, 1H, H-Furan), 7.72 (m, 2H, Ar-H), 7.45 (m, 

3H, Ar-H), 3.90 (s, 3H, -OCH3). 

 

Methyl 4-(4-methoxybenzoyl)-2-phenyl-3-furoate (8a) 

O

H3CO
O O

OCH3

 

Yellow oil. IR (CH2Cl2): 3021, 2942, 1716, 1612, 1604, 1240, 1035 cm-1; 1H-NMR 

(500 MHz, CDCl3) δ 7.91 (d, J = 8.9 Hz, 2H, Ar-H), 7.88 (dd, J = 8.4, 1.6 Hz, 2H, Ar-

H), 7.74 (s, 1H, H-Furan), 7.46-7.44 (m, 3H, Ar-H), 6.97 (d, J = 8.9 Hz, 2H, Ar-H), 

3.89 (s, 3H, -OCH3), 3.65 (s, 3H, -COOCH3); 
13C-NMR (126 MHz, CDCl3) δ 187.4, 

164.1, 163.7, 156.2, 143.9, 131.5, 130.9, 129.7, 128.5, 127.8, 120.9, 120.6, 113.9, 

111.7, 55.5, 52.0; EI-MS for C20H16O5 (m/z): Mr (calcd) 336.10, Mr (found) 359.39 

[M+Na]+.  

Methyl 4-(4-methoxybenzoyl)-2-(4-methoxyphenyl)-3-furoate (8’a)  

O

H3CO
O O

OCH3

H3CO  
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Yellow oil. IR (CH2Cl2): 3056, 1730, 1661, 1602, 1216, 1159 cm-1; 1H-NMR (500 

MHz, CDCl3)  7.90 (d, J = 9.0 Hz, 2H, Ar-H), 7.87 (d, J = 8.5 Hz, 2H, Ar-H), 6.97 

(d, J = 9.0 Hz, 2H, Ar-H), 6.96 (d, J = 8.5 Hz, 2H, Ar-H), 7.69 (s, 1H, H-Furan), 3.88 

(s, 3H, -OCH3), 3.86 (s, 3H, -OCH3), 3.52 (s, 3H, -OCH3); 
13C-NMR (126 MHz, 

CDCl3)  187.9, 164.4, 163.9, 161.0, 157.0, 143.5, 131.5, 131.2, 129.6, 127.9, 121.7, 

114.2, 114.1, 112.7, 55.7, 55.6, 52.2; ESI-MS: m/z = 367.0 [M+H]+. 

Methyl 4-benzoyl-2-phenyl-3-furoate (8b) 

O

H3CO
O O

OCH3

 

1H-NMR (500 MHz, CDCl3) δ 7.92-7.87 (m, 3H, Ar-H), 7.79 (s, 1H, H-Furan), 7.60 

(m, 1H, Ar-H), 7.50-7.42 (m, 5H, Ar-H), 3.63 (s, 3H, -OCH3); 
13C-NMR (126 MHz, 

CDCl3) δ 188.7, 164.1, 156.1, 144.7, 138.1, 133.0, 131.0, 127.9, 127.8, 127.7, 126.2, 

114.5, 113.9, 113.9, 52.0; ESI-MS: m/z = 307.3 [M+H]+. 

 

Methyl 4-(3,4-dimethoxybenzoyl)-2-phenyl-3-furoate (8c)  

O

H3CO
O O

OCH3

OCH3

 

Yellow oil. IR (CH2Cl2): 3020, 1731, 1658, 1598, 1218, 1048 cm-1; 1H-NMR (500 

MHz, CDCl3) δ 7.89 (dd, J = 10.1, 2.2 Hz, 2H, Ar-H), 7.76 (s, 1H, H-Furan), 7.54-

7.44 (m, 5H, Ar-H), 6.92 (d, J = 10.1 Hz, 1H, Ar-H), 3.96 (s, 3H, -OCH3), 3.95 (s, 3H, 
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-OCH3), 3.66 (s, 3H, -OCH3); 
13C-NMR (50 MHz, CDCl3) δ 187.4, 164.2, 156.1, 

153.5, 149.2, 144.0, 131.0, 129.7, 128.8, 128.5, 127.5, 124.3, 114.0, 110.8, 110.2, 

56.1, 52.1; EI-MS for C21H18O6 (m/z): Mr (calcd) 366.11, Mr (found) 389.32 [M+Na]+.  

 

Methyl 4-(3,4-benzo[d][1,3]dioxole-5-carbonyl)-2-phenyl-3-furoate (8d)  

O

MeO

O O

O

O

 

Yellow oil. IR (CH2Cl2): 3052, 1727, 1654, 1605, 1217, 1041 cm-1; 1H-NMR (200 

MHz, CDCl3) δ 7.90-7.88 (m, 2H, Ar-H), 7.74 (s, 1H, H-Furan), 7.52-7.43 (m, 5H, 

Ar-H), 6.87 (d, J = 8.0 Hz, 1H, Ar-H), 6.08 (s, 2H, -OCH2O-), 3.69 (s, 3H, -OCH3); 

13C-NMR (50 MHz, CDCl3) δ 186.8, 164.2, 156.3, 152.0, 148.2, 143.8, 132.8, 129.7, 

128.6, 128.4, 127.5, 125.9, 118.4, 113.6, 108.6, 107.8, 101.9, 52.1; EI-MS for 

C20H14O6 (m/z): Mr (calcd) 350.08, Mr (found) 373.62 [M+Na]+.  

 

Methyl 4-(2,3,4-trimethoxybenzoyl)-2-phenyl-3-furoate (8e)  

O

H3CO
O O

OCH3

OCH3H3CO

 

Yellow oil. IR (CH2Cl2): 3056, 1729, 1656, 1590, 1217, 1097 cm-1; 1H-NMR (400 

MHz, CDCl3) δ 7.83 (dd, J = 8.2, 1.6 Hz, 2H, Ar-H), 7.72 (s, 1H, H-Furan), 7.43 (m, 

3H, Ar-H), 7.36 (d, J = 8.7 Hz, 1H, Ar-H), 6.72 (d, J = 8.7 Hz, 1H, Ar-H), 3.92 (s, 3H, 

-OCH3), 3.89 (s, 3H, -OCH3), 3.83 (s, 3H, -OCH3), 3.70 (s, 3H, -OCH3); 
13C-NMR 
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(100 MHz, CDCl3) δ 186.8, 164.5, 157.0, 155.2, 153.3, 145.7, 142.4, 129.6, 128.9, 

128.6, 127.2, 126.5, 125.8, 113.6, 106.8, 106.7, 62.0, 61.0, 56.1, 52.1; EI-MS for 

C22H20O7 (m/z): Mr (calcd) 396.12, Mr (found) 419.43 [M+Na]+.  

Methyl 4-(2,4,6-trimethoxybenzoyl)-2-phenyl-3-furoate (8f)  

O

H3CO
O O

OCH3

H3CO

OCH3

 

Yellow oil. IR (CH2Cl2): 3055, 1731, 1666, 1606, 1218, 1131 cm-1; 1H-NMR (400 

MHz, CDCl3) δ 7.72 (dd, J = 8.4, 1.6 Hz, 2H, Ar-H), 7.68 (s, 1H, H-Furan), 7.40 (m, 

3H, Ar-H), 6.14 (s, 2H, Ar-H), 3.85 (s, 3H, -OCH3), 3.81 (s, 3H, -OCH3), 3.74 (s, 6H, 

-OCH3); 
13C-NMR (100 MHz, CDCl3) δ 186.4, 165.4, 162.7, 159.1, 153.7, 147.7, 

129.9, 129.2, 128.6, 126.3, 113.2, 111.6, 90.6, 55.9, 55.42, 52.6; EI-MS for C22H20O7 

(m/z): Mr (calcd) 396.12, Mr (found) 420.22 [M+Na]+.  

Methyl 4-(4-methoxybenzoyl)-5-phenyl-3-furoate (9a)  

O

OCH3

OO
H3CO

 

Yellow oil. IR (CH2Cl2): 3020, 1725, 1660, 1598, 1217, 1165 cm-1; 1H-NMR (400 

MHz, CDCl3) δ 8.11 (s, 1H, H-Furan), 7.90 (d, J = 8.7 Hz, 2H, Ar-H), 7.55 (dd, J = 

8.0, 1.7 Hz, 2H, Ar-H), 7.31-7.27 (m, 3H, Ar-H), 6.91 (d, J = 8.7 Hz, 2H, Ar-H), 3.85 

(s, 3H, -OCH3), 3.66 (s, 3H, -OCH3); 
13C-NMR (100 MHz, CDCl3) δ 190.9, 164.0, 
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162.4, 152.1, 146.5, 131.8, 130.5, 128.9, 128.8, 125.7, 120.9, 119.6, 114.0, 55.5, 51.7; 

EI-MS for C20H16O5 (m/z): Mr (calcd) 336.10, Mr (found) 359.98 [M+Na]+.  

 

Methyl 4-(2-methoxybenzoyl)-5-phenyl-3-furoate (o-9a)  

O

OCH3

OO
OCH3

 

Yellow oil. IR (CH2Cl2): 3053, 1726, 1657, 1598, 1218, 1040 cm-1; 1H-NMR (500 

MHz, CDCl3) δ 8.02 (s, 1H, H-Furan), 7.61 (dd, J = 9.8, 1.6 Hz, 2H, Ar-H), 7.54 (dd, 

J = 9.8, 1.6 Hz, 1H, Ar-H), 7.45 (t, J = 9.8 Hz, 2H, Ar-H), 7.31-7.26 (m, 2H, Ar-H) 

6.97 (t, J = 9.8 Hz, 3H, Ar-H), 6.91 (d, J = 9.8 Hz, 1H, Ar-H), 3.72 (s, 3H, -OCH3), 

3.60 (s, 3H, -OCH3); 
13C-NMR (126 MHz, CDCl3) δ 190.7, 162.6, 159.4, 152.5, 

145.9, 134.5, 131.9, 131.3, 128.9, 128.8, 128.6, 126.2, 120.4, 113.8, 112.0, 79.2, 55.8, 

51.5; EI-MS for C20H16O5 (m/z): Mr (calcd) 336.10, Mr (found) 359.16 [M+Na]+.  

Methyl 4-(4-methoxybenzoyl)-5-(4-methoxyphenyl)-3-furoate (9’a)  

O

OCH3

OO
H3CO

H3CO  

Yellow oil. IR (CH2Cl2): 3060, 1735, 1668, 1611, 1216, 1166 cm-1; 1H-NMR (500 

MHz, CDCl3)  8.04 (s, 1H, H-Furan), 7.88 (d, J = 9.0 Hz, 2H, Ar-H), 7.50 (d, J = 9.0 

Hz, 2H, Ar-H), 6.89 (d, J = 9.0 Hz, 2H, Ar-H), 6.82 (d, J = 9.0 Hz, 2H, Ar-H), 3.85 (s, 

3H, -OCH3), 3.77 (s, 3H, -OCH3), 3.64 (s, 3H, -OCH3);
 13C-NMR (126 MHz, CDCl3) 
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 191.3, 164.2, 162.7, 160.3, 152.8, 146.2, 132.0, 131.0, 127.6, 121.9, 120.9, 118.4, 

114.4, 114.2, 55.7, 55.5, 51.9; ESI-MS: m/z = 367.0 [M+H]+ 

Methyl 4-benzoyl-5-phenyl-3-furoate (9b)  

O

OCH3

OO

 

1H-NMR (500 MHz, CDCl3) δ 8.11 (s, 1H, H-Furan), 7.91 (m, 2H, Ar-H), 7.57 (m, 

3H, Ar-H), 7.42 (m, 2H, Ar-H), 7.30 (m, 3H, Ar-H), 3.63 (s, 3H, -OCH3); 
13C-NMR 

(126 MHz, CDCl3) δ 192.3, 162.2, 152.6, 146.5, 137.5, 133.6, 133.0, 131.0, 127.9, 

127.7, 120.9, 114.5, 113.9, 113.9, 51.6; ESI-MS: m/z = 307.7 [M+H]+. 

 

 

Methyl 4-(3,4-dimethoxybenzoyl)-5-phenyl-3-furoate (9c)  

O

OMe
O O

MeO

MeO

  

Yellow oil. IR (CH2Cl2): 3057, 1726, 1658, 1592, 1218, 1045 cm-1; 1H-NMR (400 

MHz, CDCl3) δ 8.10 (s, 1H, H-Furan), 7.66 (d, J = 1.9 Hz, 1H, Ar-H), 7.59-7.56 (m, 

2H, Ar-H), 7.40-7.27 (m, 3H, Ar-H), 7.33 (d, J = 8.0, 1.9 Hz, 1H, Ar-H), 6.78 (d, J = 

8.0 Hz, 1H, Ar-H), 3.94 (s, 3H, -OCH3), 3.90 (s, 3H, -OCH3), 3.67 (s, 3H, -OCH3); 

13C-NMR (100 MHz, CDCl3) δ 190.8, 162.3, 154.0, 149.3, 146.5, 144.0, 130.6, 129.7, 



 84

128.7, 127.5, 125.7, 125.3, 120.8, 110.2, 110.1, 110.0, 56.0, 51.7; EI-MS for 

C21H18O6 (m/z): Mr (calcd) 366.11, Mr (found) 389.52 [M+Na]+.  

Methyl 4-(3,4-benzo[d][1,3]dioxole-5-carbonyl)-5-phenyl-3-furoate (9d)  

O

OMe

O O
O

O

 

Yellow oil. IR (CH2Cl2): 3050, 1726, 1663, 1489, 1217, 1041 cm-1; 1H-NMR (400 

MHz, CDCl3) δ 8.09 (s, 1H, H-Furan), 7.57-7.54 (m, 2H, Ar-H), 7.49-7.41 (m, 2H, 

Ar-H), 7.34-7.27 (m, 3H, Ar-H), 6.77 (d, J = 8.1 Hz, 1H, Ar-H), 6.04 (s, 2H, -

OCH2O), 3.69 (s, 3H, -OCH3); 
13C-NMR (100 MHz, CDCl3) δ 190.4, 162.2, 152.5, 

152.1, 148.4, 147.4, 146.5, 132.4, 128.6, 128.5, 126.7, 125.6, 120.6, 119.5, 108.4, 

108.2, 102.0, 51.7; EI-MS for C20H14O6 (m/z): Mr (calcd) 350.08, Mr (found) 373.28 

[M+Na]+.  

Methyl 3-(2,3,4-trimethoxybenzoyl)-5-phenyl-3-furoate (9e)  

O

OCH3

OO
H3CO

H3CO OCH3

 

Yellow oil. IR (CH2Cl2): 3051, 1726, 1657, 1588, 1218, 1097 cm-1; 1H-NMR (400 

MHz, CDCl3) δ 8.04 (s, 1H, H-Furan), 7.61-7.57 (m, 2H, Ar-H), 7.30-7.28 (m, 4H, 

Ar-H), 6.69 (d, J = 8.9 Hz, 1H, Ar-H), 3.89 (s, 3H, -OCH3), 3.80 (s, 3H, -OCH3), 3.69 

(s, 3H, -OCH3), 3.67 (s, 3H, -OCH3); 
13C-NMR (50 MHz, CDCl3) δ 189.6, 162.5, 

158.1, 154.8, 151.8, 146.0, 142.3, 129.1, 128.6, 127.3, 125.9, 125.7, 122.7, 120.6, 
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106.8, 61.2, 60.8, 56.0, 51.6; EI-MS for C22H20O7 (m/z): Mr (calcd) 396.12, Mr (found) 

420.55 [M+Na]+.  

Methyl 4-(2,4,6-trimethoxybenzoyl)-5-phenyl-3-furoate (9f)  

O

OMe
O O

MeO
OMe

OMe

  

Yellow oil. IR (CH2Cl2): 3056, 1731, 1664, 1604, 1218, 1158 cm-1; 1H-NMR (400 

MHz, CDCl3) δ 7.93 (s, 1H, H-Furan), 7.66-7.63 (m, 2H, Ar-H), 7.29-7.27 (m, 3H, 

Ar-H), 6.00 (s, 2H, Ar-H), 3.77 (s, 3H, -OCH3), 3.66 (s, 6H, -OCH3), 3.64 (s, 3H, -

OCH3); 
13C-NMR (100 MHz, CDCl3) δ 188.0, 163.6, 163.0, 161.0, 154.0, 145.8, 

129.5, 128.7 (×2), 128.1 (×2), 127.0 (×2), 120.3, 112.8, 90.7, 56.0, 55.3, 51.5; EI-MS 

for C22H20O7 (m/z): Mr (calcd) 396.12, Mr (found) 419.27 [M+Na]+.  

Methyl 4-(hydroxy(4-methoxyphenyl)methyl)-2-phenyl-3-furoate (10)  

O

MeO

O HO

OMe

  

Yellow oil. IR (CH2Cl2): 3447, 3016, 1692, 1611, 1512, 1214, 1033 cm-1; 1H-NMR 

(400 MHz, CDCl3) δ 7.68-7-65 (d, J = 8.7 Hz, 2H, Ar-H), 7.43-7.38 (m, 5H, Ar-H), 

7.02 (s, 1H, H-Furan), 6.91 (d, J = 8.7 Hz, 2H, Ar-H), 5.90 (bs, 1H, -CHOH), 4.43 (bs, 

1H, -CHOH), 3.82 (s, 3H, -OCH3), 3.73 (s, 3H, -OCH3); 
13C-NMR (100 MHz, 

CDCl3) δ 165.5, 159.3, 159.0, 140.6, 133.8, 131.4, 130.0, 129.5, 128.7, 128.0, 127.7, 
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113.7, 112.3, 67.8, 55.2, 51.8; EI-MS for C20H18O5 (m/z): Mr (calcd) 338.12, Mr 

(found) 361.39 [M+Na]+.  

Methyl 4-(4-methoxybenzyl)-2-phenyl-3-furoate (11)  

O

MeO

O

OMe

  

Yellow oil. IR (CH2Cl2): 3021, 2942, 1716, 1612, 1604, 1240, 1035 cm-1; 1H-NMR 

(400 MHz, CDCl3) δ 7.76 (dd, J = 8.2, 1.8 Hz, 2H, Ar-H), 7.40 (m, 3H, Ar-H), 7.17 

(d, J = 8.6 Hz, 2H, Ar-H), 7.03 (s, 1H, H-Furan), 6.86 (d, J = 8.6 Hz, 2H, Ar-H), 3.93 

(s, 2H, -CH2-Ph), 3.80 (s, 3H, -OCH3), 3.74 (s, 3H, -OCH3); 
13C-NMR (100 MHz, 

CDCl3) δ 164.7, 158.2, 158.0, 140.1, 131.7, 130.2, 129.7, 129.1, 128.3, 128.0, 126.1, 

113.8, 113.2, 55.2, 51.3, 30.3; EI-MS for C20H18O4 (m/z): Mr (calcd) 322.12, Mr 

(found) 345.76 [M+Na]+. 

Methyl 4-(4-methoxybenzyl)-2-phenyl-tetrahydrofuran-3-carboxylate (12)  

O

MeO

O

OMe

  

Yellow oil. IR (CH2Cl2): 3006, 2951, 1732, 1661, 1512, 1176, 1034 cm-1; 1H-NMR 

(400 MHz, CDCl3) δ 7.29-7.24 (m, 5H, Ar-H), 7.11 (d, J = 6.8 Hz, 2H, Ar-H), 6.84 (d, 

J = 6.8 Hz, 2H, Ar-H), 5.26 (d, J = 6.7 Hz, 1H, H2-Furan), 4.34 (t, J = 6.4 Hz, 1H, 

H5b-Furan), 3.79 (s, 3H, -OCH3), 3.66 (t, J = 6.8 Hz, 1H, H5a-Furan), 3.14 (s, 3H, -

COOCH3), 3.12 (m, 1H, H3-Furan), 3.08 (m, 1H, H4-Furan), 2.81 (dd, J = 11.1, 5.1 
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Hz, 1H, -CH2-), 2.67 (dd, J = 11.1, 6.8 Hz, 1H, -CH2-Ar); 13C-NMR (100 MHz, 

CDCl3) 171.8, 158.1, 138.9, 131.3, 127.9, 127.9, 127.7, 126. 2, 113.9, 82.2, 73.7, 55.8, 

55.2, 51.2, 43.7, 37.3; EI-MS for C20H22O4 (m/z): Mr (calcd) 326.15, Mr (found) 349.54 

[M+Na]+. 

Dimethyl 1-phenyl-2,3,7-trioxa-bicyclo[2.2.1]hept-5-ene-5,6-dicarboxylate (13a) 

O

OCH3H3CO
O O

O O

 

 1H-NMR (500 MHz, CDCl3)  7.75 (d, J = 8.3 Hz, 2H, Ar-H), 7.59 − 7.56 (m, 2H, 

Ar-H), 7.48 − 7.44 (m, 1H, Ar-H), 6.81 (s, 1H), 3.72 (s, 3H, -OCH3), 3.68 (s, 3H, -

OCH3). 

Dimethyl 1-(4-methoxyphenyl)-2,3,7-trioxa-bicyclo[2.2.1]hept-5-ene-5,6-
dicarboxylate (13b) 
 

O

OCH3H3CO
O O

O O

H3CO  

 1H-NMR (500 MHz, CDCl3)  7.53 (d, J = 9.1 Hz, 2H, Ar-H), 6.97 (d, J = 9.1 Hz, 

2H, Ar-H), 6.78 (s, 1H), 3.87 (s, 3H, -OCH3), 3.84 (s, 3H, -OCH3), 3.75 (s, 3H, -

OCH3). 
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Dimethyl 1-(4-bromophenyl)-2,3,7-trioxa-bicyclo[2.2.1]hept-5-ene-5,6-dicarboxylate 
(13c) 
 

O

OCH3H3CO
O O

O O

Br  

 1H-NMR (500 MHz, CDCl3)  7.61 (d, J = 8.6 Hz, 2H, Ar-H), 7.47 (d, J = 8.6 Hz, 

2H, Ar-H), 6.81 (s, 1H), 3.88 (s, 3H, -OCH3), 3.74 (s, 3H, -OCH3). 

6-(4-Methoxybenzoyl)-4-phenyl-2,3,7-trioxa-bicyclo[2.2.1]hept-5-ene-5-carboxylate 

(13d) 

O

H3CO
O O

OCH3

O O

 

1H-NMR (500 MHz, CDCl3)  7.84 (d, J = 8.6 Hz, 2H, Ar-H), 6.98 (d, J = 8.6 Hz, 

2H, Ar-H), 7.64 (m, 2H, Ar-H), 7.45 (m, 3H, Ar-H), 6.72 (s, 1H), 3.88 (s, 3H, -OCH3), 

3.38 (s, 3H, -OCH3). 

6-(2,3,4-Trimethoxybenzoyl)-4-phenyl-2,3,7-trioxa-bicyclo[2.2.1]hept-5-ene-5-

carboxylate (13f) 

O

H3CO
O O

OCH3

O O

H3CO OCH3
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1H-NMR (500 MHz, CDCl3)  7.62 (m, 2H, Ar-H), 7.60 (d, J = 8.8 Hz, 1H, Ar-H), 

7.49 (m, 3H, Ar-H), 6.78 (d, J = 8.8 Hz, 1H, Ar-H), 6.72 (s, 1H), 3.95 (s, 3H, -OCH3), 

3.94 (s, 3H, -OCH3), 3.88 (s, 3H, -OCH3), 3.42 (s, 3H, -OCH3). 

 

6-(4-Methoxybenzyl)-4-phenyl-2,3,7-trioxa-bicyclo[2.2.1]hept-5-ene-5-carboxylate 

(13g) 

O

H3CO
O

OCH3

O O

 

 1H-NMR (500 MHz, CDCl3)  7.60 (m, 2H, Ar-H), 7.48 (d, J = 8.6 Hz, 2H, Ar-H), 

7.45 (m, 3H, Ar-H), 6.79 (d, J = 8.6 Hz, 2H, Ar-H), 6.71 (s, 1H), 3.95 (s, 3H, -OCH3), 

3.52 (s, 3H, -OCH3). 

Dimethyl 2-formyl-3- benzoyl--maleate (14a) 

OCH3

O O

H

O

H3CO

O

 

1H-NMR (500 MHz, CDCl3) δ 9.68 (s, 1H, -CHO), 7.90 (d, J = 8.0 Hz, 2H, Ar-H), 

7.62 (t, J = 8.0 Hz, 1H, Ar-H), 7.56 (t, J = 8.0 Hz, 2H, Ar-H), 3.95 (s, 3H, -OCH3), 

3.81 (s, 3H, -OCH3); 
 13C-NMR (126 MHz, CDCl3) δ 189.9, 188.5, 165.8, 165.5, 

160.1, 150.2, 139.5, 135.5, 130.2, 130.1, 53.0, 52.4; HRMS (ESI) (m/z): found 

276.0631 [M+H]+; calcd for C14H12O6 276.0634. 
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Dimethyl 2-formyl-3-(4-methoxybenzoyl)-maleate (14b) 

OCH3

O O

H

O

H3CO

O

H3CO

 

Amorphous powder. IR (CH2Cl2) 3051, 1712, 1641, 1539, 1255, 1032, 788 cm-1; 1H-

NMR (500 MHz, CDCl3) 9.66 (s, 1H, CHO), 7.90 (d, J = 8.6 Hz, 2H, Ar-H), 6.93 

(d, J = 8.6 Hz, 2H, Ar-H), 3.94 (s, 3H, -OCH3), 3.90 (s, 3H, -OCH3), 3.81 (s, 3H, -

OCH3); 
13C-NMR (126 MHz, CDCl3) δ 188.0, 186.9, 165.4(x2), 163.9, 163.4, 147.3, 

137.4, 114.8, 132.2, 55.9, 53.9, 53.4; HRMS (ESI) (m/z): found 306.0740 [M+H]+; 

calcd for C15H14O7 306.0738. 

 (Z)-Methyl 2-benzoyl-3-formyl-4-(4-methoxyphenyl)-4-oxobut-2-enoate (14d) 

O O

H

O

H3CO

O

OCH3

 

Amorphous powder. IR (CH2Cl2) 3048, 1715, 1712, 1708, 1641, 1539, 1255, 1032, 

788 cm-1; 1H-NMR (500 MHz, CDCl3) 9.69 (s, 1H, CHO), 7.85 (d, J = 8.8 Hz, 2H, 

Ar-H), 7.42 (t, J = 8.4 Hz, 1H, Ar-H), 7.40 (t, J = 8.4 Hz, 2H, Ar-H), 7.38 (d, J = 8.4 

Hz, 2H, Ar-H), 6.95 (d, J = 8.8 Hz, 2H, Ar-H), 3.93 (s, 3H, -OCH3), 3.92 (s, 3H, -

OCH3); 
13C-NMR (126 MHz, CDCl3) δ 191.5, 188.2, 166.5, 165.5, 164.0, 151.3, 

138.5, 134.6, 132.0, 131.5, 129.5, 129.4, 114.8, 55.5, 53.5; HRMS (ESI) (m/z): found 

352.0944 [M+H]+; calcd for C20H16O6 352.0947. 
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(Z)-Methyl 3-formyl-2,4-bis(4-methoxybenzoyl)-oxobut-2-enoate (14e) 

O O

H

O

H3CO

O

OCH3

H3CO

 

Amorphous powder. IR (CH2Cl2) 3048, 1719, 1715, 1709, 1640, 1531, 1252, 1033, 

788 cm-1; 1H-NMR (500 MHz, CDCl3) 9.69 (s, 1H, CHO), 7.87 (d, J = 8.7 Hz, 2H, 

Ar-H), 7.85 (d, J = 8.8 Hz, 2H, Ar-H), 6.98 (d, J = 8.7 Hz, 2H, Ar-H), 6.95 (d, J = 8.8 

Hz, 2H, Ar-H), 3.93 (s, 6H, -OCH3), 3.92 (s, 3H, -OCH3); 
13C-NMR (126 MHz, 

CDCl3) δ 192.0, 188.2, 166.3, 165.6, 164.5, 151.6, 138.8, 134.6, 132.5, 131.4, 129.4, 

114.8, 114.6, 56.4, 55.5, 53.5; HRMS (ESI) (m/z): found 352.0944 [M+H]+; calcd for 

C20H16O6 352.0947. 

(Z)-methyl 2-benzoyl-3-formyl-4-oxo-4-(2,3,4-trimethoxyphenyl)but-2-enoate (14f)  

O O

H

O

H3CO

O

OCH3

OCH3H3CO

 

Amorphous powder. IR (CH2Cl2) 3054, 1710, 1705, 1689, 1640, 1522, 1258, 1031, 

780 cm-1; 1H-NMR (500 MHz, CDCl3)  9.60 (s, 1H, CHO), 8.05 (d, J = 8.9 Hz, 2H, 

Ar-H), 7.39 (brt, J = 8.7 Hz, 3H, Ar-H), 7.82 (d, J = 8.7 Hz, 2H, Ar-H), 6.77 (d, J = 

8.9 Hz, 2H, Ar-H), 3.97 (s, 3H, -OCH3), 3.90 (s, 3H, -OCH3), 3.79 (s, 3H, -OCH3), 

3.55 (s, 3H, -OCH3); 
13C-NMR (126 MHz, CDCl3) δ 192.4, 191.2, 165.8, 165.1, 

158.4, 155.6, 155.0, 141.5, 137.3, 128.8, 125.2, 124.2, 107.4, 68.5, 60.5, 60.6, 56.2, 

56.0, 52.3, 52.1; HRMS (ESI) (m/z): found 412.1155 [M+H]+; calcd for C22H20O8 

412.1158. 
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Di-methyl 5-(4-methoxyphenyl)-2-oxo-2,3-dihydrofuran-3,4-dicarboxylate (15a) 

O O

H3CO

O O

OCH3

H

 

Yellow oil. IR (CH2Cl2) 2978, 1712, 1680 1652, 1513, 1465, 1174, 1030, 974, 843 

cm-1; 1H-NMR (500 MHz, CDCl3)  7.55 -7.29 (m, 5H, Ar-H), 4.78 (s, 1H), 3.85 (s, 

3H, -OCH3), 3.83 (s, 3H, -OCH3); 
13C-NMR (126 MHz, CDCl3)  172.7, 161.8, 

159.8, 147.0, 141.6, 139.0, 129.7, 127.0, 114.0, 80.5, 55.0, 52.3; HRMS (ESI) (m/z): 

found 306.0740 [M+H]+; calcd for C15H14O7 306.0743. 

Di-methyl 5-(4-methoxyphenyl)-2-oxo-2,3-dihydrofuran-3,4-dicarboxylate (15b) 

O O

H3CO

O O

OCH3

H

H3CO  

 Yellow oil. IR (CH2Cl2) 2982, 1712, 1701, 1654, 1515, 1465, 1174, 1030, 974, 843 

cm-1; 1H-NMR (500 MHz, CDCl3)  8.06 (d, J = 9.0 Hz, 2H, Ar-H), 6.97 (d, J = 9.0 

Hz, 2H, Ar-H), 4.75 (s, 1H), 3.88 (s, 3H, -OCH3), 3.84 (s, 3H, -OCH3), 3.76 (m, 3H, -

OCH3); 
13C-NMR (126 MHz, CDCl3)  172.7, 161.8, 159.8, 147.0, 141.6, 139.0, 

130.0, 127.0, 114.0, 80.5, 55.0, 52.3; HRMS (ESI) (m/z): found 306.0740 [M+H]+; 

calcd for C15H14O7 306.0743. 
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Methyl 5-hydroxy-3-(4-methoxybenzyl)-2-oxo-5-phenyl-4,5-dihydrofuran-4-
carboxylate (16) 
 

O O

H3CO

O

OH

OCH3

 

Yellow oil. IR (CH2Cl2) 2981, 1813, 1756, 1710, 1600, 1515, 1465, 1174, 1030, 974, 

843 cm-1; 1H-NMR (500 MHz, CDCl3)  7.41 (m, 2H, Ar-H), 7.34 (m, 3H, Ar-H), 

7.26 (d, J = 7.8 Hz, 2H, Ar-H), 6.84 (d, J = 7.8 Hz, 2H, Ar-H), 3.76 (s, 3H, -OCH3), 

3.74 (s, 3H, -OCH3), 3.96 (m, 2H, -CH2-Ph); 13C-NMR (126 MHz, CDCl3)  170.0, 

167.2, 157.6, 144.6, 142.7, 135.4, 130.0, 129.7, 129.0, 127.7, 127.1, 114.2, 112.3, 

55.8, 52.3, 36.0; HRMS (ESI) (m/z): found 354.1101 [M+H]+; calcd for C20H18O6 

354.1103. 

Methyl 3-(4-methoxybenzyl)-2-oxo-5-phenyl-4,5-dihydrofuran-4-carboxylate (17) 

O O

H3CO

O

OCH3

 

 Yellow oil. IR (CH2Cl2) 2982, 1815, 1752, 1711, 1600, 1515, 1465, 1174, 1030, 974, 

843 cm-1; 1H-NMR (500 MHz, CDCl3)  7.34 – 7.30 (m, 3H, Ar-H), 7.30 (t, J = 7.8 

Hz, 2H, Ar-H), 7.18 (d, J = 8.6 Hz, 2H, Ar-H), 6.84 (t, J = 7.8 Hz, 2H, Ar-H), 6.20 (s, 

1H), 3.79 (s, 3H, -OCH3), 3.75 (s, 3H, -OCH3), 3.85 (m, 2H, -CH2-Ph); 13C-NMR 

(126 MHz, CDCl3)  172.7, 161.8, 159.8, 147.0, 141.6, 139.0, 130.0, 129.7, 129.2, 

128.6, 127.0, 114.0, 80.5, 55.0, 52.3, 51.4; HRMS (ESI) (m/z): found 338.1156 

[M+H]+; calcd for C20H18O5 338.1154. 
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3-Benzoyl-4-methoxy-2-(methoxycarbonyl)-4-oxobut-2-enoic acid (18a) 

OCH3

O O

OH

O

H3CO

O

 

Amorphous powder. IR (CH2Cl2) 3595 − 3478, 2950, 1742, 1720, 1675, 1605, 1513, 

1436, 1172, 1030, 850 cm-1; 1H-NMR (500 MHz, CDCl3) 7.89 (brd, J = 7.6 Hz, 2H, 

Ar-H), 7.50 (t, J = 7.6 Hz, 1H, Ar-H), 7.40 (t, J = 7.6 Hz, 2H, Ar-H), 3.86 (s, 3H, -

OCH3), 3.65 (s, 3H, -OCH3); 
13C-NMR (126 MHz, CDCl3) δ 192.5, 166.9, 165.6, 

163.9, 145.0, 136.6, 134.5, 132.9, 128.6, 128.4, 52.8, 52.4; HRMS (ESI) (m/z): found 

293.0664 [M+H]+; calcd for C14H12O7 293.0661. 

4-Methoxy-3-(4-methoxybenzoyl)-2-(methoxycarbonyl)-4-oxobut-2-enoic acid (18b) 

OCH3

O O

OH

O

H3CO

O

H3CO

 

Amorphous powder. IR (CH2Cl2) 3590 − 3480 (br), 2957, 1740, 1738, 1685, 1600, 

1513, 1436, 1172, 1030, 842 cm-1; 1H-NMR (500 MHz, CDCl3)  7.92 (d, J = 8.8 Hz, 

2H, Ar-H), 6.91 (d, J = 8.8 Hz, 2H, Ar-H), 3.90 (s, 3H, -OCH3), 3.84 (s, 3H, -OCH3), 

3.67 (s, 3H, -OCH3); 
13C-NMR (126 MHz, CDCl3) 191.0, 166.7, 166.3, 164.2, 

163.3, 140.0, 131.5, 130.9, 130.0, 113.6, 55.4, 52.7, 52.5; HRMS (ESI) (m/z): found 

323.0772 [M+H]+; calcd for C15H14O8 323.0767. 
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3-(4-Bromobenzoyl)-4-methoxy-2-(methoxycarbonyl)-4-oxobut-2-enoic acid (18c)  

OCH3

O O

OH

O

H3CO

O

Br

 

Amorphous powder. IR (CH2Cl2) 3590 − 3480 (br), 2960, 1742, 1718, 1680, 1601, 

1512, 1430, 1170, 1040, 830 cm-1; 1H-NMR (500 MHz, CDCl3) 7.76 (d, J = 8.5 Hz, 

2H, Ar-H), 7.56 (d, J = 8.5 Hz, 2H, Ar-H), 3.87 (s, 3H, -OCH3), 3.67 (s, 3H, -OCH3); 

13C-NMR (126 MHz, CDCl3)  191.6, 166.8, 165.5, 163.6, 145.2, 135.4, 131.9, 131.7, 

130.3, 128.0, 53.0, 52.4; HRMS (ESI) (m/z): found 371.9770 [M+H]+; calcd for 

C14H11
79BrO7 370.9766.  

(E)-3-Benzoyl-4-methoxy-2-(4-methoxybenzoyl)-4-oxobut-2-enoic acid (18d) 

O O

OH

O

H3CO

O

OCH3

 

Amorphous powder. IR (CH2Cl2) 3054, 1700, 1640, 1570, 1250, 1030, 780 cm-1; 1H-

NMR (500 MHz, CDCl3) 7.94 (d, J = 9.0 Hz, 2H, Ar-H), 7.88 (d, J = 9.0 Hz, 2H, 

Ar-H), 7.49 (t, J = 7.5 Hz, 1H, Ar-H), 7.39 (t, J = 7.5 Hz, 2H, Ar-H), 6.90 (d, J = 7.5 

Hz, 2H, Ar-H), 3.85 (s, 3H, -OCH3), 3.50 (s, 3H, -OCH3); 
13C-NMR (126 MHz, 

CDCl3) δ 192.1, 166.3, 164.0, 163.5, 138.6, 136.3, 132.7, 131.2, 129.0, 128.5, 128.4, 

114.2, 114.0, 55.5, 52.7; HRMS (ESI) (m/z): found 368.0893 [M+H]+; calcd for 

C20H16O7 368.0896. 
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(E)-4-methoxy-2,3-bis-(4-methoxybenzoyl)-4-oxobut-2-enoic acid (18e) 

O O

OH

O

H3CO

O

OCH3

H3CO

 

Amorphous powder. IR (CH2Cl2) 3051, 1705, 1644, 1550, 1255, 1032, 788 cm-1; 1H-

NMR (500 MHz, CDCl3) 7.92 (d, J = 9.0 Hz, 2H, Ar-H), 7.85 (d, J = 9.0 Hz, 2H, 

Ar-H), 6.90 (d, J = 8.0 Hz, 4H, Ar-H), 3.84 (s, 6H, -OCH3), 3.50 (s, 3H, -OCH3); 
13C-

NMR (126 MHz, CDCl3) δ 190.4, 164.5, 162.3, 162.1, 161.9, 147.0, 135.6, 129.7, 

129.5, 129.3, 127.7, 112.3, 112.2, 53.8, 51.0; HRMS (ESI) (m/z): found 398.1005 

[M+H]+; calcd for C21H18O8 398.1002. 

 (E)-3-benzoyl-4-methoxy-4-oxo-2-(2,3,4-trimethoxybenzoyl)but-2-enoic acid (18f)  

O O

OH

O

H3CO

O

OCH3

OCH3H3CO

 

Amorphous powder. IR (CH2Cl2) 3055, 1715, 1708, 1688, 1640, 1530, 1252, 1033, 

788 cm-1; 1H-NMR (500 MHz, CDCl3)  8.02 (d, J = 8.9 Hz, 2H, Ar-H), 7.39 (brt, J 

= 8.9 Hz, 3H, Ar-H), 7.82 (d, J = 8.8 Hz, 2H, Ar-H), 6.75 (d, J = 8.8 Hz, 2H, Ar-H), 

3.96 (s, 3H, -OCH3), 3.92 (s, 3H, -OCH3), 3.78 (s, 3H, -OCH3), 3.54 (s, 3H, -OCH3); 

13C-NMR (126 MHz, CDCl3) δ 193.4, 192.2, 166.2, 165.1, 158.2, 155.2, 155.1, 141.7, 

137.4, 128.8, 125.5, 124.1, 107.1, 68.1, 60.9, 60.8, 56.1, 56.0, 52.5, 52.4; HRMS 

(ESI) (m/z): found 428.1105 [M+H]+; calcd for C22H20O9 428.1107. 
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Dimethyl 2-(4-methoxyphenyl)-5-oxo-2-phenyl-2,5-dihydrofuran-3,4-dicarboxylate 
(19d) 
 

O

O

OCH3

O

H3CO

H3CO

O

 

Yellow oil. IR (CH2Cl2) 2960, 1760, 1738, 1602, 1441, 1170, 1036, 980, 890 cm-1; 

1H-NMR (500 MHz, CDCl3)  7.38 − 7.29 (m, 5H, Ar-H), 7.23 (d, J = 8.8 Hz, 2H, 

Ar-H), 6.88 (d, J = 8.8 Hz, 2H, Ar-H), 3.92 (s, 3H, -OCH3), 3.81 (s, 3H, -OCH3), 3.75 

(s, 3H, -OCH3); 
13C-NMR (126 MHz, CDCl3)  165.6, 161.5, 161.0, 160.5, 160.3, 

136.8, 129.3, 128.6, 128.5, 128.2, 127.7, 126.7, 113.9, 91.9, 55.3, 53.2, 53.1; HRMS 

(ESI) (m/z): found 383.1136 [M+H]+; calcd for C21H18O7 383.1131. 

Dimethyl 2-(3,4-dimethoxyphenyl)-5-oxo-2-phenyl-2,5-dihydrofuran-3,4-dicarboxylate 
(19e) 
 

O

O

OCH3

O

H3CO

H3CO

O

OCH3  

 Yellow oil. IR (CH2Cl2) 2950, 1797, 1748, 1720, 1605, 1507, 1465, 1175, 1018, 968, 

838 cm-1; 1H-NMR (500 MHz, CDCl3)  7.40 − 7.34 (m, 3H, Ar-H), 7.32 (dd, J = 8.0, 

1.5 Hz, 2H, Ar-H), 6.90 (dd, J = 8.4, 2.2 Hz, 1H, Ar-H), 6.83 (d, J = 8.4 Hz, 1H, Ar-

H), 6.81 (d, J = 2.2 Hz, 1H, Ar-H), 3.92 (s, 3H, -OCH3), 3.89 (s, 3H, -OCH3), 3.78 (s, 

3H, -OCH3), 3.76 (s, 3H, -OCH3); 
13C-NMR (126 MHz, CDCl3)  165.7, 161.6, 
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161.4, 160.4, 149.9, 148.9, 136.8, 129.4, 128.8, 128.5, 127.7, 126.3, 120.7, 111.1, 

110.7, 91.9, 56.0, 55.9, 53.3, 53.2; HRMS (ESI) (m/z): found 413.1239 [M+H]+; calcd 

for C22H20O8 413.1236. 

 
Dimethyl 2-(benzo[d][1,3]dioxol-5-yl)-5-oxo-2-phenyl-2,5-dihydrofuran-3,4-
dicarboxylate (19f)  
 

O

O

OCH3

O

H3CO

O

O

O
 

Yellow oil. IR (CH2Cl2) 3008, 2958, 1795, 1758, 1718, 1604, 1508, 1491, 1182, 1157, 

1008, 978, 852 cm-1; 1H-NMR (500 MHz, CDCl3)  7.43 – 7.35 (m, 3H, Ar-H), 7.33 

(d, J = 6.9 Hz, 2H, Ar-H), 6.80 (dd, J = 9.0, 1.4 Hz, 1H, Ar-H), 6.79 (d, J = 1.4 Hz, 

1H, Ar-H), 6.74 (d, J = 9.0 Hz, 1H, Ar-H), 5.99 (s, 2H, -OCH2O-), 3.92 (s, 3H, -

OCH3), 3.77 (s, 3H, -OCH3); 
13C-NMR (126 MHz, CDCl3)  165.5, 161.4, 161.0, 

160.4, 147.9, 136.6, 130.3, 129.4, 128.6, 128.5, 127.6, 127.5, 122.0, 108.5, 108.0, 

101.6, 91.7, 53.3, 53.2; HRMS (ESI) (m/z): found 397.0929 [M+H]+; calcd for 

C21H16O8 397.0923. 
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Dimethyl 2-(4-hydroxyphenyl)-5-oxo-2-phenyl-2,5-dihydrofuran-3,4-dicarboxylate 
(19g) 
 

O

O

OCH3

O

H3CO

O

HO  

 Yellow oil.IR (CH2Cl2) 3009, 2958, 1780, 1758, 1715, 1600, 1510, 1491, 1180, 

1010, 981, 846 cm-1; 1H-NMR (500 MHz, CDCl3) 7.43 − 7.34 (m, 3H, Ar-H), 7.32 

(dd, J = 8.1, 1.5 Hz, 2H, Ar-H), 7.16 (d, J = 8.8 Hz, 2H, Ar-H), 6.80 (d, J = 8.8 Hz, 

2H, Ar-H), 3.92 (s, 3H, -OCH3), 3.75 (s, 3H, -OCH3); 
13C-NMR (126 MHz, CDCl3) 

165.9, 161.5, 161.3, 160.5, 156.9, 136.6, 129.5, 129.4, 128.5, 128.4, 127.7, 126.5, 

115.4, 92.1, 53.3, 53.2; HRMS (ESI) (m/z): found 369.0973 [M+H]+; calcd for 

C20H16O7 369.0969.  

 

Dimethyl 2,2-bis(4-methoxyphenyl)-5-oxo-2,5-dihydrofuran-3,4-dicarboxylate (19h) 

O

O

OCH3

O

H3CO

O

H3CO

H3CO

 

Yellow oil. IR (CH2Cl2) 2930, 1780, 1741, 1608, 1461, 1180, 1033, 978, 895 cm-1; 

1H-NMR (500 MHz, CDCl3)  7.24 (d, J = 9.0 Hz, 4H, Ar-H), 6.88 (d, J = 9.0 Hz, 

4H, Ar-H), 3.92 (s, 3H, -OCH3), 3.82 (s, 6H, -OCH3), 3.76 (s, 3H, -OCH3); 
13C-NMR 

(126 MHz, CDCl3) 165.8, 161.6, 161.3, 160.5, 160.2, 129.2, 128.6, 126.3, 113.8, 
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91.8, 55.3, 53.2, 53.1; HRMS (ESI) (m/z): found 413.1242 [M+H]+; calcd for 

C22H20O8 413.1236.  

Dimethyl 2-(3,4-dimethoxyphenyl)-2-(4-methoxyphenyl)-5-oxo-2,5-dihydrofuran-3,4-
dicarboxylate (19i) 
 

O

O

OCH3

O

H3CO

O

H3CO

H3CO

OCH3  

Yellow oil. IR (CH2Cl2) 3009, 2928, 1780, 1741, 1605, 1514, 1464, 1180, 1027, 995, 

841 cm-1; 1H-NMR (500 MHz, CDCl3) 7.23 (d, J = 9.0 Hz, 2H, Ar-H), 6.92 – 6.81 

(m, 5H, Ar-H), 3.92 (s, 3H, -OCH3), 3.89 (s, 3H, -OCH3), 3.82 (s, 3H, -OCH3), 3.78 

(s, 3H, -OCH3), 3.76 (s, 3H, -OCH3); 
13C-NMR (126 MHz, CDCl3) 165.8, 161.7, 

160.3, 149.8, 148.7, 134.0, 131.8, 129.3, 125.9, 124.0, 120.5, 113.8, 113.7, 110.9, 

110.5, 91.5, 55.9, 55.8, 55.3, 53.3, 53.2; HRMS (ESI) (m/z): found 443.1349 [M+H]+; 

calcd for C23H22O9 443.1342.  

Dimethyl 2-(benzo[d][1,3]dioxol-5-yl)-2-(4-methoxyphenyl)-5-oxo-2,5-dihydrofuran-
3,4-dicarboxylate (19l) 
 

O

O

OCH3

O

H3CO

O

O

O

H3CO
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Yellow oil. IR (CH2Cl2) 3010, 2956, 1780, 1759, 1718, 1601, 1510, 1481, 1185, 1160, 

982, 850 cm-1; 1H-NMR (500 MHz, CDCl3)  7.22 (d, J = 6.9 Hz, 1H, Ar-H) and 7.00 

– 7.84 (m, 6H, Ar-H), 6.00 (s, 2H,-OCH2O-), 3.92 (s, 3H, -OCH3), 3.82 (s, 3H, -

OCH3), 3.78 (s, 3H, -OCH3); 
13C-NMR (126 MHz, CDCl3)  165.4, 161.0, 160.8, 

160.0, 147.9, 146.5, 136.6, 130.3, 129.4, 128.6, 127.6, 124.5, 121.0, 108.5, 108.0, 

101.6, 90.7, 55.0, 53.3, 53.2; HRMS (ESI) (m/z): found 427.1041 [M+H]+; calcd for 

C22H18O9 427.1029. 

Dimethyl 2-(4-bromophenyl)-2-(4-methoxyphenyl)-5-oxo-2,5-dihydrofuran-3,4-
dicarboxylate (19m) 
 

O

O

OCH3

O

H3CO

O

Br

H3CO  

Yellow oil. IR (CH2Cl2) 3090, 2930, 1750, 1740, 1658, 1608, 1513, 1436, 1343, 1220, 

927, 834 cm-1; 1H-NMR (500 MHz, CDCl3)  7.50 (d, J = 8.7 Hz, 2H, Ar-H), 7.21 (d, 

J = 8.8 Hz, 2H, Ar-H), 7.19 (d, J = 8.8 Hz, 2H, Ar-H), 6.88 (d, J = 8.7 Hz, 2H, Ar-H), 

3.92 (s, 3H, -OCH3), 3.82 (s, 3H, -OCH3), 3.77 (s, 3H, -OCH3); 
13C-NMR (126 MHz, 

CDCl3)  165.4, 161.3, 160.5, 160.3, 160.1, 136.0, 131.7, 129.4, 129.2, 128.1, 127.1, 

123.8, 114.0, 91.3, 55.3, 53.3, 53.2; HRMS (ESI) (m/z): found 461.0240 [M+H]+; 

calcd for C21H17
79BrO7 461.0236. 
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Dimethyl 3-(4-methoxyphenyl)-2-oxo-5-phenyl-2,3-dihydrofuran-3,4-dicarboxylate 
(20d) 

O O

OCH3H3CO

OO

OCH3

 

Yellow oil.IR (CH2Cl2) 2980, 1812, 1755, 1717, 1607, 1510, 1460, 1170, 1032, 970, 

841 cm-1; 1H-NMR (500 MHz, CDCl3)  7.99 (d, J = 8.8 Hz, 2H, Ar-H), 7.53 − 7.41 

(m, 5H, Ar-H), 6.92 (d, J = 8.8 Hz, 2H, Ar-H), 3.83 (s, 3H, -OCH3), 3.81 (s, 3H, -

OCH3), 3.68 (s, 3H, -OCH3); 
13C-NMR (126 MHz, CDCl3)  170.2, 166.8, 162.6, 

161.7, 160.0, 132.1, 129.6, 128.9, 128.8, 128.5, 128.2, 114.1, 114.0, 63.8, 55.1, 54.0, 

52.0; HRMS (ESI) (m/z): found 383.1136 [M+H]+; calcd for C21H18O7 383.1131. 

Dimethyl 3-(2-methoxyphenyl)-2-oxo-5-phenyl-2,3-dihydrofuran-3,4-dicarboxylate (o-
20d) 

O O

OCH3H3CO

OO

H3CO
 

 Yellow oil. IR (CH2Cl2) 2982, 1815, 1752, 1711, 1600, 1515, 1465, 1174, 1030, 974, 

843 cm-1; 1H-NMR (500 MHz, CDCl3)  7.88 (brd, J = 7.7 Hz, 2H, Ar-H), 7.57 – 7.43 

(m, 5H, Ar-H), 7.33 (t, J = 8.8 Hz, 1H, Ar-H), 7.03 (t, J = 7.7 Hz, 1H, Ar-H), 3.90 (s, 

3H, -OCH3), 3.77 (s, 3H, -OCH3), 3.56 (s, 3H, -OCH3); 
13C-NMR (126 MHz, CDCl3) 

 170.3, 166.5, 162.5, 160.9, 156.5, 131.5, 131.4, 130.1, 129.8, 129.4, 128.1, 127.5, 

123.6, 120.9, 111.9, 63.1, 55.8, 53.8, 51.4; HRMS (ESI) (m/z): found 383.1133 

[M+H]+; calcd for C21H18O7 383.1131. 
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Dimethyl 3,5-bis(4-methoxyphenyl)-2-oxo-2,3-dihydrofuran-3,4-dicarboxylate (20h) 

O O

OCH3H3CO

OO

OCH3

H3CO

 

Yellow oil. IR (CH2Cl2) 2956, 1813, 1758, 1720, 1606, 1512, 1461, 1172, 1028, 971, 

839 cm-1; 1H-NMR (500 MHz, CDCl3)  8.06 (d, J = 9.0 Hz, 2H, Ar-H), 7.46 (d, J = 

9.1 Hz, 2H, Ar-H), 6.99 (d, J = 9.0 Hz, 2H, Ar-H), 6.94 (d, J = 9.1 Hz, 2H, Ar-H), 

3.89 (s, 3H, -OCH3), 3.82 (s, 3H, -OCH3), 3.81 (s, 3H, -OCH3), 3.68 (s, 3H, -OCH3); 

13C-NMR (126 MHz, CDCl3) 170.3, 167.1, 162.9, 162.6, 161.8, 159.8, 131.8, 131.4, 

129.4, 125.5, 118.8, 113.9, 113.6, 63.7, 55.5, 55.3, 53.6, 51.9; HRMS (ESI) (m/z): 

found 413.1240 [M+H]+; calcd for C22H20O8 413.1236. 

Dimethyl 3-(3,4-dimethoxyphenyl)-2-oxo-5-phenyl-2,3-dihydrofuran-3,4-dicarboxylate 
(20e) 
 

O O

OCH3H3CO

OO

OCH3

OCH3

 

Yellow oil. IR (CH2Cl2) 2980, 1811, 1756, 1718, 1608, 1505, 1465, 1178, 1032, 971, 

839 cm-1; 1H-NMR (500 MHz, CDCl3) 7.99 (d, J = 7.4 Hz, 2H, Ar-H), 7.58 – 7.53 

(m, 1H, Ar-H), 7.50 (t, J = 7.4 Hz, 2H, Ar-H), 7.22 (d, J = 2.2 Hz, 1H, Ar-H), 6.95 

(dd, J = 8.5, 2.2 Hz, 1H, Ar-H), 6.84 (d, J = 8.5 Hz, 1H, Ar-H), 3.91 (s, 3H, -OCH3), 

3.88 (s, 3H, -OCH3), 3.84 (s, 3H, -OCH3), 3.69 (s, 3H, -OCH3); 
13C-NMR (126 MHz, 

CDCl3)  170.1, 166.8, 162.7, 161.7, 149.6, 148.9, 132.1, 129.6, 128.2, 126.7, 125.5, 
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125.3, 120.1, 112.1, 110.8, 63.8, 56.0, 55.9, 53.7, 52.1; HRMS (ESI) (m/z): found 

413.1240 [M+H]+; calcd for C22H20O8 413.1236. 

 

Dimethyl 3-(benzo[d][1,3]dioxol-5-yl)-2-oxo-5-phenyl-2,3-dihydrofuran-3,4-
dicarboxylate (20f)  
 

O O

OCH3H3CO

OO

O

O

 

Yellow oil.IR (CH2Cl2) 3010, 2956, 1815, 1748, 1720, 1605, 1515, 1485, 1176, 1156, 

1008, 974, 852 cm-1; 1H-NMR (500 MHz, CDCl3)  7.98 (d, J = 7.4 Hz, 2H, Ar-H), 

7.55 (brd, J = 7.3 Hz, 1H, Ar-H), 7.50 (t, J = 7.4 Hz, 2H, Ar-H), 7.13 (brs, 1H, Ar-H), 

6.92 (dd, J = 8.2, 1.8 Hz, 1H, Ar-H), 6.79 (d, J = 8.2 Hz, 1H, Ar-H), 5.98 (s, 2H, -

OCH2O-), 3.83 (s, 3H, -OCH3), 3.69 (s, 3H, -OCH3); 
13C-NMR (126 MHz, CDCl3)  

170.0, 166.6, 162.5, 161.8, 148.2, 147.9, 132.1, 129.6, 128.2, 126.8, 126.6, 121.5, 

115.5, 109.3, 108.0, 101.4, 64.0, 53.7, 52.1; HRMS (ESI) (m/z): found 397.0936 

[M+H]+; calcd for C21H16O8 397.0939. 

 

Dimethyl 3-(4-hydroxyphenyl)-2-oxo-5-phenyl-2,3-dihydrofuran-3,4-dicarboxylate 
(20g)  
 

O O

OCH3H3CO

OO

OH
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Yellow oil. IR (CH2Cl2) 3001, 2956, 1810, 1762, 1720, 1601, 1490, 1158, 1008, 980, 

850 cm-1; 1H-NMR (500 MHz, CDCl3)  7.98 (d, J = 7.5 Hz, 2H, Ar-H), 7.54 (brt, J = 

7.5 Hz, 1H, Ar-H), 7.50 (brt, J = 7.5 Hz, 2H, Ar-H), 7.40 (d, J = 8.7 Hz, 2H, Ar-H), 

6.84 (d, J = 8.7 Hz, 2H, Ar-H), 3.83 (s, 3H, -OCH3), 3.68 (s, 3H, -OCH3); 
13C-NMR 

(126 MHz, CDCl3)  170.2, 166.9, 162.7, 161.8, 156.2, 132.1, 129.6, 128.2, 126.6, 

125.3, 115.5, 110.7, 63.7, 53.8, 52.1; HRMS (ESI) (m/z): found 369.0975 [M+H]+; 

calcd for C20H16O7 369.0969.  

Dimethyl 3-(3,4-dimethoxyphenyl)-5-(4-methoxyphenyl)-2-oxo-2,3-dihydrofuran-3,4-
dicarboxylate (20i)  
 

O O

OCH3H3CO

OO

OCH3

H3CO
OCH3

 

Yellow oil. IR (CH2Cl2) 3010, 2933, 1810, 1740, 1600, 1518, 1466, 1037, 844 cm-1; 

1H-NMR (500 MHz, CDCl3)  8.05 (d, J = 9.0 Hz, 2H, Ar-H), 7.21 (d, J = 2.1 Hz, 

1H, Ar-H), 6.99 (d, J = 9.0 Hz, 2H, Ar-H), 6.95 (dd, J = 8.5, 2.1 Hz, 1H, Ar-H), 6.83 

(d, J = 8.5 Hz, 1H, Ar-H), 3.90 (s, 3H, -OCH3), 3.89 (s, 3H, -OCH3), 3.87 (s, 3H, -

OCH3), 3.82 (s, 3H, -OCH3), 3.69 (s, 3H, -OCH3); 
13C-NMR (126 MHz, CDCl3)  

170.2, 167.0, 163.0, 162.7, 161.7, 149.6, 148.8, 131.7, 125.8, 120.2, 118.8, 113.7, 

113.6, 112.2, 110.6, 63.5, 56.0, 55.8, 55.4, 53.6, 51.9; HRMS (ESI) (m/z): found 

443.1352 [M+H]+; calcd for C23H22O9 443.1342.  
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Dimethyl 3-(benzo[d][1,3]dioxol-5-yl)-5-(4-methoxyphenyl)-2-oxo-2,3-dihydrofuran-
3,4-dicarboxylate (20l)  
 

O O

OCH3H3CO

OO

H3CO
O

O

 

Yellow oil. IR (CH2Cl2) 3011, 2956, 1813, 1759, 1721, 1605, 1506, 1491, 1180, 1157, 

1010, 980, 850 cm-1; 1H-NMR (500 MHz, CDCl3)  8.04 (d, J = 9.0 Hz, 2H, Ar-H), 

7.12 (d, J = 1.9 Hz, 1H, Ar-H), 6.98 (d, J = 9.0 Hz, 2H, Ar-H), 6.91 (dd, J = 8.2, 1.9 

Hz, 1H, Ar-H), 6.78 (d, J = 8.2 Hz, 1H, Ar-H), 5.97 (s, 2H,-OCH2O-), 3.88 (s, 3H, -

OCH3), 3.81 (s, 3H, -OCH3), 3.68 (s, 3H, -OCH3); 
13C-NMR (126 MHz, CDCl3)  

171.0, 166.8, 162.8, 162.7, 161.8, 148.1, 147.8, 131.8, 131.4, 127.1, 121.5, 118.8, 

113.8, 109.3, 108.8, 101.4, 63.9, 55.4, 53.6, 51.9; HRMS (ESI) (m/z): found 427.1032 

[M+H]+; calcd for C22H18O9 427.1029.  

Dimethyl 5-(4-bromophenyl)-3-(4-methoxyphenyl)-2-oxo-2,3-dihydrofuran-3,4-
dicarboxylate (20m) 
 

O O

OCH3H3CO

OO

OCH3

Br

 

Yellow oil. IR (CH2Cl2) 2928, 1816, 1608, 1590, 1512, 1172, 1149 cm-1; 1H-NMR 

(500 MHz, CDCl3)  7.81 (d, J = 8.5 Hz, 2H, Ar-H), 7.64 (d, J = 8.5 Hz, 2H, Ar-H), 

7.21 (d, J = 8.9 Hz, 2H, Ar-H), 6.85 (d, J = 8.9 Hz, 2H, Ar-H), 3.87 (s, 3H, -OCH3), 

3.81 (s, 3H, -OCH3), 3.80 (s, 3H, -OCH3); 
13C-NMR (126 MHz, CDCl3)  169.9, 

166.3, 162.4, 159.7, 156.4, 131.4, 130.9, 129.9, 126.2, 123.4, 120.9, 114.2, 111.9, 
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63.4, 55.8, 53.8, 51.5; HRMS (ESI) (m/z): found 461.0239 [M+H]+; calcd for 

C21H17
79BrO7 461.0236.  

Dimethyl 5-(4-bromophenyl)-3-(2-methoxyphenyl)-2-oxo-2,3-dihydrofuran-3,4-
dicarboxylate (o-20m) 
 

O O

OCH3H3CO

OO

H3COBr
 

Yellow oil. IR (CH2Cl2) 2930, 1800, 1602, 1592, 1512, 1172, 1150 cm-1; 1H-NMR 

(500 MHz, CDCl3)  7.78 (d, J = 8.8 Hz, 2H, Ar-H), 7.61 (d, J = 8.8 Hz, 2H, Ar-H), 

7.48 (dd, J = 7.9, 1.5 Hz, 1H, Ar-H), 7.33 (td, J = 8.0, 1.5 Hz, 1H, Ar-H), 7.04 (t, J = 

7.8 Hz, 1H, Ar-H), 6.90 (d, J = 7.7 Hz, 1H, Ar-H), 3.90 (s, 3H, -OCH3), 3.75 (s, 3H, -

OCH3), 3.57 (s, 3H, -OCH3); 
13C-NMR (126 MHz, CDCl3)  169.9, 166.3, 162.4, 

159.7, 156.4, 131.6, 131.4, 130.9, 129.9, 129.3, 126.2, 123.4, 120.9, 114.2, 111.9, 

63.2, 55.8, 53.8, 51.5; HRMS (ESI) (m/z): found 461.0238 [M+H]+; calcd for 

C21H17
79BrO7 461.0236. 

Dimethyl 2-oxo-5-phenyl-5-triflate-2,5-dihydrofuran-3,4-dicarboxylate + dimethyl 2-

oxo-5-phenyl-3-triflate-2,3-dihydrofuran-3,4-dicarboxylate (21) 

O O

H3CO

O O

OCH3

TfO O O

H3CO

O O

OCH3

+ OTf

 

 1H-NMR (500 MHz, CDCl3)  7.74 (d, J = 9.6 Hz, 2H, Ar-H), 7.39 (t, J = 9.6 Hz, 1H, 

Ar-H), 7.36 (t, J = 9.6 Hz, 2H, Ar-H), 3.82 (s, 3H, -OCH3), 3.73 (s, 3H, -OCH3). 
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List of abbreviations 

 

DABCO = 1,4-diazabicyclo[2.2.2]octane 

DCM = dichloromethane 

DMAD = dimethyl acetylenecarboxylate 

Et3N = triethylammine 

Et2NH = diethylammine 

Et2O = diethyl ether 

EtOAc = ethyl acetate 

Et2S = diethyl sulfide 

FC = Friedel-Crafts 

Hex = n-hexane 

MB = methylene blue 

MeOH = methanol 

1O2 = singlet oxygen 

o.n. = over night 

PE = petroleum ether 

rf = reflux 

r.t. = room temperature 

TBAF = tetrabutylammonium floride 

Tf2O = trifluoromethylsulfonic anhydride (triflic anhydride) 

THF = tetrahydrofuran 

TMS = trimethylsilyl 
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IV – Conclusions 
 

In this PhD project novel methodologies were investigated in order to prepare lignan-

like compounds. Polysubstituted furans were used as starting materials. Two synthetic 

procedures were proposed starting from unique precursors 2-aryl-3,4-

dicarboxymethylfurans 6:  

Tf2O

Tf2O

Ar'H

basic 
hydrolysis

6

MeO2C CO2Me

O
Ar

O
OH

O

MeO2C

Ar

O

Ar'

O

MeO2C CO2Me

Ar'
OAr

O

MeO2C
CO2Me

OAr

Ar'
+

Ar'H

O

MeO2C

Ar

CO2H

O

Ar'MeO2C

Ar
H2 , Pd/C

1)1O2

2) Base

O

MeO2C

Ar

CO2Me

19

8 MeO2C COAr'

O
Ar

O
R

1)1O2

2) i

Ar = Ph
Ar' = 4-MeOPh

12

a)

b)

20

i = Et2S, R = H
i = Et2NH, R = OH

O
Ar

CO2Me

O

Ar'

9

+

18

 

Summary Scheme - Novel mild synthetic procedures for lignan-like compounds 
 from unique precursors 2-aryl-3,4-dicarboxymethylfurans 6 
 

The approach a was suitable to obtain acylated 2-arylfurans through Tf2O-mediated 

Friedel-Crafts acylation. The possibility to prepare regioselectively and in high yields 
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4- or 3-acylated products was developed by tuning of reaction conditions. In particular, 

the temperature was turned out to get important effects on selectivity: low 

temperatures favour 4-acylated products which have a -’ lignan scaffold. The 

procedure explored on 2-phenylfuran 6a led to the series of products 8a-f in 

satisfactory yields using different arylic substrate with typical lignan substitutions.  

The method turned out suitable also to obtain the series of acylated regioisomers 9a-f, 

but their structures are not included in those of natural lignans.  

The results obtained starting from an electron-rich 2-anisoylfuran 6b appear less 

satisfactory.  

Applications of some synthesized furans were investigated to obtain differently 

functionalized lignan-like structures. In particular, their reactivity in reduction and 

oxidation reactions were studied. Pd/C-catalyzed hydrogenation of 2-phenyl-4-

anisoylfuran 8a led to the corresponding tetrahydrofuran 12 which is an analogue of 

natural bioactive lignan taxiresinol.  

Dye-sensitized photooxygenation was chosen as oxidation method of furans. Although 

the power of the reaction of furans with 1O2 is widely recognized, new findings are 

often found due to versatility of furan endoperoxides. We examined the 

photooxygenation reaction of some synthetized furans since peroxides of -aryl-’-

unsubstituted furans were not previously examined. In order to obtain oxidated 

structures as 1,4-enediones and 4-hydroxybutenolides, two general applications of the 

photooxygenation on were explored. Et2S reduction led to the corresponding aldehydes 

14, while basic treatment with Et2NH led exclusively to open acid structures 18 instead 

of expected -hydroxylactones The results obtained could be attributed to the -aryl 

substitution of furans and their high conjugation.  
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In the second part of this project, the three-step one-pot mild procedure b for highly 

functionalized 5,5- and 3,5-diarylfuranones was developed. This methodology is 

similar to the first one, because it involves starting precursors 6 and suitable acrylic 

acids 18 obtained by photooxygenation and in situ basic treatment. Thus, the Tf2O-

mediated Friedel-Crafts acylation was applied on these open acid forms leading to the 

mixture of cyclic 5,5- and 3,5-diaryl products. The furanones 19 are particularly 

interesting since they combine the presence of the intriguing butenolide moiety and a 

carbon skeleton of a recently isolated rare lignan as the Sacidumlignan D.  
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