
 

 

 
 

 

UNIVERSITA’ DEGLI STUDI DI NAPOLI “FEDERICO II” 

C.I.R.Am. – Centro Interdipartimentale di Ricerca Ambiente 

 

Dottorato di Ricerca in Analisi dei Sistemi Ambientali 

XXV Cycle 
 

 

 

PhD Thesis 
 

 

 

Multiscale methods for CSEM data 

interpretation 
 

 

 

Davide de Lerma di Castelmezzano 
 

 

 

 

 

 

 

Tutor:  

Prof. Maurizio Fedi 

PhD Coordinator: 

Prof. Maurizio Fedi 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A mio padre e mia madre. 

 

 

 

 

 



I 
 

Contents 

INTRODUCTION .................................................................................................................. 1 

1- CONTROLLED SOURCE ELECTROMAGNETIC METHODS.................................. 5 

1.1 The CSEM methods ..................................................................................................................... 5 

1.2 The resistivity of the rocks .......................................................................................................... 7 

1.3 Basics physics of EM ................................................................................................................... 9 

1.4 The story of the mCSEM method .............................................................................................. 19 

1.4.1 The development of “Controlled Source Electromagnetic” methods. .................................... 20 

1.4.2 The marine CSEM development in the oil and gas industry. ................................................... 21 

1.5 Marine CSEM concepts ............................................................................................................. 21 

1.6 Propagation through the atmosphere ...................................................................................... 32 

1.7 Anisotropy ................................................................................................................................ 34 

1.8 Equipment ................................................................................................................................ 39 

1.9 Modeling .................................................................................................................................. 41 

2- "SINGULAR FUNCTION NORMALIZATION”: A FAST INTERPRETATION 

METHOD FOR CSEM DATA. .......................................................................................... 44 

2.1 Introduction.............................................................................................................................. 44 

2.2 Method ..................................................................................................................................... 48 

2.3 Synthetic test ............................................................................................................................ 49 

2.4 Real case ................................................................................................................................... 52 

3- DEXP IMAGING TECHNIQUE FOR CSEM DATA. ................................................ 57 

Introduction ................................................................................................................................... 57 

3.1 Continuation of quasi-static electromagnetic fields. ................................................................. 63 

3.2 The Multiridge method ............................................................................................................. 67 

3.3 The DEXP method ..................................................................................................................... 82 

3.3.1 Theory of the DEXP method .................................................................................................... 83 



II 
 

3.3.2 DEXP of simple sources ........................................................................................................... 87 

3.3.3 Determining the scaling exponent from the data ................................................................... 88 

3.3.4 Synthetic tests ......................................................................................................................... 90 

3.3.5 More complex bodies ............................................................................................................ 100 

3.4 Application to real data. ......................................................................................................... 107 

CONCLUSIONS ............................................................................................................... 117 

REFERENCES .................................................................................................................. 121 

APPENDIX 1 ................................................................................................................... 127 

APPENDIX 2 ................................................................................................................... 131 

APPENDIX 3 ................................................................................................................... 134 

ACKNOWLEDGEMENTS .............................................................................................. 146 

 

 



 

 

 

Introduction 

“Oceans cover over three-fifths of the earth’s surface. Even though 

petroleum is produced from huge deposits on the relatively shallow 

continental shelf, the immense area of the ocean represents a largely 

unexplored and unexploited resource base. So, over the past few 

decades, the search for petroleum reserves has been extended from the 

continents offshore into progressively deeper water, making the 

continental shelves a focus for geophysical exploration” (Chave et al, 

1991). The principal geophysical methods to discover oil reservoirs are 

the seismic methods, but there are marine geological areas in which the 

interpretation of seismic data may be difficult, such as regions dominated 

by scattering or high reflectivity, which is characteristic of carbonate 

reefs, volcanic cover, and submarine permafrost. So, complementary 

geophysical techniques are often required to study these regions. In 

recent years, significant advances have been obtained in theory, 

methodology, and instrumentation for marine EM methods. Many of the 

seafloor techniques are however simple adjustments of standard 

terrestrial EM approach (Chave et al, 1991). 

In particular, during my work, I focused my attention on “marine 

Controlled Source ElectroMagnetic sounding" (mCSEM), which is a EM 

method getting information about the resistivity distribution beneath the 

sea-floor. mCSEM uses a low frequency EM signal generated by a 

transmitter antenna towed by a ship and received by an array of receivers 

deployed at sea-floor. The first publication proposing marine CSEM 

measurements is probably that of Bannister (1968), who presented 

theory for frequency-domain, seafloor-to-seafloor dipole-dipole 

measurements to determine seabed resistivity. Bannister also recognized 

the noise problems associated with magnetometers moving in the earth’s 
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main field and recommended the horizontal electric dipole (HED) 

configuration, which is still used today. 

This method is very useful for oil companies because it can be used to 

detect and locate oil reservoir; although, to date, most marine CSEM 

activity has been carried out for exploration and pre-drilling appraisal, it 

could be also useful in monitoring the production of reservoirs, as 

described in two recent papers (Lien and Mannseth, 2008; Orange et al., 

2009). Further applications of marine CSEM are the exploration for gas 

hydrates as a methane resource, and possibly pre-drilling surveys to 

mitigate hazard represented by hydrates and shallow gas. First proposed 

by Edwards (1997), the use of marine EM to study seafloor gas hydrate 

is gaining attention (Yuan and Edwards, 2000; Schwalenberg et al., 

2005; Weitemeyer et al., 2006; Darnet et al., 2007; Evans, 2007; Ellis et 

al., 2008; Zach and Brauti, 2009; Schwalenberg et al., 2010). The reason 

of this trend is that the concentration of hydrate in the sedimentary 

section is difficult to be quantified using seismic alone (Constable, 

2010). 

During my work, in particular, I have developed two methods for the 

interpretation of mCSEM data. 

The first method, that we call “Singular Function Normalization” 

method (SFN) is a fast and computationally low cost method to get 

information about the areal resistivity distribution. The method is based 

on the study of the “Magnitude Versus Offset” signals (MVO). The 

MVOs are the values of the amplitude of the electric field measured by a 

receiver versus the distance source-receiver (offset), usually represented 

in a semi-logarithmic scale. Our aim is at emphasizing the presence of 

anomalous resistive buried bodies, by approximating the MVO signal 

obtained at each receiver by a singular function, such as the Lipschitz-

Hölder singularity function:          and estimating, for each 

receiver, its exponent. This parameter is expected to vary on the set of 

the MVO curves acquired during the survey, so to reflect the presence of 

the anomalous body. Another singularity function we have considered is 

the Exponential Singularity Function (ESF):          . In this case 

we estimate the coefficient of the exponent b of the best-fit ESF. The 
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method was successfully tested on synthetic data and then was applied to 

a real dataset kindly allowed by eni. In this latter case, the results are in 

agreement with the published results obtained by anisotropic 3D 

inversion (Dell’Aversana, 2012). 

The second proposed method is the Depth from Extreme Points (DEXP) 

method (Fedi, 2007) applied to mCSEM data. The DEXP method is used 

in potential field in order to get a fast imaging of the source distribution 

and have information about the depth to the source, the structural index, 

N, and the mass or magnetic moment modulus, respectively for gravity 

and magnetic data (Fedi, 2007). In particular, this method fits in the 

framework of semi-automatic methods, as Euler Deconvolution method, 

used in potential field to estimate the source position and N (Reid el al, 

1990). N is a source-dependent parameter, which corresponds to the fall-

off rate of the field with distance for many, but not all, ideal sources. A 

more general meaning of N is that it is the opposite of the homogeneity 

degree of the field. 

During this work I have shown that it is possible to apply this method 

also to non-static fields, such as low-frequency electromagnetic fields, 

under specific assumptions. In particular, I have applied the method to 

the electric field scattered by buried resistive sources. The DEXP method 

(Fedi, 2007; Fedi and Abbas, 2013) is based on the evaluation of the 

static field (magnetic, gravity or self-potential) at altitudes higher than 

the measurement altitude thanks to a routine procedure called upward-

continuation (Blakely, 1995). Equivalently, I have shown (Chapter 3) 

that upward-continuation may be well established also for low-frequency 

non-static fields, under the condition that the distance from the source is 

kept less than the skin-depth δ. So, similarly to potential fields, we can 

get in a fast way, and without any a-priori information, the position and 

the structural index of the anomalous resistive bodies buried beneath the 

sea-floor. In a similar way, I have demonstrated that is possible to apply 

to mCSEM data also a geometric method called multi-ridge method, 

developed by Fedi et al.(2009) for potential field data, again under the 

condition that the distance from the source is less than the skin-depth. 

This method is very fast and gives information about the depth and 

horizontal position of the sources, while it does not provide a direct 
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estimation of the structural index. As the DEXP method, the multi-ridge 

method is based on the upward-continuation of the electromagnetic field 

scattered by the buried resistive sources. By this method we: (a) built 

some characteristic lines in the upward continuation domain, formed by 

joining the maxima of the vertical and horizontal derivatives of the field, 

at distances less than skin-depth, and (b) extrapolate them below the 

measurement level until they intersect each other. For ideal and isolated 

sources such lines are straight and, as it is demonstrated in the Paragraph 

3.2, intersect in correspondence of the source of the scattered electro-

magnetic field. 

The DEXP and multi-ridges methods were tested on synthetic data 

obtained starting from simple models, such as a uniform resistive sphere 

buried in a half-space or an infinite horizontal cylinder buried in an half-

space, and from more complex models such as a horizontal finite thin 

resistive layer buried in a half-space. Moreover, the DEXP method was 

tested on the real data-set provided by eni and the results were compared 

with the results obtained using 3D anisotropic inversion (Dell’Aversana, 

2012) showing a good agreement with them. 



 

 

 

Chapter 1 

Controlled Source Electromagnetic 

methods 
 

1.1 The CSEM methods 

All the electromagnetic methods using an antenna as source of the 

electromagnetic field can be considered “Controlled Source 

ElectroMagnetic” methods (CSEM). 

CSEM sounding has been used since 1930’s to get information about the 

resistivity distribution in the subsurface.  

A land CSEM sounding is the Controlled Source Audio-frequency 

Magneto-Telluric method (CSAMT). This is a frequency domain 

electromagnetic sounding technique, using as source of the 

electromagnetic field a fixed grounded dipole or horizontal loop. 

CSAMT is similar to the natural-source magnetotellurics (MT) and 

audio-frequency magnetotellurics (AMT) techniques; the chief 

differences are about the use of an artificial CSAMT signal source and 

about the distance, being it finite in CSEM.  

Using an artificial source allows us to have higher precision and more 

economical measurements than those usually obtainable with natural-

source measurements in the same spectral bands, but the use of 

controlled source can also be problematic by adding source effects and 

logistical restrictions on the survey. However, the method has proven 

particularly effective in mapping the upper 2 to 3 km of the earth's crust. 

The CSAMT source usually consists of a grounded electric dipole about 
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1 to 2 km in length, ideally located at least four skin depths from the area 

where soundings are to be made. Measurements are made within the 0.1 

Hz to 10 kHz frequency band.  The signal generated by the source and 

propagating in the subsurface is acquired by grounded dipoles and 

magnetic receivers which measure amplitude and phase of the electric 

and magnetic field components respectively. The ratio of orthogonal, 

horizontal electric and magnetic field magnitudes yields the apparent 

resistivity. The difference between the phase of the electric and magnetic 

fields yields the phase of the impedance. In tensor measurements, these 

quantities may be treated by standard MT processing techniques. “Since 

its introduction in the mid-1970s, CSAMT has been used in exploration 

for petroleum, geothermal resources, massive sulfides, base and precious 

metals, structure, lithology, and sources of groundwater contamination” 

(Zonge and Hughes, 1991). 

Another CSEM sounding technique is the marine Controlled Source 

Electromagnetic Method (mCSEM). This method is actually used by the 

oil companies as support to other geophysical methods as seismic 

methods to discover oil reservoirs beneath the seafloor. The mCSEM 

mostly uses as source of the EM field a “Horizontal Electric Dipole” 

(HED) which generates a signal having a fundamental frequency ranging 

from 0.1-10 Hz. The marine CSEM method has become a method of 

commercial interest in the last years because it is very sensitive to the 

presence of thin resistive bodies such as oil and gas reservoir. In fact, the 

HED system combines TM and PM modes and is preferred to MT 

sounding when resistive zones have to be mapped (Zonge and Hughes, 

1991). We will describe more accurately the TM and PM modes in the 

Paragraph 1.2.  

mCSEM method provides information about the conductivity of the 

subsurface that is strictly linked to pore volume and fluid properties. For 

this reason this method can be also used to monitor the CO2 stored 

underground to reduce the pollution due to mining activities. 
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1.2 The resistivity of the rocks 

The electrical conductivity of the rocks is a function of the porosity and 

permeability of the rocks and of the pore fluid conductivity. 

Electric current may be propagated in rocks and minerals in three ways: 

electronic (ohmic), electrolytic, and dielectric conduction. The first is the 

normal type of current flow in materials containing free electrons such as 

metals. In an electrolyte the current is carried by ions at a comparatively 

slow rate. Dielectric conduction takes place in poor conductors or 

insulators, which have very few free carriers or none at all (Telford et al., 

1990). Under the influence of an external varying electric field, the 

atomic electrons are displaced slightly with respect to their nuclei; this 

slight relative separation of negative and positive charges is known as 

dielectric polarization of the material and it produces a current known as 

the displacement current. 

The electrical resistivity of a cylindrical solid of length L and cross 

section A, having resistance R between the end faces, is given by: 

 
  

  

 
 (1.1) 

If A is in square meters, L in meters, and R in ohms, the resistivity unit is 

the ohm by meter (Ωm). The resistance R is given in terms of the voltage 

V applied across the ends of the cylinder and the resultant current l 

flowing through it, by Ohm's law: 

       (1.2) 

The electric conductivity σ is the reciprocal of the resistivity, so will be 

given by: 

   
 

 
 

 

  
 

 

 
 

 

 
 

 
 (1.3) 

where J is the current density (A/m) and E is the electric field (V/m). 

The units of σ  are Siemens per meter (S/m). 
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Most of the rocks are characterized by high values in resistivity, but may 

be seen as conductive due to the fluids inside the pores. As result the 

rocks are electrolytic conductors, whose effective resistivity may be 

defined as in equation (1.1), where the propagation of current is by ionic 

conduction, e.g. by conduction of molecules having an excess or 

deficiency of electrons. Hence the resistivity varies with the mobility, 

concentration, and degree of dissociation of the ions; the latter depends 

on the dielectric constant of the solvent (Telford et al, 1990). There are 

various ways to model porosity and water content. The most popular is 

Archie's Law (1942): 

              
  (1.4) 

where the exponent m is between 1.5 and 2.0 (determined empirically), 

   is the conductivity of the mineral grains,    is the conductivity of the 

fluid and   is the fluid fraction (or porosity, if saturated). 

There are several other models on which mixing laws can be based, for 

example fluid filled tubes: 

   
 

 
            (1.5) 

All possible isotropic models must lie between the Hashin-Shtrikman 

(HS) bounds: 

          
 

     
 

   

   
 

  

 (1.6) 

 

 
         

    
 

     
 

 

   
 

  

 (1.7) 

The geometrical arrangement of the interstices in the rock has a less 

pronounced effect, but may make the resistivity anisotropic, meaning 

that it may have different values as the current flows in different 

directions. 

Anisotropy is characteristic of stratified rocks, which are generally more 

conductive in the bedding plane. The anisotropy, whose effect depends 
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on the maximum to minimum resistivity ratio, may be as large as 2 in 

some graphitic slates, and varies from l to 1.2 in rocks such as limestone, 

shale, and rhyolite (Telford et al., 1990). 

The third type of current flow is the displacement current. This kind of 

current flows only in non-conductors when the external electric field 

changes with time. This kind of conduction is also knows as dielectric 

conduction. The significant parameter in dielectric conduction is the 

dielectric constant k, sometimes called the specific inductive capacity of 

the medium.  

As we will see in Chapter 3, the displacement currents are of secondary 

importance, at the frequencies used in mCSEM sounding. 

1.3 Basics physics of EM 

Both MT and CSEM sounding use electromagnetic induction, which 

describes what happens around a time-varying primary field. 

Michael Faraday proved that the electromotive force (EMF) produced 

around a closed path is proportional to the rate of change of the magnetic 

flux through any surface bounded by that path. In practice, this means 

that an electric current will be induced in any closed circuit when 

the magnetic flux changes through a surface bounded by the conductor. 

In particular Faraday's law says that a time varying magnetic field will 

induce an electric field in a conductor: 

        
  

   

 (1.8) 

where   is the magnetic flux. 

The induced electric field E will generate a current I with a density 

current J in a conductor, according to the Ohm's law:  

      (1.9) 

This current, following the Ampere's law will generate a secondary 

magnetic field: 

http://en.wikipedia.org/wiki/Michael_Faraday
http://en.wikipedia.org/wiki/Electromotive_force
http://en.wikipedia.org/wiki/Proportionality_(mathematics)
http://en.wikipedia.org/wiki/Magnetic_flux
http://en.wikipedia.org/wiki/Magnetic_flux
http://en.wikipedia.org/wiki/Surface
http://en.wikipedia.org/wiki/Electric_current
http://en.wikipedia.org/wiki/Electrical_network
http://en.wikipedia.org/wiki/Magnetic_flux
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 (1.10) 

 

The secondary field opposes to the changes in the primary field. The 

consequence of this is that conductive rocks will absorb variations of EM 

fields more than resistive rocks. 

Operationally, an alternating magnetic field is established by the 

circulation of alternating current through a coil or along a very long wire. 

This field is measured with a receiver consisting of a coil or a dipole 

connected to a sensitive electronic meter, or potentiometer bridge. The 

frequency of the alternating current is chosen such that an insignificant 

eddy-current field is induced in the ground, assuming it has an average 

electrical conductivity.  But if the source and receiver are brought near a 

more conductive zone, stronger eddy currents may be caused to circulate 

within it and an appreciable secondary magnetic field will thereby be 

created. Close to the conductor this secondary or anomalous field may be 

comparable in magnitude with the primary or normal field (which 

prevails in the absence of conducting zones), in which case the receiver 

can very easily detect it. Prospecting for these anomalous zones is 

carried out by systematically traversing the ground either with the 

receiver unit alone or with the source and receiver in combination, 

depending upon the system in use. 

Equations 1.8 and 1.10 can be expressed also as differential equations, so 

equation 1.8 will be rewritten as: 

 
     

  

  
 (1.11) 

and equation 1.10 becomes: 

       
  

  
 (1.12) 

where: 

B is the magnetic induction in webers per square meter; 
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H is the magnetic field intensity in Ampere-turns per meter;  

E is the electric field intensity in volts per meter;  

D is the electric displacement in coulombs per square meter; 
 

J is the electric current density in ampere per square meter;  

Equations 1.11 and 1.12 are the first and second Maxwell's equation 

respectively.  

By taking the divergence of 1.11, we obtain: 

 

            
  

  

  
 

  
    

(1.13) 

because the divergence of a rotor is zero. The divergence of B is 

therefore time-independent, and since B is generally time-varying, it 

follows that: 

        (1.14) 

This is the third Maxwell's equation. 

Instead, considering the divergence of (1.12) we obtain: 

               
  

  

     
 

  
    

(1.15) 

To reduce this further, we must employ a relationship involving the 

electric charge density q. The equation of continuity, which follows from 

the definition of current as the rate of flow of indestructible charge, is: 

      
  

  
 (1.16) 

and therefore we obtain: 



Controlled Source Electromagnetic methods 

12 
 

 
 

  
          (1.17) 

Since both D and q may be time-varying, this suggests that: 

       (1.18) 

This is the fourth Maxwell's equation. 

Due to the fact that in any region of non-vanishing conductivity the 

charge density will reach its equilibrium in an extremely short time, and 

the charge does not accumulate appreciably during the flow of current, 

so that (Grant and West, 1965): 

       (1.19) 

and therefore also: 

           (1.20) 

As we can see, the first two Maxwell’s equations are vectorial equations 

and the last two ones are scalar equations. So, we have an under-

determined system because we have a system of eight equations with 

five unknowns. 

Hence, the problem of the solution of the Maxwell's equations is 

undetermined and the eight Maxwell’s equations are not independent. 

To reduce the number of Maxwell’s equations we have to consider other 

relationship. These are two empirical relationships, named constitutive 

equations that, for an isotropic linear material, are: 

      (1.21) 

 
  

 

 
 (1.22) 

where μ is the magnetic permeability (      , where    is the relative 

magnetic permeability and    is the magnetic permeability of the free 

space (       H/m)) and ε is the electric permittivity (      , 

where    is the relative electric permittivity and    is the electric 

permittivity of the free space (            Farad/m)). 
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By using the relations (1.21 and 1.22), we can eliminate three of the five 

variables from Maxwell's equations and reduce them to the following 

set: 

 

 
      

  

  
 (1.23) 

       (1.24) 

 
        

  

  
 (1.25) 

 
      

(1.26) 

 

The four equations can be reduced still further by taking the curl of 1.23 

and 1.24 and substituting each into the other. Then, by making use of the 

vector identity:                                

where     is to be interpreted as the Laplacian operator acting on the 

rectangular components of A, we obtain (Grant and West, 1965):  

 
      

  

  
   

   

   

   

(1.27) 

 
      

  

  
   

   

   

   

(1.28) 

From these two necessary (but not sufficient) relationships we observe 

that both E and H must propagate as a dissipative wave motion. These 

are the wave equations; we have to consider these two equations when 

the frequencies are high (as in GPR sounding). 

In most cases we shall be dealing with alternating fields, and we may 

therefore assume for H and E a time dependence which is of the form: 

                    where   is the angular frequency of the field. 

In this case equations 1.27 and 1.28 become: 

 

                 (1.29) 

 

                 (1.30) 
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The term           is the propagation constant or wave number k
2
: 

 

                               (1.31a) 

 

                           (1.31b) 

Hence, the wave equations can be rewritten as: 

 

           (1.32) 

   

            (1.33) 

The first term      in the parentheses of equation 1.31a is the 

displacement term, which dominates at high frequencies and in a 

nonconductive medium. The second term   is the conduction term, 

which dominates when frequencies are low and when the medium is 

relatively conductive.  

Now we treat the problem of the wave propagation in the quasi-static 

limit, following the approach described in Zonge and Hughes, 1991. 

The dominance of the conduction term over the displacement term holds 

for most earth materials at mCSEM frequencies. Following the 

convention of Ward and Hohmann (1988, Chapter 4, Volume 1), the 

propagation constant can be written in complex form as: 

                         (1.34) 

In which the phase constant   is given by: 

 
    

  

 
     

 

  
 

 

    

 

 

 (1.35) 

 

and the attenuation constant   is given by: 
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. (1.36) 

The skin depth δ is defined as: 

 
  

 

 
. (1.37) 

The wavelength of the signal is: 

        (1.38) 

and the propagation velocity is given by: 

       (1.39) 

where f is the frequency of the signal. 

Angular frequency ω is related to linear frequency f by: 

      . (1.40) 

For a horizontal plane wave propagating downward along the z axis in a 

homogeneous earth, the solutions to wave equations (1.32) and (1.33) 

are: 

 

      
            

             (1.41) 

   

      
                         (1.42) 

Eo and Ho are the maximum electric and magnetic field strengths, 

respectively. In these equations, note that the amplitude decays in 

conductive media according to the attenuation constant β, while the 

phase reference of the fields depends upon the phase constant α. 

Wave impedance is defined as the ratio of the orthogonal components of 

E and H fields: 

    
 

 
  (1.43) 

It is useful to examine two extreme limits of the wave solutions: the 

quasi-static limit and the dielectric limit. We look first at the quasi-static 
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limit, which is of most interest to geophysical applications (in particular 

for mCSEM sounding). 

Earth materials usually have resistivity       Ω    and 

permittivity           . For frequencies below 100 kHz,     , 

and   can be neglected, which is the quasi-static approximation. In this 

case we have     and the propagation constant simplifies to: 

         
   

 
. (1.44) 

For the horizontal electric field component Ex, assuming implicitly a 

harmonic time dependency     , we have for a horizontal plane wave 

propagating downward along the z axis: 

                 (1.45) 

Equation 1.45 can be rewritten using     as: 

 

                           (1.46) 

 

Considering equation 1.37, equation 1.46 can be rewritten as:  

                  . (1.47) 

At a depth equal to the skin depth (   ), we obtain: 

 

             , (1.48) 

and the real part of the electric field is attenuated by     (    of the 

original field strength). The magnetic field has an identical behavior. In 

the quasi-static approximation, equation 1.37 reduces to: 

 
   

 

   
. (1.49) 

Assuming                   , and converting frequency in 

Hertz (     ), equation 1.49 can be written in terms of resistivity as: 
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 m. (1.50) 

The skin depth is not a measure of resolution, but it is a guide to the 

maximum distance at which the EM energy can propagate. 

The equivalent depth of investigation D of a plane wave can be derived 

from asymptotic relations based on a uniformly layered half-space 

(Bostick, 1977): 

   
 

  
     

 

 
 m. (1.51) 

Note that penetration is dependent upon two parameters: the resistivity 

of the earth, and the frequency of the signal being used. Penetration is 

shallower with decreasing resistivities and increasing frequencies. 

Conversely, penetration is deeper with increasing resistivities and 

decreasing frequencies. By varying the signal frequency, continuous 

vertical soundings can be obtained. 

The propagation velocity under quasi-static conditions is: 

 
    

  

  
   . (1.52) 

For the mCSEM range the propagation velocity is about of the same 

order of the skin depth  . 

material σ  S/m 1 day 1 hour 1 sec 1 ms 

Seawater 3 85 km 17 km 290 m 9 m 

Sediments 0.1 460 km 95 km 1.6 km 50 m 

Igneous rock 10
-5 

50000 km 9500 km 160 km 5 km 

Table 1.1: the skin depth is described as a function of the period T ; (     ). 

Very resistive materials can behave like dielectrics. The case of a 

material appearing to be a dielectric medium occurs when displacement 

currents dominate conduction currents. In this case      and the 

propagation constant becomes: 
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       , (1.53) 

And the skin depth approaches infinity. The propagation velocity is then: 

 
   

 

   
. (1.54) 

Dielectric effects can be observed in very resistive ground and at very 

high signal frequencies, but not generally at the low frequencies used in 

mCSEM. Hence the quasi-static approximation is good for nearly all 

earth materials. 

In EM methods there are several mechanisms producing changes in 

amplitude and phase (Figure 1.1). The first is the geometric spreading 

from the transmitter, which in the low-frequency limit is simply the 

characteristic 1/(range)
3
 dipole decay that is familiar to users of DC 

resistivity sounding. The second is the galvanic effect associated with 

current flowing across a conductivity boundary. The normal component 

of current must be continuous (from conservation of charge), and so 

Ohm’s law (J=σE, where J is current density) requires a jump in the 

electric field. Again, this is the low-frequency behavior, characteristic of 

DC resistivity sounding, and, like the geometric effects, has no 

associated changes in phase. Finally, the process of inductive attenuation 

and phase shift occurs when the skin depths are comparable to the 

distance over which the EM energy has traveled (Constable 2010). 
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Figure 1.1: from Constable (2010); three mechanisms are at work determining the 

amplitude and phase of CSEM signals as a function of source–receiver offset. The 

first is simple geometric spreading from a dipole, the second is a galvanic change in 

the electric field as current crosses a conductivity boundary, and the third is 

inductive attenuation. Only induction produces a change in phase. 

1.4 The story of the mCSEM method 

The use of electromagnetic methods in hydrocarbon exploration began in 

the early twentieth century (e.g., Rust, 1938) and, on land, continues to 

this day, mainly through MT surveys carried out to provide structural 

constraints. Marine electrical methods started with DC resistivity surveys 
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carried out over water within only a few years of the method’s inception 

(Schlumberger et al., 1934; Constable, 2007). 

However, because these are all shallow water systems and the market for 

offshore mineral mining is small, these methods were (Constable, 2007). 

1.4.1 The development of “Controlled Source Electromagnetic” 

methods. 

The first to develop the method as we know today was Cox of Scripps 

Institution of Oceanography in the late 1970s (Cox, 1981). He performed 

the first experiment in 1979 on a mid-ocean ridge in the Pacific (Young 

and Cox, 1981). The original motivation for his CSEM experiments was 

to study the shallow and resistive parts of the oceanic lithosphere by 

replacing the relatively high frequency energy lost to magnetotelluric 

fields with a deep-towed man-made transmitter (Constable, 2007).  

Early funding for instrument development came from the U. S. Defense 

Advanced Research Projects Agency (DARPA), which was interested in 

the effect of the seafloor on submarine communications. Support also 

came from the U. S. Office of Naval Research (ONR), which wanted to 

learn more about the seafloor noise environment (Constable, 2007). 

Martin Sinha of Cambridge University started to develop a CSEM 

system in the ‘80s (Sinha et al. 1990). He and his group introduced an 

antenna that could be towed to a distance of about 100 m above the 

seafloor and so they could work on very complex morphologies. 

“Collection of data sets cannot proceed far without supporting theory 

and numerical modeling algorithms” (Constable, 2007). So, first studies, 

based on the asymptotic solutions, were carried on by Kraichman (1970) 

and Bannister (1968, 1984) (Constable, 2007). Then, numerical finite-

element solutions to the 2D electric dipole problem were developed for 

the time-domain by Everett and Edwards (1993) and for the frequency 

domain by Unsworth et al. (1993); Constable (2007). The first 2D 

inversion of real data was published by MacGregor et al. (2001), who 

modified the Unsworth forward code (1995) to handle experimental 

geometries and bathymetry and implemented the OCCAM inversion 

algorithm (Constable, 2007). A finite-element forward code for CSEM 
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was written by Li and Key (2007) and has been broadly distributed. A 

2D finite-difference forward and inverse code was published by 

Abubakar et al. (2008), but this code is proprietary. Other 1D, 2D, and 

3D codes have been written and are being used on a proprietary basis 

also (Constable, 2010).  

Proprietary restrictions on access make it difficult to validate and 

compare codes, and the author has seen examples of very different 

results being obtained from the same data set by different contractors 

using different inversion codes (Constable, 2010). 

1.4.2 The marine CSEM development in the oil and gas industry. 

ExxonMobil started to study marine EM methods in early ‘80s, but only 

in the ‘90s the oil companies started to use this methodology routinely. 

In November 1999, Steven Constable was invited to review Statoil’s 

internal research project, which consisted of a variety of numerical and 

analog modeling. The conclusion was that if the target is not too small 

compared with its depth of burial, and the water depth is sufficient to 

suppress the air wave, then the controlled source signature of the oil-

filled layer is detectable, yielding controlled source amplitudes that are a 

factor of 2 to 10 different than models without the oil layer (Constable, 

2007). So, in 2000 Statoil started a test in the Angola off-shore and 

ExxonMobil started a test in the Scotland off-shore and West Africa off-

shore.  

Today EM methods are very attractive for oil companies; in fact these 

methods are very useful as complementary to seismic and potential fields 

methods. 

In the last years in Italy ENI showed his interest in this innovative 

technology developing new inversion and interpretation techniques for 

data acquired in shallow depth water.  

1.5 Marine CSEM concepts 

In this paragraph we are going to show the physics of mCSEM method, 

basing mostly on the paper by Chave et al. (1991). 
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There are numerous approaches to the theory of EM induction in 

conducting media by finite or distant sources; see Ward and Hohmann, 

VoI. 1 (1988) for a review. Here, following Chave et al. (1991), we use 

the modal form of the induction equations for one-dimensional (l-D) 

media.  

The EM fields for an l-D conductivity structure may be separated into 

independent toroidal and poloidal magnetic (TM and PM) modes about 

the vertical axis. The TM modes are associated with electric currents 

flowing in loops containing the vertical, and possess no vertical magnetic 

field component, while PM modes are driven by electric current systems 

which are always horizontal, and have no vertical electric field 

component. Because of this distinction, the sensitivity of the two modes 

to electrical structure is quite different. This difference can be 

demonstrated considering a horizontal insulating layer buried in a half-

space, and deducing the behavior of vertical and horizontal currents in its 

presence. Due to the existence of vertical electric currents and 

consequent galvanic interactions, TM modes are strongly affected by 

relatively low conductivity zones, being unable to penetrate them very 

effectively, while the PM mode is quite insensitive to such regions due to 

its entirely inductive nature. Both modes are influenced by relatively 

high conductivity material. A summary of mode theory appears in the 

Appendix 1, including Green functions, which account for seafloor and 

sea-surface boundary effects explicitly, and will be referred to as needed. 

As we said before, controlled source EM methods utilize time-varying 

electric and magnetic dipole sources of known geometry to induce 

electric currents inside the conducting earth. The electric or magnetic 

signature of the currents can be detected and can yield a measure of the 

electrical conductivity of the underlying rock. The four fundamental 

source/receiver types for controlled source work are the vertical and 

horizontal electric dipoles (VED and HED) and the vertical and 

horizontal magnetic dipoles (VMD and HMD), and there are many 

practical combinations of them. 

Unlike what happens in CSAMT, in Marine controlled source problems 

both source and receiver are always immersed in a conductive medium 
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and this has to be in account when we consider the induction problem. 

Furthermore, some system geometries require the explicit inclusion of 

the ocean-atmosphere boundary in the theory (Chave et al, 1991). 

TM and PM modes can be associated with the four basic types of 

sources: (1) the vertical electric dipole (VED), which generates only TM 

modes, (2) the vertical magnetic dipole (VMD), which induces only PM 

modes, and (3) the horizontal electric dipole (HED) and (4) horizontal 

magnetic dipole (HMD), which are more general, and can produce both 

modes. An EM exploration system is made up of some source-receiver 

combination. Generally, symmetric systems in which the source and 

receiver are of the same type are commonly used. In our notation, when 

HED, VMD, and HMD refer to systems, they are the collinear horizontal 

electric dipole-dipole, coplanar vertical magnetic dipole-dipole, and 

coaxial horizontal magnetic dipole-dipole combinations. In particular, 

when these systems are not immersed in a conductive medium,  the 

VMD and HMD systems detect only horizontal current (PM modes) in 

an l-D earth, hence are relatively insensitive to thin resistive zones 

instead, HED system combines TM and PM modes and it is preferred 

when resistive zones have to be mapped. But, when these systems are 

deployed on the seafloor the behavior is different. In fact, in this case 

source and receivers are now buried inside a conductive medium rather 

than lying on a conductive half-space, and preconceptions based on their 

terrestrial use can be quite misleading. The VMD system still is based 

only on a PM mode, but the HED and HMD systems generate and 

receive both PM and TM modes. Furthermore, the secondary EM fields 

due to induction in the crustal material are measured near the interface of 

a good conductor (seawater), so a system like the VMD, in which a 

component of a field vanishing at the surface of a good conductor is 

measured, is unlikely to display sensitivity to a resistive seafloor. This is 

not true for the HED and HMD systems, which are both quite capable of 

accurately measuring the conductivity of the seafloor in the common 

instance where seawater is more conductive than rock. The less common 

circumstance of a relatively conductive seafloor is analogous to the 

terrestrial case, and systems like the VMD type are then sensitive to 

seafloor conductivity. 
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The choice of operating an EM system in either the frequency domain, 

transmitting a set of discrete frequencies one or a few at a time, or in the 

time domain, transmitting a square or triangular step and measuring the 

transient response of the seafloor-ocean system, also exists. The physics 

of the two methods are identical, the response in one domain being the 

Fourier transform of the response in the other domain. Because of the 

finite and inexact nature of practical measurements, this transformation 

cannot usually be made outside the realm of theoretical studies. The 

choice of one system over another must be made on the basis of practical 

and logistical considerations. 

Chave and Cox (1982) developed the theory for the frequency domain 

HED method using the modal formulation given in the Appendix 1, and 

some details will be summarized to illustrate the behavior of CSEM 

method in the frequency domain. In particular, here we consider only the 

electric field. Using the Green functions from equations (A1.14) and 

(A1.15), taking the limit of an infinitely deep ocean (   ), and 

utilizing the cylindrical symmetry to convert from a Fourier to a Hankel 

transform, the radial, azimuthal, and vertical electric fields generated by 

an horizontal electric dipole for an uniform sea layer above an uniform 

layered earth may be written as: 
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(1.57) 

Where p is the source dipole moment in Am, ϕ is the azimuthal angle 

measured with respect to the source, r is the horizontal range, z and z' are 

the receiver and source heights,   
  and   

  are the seafloor modal 

reflection coefficients given by equation (A1.16), β is given by equation 

(A1.17),    is the induction parameter or propagation constant in the sea-

water, characterized by a conductivity   , for the quasi-static case (from 

equation 1.44): 

            (1.58) 

and k is the horizontal wave-number. 

The lower sign in equation (1.57) holds for z > z' and vice versa. The 

first terms in equations (1.55)-(1 .57) represent propagation in the 

underlying rock and along the sea-rock interface, while the second terms, 

which can be evaluated in closed form, represent the propagation in the 
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ocean. The electrical conductivity structure beneath the seafloor enters 

the problem only through the reflection coefficients   
  and   

  , and 

equations (1.55)-(1.57) are wavenumber expansions of the fields. 

Following Chave et al. 1991 we can obtain an approximate analytic 

solution modeling the seafloor as a half-space of conductivity σ1 and 

obtain approximate analytic solutions to equations (1.55)-(1.57) for    

  . The reflection coefficients, equation (A1.16), are expanded in powers 

of      , and only the lowest order terms are retained. Considering that 

source and receiver occupy the interface (z = z' = 0) and evaluating the 

Sommerfeld type integrals we have that the horizontal components of the 

electric field are: 
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(1.60) 

where   is the propagation constant, described by equation 1.58, in the 

quasi-static case when the conductivity of the rocks is   . To get an 

expression for the vertical electric field, an additional approximation 

discussed in Cheesman et al. (1987) and valid at ranges comparable to or 

larger than a skin depth in the lower medium must be invoked, yields: 

 
   

 

    
    

  

  

         

  
      (1.61) 

The first terms in equations (1.59) and (1.60) correspond to a disturbance 

propagating in the ocean and along the seafloor, and vanish rapidly for 

      
  . At a 1 Hz frequency, the seawater skin depth is 210 m, and 

the oceanic component is negligible beyond about l km. Instead, the 

second terms correspond to a similar disturbance below and along the 

seafloor, and attenuate much more slowly with range, dominating the 

solution when       
  . For ranges       

  , the field decays 
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slowly (as     to    ), while at larger ranges the exponential term 

controls the attenuation.  

Figure 1.2 shows the radial and vertical electric fields, obtained by 

integrating equations (1.55) and (l.56) numerically, as a function of 

source-receiver separation at a frequency of l Hz and for an ocean half-

space of conductivity 3.2 S/m overlying rock half-spaces of conductivity 

0.05 and 0.005 S/m. The behavior of the azimuthal electric field is 

similar to that of the radial part except for the different angular 

dependence seen in equations (1.55) and (l.56). The skin depths in the 

sea water, as stated before, is 210 m,  whereas the skin depth in the more 

resistive rocks are 2.3 km and 1.1 km respectively for the half-space 

conductivity of 0.05 S/m and 0.005 S/m.  

At off-set (source - receiver distance,  ) less than a skin depth in the 

half-space “near field zone”, the source looks like a quasi-static dipole 

and the horizontal electric field attenuation is largely controlled by the 

conductivity of the ocean, instead for values of the offset equal to one 

skin depth, the effect of the lower half-space becomes noticeable, but the 

conductivity dependence of the field is weak and the attenuation is not 

sharp. At offset higher than skin-depth, the attenuation becomes 

exponential as in equations (1.59) and (1.60), so that, as shown in Figure 

1.2, the differences between the two models increase as the offset grows. 

By contrast, the vertical electric field, dotted lines in Figure 1.2, is 

sensitive to the lower medium conductivity in the quasi-static limit, as 

seen in equation (1.61), and a smaller rock conductivity results in weaker 

fields. At even larger ranges, propagation effects yield more rapid 

attenuation as the seafloor conductivity increases. 

From Figure 1.2 we can see that the vertical electric field is always 

substantially smaller than the horizontal electric field components when 

the ocean conductivity is higher than the half-space conductivity, but it is 

sensitive to the conductivity of the half-space at smaller ranges. 

Figure 1.2 also shows the radial electric field as a function of frequency 

for several ranges and a lower half-space of conductivity 0.05 S/m. At 

frequencies corresponding to skin depths larger than offsets, the behavior 
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is that of a static dipole, with only small attenuation as the frequency 

increases. The attenuation and attenuation rate increase at frequencies 

corresponding to skin depths smaller than the offset. The phase of the 

electric field (not shown) behaves similarly. Similar relationships exist 

for the magnetic field components; see Chave and Cox (1982) for 

details. 

Figure 1.2: from Chave et al. (1991); the upper panel shows the radial and vertical 

electric fields per unit of source dipole  moment as a function of range at a frequency 

of l Hz and for lower half-spaces of conductivity 0.05 and 0.005 S/m. The lower pane 

l shows the radial electric field as a function of frequency at ranges of 2.5 and 10 km 

for a lower half-space of conductivity 0.05 S/m. The ocean conductivity is taken as 

3.2 S/m, and the radial electric field is measured off of the end of the source. 

It is important to examine the behavior of the horizontal electric field for 

geometric (range-dependent) and parametric (frequency-dependent) 

soundings in the presence of the simplest structural complication, a 

buried layer. So, is considered a specific model consisting of a l km thick 

resistive layer buried in a half-space of conductivity 0.05 S/m. The 

resistive layer was considered first at a depth of 1.5 km and then at a 

depth of 5.5 km. Figure 1.3 shows the geometric sounding curves. “The 
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low conductivity zone behaves as a lossy waveguide, which traps and 

guides the signal, resulting in slower attenuation with range when 

compared to the half-space case” (Chave et al. 1991). Conversely, if the 

buried layer has a higher conductivity than the surrounding material, we 

will expect a higher attenuation at long ranges, r, but we will have an 

increase in signal strength at intermediate distances due to the low 

conductivity waveguide created between the seafloor and the layer.  

The HED system is preferentially sensitive to relatively low conductivity 

zones due to the presence of the TM mode. 

 
Figure 1.3: from Chave et al. (1991);the radial electric field as a function of range 

at a frequency of l Hz for an ocean half-space of conductivity 3.2 S/m and a lower 

half-space of conductivity 0.05 S/m containing l km thick layers at 1 and 5 km depth. 

In the upper panel the layers have a low relative conductivity of 0.005 S/m, while in 

the lower panel the conductivity of the layer is high (0.5 S/m).  

The equations 1.56 and 1.57 given by Chave and Cox (1982), using a 

Green’s function technique, represent the expression of the electric field 

of an HED in deep water. Andréis and MacGregor (2008) have extended 
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this work evaluating the analytic expression of the electric field in the 

general case of an HED in a finite sea-water layer. These equations and 

the relative considerations are shown in Appendix 2. As shown in 

Appendix 2 the HED transmitter excites energy throughout the seafloor-

seawater-atmosphere system. As said before, the fields decay both 

geometrically and exponentially with a characteristic e-folding distance 

given by the skin depth so, the tendency is that, for a given offset (r), the 

propagation through one part of the system will dominate the received 

fields (Constable, 2007). This effect is illustrated in Figure 1.4, where 

the amplitude and phase curves are shown versus the source-receiver 

offset for the canonical oilfield model. The canonical oil field model is a 

1D model characterized by a 100 Ωm reservoir 100 m thick, buried at a 

depth of 1000m, in host sediment having a resistivity of 1 Ωm. The 

thickness of the water column is 1000 m. 

The results of this experiment are shown in Constable (2007). 

In order to highlight all the dominant propagation paths in one figure, a 

10 Hz transmission frequency was taken and made the calculations 

through the use of the 1D code of Flosadottir and Constable (1996). 

The solid lines in Figure 1.4 represent, respectively, the amplitude and 

the phase of the radial component of the electric field, that is the 

component of the field in direction of the axis of the transmitter; the 

dotted lines represent, respectively, the amplitude and the phase of the 

azimuthal component of the radiated electric field, that is the component 

of the field orthogonal to the transmitter axis. 
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Figure 1.4: from Constable et al. (2007);radial (solid lines) and azimuthal (dashed 

lines) amplitude and phase responses over the canonical model for a frequency of 10 

Hz and a transmitter altitude of 30 m. 

As we can see from Figure 1.4, close to the transmitter we see the 1/r
3
 

amplitude fall-off from a static dipole and nearly constant phase. The r3 

dipole dependence can be seen in equations 1.59 and 1.60 considering 

the terms associated with exponential attenuation through the water (first 

term, in   ) and through the seafloor rocks (the second term, in   ). At 

ranges between a few hundred meters and 2 km, skin depth in the 

seafloor sediment (158 m) is larger than in seawater, and we see 

exponential attenuation dominated by the seafloor resistivity. Up to this 

point, the mathematics of propagation is reasonably approximated by the 

double half-space (i.e., infinite water depth and no reservoir layer) 

solution of Chave et al. (1991) and described by equations 1.59 and 1.60. 

The dipole azimuth ϕ in equations 1.59 and 1.60 is 0° for the purely 

radial mode shown in Figure 1.4 and 90° for the purely azimuthal mode. 

At ranges between 2 and 10 km, can be noted an increasing in the 

electric-field amplitudes (relative to those that would be measured in the 

absence of a resistive layer) that is associated with a larger skin depth 

(1600 m) in the more resistive reservoir layer. This increasing can be 

seen also considering the phase of the radial and azimuthal components 

of the electric (Figure 1.4). Then, at off-sets, r, greater than 10 km, 

propagation through the atmosphere dominates the receiver fields and 

the amplitude returns to an 1/r
3
 dipole and the phase that become 



Controlled Source Electromagnetic methods 

32 
 

constant (i.e., the apparent phase velocity is now comparable to the 

speed of light). 

From Figure 1.4 we see that the azimuthal and radial modes have a 

similar behavior, this because we considered a 10 Hz frequency and then 

the inductive effects in the reservoir layer produce a significant response 

also in the azimuthal mode. Instead, at lower frequencies, the CSEM 

fields are dominated by the galvanic effect generated by the vertical 

electric fields of the radial mode (that are almost absent in the azimuthal 

mode) and so the behavior of radial and azimuthal modes are quite 

different (Constable, 2007). 

1.6 Propagation through the atmosphere 

In mCSEM sounding the signal coming from the seabed can be masked 

by the components of the field that have been refracted and reflected off 

the sea surface.  

We call airwave the signal component that propagates upward from the 

source to the sea surface, horizontally through the air with no 

attenuation, and back down through the water column to the receiver 

(Admunsen et al., 2006). 

From equation 14 of Bannister (1984) and as reported in Constable and 

Weiss (2006) a good approximation of the amplitude of the radial mode 

air-wave is given by: 

      
      

     
 (1.62) 

where h is the water-depth,           is the skin depth in seawater 

of conductivity σ and magnetic permeability    at angular frequency  , 

and r is the source-receiver range. 

As we can see from equation 1.62, the behavior of the airwave 

component is independent of the sea-floor resistivity. “Moreover, this 

equation could be thought of as skin-depth attenuation up (e
−h/δ

) and 

down (e
−h/δ

) through the water column, coupled with the 1/r
3
 geometric 

spreading associated with a dipole” (Constable and Weiss, 2006). 
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Taking from Constable and Weiss 2006, in Figure 1.5 we show 

separately the contributions to the horizontal electric-field magnitude 

from the seafloor and the atmosphere for various water depths and 

seafloor resistivity. Although, the propagation through the atmosphere is 

given only by the 1/r
3
 geometric spreading, the amplitude of the airwave 

depends on the water depth and in particular decreases as the water gets 

deeper. As we seen in the previous paragraph, at short ranges the 

amplitude of the electric field propagating through the seafloor and 

seawater is similarly given by the 1/r
3
 dipole decay, but at ranges greater 

than skin depth exponential attenuation in the seafloor rocks dominates 

the curves (Constable and Weiss, 2006). In particular, “a more resistive 

seafloor with larger skin depth supports large electric fields to greater 

source–receiver ranges. It can thus be seen that as the seafloor gets more 

resistive and the seawater gets deeper, the seafloor signal dominates the 

atmosphere signal to longer ranges” (Constable and Weiss, 2006). At the 

range at which the curves cross for a given water depth and seafloor 

resistivity, the airwave starts to dominate the signal observed on the 

seafloor. Thus, the curves for a 1 Ωm seafloor and 900 m water-depth 

cross at a range of 4500 m. Various schemes have been proposed to 

separate the airwave from the seafloor signal in the vicinity of the 

crossover (e.g., Admunsen et al. 2006), but as said by Constable and 

Weiss (2006) the simplest thing to do is just to include the air layer in the 

modeling and interpretation. 

As we can see from Figure 1.5 and as we said before, the problem of the 

air-wave is more sever in shallow water survey, but in this case the 

situation is more similar to a land survey than a deep ocean sounding, so 

in this case in better to work in the time domain rather than in frequency 

domain as Wright et al. (2001) did for mapping a gas reservoir in France 

(Constable and Weiss, 2006). 
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Figure 1.6: from Constable and Weiss (2006); seafloor 1 Hz CSEM horizontal radial 

electric-field amplitudes as a function of range and half-space resistivity (solid lines) 

in the absence of an air layer and the contribution of the electric field that has 

propagated through the atmosphere (broken lines) for various water depths between 

300 m and 3000 m. 

1.7 Anisotropy 

“While the assumption of isotropy can prove successful in certain cases, 

sediment formations are often observed to be electrically anisotropic at 

several scales” (Ramananjaona et al., 2010). At the grain scale, 

anisotropy can be caused by mineral alignment, most often due to 

compaction, for example in shale (Clavaud, 2008). In this case the 

anisotropy resulting from mineral alignment would be called micro-

anisotropy. Layering of thin horizontal strata can also create a macro-

anisotropy effect on electrical measurements (Maillet, 1947). So, we can 

consider a stack of layers characterized by different resistivities as a 

vertically anisotropic medium.  
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In a Cartesian coordinate system where z is pointing upward, the uniaxial 

anisotropy of a stratified earth is described by the conductivity tensor: 

     

    
    
    

  (1.63) 

Where σh and σv are respectively the horizontal and the vertical 

conductivities of the medium (and ρhand ρv their corresponding 

resistivities). 

Moreover, we can define an anisotropy ratio λ as: 

    
  

  
  

  

  
 . (1.64) 

The presence of anisotropic structure within the earth can significantly 

modify the signature observed in the electromagnetic field measured at 

the sea-bottom. “The degree to which the responses are affected depends 

strongly on the geometry between the source and the receiver, the 

resistivity structure of the earth beneath them and the frequency of the 

transmitted signal” (Ramananjaona et al., 2010). 

We have seen in the previous paragraphs that, when the earth is 

approximated as a one dimensional layered structure, the 

electromagnetic field can be described by two modes; the toroidal 

magnetic (TM) and the poloidal magnetic (PM). In particular we have 

seen also that the PM mode is very insensitive to the horizontal 

resistivity structure and in particular is very insensitive to thin resistive 

layer because of its inductive nature, conversely the TM mode is very 

sensitive to the presence of thin resistive layer such as oil or gas 

reservoirs. Moreover, we have already said that the in-line component of 

the electric field (ϕ=0∘ in equation 1.59) is dominated by TM mode, 

instead the broad-side component of the electric field (ϕ=90∘ in equation 

1.60) is dominated by TE mode. Therefore, we can say that in-line 

measurements of the radial electric field will have sensitivity to the 

anisotropy ratio and the vertical resistivity, whereas broadside 

measurements of the azimuthal electric field will have more sensitivity 

to the horizontal resistivity. 
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While in the case of DC electric field measurements, there exists an 

equivalent isotropic model for every layer of anisotropic conductivity 

(σh, σv) and thickness H, characterized by an average conductivity 

         and a thickness λH, as noted by Mallet (1947), in the non-

static case the effects of induction do not allow the derivation of such a 

simple equivalence relation, although a similar response can be found 

between isotropic and anisotropic models (Ramananjaona et al., 2010). 

As we said in Paragraph 1.5, the information about the resistivity 

structure in which the field diffuses are expressed by the reflection 

coefficients R. In particular, Ramananjaona et al. (2010) have shown 

that, an anisotropic layer of resistivity (ρh, ρv) and thickness H has an 

equivalent isotropic layer for each mode (Brown et al., 2012). This can 

be seen considering the reflection coefficients       
   and       

   

(equations A2.6 and A2.7), in the layer l-1 on the interface with layer l 

underneath, for the anisotropic case:  

 

      
   

                     

                     
       

           

        
                       

                     
         

 (1.65) 

 

      
   

           

           
       

           

        
             

           
         

 (1.66) 

where    and    corresponds to the complex wave-number respectively 

for TM and PM mode and, as reported in (Ramananjaona et al., 2010), 

given by: 

                             (1.67) 

               (1.68) 

where k is the horizontal wave-number:      
    

 . 

In fact, from equations 1.65 and 1.66 we observe that the variation of the 

reflection coefficients of each mode with respect to conductivity depends 

only on the associated complex wavenumber,  . Moreover, combining 

these equations with equations (1.67) and (1.68) we have that an 

equivalent or nearly equivalent isotropic layer for an anisotropic layer of 
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conductivity (σh, σv) and thickness H would have a conductivity σv  and  

thickness λH in the TM mode and resistivity σh and thickness H in the 

PM mode (Ramananjaona et al., 2010). Hence, for the TM mode we 

don’t have a complete equivalence between the isotropic and the 

anisotropic model because the thickness of the equivalent isotropic layer 

would be λH, where λ is the anisotropy ratio (equation 1.64). So, 

sometimes isotropic modeling can be insufficient for very anisotropic 

structures. 

What has just demonstrated mathematically now will be shown 

considering the synthetic signals obtained using the DIPOLE 1D code of 

Key (2009), publicly available at: 

 http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM/index.html  

and already published in Constable (2010). 

To demonstrate the importance of the anisotropy effect we now consider 

the signals obtained starting from two 1D isotropic models characterized 

by a 1Ω m and 0.51 Ωm sea-floor respectively and a third model 

characterized by an anisotropic sea-floor composed by alternating 50 m 

tick layers of 1.7 Ωm and 0.3 Ωm, producing a vertical resistivity equal 

to that of the first isotropic model and a horizontal resistivity equal to 

that of the first isotropic model. 

In particular, in Figure 1.6 are shown the amplitudes of the radial and 

azimuthal components of the horizontal and vertical component of the 

electric field versus the distances antenna-receiver (offset), together with 

the horizontal component of the induced magnetic field (B) produced 

starting from the models described above. In particular only positive 

offsets are considered. The source signals are generated by an HED, with 

the fundamental frequencies of 0.25 Hz and 1 Hz. 

As we can see from Figures 1.6a and c, the anisotropic model for radial 

fields produces almost identical responses to the 1Ωm model (i.e., the 

vertical resistivity) for all three components. Instead, for the azimuthal 

fields, the anisotropic model produces a horizontal electric field and 

vertical magnetic field that are almost identical to the 0.51 Ωm 

horizontal resistivity. The horizontal magnetic field in the azimuthal 

direction is the only component that does not behave simply, but this 

http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM/index.html
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component is going through a phase reversal associated with the 

interaction of the airwave with the seafloor fields (Constable, 2010). 

Hence, inverting only the radial component of the electric field measured 

along a profile is possible, but we will have as result the imaging of the 

vertical resistivity. Instead if we want to consider also the azimuthal 

component of the field, for example in 3D inversion, we have to consider 

also the anisotropy. 

However, sometimes we can’t ignore anisotropy also when we are 

interpreting only the radial mode; in fact, small differences between 

anisotropic and isotropic radial fields could not be neglected when we 

invert multi-component and/or multi-frequency data. For example, the 

horizontal electric field in the range between 2 and 5 km at 1 Hz (Figures 

1.6 c and d) is within about 2% of the anisotropic response, whereas at 

the frequency of 0.25 Hz (Figures 1.6 a and b) the responses are from 

10% to 20% different. The phase differences are about 10° at both 

frequencies, consistent with the 15% amplitude difference (Constable, 

2010). 

“In the practice, navigation errors probably limit the accuracy of typical 

CSEM data to about 10%, so the effects we discuss above might not be 

significant, but as we collect better quality data, anisotropy effects 

behave in this way.” (Constable, 2010) 
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Figure 1.6: from Constable (2010); Radial (left panels) and azimuthal (right panels) 

electric (blue) and magnetic (red) field amplitudes as a function of source–receiver 

distance over a half-space in 1000 m water depth (radial Ez and azimuthal Bz are 

both shown in green). Three half-space (HS) resistivities are considered, 1 Ωm 

(dotted lines), 0.51 Ωm (broken lines), and an anisotropic half-space with 1 Ωm in 

the vertical direction and 0.51 Ωm in the two horizontal directions (“Anisotropy,” 

solid lines). The top panels show responses at 0.25 Hz, and the bottom panels show 1 

Hz fields. 

1.8 Equipment 

A mCSEM survey is carried out using a long, insulated seafloor 

transmitting antenna with bared ends,  that is energized at frequencies 

near 1Hz, and a series of magnetic and electric receivers deployed on the 

sea-floor. 

In particular, the antenna is an horizontal electric dipole (HED) and the 

length is between 100- 300 m. 

As we showed in the previous paragraphs, the advantage to use a HED is 

that the system is sensitive to both low and high conductivity material in 

different ways due to the presence of both TM and PM modes, and a 

horizontal electric source in a high conductivity region (the ocean) 
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couples to a low conductivity region (the sea-floor) better than a vertical 

electric or magnetic source. The transmitter is connected to a surface 

power source by an insulated cable. The current circulating in the cable 

is a high-voltage AC (typically 400 Hz).The antenna is towed close to 

the seafloor (commonly at a height of 25 to 100 m) to maximize 

coupling with seafloor rocks and sediments and to minimize coupling 

with the air. Transmission currents are typically binary waveforms with 

fundamental and higher harmonics from 0.1 to 0.25 Hz. Square waves, 

with geometrically decreasing odd harmonics, were used initially (e.g., 

Ellingsrud et al., 2002), although the present trend is to shape the 

waveform to have a more desirable frequency content; a similar 

approach was used early on for academic surveys by Cox et al. (1986) 

and Constable and Cox (1996) (Constable, 2010).  

The electric field and magnetic receivers we describe are the ones 

developed and used by the SCRIPPS Institute of Oceanography. They 

consist of a system of low noise and low impedance silver-silver chloride 

electrodes and an AC-coupled electric field amplifier (Webb et al., 

1985), which measures the horizontal electric field at the end of 10 m 

long dipoles. Electric field noise on the electrode and amplifier system 

using a 10 m antenna is about 10
-10 

V/m/Hz
1/2 

at 1 Hz. Horizontal 

magnetic fields are measured using sensitive and low power induction 

coil magnetometers designed at SCRIPPS Institute of Oceanography. 

This configuration makes the instrument capable of measuring both 

electric and magnetic fields in the .01 to 10,000 s period range, although 

the attenuation of the natural source MT fields through the ocean limits 

the shortest periods to about .1-10 s, depending on the waterdepth 

(http://marineemlab.ucsd.edu/instruments/receiver.html). 

http://marineemlab.ucsd.edu/instruments/magnetometers.html
http://marineemlab.ucsd.edu/instruments/magnetometers.html
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Figure 1.7: from Constable (2010); marine EM concepts: Electric and magnetic 

field receivers are deployed on the seafloor to record time-series measurements of 

the fields, which could be used to compute MT impedances. The seafloor instruments 

also receive signals emitted by a CSEM transmitter (towed close to the seafloor) at 

ranges of as much as about 10 km. The MT signals are associated with largely 

horizontal current flow in the seafloor, and are sensitive only to large-scale 

structure. The CSEM signals involve both vertical and horizontal current flow, which 

could be interrupted by oil or gas reservoirs to provide sensitivity to these geologic 

structures even when they are quite thin. 

Transmitted electric fields are directly proportional to the source dipole 

moment A, in turn given by the dipole length times the emission current. 

Data for interpretation are normalized by the dipole moment, so the 

system noise floor gets lower as A gets larger, allowing larger source-

receiver offsets to be recorded and deeper structure to be detected 

(Constable and Srnka, 2007). 

One of the main limitations on CSEM data quality is the navigation of 

the transmitter (Constable, 2010).  

1.9 Modeling 

A frequency-domain 1D solution for a horizontal electric dipole 

transmitter has been available since Chave and Cox  (1982) published 

their analysis of the 1D method. Flosadottir and Constable (1996) made 

some changes to the Chave and Cox forward code and implemented the 

regularized Occam’s inversion scheme of Constable et al. (1987). Since 
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then, several other codes have been written, such as the fully anisotropic 

model of Løseth and Ursin (2007) and the code of Key (2009) mentioned 

above. The Key code allows any source-receiver geometry and 

component, includes the Occam’s inversion scheme, and is publicly 

available (Constable, 2010). The relative speed and simplicity of 1D 

modeling has made it an attractive tool for CSEM interpretation, 

particularly because, as noted above, the 1D approximation is quite good 

for tabular bodies when both source and receiver are over the target. Of 

course, there will be limitations for using 1D modelling over more 

complicated features (Constable, 2010). 

Because of the 3D nature of the source field, the move from one to two 

dimensions for CSEM modeling is not as easy as it is for MT modeling. 

Indeed, from an algorithmic point of view, in marine CSEM it is easier 

to go directly to three dimensions and avoid the complexity of collapsing 

the along-strike fields in 2D models using a transformation and this is 

what industry has tended to do (Constable, 2010). Finite-difference 

algorithms, in which the differential form of Maxwell’s equations are 

approximated by differencing fields between nodes on an orthogonal 

mesh, have proved particularly attractive for 3D CSEM modeling, and 

several codes have been written (e.g., Newman and Alumbaugh, 1997; 

Weiss and Constable, 2006; Commer and Newman, 2008) (Constable, 

2010). One disadvantage of finite-difference meshes is that small node 

spacings, perhaps necessary to capture and accurately model structure in 

one part of the mesh, propagate in all three directions, making the mesh 

very large. However, 3D forward modeling using this scheme is quite 

tractable on modern computers (Constable, 2010).  

The data we have used to test the methods developed during this work 

was obtained, instead, using the finite-element method (FEM) to solve 

the differential form (PDE) of the Maxwell's equations. The Finite 

Element Method (FEM) is a powerful numerical technique that has been 

used to solve a variety of problems in thermal, electromagnetic, fluid and 

structural mechanics domains. The greatest advantage of FEM is its 

ability to handle truly arbitrary geometry. Probably its next most 

important features are the ability to deal with general boundary 

conditions and to include non-homogeneous and anisotropic materials. 
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These features alone mean that we can treat systems of arbitrary shape 

that are made up of numerous different material regions (Akin, 2005). 

Each material could have constant properties or the properties and could 

vary with spatial location (Akin, 2005). 

The principle of the FEM method is to replace an entire continuous 

domain by a number of sub-domains in which the unknown function is 

represented by a simple interpolation function with unknown coefficients 

(Jin, 2002). Thus, the original boundary-value problem with an infinite 

number of degree of freedom is converted into a problem with a finite 

number of degree of freedom, or in other words, the solution of the entire 

system is approximated by a finite number of unknown coefficients (Jin, 

2002). Then a system of algebraic equations is obtained by applying the 

Ritz variational or Galerkin procedure, and, finally, the solution of the 

boundary-value problem is achieved by solving the system of equations 

(Jin, 2002). Therefore, a finite element analysis (FEA) should include the 

following basics steps: 

1. Discretization or subdivision of the domain. 

2. Selection of the interpolation functions. 

3. Formulation of the system of equations. 

4. Solution of the system of equations. 

A finite-element forward code for CSEM was written by Li and Key 

(2007) and has been broadly distributed. 

A 2D finite-difference forward and inverse code was published by 

Abubakar et al. (2008) and used on real data, but this code is proprietary. 

Other 1D, 2D, and 3D codes have been written and are being used on a 

proprietary basis also. As already noted by Constable (2010), very 

different results may be obtained from the same data, as set by different 

contractors using different inversion codes. This depends on several 

elements: intrinsic ambiguity of the inverse problem, a priori 

independent information, specific code limitations and others.  

The software we have used to obtain the synthetic data is COMSOL 

Multiphysics
TM

, which is commercial software to solve numerically the 

Maxwell's equations using the FEM method. 



 

 

 

Chapter 2 

"Singular Function Normalization”: a 

fast interpretation method for CSEM 

data. 

2.1 Introduction 

All the electromagnetic (EM) methods are aimed at determining the 

resistivity distribution in the subsurface. The multitude of the EM 

methods reflects the multitude of the sources (for example: horizontal 

electric dipole (HED), magnetic electric dipole (MED)) and the 

multitude of the generated signals. 

The electromagnetic properties of the matter are described by the 

electrical permittivity, the magnetic permeability and the electric 

conductivity. All the active electromagnetic methods (the source of the 

EM field is an antenna) are named “Controlled Source Electromagnetic” 

(CSEM) methods. Unlike the CSEM methods, the magnetotelluric 

method (MT), to know the resistivity distribution in the subsurface, uses 

the natural electromagnetic fields generated by: 

1) The interaction of the solar wind with the earth’s magnetic field 

(for the lower frequencies (<1 Hz). 

2) The world-wide thunderstorm, usually near the equator (for the 

higher frequencies). 

The method that we are studying is mCSEM method. This method was 

used first in academia and today is widely used by the oil companies as 

support to other geophysical method. In fact, generally the oil reservoirs 
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show higher values of resistivity than the surrounding materials and so 

this method can be a valid tool to detect the reservoirs and to monitoring 

them during the extractions activity.  

SBL can be very useful especially when there is not a strong acoustic 

impedance contrast between the sediments oil saturated and the 

surrounding sediments. Moreover the use of the SBL method is 

motivated by the particular sensitivity of seismic methods to trace 

amounts of gas in the pore fluid “Fizz Gas” (Constable, 2010). 

This method is a frequency domain method and uses as source a 

horizontal electric dipole (HED) towed by a ship in the water column; 

the signal is acquired by receivers array deployed on the seafloor 

(Eidesmo, 2002). The HED emits a low frequency electromagnetic 

signal (0.1 Hz – 10 Hz) propagating both in the seafloor and in the water 

column. 

As we have seen in the previous chapter, the decay rate in amplitude and 

phase of the EM signal is controlled by several mechanisms. The first is 

geometric spreading from the transmitter, which in the low-frequency 

limit is simply the characteristic 1/r
3
 dipole decay so familiar to users of 

DC resistivity sounding. The second is the galvanic effect associate with 

current flowing across a conductivity boundary (Constable, 2010). The 

last is the inductive attenuation and phase shift occurring when the skin 

depths are comparable to the distance over which the EM energy has 

travelled (Constable, 2010). However, the values of the measured 

amplitude and phase depend by the subsurface resistivity.  

The Figure 2.1 shows the setting of a CSEM survey and the propagation 

of the signals emitted by the HED. 

The signals in the Figure (Loseth, 2006) represent: I) the response of the 

sea – surface (airwave), II) the direct field, III) the response from the 

seabed, IV) the wave reflected from the resistive layer and V) the guided 

wave propagating in the resistive layer. At short offsets (< 2 km) 

between the source and receiver, the direct field (path II) dominates the 

received signal. At longer offsets, the dominating contributions are due 

to the resistor (path V) and sea-surface (path I). These contributions 
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contain multiple reflections in the water column, which are not 

illustrated. In deep waters, the response from the sea-surface will lower, 

due to the heavy damping of the signal in the water column. If the 

reservoir is not resistive the guiding effect will not be present and in this 

case the dominating signal from the subsurface will be from the lateral 

wave along the seabed (path III) (Loseth, 2006). 

 

Figure 2.1: Layout of a CSEM survey. The transmitter antenna is towed by a vessel. 

The Figure 2.2 (green line) shows the signal obtained at the receiver 

centered in correspondence of the resistive body. In particular, I show 

the amplitude of the in-line electric field component versus offset (the 

distance between the source and the receiver) in a semi-logarithmic scale 

(MVO). As we can note, the signal shows 2 local maximum located at 

the boundaries of the resistive body. The red prism in the Figure 

represents the lateral extension of the anomalous body. So, the shape of 

the MVO function is strongly influenced by the presence of the 

anomalous body. 

In this chapter we propose a fast and low computational cost method to 

interpret this kind of signals. The electromagnetic inverse problem 

associated with marine CSEM data is ill-conditioned and ill-posed, and 

strong non-uniqueness problems can arise. Additional artifacts can be 

introduced if the mesh used for the forward calculation by finite-

difference algorithms is not properly set (Dell’ Aversana, 2007). So, 

some authors have proposed the use of some attributes, such as the 
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normalized anomalous response (NAR) and the asymmetry, to know the 

areal distribution of the resistor in a fast and easy way. 

NAR is the amplitude of the observed electric or magnetic field divided 

by the amplitude of a reference field (Dell’ Aversana, 2012), the 

asymmetry, instead, is an attribute based on the asymmetry between the 

in-towing and out-towing responses (Dell’Aversana, 2010). Both 

attributes have some limitations; in fact, in the first case, the value of 

NAR is strictly dependent on the used model to obtain the reference field 

or on the data used as a reference; instead, regarding the symmetry case, 

this attribute suffers for an intrinsic ambiguity: it is null both when the 

receiver is far from any resistive boundary and also when the receiver is 

located above the center of a resistive body (Dell’ Aversana, 2012). 

However Dell’Aversana (2012) proposed to combine the two attributes 

in order to use jointly them. 

Here we propose a method based on the evaluation of new attributes, 

which can help us to know the areal extension of the resistors. The 

method is based on the approximation of the MVO signals with singular 

functions such as the Lipschitz singularity and the exponential 

singularity ones. Such attributes will be the exponent of the Lipschitz 

singularity function and the coefficient of the exponent exponential 

singularity function. 

We have tested the method on synthetic and real data. 
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Figure 2.2: Green function: MVO function obtained at a receiver centered on the 

resistive body shown in Figure 2.1. Blue function: MVO response of the half-space. 

The red thin sheet represents the lateral extension of the resistive body. 

2.2 Method 

As shown in Figure 2.2 (green MVO), the shape of an MVO depends on 

the presence of resistive buried bodies. We may then approximate the 

measured MVO with suitable functions, as the Lipschitz-Hölder 

singularity and the exponential singularity functions, in order to get 

information about the areal distribution of the buried resistors. 

Assuming as origin of the x-axis (offset) the position of the maximum of 

the MVO function, the Lipschitz-Hölder singularity function can be 

written as: 

          (2.1) 
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the exponential singularity function, instead, can be written as: 

          

 
(2.2) 

 

The method is based on the estimation of the exponent b of the 

Lipschitz-Hölder singularity function (equation 2.1) and of the 

coefficient b of the exponent of the exponential singularity one (equation 

2.2).  So, in either case,  the b coefficient is the attribute helping us to 

define the areal distribution of the resistors.
 

Since the receiver can be not centred on the resistive body, we assume 

separately the ascendant branch (x<0) and the descendent branch (x>0) 

of the MVO functions, so we will estimate respectively the b
-
 and the b

+
 

coefficients for respectively x<0 and x>0. 

In particular, since the MVO functions present a local maximum in 

correspondence of resistive bodies, we will expect a b coefficient lower 

than the value we would expect in the pure half-space case. 

2.3 Synthetic test 

We first test the method on a synthetic dataset. 

The synthetic data were obtained using COMSOL Multiphysics
TM

. This 

software solves the Partial Differential Equation (PDE) using the Finite 

Elements Method (FEM). In particular the software solves the Maxwell 

equations using a variational approach (Ritz method). 

The reference model used to obtain the data is a 3D model. In particular 

we have considered a 1 km tick water column characterized by an 

electrical conductivity of 2.3 S/m, a half-space of 1.5 S/m conductivity, 

and a thin prism 6km x 3km x 100m representing an oil reservoir. The 

array is composed of 21 CSEM receivers spaced 600 m each other, 

deployed on the seafloor; the HED antenna is 150 m long with a 0.5 Hz 

fundamental frequency and it is towed by a ship at a h=30 m altitude 

from the sea-floor. 

With just one receiver, as shown in Figure 2.2, the signal is measured at 

different distances from the antenna (offset), each one corresponding to a 

transmitter position along a given profile. For computational efficiency, 
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we used the reciprocity property, thanks to which the system array of 

transmitters-single receiver is replaced by a new system:  array of 

receivers (at the transmitter positions) -single transmitter (at the receiver 

position). Numerical tests have demonstrated the efficiency of this 

procedure, also in agreement with other researches (Newmann et al., 

2010). 

In Figure 2.3 the MVO curves are shown for all the 21 CSEM receivers. 

As we can see, the shape of the shown signals is strongly influenced by 

the presence of the resistor, depending from the receiver position. 

 

Figure 2.3: MVO signals obtained starting  from the model described in the 

paragraph, considering 21 receivers spaced 600 m each other. 

We have applied the SFN method to this dataset and have evaluated the 

b
-
 and b

+ 
coefficients, which minimized in a least-square sense the misfit 

between the MVO signals and the Lipschitz-Hölder singularity function 

(Figure 2.4). As expected, the b-curves in the Figure offer a meaningful 

description of the position of the resistive body, as described by a sharp 

transition (a low) at the two main boundary points of the resistive body. 

In particular, b
-
 curves (green curves) show a minimum at the right 

boundary of the resistive body while b
+ 

curves (blue curves) show the 

minimum in correspondence of the left boundary of the same body. 
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Than we done the same using the exponential singularity function 

(Figure 2.5). 

 

Figure 2.4: b
-
 and b

+ 
coefficients, which minimize in the least-square sense the misfit 

between the MVO signals and Lipschitz-Hölder singularity functions. The red prism 

represents the resistive anomalous body. 

 

Figure 2.5: b
-
 and b

+ 
coefficients that minimize in the least square sense the misfit 

between the MVO signals and exponential singularity functions. 

To have a single attribute correlated to the shape and the extension of the 

resistive body we have considered the mean value between the b
-
 and b

+
 

coefficients, bm, for both Lipschitz-Hölder singularity (LSF) and 

exponential singularity one (ESF): 

 
   

     

 
 (2.3) 
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Figures 2.6 and 2.7 show the bm functions evaluated for both LSF and 

ESF functions, respectively. As we can see, the bm function related to the 

ESF function shows a shaper minimum than that of the LSF case; 

however both the functions give a similar information about the 

extension and the shape of the body. 

 

Figure 2.6: bm coefficients of the Lipchitz singularity functions having the best fit 

with the MVO signals. 

 

Figure 2.7: bm coefficients of the exponential singularity functions having the best fit 

with the MVO signals. 

2.4 Real case 

We tested the developed method on an areal dataset kindly made 

available by eni e&p. 
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I established a procedure to process these data (Figure 2.8), which allows 

removing the noise from data and applying in an easy and automatic way 

the SFN method. 

1. Data loading and outlier removing. 

2. Splitting of the MVO separating the ascendant branch (x<0) from 

the descendent branch (x>0), to avoid problems linked to MVO 

asymmetry. 

3. Find the best fit Lipschitz-Hölder singularity and the exponential 

singularity functions (with the relative coefficients b) obtained 

using the least-square method. 

4. Plotting the estimated b coefficients on a map. 

 

Figure 2.8: screenshot of the graphic interface of the SFN software. 

So, we used the SFN method to know the areal hydrocarbon distribution 

in a well-known area explored by extensive 2D and 3D seismic 

campaigns and by wells penetrating hydrocarbon-bearing rocks of Late, 

Middle and Early Triassic ages (Dell’ Aversana, 2012). The area is 

characterized by the presence of many faults cutting a roll-over structure 

and a boundary fault. The water depth varies from 260m to 440mand the 

seabed has a smooth topography. 

We applied the SFN method to the MVO curves acquired by 83 CSEM 

receivers deployed along six lines (Figure 2.9).We considered the in-line 
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component (component of the field in direction of the antenna) of the 

electric field produced by a horizontal electric dipole towed by a ship in 

direction of the profiles. In particular, the produced field has two 

fundamental frequencies: 0.5Hz and 0.15Hz. Figures 2.10a and 2.10b 

show the maps of the bm coefficients calculated at each receiver for the 

ESF and LSF, respectively for the 0.15 Hz case and Figures 2.10c and 

2.10d show the bm coefficients maps for the ESF and LSF, respectively 

for the 0.5 Hz case. As shown previously, the areas characterized by 

lows of the bm, represent the areas characterized by the highest values in 

resistivity and so are probably linked to hydrocarbons or geological 

structures; in the maps in Figure 2.10 these low resistivity zones are 

shown in red. All the maps show lows in the central part and in the 

north-eastern part of the area. Geological studies have demonstrated that 

in this area there are two superimposed reservoirs (Dell’ Aversana, 

2012). 

Due to the skin-depth effect, we expect an increase in depth resolution 

for the survey corresponding to the lower frequency, 0.15 Hz so to be, 

probably, most affected by the presence of the lower reservoir. On the 

contrary, the maps relative to the higher frequency, 0.5 Hz, are, in 

principle, more related to the upper one. 

 

 

Figure 2.9: Survey layout 
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Figure 2.10: a) Map of the best-fit bm coefficients estimated using the exponential 

singularity functions for the 0.15 Hz MVO signals. b) Map of the best-fit bm 

coefficients estimated using the Lipschitz-Hölder for the 0.15 Hz MVO signals. c) 

Map of the best-fit bm coefficients estimated using the exponential singularity 

functions for the 0.5 Hz MVO signals. d) Map of the best-fit bm coefficients of the 

Lipchitz singularity functions for the 0.5 Hz MVO signals. 

Comparing the maps of the bm attribute calculated at each receiver with 

the map of resistor probability attribute, P(x,y)HR (Dell’Aversana, 2012), 

obtained for the same area, we can see a good agreement (Figure 2.11). 

To have a better understanding of the maps, and to distinguish between 

the low linked to hydrocarbon and the low linked to geological 

structures, such as faults, we can use some information from seismic, 
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gravity and magnetic methods. Instead, to know the depth of this source 

we must use inversion or imaging methods. 

 

Figure 2.11: The Figures show the maps of hydrocarbon probability respectively for 

the lower and upper reservoir (Dell’ Aversana, 2012). 



 

 

 

Chapter 3  

DEXP imaging technique for CSEM 

Data. 

Introduction 

In the last years the interest on “Controlled Source Electromagnetic 

Methods”, in particular mCSEM has grown because it can be a very 

useful tool to support other geophysical methods as seismic and potential 

fields for oil reservoir exploration and monitoring.  

Moreover, mCSEM methods can be utilized for CO2 sequestration 

monitoring. The CO2 often is stored under the ground to reduce a 

greenhouse gas, so it is important to develop a technique of monitoring 

the behavior of CO2. 

So, to interpret this kind of signals, during these years, several methods 

were developed including inversion (1D, 2D, 3D, anisotropic) and 

migration (Lee et al., 1987; Zhdanov et al., 1996). 

Here, it is proposed a fast and computationally low cost method to get 

information about the areal extension, the depth and the shape of the 

anomalous body; this method, unlike the inversion methods, does not 

require a priori information about the source of the anomaly. 

As it will be shown, we start from the assumption that a “quasi-static” 

EM field can be considered static at distances lower than the skin-depth. 

So, we can apply, with some differences, the methods used to interpret 

the potential field signals. In particular, we have focused our attention on 

Multiridge method (Fedi et al., 2009) and Depth from Extreme Points 

method (DEXP) (Fedi et al., 2007), which are however based on 
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functions satisfying the Laplace equation. We shall now show that this is 

indeed the case of the electromagnetic signal in mCSEM exploration. 

Starting from the damped wave equations: 

    

   
  

  
     

   

   
 

 

(3.1)  

    

   
  

  
     

   

   
 

 

(3.2) 

Where t is time, σ is conductivity, varying between 1 and 10
-6 

S/m in 

typical rocks, µ is magnetic permeability (usually taken to be the free 

space value of 4π10
-7 

H/m in rocks lacking a large magnetic content) and 

ε is electric permittivity (between 10
-9

 and 10
-11

 depending on water 

content) (Constable, 2010). The first term in the second member of the 

equations, named loss term, tends to 0 when σ ≈0, that is in the free 

space case. In this case, the equations become wave equations and the 

wave carries information accumulated along its entire ray-path and so, as 

a seismic wave, the electromagnetic wave carries similar resolution at 

depth as it does near the surface (Constable, 2010). In rocks where σ is 

about 10
9
 times bigger than ε, the loss term will not be negligible 

although the frequency value is considerable; this is the ground-

penetrating radar case where, despite of the high frequencies used, of the 

order of MHz – GHz, the loss term will be so important to prevent 

penetration of more than a few meters even in resistive ground.  

In our case, marine CSEM method, the used frequencies are extremely 

low (0.1 Hz to 10 Hz) and the conductivity values are not negligible, so 

the most important term of the Helmoltz equations will be loss term, 

whereas the second derivative term will be negligible. In this case the 

equations 3.1 and 3.2 will be reduced to diffusion equations: 

 
      

  

  
 (3.3) 

 
      

  

   
(3.4) 



DEXP imaging technique for CSEM Data. 

59 
 

In most cases we shall be dealing with alternating fields, and we may 

therefore assume for E and H a time dependence which is of the 

form:                     , where ω is the angular frequency of the 

field (i.e., ω=2πf) (Grant and West, 1965). In this case equations 3.3 and 

3.4 become: 

           (3.5) 

           (3.6) 

The solution of these equations has the form: 

      
         (3.7) 

      
         (3.8) 

where α and β are the phase lag and exponential attenuation terms over 

distance z ofthe propagation constant k (equations 1.34; 1.44) related to 

the skin depth δ, 

 

  
 

 
               

 

 
   (3.9) 

where we made use of equation 1.50.The skin depth is the distance over 

which the field amplitude is reduced to 1/e in a uniform conductor, or 

about 37% (given by β), and the phase progresses one radiant, or about 

57
ο
 (given by ).  

So, in this last case, for a harmonic excitation, the entire earth/sea/air 

system is excited by EM energy, and what is measured at the receiver is 

a kind of average of the whole system weighted by the sensitivity to each 

part of the system, which decreases with increasing distance from the 

observer. Thus a 1-m object is easy to detect when buried 1 m below the 

seafloor, but impossible to see when buried 1000 m deep (Constable, 

2010). 

Consider now the diffusion equations 3.5 and 3.6. It is straightforward to 

see that in the limit ω 0, these equations reduce to the Laplace 

equations: 

       (3.10) 
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       (3.11) 

which are typical of potential field methods. 

It is interesting to note that we can obtain the same result of equation 

3.10 when considering not only the low value of angular frequency used 

for a mCSEM survey (i.e. ω=0.1 Hz), but also the common values of σ, 

µ of the rocks (i.e. σ=1 S/m, µ=4π10
-7

 H/m) (Grant and West, 1965) so 

that equation (3.5) reduces to:  

                     (3.12)   

A similar reasoning can be done for the magnetic field. So, we have seen 

that Laplace equation occurs as a valid approximation for the 

electromagnetic signal as far as the mCSEM is involved. This implies 

that methods commonly developed for potential fields, such as DEXP 

and Multiridge analysis can be used also for electromagnetic data 

gathered in a CSEM survey.  

We must however be now a little bit more precise, in order to explore in 

detail the zones where Laplace equation actually occurs. In order to do 

this, we come back to the wave equations 3.1 and 3.2 and, and consider 

the source sounding separation (r) and the skin-depth δ from the source 

of the EM field. We can distinguish three different zones, in which the 

electric and magnetic fields show different behaviors. In particular, using 

equations 1.44 and 3.9 we see that the modulus of the wave-number k 

can be written as: 

 
    

  

 
 (3.13) 

and therefore  

              (3.14) 

Where      is commonly referred to as the induction number (Zonge and 

Hughes, 1991). 

The region electrically near the source of the field is characterized by 

small induction numbers (    <<1,    ) and is known as the “near-

field” zone. The region electrically far from the source of the field is 
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characterized by large induction numbers (    >>1,   ) and is known 

as the “far-field” zone or “plane-wave” zone. The region between these 

zones is named “transition” zone (Zonge and Hughes, 1991). These three 

zones are illustrated in Figure 3.1. 

 

Figure 3: from Zonge and Hughes (1991), Three zones in the propagating EM field: 

(a) Near field (rA   δ), E decays as 1/r
3
, H as 1/r

2
, the depth of investigation D 

depends on geometry, independent of frequency; (b) Transition zone (rB ∿ δ) E 

decays as 1/r
3
, H as 1/r

2
 to 1/r

3
, D depends on geometry, frequency, and resistivity; 

(c) far field (rC  δ), E, H decay as 1/r
3
 , D depends on frequency and resistivity . 

In particular, in the near-field zone the expressions of the electric and 

magnetic components of the electromagnetic field, produced by a 

horizontal electric dipole in the quasi-static approximation (    and 

     where    is the free-space wavelength), expressed in a 

cylindrical coordinates (shown in Zonge and Hughes, 1991) become: 

 
   

       

    
 (3.15a) 

 
   

       

     
 (3.15b) 

 
   

           

   
 

 

(3.15c) 
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 (3.15d) 

 
    

       

    
 (3.15e) 

 
   

       

    
 (3.15f) 

   

As we can see from these equations for a homogeneous half-space, E is 

directly proportional to ground resistivity in the near field, and is 

independent of frequency. In contrast, H is independent of both 

resistivity and frequency in the near field. Under such conditions, H is 

said to be "saturated." (Zonge and Hughes, 1991). 

Moreover, a very suitable consideration for us is that, as we can see from 

the equations 3.15a,…,f, the decay rate of the electric component of the 

electromagnetic field produced by a dipolar source in the near field zone 

in the quasi-static limit is 1/r
3
, instead for the magnetic field the decay 

rate is 1/r
2
. Therefore, as already noted by Zonge and Hughes (1991), the 

behavior of the electric and magnetic fields in the near zone are 

equivalent to those that we have in a dc resistivity survey and therefore 

of a static field. 

In the transition zone the electric field decays at a rate of 1/r
3
 and the 

magnetic field decays at a rate between 1/r
2
 and 1/r

3
. In this case, the 

depth of penetration is a complex function of array geometry and 

frequency.  

In the far-field zone, the impinging source field approximates a plane 

wave, as assumed in magnetotelluric theory. Here, the electric and the 

magnetic field decay at the same rate (1/r
3
), and the depth of penetration 

are independent of array geometry. Moreover the horizontal H-field 

components are frequency-dependent and are also a function of the 

square root of ground resistivity. Hence, H does not “saturate” like it 

does in near-field zone (Zonge and Hughes, 1991). 

Therefore, the electromagnetic field at extremely low frequencies, as the 

frequencies used in CSEM surveys, and at distances less than the skin-

depth can be studied as a static field.  
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We must not confuse these near-field/far-field discussions with the near-

field/far-field usage in antenna theory. In antenna theory, when 

discussing EM propagation by radiation, far-field is used to indicate the 

realm where the separation between transmitter antenna and receiver 

antenna is much larger than the free-space wavelength or     . 

Conversely, the near-field zone is where      (Zonge and Hughes, 

1991)). For the quasi-static assumptions used for CSEM calculations, 

near-field and far-field notations take on an analogous meaning with the 

substitution of the wavelength (or skin depth) in conductive earth for the 

free-space wavelength.  

Starting from this assumption we can apply the interpretation techniques 

used in potential field to CSEM data. 

3.1 Continuation of quasi-static electromagnetic fields. 

The fact that gravity field, magnetic field and, under the conditions 

mentioned in the previous paragraph, the low frequency EM field obey 

Laplace’s equation permits us to determine the field over an arbitrary 

surface if the field is well known completely over another surface and no 

masses are located between the two surfaces (Telford, 1990). This 

process is called continuation. 

Following Grant and West (1965), Green’s theorem states that if U and 

W are continuous functions within a volume V, with the first and second 

derivatives that are continuous and integrable, then: 

 
        
 

      

   
 

             

 

(3.16)  

 

where the surface S encloses the volume V. The restrictions on U and 

Ware satisfied if we let U be the gravitational potential due to the masses 

within the volume V and let W be the function:             , where 

r is the position vector of a point P outside V and r0 is the position vector 

of a point Q within V (Figure 3.1). 
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Figure 3.1: The continuation theorem. a) Hemisphere S on positive side of xy plane. 

b) Hemisphere on negative side of xy plane. 

As well known the gravitational potential at a generic point P outside the 

volume V is: 

 
         

     

      
 

   (3.17) 

where G is the gravity constant. 

Instead, inside the volume V, at the point Q, is valid the equation: 

                   (3.18) 

eliminating ρ, we have: 

 
                             

 

 (3.19) 

Let us apply now the Green’s theorem (eq. 3.16) to the hemisphere in 

Figure 3.1a, and consider U=US on the surface S, RS the distance 

between a point of the surface S and P. Since P is outside the volume Vis 

valid the equation        
 

 
   , we get:  

 
       

 

           

     

 

  
 

 

  
   

 

  
 
   

  
 

 

   

(3.20) 
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Considering equation 3.19, the equation 3.20 can be reduced to: 

 
      

 

  
    

 

  
 

 

  
   

 

  
 
   

  
    

 

 (3.21) 

The derivatives in the equation 3.21 are the components of the gradients 

normal to the surface ds. 

If the radius of the hemisphere is made large enough, the integrand in 

equation 3.21 vanishes because of the factor 1/RS, so equation 3.21 

become: 

 
          

 

  
 

 

  
   

 

  
 
   

  
     

  

 (3.22) 

The integration is taken over that portion of the xy plane where the 

anomalous field is significantly large than 0 (Telford, 1990). 

Referring, instead, to the Figure 3.1b, since in this region there are no 

masses, is valid:        and so the equation 3.20 becomes: 

 
       

 

  
 

 

  
   

 

  
 
   

  
     

  

 (3.23) 

The second members of the equations 3.22 and 3.23 are not the same 

because the unit vector n normal to the surface S, is upward (-z direction) 

in the first case and downward (+z direction) in the second one. For this 

reason, in the equation 3.22 we have: 
   

  
   and in the equation 3.23 

we have: 
   

  
   . Moreover, because   

        
        

  

      , on the xy plane is valid the equation: 

  

  
 

 

  
     

   

 

  
 

 

  
 

    
   

 
      

  
    

 

  
  

(3.24) 

which is independent of the direction of n(Telford, 1990). 

Subtracting equation 3.23 from equation 3.24 we get: 
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 (3.25) 

where   
        

        
     . To get        at P, we 

replace    in   
  with   , differentiate and then replace z with –h (note 

that g on xy plane is not a function of z) (Telford, 1990). So we obtain: 

 
                      

       
  

  (3.26) 

Equation 3.26 is the upward continuation equation that allows us to 

calculate the gravitational acceleration anywhere in free-space from 

knowledge of its values over the surface (Telford, 1990). It is still valid 

for any-order derivative of g, for the magnetic field and for any-order of 

its derivatives. 

Upward continuation can be done in more efficient and intuitive way in 

the Fourier domain. In fact, starting from equation 3.26, we can write: 

 
                 

       
  

 (3.27) 

which represent a two-dimensional convolution: 

 
                        

  

  

             

(3.28) 

Where            represent the potential at the surface xy and   is: 

 
          

 

  

 

  
  (3.29) 

Applying the convolution theorem
1
 to the equation 3.27 we get: 

                 (3.30) 

Where       is the Fourier transform of the upward-continued field and 

     is the Fourier transform of the field. Note that: 

                                                           
1
  The  convolution  theorem states that, under  suitable conditions, the Fourier transform of a 

convolution is the point-wise product  of the Fourier transforms. 
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 (3.31) 

 

The Fourier transform of equation 3.31 is given by: 

 
       

 

  

 

  
  

 

  
   

 

  

      

   
        

                                                                                            h>0 

 

 

(3.32) 

Where k is the wave-number (     
    

 ,    
  

  
 ,    

  

  
 , where 

Δx and Δy are the sampling step along x axis and y axis). So a level to 

level continuation can be achieved by Fourier transforming the measured 

data, multiplying by the exponential term of equation 3.32, and inverse 

Fourier transforming the product (Blakely, 1995). Some problems can 

occur using the upward continuation in frequency domain, in fact in this 

case can arise frequency-aliasing errors affecting the low-frequency 

content of the upwardly continued data at high altitudes (Fedi, 2007). 

However we can limit this problem performing Fourier transform on a 

larger area than that of interest.  

It is important to observe that the upward continuation can be applied to 

a low-frequency electromagnetic field, under the conditions mentioned 

in the previous section and if the polarization direction may be 

considered constant. This last feature is likely to occur in CSEM 

prospecting. Besides, both the real and imaginary parts behave as 

harmonic functions in the near-field zone, since the electromagnetic field 

will there satisfy Laplace Equation (equations 3.10 and 3.11), and the 

continuation formula may be then applied to each of them.  To test our 

interpretation methods based on upward continuation, we will apply the 

algorithm to the real and imaginary parts of the electromagnetic field 

scattered by simple shape bodies. 

3.2 The Multiridge method 

Starting from the assumption that an electromagnetic (EM) field can be 

considered static at distance lower than the skin depth, we can apply the 
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methods used to interpret the static fields (potential fields) to CSEM 

data. 

Potential fields and, under the mentioned assumptions, EM fields of 

simple sources are homogeneous functions of degree n, expressing for 

some of them, but not for all, the fall-off rate of the field (Thompson, 

1982). A more general relation to the field is given as follows. The 

homogeneity degree may be expressed as n=v-p, where p is the order of 

the field (i.e. electric field p=3) and v is an integer ranging from 0 to 3, 

depending on type of homogeneous or ‘ideal’ source (sphere 

(0),bottomless vertical cylinder, infinite horizontal line mass 

(1);bottomless dike, semi-infinite horizontal sheet  (2), contact (3)) 

(Fedi, 2007). For instance, the scattered electromagnetic field by a 

homogeneous sphere have v=0, p=3 and then n=-3. 

The Multiridge method (Fedi et al, 2009) is a purely graphic method that 

starting from the concept mentioned above and from the upward 

continuation of the field allows estimating the 3D position of the source 

in a very simple way. In particular, the method is based on the 

evaluations of the ridges from the upward continued field or his 

derivatives. For homogeneous and isolated sources the ridges are straight 

lines (in the near field zone) defined by the zeros of a potential field and 

its horizontal and vertical derivatives at all measured or computed levels 

(Fedi et al, 2009).  

The number of ridges depends on the order of partial derivative of the 

field, and their intersection occurs in the source region at the source 

position. In our specific case we consider the EM field generated by a 

horizontal electric dipole and scattered by simple shape bodies buried in 

a half-space (mCSEM case). Then, we demonstrate empirically the 

validity of the method testing it on synthetic data under the condition 

mentioned above. 

There are several way to draw the ridges automatically, but one of the 

most efficient way is to use the Canny’s algorithm (1986), as proposed 

by Fedi et al. (2009), which permits to search for the maxima and 

minima of a generic function F. Considering a function F(x,y) and its 
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gradient    the algorithm searches for the maxima and minima of F as 

the points where Mf is locally maximum in the Af direction, where: 

 

     
  

  
 

 

  
  

  
 

 

 (3.33) 

and 

 

         

  

  

  

  

  (3.34) 

So, we have the extreme points at different altitudes and we can obtain 

the ridges linking each of them, at a given altitude, to the nearest one 

computed at the altitude just above. 

A mathematical demonstration of the validity of the method is reported, 

for the magnetic field, in Fedi et al (2009), but the same is valid also in 

the electromagnetic case at distances lower than skin-depth. 

Using a Cartesian coordinate system with the z-axis directed downward, 

the magnetic field at a point P(x,y,z) generated by a magnetic dipole at a 

point  Q(x0,y0,zo) is: 

 
           

   

       
   (3.35) 

 

Where r and r0 are the position of the points P and Q respectively, M is 

the dipole moment,        , where µ0 is the magnetic permeability 

of the free-space, f is the unit vector in the local direction of the 

geomagnetic field and t is the unit vector in the M direction. 

Considering the ridges formed by the zeros of the first-order horizontal 

derivative of the field, considering the cross-section y=y0 and assuming

1M , we get: 
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(3.36) 

where X=x-x0 and Z=z-z0. 

From this equation we can see that the ridges are straight lines expressed 

by the form: 

              (3.37) 

where          and   is the angle that the ridge form with the 

vertical axis z. Assuming that the inclination and the declination of the 

geomagnetic field is 0
ο
 and 90

ο
 respectively and f=t, the solutions of 

equation 3.36 are: 

       

              (3.38) 

               

These three solutions are the equation of three straight lines intersecting 

at the point x0, z0 which is the position of the center of the sphere. So it is 

demonstrated mathematically the validity of the method. The same can 

be done considering the vertical derivative of the field or higher order 

derivative. 

As said previously, the method is tested on synthetic mCSEM data to 

demonstrate empirically its validity. The synthetic mCSEM data was 

obtained using the software COMSOL Multhiphysics
TM 

, which uses the 

finite elements method (FEM) to solve the Maxwell equations. 

The first and simplest case we consider is that of the electromagnetic 

field scattered by a homogeneous resistive (100 Ω/m), small (radius= 10 

m) sphere positioned at Q(100 m,0 m,-200 m), buried in a conductive (1 

Ω/m) half-space (Figure 3.2).The primary source of the field is a 

horizontal electric dipole (HED) having similar characteristics to the 
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antenna used in mCSEM prospecting and having as fundamental source 

frequency 0.3 Hz. The model is a 3D model with just one receiver 

positioned at P(-1000 m, 0 m, 0 m) (Figure 3.2). The off-set (distance 

antenna-receiver) varies to simulate a mCSEM survey with a step of 10 

m both in the x and y direction.  

Overlapped to the half-space is considered a 1 km thick water column 

characterized by an electrical conductivity of 3 S/m. In particular, to 

have the radiated field from the sphere are calculated the total field and 

the field given by the only homogeneous half-space and then are 

subtracted each other. It is considered the component of the scattered 

electric field along z direction (Ez). Figure 3.3 show the amplitude of the 

Ez component measured at each off-set. 

 

Figure 3.2:  starting model for a homogeneous resistive sphere used to solve the 

forward problem. 

The real part of the simulated Ez is continued (using a 3D static 

continuation), in the frequency domain, using a step ΔZ=10 m until the 

height 2000 m. The ridges (lines in Figure 3.4 and 3.5 are drawn using 
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the method described above (Canny’s method). To avoid problems 

linked to frequency-aliasing errors which can arise performing upward 

continuation in frequency domain, the input data sequences are extended 

to a greater length by mathematical extrapolation using zero-padding. 

In Figure 3.4 is shown the upward-continued field of the real part of Ez at 

y=0 and in Figure 3.5 is shown the second vertical derivative of the 

upward-continued field evaluated at y=0. In both Figures are shown two 

subsets of ridge. The ridges in pink are referred to the zeros of the first 

vertical derivative of the field in the first case (Figure 3.4) and to the 

zeros of the third vertical derivative of the field (Figure 3.5); the yellow 

ridge subset is referred to the zeros of the first horizontal derivative in 

the first case (Figure 3.4) and to the zeros of the third horizontal 

derivative of the field (Figure 3.5). 

As we can see from the Figures 3.4 and 3.5, the ridges are not straight 

lines at all the altitudes, but can be considered straight near the source 

(the resistive sphere); in fact, as we have mathematically demonstrated 

previously, they are expected to be straight at distances lower than skin-

depth (δ), because there the scattered electromagnetic field satisfies the 

Laplace equation. In this specific case, the skin depth is about 900 m. In 

particular, as we can see from these Figures and as expected, the number 

of ridges increases increasing the derivative order (the number of ridges 

in Figure 3.5 is higher than in Figure 3.4), so that deriving the field we 

can better locate the anomalous body. Moreover, as typical for potential 

fields, the ridges evaluated from the derived field (Figure 3.5) are better 

defined and straight, due to the resolution improvement caused by the 

derivation operation. 

 We may see as the near-field zone is very well defined by joining the 

ends of the straight part of the several ridges (dashed green curve). Since 

the near-field zone depends on skin depth and this in turn on the 

resistivity of the source, this analysis allows one to obtain, thanks to 

equations 3.9 and 3.15, an approximate estimate of the resistivity. For 

instance, as we can see from Figure 3.4 the straight part of the ridges, 

which are strictly linked to the skin depth, is about 850 m long (see red 

dotted line in Figure 3.4), so applying the 3.9 we can calculate the 
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resistivity contrast, which is in this case:         Ω . Being the real 

resistivity contrast:         Ω , the error is about of 13%. 

 

Figure 3.3: Amplitude of the Ez component of the electromagnetic field scattered by 

a homogeneous resistive sphere obtained starting from the model described in the 

paragraph. The yellow square represent the receiver position. 
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Figure 3.4: upward-continuation of the real part of Ez scattered by a homogeneous 

resistive sphere at y=0. The pink lines are referred to the zeros of the first vertical 

derivative of the field; the yellow lines are referred to the zeros of the first horizontal 

derivative of the field. The dotted white line represents the portion of ridge that we 

have taken into account for the structural index estimation (see Paragraph 3.3.3). 

 

Figure 3.5: second order vertical derivative of the upward-continuation of the real 

part of Ez scattered by a homogeneous resistive sphere at y=0. The pink lines are 

referred to the zeros of the third vertical derivative of the field; the yellow lines are 

referred to the zeros of the third horizontal derivative of the field. 

Another simple shape body we consider is a horizontal infinite cylinder 

outstretched in y direction, having a 10 m radius (black rectangle Figure 

3.5), 100 Ω/m resistivity and buried at 200 m depth in a homogeneous 

conductive (1 Ω/m) half-space. The center of the cylinder is located at 

the point Q (100 m, 0 m, -200 m). All the others parameters of the model 

are the same of the previous case (homogeneous resistive sphere) (Figure 

3.6). 
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Figure 3.6: starting model for a horizontal infinite resistive cylinder used to solve 

the forward problem. 

Figure 3.7 shows the amplitude of the horizontal component of the 

scattered Ez component of the electromagnetic field. In particular the 

yellow square represents the position of the receiver and the black 

rectangle indicates the position and the extension of the anomalous 

resistive body scattering the field (horizontal cylinder). The maximum of 

the field is located in-line with the receiver position, so, unlike what 

happens in potential field, the anomalous body doesn’t contribute totally 

to the field but, most of the field is due only to a part of the body, the 

part closest to the receiver; so we see the infinite body as a finite, small 

body.  

The Figure 3.8 shows the upward continued field of the real part of the 

Ez component of the field at y=0 and the relative ridges. The upward-

continued field is obtained using the continuation frequency domain 

algorithm using the wariness mentioned above. The pink lines represent 

the ridges evaluated starting from the zeros of the first order vertical 

derivative of the field, the yellow in the Figure are the ridges obtained 
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starting from the zeros of the first order horizontal derivative of the field 

represented in each Figure. As we can see from this Figure and as it 

happens also in the sphere case, the ridges are not straight lines at all the 

altitudes. Differently then in potential fields the field is not perceived as 

the field of a infinitely extended sources along the strike direction 

(Figure 3.7). In fact, due to finite energy of the emitting antenna system, 

the scattered field comes just from the “lightened” part of the source 

(approximately from -1000<y<1000 m) so that the resulting effects is 

that from a finite horizontal cylinder instead. As a result, ridges are not 

straight lines, as in the field from a perfectly lightened infinite source.  

 

Figure 3.7: Amplitude of the Ez component of the electromagnetic field scattered by 

a homogeneous resistive horizontal cylinder, represented by the black line in the 

Figure, obtained starting from the model described in the section. The yellow square 

represent the receiver position. 

Also in this case we can improve the problem using higher order 

derivative of the continued field, because deriving the field we can 

minimize the role of the end-source effects. In this specific case we have 

considered the second order vertical derivative of the continued field and 

the relative ridges (Figure 3.9). As we can see from the Figure 3.9, the 

straight portion of the ridges is greater than in Figure 3.8 and therefore 
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we can locate geometrically the portion of the body closest to the 

receiver in a more accurate way. However we can improve our ridge 

analysis also using lower frequencies. In fact, decreasing the frequency, 

increase the skin-depth and consequently the straight portion of the 

ridges. For instance, using as fundamental source frequency 0.1 Hz, the 

skin-depth will be: δ=1600 m and then, as we can see from Figure 3.10, 

we have a more extended straight portion of the ridges. 

 

 

Figure 3.8: upward-continuation of the real part of Ez scattered by an infinite 

horizontal resistive cylinder at y=0. The pink lines are referred to the zeros of the 

first vertical derivative of the field; the yellow lines are referred to the zeros of the 

first horizontal derivative of the field. The dotted white line represents the portion of 

ridge that we have taken into account for the structural index estimation (see 

Paragraph 3.3.3). 
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Figure 3.9: second order vertical derivative of the upward-continuation of the real 

part of Ez scattered by an infinite horizontal resistive cylinder. The pink lines are 

referred to the zeros of the third vertical derivative of the field; the yellow lines are 

referred to the zeros of the third horizontal derivative of the field. 

 

Figure 3.10: upward-continuation of the real part of Ez  scattered by an infinite 

horizontal resistive cylinder at y=0at 0.1 Hz. The pink lines are referred to the zeros 

of the first vertical derivative of the field; the yellow lines are referred to the zeros of 

the first horizontal derivative of the field. 

The last simple shape body we consider is a semi-infinite plane. This 

model is also the most useful for oil exploration. In fact, a hydrocarbon 
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reservoir can be often sketched as a thin layer. In our case the thickness 

of the layer is 50m. All the physical parameters of the model are the 

same of the previous cases. The considered fundamental source 

frequency emitted by the transmitting antenna is 0.3 Hz, the only one 

receiver positioned on the sea-floor at a distance of 1000 m from the 

right boundary of the semi-infinite resistive layer (Figure 3.11). The 

anomalous body is buried at 200 m depth from the sea-floor. In Figure 

3.12 is showed the amplitude of the Ez component of the electromagnetic 

field. As we can see from this Figure, also in this case, as for the 

horizontal cylinder one, only the closest part of the source is lightened by 

the source placed at the receiver position, thanks to the reciprocity 

property. Then, also in this case, the simple shape body assumption is 

not completely valid because the body is as a finite layer. 

 

Figure 3.11: starting model for a horizontal semi-infinite resistive layer used to 

solve the forward problem. 

As in the previous cases, we have upward-continued the real part of the 

field Ex obtaining a 3D data volume of the field. Then we show the 

ridges relative to the zeros of the first order vertical derivative of Ez (pink 
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lines) and to the zeros of the first order horizontal derivative of Ez 

(yellow lines) evaluated at y=0. Even more than in the previous case, 

from Figure 3.13, we can see the effects due to the fact that the body 

cannot be approximated completely to a simple shape body having only 

one fall-off rate; the ridges show a curvature also at distances from the 

source less than the skin depth (900 m). To minimize this problem and 

consequently improve our solution is done the Multiridge analysis 

considering the higher order vertical derivative of the continued field. In 

particular, we have considered the ridges evaluated starting from the 

second order vertical derivative of the continued field (Figure 3.14) and 

the ones evaluated starting from the third order vertical derivative of the 

continued field (Figure 3.15). In both cases (Figure 3.14 and 3.15), we 

can see an improvement of the solution due to the enhancement of the 

resolution caused by the derivation operation. In particular the result in 

Figure 3.15 seems to be the best solution. 

 

Figure 3.12: Amplitude of the Ez component of the electromagnetic field scattered by 

a homogeneous resistive semi-infinite thin layer, represented by the pink rectangle in 

the Figure obtained, starting from the model described in the paragraph. The yellow 

square represents the receiver position. 
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Figure 3.13: upward-continuation of the real part of Ez scattered by the 

homogeneous resistive semi-infinite thin layer, represented in Figure 3.9, at y=0. 

The pink lines are referred to the zeros of the first vertical derivative of the field; 

yellow lines are referred to the zeros of the first horizontal derivative of the field. The 

dotted white line represents the portion of ridge that we have taken into account for 

the structural index estimation (see Paragraph 3.3.3). 

 

Figure 3.14: second order vertical derivative of the upward-continuation of the real 

part of Ez scattered by the homogeneous resistive semi-infinite thin layer, represented 

in Figure 3.9, at y=0. The pink lines are referred to the zeros of the third vertical 

derivative of the field; the yellow lines are referred to the zeros of the third 

horizontal derivative of the field. 
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Figure 3.15: third order vertical derivative of the upward-continuation of the real 

part of Ez scattered by the homogeneous resistive semi-infinite thin layer, represented 

in Figure 3.9, at y=0. The pink lines are referred to the zeros of the fourth vertical 

derivative of the field; the yellow lines are referred to the zeros of the fourth 

horizontal derivative of the field. 

 

3.3 The DEXP method 

The Depth from Extreme Points (DEXP) method is a method used in 

potential field to have information about the tri-dimensional position of 

the source, his extension and his shape developed by Fedi (2007). In 

particular, this method fits in the landscape of semi-automatic methods, 

as Euler Deconvolution method, used in potential field to estimate the 

source position and a characteristic parameter of the source, the 

Structural Index (S.I), (Reid el al, 1990). The S.I. is linked to the fall-off 

rate of the field with distance. 

Since the electromagnetic field due to homogeneous sources (as the 

anomalous resistive bodies studied above) has a specific and distinct fall-

off rate at distances lower than skin-depth (δ), as demonstrated in the 

previous paragraph, the estimation of N can be useful to detect and 

define the kind of anomalous bodies; in this way, we can build schematic 

models of the subsurface. 
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The DEXP method is a very stable method respect to noise and can be 

applied to the field and his derivatives. The DEXP method for the quasi-

static electromagnetic field can be applied in three steps: 

 Continuation of the field: starting from a map of the 

electromagnetic field scattered from an anomalous resistive source, we 

have to create a 3D data volume upward-continuing the field at height 

lower than skin-depth. Or in 2D case, from a profile of data we have to 

create a section upward-continuing the field using 1D algorithm 

continuation. To have the scattered electromagnetic field from an 

anomalous source we have to subtract to the observed data the 

background field (the field that we should obtain if our target, the 

anomalous body of interest, is not present); in our synthetic tests we 

assume the background field as the field due to a homogeneous half-

space, in the real case we assume as background field the field acquired 

by a receiver situated far away the anomalous body. 

 Scaling the field: we have to scale the 3D field using specific laws. 

So, if the 3D field originated by a source at r0 is expressed by the 

function f(r-r0), we have to obtain a scaled field W(r-r0). 

 Estimating the source depth: we have to determine the position of 

the source searching for the extreme points r(x,y,z) of W(r-r0). As will be 

shown the points r(x,y,z) are symmetrical to r0(x0,y0,z0). 

3.3.1 Theory of the DEXP method 

In this paragraph we will show mathematically the validity of DEXP 

method following the demonstration given by Fedi (2007) for the gravity 

field of a pole source. Then, will be examined the case of the 

electromagnetic field scattered by a dipolar source.  

Considering the gravity field f1(r) due to an homogeneous sphere at 

r0(x0,y0,z0) with density M=1 and normalizing by the gravity constant k 

we have: 

 
      

      

       
  (3.39) 
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If the source is at r0(0,0,z0) and the field is measured at x=x0, y=y0 we 

have: 

 
      

 

      
 
  (3.40) 

The scaling function used to scale the continued field is defined as: 

 
     

           

       
 (3.41) 

so, in this case, naming the scaling function for the gravity field   , we 

get: 

        
  

    
 . (3.42) 

From the equation 3.42 we can see that       is singular at     , but at 

z=-z0 we have: 

            (3.43) 

it follows that 

   
                    

  
 
     

   (3.44) 

 

that can be written also as: 

      
  

 
     

   (3.45) 

 

As we can see from this equation, the function    has a maximum at z=-

z0. This means that, scaling the gravity field with a power law of the 

altitude z and exponent equal to 1, we can have a scaled gravity field, 

Wg: 

        (3.46) 

having a maximum at x=x0, y=y0 and z=-z0. Obviously, the maximum is 

due to the fact that we have assumed a positive density contrast. If we 
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choose a negative density contrast we will have a minimum at the point 

r(x=x0, y=y0, z=-z0). Moreover, instead to express the function Wg as 

function of r, we can express Wg as function of (x0,y0,z0). 

We can generalize the scaling function formula to any p-th order vertical 

derivative of the field,    and to any kind of homogeneous source; in 

fact, starting from the p-th order derivative of the gravity field, of 

homogeneity degree n,            
 
    

 

          
,where N=-n. So 

we get: 

    
           

       
  

      

    
   (3.47) 

At z=-z0 we will have: 

          
   

 
 (3.48) 

Hence, the general scaled function, Wp, having as extreme point the point 

x=x0, y=y0 and z=-z0, can be expressed as: 

 
      

   

  (3.49) 

Let us now consider the electromagnetic field case. The z-component of 

the electric field radiated by a x-directed electric dipole at a generic point 

r located in the near zone has the form: 

 
        

  

   

     

       
    

 

 

 

 

(3.50) 

where   
 

    
, ρ is the resistivity of the source of the field and r0 is the 

position of the source of the field. 
2

 denotes the vector two-norm. Also 

in this case for simplicity we consider ρ equal to 1 Ωm and normalize the 

field by k. So considering the source of the field located at r0(0,0,z0), for 

y=0 we have: 
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(3.51) 

where α denotes the dipole orientation. 

It is simple to find that the scaling function (equation 3.41) takes the 

form: 

        
 

    
   

     

(3.52) 

As at z=−z0 the scaling function will be:           , the DEXP 

scaled electric field for a dipole source,  , will be: 

     
    

                                                   

                   . 

(3.53) 

Similarly to the gravity case, we can generalize the scaling function 

formula for any p-th order vertical derivative of the field,     , and for 

any kind of homogeneous source; in fact, starting from the p-th order 

derivative of the electric field, of homogeneity degree n,           

      
 

          , where     . So we get: 

 
   

            

       
  

      

    
 (3.54) 

And at z=-z0 we will have: 

          
   

 
 (3.55) 

Hence, the general DEXP-scaled function of the electric field, Wp, 

having as extreme point the point x=x0, y=y0 and z=-z0, can be expressed 

as: 
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  (3.56) 

3.3.2 DEXP of simple sources 

Real sources may be defined as source distributions within finite 

volumes with arbitrary shapes (Fedi, 2007). However, often we can 

approximate the complexity of the real source to semi-infinite volume-

less shapes. For example we can see ridges, valleys, volcanic necks as 

cylinders or we can see a petroleum reservoir as a plane. 

These simple shape bodies are named one-point sources, meaning that 

we need the coordinates of just one singular point to define them 

(Stavrev, 1997; Fedi, 2007). 

We have seen that, also in the case of the electromagnetic field scattered 

by one-point sources, we can find a scaling law to scale the continued 

field and obtain the position of the source; in particular the scaled field, 

obtained through the DEXP transformation in eq. 3.56, will show a 

maximum/minimum in correspondence of the “one point” of the 

anomalous resistive body, if the resistivity contrast between the source 

and the background is positive or negative; in the CSEM case, however, 

as we showed in Figures 3.5 and 3.9 and as we will see in the next 

paragraphs, the maximum of the scaled field will be generally located in 

the part of the anomalous body resulting closer to the receiver.  

A typical one point source is the horizontal infinite cylinder. The Ez 

component of the electric field radiated by this kind of source located at 

           and measured at a generic point r located in the near zone can 

be expressed, normalizing by k and ρ as: 

 

  

 
           

                                        

          
   

 

(3.57) 
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So, the decay rate of this kind of field is      and then the structural 

index, N, we have to use to scale the upward-continued electromagnetic 

field scattered by a horizontal infinite cylinder is 2, as shown in Table 

3.1. 

Using the finite element method to compute the electromagnetic field 

radiated by any kind of source we can obtain the respective scaling 

functions, by using equation 3.54. 

 
Scaling function 

at z=-z0 (-) 
Structural index (N) 

Spheres -1.5 3 
Bottomless Vertical Infinite 

/ Horizontal infinite 
cylinders 

-1 2 

Bottomless thin vertical 
dyke,  

Semi-infinite horizontal 
sheet 

-0.5 1 

 

Table 3.1:  Structural indexes obtained for the most common one-point source 

bodies 

3.3.3 Determining the scaling exponent from the data 

In the previous case, the technique of source distribution imaging by the 

DEXP method was successful, but we used as a priori information, the 

exact structural index for the several sources. In real case, this 

information is not available, in principle, so we need specific methods to 

retrieve this information before performing the DEXP transformation. 

To this end we will describe now two methods, developed by Fedi 

(2007), for the estimating the scaling exponent, α, directly from the data. 

In this way, we can estimate the scaling exponent, α, to scale the 

continued field and we can apply the DEXP method also to investigate 

about more complex bodies than the simple shape bodies described 

above. 

Criterion of extreme point invariance versus derivative order 
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As we have seen in the previous paragraph, changing the derivation 

order, n, does not change the position of the extreme points in the scaled 

transformed fields, W. We can use this property to estimate the scaling 

exponent, α. 

Considering the equations 3.47, that is the general scaling function 

equation for a pole source:    
           

       
  

      

    
 , and since: 

                      , we have that the DEXP-

transformed field           has a maximum at:        p>0. 

If we use as scaling exponent a wrong scaling exponent,    , we have 

that the extreme point of the new scaled field            will be at: 

      
     

       
 

 

(3.58) 

 

so, we have that        only when               . 

Therefore, if we change the derivation order of the field and we are using 

the true scaling exponent   we will have always the exact position of 

the source (invariance rule showed above), but if we are using a wrong 

exponent,    ,varying the derivation order we have different positions of 

the extreme point, according to equation 3.60. 

Criterion of DEXP scaling function intercept. 

This second method allows us to estimate the scaling exponent directly 

from the scaling function. In fact starting from the general scaling 

function equation 3.47:     
      

    
, putting z=1/q, we get: 

 
       

   

     
 (3.59) 

 

so, as  q tends to 0 we have: 

              . (3.60) 
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Hence, the intercept of    versus   will give an estimate of the structural 

index N plus the order of differentiation, and as we can note the 

estimation of N does not depend on the vertical position of the source z0. 

As proposed by Fedi and Florio (2006), we can also consider the 

rescaled scaling function: 

 
                

      

     
   (3.61) 

where     is a guess depth. In this case we can obtain an estimation of 

N+p by the value assumed by            when       . 

3.3.4 Synthetic tests 

In this paragraph we will apply the DEXP method to the quasi-static 

electromagnetic fields scattered by the one-point sources described 

above. We have generated synthetic data by using the software 

COMSOL Multiphysics
TM

. 

The first case we consider is that of the electromagnetic field scattered 

by a homogeneous resistive sphere. The starting model used to obtain the 

data is the same of the one described in the Figure 3.2. Therefore, we 

consider a 100 Ωm homogeneous, small (radius= 10 m) sphere located at 

Q (100 m, 0 m,-200 m), black cross in Figure 3.2, buried in a conductive 

(1 Ωm) half-space. The primary source of the field is a horizontal electric 

dipole (HED) having similar characteristics to the antenna used in 

mCSEM prospecting and having as fundamental source frequency 0.3 

Hz. The model is a tri-dimensional model with just one receiver 

positioned at P (-1000 m, 0 m, 0 m), indicated by a yellow square in 

Figure 3.3. The off-set (distance antenna-receiver) varies to simulate a 

mCSEM survey with a step of 10 m both in the x and y direction. 

Overlapped to the half-space is considered a 1 km tick water column 

characterized by an electrical conductivity of 3.3 S/m. To obtain the 

scattered field, we have simulated the field of a 1 Ωm homogeneous half-

space and then we have subtracted it to the field obtained from the model 

described above. 
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The first step to perform the DEXP method is to form a 3D dataset 

upward-continuing the data. Figure 3.16 shows a section of the obtained 

3D data volume. In particular is showed the real part of the scattered Ez 

component of electromagnetic field at y= 0 upward-continued until the 

skin–depth (900 m). The field is continued using an upward-continuation 

algorithm working in the frequency domain. And as we said in 

Paragraph 3.2, to avoid problems linked frequency-aliasing errors, the 

input data sequences are extended to a greater length by mathematical 

extrapolation using zero-padding. 

 

Figure 3.16: upward continuation of the Ez component of the electromagnetic field 

scattered by a sphere obtained starting from the model in Figure 3.2 evaluated at 

y=0. 

Then, we have to scale the continued field inserting the appropriate 

structural index in equation 3.56 (in this case the derivation order p is 

equal to 0, because we do not consider any derivative of the field). In 

this case, we applied the criterion of equation (3.61) for estimating the 

structural index to the white signed portion of the ridge in Figure 3.4. 

The result, shown in Figure 3.17a, is: N=3. The scaled field, W, is shown 

in Figure 3.17b. 
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Figure 3.17: a) estimation of the structural index obtained using the criterion of 

DEXP scaling function intercept (Fedi, 2007); b) DEXP imaged field obtained 

starting from the upward-continued field in Figure 3.13 using as structural index 3. 

The white circle represents the source position. 

As we can see from Figure 3.17, the transformed field, W, shows very 

clearly the occurrence of a high at the correct source position. In other 

words, the appropriate scaling of the field versus depth is enough to 

disclose the depth to source of the considered potential field by a simple 

inspection of the extreme points of W (Fedi, 2007). Therefore, the 

position of the extreme points of the scaled function gives us the position 

of the anomalous body, but as we can see from Figure 3.17 there is a 

spreading around the extreme point. The spreading is due to the 

resolution of the field and, therefore, to the depth of the source and to the 

fundamental frequency emitted by the antenna. To improve the 

resolution of the DEXP transformed field we can scale the vertical 

derivative of the continued field. To this end in Figure 3.18, we show the 

scaled field obtained using the second order vertical derivative of the 

upward-continued Ez and as scaling exponent 2.5 (N/2+p/2, where p=2 is 

the derivation order) we can see a more resolved result with a less 

extended spreading area. 
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Figure 3.18: DEXP imaged field obtained starting from the second order vertical 

derivative of the upward-continued field in Figure 3.15 using as scaling exponent 

3.5. The white circle represents the source position. 

Unlike what happens for potential fields, we can improve the model 

resolution using a higher source frequency. This is a strong point of 

CSEM method, e.g. we can a priori determine the frequency of our 

signals and so choose the model resolution. 

In Figure 3.19 we show the upward-continued field that we have if the 

fundamental frequency radiated by the transmitting antenna is 1 Hz; in 

Figure 3.20 we show the DEXP-scaled field obtained using 1.5 as 

scaling exponent, α.  

As we can see from Figure 3.20, the model has a better resolution than 

the model in Figure 3.17 obtained using lower frequency data up to a  

300 m altitude, which is the difference between δ (in this case 500 m) 

and the source depth (200 m). In fact, we must take into account that, 

while increasing the frequency, the skin-depth decreases and then the 

maximum depth we can detect. We saw however that DEXP introduce a 

better control on the resolution since we may derive the field and 

correspondingly increase the resolution without reducing the skin depth 

(compare Figures 3.18 and 3.20). This is a very suitable feature of the 

DEXP method. 
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Figure 3.19: upward continuation of the Ez component of the electromagnetic field 

scattered by a sphere obtained starting from the model in Figure 3.2, but considering 

as fundamental source frequency 1 Hz, evaluated at y=0. 

 

Figure 3.20: DEXP imaged field obtained starting from the upward-continued field 

in Figure 3.16 using as structural index, N, 3. The white circle represents the 

source position. 

The control of the skin-depth on the applicability of the method is shown 

in Figure 3.21. In fact, in this Figure is shown the scaled field obtained 

starting from the upward-continued Ez component of the scattered field 

by a sphere as the one described above, but buried at a depth of 1000m 

(depth>δ) in a 1 Ωm half-space at 0.3 Hz. From the showed scaled field, 

we can see that the body (black cross in Figure 3.21) can’t be detected; 

in fact the sufficient condition for detect the bodies that:          

wherez is the maximum continuation height,    is the source depth and δ 

is the skin-depth. 
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Figure 3.21: DEXP imaged field obtained starting from the upward-continued field 

obtained starting from model described in Figure 3.2 but considering the anomalous 

source at a depth of 1000 m. The structural index is 3. The black cross represents the 

source position. 

The second one-point source we consider is that of the electromagnetic 

field scattered by a homogeneous infinite horizontal cylinder. The 

starting model used to obtain the data is the same of the one described in 

Figure 3.6 . The real part of the Ez component of the field at y=0 was 

upward continued, as shown in Figure 3.8.As we can see from Table 3.1 

the scaling exponent, α, needed to perform the DEXP transformation of 

this kind of field is 1. Also in this case the exponent was estimated using 

the criterion of DEXP scaling function intercept (Fedi, 2007) (Figure 

3.22a) on the white signed portion of the ridge in Figure 3.8. In Figure 

3.22b we show the scaled field obtained starting from the continued field 

in Figure 3.8 and using as scaling exponent 1. The maximum of the 

scaled field in not perfectly located in correspondence of the body (white 

circle in the Figure). This comes from the polarization effect, which is 

not vertical, due to the position of the receiver.  
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Figure 3.22: a) estimation of the structural index obtained using the criterion of 

DEXP scaling function intercept (Fedi, 2007) b) DEXP imaged field obtained 

starting from the upward-continued Ez component of the electromagnetic field 

scattered by a homogeneous horizontal cylinder. The field at z=0 is obtained starting 

from the model in Figure 3.6. In this case was used as structural index, N, 2. The 

white circle represents the source position. 

As we done in the previous case, we can improve reduce the spreading 

area around the source deriving the continued field. In fact, as shown in 

Figure 3.23, representing the DEXP scaled field of the third order 

vertical derivative of upward-continued Ez. Scaling the derived field, the 

depth of the source is perfectly estimated. Instead, the horizontal position 

of the body in not perfectly estimated. In general when the anomaly is 

dipolar, the estimate of the horizontal position of the source is not 

straightforward with the DEXP method. The horizontal position lies, in 

fact, in an intermediate position with respect the minimum and the 

maximum of the scaled field, which, in turn depends on the position of 

the receiver respect the antenna. We can obtain a simplified image by 

applying the DEXP transformation to the modulus of the analytic signal 

of the continued field (Figure 3.24). We show in Figure 3.24 the scaled 

field at y=0 of the analytic signal of the continued field. The analytic 

signal in fact does not depend (or depends weakly) on the inducing field 

inclination and declination. Also, it has a simpler form, reducing the 

number of highs and lows associated to a single source. The analytic 

signal is a functional transformation, which permits to locate the exact 
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lateral position of the body because the anomaly has a form over 

causative bodies, that depends on the location of the body but not on the 

position of the receiver. The analytic signal is formed through a 

combination of the horizontal and vertical gradient of the field (Blakely, 

1995). Starting from a 3D volume of data we get the modulus of the 

analytic signal from: 

 

    
   

  
 

 

  
   

  
 

 

  
   

  
 

 

 (3.60) 

When we apply the DEXP method to the analytic signal, the right 

structural index to use in this specific case is 3. In fact, the analytic 

signal of the field is built as the modulus of the first-order derivatives of 

the continued electric field. 

Figure 3.23: DEXP imaged field of the third order vertical derivative of the upward-

continued Ez scattered by the horizontal cylinder described in Figure 3.6. The white 

cross represents the source position. 

 

Figure 3.24: DEXP imaged field of the analytic signal of the upward-continued Ez 

scattered by the horizontal cylinder described in Figure 3.6. The white cross 

represents the source position. 

The third and last one-point source we consider is a semi-infinite plane 

as that described in Paragraph 3.2 (Figure 3.11). Also in this case, as in 

the previous cases the field has been upward-continued obtaining a 3D 
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volume. We choose just one section of the volume (the section at y=0) to 

describe the case. 

So, starting from the upward-continued field shown in Figure 3.13, we 

can obtain the DEXP-scaled field, W, multiplying the continued field by 

z
0.5

 (equation 3.56) where 0.5 (see Table 3.1) is the scaling exponent for 

a sill, or a horizontal semi-infinite sheet. The structural index was 

estimated using the criterion of DEXP scaling function intercept (Fedi, 

2007) on the white signed portion of the ridge in Figure 3.13 (Figure 

3.25a). 

 

Figure 3.25: a) estimation of the structural index obtained using the criterion of 

DEXP scaling function intercept (Fedi, 2007);  b) DEXP imaged field obtained 

starting from the upward-continued field in Figure 3.13 using as structural index, N, 

1. 

As we can see from Figure 3.25b, just the part of the body closest the 

receiver is detected by our method. 

We can nevertheless have a full image of the body: we just need the data 

acquired by more receivers and merge the corresponding DEXP-imaged 

field, as we will see in Paragraph 3.3.5. 

Applying the DEXP method, the depth of the source is perfectly located, 

but the horizontal position of the boundary of the body in not perfectly 

estimated and lies in an intermediate position with respect the minimum 
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and the maximum of the scaled field. To have a better resolution, we 

have valuate also the scaled field starting from the third vertical 

derivative of the upward-continued field showed in Figure 3.15 (Figure 

3.26). As we can see from the Figure, the model has a better resolution 

than in the previous case, in fact the spreading area is reduced, but also 

in this case the horizontal position of the body is in an intermediate 

position with respect the minimum and the maximum of the scaled field. 

Figure 3.26: DEXP imaged field obtained starting from the upward-continued field 

in Figure 3.15 using as scaling exponent 3.5. 

So, as in the infinite horizontal cylinder case, to have a more intuitive 

DEXP image of the portion of the body closest to the receiver, we have 

to consider the analytic signal of the upward continued field. We have 

scaled the 3D data volume of the analytic signal using as scale exponent 

1 (0.5+p/2, with p=1) for the above-explained reason. The scaled field, 

obtained from the analytic signal using as scale exponent 1.5 is shown in 

Figure 3.27. 

 

Figure 3.27: DEXP imaged field obtained starting from the analytic signal of the 

upward-continued field in Figure 3.13 and using as scale exponent 1. 

The Multiridge and DEXP methods can be successfully applied to all the 

components of the electromagnetic field. For example, in Appendix 3 we 

show the results of tests conducted considering the x-component of the 

electric scattered field, Ex.    
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3.3.5 More complex bodies 

Using the two methods describes above we can estimate the proper 

scaling exponent, α, to scale the upward-continued field. Using these 

two methods we can detect complex bodies which do not belong to any 

class of simple shape body (sphere, horizontal cylinder, thin layer), but 

can be viewed as a cross between these kinds of bodies. So, using these 

two methods, we can estimate a real number between 0 and 1.5 (using 

the second method we will estimate an N that is between 0 and 3 for the 

electric field) that will be the proper scaling exponent to use to detect the 

anomalous body. 

Moreover, as we said in Paragraph 3.3.3, in order to have a full image of 

the anomalous body, we have to use the data acquired by several 

receivers deployed on the sea-floor and then merge the results. 

In this paragraph we will show a synthetic test in which we have 

considered a finite (2km x 3km x 200m) resistive (0.01 Ωm) thin sheet 

with a thickness of 200 m buried at 150 m in a 1 Ω/m half-space (Figure 

3.25). We have considered the signals acquired an array of 13 receivers 

spaced as shown in Figure 3.28. The antenna is a horizontal electric 

dipole (HED) 150 m long and emits a signal with a fundamental 

frequency of 0.3 Hz. The antenna is towed by a ship in x and y direction 

and is located at a height of 30 m from the sea-floor. The offset (distance 

antenna-receiver) varies with a step of 10 m in both x and y directions.  
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Figure 3.28: starting model for a thin sheet used to solve the forward problem. 

Then, we have considered the signals at each receiver and we have used 

them to have a full image of the anomalous body. In particular, we have 

considered the electric field scattered by the resistive body at each 

receiver. It is obtained subtracting to the field simulated starting from the 

model in Figure 3.28 the field that we have is there is not any resistive 

body buried in the half-space. 

In Figure 3.29 is shown the real part of the component Ez of the scattered 

field acquired by the receiver positioned at P (-4000, 0, 0). 

The fields at each receiver are upward-continued using the continuation 

algorithm working in frequency domain until a elevation of 700 m (less 

than skin-depth to stay in the near field zone). As done also in the 

previous cases, to avoid problems linked frequency-aliasing errors which 

can arise performing upward continuation in frequency domain, the input 

data sequences are extended to a greater length by mathematical 

extrapolation using zero-padding. 

To better locate the lateral position of the resistive body, is applied the 

DEXP transformation to the analytic signal of the continued fields at 
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each receiver. In Figure 3.30a,….,o are shown the analytic signals of the 

continued fields at each receiver evaluated at z=0. 

The obtained 3D data volumes have been scaled using the scaling 

exponents (α) estimated for each signal using the methods described 

above. 

 

Figure 3.29: real part of the component Ez of the scattered field acquired by the 

receiver positioned at P (-4000, 0, 0) in Figure 3.28. 

As we can see from the Figures 3.30a,…,o, the shape of the anomaly 

changes varying the receiver position. In particular, the maximum values 

of the fields are located in correspondence of the portion of the body 

closest the receivers. When the receiver is above the anomalous body, 

the maximum area of the DEXP image is focused in correspondence of 

the receiver because the greatest contribute to the field comes from that 

portion of the anomalous body, which is the closest to the antenna. 

For this reason also the structural index, N, will change varying the 

receiver position. In fact, when the receiver is above the body 

(Figure 3.30d …  ) the analytical signal anomaly is similar to that due 

to a buried concentrated source distribution, e.g., similar to that of a 

resistive sphere. We then expect a structural index estimate of about 

3. Instead, when the receiver is located outside the resistive body 

the expected structural index estimate is about 1 (0.7<N<1.4) 
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because the anomaly is there more similar to that of a thin infinite 

layer (Figures 3.31 a; b).  

In Figure 3.32a,….,o the scaled fields W, computed using the estimated 

scaling exponents, are shown; in particular, to have a better 

understanding of the images we show the sections of the scaled fields at 

each receiver and at y=0. 

Then, to have a meaningful image of the anomalous body, we have 

merged all the results representing only the maximum of each scaled 

field in the same plot (Figure 3.33). As we can see from Figure 3.33, in 

this way we can estimate the exact position and extension of the 

anomalous resistive body. 

Unfortunately, note that this whole picture cannot completely be seen on 

real data, because the signal is typically saturated in correspondence of 

the receiver (at zero off-set). So, we cannot evaluate the scattered field in 

correspondence of the receiver. However, in real cases, we can consider 

the scattered field only at positive offsets, at distances from the receiver 

greater than the dimension of the saturation zone of the signal. 
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Figure 3.30: analytic signal of the continued fields at each receiver evaluated at 

z=0. R denotes the receiver position. 
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Figure 3.31: Structural index, N, estimated using the criterion of DEXP scaling 

function intercept (equation 3.61). a) from the ridges obtained considering the real 

part of the Ez component when the receiver is at P (-4000, 0, 0); b) from the ridges 

obtained considering the real part of the Ez component when the receiver is at P (-

300, 0, 0). 
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Figure 3.32: DEXP image sections evaluated at each receiver at y=0, W. The 

scaling exponents were estimated through equation 3.61 before each DEXP 

transformation (equation 3.56). 
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Figure 3.33: Maxima of the DEXP transformed fields represented in Figure 3.31. 

3.4 Application to real data. 

The Multiridge and DEXP methods was tested on a real dataset kindly 

made available by eni e&p. 

The method was applied on data acquired in a well-known complex 

exploration area where mCSEM method was used to help define the 

hydrocarbon distribution in narrow and elongated fault compartments 

with thin stacked reservoir sandstones. The area was previously  

explored by extensive 2D and 3D seismic campaigns and by wells 

penetrating hydrocarbon-bearing rocks of Late, Middle and Early 

Triassic ages (Dell’ Aversana, 2012). The area is characterized by the 

presence of many faults cutting a roll-over structure and a boundary 

fault. The water depth varies from 260m to 440mand the seabed has a 

smooth topography. 

Although the area was widely explored, there are still uncertainties 

related to the extent of the accumulation, which depends on the sealing 

properties of the bounding faults, and the faults inside the roll-over 

structure. 

As we can see from the seismic section in Figure 3.34 (Dell’ Aversana, 

2012), the area is characterized by the presence of two overlapped 

reservoir at a depth from the seafloor of about 800 m and 1500m 

respectively. In particular, the seismic section in Figure 3.34 is the pre-

stack depth migration (PSDM) section along line, the blue line in Figure 

3.33.  

The data was acquired by 83 CSEM receivers deployed along six lines 

(Figure 3.35) with two fundamental frequencies: 0.5Hz and 0.15Hz. The 

antenna (a horizontal electric dipole) is towed by a ship in direction of 
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each-line and we consider at each receiver the in-line component of the 

electric field. 

We study the field in the direction in-line with the transmitter dipole 

antenna because in this case the electric field lines are purely radial and 

plunge into the seafloor with a significant vertical component. The 

associated currents can be interrupted by tabular resistors such as 

reservoirs, producing a galvanic distortion of the electric field. This will 

be visible on the seafloor as increased electric field amplitude. Instead, in 

the direction broadside to the transmitter, electric fields are purely 

azimuthal and largely horizontal, and will not produce a galvanic 

response to horizontal boundaries. This results in a large difference in 

sensitivity between the radial and azimuthal geometries to thin resistive 

layers. This result was noted in a 1984 proposal submitted to 14 oil 

companies by Scripps; the authors examined a buried resistive layer 

model and concluded, “It is the TM mode of the experiment which is 

most sensitive to resistive structure. This makes the choice of transmitter 

geometry most important” (Constable, 2010). 

 

Figure 3.34: Seismic section acquired along the blue profile in Figure 3.33 (Dell’ 

Aversana, 2012). 
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The offset (distance antenna-receiver) varies with a step of 100 m. 

Receiver noise is very low because cultural and MT noise is highly 

attenuated in the CSEM frequency band (Constable, 2007). 

 

 

Figure 3.35: Survey layout. 

We have considered the curves representing the amplitude and the phase 

of the in-line (radial) component of the electric field at each off-set in 

semi-logarithmic scale (MVO and PVO curves) evaluated at each 

receiver for both frequencies 0.5 Hz and 0.15 Hz. Then, to have the 

signal due to the resistive anomalous buried body, we have chosen a 

reference signal, that is the signal acquired in a portion of the survey area 

far to the anomalous body, and we have subtracted it to the acquired 

signals. In Figure 3.36 is shown one of the MVO curve acquired (blue 

signal). As we can see, the signal saturates at off-sets   0, so we must 

consider the signal at off-set > 0 or at off-sets < 0. In the same Figure is 

shown the MVO curve of the reference signal used to obtain the 

scattered field (green curve in Figure 3.36). Comparing the two MVO 

curves in Figure 3.36 we can see that the values of the radial electric 



DEXP imaging technique for CSEM Data. 

110 
 

field of the blue MVO curve are higher than the values of the radial 

electric field of the reference signal; it means that, probably, there is an 

anomalous resistive body located in correspondence of the maximum 

difference between the two signals. 

 

 

Figure 3.36: The blue MVO is the signal acquired by a receiver deployed along the 

blue line, the green MVO is the reference signal. 

We have subtracted to the signals acquired at each receiver, the reference 

signal. In particular, was considered two reference signals one at 0.15 Hz 

and one at 0.5 Hz.  

Then, from amplitude and phase of the scattered radial electric field we 

have obtained the real part and the imaginary part of the scattered radial 

electric field evaluated at each receiver. 

The real and imaginary parts of the radial component of the electric field 

(Er) have been upward-continued until a height less than skin-depth. 
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Hence, the Multiridge method was applied on the absolute value of the 

Er upward-continued field, to have a preliminary estimation of the 

sources position. 

In particular, according to what required by the Multiridge and DEXP 

analysis shown in the previous section, the real and imaginary parts of 

the radial component of the electric field (Er) was upward-continued up 

to an altitude less than skin-depth. For the typical formation rock 

resistivity present in the area of study, the skin depth for the 0.5 

frequency may be evaluated as about 1.5 km and for 0.15 Hz as about 

2.5 km. In this case, since the data was acquired along profiles (we do 

not have a matrix of data at each receiver), we used a 1D upward 

continuation algorithm. Using a 1D upward-continuation algorithm we 

are assuming that the body is infinite in the direction orthogonal to the 

profile, but we can recognize the three-dimensional shape and position of 

the anomalous bodies as well, because we use the data acquired along 

lines directed in several orientations. 

In Figure 3.37d we show an example of the application of the Multiridge 

method to the data acquired by the receiver indicated by the arrow in 

Figure 3.35, for a 0.15 Hz frequency. In particular, we have applied the 

method to the second order vertical derivative of the scattered radial 

electric field (Er), obtained subtracting to the total field a reference signal 

(Figure 3.36) that is the signal acquired by a receiver deployed far from 

the source of the anomaly. Therefore, as described in the Paragraph 3.2, 

we have evaluated, starting from the second order vertical derivative of 

the upward continued Er, the ridges using the Canny's method (Figure 

3.37d). The blue ridges are referred to the zeros of the third order vertical 

derivative of the field shown in Figure 3.37a. As seen in Paragraph 3.2, 

just a portion of each ridge is a straight line, but, extending the ridges 

downward, we have demonstrate that these ridges intersecting at the 

point x0, z0, which is the location of the part of the anomalous body 

closest to the considered receiver. 
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Figure 3.37: a) Absolute value of the upward-continued Er component of the 

scattered field, acquired by the receiver indicated by the arrow in Figure 3.36, and 

obtained subtracting to the acquired signal a reference signal acquired by a receiver 

far from the source. The dotted white line represent the portion of ridge considered 

to estimate the structural index, N. b) Structural index, N, estimated using the 

criterion of DEXP scaling function intercept (equation 3.61).c) DEXP imaged field 

obtained using as structural index the structural index estimated and shown in 

Figure 3.37c. d) Application of the Multiridge method to the absolute value of the 

second order vertical derivative of the upward-continued Er component of the 

scattered field, acquired by the receiver indicated by the arrow in Figure 3.35. 

 We have then continued the fields measured at each receiver and at both 

frequencies, and scaled them using the structural indices, N, estimated 

using the criterion of DEXP scaling function intercept (equation 3.61), 

along selected ridges. In Figure 3.37a,b,c we apply the DEXP method to 

the 0.15 Hz data acquired by a receiver, indicated by the arrow in figure 

3.6. In particular, in Figure 3.37a we show the absolute value of the 

upward-continued scattered field, obtained by subtracting, to the data 

acquired by the receiver indicated by the arrow in Figure 3.35, the signal 

acquired by a far receiver, sited in an area characterized by higher 

resistivity. Moreover, in the same figure, we show the ridges obtained 

joining the zeros of the first order vertical derivative of the field. Instead, 

in Figure 3.37c we show the DEXP imaged field obtained scaling the 

field in Figure 3.7a using the structural index estimated as shown in 

Figure 3.37b, using equation 3.61.  



DEXP imaging technique for CSEM Data. 

113 
 

The DEXP method, was then applied to all the signals acquired during 

the survey. In general, the values of the scaling exponents are between 

0.9 and 1.5, so the anomalous body is comparable to a relatively thin 

layer, a shape well in agreement with the oil reservoirs represented in the 

seismic section (Figure 3.34). Since, as widely demonstrated in the 

previous paragraph, from a single signal we can see only the part of the 

anomalous body closest the receiver, to have a full view of the 

anomalous body we have merged all the results evaluated for each 

receiver and for each frequency. So, as we done in the synthetic case 

showed in the previous paragraph we represent the maxima values of 

each scaled field to have a meaningful image of the anomalous resistivity 

distribution. The result obtained starting from the data acquired by the 

receivers deployed in correspondence of the blue dots along the blue line 

in Figure 3.35 is shown in Figure 3.38. In particular the blue dots 

represent the maxima of the scaled field at each receiver for the 

frequency 0.15 Hz and the white dots represent the maxima of the scaled 

field at each receiver for the frequency 0.5 Hz. In Figure 3.38 is shown 

also the comparison between the obtained result and the resistivity 

section obtained by 3D anisotropic inversion of CSEM data for the same 

profile published by Dell’ Aversana (2012).The horizontal gaps between 

the resistors present in the Figure were not estimated as an inversion 

results but was highlighted with the asymmetry method developed by 

Dell’ Aversana (2010). As we can see, in this case using the DEXP 

method we have meaningful information about the location and the 

extension of the upper reservoir and have just a point located in 

correspondence of the lower reservoir. But as we can see from the 

inversion results the resistivity contrast of the lower reservoir is very 

small and we detect the part of the lower reservoir showing the 

maximum resistivity contrast with the surrounding rocks.  

Is very important to consider that the results obtained using 3D inversion 

were obtained using very strong constraints coming from seismic and 

well data. Conversely, our results are obtained without using any 

constraint and a priori information. This shows the usefulness and high 

potential of the method developed in this thesis, namely the DEXP 

analysis of electromagnetic fields in the CSEM framework. 
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Figure 3.38: the blue and white dots represent the maxima of the DEXP transformed 

fields obtained from the data measured by the receivers positioned along the blue 

line in Figure 3.33 for a fundamental source frequency of 0.15 Hz and 0.5 Hz 

respectively. The Figure in background is the result of the 3D anisotropic inversion 

(Dell’Aversana, 2012). 

The DEXP method has been also applied to all the data acquired at each 

receiver at both frequencies (0.5 Hz and 0.15 Hz) yielding similar very 

meaningful results. Unfortunately we have not the possibility to access to 

the inversion-based interpretation along the other profiles, so that we 

cannot compare with them our results. However we obtained results 

comparable to those shown in Figure 3.39, that is we localized resistors 

at similar depths for each profile. And, once again, we obtained depth 

estimates generally higher in the 0.15 Hz case. The zero-altitude is the 

sea-floor level. 
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Figure 3.39: results obtained applying the DEXP method to all the signals acquired 

during the survey described in the paragraph. The red dots represent the results 
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obtained from data acquired with a fundamental frequency of 0.15Hz; the blue dots 

represent the results obtained from data acquired with a fundamental frequency of 

0.5 Hz. 

In Figure 3.40 we show, finally the obtained result for the whole survey. 

 

 

Figure 3.40: the red and black dots represent the maxima of the DEXP transformed 

fields obtained from the data measured all the receivers in Figure 3.33 for a 

fundamental source frequency of 0.15 Hz and 0.5 Hz respectively. 



 

 

 

Conclusions 

During my PhD I have developed two methods for a fast interpretation 

of marine Controlled Source Electro-Magnetic (mCSEM) data. 

mCSEM sounding is an electromagnetic method which uses the low 

frequency (0.1 Hz 10 Hz) signal emitted by an antenna (generally a 

horizontal electric dipole (HED)), towed by a ship near the sea-floor, to 

get information about the resistivity distribution beneath the sea-floor. 

The electro-magnetic field is received by an array of electric and 

magnetic receivers deployed on the sea-floor. So, this kind of sounding 

is an useful support tool to other geophysical methods to detect and 

monitoring oil and gas reservoirs located beneath the sea-floor. In fact, 

the oil and gas reservoirs show higher values in resistivity than the 

surrounding rocks.  

Generally, for the interpretation of the mCSEM data inversion methods 

are used, requiring high computational cost and very strong constraints 

to get reasonable and potentially unique results. Here we have proposed 

two fast and low computational-cost methods (to use as they are or even 

before using inversion methods), which have the great advantage of not 

requiring any a-priori information, and proved that they may give us  

very useful information about the resistivity distribution. 

The first proposed method is the “Singular Function Normalization” 

(SFN). As we have seen in Chapter 2 the SFN method is a fast and low 

computational cost method for the interpretation of marine controlled 

source electromagnetic data, based on the quantitative analysis of the 

MVO curves. MVO represents the observed amplitude of the in-line 

electric field component versus offset (the distance between the source 

and the receiver) in a semi-logarithmic scale. As well known, and also 

shown in Chapter 2, the MVO shape is strictly linked to resistivity 
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distribution. I propose a new method of analysis, based on determining, 

on the MVO curves, the best-fit estimation of the exponent coefficients 

of the exponential singular functions and of the exponents of the Lipchitz 

singular function. We selected these functions since they may be 

considered a good approximation of the MVO curves relative to the 

simplest case of the half-space, which is in fact singular at the zero-

offset. Being the behaviour of the MVO branches dependent on the local 

resistivity distribution, the estimated parameters in the exponents of 

these singular functions can give information about the horizontal 

location of buried resistive bodies. So, this method represents a fast and 

computationally low-cost way to have 2D maps showing areas with the 

lowest value of drilling risk. 

We demonstrated the good performance of the SFN method for both a 

synthetic and a real dataset, this last kindly made available by eni e&p. 

The results obtained from the test on real data show a good 

correspondence with the well logs and the results obtained by 

Dell’Aversana (2012) for the same area. 

The second proposed method is based on the multiscale approach of the 

Multiridge analysis (Fedi et al., 2009) and of the “Depth from Extreme 

Points” method (DEXP; Fedi, 2007). These methods were for the first 

time applied, in this thesis, to low frequency electromagnetic data. These 

method get information about the depth and the location of the resistive 

buried sources and the DEXP gives also information about a 

characteristic parameter of the sources, the structural index N, which is 

linked to the shape of the source, as shown  in Chapter 3. The most 

important feature of these multiscale methods is that this information is 

extracted from the data without any a priori information. The DEXP 

method was originally developed for the interpretation of static fields, 

such as gravity and magnetic field. Here we have shown that is possible 

apply this method also to low-frequency electromagnetic data. The 

DEXP and the Multiridge methods are based on the evaluation of the 

field at altitudes higher than the measurement altitudes (upward-

continuation). This task is not simple for the electromagnetic field. 

However, I have shown that is possible to use the upward-continuation 

algorithm also for non-static low-frequency fields, under the assumption 
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that the distance from the source has to be less than the skin-depth δ. I 

tested the method on synthetic data, related to simple models, such as an 

uniform resistive sphere buried in a half-space or an infinite horizontal 

cylinder buried in a half-space, and on more complex models such as a 

horizontal finite thin resistive layer buried in a half-space.  

From this analysis we see that there are significant differences between 

the DEXP method applied to low-frequencies electromagnetic data and 

the application of the DEXP method to potential field data. The main 

difference is that the scattered field is strongly influenced by the receiver 

positions with respect the transmitter, which in turn determines the 

polarization direction and intensity for each receiver. However, for each 

profile (with a transmitter and an array of receivers), the portion of the 

body closest to the transmitter is energized much more than the external 

parts, so that we can assume there an approximately uniform polarization 

of constant intensity. Instead, for static fields, as occurs in the 

magnetostatic case, we may assume that the polarization is uniform in 

direction and has a nearly constant intensity for the whole source in the 

crust. For a typical CSEM survey this means that we must consider each 

profile separately, since each of them is relative to a different position of 

the transmitter. But, the interesting thing is that merging the results 

obtained for each transmitter position, we can very well define the 

position and the shape of the whole resistor, as shown in Figures 3.32 

and 3.33.  

One more striking feature of the DEXP method for EM fields, as 

described in Paragraph 3.3.5, is that the structural index is naturally 

linked to the transmitter and receivers positions. To this end, we have 

shown the case of a thin resistive sheet. When the transmitter is located 

close to the resistor we obtain N=3 as structural index, that is the 

structural index of a sphere, being the part of the source mostly lightened 

very concentrated. Instead, when we are far from the resistor the 

structural index is around 1 (0.7<N<1.4) because the scattered field 

anomaly is there more similar to that of a thin infinite layer. The 

whole picture is clear when looking at figures 3.30 and 3.31.  
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Finally, I applied the method to the real data-set made available to us by 

eni e&p. The DEXP imaged results were compared with the results 

obtained using anisotropic 3D inversion and showed a very good accord 

with them, when compared along a recently published interpreted 

section.  
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Appendix 1 

Electromagnetic induction equations. 

This appendix is taken from Chave et al. (1991). 

The Maxwell's equations in the quasi-static limit with all electric current 

terms except the conduction current neglected are: 

       (A1.1) 

 
    

 

  
    (A1.2) 

              (A1.3) 

where E and B are the electric field and magnetic induction,   is the 

magnetic permeability of free space,   is the electrical conductivity, and 

J is the impressed source electric current density. Using a Mie 

representation (Backus, 1986), the magnetic induction may be written: 

 
           

 

  
    

     (A1.4) 

where    denotes the horizontal gradient operator and II and   are 

scalar functions representing toroidal and poloidal magnetic (TM and 

PM) modes, as discussed in the text. The source current in equation (A3) 

may be decomposed in a similar way to equation (A4): 

                  (A1.5) 

where   is the vertical part of the source current and Y and T are scalar 

functions which satisfy the Poisson equations: 

   
            (A1.6) 

   
         (A1.7) 
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lf the electric fie/d is also written in terms of three. scalars, the 

conductivity profile is assumed to vary only vertically, and the Cartesian 

components of equations (A2) and (A3) are written out explicitly, it can 

be shown, using the properties of analytic functions of a complex 

variable, that the modal scalars satisfy the differential equations: 

 
  

    
 

  
 

 

  

 

 
     

 

  
         

 

  
 
 

 
  (A1.8) 

 
       

 

  
      (A1.9) 

and the electric field is given by: 

 

       

 

  
     

 
 

  

 

  
   

 
  

   
  

  
   

   
  (A1.10) 

The differences between equation (A8) and equation (A9) are caused by 

the nature of the electric currents associated with the two modes. 

Equation (A8) reduces to that for dc resistivity sounding in the zero 

frequency limit, while equation (A9) is the usual diffusion equation of 

EM induction. 

The modal equations can be solved conveniently by constructing Green 

functions which incorporate the necessary EM boundary conditions at 

the seafloor and sea surface, which are assumed to be flat interfaces. 

Assuming      time dependence, expressing the horizontal spatial 

components as the Fourier transform pair defined by: 

                            
 

  

 

and 

 
       

 

     
            

 

  

           (A1.11) 

and assuming an ocean depth H and conductivity   , then placing the 

coordinate origin (z = 0) at the seafloor yields: 
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(A1.12) 

 
                         

 

 

 (A1.13) 

where the Green functions are: 

        

  
             

                            
                

        
         

 

(A1.14) 

        

  
             

              
                  

    
                

        
    

         
 

(A1.15) 

where    are the reflection coefficients at the sea surface and    are the 

reflection coefficients at the seafloor. 

These coefficients are given by: 

 

  
   

  

  
  

  

  
  

 

 

 
  

   
   

   
 (A1.16) 

 
  

   
    

    
 

 

where   and   are TM and PM mode response functions which contain 

all of the information on conductivity below the seafloor necessary to 

solve the problem and the induction parameter is: 

              (A1.17) 
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with the composite wavenumber given by         . Expressions 

for the modal response functions for both layered and continuous 

conductivity profiles are given in Chave and Cox (1982), and their 

different functional forms are caused by the disparate sensitivity of the 

two modes to electrical structure. Since the reflection coefficients are in 

general complex, the EM induction phenomena they represent are 

complicated, involving leaky surface or evanescent waves. 



 

 

 

Appendix 2 

For the 1D case (in which the earth is represented by a stack of layers), 

the radial component of the electric field can be decomposed as: 

      
     

   (A2.1) 

Hence, Andréis and MacGregor (2008), starting from the Maxwell’s 

equations, have evaluated the analytic expression of the TM and PM 

modes for the radial electric field of an HED positioned at an height z’ 

above the sea-floor and calculated at a receiver lying at height z above 

the sea-floor: 

  
   

 

    
                

      

 
 

 

      
    

  

 

 

                
                 

            

   
      

               

 (A2.2) 

  
   

 

    
     

            

   
 

 

 

 

      
    

              

   
                 

               
      

               

(A2.3) 

where r is the distance between the source and receiver, ϕ is azimuth 

defined as the angle between the dipole axis and the line joining source 

and receiver, P is the source dipole moment, σ0 is the conductivity of the 

seawater layer, k is the horizontal wave-number and β0 is the complex 
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wave-number in the sea defined as              .  J0 and J1 are 

first and second order Bessel functions respectively, defined in equations 

A2.4 and A2.5 as: 

 
        

     

        
      

 

   

 (A2.4) 

 
        

     

             
        

 

   

 (A2.5) 

Information about the resistivity structure in which the field diffuses is 

contained in reflection coefficients RL and Rair. More precisely, 

information about the earth is contained in coefficients RL, which are 

calculated by applying the boundary conditions for the field components 

recursively at each material boundary in the structure starting from the 

deepest layer (Figure 1.4) (Andréis and MacGregor, 2008). 

  
  and   

  in the layer l − 1 on the interface with layer l underneath are 

expressed in equations A2.6 and A2.7 respectively: 

 

      
   

             

             
       

         

        
               

             
       

 (A2.6) 

 

      
   

       

       
       

         

        
         

       
       

 (A2.7) 

Instead, the reflection coefficients     
   and     

   represent the reflection 

coefficients of TM and PM mode at the interface air-sea and depend on 

the water depth H0, the conductivities of air and sea-water and the 

frequency of the signal. These coefficients are given by: 

 
    

   
             

             
        (A2.8) 

     
   

       

       
       . (A2.9) 

Reflection coefficients are expressed in the horizontal wave-number 

domain and in the vertical spatial domain. If we assume that the air is 

infinitely resistive, the TM mode reflection coefficient at the sea surface 

is -1, instead the     
   will be given by: 
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  (A2.10) 

 where        

So, in contrast to the TM mode, the amplitude of the PM mode reflection 

coefficient is not equal to one (except at zero wave-number), allowing 

transmission of signals into the air. This indicates that PM and TM mode 

signals interact differently with the air-sea interface, with the PM mode 

contributing primarily to the classic airwave signature (Andréis and 

MacGregor, 2008) 

 
Figure 1.4: from Andréis et al. (2008); schematic of the referential used for the 

recursive reflection coefficient calculation. Here, l=0 is the seawater layer with 

water depth H0, l=1 is the first earth layer with thickness Hl, and l increases with 

depth in the earth. 



 

 

 

Appendix 3 

Application of the Multiridge and DEXP methods to the horizontal 

component of the electric scattered field, Ex. 

To demonstrate that the methods are applicable successfully to all the 

components of the electromagnetic fields, the Multiridge and DEXP 

methods was tested also considering the Ex component of the 

electromagnetic scattered field. 

For example, the methods were applied to the Ex scattered field by a 

buried resistive sphere obtained starting from the model shown in Figure 

3.2 and described in Paragraph 3.2. In particular, in Figure A3.1 is 

shown the amplitude of field. So, to demonstrate de applicability of the 

Multiridge method, the real part of the simulated Ez was continued (using 

a 3D static continuation), in the frequency domain, using a step ΔZ=10 m 

until the height 2000 m, as shown in Figure A3.2, and then was 

evaluated the ridges using the Canny’ s method described in Paragraph 

3.2. In particular, the pink lines in Figure A3.2 are referred to the zeros 

of the first vertical derivative of the field and the yellow lines are 

referred to the zeros of the first horizontal derivative of the field. As we 

can see from this figure, also in this case, as happens for the Ez 

component, the ridges are not straight lines at all the altitudes, but can be 

considered straight near the source (the resistive sphere); in fact, as we 

have mathematically demonstrated in Paragraph 3.1, they are expected to 

be straight at distances lower than skin-depth (δ). Hence, as expected, 

extending downward the straight part of the ridges, they intersect at x0, 

y0, as mathematically demonstrated. In particular, the dipolar nature of 

the electric field is more evident when Ex component is considered rather 

then we consider the vertical component Ez.  For this reason, as widely 

explained in Chapter 3, we cannot estimate perfectly the horizontal 
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source position x0, or we can improve the result considering the analytic 

signal that reduces a dipolar anomaly in a monopolar anomaly. In fact, in 

this case, considering only the real part of Ex the ridges converge at x=0 

m but the horizontal position of the sphere is at x=100 m, as shown in 

Figures A3.2 and A3.3. Moreover, also in this case, the number of ridges 

increases increasing the derivative order, as shown in Figure A3.3 which 

represent the second order vertical derivative of the real part of Ex with 

the relative ridges, so that deriving the field we can better locate the 

anomalous body. Starting from the field shown in Figure A3.3, I have 

tested also the DEXP method which is described in Paragraph 3.3. So, 

the upward continued field, shown in figure A3.2, was scaled using the 

structural index estimated using the criterion of DEXP scaling function 

intercept (Fedi, 2007), considering the portion of the ridge surrounded by 

the white dotted line in Figure A3.2, described in Paragraph 3.3.3. The 

obtained result as shown, in Figure A3.4, is that the structural index, N, 

we have to use to have the DEXP imaged field is 3 in agreement with 

those reported in Table 3.1.  

Hence, the field in figure A3.2 was scaled using the estimated structural 

index obtaining as result the DEXP imaged field shown in Figure A3.5. 

Also in this case, as for the Multiridge method, the depth of the source is 

perfectly estimated but the source is not perfectly located on the x-axis. 

This is, as we already said, due to the dipolar nature of the field that is 

even more evident when we consider the Ex component rather than the Ez 

component of the electric scattered field.  
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Figure A3.1: Amplitude of the Ex component of the electromagnetic field scattered 

by a homogeneous resistive sphere obtained starting from the model described in 

Figure 3.2. The yellow square represent the receiver position. The white square 

represent the source position. 

 

 

Figure A3.2: upward-continuation of the real part of Ex scattered by a homogeneous 

resistive sphere at y=0. The pink lines are referred to the zeros of the first vertical 

derivative of the field; the yellow lines are referred to the zeros of the first horizontal 
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derivative of the field. The dotted white line represents the portion of ridge that we 

have taken into account for the structural index estimation (see Paragraph 3.3.3). 

 

Figure A3.3: second order vertical derivative of the upward-continuation of the real 

part of Ex scattered by a homogeneous resistive sphere at y=0. The pink lines are 

referred to the zeros of the third vertical derivative of the field; the yellow lines are 

referred to the zeros of the third horizontal derivative of the field. 

 

Figure A3.4: estimation of the structural index obtained using the criterion of DEXP 

scaling function intercept (Fedi, 2007), obtained considering the portion of ridge 

shown in Figure A3.2. 
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Figure A3.5: DEXP imaged field obtained starting from the upward-continued field 

in Figure A3.2 using as structural index 3. The white circle represents the source 

position. 

Then, the Multiridge and DEXP method was tested considering also the 

other two kinds of one point sources described in Chapter 3, which are 

the horizontal infinite cylinder and the semi-infinite horizontal layer.  

So, in Figure A3.6 is shown the amplitude of the field scattered by a 

horizontal infinite cylinder obtained starting from the model in Figure 

3.6. Also in this case was applied the Multiridge method upward-

continuing the field shown in Figure A3.6 and then evaluating the ridges 

using the Canny’s method (Figure A3.7). Also for this case, are valid all 

remarks made for the previous cases and then the ridges are not straight 

at all the altitudes, but are straight until an altitude approximately equal 

to the skin depth (δ ). Also in this case, the straight parts of the ridges 

converge at a depth perfectly equal to the source depth (Figure A3.7), 

but the dipolar nature of the field does not permit to estimate exactly the 

horizontal position of the source considering only the real part of the 

field. So, to have a better result, the Multiridge method was applied first 

to the amplitude of the Ex scattered field (Figure A3.8), obtained 

upward-continuing separately the real and imaginary part of the field and 

then evaluating the amplitude. 

Then, scaling the field shown in Figure A3.7 using the structural index, 

N, estimated using the criterion of DEXP scaling function intercept 

(Fedi, 2007), considering the portion of the ridge delimited by the white 

dotted line, we have obtained the DEXP imaged field (Figure A3.10). As 
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shown in Figure A3.9, the estimated structural index for this case is 2, in 

agreement with what reported in Table 3.1. The result obtained in Figure 

3.10 gives information about the source location but we can improve our 

result applying the DEXP method to the second order vertical derivative 

of the Ex upward continued field (Figure A3.11). As shown in Figure 

A3.11 the source depth is perfectly estimated, but, as happens all the 

time we consider only the real part of the electric field, the horizontal 

position of the anomalous body, located between the two extremes point 

shown in Figures A3.10 and A3.11, cannot be perfectly estimated. So, to 

better locate the anomalous body, is better to apply the method to the 

analytic signal of the scattered Ex component (Figure A3.12). 

 

Figure A3.6: Amplitude of the Ex component of the electromagnetic field scattered 

by a homogeneous resistive horizontal cylinder obtained starting from the model 

described in Figure 3.6. The yellow square represent the receiver position. The black 

rectangle represents the source position. 
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Figure A3.7: upward-continuation of the real part of Ex scattered by a homogeneous 

resistive horizontal cylinder at y=0. The pink lines are referred to the zeros of the 

first vertical derivative of the field; the yellow lines are referred to the zeros of the 

first horizontal derivative of the field. The dotted white line represents the portion of 

ridge that we have taken into account for the structural index estimation (see 

Paragraph 3.3.3). 

 

Figure A3.8: Application of the Multiridge method to the field shown in Figure 

A3.6. 
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Figure A3.9: estimation of the structural index obtained using the criterion of DEXP 

scaling function intercept (Fedi, 2007), obtained considering the portion of ridge 

shown in Figure A3.7. 

 

Figure A3.10: DEXP imaged field obtained starting from the upward-continued field 

in Figure A3.7 using as structural index 2. The white circle represents the source 

position. 

 

Figure A3.11: DEXP imaged field obtained starting from the second order vertical 

derivative of the upward-continued field in Figure A3.7 using as structural index 2. 

The white circle represents the source position. 
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Figure A3.12: DEXP imaged field obtained starting from the analytic signal of the 

Ex scattered field, obtained starting from the model shown in Figure 3.6, using as 

structural index 2. The white circle represents the source position. 

The last case we have considered is that of a semi-infinite horizontal thin 

layer. So, starting from the model shown in Figure 3.11, was obtained 

the Ex component of the scattered field. In Figure A3.13 is shown the 

amplitude of the scattered field. In Figure A3.14 is shown, instead, the 

real part of Ex. As we can see from this figure, the shape of the anomaly 

is very different from that observed for the Ez component, but also in this 

case we can apply successfully both Multiridge and DEXP methods. 

Regarding the Multiridge method, in Figure A3.15 is shown the upward-

continued field, obtained starting from the field shown in Figure A3.14. 

As we can see from the figure, extending the strength part of  the ridges 

downward, they converge at a depth equal to the source depth. Then, was 

applied also the DEXP method. In particular, was first estimated the 

structural index, using the the criterion of DEXP scaling function 

intercept (Fedi, 2007), considering the portion of the ridge surrounded by 

the white dotted line in Figure A3.15 (Figure A3.16). As we see from 

Figure A3.16, the right structural index we have to use is 1, which is the 

same value give in Table 3.1 for a semi-infinite horizontal thin layer. So, 

the field in Figure A3.15 was scaled using the right structural index and 

was obtained the DEXP imaged field shown in Figure A3.17. From this 

figure we see that we can estimate perfectly the source depth, indicated 

by the extreme point of the DEXP imaged field, which in this case is a 

minimum. Regarding the lateral extension of the anomalous body, we 

see just the part of the field closest to the receiver, which is located at 
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x=-1000 m. To have a complete imaging of the anomalous body, we 

have to apply the DEXP method to data acquired by several receivers 

and then merge the results, as effectively showed in Chapter 3. 

Finally, to have a better result, also in this case we have applied the 

DEXP method to the analytic signal of the Ex scattered field. In this case, 

the source location is represented by the maximum of the DEXP imaged 

field. However, the application of this method to this kind of body is 

affected by all the limitations described in Chapter 3 linked to the fact 

that the this body cannot be considered a perfect one point source 

because, in reality, this body is seen as a finite thin layer due to the fact 

that just a part of the source contributes effectively to the scattered field.  

 

Figure A3.13: Amplitude of the Ex component of the electromagnetic field scattered 

by a homogeneous resistive horizontal semi-infinite thin sheet  obtained starting from 

the model described in Figure 3.11. The yellow square represent the receiver 

position. The pink rectangle represents the geological source position. 
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Figure A3.14: Real part of the Ex component of the electromagnetic field scattered 

by a homogeneous resistive horizontal semi-infinite thin sheet obtained starting from 

the model described in Figure 3.11. The yellow square represent the receiver 

position. The pink rectangle represents the source position. 

 

Figure A3.15: upward-continuation of the real part of Ex scattered by a 

homogeneous resistive semi-infinite thin layer at y=0. The pink lines are referred to 

the zeros of the first vertical derivative of the field; the yellow lines are referred to 

the zeros of the first horizontal derivative of the field. The dotted white line 

represents the portion of ridge that we have taken into account for the structural 

index estimation (see Paragraph 3.3.3). 
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Figure A3.16: estimation of the structural index obtained using the criterion of 

DEXP scaling function intercept (Fedi, 2007), obtained considering the portion of 

ridge shown in Figure A3.15. 

 

Figure A3.17: DEXP imaged field obtained starting from the upward-continued field 

in Figure A3.15 using as structural index 1. The white rectangle represents the 

source position. 

 

Figure A3.18: DEXP imaged field obtained starting from the analytic signal of the 

Ex scattered field, obtained starting from the model shown in Figure 3.11, using as 

structural index 1. The white circle represents the source position. 
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