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MOTIVATION OF THE WORK 
 
 
 
 
The idea at the basis of this work is the extent of the utilization of Topology 
Optimization strategies, implemented with custom-made algorithms, totally 
integrate in a commercial numeric code, to multi-physic fields as biomechanics 
and poro-elasticity where this procedure is not usually adopted.  
 



 

 

 
 
 
 
 
 
 
 
 
 
INTRODUCTION 
 
 
 
 
The scientific literature on research and applications in civil, chemical and 
mechanical engineering, as well as in material science has recently shown great 
interest in computational strategies aimed to optimize structures and materials at 
different levels of scale. Composites, polymers, fiber reinforced elements, 
porous media, micro-and nano-structured materials have been indeed widely 
used in many industry realms, covering applications in both traditional 
frameworks, say civil and mechanical engineering, and pioneer fields, such as 
aerospace, biomechanics and tissue engineering. 
Along with technological advances associated with the production systems, an 
increasing interest has been recorded, in recent years, in the development of 
numerical techniques and software providing design criteria for the topology 
(TO) and structural (DO) optimization of components for the design and 
engineering of specific industrial products. These strategies are planned to 
determine, under given constraints, the shape and stiffness-weight ratio ideal for 
a given material, also by employing logics inspired by the evolutionary 
processes of functional reorganization of biological structures (tissue 
remodeling, healing processes). These ways have been then utilized to explore 
the possibility of building up innovative protocols for the manufacturing of 
mechanical parts or to design biomaterials matching performance requirements 
through structural modification (change in the distribution of mass within the 
volume of the component, optimal orientation of fibers in composites, etc.) from 
the original material. In this specific framework, closely connected to the interest 
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of the different industrial sectors mentioned above, the topology optimization 
plays a central role in the processes of technological innovation. In fact, as 
demonstrated by the scientific community that has recently given more and more 
interest to these issues, it is expected that the introduction of these logics to 
optimize the processes of industrial production may open new scenarios in 
providing solutions with high technology and low ambient impact. 
In particular, Topology Optimization has, as objective function, the purpose of 
maximizing a given mechanical characteristic, minimizing at the same time the 
weight of the component; in this way it is possible to contemporarily obtain 
structural performance required by specific applications for which the material is 
designed, and – via the reduction of the weight – to respond to the urgent 
demand for decreasing in the amount of raw material with the effect of reducing 
consumption and costs. 
Moreover, if the adoption of strategies based on Topology Optimization was 
used in designing structures for automotive, aerospace or naval in large scale, 
the result would be a huge reduction of the overall amount of material and 
production costs per unit of product with consequent advantages for both the 
manufacturer – in terms of competitiveness and profit – and the consumer, due 
to a significant advantage in terms of overall savings and ambient impact. 
A similar line of reasoning could be applied with reference to products with 
applications to structural and biomedical fields, where once again the process of 
Topology Optimization could provide a strategic reply to requirement of 
balancing the need of increasing the standard of quality and of reducing 
invasiveness, cost and environmental impact. This strategy has been applied in 
hip arthroplasty in order to minimize the probability of failure of prosthetic 
implants in the case of aseptic loosening, i.e. the separation of the stem of the 
prosthesis from the femoral canal in the non-infection; this objective is often 
achieved by minimizing the stresses at the implant-bone interface. Aseptic 
loosening of the prosthetic implant is indeed mainly caused by bone absorption 
that is determined by the phenomenon of stress-shielding, i.e. the stress 
protection produced by the prosthesis due to its greater stiffness that overpasses 
the bone causing the absorption. A computational strategy based on Topology 
Optimization has been used to reduce this phenomenon. 
Finally, by looking towards multi-physics applications and forcing a thermo-
mechanical commercial code to perform poro-elastic analyses by exploiting a 
duality principle between the theories, the present work shows two examples of 
poro-elasticity problems of relevant interest in biomechanical applications: the 
modeling of the osteon, basis cellular unit of the bone, and  drug infusion in 
solid tumor spheroids. 
The Ph.D. dissertation is articulated in ten chapters.  
Chapter I furnishes some basic remarks on theory of elasticity, recalling the 
concepts of finite deformation and kinematical compatibility, equilibrium and 
Cauchy’s and Piola-Kirchhoff’s stress tensors, with some key notes on linear 
anisotropic elasticity. 
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Chapter II describes continuum mechanics approaches for heterogeneous media, 
also presenting some recent results aimed to obtain closed-form solutions for 
inhomogeneous, anisotropic elastostatic problems. At the end, a 
micromechanical approach based on second order Fabric Tensors is treated, with 
reference to the most recent literature results. 
Chapter III provides an introduction to the theory of homogenization. In 
particular, some mathematically well-posed homogenization approaches are 
presented such as the direct method, the Eshelby’s solution and the variational 
methods, based on the Hashin-Shtrikman variational principles. Micro-
mechanics of porous materials is also finally shown. 
Chapter IV introduces the Finite Element Method additionally giving some basic 
remarks and describing it is possible to run mechanical analyses with the 
numerical commercial code Ansys®, specifically adopted here to perform the 
analyses. 
Chapter V illustrates the Topology Optimization theory based on Solid Isotropic 
Material Penalization (SIMP) by essentially following the approach by Bendsøe; 
the formulation of the problem in the case of depleted media have been proposed 
with some basic statements. Finally, the Topology Optimization problems for 
anisotropic media have been discussed. 
Chapter VI describes how Topology Optimization have been applied to an hip 
prosthesis in order to reduce the Stress Shielding phenomenon and at the end 
insights on the restrictions of the numerical code Ansys® used to perform 
Topology Optimization have been highlighted; moreover the limits in terms of 
setting of the bone material properties and of building the finite element-based 
model have been underlined. 
In chapter VII the first innovative and original custom-made algorithm, 
developed to perform Topology Optimization, have been explained in details 
with different examples; furthermore parts of numerical codes written in APDL 
(Ansys Parametric Design Language) in the case of macros and in UIDL (User 
Interface Design Language) in the case of menu have been reported and 
commented. Finally, in order to underline how the numeric code Ansys® is able 
to perform Topology Optimization only for structure subjected to applied forces, 
a comparison between Ansys® and custom-made algorithm have been proposed.   
Chapter VIII describes the second innovative and original custom-made 
procedure able to acquire information about densities in biological structure as 
bones or levels of matrices fractions in microstructured materials by means of 
vector graphics files or DICOM (Digital Imaging and Communications in 
Medicine) files, in this way transforming automatically and in real time these 
information in stiffness and strength values to which one can associate 
mechanical contents and thus generate finite element-based models. 
Chapter IX, looking towards multi-physics applications, gives some remarks on 
the duality between the theory of poro-elasticity and thermo-elasticity and – on 
this basis – an ad hoc finite element-based procedure has been constructed in 
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order to force a thermo-mechanical commercial code to perform poro-elastic 
analyses. 
Among the different possible perspectives, in chapter X are selected two 
examples of multi-physics problems and, in particular, an application of poro-
elasticity to osteon structures, basis cellular units of the bone, and another to 
simulate the drug infusion in solid tumor spheroids. 
 
 



 

 

 
 
  

 
 
 
 
 

REMARKS ON THEORY OF ELASTICITY 
 

 
 
 

Linear elasticity is one of the more successful theories of 
mathematical physics. Its pragmatic success in describing the small 
deformations of many materials is uncontested.  
The origins of the three-dimensional theory go back to the 
beginning of the 19th century and the derivation of the basic 
equations by Cauchy, Navier and Poisson. The theoretical 
development of the subject continued at a brisk pace until the early 
20th century with the work of Beltrami, Betti, Boussinesq, Kelvin, 
Kirchhoff, Lamè, Saint-Venant, Somigliana, Stokes and others. 
These authors established the basic theorems of the theory, namely 
compatibility, reciprocity and uniqueness and deduced important 
general solutions of the underlying field equations.  
In the 20th century the emphasis shifted to the solution of 
boundary-value problems and the theory itself remained relatively 
dormant until the middle of the century when new results appeared 
concerning, among other things, Saint-Venant's principle, stress 
functions, variational principles and uniqueness. 
Marquis Pierre-Simon de Laplace (1759-1827): “Thus, we must 
consider the present state of the universe as the effect of its 
previous state and as the cause of those states to follow. An 
intelligent being which, for a given point in time, knows all the 
forces acting upon the universe and the positions of the objects of 
which it is composed, supplied with facilities large enough to 
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submit these data to numerical analysis, would include in the same 
formula the movements of the largest bodies of the universe and 
those of the lightest atom. Nothing would be uncertain for it and the 
past and future would be known to it”.   
Herbert Callen, in his book on thermodynamics, introduces the 
conservation of energy and the concept of internal energy: the 
development of the principle of conservation of energy has been 
one of the most significant achievements in the evolution of physics. 
The present form of the principle was not discovered in one 
magnificent stroke of insight but has been slowly and laboriously 
developed over two and a half centuries. The first recognition of a 
conservation principle, by Leibnitz in 1693, referred only to the 
sum of the kinetic energy and the potential energy of a simple 
mechanical mass point in the terrestrial gravitational field. As 
additional types of systems were considered, the established form of 
the conservation principle repeatedly failed, but in each case it was 
found possible to revive it by the addition of a new mathematical 
term a "new kind of energy". The energy conservation principle is 
now accepted as one of the most fundamental, general, and 
significant principles of physical theory. By essentially following 
the books by Ciarlet and Timoshenko, synthetic continuum 
mechanical foundations have been proposed. 

 
 
 
1.1. KINEMATICAL FOUNDATIONS 
 
 
1.1.1. Deformations in R3 
 
In three-dimensional Euclidean space, which will therefore be identified with the 
space 3R , an origin O and an orthonormal basis { }1 2 3, ,e e e  have been chosen. 
From the notational viewpoint, we identify the point x  with the vector ox . 
Whenever we consider components of vectors in 3R  or elements of matrices in 

3M , we make the convention that Latin indices {i, j, p} always take their values 
in the set {1,2,3} and we combine this rule with the standard summation 
convention. Let there be given a bounded, open and connected subset Ω  of 3R  
with a sufficiently smooth boundary.  
We shall think of the closure Ω  of the set Ω  as representing the volume 
occupied by a body before it is deformed; for this reason, the set Ω  is called the 
reference configuration.  
A deformation of the reference configuration Ω  is a vector field: 
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3:ϕ Ω → R           (1.1) 
 
that is smooth enough, injective possibly on the boundary of the set Ω  and 
orientation-preserving. We denote by x  a generic point in the set Ω , by ix  its 
components with respect to the basis { }ie  and by i ix∂ = ∂ ∂  the partial 
derivative with respect to variable ix .  
Given a deformation i iϕ= eϕ , we define at each point of the set Ω  the matrix: 
 

1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

:
ϕ ϕ ϕ
ϕ ϕ ϕ
ϕ ϕ ϕ

∂ ∂ ∂ 
 = ∂ ∂ ∂ 
 ∂ ∂ ∂ 

∇ϕ        (1.2) 

 
The matrix ∇ϕ  is called the deformation gradient.  
Since a deformation is orientation-preserving by definition, the determinant of 
the deformation gradient satisfies the orientation-preserving condition: 
 

( )det 0>x∇ϕ for all  x∈Ω         
 
In particular, the matrix ( )x∇ϕ  is invertible at all points x  of the reference 
configuration Ω . Together with a deformation ϕ , it is often convenient to 
introduce the displacement u , which is the vector field: 
 

3: Ω →u R          (1.3) 
 
defined by the relation:  
 

= +id uϕ          (1.4) 
 
where id  denotes the identity map from 3R  onto 3R . Notice that the 
displacement gradient is: 
 

1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

:
u u u
u u u
u u u

∂ ∂ ∂ 
 = ∂ ∂ ∂ 
 ∂ ∂ ∂ 

u∇         (1.5) 

 
and the deformation gradient is related by the equation: 
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= + ∇I u∇ϕ           (1.6) 

Given a reference configuration Ω  and a deformation 3: Ω → Rϕ , the set 

( )Ωϕ  is called a deformed configuration.  

At each point: ( ):ϕ =x xϕ  of a deformed configuration, we define the three 
vectors (Fig.1.1): 
 

( ) ( )j j i iϕ∂ = ∂x x eϕ          (1.7) 
  
Each vector ( )j∂ xϕ  measures the local deformation in the direction of the 

vector je  in the sense that, to within the first order with respect to dt , the vector 

jdte  is transformed into the vector ( )j dt∂ xϕ .  
 

 
Fig. 1.1 – Geometry of a deformation: the volume element, the area element and the unit 
outer normal are denoted , ,dx da n  in the reference configuration Ω  and 

, ,dx daϕ ϕ ϕn  in the deformed configuration ( )Ωϕ . The vectors ( )j∂ xϕ  define the 

deformation at a point x∈Ω  to within the first order. 
 
Equivalently, the vector ( )j∂ xϕ  is the tangent vector to the j-th coordinate line 

passing through the point ϕx  (i.e. the image by the deformation ϕ  of a segment 
parallel to the vector je  containing the point x  in its interior and parameterized 

by t). Since the vector ( )j∂ xϕ  is precisely the j-th column of the matrix ( )x∇ϕ  
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the knowledge of the deformation gradient completely defines the local 
deformation to within the first order.  
Note that, while the deformation gradient ( )x∇ϕ  clearly depends upon the 
basis ie , it is possible to exhibit the intrinsic geometrical character of the 
deformation at the point x  by means of the polar factorization of the matrix 

( )x∇ϕ , which appears as the product of a rotation tensor by a stretch tensor. 

Moreover, the points ∈Ωx  and the corresponding points ( )ϕ ∈ Ωx ϕ  are often 
called material points and spatial points respectively and they are often 
respectively denoted X  and x  in the continuum mechanics literature.  
We next compute the volume, area and length elements in the deformed 
configuration: in each case, the objective is, for a given deformation, to express 
quantities (volumes, surfaces and lengths) defined over the deformed 
configuration in terms of the same quantities, but defined over the reference 
configuration.  
To emphasize the crucial distinction between both types of quantities, we adopt 
the superscript " "ϕ  notational device. This correspondence between a quantity 
defined as a function of the Lagrange variable x  and a similar quantity defined 
as a function of the Euler variable ( )ϕ =x xϕ , can be extended to other 
quantities as volume, surfaces and lengths. 
 
 
1.1.2. Volume Element in the Deformed Configuration  
 
Let ϕ  be a deformation.  
If dx  denotes the volume element at the point x  of the reference configuration, 
the volume element dxϕ  at the point ( )ϕ =x xϕ  of the deformed configuration 
(Fig. 1.1) is given by: 
 

( )detdx x dxϕ = ∇ϕ         (1.8) 
 
since ( ) ( )det det 0x x= >∇ ∇ϕ ϕ  by assumption.  

The volume element dxϕ  is used for computing volumes in the deformed 
configuration.  
If A  denotes a measurable subset of the reference configuration Ω , the volume 
of the set A and the volume of the deformed set ( ):A Aϕ ϕ=  are respectively 
given by: 
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( ): , : det
A AA

vol A dx vol A dx x dx
ϕ

ϕ ϕ= = =∫ ∫ ∫ ∇ϕ   (1.9) 

1.1.3. Length Element in the Deformed Configuration: the Strain Tensor  
 
If a deformation ϕ  is differentiable at a point ∈Ωx , then we can write for all 
points :x + ∈Ωδx  
 

( ) ( ) ( ) ( )x x x o+ − = +δx δx δx∇ϕ ϕ ϕ    (1.9) 
 
whence: 
 

( ) ( ) ( ) ( ) ( )2 2Tx x x x o+ − = +δx δx δx δx∇ ∇Τϕ ϕ ϕ ϕ   (1.10) 

 
The symmetric tensor: 
 

:C = ∇ ∇Τϕ ϕ         (1.11) 
 
in the above expression is called the right Cauchy-Green Strain Tensor. Notice 
that the associated quadratic form: 
 

( ) ( ) ( )3 3 2, T x x∈ × → =R R ξ C ξ ξ∇ξ ξ ϕ     (1.12) 
 
is positive definite at all points ∈Ωx , since the deformation gradient ∇ϕ  is 
everywhere invertible by assumption. As expected, this quadratic form is used 
for computing lengths. Let: 
 

( ) , : ,f I f Iγ = → Ω  I: compact interval of R   (1.13) 
 
be a curve in the reference configuration. Denoting by if  the components of the 

mapping f , the length of the curve γ  is given by ' dff
dt

 = 
 

: 

 
length ( ) ( ) ( ){ }1/2

: ' ' '
L L

f t dt f t f t dtγ = =∫ ∫               (1.14) 

 
while the length of the deformed curve ( ):ϕγ γϕ  is given by: 
 



CHAPTER I: REMARKS ON THEORY OF ELASTICITY 

 
LUCA ESPOSITO –PHD THESIS 18 

 
 

length ( ) ( )( ) ( ) ( ){ }1/2
: ' ' 'ij

L L

f t dt C f t f t f t dtϕγ = =∫ ∫ϕ      (1.15) 

Consequently, the length elements dl  and dlϕ  in the reference and in the 
deformed configurations may be symbolically written as (Fig. 1.2): 
 

{ }1/2Tdl = dx dx ,  { }1/2Tdlϕ = dx Cdx                     (1.16) 
 

 
Fig. 1.2 – The length elements { }1/2Tdl = dx dx  and { }1/2Tdlϕ = dx Cdx  in the 

reference and deformed configurations. The tensor =C ∇ ∇Τϕ ϕ  is the right Cauchy-
Green tensor. 
 
If in particular jdt=dx e , the corresponding length element in the deformed 

configuration is { }1/2

jj jdt dt= ∂C ϕ .  

In view of showing that the tensor C  is indeed a good measure of strain, let us 
first consider a class of deformations inducing no strain. A deformation is called 
a rigid deformation if it is of the form: 
 

( ) 3, , ,x o += + ∈ ∈a Q x a R Q Oϕ  for all ∈Ωx           (1.17) 
 
where 3

+O  denotes the set of rotations in 3R .  
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Observe that (Fig. 1.3) the rotation Q  may be performed around any point 
3∈x R , since we can also write: 

 
( ) ( )x x= + Q xx ϕ ϕ                                 (1.18) 

 
Fig. 1.3 – A rigid deformation is a translation, followed by a rotation (or viceversa) of 
the reference configuration. 
 
If ϕ  is a rigid deformation, then ( ) 3x += ∈Q O∇ϕ   at all points ∈Ωx , and 
therefore: 
 

C = I  in Ω , i.e. , ( ) ( )Tx x I=∇ ∇ϕ ϕ   for all ∈Ωx         (1.19) 
 
It is remarkable that conversely, if C = I  in Ω  and det 0>∇ϕ , the 
corresponding deformation is necessarily rigid.  
We let nO denote the set of all orthogonal matrices of order n.  
The difference: 
 

2 := −E C I            (1.20)                                
 
is a measure of the deviation between a given deformation and a rigid 
deformation, since =C I  if and only if the deformation is rigid.  
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Two deformations corresponding to the same tensor C differ by a rigid 
deformation. 
The knowledge of the tensor field 3: Ω →C S  completely determines the 
deformation, up to composition with rigid deformations.  
These considerations are illustrated in the following figure 1.4. 

 
Fig. 1.4 – The right Cauchy-Green tensor C  is equal to Ι  if and only if the deformation 
is rigid. Two deformations corresponding to the same tensor C differ by a rigid 
deformation 
 
The tensor E  is called the Green-Lagrange strain tensor. Expressed in terms of 
the displacement gradient u∇ , in lieu of the deformation gradient u∇ = Ι + ∇ϕ  
(recall that id u= +ϕ ), the strain tensor C  becomes: 
  

2T T= + + + = +C Ι u u u u Ι E∇ ∇ ∇ ∇ ∇ ∇Τϕ ϕ =                       (1.21) 
 
With:  

( ) ( )1:
2

T T= = + +E u E u u u u∇ ∇ ∇ ∇                              (1.22) 

 
For future use, we record the formulas: 
 

( )1,
2ij i k k ij i j j i i k j kC E u u u uϕ ϕ= ∂ ∂ = ∂ + ∂ + ∂ ∂                      (1.23) 
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where ,i i i iuϕ e u eϕ = = . Note that the introduction of the factor ½ in the 
definition of the tensor E is motivated by the requirement that its first order part  

( )1
2

T +u u∇ ∇  coincide with the linearized strain tensor. Besides, the tensor 

( )1/2 −C I  was sometimes advocated as an alternative measure of strain and the 

factor ½ had the effect that the first order parts of both tensor E  and ( )1/2 −C I  
coincide. 
 
 
 
1.2. STATIC FOUNDATIONS 
 
 
1.2.1. The Equations of Equilibrium 
 
A body occupying a deformed configuration ϕΩ , subjected to applied body 
forces in its interior ϕΩ  and to applied surfaces forces on a portion ( )1 1

ϕ ϕΓ = Γ  
of its boundary, is in static equilibrium if the fundamental stress principle of 
Euler and Cauchy is satisfied.  
This axiom is the basis of continuum mechanics and implies the celebrated 
Cauchy theorem, according to which there exists a symmetric tensor field 

3:ϕ ϕΩ →T S  such that: 
 

1

div in
in

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

− = Ω


= Γ

T f
T n g

                                (1.24) 

 
where ϕf  and ϕg  are the densities of the applied body and surface forces 
respectively and ϕn is the unit outer normal vector along 1

ϕΓ .  
These equations are called the equilibrium over the deformed configuration and 
the tensor ϕT  is called the Cauchy Stress Tensor. 
A remarkable feature of these equations is their divergence structure, which 
makes them amenable to a variational formulation; a disadvantage is that they 
are expressed in terms of the unknown ( )ϕ ϕ=x x .  
In order to obviate this difficulty while retaining the divergence structure of the 
equations, we use the Piola transform 3: Ω →T M  of the Cauchy stress tensor 
field, which is defined by ( ) ( ) ( )Cofϕ ϕ=T x T x x∇ϕ .  

In this way, it is found that the equilibrium equations over ϕΩ  are equivalent to 
the equilibrium equations over the reference configuration Ω : 



CHAPTER I: REMARKS ON THEORY OF ELASTICITY 

 
LUCA ESPOSITO –PHD THESIS 22 

 
 

 

1

div in
in

− = Ω
 = Γ

T f
Tn g

                                       (1.25) 

 
where n  denotes the unit outer normal vector along 1Γ .  
The fields 3: Ω →f R  and  3

1: Γ →g R  are related to the fields 3:ϕ ϕΩ →f R  
and 3

1:ϕ ϕΓ →g R  by the simple formulas dx dxϕ ϕ=f f  and dx dxϕ ϕ=g g . 
Because they are still in divergence form, these equations can be given a 
variational formulation, known as the Principle of Virtual Work. The tensor T  
is called the first Piola-Kirchhoff Stress Tensor.  
We also introduce the symmetric second Piola-Kirchhoff Stress Tensor 

1− TΣ = ∇ϕ , which naturally arises in the expression of the constitutive 
equations of elastic materials. 
The applied forces describe the action of the outside world on the body. An 
elementary force ( )x dxϕ ϕf  is exerted on the elementary volume dxϕ  at each 
point xϕ  of the deformed configuration. Likewise, an elementary force 

( )x daϕ ϕ ϕg  is exerted on the elementary area daϕ  at each point xϕ  of the 

subset 1
ϕΓ  of the boundary of the deformed configuration (Fig 1.5). Such forces 

generally represent the action of another body along the portion 1
ϕΓ  of the 

boundary. 
 

 
Fig. 1.5 – Applied forces comprise applied body forces ( ) ,x dx xϕ ϕ ϕ ϕ∈Ωf  and 

applied surface forces ( ) 1,x dx xϕ ϕ ϕ ϕ∈Γg .  
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1.2.2. The Stress Principle of Euler and Cauchy 
 
Continuum mechanics for static problems is founded on the following axiom, 
named after the fundamental contributions of Euler and Cauchy. The exterior 
product in 3R  is denoted by ∧ . 
Consider a body occupying a deformed configuration ϕΩ  and subjected to 
applied forces represented by densities 3: Rϕ ϕ= Ω →f  and 3:ϕ ϕ= Ω → Rg . 
Then there exists a vector field: 
 

3
1: ,S Rϕ ϕΩ × →t  where { }3

1 ; 1S v= ∈ =v                      (1.26) 
 
Such that: 
 

(a) for any sub-domain Aϕ  of ϕΩ  and at any point 1 Aϕ ϕ ϕ∈Γ ∩ ∂x  where 
the unit outer normal vector ϕn  exists:  ( ) ( ),ϕ ϕ ϕ ϕ ϕ=t x n g x  

(b) Axiom of Force Balance: for any sub-domain Aϕ  of ϕΩ :  
 

( ) ( ),
A A

dx dx
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

∂

+ =∫ ∫f x t x n 0 ,                            (1.27) 

 
 where ϕn  denotes the unit outer normal vector along Aϕ∂ . 
(c) Axiom of Moment Balance: for any sub-domain Aϕ  of ϕΩ : 

 
( ) ( ),

A A

dx dx
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

∂

∧ + ∧ =∫ ∫ox f x ox t x n 0                   (1.28) 

 
Thus the stress principle first asserts the existence of elementary surface forces 

( ), daϕ ϕ ϕ ϕt x n  along the boundaries of all domains of the reference 
configuration.  
Secondly, the stress principle asserts that at a point ϕx of the boundary Aϕ∂  of a 
sub-domain Aϕ , the elementary surface force depends on the sub-domain Aϕ , 
only via the normal vector ϕn  to Aϕ∂  at ϕx .  
Thirdly, the stress principle asserts that any sub-domain Aϕ  of the deformed 
configuration ϕΩ , including ϕΩ  itself, is in static equilibrium, in the sense that 
the torsor formed by the elementary forces ( ), ,da x Aϕ ϕ ϕ ϕ ϕ ϕ∈∂t x n , ϕn  normal 

to Aϕ∂  at ϕx  and the body forces ( )dϕ ϕ ϕf x x , Aϕ ϕ∈x , is equivalent to zero. 
This means that both the resultant vector and its resulting moment with respect 
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to the origin (and thus with respect to any other point, by a classical property of 
torsos) vanish. 
Hence the stress principle mathematically express, in the form of an axiom, the 
intuitive idea that the static equilibrium of any sub-domain Aϕ of ϕΩ , already 
subjected to given applied body forces ( )dϕ ϕ ϕf x x , Aϕ ϕ∈x  and to given applied 

surface forces ( )daϕ ϕ ϕg x , at those points 1 Aϕ ϕ ϕ∈Γ ∩ ∂x  where the outer 

normal vector to 1 Aϕ ϕΓ ∩ ∂  exists, is made possible by the added effect of 
elementary surfaces forces of the specific form indicated, acting on the 
remaining part of the boundary Aϕ∂ .  
Gurtin called system of forces the set formed by the applied body forces, 
corresponding to the vector field 3:ϕ ϕ= Ω → Rf  and by the surface forces, 
corresponding to the vector field 3

1: Sϕ ϕ= Ω × → Rt . 
Let ϕx  be a point of the deformed configuration. The vector ( ),ϕ ϕ ϕt x n  is called 

the Cauchy stress vector across an oriented surface element with normal ϕn  or 
the density of the surface force per unit area in the deformed configuration. 
 
 
1.2.3. Cauchy’s Theorem and the Cauchy Stress Tensor  

 
The dependence of the Cauchy stress vector ( ),ϕ ϕ ϕt x n  with respect to its 

second argument 1S∈n  is linear, i.e., at each point ϕ ϕ∈Ωx , there exists a 
tensor ( ) 3ϕ ϕ ∈T x M  such that ( ) ( ),ϕ ϕ ϕ ϕ ϕ=t x n T x n  for all 1S∈n ; moreover at 

each point ϕ ϕ∈Ωx , the tensor ( )ϕ ϕT x  is symmetric; finally the tensor field 
3:ϕ ϕΩ →T M  and the vector fields 3: ,Rϕ ϕ= Ω →f  and 3

1:ϕ ϕ= Γ → Rg  are 
respectively related by a partial differential equation in ϕΩ  and by a boundary 
condition on 1

ϕΓ . Assume that the applied body force density 3: ,ϕ ϕ= Ω → Rf  is 
continuous and that the Cauchy stress vector field: 
  

( ) ( ) 3
1: , ,Sϕ ϕ ϕ ϕ ϕ ϕ∈Ω × → ∈t x n t x n R                       (1.29) 

 
is continuously differentiable with respect to the variable ϕ ϕ∈Ωx  for each 

1S∈n  and continuous with respect to the variable 1S∈n  for each ϕ ϕ∈Ωx . 
Then the axioms of force and moment balance imply that there exists a 
continuously differentiable tensor field: 
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( ) 3:ϕ ϕ ϕ ϕ ϕ∈Ω → ∈T x T x M                              (1.30) 
 
such that the Cauchy stress vector satisfies: 
 

( ) ( ),ϕ ϕ ϕ ϕ=t x n T x n   for all ϕ ϕ∈Ωx  and all 1S∈n    (1.31) 
and such that:  

( ) ( )divϕ ϕ ϕ ϕ ϕ− =T x f x  for all ϕ ϕ∈Ωx          (1.32) 

( ) ( )Tϕ ϕ ϕ ϕ=T x T x  for all ϕ ϕ∈Ωx       (1.33) 

( ) ( )ϕ ϕ ϕ ϕ ϕ=T x n g x   for all 1
ϕ ϕ∈Γx                     (1.34) 

 
where ϕn  is the unit outer normal vector along 1

ϕΓ . The symmetric tensor ϕT  is 
called the Cauchy Stress Tensor at the point ϕ ϕ∈Ωx . 
It is helpful to keep in mind the interpretation of the elements ( )ij

ϕ ϕT x . Since 

( ) ( ), j ij ixϕ ϕ ϕ ϕ= ⋅t e T x e , the elements of the j-th row of the tensor ( )xϕ ϕT  

represent the components of the Cauchy stress vector ( ),xϕ ϕt n  at the point ϕx  

corresponding to the particular choice j=n e  (see Fig. 1.6):  
 

 
Fig. 1.6 – Interpretation of the elements 1i

ϕT  of the Cauchy stress tensor ( )ijTϕ ϕ=T  
 
The knowledge of the three vectors ( ), jxϕ ϕt e  in turn completely determines the 

Cauchy stress vector ( ),xϕ ϕt n  for an arbitrary vector 1i in S= ∈n e , since: 
  

( ) ( ), ,j jx n xϕ ϕ ϕ ϕ=t n t e           (1.35) 
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The Cauchy stress vector is often represented on three mutually perpendicular 
faces of a rectangular parallelepiped as in fig. 1.6. The following three special 
cases of Cauchy stress tensors are particularly worthy of interest, where in each 
case it is assumed that the Cauchy stress tensor is constant in the particular 
region considered. 
First, if: 
  

( ) ,xϕ ϕ π π= − ∈T I           (1.36) 
 

 

 
Fig. 1.7 – Three important special case of Cauchy stress tensor: (a) Pressure ;ϕ π= −T I  
(b) Pure tension in the direction : ;ϕ τ= ⊗e T e e  (c) Pure shear relative to the directions 

e  and ( ): ϕ σ= ⊗ + ⊗f T e f f e  
 
the Cauchy stress tensor is a pressure. In this case, the Cauchy stress vector: 
 

( ),xϕ ϕ π= −t n n          (1.37) 
 
is always normal to the elementary surface element and its length is constant and 
it is directed inward if π  is <0 (see Fig. 1.7a). Secondly, if: 
  

( ) 3, , , 1xϕ ϕ τ τ= ⊗ ∈ ∈ =T e e R e R e       (1.38) 
 
the Cauchy stress tensor is a pure tension if τ  is >0, or  a pure compression if τ  
is <0, in the direction e , with tensile stress τ . In this case, the Cauchy stress 
vector: 
 

( ) ( ),xϕ ϕ τ= − ⋅t n e n e ,       (1.39) 
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which is always parallel to the vector e , is directed outward if 0τ > , or inward 
if 0τ < , on the faces with normal =n e  or = −n e  and it vanishes on the faces 
whose normal is orthogonal to the vector e  (see Fig. 1.7b).  
Thirdly (see Fig. 1.7c), if: 
 

( ) ( ) 3, , , , 1, 0,xϕ ϕ σ σ= ⊗ + ⊗ ∈ ∈ = = ⋅ =T e f f e R e f R e f e f  (1.40) 

The Cauchy stress tensor is a pure shear, with shear stress τ , relative to the 
directions e  and f . In this case, the Cauchy stress vectors are given by: 
 

( ) ( ) ( ){ },xϕ ϕ σ= ⋅ + ⋅t n f n e e n f        (1.41) 
 
The Cauchy stress tensors corresponding to these three special cases are 
respectively given by (for definiteness, we assume that 1=e e  and 2=f e ): 
 

0 0 0 0 0 0
0 0 , 0 0 0 , 0 0
0 0 0 0 0 0 0 0

π τ σ
π σ

π

−     
     −     
     −     

       (1.42) 

 
 
 
1.3. CONSTITUTIVE ASSUMPTION 
 
 
1.3.1. Introduction to the Behaviour of the Materials 
 
 
1.3.1.1. Tensile Strength and Tensile Stress 
 
An elastic material is one that deforms immediately 
upon loading, maintains a constant deformation as long 
as the load is held constant and returns immediately to 
its original undeformed shape when the load is removed.  
The most natural test of a material's mechanical 
properties is the Tension Test, in which a strip or 
cylinder of the material, having length L and cross-
sectional area A, is anchored at one end and subjected to 
an axial load P – a load acting along the specimen's long 
axis – at the other (See Fig. 1.8).  
As the load is increased gradually, the axial deflection δ  
of the loaded end will increase also. Eventually the test 
specimen breaks, often fracturing suddenly into two or 
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more pieces. One of the pivotal historical developments in our understanding of 
material mechanical properties was the realization that the strength of a 
uniaxially loaded specimen is related to the magnitude of its cross-sectional area. 
This notion is reasonable when one considers the strength to arise from the 
number of chemical bonds connecting one cross section with the one adjacent to 
it, where each bond is visualized as a spring with certain stiffness and strength. 
Obviously, the number of such bonds will increase proportionally with the 
section's area. The axial strength of a piece of blackboard chalk will therefore 
increase as the square of its diameter. In contrast, increasing the length of the 
chalk will not make it stronger. Galileo is said to have used this observation to 
note that giants, should they exist, would be very fragile creatures. Their strength 
would be greater than ours, since the cross-sectional areas of their skeletal and 
muscular systems would be larger by a factor related to the square of their 
height. But their weight, and thus the loads they must sustain, would increase as 
their volume, which is by the cube of their height. A simple fall would probably 
do them great damage. When reporting the strength of materials loaded in 
tension, it is customary to account for this effect of area by dividing the breaking 
load by the cross-sectional area: 

0

f
f

P
A

σ =               (1.43) 

 
where fσ  is the Ultimate Tensile Stress, fP  is the load at fracture and 0A  is the 
original cross-sectional area. The units of stress are obviously load per unit area, 

2/N m  (also called Pascal, or Pa) in the SI system. If the specimen is loaded by 
an axial force P  less than the breaking load fP , the tensile stress is developed 
by analogy with equation (1.43) as: 
 

0

P
A

σ =            (1.44) 

The tensile stress, the force per unit area acting on a plane transverse to the 
applied load, is a fundamental measure of the internal forces within the material.  
 
 
1.3.1.2. Stiffness 
 
It is important to distinguish stiffness, which is a measure of the load needed to 
induce a given deformation in the material, from the strength, which usually 
refers to the material's resistance to failure by fracture or excessive deformation. 
The stiffness is usually measured by applying relatively small loads and 
measuring the resulting deformation. Since the deformations in most materials 
are very small for these loading conditions, the experimental problem is largely 
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one of measuring small changes in length accurately. Hooke made a number of 
such measurements on long wires under various loads and observed that to a 
good approximation the load P  and its resulting deformation δ  were related 
linearly as long as the loads were sufficiently small. This relation, generally 
known as Hooke's Law, can be written algebraically as: 
 

P kδ=               (1.45) 
where k is a constant of proportionality called the Stiffness and having units of 
N/m.  
The stiffness is not a function of the material alone, but is also influenced by the 
specimen shape. An useful way to adjust the stiffness so as to be a purely 
materials property is to normalize the load by the cross-sectional area; i.e. to use 
the tensile stress rather than the load.  
 

K

(a)

P P

E

(b)

A=

L=

 
Fig. 1.9 – Hooke's law in terms of (a) load-displacement and (b) stress-strain. 

 
Further, the deformation δ  can be normalized by noting that an applied load 
stretches all parts of the wire uniformly, so that a reasonable measure of  
stretching is the deformation per unit length: 
 

0L
δε =                 (1.46) 

 
Here 0L  is the original length and ε  is a dimensionless measure of stretching 
called the strain. Using these more general measures of load per unit area and 
displacement per unit length, Hooke's Law becomes: 
 

0 0

P E
A L

δ
=          (1.47) 

or: 
 

Eσ ε=  (1.48) 
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The constant of proportionality E, called Young's Modulus or the modulus of 
elasticity, is one of the most important mechanical descriptors of a material. 
It has the same units as stress, Pa or psi. As shown in Fig. 1.9, Hooke's law can 
refer to either of equations. (1.45) or (1.48).  
The Hookean stiffness k is now recognizable as being related to the Young's 
modulus E and the specimen geometry as: 

EAk
L

=             (1.49) 

 
Another useful relation is obtained by solving Eqn. (1.47) for the deflection in 
terms of the applied load as: 
 

PL
EA

δ =                (1.50) 

 
Note that the stress σ  developed in a tensile specimen subjected to a fixed load 
is independent of the material properties, while the deflection depends on the 
material property E. Hence the stress σ  in a tensile specimen at a given load is 
the same whether it's made of steel or polyethylene, but the strain ε  would be 
different: the polyethylene will exhibit much larger strain and deformation, since 
its modulus is two orders of magnitude less than steel's. A material that obeys 
Hooke's Law is called Hookean. Such a material is elastic according to the 
description of elasticity given in the introduction (immediate response, full 
recovery), and it is also linear in its relation between stress and strain (or 
equivalently, force and deformation). Therefore a Hookean material is linear 
elastic. It is important to keep in mind that not all elastic materials are linear 
(rubber is elastic but nonlinear), but not all linear materials are elastic 
(viscoelastic materials can be linear in the mathematical sense, but do not 
respond immediately and are thus not elastic). The linear proportionality 
between stress and strain given by Hooke's law is not nearly general, but it's 
really just an approximation that is observed to be reasonably valid for many 
materials as long the applied stresses are not too large. As the stresses are 
increased, eventually more complicated material response will be observed. If 
we were to push on the specimen rather than pulling on it, the loading would be 
described as compressive rather than tensile. In the range of relatively low loads, 
Hooke's law holds for this case as well. By convention, compressive stresses and 
strains are negative, so the expression Eσ ε=  holds for both tension and 
compression. 
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1.3.2. Elasticity, Groups of Symmetry, Anisotropic Solids with Fourth Rank 
Tensors  
 
 
1.3.2.1. Linear Costitutive Law for Hyperelastic Solids 
 
The heterogeneous materials can be characterized by both inhomogeneity and 
anisotropy, since the first aspect is due to the multi-phase composition of the 
medium, while the second one is due to the geometrical arrangement of the 
different constituents within the examined heterogeneous volume. A linear 
anisotropic elastic material, as known, can have as many as 21 elastic constants. 
However, this number can be opportunely reduced when the examined material 
possesses certain material symmetry. Moreover, it is also reduced, in most cases, 
when a two-dimensional deformation is considered. It is worth to remember that 
the matrices of the elastic constants must be positive definite, because the strain 
energy must be positive. Hence, referring to a fixed rectangular coordinate 
system 1 2 3, ,e e e , let T  and E  be the stress and the strain fields, respectively, in 
an anisotropic hyperelastic material. The stress-strain relation can be written in 
the following form: 
 

=T C : E           (1.51) 
 
or, in components: 
 

ij ijhk hkCσ ε=             (1.52) 
 
where C  is the fourth rank elastic stiffness tensor and where, for the hypothesis 
of iperelasticity, the components ijhkC   satisfy the following conditions of full 
symmetry: 
 

ijhk jihk hkijC C C= =              (1.53) 
The above written equation (1.53) groups in it the following equalities: 
 

ijhk jihk ijkh jikhC C C C= = =           (1.54) 
 
and: 
 

ijhk hkijC C=                (1.55) 
 
where the (1.54) follows directly from the symmetry of the stress and the strain 
tensors, while the (1.55) is due to the assuming hypothesis of existence of the 
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elastic potential φ . In other word, the strain energy φ  per unit volume of the 
material, given by: 

0
ij ijd

ε

φ σ ε= ∫              (1.56) 

 
is independent of the loading path, i.e. the path that ijε  takes from 0 to ε  while 
it depends on the final value of ε , only.  
In linear elasticity, the (1.56) may be written as: 
 

1 1
2 2ij ij ijhk ij hkCφ σ ε ε ε= =          (1.57) 

 
and since the strain energy must be positive, it has to be: 
 

0ijhk ij hkC ε ε >           (1.58) 
 
for any real, non zero, symmetric tensor ijε . Hence, as said before, the stiffness 
tensor C  is defined positive. Analogously, the stress-strain relation can be 
written in the following form, inverse of (1.51): 
 

=E S : T            (1.59) 
 
or, in components: 
 

ij ijhk hkSε σ=            (1.60) 
 
Where S  fourth rank elastic compliance tensor and where, for the hypothesis of 
iper-elasticity, the components ijhkS  satisfy the following conditions of full 
symmetry: 
 

ijhk jihk hkijS S S= =           (1.61) 
 
The above written equation (1.61) groups in it the following equalities: 
 

ijhk jihk ijkh jikhS S S S= = =          (1.62) 
 
and: 

ijhk hkijS S=            (1.63) 
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where the (1.62) follows directly from the symmetry of the stress and the strain 
tensors, while the (1.63) is due to the assuming hypothesis of existence of the 
elastic complementary potential ψ . 
 In other word, the stress energy ψ  per unit volume of the material, given by: 
 

0
ij ijd

σ

ψ ε σ= ∫            (1.64) 

It is independent of the loading path, i.e. the path that ijσ  takes from 0 to σ  
while it depends on the final value of σ , only.  
In linear elasticity, the (1.64) may be written as: 
 

1 1
2 2ij ij ijhk ij hkSψ σ ε σ σ= =         (1.65) 

 
and since the stress energy must be positive, it has to be: 
 

0ijhk ij hkS σ σ >            (1.66) 
 
for any real, non zero, symmetric tensor ijσ . 
Hence, as said before, the compliance tensor S  is defined positive. Introducing 
the contract notation, such that: 
 

11 1 22 2 33 3

32 4 31 5 12 6

11 1 22 2 33 3

32 4 31 5 12 6

, , ,
, , ,

, , ,
2 , 2 , 2

σ σ σ σ σ σ
σ σ σ σ σ σ
ε ε ε ε ε ε

ε ε ε ε ε ε

= = =
= = =

= = =
= = =

       (1.67) 

 
the stress-strain laws (1.52) and (1.60) may be respectively written as: 
 

,C C Cα αβ β αβ βασ ε= =          (1.68) 
 
and: 
  

,S S Sα αβ β αβ βαε ε= =          (1.69) 
 
In particular, with reference, to the equation (1.68), it may be expressed in a 
matrix form where, as well known, the upperscript T means for traspost matrix 
and the sign : means a tensor product: 
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, T= =T C : E C C           (1.70) 

 
The stress and the strain tensors, T and E, are expressed in form of 6x1 column 
matrices, while the stiffness tensor C  is expressed in form of 6x6 symmetric 
matrix in order to simplify the tensorial products. 
Ultimately with this kind of transformation the tensorial products become matrix 
product, where: 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

C C C C C C
C C C C C C
C C C C C C
C C C C C C
C C C C C C
C C C C C C

 
 
 
 

=  
 
 
 
  

C         (1.71) 

 
where the transformation between ijhkC  and Cαβ  is accomplished by replacing 
the subscripts ij (or hk) by α  or β , by using the following rules: 
 

( )( )
11 1
22 2
33 3
32 23 4
31 13 5
12 21 6

ij or hk or

or
or
or

α β↔

↔
↔
↔

↔
↔
↔

           (1.72) 

 
We may write the transformation (1.72) as: 
 

9 9
i if i j h if h k

i j if i j h k if h k
α β

= = 
= = − − ≠ − − ≠ 

     (1.73) 

 
Analogously, the stress-strain law (1.59) may be expressed in a matrix form: 
 

, T= =E S : T S S           (1.74) 
 
where also the compliance tensor S  is expressed in form of 6x6 symmetric 
matrix: 
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11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

S S S S S S
S S S S S S
S S S S S S

S
S S S S S S
S S S S S S
S S S S S S

 
 
 
 

=  
 
 
 
  

        (1.75) 

Here, the transformation between ijhkS  and Sαβ  is similar to that one between 

ijhkC  and Sαβ  except the following: 
 

, 3

2 3

4 , 3

ijhk

ijhk

ijhk

S S if both
S S if either or
S S if both

αβ

αβ

αβ

α β

α β

α β

= ≤

= ≤

= >

       (1.76) 

 
From (1.70) and (1.74), it is obtained the expression of the strain energy: 
 

1 1 1
2 2 2

T T Tφ = = =E CE T E T ST       (1.77) 

 
and, by considering that φ  has to be positive, it must be: 
 

0
0

T

T

>

>

E CE
T ST

             (1.78) 

 
This implies that the matrices C  and S  are both positive definite. Moreover, by 
substituting of the (1.74) in the (1.70) yields: 
 

⋅ = = ⋅C S I S C               (1.79) 
 
where the second equality follows from the first one which says that C  and S  
are the inverses of each other and, hence, their product commutes. For a linear 
anisotropic elastic material the matrices C  and S  have 21 elastic independent 
constants. The number of the independent elastic constants of the 6x6 matrices 
C  and S  can be opportunely reduced when the examined anisotropic material 
possesses certain material symmetry. Hence, with reference to a new rectangular 
coordinate system { }* * *

1 2 3, ,e e e , obtained from the initial fixed one { }1 2 3, ,e e e  
under an orthogonal transformation: 
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* = ⋅e Q e             (1.80) 
 
or, in components: 
 

   *
i ij je Q e=           (1.81) 

 
in which Q  is an orthogonal matrix that satisfies the following relations: 
 

  T T⋅ = Ι =Q Q Q Q         (1.82) 
 
or: 
 

ij kj ik ji jkQ Q Q Qδ= =         (1.83) 
 
a material is said to possess a symmetry with respect to Q  if the elastic fourth 
rank stiffness tensor  *C  referred to the ie  coordinate system is equal to that one 
C  referred to the coordinate system ie , i.e.: 
 

* =C C            (1.84) 
 
or in components: 
 

*
ijhk ijhk=C C          (1.85) 

 
where: 
 

*
ijhk ip jq hr ks pqrsQ Q Q Q=C C           (1.86) 

 
In other words, when: 
 

ijhk ip jq hr ks pqrsC Q Q Q Q C=         (1.87) 
 
the material possesses a symmetry with respect to Q . 
Some authors adopt the transformation law for Cαβ : 
 

*
r t rtC K K Cαβ α β=          (1.88) 
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where K is a 6x6 matrix, whose elements are obtained by means of suitable 
assembly of the components ijQ , according to proposals by Mehrabadi, Cowin 
et al (1995), and Mehrabadi and Cowin (1990).  
Then, an anisotropic material possesses the symmetry of central inversion (C) if 
the (1.87) is satisfied for: 
 

1 0 0
0 1 0
0 0 1

− 
 = − = − 
 − 

Q I         (1.89) 

The (1.87) is obviously satisfied by the Q  given in the (1.89) for any ijhkC . 
Therefore, all the anisotropic materials have the symmetry of central inversion. 
If Q  is a proper orthogonal matrix, the transformation (1.80) represents a rigid 
body rotation about an axis. So, an anisotropic material is said to possess a 
rotational symmetry if the (1.87) is satisfied for: 
 

( )
cos sin 0
sin cos 0
0 0 1

r

θ θ
θ θ θ

 
 = − 
  

Q          (1.90) 

 
which represents, for example, a rotation about the 3e -axis an angle θ , as 
shown in the following figure: 
 

3e e3
*

2e

1e

2e

1e

*

*

O

 
Fig. 1.10 – Rigid rotation about the 3e -axis. 

 
By extending this property, i.e. if the (1.87) is satisfied by the Q  as given 
through the (1.90) for any θ , then the material possesses a rotational symmetry 
with respect at any rotation in the 3 0=e  plane. In this case, it is said that the 



CHAPTER I: REMARKS ON THEORY OF ELASTICITY 

 
LUCA ESPOSITO –PHD THESIS 38 

 
 

3 0=e  is the plane of transverse isotropy or that 3e  is axis of elastic symmetry 
with order p = ∞ ( L∞ ). More in general, instead, by indicating with: 
 

2
p
πθ =             (1.91) 

 
the rotation angle about an axis, this latter is defined as axis of elastic symmetry 
with order p. Since p may assume values equal to 2, 3, 4,6 and ∞, the axis of 
elastic symmetry has indicated, respectively, with L2 , L3 , L4 , L6 and L∞. If Q  
is, instead, an orthogonal matrix as defined below: 

2 T= − ⊗Q I n n           (1.92) 
 
where n is a unit vector, the transformation (1.80) represents a reflection about a 
plane whose normal is n, defined as reflection plane or symmetry plane (P). In 
particular, if m is any vector on the plane, the following relation is satisfied: 
 

,= − = −Qn n Qm m         (1.93) 
 
According to such orthogonal matrix, therefore, a vector normal to the reflection 
plane reverses its direction after the transformation while a vector belonging to 
the reflection plane remains unchanged. 
So, an anisotropic material is said to possess a symmetry plane if the (1.87) is 
satisfied by the Q  as given by (1.92).  
 

 
1.3.2.2. Anisotropy and Material Symmetries 
 
The existence of various combinations of the different symmetry forms implies a 
corresponding classification of the anisotropy classes of the materials. In 
particular, two extreme cases of anisotropic elastic materials are the triclinic 
materials and the isotropic ones.  
The first material possesses no rotational symmetry or a plane of reflection 
symmetry, while the second material possesses infinitely many rotational 
symmetries and planes of reflection symmetry.  
For such materials, it can be shown that: 
 

( )ijhk ij hk ih jk ik jhC Gλδ δ δ δ δ δ= + +       (1.94) 
 
where λ  and G are the Lamè constants, satisfies the (1.87) for any orthogonal 
Q .   
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It is possible to demonstrate that if an anisotropic elastic material possesses a 
material symmetry with the orthogonal matrix Q , then it also possesses the 
material symmetry with 1T −=Q Q . This means, for example, that if the material 
has rotational symmetry with rotation about the 3x -axis an angle θ , it also has 
the symmetry about the 3x -axis an angle -θ . Moreover, it is possible to 
demonstrate that if an anisotropic elastic material possesses symmetry with 'Q  
and ''Q , then it also possesses symmetry with ' ''=Q Q Q . These statements, 
valid either for linear or nonlinear material, is useful in determining the structure 
of the stiffness tensor when the material possesses symmetries.  
Depending on the number of rotations and/or reflection symmetry a crystal 
possesses, Voigt (1910) in fact classified crystals into 32 classes.  
However, in terms of the 6x6 matrix C , there are only 8 basic groups, since 
different combinations of symmetry forms may lead to the same structure of the 
stiffness tensor.  
This classification maid for crystals can be extended for non-crystalline 
materials, so that for them the structure of C  can also be represented by one of 
the 8 basic groups. 
 
 
• Triclinic Materials 
 
They represent the most general case, in which no symmetry form exists. The 
number of independent constants is, therefore, 21 and the matrix C  assumes the 
following form: 
 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

21

C C C C C C
C C C C C C
C C C C C C

n
C C C C C C
C C C C C C
C C C C C C

 
 
 
 

= ° = 
 
 
 
  

C     (1.95) 

 
which is equal to that one of the equation (1.71). 
 
 
• Monoclinic Materials 
 
The symmetry forms are: 2 2, ,L P L PC . 
The number of the independent elastic constants is 13 and the matrix C  assumes 
the following expressions: 
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a) Symmetry plane coinciding with 1 0=e , i.e., 0θ = : 
 

11 12 13 14

12 22 23 24

13 23 33 34

14 24 34 44

55 56

56 66

0 0
0 0
0 0

13
0 0

0 0 0 0
0 0 0 0

C C C C
C C C C
C C C C

n
C C C C

C C
C C

 
 
 
 

= ° = 
 
 
 
  

C   (1.96) 

b) Symmetry plane coinciding with 2 0=e , i.e., 
2
πθ =   or 0ϕ = : 

 
11 12 13 15

12 22 23 25

13 23 33 35

44 46

15 25 35 55

46 66

0 0
0 0
0 0

13
0 0 0 0

0 0
0 0 0 0

C C C C
C C C C
C C C C

n
C C

C C C C
C C

 
 
 
 

= ° = 
 
 
 
  

C            (1.97) 

 

c) Symmetry plane coinciding with 3 0=e , i.e., 
2
πϕ = : 

 
11 12 13 16

12 22 23 26

13 23 33 36

44 45

45 55

16 26 36 66

0 0
0 0
0 0

13
0 0 0 0
0 0 0 0

0 0

C C C C
C C C C
C C C C

n
C C
C C

C C C C

 
 
 
 

= ° = 
 
 
 
  

C       (1.98) 

 
 
• Orthotropic (or Rhombic) Materials 
 
The symmetry forms are: 2 2 23 ,3 , 2 ,3 3P L L P L PC .  
With reference to the symmetry form 3P, it means that the three coordinate 

planes, 0θ = , 
2
πθ =  and 

2
πϕ =  are the symmetry planes.  
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The number of the independent elastic constants is 9 and the matrix C  assumes 
the following form: 
 

11 12 13

12 22 23

13 23 33

44

55

66

0 0 0
0 0 0
0 0 0

9
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

C C C
C C C
C C C

n
C

C
C

 
 
 
 

= ° = 
 
 
 
  

C      (1.99) 

 
• Trigonal Materials 
 
The symmetry forms are 3 2 3 3 2

63 , 3 , 3 3L L L P L L PC . 
With reference to the symmetry form 3P, it is verified that the three coordinate 

planes, 0θ = , 
3
πθ = +  and 

3
πθ = −  are the symmetry planes.  

The number of the independent elastic constants is 6 and the matrix C  assumes 
the following form: 
 

( )

11 12 13 14

12 11 13 14

13 13 33

14 14 44

44 14

11 12
14

0 0
0 0

0 0 0
60 0 0

0 0 0 0

0 0 0 0
2

C C C C
C C C C
C C C

nC C C
C C

C C
C

 
 − 
 
 = ° =− 
 
 

− 
  

C    (1.100) 

 
 

• Tetragonal Materials 
 
The symmetry forms are: 4 4 2

4, ,L L PC L . 
Iit is verified that the tetragonal materials show five symmetry planes at 0θ = , 

4
πθ = + , 

4
πθ = − , 

2
πθ = +  and 

2
πϕ = + .  

The number of the independent elastic constants is 6 and the matrix C  assumes 
the following form: 
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11 12 13

12 11 13

13 13 33

44

44

66

0 0 0
0 0 0
0 0 0

6
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

C C C
C C C
C C C

n
C

C
C

 
 
 
 

= ° = 
 
 
 
  

C      (1.101) 

 
 
• Transversely Isotropic (or Exagonal) Materials 
 
The forms are: 3 3 2 6 6 2 6 6 6 2, 3 , , 6 , , 6 , 6 7L P L L P L L L L PC L P L L PC .  

For the transversely isotropic materials the symmetry planes are 
2
πϕ = +  , i.e. 

( )3 0=e , and any plane that contains the 3e -axis. So, the 3e -axis is the axis of 
symmetry.  
The number of the independent elastic constants is 5 and the matrix C  assumes 
the following form: 
 
 

( )

11 12 13

12 11 13

13 13 33

44

44

11 12

0 0 0
0 0 0
0 0 0

50 0 0 0 0
0 0 0 0 0

0 0 0 0 0
2

C C C
C C C
C C C

nC
C

C C

 
 
 
 
 = ° = 
 
 

− 
  

C    (1.102) 

 
 
• Cubic Materials 
 
The forms are 2 3 2 3 2 3 4 3 2 4 3 2

6 4 63 4 ,3 4 3 ,3 4 6 ,3 4 6 ,3 4 6 9L L L L PC L L P L L L L L L PC . 
For the cubic materials there are nine symmetry planes, whose normal vectors 
are on the three coordinate axes and on the coordinate planes making an angle 

4
πϕ = +  with coordinate axes.  

The number of the independent elastic constants is 3 and the matrix C  assumes 
the following form: 
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11 12 12

12 11 12

12 12 11

44

44

44

0 0 0
0 0 0
0 0 0

3
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

C C C
C C C
C C C

n
C

C
C

 
 
 
 

= ° = 
 
 
 
  

C       (1.103) 

 
 
• Isotropic Materials 
 
For the isotropic materials any plane is a symmetry plane.  
The number of the independent elastic constants is 2 and the matrix C assumes 
the following form: 
 

11 12 12

12 11 12

12 12 11

11 12

11 12

11 12

0 0 0
0 0 0
0 0 0

0 0 0 0 0 22

0 0 0 0 0
2

0 0 0 0 0
2

C C C
C C C
C C C

C C
n

C C

C C

 
 
 
 
 − 

= ° = 
 − 
 
 −
 
 

C    (1.104) 

 
If λ  and µ   are the Lamè constants, the (1.104) becomes: 
 

2 0 0 0
2 0 0 0

2 0 0 0
2

0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

n

µ λ λ λ
λ µ λ λ
λ λ µ λ

µ
µ

µ

+ 
 + 
 +

= ° = 
 
 
 
  

C   (1.105) 

 
It is remarkable that, for isotropic materials, it needs only three planes of 
symmetry to reduce the number of elastic constants from 21 to 2. 
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Fig. 1.11 – Hierarchical organization of the eight material symmetries of linear elasticity 
The previous figure shows the hierarchical organization of the eight material 
symmetries of linear elasticity.  
It is organized so that the lower symmetries are at the upper left and, as one 
moves down and across the table to the right, one encounters crystal systems 
with greater and greater symmetry. 
It is worth to underline that the structure of the matrix C  above obtained for 
each class of materials is referred to the specified coordinate system.  
When different coordinate systems are employed, the transformation law (1.86) 
has to be used for obtaining the structure of the new matrix C , in which, while 
the number of nonzero elements may increase, the number of independent elastic 
constants remains constant since it does not depend on the choice of the 
coordinate systems. 
In engineering applications the matrix S  for isotropic materials is written as: 
 

1 0 0 0
1 0 0 0

1 0 0 01
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

E

ν ν
ν ν
ν ν

ν
ν

ν

− − 
 − − 
 − −

=  + 
 +
 

+  

S       (1.106) 

 
where, as well known, E  is the Young’s modulus and υ  is the Poisson ratio. 
These constant values are related with the Lamè constants, λ  and µ , in the 
following way: 

( )
( )

3 2
,

2
E

µ λ µ λν
µ λ λ µ

+
= =

+ +
         (1.107) 
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It can be shown that: 
 

( )( ) ( )
,

1 1 2 2 1
E Eνλ µ

ν ν ν
= =

+ − +
       (1.108) 

 
The strong convexity condition which is equivalent to the positive definiteness 
of the strain energy (1.66), yields that the stiffness tensor C  is defined positive, 
as well as, the positive definiteness of the stress energy (1.66), yields that the 
compliance tensor S  is defined positive. 
In particular, in the contracted notation, the (1.66) implies that the 6x6 matrix C  
is also positive definite; for this reason, all its principal minors are positive, that 
is: 
 

( )0iiC i not summed>           (1.109) 
 

( )det 0 ,ii ij

ij jj

C C
i j not summed

C C
 

> 
 

      (1.110) 

 

( )det 0 , ,
ii ij ih

ij jj jh

ih jh hh

C C C
C C C i j k not summed
C C C

 
  > 
  

     (1.111) 

 

( )det 0 , , ,

ii ij ik ih

ij jj jk jh

ik jk kk kh

ih jh kh hh

C C C C
C C C C

i j k h not summed
C C C C
C C C C

 
 
  >
 
 
  

    (1.112) 

 

( )det 0 , , , ,

ii ij ik ih im

ij jj jk jh jm

ik jk kk kh km

ih jh kh hh hm

im jm km hm mm

C C C C C
C C C C C
C C C C C i j k h m not summed
C C C C C
C C C C C

 
 
 
  >
 
 
  

(1.113)    

 
[ ]det 0>C                (1.114) 

 
where i, j, h are distinct integers which can have any value from 1 to 6. 
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In particular, according to the theorem which states that a real symmetric matrix 
is positive definite if and only if its leading principal minors are positive, the 
necessary and sufficient conditions for the 6x6 matrix C  to be positive definite 
are the positivity of its 6 leading principal minors, i.e.. 
The above done anisotropic classification of the materials according to the 
number of symmetry planes is based on the assumption that, for each material, 
the number and the locations of the symmetry planes are known. However, this 
is not the case when considering an unknown material. So, often, the elastic 
stiffness and the elastic compliances of the material have to be determined to an 
arbitrarily chosen coordinate system.  
The result is that, if there exists a symmetry plane, it may not be one of the 
coordinate planes. Consequently, all elements of the matrices C  and S  can be 
nonzero. The problem is to locate the symmetry planes if they exist when C (or 
S ) is given. 
When a plane of symmetry exists, as already seen, the (1.87) is satisfied by the 
Q  given in (1.92), which has the properties given in (1.93) where n is a unit 
vector normal to the plane symmetry and m is any vector perpendicular to n. 
Cowin and Mehrabadi (1987) have demonstrated that a set of necessary and 
sufficient conditions for n to be a unit normal vector to a plane of symmetry is: 
 

( )ijhh j pqss p q iC n C n n n=            (1.115) 
 

( )ikhk h pqpq p q iC n C n n n=                  (1.116) 
 

( )ijhk j k h pqrs p q r s iC n n n C n n n n n=             (1.117) 
 

( )ijhk j k h pqrs p q r s iC m m m C n m n m n=         (1.118) 
 
More in general, the equations from (1.115) to (1.118) tell that n is an 
eigenvector of the 3x3 symmetric matrices U, V, R(n) and R(m) whose elements 
are: 
 

( ), ,ij ijhh ih ikhk ih ijhk j kU C V C R C n n= = =n       (1.119) 
 
An anisotropic elastic material with given elastic stiffness ijhkC  has a plane of 
symmetry if and only if n is an eigenvector of R(n) and R(m), or of U and R(m) 
or of V and R(m). The vector n is normal to the plane of symmetry, while m is 
any vector on the plane of symmetry. An anisotropic elastic material with given 
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elastic stiffness ijhkC  has a plane of symmetry if and only if n (normal vector to 
the plane of symmetry) is a common eigenvector of U and V and satisfies: 
 

0ijhk i j h kC m n n n =            (1.120) 
 

0ijhk i j h kC m m m n =             (1.121) 

or any two independent vectors αm ( )1,2α =  on the plane of symmetry that do 
not form an angle a multiple of / 3π .  
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HETEROGENEOUS MATERIALS 
 
 
 
 

It is well known the difficulty to find solutions to anisotropic 
inhomogeneous material problems. A very few restricted classes of 
these problems are solved in a general way.  
One example of these solutions is for cylinders subjected to pure 
torsion and possessing cylindrical orthotropy, with a variation of 
the shear moduli with the local normal direction to the family of 
curves of which the lateral boundary is a member (Cowin, 1987). 
This solution is a generalization, to a set of arbitrary cross-
sectional shapes, of a problem solved by Voigt (Voigt, 1928) for a 
circular cross-section with radial variation of its cylindrical 
anisotropy. These cylinders are said to possess shape intrinsic 
orthotropy since it is the boundary of the cylinder that establishes 
the possible directional variation of the elastic moduli. A second 
example was given by Chung & Ting (Chung & Ting, 1995) who 
presented an exact solution for the case of an anisotropic half-
space with elastic moduli dependent upon one coordinate, the angle 
θ , when the loads on the half-space are represented by a straight 
line of force. These kinds of problems were called angularly 
inhomogeneous problems by the authors. Closely related to these 
solutions is a third example called radially inhomogeneous 
problems (Alshits and Kirchner, 2001). As the name suggests, the 
variation of the elastic constants is in the radial direction in this 
case.  
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In spite of this difficulty, in the last years, it has been a growing 
interest about the mechanical behaviour of anisotropic and 
inhomogeneous solids, above all in biomechanics. Moreover, the 
necessity to build thermodynamically consistent theories for this 
kind of materials, by means the employment of the mathematical 
theory of the homogenization, has determined the necessity to find 
exact analytical solutions in the ambit of this more complex section 
of the theory of elasticity, (Lions, 1985), (Maugin, 1993). 
In the next sections, it is presented a useful method enables one to 
find solutions for inhomogeneous, anisotropic elastostatic problems 
under particular conditions by means of the use of two theorems, 
S.A.S. theorem and D.A.S. theorem (Fraldi and Cowin, 2004).  

 
 
 
2.1. STRESS ASSOCIATED SOLUTIONS THEOREM FOR INHOMOGENEOUS 
ELASTICITY 
 
The Stress Associated Solution (SAS) Theorem lets to find solutions for 
inhomogeneous, anisotropic elastostatic problems if two conditions are satisfied:  
 
(1) a knowledge of the solution for a homogeneous elastic reference problem 
(the associated problem) whose solution has a stress state with a zero eigenvalue 
everywhere in the domain of the problem, and  
 
(2) an inhomogeneous anisotropic elastic tensor related to the homogeneous 
anisotropic elastic tensor of (1) by: 
 
 ( ) , ( ) , ( ) 0,I H Bϕ ϕ ϕ α α += ∀ ∈ > > ∈x x x x   (2.1) 
 
where 

TH H=   is the elasticity tensor of a generic anisotropic homogeneous 
elastic material of the reference problem, I  is the elasticity tensor of the 
corresponding anisotropic inhomogeneous elastic problem, B  is the domain 
occupied by both the homogeneous object HB  and the inhomogeneous one IB , 
α +∈  is an arbitrary positive real number, while ( )ϕ x  is a 2 ( )C B  scalar 
function.  
The assumption (2.1) means that the inhomogeneous character of the material is 
due to the presence of a scalar parameter producing the inhomogeneity in the 
elastic coefficients.  
This method makes it possible to find analytical solutions for an inhomogeneous 
anisotropic elastic problem if the elastic solution of the corresponding 
homogeneous anisotropic reference problem is known and characterized 
everywhere by a stress state with a zero eigenvalue. 
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 The solutions to the inhomogeneous anisotropic elastic problem are called the 
associated solutions of the homogeneous problem. 
 
2.1.1. Zero-Eigenvalue Stress and Zero-Eigenvalue Strain Fields 
 
A zero-eigenvalue stress state (zero-eigenvalue strain state) is characterized by 
the condition that the determinant of the stress (strain) is zero: 
 
 det 0, (det 0)T = E = . (2.2) 
 
It is easy to show that a zero-eigenvalue stress (strain) state is a necessary 
condition for a plane stress (strain) state. The components of the stress tensor T  
(strain tensor E ) are denoted by ijσ  ( ijε ). The strain tensor E  is related to the 
displacement field u  by:  
 

 1 ) ) ]
2

T= sym B[( ⊗ + ( ⊗ = ⊗ ∀ ∈E u u u x∇ ∇ ∇  (2.3) 

 
in which )grad = ( ⊗u u∇  and the symbol ⊗  represents the tensor product. In 
components we have: 
 

 , ,
1 ( )
2ij i j j iu uε = + , (2.4) 

 
where the comma denotes differentiation and u  is the displacement field. 
 
 
2.1.2. Stress Associated Solutions (SAS) Theorem 
 
Consider the following mixed boundary-value elastostatic homogeneous and 
anisotropic problem HP  in the absence of action-at-a-distance forces: 
 
 0( ) in , ( ) on ,  on H H H

t uB B B⋅ = ⋅ = ∂ = ∂0T u T u n t u u∇  (2.5) 
 
where HB  is the domain occupied by the homogeneous elastic object, 

{ }H H H
t uB B B∂ = ∂ ∪ ∂  is its boundary and t  and 0u are the traction field and the 

displacements assigned on the corresponding partition of the boundary, 
respectively (Barber, 1992; Gurtin, 1972).  The notation for the divergence of 
the stress tensor is ( ) ( )div⋅ =T u T u∇ , where the del operator is a vectorial 
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differential operator defined by i i≡ ∂ e∇ , ,/ ( )i i ix∂ ≡ ∂ ∂ = ∗  is the partial 
differential operator and ie  is the base unit vector of the i-axis. 
The anisotropic Hooke’s law is written: 
 

 ( ) : ( ) : ( ) : ( )H H Hsym= = ⊗ = ⊗T u E u u u∇ ∇      (2.6) 
 
or, in components: 
 
 ,

H H
ij ijhk hk ijhk h kC C uσ ε= = . (2.7) 

 
Let { , , }H H H H=S u E T  be the solution of the homogeneous problem (2.5).  
Consider now an associated anisotropic elastic inhomogeneous problem IP , 
described by modifying the system (2.5), with I ϕ=t t  representing the traction 
field applied on I

tB∂  and the inhomogeneous anisotropic elasticity tensor given 
by (2.1), thus: 
 
 0( ) in , ( ) on ,  on I I I I

t uB B B⋅ = ⋅ = ∂ = ∂0T u T u n t u u∇  (2.8) 
 
The solid domains HB  and IB , as well as their corresponding boundary 
partitions made on HB∂  and IB∂ , are geometrically the same in the 
homogeneous and inhomogeneous problems.  
Then, if we expand the equation (2.8)1 it is possible to write: 
 

( ) [ ( ) : ( )]
( ) [ : ( )] [ : ( )] ( )

H

H H

ϕ

ϕ ϕ

⋅ = ⋅ =

= ⋅ + ⋅ = 0
T u x E u

x E u E u x
∇ ∇

∇ ∇


 

    (2.9) 

 
where ( ) ( )grad∗ = ∗∇  is the gradient operator applied on a generic scalar-valued 
function ( )∗ . Consider now the situation in which the displacements are equal 
for the homogeneous and inhomogeneous problems. Then, by substituting the 
displacement solution Hu  obtained for the homogeneous problem HP  in (2.9) in 
place of the displacement vector u , we have that: 
 

( ) ( )[ ( ) [ ( )] ( )H H H H Hϕ ϕ⋅ = ⋅ ] + ⋅ = 0T u x T u T u x∇ ∇ ∇    (2.10) 
 
But, since [ ( )] [ : ( )]H H H H⋅ = ⋅ =C 0T u E u∇ ∇ , it follows that: 
 
 [ ( )] ( )H H IBϕ⋅ = ∀ ∈0T u x x∇  (2.11) 
 
By excluding the trivial case in which ( ) constantϕ =x , it follows that: 
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 det 0,H HB= ∀ ∈T x  (2.12) 
 
This means that the stress state at x of the reference homogeneous problem is 
required to be a zero eigenvalue stress state everywhere in the domain.  
To investigate the geometrical meaning of the equation (2.11), since (2.11) must 
be true everywhere in IB , we consider, without loss of generality, the local 
principal stress reference system { }1 2 3ξ ,ξ ,ξ , in which the stress tensor HT  takes 
the component form: 
 

 
1

2

3

H
ξ

H H
ξ

H
ξ

σ 0 0

T = 0 σ 0

0 0 σ

 
 
 
 
  

. (2.13) 

 
Representing the gradient of the scalar function ϕ  as: 
 
 

1 2 3

T
, , ,( ) [ ]ξ ξ ξϕ ϕ ϕ ϕ=∇ ξ , (2.14) 

 
the three scalar equations implied by (2.11) are written as: 
 
 

1 1 2 2 3 3, , ,= 0, = 0, = 0H H H
ξ ξ ξ ξ ξ ξσ ϕ σ ϕ σ ϕ . (2.15) 

 
The system (2.15) is satisfied if the stress tensor HT  for the reference 
homogeneous problem HP  is, at each internal point HB∈x , a locally variable 
zero eigenvalue stress state.  
If there is only one zero eigenvalue, say in the 3ξ -direction, the only non-zero 
component of the vector ϕ∇ , is 

3
,ξϕ at the corresponding points IB∈x . If 

there are two zero eigenvalues there can be two non-zero components of ϕ∇ . 
The case of three zero eigenvalues of the stress tensor HT  is trivial and will not 
be mentioned further. It follows that, at each internal point, the equipotential 
surfaces of ϕ  admit as a tangent plane the plane whose normal is coaxial with 
the eigenvector associated with the zero stress eigenvalue (or a direction, in the 
case of two zero stress eigenvalues).  
This is illustrated in Figure 2.1 for the case of one zero eigenvalue of stress.  
The geometrical relationship (2.11) between the stress tensor HT  and the vector 

ϕ∇  may be rewritten in the form: 
 
 { } { , : ( ) 0}H HVϕ ϕ⋅ = ⇔ ∀ ∈ ⊗ =0T v T v∇ ∇  (2.16) 
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where v  is any unit vector defined in the three-dimensional Euclidean space 3  
and V  represents the corresponding vector space.  
It follows that the stress vector on the plane whose normal is v  is always 
orthogonal to the vector ϕ∇ . 
  

I I¶B

tangent plane at x to the
equipotential surfaces of  

B

stress plane in x

2

inhomogeneous object

elementary
volume in x

equipotential
surfaces of  

Ñ

x
1

 I H

2
3

2

11

3 = 0

 
Fig. 2.1 – Geometrical interpretation of the relationship between the equipotential 
surfaces of ϕ  and the distribution of the planes of stresses in the associated anisotropic 
problem 
 
Then, it is possible to establish the following theorem: 
 
Stress Associated Solution (SAS) Theorem. Consider two geometrically 
identical elastic objects HB  and IB , one homogeneous and the other 
inhomogeneous, respectively. Let H  and ( )I Hϕ= x   be the corresponding 
elasticity tensors (Figure 2.2.). The two elastostatic problems associated with the 
two objects are: 
 

0

0

: { ( ) in , ( ) on ,  on },

: { ( ) in , ( ) on ,  on },

H H H H
t u

I I I I
t u

P B B B
P B B Bϕ

⋅ = ⋅ = ∂ = ∂

⋅ = ⋅ = ∂ = ∂

0
0

T u T u n t u u
T u T u n t u u

∇

∇
 

 
where: 
 
 2( ) ( ) , ( ) 0,C B Bϕ ϕ α α +∈ ∀ ∈ > > ∈x x x . 
 
If Hu  is the solution of the homogeneous problem HP , then I H=u u  if and only 
if { ( ) 0, }H Vϕ ⊗ = ∀ ∈:T v v∇ , i.e.: 
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 { , , :( ) 0}I H I HB V ϕ∀ ∈ ∀ ∈ ⊗ = ⇔ =x v T v u u∇ . 
 
It is convenient to increase the similarity between the elastic problems for the 
homogeneous and the inhomogeneous materials by writing the boundary 
conditions in the same way.  
Thus we substitute for the prescribed boundary tractions a corresponding 
prescribed displacement field; this converts the portion of the boundary upon 
which the surface tractions are prescribed to a portion of the boundary upon 
which the displacements are prescribed.  
Due to uniqueness of solution, this is always possible in a linear elastic problem. 
Then, the two problems may be written in the equivalent forms as: 
 

0

0

: { ( ) in , on ,  on },

: { ( ) in , on ,  on },

H H t H H
t u

I I t I I
t u

P B B B
P B B B

⋅ = = ∂ = ∂

⋅ = = ∂ = ∂

0
0

T u u u u u
T u u u u u

∇

∇
 

 
where tu  represents the prescribed displacement on tB∂  and where, now, the 
tractions t  and ϕ t  represent the reactions of the constraints on tB∂  specified by 

tu . It follows that, when a solution { , , }H H H H=S u E T  for an anisotropic 
homogeneous elastic problem HP  is known, the Stress Associated Solution 
Theorem yields the corresponding solution for an inhomogeneous problem IP  
as { , , }I H H Hϕ=S u E T , if and only if H ϕ⋅ = 0T ∇  everywhere in the object 
and the displacement boundary conditions are the same for both the 
homogeneous and the inhomogeneous objects. Thus the solution 

{ , , }H H H H=S u E T  is used to construct a solution of the associated 
inhomogeneous problem.  
Finally we note that the restriction (2.1) may be relaxed in many different ways. 
For example the Associated Solutions could involve only some selected elastic 
moduli of the homogeneous elasticity tensor, so that the solutions do not depend 
on all stiffness coefficients.  
This means that it is possible to extend the validity of the proposed theorem by 
rewriting the assumption (2.1) in the weaker form:  
 

ˆ ˆI H
ijhk ijhkC Cϕ= , 

 
where ˆ H

ijhkC  represents only those elastic coefficients explicitly involved in the 
specific anisotropic homogeneous problem used to construct the associated 
solution. In the next section it is shown that components of the elasticity tensor 
not involved in the solution of the homogeneous problem will not be involved in 
the solution of the associated inhomogeneous problem. 
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Fig. 2.2 – The homogeneous (a) on the left and inhomogeneous (b) on the right bodies 
with their boundary conditions 
 
 
2.2. GENERALIZATION OF THE SAS THEOREM TO PIECEWISE 
INHOMOGENEITIES 
 
Two types of composite materials are considered in this section, one in which ϕ  
is constant, but piecewise discontinuous and another in which ϕ  is a piecewise 
continuous function.  
These two cases extend the domain of applicability of the condition (2.1), and 
therefore the domain of applicability of the SAS theorem.  
In the first case the extension is to composite materials for which each phase is 
characterized by elastic moduli that are constant within their own phase, but are 
different from the constant elastic moduli of the other phases. In the second case 
the extension is to composite materials for which each phase is characterized by 
the possibility of each phase having variable elastic coefficients inside the phase 
domain and discontinuous elastic coefficients across phase boundaries. The next 
section treats the case where ϕ  is constant, but piecewise discontinuous. 
 
 
2.2.1. Composite Materials where ϕ  is Constant, but Piecewise 
Discontinuous 
 
In the following two sections we extend the SAS theorem to heterogeneous 
materials where there is not a smooth variation of the elastic moduli. To achieve 
this, we will make reference to some results obtained previously and formulate 
new hypotheses about the features of composite inhomogeneous bodies 
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considered. In particular, for each phase p  present of a composite material, we 
will assume here that the elasticity tensor can be written as: 
 
 , {1,2,..., }H H

p p p nϕ= = ⊂    (2.17) 
 
where H  is the elasticity tensor of a reference isotropic or anisotropic 
homogeneous material and pϕ  is a positive scalar parameter. This hypothesis 
does not constitute the most general case for describing the relation between the 
elastic tensors of the different phases for a composite material, but it is widely 
utilized in literature because many artificial and natural composites exhibit 
mechanical properties that are well represented by the proposed assumption 
(Lekhnitskii, 1963; Ting, 1996; Fraldi and Guarracino, 2001; Nemat-Nasser and 
Hori, 1993). Let us consider a partition of the inhomogeneous body 

1

{ ( ) ( )}
n

p p
p

B B B
=

Ω ≡ Ω


, where ( , )p q∂Ω  represents the interface boundary 

between two generic sub-domains pΩ  and qΩ  of the partition, with elasticity 

tensors H
p  and H

q , respectively. If we assume that the solution for the 
anisotropic homogeneous reference problem is known, and the geometries of the 
homogeneous and composite material objects are the same, we can study the 
conditions under which the stress tensor for the inhomogeneous material (multi-
phase material) assumes the form: 
 
 , ( )H H

p p p Bϕ= ∀ ∈ΩT T x  (2.18) 
 
required by the SAS theorem. Note that the stress (2.18) satisfies the equilibrium 
equations in each sub-domain of the partition:  
 
 , ( )H H

p p p Bϕ⋅ = ⋅ ∀ ∈Ω= 0T T x∇ ∇ . (2.19) 
 
Moreover, by virtue of the assumed constitutive relationships: 
 
 1 1 , { , }H H H H H H

p p p pp− −= = = ∀ ∈ ∀ ∈ΩNE T T E x   (2.20) 
 
the satisfaction of the compatibility condition on the surfaces of discontinuity 
between the different materials of the composite object is automatic.  
From the force equilibrium on the interfaces between two adjacent phases, it 
follows that: 
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 ( , ) ( , ) ( , ), { { , } , }H H
p p q q p q p qp q⋅ = ⋅ ∀ ∈ ∀ ∈∂ΩNT n T n x  (2.21) 

where ( , )p qn  is the unit normal vector to the interface between the phases p  and 
q . By virtue of (2.18), the equation (2.21) is satisfied if: 
 
 ( , ) ( , ),H

p q p q⋅ = ∀ ∈∂Ω0T n x . (2.22) 
 
Equation (2.22) requires that for each point belonging to the interface surfaces 
between two phases, the stress tensor HT  must possess at least one zero-
eigenvalue, that is ( , ){det 0, }H

p q= ∀ ∈∂ΩT x .  
This hypothesis is necessary in order to orient the plane of the stress on the 
interface surfaces such that the eigenvector associated with a zero eigenvalue of 
the stress tensor is coaxial with the unit normal vector to the tangent plane to the 
interface. For structures sometimes consistent with this hypothesis one can 
consider the interfaces between layers of certain plant structures, for example, 
onions and leeks. In the literature of this subject examples that conform to this 
hypothesis include the piece-wise angularly inhomogeneous elastic wedges 
considered by Ting (Ting, 1996), the intrinsically orthotropic layered cylinders 
under torsion, described by Cowin (Cowin, 1987), as well as in other examples 
analyzed by Lekhnitskii (Lekhnitskii, 1963). 
To complete the elastic solution for the composite material (2.17) using the 
known solution of a homogeneous reference problem, we note the satisfaction of 
the compatibility and equilibrium conditions on the external boundary. The 
satisfaction of the compatibility conditions is easily verified by virtue of (2.20). 
The equilibrium equation on the part of the external boundary where the 
tractions are prescribed is given by:  
 
 ( ),H H H

e e e t eBϕ⋅ = = ∀ ∈∂T n t t x  (2.23) 
 
where ( )t eB∂  represents a typical element of the partition of the external 

boundary on which the tractions Ht  are prescribed in the homogeneous 
reference problem. The total stress boundary is the sum over all the typical 

distinct boundaries, ( )
1

k

t t e
e

B B
=

∂ = ∂


, where k  represents the total number of 

phases that have a projection of their boundary on the external boundary on 
which the tractions are assigned.  
Then, if the conditions (2.22) and (2.23) are satisfied, we can build the elastic 
solution of composite multi-phase materials from a knowledge of the 
displacements and the stresses for a homogeneous object with analogous 
geometry using the extension of the SAS theorem. Note that, in order to utilize 
the results of the proposed theorem for inhomogeneous materials in which ϕ  
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was assumed to be a continuous scalar function, the stress tensor HT  had to 
exhibit a zero-eigenvalue at each point of the body.  
However, in order to generalize the SAS theorem to composite materials where 
ϕ  is constant, but piecewise discontinuous, it is sufficient that the stress tensor 

HT  related to the associated homogeneous problem possesses a zero-eigenvalue 
( )det 0H =T  only in the points belonging to the internal interfaces between the 
different phases.  
This means that, in the case of materials where ϕ  is a constant, but piecewise 
discontinuous, HT  can be a three-dimensional stress field in any other point of 
the solid domain.  
 
 
2.2.2. Composite Materials where ϕ  is Piecewise Continuous 
 
In this subsection we consider the new and more general situation in which each 
phase p  of the heterogeneous solid (composite material) can be represented by 
the following elasticity tensor: 
 
 ( ) ,H H

p p p p p Bϕ= ∀ ∈Ω ⊂x x   (2.24) 
 
where H  is the elasticity tensor of a homogeneous reference material, while 

pϕ  is now a positive scalar function, not necessarily constant, but continuous 
inside each phase (or sub-domain defined by the partition described above).  
We relax some of the hypotheses for the situation when ϕ  is constant, but retain 

the previous notation; 
1

{ ( ) ( )}
n

p p
p

B B B
=

Ω ≡ Ω


 is again the partition of the 

inhomogeneous object, with ( , )p q∂Ω  representing the interface boundary 

between two generic adjacent sub-domains pΩ  and qΩ  of the partition whose 

elasticity tensors are H
p  and H

q , respectively, see Figure 2.3..  
The representation of the stress tensor of the phase p  required by the SAS 
theorem is: 
 
 ( ) , ( )H H

p p p p p Bϕ= ∀ ∈ΩT x T x . (2.25) 
 
Equilibrium is satisfied if the divergence of the stress for each phase is zero: 
 
      , ( )H H H H

p p p p p p Bϕ ϕ ϕ⋅ = ⋅ ⋅ ⇒ ⋅ ∀ ∈Ω+ = 0 = 0T T T T x∇ ∇ ∇ ∇  (2.26) 
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From this result it follows, using (2.17) and (2.20), that 
, { , }H H

p p pp= ∀ ∈ ∀ ∈ΩNE E x . The equilibrium conditions (2.21)-(2.22) 
across the interface between two phases are then satisfied as well the external 
boundary conditions (2.23) considered previously. This means that, in order to 
extend the SAS theorem to piecewise continuous composite materials, one has to 
first establish two facts about the stress tensor HT , namely: 1) at each internal 
point of each phase p, the stress tensor HT  possesses at least one zero-
eigenvalue and 2) at every point in the interface between two adjacent phases the 
normal to the tangent plane has to be coincident with the direction of the 
eigenvector associated with the zero eigenvalue.  
 

 
Fig. 2.3 – A representation of a possible spatial distribution of the phases inside a 
piecewise inhomogeneous material. 
 
 
2.3. DISPLACEMENT ASSOCIATED SOLUTIONS (DAS) THEOREM FOR 
INHOMOGENEOUS ELASTICITY 
 
Analogously to the SAS theorem, the Displacement Associated Solution 
(D.A.S.) theorem lets to find solutions for inhomogeneous anisotropic 
elastostatic problems, if two conditions are satisfied, (Fraldi, Cowin, 2004): (3) 
the solution of the homogeneous elastic reference problem (the associated one) 
is known and it has a local plane strain state, with a zero eigenvalue everywhere 
in the domain of the problem and (4) the inhomogeneous anisotropic compliance 
tensor is in relation with the homogeneous associated one according to the 
following equation:  
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     ( )11 , ( ) , ( ) 0,
( )

I H H Bλ λ λ β β
ϕ

− += = ∀ ∈ > > ∈x x x x
x

    (2.27) 

 
where 

TH H=   is the compliance tensor of the anisotropic homogeneous 
elastic reference problem, I  is the compliance tensor of the corresponding 
anisotropic inhomogeneous elastic problem, B  is the domain occupied by both 
the homogeneous object HB  and the inhomogeneous one IB , β +∈  is an 
arbitrary positive real number, while ( )λ x  is a 2 ( )C B  scalar function.  
The second condition implies that the inhomogeneous character of the material 
is due to the presence of a scalar parameter, ( )λ x , producing the inhomogeneity 
in the compliance coefficients. It can be also relaxed and, so, written in a weaker 
form:  
 
 ˆ ˆI H

ijhk ijhkS Sλ=  (2.28) 
 
where ˆ H

ijhkS  represents only those compliance coefficients explicitly involved in 
the specific anisotropic homogeneous problem used to construct the associated 
solution. This means that components of the compliance tensor not involved in 
the solution of the homogeneous problem will not be involved in that one of the 
associated inhomogeneous problem. If the conditions (3) and (4) are satisfied, 
starting from the known solution of the homogeneous problem, the associated 
solution, that is the solution to the inhomogeneous problem, is derived. 
In particular, the stress field solution is identical with the stress field of the 
homogeneous reference solution, while the strain field of the inhomogeneous 
problem is equal to ( )λ x  times the strain field of the homogeneous problem. 
The advantage of this method is in the fact that its use yields exact solutions for 
several new interesting inhomogeneous and anisotropic problems.  
More in detail, let us to consider an anisotropic homogeneous elastic object, that 
occupies a volume HB , with mixed boundary-value (see Figure 2.2.a). 
In presence of action-at-a-distance forces and taking into account the 
compatibility of the solution by writing the equilibrium equations in terms of 
displacements, the following equilibrium equations can be written: 
 

 

( )
( )
( ) 0

in

on

on

H

H
t

H

B

B

B

∇ ⋅ =

⋅ ∂

⋅ ∂

0T u

T u n = t

T u n = 0

 (2.29) 
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where i i∇ = ∂ e  is a vectorial differential operator, H
tB∂  is the boundary partition 

of the homogeneous continuum on which the traction field is assigned, 0
HB∂  is 

the boundary partition of the homogeneous continuum in absence of both 
traction and displacements fields. On the boundary partition on which the 
displacements field is assigned, the following relation has to be satisfied:  
 
  on H

uB= ∂u 0  (2.30) 
 
where H

uB∂  is the boundary partition of the homogeneous continuum on which 
the displacements field is assigned. The anisotropic Hooke’s law, in a linear 
elastic stress-strain relation, is written in the form: 
 
 ( ) ( ) ( ) ( ): : :H H Hsym= ∇ ⊗ = ∇ ⊗T u = E u u u    (2.31) 
 
or: 
 
 ( ) ( ) ( ):Hsym ∇ ⊗ =u = E u T u  (2.32) 
 
in components: 
 
 ,

H H
ij ijhk hk ijhk h kC C uσ ε= =  (2.33) 

 
or: 
 
 H

ij ijhk hkSε σ= . (2.34) 
 
Let us to consider, now, an anisotropic inhomogeneous elastic object, that 
occupies a volume IB , geometrically the same of HB , with mixed boundary-
value (see Figure 2.2.b). In presence of action-at-a-distance forces and taking 
into account the compatibility of the solution by writing the equilibrium 
equations in terms of displacements, in an analogous manner to what has been 
done before, the following equilibrium equations can be written:  
 

 

( )
( )
( ) 0

in

on

on

I

I
t

I

B

B

B

∇ ⋅ = −

⋅ ∂

⋅ ∂

bT u

T u n = t

T u n = 0

 (2.35) 

 
where I

tB∂  is the boundary partition of the inhomogeneous continuum on which 
the traction field is assigned. It is geometrically the same of that one in the 
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homogeneous problem and 0
IB∂  is the boundary partition of the inhomogeneous 

continuum in absence of both traction and displacements fields. It is 
geometrically the same of that one in the homogeneous problem. 
On the boundary partition on which the displacements field is assigned, the 
following relation has to be satisfied:  
 
  on I

uB= ∂u 0  (2.36) 
 
where I

uB∂  is the boundary partition of the inhomogeneous continuum on which 
the displacements field is assigned. It is geometrically the same of that one in the 
homogeneous problem. 
Let us to assume the stress tensor HT  as the solution for the homogeneous 
problem, and let us to assume, also, the hypothesis that: 
 
 I HT = T . (2.37) 
 
In this way, the equations in the differential system (2.29) are automatically 
satisfied. Moreover, if HT  is the solution of the first anisotropic and 
homogeneous problem, we have that the compatibility condition: 
 
 ( ):H H ∇ × ∇ × =  0T  (2.38) 

 
has to be also satisfied. As well-known, this ensures that a displacement field 

Hu  exists. So, it is possible to write the strain-displacement relationship:  
 
 ( ):H H H Hsym= = ∇ ⊗E T u  (2.39) 
 
where Hu  is displacements field, solution of the homogeneous problem. Then, 
in order to accept the hypothesis (2.37), the following equation:  
 
 ( ) ( ): :I I H Hλ   ∇ × ∇ × = ∇ × ∇ × =    0T T   (2.40) 

 
becomes necessary and sufficient condition for the existence of a displacement 
field Iu , where Iu  is the displacements field, solution of the inhomogeneous 
problem, and it is given by:  
 
 ( ) : :I I I I H Hsym λ∇ ⊗ = = =u E T T  . (2.41) 
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The compatibility condition (2.40), in general, is not satisfied. Therefore, it is 
necessary to find the conditions under whose it becomes true, (Fraldi, Cowin, 
2004). Without loss of generality, let us consider:  
 3( )λ λ= x  (2.42) 
 
that means that the 3x  is the direction locally coaxial with the gradient of λ , i.e.: 
 
 [ ]30,0,T xλ λ∇ = ∂ ∂ . (2.43) 
 
So, by recalling that Hu  is the solution of the homogeneous problem, and by 
operating some algebraic manipulations, the set of compatibility equations (2.40) 
can be reduced to five differential equations as it is shown:  
 

 

( )
( )

( )
( )
( ) ( ) ( )

,33 1,1 ,3 1,3 3,1 ,1

,33 2,2 ,3 2,3 3,2 ,2

,3 1,2 2,1 ,1

,3 1,2 2,1 ,2

,33 1,2 2,1 ,3 1,3 3,1 2,3 3,2,2 ,1

0

0

0

0

0

H H H

H H H

H H

H H

H H H H H H

u u u

u u u

u u

u u

u u u u u u

λ λ

λ λ

λ

λ

λ λ

 + − =


+ − =
 − =

 − =

  + + − + − =  

 (2.44) 

 
where, obviously, is absent any prescribed constraints about the relation between 
the first and the second derivatives of the parameter λ .  
It can be noted that the terms in the parentheses represent the skew components 
of the H∇ ⊗ u , that are local rotations, while the only present strain components 
are ( )( )3 3 ,1 1 H

i j i juδ δ− − , having indicated with hkδ  the standard Kronecker 
operator. It has to be noted that: 

1. the displacement field for the reference homogeneous problem has to be 
related, at each internal point HB∈x , with a local plane strain field, 
where any plane with support the axis 3x  can be the plane of the strains; 

2.   det 0H =E ;                   (2.45) 
3. the vector λ∇ , the corresponding points IB∈x , has to be coaxial with 

the support axis 3x  of plane of the strains in the homogeneous problem; 
4. ( )Hcurl u  must be independent from 3x -direction, i.e. the λ∇ -

direction. 
In the previous statements, analogously to what has been done with the stress 
state, it has been implicitly considered the definition about the plane strain: a 
strain state will be said plane if, in a fixed point x  of the solid, there is a plane 
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of the strains to which all the strain components ijε  belong. It is easy to 
demonstrate that this plane exists if the strain tensor E  has a zero eigenvalue. 
So, if { }1 2 3ξ ,ξ ,ξ  is the orthogonal principal reference frame of the strain tensor 
E  and if 3ξ  is assumed, for example, as the eigenvector associated to the zero 
eigenvalue of E , the plane of the strains must coincide with 1 3ξ ξ−  plane. It 
follows that a necessary and sufficient condition for the existence of a plane 
strain is given by: 
 
 det 0=E . (2.46) 
 
It has to be noted that the satisfaction of the compatibility condition (2.40) yields 
that the displacements field of the homogeneous problem has to satisfy the 
equations (2.44). This compatibility condition (2.40), therefore, may be rewritten 
in the form:  
 

          
( ){ }

( ) ( ){ }
:

: 0, , 0

H H

H H

curl curl

V curl sym

λ

λ

  = ⇔ 

∀ ∈ ∇ ⋅ = ∇ ⊗ = ∇ ⊗ ⋅ =

0

0

T

h h u h u h h


 (2.47) 

 
where ( )2( ) , ( ) 0,C B Bλ λ α α +∈ ∀ ∈ > > ∈x x x , h  is any unit vector 

defined in the three-dimensional Euclidean space 3  and V  is the 
corresponding vector space. Moreover, it is worth to note that the assumed 
position (2.27) and the hypothesis (2.37), that is true if the equation (2.40) is 
satisfied, imply: 
 
 I Hλ=E E . (2.48) 
 
So, at this point, it can be stated that any anisotropic and homogeneous elastic 
problem that possesses a solution represented by the displacement equations can 
be considered a Displacement Auxiliary Solution for the corresponding dual 
inhomogeneous elastic problem.  
In other words, it can be possible to demonstrate the following theorem: 
 
 
Displacement Associated Solution (DAS) Theorem 
 
Consider two geometrically identical anisotropic elastic objects, one 
homogeneous, HB , and the other inhomogeneous, IB , respectively. Let be H  
and ( )I Hλ= x   the corresponding compliance tensors. The two elastostatic 
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Cauchy problems associated with the two objects, in presence of the body forces 
and of mixed boundary-value, are: 
 

 

( )
( )

( )
( )

0

0
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⋅ = ∂ = ∂

⋅ = − ⋅ = ∂

⋅ = ∂ = ∂

b

0 0

b

0 0

T u T u n t

T u n u

T u T u n t

T u n u

∇

∇
 (2.49) 

 
If HT  is the solution of the homogeneous problem Hp , then I H=T T  if and 
only if the second part of the equation (2.47) is verified, i.e. if:  
 

( ),H H H Hcurl skew= ∀ ∇ ⊗ = ∧w u v u v w v  
 
we have that: 
 

 
( )

( )
{ }

,
0, .

0

H

I H

H

curl
V

sym
λ

 ∇ ⊗ = ∀ ∈ ∇ ⋅ = ⇔ = 
∇ ⊗ ⋅ =  

0u h
h h T T

u h h
 (2.50) 

 
In other words, when a solution { }, ,H H H H

ε = u E TB  for an anisotropic 

homogeneous elastic problem Hp  is known, the DAS theorem yields the 
corresponding solution for an inhomogeneous elastic problem Ip  as 

{ },I H H
ε λ= E TB , if and only if the anisotropic and homogeneous elastic 

problem possesses, everywhere in the object, a displacement solution satisfying 
the equations (2.44) and if the displacements boundary conditions are the same 
for both the homogeneous and inhomogeneous objects.  
The solution Iu , for the inhomogeneous problem, in general, have to be 
integrated with reference to the specific case. It is worth to underline that in the 
case where displacement boundary-value u  is not equal to zero, the elastic 
mixed problem can be rewritten as the corresponding first type one, in which 
only the traction and reaction fields are considered. For more details on D.A.S. 
demonstration, see (Fraldi, Cowin, 2004). It is useful to underline, now and 
again, the geometrical interpretation of the result of the theorem, constituted by 
the observation that, in order to find an analytical solution for a given elastic 
inhomogeneous and anisotropic body in the form { },I H H

ε λ= E TB , a necessary 
and sufficient condition is that the displacement solution for the corresponding 
anisotropic and homogeneous problem is related with a local plane strain field 
that has as plane of the strains any plane with support an axis coaxial with the 
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gradient of λ , with rotational part depending on this gradient direction, only. 
The D.A.S. theorem can be generalized to comprise different types of composite 
materials. For example, it is possible to consider the case of a multi-linear law 
for λ , i.e.: 
 
 0 1 1 2 2 3 3λ λ λ λ λ= + + +x x x  (2.51) 
 
with iλ , { }0,...,3i =  arbitrary constants.  
In this case, it is obtained that the second derivatives of the differential system 
(2.44) go to zero, therefore, the compatibility equation system becomes as it 
follows: 
 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( ) ( )
( ) ( )

* * * *
1 1,2 2,1 2 1,2 2,1,2 ,1

* * * *
2 2,3 3,2 3 2,3 3,2,3 ,2

* * * *
3 1,3 3,1 1 1,3 3,1,1 ,3

* * * * * * * *
1 1,2 2,1 1,3 3,1 2 1,3 3,1 3 1,2 2,1,3 ,2 ,1 ,1

* * * * *
2 2,1 1,2 1,3 3,1 1 2,3,3 ,1

u u u u

u u u u

u u u u

u u u u u u u u

u u u u u

λ λ

λ λ

λ λ

λ λ λ

λ λ

− = −

− = −

− = −

 − + − = − + −
 
 − + − = −
  ( ) ( )
( ) ( ) ( ) ( )

* * *
3,2 3 2,1 1,2,2 ,2

* * * * * * * *
3 3,1 1,3 3,2 2,3 1 3,2 2,3 2 3,1 1,3,2 ,1 ,3 ,3

u u u

u u u u u u u u

λ

λ λ λ










 + −

  − + − = − + −  

 (2.52) 

 
Because of the arbitrary of the assumption about the constants in the λ  law, by 
setting to zero all skew components of H∇ ⊗ u , a very closed solution of the 
system can be found in the classical strain potential form, (Barber, 1992), that 
is: 
 
 H φ= ∇u  (2.53) 
 
where ( )φ φ= x  is a scalar function. The displacement in the form of the 
equation (2.52) produces, as well-known, an irrotational deformation field and 
constitutes the irrotational part of the Papkovich-neuber representation in the 
isotropic elasticity, (Barber, 1992). The reason for which this particular case 
could result very useful is related to the fact that many fundamental solutions in 
isotropic and anisotropic elasticity have a representation as described in (2.52), 
as the axisymmetric, thermoelastic and heat-conduction problems. 
It is, also, interesting to observe that, for the case of multi-linear law of λ , not 
any prescription on the form of the strain tensor HE  is necessary and, so, it is 
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possible to use as Displacement Associated Solutions all the three dimensional 
solutions about anisotropic elasticity, satisfying the equation (2.52), that is, all 
the three dimensional solutions that satisfy the equation: 
 
 Hcurl = 0u  (2.54) 
 
For the examples of applicability of the DAS theorem and for more details on its 
formulation, let us to send to the references being in literature, (Fraldi, Cowin, 
2004).  
It is worth to note that the DAS theorem, like the SAS one, yields the possibility 
to find a closed-form solution for some inhomogeneous materials and it 
evidences that this possibility depends, in general, on the relation between the 
geometry of the strain distribution in the homogeneous material and the 
structural gradient, λ∇ , of the inhomogeneous material. 
 
 
2.4. ANISOTROPIC MEDIA: VOLUME FRACTION AND FABRIC TENSORS 
 
In multiphase or damage materials, mechanical properties are closely related to 
the underlying microstructure or crack distribution. Although the volume 
fraction is the primary parameter in the geometric characterization of the 
microstructure of such materials, it does not provide information about the 
arrangement and the orientation of the microstructure. It is therefore necessary to 
introduce further parameters able to describe such orientations. The approach 
commonly use to modelling the material microstructure consists on introducing 
tensors of higher rank which characterize the microstructural architecture. In 
particular, in many applications, microstructural anisotropy seems to be 
sufficiently well described by a scalar and a symmetric second rank fabric 
tensor, which restricts the material symmetry to orthotropy. Fabric tensors may 
be defined in a wide number of ways but it is required to be a positive define 
tensor that is a quantitative stereological measure of the microstructural 
architecture, a measure whose principal axes are coincident with the principal 
microstructural direction and whose eigenvalues are proportional to the 
distribution of the microstructure in the associated principal direction. The fabric 
tensor may be measure on a finite test volume and it is considered a continuous 
function of the position in the material. It should be highlight that since the 
fabric tensor is a continuum point property, its applicability to solve real 
problem is really difficult because would require a wide number of measures. In 
other words it would be necessary evaluate the fabric tensor in each point of the 
material. In the next sections, some way proposed in scientific literature to 
construct fabric tensors are illustrated.  
 
 
2.4.1. Mean Intercept Lenght (MIL) Tensor 
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In order to characterize the microstructural anisotropy in orthotropic materials, 
Harrigan and Mann (1984) proposed a particular second order tensor – the so-
called mean intercept length (MIL) tensor – related to the stereological 
measurement of the microstructural arrangement. In particular, the MIL in a 
material is define as the average distance, measured along a particular straight 
line, between two interfaces of the two different constituents. The value of the 
MIL is a function of the slope θ  of the line along which the measurement is 
made in a specific plane. If, by plotting in a polar diagram the MIL – measured 
in the selected plane passing through a particular point in the specimen – as 
function of θ , the polar diagram produced ellipses (see Figure 2.4), than the 
values of all MILs in the plane may be represented by a second-order tensor in 
two dimension.    
 

 
Fig. 2.4 – Polar diagram of the Mean Intercept Length function of a cancellous bone  
 
By extending these consideration to a three-dimensional case, the MILs in all 
direction would be represented by an ellipsoid that is by a positive define second 
rank tensor M  which is commonly related to the mean intercept length ( )L n  by 
the relationship ( )21/ = ⋅L n n M n , where n  is the unit vector in the direction of 
the mean intercept length measurement.  
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The MIL approach, as well as other stereological methods – e.g. the volume 
orientation method, the star volume distribution method – was proposed to 
construct the fabric tensor for biphasic materials, with particular reference to a 
specific porous material, the cancellous bone (Odgaard et al., 1997). However, it 
is worth to highlight that for particular microstructure – e.g. planar fibre 
networks or materials made of a set of plates – the MIL distribution is not in 
general elliptic and so it may not be analytically expressed in terms of a second-
order tensor (Tözeren and Skalak, 1989).  
Cowin (Cowin,1986) defined a fabric tensor H  related to the MIL tensor M  by 

-1/2=H M . Such tensor is well defined being the positive square root of the 
inverse of the positive define symmetric tensor M . The difference between H  
and M  is in the shape of ellipsoid while the principal axes coincide. 
 
 
2.4.2. Orientation Distribution Function (ODF) 
 
Let ϕ  be some macroscopic scalar property of a material. At a given instant, ϕ  
generally depends on the material point, identified with the reference position 
vector x , and on the orientation, specified by the unit vector n ; that is, 

( ),ϕ ϕ= x n .  
Since only the dependence of ϕ  on n  is concerned in subsequent investigations, 
it is convenient to consider x  as fixed and drop the dependence of ϕ  on x . 
Then we write: 
 
 ( ) , :ϕ = →nf f L R  (2.55) 
 
and call f, the scalar-valued function defined on the unit sphere L , the 
orientation distribution function (ODF) of the property ϕ . Concretely ϕ  may be 
the effective surface density of the microdefects, Young’s modulus, the wave 
speed, the electrical resistivity, the fatigue limit, etc. (Lemaitre et al., 1987).  
The function ( )nf  must satisfy the condition: 
 
 ( ) ( ) ,= − ∀ ∈n n nf f L  (2.56) 
 
because any material property ϕ  in a direction is independent of the geometrical 
choice made between n  and −n  for defining that direction. It is possible to 
prove that the invariance requirement (2.56) is satisfied if and only if there exists 
a function f̂  from = ⊗N L L  to R  such that  
 
 ( ) ( ) ( )ˆ ˆ ,= ⊗ = ∀ ∈n n n N nf f f L  (2.57) 
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In the following we only consider the function ( )ˆ Nf  for which the condition 
(2.56) is verified.  
Assume ( )ˆ Nf  to be square-integrable: 

 ( )
2ˆ < +∞∫ Nf da

L
 (2.58) 

 
where sinθ θ φ=da d d  is an infinitesimal surface element of the unit sphere L . 
It is that known (Vilenkin, 1969; Bunge, 1982; Jones, 1985) that ( )ˆ Nf  can be 
expanded in the following Fourier series:  
 

 
( ) ( ) ( ) ( )

( ) ( )
0 1 2

ˆ ...

: :: ...,

f f f f

g

= + + +

= + + + ∀ ∈

N N N N

G' F N ' N N N 
 (2.59) 

 
which is convergent in mean, i.e.: 
 

  ( ) ( ) ( ) ( ) ( ) ( )
2

0 1
ˆlim 0, : ...

→∞
− = = + + +∫ N N N N N Nn n nn

f s da s f f f
L

 (2.60) 

 

In the equation (2.59), ( ) ( ){ }, , ,...I F N N  are generalized spherical 
harmonics (Kanatani, 1984; Onat, 1984; Jones, 1985) and form a complete 
orthogonal basis for the squere-integrable functions on L .  

The first two tensor spherical harmonics ( )F N  and ( )N  are of particular 
interest. In view of the tensor products of Kronecker-type, they may be written 
in the coordinate-free forms: 
 

      
( ) 1

3
= −F N N I

  (2.61) 

      
( ) ( )

( )
1
7

1
35

= ⊗ − ⊗ + ⊗ + ⊗ + ⊗ + ⊗ + ⊗ +

⊗ + ⊗ + ⊗

N N N I N N I I N N I I N N I

I I I I I I


 (2.62) 

 
The orthogonality of the basis functions ( ) ( ){ }, , ,...I F N N  means that  
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 (2.63) 
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where 6  denotes the sixth-order zero tensor. It is important to remark that 
( )F N  is symmetric and traceless:  

 
 ; : 0= =F F I FT  (2.64) 
and that ( )N  is completely symmetric and traceless:  
 

( ) ( ) ( ); :: :: , , ;= ⊗ = ⊗ = ⊗ ∀ ∈ =I I Y X Y X X Y I     T T 0L  (2.65) 

 
The first three expansion coefficients of equation (2.59) can be determined from 

( )f n  via the integrals (Kanatani, 1984):  
 

 
( ) ( ) ( )

( ) ( )

1 15ˆ ˆ, ' ,
4 8

315 ˆ' .
32

g f da f da

f da

π π

π

= =

=

∫ ∫

∫

N G N F N

N N

L L

L
 

 (2.66) 

 
Due to equations (2.64) and (2.65), 'G  turns out to be symmetric and traceless 
and '  to be completely symmetric and traceless. With these properties, in the 
most general case, 'G  and '  contain five and nine independent components, 
respectively.  
It is readily seen from equations (2.59) and (2.60) that any square-integrable 
ODF ( )f̂ N  is fully characterized by its scalar and tensor expansion coefficients 

{ }, , ,...g ' 'G  . If only the leading terms (for example, the first three ones) of the 
series expansion, (2.59), are retained, a finite or discrete description is then 
obtained for ( )f̂ N . Theoretically speaking, the accuracy of such a description 
increases with the number of the leading terms being employed; in practice, the 
maximum value of this number is determined by the degree of accuracy with 
which the directional data of the property ϕ  are experimentally acquired.  
The importance of this result resides in the fact that only the tensors of zero or 
even orders are usable for a finite description of the ODF of a scalar-valued 
physical or mechanical property ϕ .  
 
 
2.4.3. Relationship between Fabric Tensor and Elasticity Tensor 
 
From a mathematical point of view, identifying the dependence of the elastic 
behaviour of the material on its microstructure consists in analyzing the formal 
relationship between the fabric tensor and the elasticity tensor.  
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The main attempt to relate a fabric tensor describing microstructure to a fourth 
rank elasticity tensor – with specific reference to porous materials – is due to 
Cowin (Cowin, 1985).  
He proposed a model based on a normalized second rank fabric tensor and 
developed a general representation of C  as a function of the solid volume 
fraction γ  and of the invariants of the fabric tensor H  based on the notion that 
the matrix material of the porous elastic solid is isotropic and that the anisotropy 
of the porous elastic solid itself is due only to the geometry of microstructure 
represented by the fabric tensor. The mathematical statement of this notion is 
that the stress tensor T  is an isotropic function of the strain tensor E  and the 
fabric tensor H  as well as the solid volume fraction γ . Thus, the tensor valued 
function: 
 
 ( ), ,γ=T T E H  (2.67) 
 
has the property that:  
 
 ( ), ,T T Tγ=QTQ T QEQ QHQ  (2.68) 
 
for all orthogonal tensors Q .  
This definition of an isotropic tensor valued function is given, for example, by 
Truesdell and Noll (1965).  
In accord with the isotropy assumption, the stress tensor T  has the 
representation:  
 

               
( )

( ) ( ) ( )
2 3 4 5 6

7 8 9

+ + + + + +

+ + + + + +

2 2
1

2 2 2 2 2 2 2 2

= f f f f f f

f f f

T I H H E E HE EH

H E EH HE E H H E E H
 (2.69) 

 
where 1f  through 9f  are function of the ten invariants TrH , 2TrH , 3TrH , 
TrE , 2TrE , 3TrE , TrHE , 2TrH E , 2TrHE , 2 2TrE H . This representation is 
reduced by the requirement that T  be linear in E  and that T  vanish when E  
vanishes, thus: 
 
        ( ) ( )2 3 4 6 7

2 2 2
1= f f f f f f+ + + + + + +T I H H E HE EH H E EH  (2.70) 

 
where 1f , 2f , 3f  must be of the form:  
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1 2 3

1 1 2

2 3 3

,

,

2
1

2
2

2
3

f a Tr a Tr a Tr
f d Tr b Tr b Tr
f d Tr d Tr b Tr

= + +

= + +

= + +

E HE H E
E HE H E
E HE H E

 (2.71) 

 
and where 1a , 2a , 3a , 1b , 2b , 3b , 1d , 2d  and 3d , are function of TrH , 2TrH  
and 3TrH . It follows then that:  
 

( ) ( )
( ) ( )
( )

1 2 3 1 1 2

2 3 3 1 2

3

2 2

2

2 2

2 2

2 2

= a Tr a Tr a Tr d Tr b Tr b Tr

d Tr d Tr b Tr c c

c

+ + + + +

+ + + + + +

+ +

T I E HE H E H E HE H E

H E HE H E E HE EH

H E EH

 (2.72) 

 
where we have set 4 12f c= , 6 22f c=  and 7 32f c= . This result may be expressed 
in indicial notation as: 
 

 

( )
( )

( )
( )

( )

1 2 3

1 1 2

2 3 3

1 2

3

2 2

2

ij ij kk rp pr rq qp pr

ij kk rp pr rq qp pr

is sj kk rp pr rq qp pr

ij ir rj ir rj

ip pr rj ir rp pj

T a E a H E a H H E

H d E b H E b H H E

H H d E d H E b H H E

c E c H E E H

c H H E E H H

δ= + + +

+ + + +

+ + + +

+ + +

+ +

 (2.73) 

 
Comparison of this result with the constitutive equation ij ijhk hkT C E=  suggests 

that ijhkC  should be of the form: 
 

           

( ) ( )
( )

( ) ( )

1 1 2 2 1 3

3 2 3 1

2 3

2

2 2 .

ijhk ij ij is sj hk ij ij is sj hk

ij ij is sj hq qk hi kj

ih kj ih kj ip pk kj ih kp ps

C a d H d H H a b H d H H H

a b H b H H H H c

c H H c H H H H

δ δ δ

δ δ δ

δ δ δ δ

= + + + + +

+ + + +

+ + + +

 (2.74) 

 
In order to satisfy the symmetry conditions (1.90) we must set 1 2d a= , 2 3d a= , 
and 3 2d b=  and take the symmetric parts of the terms multiplied by 12c , 22c , 
and 32c  with respect to hk and ij. The final results may be express as follow: 
 



CHAPTER II: HETEROGENEOUS MATERIALS 

 
LUCA ESPOSITO –PHD THESIS 74 

 
 

           

1 2 3

1 2 3

1 2

3

( ) ( )

( )

( ) ( )

(

ijhk ij hk ij ij hk hk ij hq qk hk iq qj

ij hk ij hq qk is sj hk is sj hq qk

hi kj ki hj ih kj hj ki ik hj kj hi

ir rh kj rj hr ki ir rk hj kr rj ih

C a a H H a H H H H
b H H b H H H H H H b H H H H
c c H H H H
c H H H H H H H H

δ δ δ δ δ δ

δ δ δ δ δ δ δ δ

δ δ δ δ

= + + + + +

+ + + + +

+ + + + + + +

+ + + + )

 (2.75) 

 
where 1a , 2a , 3a , 1b , 2b , 3b , 1c , 2c  and 3c  are functions of γ  and TrH , 

2TrH  and 3TrH . It is possible to show that the representation (2.75) for the 
fourth rank elasticity tensor is not capable of representing all possible elastic 
material symmetry. The last material symmetry that may be represented by is 
orthotropy.  
In fact, expanding in indicial notation in the coordinate system that diagonalized 
the fabric tensor ( 12 13 23 0H H H= = = ), only the following nine components of 
the elastic tensor are non-zero and are function of the nine coefficient 1a , 2a , 3a
, 1b , 2b , 3b , 1c , 2c , 3c  and of the three eigenvalues of H , 11H , 22H  and 33H :  
 

2 3 4
1111 1 1 2 2 11 3 1 3 11 2 11 3 11

2 3 4
2222 1 1 2 2 22 3 1 3 22 2 22 3 22

2 3 4
3333 1 1 2 2 33 3 1 3 33 2 33 3 33

2
1122 1 2 11 22 3 11

2 2( 2 ) (2 4 ) 2

2 2( 2 ) (2 4 ) 2

2 2( 2 ) (2 4 ) 2

( ) (

C a c a c H a b c H b H b H
C a c a c H a b c H b H b H
C a c a c H a b c H b H b H
C a a H H a H

= + + + + + + + +

= + + + + + + + +

= + + + + + + + +

= + + + + 2
22 1 11 22

2 2 2 2
2 11 22 22 11 3 11 22

2 2
1133 1 2 11 33 3 11 33 1 11 33

2 2 2 2
2 11 33 33 11 3 11 33

2 2
3322 1 2 33 22 3 33 22 1 33 22

2 2 2 2
2 33 22 22 33 3 33 22

121

)

( )

( ) ( )

( )

( ) ( )

( )

H b H H
b H H H H b H H

C a a H H a H H b H H
b H H H H b H H

C a a H H a H H b H H
b H H H H b H H

C

+ +

+ + +

= + + + + + +

+ + +

= + + + + + +

+ + +
2 2

2 1 2 11 22 3 11 22
2 2

1313 1 2 11 33 3 11 33
2 2

3232 1 2 33 22 3 33 22

( ) ( )

( ) ( )

( ) ( )

c c H H c H H
C c c H H c H H
C c c H H c H H

= + + + +

= + + + +

= + + + +

(2.76) 

 
Note that these nine components of the elasticity tensor are distinct if and only if 
the eigenvalues of H  are distinct. In fact, it is easy to see that by setting 

22 33H H=  in the (2.76), only the following six constants are different: 
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2 3 4
1111 1 1 2 2 11 3 1 3 11 2 11 3 11

2 3
2222 3333 1 1 2 2 22 3 1 3 22 2 22

4
3 22

2 2
1122 1133 1 2 11 22 3 11 22 1 11 22

2 2 2
2 11 22 22 11 3 11 2

2 2( 2 ) (2 4 ) 2

2 2( 2 ) (2 4 ) 2

( ) ( )

( )

C a c a c H a b c H b H b H
C C a c a c H a b c H b H

b H
C C a a H H a H H b H H

b H H H H b H H

= + + + + + + + +

= = + + + + + + + +

+

= = + + + + + +

+ + + 2
2

2 2
3322 1 2 33 22 3 33 22 1 33 22

2 2 2 2
2 33 22 22 33 3 33 22

( ) ( )

( )

C a a H H a H H b H H
b H H H H b H H

= + + + + + +

+ + +

 

 
2 2

1212 1313 1 2 11 22 3 11 22
2 2

3232 1 2 33 22 3 33 22

( ) ( )

( ) ( )

C C c c H H c H H
C c c H H c H H

= = + + + +

= + + + +
 (2.77) 

and only five of which are independent being 2222 2233 23232C C C= + . Thus, the 
represented material symmetry is the transversely isotropy. In the same way, if 
the eigenvalues of H  are all equal the represented material symmetry is the 
isotropy, being only the following three constant different  
 

       

2
1111 2222 3333 1 1 2 2 11 3 1 3 11

3 4
2 11 3 11

2 2
1122 1133 2233 1 2 11 22 3 11 22 1 11 22

2 2 2 2
2 11 22 22 11 3 11 22

2 2
1212 1313 3232 1 2 11 22 3 11 22

2 2( 2 ) (2 4 )

2

( ) ( )

( )

( ) (

C C C a c a c H a b c H
b H b H

C C C a a H H a H H b H H
b H H H H b H H

C C C c c H H c H H

= = = + + + + + +

+ +

= = = + + + + +

+ + +

= = = + + + + )

 (2.78) 

 
and only two of which are independent, being 1111 1122 12122= +C C C .  
The nine functions 1a , 2a , 3a , 1b , 2b , 3b , 1c , 2c  and 3c  depending upon γ , 
TrH , 2TrH  and 3TrH , can be determine by means of experimental tests.  
Following this method, Zysset and Curnier (1995) introduce a general approach 
for relating the material microstructure to the four rank elasticity tensor. In 
particular, they describe the microstructure by means of a scalar and a 
symmetric, traceless second rank fabric tensor. By using a representation 
theorem for anisotropic function with tensorial arguments, they derive a general 
expression for the elastic free energy and discuss the resulting material 
symmetry in terms of the fabric tensor. Specifically, they hypothesize that the 
mechanical anisotropy of the material is identical to that of a single 
microstructural property ( ) 0f f= >N , where = ⊗N n n  is the dyadic product 
of the unit vector n  specifying the orientation (He et al., 1995). By following 
the procedure shown in section 2.2, assuming that the function f  to be square 
integrable, it can be expanded in a convergent Fourier series  
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 ( ) ( ) ( ): :: ...,f g= ⋅ + + + ∀N I G F N N N   (2.79) 
 
where I , ( )F N  and ( )N  are even ranked tensorial basis functions – in 

particular I  is the second order unit tensor, while ( )F N  and ( )N  are given 
by the (2.61) and (2.62), respectively – and g , G  and   are the corresponding 
even ranked tensorial coefficients, called fabric tensor and given by the 
equations (2.66). As highlight in section 2.2., the accuracy of the series 
expansion improves with the number of retained leading terms.  
However, in most applications, the first and second terms provide a sufficient 
description of material anisotropy. So, the orientation distribution function f  is 
approximate with:  
 ( ) ( ):f g= ⋅ +N I G F N  (2.80) 
 
which implies a restriction on material symmetry – that can be orthotropy if all 
three eigenvalues of G  are distinct, transerse isotropy if only two eigenvalues of 
G  are distinct or isotropy if the tensor G  vanishes.  
By using the second rank tensor representation Q  of the orthogonal group Orth, 
the material symmetry group G can be characterized by the fabric tensors:  
 

 
( ) ( )

T

T

T

g = g
=

=



∈ ⇔ 

⊗ ⊗



Q IQ I
Q GQ G

Q
Q Q Q Q 

G  (2.81) 

 
Following this hypothesis, a scalar valued function ( )ψ E  invariant with respect 
to the elements of the symmetry group G can be identified with an isotropic 
function ( )ˆ ,g, , ,ψ E G   of the same argument and the corresponding fabric 
tensor (Boehler, 1987):  
 

( ) ( )T ,ψ ψ ∀ ∈E = Q EQ Q G , 

( ) ( ) ( )( )ˆ ˆ TT T,g, , , ,g, , ,ψ ψ ⊗ ⊗ ∀ ∈E G = Q EQ Q GQ Q Q Q Q Q  Orth  

 
Representation theorems then provide the most general form of the isotropic 
scalar function ( )ˆ ,g, , ,ψ E G   in terms of invariants of the arguments.  
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For a scalar g and two second rank tensor arguments E  and G , with G  being 
traceless, a set of irreducible invariants is given by (Boehler, 1987) ( )Tr E , 

( )2Tr E , ( )3Tr E , g, ( )2Tr G , ( )3Tr G , ( )Tr EG , ( )2Tr E G , ( )2Tr EG , 

( )( )2Tr EG .   

Retaining only quadratic terms in E  to come up with linear elasticity, general 
form of the elastic free energy is: 
 

      

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

2 231 2

22 2 25 6
4 7

2 2
8 9

, ,
2 2 2

2 2

2 cc cg Tr Tr Tr

c cc Tr Tr Tr c Tr Tr

c Tr Tr c Tr Tr

ψ ψ= = + +

+ + + +

+ +

E G E E EG

E G EG EG E EG

EG EG E EG

 (2.82) 

where ic  are functions of g and the two invariants of G . The constitutive 
equation for the stress tensor is obtained by derivation of the free energy 
potential ψ  with respect to the strain E : 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 2 3 4

5 6 7

8 9

, ,

2 2

2 2 2 2

g c Tr c c Tr c

c Tr c c Tr Tr

c Tr Tr c Tr Tr

ψ∂
= =

∂
+ + + +

+ + + +

T E G E I + E + EG G + EG + GE
E

EG G GEG EG I E G

EG G EG G EG I E G

 (2.83) 

 
The elasticity tensor is obtained by further derivation: 
 

  

( )

( )
( ) ( ) ( )

2

2 2
1 2 3 4 5 6

2 2 2 2
7 8 9

2 ,g,

c c c c c c

c c c

ψ∂
=

∂

= ⊗ + ⊗ + ⊗ + ⊗ ⊗ + ⊗ + ⊗

+ ⊗ + ⊗ + ⊗ + ⊗ + ⊗ + ⊗

E G
E
I I I I G G G I + I G G G G G

I G G I G G G G I G G I



 (2.84) 

 
The material symmetry represented by the elasticity tensor in the form (2.84), 
like which one in (2.75), is at least the orthotropy that may degenerate into 
transverse isotropy when two eigenvalues of G  are identical and into isotropy 
when the fabric tensor G  vanishes. By using the spectral decomposition of G : 
 

i i= gG G , i i i= ⊗G g g  
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where ig  are the eigenvalues and ig  are the unit orthogonal eigenvectors of G , 
and the property 1 2 3+ + =G G G I , the elasticity tensor (2.84) may be translated 
in the general orthotropic form : 
 
        ( ) ( )* 2ii i i ij i j j i ij i j j iλ λ µ= ⊗ + ⊗ + ⊗ + ⊗ + ⊗G G G G G G G G G G  (2.85) 
 
where summation is performed for i < j  due to symmetrization of tensor 
products. The identification of the coefficients leads to: 
 

( ) ( ) ( )
( )

2 4 2 3 2
1 2 3 4 5 6 7 8 9

* 2 2 2 2 2 2
1 3 5 7 8 9

1 1 1
2 4 62 2 2

2 2 2 ,

,
ii i i i i i i i

ij i j i j i j i j j i i j

ij i j i j

c c c g c g c g c g c g c g c g

c c g g c g g c g g c g g g g c g g

c c g g c g g

λ

λ

µ

= + + + + + + + +

= + + + + + + + +

= + + +

 (2.86) 

At this stage, additional assumptions are necessary to guide the choice of the 
nine functions ic .  
The hypothesis they made, consists in introducing a homogeneity property for 
the set of fabric tensor { }g ,G , which means that anisotropy of the elastic 
constitutive law is independent of the size or physical units of the 
microstructural properties ( ) ( ), , 0k gλ λ λ= ∀ >G G  , where k 0≠  is the 
degree of the homogeneity property.  
By considering the isotropic elasticity tensor, 2c cλ µ= ⊗ + ⊗I I I I , and 
substituting the identity tensor I  by the tensor g +I G : 
 
 ( ) ( ) ( ) ( )2c cg + g + g + g +λ µ= ⊗ + ⊗I G I G I G I G  (2.87) 
 
where cλ  and cµ  are Lamé like constants, a particular form of the previous 
model is provided: 
 

 

2 2
1 2 3

4 5 6

7 8 9

, 2 , ,

2 , 0, 2 ,

, 0, 0

c c c

c c

c

c g c g c
c g c c
c g c c

λ µ λ

µ µ

λ

= = =

= = =

= = =

 (2.88) 

 
In the principal reference frame of G :  
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( ) ( )( ) ( )
( )( )( )

( )( )( )

, 2

2

2
c c i i i

c i j i j j i

c i j i j j i

g g g

g g g g

g g g g

λ µ

λ

µ

= + + ⊗

+ + + ⊗ + ⊗

+ + + ⊗ + ⊗

G G G

G G G G

G G G G



 (2.89) 

 
Comparison with the general orthotropic form gives:  
 

 

( )( )
( )( ) ( )
( )( ) ( )

*

2 , ,

, , ,

, , .

2
ii c c i

ij c i j

ij c i j

g g i

g g g g i j i j

g g g g i j i j

λ λ µ

λ λ

µ µ

= + + ∀

= + + ∀ <

= + + ∀ <

 (2.90) 

 
Sufficient but not necessary to satisfy the homogeneity condition, the 
substitution (2.87) provides the most simple orthotropic model that degenerates 
into transverse isotropy if two eigenvalues of G  are identical and into isotropy if 

= 0G .  
In order to generalize the previous approach, it is considered now the 
substitution (2.87) for an arbitrary strictly positive power k of the tensor g +I G . 
In the principal reference frame of G , the elasticity tensor becomes:  
 

 

( ) ( ) ( )
( )

( )

2, 2

2

k
c c i i i

k k
c i j i j j i

k k
c i j i j j i

g m

m m

m m

λ µ

λ

µ

= + ⊗

+ ⊗ + ⊗

+ ⊗ + ⊗

G G G

G G G G

G G G G



 (2.91) 

 
where i im g g= + . The coefficient exhibits the more general form:  
 

 

( )
( )
( )

2

*

2 , ,

, , ,

, , .

k
ii c c i

k k
ij c i j

k k
ij c i j

m i

m m i j i j

m m i j i j

λ λ µ

λ λ

µ µ

= + ∀

= ∀ <

= ∀ <

 (2.92) 

 
In this case, the anisotropic elastic behaviour of the material is completely 
described by the two constants cλ  and cµ , the exponent k and the fabric tensor 

{ }g ,G  and the overall elasticity tensor assumes the form: 
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( )

( )
( )

2
1 1 2 1 3

2
2 1 2 2 3

2
3 1 3 2 3

2 3

3 1

1 2

2 0 0 0

2 0 0 0

2 0 0 0 .
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

k k k k k
c c c c

k k k k k
c c c c

k k k k k
c c c c

k k
c

k k
c

k k
c

m m m m m

m m m m m

m m m m m

m m
m m

m m

λ µ λ λ

λ λ µ λ

λ λ λ µ

µ
µ

µ

 +
 
 +
 
 +=  
 
 
 
 
 



 (2.93) 
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THEORY OF HOMOGENIZATION 
 

 
 
 

Homogenization is the modelling of a heterogeneous medium by 
means of a unique continuous medium. A heterogeneous medium is 
a medium of which material properties (e. g., elasticity coefficients) 
vary pointwise in a continuous or discontinuous manner, in a 
periodic or nonperiodic way, deterministically or randomly. While, 
obviously, homogenization is a modelling technique that applies to 
all fields of macroscopic physics governed by nice partial 
differential equations, we focus more particularly on the mechanics 
of deformable bodies.  

 
 
 
3.1. REPRESENTATIVE VOLUME ELEMENT (RVE) 
 
 
Two different scales are used in the description of heterogeneous media. One of 
these is a macroscopic (x) scale at which homogeneities are weak.  
The other one is the scale of inhomogeneities and is referred to as the 
microscopic (y) scale.  
The latter defines the size of the representative volume element (Fig. 3.1.). The 
basic cell of a periodic composite is an example of RVE. From the experimental 
point of view, we can say that there exists a kind of statistical homogeneity in 
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the sense that any RVE at a specific point looks very much like any other RVE 
taken at random at another point. 
 

 
Fig. 3.1 – Representative Volume Element 

 
The mathematical problem presents itself in the following manner. Let ( )yσ  

and ( )yε  be the stress and strain at the micro scale in the framework of small-
perturbation hypothesis.  
We denote by Σ  and Ε  the same notion at the macro scale. Let ...  indicate the 
averaging operator. For a volume averaging we have:  
 

 
( ) ( )

( ) ( )

1

1

V

V

x, y dy
V

x, y dy
V

= =

= =

∫

∫

x

x

Σ

Ε

σ σ

ε ε
 (3.1) 

 
where V is the volume of the RVE.  
It is important to notice that any quantity that is an additive function is averaged 
in the micro-macro transition.  
Thus, if ρ ρ=  denotes the averaged density, then we have: 
 

 

, internal energy,

, entropy,

, dissipation

E e

S

ρ ρ

ρ ρη

φ

=

=

Φ =

 (3.2) 

3.2. LOCALIZATION PROBLEM 
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We can state the following: 
• the process that relates ( ),Σ Ε  by means of equations (3.1) and (3.2) and the 

microscopic constitutive equations is called homogenization; 
• the inverse process that consists in determining ( )yσ  and ( )yε  from Σ  

and Ε  is called localization. 
Therefore, the data are Σ  and Ε  in the localization process which corresponds 
to the following problem: 
 

 ( )
div

 =


=
 = 0

Σ

ΕP L
σ

ε
σ

 (3.3) 

 
This problem is original, because of the following two reasons: 
 

(i) the load is the averaged value of a field and not a prescription at points 
in the bulk or at a limiting surface; 

(ii) there are no boundary conditions. 
 

It follows from (ii) that the problem (3.3) is ill-posed. The missing boundary 
condition must, in some way, reproduce the internal state of the RVE in the most 
satisfactory manner. They therefore depend on the choice of RVE, more 
specifically on its size. As a rule, different choices of RVE will provide different 
macroscopic laws. 
The following give some examples of boundary conditions: 
 
 on uniform traction onV V⋅ = ⋅ ∂ − ∂n n   Σσ ; (3.4) 
 on uniform traction onV V= ⋅ ∂ − ∂u y   Ε  (3.5) 
 
With this and div = 0σ , in V, it is verified that (3.1) holds good. Indeed, for 
(3.5) we have: 
 

( ) ( )1 1 1
2 2 2

ji
i j j i ik k j jk k iV V V

j i

uu dv u n u n ds y n y n ds
y y ∂ ∂

 ∂∂
+ = + = Ε + Ε  ∂ ∂ 

∫ ∫ ∫  (3.6) 

 
or 
 
 ( ) =u Εε  (3.7) 
The proof for (3.4) is self-evident. 
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The above reasoning does not apply to the case of a periodic structure. In that 
case, σ  and ε  are locally periodic (they are only quasi-periodic for a large 
sample) and the periodicity condition read as follows: 
 
• the traction ⋅ nσ  are opposite on opposite faces of V∂  (where n  

corresponds to -n ); 
• the local strain ( )uε  is made of two part, the mean Ε  and the fluctucation 

part ( )u*ε  such that:  
 
 ( ) ( ) ( ), 0= =u u* u*Ε +ε ε ε  (3.8) 
 
where u*  can be shown to be periodic. Therefore, the conditions are: 
 

 
is antiperiodic,

, periodic
⋅

 ⋅

n 
u y u* u*= Ε +
σ

 (3.9) 

 
On account of (3.4), (3.5) and (3.9), the problem (3.3) now is theoretically well-
posed, but this must be verified for each constitutive behaviour. 
 
 
3.3. THE HILL-MANDEL PRINCIPLE OF MACROHOMOGENEITY 
 
Let σ  and u  be, respectively, a statistically admissible (SA) stress field and a 
kinematically admissible (KA) displacement field. Then it is possible to prove 
that: 
 
 ( ): = :u Σ Εσ ε  (3.10) 
 
The remarkable expression (3.10) is called the prinpiple of macrohomogeneity of 
Hill and Mandel (Hill, 1965, Mandel 1971) or the Hill-Mandel relation between 
micro and macro scales.  
In statistical theories this condition is viewed as an ergodic hypothesis. This 
condition, in fact, plays in the end a much more important role than the 
boundary conditions applied at the RVE. 
 
 
3.4. THE EXAMPLE OF PURE ELASTICITY 
 
In this section the localization problem in the case of anisotropic linear elastic 
components are examined.  
3.4.1. The Localization Problem 
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This problem is written in the following form (here ( )y  is the tensor of 
elasticity coefficient at the micro scale): 
 

 

( ) ( ) ( ) ( ) ( )( ): :

div
boundaryconditions

y y y y * y  = = +  =



0

uΕσ ε ε

σ

 
 (3.11) 

 
where Ε  or Σ  is prescribed. Accordingly, the fluctuation displacement u*  is 
the solution of the following problem:  
 

 
( )( ) ( )div : div :

boundaryconditions

* = −



u Εε 
 (3.12) 

 
Whenever Ε  is constant for each constituent component, it can be shown that: 
 
 ( )

 ( ) ( )div : : Sδ= nΕ Ε   (3.13) 
 
where 

 

= + −−   , ( )Sδ  is Dirac’s distribution, and n  is the unit normal 
oriented from the ‘ − ’ to the ‘ + ’ side of the surface S separating components. 
Then we can state the following: 
 
Proposition. Under classical working hypotheses applying to   (symmetry and 
positivity), the problem (3.12) admits a unique solution for all three types of 
boundary condition. 
 
To prove this we must distinguish whether it is Ε  or Σ  which is prescribed. 
 
 
3.4.2. Case where Ε  is Prescribed 
 
For the existence and uniqueness proofs one can see Suquet (1981). We shall 
only give the representation of the solution. As the problem is linear, the solution 

( )u*ε  depends linearly on the prescribed field Ε . The latter can be 
decomposed into six elementary states of macroscopic strains (stretch in three 
directions and three shears). Let ( )klχε  be the fluctation strain field induced by 

these six elementary states at the microscopic level. The solution ( )u*ε  for a 
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general macrostrain Ε  is the superposition of the six elementary solutions, so 
that we can write (summation over k and l): 
 
 ( ) ( )kl klχ= Εu*ε ε  (3.14) 
 
In all we have: 
 
 ( ) ( ) ( )( )= + = +u u*Ε Ε Ιε ε ε χ  (3.15) 
 
or, in components: 
 
 ( ) ( ):ij ijkl kl ijDε = Ε =u D Ε  (3.16) 
 
where:  
 
 ( )ijkl ijkl ij klD I ε χ= +  (3.17) 
 
Here ( )1

2klij ik jl il jkI δ δ δ δ= +  is the tensorial representation in 3  of the unity of 
6  and ijklD  is called, depending on the author, the tensor of strain localization, 

or tensor of concentrations (Mandel, 1971) or the tensor of influence (Hill, 
1967). 
 
Homogenization  
We can write in an obvious manner: 
 
 ( ): : : : := = =u D DΣ = Ε Εσ ε    (3.18) 
 
so that: 
 
 hom hom: :, = DΣ = Ε    (3.19) 
 
We note that:  
 

, T= =D I D I  
 
Equation (3.19)2 shows that the tensor of ‘macro’ elasticity coefficients is 
obtained by taking the average of ‘micro’ elasticity coefficients, the latter being 
weighted by the tensor of strain localization. It is possible to prove that the 
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tensor hom  is symmetric. For a direct proof we compute :TD σ  for an 

admissible field σ , obtaining thus: 
 

( ): :T T
ijkl kl ijkl kl ij kl ijij

D Iσ ε χ σ = = + = D Σσ  

 
i.e.,  
 

( ): : : : : :T T T= =D D u D DΣ = Εσ ε   
 
so that: 
 
 hom : :T= D D   (3.20) 
 
which is symmetric. 
 
 
3.4.3. Case where Σ  is Prescribed 
 
The localization problem than reads:  
 

 

( ) ( ) :
div

boundaryconditions

* = +


=


=



0
u u Ε =

Σ

ε ε σ
σ

σ



 (3.21) 

 
where   is the tensor of the micro elastic compliance and Ε  is an unknown. 
The existence and uniqueness of the solution may be proved (Suquet, 1981). 
Thus, here, we assume that a unique solution σ  exists. This solution depends 
linearly on data by virtue of the linearity of the problem. Let us call klS  the 
solution of the problem (3.21) for the datum klΙΣ =  - note that ( )ijkl kl ijΙ Ι= .  
Then the general solution, obtained by superposition, is written: 
 

 
( ) ( )

( )
: , i.e., ,

or ,
kl kl

ij ijkl kl ijkl kl ij

= y = A y

A Aσ

Σ

= Σ =

A

A

Σσ σ
 (3.22) 

 
where A  is the tensor of stress localization. 



CHAPTER III: THEORY OF HOMOGENIZATION 

 
TOPOLOGICAL OPTIMIZATION STRATEGIES IN MULTI-PHYSICS PROBLEMS 89 

 

The homogenized compliance tensor hom  is evaluated thus.  
We have directly: 
 
 ( ) hom: : : := = =u AΕ Σ = Σε σ    (3.23) 
 
whence: 
 
 hom := A   (3.24) 
 

We note that:  

 
 T =A I  (3.25) 
 
and for any admissible field ( )uε  we can write:  
 

( ) ( ) ( ) ( ) ( ) ( )T T: ijkl kl ij kl ij kl ijkl klij
A A Aε ε ε= = = = ΕA u u u uε  

 
so that:  
 

( )T T T: : : : : := =A u A A AΕ = Σε σ  , 

 
Whence: 
 
 hom T : := A A   (3.26) 
 
and thus hom  is symmetric. 
 
 
3.4.4. Equivalence between Prescribed Stress and Prescribed Strain 
 
First we note that hom  and hom  are inverse tensors (in 6 ) of one another if 
they correspond to the same choice of boundary conditions in the localization 
problem. Indeed, using the symmetry of hom  we can write: 
 
 ( )hom hom hom hom: : : : :

T T= = D A       (3.27) 
 
in which the first factor  is an admissible stress field  (from the definition of D   
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and A ) and the second factor is an admissible strain field. The principle (3.10) 
therefore applies and we can write ( ): =   :  
 
 hom hom: : : : : :T T T= = = =D A D A D A I    . (3.28) 
 
However, if different boundary conditions are used, one then has the estimate of 
Hill (1967) and Mandel (1971): 
 
 ( )( )3hom hom: O d l= +   , (3.29) 

 
where hom  is evaluated by using the condition (3.5), while hom  is computed 
through use of the condition (3.4), d is a characteristic size of an inhomogeneity 
and l is the typical size of the RVE. If l d , then the choice of boundary 
condition is very important. For periodic media where ( )1d l O= , this choice is 
hardly important. 
 
 
3.5. COMPOSITE HETEROGENEOUS MATERIALS: DERIVATION OF 
COMPLIANCE AND STIFFNESS TENSORS 
 
The overall properties of a composite material depends not only upon the 
constitutive properties of each phases, but also on the microstructural 
architecture and define a relationship between the overall field variables – such 
as the deformation and the stress. The determination of the overall deformation 
and stress obviously needs of the preventive determination of the deformation 
and stress, and than the solution of an elastic PDE problem which involves the 
equilibrium, compatibility and constitutive equations of each phase, as well as 
the continuity conditions of the interphase. In other words, between two different 
phases – called here (1) and (2) – it must results: 
 
 (1) (2) (1) (2),= =u u n nσ σ  (3.30) 
 
being ( )iu  the displacement field of the i-phase, ( )iσ  the stress field of the i-
phase and n  is the outer normal vector of a point on the interphase. From such 
procedure – which may be seen as a direct approach to the homogenization 
problem – seems clear that the homogenized properties depend upon the 
microstructure architecture. Consequently, this procedure is often extremely 
difficult to apply because of the equations (3.30), and may be developed only in 
vary particular – and often ideal – cases.  
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In the following section, alternative approaches to determine the overall 
properties of composite materials are presented. In particular, the direct 
approach requires the exact evaluation of the microscopic fields for some 
specific geometries, and so it is the more efficient, the more the microstructural 
geometry is similar to that one used in the model.  
The variational approaches are always able to furnish upper and lower bounds 
of the overall properties of the composite materials. In particular, such 
approaches are the only ones that may solve the homogenization problem when 
the microstructural geometries are particular irregular or not completely known. 
Obviously, the wider the range defined by the upper and lower bounds gets, the 
less the practical utility of these methods is. 
 
 
3.5.1. Direct Methods – Eshelby Solution 
 
Let consider an homogeneous, linearly elastic and infinitely extended medium, 
subjected to a uniform prescribed strain ∗Ε  on the domain Ω . Generally, the 
resulting strain Ε  is variable on Ω , but Eshelby proved that if Ω  is an ellipsoid 
then the resulting strain Ε  and hence the stress Τ , are also uniform in Ω , the 
former being given by: 
 
 ∗Ε = Ε  (3.31) 
 
where the four-order tensor   is called Eshelby’s tensor and it shows the 
following properties: 
 
• it is symmetric with respect to the first two indices and the second two 

indices, ijkl jikl ijlkP P P= = , while, in general, it is not symmetric with respect 

to the exchange of ij and kl, i. e., in general, ijkl klijP P≠ ; 
• it is independent of the material properties of the inclusion Ω ; 
• it is completely defined in terms of the aspect ratios of the ellipsoidal 

inclusion Ω , and the elastic parameters of the surrounding matrix; 
• when the surrounding matrix is isotropic, then   depends only on the 

Poisson’s ratio of the matrix and the aspect ratios of Ω . 
 
In the following this results is proving in the case of isotropic matrix with 
Poisson’s ratio ν  and shear modulus µ . Let:  
 
 ( ) ( )*

/ ' 'i jkmn mn ij ku C G dε
Ω

= − −∫x x x x  (3.32) 
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be the solution of the PDE problem of the considered problem, where the Green 
function ( )'−G x x  for the homogeneous and isotropic medium is:  

 ( ) ( )
( ) ( ) ( )

3

3 4 ' '1'
16 1 ' '

ν
πµ ν

 − − ⊗ −
− = + 

− − −  

I x x x x
G x x

x x x x
 (3.33) 

 
where I  is the second order identity tensor. Being Ω  an ellipsoid of equation:  
 

 
22 2
31 2

2 2 2
1 2 3

1xx x
a a a

+ + ≤  (3.34) 

 
through simple algebraic manipulation it result: 
 

 ( ) ( ) ( )
*

2

'
8 1 '

jk
i ijk

du g
ε

π ν Ω

−
=

− −∫
xx l

x x
 (3.35) 

 
where:  
 
 ( ) ( )( )1 2 3ijk ij k ik j jk i i j kg l l l l l lν δ δ δ= − + − +l  (3.36) 
 
being l  the versor of ( )− −x' x x' x . 
By assuming that the point x  is inside the region Ω , the integral into the (3.35) 
may be explicitly calculated.  
To achieve this goal, the volume element 'dx  may be written as 2r drdω , being 
r = −x x'  and dω  the superficial element of a unit sphere centred in x . The 
integration of the (3.35) with respect to r, yields: 
 

 ( ) ( ) ( ) ( )
*

8 1
jk

i ijku r g d
ε

ω
π ν Σ

−
=

− ∫x l l  (3.37) 

 
where ( )r l  is the positive root of:  
 
 ( ) ( ) ( )2 2 22 2 2

1 1 1 2 1 2 3 3 3 1x rl a x rl a x rl a+ + + + + =  (3.38) 
 
that is:  
 
 ( ) 2 2r f g f g e g= − + +l  (3.39) 
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with: 

 

2 2 2 2 2 2
1 1 2 2 3 3

2 2 2
1 1 1 2 2 2 3 3 3

2 2 2 2 2 2
1 1 2 2 3 31

g l a l a l a
f l x a l x a l x a
e x a x a x a

= + +

= + +

= − − −

 (3.40) 

 
By posing 2

i i il aλ = , the (3.37) becomes: 
 

 ( ) ( )

*

8 1
m jk m ijk

i

x g
u d

g
ε λ

ω
π ν Σ

=
− ∫x  (3.41) 

 
from which the strain inside Ω  may be calculated:  
 

 ( ) ( )
*

16 1
i jmn j imnmn

ij

g g
d

g
λ λε

ε ω
π ν Σ

+
=

− ∫x  (3.42) 

 
which depends upon ∈Ωx . 
So, the components of Eshelby’s tensor   introduced in the equation (3.31) are: 
 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

2
1111 1 11 1

2
1122 2 12 1

2
1133 3 13 1

2 2
1 2

1212 12 1 2

3 1 2
8 1 8 1

1 1 2
8 1 8 1

1 1 2
8 1 8 1

1 2
16 1 16 1

P a I I

P a I I

P a I I

a aP I I I

ν
π ν π ν

ν
π ν π ν

ν
π ν π ν

ν
π ν π ν

−
= +

− −

−
= −

− −

−
= −

− −

+ −
= + +

− −

 (3.43) 

 
with: 
 

 

2
1

1 2
1

4
1

11 4
1

2 2
1 2

12 2 2
1 2

3

lI d
a g

lI d
a g

l lI d
a a g

ω

ω

ω

Σ

Σ

Σ

=

=

=

∫

∫

∫

 (3.44) 



CHAPTER III: THEORY OF HOMOGENIZATION 

 
LUCA ESPOSITO –PHD THESIS 94 

 
 

 
All the non-zero components may be obtained through a cyclic permutation of 
the indexes (1, 2, 3). Such solution may be particularized for many cases of 
practical interest. By means of the solution (3.43), it is possible to determine the 
concentration strain tensor in an ellipsoidal inclusion of elasticity tensor (2)  
embedded in a homogeneous, isotropic and infinitely extended medium of 
elasticity tensor (1) . Then, under the uniform strain field 0Ε , the medium, 
supposed homogeneous, would be subjected to a uniform stress (1) 0Τ = Ε . This 
uniform stress field is perturbed by the presence of the inclusion. But the stress 
field ( ) ( )(2)2 2= Τ Ε  in a generic point of the inclusion is the same that we would 
have in the inclusion imagining to substitute the inclusion with the matrix 
subjected to 0Ε  as well as to the strain ∗Ε , such as: 
 
 ( ) ( )( )(2) (1)2 2 ∗= − Ε Ε Ε  (3.45) 

 
As proved by Eshelby, a uniform strain ∗Ε  applied on ellipsoidal region yields – 
as unique equilibrated and compatible solution – a uniform strain in the region 
given by the equation (3.31). In this case, being also 0Ε , it results: 
 
 ( ) ( )2 2 0 ∗= = + Ε Ε Ε Ε  (3.46) 
 
The (3.46) and (3.45), yield: 
 

 ( ) ( )( )( ) ( ) ( )
111 2 1

−−2 0  = + −   
    Ε Ε  (3.47) 

 
Being ( )2Ε  uniform in Ω , the concentration strain tensor into the inclusion is: 
 

 ( ) ( )( )( ) ( ) ( )
111 2 1

−−2   = + −   
       (3.48) 

 
 
3.5.2. Variational Methods – Hashin Shtrikman Variational Principle 
 
The homogenization problem of an heterogeneous RVE is equivalent to solve 
one of the following variational problems: 
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( ) ( )

( ) ( )

1 1 1inf
2 2
1 1 1inf
2 2

d

d

d d
E E

V

d d
T T

V

dV
V

dV
V

∈

∈

⋅ = + ⋅ +

⋅ = + ⋅ +

∫

∫

E E E E E E

T T T T T T

 

 
 (3.49) 

where Ε  is compatible periodic strain field space, whose average value is equal 
to zero, T  is equilibrated periodic stress field space, whose average value is 
equal to zero,   is homogenized stiffness tensor,   is homogenized 
compliance tensor, T  is the generic symmetric stress field, and E  is the generic 
symmetric strain field.  
The first members of the (3.49)1 and (3.49)2 represent the elastic energy density 
and the complementary energy density of the homogenized material. In 
particular, solving the first problem of the (3.49)1 is equivalent to determine, 
among the compatible strain fields, whose prescribed average value is E , the 
sole one that is also equilibrated. On the contrary, solving the (3.49)2 is 
equivalent of determining, among the equilibrated stress fields, whose prescribed 
average value is T , the sole one that is also compatible.  
It is possible to demonstrate that, if the stiffness tensor   and the compliance 
one   have, uniformly in V, all the eigenvalues lower down bounded by a 
positive constant, then the equations (3.49) admit one and only one solution. 
Since the functionals in the first members of the (3.49) are conjugate each other, 
(Giangreco, 2003), it follows that the homogenized properties of the material are 
well defined, hence: 
 
 -1=   (3.50) 
 
In this framework, the basic physic idea of the Hashin and Shtrikman’s 
principles is to substitute the heterogeneous medium with a reference 
homogeneous one, having a stiffness tensor, H , and a compliance tensor, H . 
In order to simulate the actual micro-structure, eigenstress and eigenstrain fields 
are prescribed on the reference homogeneous medium, as already seen in the 
previous section. So, the Hashin and Shtrikman’s variational principles are 
characterized from two tumbled variational problems: 
 
• the first problem, defined as auxiliary problem, is related to the elastostatic 

response of the reference homogeneous solid, subjected to a prescribed field 
of polarization (eigenstress or eigenstrain); 

• the second problem, defined as optimization problem, has the objective to 
found the unknown field of polarization. 

•  
In the follows, the four classic Hashin and Shtrikman’s variational principles are 
reported. It is worth to underline that two of these are minimum principles, while 
the other two are saddle principles. Obviously, the minimum principles are 
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particularly useful, because each numeric approximation of them, for example 
by using the Finite Element Method, represents an upper estimation of the 
solution. In particular, consider a reference homogeneous material which is more 
deformable than each phase included in the heterogeneous RVE, such that 

H−  is positive definite everywhere in V. Hence, the following identity is 
verified: 

 ( )*
* * *1 1 1sup

2 2 2
H H

V V

dV dV
∈

   ⋅ − ⋅ = ⋅ − − ⋅  
    

∫ ∫T H
E E E E T E T T     (3.51) 

 
where H  is the space of symmetric second-order periodic tensors, *T  is 
polarization field (eigenstress) prescribed on the reference homogeneous 
medium in order to simulate the actual micro-structure of the heterogeneous 
RVE.  
In particular, by taking: 
 
 ˆE = E + E  (3.52) 
 
where Sym∈E  and ˆ ∈E E , and by remembering that H  is constant in V, the 
(3.51) assumes the following form:  
 

( )( )

( )*

1* * *

*

1 1ˆ ˆ
2 2

1sup
2

1ˆ ˆ ˆ
2

H

V

H

V

H

V

dV

dV

dV

−

∈

 + + − ⋅ =  

   = ⋅ − − ⋅ +     
 + ⋅ + ⋅ 
 

∫

∫

∫

T H

E E E E E E

T E T T

T E E E

 

 



  (3.53) 

 
where *T  denotes the average value of *T  in V. 

Therefore, by considering the lower bound with respect to Ê , changing the 
minimization with the maxim

*

"CF T ization and by dividing for V, it is obtained:  
 

 
( ) *

*

1* * *
ˆ "

1 1
2 2

1 1sup inf
2

H

H
C

V

dV F
V

−

∈∈

⋅ − ⋅ =

   = ⋅ − − ⋅ +  
   

∫ T
E ET H

E E E E

T E T T

 

 
 (3.54) 
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where the quadratic functional 
*

"CF T is defined by: 
 

 
* *
"

1ˆ ˆ ˆ ˆ
2

H
C

V

F E dV = ∈ → ⋅ + ⋅ 
 ∫T E T E E E  (3.55) 

Now consider a reference homogeneous material which is stiffer than each phase 
included in the heterogeneous RVE, such that H−  is negative definite 
everywhere in V. Hence, in analogous manner, it is obtained the following 
equation:  
 

 
( ) *

*

1* * *
ˆ "

1 1
2 2

1 1inf inf
2

H

H
C

V

dV F
V

−

∈∈

⋅ − ⋅ =

   = ⋅ − − ⋅ +  
   

∫ T
E ET H

E E E E

T E T T

 

 
  (3.56) 

 
The equations (3.54) and (3.56) represent the Hashin and Shtrikman’s 
variational principles, based on the eigenstress. In particular, the (3.54) is a 
saddle principle, while the (3.56) is a minimum principle. From them, by 
imposing stationariness principles with respect to *T , it is obtained: 
 
 ( ) 1 * ˆH −

− = +T E E   (3.57) 
 
that confirms that stress field *T  is the correction which has to be prescribed to 
the reference homogeneous material stress field ( )ˆH +E E  in order to obtain 

the stress field in the actual material ( )ˆ +E E . It is possible to obtain other two 
variational principles, having similar expressions to the (3.54) and the (3.56) and 
involving the overall compliance tensor  . About them, the sole results will be 
shown, directly, since they are reached with similar considerations to those ones 
already done. Therefore, consider a reference homogeneous material which is 
stiffer than each phase included in the heterogeneous RVE, such that H−  is 
positive definite everywhere in V. Hence, in analogous manner, it is obtained the 
following equation: 
 

 
( ) *

*

1* * *
ˆ "

1 1
2 2

1 1sup inf
2

H

H
ST

V

dV F
V

−

∈∈

⋅ − ⋅ =

   = ⋅ − − ⋅ +  
   

∫ E
TE H

T T T T

E T E E

 

 
(3.58) 
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where the quadratic functional 
*

"SF E  is defined by:  
 

 
* *

"
1ˆ ˆ ˆ ˆ
2

H
S

V

F T dV = ∈ → ⋅ + ⋅ 
 ∫E T E T T T  (3.59) 

and where H  is the space of symmetric second-order periodic tensors, *E  is 
polarization field (eigenstrain) prescribed on the reference homogeneous 
medium in order to simulate the actual micro-structure of the heterogeneous 
RVE. 
Consider, on the contrary, a reference homogeneous material which is more 
deformable than each phase included in the heterogeneous RVE, such that 

H−  is positive definite everywhere in V. Hence, in similar form, it is 
obtained the following equation:  
 

 
( ) *

*

1* * *
ˆ "

1 1
2 2

1 1inf inf
2

H

H
ST

V

dV F
V

−

∈∈

⋅ − ⋅ =

   = ⋅ − − ⋅ +  
   

∫ E
TE H

T T T T

E T E E

 

 
 (3.60) 

 
The equations (3.58) and (3.60) represent the Hashin and Shtrikman’s 
variational principles, based on the eigenstrain. In particular, the (3.58) is a 
saddle principle, while the (3.60) is a minimum principle. From them, by 
imposing stationariness principles with respect to *E , it is obtained: 
 
 ( ) 1 * ˆH −

− = +E T T   (3.61) 
 
that confirms that strain field *E  is the correction which has to be prescribed to 
the reference homogeneous material strain field ( )ˆH +T T  in order to obtain 

the strain field in the actual material ( )ˆ +T T . It has to be considered that the 
Hashin and Shtrikman’s variational principles involve auxiliary problems, 
consisting in the minimization of the functionals, 

*

"CF T  (or 
*

"SF E ). The goal is to 
solve an equilibrium (or a compatibility) problem, for the reference 
homogeneous solid, subject to a prescribed eigenstress, *T , (or an eigenstrain 

*E ). For such problem, however, only few particular cases has a solution. In 
particular, it can be remembered the Eshelby’s solution for the case in which the 
polarization field is constant and different from zero, only in an ellipsoidal 
region. This solution lets to use the Hashin and Shtrikman’s variational 
principles for determining the homogenized properties of a biphasic composite, 
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with a low concentration of inclusions. In order to do it, the same matrix or the 
inclusions can be chosen as reference homogeneous material, but the matrix and 
the inclusions have to be well ordered, that means, M Ω−   has to be defined 
in sign. In case of periodic composite, the auxiliary problem is easier to solve, 
because it is possible to transform the RVE domain into a Fourier domain. It is 
not our interest to expose this procedure, so the interested reader is referred to  
(Giangreco, 2003).  
The calculation of the elastic energy density and of the complementary one, 
according to the two equations (3.49), requires the execution of very difficult 
minimization with respect of functionals, which are defined on unbounded 
space.  
Operating such minimizations is equivalent to solve the elastostatic problem for 
the RVE, in the cases of displacements approach and tractions approach, 
respectively. A numeric minimization, obtained, for example, by using the 
Element Finite Method, can be employed on finite subspaces, fE  and fT , of the 
above mentioned spaces, E and T.   
Consequently, numeric minimization will yield the following expressions of the 
tensors, +  and + :  
 

 
( )( )

( )( )

1 1 1inf
2 2
1 1 1inf
2 2

d
f

d
f

d d
E

V

d d
T

V

dV
V

dV
V

+
∈

+
∈

⋅ = + +

⋅ = + +

∫

∫

E

T

E E E E E E

T T T T T T

 

 
 (3.62) 

 
which, for constructions, satisfy the following inequalities: 
 

 

1 1
2 2
1 1 .
2 2

+

+

⋅ ≤ ⋅

⋅ ≤ ⋅

E E E E

T T T T

 

 
 (3.63) 

 
By naming with −  and − , respectively, the inverse of the tensors +  and 

+ , the upper and lower limitations for the elastic energy, and the 
complementary one, of the homogenized material are obtained, as given by: 
 

 

1 1 1
2 2 2
1 1 1 .
2 2 2

− +

− +

⋅ ≤ ⋅ ≤ ⋅

⋅ ≤ ⋅ ≤ ⋅

E E E E E E

T T T T T T

  

  
 (3.64) 
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Elementary estimations on   and   are obtained by choosing the simplest fE  
and fT , i.e., coinciding with the space constituted by the sole null tensor. In this 
way, the well known Voigt and Reuss’ estimations are reached; in particular, for 
a biphasic composite, they are:  

 
( )
( )

1

1

M M M M

M M M M

f f f f

f f f f

−
Ω Ω Ω Ω

−
Ω Ω Ω Ω

+ ≤ ≤ +

+ ≤ ≤ +

    

    
 (3.65) 

 
with: 
 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1

1 1

,

,

V V

M M M M

R R

M M M M

f f f f

f f f f

− −+ −
Ω Ω Ω Ω

− −− +
Ω Ω Ω Ω

+ = + =

+ = + =

     

     
 (3.66) 

 
where the superscript V and R stands for Voigt and Reuss.  
At the same manner, the Hashin and Shtrikman’s variational principles (3.54), 
(3.56), (3.58) and (3.60) yield estimations on the stiffness and compliance 
tensors, if the optimization with regard to the polarization fields is employed 
above a finite underspace fH , of the above unbounded mentioned space H  of 
all possible polarization fields.  
In particular, it results: 
 

 
( )

*

*

1* * *

ˆ "

1
1 1 1 2sup
2 2

inf
f

H

H
VH

CE

dV

V
F

−

∈

∈

  ⋅ − − ⋅ +   ⋅ − ⋅ ≥  
 + 

∫
T

T
E

T E T T
E E E E

 
  (3.67) 

 
and: 
 

( )
*

*

1* * *

ˆ "

1
1 1 1 2inf
2 2

inf
f

H

H
VH

ST

dV

V
F

−

∈

∈

  ⋅ − − ⋅ +   ⋅ − ⋅ ≤  
 + 

∫
E

E
T

E T E E
T T T T

 
   (3.68) 

 
if the reference homogeneous material is more deformable than each phase 
included in the heterogeneous RVE. 
On the contrary, it results: 
 



CHAPTER III: THEORY OF HOMOGENIZATION 

 
TOPOLOGICAL OPTIMIZATION STRATEGIES IN MULTI-PHYSICS PROBLEMS 101 

 

 
( )

*

*

1* * *

ˆ "

1
1 1 1 2inf
2 2

inf

H

H
VH

CE

dV

V
F

−

∈

∈
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and: 
 

 
( )

*
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1* * *

ˆ "

1
1 1 1 2sup
2 2

inf
f

H

H
VH

ST

dV

V
F

−

∈

∈

  ⋅ − − ⋅ +   ⋅ − ⋅ ≥  
 + 

∫
E

E
T

E T E E
T T T T

 
  (3.70) 

 
if the reference homogeneous material is stiffer than each phase included in the 
heterogeneous RVE. 
A numeric estimation of the inferior extreme of 

*

"CF T  and of 
*

"SF E  implies that 
only the minimum principles (3.68) and (3.69) yield upper estimations for the 
density of the elastic complementary energy and for the elastic one, respectively, 
for the homogenized material. The saddle principles (3.67) and (3.70), instead, 
are able to yield an estimation that cannot be read as an upper or lower 
estimation.  
 
 
3.6. MICROMECHANICS OF POROUS MATERIALS: J-TENSOR AND DILUTE 
DISTRIBUTION OF VOIDS CASES 
 
In this section, the overall stress-strain/strain stress relations are developed with 
reference to an RVE consisting of a linearly elastic material which contains 
stress-free cavities.  
Consider an RVE with total volume V, bounded externally by surface V∂ . On 
this surface, either uniform tractions: 
 

0 0 on V= ⋅ ∂σt n  (3.71) 
 
or linear displacements: 
 
 0 0 on V= ⋅ ∂εu x  (3.72) 
 
are assumed to be prescribed, where 0σ  and 0ε  are second-order symmetric 
constant stress and strain tensors for the macro-element.  
It is emphasized that either (3.71) or (3.72) (4.1.1 a), but not both, can be 
prescribed. In other words, if the traction boundary data (3.71) corresponding to 
the constant macrostress 0=Σ σ , are prescribed, then the surface displacements 
on V∂ , corresponding to these tractions, in general, are not spatially linear, 
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being affected by the microstructure of the RVE.  Similarly, if the linear 
displacement boundary data (3.72) corresponding to the constant macrostrain 

0=Ε ε , are prescribed, then the surface tractions on V∂ , produced by these 
displacements, are not, in general, spatially uniform. In the sequel, therefore, the 
two cases are treated separately and independently, and then the relation 
between the results is discussed.  
Assume that the material of the RVE is linearly elastic and homogeneous (but 
not necessarily isotropic).  
The inhomogeneity, therefore, stems solely from the presence of cavities. 
Denote a typical cavity by αΩ , with the boundary α∂Ω  ( )1,2,...,nα = , so that 
there are a total of n individual cavities in V. The union of these cavities is 
denoted by Ω , having the boundary ∂Ω  which is the union of all α∂Ω , i.e.: 
 
 1 1

n n
α α α α= =Ω ≡ ∪ Ω ∂Ω ≡ ∪ ∂Ω  (3.73) 

 
The remainder of the RVE (i.e, when Ω  is excluded) is called the matrix. The 
matrix is denoted by M. The boundary of M is the sum of V∂  and ∂Ω : 
 
 M V M V≡ − Ω ∂ ≡ ∂ − ∂Ω  (3.74) 
 
The total boundary surface of the RVE can include some portion of ∂Ω . For 
simplicity, however, exclude this possibility.  
Thus, all cavities are within the RVE, each being fully surrounded by the matrix 
material. For a typical cavity, αΩ , two faces of its surface boundary, α∂Ω , may 
be distinguished, as follows: 
 
• the exterior face of the cavity, denoted by c

α∂Ω  which is the face toward the 
matrix material, denned by the direction of the exterior unit normal n  of the 
cavity;  

• the exterior face of the surrounding matrix, denoted by M
α∂Ω , which is the 

face toward the interior of the cavity, denned by the direction of the exterior 
unit normal ( )−n  of the matrix (i.e., the interior unit normal of the cavity); 

α∂Ω  coincides with c
α∂Ω , for the cavity αΩ , while M∂  at the cavity αΩ  

coincides with M
α∂Ω . 

 
In view of this convention, the integral of a surface quantity taken over M∂  can 
always be decomposed as: 
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( ) ( ) ( )

( ) ( ) ( ) ( )

M

c

n

M
1

n

1

. . .

. . . .

V

V V

dS dS dS

dS dS dS dS

α

α

α

α

∂ ∂ ∂Ω
=

∂ ∂Ω ∂ ∂Ω
=

= + =

= − = −

∑∫ ∫ ∫

∑∫ ∫ ∫ ∫
  (3.75) 

 
Thus ∂Ω  always stands for the union of c

α∂Ω  ( )1,2,...,nα = . To distinguish the 
boundary of M at the cavities from that at the exterior of the RVE, which is V∂ , 
the exterior unit normal on V∂  is systematically denoted by n  (as before), and 
the exterior unit normal on the surface α∂Ω  for a typical cavity αΩ , by n , 
pointing from the inside of the cavity toward the matrix M. 
The matrix material is linearly elastic and homogeneous. Denote the 
corresponding constant elasticity tensor by   and the compliance tensor by  . 
 
 
3.6.1. Average Strain for Prescribed Macrostress 
 
Suppose that uniform tractions 0 0= ⋅t n σ  are prescribed on V∂ , associated with 
the constant symmetric macrostress 0=Σ σ . If the RVE is homogeneous, having 
no cavities, then the corresponding average strain associated with the average 
stress 0σ  would be: 
 
 0 0:=ε σ   (3.76) 
 
and hence, in conjunction with 0=σ σ , the average strain would be 0ε .  
The presence of cavities disturbs the uniform stress and strain fields, producing 
the variable stress field ( )= xσ σ  and strain field ( )= xε ε , in M, with = 0σ  
in Ω . Nevertheless, from the (3.1): 
 

 1 1
V M

dv dv
V V

0= = = =∫ ∫σ σ σ σ σ  (3.77) 

 
On the other hand, the average strain is not, in general, equal to 0ε . Instead: 
 

 0 c= = +ε ε ε ε  (3.78) 
 
where 0ε  is defined by (3.76), and cε  is the additional strain due to the presence 
of cavities. To calculate the additional strain cε  due to cavities, one may apply 
the reciprocal theorem, as follows. Consider two sets of loads, one defined by: 
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0

(1)
0

on
on

Vδ

δ

 ⋅ ∂= 
− ⋅ ∂Ω

σ

σ

n
t

n
 (3.79) 

 
which corresponds to uniform virtual stress 0δσ  and strain 0 0:δ δ=ε σ  within 
the entire RVE (as illustrated in Figure 3.3, −n  is the interior unit normal on the 
cavity surface ∂Ω , or the exterior unit normal to the boundary of the matrix), 
and the other defined by: 

 
0

(2) on
on

V ⋅ ∂
= 

∂Ω0
σn

t  (3.80) 

 
which is the actual loading considered for the RVE. Denote the displacement, 
strain, and stress fields associated with the first loading (3.79) by: 
 { } ( ){ }(1) (1) (1) 0 0 0, , , ,δ δ δ=ε σ ε ε σu x .  (3.81) 

 
which follows from the fact that, for loading (3.79), the strain and stress fields 
are both uniform throughout the matrix M and denote the fields associated with 
the second (i.e., the actual) loading (3.80) by:  
 
 { } { }(2) (2) (2), , , ,=ε σ ε σu u  (3.82) 
 
From the reciprocal theorem, it follows that: 
 

 ( ) ( ) ( ) ( )0 0 0 0

V V
ds ds dsδ δ δ

∂ ∂ ∂Ω
⋅ ⋅ = ⋅ ⋅ − ⋅ ⋅∫ ∫ ∫σ ε σ σn x . n u n u  (1.83) 

 
which can be written as: 
 

 ( ){ }{ }0 0: : 0
V V

ds ds dsδ
∂ ∂ ∂Ω

⊗ ⋅ − ⊗ + ⊗ =∫ ∫ ∫σ σx n n u n u  (1.84) 

 
Since 0δσ  is an arbitrary symmetric tensor, the symmetric part of the quantity 
within the braces must vanish identically. Noting that the first integral within the 
braces yields: 
 

 ( ){ } { }0 0 01 : :
V

ds
V ∂

⊗ ⋅ = ⋅ =∫ σ Ι σ εx n    (1.85) 

 
And, using the averaging scheme, it follows that: 
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 ( ){ } ( )01 1 1 1
2 2

T

V
+ dv + ds

V V ∂Ω
= ∇ ⊗ ∇ ⊗ = + ⊗ ⊗∫ ∫u u n u u nε ε  (1.86) 

 
Comparison with (3.78) shows that the additional strain cε  due to cavities, is 
given by: 
 

 ( )1 1
2

c + ds
V ∂Ω

= ⊗ ⊗∫ε n u u n  (1.87) 

 
3.6.2. Overall Compliance Tensor for Porous Elastic Solids 
 
Define the overall compliance   of the porous RVE with a linearly elastic 
homogeneous matrix, through: 
 0: = :ε σ σ = , (1.88) 
 
where the macrostress, 0= σΣ , is regarded prescribed, and the average strain is 
given by (3.78). To obtain the overall compliance in an explicit form, the strain 

cε  due to cavities will now be expressed in terms of the applied stress 0σ . 
Since the matrix of the RVE is linearly elastic, for a given microstructure the 
displacement ( )u x  at a point x  on ∂Ω  is linearly dependent on the uniform 
overall stress 0σ , as show following. By remembering that the displacement 
field may be expressed in terms of Green function as:  
 
 ( ) ( ) ( ),

V
ds

∂
= ⋅∫u x G x y t y  (1.89) 

 
where ( )t y  are the self-equilibrating surface traction prescribed on the 
boundary V∂  of the RVE, if the applied tractions (3.71) are substituting into 
(1.89), to arrive at: 
 
 ( ) ( ) ( ){ }0,

V
ds

∂
= ⋅ ⋅∫ σu x G x y n y  (1.90) 

 
where the integration is taken with respect to y  over the boundary V∂  of the 
RVE. Since 0σ  is a symmetric constant tensor, (1.90) can be expressed as: 
 
 ( ) ( ) 0

i ijk jku K σ=x x  (1.91) 
 
where the third-order tensor: 
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           ( ) ( ) ( ) ( ) ( ) ( ){ }1 , ,
2ijk ijk ij k ik jV

K K G n G n dS
∂

= = +∫x x x y y x y y  (1.92) 

 
depends on the geometry and the elastic properties of the matrix of the RVE.  
To obtain the additional overall strain, cε , due to the presence of cavities in 
terms of the prescribed overall stress, 0σ , substitute from (1.92) into (1.87), to 
arrive at: 
 
 0c

ij ijkl klHε σ=  (1.93) 
where the constant fourth-order tensor,  , is given by:  
 

               ( ) ( ) ( ) ( ){ }1 1
2ijkl jikl ijlk i jkl j iklH H H n K n K dS

V ∂Ω
≡ ≡ ≡ +∫ x x x x  (1.94) 

Hence, for an RVE with a linearly elastic matrix containing cavities of arbitrary 
shapes and sizes, the following general result is obtained, when the overall 
macrostress is regarded prescribed (Horii and Nemat-Nasser, 1983): 
 
 :c 0=ε σ  (1.95) 
 
It should be noted that this exact result is valid whether or not the linearly elastic 
constituent of the RVE is homogeneous.  
The requirements are:  
 
• the matrix of the RVE is linearly elastic; 
• the microstructure of the RVE remains unchanged under the applied 

macrostress 0= σΣ . 
 
To obtain the overall elastic compliance tensor  , in terms of the constant 
compliance of the matrix,  , and the constant tensor  , substitute (3.76), 
(1.88) and (1.95) into (3.78), and noting that the resulting equation must hold for 
any macrostress 0σ , arrive at: 
 
 = +  , (1.96) 
 
Note that in many situation, the tensor   can be computer directly, using the 
(1.87). 
 
 
3.6.3. Average Stress for Prescribed Macrostrain 
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Suppose that the linear displacements 0 0= ⋅εu x  (associated with the constant 
symmetric macrostrain 0= εΕ ) are prescribed on V∂ . The matrix of the RVE is 
assumed to be homogeneous, as marked before. In the absence of cavities, the 
corresponding average stress associated with the prescribed macrostrain, 0ε , 
would be: 
 
 0 0:=σ ε   (1.97) 
 
Due to the presence of cavities, the actual field quantities are nonuniform.  
From the (3.6): 
 

 ( ) 01 1 1
2V V

dv ds
V V ∂

= = = ⊗ + ⊗ =∫ ∫ε ε ε εn u u n  (1.98) 

 
which is valid for any RVE of any material and microstructure. Note that the 
surface integral in (1.98) extends over the exterior boundary, V∂ , of the RVE 
only. It does not include the cavity boundaries ∂Ω .  
Equation (1.98) is the direct consequence of the fact that the average strain for 
an RVE is given in terms of its boundary displacements which are prescribed 
here to be 0 0= ⋅εu x .  
In general, for a prescribed macrostrain, the average stress is not equal to 0σ  but 
 
 0 c= = +σ σ σ σ  (1.99) 
 
where 0σ  is defined by (1.97), and cσ  is the decrement in the overall stress due 
to the presence of cavities.  
As in Subsection 3.1., the reciprocal theorem will be applied to calculate the 
average stress a in (1.99). To this end, a third set of boundary data defined by: 
 

 
(3) 0

(3)

on
on .

V= ⋅ ∂

= ∂Ω0
u n
t

σ
 (1.100) 

 
The displacement, strain, and stress fields associated with these boundary 
conditions are denoted by: 
 
 { } { }(3) (3) (3), , , ,=u uε σ ε σ  (1.101) 
 
which are actual fields, in general, different from those given by (3.82) for the 
boundary conditions (3.80). The actual tractions on the boundary of the RVE 
now are: 
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 ( ) ( ) ( )= ⋅t x n x xσ  (1.102) 
 
where x  is on V∂ .  
These tractions are required in order to impose the boundary displacements 
prescribed by (1.100).  
Applying the reciprocal theorem to the two sets of loads, (3.79) and (1.100), it 
follows that: 
 
           ( ) ( ) ( ) ( )0 0 0 0

V V
ds ds dsδ δ δ δ

∂ ∂ ∂Ω
⋅ = ⋅ ⋅ − ⋅ ⋅∫ ∫ ∫t x . n x . n uε σ ε σ  (1.103) 

which can be written as:  
 
     ( ){ } ( ){ }0 0: : : 0

V V
ds ds dsδ

∂ ∂ ∂Ω
⊗ − ⊗ ⋅ + ⊗ =∫ ∫ ∫t x x n n uε ε   (1.104) 

where, in using loading (3.81), the quantity 0δε  is regarded as a virtual spatially 
constant strain field with the corresponding stress field, 0 0:δ δ=σ ε  . Since 

0δε  is an arbitrary symmetric tensor, the symmetric part of the quantity within 
the braces in (1.104) must vanish identically. Noting that the second integral 
within the parentheses can be expressed as: 
 

 ( ){ } { }0 0 01 : :
V

ds
V ∂

⊗ ⋅ = ⋅ =∫ x n ε Ι ε σ  , (1.105) 

 
and using the averaging procedure, it now follows that: 
 

 ( )01 1 1:
2V

ds + ds
V V∂ ∂Ω

 = ⊗ = − ⊗ ⊗ 
 ∫ ∫t x n u u nσ σ   (1.106) 

 
Comparison with (1.99) shows that the decremental stress cσ  due to the 
presence of cavities, is given by: 
 
 :c c= −σ ε  (1.107) 
 
where cε  is the strain due to the presence of cavities given by (1.87), which 
now must be computed for the prescribed boundary displacements 0 0= ⋅u x ε . 
 
 
3.6.4. Overall Elasticity Tensor for Porous Elastic Solids 
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When the overall macrostrain is regarded prescribed, 0= εΕ , designate the 
overall elasticityJensor of the porous RVE with a linearly elastic and 
homogeneous matrix, by  , and define it through: 
 
 0= :σ ε  (1.108) 
 
Substitution of (1.97), (1.107), and (1.108) into (1.99) then yields: 
 
 ( ) 0: : c− + =ε ε    0  (1.109) 
 
For a given microstructure (i.e., for existing cavities with fixed shapes, sizes, and 
distribution), the response of the RVE is linear. Hence, the displacement field 
anywhere within the linearly elastic matrix of the RVE is a linear and 
homogeneous function of the prescribed overall constant strain 0ε . Therefore, in 
line with results (1.91) and (1.92) for the case when the macrostresses were 
considered to be prescribed, at a typical point x  on the boundary of the cavities, 
∂Ω : 
 
 ( ) ( ) 0

i ijk jku L ε=x x  (1.110) 
 
where ( )L x  is a is a third-order tensor-valued function with the symmetry 
property, ijk ikjL L= . Now, from the definition of cε , given by the (1.87): 
 
 0c

ij ijkl klJε ε=  (1.111) 
 
where the constant fourth-order tensor,  , is given by: 
 

           ( ) ( ) ( ) ( ){ }1 1
2ijkl jikl ijlk i jkl j iklJ J J n J n J dS

V ∂Ω
≡ ≡ ≡ +∫ x x x x  (1.112) 

 
Hence, for an RVE with a linearly elastic matrix (whether homogeneous or not) 
containing cavities of arbitrary shapes and sizes, the following general result is 
obtained, when the overall macrostrains are regarded prescribed: 
 
 :c 0=ε ε  (1.113) 
 
To obtain an expression for the overall elastic moduli of the porous RVE, 
substitute (1.113) into (1.109) and, noting that the resulting expression must be 
valid for any constant symmetric macrostrain 0ε , arrive at  
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 := −     (1.114) 
 
It should be noted that in many practical problems the tensor J, similarly to the 
tensor  , can be calculated directly from (1.87), and therefore, the overall 
elastic moduli can be estimated from (1.114). It may, however, be instructive to 
seek to construct the tensor   in terms of the Green functions ( ),G x y  and 

( ),-1G x y . 
To this end, for the linear displacements, 0 0= ⋅u z ε , prescribed on the outer 
boundary V∂  of the RVE, by remembering that the resulting tractions, ( )t y , 
may be written as: 
 ( ) ( ) ( ),-1 0

V
ds

∂
= ⋅ ⋅∫t y G y z z ε  (1.115) 

 
where the integration is taken with respect to z  over the outer boundary V∂  of 
the RVE. Substituting (1.115) into (1.89), the displacement field for points on 
∂Ω  is obtained in terms of the prescribed macrostrain 0ε , as: 
 

 ( ) ( ) ( ) ( ){ }0, ,-1

V V
ds ds

∂ ∂
= ⋅ ⋅ ⋅∫ ∫u x G x y G y z z ε  (1.116) 

 
where both the y - and z -integral are taken over V∂ . Noting that 0ε  is a 
symmetric tensor, tensor L  in (1.110) may now be written in terms of G  and 

-1G , as: 
 

          ( ) ( ) ( ) ( ){ }1 11, , ,
2ijk im mj k mk jV V

L G G z G z ds ds− −

∂ ∂

 = + 
 ∫ ∫x x y y z y z  (1.117) 

 
Therefore, from comparison of (1.113) with (1.117), a fourth-order tensor, 

( ),j x y , can be introduced as:  
 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1

1

1

1

, ,

, ,1
4 , ,

, ,

i jm mk l

i jm ml k
ijkl V

j im mk l

j im ml k

n G G z

n G G z
j dS

n G G z

n G G z

−

−

−∂

−

 +
 

+ +  =  
+ + 

 +  

∫

x x y y z

x x y y z

x x y y z

x x y y z

 (1.118) 

 
where the integral is taken with respect to z  over V∂ . The constant tensor   in 
(1.113) now becomes: 
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 ( )1 ,
V

ds ds
V ∂Ω ∂

= ∫ ∫ j x y  (1.119) 

 
where the y -integration is over V∂ , and the x -integration is over ∂Ω . 
 
 
3.7. MICROMECHANICS 
 
Composite materials are one of the strongest candidates as a structural material 
for many automobile, aerospace and other applications (Agarwal et al., 1974). 
Recently, short fiber-reinforced composite materials have been extensively 
investigated because they are more economical and impact resistant (Taya et al.,  
1989). One of the earliest attempts to explain the reinforcing effect of fibers was 
described by [3], and is now referred to as the shear lag theory, which considers 
long straight discontinuous fibers completely embedded in a continuous matrix 
(Cox, 1952). Fiber-reinforced composites are often characterized by their high 
specific strength and specific modulus parameters (i.e., strength to weight 
ratios), and are widely used for applications in low-weight components. The 
high strength and damage resistance of the composites are very important for a 
number of practical applications. In order to predict the strength and other 
properties of composites, numerous mathematical models of deformation, 
damage and failure of fiber reinforced composites have been developed. Short 
fiber reinforced composites have several attractive characteristics that make 
them worthy of consideration for other applications. Therefore, short fiber 
reinforced composite materials have been extensively investigated because they 
are more economical and impact resistant. 
 
 
3.7.1. Unidirectional Short Fiber Composite 
 
A unidirectional fiber composite is highly anisotropic. Stiffness and strength in 
the fiber direction are of the order of the fiber value, and thus very large, while 
normal to the fiber direction they are of the order of the matrix value and are 
thus much lower. In an injection-moulded discontinuous-fiber composite, 
stiffness and strength are much more complex owing to the multitude of fiber 
orientations. The resultant properties are largely controlled by material 
parameters e.g. fE  (fiber elastic modulus), mE  (matrix elastic modulus), fν  
(fiber volume fraction), FLD (fiber length distribution), FOD (fiber orientation 
distribution) and test conditions.  
The prediction of the elastic properties of discontinuous fiber reinforced 
materials has received much attention in the past. Three of the most commonly 
used methods are: 
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• the aggregate model;  
• Cox shear-lag theory;  
• the rule of mixtures 
 
The aggregate model uses the concept of subunits, each of which possess the 
elastic properties of a reinforced composite in which the fibers are continuous 
and fully aligned. In this way, elastic moduli have been estimated for various 
composite systems (Halpin and Pagano, 1969).  
Brody and Ward (Brody and Ward,  1971) have compared measured moduli for 
compression moulded 30% w/w short glass and carbon fiber polyethylene and 
polypropylene composites with those determined by using the aggregate model. 
Reasonable correlation was found although it should be remembered that the 
FOD was fairly isotropic compared with that produced during the injection 
moulding process.  
More recently (Toll, 1992) a modified aggregate model was applied to plaque 
mouldings, identifying limitations of the previous aggregate models as:  
 
1) the unit-cell stiffnesses require estimation by micromechanical 

approximations, since the unidirectional composite is normally unavailable;  
2) it is reasonably accurate only at nearly unidirectional orientations 
 
To overcome these short-comings a two-parameter model was developed which 
describes the unit-cell stiffnesses, easily determined from elastic constants 
measured for a material in a known, but arbitrary orientation state.  
When measured moduli were compared with predicted values, excellent 
agreement was found.  
Other methods have been based on various forms of the Rule of Mixtures 
(RoM), as: 
 

             / /
f m

f f m m
m f f m

E E
E E E and E

E E
ν ν

ν ν⊥= + =
+

     (3.120) 

 
where E



and E⊥ are moduli determined parallel and normal to the principle fiber 
orientation direction in a continuous unidirectional fiber system.  
These equations were modified by Halpin and Tsai (Halpin and Tsai, 1967) for 
discontinuous-fiber materials to yield longitudinal and transverse moduli as 
shown below: 
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   

  (3.122)    

η


and η⊥  describe longitudinal and transverse efficiency factors, l
d

 
 
 

the fiber 

aspect ratio and α  a geometric factor.  
Further modifications were made to the rule of mixtures by Cox (Cox, 1952) to 
derive the shear lag analysis: 

( )
tanh

21 1

2

c m f f f

l

E E E
l

β

ν ν
β

  
    = − + −

  
    

     (3.123) 

 
where the last term in brackets is described as a fiber-length correction factor, l  
is the fiber length and β ,which governs the rate of stress build up at the fiber 
ends, is given by: 
 

( )

1
2

1

1 ln

m

f

E
Rr E
r

β
ν

 
 
 =

  +     

                (3.124)                               

 
where mE  is the matrix modulus, ν  is Poisson's ratio, r  is the fiber radius and 
2R  the mean inter-fiber spacing. For a square fiber packing system, the inter-
fiber spacing is related to the volume fraction by: 
 

4 f

R r π
ν

=                               (3.125)                                  

 
so that β  may be written as: 
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( )

1

1 ln
4

m

f
f

E
r

E
β

πν
ν

=
+

                                (3.126)                                                

 
Several assumptions were made:  
 

1) the fiber and the matrix remain elastic in their mechanical response;  
2) the interface between the fiber and the matrix is perfect;  
3) no axial force is transmitted through the fiber ends. 

 
 
3.7.2. Random Short Fiber Composite 
 
To account for fiber orientation effects in short fiber materials, the RoM is 
adapted as: 

( ) 01c m f f f LE E Eν ν η η= − +                            (3.127)                       
 

Lη  is a fiber-length correction factor and 0η , often described as the Krenchel 
orientation efficiency factor (Krenchel, 1964), is given by the general form: 
 

4
0 fn n fn fn

n n n
η = a cos α a , where a = 1∑ ∑ ∑             (3.128)                 

 
where fna  is the ratio between the cross-sectional area presented by a group of 

fibers orientated at an angle nα  respect to the applied load direction and the total 
area of all the fibers at a given cross-section of the composite. The number of 
groups is designated by 1,2 .n n=   Eq. (3.128) was further modified 
(O'Donnell, 1990) to yield the through-thickness fiber orientation efficiency: 
 

3 3 3
1 1 2 2

0
1 1 2 2 1

cos cos cos
sec sec sec

f f fn n

f f f n

N N N
N N N

α α α
η

α α α
+ + +

=
+ + +





               (3.129)                

 
where 1fN  is the fraction of the total number of fibers orientated at angle 1α  in 
any field of view. Thus, measuring the through-thickness fiber orientation angles 
using a series of layers of fields-of-view and determining corresponding 
efficiency factors, will allow the composite stiffness to be determined through 
the moulding thickness. 
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BRIEF NOTES ON FINITE ELEMENT 
METHOD 

 
 
 

The finite element method (FEM) is a numerical analysis technique 
for obtaining approximate solutions to a wide variety of 
engineering problems. Although originally developed to study 
stresses in complex airframe structures, it has since been extended 
and applied to the broad field of continuum mechanics. Because of 
its diversity and flexibility as an analysis tool, it is receiving much 
attention in engineering schools and in industry. In more and more 
engineering situations today, it is necessary to obtain approximate 
numerical solutions to problems rather than exact closed-form 
solutions. Without too much effort, the governing equations and 
boundary conditions for these problems can be written, but no 
simple analytical solution can be found.  
The FEM envisions the solution region as built up of many small, 
interconnected subregions or elements. A finite element model of a 
problem gives a piecewise approximation to the governing 
equations. The basic premise of the FEM is that a solution region 
can be analytically modeled or approximated by replacing it with 
an assemblage of discrete elements. Since these elements can be put 
together in a variety of ways, they can be used to represent 
exceedingly complex shapes. In a continuum problem of any 
dimension, the field variable (whether it is pressure, temperature, 
displacement, stress, or some other quantity) possesses infinitely 
many values because it is a function of each generic point in the 
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body or solution region. Consequently, the problem is one with an 
infinite number of unknowns. The finite element discretization 
procedures reduce the problem to one of a finite number of 
unknowns by dividing the solution region into elements and by 
expressing the unknown field variable in terms of assumed 
approximating functions within each element. The approximating 
functions (sometimes called interpolation functions) are defined in 
terms of the values of the field variables at specified points called 
nodes or nodal points. Nodes usually lie on the element boundaries 
where adjacent elements are connected. In addition to boundary 
nodes, an element may also have a few interior nodes. The nodal 
values of the field variable and the interpolation functions for the 
elements completely define the behavior of the field variable within 
the elements. For the finite element representation of a problem, the 
nodal values of the field variable become the unknowns. Once these 
unknowns are found, the interpolation functions define the field 
variable throughout the assemblage of elements. 
Clearly, the nature of the solution and the degree of approximation 
depend not only on the size and number of the elements used but 
also on the interpolation functions selected. As one would expect, 
these functions cannot be chosen arbitrarily, because certain 
compatibility conditions should be satisfied. The interpolation 
functions are often chosen so that the field variable or its 
derivatives are continuous across adjoining element boundaries. 
This feature is the ability to formulate solutions for individual 
elements before putting them together to represent the entire 
problem. This means, for example, that in the case of a problem in 
stress analysis, the force–displacement or stiffness characteristics 
of each individual element are first determined and, then, the 
elements are assembled to find the stiffness of the whole structure. 
In essence, a complex problem reduces to considering a series of 
greatly simplified problems. Another advantage of the finite element 
method is the variety of ways in which one can formulate the 
properties of individual elements. There are basically three 
different approaches. The first approach to obtain element 
properties is called the direct approach because its origin is 
traceable to the direct stiffness method of structural analysis. 
Element properties obtained by the direct approach can also be 
determined by the variational approach. The variational approach 
relies on the calculus of variations and involves the extremization 
of a functional. For problems in solid mechanics, the functional 
turns out to be the potential energy, the complementary energy, or 
some variant of them. A third and even more versatile approach for 
deriving element properties has its basis in mathematics and is 
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known as the weighted residuals approach. The weighted residuals 
approach begins with the governing equations of the problem and 
proceeds without relying on a variational statement. This approach 
is advantageous because it thereby becomes possible to extend the 
finite element method to problems where no functional is available. 
The method of weighted residuals is widely used to derive element 
properties for nonstructural applications such as heat transfer and 
fluid mechanics.  

 
 
 
4.1. INTRODUCTION 
 
 
The limitations of the human mind are such that it cannot grasp the behaviour of 
its complex surroundings and creations in one operation. Thus the process of 
sub-dividing all systems into their individual components or elements, whose 
behavior is readily understood and then rebuilding the original system from such 
components to study its behavior is a natural way in which the engineer, the 
scientist or even the economist proceeds.  
In many situations an adequate model is obtained using a finite number of well-
defined components. We shall term such problems discrete. In others the 
subdivision is continued indefinitely and the problem can only be defined using 
the mathematical fiction of an infinitesimal. This leads to differential equations 
or equivalent statements which imply an infinite number of elements. We shall 
term such systems continuous.  
With the advent of digital computers, discrete problems can generally be solved 
readily even if the number of elements is very large. As the capacity of all 
computers is finite, continuous problems can only be solved exactly by 
mathematical manipulation.  
Here, the available mathematical techniques usually limit the possibilities to 
oversimplified situations. To overcome the intractability of realistic types of 
continuum problems, various methods of discretization have from time to time 
been proposed both by engineers and mathematicians. All involve an 
approximation which, hopefully, approaches in the limit the true continuum 
solution as the number of discrete variables increases. The discretization of 
continuous problems has been approached differently by mathematicians and 
engineers.  
Mathematicians have developed general techniques applicable directly to 
differential equations governing the problem, such as finite difference 
approximations (Southwell,1946; De G. Allen, 1955) various weighted residual 
procedures (Crandall, 1956; Finlayson, 1972) or approximate techniques for 
determining the stationarity of properly defined functionals. The engineer, on the 
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other hand, often approaches the problem more intuitively by creating an 
analogy between real discrete elements and finite portions of a continuum 
domain. For instance, in the field of solid mechanics McHenry (1943), Hrenikoff 
(1941), Newmark (1949), and indeed Newmark  (1949), showed that reasonably 
good solutions to an elastic continuum problem can be obtained by replacing 
small portions of the continuum by an arrangement of simple elastic bars. Later, 
in the same context, Argyris (1960) and Turner et al. (1956) showed that a more 
direct, but no less intuitive, substitution of properties can be made much more 
effectively by considering that small portions or elements in a continuum behave 
in a simplified manner. It is from the engineering direct analogy view that the 
term finite element was born. Clough (1960) appears to be the first to use this 
term, which implies in it a direct use of a standard methodology applicable to 
discrete systems. Both conceptually and from the computational viewpoint, this 
is of the utmost importance.  
The first allows an improved understanding to be obtained; the second offers a 
unified approach to the variety of problems and the development of standard 
computational procedures. Since the early l960s much progress has been made 
and today the purely mathematical and analogy approaches are fully reconciled. 
It is the object of this text to present a view of the finite element method as a 
general discretization procedure of continuum problems posed by 
mathematically defined statements.In the analysis of problems of a discrete 
nature, a standard methodology has been developed over the years. The civil 
engineer, dealing with structures, first calculates force-displacement 
relationships for each element of the structure and then proceeds to assemble the 
whole by following a well-defined procedure of establishing local equilibrium at 
each 'node' or connecting point of the structure. The resulting equations can be 
solved for the unknown displacements. Similarly, the electrical or hydraulic 
engineer, dealing with a network of electrical components (resistors, 
capacitances, etc.) or hydraulic conduits, first establishes a relationship between 
currents (flows) and potentials for individual elements and then proceeds to 
assemble the system by ensuring continuity of flows. All such analyses follow a 
standard pattern which is universally adaptable to discrete systems. It is thus 
possible to define a standard discrete system, and this chapter will be primarily 
concerned with establishing the processes applicable to such systems. Much of 
what is presented here will be known to engineers, but some reiteration at this 
stage is advisable. As the treatment of elastic solid structures has been the most 
developed area of activity this will be introduced first, followed by examples 
from other fields, before attempting a complete generalization. The existence of 
a unified treatment of standard discrete problems leads us to the first definition 
of the finite element process as a method of approximation to continuum 
problems such that: 
 

• the continuum is divided into a finite number of parts (elements), the 
behavior of which is specified by a finite number of parameters 
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• the solution of the complete system as an assembly of its elements 
follows precisely the same rules as those applicable to standard discrete 
problems. 

 
It will be found that most classical mathematical approximation procedures as 
well as the various direct approximations used in engineering fall into this 
category. It is thus difficult to determine the origins of the finite element method 
and the precise moment of its invention. 
The following Figure 4.1 shows the process of evolution which led to the present 
day concepts of finite element analysis.  
 

 
Fig. 4.1 – Evolution of finite element analysis 

 
Regardless of the approach used to find the element properties, the solution of a 
continuum problem by the finite element method always follows an orderly step-
by-step process: 
 

1) Discretize the Continuum  
The first step consists in the division of the continuum or solution region 
into elements. A variety of element shapes may be used and different 
element shapes may be employed in the same solution region. Indeed, 
when analyzing an elastic structure that has different types of 
components such as plates and beams, it is not only desirable but also 
necessary to use different elements in the same solution.  
 

2) Select Interpolation Functions  
The second step, instead, consists in the assignation of nodes to each 
element and, then, in the choice of the interpolation function to represent 
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the variation of the field variable over the element. The field variable 
may be a scalar, a vector, or a higher-order tensor.  
Polynomials are often selected as interpolation functions for the field 
variable because they are easy to integrate and differentiate. The degree 
of the polynomial chosen depends on the number of nodes assigned to 
the element, the nature and number of unknowns at each node and 
certain continuity requirements imposed at the nodes and along the 
element boundaries. The magnitude of the field variable as well as the 
magnitude of its derivatives may be the unknowns at the nodes. 
 

3) Find the Element Properties 
 Once the finite element model has been established (that is, once the 
elements and their interpolation functions have been selected), the 
matrix equations expressing the properties of the individual elements 
can be evaluated. For this task, one of the three approaches just 
mentioned can be used: the direct approach, the variational approach or 
the weighted residuals approach. 
 

4) Assemble the Element Properties to Obtain the System Equations 
 To find the properties of the overall system modeled by the network of 
elements all the element properties must be “assembled”. In other 
words, the matrix equations expressing the behavior of the elements are 
combined to form the matrix equations expressing the behavior of the 
entire system. The matrix equations for the system have the same form 
as the equations for an individual element except that they contain many 
more terms because they include all nodes. The basis for the assembly 
procedure stems from the fact that at a node, where elements are 
interconnected, the value of the field variable is the same for each 
element sharing that node. A unique feature of the finite element method 
is that the system equations are generated by the assembly of the 
individual element equations. In contrast, in the finite difference method 
the system equations are generated by writing nodal equations.  
 

5) Impose the Boundary Conditions 
 Before the system equations are ready for solution they must be 
modified to account for the boundary conditions of the problem. At this 
stage, nodal values of the dependent variables or nodal loads are 
imposed.  
 

6) Solve the System Equations 
 The assembly process gives a set of simultaneous equations to be 
solved to obtain the unknown nodal values of the problem. If the 
problem describes steady or equilibrium behavior, a set of linear or 
nonlinear algebraic equations is solved. On the contrary, if the problem 
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is unsteady, the nodal unknowns are time depending and, so, a set of 
linear or nonlinear ordinary differential equations must be solved.  
 

7) Make Additional Computations if Desired 
 Many times the solution of the system equations are employed to 
calculate other important parameters. For example, in a structural 
problem the nodal unknowns are displacement components. From these 
displacements, element strains and stresses can be evaluated. Similarly, 
in a heat-conduction problem the nodal unknowns are temperatures, and 
from these element heat fluxes are calculated. 

 
 
 
4.2. CLASSICAL DISPLACEMENT- BASED MATRIX FORMULATION IN FINITE 
ELEMENT METHOD. 
 
 
4.2.1. The Structural Element and the Structural System 
 
In order to define the stiffness matrix we shall first consider a structural 
engineering example of linear elasticity. The following Figure 4.2 represents a 
two-dimensional structure assembled from individual components and 
interconnected at the nodes numbered l to 6. 
 

 
Fig. 4.2 – A typical structure built-up from intyerconnected elements 

 
The joints at the nodes, in this case, are pinned so that moments cannot be 
transmitted. As a starting point it will be assumed that by separate calculation, or 
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for that matter from the results of an experiment, the characteristics of each 
element are precisely known. Thus, if a typical element labelled (l) and 
associated with nodes l, 2, 3 is examined, the forces acting at the nodes are 
uniquely defined by the displacements of these nodes, the distributed loading 
acting on the element (p), and its initial strain. The last may be due to 
temperature, shrinkage, or simply an initial 'lack of fit'. The forces and the 
corresponding displacements are defined by appropriate components (U, V and 
u, v) in a common coordinate system (x, y). Listing the forces acting on all the 
nodes (three in the case illustrated) of the element (l) as a matrix we have: 
 

1
1

11 1 1
2 1

11
3

:
U

where
V

 
  = =   
  

 

q
q q q

q
     (4.1) 

 
and for the corresponding nodal displacements: 
 

1
1

11 1 1
2 1

11
3

:
u

where
v

 
  = =   
  

 

u
u u u

u
     (4.2) 

 
Assuming linear elastic behaviour  of the element, the characteristic  relationship  
will always be of the form: 
 

1 1 1 1= +q K u f         (4.3) 
 
in which 1f  represents the nodal forces required to balance any distributed loads 
acting on the element The first of the terms represents the forces induced by 
displacement  of the nodes. The matrix  eK   is known as the stiffness matrix of 
the element (e). Equation (4.3)  is illustrated by an example of an ele ment with 
three nodes and with the interconnection points capable of transmitting only two 
components of  force.  Clearly,  the  same  arguments  and  defìnitions  will 
apply generally. An element (2) of the hypothetical structure will possess only 
two points of interconnection; others may have quite a large number of such 
points. Quite generally, therefore: 
 

11

22

e

e
e e

e
mm

and

   
   
   = =   
   
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      (4.4) 
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with each e
aq  and au  possessing the same number of components or degrees of 

freedom. 
The stiffness matrices of the element will clearly always be square and of the 
form: 
 

11 12 1

21 22

1

e e e
m

e e
e

e e
m mm

 
 
 =
 
 
  

K K K
K K

K

K K





  

 

        (4.5) 

 
in which 11

eK , 12
eK , etc., are submatrices which are again square and of the size 

×  , where   is the number  of force components to be considered  at each 
node. The element properties were assumed to follow a simple linear 
relationship. In principle, similar relationships could be established for non-
linear materials, but the element matrices eK  will be symmetric. 
 
 
4.2.2. Assembly and Analysis of a Structure 
 
Consider again the hypothetical structure of Fig. 5.2. To obtain a complete 
solution the two conditions of: 
 
1) displacement compatibility 
2) equilibrium 
 
have to be satisfìed throughout. Any system of nodal displacements u : 
 

1

2

n

 
 
 =  
 
  

u
u

u

u


           (4.6) 

 
listed now for the whole structure in which all the elements participate, 
automatically satisfìes the fìrst condition. 
As the conditions of overall equilibrium have already been satisfìed within an 
element, all that is necessary is to establish equilibrium conditions at the nodes 
of the structure.  The resulting equations  will contain  the displacements  as 
unknowns,  and once  these  have  been  solved  the  structural problem  is 
determined.  The internal forces in elements, or the stresses, can easily be found 
by using the characteristics established a priori for each element. If now the 
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equilibrium  conditions  of a typical node, a, are to be established,  the  sum  of 
the  component forces contributed by the  elements  meeting  at  the  node are 
simply accumulated. Thus, considering all the force components we have: 
 

1 2

1
... 0

m
e
a a a

e
q q q

=

= + + =∑        (4.7) 

 
 in which 1

aq  is the force contributed to node a  by element 1, 2
aq  by element 2, 

etc. Clearly,  only  the  elements  which  include  point a  will contribute non-
zero  forces, but for tidiness all the elements are included in the summation.  
Substituting the forces contributing to node i from the defìnition (4.3) and noting 
that nodal variables au  are common (thus omitting  the superscript  e ), we 
have: 
 

1 21 2
1 1 1

( ) ( ) ... 0
m m m

e e e
a a i

e e e= = =

+ + + =∑ ∑ ∑K u K u f     (4.8) 

 
The summation again only concerns the elements which contribute to node a . If 
all such equations are assembled we have simply: 
 

0+ =Ku f          (4.9) 
 
in which the submatrices are: 
 

1 1

m m
e e

ab ab a a
e e

and
= =

= =∑ ∑K K f f     (4.10) 

 
with summations including all elements. This simple rule for assembly is very 
convenient because as soon as a coefficient for a particular element is found it 
can be put immediately into the appropriate location specifìed in the computer.  
This general assembly process can be found to be the common and fundamental 
feature of all finite element calculations. If different types of structural elements 
are used and are to be coupled it must be remembered  that  the  rules  of  matrix  
summation permit  this  to  be  done  only  if these are of identical size. The 
individual submatrices to be added have therefore to be built up of the same 
number of individual components of force or displacement. 
 
 
4.2.3. The Boundary Conditions 
 
The system of equations resulting from Eq. (4.9) can be solved once the 
prescribed support displacements have been substituted. In the example of Fig. 
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4.2, where both components of displacement of nodes 1 and 6 are zero, this will 
mean the substitution of: 
 

1 6

0
0

u u  
= =  

 
 

  
which is equivalent to reducing the number of equilibrium equations  (in this 
instance 12) by deleting the fìrst and last pairs and thus reducing the total 
number of unknown displacement  components  to eight. It is, nevertheless, 
always convenient to assemble the equation according to relation (4.9) so as to 
include all the nodes. 
Clearly, without substitution of a minimum number of prescribed displacements 
to prevent rigid body movements of the structure, it is impossible to solve this 
system, because the displacements cannot be uniquely determined by the forces 
in such a situation. This physically obvious fact will be interpreted 
mathematically as the matrix K  being singular, i.e., not possessing an inverse. 
The prescription  of appropriate displacements after the assembly stage will 
permit a unique solution to be obtained by deleting appropriate rows and 
columns of the various matrices. 
If all the equations of a system are assembled, their form is: 
 

11 1 12 2 1

21 1 22 2 2

... 0
... 0

.etc

+ + + =
+ + + =

K u K u f
K u K u f        (4.11) 

 
and it will be noted that  if any displacement,  such as 11 =u u , is prescribed  
then the external force 1f  cannot  be simultaneously specifìed and remains  
unknown.  The fìrst equation could then be deleted and substitution of known 
values of 1u  made in the remaining equations. When all the boundary conditions  
are inserted the equations of the system can be solved for the unknown 
displacements and the internal forces in each element obtained. 
 
 
4.2.4. The Standard Discrete System 
 
In the standard discrete system, whether it is structural or of any other kind, we 
fìnd that: 
 
1. A set of discrete parameters, say au , can be identifìed which describes  

simultaneously the behaviour  of each element, e , and of the whole system. 
We shall call these the system parameters. 
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2. For each element a set of quantities e
aq  can be computed  in terms of the 

system parameters au . The general function  relationship  can be non-
linear, for example: 
 

( )e e
a a=q q u          (4.12) 

 
but in many cases a linear form exists giving: 

 

1 21 2 ...e e e e
a a a a= + + +q K u K u f       (4.13) 

 
3. The final system equations are obtained by a simple addition: 
 

1
0

m
e

a a
e=

= =∑r q         (4.14) 

 
where ar   are system quantities  (often prescribed as zero). In the linear 
case this results in a system of equations: 
 

0+ = =Ku f 0         (4.15) 
 
such that: 
 

1 1

m m
e e

ab ab a a
e e

and
= =

= =∑ ∑K K f f  

 
from which the solution  for the system variables  a can be found  after 
imposing necessary boundary conditions. 

 
In  general  neither linearity  nor  symmetry  of matrices  need  exist  - although  
in many  problems  this will arise  naturally. Further, the narrowness of 
interconnections existing in usual elements is not essential. 
 
 
4.2.5. Trasformation of coordinates 
 
It is often convenient to establish the characteristics of an individual element in a 
coordinate system which is different from that in which the external forces and 
displacements of the assembled structure or system will be measured.  A 
different coordinate system may, in fact, be used for every element, to ease the 
computation. It is a simple matter to transform the coordinates of the 
displacement and force components of Eq. (4.3) to any other coordinate system. 
Clearly, it is necessary to do so before an assembly of the structure can be 
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attempted. Let the local coordinate system in which the element properties have 
been evaluated be denoted by a prime suffix and the common coordinate system 
necessary for assembly have no embellishment. The displacement components 
can be transformed by a suitable matrix of direction cosines L  as: 
 

' =u Lu           (4.16) 
 
As the corresponding force components must perform the same amount of work 
in either system: 
 

' 'T T=q u q u          (4.17) 
 
On inserting (4.16) we have: 
 

'T T=q u q Lu         (4.18) 
 
or: 
 

'T=q L q           (4.19) 
 
The set of transformations given by (4.16) and (4.19) is called contravariant. 
To transform stiffnesses which may be available in local coordinates to global 
ones note that if we write: 
 

' ' '=q K u          (4.20) 
 
then by (4.19), (4.20) and (4.16): 
 

'T=q L K Lu         (4.21) 
 
or in global coordinates: 
 

'T=K L K L          (4.22) 
 
In many complex problems an external constraint of some kind may be 
imagined, enforcing the requirement (4.16) with the number of degrees of 
freedom of u  and 'u  being quite different. Even in such instances the relations 
(4.17) and (4.19) continue to be valid. An alternative and more general argument  
can be applied to many other situations of discrete analysis. We wish to replace a 
set of parameters u  in which the system equations   have  been  written  by  
another   one  related  to  it  by  a  transformation matrix T  as: 
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=u Tv          (4.23) 
 
In the linear case the system equations are of the form: 
 

= −Ku f          (4.24) 
 
and on the substitution we have: 
 

= −KTv f         (4.25) 
 
The new system can be premultiplied simply by TT , yielding: 
 

( )T T T= −T KT v T T f        (4.26) 
 
which will preserve the symmetry of equations if the matrix K  is symmetric. 
However, occasionally the matrix T  is not square and expression (4.23) 
represents in fact an approximation in which a larger number of parameters u  is 
constrainted. Clearly the system of equations (4.25) gives more equations than 
are necessary for a solution of the reduced set of parameters v , and the fìnal 
expression (4.26) presents a reduced system which in some sense approximates 
the original one. 
 
 
 
4.3. FINITE ELEMENTS WITH NUMERICAL CODE ANSYS®  

 
All the performed analysis have been employed by means of the commercial 
software Ansys® 11. Ansys® is a general purpose finite element method-based 
modeling software package for numerically solving of a wide variety of 
problems. The choice of this software has been dictated first of all by the 
possibility to use a batch approach, creating custom-made macros for the 
specific problem to solve and personalizing the main menu. In fact, the user can  
write in a text file a sequence of command lines. This strategy results very 
advantageous for complex problems because it gives the possibility to easily 
modify the command lines but, above all, to realize parametric models. 
Moreover, another important aspect is the possibility to perform multi-physics 
simulations. In an expanding range of applications, engineers and designers must 
be able to accurately predict how complex products will behave in real-world 
environments where multiple types of coupled physics interact. Multi-physics 
simulation software from Ansys® allows creating virtual prototypes of specific 
designs operating under real-world multi-physics conditions. This commercial 
leading software enables to simulate the interaction between structural 
mechanics, heat transfer, fluid flow and electromagnetics all within a single, 
unified engineering simulation environment. By incorporating multi-physics 
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simulation into the design process, engineers reduce error margins, increase 
product reliability and ultimately create more innovative product designs. Multi-
physics simulation from Ansys® provides a portfolio of high-fidelity engineering 
analysis tools that enable engineers to accurately predict real-world behavior. 
Ansys® multi-physics solutions combine the most comprehensive set of solver 
technology for all physics disciplines – structural mechanics, heat transfer, fluid 
flow and electromagnetics – with an open and adaptive environment, flexible 
simulation methods and parallel scalability. Together these cutting edge 
technologies form the foundation for comprehensive multi-physics simulation 
capable of solving the most complex engineering challenges.  
The Ansys® platform is a powerful multi-domain simulation environment that 
harnesses the core physics from Ansys®, enables their interoperability, and 
provides common tools for interfacing with CAD, repairing geometry, creating 
meshes and post-processing results.  
Moreover, Ansys® multi-physics solutions deliver proven methods to solve 
multi-physics problems, including solutions for both direct and sequentially 
coupled problems. Direct coupled-field elements allow users to solve multi-
physics problems by employing a single finite element model with the 
appropriate coupled-physics options set within the element itself. A direct 
coupled field solution simplifies the modeling of multi-physics problems by 
allowing the engineer to create, solve and post-process a single analysis model 
for a wide variety of multi-physics applications. Sequential coupling, instead, 
allows engineers to solve multi-physics problems with the automated multi-
physics coupling available in Ansys®, which couples multiple single-physics 
models into one unified simulation.  
The platform supports both one-way and two-way sequential solutions for multi-
physics problems such as thermal-stress analysis, microwave heating and fluid 
structure interaction. 
The software Ansys®  is organized into three modules.  
 

1) Preprocessing Module 
This module allows to model the specific problem in terms of geometry, 
element type, definition of the material properties of the element and 
mesh. 
 

2) Solution Processor Module 
In this module, instead, load and constraint conditions are assigned and 
the specific kind of solution is conveniently selected.  
 

3) Post Processing Module 
The last module furnishes the results of the problem in three different 
form of visualization: in terms of numerical data lists, with vectorial 
graphics or through chromatic bands.  
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The software Ansys® is the most diffuse element finite-based software 
worldwide; is an open software, it is programmable both for developing macros 
and menu. From the beginning, in the late 80’s, this software has been written in 
a standard FORTRAN90, one of the first and more used programming language. 
Knowledge of this language is very helpful. Substantially, it is possible to create 
macros in a proprietary language called APDL (Ansys Parametric Design 
Language) having a own proprietary sintax and it is possible to customize menu 
using a proprietary language called UIDL (User Interface Design Language). 
ANSYS Multi-Physics software offers a comprehensive product solution for 
structural linear or nonlinear and dynamics analysis. The product provides a 
complete set of elements behavior, material models and equation solvers for a 
wide range of engineering problems. In addition, ANSYS Multi-Physics offers 
thermal analysis and coupled-physics capabilities involving acoustic, 
piezoelectric, thermal-structural and thermoelectric analysis. 
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TOPOLOGY OPTIMIZATION THEORY 
 

 
 
 

The area of computational variable-topology shape design of 
continuum structures is presently dominated by methods which 
employ a material distribution approach for a fixed reference 
domain in the spirit of the so-called `homogenization method' for 
topology design, (Bendsøe et al., 1988). That is, the geometric 
representation of a structure is similar to a grey-scale rendering 
of an image, in discrete form corresponding to a raster 
representation of the geometry. This concept has proven very 
powerful, but it does involve a number of difficulties. One is the 
issue of existence of solutions, another the issue of solution 
method.  
In many applications, the optimal topology of a structure should 
consist solely of a macroscopic variation of one material and void, 
meaning that the density of the structure is given by a (0 1)−  
integer parametrization (often called a black-and-white design). 
Unfortunately, this class of optimal design problems is ill-posed in 
that, for example, nonconvergent, minimizing sequences of 
admissible designs with finer and finer geometrical details can be 
found, see (Cheng et al., 1981; Kohn et al., 1986). Existence of black-
and-white solutions can be achieved by confining the solution space 
to limit the complexity of the admissible designs, making the 
designs dependent on the choice of parameters in the geometrical 
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constraint. Such a restriction of the design space can be 
accomplished in a number of ways, e.g. by enforcing an upper 
bound on the perimeter of the structure (Ambrosio et al. 1993; 
Haber, et al.,1996), one can introduce a filtering function that 
effectively limits the minimum width of a member, (Sigmund, 
1994); or one can impose constraints on slopes on the parameters 
defining the geometry, (Chenais,  1975; Bendsøe, 1983; 
Niordson, 1983).  
For reasonable raster representations of the (0 1)−  black-and-
white design, the solution of the resulting large-scale integer 
programming problem becomes a major challenge. Recently, dual 
methods have been shown to be effective, in the absence of local 
constraints, (Beckers, 1999). However, the most commonly used 
approach is to replace the integer variables with continuous 
variables, and then introduce some form of penalty that steers the 
solution to discrete (0 1)−  values. A key part of these methods is 
the introduction of an interpolation function that expresses various 
physical quantities, e.g. material stiffness, cost, etc., as a function 
of continuous variables. The continuous variables are often 
interpreted as material densities, as in the so-called penalized, 
proportional “fictitious material” model. Inspired by the relaxed 
formulations that introduce composites, some methods use 
interpolations derived from employing composite materials of some 
given form together with penalizations of intermediate densities of 
material.  
Existence of solutions can also be achieved through relaxation, 
leaving the concept of a black-and-white design. Relaxation is 
sometimes attained by expanding the solution space to include 
microstructures and using homogenized properties to describe their 
behaviour, as seen in (Bendsøe et al., 1988; Lurie et al., 1982).  
In these formulations, the design is allowed to exhibit high-
frequency oscillations at an indeterminate, microscopic length 
scale. Alternatively, we may describe these nonconventional 
designs through mathematical relaxation, e.g., quasi-
convexification, etc. (Goodman et al., 1986). In general, these 
approaches lead to designs that can only be realized by 
incorporating microstructure; however, there is no definite length 
scale associated with the microstructure. Relaxed formulations 
provide an appropriate basis for direct synthesis where composite 
materials are allowed to constitute part of the final design, simply 
because microstructure is admissible. Indeed, the demand for 
ultimate performance can lead one to consider all possible 
materials in the design formulation, (Ringertz, 1993; Bendsøe et 
al., 1994). In general, relaxation yields a set of continuously 
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variable design fields to be optimized over a fixed domain, so the 
algorithmic problems associated with the discrete (0 1)−  format of 
the basic problem statement are circumvented; this was one of the 
main motivations for the initial use of the relaxation concept. 
Sometimes, a subset of the design fields is optimized analytically, 
leaving a reduced problem for numerical optimization, (Jog et al., 
1994).  
It should be emphasized that the continuum relaxation approach 
can be very involved theoretically. As of today, it has been 
mathematically fully worked for minimum compliance design of 
structures only (for both single and multiple loads) and for a 
broader class of problems involving the Laplace operator 
(Goodman et al., 1986).  

 
 
 
5.1. INTRODUCTION 
 
The design process of an object is a coherent set of operations that starts from the 
structure’s conception and ends with its realization. One of the most important 
steps in designing a structure or an element is the definition of its form.  
Usually, the traditional approach to this problem is to use geometries that have 
already been tried or solutions already adopted before; this approach is 
insufficient in many engineering areas, where the development of new products 
or new solutions in researching the best structural morphology in relation to 
design requirements, are very important. A rational approach to this type of 
problem is known as optimization. In a simple way, the word optimization can be 
defined as the rational procedure that allows reaching the best solution among all 
admissible ones, according with the required targets and with the physical and 
geometric constraints and limitations. It is easy to imagine that this concept is not 
just about the structural field, but it concerns a multitude of fields including 
bioengineering, fluid mechanics, electromagnetism, optics, natural sciences, 
economics and many others. The optimization provides engineers a means to 
determine optimal designs in terms of admissible structural responses 
(deformation, stress, etc.), through mathematical algorithms. Due to this 
multidisciplinary approach, most of the results today are obtained by experts 
from different fields working together. The preliminary operation is to define the 
geometry of the object, element or structure to be built and it is the most 
important moment as it can influence all following design choices. Since the 
‘50s, the evolution of the optimization has produced four main classes of distinct 
problems: sizing optimization, shape optimization, material optimization and 
topology optimization; the last one is the subject of this thesis work. Actually, 
these four classes of problems have developed at different times. At the 
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beginning, the optimization was the search for the “best” sectional properties, 
after having fixed topology and structural configuration. Later on, in 1950-60, 
thanks to the development of the Finite Element Method (FEM), shape 
optimization was introduced; then, in 1980, the topology optimization was 
developed. Now, the four techniques above mentioned will be briefly described 
(Cinquini et al., 1995). In the sizing optimization, geometry, material properties 
and loads are assigned; the designer task is to select the size of the section of all 
the various parts of the structure. So, the goal is to determine the optimal 
distribution of the area and the thickness of the structure we want to study. 
 

 
Fig. 5.1 – Sizing optimization 

 
In this case (Fig 5.1), the configuration and topology of the structure are defined 
beforehand and the optimization process is restricted to research the optimal size 
of the cross sections of the rods. In the shape optimization the structural topology 
is established, i.e. the connection level of project domain; optimization becomes 
the search for “optimal” form, such as inner holes in general or the border of 
project domain. 
  

 
Fig. 5.2 – Shape optimization 

 
Material optimization can be considered as part of a class of problems, but it can 
be related to topology optimization. 
In the case of topology optimization, the connection degree of domain is not 
fixed beforehand: we only know the form, the constraints and the loads.  
 

 
Fig. 5.3 – Topology optimization 

 
Therefore, see Figure 5.3, the aim is to determine the distribution of material (or 
material properties) that minimizes or maximizes the objective function given for 
an assigned loads condition and observing appropriate constraints. The topology 
optimization is the latest in order of development, and compared to other 
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optimization procedures, it offers several advantages; the most important one 
consists in the ability to design the domain’s level of connection without the need 
to determine a specific topology in advance, as it occurs in the case of shape 
optimization. Moreover, a great operational advantage lies in not modifying the 
discretization of the domain at every step of an iterative process; in this way we 
have the resolution of the problem (for example through the finite element 
method). Furthermore, topology optimization can act on several structural levels, 
allowing the definition of optimal shape at both microstructural (definition of 
material characteristics) and macrostructural (definition of the structural 
morphology) (Michell, 1904) levels. 
 
 
 
5.2. TOPOLOGY OPTIMIZATION: ETYMOLOGY AND HISTORY  
 
Topology optimization is the search for optimal distribution in the project 
domain of one or more structural parameters such as density, mechanical 
properties such as rigidity, microstructural parameters, thickness, and other 
geometrical and mechanical parameters; for its versatility and potential, this 
design procedure represents the link between size and shape optimization 
(Eschenauer et al., 2001). The word topology comes from the Greek word topos 
and it means location, space or domain. In mathematical terms, the topology is 
linked to objects that are deformable in a manner called rubber-like (i.e. as a 
gum). Topological transformations and topological mapping indicate the 
topological transformations of a domain in another one that does not destroy or 
create close links. Two topological domains are called topologically equivalent if 
there is a topological mapping of one of the other two domains (Fig. 5.4): 
 

 
Fig. 5.4 – Topological trasformation 

 
In addition, a topological property is the invariance of all topological mappings. 
In general, transformations can be formulated as a topological transformation of 
the continuous, whose inverse transformations are still continuous. Finally, there 
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is the homomorphism property, by which transformations are reversibly and 
continuous. The word optimization comes from the Greek word optimus and it 
can be defined as the rational procedure that allows reaching the best solution 
among all admissible ones, according with the required objective and with the 
physical and geometric constraints and limitations. Topology optimization is a 
relatively new and rapidly expanding field of structural mechanics that can result 
in much greater savings than mere cross-section or shape optimization. Owing to 
its complexity, it is an intellectually challenging field; its progress, however, has 
often been hampered by conceptual inconsistencies and terminological 
confusion. For this reason, a critical and systematic re-examination of the 
relevant issues seems needed. This argument deals mainly with mechanical, 
structural and computational aspects. For very low volume fractions, important 
principles of topology optimization were established already at the beginning of 
the century in the context of trusses, by the versatile Australian inventor Michell 
(Rozvany, 2001); these  principles were extended to grillages (beam systems) 
more or less seventy years later by Rozvany. Drawing on these applications, the 
basic principles of optimal layout theory were formulated by Prager and Rozvany 
(Prager et al. 1977) and generalized considerably by the latter in the eighties and 
nineties. Topology optimization for higher volume fractions is now called 
Generalized Shape Optimization (GSO) or Variable Topology Shape 
Optimization. It involves the simultaneous optimization of the topology and 
shape of internal boundaries in porous and composite continua. In the context of 
discretized mechanics, this development was prompted by the observation of 
Cheng and Olhoff (1981) that optimized solid plates containing systems of ribs 
which are similar to optimized grillages. For compliance design of perforated 
plates (disks) in plane stress, optimal microstructures were studied by various 
mathematicians. The first exact analytical solutions for optimal perforated plates 
and the correct expressions for the rigidity tensor of homogenized optimal 
microstructures were obtained by Bendsøe  (1983).The birth of practical, FE-
based topology optimization for higher volume fractions was brought about by 
extensive pioneering research of Bendsøe (1989), and his homogenization 
school. This was followed by a parallel exploration of the SIMP approach, 
suggested originally by Bendsøe (1989) and used extensively by Zhou (1991) 
and the author Rozvany (1994), who also suggested the term SIMP. 
 
 
 
5.3. FORMULATION PROBLEM 
 
In the mathematical formulation of optimal design problems, we must consider 
four fundamental aspects (Cinquini et al, 1995): 
 
I. Object function definition 
The object function (or functional) is represented by a measure indicator (to 
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maximize or minimize) of the structure quality, where quality is referred to the 
satisfaction of an assigned requirement. Among the structural properties most 
often used to define the objective of the optimization procedure, there are: 
 
- the cost (the cost of materials, manufacturing cost, maintenance cost and 

usage); 
- the mechanical properties (global or local); 
- the aesthetic qualities. 
 
If more objectives are considered, not in conflict among them, it generates a 
problem much more complex, precisely defined as a multi-objective optimization 
problem. 
 
II. Choice of design variables 
The design variables are related to the geometry of the structure. The geometry is 
usually defined by topological variables representing the numerical and spatial 
sequence of structural elements and nodes position, or through mechanical 
variables related to structural behaviour. The shape of the structure can be 
considered as design variables. 
 
III.  The formulation of equations governing the problem 
The equations controlling the problem, such as the equilibrium and consistency 
equations and the material’s constitutive laws, depend on the nature of the 
problem.   
 
IV. Definition of the constraints and limitations  
From a mathematical point of view, constraints can be classified in equality or 
inequality and in global or local; from a structural point of view, we can have 
behaviour or geometric constraints. Constrains limit the domain of admissible 
solutions. 
 
In summary, in optimal problems all the constraints are written as mathematical 
expressions (equality or inequality) in order to define the set of possible projects, 
and then to look for the optimal solution through the minimization (or 
maximization) of the objective function. In topology optimization of structure, 
material and mechanisms, parameterization of geometry is often performed by a 
grey-scale density-like interpolation function (Bendsøe and Sigmund, 1999). This 
allows to derive simple necessary conditions for the possible realization of grey-
scale via composites, leading to a physical interpretation of all feasible designs as 
well as the optimal one. Thus it is shown that, in many circumstances, the so 
called artificial interpolation model actually falls within the framework of 
microstructurally based models. In many applications, the optimal topology of a 
structure should consist solely of a macroscopic variation of material and void, 
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meaning that the density of the structure is given by a “0±1” integer 
parameterization (often called black and white design). Unfortunately, this class 
of optimal design problems is ill-posed in that, for example, non convergent, 
minimizing sequences of admissible design with finer and finer geometrical 
details can be found. Existence of black and white solutions can be achieved by 
confining the solution space to limit the complexity of the admissible designs, 
making them dependent on the choice of parameters in the geometrical 
constraint. For reasonable raster representations of the “0±1” black and white 
design, the solution of the resulting large scale integer programming problem 
becomes a major challenge. Recently, dual methods have been shown to be 
effective, in the absence of local constraints (Beckers, 1999). However, the most 
commonly used approach is to replace the integer variables with continuous 
variables, and then introduce some form of penalty that steers the solution to 
discrete “0±1” values. A key part of these methods is the introduction of an 
interpolation function that expresses various physical quantities, for example 
material stiffness, cost, etc., as a function of continuous variables. The 
continuous variables are often interpreted as material densities, as in the so-called 
penalized, proportional fictitious material model. 
 
 
 
5.4. BASIC PROBLEM STATEMENTS 
 
The continuum topology design problems considered are defined on a fixed 
reference domain Ω  in 2R  or 3R . In this domain, we seek the optimal 
distribution of material, with the term optimal being defined through choice of 
objective functions, constraint functions and through choice of design 
parametrization. The objective and constraint functions involve some kind of 
physical modelling that provides a measure of efficiency within the framework 
of a given area of applications, for example structural mechanics. The basis for 
the discussion is the minimum compliance problem for a linearly elastic 
structure in 2-D or 3-D. We thus consider a mechanical element as a body 
occupying a domain mΩ  which is part of a the reference domain Ω , on which 
applied loads and boundary conditions are defined Fig. 5.5: 
 

 
Fig. 5.5 – The shape design problem of finding the optimal material distribution 
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This reference domain is often referred to as the ground-structure, in analogy 
with terminology in truss topology design, (Bendsøe, 1995). Referring to the 
reference domain Ω  we can define the optimal topology-shape design 
problem as a minimization of force times displacement, over admissible 
designs and displacement fields satisfying equilibrium:  
 

minimize

U,
T

 d  ds
Ω Γ

Ω +

∈ Θ

∫ ∫pu tu

u
 

 
subject to: 

 

( ) ( ) ( )

( ) ( )

( )

( ) ( )

( )

0

, for all ,

,

1 if ,
0 if / ,

Vol ,

Geo

T
ijkl ij kl

ijkl ijkl

m

m

m

m

x u v  d  d  ds U

x x

x
x

x

x  d V

K

Ω Ω Γ

Ω

Ω = Ω + ∈

= Θ

 ∈ΩΘ = 
∈Ω Ω

Ω = Θ Ω ≤

Ω ≤

∫ ∫ ∫

∫

C pv tv v

C C

ε ε

(5.1) 

 
Here, the equilibrium equation is written in its weak, variational form, with U  
denoting the space of kinematically admissible displacement fields, u  the 
equilibrium displacement, p  the body forces, t  boundary tractions and ( )uε  

linearized strains. Moreover, ( )Geo mΩ  denotes a constraint function limiting 

the geometric complexity of the domain mΩ , imposed here to obtain a well-
posed problem. In problem (5.1), 0

ijklC  denotes the stiffness tensor of a given 
elastic material from which the structure is to be manufactured, with a total 
amount of material V ; ( )xΘ  denotes the pointwise volume fraction of this 
material and, for a black-and-white design, this can only attain the values zero 
or one. Problem (5.1) is a discrete optimization problem, and for many 
applications it is useful to consider reformulations in terms of continuous 
variables, with the goal of using derivative based mathematical programming 
algorithms. This means that one changes the model for material properties, i.e., 
the relations defined in (5.1) as:  
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to a situation where the volume fraction is allowed any value between zero and 
one. It may also involve finding an appropriate method for limiting geometric 
complexity, for example, exchanging the total variation of a density for the 
perimeter of a domain. 
 
 
 
5.5. ISOTROPIC MODELS FOR SOLID-VOID INTERPOLATION IN ELASTICITY  
 
In this section the so-called penalized, proportional fictitious material model, 
also names as the Solid Isotropic Material with Penalization model (SIMP), 
is presented (Bendsøe, 1989; Zhou et al., 1991; Mlejnik et al., 1993; 
Rozvany et al., 1994).  
Here, a continuous variable γ , min0 γ γ≤ ≤ , is introduced, resembling a density 
of material by the fact that the volume of the structure is evaluated as: 
 
 ( )Vol .x  dγ

Ω
= Ω∫  (5.3) 

 
In computations, a small lower bound, min0 γ γ< ≤ , is usually imposed, in 
order to avoid a singular FEM problem, when solving for equilibrium in the 
full domain Ω .  
The relation between this density and the material tensor ( )ijkl xC  in the 
equilibrium analysis is written as:  
 
 ( ) 0p

ijkl ijklγ γ=C C , (5.4) 
 
where the given material is isotropic, i.e. 0

ijklC  is characterized by just two 

variables, here chosen as the Young' s modulus 0E  and the Poisson ratio 0ν .  
The interpolation (5.4) satisfies that: 
 
 ( ) ( )0 0, 1 .0

ijkl ijkl ijkl= =C C C  (5.5) 
 
This means that if a final design has density zero or one in all points, this design 
is a black-and- white design for which the performance has been evaluated with 
a correct physical model. 
For problems where the volume constraint is active, experience shows that 
optimization does actually result in such designs if one chooses p sufficiently 
big (in order to obtain true (0 1)−  designs, 3p ≥  is usually required).  
The reason is that, for such a choice, intermediate densities are penalized; 
volume is proportional to γ , but stiffness is less than proportional. 



CHAPTER V: TOPOLOGY OPTIMIZATION THEORY 

 
LUCA ESPOSITO –PHD THESIS 142 

 
 

5.6. MICROSTRUCTURE REALIZING THE SIMP-MODEL 
 
For the SIMP interpolation (5.4),  it is not immediately apparent that areas of 
grey can be interpreted in physical terms. However, it turns out that, under 
fairly simple conditions on p ,  any stiffness used in the SIMP model can be 
realized as the stiffness of a composite made of void and an amount of the 
base material corresponding to the relevant density. Thus using the term density 
for the interpolation function γ  is quite natural. The stiffness tensor ( )ijkl γC  
of the SIMP model is isotropic with a Young's modulus varying with γ .  
The Poisson’s coefficient also depends from the density but a constant value 
have been used. 
If this tensor is to correspond to a composite material constructed from void 
and the given material at a real density γ ,  the bulk modulus k and the shear 
modulus µ  of the tensor ( )ijkl γC  should satisfy the Hashin-Shtrikman bounds 
for two-phase materials, (Hashin et al., 1963), written here for plane 
elasticity and for the limit of one phase being void: 
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Here 0k , 0µ  are the bulk and shear moduli, respectively, of the base material. 
This implies that the Young modulus should satisfy (Torquato et  al .,  
1998): 
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From (5.7), the SIMP model should satisfy: 
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which is true if and only if 3p ≥ . However, the SIMP model presumes that the 
Poisson's ratio is independent of the density, and this leads to a stronger 
condition. From the relationship: 
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the condition (5.6) for the SIMP model can be written for all 0 1γ≤ ≤  as:  
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After some algebra, this leads to a condition on the power p in the form:  
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which in itself implies 3p ≥ . The inequality 02 1p ν≥ −  comes from the 
bulk modulus bound, while the inequality 04 1p ν≥ +  is due to the shear 
modulus bound. Example values of *p  are:  
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and * 3p =  holds only for 0 1 3ν = . 
It is important to note that the condition (5.11) implies that the SIMP model 
can be made to satisfy the Hashin-Shtrikman bounds, so that it makes sense to 
look for composites which realize the stiffness tensor for the model. The form 
of this composite can be computed through a design process, where the desired 
material properties of a periodic medium are obtained by an inverse 
homogenization process, (Sigmund, 1994; Sigmund, 1995). The geometry of 
the composite may depend on the density and one can normally not expect to 
obtain the wanted properties by analytical methods. It is still an open problem 
if all material parameters satisfying the bounds also can be realized as 
composites of the given materials. For two materials, one infinitely stiff, one 
infinitely soft, it is shown in (Milton et  al. , 1995) that composites can be 
build for any positive definite material tensor. However, in topology design the 
stiffness is restricted and the density specified. 
In 3-D, there is more geometric freedom to construct microstructures and here 
the Hashin-Shtrikman bounds lead to the condition: 
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on the power p  in the SIMP model.  
Example bounds are here: 
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so some lower values of p are possible in dimension three.  

Note that for the Poisson’s coefficient 1
3

ν =  we have the same bounds in 2-D 

and in 3-D. 
 
 
 
5.7. TWO MATERIALS WITH NON-VANISHING STIFFNESS 
 
For a topology design problem, where the aim is to seek the optimal distribution 
of two isotropic, linearly elastic materials with non-vanishing stiffness, the 
stiffness tensor of the problem (5.1) takes the form: 
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where the two materials are characterized by the stiffness tensors 1

ijkl
C and 2

ijkl
C . 

Here the material 1 is the stiffer, i.e., 1 2
ijkl ijklij kl ij kl≥C Cε ε ε ε  for any strain ε . Note 

that the volume constraint now signifies the amount of material 1 which can be 
used, as the total amount of material amounts to the total volume of the domain 
Ω. The two-material problem has been the focal point of theoretical works on 
generalized shape design problems, as the possible singularity of stiffness is not 
an issue. Computational studies are poor with early numerical work 
concentrating on conduction problems, but this variant of the topology design 
problem has gained recent interest, mainly as a method for generating 
microstructures with interesting (and extreme) behaviour. 
For the two-material problem, the SIMP model can be expressed: 
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5.8. ANISOTROPIC TOPOLOGICAL OPTIMIZATION 
 
 
5.8.1. Introduction 
 
Minimization of the strain energy density is of considerable significance when 
stiff structures or structured materials must be achieved for a given loading, 
whereas its maximization is an outstanding feature when a large amount of 
energy absorption under impact loading is demanded. Contrary to isotropic 
solids, in presence of elastic anisotropy the strain energy density changes when 
any material element is rotated to the principal directions of stress or strain. 
Accordingly, the orientation of the material axes can be employed as design 
variable to achieve the desired maximum or minimum value of the strain energy 
density. In designing living tissues, nature somehow employs this kind of 
strategy, and adjusts the microstructure of the material (i.e., its anisotropy), to 
enhance the mechanical performances. On the other hand, the same idea is 
artificially adopted when some man-made materials are produced. Among these, 
fibrous composites represent the most common example of materials 
intrinsically anisotropic and susceptible to be properly designed for given 
purposes. In literature some procedures were proposed with the aim to 
rationalize the problem of finding the extrema for the strain energy density, with 
reference to linear elastic solids in presence of material symmetries (Rovati et 
al., 2003). Referring to a linearly elastic anisotropic solid, defined by an 
elasticity tensor with components ijhkC , subjected to a constant strain state 
characterized by given principal strains, this goal can be achieved by answering 
to the following questions: (a) which conditions must be satisfied by the stress 
and the strain fields to make the strain energy density stationary, and (b) which 
are explicitly the corresponding mutual orientations of the strain and the 
elasticity tensors that satisfy these conditions? 
The answer to the first question is partially known. The results obtained up to 
now, which will be briefly reviewed later, concern essentially the determination 
of qualitative conditions to be satisfied by absolute maxima and minima for the 
strain energy density, and the number of such critical points. The problem of the 
explicit evaluation of the orientations corresponding to all the stationarity values 
of the strain energy density has only partially been solved. On the last point in 
following section it is widely explained a procedure proposed by Rovati et al. 
(2003), where for some classes of anisotropy (namely, tetragonal system, 
transverse isotropy and cubic symmetry) all the orientations of the principal 
directions of strain to the material symmetry axes at the critical points are found 
and discussed.  
 
 
5.8.2. State of the Art  
 
Pioneering works where extreme values of the strain energy density in 
anisotropic bodies are sought are those by Banichuk (1981, 1983). Here, the 
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problem of simultaneously evaluating the most efficient shapes for anisotropic 
rods in torsion and the orientation of the anisotropy axes which minimize the 
structural compliance is dealt with. The problem of defining the local values of 
the elastic coefficients, with fixed directions of material axes, which minimize 
the energy density is also considered in plane elasticity. These results have been 
extended in Banichuk and Kobelev (1987) to the case of ideally elastic-plastic 
solids. Anisotropic plates with variable elastic moduli and material axes 
orientation have been also studied by Kartvelishvili and Kobelev (1984), 
referring to optimal design for compliance and natural vibrational frequency. 
Beside these structural formulations, the study of the best positioning of elastic 
symmetry planes in three-dimensional orthotropic bodies for minimum potential 
energy of deformation has been carried out in a general way in Seregin and 
Troitskii (1981). In this work, through the application of the Lagrangian 
multipliers method, it is shown that the solution is locally characterized by a 
mechanically meaningful condition, that is, coaxiality of the stress and strain 
tensors. Contrary to isotropic elasticity, where the strain and stress tensors are 
always coaxial, in anisotropic elasticity this feature is, in general, lost. The non-
trivial result obtained by Seregin and Troitskii emphasizes a requirement that 
must always be fulfilled when extreme values of the global stiffness are sought; 
consequently, it should be assumed as a guidance for an optimal spatial 
arrangement of the material symmetry axes. 
Later, but independently, the same problem has been dealt with in Rovati and 
Taliercio (1991, 1993) where orientations of the material symmetry axes which 
maximize or minimize the global elastic stiffness of a general1y anisotropic 
three-dimensional continuum are sought. Necessary stationarity conditions for 
the strain energy density are directly computed, assuming the strain state to be 
given, and their mechanical interpretation (that is, collinearity of principal 
directions of stress and strain) is highlighted. Some closed form solutions for 
cubic and transversely isotropic materials are found, and a material parameter, 
responsible of the relative shear stiffness of the solid, is introduced. It is shown 
how two classes of solutions can be defined according to its value: one, where 
stationarity of the strain energy density is accompanied by full collinearity of 
principal directions of stress, strain and material axes; the other one, where this 
collinearity is only partially preserved. 
Due to pertinence to practical applications, much effort has been devoted to two-
dimensional solids. In particular, the elastic problem previously described has 
been reformulated for plane elasticity in Sacchi Landriani and Rovati (1991), 
and conditions for absolute maximum and minimum structural stiffness are 
found; an extension to plates in bending is given as well. Careful investigations 
in this direction should be mentioned, such as those given by Pedersen (1989), 
where it is found that the best orientations of the material axes depend on a 
dimensionless material parameter, plus the ratio of the two principal strains. 
Coaxiality of the material axes and the principal strain directions always 
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corresponds to stationary values for the energy density (trivial solutions); 
however, in some strain conditions, stationarity can also be achieved at some 
non-trivial orientations. In addition to these considerations referred to any 
material point, analyses are also carried out for the whole solid (Pedersen, 1990), 
through applications of sensitivity analysis, finite element analysis, and 
optimization procedures. Homogenization techniques, coupled with finite 
element analyses and design for optimal structural performances, have led to the 
very effective method of topology optimization (Eschenauer and Olhoff, 2001). 
A modern formulation of the problem of finding the best orientations of the 
material symmetry axes in a three-dimensional continuum is given by Banichuk 
(1996), where the application of spectral methods of tensor analysis makes it 
possible to clarify general features of the problem itself, and to discuss some 
qualitative properties. Further accounts on spectral decomposition of the 
anisotropic elasticity tensor can be found in Sutcliffe (1992) and Theocaris and 
Sokolis (2000). Banichuk deals with several problems, such as minimization of 
the compliance functional, the dynamic stiffness and the distortion energy. 
These problems are then generalized to the case of bodies consisting of several 
anisotropic phases; accordingly, the medium is represented as a polycrystalline 
aggregate. 
The problem of extremizing the strain energy density by varying the mutual 
orientation of a fixed stress state to the material symmetry axes (regardless of the 
considered symmetry class) has also been developed by Cowin (1994). After 
showing that the stress and strain tensors commute at the stationarity (or critical) 
points of the strain energy, Cowin looks for absolute maxima and minima of the 
energy in a subset of orientations at which the gradient of the strain energy 
density vanishes respect to a second-order orthogonal tensor, representing the 
coordinate transformation. It is shown that the symmetry coordinate system of 
cubic symmetry is the only situation in linear anisotropic elasticity for which a 
strain energy density extremum can exist for all stress states. The stationarity 
conditions for materials with other symmetries depend on the given stress state. 
In particular, the conditions for the energy extrema for transversely isotropic and 
orthotropic solids are found for uniaxial stress states. In Vianello (1996a) and 
Sgarra and Vianello (1997a,b) attention is paid to showing the existence of 
rotations of the material axes with respect to the principal directions of strain, at 
which the energy density is stationary. By means of Weierstrass’ theorem the 
existence of at least two such rotations is proved, which parametrically depend 
on the strain tensor for any material symmetry. At a first glance, this result 
seems to contradict the statement given in Cowin (1994); nevertheless, the 
difference with Cowin’s formulation is that here the elastic symmetry is held 
fixed for a specific strain state, whereas in Cowin (1994) a general state is 
considered. This difference is exhaustively clarified in Cowin (1997). The 
extension to finite anisotropic elasticity is tackled by Blume (1994). and 
Vianello (1996b), where the properties of the extrema are shown to be the same 
as in the linear case. Further developments in this direction concern the problem 
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of extremizing the strain energy density, with respect to both the orientation of 
the anisotropy axes and the type of material symmetry (Cowin and Yang, 2000), 
for a given, but arbitrary, stress state. This formulation reveals a strict 
connection with analogous problems concerning the generation of optimal 
topologies (Eschenauer and Olhoff, 2001), where it is essentially the 
microstructure of the solid that plays the role of design variable. 
Finally, it is interesting to notice that the previously illustrated problems 
spontaneously arise not only in the study of the behaviour of man-made 
materials, but also in the mechanics of living tissues. For instance, Fyhrie and 
Carter (1986) develop a relationship between cancellous bone apparent density, 
trabecular orientation and applied stress, assuming the bone to be an orthotropic, 
self-optimizing material. It is shown that the trajectories of the material axes and 
the apparent density can be described by a unifying minimization principle 
involving a quadratic functional, similar to the strain energy density, and a 
purely quadratic Tsai-Wu failure criterion. The results predict the alignment of 
the material axes to the principal stress directions, in agreement with the 
previously reviewed results. Mechanisms of local changes in anisotropic 
properties, that more efficiently allow the living bone to carry the loads, are 
shown in Cowin (1987, 1995). These results suggest that .the bone is designed 
by nature to have the greatest stiffness in axial direction and the greatest impact 
load resistance in the transverse one. The intimate relationship between 
trabecular architecture of cancellous bone and mechanics is also described by 
Odgaard et al. (1997). 
 
 
5.8.3. Topology Optimization Problems for Anisotropic Media 
 
Minimization of the strain energy density plays a crucial role in problems related 
to the optimization of composites where stiffer properties are needed through the 
topology rearrangement of the material  microstructure (Cowin, 2007; Rovati et 
al. 2003). Differently from the isotropic case, in elastic anisotropic media the 
strain energy density changes when any material element is rotated with respect 
to the principal directions of stress or strain: this requires that the local 
orientation of the material axes should be employed as design variable in a full 
TO problem. Living tissues seem to actually exploit this strategy when they 
adjust their material microstructure (Cowin, 2007; Luo et al.) to achieve, at 
different scale levels, enhanced mechanical performances and, recently, the 
same strategy has been artificially introduced for designing man-made materials 
(Van der Zwaag, 2007). 
From the mathematical standpoint, minimize the strain energy means to analyze 
stationarity properties of the functional and thus finding its critical points. The 
local orientation of the anisotropy axes is then assumed to be varying from a 
point to another through the body, and it must be taken as a variable of the 
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problem. To make this, by explicitly following the approach by Rovati and 
Taliercio (2003), let us introduce the positive definite strain energy density at a 
generic point of the anisotropic elastic material as follows: 
 

1 1: ( : ) : 0, { , }
2 2 ijhk hkij jihk ijkhC C C CΨ = = > ∀ ≠ = = =0T E E E E  (5.17) 

 
where [ ]ijhk ijhkC =   and no restriction on the type of elastic anisotropy is made.  
However, when the material symmetry axes are locally rotated at any point of 
the body with respect to an arbitrarily  fixed reference frame, any change in the 
strain energy must be ruled by the equation: 
 

1 1
2 2ijhk ij hk im jn hp kq mnpq ij hkC E E Q Q Q Q C E EΨ = =     (5.18) 

in which  [ ]mnpq mnpqC=   are the Cartesian components of the elasticity tensor 
in its preferred reference system (i.e. the local material symmetry reference 
frame) and [ ]ij ijQ=Q  represent the usual components of the proper orthogonal 

tensor,  1T −=Q Q , rotating the material axes with respect to the arbitrary system, 
say – without loss of generality – the system locally coaxial with the principal 
directions of strain. Then, in order to find critical points for the strain energy 
density ψ , it is possible to search the stationarity of the following Lagrangian 
function,   , written as: 
 

1( , ) ( )
2 ijhk ij hk ij ik jk ijC E E Q Q δ= = − Λ −  Q Λ    (5.19) 

 
where [ ] ij= ΛΛ   are the components of a symmetric second-rank tensor, Λ  , 
here utilized as tensor lagrangian multiplier to be used for establishing the 
orthogonality constraint  1T −=Q Q . In fact, stationarity of the functional (5.19) 
with respect to ijΛ  restores the orthogonality condition, while stationarity with 
respect to the variables ijQ , responsible for the orientation of the anisotropy 
axes,  gives: 
 

0 0mspq im hp kq ir hk rj js
rs

C Q Q Q E E Q
Q
∂

= ⇒ − Λ =
∂



    (5.20) 

 
By means of some algebraic manipulations, the eq. (5.20) finally allows to find: 
 

ik ir rkT E = Λ ⇒ =T E E T       (5.21) 
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where the relations among the elasticity coefficients in (5.18) and the 
symmetries of stress, strain and Λ  have been taken into account. The 
commutativity condition (5.21) implies that the stationarity points of the strain 
energy can be found when T  and E  share the same eigenvectors: this is always 
true in isotropic elasticity, and only applies to anisotropic media characterized 
by tetragonal, hexagonal and cubic material symmetries, if additional conditions 
are fulfilled in terms of coaxiality between principal stress, strain and material 
symmetry axes. On the basis of the above illustrated results, it can be then 
inferred that analytical models able to describe orthotropic elastic material 
symmetries due to the local orientation of the microstructure through fabric 
tensors can be helpfully employed to construct topology optimization strategies 
for heterogeneous media, identifying both volume fraction and fabric tensors 
with TO design variables. Accordingly, the most important mathematical steps 
to find optimal microstructure orientation in heterogeneous media are described 
below. By making reference to the work by Luo and An (1998) and coherently 
with the notation previously introduced, let us consider the complementary strain 
energy, c , of a linearly elastic anisotropic heterogeneous materials as follows: 
 

hom1, ( : ) :
2c c cd

Ω
= Ψ Ω Ψ =∫  T T     (5.22) 

where cΨ  is the complementary strain energy density and hom  is the overall 
compliance elasticity tensor  assumed in the form: 
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  (5.23) 

 
where M  is the fabric tensor, ( )ρ x  is the volume fraction, p  a positive 
penalization power and ik  are coefficients to be determined. With reference to 
the TO problem (5.1), two constraints have been imposed on ( )ρ x , the first one 
being: 
 

opt( ) = Vol( ) dρ
Ω

Ω Ω∫ x         (5.24) 
 
and the second one written as: 
 

2 20 1 {1 , }a bρ ρ ρ< ≤ ⇒ − = =     (5.25) 
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where the inequality representing the physical admissible values for the volume 
fraction is converted into equalities by introducing the real slack variables a  
and b . Therefore, the augmented objective function,  *

c , can be formulated as: 
 

( )* opt 2 2( ) Vol( ) [ ( 1) ( )]c c  d a b dλ ρ α ρ β ρ
Ω Ω

= + Ω − Ω + + − + − Ω∫ ∫  x  (5.26) 

 
where { , , }α β λ  are Lagrangian multipliers. It is possible to prove that 
stationarity of (5.26) finally leads to the following equations (Luo, 1998): 
 

hom
hom hom

hom
1

0, [ ]

0, 1
2

1, 1

ijhk
ij hk ijhk ijhk

mn

ij hk ijhkp

S
T T S

M
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if

λ ρ
ρ

ρ ρ

+

∂
= =

∂

− + = ∀ <

= =



    (5.27) 

 
The TO problem can be thus formally solved by putting together the eqs. (5.27) 
with the 15 classical elasticity field equations, the density constraint (5.24), a 
normalization condition on the first invariant of M  (i.e. 1tr =M ) and the 
boundary conditions, the 23 unknowns being constituted by six stresses, six 
strains, three displacement components, the volume fraction ρ , the Lagrangian 
multiplier λ  and the six components, [ ]ij ijM=M , defining the symmetrical 
fabric tensor. 
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TOPOLOGY OPTIMIZATION IN HIP 
PROSTHESIS DESIGN 

 
 
 
 

Each year, worldwide, over 800,000 total hip arthroplasty (THA) 
operations are performed. Due to osteoporosis, rheumatoid arthritis 
and traumatic events, this number is growing as a consequence of 
the increase of the average age of the population. Also, a significant 
number of hip replacements in younger people, who generally are 
more active and therefore impose more frequent and intensive loads 
to the joint than elderly people, have been registered in the recent 
years. 
Bad implant position or imprecise indexing of the prosthesis can 
determine aseptic mobilization phenomena that could result in 
collateral effects in the long period. After hip replacement, a 
frequent complication may also occur, represented by a mechanical 
loosening of the implant. This is revealed by implant movement and 
remodeling of the bone around the prosthesis, bone remodeling 
being the physiological dynamic response of the bone to the 
environmental stress level. The gain or loss of bone within the 
proximal femur when an orthopedic implant is present is the main 
factor influencing the performance of the prosthesis and therefore 
its durability. 
Although stress shielding remains one of the main factors 
responsible for loosening in cementless implants, radiographic 
evidence based on clinical follow-ups reveals that surface 
treatments and the use of extensively porous-coated total hip 
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arthroplasties can significantly limit the influence of stress 
shielding on the longevity of the implant (Engh et al. 2003).  
However, failure of osteointegration does occur in femoral 
revisions performed with extensively porous-coated stems 
(Hamilton et al. 2008). On the other hand, in cemented implants, 
failure of the femoral prosthesis component of a total hip 
replacement system is mainly attributed to failure of the cement–
implant interface and cement mantle in cemented systems 
(Beckenbaugh and Ilstrup 1978; Maloney 2002; Jasty et al. 1991) 
and a limited role is therefore played by stress shielding phenomena 
(Harris 1992). To avoid these types of failures, possible new 
prosthesis profiles can be envisaged by employing, in common 
design optimization procedures, objective functions that incorporate 
a measure of the stress in the cement layer surrounding the 
prosthesis (Yoon et al. 1989) or at the cement–prosthesis interface 
(Huiskes and Boeklagen 1989; Katoozian and Davy 2000) with the 
goal of minimizing stress concentration in these areas, minimizing 
the probability of prosthesis failure and maximizing prosthesis 
reliability.  
However, the choice of computational strategies based on the 
design optimization leads to a modified shape design of the implant 
stem (Nicolella et al. 2006; Tanino et al. 2006) and this produces 
two main disadvantages. The first one is related to the difficulty of 
determining geometric compatibility between 
implant shape and hosting femur. The second one is due to the 
necessity of completely modifying surgical instrumentations and 
consolidated techniques. 
Other researchers have approached the problem of improving the 
hip prostheses performance by trying to understand the 
phenomenon of loosening (e.g., Rietbergen et al. 1993), as well as 
relating it to prosthesis design (e.g.,Weinans et al. 1992; Huiskes 
and Rietbergen 1995), by means of optimization of the implant-
femur response in terms of optimal bone remodeling at the 
interfaces. Usually, these models assume the bone-stem interface to 
be in contact without friction where the stem is not coated and fully 
bonded where coated. 
Actually, this is a correct approach if one considers complete bone 
ingrowth in the coated zones, and consequently, the interface bone 
layer supports both shear and traction without failure.  
However, the bone remodeling after a total hip arthroplasty is an 
evolutionary process, i.e., in a post-operative situation, the bone 
ingrowth does not exist but, if the local mechanical conditions 
permit, it can appear. Interface conditions and the bone ingrowth 
process have been studied in several research contributions (e.g., 
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Keaveny and Bartel 1995), as well as methods that integrate 
ingrowth analysis and bone remodeling (Fernandes et al. 2002).  
When the prosthesis is introduced into the femur, the new 
distribution of the stresses induces bone atrophy and therefore bone 
resorption can appear in regions near to the implant. Indeed, due to 
the major overall stiffness, the prosthesis absorbs a significant 
percentage of the forces transmitted at the acetabular level and the 
stress in the bone reduces with respect to its physiological 
magnitude, determining stress shielding (Huiskes et al. 1992) and 
then implant loosening. Bone would receive more load if the stem 
were eliminated from the implant. This observation has led to the 
design of stemless implants.  
However, Munting and Verhelpen (1995) have claimed that 
stemless implants are effective only for short-term fixation. Joshi et 
al. (2000) investigated the possibility of reducing the shielding in a 
hip prosthesis by modifying geometry and the system of proximal 
fixation. In another study, hollow geometry has been introduced by 
increasing stem inner diameter to reduce stress shielding (Gross and 
Abel, 2001), but the use of simplified cylindrical shape, load and 
boundary conditions did not furnish reliable quantitative estimates.  
Stress shielding can also be decreased if stem is made from a less 
stiff material which has Young’s modulus equal to bone (Morscher 
and Dick 1983), but a flexible implant may produce higher stresses 
along the interface (Huiskes et al., 1992), as would occur with any 
modulus mismatch. 
However, the clinical follow-up suggests that one of the crucial 
features to study in a pre-clinical evaluation of a new prosthetic 
design is the primary stability of cementless hip prostheses, 
essential for long-term durability of the implant. The main factors 
responsible for primary stability are generally recognized in the 
shear stresses and micromotions occurring at the interface bone-
implant. The amount of motion and the interfacial stresses depend 
on geometrical and mechanical properties of the prostheses.  
As a consequence, for initial stability, the accuracy of host bone 
preparation and the design of the prosthesis are critical (Gotze et al. 
2002). Although there is no agreement in literature for the range of 
acceptable micro-motion at the bone–implant interface, it seems 
that interface micro-motion around 40 μm gives partial ingrowth, 
while micro-motion exceeding 150 μm inhibits bone ingrowth 
completely (Pettersen et al., 2009). 
Bone growing into porous-coated areas on the implant, realized by 
means of surface treatments with hydroxyapatite or titanium plasma 
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spray, ensures osteointegration and then determines the so-called 
secondary stability. 
Actually, with reference to aseptic loosening of the implant, it is 
difficult to distinguish among the factors influencing primary and 
secondary stability. A good initial fixation, and then the success of 
a THA, is indeed the result of the combination of different 
interacting and simultaneously in vivo changing factors, whose 
synergy gives good chance for the implant to achieve initial 
stability and to preserve it in the long term (Monti et al., 1999).  
From the mechanical point of view, the factors influencing the 
primary stability of the stem depend on biomechanical interaction 
between femur and prosthesis. Incorrect loading of the implant after 
surgery can cause excessive interface shear motions and/or bone 
resorption, leading to implant debonding and mobilization. The 
term incorrect is here utilized to denote any stress level exceeding a 
prescribed threshold (for example, the limit shear stress at the bone-
implant interface) or below a minimum stress magnitude, necessary 
to retain a pre-THA physiological stress level in bone and avoiding 
stress shielding. Then, with the aim of improving primary stability 
in hip prostheses, we treat the femoral stem as a material to 
optimize over its volume by locally penalizing the implant stiffness 
through an updated mass density distribution. The map of the 
density distribution is obtained by means of an FE topological 
optimization analysis. By improving the prosthesis-bone stiffness 
ratio, a higher stress level is reached within the proximal and distal 
femur regions and, as a consequence, a reduction of stress shielding 
is obtained. 

 
 
 
6.1. ARTHROSIS 
 
Arthrosis is a chronic degenerative disease of the joints related to the 
degeneration of articular cartilage with a subsequent change in the bony articular 
surfaces, the development of marginal osteophytes, deformation of the joint, and 
the development of moderate synovitis. Arthrosis is among the most ancient 
human and animal diseases. Paleontological studies have found arthrosis in 
animals and humans from the Stone Age. It is a widespread form of articular 
pathology seen in 10-12% of the population. The disease correlates with age 
developing more frequently after 30–35 and seen in 97% of people over 60. 
Arthrosis appears with the same frequency in men and women with the 
exception of arthrosis of the interphalangeal joints of the hand, which is seen 10 
times more frequently in women. According to information from European and 
US rheumatologists, this disease makes up 69-70% of all rheumatic diseases. 
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Fig. 6.1 – On the left a physiological femur head; on the right a arthritic femur head 

 
 
 
6.2. TOTAL HIP ARTHROPLASTY: A BRIEF HISTORY 
 
During the last century multiple choice of replacing the hip articulation have 
been tried. From the first pioneer attemps performed by the orthopaedic doctors 
Smith and Peterson whose objective was the resurfacing of the femur head by 
means of a metallic cup to the first modular prosthesis proposed by Sir Charnley 
after the second world war till the modern age when material and manufacturing 
processes reach high level of performances. 
A first hip prosthesis classification is due to the type of fixation inside the femur; 
the hip implants are usually divided in cemented and cementedless (press-fit), 
anatomic and revision. 
 

 
Fig. 6.2 – On the left all the parts componing an hip prosthesis  

(stem, head, liner and acetabular cup); on right the assembled hip prosthesis 
 
In order to fix the stem of the prosthesis inside the femur a poly(methyl 
methacrylate) (PMMA) is utilized. The cementless stem guarantee the primary 
fixation due to the geometric constraints by means of a press-fit double wedge 
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situated in proximal part of the stem. Moreover, the proximal surface treatment 
by means of coating of HydroxyApatite or Titanium Plasma Spray ensure the 
secondary stability due to osteo-integration. The materials usually utilized are: 
titanium or stainless alloy for the stem; Co-Cr alloy, ceramics for the head; Ultra 
High Molecolar Weight Poly-etilene (UHMWPE) and ceramic for the liner; 
titanium or stainless alloy for the acetabular cup. Finally the head-liner coupling 
is usually Co-Cr with UHMWPE, ceramic with UHMWPE, ceramic with 
ceramic; all these couplings are oriented to minimize the wear production during 
the usual prosthesis life-time. Even if the manufacturing processes and the 
materials technology improve their quality day by day, a great amount of 
implant failures happens every year. The following Fig. 6.3 shows a large 
variety of explanted prostheses. 
 

 
Fig. 6.3 – A large variety of expianted prostheses 

 
 
 
6.3. MODELING FEMUR: MATERIAL PROPERTIES 
 
Considerable attention has been given to the construction of the FE model. 
Faithful reproductions of actual geometries of the bone and implant were 
created. Accurate mechanical properties of the materials involved in the analyses 
and physiological boundary conditions were determined. These efforts were 
made to insure reliable qualitative and quantitative numerical results. For 
example, the accuracy in the three-dimensional reconstruction of geometry and 
mechanical properties of the femur was obtained by direct quantitative computed 
tomography (QCT) acquisition. This instrumental diagnosis is based on Digital 
Imaging and Communication in Medicine (DICOM), a standard file format 
including patient, hospital and instrumentation data. Also contains geometric 
data about the patient position and densitometric data about the absorption of the 
X-Ray into the medium. Deeper information will be given in the next chapter. In 
order to construct the computational FE model, a human femur was scanned by 
QCT. The QCT scanned the bone along 1mm separated parallel planes and 
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created 512×512 bitmap images recording the levels of material density. QCT 
gives density levels in terms of Hounsfield Units (HU), as a function of the X-
ray attenuation into the examined material. This information, as well as the 
image size, is archived in DICOM standard format file. By utilizing the 
commercial software Mimics®, the density data in terms of Hounsfield Unit 
(HU) related to the bone have been filtered, polylines have been generated and 
finally exported to the software Ansys®; a tipical Mimics® window is illustrated 
in fhe following Fig. 6.4: 
 

 
Fig. 6.4 – Polylines from femur filtering density in the range of bone (200-1200 HU) 

 
In Ansys® environment, starting from the imported polylines, the volume of the 
femur has been created and then meshed.  
 

 
Fig. 6.5 – On the right Young’s moduli versus apparent wet density for all human body 
site; Young’s moduli versus apparent wet density for human femur (Helgason et al., 
2008) 
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In order to mechanical characterize the femur volume, the list of elements and 
nodes has been exported from the software Ansys® to the software Mimics. 
Finally, each element has been assigned a corresponding elastic modulus by 
employing the experimentally determined relations of the mechanical properties 
to the density and CT numbers obtained from literature for human bone (Rho et 
al. 1995). Indeed, the bone density distribution, with reference to the actual 
levels of mineralized bone in the trabecular and cortical regions, has been taken 
into account. As illustrated in Fig. 6.5, Helgason et al. (2208) reviewed all 
relevant literature on this topic. He included and properly normalized only 
elasticity-density relationships derived from similarly controlled experiments. 
The resulting relationships have been grouped  according  to the most important 
methodological differences: type of end support during testing, specimen 
geometry, and anatomical sampling location and some recommendations have 
been made for the application of elasticity-density relationships to subject-
specific finite element studies. With the purpose of identifying density-elasticity 
relationships suitable for use in subject-specific FE studies, the development of a 
benchmark study has been also suggestsed. By using the experimental literature 
tests made on several specimens of trabecular and cortical bone tissues (Rho 
1991; Rho et al. 1995), the bone density is converted into material properties, 
say elastic moduli, using a custom-made algorithm able to relate the HU in 
output from QCT to corresponding mechanical parameters. The bone cortical 
regions, selected by means of the HU values, are modeled as transversely 
isotropic, with in-plane (for example in the plane of the diaphysis cross-section) 
Young’s modulus equal to 17,000 MPa, and the out-plane modulus equal to 
22,000 MPa (Turner et al. 1999). Also, we assume isotropy for the spongy bone 
sites, the spatial variation of the bone density being responsible for the 
nonhomogenous elastic response. However, the choice of a very fine mesh in the 
FE-model, see Fig. 6.7, ensures that structural gradients over the RVE are very 
small because the RVE size is assumed to be coincident with the FE size: this 
avoids conflicts in terms of the relation between structural gradients and elastic 
symmetry (Cowin 2002). 
 
 
   
6.4. MODELING FEMUR: THE DISCRETIZATION 
 
As shown in the above Fig. 6.6 a model of about 80,000 tetrahedral elements 
was constructed, from which an FE model of was generated by homogenizing 
the local material properties over the tetrahedral element volumes. Elements 
refining zones are employed where geometry and solutions in terms of stress 
suggest higher accuracy with a very good accuracy for the description of the 
inhomogeneous mechanical behaviour of the bone. The intact femur model was 
first created and then sectioned at the trochanteric level for inserting the implant. 
The accuracy of the FE model compared with QCT images, in terms of effective  
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Fig. 6.6 – The final finite element-based model 

 
correspondence of the X-ray density gray levels and density maps obtained by 
the numerical model, is shown in the following Fig. 6.7.  
 

 
Fig. 6.7 – (a) QCT slice density image at the trochanteric level; (b) gray-scale local 
density plot of the FE model at the trochanteric level; (c) overall frontal view section of 
the FE model 
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The prosthesis (a common cementless Ti-6Al-4V Johnson & Johnson PFC 
collared stem) was laser scanned, reconstructed by a Computer Aided Design 
(CAD) system and, then, positioned inside the bone. Its indexing was controlled 
with reference to the standard surgical protocol.  
The elastic properties of the implant are referred to the usual literature values. In 
particular, the titanium alloy and the CrCo used for the prosthesis head and stem 
respectively have been modelled as linearly elastic, isotropic and homogeneous 
with Young’s moduli equal to 105 GPa and 210 GPa, in that order, setting 0.3 as 
the Poisson ratio. 
 

 
Fig. 6.8 –The three-dimensional reconstruction of the two models. Left: particular of the 
proximal (intact) femur model and mesh; Right: particular of the proximal femur with 
implant and mesh 
 
The three-dimensional reconstruction of the two discretized FE models, the intact 
femur and with the prosthesis, are illustrated in the above Fig. 6.8 where, in 
order to highlight the accuracy of both the three-dimensional reconstruction and 
the size of the elements, a detail of the proximal region is shown. 
 
 
 
6.5. MODELING FEMUR: LOADS AND CONSTRAINTS 
 
Finally, prescribed loads employed by Simoes et al. (2000), was accomplished to 
calibrate the numerical model. Simoes et al. (2000) described experiments made 
on a composite femur monitored with 20 uniaxial strain gauges to determine the 
response of the bone model under physiological load conditions.  
We replicated the force boundary conditions applied to the femur in the 
experiments of Simoes et al. (2000) in our numerical model taking into account 
the action of the weight of the patient plus the action of the major muscles, the 
abductors, the iliopsoas and the vastu lateralis, participating to the standing 
position, as illustrates in the following Fig. 6.9, where are also listed the 
directions and the numerical values of the forces acting on the femur.  
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Fig. 6.9 – Loads conditions applied to the femur taking into account the action of joint 
reaction force plus abductors, iliopsoas and vastus lateralis muscles. 
 
 
 
6.6. TOPOLOGY OPTIMIZATION IN HIP PROSTHESIS DESIGN 
 
 
6.6.1. Motivation 
 
The basic idea is to use TO for establishing a suitable mass distribution (or 
arrangement of voids) inside a cementless prosthesis, in order to minimize femur 
stress-shielding phenomena that are mainly responsible for bone resorption and 
thus aseptic loosening of the implant. Also, by considering different percentages 
of prosthesis volume reduction in the maximum stiffness topological 
optimization analyses, optimal weight and stiffness ratios are determined for 
reducing stress shielding in both proximal and distal regions, as well as avoiding 
stress concentrations at the bone–implant interface and inside the optimized 
prosthesis. As noted above, by improving the prosthesis/bone stiffness ratio, a 
higher stress level is reached within the proximal and distal femur regions and, 
as a consequence, a reduction of stress shielding is obtained if the topological 
optimization is performed over the volume originally occupied by the implant. 
We chose a grey-scale over a black–white optimization protocol because smooth 
densities admit the possibility of modeling the removal of material from the 
original solid domain by making micro-voids (for example, by means of micro-
drilling techniques). The point being that the size of the micro-voids could be 
less than the mesh size (about 1 ÷ 2 mm) that was adopted for the numerical 
model. This permits the fine-tuning of the prosthesis optimization process. 
Another rationale that suggests the topological optimization of the prosthesis to 
obtain a better overall working bone–implant relationship is that maximizing 
stiffness by means of minimization of the strain energy mimics the 
biomechanical process, regulated by growth and bone remodeling, in which the 

resultant 
force
(N) φ γ

joint reaction force 730 159 7
Abductors 300 20 180
Iliopsoas 188 47 262
vastus lateralis 292 180 -

Muscle and joint reaction forces

angle degree
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bone tissue is invited to reach its optimal configuration, e.g., remodeling 
equilibrium (Cowin and Hegedus 1976; Cowin 1994, 1999; Cai et al. 2008; Jang 
and Kim 2008, 2009; Jang et al. 2009). In this optimization process, the mass 
distribution of the prosthesis is rearranged; thus, the implant would appear to be 
obeying its own Wolff’s law. Moreover, the following figure 6.10 illustrates the 
rearrangement of the trabeculae (on the left) as the normal scenario (on the right) 
after a topological optimization of the femur where the bone has been modeled 
as cortical. 
 

 
Fig. 6.10 – On the left the rearragment of trabeculae after TO starting from the femur on 
the right where bone has been modeled as cortical 
 
Huiskes et al. (1987), in order to study the remodeling phenomenon, modeled 
the microstructure of trabecular bone by means of a fabric tensor, highlighting 
the behavior of the lamellae and, then, the principal axis of the tensor, oriented 
in line to the loads applied. Finally, note that, by preserving the integrity of the 
external shape of the implant, the optimized prosthesis does not require 
modification of production processes, implanting instrumentation and 
consolidated surgical procedures. Also, all the surface treatments designed for 
the femoral stems to promote bone ingrowth and then osteointegration could still 
be preserved without any conflict with the features needed for the topological 
optimized implant (Luo et al. 1999; Fernandes et al. 2002). 
 
 
6.6.2. Non linear FE Analises 
 
Three significant FE analyses have been performed.  
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The first one was related to the intact femur. This case is studied both for 
verifying the accuracy of the model and for obtaining results to use as yardsticks 
for establishing differences in terms of stress distributions in comparison with 
other analyses where the prosthesis is inserted in the femur. The second study 
case, named “0”, is the one in which the THA is simulated. This is a static 
analysis performed for the femur with the implant; this is accomplished for two 
cases, the case of a perfect bond and the case of contact with friction interface 
conditions. The results of these cases are utilized for estimating stress 
concentrations and stress shielding in bone in a usual THA situation and are 
accomplished in the absence of an optimization procedure. The last case treats 
the topological optimization (maximum stiffness with volume reduction 
constraints) of the prosthesis, by exploring four different optimization scenarios, 
that is the scenario “1”, where the sole interior of the prosthesis is optimized 
(e.g., the elements opened onto the boundary of both the prosthesis head and the 
stem preserve their original mass), the scenario “2”, in which the interior of the 
stem is optimized and the implant head is fully optimized, the scenario “3”, 
representing the case where the stem is fully optimized, while the sole interior of 
the head is optimized, and finally, the scenario “4”, in which the whole 
prosthesis is optimized. Also, in order to investigate a sufficiently wide range of 
possible mass configurations inside the optimized implants, for each scenario, 
the optimized distribution of mass inside the femoral stem model is obtained by 
imposing four different mass reduction percentages, that is, 55, 65, 75 and 85%.  
The lower (55%) and upper (85%) selected percentages of volume reduction 
employed in the topological optimization analyses represent – to a good 
approximation – the percentages whose corresponding prosthesis volume 
fractions are 45 and 15%, respectively. These percentages, if homogeneously 
distributed over the implant domain, would give the equivalent (upper) cortical 
and (lower) cancellous bone overall stiffness, respectively. These values provide 
a sufficiently wide and physically reasonable range of possible prosthesis mass 
reduction. This result is consistent with one of the objectives of this work, 
namely to reduce the difference between bone and implant stiffness. This result 
may be verified with mathematical ease if the topological optimization routine is 
employed with a power law penalization power equal to three to relate Young’s 
modulus to the volume fraction. 
 
 
6.6.3. Results: Stress Shielding Index 
 
The first analysis was performed for the intact femur. The results in terms of 
stresses suggest a good accuracy of the numerical model and therefore the 
effectiveness of employing both a faithful three-dimensional reconstruction of 
the femur and the elastic non-homogeneity obtained by translating the density 
map into corresponding material properties. We note that the vector plot of the 
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principal stresses looks like the trabecular arrangement in the real femur. Also, 
the magnitude of the stresses never reaches the compressive and tensile yield 
stresses determined locally by the bone density. In addition, the results obtained 
in our analysis show that the application of more realistic boundary conditions to 
the femur model leads to a reduction of bending in the bone and to a more 
uniform strain distribution, in agreement with the results revealed in 
experimental, strain gauged, femoral tests by Simoes et al. (2000). Thus, due to 
this accord and to the accuracy of the numerical model, the results mentioned 
above have been utilized as reference values (for example in terms of von Mises 
stresses) for estimating deviations from the physiological stress distribution in 
the cases where the prosthesis is introduced, for the situations where the implant 
is optimized and when it is not. The second FE analysis was executed on the 
femur with an implant, a common cementless titanium alloy collared straight 
stem. This analysis considered both perfect bond and contact with friction 
conditions at the interface bone-prosthesis. Several non-linear static analyses 
were performed in order to investigate the possible influence of friction on the 
results. As we noted above, friction was considered variable within the range (0, 
0.3). However, no significant stress differences were registered between the 
perfect bond and the contact with friction cases, except for very low friction 
values (≈ 0). The results show some typical femoral regions where stress 
shielding actually produces resorption, consistent with those regions revealed by 
X-rays of post-surgery implantation cases. In particular, part of the great 
trochanter and some distal cortical areas of the diaphysis exhibit a significant 
decrease of the vonMises stress, in comparison with the same stress measure 
read on the corresponding elements of the intact femur. Indeed, to estimate the 
effect of the prosthesis on the stress distribution in the bone, the von Mises 
stress, calculated at the centroid of each element, was chosen as the base line. 
Rigorously speaking, von Mises stress could be not exactly the most relevant 
measure of mechanical stimulus in anisotropic, and therefore we should not 
assume that resorption depends on it. However, this is a relatively convenient, 
scalar measure of a stress at a point. In addition, a study by Terrier et al. (1997) 
confirms that bone adaption models using strain energy density and the von 
Mises criterion give very similar results. With reference to the FE analyses 
where (maximum stiffness) topological optimization of the implant was 
evaluated, for different percentages in mass reduction (55, 65, 75, 85%) and for 
different positioning of the material mass to be optimized (cases “1”, “2”, “3” 
and “4”), the results were collected and presented as follows. The difference in 
stress for each element before and after THA was calculated and divided by 
the stress occurring in the element pre-THA to determine a Stress Shielding 
Increase, (SSI), for that region. The before and after ratios were then volume-
averaged over a specific region to calculate SSI for that region. Since the von 
Mises stress is strictly non-negative, positive stress difference values indicate 
decrease of the stress level in post-THA situation, therefore, stress shielding. 
The explicit expression for SSI is the following: 
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VMSσ −  is the von Mises stress in the intact femur, THA
VMSσ  is the von Mises 

stress in the femur where the implant is introduced, all quantities averaged over 
the selected volume elements. Vanishing SSI means vanishing stress shielding 
and indicates an optimal condition. On the contrary, negative values of the SSI 
indicate an increase of stress when the prosthesis is present and thus they can be 
interpreted as a measure of stress concentrations, especially, if the actual stress 
in the bone exceeds yield strength or physiological-based thresholds. Increase of 
stress shielding (SSI), measured as a ratio between the difference of von Mises 
stress in the intact and implanted femur and von Mises stress within the intact 
femur, all quantities being averaged over the element volumes corresponding to 
the trochanter and diaphysis model regions, are represented. Note that, in 
comparison with the case “0” where the prosthesis is not optimized, the mean 
reduction in stress shielding is increasing with the effective mass reduction 
percentage of the implant and the gain in decrease of stress shielding reaches 
about 85% (SSI of 15%) for the great trochanter, and up to 99% (SSI less than 
1%) for the diaphysis.  
 

 
Fig. 6.11 – Polar diagrams show the results of the topological optimization in terms of  
SSI index at the trochanter level (around the prosthesis) in the 4 cases in terms of 
percentages. 
 
The previous Figure 6.11 consists of four polar diagrams representing a ratio of 
the von Mises stresses in these two cases; these ratios are evaluated over a ring 
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of elements placed at the trochanter level, around the implant, where usually 
stress shielding phenomena appear. In particular, the polar diagrams show the 
results of the topological optimization in terms of a ratio between the difference 
of von Mises stress placed at the trochanter level (around the prosthesis) and von 
Mises stress in the same elements of the femur with non-optimized implant, and 
von Mises stress of the femur with non-optimized implant. This estimate differs 
from the SSI measure as it is calculated at the centroid of each selected element 
(no overall average on the whole set of elements), comparing the stress shielding 
in the case where the prosthesis is not optimized (standard case “0”) with the 
results for optimized implants at different prosthesis mass reduction percentages.  
It is worthwhile to note that the results show that the von Mises stresses in the 
femur with optimized implant are 90% greater than the corresponding ones in 
the femur with non-optimized prosthesis. However, these values are always less 
than the von Mises stresses in the intact femur in the regions where the same 
stress is evaluated and, therefore, the stress eigenvalues in the intact femur are 
less than the compressive and tensile yield stresses. 
Finally, the following Figures. 6.12 and 6.13 summarize the results of the 
topological optimization in terms of resulting densities (RD) over the prosthesis 
domain and von Mises stresses (VMS) in a frontal section of the femur.  
 

 
Fig. 6.12 – Results of the topological optimization in terms of resulting densities (RD) 
over the prosthesis domain and von Mises stresses (VMS) of the femur (as sectioned 
frontal view projections) for the first 2 cases in terms of percentages. 
 
There, the evolution of the stresses and the decrease in stress shielding with the 
increase of prosthesis mass reduction percentage is highlighted, as shown in the 
sequences of the images.  
To stress the utility of the wide number of cases examined, it is worthwhile to 
note that, in classical problems of topological optimization, the regions that 
exhibit low density as a result of the optimization process are considered as 
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material to be removed. On the contrary, in the case of optimized prostheses, is 
not always possible to achieve this.  
 

 
Fig. 6.13 – Results of the topological optimization in terms of resulting densities (RD) 
over the prosthesis domain and von Mises stresses (VMS) of the femur (as sectioned 
frontal view projections) for the second 2 cases in terms of percentages. 
 
Indeed, if low densities appear at the interface with the bone (for example, in the 
cases “2”, “3” and “4”), to remove material means to eliminate geometrical 
continuity and thus loosening would be trivial to predict. Thus, low output 
densities should be considered as an opportunity of reducing stiffness, not as a 
requirement. From this point of view, untraditional for TO, one should therefore 
aim to design prostheses where low densities obtained as TO results suggest 
where to reduce material stiffness, for example, by decreasing the volume 
fraction by means of laser micro-drilling of the implant or by defining prostheses 
in composite materials. 
 
 
 
6.7. HIP PROSTHESIS TOPOLOGY OPTIMIZATION STRATEGY LIMITS 
 
 
6.7.1. Material Properties from Numerical analyses 
 
A large number of mathematical relationships between densitometric measures 
and mechanical properties have been introduced in the literature. In many 
published studies, elastic properties of bone are correlated to the bone density, in 
order to derive an empirical elasticity-density relationship. The accurate 
determination of such a relationship is of great importance, and while the 
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relationship between CT attenuation coefficients and ash density can be 
established with a direct calibration (McBroom et al., 1985; Ciarelli et al., 1991), 
the determination of a mathematical relationship between density and 
mechanical properties is more challenging. These proposed relationships are 
often substantially different one from the other. It is unclear whether such 
differences in elasticity-density relationships can be entirely explained in terms 
of methodological discrepancies among studies. This large spread in the 
predicted Young modulus can partially be explained by the complexity involved 
in the experimental techniques needed to measure the mechanical properties in a 
highly porous anisotropic material such as trabecular bone. Commonly, to 
determine the mechanical compressive properties, a trabecular bone specimen is 
cut out of a whole bone and loaded in a material testing machine. By recording 
the load–displacement curve, the stiffness can be calculated. Over time, different 
testing set-ups were developed and applied, and it was found that different 
artefacts and source of errors can arise during a mechanical test. In order to solve 
these problems related to the measurement of the bone mechanical properties, 
numerical analyses have been performed, considering that, even if the porous 
media is isotropic, stiffness depends on both volume fraction and cavity 
morphology. Different kinds of cavity morphology have been considered as 
shown in Fig. 6.14. 
 

 
Fig. 6.14 – Different morphology cavities analized 

 
The following Fig. 6.15 regroups the results in terms of Young moduli along 
density: 

 

14%
               

50%
               

65%
               

83%
               

98%
               

Volume fraction 

48%
               

71%
               

79%
               

88%
               

98%
               

Volume fraction 

55%
               

76%
               

68%
               

83%
               

99%
               

Volume fraction 

                        
                         
        

b 

a 

c 

X3 

X2 
X1 

X3 

X2 
X1 

X3 

X2 
X1 

X3 

X2 
X1 

X2 
X1 

X3 

X2 
X1 

X3 



CHAPTER VI: TOPOLOGY OPTIMIZATION IN HIP PROSTHESIS DESIGN 

 
LUCA ESPOSITO –PHD THESIS 174 

 
 

 
Fig. 5.15 – Young Moduli along density for different cavity morphology 

 
A numerical law correlating Young moduli ( )E γ  with density γ  and Poisson 
coefficient υ  have been defined: 
 

2 3( )E A B C Dγ γ γ γ= + + +        (6.1) 
 
with: 
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This relationship will be used to set material properties related to density. 
 
 
6.7.2. Ansys® Topology Optimization limits 
 
The Ansys® Topological Optimization module has shown evident limits: 
 

1) it is possible to perform only linear static solution 
2) the penalization power p  of  the density ρ  is fixed a priori 
3) it is not possible to set a minimum value of the density ρ  
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4) the choice of the objective function is limited 
5) there are only two library element types 
6) there aren’t difference in terms of results in the cases of prescribed 

displacement and applied loads. 
 
The first limitation doesn’t let perform different kinds of analises; in particular 
thermo-elastic analisis are denied and non-linear analisis both in the case of 
geometric and constitutive non-linearity are permitted. 
The second limitation is relative to the penalization power of the density. As 
seen in previous chapters in the case of depleted media where it is very 
important to set a value of the penalization power able to fit in the best way the 
experimental data; Ansys® Topology Optimization module is a close box respect 
to this problem. 
Manufacuring industries are very sensible to the third limitation because, in 
order to produce the topology optimized material and-or structure, it is very 
difficult to realize a density with very low values. The minimum value of the 
density can be let respect to the technological capabilities. 
Usually the objective function is the Total Potential Energy and usually this 
functional is used to be minimized, but sometimes could be very useful to choice 
a different objective function as Von Mises Energy or different functional. 
Due to particular geometries, materials or physics of the problem, Ansys has a 
large variety of elements types usable in different multiphysics.The sixth 
limitation is very absurd; there are only two library element types, one 2D 
element and one 3D element type able to perform Topology Optimization. 
The last limitation, the sixth, is the most significant and will discussed in details 
in the next chapter. 
Due to this limitation, a custom-made algorithm in Ansys® environment has 
been created and will be shown in details in the next chapter. 
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TOPOLOGY OPTIMIZATION: A CUSTOM-
MADE ALGORITHM 
 

 
 
 

In the previous chapter essential limits of the procedure of 
Optimization have been highlighted in terms of modelling bone 
material properties, performing Topology Optimization with 
Ansys® module and building up the finite element-based model. 
In order to overcome the significant and intrinsic limitations inside 
the Topology Optimization Ansys® module, an innovative and 
original custom-made algorithm, based on analytical formulation, 
have been proposed.  
With the aim of underlining how the numeric code Ansys® is able 
to perform Topology Optimization only for structure subjected to 
applied forces, a comparison between Ansys® and custom-made 
algorithm have been illustrated.   
As written before, the Ansys® software is an open environment; it 
is programmable both for developing macros and menu.From the 
beginning, in the late 80’s this software has been written in a 
standard FORTRAN90, one of the first and more used  
programming language. A knowledge of this language is very 
helpful. Substantially, it is possible to create macros in a 
proprietary language called APDL (Ansys Parametric Design 
Language) having a own proprietary sintax and it is possible to 
customize menu using a proprietary language called UIDL (User 
Interface Design Language). All the designed menu will be shown 
in details, emphasizing the different menu used to input data, run 
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analisis and plot results. In the same way some crucial code lines 
will be explained in datails underlining the versality of the 
programming language. 

 
 
 
7.1. ANALYTICAL FORMULATION 
 
On the basis of the analytical formulation, a custom made algorithm, totally 
integrated in Ansys® software environment, has been developed. Three different 
materials have been taken into account: 
 
• Depleted Media 

The first class of material is common called Depleted Media with the 
meaning of a porous material in which the matrix is randomly depleted by 
voids. 

 
• Isotropic Inhomogeneous Fiber Reinforced Media  

The second class of material is Isotropic inhomogeneous fiber reinforced 
media with the meaning of a matrix in which short reinforced fibers are 
randomly dispersed. 

 
• Anisotropic Homogeneous Fiber Reinforced Media  

The third class of material is Anisotropic inhomogeneous fiber reinforced 
media with the meaning of a matrix in which short oriented reinforced fibers 
are randomly dispersed. 

 
For the first two classes of materials, the analytical formulation has been 
proposed in both cases of prescribed displacements and applied loads. The 
approach is typical of a functional minimization, normally the Total Potential 
Energy, using the Lagrange Multiplier Method. 
 
 
7.1.1. Depleted Media. Prescribed Displacements 
 
As the first case a depleted media subject to prescribed displacements has been 
considered.  
The Deformation Energy, equal in solution to the Total Potential Energy, has 
been defined in terms of displacements of the single element eu : 
 

1
2

T
e e e eU K= u u  
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where eK  is the stiffness matrix.  
Then the penalization law for Young Modulus where  is the element density 
and p  the penalization power due to Solid Isotropic Material Penalization 
(SIMP) (ensoe et al. 1995): 
 

0
p

eE E γ=  
 
Finally the volume constraint function g  of the system have been written where 
n  is the number of elements and f  is the volume fraction: 
 

1

n

e
e

g nfγ
=

= −∑  

 
Now, we can define the functional ℑ  to minimize, according to Lagrange 
Multiplier Method (Reddy, 1987), containing both the Total Potential energy 
and the volume constraint function: 
 

U gλℑ = +  
 
where  is the Lagrange multiplier. Indeed, from the following equations 
system generated deriving the functional ℑ  respect to the density of the single 
element eγ  and respect to the Lagrange multiplier λ : 
 

1
1 10 0 ( )p p

e e e
e e

p U
pU
λγ λ γ

γ
− −∂ℑ

= → + = → = −
∂

 

 
1

1

1 1
0 ( )

n n
p

e
e e e

nf nf
pU
λγ

λ
−

= =

∂ℑ
= → = → − =

∂ ∑ ∑  

 
with simple algebraic manipulation, it is possible to find the two unknown 
variables, first the Lagrange multiplier λ : 
 

1
1

1

1

( )
1( )

p

n
p

e e

nf

pU

λ −

−

=

− =

−∑
 

 
and, finally, the analytical expression of the density of the single element eγ  in 
the case of depleted media subject to prescribed displacements, function of the 

eγ

λ
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Total Potential Energy of the element eU , the penalization power p , the 
number of elements n  and the volume fraction f : 

1
1

1
1

1

p
e

e n
p

e
e

Unf
U

γ
−

−

=

=

∑
         (7.1) 

 
 
7.1.2. Depleted Media. Applied Loads 
 
Following the same reasoning of the previous paragraph, some algebraic 
passages let find the expression of the density in the case of depleted media 
subject to applied loads.  
First the Deformation Energy, equal in solution to the Total Potential Energy,  
has been definied in terms of forces ef : 
 

11
2

T
e e e eU K −= f f  

 
Then the penalization law for Young Modulus: 
 

0
p

eE E γ=  
 
Finally the volume constraint function for the n  elements: 
 

1

n

e
e

g nfγ
=

= −∑  

 
Now we can define the functional ℑ  to minimize, according to Lagrange 
Multiplier Method: 
 

U gλℑ = +  
 
Indeed, from the following equations system generated deriving the functional 
ℑ  respect to the density of the single element eγ  and respect to the Lagrange 
multiplier λ : 
 

1
1 10 0 ( )p pe

e e e
e

pUp Uγ λ γ
γ λ

− − +∂ℑ
= → − + = → =
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with simple algebraic manipulation, it is possible to find the Lagrange multiplier 
λ : 
 

1
1

11
( )
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n
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nf
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+
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Finally the analytical expression of the density of the single element eγ  in the 
case of depleted media subject to applied loads is function of the Total Potential 
Energy of the element eU , the penalization power p , the number of elements n  
and the volume fraction f : 
 

1
1

1
1

1

p
e

e n
p

e
e

Unf
U

γ
+

+

=

=

∑
        (7.2) 

 
It is very important to note that the expression of the density of the single 
element eγ  in the cases of depleted media subject to prescribed displacements 
(7.1) and to  applied loads (7.2) differs only for the sign of penalization power 
p  of the deformation energy eU . 

 
 
7.1.3. Isotropic Inhomogeneous Fiber Reinforced Media. Prescribed 
Displacements 
 
Following the same approach, we first define the Deformation Energy, equal in 
solution to the Total Potential Energy,  in terms of displacements of the single 
element eu : 
 

1
2

T
e e e eU K= u u  

 
Then the penalization law for Young Moduli, as described before (5.16), where 
the subscribe M stands for matrix and the subscribe F for fibers and α  is the 
ratio between 0ME , the matrix modulus, and 0FE  the fiber modulus with usually 

1α > : 
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0
p

M ME E γ=  

0
p

F FE E γ=  

0 0 , 1F ME Eα α= >  

2 0 0 0(1 ) [ ( 1) 1]p p p
M F M ME E E Eγ γ γ α= + − = − +  

 
As seen before, 2ME  is the resulting Young modulus due to the Solid Isotropic 
Material Penalization homogenization method in the case of two materials 
proposed by Bensoe (5.16). Finally the volume constraint function for the n  
elements: 
 

1

n

e
e

g nfγ
=

= −∑  

 
Now we can define the functional ℑ  to minimize, according to Lagrange 
Multiplier Method: 
 

U gλℑ = +  
 
Indeed, from the following equations system generated deriving the functional 
ℑ  respect to the density of the single element eγ  and respect to the Lagrange 
multiplier λ : 
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with simple algebraic manipulation, it is possible to find the Lagrange multiplier 
λ : 
 

1
1

1

1

{ }
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Finally, the analytical expression of the density of the single element eγ  in the 
case of isotropic inhomogeneous fiber reinforced media subject to prescribed 
displacements is function of the Total Potential Energy of the element eU , the 
penalization power p , the number of elements n  and the volume fraction f : 
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7.1.4. Isotropic Inhomogeneous Fiber Reinforced Media. Applied Loads 
 
Following the same approach and with simple algebraic manipulation, the 
analytical expression of the density of the single element eγ  in the case of 
isotropic inhomogeneous fiber reinforced media subject to applied loads is:  
 

1
1
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e n
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         (7.4) 

 
It is very important to note that the expression of the density of the single 
element eγ  for isotropic inhomogeneous fiber reinforced media subject to 
prescribed displacements (7.3) and to applied loads (7.4) differs only for the sign 
of penalization power p  of the deformation energy eU . Moreover these 
expressions are the same of those (7.1) and (7.2) for depleted media. 
 
 
 
7.2. THE ANSYS® MENU 
 
A Custom Topo Menu has been developed in Ansys® 
environment using the UIDL language. As illustrated in 
the figure on the right (Fig. 7.1), the menu is composed of 
three parts: in the first, Data Input, it is possible to input 
all the quantities necessary to the optimization process as 
the minimum density, the penalization power, the 
objective function etc; in the second, the Run menu, it is 
possible to choice the type of the material to be optimized 
between depleted media, isotropic inhomogeneous fiber 
reinforced media and anisotropic homogeneous fiber 
reinforced media, the volume percentage of optimization 
and the maximum number of iterations.  
In the last menu, the output menu,  it is possible to plot all 
the results in terms of densities and orientation of the 
fibers,  stiffness gain, optimized  young moduli, etc.          Fig.7.1.The menu 
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The following Fig.7.2 illustrates the Data Input menu: 
 

 
Fig.7.2. The Data Input menu 

 
This menu is divided in four parts: the first one is related to Optimization Data 
as minimum density, convergence tollerance for density, usually 410− , and 
penalization power p ; the second part is related to the Objective Function Data 
and, thus, to the choice of the objective function, to his power and finally to 
energy tolerance; the third part is related to Constitutive Elastic Data as the ratio 
between matrix and fiber Young moduli in the case of fiber reinforced media, 
the matrix tensile modulus and the ratio between matrix and fiber tensile moduli; 
in the fourth and last part, the Output Image Data, it is possible to set the output 
image directory, set as default to the Ansys working directory, and a flag used to 
save the images at the end of each iteration. 
 

 
Fig.7.3. The Run menu 
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The above Fig.7.3 illustrates the Run menu; it is possible to choice the type of 
optimization in terms of material, related to the analytical formulation discussed 
in previous paragraphs, the volume to optimize (from 0 to 1) and the maximum 
number of iterations. Each menu has a numerical call to the relative function 
both in the case of menu and macros. 
 
 
7.3. THE ALGHORITHM  
 
The macro named TOPO_CUSTOM.MAC has been developed in Ansys® 
environment using the APDL language. It as been divided in two parts, the first 
able to run optimization in the cases of depleted media and isotropic 
inhomogeneous fiber reinforced media, the second one in the case of anisotropic 
homogeneous fiber reinforced media. A table of run codes have been designed 
taking into account errors code too able to generate error messages. 
The following codes calculate the total number of elements and that one to be 
optimized, usually set to type 1: 
 
!***** calcola numero elementi totali 
 alls 
 nummrg,node 
 nummrg,elem 
 numcmp,node 
 numcmp,elem, 
 *get,ecount_tot,elem,,count      
 *get,emax_tot,elem,,num,max  
 *get,emin_tot,elem,,num,min 
!*************************************** 
!***** calcola numero elementi da ottimizzare 
!***** type 1 da ottimizzare; type 2 da non ottimizzare 
 esel,s,type,,1     

*get,ecount,elem,,count     
 *get,emax,elem,,num,max    
 *get,emin,elem,,num,min    
 
Two array have been set: 
 
!***** crea array energie, tolleranze ed iterazioni 
 *dim,tolleranza,array,niter,1   
 *dim,energia,array,niter,1    
 
with the purpose of controlling the density tolerance and the energy of the 
system at each iteration.  
In order to establish if the analisis run in the case of displacement prescribed or 
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forces applied, a sign have been calculated and a message is produced to let 
know the user the type of analisis: 
 
 !***** calcola segno 
 !***** ottimizzazione U (Reuss), U(gamma=1)>U(gamma=f), segno=+1  
 !***** ottimizzazione F (Voigt), U(gamma=1)<U(gamma=f), segno=-1 
  *if,energia(1),gt,energia(2),then 
   segno=1 
   msg_segno='U' 
  *else 
   segno=-1 
   msg_segno='F' 
  *endif 
  *if,alfa,ne,1,then 
   segno=-segno 
   *if,msg_segno,eq,'U',then 
    msg_segno='F' 
   *else 
    msg_segno='U' 
   *endif 
  *endif 
 !***** messaggio segno 
  *if,msg_segno,eq,'U',then 
   /INPUT,'msgtopo_segnoU','txt',,, 0 
  *else 
   /INPUT,'msgtopo_segnoF','txt',,, 0 
  *endif 
 
At the end of each iteration an element table with density data have been 
created: 
 
 /post1 
 etable,gamma,volu       
 *do,_j,emin_tot,emax_tot,1 
  *get,sel,elem,_j,esel 
  *if,sel,eq,1,then 
   detab,_j,gamma,densita 
  *endif 
 *enddo 
 finish 
 
At the end of each iteration the material properties in terms of Young moduli 
related to the actual density value are updated and the old density value is 
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recorded in a element table with the purpose of evaluating the density 
convergence in terms of difference between two consecutive iterations: 
 
 tol_tot=0 
 *do,_j,emin,emax,1 
  *get,sel,elem,_j,esel 
  *if,sel,eq,1,then 
   *get,MP_count,elem,_j,attr,mat 
   *get,densita,dens,MP_count 
   *get,gamma_elem,elem,_j,etab,gamma 
   *if,abs((gamma_elem-densita)/densita),gt,tol_tot,then 
    tol_tot=abs((gamma_elem-densita)/densita) 
   *endif 
   mp,dens,MP_count,gamma_elem 
   *if,alfa,eq,1,then 
    MP,EX,MP_count,(gamma_elem**p)*E_Young 
   *else 
    MP,EX,MP_count,E_Young*((alfa-1)*(gamma_elem**p)+1) 
   *endif 
  *endif 
 *enddo 
 
The macro named PLOTDENS.MAC has been developed to plot results in terms 
of elements table aswritten in the next numerical code: 
 
!PLOTDENS.mac 
*if,check_run,eq,1,or,checkrun,eq,2,then 
/POST1 
/dscale,,off 
PLETAB,gamma,ARG1 
FINISH 
*endif 
 
In a similar way the macro named PLOTCE.MAC or PLOTTOLL.MAC let the 
user plot the convergence energy array and the density tolerance in a graphical 
fashion: 
 
!PLOTCE.mac 
*vlen,_i 
*vplot,,energia 
 
!PLOTTOLL.mac 
*vlen,_i 
*vplot,,tolleranza 
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Moreover the macro named  PRINTSCREEN.MAC allows the capture of the 
screen image at the end of every single iteration and is very useful to edit a video 
containing all the converged densities plot.  
 
!PRINTSCREEN.mac 
 alls 
 /dscale,,off 
 pletab,gamma,1      !0:no average, 1:average 
 *if,check_print,eq,1,then 
  /SHOW,JPEG,,0    
  JPEG,QUAL,100,   
  JPEG,ORIENT,HORIZ    
  JPEG,COLOR,2 
  JPEG,TMOD,1  
  /GFILE,800,  
  /REPLOT  
  /SHOW,CLOSE  
  /DEVICE,VECTOR,0 
 *endif 
 
Moreover, different macros have been developed to send messages to the user, 
some about errors in inputing data, others about the optimization process in 
terms of controlling variables, others about output data as for example the value 
of the stiffness gain. The following codes alert the user to the evolution of the 
optimization process listing the value of the density tolerance at the end of each 
iteration: 
 
*msg, ui, _i, tol_tot 
at the iteration %I tollerance is %G 
 
The following lines alert the user in the case of choise of fiber reinforced media 
topology optimization without inputing the value of α , the ratio between the 
matrix and fiber young moduli. 
 
*msg, ui 
ERROR: alfa is equal to 1. You must change this value to have a ISOtropic 
Inhomogeneous Fibers TO!! 
 
 
7.4. EXAMPLES 
 
A number of classical mechanical examples have been performed by means of 
the custom-made topological optimization procedure. 
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• Depleted Media Beam with a Center Load 
 
In the following figure is illustrated the geometry of a depleted media beam 
subject to a center load: 
 

 
Fig. 7.4 – Geometry of a depleted media beam subject to a center load 

 
 
In the following figure it is illustrated the topological optimized density map: 
 

 
Fig. 7.5 – Topological optimized density map of   
a depleted media beam subject to a center load 
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• Depleted Media Beam with a Distributed Load 
 
In the following figure is illustrated the geometry of a depleted media beam 
subject to a distributed load: 
 

 
Fig. 7.6 – Geometry of a depleted media beam subject to a distributed load 

 
 
In the following figure it is illustrated the topological optimized density map: 
 

 
Fig. 7.7 – Topological optimized density map of  

a depleted media beam subject to a distributed load 
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• Depleted Media Cantilever Beam 
 
In the following figure is illustrated the geometry of a depleted media cantilever 
beam:  
 

 
Fig. 7.8 – Geometry of a depleted media cantilever beam 

 
 
In the following figure it is illustrated the topological optimized density map: 
 

 
Fig. 7.9 – Topological optimized density map of  

a depleted media cantilever beam 
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• Depleted Media Beam with a Sinusoidal Load 
 
In the following figure is illustrated the geometry of a depleted media beam 
subject to a sinusoidal load: 
 

 
Fig. 7.10 – Geometry of a depleted media beam subject a sinusoidal load 

 
 
In the following figure it is illustrated the topological optimized density map: 
 

 
Fig. 7.11 – Topological optimized density map of  
a depleted media beam subject to a sinusoidal load 
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A sensitivity analysis of a depleted media beam subject to a central load has 
been performed in order to highlight the variation of the density map to the 
volume of optimization. 
 
• Volume of Optimization Equal to 10% 
 

 
Fig. 7.12 – Topological optimized density map of a depleted media beam  

subject to a central load with a volume of optimization of 10% 
 
• Volume of Optimization Equal to 20% 
 

 
Fig. 7.13 – Topological optimized density map of a depleted media beam  

subject to a central load with a volume of optimization of 20% 
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• Volume of Optimization Equal to 30% 
 
 

 
Fig. 7.14 – Topological optimized density map of a depleted media beam  

subject to a central load with a volume of optimization of 30% 
 
 
• Volume of Optimization Equal to 40% 
 
 

 
Fig. 7.15 – Topological optimized density map of a depleted media beam  

subject to a central load with a volume of optimization of 40% 
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• Volume of Optimization Equal to 50% 
 

 
Fig. 7.16 – Topological optimized density map of a depleted media beam  

subject to a central load with a volume of optimization of 50% 
 
A sensitivity analysis of a depleted media beam subject to a central load has 
been performed in order to highlight the variation of the density map to the 
penalization power  of the density. 
 
• Penalization Power p =1.5  
 

 
Fig. 7.17 – Topological optimized density map of a depleted media beam  

subject to a central load with the penalization power 1.5p =  

p
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• Penalization Power p = 2  
 
 

 
Fig. 7.18 – Topological optimized density map of a depleted media beam 

subject to a central load with the penalization power 2p =  
 
 
• Penalization Power p = 2.5  
 

 
Fig. 7.19 – Topological optimized density map of a depleted media beam  

subject to a central load with the penalization power 2.5p =  
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• Penalization Power p = 3  
 

 
Fig. 7.20 – Topological optimized density map of a depleted media beam  

subject to a central load with the penalization power 3p =  
 
 
• Penalization Power p = 3.5  
 

 
Fig. 7.21 – Topological optimized density map of a depleted media beam  

subject to a central load with the penalization power 3.5p =  
 
It is very clear that, growing p , the resulting density map trends to a black and 
white representation. 



CHAPTER VII: TOPOLOGY OPTIMIZATION: A CUSTOM-MADE ALGORITHM 

 
LUCA ESPOSITO –PHD THESIS 200 

 
 

Furthermore, an Isotropic Inhomogeneous Fiber Reinforced beam subject to a 
center load and to a distributed load, has been optimized. 
 
• Isotropic Inhomogeneous Fiber Reinforced Beam subject to a Center 

Load 

 
Fig. 7.22 – Topological optimized density map of  a Isotropic  

Inhomogeneous Fiber Reinforced Media beam subject to a center load 
 

• Isotropic Inhomogeneous Fiber Reinforced Beam subject to a 
Distributed Load 

 

 
Fig. 7.23 – Topological optimized density map of  a Isotropic  

Inhomogeneous Fiber Reinforced Media beam subject to a distributed load 
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Finally, an Anisotropic Homogeneous Fiber Reinforced beam subject to a center 
load and to a distributed load, has been optimized. 
 
• Anisotropic Homogeneous Fiber Reinforced Media Beam subject to a 

Center Load 
 

 
Fig. 7.24 – Topological optimized density map of  an Anisotropic  

Homogeneous Fiber Reinforced Media beam subject to a center load 
 
• Anisotropic Homogeneous Fiber Reinforced Media Beam subject to a 

Distributed Load 
 
 

 
Fig. 7.25 – Topological optimized density map of  an Anisotropic  

Homogeneous Fiber Reinforced Media beam subject to a distributed load 
 
The contour plot maps, in the case of oriented fibers, are not intelligible; with 
the aim of plotting the orientation of the single fibers the macro 
PLOTTETA1.MAC have been developed borrowing a reinforced 3D element 
type usually used to analize concrete behaviour.  
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For each existing element a new 3D reinforced one has been create, directing the 
reinforcement bar inside the element with the same orientation of the fibers 
recorded in the element table. 
The following code is used if the angle is between -45 degrees and +45 degrees: 
 
 *get,teta_elem,elem,_j,etab,teta 
 !***** -45<teta<+45 
  *if,teta_elem,gt,-45,and,teta_elem,le,45,then 
   sect,_j,reinf,discrete,fibra1 
   e=1 
   x1=.5*(1-tan(teta_elem)) 
   x2=.5*(1+tan(teta_elem)) 
   secdata,_j+ecount,A,EDGo,e,x1,z0,x2,z0 
   esel,s,elem,,_j+ecount 
   secnum,_j 
   ereinf 
  *endif 
 
For this element, reinf264, it is necessary to set the section data containing the 
value of the three angles to define the orinentation into the space.  
Other settings are also necessary; in particular the cross sectional area and the 
location of the reinforcing fibers. The command ereinf defines the new 
reinforcing element. 
The left half part of the last case is illustrated in the following figure: 
 

 
Fig. 7.26 – Particular (half left part) of a topological optimized density map of  an 

Anisotropic Homogeneous Fiber Reinforced beam subject to a distributed load 
 
Finally, it is necessary to underline the procedure at the basis of the choice of the 
optimal angle, element by element, in both cases of structures subject to 
displacements prescribed and to applied loads. 
Considering a 2-D structure subject to prescribed displacements, so that the 
flexibility matrix is orthotropic: 
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calculating the principal stresses in every element, it is possible to choice the 
minimum stress as: 
 

{ }min min ,I II=σ σ σ  
 
Well, the optimal angle is: 
 

min( )ϑ ϑ= σ  
 
and the resulting orthotropic material for this element has the following 
orthotropic flexibility matrix: 
 

1
ϑ

−= Q Q   
 
where Q  is the typical orthogonal tensor,   is the flexibility tensor before the 
single iteration and ϑ  is the actualized flexibility tensor at the end of each 
single iteration. 
 
 
7.5. ANSYS® VERSUS CUSTOM-MADE TOPOLOGY OPTIMIZATION 
 
Let us considered a depleted media beam of length    in bending regime subject 

to applied bending moment M  and prescribed rotation 
2
ϕ  such that two loads 

condition are equivalent.  

 
Fig. 7.27 – Depleted media beam in the cases of applied bending moment 
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The rectangular cross section of the beam have the dimensions   and  . The 
geometries of the considered beams are illustrated in the fig. 7.27 and 7.28. 

 
Fig. 7.28 – Depleted media beam in the cases of prescribed rotation 

 
While the topological optimized density map is quite similar when subjected to 
applied bending moments for both Ansys® and custom-made procedure, as it is 
illustrated in the following figure: 
 

 
Fig. 7.30 – Topological optimized density map of  a depleted media beam 

 in the cases of  applied bending moments 
 
when subject to prescribed rotation, the Ansys® topology optimization procedure 
is not able to catch the real distribution of the resulting density map. 
In order to highlight this malfunction, an analytical solution have been 
performed; the penalization law for Young Modulus is: 
 

0
pE E γ=  

 
It is well know that the expression of the stress and, as a consequence, of the 
strain, depend only on the axis 3x : 
 

3 3
pEγ=σ ε  

 

3 2x
EI

ε M
=  

b h
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We calculate the Deformation Energy over the volume V : 
 

2 2 2
2

3 3 2 22
0

2 2 2

1 1
2 2

b h h

p

b h h

U dV b x dx
EI

γ
− − −
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



M  

 
The volume constraint function is: 
 

2

2

2

h

h

g b dx fhbγ
−

= −∫   

Now we can define the functional ℑ  to minimize, according to Lagrange 
Multiplier Method: 
 

U gλℑ = +  
 
Indeed, from the following equations system generated deriving the functional 
ℑ  respect to the density of the single element eγ  and respect to the Lagrange 
multiplier λ : 
 

1
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with easy algebraic manipulation, for a value of penalization power p  equal to 
2.5, it is possible to find the Lagrange multiplier λ : 
 

3
25 ( )

2 3
K fλ = −  

and finally the analytical expression of the density in the case of depleted media 
subject to prescribed rotation is: 
 

4
3

33
f xγ

−
=  

 
This trend is obviously hyperbolic-like. 
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The following fig. 7.31 illustrates the analytically solved Topological optimized 
density map of  a depleted media beam  subject to prescribed rotation: 
 

 
Fig. 7.31 – analytically solved Topological optimized density map  

of  a depleted media beam  in the cases of  prescribed rotation 
 

The following figure 7.32 shows the Topological optimized density map of  
depleted media beam in the case of prescribed rotation (left: custom made 
algorithm; right: Ansys® algorithm): 
 

 
Fig. 7.32 – Topological optimized density map of  Depleted media beam in the cases 

of  prescribed rotation (left: custom made algorithm; right: Ansys® algorithm) 
 
While the custom-made algorithm denisty map match the analytical solution, the 
Ansys® topology optimization density map is substantially equal to that one 
where the structure is subject to applied bending moments. In the opinion of the 
author, after the first iteration, Ansys® substantially reads the produced reactions 
forces and proceeds applying these reaction forces as a case of a structure 
subject to applied forces; in this way Ansys® always implements the procedure 
considering the structure subject to of applied forces.  
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For this reason the resulting density map is significantly the same in both cases 
of prescribed displacements or applied loads. 
The custom-made algorithm is instead able to proceed in the right direction and 
the resulting density map is significantly the same of that solved analytically. 
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AUTOMATIC MODEL 
RECONSTRUCTION 

 
 
 
 

Computed tomography (CT) is a methodology to measure both 
density and structure in a single measurement. Especially, the 
combination with finite element (FE) analysis, the most widely used 
computational technique for structural analysis in engineering, 
seems promising.  
CT-based FE models can provide insights into load transfer 
through the bone architecture and with that help our understanding 
of how differences in bone microarchitecture influence bone 
strength. They integrate bone density measurements with bone 
geometry in a three-dimensional fashion. 
The potential of CT-based  FE models has been clearly  recognized, 
and  over the past years a number of papers have been published on 
several  methodological  aspects  of FE  models, such as mesh  
type, material properties, failure mechanisms  and loading 
conditions.  
Subject-specific finite element (FE) analysis of the skeleton, a very 
powerful tool for biomechanical research, is now being adopted in 
clinical applications (Taddei et al., 2003; Viceconti et al., 2005). 
The most common way of constructing the subject-specific FE 
models is by deriving information from X-Ray computed 
tomography (CT) images.  
In the previous chapter 6 this aspect has been deeply discussed; 
moreover the limit relative to the construction of the finite element 
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model has been underlined. In particular, the procedure related to 
the construction of the FE model, starting from data recorded in 
DICOM format files produced by diagnostic instruments described 
in the previous chapter is complex, long and articulated. Moreover, 
the continuous passages of data file from software to another could 
be subject to errors and approximation and the utilization of 
different software stretch computational times and software costs. 
The more crucial aspect is the creation of group of polylines 
filtering the entire model by HU value; this procedure is totally 
automatic, but it is uncontrollable and, then, it is full of errors. 
Often it is necessary a previous step of model segmentation in order 
to cean data from radiologic artefacts and erroneous geometric 
reconstruction. 
With the aim of simplifying this numerical procedure an automatic 
model reconstruction algorithm in Ansys® environment has been 
developed, both developing macros and menu with Ansys® 
proprietary programming language APDL (Ansys Parametric 
Design Language) and UIDL (User Interface Design Language) 
respectively; the automatic reconstruction takes into account both 
the geometrical and constitutive content recorded in DICOM 
format files and it is able to build directely the model in one time. 
Furthermore this innovative and original procedure can be very 
useful for the design of composite materials and biomedical 
implants. Finally the acquisition of bond surfaces by micro-
tomography could be processed and constructed with the aim of 
studying wear and debris production. 

 
 
 
8.1. INTRODUCTION TO DICOM FILE 
 
 
The data format for this kind of instrumental devices is DICOM standard format 
file. DICOM (Digital Imaging and Communications in Medicine) is a standard 
for handling, storing, printing, and transmitting information in medical imaging. 
It includes a file format definition and a network communications protocol. The 
communication protocol is an application protocol that uses TCP/IP to 
communicate between systems. DICOM files can be exchanged between two 
entities that are capable of receiving image and patient data in DICOM format. 
DICOM format data is typically utilized for all medical images as X-Ray, CT, 
magnetic resonance imaging (MRI). The first standard, ACR/NEMA 300, was 
released in 1985. The DICOM standard is divided into related, but independent 
parts; DICOM differs from some, but not all, data formats in that it groups 
information into data sets. That means that a file of a chest x-ray image, for 
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example, actually contains the patient ID within the file, so that the image can 
never be separated from this information by mistake. This is guaranteed by the 
relational data base structure of data. 
A DICOM data object consists of a number of attributes, including items such as 
name, ID, etc., and also one special attribute containing the image pixel data. 
There are information related to patient personal data, hospital data, 
instrumentation data and obviously images related to the scanned patient body 
site. The CT, instrumental examinations usually used to scan human bone, is a 
multiple parallel scanning of the body site. As shown in the following fig. 8.1, 
the patient is positioned inside the radiogen tube and scanned:  
 

 
Fig. 8.1 – CT instrumentation 

 
the difference in terms of radiation X-Ray trasmitted and received are related to 
the density of the crossed medium and expressed in terms of Hounsfield Unit 
(HU). The Hounsfield unit (HU) scale is a linear transformation of the original 
linear attenuation coefficient measurement into one in which the radiodensity of 
distilled water at standard pressure and temperature is defined as zero 
Hounsfield units, while the radiodensity of air at standard pressure and 
temperature is defined as 1000 HU. In a voxel with average linear attenuation 
coefficient Xµ , the corresponding HU value is therefore given by: 
 

2

2

1000 H O

H O

HU
µ µ

µ
−

=  

 
where 

2H Oµ  is the linear attenuation coefficients of water, so the definition for 
CT scanners are calibrated with reference to water. The following Table 8.1 lists 
some common substances inside human body in terms of HU values: 
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SUBSTANCE HU 

Air −1000 
Lung −500 
Fat −84 
Water 0 
CSF 15 
Blood +30 to +45 
Muscle +40 
Soft Tissue +100 to +300 
Cancellous Bone +200 to +1200 
Cortical Bone +1200 

Table 8.1 – HU values for human substances 
 
In each voxel (volumetric pixel) of each image it is recorded the corresponding 
densitometric information expressed in terms of HU values. 
In addition to densitometric information, DICOM standard has also information 
related to geometric position of the single slice respect to a cartesian coordinate 
system. In particular, information like Upper Left Corner (ULC) is the cartesian 
coordinate point in terms of xULC ,yULC , zULC coordinate and, togheter with the 
Tilt Orientation information expressed in terms of direction cosines, is the 
reference point from which it is possible to construct the plane containing the 
image. In addition, Pixel Spacing along x-axis (PSx), Pixel Spacing along y-axis 
(PSy), Slice Thickness (ST)  are the three dimensions values of the single voxel 
and, togheter with Image Resolution in terms of number of rows and columns, 
let construct the volumes corresponding to the voxels which HU value is in the 
range of interest. Finally by means of the parameters Rescale Intercept (RI) and 
Rescale Slope (RS) it is possible to trasform the HU values in density values in 
order to relate the density values to the mechanical properties of the single 
voxel, as shown in the previous chapter 6, using the following relationship: 
 

RS HU RIγ = ⋅ +          (8.1) 
 
 
8.2. AUTOMATIC MODEL RECONSTRUCTION 
 
 
8.2.1. Complete Integration between Ansys® and Matematica® 
 
The software Ansys® is not able to import DICOM format files; so, in order to 
get all information, both geometric and constitutive, recorded in every slice (in 
every file is recorded only one single slice) the software Wolfram Matematica® 
have been used. A complete integration between the software Ansys® and the 
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software Wolfram Matematica® have been realized by means of external call 
from Ansys® to Mathematica and by writing and reading text files containing the 
information to interchange from a software to the other (see Fig. 8.2).  
This type of interface is very useful and can be used whenever it is necessary the 
utilization of a symbolic mathematical code also to solve systems of equation, 
derivatives, integrals and whatever mathematical function not included in the 
Ansys software. 
 

 
Fig. 8.2 – Integration between software Ansys® and Mathematica® 

 
 
8.2.2. The Algorithm 
 
The new DICOM menu shown in the Fig. 8.3 
on the right have been designed to include all 
the function relative to automatic model 
reconstruction. 
In Mathematica environment the constitutive 
information in terms of HU values are first 
imported from DICOM file and then exported 
in a comma separated values (CSV) format file; 
indeed in Ansys® environment the CSV file 
containing the densitometric information is read 
and then written in a matrix.  
At the same way, in Mathematica environment 
geometric information necessary to built the 
model, as discussed in the previous paragraph, 
are first imported and then exported in a text 
file; indeed in Ansys® environment the text file 
containing the geometric information is 
imported and then written in an array. 
The Ansys® importing data format is the typical 
Fortran  format  described  by  precise format            Fig. 8.3 – The DICOM menu 
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edit descriptors separated by comma and included in parenthesis. 
In Ansys® environment, after checking the esistence of the CSV and TXT files 
produced with Mathematica, the following code is used to import the parametrs 
in an array: 
 
!***** importa parameters slice si-iesima 
 nomearray=strcat('par_',chrval(ns)) 
 *dim,%nomearray%,array,10,1 
 arg1=nomearray 
 arg2='txt' 
 arg3=cartella 
 /input,macro_par 
 rows=nomearray(1) 
 cols=nomearray(2) 
 
It is possible to note a call to a temporary macro, macro_par,  used to read the 
parameters from file; this macro is listed in the following code: 
 
!***** crea macro per l'importazione parametri 
 *create,macro_par 
*VREAD,%nomearray%,arg1,arg2,arg3,1, , , , , , 
(F8.0) 
 *end 
 
Similar macro have been produced with the purpose of importing HU values. 
The following figure Fig. 8.4 illustrates the menu in Ansys to perform the 
external call to Mathematica in order to write the DICOM information, both 
geometric and constituive, in a text (TXT) and comma separated values (CSV) 
files respectively. 
 

 
Fig. 8.4 –Ansys® menu Create TXT/CSV from DCM 
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It is possible to choice the data directory where are recorded the DICOM files, 
the common suffix of the files and which slices to process with a slice step.  
This step value is set to 1 as default and can be used in the case of overlapping. 
A similar window let the user to import data, TXT and CSV format files, into 
Ansys® environment and to record them in an array and a matrix for each slice. 
As already said, in addition to these densitometric information, standard DICOM 
format has also information related to geometric position of the single slice 
respect to a cartesian coordinate system. 
In particular, geometric information like Upper Left Corner (ULC), Pixel 
Spacing along x-axis (PSx), Pixel Spacing along y-axis (PSy), Slice Thickness 
(ST), Image Resolution in terms of rows and columns, etc., are utilized to 
construct the geometry of the model.  
 

 
Fig. 8.5 –Ansys® menu Create Elements from Array 

 
The above Fig. 8.5 illustrates the input data necessary to create the elements 
from array in Ansys; this menu is divided in three parts: in the first part, the 
general data, the user input the numbers of the slices of interest with the slice 
step; in the second part, the windows data, in order to minimize computational 
times due to the model construction, it is possible to choice a sub-window inside 
the image and, as a consequence, to process only these voxels. The user input the 
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limit of this window in terms of rows and columns with the default values for a 
typical resolution from 1 to 512; in the third part, HU range data, the user can 
input the minimum and maximum values of HU with the purpose of filtering the 
substances. The macro reads the HU values from the recorded table filtering and  
creating only the elements whose HU value is in the range of interest (as already 
said, the bone range is between 200 and 1200 HU). 
For each slice, after checking the esistence of the array and matrix of values 
imported from Mathematica and the absence of the elements component (the 
esistence of the elements component means that the slice has been already 
constructed), the macro provides to construct the single element starting from his 
nodes whose spatial coordinates are function of the imported parameters: 
 
*do,i,rigai,rigaf,1 
 *do,j,coli,colf,1 
  mathu=%nomearray%(i,j)*%nomepar%(10)+%nomepar%(9) 
  *if,mathu,ge,HUmin,and,mathu,le,HUmax,then 
   xA=%nomepar%(6)+(j-1)*%nomepar%(3) 
   xB=%nomepar%(6)+j*%nomepar%(3) 
   yA=%nomepar%(7)+(i-1)*%nomepar%(4) 
   yC=%nomepar%(7)+i*%nomepar%(4) 
   zA=%nomepar%(8)-%nomepar%(5)/2 
   zA1=%nomepar%(8)+%nomepar%(5)/2 
   n,,xA,yA,zA 
   *get,numnode,node,0,num,max 
   nodi(1)=numnode 
   n,,xB,yA,zA 
   *get,numnode,node,0,num,max 
   nodi(2)=numnode 
   n,,xB,yC,ZA 
   *get,numnode,node,0,num,max 
   nodi(3)=numnode 
   n,,xA,yC,zA 
   *get,numnode,node,0,num,max 
   nodi(4)=numnode 
   n,,xA,yA,zA1 
   *get,numnode,node,0,num,max 
   nodi(5)=numnode 
   n,,xB,yA,zA1 
   *get,numnode,node,0,num,max 
   nodi(6)=numnode 
   n,,xB,yC,ZA1 
   *get,numnode,node,0,num,max 
   nodi(7)=numnode 
   n,,xA,yC,zA1 
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  *get,numnode,node,0,num,max 
  nodi(8)=numnode 
  e,nodi(1),nodi(2),nodi(3),nodi(4),nodi(5),nodi(6),nodi(7),nodi(8) 
  emodif,emax,mat,mathu 
  emax=emax+1 
 *endif 
*enddo 
 
It is very important to note that every element is constructed if and only if the 
related value of HU, matHU, is in the range of interest (that is  
HUmin<matHU<HUmax); moreover, in order to construct the volume equal to 
the voxel, a 8 nodes cubic element have been chosen; the eight nodes where 
defined as functions of geometrical parameters recorded in the array and the 
element is defined directly from these nodes. 
When all the elements with the density in the range of HU values of interest are 
constructed, it is possible to set the material properties as function of HU values. 
Using typical literature mathematical correlation between HU values and density 
as (8.1), inputting the value of Young modulus of the cortical bone and the value 
of Poisson coefficient, the algorithm creates a material for each density value 
using the cubic law (6.1) enveloped for porous media to set the corresponding 
material properties. The following code has been enveloped to this aim: 
 
!SETMATS.mac 
!setta le proprietà del materiale in funzione dei valori di HU 
 /prep7 
!*************************************** 
!****** calcola massimo HU 
 npar=0 
 i=0 
 nomepar='' 
 nomearray='' 
 ri=0 
 rs=0 
 tipo=0 
 maxHU=0 
 massimo=0 
 *get,npar,parm,,max 
!****** prendi Rescale Intecept (ri) e Rescale Slope (rs) 
 *do,i,1,npar,1 
  *get,nomepar,parm,0,loc,i 
  *get,tipo,parm,%nomepar%,type 
  *if,tipo,eq,1,and,strsub(nomepar,1,4),eq,'PAR_',then 
   ri=%nomepar%(9) 
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   rs=%nomepar%(10) 
   *exit 
  *endif 
 *enddo 
!****** calcola maxHU 
 *do,i,1,npar,1 
  *get,nomearray,parm,0,loc,i 
  *get,tipo,parm,%nomearray%,type 
  *if,tipo,eq,1,and,strsub(nomearray,1,3),eq,'HU_',then 
   *do,k,1,cols 
    *vscfun,massimo,max,%nomearray%(1,k) 
    *if,massimo,gt,maxHU,then 
     maxHU=massimo 
    *endif 
   *enddo 
  *endif 
 *enddo 
 maxHU=maxHU*rs+ri 
!*************************************** 
!****** modello generalizzato RHO:  
!****** E(gamma)=A+B*gamma+C*gamma²+D*gamma³ [MPa] 
 A=0 
 B=2*(-2+ni)/3/(-2+ni+ni**2) 
 C=22+17*ni-59*ni**2 
 C=C-9*ni**3+45*ni**4 
 C=-C/6/(-7+5*ni)/(-2+ni+ni**2) 
 D=-50+17*ni+91*ni**2 
 D=D-21*ni**3-45*ni**4 
 D=-D/6/(14-17*ni-2*ni**2+5*ni**3) 
!*************************************** 
!****** crea materiali 
 *do,HU,1,maxHU,1 
  gamma=1/2*(1+HU/maxHU) 
  EY=(A+B*gamma+C*gamma**2+D*gamma**3)*EY_cort ![MPa] 
  MP,EX,HU,EY 
  MP,dens,HU,HU      !!g/cm³ 
  MP,PRXY,HU,ni 
 *enddo 
 finish 
!*************************************** 
 
In the last two parts of the exposed macro the cubic law (Generalized RHO 
model) is chosen and then set with a typical FOR cycle all the maxHU materials 
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starting for the denser material, the cortical bone, whose Young modulus and 
Poisson coefficient have been taken from literature.  
The automatic model reconstruction could create isolated elements as illustrates 
in the following Fig. 8.6: 
 

 
Fig. 8.6 –Isolated elements due to automatic model reconstruction 

 
It is possible to check isolated elements and to erase them. This objective is 
reached by means of the following code in which, starting from an internal 
element, all the attached elements were selected and so on up to isolate the 
separated ones: 
 
!***** check elems isolati 
 alls 
 nummrg,node 
 nummrg,elem 
 numcmp,node 
 numcmp,elem 
 *get,ecount,elem,,count 
 *get,emax,elem,,num,max 
 *get,emin,elem,,num,min 
 esel,s,elem,,emin 
 *do,i,1,ecount,1 
  nsle,s 
  esln,s 
  *get,ecount_sel,elem,,count 
  *if,ecount_sel-ecount_cm,ne,0,then 
   cm,elemsiso,elem 
  *else 
   *exit 
  *endif 
  cmsel,s,elemsiso 
  *get,ecount_cm,elem,,count 



CHAPTER VIII: AUTOMATIC MODEL RECONSTRUCTION 

 
TOPOLOGICAL OPTIMIZATION STRATEGIES IN MULTI-PHYSICS PROBLEMS 219 

 

 *enddo 
 
At the end of the procedure these elements are plotted and the user is asked if 
they have to be eliminated. 
 
*ask,canc,cancellare i %ecount_isol% elementi isolati [0=no 1=si]?,0 
*if,canc,eq,1,then 

nsle,s 
edele,all 
ndele,all 

*endif 
 
Due to automatic model reconstruction also unstable elements, cubic elements 
with 8 nodes, could be created as shown in the following Fig. 8.7: 
 
 

 
Fig. 8.7 –Unstable elements due to automatic model reconstruction 

 
The following code perform this action: 
 
 !***** check elems labili 
  alls 
  nummrg,node 
  nummrg,elem 
  numcmp,node 
  numcmp,elem 
  *get,ecount,elem,,count 
  esel,inve 
  cm,elemslab,elem 
  *do,i,1,ecount,1 
   esel,s,elem,,i 
   nsle,s 
   esln,s 
   nsle,s 
   *get,ncount_tot,node,,count 
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   esel,u,elem,,i 
   nsle,s 
   *get,ncount_at,node,,count 
   *if,ncount_tot-ncount_at,gt,5,then 
    esel,s,elem,,i 
    cmsel,a,elemslab 
    cm,elemslab,elem 
   *endif 
   /INPUT,'msglability','txt' 
  *enddo 
 
Here too, at the end of the procedure these 
elements are plotted and the user is asked if 
they have to be eliminated. 
Finally an utility menu have been created as 
shown in the Fig. 8.8 on the right; the first two 
procedures let the user write slice elements to 
file and read elements from file with the aim 
of constructing different slices of the same 
model with different computers, performing, 
thus, a parallel construction of the model; in 
this way it is possible to drastically reduce 
computational times related to the 
construction of the model. This is a very 
important feature of the procedure because 
with the more and more increasing of the 
resolution of the diagnostic instruments the 
number of elements of the models becomes 
greater and greater; for this reason the 
reduction of computational times related to the 
construction of the model.        Fig. 8.8 – DICOM Utility menu   
Moreover, in the case of designing a prosthesis, in order to verify the mechanical 
behaviour of the implant inside the bone, it is possible to import the prosthesis 
IGES file, produced with a Computer Aided Design (CAD) software, and create, 
slice after slice, the prosthesis elements from the lines. 
Finally a procedure have been developed in order to define an element table of 
densities, plot these densities also expanding the range of colour from typical 9 
colours to extended 128 colours or gray scale values. 
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TOWARDS MULTI-PHYSICS 
APPLICATIONS: DUALITY PORO- 
THERMO-ELASTICITY 
 

 
 
 

The equations of poroelasticity and thermoelasticity are very 
similar to one another (Zimmerman, 2000) and this correspondence 
could be a powerful tool to solve poroelastic problems.  
The basilar concept of the coupling between poroelasticity and 
thermoelasticity is that the temperature and the pore pressure play 
similar roles. In both theories, in fact, the basic constitutive 
equations relating the stresses and strains are the same of those of 
standard elasticity, in which some multiple of the pore pressure (or 
temperature) is subtracted from the normal stresses. Moreover, 
considering the typical values of these multiple coefficients arising 
in most rock mechanics applications, both theories are at least 
partially coupled, that is to say that variations in the pore pressure 
(or temperature) will appreciably influence the stresses and strains. 
The pore pressure and temperature are described through diffusion 
equations, which contain a source-sink type term depending on the 
time derivative of the bulk strain or mean normal stress. The 
analogy between the two theories, then, arises from the identical 
formal structure of the equations governing the two problems, 
which allows to find a direct relationship between each parameter 
appearing in the two theories. The strength of the coupling between 
the mechanical variables, stress and strain, and the pore pressure 
(or temperature), can be estimated in terms of dimensionless 
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coupling parameters, as shown in the following. However, an 
analysis of the typical values for these coupling coefficients shows 
that the poroelastic coupling effect is usually strong (for a liquid-
saturated rock), while the thermoelastic coupling effect is usually 
negligible.  
This result means that the temperature distribution is not affected 
by the stresses and strains, whereas this is not usually the case for 
the pore pressure equation. Finally, Zimmerman (2000) emphasized 
also the existence of other types of thermoelastic couplings, such as 
the dependence of the constitutive coefficients from stress. The 
permeability of many fractured rocks, for example, is highly stress-
dependent and so, the permeability will be influenced by stress, 
causing an alteration of the flow field, and, thereby, changes in the 
pore pressure distribution. Moreover, Zimmerman (2000) 
underlined also the importance of modeling non-isothermal 
poroelasticity, characterized by the influence of temperature on 
stresses, through the following mechanism. An increase in 
temperature may lead to a large increase in fluid pressure (because 
this particular coupling is typically large in liquids), which, in turn, 
will determine mechanical stresses and strains. In this situation, 
indeed, there will be a coupling between the temperature and the 
stress and strain fields.  
Within the framework of the analogy between poroelasticity and 
thermoelasticity, a possible strategy to implement a poroelastic 
problem with a FE code, thus, consists in exploiting this analogy. 
Since the equations describing the two problems are identical in 
formal structure, they can be rewritten to draw a direct relationship 
between each parameter appearing in the two theories. 

 
 
 
9.1. COUPLED NON-LINEAR POROELASTIC PROBLEM 
 
The fundamental equations for a poroelastic problem P can be summarized as 
follows:  
 

 
[ ]
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 (9.1) 

 
The field variables involved are the displacement, ( ),t=u u x , the bulk strain, 

sym= ∇ ⊗ε u , and the pore fluid pressure, ( ),p p t= x . In the first equation 

(9.1), ( )1s fρ ρ φ ρ φ= − +  is the density,   is the stiffness forth-order tensor, I  
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is the second order unit tensor and f  is the mass force vector. Note that the Biot 
tensor is equal to  for saturated porous media.  
In the second equation, instead, the term :I Iε  can be expressed as :e = ∇ ⋅u   
and ( ) 1

0f pρ
−

⋅∇g K  is the filtration velocity vector (Darcy quasi-static 
approximation law).  
This vector depends on the second rank tensor of the filtration coefficients K , 
which is linked to the second rank permeability tensor, PK , the initial fluid 
density, 0fρ , the gravitation acceleration, g , and the fluid viscosity, µ , as 
shown in the following equation: 
 

 0P fρ
µ

=
K g

K  (9.2) 

 
The coefficient M is expressed as 1 1 1

fM N K φ− − −= + , where 1N −  is the reverse 

Biot’s modulus, fK is the fluid tangent bulk modulus and φ  is the porosity.  

The change in porosity ( )0−φ φ  is directly related to the change in pression 

( )0p p−  through the reverse Biot's modulus  and the bulk strain ε  the bulk 
strain,  
 
 ( ) ( )1

0 0: N p pφ φ −− = + −I ε  (9.3) 
 
The equations (9.1) are determined starting from the Constitutive Equations: 
 

 [ ]1

:
:      

p
N pφ −

= −

= + ←

σ ε I
I ε I b


 (9.4) 

 
and the Darcy’s Law (quasi-static filtration): 
 

 P
f p

µ
= ∇

Kv  (9.5) 

 
where fv , the difference between the fluid velocity and the solid matrix one, is 
responsible of the coupling. The first equation (9.1) is obtained from the 
equilibrium equation:  
 
 ρ ρ− ∇ ⋅ =u σ f  (9.6) 
 

I

1N −

sym= ∇ ⊗ε u
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while the second one from the continuity equation: 
 

 ( ) 0f
f ft

ρ φ
ρ

∂
+ ∇ ⋅ =

∂
v  (9.7) 

 
 
9.2. COUPLED NON-LINEAR THERMOELASTIC PROBLEM 
 
The fundamental equations for a thermoelastic problem T can be summarized as 
follows: 
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The field variables involved are the displacement, ( ),t=u u x , the bulk strain, 

sym= ∇ ⊗ε u , and the temperature, ( ),tθ θ= x . In the first equation (9.8), ρ  is 
the density,   is the forth order stiffness tensor, :=β α  is the second order 
“thermal stresses” tensor, α  is the second order tensor of thermal expansion and 
f  is the mass force vector. In the second equation, instead, 0T  is the reference 
temperature ( )0 1T K= from which θ  is measured and cε  is the specific heat 
under constant strain and it can be expressed as:  
 

 0 :Tc cε σ ρ
= − α β  (9.9) 

 
where cσ is the heat capacity at constant pressure. T θ⋅∇K  represents the heat 
flow vector, TK  is the second rank tensor of thermal conductivity coefficients 
and W is the heat source intensity.  The equations (9.8) are determined starting 
from the Constitutive Equations: 
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The first equation (9.8) is obtained from the equilibrium equation:  
 
 ρ ρ− ∇ ⋅ =u σ f  (9.11) 
 
while the second one from the heat flow equation: 
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 0 entT S W⋅ + ∇ ⋅ =h  (9.12) 
 
where Sent is the entropy density and h  is the heat flow vector, expressed as:  
 

 T θ= − ⋅∇h K          (9.13) 
 
h is responsible of the coupling. 
The heat flow equation represents the energy balance from the second thermo-
dinamical principle.  
 
 
9.3. COUPLING BETWEEN POROELASTICITY AND THERMOELASTICITY 
 
As shown in Table 9.1, the fundamental equations for coupled non linear 
poroelasticity and thermoelasticity are formally very similar.  
 

Poro-Elasticity Thermo-Elasticity 

[ ]: pρ ρ− ∇ ⋅ − =u ε I f


 [ ]:ρ θ ρ− ∇ ⋅ − =u ε β f
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Table 9.1 – Fundamental Equations for Coupled 
Non Linear Poro-Elasticity and Thermo-Elasticity 

 
The objective of this work is to solve poroelastic problems performing thermal 
analysis. For that purpose, it is necessary to find the connection between the 
parameters of both theories. The conversion factors introduced to write a 
poroelastic problem as a thermal one are: 
 

 0
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Nevertheless, the parameters of the two theories involved in the duality 
relationships (9.14) have very different order of magnitude, which could cause 
some problems during the solution of the numerical simulations. For these 
reasons, the following step consists in the introduction of dimensionless 
parameters in the fundamental equations written before. Table 9.2 shows the 
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fundamental equations for coupled non linear poroelasticity and thermoelasticity 
rewritten in terms of the dimensionless parameters.  
The symbol ~ in the equations indicates the dimensionless parameters. 
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Table 9.2 – Fundamental Equations for Coupled Non Linear Poro-Elasticity and 
Thermo-Elasticity Rewritten in Terms of the Dimensionless Parameters 

 
These equations are written employing the following positions: 
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 (9.15) 

 
The dimensionless conversion factors are: 
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where 1 2
E

υα −
= , L is an enveloping parameter, that is to say the characteristic 

length of the domain and:  
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The dimensionless conversion factors are evaluated referring to the maximum 
values of length, pressure and time to ensure reasonable values of the parameters 
involved in the numerical simulations. 
Employing the coupling theory presented before, it is possible to solve a 
transient non linear poroelastic problem as a corresponding thermoelastic 
problem, interpreting the temperature as a pressure and the temperature gradient 
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as a velocity. As a consequence it is possible to force a classical commercial 
code to solve poro-elastic problems utilizing the thermo-elastic module. 
 
 
 
9.4. ON THE INFLUENCE OF COUPLING TERMS IN PORO-
THERMOELASTICITY 
 
The pore pressure always has an appreciable influence on the deformation field 
and, so, the equations of linear poroelasticity are always partially coupled 
(Zimmerman, 2000).  
The solution of a coupled poroelastic or thermoelastic problem is of considerable 
mathematical difficulty, as it combines the theories of elasticity and of heat 
conduction or fluid flow under transient conditions. Fortunately, in most of the 
usual engineering applications it is possible to introduce certain simplifying 
assumptions without error.  
The principal such simplifications are the omission of the mechanical coupling 
term in the energy equation (uncoupled theory) and of the inertia terms in the 
equations of motion (uncoupled quasi- static theory). To this purpose, Boley and 
Weiner (1997) investigated the conditions ensuring that a linear thermoelastic 
problem can be considered uncoupled or uncoupled quasi-static. In the 
following, this reasoning is presented and, then, it will be extended to the 
poroelasticity theory, employing the PTD theory presented before. In the 
thermoelastic problem, if an external mechanical agency produces variations of 
strain within a body, the heat conduction equation shows that these variations of 
strain are, in general, accompanied by variations in temperature and 
consequently by a heat flow; the whole process, thus, gives rise to an increase of 
entropy and, therefore, to an increase in the energy stored in a mechanically 
irrecoverable manner.  
This phenomenon, known as thermoelastic dissipation, requires for its analysis 
the use of the coupled heat equation. The mechanical term in the heat equation 
clearly plays a crucial role in the description of this dissipative process, and its 
omission would here be meaningless.  
However, the deformations due to the external loads are accompanied only by 
small changes in temperature, and it would, therefore, appear reasonable to 
calculate these deformation without taking account of the thermal expansion. 
Similarly, if strain are produced in a body by a non-uniform temperature 
distribution, it would seem intuitively clear that the influence of these strains on 
the temperature itself should not be too large. One may therefore anticipate the 
conclusion that the coupling term appearing in the heat equation can be 
disregarded for all problem except those in which the thermoelastic dissipation is 
of primary interest. This matter may be made plausible by the following 
reasoning. The coupled heat equation may be rewritten as: 
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where vc , the specific heat at constant volume, and cε , the specific heat at 
constant deformation, may be employed interchangeably in the linear theory. 
The non-dimensional parameter δ  is defined by: 
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ev  is the velocity of propagation of dilatational waves in an elastic medium, 

defined as:  
 
 ( )2ev λ µ ρ= +  (9.20) 
 
The term proportional to δ  is the coupling term and it is negligible compared to 
unity if:  
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Equation (9.21) furnishes a comparison between an external factor, 
3

e
Tα




, 

directly linked to the thermal-mechanical input, and the intrinsic thermo-

mechanical properties of the material, 2 3 1
2

λ µ
λ µ δ

 +
 + 

. 

 To estimate a priori if the problem is uncoupled, both terms of equation (9.21) 
need to be evaluated.  

As already said, the term 2 3 1
2

λ µ
λ µ δ

 +
 + 

 depends on thermal, physical and 

mechanical parameters and, so, it can be determined a priori for the analyzed 
problem.  

For what concerns, instead, the other term, 
3

e
Tα




, even if it is associated to the 

thermo-mechanical output, it can be estimated from the thermal-mechanical 
input.  
This term, in fact, represents the ratio between two deformation rates.  In the 
hypothesis of linear thermoelastic theory, e  can be decomposed in the sum of 
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two contributions, i.e., el te e e= +   , where ele  is the elastic deformation rate, 
depending on the constitutive behavior of the material,and te  is, instead, the 
thermal deformation rate, expressed as 3 Tα  . Equation (9.21) can be, thus, 
rewritten as: 
 

 2 3 1
2

el t

t

e e
e

λ µ
λ µ δ

 + +
 + 

 





 (9.22) 

 
The order of magnitude of the elastic deformation rate, ele , can be estimated 
starting from the loading conditions, while, for the thermal deformation rate, te , 
an estimate can be made considering the boundary conditions on temperature or 
on its flux. For temperature distributions with no sharp variation or 
discontinuities in their time histories, it is intuitively expected that the time rate 
of change of the dilatation is of the same order of magnitude as that of the 
temperature; thus, the disregarded of coupling as described previously appears to 
be reasonable. The possibility of omitting the coupling terms depends not only 
on the fact that the inequality 1δ   must hold (as it does for most metals), but 
also on the fact that strain rates must be of the same order of magnitude as the 
temperature rate. The latter condition implies that the time history of the 
displacement closely follows that of the temperature; in other words, no 
pronounced lag or vibrations in the motion of the body must arise. It is, 
therefore, to be expected that the magnitude of inertia effects will also enter this 
question, so that a close relationship can be anticipated to exist between the two 
previously mentioned simplifications of the general theory. Starting from 
equation (9.21), it is possible to extend the same considerations to the 
poroelasticity theory. The second equation (9.1) can be written as:  
 

 1 0PK p p e
Mµ

∆ − − =   (9.23) 

 
and, then, rearranged in the following form: 
 

 1 1 0PK ep p M
M pµ

 
∆ − + = 

 







 (9.24) 

 
Following the approach proposed by Boley and Weiner (1997), a poroelastic 
problem results, thus, uncoupled if the following inequality holds: 
 

 1e
p M

<<




 (9.25) 
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However, the simple form of equation (9.25) hides some interesting aspects.  

To ensure that a poroelastic problem is uncoupled, it is not sufficient that 1
M  

is 

very small, but, paradoxically, it should also happen that 1e
p M

<<




. Also in this 

case, an evaluation a priori of the two terms appearing in the equation (9.25) is 

necessary. The term 1
M

 is strictly connected to the physical poroelastic 

properties of the material and it can be easily evaluated a priori. The term 

associated to the poroelastic-mechanical output, e
p




, can be estimated starting 

from the order of magnitude of the loading and boundary conditions. 

Nevertheless, even if 1e M
p

≅




, the problem could result uncoupled. The term 

1 e M
p

 
+ 

 





 becomes, in fact, equal to 2; if 1 PKp p
M µ

<< ∆ , the poroelastic 

problem becomes not only uncoupled but also steady-state. Moreover, Boley and 
Weiner (1997) extended their reasoning considering also the conditions under 
which a thermoelastic problem can be considered uncoupled and quasi static. 
They demonstrated, in fact, that when inertial effects are small, also the coupling 
effects are negligible. The condition on the inertial effects rises from a 
comparison between the thermal input characteristic time (TICT), 0

Tt , and the 
mechanical Mt , and thermal characteristic times Tt , defined as: 
 

 
2

;M T
e P

L cLt t
v K

ερ
= =  (9.26) 

 

where L is the characteristic length of the problem and the term TK
cερ

is the 

thermal diffusivity. The TICT can be evaluated starting from the boundary 
condition on temperature.  
If a temperature profile is assigned in a prescribed point of the boundary, the 
TICT, 0

Tt , can be determined as: 
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Boley and Weiner (1997) reported that if the following inequalities subsist: 
 
 0,    T

T M Mt t t t 
 (9.28) 

 
both coupling effects and inertial effects are small.  
To this purpose, in thermoelasticity theory, the following parameter is 
introduced:  
 

 
0

T M M
T

T

t th
t t

=  (9.29) 

 
and, then, the thermoelastic problem results uncoupled and quasi static if:  
 
 1Th <<  (9.30) 
 
Replacing the relationships (9.26) in the equations (9.29), the condition (9.30) 
becomes: 
 

 
( ) 0

1
2

T
T

K
t cελ µ

<<
+

 (9.31) 

 
Employing the coupling between poroelasticity and thermoelasticity, the 
poroelastic input characteristic time (PICT) can be determined starting from the 
definition of the thermal one, (9.27), as: 
 

 

( ) 1
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0

,
P
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p x t
tt

P

−
 ∂ 
 ∂ =
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 (9.32) 

 
Moreover, starting from the definition of the TCT, equation (9.26), and 
employing the relationships: 

 

0

0

P
T

T KK

Tc
Mε

µ

ρ

↔

↔
 (9.33) 

 
the characteristic time of a poroelastic problem (PCT), Pt , can be, thus, written 
as:  
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2

P
P

Lt
K M

µ
=  (9.34) 

 
and, from equation (9.29), a poroelastic problem results, indeed, uncoupled and 
quasi static if:  
 

 
0

1P M M
P

P

t th
t t

= <<  (9.35) 

 
Replacing the relationships (9.26) and (9.34) in the equations (9.35), the 
uncoupled quasi-static condition becomes: 
 

 
( ) 0

1
2

P
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K M
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ρ
λ µ µ
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 (9.36) 

 
Table 9.3 is a résumé of the conditions presented in this paragraph. It represents, 
thus, a very important instrument because it allows to estimate a priori if the 
examined problem is coupled, uncoupled or quasi-static, avoiding, indeed, 
excessive computational costs in the analyses performed.  
The first step of this analysis consists, thus, in the evaluation of the input time, 

0
Tt  or 0

Pt , starting from the boundary conditions. Then, the parameters Th , for 
the thermoelastic problem, and Ph , for the poroelastic one, are evaluated to 
determine if the problem is uncoupled quasi static. If the conditions (9.31) or 
(9.36) do not hold, the conditions (9.21) and (9.25) are investigated, to verify if 
the problem is uncoupled.  
Finally, if also these two last conditions do not subsist, the problem results 
coupled. 
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Table 9.3 – Résumé of the Uncoupled-Quasi Static Conditions  
for Thermo-Elastic and Poro-Elastic Problems 
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PERSPECTIVES 
 

 
 
 

Many analytical and numerical approaches have been proposed in 
order to solve poroelastic problems describing the behavior of 
biological tissues. The main difficulty associated to numerical 
strategies concerns the solution of the coupled poroelastic 
equations for determining the solid response in terms of 
deformation and filtration. The proposal of this work is to find a 
strategy to numerically solve poroelastic problems employing the 
Finite Element Method (FEM). In particular, the strategy presented 
is based on the well known similarity between thermoelasticity and 
poroelasticity theories. This analogy allows to solve transient 
poroelastic problems as corresponding thermoelastic ones, 
interpreting the temperature as a pressure and thermal gradients as 
velocities. With this aim, the relationship between thermoelasticity 
and poroelasticity is formulated in terms of dimensionless 
parameters to ensure numerical stability, because the elasticity 
moduli, filtration coefficients and porosity have essentially different 
orders of magnitude. Thus, the dimensionless equations obtained 
are implemented in numerical FEM-based computations. Such 
transferring to equivalent thermoelastic problems enables to apply 
the FEM package Ansys® 11, which provides opportunities to solve 
coupled thermoelastic problems in transient non linear settings. 
Two numerical examples are presented. The first one is concerning 
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a very important problem of drug delivery in solid tumors. The 
second example is, instead, related to the investigation of the role 
played by trigonal-like microstructure in osteons in bone adaptive, 
growth and remodeling processes. 

 
 
 
10.1. INTRODUCTION TO OSTEONS 
 
The analysis of the role of bone microstructure in bone mechano-trasduction 
process have been investigated utilizing Finite Element Method. Bone is a living 
tissue, hierarchically organized, constituted by liquid and solid components, 
strictly interacting to optimize the structure for its functions (Knothe Tate, 
2003). Bone cells actively recognize and respond to mechanical and chemical 
stimuli in the process known as mechano-chemical transduction. Human bone is 
continuously renewed by basic multicellular units (BMUs), working in a 
coordinate fashion to reabsorb old bone and, then, filling the gap with new bone 
tissue organized in osteons in cortical bone. The mechanical properties of these 
secondary osteons are crucial for the stability of the entire bone. The cells 
involved in the remodeling process are the osteoblasts, actively engaged in the 
production of extracellular matrix (Cowin et al., 1991) and the osteoclasts, bone 
reabsorbing cells, coordinated by the osteocytes, considered the underestimated 
conductors of bone orchestra (Bonucci, 2009). Osteocytes are thought to be the 
mechanosensory cells in bone because they detect physical stresses, translating 
them into autocrine and paracrine signals. Mechanical stimuli can be transmitted 
through the solid matrix of the tissue or indirectly via fluid pressure and shear 
stresses caused by fluid moving through the lacunocanalicular system due to 
load-induced fluid flow. Moreover, also chemical signals, associated to 
diffusive, convective and active transport mechanisms, arrive intracellularly or 
through the extracellular fluid in which the cells live. A central role in the 
mechanotrasduction process is carried out by the lacunocanalicular system, 
which serves as fluid reservoir and, thus, is determinant for the signals 
transmission. Pericellular fluid in this network is the coupling medium for the 
translation of mechanical forces into biochemical, mechanochemical, 
mechanobiological and electromechanical effects in cells, the machine tools for 
bone remodeling. Different biophysical and electrochemical mechanisms can 
cause bone fluid motion. Apart from endogenous mechanisms, such as active 
transport in osteocytes, pressure gradients associated to osmotic or pulsatile 
pressures and exogenous mechanisms induced by mechanical loading can 
determine fluid motion. Bone tissue behaves like a hierarchically organized stiff, 
dense, fluid-filled sponge and, as a consequence, Biot’s theory of poroelasticity 
enables to describe the interactions between the solid matrix and the fluid phase 
(Cowin et al., 2009). Mechanical loading in bone is associated to a tissue stress 
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state comprising cyclic dilatational and deviatoric components. The dilatational 
component kindles the fluid pressure, inducing the fluid flow through 
deformation of the fluid-filled lacunocanalicular and intermatrix porosities 
within bone tissue.  
According to Biot’s theory, compression deforms the solid matrix of a porous 
material, raising instantaneously a pressure increase in the fluid within the pores. 
The differences in pressure between the interior and exterior of a porous solid 
cause a net flow of fluid. Removal of load results, instead, in a pressure gradient 
which guides the fluid inward, until it reduces to zero. Bone formation induced 
by mechanical loading is site-specific and, so, it depends on the stimuli 
perceived by the skeleton. Different possible remodeling stimuli have been 
considered, such as strain magnitude, strain rate, strain frequency and the strain 
tensor. Recently, Gross et al. (1997) indicated that peak magnitude strain 
gradients, deducible from bone load environment and geometry, are strictly 
correlated with the sites of bone formation. Moreover, strain gradients are 
associated to fluid flow in the canalicular network. Ruimerman et al. (2005) 
considered both the effects of the volumetric strain, representing the actual load 
on the osteocytes, and of its gradient, related to the mechanical effects on fluid 
flow. As illustrated, osteon microstructure plays a fundamental role in guiding 
fluid flow and is optimized for the functions it has to fulfill. Bone is an 
intelligent material and its architecture is a consequence of the loads acting on it. 
The cylindrical osteons design can be seen as the response to the load history. 
Their distribution in compact bone, in fact, corresponds to the distribution of 
principal stresses acting on bone. Osteons structure ensures maximum load-
bearing capacity and resistance to weakness induced by fatigue and 
microdamage (Weiner et al., 1999). Bàca et al. (2007) analyzed the course of 
osteons of the human proximal femur, underlying that osteons are present above 
all in the regions subjected to high stress and absent in all regions where loading 
of the bone is not significant. Osteons enable bone to respond optimally to the 
stress applied thanks to their peculiar mechanical properties, determined by the 
specific pattern of collagen fibers. Tests of macroscopic samples have 
demonstrated that collagen fibers orientation is correlated to the mechanical 
properties of long bones, independently of the type of species. Ramasamy et al. 
(2006) argued that collagen fibers orientation is a potential result of a 
microarchitectural adaptation process to the load environment and that the 
specific orientation is determined by the mineralization that freezes the collagen 
fibers in the directions dictated by physiological strains. Collagen fibers 
orientation is considered an important predictor of the tensile strength of cortical 
bone and a measure of toughness. Skedros et al. (2009) noted that longitudinal 
oriented collagen fibers determine greater strength in tension and also a grater 
elastic modulus, while transverse collagen fibers are optimized for compressive 
stresses. Fibers orientation obviously changes within the bone segments. Beraudi 
et al. (2009) analyzed the collagen orientation in human femur, tibia and fibula 
shaft by circularly polarized light. They found, indeed, that transverse fibers 
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become predominant moving versus epiphyses where the compressive 
physiological forces are more aligned with the shaft cross section, confirming 
that the collagen pattern is strictly dependent on the loads to bear. Besides, 
collagen orientation is a fundamental factor also in fracture initiation and arrest 
(Weiner et al., 1999).  
Microdamage in bone occurs in the form of microcracks as a result of everyday 
cyclical loading activities (Mohsin et al., 2006) and it represents a stimulus for 
remodeling. Porosity, mineralization, collagen fibers orientation are all factors 
which promote cracks initiation, but hinder their growth.  
Gupta et al. (2006) considered osteons as mechanically modulated laminates of 
mineralized collagen fibril layers, characterized by the alternance of a wide band 
of stiffer mineralized matrix with thin bands of softer material. This mechanical 
modulation provides an example of a natural crack stopping mechanism. 
Moreover, also the stiffness variation of single lamellae may serve as a crack 
trapping mechanism inside osteons, preventing cracks running in the interstitial 
bone from propagating toward the inner Haversian canal. However, lamellar 
interface in bone is weak and, so, it is the principal site of shear damage 
formation, but it is also highly effective in keeping cracks isolated from each 
others. Some authors also proposed that the cement lines, surrounding osteons, 
can be seen as barriers to crack growth (O’Brien et al., 2007), because they can 
reduce the shear strength of osteonal bone. O’Brien et al. explained the osteons 
crack-stopping mechanism comparing them to composite materials. Also 
osteons, in fact, provide numerous sites for crack initiation, but the fibers act as 
barriers and prevent further growth. Another important aspect of osteons 
microstructure needs to be considered. Wagermaier et al. (2006) hypothesized a 
three-dimensional spiraling of collagen fibrils in osteonal bone. They argued that 
the helicoidal structure provides more resistance to mechanical loads and 
enables a higher extensibility in tension and compression. They proposed that 
one of the advantages of such a helicoidal plywood structure could be the 
protection of the blood vessels against failure of the surrounding matrix. 
Nevertheless, at the best author knowledge, no works have been presented in 
literature where the helical microstructure of lamellae in osteons has been 
interpreted as a significant factor for driving nutrients. 
 
 
 
10.2. FE SIMULATION OF A TYPICAL OSTEON UNIT 
 
A poroelastic steady-state analysis has been conducted on a FEM model of 
osteons to demonstrate that osteons microstructure itself is a key element to 
understand bone adaptive, growth and remodeling processes, employing the 
Poro-Thermo Duality theory. Numerical simulations have been carried out 
considering that the osteon length and its internal radius are respectively 300 μm 
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and 30 μm. In this model, the osteon is constituted by 10 lamellae  with a 
thickness of about 5 μm. For the wrapping angle, nine different values are 

considered to simulate T-type osteons ( 0)θ = , L-type osteons ( )
2
πθ =  and 

oblique-type osteons { },   1,2,3,4,5
12

i iπθ = ⋅ ∈ 
 

.  

A parametrical custom-made Ansys® environment macro was developed to 
assign different anisotropic properties to the lamellae. The FEM based model 
was constructed by means of hexahedral 8 nodes elements with linear shape 
functions generating a 364.800 elements and 380.182 nodes mesh with 4 
elements in each lamella thickness; the model is shown in Figure 10.1. The 
boundary conditions and the constraints imposed in the model reflect osteons 
physiological conditions. The osteon is constrainted on the basis, simulating 
bone typical packaging at the microstructural level. A pressure is applied on the 
internal surface, simulating the interstitial pressure in the Haversian channel, 
while the pressure on the external surface is zero. 
 

 
Fig. 10.1 – Finite Element Mesh of the osteons model  

 
Due to the trigonal microstructure, the applied pressure may induce the osteon 
rotation, but the presence of other osteons in the environment thwarts the osteon 
to move. This aspect is simulated by imposing zero tractions on the internal 
surface and a prescribed traction acting on the external one as boundary 
conditions.  
The elastic constants of the osteon are summarized in Table 10.1 and Table 10.2 
in terms of elastic moduli and Poisson’s coefficients respectively. 
Finally  Table 10.3 reports the estimated bone matrix elastic constants of a single 
lamella for type L osteon (Yoon and Cowin  2008), used as starting point to 
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evaluate the lamellar elastic constants for osteons with different values of the 
wrapping fibers angle. 
 

 ELASTIC 
MODULI [GPa] 

1
mE  16.4 

2
mE  18.7 

3
mE  22.8 

12
mG  7.2 

13
mG  7.1 

23
mG  8.4 

Table 10.1 – Estimated bone matrix elastic moduli of a single lamella  
for type L osteon (Yoon and Cowin  2008) 

 
 

 POISSON’S  
COEFFICIENTS 

12
mυ  0.334 

12
mυ  0.237 

12
mυ  0.381 

12
mυ  0.247 

12
mυ  0.330 

12
mυ  0.301 

Table 10.2 – Estimated bone matrix Poisson’s coefficients of a single lamella  
for type L osteon (Yoon and Cowin  2008) 

 
 
The material parameters employed in the analysis are reported in Table 10.3 
(Rémond et al., 2008). 
 

2[ ]pK m  [ ]Paµ  [ ]M GPa  
10-18 10-18 40 

Table 10.3 –  Material parameters (Rémond et al., 2008) 
 

Nature always optimizes structures to the specific functions to fulfill.  
The helicoidal pattern of the collagen fibers results, thus, a key element for 
understanding osteonal behavior. It will be shown that, together with the 
qualitative results, the apparently negligible difference in trigonal elastic 
constants with respect to the orthotropic ones produces significant differences in 
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terms of poroelastic behavior and, then, in terms of biomechanical 
consequences. The resulting trigonal microstructure, in fact, is crucial for many 
aspect associated to osteons functions, such as fluid velocity magnitude.  
Figure 10.2 shows the different velocity profiles for the trigonal (blue line) and 
orthotropic model (red line). 
 

 
Fig. 10.2 – Comparison between velocity profiles for the trigonal (blue line)  

and the orthotropic model (red line) 
 
The analyses of the velocity profiles reveals that the trigonal model appears to 
generate significant increases of velocity and, then, fluid shear stresses can be 
envisaged to activate mechanosensory in osteocytes and BMU activities as a cell 
response. Fluid shear stresses, in fact, play a crucial role in bone remodeling 
process. Fluid flow induces shear stress on cell membranes, a well-known 
stimulus for bone remodeling (Smit et al., 2002). Bone cells are particularly 
sensitive to fluid shear stress, which cause the release of different kinds of 
substances, ensuring the transmission of biochemical signals. Strain induced 
fluid flow results, thus, a powerful regulator of cells behavior and, so, a 
determinant factor in bone mechanotrasduction. The bone mechanosensor cells, 
i.e. the osteocytes, are, in fact, actively stimulated by fluid shear stresses. 
Moreover, according to Darcy’s Law, velocity is directly linked to pressure 
gradients. As a consequence, trigonal microstructure determines also a 
significant increase in pressure gradients, responsible of fluid motion. However, 
trigonal model appears to generate also significant increases in volumetric strain 
gradients respect to the values obtained employing an orthotropic osteon model.  
This result has very important implications because strain gradients have been 
proposed as a possible remodeling stimulus (Gross et al. 1997).   Moreover, also 
volumetric strain is influenced by trigonal microstructure, as shown in Figure 
10.3. In the volumetric strain profiles, in fact, a 20% increase can be highlighted 
by taking into account trigonal symmetry of the osteon.  
This can be a factor that participates to the well-known mechanism of strain 
amplification, here induced by the helicoidal arrangement of lamellae.  
In bone physiology, in fact, an important paradox exists, associated to the strain 
levels perceived in bone at the cellular level. Strains applied to the macroscopic 
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bone are, in fact, smaller then the strains necessary to activate 
mechanotrasduction processes and, thus, an amplification phenomenon should 
exist to ensure sufficient magnitude stimuli to bone cells (Cowin, 2002). 
 

 
Fig. 10.3 – Comparison between volumetric strain profiles for the trigonal (blue line) 
and the orthotropic model (red line). Green line represents the percentage difference 

between the two models 
 
An answer to this interesting paradox has not been found yet, even if different 
possible models have been proposed.  
Han et al. (2004) suggested, for example, a possible strain amplification 
mechanism associated to the fluid flow through the pericellular matrix at the 
lacunar-canalicular porosity level.  
However, our results envisage that trigonal microstructure aids the strain 
amplification phenomenon, ensuring the strain levels needed to activate 
signaling in bone.  

 
Fig. 10.4 – Variation of the volumetric strain in frontal and transverse osteon 

 sections at one half of the overall length for 
4
πθ =
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Figure 10.4 is, instead, a sketch of the variation of the volumetric strain in a 
frontal section, highliting what happens in the longitudinal direction, and in a 
transverse section, emphasizing the behavior in the radial direction. These 

sections are obtained at one half of the overall osteon length for 
4
πθ = . 

Another important consequence of trigonal microstructure is associated to the 
change in sign and jumping at the interface of the in-plane shears, reported in 
Figure 10.5. 
 

 
Fig. 10.5 – In plane-shears for the trigonal model 

 
This phenomenon has important effects for what concerns osteocytes 
stimulation. Osteocytes are placed within niches of calcified matrix, the 
osteocyte lacunae, at the lamellae interfaces. As well known, different stimuli 
induce different pathways of biological signals. Moreover, mechanical loading 
induce also a rapid osteocytes production of nitric oxide and prostaglandin. It 
has been demonstrated that these substances are released as a consequence of the 
wall shear stresses (Bonucci, 2009). Finally, trigonal microstructure could also 
explain how osteons can act as microcracks barriers. Microdamage in bone 
occurs in the form of microcracks as a result of everyday cyclical loading 
activities (Mohsin et al. 2006) and it represents a stimulus for remodeling and 
repair. However, bone microstructure is also optimized to prevent microcracks 
propagation, slowing or altering their propagation direction and velocity. 
Microcracks, in fact, usually initiate in interstitial bone and stop when 
encountering cement lines, acting as weak interfaces, or somewhere within the 
osteon (Huang et al., 2006). Some authors proposed that the cement lines, 
surrounding osteons, can be seen as barriers to crack growth (O’Brien et al. 
2007), because they can reduce the shear strength of osteonal bone. Moreover, 
also osteons themselves act as microcracks barriers. To this purpose, O’Brien et 
al. explained the osteons crack-stopping mechanism comparing them to 
composite materials. Also osteons, in fact, provide numerous sites for crack 
initiation, but the fibers act as barriers and prevent further growth. Osteons crack 
stoppers function can be material induced, i.e. associated to their intrinsic 
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material properties, or stress induced, i.e. associated to the stress levels 
experienced. For what concerns the material properties, Gupta et al. (2006) 
considered osteons as mechanically modulated laminates of mineralized 
collagen fibril layers, characterized by the alternance of a wide band of stiffer 
mineralized matrix with thin bands of softer material. This mechanical 
modulation provides an example of a natural crack stopping mechanism. 
Moreover, also the stiffness variation of single lamellae may serve as a crack 
trapping mechanism inside osteons, preventing cracks running in the interstitial 
bone from propagating toward the inner Haversian canal. Obviously, this kind of 
behavior is highlighted also when an orthotropic osteon model is employed. 
However, as just said before, the crack stopping behavior do not depend 
exclusively on the material properties, but also on stress intensity. Stresses 
profiles for trigonal and orthotropic osteons models have been investigated, with 
the purpose of showing the consequences of the different trends on the crack 
stopping mechanism. For a mode I crack, propagating in the radial direction, the 
comparison between the hoop stresses profiles for the two models emphasizes 
that trigonal microstructure ensures a crack stopping behavior .  
As shown in Figure 10.6, the hoop stress gradients, in fact, decrease respect to 
the orthotropic case and, so, also the crack propagation velocity decreases. For a 
mode III crack, instead, referring to Figure 6.19, the analysis of shear stresses 
shows that an in-plane torque-induced shear stress kindles within the lamellar 
structure of trigonal osteons only, as a consequence of the kinematical constraint 
on the twisting angle, while this stress is zero for an orthotropic model. 
 

 
Fig. 10.6 – Comparison between the hoop stresses profiles  

for the trigonal (blue line) and the orthotropic model (red line) 
 

As shown in Figure 10.6, the hoop stress gradients, in fact, decrease respect to 
the orthotropic case and, so, also the crack propagation velocity decreases. For a 
mode III crack, instead, referring to Figure 10.5, the analysis of shear stresses 
shows that an in-plane torque-induced shear stress kindles within the lamellar 
structure of trigonal osteons only, as a consequence of the kinematical constraint 
on the twisting angle, while this stress is zero for an orthotropic model. 
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Moreover, in-plane shears change sign and jump passing from a lamella to the 
following one, revealing a stress induced crack stopping mechanism.  
All these considerations support the idea that osteons trigonal microstructure is 
fundamental for bone adaptive and survival functions. Moreover, the trigonal 
microstructure ensures also the signaling far away the site of emission, creating a 
pathway for the fluid which can flow interlamellar and also in the osteon 
network. Figure 10.7 represents the organization of osteons in a cross section of 
a human femur. The inner region is reported on the left, while the outer one on 
the right. Dark osteons are indicated with A, Bright osteons with B, Alternating 
ones with C and hooped osteons, containing a thick portion of the peripheral 
boundary with a bright appearance under polarized light, with DThe different 
kinds of osteons showed in this image suggest that they are not only the bone 
answer to mechanical stimuli but also a system to optimize fluid flow and, thus, 
signaling in bone.  
 

           
Fig. 10.7 – Osteons pattern in a human femur cross section.  

 

Finally the next figures illustrate the shear stress in the case of 0θ =  and 
4

=
πθ  

respectively.  
Considering the position of the osteocytes between contiguous lamellas, the 
value of the shear stress in the cases of 0θ =  differ of two order of magnitude 

less then the case of  
4

=
πθ . This so big difference suggest the important role of 

mechano-trasduction in the phenomenon regulating the bone process and, in 
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particular, the importance of the angle of wrapping of the fibers in determining 
the action of the osteocytes which will active theirself, starting the usual bone 
process, depending of the value of the mechanical stress they fill.  
 

 
Fig. 10.8 – Shear stress in Osteons with 0θ = .  

 

 
Fig. 10.9 – Shear stress in Osteons with 

4
=

πθ .  
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10.3. INTRODUCTION TO DRUG DELIVERY TO SOLID TUMORS 
 
This second FEM application concerns the analysis of the Convection-Enhanced 
Delivery (CED) technique for the delivery of drugs to brain tissue. Primary 
central nervous system tumors are the second cause of cancer death in younger 
population (Allard et al, 2009). The difficulties in cancer treatment are 
associated to its characteristic features, such as the uncontrolled cell growth, not 
regulated by external signals, and the capacity to invade tissues, metastasize and 
colonize at distant sites. There are several modes of therapy for brain tumors. 
The first treatment is, usually, the tumor resection, associated to radiotherapy 
and chemotherapy. The major difficulties in the treatment of brain tumors is the 
effectiveness of the delivery of therapeutic agents. Drug delivery in vivo results 
difficult because of the presence of physiological barriers, drug resistance of 
tumor cells, tissue tolerance and so on (Yuan, 1998). In brain, the two major 
obstacles for drug delivery are represented by the blood-brain barrier (BBB), 
almost impermeable to drugs (Baxter and Jain, 1989), and the interstitial fluid 
pressure (IFP), which is high in the solid tumor and decreases abruptly in the 
tumor periphery (Jain, 1988), caused by the disorganized vascular network and 
the absence of functional lymphatics. Many efforts have been made to model the 
phenomena involved in the delivery of drugs to solid tumors and to understand 
how to ride out physiological obstacles. Walker et al. (1996), for example, 
proposed an analytical model to investigate the effect of the protocols to 
overcome the blood brain barrier on the different drug transport processes, 
focusing on the role of convection and the influence of the changing parameters. 
Netti et al. (1995) proposed a poroelastic model of a solid tumor to investigate 
the mechanisms which regulate the interstitial fluid pressure, looking for a 
possible strategy to overcome this physiological barrier. Supporting the 
analytical approach with experimental data, they found that the periodic 
administration of vasoactive agents improve the effectiveness of the 
macromolecular delivery. Moreover, also tumor blood flow plays a crucial role 
in tumor therapy and it is characterized by temporal and spatial heterogeneities 
(Netti et al., 1996), probably due to the coupling between interstitial fluid 
pressure and tumor microvascular pressure (Mollica et al., 2003). Infusion-based 
techniques seem to be promising approaches for the delivery of therapeutic 
agents to brain tissue because convection enhances drug transport, ensuring the 
drug release in larger regions respect to pure diffusion. Based on these 
considerations, the Convection-Enhanced Delivery (CED) technique has been 
recently proposed. It is defined as the continuous delivery of a therapeutic fluid 
agent simply guided by pressure gradients (Allard et al., 2009). CED enables the 
drugs  to cross the BBB and supplements diffusion in the delivery of large drugs 
over required distances, determining greater in situ drug concentrations and 
reducing systemic toxicity. A wide range of substances can be locally delivered 
with this technique, such as monoclonal antibodies, conventional 
chemotherapeutic agents, proteins, nanocarriers, targeted toxins and viruses. The 
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effectiveness of CED is strictly connected to the different parameters proper of 
this technique. For this reason, CED protocols need to take into account the 
infusate concentration, the volume of the infusate, the infusion rate and site, the 
backflow mechanism. To improve CED protocols and to predict drug 
distribution profiles, analytical and numerical models have been developed. To 
this purpose, the poroelasticity theory is a very useful instrument to describe soft 
tissue mechanics (Biot, 1955) and it can also be used to model the coupling 
between fluid flow and solid deformation in tumors.  
 

 
Fig. 10.10 – Schematic representation of CED mechanism (Allard et al., 2009) 

A: identification of the target site with correct placement of the catheter according to 
specific coordinates. B: Diffusion occurs all the time but is rigorously dependent of the 
infusate nature. C: Convection (or bulk flow) is strictly dependent on the pressure 
gradient and occurs during all the establishment of the pressure gradient. 

 
Basser (1992) presented an analytical model of infusion-induced swelling in 
brain, treating white and gray matter as linear poroelastic isotropic media. He 
found an analytical steady-state solution to estimate interstitial fluid pressure and 
fluid velocity profiles during infusion into brain. Smith and Humphrey (2007) 
proposed a model for the CED in brain tissue, deriving the interstitial fluid 
pressure and fluid velocity induced by infusion into brain tissue and in a tissue-
isolated tumor. They determined steady-state and transient solutions for the 
proposed model.  
Also Netti et al. (1997) employed the poroelasticity theory to describe fluid 
movement in soft tissues at macroscopic and microscopic scales, specializing the 
model to a local analysis of blood flow around a single blood vessel. Moreover, 
they applied the model to determine an analytical solution for a spherical solid 
tumor, obtaining the interstitial fluid pressure and fluid velocity profiles. Roose 
et al. (2003), instead, employing a poroelastic model, investigated solid stress 
associated to a spheroid tumor growth in order to better understand the effects of 
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the growth on the surrounding environment. The model, validated by 
experimental results, suggests that the range of stresses created by tumor growth 
are considerable and could collapse blood and lymphatics vessels, contributing 
to the lack of vessels in the middle of the tumor. Moreover, to take into account 
transient evolution of the phenomena associated to the drug delivery to solid 
tumors, Netti et al. (2003) proposed a poroviscoelastic model for a spherical 
geometry to analyze how mechanical stresses and deformations influence 
macromolecular distribution in a gel, in order to simulate an intratumoral 
infusion. Also biphasic theory has been used to develop an analytical model to 
describe drug delivery to solid tumors. Garcia and Smith (2008), in fact, 
employed a biphasic hyperelastic model to describe infusion into brain, 
attributing the differences between linear solution and nonlinear analyses to 
geometric nonlinearities. However, the interest of the scientific community is 
increasingly addressed to numerical approaches. FE models, in fact, allow to 
describe more realistic infusion protocols and geometries and to perform 
parametric analysis. Linninger et al. (2008) proposed a computational technique 
to rigorously predict the distribution of drugs in brain tissue, based on the three-
dimensional reconstruction from patient-specific images. This approach allows 
to take into account brain heterogeneity and anisotropy. Chen and 
Sarntinoranont (2007) employed the software package ADINA to study the 
effects of pressure-induced swelling on the macromolecular transport, modeling 
brain tissue as a biphasic isotropic medium. They validated their results 
comparing them to the analytical solution of Basser (1992) and developed a 
sensitivity analysis to quantify the effect of the changes in the material 
parameters on the pressure-controlled infusion. As highlighted in this 
introduction, the CED technique has been investigated by many authors because 
it represents a challenging approach to overcome the physiological barriers in 
brain tumors treatment. In this chapter, a FE computational model of CED 
protocols, based on the PTD theory, is presented. However, this approach 
presents some limits. The model employed, in fact, is linear and isotropic, for 
both the constitutive behavior and the permeability. These assumptions are the 
same used by Basser (1992). The other limit is that the therapeutic fluid agent is 
simply guided by pressure gradients, modeled employing the Darcy’s law, and 
not by a diffusion process, described by Fick’s law. On the contrary, an 
advantage of the approach proposed is the possibility to perform FEM analyses, 
by starting from mechanical, geometrical and infusion data reported in the 
scientific literature. Following this way, a parametrical custom-made Ansys® 
environment macro is used to perform steady state and transient poroelastic 
analyses employing the PTD theory. Another important advantage of this model 
consists in the possibility of simulating in silico sensitivity analyses to determine 
the effects of different parameters on the effectiveness of the infusion protocols. 
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10.4. FE MODEL OF DRUG DELIVERY TO SOLID TUMORS 
 
This FEM analysis has been performed to compare the analytical steady state 
solution presented by Basser (1992) for a step brain infusion from a pressure 
source into a spherical cavity of radius a, with the solutions obtained with the 
software Ansys® .  
 

 
Fig. 10.11 – Input Pressure in the cavity 

 
As just said before, brain tissue is modeled as an isotropic poroelastic medium. 
Starting from Biot’s poroelasticity theory, the solution is found imposing that 
the pressure in the cavity suddenly jumps from zero to , i.e. 

, as illustrated in Figure 10.11.  
 

 
Fig. 10.12 – Input Pressure on the external surface 

 
The resulting pressure distribution for  is: 
 

  (10.1) 

0P
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where  is the consolidation coefficient.   

Moreover, because the solution found by Basser (1992) refers to an infinite 
medium, the numerical solution is evaluated imposing on the external surface 
the pressure profile obtained from equation (10.1) when , as shown in 
Figure 10.12. 
The infusionparameters , the gray and white matter parameters employed by 
Basser (1992) are reported in Table 10.4, 10.5 and 10.6 respectively. 
 

INFUSION PARAMETERS 

Infusion Pressure P0=6664 [dynes/cm2] 
Infusion flow rate Q0=10-5 [cm3/s] 
Radius of spherical cavity a=0.03 [cm] 
Radius of tissue sample R0=2 [cm] 
Solute diffusivity D=10-7 [cm2/s] 

Table 10.4 – Infusion parameters employed by Basser (1992) 
 
 

GRAY MATTER 

Shear modulus G=2 104 [dynes/cm2] 
Lamé constant λ=9 105 [dynes/cm2] 
Permeability κ=5 10-9 [cm4/dynes s] 
Pore fraction ƒ=0.2 
Table 10.5 – Gray matter parameters employed by Basser (1992) 

 
 

WHITE MATTER 

Shear modulus G=9 103 [dynes/cm2] 
Lamé constant λ=4 105 [dynes/cm2] 
Permeability κ=7.5 10-9 [cm4/dynes s] 
Pore fraction ƒ=0.2 

Table 10.6 – White matter parameters employed by Basser (1992) 
 
To compare analytical and numerical results, brain tissue is modeled as a sphere 
with an infusion cavity of radius a.  
After the definition of the geometry of the problem, the domain has been 
discretizatized. The Finite Elements Method based model is constructed by 
means of hexahedral 8 nodes elements with linear shape functions generating a 
16875 elements and 18746 nodes mesh. The element chosen for the mesh, i.e. 

( )2P
solid

Kc λ µ
µ

= +

5r a=
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SOLID70, requires that opposites sides of the discretized domain have the same 
number of divisions.  
Moreover, in order to optimize the mesh, the element size increases with the 
sphere radius.  
Figure 10.13 illustrates the number of divisions along the radius, m, and along 
the circular arches, n. 
 

 
Fig. 10.13 – Division numbers along the radius, m, and along the circular arches, n 

 

To this purpose, if a
R

α = , the number of divisions m along the radius is 

evaluated as the geometrical average, i.e.,   
 

 
2 1nm α
π α

−
=  (10.2)  

 
The relationship (10.2) allows to determine, starting from n, the number of  
 

 
Fig. 10.14 – Finite Element mesh of the model 

 
divisions m, as function of the ratio between the cavity radius and the sphere 
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one.  
The Finite Element Mesh of the model proposed is shown in Figure 10.14. 

Because the problem is axial-symmetrical, only 1
4

of the whole geometry is 

represented.  
The steady state solutions for the analytical and numerical analyses overlap, as 
shown in Figure 10.15. 
 

 
Fig. 10.15 – Steady state solution for an infinite, isotropic medium 

 
Moreover, adopting the same geometry and mesh as well as the same input 
conditions, a transient analysis has also been performed, making reference to the 
physical parameters reported in Table 10.7. 
The transient analysis has been conducted in 40 substeps, with a time substep of 
2 seconds.  
 

INPUT PARAMETERS 

Tissue sample radius  R 2 10-2 [m] 
Hydraulic conductivity 5 10-12 [m2/Pa s] 
Elastic shear modulus 2 103 [Pa] 
Lamé constant 9 104 [Pa] 
Storage Modulus 1.8356 10-8 [Pa] 
Density 1000 [Kg/m3] 
Reference Temperature 1 [K] 

Table 10.7 – Finite Parameter values used in the model 
 
In the following Figure 10.16. it is shown the pseudo-hyperbolic variation of the 
pressure along the radius for different values of the time; in particular it is 
illustrated the curves for a time value equal to 2 seconds and from a time value 
equal to 10 seconds to a time value equal to 80 seconds with a substep time 
value of 10 seconds. 
All the curves are differently coloured. 
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Fig. 10.16 – Pressure variations with the radius for different time substeps 

 
It has to be noticed that these profiles show an oscillatory effect, as illustrated in 
Figure 10.17, because pressure values increase or decrease in an alternative way, 
passing from a time value to the following one. 
 

 
Fig. 10.17 – Pump-like effect of pressure profiles  

 
In particular the graphics illustrate in the figure 10.15 describe the variation of  
the pressure along the radius in different times, that is for t equal 10, 12 and 14 
second.  
The figure highlights the alternative way of increasing or decreasing of the 
curves and so the oscillatory effect due to the variation with time. 
Indeed, it is very interesting to investigate also pressure variation with time for 
different radius values.  
In the following graphics in Figure 10.18 it is illustrated, in fact, the decreasing 
weight of the transitory waves when the radius increases.  
Pressure profiles, in fact, are more affected by the oscillatory behavior induced 
by the transitory presence for radius values next to the infusion cavity then for 
radius values far from it. 
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Fig. 10.18 – Decreasing weight of the transitory waves when the radius increases 

 
The following figure 10.19, instead, concerns the pressure map for a selected 
time substep.  
Extending the analysis to the whole temporal range, also in this case the 
oscillatory behavior outcrops.  
 
 

 
Fig. 10.19 – Pressure Map 

424

426

428

430

432

434

436

438

440

442

444

0 10 20 30 40 50 60 70 80

Pressure [Pa]

t [s]

Pressure Variation with time

r = 4,1 mm

135

140

145

150

155

160

165

170

0 10 20 30 40 50 60 70 80

Pressure [Pa]

t [s]

Pressure Variation with time

r = 7,8 mm

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

Pressure [Pa]

t [s]

Pressure Variation with time

r = 10,8 mm

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80

Pressure [Pa]

t [s]

Pressure Variation with time

r = 14,04 mm



Perpectives 
 

 
LUCA ESPOSITO –PHD THESIS 256 

 
 

Moreover, it has to be noticed that Figure 10.19 – 10.21 are associated to the 
output of the thermo-mechanical analysis and, so, all the values need to be 
multiplied for the appropriate coefficients to transform them into poroelastic 
output. 
The following figure 10.20 illustrates the deformation maps in the spherical 
coordinates system.  

 

 
Fig. 10.20 – Deformation Mapsin spherical coordinates system  

 
The next figure 10.21 reports the radial displacement map.  
 

 
Fig. 10.21 – Radial Displacement Map 
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Finally, Figure 8.22 reports the Von Mises stress map. Von Mises stresses are 
very important parameters in order to ensure that the infusion input applied to 
brain do not cause the tissue failure. These stresses could, in fact, be used to 
introduce a stretch ratio, defined as the ratio between the stresses experienced by 
the tissue and the brain yield stress, referring, for example, to the work of 
Velardi et al. (2006). Values of the stretch ratio less than one ensure that the 
infusion procedure adopted preserves tissue integrity.    
 

 
Fig. 8.22 – Von Mises stress Map 

 
It is worth to note that replacing the values reported in Table 8.7 in the 
expression (9.35) and considering 0

Pt  as 80 s, the inequality 1Ph <<  subsists 
and, thus, the problem results uncoupled and quasi static.     
As highlighted before, the purpose of these analyses concerns the improvement 
of CED protocols. The back-flow mechanism occurring in CED will be objet of 
further investigations. By CED, in fact, the drug delivery is driven by the 
pressure gradient, due to the difference between the skull pressure and the 
infusion one and, so, the injection flow is a crucial parameter for the 
effectiveness of the infusion. Moreover, the infusion rate is limited by the back-
flow mechanism. Back-flow can cause the release of the drug in not targeted 
brain regions and it can also induce a drug lack where necessary. Back-flow 
depends, above all, on three parameters: the catheter placement, the injection 
rate and the catheter diameter. Moreover, for the constancy of the fluid 
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discharge, the injection rate and the catheter diameter are strictly connected and, 
thus, only the diameter can be considered as a crucial parameter in the induction 
of the back-flow. Two different kinds of backflow can be envisaged. First of all, 
backflow can occur because the catheter placement can cause the mechanical 
disruption of the tissue and the formation of voids, determining the reflux of the 
therapeutic infused agent through that gap. However, backflow can be also 
intrinsic, associated to the tissue separation from the catheter induced by the 
pressure guiding the infusion process. This phenomenon stops only when this 
pressure is balanced by the shear forces in the tissue (Raghavan et al., 2006). 
The FE software Ansys® could be employed to investigate the transient profiles 
of pressure and velocity and the influence of different parameters on the back-
flow mechanism occurring in CED. This aspect is very important because, even 
if CED technique ensures larger volumes of drug distribution, its clinical 
application is not widespread for some obstacles, such as backflow itself, 
responsible of the uncontrolled drug release (Ivanchenko et al., 2010).  
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