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Introduction

A Facility Location Problem (FLP) consists in defining the position of a set of
points (facilities) within a given location space on the basis of the distribution of
demand points (users) to be allocated to the facilities. In the practical applications
either in private or in public sector, these problems deal with strategic and long
term decisions involving huge investment costs.

In general when a facility is positioned, it produces effects, positive or negative,
on the users (actual or potential), whose intensity can be considered depending
on the mutual distance. Of course if the effects are positive (desirable facilities)
effective positions for the facilities are expected as close as possible to the demand
points. It is the case of public utility sites such as schools, hospitals, shops, banks,
metro stations and so on. On the contrary, in case of negative effects (undesirable
or obnoxious facilities) users wish that facilities are as far as possible. Examples of
this kind concern power or nuclear plants, rubbish dumps. However also in these
cases, when facilities are too far from the demand points additional costs have to
be paid in terms of logistic costs. For this reason it is necessary to find compromise
solutions able to balance the different aspects.

In many practical applications of FLPs it is important to consider how the
effects (positive or negative) are distributed among the users. In particular it
should be proper that the effects are distributed in "equitable or equal" manner.
However, although equity and/or equality represent critical issues, they are not
straightforward concepts to be defined and then to be measured. As a consequence
many efforts have been produced to find means of measuring them in many fields
and from different point of views. In general measures proposed to formulate FLPs
have been adapted from other contexts (political, economic, social) and concern
calculations related to the distribution of distances between users and patronized
facilities. For this reason different measures have been proposed and various models
and methods have been provided to solve mathematical models representing FLPs
with equitable and equality measures.

In this work we mainly focus on the following objectives: investigating on prop-
erties of available measures for FLPs in order to highlight differences and similarities
and, then, to support decision makers in the choice of the most appropriate ones;
formulating and solving an optimization problem occurring in logistics as a FLP
with an equality measure as objective function.
The contents of the work are organized as follows.

In Chapter 1 we introduce the main FLPs describing the characterizing elements
and showing the most popular mathematical formulations.

In Chapter 2 we illustrate the concepts of equity and equality, analysing how they
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viii Introduction

are intended in different contexts and stressing their importance in decision making
process. Then we show the most popular measures proposed in the literature.

In Chapter 3 we describe how the equality concept and their measures can
be used in FLPs as objective function. In particular we provide the results of a
literature analysis oriented to highlight theoretical contributions about the use of
equality measures and proposals of models and methods to solve FLPs with equity
and/or equality measures.

In Chapter 4 we propose some new properties to be associated to equality mea-
sures in order to describe characteristics which may be useful to drive optimization
procedures in the search of optimal (or near-optimal) solutions. We also provide
the results of an empirical analysis with the aim of underlining differences and
similarities between pairs of equality measures.

In Chapter 5 we formulate a transportation problem with multiple sources and
single destination in terms of FLP. In particular in order to reduce risks of congestion
in the dynamic of flow arrivals at the common destination, an appropriate equality
measure is introduced.

In Chapter 6 some heuristic methodologies to solve the defined transportation
problem are described. Computational results on randomly generated test problems
show opportunities and limits to efficiently solve the problem.



Chapter 1

Generalities of Location Theory

1.1 Introduction

In this chapter we introduce the subject of this work: the Facility Location
Problems. We propose an overview about them explaining what is a Facility
Location Problem and illustrating their basic elements. After the proposition of
several classifications introduced in the literature we provide the formulation of the
most used models. We describe the generalities about these problems as first stage
for the analysis and the development, in the following of this work, of new facility
location models.

1.2 The Five W’s for Facility Location Problems

The answer to the question "What is a localization problem" can get different
replies from people coming from different scientific areas (Eiselt and Marianov,
2011). A mathematician can say that he finds a number of additional points that
optimize a function of the distance between new and existing points in a given
metric space. A geographer looks for the position of a number of centers that
serve market places or communities in a given region. A manager firm’s decide on
where to locate a single product firm to maximize an expected utility based on the
demand of clients adding some constraints like transportation cost in a predefined
time horizon.

Apart from the difference that arises from the different perspectives, a general
definition including all the common aspects can be:

A Facility Location Problem (FLP) consists in positioning a set of structures
(facilities) in a given space in order to satisfy the demand (actual or potential)
expressed by a set of customers.

So the additional points of the mathematician are the firms that manager wants
to locate or the center of the geographer, that we call facilities; the existing points
are the market places or the demand of clients as well as the demand expressed
by customers or demand points. The function of the distance will be the expected
utility or the satisfaction of the communities, that is our satisfaction of the demand.

The birth date (When) of FLPs can be assumed in correspondence of the
ideas formulated by Fermat (1601-1665) in the early seventeenth century; the
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2 CHAPTER 1. GENERALITIES OF LOCATION THEORY

mathematician proposed the problem of finding a fourth point when we have three
points in a plane such that the sum of its distances to the three given points is as
small as possible. A solution for this problem was successively found by Evangelista
Torricelli (1608-1647). For the very first formulation of location problem we have to
wait the XX century with the work of Weber, while the seminal paper is retained
the ones of Hakimi [1964]; from that point to right now there is an continuous
and constant progress in these scientific area with a lot of models proposed (for an
historical prospective see Wesolowsky, 1993).

Resuming of Where the location models are applied it’s a very hard work; the
applications and sector of them are the most varied. Typically they are divided
in private and public sector problems. The first are used for seeking the location
of sites that maximize a profit. Some examples can be the decision about the
location of an assembly plant within a region, or finding the most efficient position
for a distribution center and/or a warehouse in the context of a supply chain. In
contrast, public sector problems seek facility sites that optimize the population’s
access to those facilities or universality of the service. Some examples can be schools,
hospitals, but, also stations of a system transportation. In addition FLPs can be
used not only in the geographic context but also for supporting the decision about
the layout of electronic components or industrial products.

Most of the applications involve decisions on the strategic level as they usually
require huge investment costs, so Who use the FLPs is decision makers aim at
defining the position of one or more facilities. As such, decisions tend to be long-
term, which implies that much of the data used in the decision-making process, will
be quite uncertain. For this reason decision makers should select sites not only on
the basis of current performance indicators but also considering long-term system
evolution including, for instance, environmental factors changes, population shifts
and market trends.

Due to their strategic characteristics (Why), decisions about facility locations
significantly affect the efficiency of several short-term operational aspects, including
the performance of the production and logistics systems.

For the importance and the complexity of these problems a lot of scholars
developed very different qualitative and quantitative approaches to solve them. In
this chapter we put our attention to the use of mathematical models, a proved
particularly method to tackle such problems (e.g. Daskin et al., 1988; ReVelle and
Eiselt, 2005; ReVelle et al., 2008).

1.3 Elements of Facility Location Problems
Generally Location Problems are characterized by the following main elements

(Eiselt and Laporte, 1995):

• Space where the facilities are to be located;

• Facilities (already existing and new) to be located;

• Customers expressing service demand;

• Interaction between customers and facilities;



1.3. ELEMENTS OF FACILITY LOCATION PROBLEMS 3

• Metrics to measure distances between customers and facilities;

• Constraints to be satisfied.

The space usually corresponds to a geographical region representing the area
where we can locate the facilities. In general, the facilities and the customers’
positions occupy very small areas compared to the space where they are located.
For this reason, they can be considered dimensionless points. In most of the
applications, the study area can be described in a two-dimensional plane. The
space can be continuous if any point is feasible for a new facility. In this case it is
also possible to include the presence of “forbidden zones”, where facilities cannot be
located due to geographical obstacles or technical constraints. Otherwise, if locations
must be chosen within a set of candidate points, the problem is discrete. In some
applications where the problem is naturally described through a reference network,
facilities can be positioned either on the links of the network or in correspondence
of the nodes (network based models). However, it is possible to formulate problems
also in a multi-dimensional space. It is the case, for example, of positioning a
company in a market than can be described as a space in a set of economic variables.

The facilities are characterized by some attributes that are: number, capacity,
service to supply and cost (Scaparra and Scutella, 2001). Very often the number of
new facilities to be located is fixed and in the simplest one a single facility is to
be located. It is also possible that the number of facilities is a decision variable.
Some facility can have infinite capacity (uncapacitated problems), namely they can
receive a infinite number of customers, while some others no (capacitated problems).
In a location model we can fix facility of different typology like in a multi-level
distribution system where at each level we have plants or warehouse (multi-echelon
problems). The facilities, eventually can supply one or more different services
(multi-services facilities). Finally facilities can have different configurations; in fact,
they can be considered to occupy either points locations or area locations or even
a specialized shape, like a graph or a tree. Generally when a facility is located at
a candidate site, the decision maker incurs in fixed location costs including, for
instance, property acquisition, facility construction and long-term management
costs. They could depend on the site location (i.e. establishing a new retail outlet
in an urban center could be more expensive than in a suburban area), on its size
and characteristics.

The service demand of customers have to be satisfy from the facilities. Also
the customers can be characterized by attributes like distribution and demand
(Scaparra and Scutella, 2001). In fact the customers, like the facilities, can be
distributed in a continuous space or located at specific points (called properly
demand points). Typically at each demand point is associated a value of demand (a
weight) that can be the same for all the customers or different; this last case is typical
when it represents the demand of an area, but often is made the assumption that
all demand will be supply by just one facility. The demand in some case can be also
a random variable with some probability distribution (stochastic representation).

The customers interact with the facilities in the sense that they are allocated
to one of them. In case of more facilities, the customers can choose to which
facilities allocate. They may be free to patronize their own facilities (i.e. customers
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of supermarkets or trade centers) or they may be obliged to follow predetermined
criteria. In a lot of FLPs there is a closest assignment constraint (Espejo et al., 2012)
that implies that customers are assigned to the most near facility. A quite common
hypothesis is that at this interaction is associated a cost, called allocation cost that
is variable and is that to be paid to serve the demand; they are strongly related
to the proximity of the facility to the demand points. When facilities represent
services of general interest (i.e. hospitals, schools, post offices, or private retail
outlets), these costs are charged to users; however, the decision maker is interested
in minimizing them as they represent a proxy measure of accessibility to the service.
When a company needs to locate facilities (i.e. plants, warehouses, distribution
systems) within a supply chain, allocation costs correspond to transportation and
delivery costs and, therefore, the decision maker is interested in minimizing them
as they affect the final profit. In both cases, the efficiency of the service strongly
depends on the position of the facility with reference to the distribution of demand
points; for this reason, facility location decisions represent a critical element in
strategic planning. Sometimes, in addition to the interaction between customer
and facilities, we can also have the interaction among facilities themselves, that
compete with each other to capture available demand.

The cost of allocation is typically calculated as a distance between demand and
facilities. Distance is a numerical description of how far customers and facilities
are, at any given moment. Distance may refer to a physical length, a period of
time, or it can be estimated on the basis of other criteria. A fundamental aspect
is represented by the way of measuring distances, namely the selected metric.
Distances in real dimension-space are most often derived from Minkowski distances,
which are defined as a family of distances with a single parameter p. In particular,
the dpij distance between a point i with coordinates (ai, bi) in a two-dimensional
space, and a point j with coordinates (aj, bj) is defined as:

dpij = [|ai − aj|p + |bi − bj|p]1/p

if p is equal to 1 we obtain the Manhattan distance, while with p equal to 2 the
Euclidean distance, that is the most used.

Location problems can be characterized by the presence of many constraints
that solutions must satisfy. Typical examples are topological constraints (i.e.
minimum and/or maximum distances between facilities, zoning laws), capacity
constraints (i.e. maximum demand that each facility can serve), technical and/or
technological restrictions, economic and budget constraints

On the basis on how these elements listed are chosen and combined we can
define a wide variety of location problems.

1.4 Objectives of Facility Location Problems

Objectives to be considered in decision making can be distinguished by many
factors because the presence of facilities can produce different kinds of effects. If
these effects are considered positive by customers, facilities are defined "desirable":
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it is the case of many services (public or private) such as schools, public offices,
shopping centers, metro stations. On the other hand if facilities are source of risks
and/or damages, they are considered “undesirable or obnoxious”: examples of this
kind are landfills, nuclear reactors, chemical plants, military installations.

Figure 1.1: Locations Based on Pull Objectives

If facilities are desirable, the decision maker aims at positioning them as close as
possible to the customers. In other words, customers attract ("pull") the facility to
them (pull objectives). In order to obtain this kind of solution, it is possible to
use efficiency measures such as the minimization of the distance between facilities
and their assigned customers (MiniSum problems). Figure 1.1 shows an example
of location based on pull objectives. There is a set of potential sites and a set
of demand points in a given location space where the decision maker wants to
locate two facilities. Each potential facility is pulled by customers through a sort
of “attractive force” (represented by the arrows in the Figure). Consequently, the
facilities will be located in the area with the largest number of demand points.

When facilities are considered "undesirable" or "obnoxious", customers aim at
avoiding their presence and try to keep such facilities far away from them (push
objectives). In Figure 1.2 customers push them away through "repulsive forces".
Therefore, they will be located in the area with the smallest number of customers.
A possible objective to describe this problem is the maximization of the distance
between facilities and their assigned customers (MaxiSum problems).

However, the adoption of this measure would contribute to locate the facilities
too far (in theory as far as possible) and the resulting solution would be not realistic
in terms of efficiency. For this reason, solutions should be selected considering a
trade-off between two conflicting objectives: for efficiency reasons facilities should
be not too far from the area they serve but, at the same time, they should be far
from the customers.

In addition, further location problems have been defined pursuing the objective
of the "equality" of distances between demand points and the set of facilities
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Figure 1.2: Locations Based on Push Objectives

(balancing objectives). This type of objectives is used, for example, when the
location of public facilities must take into account not only the achievement of
efficiency targets but also the more complex concept of "equity". In the Chapter 3
we give a description of these objectives.

1.5 Classifications of Facility Location Problems

A Facility Location Problem could take a variety of forms depending on how
are combined the different elements previously introduced; each problems is useful
in order to explore the different aspects of the problem and support facility location
decisions in different contexts.

In the literature many schemes and taxonomies have been proposed in the last
decades. One of them is based on the objectives (Eiselt and Laporte, 1995) as
previously illustrated.

According to Hamacker and Nickel [1998] we can find those proposed by Handler
and Mirchandani [1979] based on a multiple-position string in which each position
is representative of a distinctive characteristic of the problem; in particular he
suggested a 4-position scheme for network problems with center-type objective.
Brandeau and Chiu [1989] gave a taxonomy to distinguish location problems with
respect to three criteria (objective, decision variables, system parameters) without
providing a formal classification scheme. Eiselt et al. [1993] used a 5-position scheme
specialized on competitive location models.

Carrizosa et al. [1995] presented a 6-position scheme for classifying planar model
where both demand rates and service times are given by a probability distribution.
Hamacker and Nickel [1998] designed a 5-position classification scheme, to take into
account every class of location problem in a single framework that represent, at the
moment, the most detailed attempt to provide a universal classification of Location
Problems. According with this proposal we specify the following aspects:
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Figure 1.3: MiniSum Models

• Information about the number and type of new facilities;

• Characteristics of the location space (continuous, network and discrete mod-
els);

• Additional constraints such as information about the feasible solutions, ca-
pacity restrictions, etc;

• Relation between new and existing facilities expressed very often by a distance
function or by assigned costs;

• Objective function.

ReVelle et al. [2008] instead indicated four possible categories for the models which
can be adopted to represent a problem:

• Analytic models, where there are a lot of simplification assumption, like the
uniform distribution of the demand or the same cost for fixing facility in every
position.

• Continuous models, where facilities can be located in every point of a contin-
uous space, while demand typically is concentrated in points.

• Network models, where facilities and customers are positioned on a network.
Demand is typically associated to nodes, while cost to the links connecting
demand points.

• Discrete models, where we have a discrete set of demand points, and a discrete
set of candidate of potential locations. Such problems are often formulated as
integer or mixed integer programming problems.
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Figure 1.4: MiniMax Models

But, among the existing classification frameworks for which a summary is
reported in Table 1.1, the most common one (Eiselt and Marianov, 2011) identifies
three classes of problems: MiniSum, MiniMax and covering problems. All these
problems deal with the location of desirable facilities but each of them focuses on
different criteria. In the case of MiniSum problems the new facilities are located in
order to maximize an aggregate indicator of the accessibility of the customers to the
service. Typically, they minimize the average travel distance to reach the facilities
and locate them as close as possible to the most customers. Due to the particular
distribution of demand points showed in Figure 1.3, the optimal solution, which
minimizes the average facility-customer distance, penalizes one customer which is
at a distance significantly higher from the patronized facility.

In some cases, for example in the organization of an emergency service, this
circumstance is not feasible as it is necessary to ensure a given level of accessibility
to any customer. In order to take this aspect into account and achieve a major
equality in evaluating the distances, other classes of problems can be identified. For
example, the MiniMax problems aim at locating facilities so as to minimize the
maximum distance between a customer and its assigned facility; in this way they
seek to protect the customer in the worst condition. In Figure 1.4, it can be noticed
that the facility has been moved towards the customer in the worst condition, thus
reducing the maximum distance value. The solution presents a higher average
distance value from demand points and, moreover, it results in lower efficiency

In contrast with the first two classes of problems, in which the distance between
each customer and his closest facility is explicitly considered, the covering models
do not explicitly take them into consideration. The concept of coverage implies that
a customer can be adequately served (covered) when a facility is located within a
given threshold distance or travel time from it (Figure 1.5).

In other words, a circle with radius centered in the facility location can be
identified in order to distinguish covered demand points (within the circle) from
uncovered demand points (outside the circle). Given this constraint, these models
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Classification Reference Applicability Criteria

4-position
Handler and
Mirchandani
[1979]

Center
Problems

Type of new facilities
Type of existing facilities
Number of new facilities
Type of network

Taxonomy Brandeau and
Chiu [1989]

All Models
Objective
Decision variables
System parameters

5-position Eiselt et al.
[1993]

Competitive
Models

Location space
Number of player
Pricing policy
Rules of the game
Behavior of customers

6-position Carrizosa et al.
[1995]

Planar
Models

Distribution existing facilities
Distribution new facilities
Number of new facilities
Shape of existing facilities
Metric

5-position Hamacker and
Nickel [1998]

All Models

Type of new facilities
Location space
Additional constraints
Relation new /existing facilities
Objective function

Model Category ReVelle et al.
[2008]

All Models

Analytic
Continuous
Network
Discrete

Objective
Function
Category

Eiselt and
Marianov
[2011]

All Models
MiniSum
MiniMax
Equity

Table 1.1: Classifications for Location Problems
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Figure 1.5: Covering Problems

seek to maximize the number of customer covered or to minimize the incurred costs
to cover all the demand points In the following paragraph we introduce a discrete
location model for each category introduced.

1.6 Basic Discrete Facility Location Problems

In this paragraph we provide the most used mathematical models for FLPs. The
models are defined in a discrete location space, namely we have a set of demand
points (customers) with an associated weight and a set of facility location that are
the possible position for the new facility that we want to locate. Between customer
i and potential facility j, we evaluate a distance, in some way among them indicated
previously (e.g Euclidean distance).

1.6.1 Median Problems

The p-median problem aims at the minimization of the weighted sum of the
distances between p facilities to be opened and a set of demand points. Several
versions of the problem have been defined in the literature, and it has been used
in many different applications varying from the location of industrial plants and
warehouses or public facilities like school (see, for example, ReVelle and Eiselt [2005]
for a list of applications) but also as a tool for data mining applications (Ng and
Han, 1994). In the model there is the important assumption that we have to locate
exactly p facilities, it is a situation considerable very near to the practice as when
we know, for example, a budget constraint for the number of facilities to locate.
The other important consideration is that the customers will be located to the most
near facility.
So we introduce the follow notations, common for the three proposed models:

I set of demand points,
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J set of possible locations for the facilities,
dij distance between customer i and potential facility j,
p total number of facilities to located,
hi weight associated to each demand point (demand or number of customers).

We define the, allocation decisions, namely which facility j satisfy the demand
expressed by a customer i, through the following x-variables:

xij =


1 if demand point i is allocated to facility j
0 otherwise ∀i, j ∈ J,

and location decisions, are represented with:

yj =


1 if a facility is located at point j
0 otherwise ∀j ∈ J.

The formulation proposed by Hakimi [1964] and ReVelle and Swaim [1970],
retained the "classical" is

min


i∈I,j∈J

hidijxij

s.t.

j∈J

xij = 1 ∀i ∈ I, (1.1)

xij ≤ yj ∀i ∈ I,∀j ∈ J, i ̸= j, (1.2)
j∈J

yj = p (1.3)

xij, yj ∈ {0, 1} ∀i ∈ I,∀j ∈ J. (1.4)

Constraints (1.1) ensure that all the demand points are allocated. Constraints (1.2)
guarantee that a point receives allocation only if it is a plant. Constraint (1.3) fixes
the number of plants to p. Constraints (1.4) states that all variables are binary.

It is classified as NP-hard (Kariv and Hakimi, 1969) so for solving it we find
in literature a very huge number of exact method and metaheuristic approaches
that look for a good solution (sometimes the optimal solution) when the problem is
characterized by a big number of demand points and facilities.

A very comprehensive survey about heuristic approaches for median problems is
provided by Mladenovic et al. [2007] that resumes both classical heuristic methods
than metaheuristic approaches, giving also important indication of the instances
used in the literature for testing them. For what concerning the exact method we
can indicated, among others, the landmark study of Beasley [1969] and Galvao and
Raggi [1969].

There also a lot of extension to the problem like the capacitated version studied
for example by Mulvey and Beck [1984] and recently by Lorena and Senne [2004],
or the generalized version with more than one type of facility called Multi-Weber
problem (Cooper, 1963; Cooper, 1964).

The MiniSum objectives is also used in the other well known model called Simple
Plant Location Problem (Erlenkotter, 1978) where the number of facilities to fix is
a variable of the problem.
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1.6.2 Center Problems

An important class of problem owned to MiniMax problem are the p-center
problems. The p-center problem seeks to minimize the maximum distance between
any demand and its nearest facility. At difference of the previous class we want
that the maximum distance between a demand point and its closest facility is as
small as possible instead to minimize the total distance between demand points
and facility. Indicating with D the maximum distance between a demand node and
the nearest facility, and using the same variables of the previous case the problem
can be formalized as follows (Hakimi, 1964):

minD

s.t.

j∈J

xij = 1 ∀i ∈ I, (1.5)

xij ≤ yj ∀i ∈ I,∀j ∈ J, i ̸= j, (1.6)
j∈J

yj = p (1.7)

D ≥

j∈J

dijxij ∀i ∈ I, (1.8)

xij, yj ∈ {0, 1} ∀i ∈ I,∀j ∈ J. (1.9)

The objective function is to minimize the maximum distance between any
demand node and its nearest facility. Constraints (1.5) to (1.7) are identical to (1.1)
to (1.3) of the p-median problem. Constraint (1.8) defines the maximum distance
between any demand node i and the nearest facility j. Finally, constraints (1.9) are
binary constraints for the decision variables. If the number of facilities to located
is equal to 1 we call the problem Absolute center Problems (Hakimi, 1964). In
some cases at each demand point is also associated a weight (Daskin, 1995) and
the objective function become:

D ≥ hi


j∈J

dijxij∀i ∈ I

If facility locations are restricted to the nodes of the network, the problem is a vertex
center problem (Daskin, 1995). For example Burkard and Dollani [2007] formalized
a 1-center problem on a network with positive and negative vertex weights with
the objective to minimize a linear combination of the maximum weighted distances
of the center to the vertices with positive weights and to the vertices with negative
weights. Ozsoy and Pinar [2006] introduced the capacity restrictions on the facilities.
Moreover a lot of applications can be described with center models. Biazaran and
SeyediNezhad [2009] summarized the possibilities in the location of emergency
services, like hospitals and fire stations and computer network services like location
of the data files; but also in the distribution system, or for military purpose and
public facilities like parks, post boxes and bus stops.
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1.6.3 Covering Problems

One of the classical objectives in location modeling is “coverage” which seeks
to ensure that each customer is "covered" namely serve by a certain facility if
the distance between them is lower than a certain threshold, or required distance.
The first model of this type was proposed by Church and ReVelle [1974] and it is
called the p-Maximal Covering Location Problem; it consists in locating p facilities
that can cover the maximum amount of demand. Using the following z-variables
(covering variables):

zi =


1 if customer i is covered by some facility
0 otherwise ∀i ∈ I.

A possible formulation for the the p-Maximal Covering Location Problem is:

max

i∈I

hizi
j∈J

yj ≥ zi ∀i ∈ I, (1.10)
j∈J

yj = p (1.11)

yj, zi ∈ {0, 1} ∀i ∈ I,∀j ∈ J. (1.12)

Constraints (1.10) guarantee that a point can covered only by facility opened.
Constraints (1.11) fixes the number of plants to p. Constraints (1.12) states that
all variables are binary.

Referring to Berman et al. [2010] covering problems born in order to locate
emergency services that is necessary that assure (cover) the maximum number
possible of users; e.g. an ambulance have to be located at a distance such that the
travel distance from it to the maximum number of customers will be included in a
certain threshold. Other applications have been considered the location of retail
facilities or those for the signal transmission. The maximal covering problem is
also NP-hard (Megiddo et al., 1983), and for this reason many scholars proposed
heuristics (see e.g. Daskin, 1995 and Current et al., 2009) . There are a lot of
modifications of this model for example considering also negative weights (Berman
et al., 2009) or with capacity constraints for the facilities (Chung et al., 1983)

In the literature there are many others problem concerning the cover concepts
as recently surveyed by Berman et al. [2010]. The most important is the Set
Covering Location Problem, introduced by Hakimi [1964] and formulated as integer
programming by Toregas et al. [1971] that consists in founding the minimum number
or the minimum cost set of facilities such that every demand points is covered by
some facilities.

In addition there are several covering problems born from modulating in different
way the covering concept. We can have the back-up coverage, in which demand
points are required to be covered by more than one open facility. Storbeck [1982] in
his model maximized, in addition to the demand covered by the facilities, also the
demand covered by at least two facilities. Moreover Daskin et al. [1988] formulated
a problem in which has to be maximized only the back-up coverage.
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Church and Roberts [1984] and successively Karasakal and Karasakal [2004]
introduced the concept of gradual or partial coverage where for each facility we have
two covering radius: a minimum covering radius and a maximum covering radius;
demand points within the minimum radius are considered to be totally covered,
while the ones falling in the area between the circles described by the two radii are
considered to be partially covered.

1.6.4 Other Location Models

In addition to the above described problems, further ones have received consider-
able attention of researchers. We will briefly introduce some of the most significant
ones.

The above-mentioned problems deal with the location of desirable facilities
that customers wish to have as close as possible. However, the scenario changes
when dealing with undesirable or obnoxious facilities (undesirable facility location
problems) where the customers want to stay as far as possible from the facilities that
are retained danger for the customers near to the facility, while they provide some
services from the rest of the society and for this reason are necessary (Erkut and
Neuman, 1989). For instance, a production plant provide goods and it is important
that it stays as close as possible to its client and server, but it can produce polluting
so nobody wants it near; sport facilities which should be well accessible may generate
quite annoying effects like noise, congestion or even vandalism.

Sometimes also the closeness among the facilities can be considered undesirable,
like in the case of franchises or facilities that should be dispersed to the greatest
possible distance in order to minimize the damage to others caused by an accident
at one of the them. These problems are called dispersion problems and the typical
example is the p-dispersion problem that consists of locating p facilities so that a
function of the distances among the open facilities is optimized (see Kuby, 1987
and Erkut et al., 1994).

Often the model proposed in the literature are the opposite of those resumed in
the previous paragraph. One of this called maxian or anti-median problem and
proposed by Church and Garfinkel [1978], it is identical to the median problem
except that the objective function is maximizing instead to minimizing the sum of
the weighted distances between facilities and the others demand points.

Berman and Huang [2008] introduced the Minimum Covering Location Problem
that consists to locate a fixed number of facilities with the objective to minimize
the number of covered customers (where, as stated above, a customer is considered
covered if its distance to the closest facility is less than a pre-determined radius) by
respecting a constraint on the minimum distance among facilities themselves. Again,
they referred to locate facilities that may pose a serious danger to the individuals
living nearby so the aim is covered fewer people as possible.

Whereas the usual location models locate facilities based on the wishes and
objectives of a single decision maker, competitive location problems consider the
presence of multiple decision makers which compete with each other in accordance
with coinciding or overlapping objectives (i.e. the maximization of the expected
profit). In the definition of models able to effectively describe this situation, crucial
aspects are represented by the number of decision makers, the pricing policies,
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References Topic
Owen and Daskin [1998] General Survey
Scaparra and Scutella [2001] General Survey
Hale and Moberg [2003] General Survey
Klose and Drexl [2005] General Survey
Drezner and Hamacher [2001] General Survey
ReVelle and Eiselt [2005] General Survey
Nickel and Puerto [2005] Book
ReVelle et al. [2008] General Survey
Current et al. [2009] General Survey
Melo et al. [2009] Main Applications
Farahani and Hekmatfar [2009] Book
Berman et al. [2010] Covering
Eiselt and Marianov [2011] Book
Table 1.2: Main References for Facility Location Problems

the presence of restrictions to the possible choices, the customers’ behaviors in
patronizing their facility, the availability of information about the competitors’
decisions (for a review see Eiselt et al., 1993).

When location analysis includes aspects related to the impact of various types
of uncertainty, it is necessary to develop probabilistic or stochastic location models.
Typical sources of uncertainty are future demand, customer-facility travel times,
facility breakdowns, future trends for management costs (Snyder, 1987).

1.7 Conclusion
In this chapter we proposed an overview of Location Problems a relevant and

very used class of optimization problems. We provided the basic elements of these
models, indicating different classifications and also the formulation for some of
them.

In the Table 1.2 we report the most important references in the field of location
theory considering books and survey more recently in the different topics indicated
in the chapter. As indicated some of them concern generalities on location theory,
often proposing a review of the main formulation models and the most important
resolution procedures presented in the literature. Others, instead focus on single
aspect or a single typology of the problem.

This introduction is necessary as stage for the development, in the following of
this work, of other Location Models.



Chapter 2

Equity Concept: definitions and
measures in a generic context

2.1 Introduction

In this chapter we deal with the general definition of equity and equality. We
illustrate the meaning of the concepts and in which contexts were defined and we
point out about the differences between equity and equality. We introduce also
the issue related to how measuring equality in a generic context. This chapter is
necessary for explaining the numerous facets that this concept can assume and why
is important taking it into account in a very critical strategic decision like those
concerning facility location problems.

2.2 Equity: a Philosophical Principle for Strategic
Decision

"Aequitas est quasi superior regula humanorum actuum", this statement of San
Tommaso (1225-1274) can be a sort of justification for using equity in any kind of
decision.

The Latin word aequitas is amenable to the Greek word epikeia. Aristotle
(384-324 a.C.) was the first that used this word defining epikeia as something that
is a corrective of the justice. In fact in the Nicomachean Ethics he wrote "What
creates the problem is that the equitable is just, but not the legally just but a
correction of legal justice"; in other words, the equity can serve when the universal
nature of the law can not include the totality of the possible cases and so it is
necessary adapt it to single cases. Aristotle also described, in the Rhetoric, a
"material equity", intended as the disposition of people who tend to take less than
his portion though he has the law on his side.

Many other philosophers tried to give a definition of the concept. For Hobbes
(1588-1679) the equity is a human quality characterizing everyone, or only some
individuals, and at the same time it is a law of nature that humans are obliged
to follow. In the Levantian he said: "For though the action be against the law of
nature as being contrary to equity".

16
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Also Kant (1724-1804) in The Metaphysical Elements of Justice referred to
equity as when "one he is basing his claim on his right rather than ethical duties
of others; however, in the case of a right of equity conditions for determining how
much and what kind of remedy should be allowed are absent". Kant provided a very
interesting example: suppose that a commercial partner company, in which profits
are equally shared with other partners, contributes more than other members and
then accidentally looses more than the others; if it would ask an additional request
it would not have the right because, according to the contract, the income has to
be equally distributed . However, for equity reasons he should receive more than
the other parts.

Rousseau (1712-1778) affirmed that, although by nature men may be unequal,
by force or intelligence, thanks to conventions and legal rights, it is established
some form of equity that is moral and legitimate.

The philosophical theories are ideal expressions of the search of equity as
principle that leads the action of the individuals. For this reason many authors
have tried to apply this general principle in their specific field of studies.

So, if the equity concept born in the jurisdictional-philosophical field, probably
the first theoretic formulation and systematization is provided in the sociological field.
Homans [1958], Blau [1964] and Adams [1965] defined inequity as the equivalence of
the outcome/input ratios; this happens when an individual is in a direct exchange
relationship of goods with another individual, or when they are both in a exchange
relationship with a third one. Consider, for example, two individuals A and B that
mutually transfer resource each other; namely the output of A is the input of B
and vice versa. If the ratio between inputs of A to his outcomes (input of B) is not
equivalent to that of B then there is inequity.

In a resource distribution system Deutsch [1975] suggested that an allocation
norm that guarantees equity can lead goods to those individuals that had been able
to effectively use them in the past; who have previously used in a better way the
resources would receive an high number of them in a successive redistribution.

More generally, Walzer [1983] highlighted that inequity occurs when who is in
the best condition infuses his power, money or influence to get in a better condition.

Perelman [1991] said that equity requires that part of the same category are
equally treated. Dasgupta [1993] defined equity as a measure of the relative similarity
among individuals or groups when they enjoy material resources, technologies,
health, education or socio-political rights. Equity is achieved when each group
receives its fair share.

We have provided this very concise review of some definitions proposed for the
equity concept in order to underline how this issue is still object of current debates.
In this context the concept of equity is often treated in relation to the equality
concept. In the next section we focus on this aspect highlighting the differences to
be considered.

2.3 Equity vs Equality

Equality and equity concepts are very often confused. The notions are presented
in many debates on social and public policy, and also in many others contexts
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but it seems that there is not a real agreement on what they mean. For example
Bronfenbrenner [1973] said that equity is something of subjective while equality is
objective. In particular Espinoza [2007] sustained that while equality involves only
a quantitative assessment, equity involves both a quantitative assessment and a
subjective moral or ethical judgement. Equity assessments are more problematic
because people have different idea about the concepts of fairness and justice.

Dalton [1920] was the first to introduce the problem on how defining and
evaluating equality. First of all he clarified that equality depends on the context in
which the definition is applied. For example in an economic context a situation of
perfect equality, indicated as the maximum economic welfare, is reached when the
total income is distributed among a given number of persons in equal parts. As a
consequence inequality can be defined in relation this condition of equal distribution.
However in order to evaluate equality or inequality it is necessary to specify these
concepts should be measures.

Schutz [1951] sustained that the equality of income distribution is found when
every ’income-receiving unit’ receives its proportional share of the total income. Of
course either the concept of unit or that of income can have several meanings for
different purposes.

For instance Atkinson [1970] specified that income should be distinguished
between post-tax and pre-tax.

Bronfenbrenner [1973] described exactly the difference between equity and
equality. In fact he said that, despite their phonetic similarity and philological
connections, the two notions are quite distinct. The equity is non-mechanical in
principle and is largely, if not completely, a subjective matter. For achieving equity
the distribution of wealth will be done in accordance with principles of justice.
Instead equality is mainly a mechanical or statistical matter. In fact the equality is
related to a measure that can be equal, like income or wealth per unit.

Allison [1978] concentrated his efforts on understanding when a distribution
of goods or resources can be more or less equal than another one. To this aim he
defined and analyzed useful criteria to select and check what are the main and most
important measures to be used.

Dworkin [1981] defined two types of equality concepts. The first, called equality
of welfare, is obtained when resources are distributed or transferred until no further
transfer can realized without causing difference in "success". However the concept
of success is subjective as it depends on different preferences, goals and ambitions;
so equality can be achieved only all people share the same the success concept. The
second, equality of resources, concerns the equal distribution of resources.

For Frankfurt [1987] economic equality is reached when everyone have enough.
If everyone had enough, it would be of no moral consequence whether some had
more than others.

2.4 Measuring Equality

If equity is a principle that could inspire our decisions, equality can be considered
the basis to evaluate equity as it focuses on how resources or goods are equally
distributed. In other words equality requires the individuation and the definition of
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methodology that permits to understand if two distributions are less or more equal.
With this aim in the literature a lot of equality measures has been introduced.

In the following we introduce some of the most popular equality measures. We
assume that a given amount of resources S (goods or income) has to be distribute
among a set of n members (or groups). We indicate with si the share assigned
to each member and with s̄ = S

n
the average value. We assure that each member

is characterized by the value of an attribute ai whose average value is ā =


i
ai
n
.

The attribute represents a factor that could involve the distribution of resources.
For instance if the distribution concerns group of individuals this attribute can
represent the dimension of each group.

In order to illustrate the list of measures we refer to the classification proposed
by Marsh and Schilling [1994] that collect a very big number of them defining also
a framework for the calssification. In particular they analyzed three categories.
The first called, reference distribution, is related to which element the shares of
the individuals are compared. Typically the reference is the mean effect but it is
possible to compare also the with an attribute of some type or with the effect on
another group. The second is the metric, namely how is constructed this comparison
like a difference of sum or the maximum difference. The third is the scaling factor.
Often the measures are divided for the mean in order to compare distribution that
are different in the size.

We indicate first all measures that are not normalized and after the ones
normalized from which the values are included between 0 and 1. After we show the
measures that compare the share of the groups with some attributes.

2.4.1 Not Normalized Measures

Worst Condition
Rawls [1971] defined that equality improve when is improved the condition of

who is worst-off. The measure, called Worst Condition (CW) is:

CW = min
i

si

Range
Brill et al. [1976] sustained that we can verify if there is equality analyzing the

differences between the best and the worst shares in a set of individuals. If this
difference is small means that the difference in condition of individuals are similar.
The measure, called Range (RG) is:

RG = max
i

si −min
i

si

There is also an alternative way to calculate the Range as:

ARG = max
i,j

|si − sj|

Mean Absolute Deviation
This index is used in order to capture the dispersion for the values in a distri-

bution; if the value is small means that there is small distribution of the values
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and, thinking in equality way, individuals have a share of goods as much similar as
possible. The Mean Absolute Deviation (MAD) is a very simple way to capture the
dispersion of variate values; it represents the averaged sum of the absolute deviation
from the mean of the distribution. It can be indicated as:

MAD =
n

i=1

|si − s̄|

Maximum Deviation
It is also possible to evaluate the Maximum Deviation (MD) from the average

value to the others values indicated as:

MD = max
i

|si − s̄|

Variance
The Variance (VAR) is frequently used as indicator of equality in different

contexts, thanks to the possibility to take into account the variation of a distribution
(i.e. Gastwirth, 1973). It presents two peculiarities; the first is that differences
between variate values and the mean value are squared and so the differences that
are relatively large are accentuated. The second is mean-dependent, in fact two
distributions could display the same relative variation but the distribution with the
smaller mean would have a lower variance. The expression is:

V AR =
n

i=1

(si − s̄)2

Variance of logs
Exist also the variance of the logs (LOGVAR) that combine logarithms with

variance; the effects of using logs is that tends to focus on which individual have
lower level of shares. It is given by:

LOGV AR =
1

n


i

(log si − log s̄)2

Sum of absolute deviation
Often as equality measure is used the sum of absolute deviation (AD), that take

into account all the differences of all possible pairs of variate values (Keeney, 1980).
The expression is:

AD =
n

i=1

n
j=1

|si − sj|

In the Table 2.1 we report a resume of all not normalized equality measures
introduced.

2.4.2 Normalized Measures

Coefficient of Variation
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Code Measure Formulation References

CW Worst Condition mini si Rawls [1971]

RG Range maxi si −mini si Brill et al. [1976]

ARG Alternative Range maxi,j |si − sj| Brill et al. [1976]

MAD Mean Absolute De-
viation

n
i=1 |si − s̄| Marsh and Schilling

[1994]

MD Maximum Absolute
Deviation

maxi |si − s̄| Marsh and Schilling
[1994]

VAR Variance
n

i=1(si − s̄)2 Gastwirth [1971]

LOG-
VAR

Variance of logs 1/n


i(log si −
log s̄)2

Theil [1967]

AD Absolute Difference
n

i=1

n
j=1 |si − sj| Keeney [1980]

Table 2.1: Not Normalized Equality Measures Resume
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Figure 2.1: Gini Coefficient and Lorenz Curve

The mean-dependent of the Variance, can be avoided by using, instead of the
variance the coefficient of variation (VC),that normalize the variance, dividing it
for the average value; so it becomes:

V C =

n
i=1(si − s̄)2

s̄

Gini Coefficient and Lorenz Curve
In order to measure equitable (or inequitable) distribution of a good across

a population, a graphical representation was proposed by Lorenz (Lorenz curve).
The representation is done, traditionally, on a X − Y axis where the abscissa
measures the cumulative percentage of the population (member of the group) while
the ordinate the cumulative percentage of the good, such as income or wealth.
The Lorenz curve has extremes at points (0,0) and (1,1) because the 0 % of the
population holds 0% of the income, and 100 % of the population hold 100 % of
the income; the most equitable distribution where a certain percentage k of the
population has k percentage of the good, is representable with the straight 45
degree line that connects the two extremes. When a k percentage of the population
holds less that k percentage of the good the Lorenz curve drops below the straight
equality line proportionally to the disparity. The area, between the Lorenz curve
and the straight 45 degree line is a measure of inequality in the distribution (see
Figure 2.1).

The Gini Index was developed by Gini [1912] and it is strictly linked to the
Lorenz Curve because it measures the ratio of the area between the Lorenz Curve
and the line of perfect equality to the entire area below the Lorenz curve and it
is included between 0 and 1; in Figure 2.1 we can visualize it as the half value of
the area depicted in black. If it is equal to 0, then there is no inequality, and all
members have the same share of the good. That is, the Lorenz curve is the straight
equality line and the area is zero. If it is equal to 1, one member has all the good,
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with the area of inequality being equal to the entire area under the straight equality
line. Therefore, smaller is the Gini coefficient more equitable is the distribution.

An expression of the Gini coefficient (GC) , using the formalism previously
introduced can be:

GC =

n
i=1

n
j=1 |si − sj|
2n2s̄

Theil’s Index
The Theil’s Index (TI) (Theil, 1967) has origin in information theory and

involves a logarithmic transformation of certain variable fractions. The weakness
point is the difficult to compute. A possible expression is:

TI =


i |si log si − s̄ log s̄|

s̄

The Schutz’s Index
The Schutz’s Index (SI) proposed by Schutz [1951], is the normalized version of

the Mean Absolute Deviation and is given by:

SI =
1

2ns̄


i

|si − s̄|

The Atkinson’s Index
The Atkinson’s Index (ATK) derived from the theory enveloped by Atkinson

[1970]. A possible expression is:

ATK = 1− n
1

δ−1 [


(
si
s̄
)

1
δ−1 ]

with δ a parameter included between 0 and 1.
In the Table 2.2 we report all the normalized measures introduced indicating

the references in which they are defined.

2.4.3 Measures with Attribute

The Hoover’s Index
The Hoover’s Index (HI) (Hoover, 1941), is the half sum of the absolute differ-

ences between the ratio of each share with the average value and the ratio between
the corresponding attribute and the average value. It can be expressed by:

HI =
1

n


i

|si
s̄
− ai

ā
|

The Coulter’s Index
Coulter [1981] introduced this equality measure in a police service settings,

concerning the difference between the amount of service delivered under the re-
quirement of a specified equality standard. The measure takes the square root
of the sum of squared deviations between the fraction of service delivered to an
area and that area’s proportion of the total population. Coulter notes that the
squaring levies, proportionately, a greater penalty on greater inequality than on
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Code Measure Formulation References

VC Coefficient of Varia-
tion

n
i=1(si−s̄)2

s̄
Gastwirth [1971]

GC Gini Coefficient
n

i=1

n
j=1 |si−sj |

2n2s̄
Gini [1912]

TI Theil’s Index


i |si log si−s̄ log s̄|
s̄

Theil [1967]

SI Schutz’s Index 1
2ns̄


i |si − s̄| Schutz [1951]

ATK Atkinson’s Index 1− n
1

δ−1 [


( si
s̄
)

1
δ−1 ] Atkinson [1970]

Table 2.2: Normalized Equality Measures Resume

lesser inequality. This mathematically reflects his philosophy that a small amount
of inequality is expected and is politically stainable while a substantial amount is
intolerable. The formalization, considering the amount of service as attribute, is:

CO =


1

n


i

(
si
s̄
− ai

ā
)2

Variance with Attribute
Mayhew and Leonardi [1982] minimized the difference between the ratio of

predicted service availability, the share, to expected needs, the attributes, and the
ratio of system wide resources to system wide needs, respectively the average value
of the shares and the average value of the attributres; it can be expressed as:

V ARA =

i

(
si
ai

− s̄

ā
)
2

The Adam’s Index
The measure derives from his Equity theory (Adams, 1965), and compares the

relative outcome to some parameters such as input considered as attribute. The
equality holds if the ratio between these two quantities is the same for all the
participants. AD can be formulated as:

ADI =

i


h

|si
ai

− sh
ah

|

The modified Adam’s Index
Walster et al. [1973] proposed a variation of the Adams’ formula for circumstance

in which negative values are possible. We called this MADI and is expressed as:

MADI =

i

|si − si
ai

|
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Code Measure Formulation References

HI Hoover’s Index 1
n


i |

si
s̄
− ai

ā
| Hoover [1941]

CO Coulter’s Index


1
n


i(

si
s̄
− ai

ā
)2 Coulter [1981]

VARA Variance with at-
tribute


i(

si
ai
− s̄

ā
)2 Mayhew and

Leonardi [1982]

ADI Adam’s Index


i


h |

si
ai
− sh

ah
| Adams [1965]

MADI Modified Adam’s In-
dex


i |

si−ai
ai

| Walster et al. [1973]

MADA Mean Absolute
Deviation with
attributes


i |si − ai| Heiner et al. [1981]

SCSI Schutz’s Sociospa-
tial Index


i(

siai
k skak

− ai
nā
) Schutz [1951]

Table 2.3: Equality Measures with Attribute Resume

Mean Absolute Deviation with attribute
Heiner et al. [1981] formulated this measure in their examination of the allocation

of services to the mentally retarded. The individuals in the study are differentiated
by the level of disability. They compared the differences between the goal to be
met by each group and a level of achievement resulting (our shares), with the
amount of service allocated (our attributes). Looking for minimum values of the
measure means that we obtain most equality distribution of the resource. The
Mean Absolute Deviation with Attribute is given by:

MADA =

i

|si − ai|

Schutz’s Sociospatial Index
Schutz [1951] proposed in his studies also another measure that take into account

also attributes that characterized the distribution. It is given by:

SCSI =

i

(
siai
k skak

− ai
nā

)

In the Table 2.3 we report the measures with attribute indicating the references
in which they are defined.
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Element 1 Element 2 Element 3 Element 4

Distribution A 10 20 30 40

Distribution B 5 25 25 45

Distribution C 5 10 30 55

Attribute 50 65 35 100
Table 2.4: Shares of Distributions

2.5 Example of Evaluation for Equality Measures
In the following we provide a simple example of evaluation of all equality

measures introduced. We suppose the presence of 4 elements and a total number of
available goods equal to 100. We have 3 different distributions of goods on the 4
elements as indicated in Table 2.4.

We suppose that each element is characterized by an attribute whose values are
indicate also in Table 2.4.

There is no equal distribution, i.e. distribution with equal values for each
element. For this reason we aim at evaluating degree of inequality calculated
according various described measures. We determine for all these distributions
the absolute values of the equality measures, and the related values in comparison
with the minimum value of each one. In Tables 2.5 and 2.6 we provide the values
obtained.

We can note that the distribution A is the most equitable for all the measures
except for the Atkinson’s Index where C is indicated with more equitable; it is
important to highlight that more small is value of the measures, more equitable
is retained the distribution. It is possible, indeed verify that the distribution B is
more equitable that distribution C, again this not happens for the Atkinson’s and
Theil’s Index. The normalized values indicated are very different; in particular for
LOGVAR and MD there is a very high variability, while is low with WC. Instead,
for the others measure, is more or less the same.

The evaluation of the measures with attribute show a different behavior. In
fact for two measures the more equitable is the C distribution, and in one case
the B, while in the others distribution A. So we can not identify a more equitable
distribution, and this appears also from the normalized values that are all high.
The results are reported in Table 2.7.

2.6 Choosing a Measure
The example above illustrated shows the possibility of representing the degree

of inequality of a given distribution using different measures with different intensity.



2.6. CHOOSING A MEASURE 27

Absolute Values Normalized Values

Measure A B C A B C

Worst Condition 40,00 45,00 55,00 1 ,00 0,89 0,73

Range 30,00 40,00 50,00 1,00 0,75 0,60

Mean Absolute Deviation 40,00 40,00 70,00 1,00 1,00 0,57

Maximum Ab. Deviation 15,00 20,00 30,00 1,00 0,75 0,50

Variance 500,00 800,00 1550,00 1,00 0,62 0,32

Variance of logs 0,053 0,14 0,19 1,00 0,38 0,26

Absolute Difference 200,00 240,00 340,00 1,00 0,83 0,59
Table 2.5: Evaluation of Not Normalized Equality Measures

Absolute Values Normalized Values

Measure A B C A B C

Coefficient of Variation 20,00 32,00 62,00 1,00 0,63 0,32

Gini Coefficient 0,25 0,30 0,43 1,00 0,83 0,58

Theil’s Index 542,95 579,68 495,22 0,91 0,85 1,00

Schutz’s Index 0,20 0,20 0,35 1,00 1,00 0,57

Atkinson’s Index 0,62 0,80 0,35 0,58 0,44 1,00
Table 2.6: Evaluation of Normalized Equality Measures



28 CHAPTER 2. EQUITY CONCEPT

Absolute Values Normalized Values

Measure A B C A B C

Hoover’s Index 0,32 0,32 0,60 1,00 1,00 0,53

Coulter’s Index 0,40 0,39 0,67 0,98 1,00 0,58

Variance with Attribute 0,26 0,19 0,41 0,73 1,00 0,46

Adam’s Index 4,13 3,82 2,90 0,70 0,76 1,00

Modified Adam’s Index 2,06 2,35 3,45 1,00 0,85 0,58

Mean Ab. Deviation Attribute 150 150 150 1,00 1,00 1,00

Schutz’s Sociospatial Index 0,39 0,44 0,77 1,00 0,89 0,51
Table 2.7: Evaluation of Equality Measures with Attribute

For this reason we should ask how it is possible to choose a measure in order to
appropriately point ut the correct degree of inequality. It should be underline that
the choice of a specific measure is related to the meaning of inequality namely how
we intend inequality also from a theoretical point of view. Allison [1978] proposed
to take the decision for choosing among the numerous measures of inequality, based
their choice on convenience, familiarity, or on vague, methodological grounds, and
in practice many authors adopt this approach.

Moreover some authors have defined a set of criteria that a measure have to
satisfy in order to be a good measure. Champernowne [1974] has collected seven
criteria for selecting good index of inequality:

1. Simpleness to evaluate or estimate in a easy and understandable form.

2. Impartiality among subjects involved in the measure, namely if we are evalu-
ating the equality of income distribution among a group of individuals the
measure depends just by the share possessed by the single member and not
by the ranking of the individuals nor by other factors like race, wealth, power,
political advantage.

3. Invariance with respect to the number of elements among the measure is
evaluated. If we evaluate for the distribution of the income the measure with
a number of person larger or smaller if the income are distribute equally the
value of the measure have to be the same.
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4. Scale Invariance with respect to uniform increase (or decrease) of the size
of shares for each element of the group. More precisely the index should be
unaffected if each income is altered by the same proportion.

5. The Pigou-Dalton criterion, also called principle of transfer, requires that if
a distribution is modified by altering two incomes only so as to leave their
total unaltered, then the index concerned must be increased, unchanged or
decreased, according as the absolute difference between the two incomes is
increased, unchanged or decreased. There is also a sensitivity on transfer that
reveals if the "quantity" of how the measure takes into account this change.

6. Lower and upper bound on the value of the measure are desirable and especially
the measure shall we included between 0 to 1; in particular the index must
take the value 0 for all distributions in which every share is equal and 1 when
the distribution is totally in favor of a single individual.

7. Suitability as a specialist measure of one particular aspect of inequality in
distinction from the others.

2.7 Conclusion
In this chapter we gave an overview of what is intended with equity and equality.

After the introduction of both concepts through the analysis of the definitions
proposed in the literature we listed the most famous measure defined and we
calculated for a very small example of distribution. The criteria with which we
choose the measures can be different and we have listed some of them introduced
in the literature. All these aspects are present and will be faced also in the equity
analysis in the location theory as we will see in the next chapter.



Chapter 3

Equality in Location Problems

3.1 Introduction

In this chapter we analyze how the equity principle can be used in locations
problems. Starting from the literature first of all we describe in which context
it is useful considering equality in choosing locations and how equity is generally
intended in this field. Through a literature review of the papers concerning this
topic we individuate some gaps that will be analyzed in the following chapters.

3.2 Considering Equality in Locating Facility

When we locate a facility, as indicated in Chapter 1, we choose its position on
the basis of an objective. In addition to pull and push objectives we can adopt
balancing objectives, i.e. objectives that balance the effects of the facility on the
users in order to guarantee equality in the distribution of costs and/or benefits
among users.

These types of objectives are particularly suitable to describe problems in the
public sector, where users should have considered in the same way (Marianov and
Serra, 2002). Examples can be the location of hospitals, schools or government
agency (desirable facilities). In other cases (undesirable facilities), despite the users
want to stay as far as possible from the facility, the balancing objectives aim at
distributing damages among users in an equal way.

More precisely, the level of equality in decision of choosing a new site for a
facility can be evaluated comparing the effects, both positive and negative, resulting
for the groups that benefit or suffer it (Marsh and Schilling, 1994). If each group
receives an equal share then equality is guaranteed.

The groups can be defined according to different dimensions. The spatial
dimension, also determined by jurisdictional boundaries, divide the users in groups
on the basis of the spatial distribution. So people in a state or a in a province can be
considered a group; but also those that are included in an area of a certain number of
square kilometers. Following the demographic dimension group can be constituted
by people that are characterized by the same level of some characteristics like the
age or their income. An interesting dimension is the temporal one in which groups
are constituted by users that share a same characteristic in the time. The dimension

30
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Figure 3.1: Equality Location Problems: Ideal Situation

has to be choose on the basis of the specific application in the proximity of the
facility. For example in the case of garbage dump sites groups can be identified
by residents in areas (spatial dimension). If the new site is a school users can
be identified thanks to their age (demographic dimension). In our discussion we
use demand points, that can indicate a single user or a group depending on the
analyzed case.

The level of the effect is generally dependent from the distance between the
facility and the elements of the group. Assuming that effects on the users are
proportional to distances from facilities, guaranteing equality means obtaining the
maximum possible level of equality of the distances between facilities and users.
In a ideal situation all the users have to be positioned at the same distance from
facilities, as illustrated in Figure 3.1. However, this happens rarely. So the purpose
is looking for solutions in which distances are in some way similar. To this aim
equality measures, derived from other contexts, can be adapted in order to measure
a degree of equality in the distribution of distances.

Also in the location theory there is confusion between terms equity and equality.
According to Mulligan [1991] and Eiselt and Laporte [1995] the evaluation of equality
distribution is one of the concept of equity; so equality indicates the way in which
we evaluate if the configuration of the facilities guarantee an equal distributions of
the effects deriving from the facility. For this reason we use equality measures, and
not equity measures as instead used by others authors (i.e. Marsh and Schilling,
1994 and Mesa et al., 2003).
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3.3 Equality Measures for Location Problems

Many proposals have been provided in which equality measures, as defined in
other contexts, have been adapted to the location context.

In three different surveys (Erkut, 1993; Marsh and Schilling, 1994; Eiselt and
Laporte, 1995) are shown a list of equality measures used in location problems. In
Table 3.1 we indicate the list of measures cited by each survey. Each symbol ⊙
marks that measure have been indicated in that paper.
For formulating the measures the following notations are used:

I = {1, . . . , n} the set of the n demand points;
di the distance between the demand point i and the facility;
d̄ the average distance between the demand points and the facility defined as

i
di
n
;

As we can see some measures take into account the evaluation of the spread of
deviation, more precisely Center (CEN) considers the user more disadvantaged,
namely at the biggest distance, while Range (RG) reports the differences among
the user at the smallest distance and the one at the largest one. Others evaluate
the deviation from a central point; in particular while Mean Absolute Deviation
(MAD) and Maximum Absolute Deviation (MD) compare respectively the sum
and the maximum deviation, the Variance (VAR) square the sum of the deviations
of all distances from the average distance. Some of them are used for minimizing
differences in the distances between all pairs of facilities; while Absolute Differences
sum all the differences, the others combine maximization and sum of differences
(Sum Maximum Absolute Differences, Maximum Maximum Absolute Differences,
Maximum Sum Absolute Differences).

Moreover others are normalized and so their values will be included between 0
and 1. While Theil’s Index, and Variance of logs include the evaluation of logarithm,
Atkinson Index is a very different measure also involving a new parameter δ that can
be chosen between 0 and 1. Instead Gini Coefficient, Schutz’s Index and Coefficient
of Variation are respectively the normalized version (divided for the average of the
distances) of Absolute Difference, Mean Absolute Deviation and Variance.

In the Table 3.2, instead the distances are related to some others attribute that
will depend from the type of facility that we are locating. We used the following
additional notations:

ai the attribute associated to each demand point i;
ā the average value of attribute


i
ai
n
.

For better understanding the meaning of equality measure for location problems
we explain how works one of the most popular measures, the Gini Coefficient, that
is defined and obtained as explained in the previous chapter. In the Figure 3.2 we
report a graphical representation of the value of the measure on a X − Y axis. On
the X axis there is the cumulative percent of users while on the Y axis there is
the cumulative percent of distances. So the bisector line indicates that the same
percent of users have the same portion of distances, namely all the users are at the
same distance from the facility. In this case the Gini Coefficient is equal to zero.
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Code Measure Formulation Marsh
and
Schilling
[1994]

Eiselt
and La-
porte
[1995]

Erkut
[1993]

CEN Center maxi di ⊙ ⊙ ⊙

RG Range maxi,j |di − dj| ⊙ ⊙

ARG Alternative Range maxi di −minj dj ⊙

MAD Mean Absolute Devia-
tion

n
i=1 |di − d̄| ⊙ ⊙ ⊙

MD Maximum Absolute
Deviation

maxi=1 |di − d̄| ⊙ ⊙ ⊙

VAR Variance
n

i=1(di − d̄)2 ⊙ ⊙ ⊙

AD Absolute Differences
n

i=1

n
j=1 |di − dj| ⊙ ⊙ ⊙

SMAD Sum Maximum Abso-
lute Differences

n
i=1maxj∈I |di − dj| ⊙

MMAD Maximum Maximum
Absolute Differences

maxi∈I maxj∈I |di−dj| ⊙

MSAD Maximum Sum Abso-
lute Differences

maxi∈I
n

j=1 |di − dj| ⊙

LOG-
VAR

Variance of logs 1/n


i(log di − log d̄)2 ⊙ ⊙

GC Gini Coefficient
n

i=1

n
j=1 |di−dj |
2n2d̄

⊙ ⊙ ⊙

TI Theil’s Index


i |di log di−d̄ log d̄|
d̄

⊙ ⊙

SI Schutz’s Index 1
2nd̄


i |di − d̄| ⊙ ⊙

VC Coefficient of Varia-
tion

n
i=1(di−d̄)2

d̄
⊙ ⊙

ATK Atkinson’s Index 1− n
1

δ−1 [


(di
d̄
)

1
δ−1 ] ⊙ ⊙

Table 3.1: Equality Measures for Location Problems
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Code Measure Formulation Marsh
and
Schilling
[1994]

Eiselt
and La-
porte
[1995]

Erkut
[1993]

HI Hoover’s Index 1
n


i |

di
d̄
− ai

ā
| ⊙ ⊙

CO Coulter’s Index


1
n


i(

di
d̄
− ai

ā
)2 ⊙ ⊙

VARA Variance with at-
tribute


i(

di
ai
− d̄

ā
)2 ⊙ ⊙

ADI Adam’s Index


i


h |

di
ai
− dh

ah
| ⊙ ⊙

MADI Modified Adam’s In-
dex


i |

di−ai
ai

| ⊙ ⊙

MADA Mean Absolute Devia-
tion with attributes


i |di − ai| ⊙ ⊙

Table 3.2: Equality Measures with Attribute for Location Problems

When the users are not at the same distance, reporting for each cumulative
portions of users the correspondent value of cumulative proportion of distances, we
obtain points below the bisector line; the line that connects these points, called
Lorenz Curve, is below the bisector to an extent that will be grater when the
distances are more different. So, the area between the line of perfect equality and
the Lorenz’s curve is representative of half value of the Gini coefficient.

3.4 A literature Review: Statistics
To the aim to verify the interest in using the equality concept in the location

context we performed an extensive State-of-the-Art survey. We used the web-based
tool Google Scholar (including the most widespread academic search engines), for
searching papers in all international referred journals in the time interval from when
we retain the beginning of using equity in location problems, 70’s years, until now
days. We look for the words equity, equality, equitable and balancing objectives in
the title, keywords and abstract of the papers for which the main topic is the choice
of a new location for a facility. In this way we selected only the papers in which
the authors want to pursuit some form of equality. At the same time we excluded
papers in which the equality is not a purpose of the problem but it is obtained just
like a consequence of using others types of objectives.

This way 36 papers have been retrieved most of them published in the last
decade as highlighted in the Figure 3.3.
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Figure 3.2: Gini Coefficient for Location Problems

Figure 3.3: Number of Papers in the Last Decade
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Journal Frequency

European Journal of Operational Research 9

Annals of Operations Research 4

Location Science 4

Geographical Analysis 3

Computers & Operations Research 3

Transportation Science 2

Discrete Applied Mathematics 2
Table 3.3: Journals and Frequencies

Table 3.3 reports journals which hosted at least two papers. They account for
26 total papers out of 36 (72.22% of the total number of papers) with European
Journal of Operational Research as top contributor.

Table 3.4 reports keywords retrieved at least two times in the surveyed papers,
and the number of occurrences for each keyword. It emerges that the words Location,
Equity, Facility Location are the most cited. There are also words like Equality,
Inequality Measure that indicate how the objective or the principle of equity is
formalized.

Keywords like multiple criteria, multiobjective and efficiency also are cited,
putting in evidence that very often the equity criteria are used together with an
efficiency criteria in a multiobjective context.

It is interesting to note that also the word public sector is among the most
used as problems with equity considerations are often used to solve problems in the
public sector.

A further analysis was performed about the used approaches to solve the
problems (Figure 3.4). Proposals concern the definition of both exact and heuristic
methods. In general exact methods are used to solve problems of limited sizes.
In particular with general solver we indicate the use of optimization solvers (i.e.
Cplex or Xpress) or a simple evaluation made by very simple softwares (i.e Excel).
Instead heuristics are defined when formulations are characterized by the presence
of non linearity in the objective function; general solver in this case means a default
procedure defined in a optimization software.

As highlighted in Figure 3.5 the most part of proposed models is tested on
appropriately generated instances. In some cases papers focus on real applications,
especially in the public sector, like emergency recover or hospital management
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Keywords Frequency

Location 10

Equity 7

Facility location 5

Multiple criteria 4

Efficiency 4

MultiObjective model 3

Network 3

Fairness 3

Network 3

Heuristics 2

Public sector 2

Equality measures 2

Algorithm 2

Inequality measures 2
Table 3.4: Keywords and Frequency
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Figure 3.4: Solution Approaches

location problems.
Table 3.5 indicates for each measure how many times it is used in problems’

formulations is used.
We can notice that the most used measures are the Maximum Deviation, the

Mean Absolute Deviation and the Variance. While the first two are linear and so
can be used in a linear programming model, the use of the Variance makes the
problem more complex.

In addition most of the proposed models deal with discrete problems even if
many proposals are also focused on network and continuous problems as shown in
Figure 3.6.

3.5 A Literature Review: Contents
In the literature Mesa et al. [2003] proposed to subdivide papers about equality

measures in those concern the proposal of models and algorithms and papers that
analyze the characteristics of the measures. Within this general scheme, we propose
a more detailed classification also considering the development of the literature in
this field. In particular we distinguish among:

• First Formulations, i.e. papers in which first formulations are included and
that introduce the fundamental ingredients of these problems; we included
papers until the first years of 90’s.

• Survey and Properties Analysis, where are resumed equality measures
adapted in location theory and theoretical properties are analyzed.

• New Forms of Equality, papers in which alternatives proposals of equality
measures are indicated.

• Location Models with Equality Measures, i.e. papers describing models
and methods in which equality measures are introduced as objective function
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Figure 3.5: Testing Models and Applications

Figure 3.6: Space in which are Defined Models
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Code Measure Number of Times

CEN Center 10

RG Range 5

ARG Alternative Range 1

MAD Mean Absolute Deviation 10

VAR Variance 11

MD Maximum Absolute Deviation 12

VAR Variance 11

AD Absolute Difference 8

SMAD Sum Maximum Absolute Difference 1

MMAD Maximum Maximum Absolute Difference 1

MSAD Maximum Sum Absolute Difference 1

TI Theil’s Index 1

LOG
VAR

Variance of logs 1

SI Schutz’s Index 1

VC Coefficient of Variation 1

GC Gini Coefficient 6

ATK Atkinson’s Index 1
Table 3.5: Number of Times in which each Equality Measure is Used in Problems

Formulations
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and/or constraints.

• Applications, that describe practical and real applications in which equality
is considered.

In the following we provide a brief description of the main contributions of each of
the indicate classes.

3.5.1 First Formulations

A first location decision based on equality aspects can be considered the one
proposed by Mumphrey and Wolpert [1973] for choosing the position of a bridge eval-
uating positive and negative effects on the population; they proposed a mechanism
of compensation by the government for the group that are considered disadvantaged.

The first model, using equality measure can be considered that of McAllister
[1973] which focused on the system of public service centers. He used the variance
of the distances among facilities and populations for evaluating the level of equality
in the distribution of the effects deriving from the facility, jointly with an efficiency
criterion.

Afterwards, Lindner-Dutton et al. [1991] considered a problem in which route
for hazardous material shipments had to be defined in order to assure the equitable
distribution of risk among the zones of the community. In their integer programming
model, the minimization of the sum of the maximum differences of risk that exist
between any pairs of zones is optimized. Also Current and Ratick [1995] proposed
for this typology of problem a multiobjective model in which risks and equity,
determined spatially, are minimized for the users in the worst condition.

Instead, Berman and Kaplan [1990] treated equality question using taxes and
side payments to redress benefit inequities. A very simple tax or side payment
scheme was proposed in order to equalize benefits for all customers in the system.
They also defined a problem on a three-node network in order to minimize the sum
of the absolute differences and the maximum deviation of the distance, showing
that solutions were comparable to those obtained by the first approach.

3.5.2 Survey and Properties Analysis

A significative set of papers have been devoted to the study of the measures
adopted in the location context and by the analysis of theoretical properties which
can be considered useful to characterize equality measures.

Morrill and Symons [1977] evaluated the value of different measures when we
optimize an efficiency criterion for choosing the location of a facility.

Maimon [1986] investigated properties of the variance for tree networks.
Mulligan [1991] showed a comparative analysis of equality curves trend on some

measures (Gini coefficient, Mean deviation, Hoover’s Index, Variance and Theil’s
index).

Erkut [1993] provided the first review on the field resuming all the equality
measures indicated in the literature and proposing others. He tested them on a
very small example highlighting some properties for each one.
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Marsh and Schilling [1994], as we put in evidence in the rest of the chapter,
proposed a very comprehensive survey. They listed the possible measures and also
proposed a framework for the classification of them. In addition they indicated a
set of properties to be satisfied by equality measures.

Hay [1995] discussed the concepts of equity, fairness and justice for location
theory.

Lopez-De-Los-Mozos and Mesa [2001] analyzed properties of the maximum
absolute deviation.

Furthermore Drezner and Drezner [2009] indicated some new properties for the
Gini coefficient and the Absolute Difference for continuous location problems.

3.5.3 New forms of Equality

Some authors have proposed models introducing alternative formulations of
equality measures different from the classical ones.

Baron et al. [2006] considered the problem of locating a given number of facilities
on a continuous space so as to minimize the maximum demand faced by each facility
subject to closest assignments and coverage constraints. This way they minimized
the condition of users in the worst condition.

Berman and Huang [2008] found a position for a given number of facilities
in order to minimize the maximum total weight attracted by each facilities on a
network.

Moreover, Marín [2011] proposed a discrete facility location problem where the
difference between the maximum and minimum number of customers allocated to
every plant has to be balanced formulating it as an integer programming model
solved with a branch and cut procedure.

A new form of equality criterion was defined by Espejo et al. [2009] that approach
a discrete facility location problem in which demand points have strict preference
order on the sites where the plants can be located. The goal is to minimize the total
envy felt by the entire set of demand points. The new total envy criterion is defined
as the absolute difference felt by the users and several integer linear programming
formulations are provided.

Prokopyev et al. [2009] formulated some measures for the so called dispersion
problem in which facilities have to be allocated at the most possible distance among
them. They proposed the equitable dispersion problem that minimizes range and
mean absolute deviation of the distribution of the distances among pairs of facilities.

3.5.4 Location Models with Equality Measures

Ghosh [1996] defined a problem of locating a number of facilities along a line; in
order to minimize the maximum distance between two adjacent facilities they also
considered a variation where the objective is not only to minimize the maximum
distance, but also to hierarchically minimize the second maximum distance and
so on. In the model it was assumed that there was a cost for siting a facility at
a given point, and considered bi-criteria extensions where the objective was to
simultaneously achieve efficiency and equity.
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A new concept for evaluating properties of equality measures is introduced in
Ogryczak [2000] that formulated a bi-criteria optimization model in which minimize
the mean distance and the mean absolute deviation measure. The solutions of the
model satisfy the new concept of equitable efficiency. These results are further
generalized and is improved in Ogryczak and Zawadzki [2002], Kostreva et al. [2004]
and Ogryczak and Zawadzki [2009] including also more measures.

Mesa et al. [2003] showed algorithms for single facility location problems on
networks with several equality measures: the variance, the sum of weighted absolute
deviations, the maximum weighted absolute deviation, the sum of absolute weighted
differences, the range, and the Gini Coefficient measures.

Drezner et al. [2006] proposed a minimax regret multi-objective formulation
that follows the idea of the minimax regret conception decision analysis. The
model aimed at minimizing the maximum percentage deviation of individual as
objective function; in doing so they implement a descent heuristic and a tabu search
procedure.

Drezner and Drezner [2006] considered as objective function the variance of
total demand attracted from each facility. In the model the gravity rule is used for
the allocation of demand among facilities rather than assuming that each customer
selects the closest facility. They proposed heuristic solution procedures for the
problem in the plane.

Ohsawa et al. [2006] chose the location of a facility within a given region taking
into account two criteria of equity and efficiency. Equality is sought by minimizing
the sum of the absolute differences between all pairs of squared Euclidean distances
from users to own facility; efficiency is measured through optimizing the sum of
squared users-facility distances, either to be minimized or maximized for a desirable
or obnoxious facility respectively. Afterwards Ohsawa et al. [2008] extended their
model considering a bicriteria model with different measures to locate a semi-
obnoxious facility within a convex polygon.

Drezner and Drezner [2007] investigated planar location models with two equality
objectives: the minimization of the variance, and the minimization of the range of
the distances. The problems were solved using a global optimization technique.

Lopez-De-Los-Mozos et al. [2008] exploited the concept of a particular formula-
tion, called the ordered weighted averaging formulation, for defining a model which
unifies and generalizes several inequality measures on several kinds of networks.
They developed a polynomial-time algorithms to solve them

Drezner and Drezner [2009] proposed a location model minimizing the Gini
coefficient based on service distances. They provide an algorithm that finds the
optimal location of one facility in a bounded area in the plane when demand is
generated at a set of demand points.

Puerto et al. [2009] dealt with the problem of locating path-shaped facilities of
unrestricted length on networks. They defined the following problems: locating a
path which minimizes the range, that is, the difference between the maximum and
the minimum distance from the vertices to a facility, and locating a path which
minimizes a convex combination of the maximum and the minimum distance from
the vertices of the network to a facility, also known as the Hurwicz criterion.
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3.5.5 Applications

In some cases papers are mainly oriented to solve real problems in which the
introduction of measures able to take into account equality aspect is useful.

Johnson and Hurter [1998] presented an optimization model for evaluating
different locations for the rent-subsidized housing in a large metropolitan area,
taking into account effects for different groups like including residents of subsidized
housing, owners of nearby single-family housing, employers and society at large.
They looked for a balance of the number of peoples in the houses considering the
size of the entire population and the number of residents in the subsized houses.

Drezner [2004] found the best location of casualty collection points that are
expected to become operational in case of a human-made or natural disaster with
mass casualties, such as a high-magnitude earthquake. He suggested and analyzed
five objective functions including the Variance and the Gini Coefficient. In addition
a multi-objective model has been proposed also applied to a scenario based on a
large earthquake hitting Orange County.

Galvao et al. [2006] formulated a bi-criterion model in which perinatal facilities
in the municipality of Rio de Janeiro have to be located minimizing the distances
between the new facilities and the users and also for guaranteeing the balance of
the loading of the facility, minimizing the maximum deviation of the loads of each
facility.

Medaglia et al. [2009] proposed a bi-objective obnoxious facility location model
for the disposal of hospital waste generated in the Department of Boyaca (Colombia).
The objective deals with the tradeoff between a low-cost operating network and the
balancing of negative effects on the population living near the waste management
facilities.

Kim and Kim [2010] focused on the problem of determining locations for long-
term care facilities with the objective of balancing the numbers of patients assigned
to the facilities.

3.6 Conclusion
In this chapter we analyzed the concept of equality in the context of location

theory. We put in evidence that there are a lot of equality measures and also models
involving them.

The proposals of models with different equality measures highlighted that they
seem to be equivalent in capturing complex concepts such as equality, equity fairness.

Literature has also underlined the presence of papers oriented to define properties
that measures should be satisfy in order to be considered appropriate to represent
equality aspects. These properties are mainly introduced in axiomatic way and
they do not generally provide useful information from the computational point of
view, i.e. in supporting the optimization process.

In the next chapter we try to deepen these aspects by introducing new properties
and by investigating possible correlations among measures.



Chapter 4

Equality Measures: Properties

4.1 Introduction

We have illustrated the most used equality measures, typically derived from the
economic field and adapted to the location context. In this chapter we describe some
properties that have been introduced in order to characterize equality measures. In
addition we propose further properties able to put in evidence similarity among
groups of measures and what happens when we optimize a measure rather than
another.

4.2 Classification of Properties for Equality Mea-
sures

In the literature several authors have mentioned one or more criteria that should
be considered when an equality measure is selected.

In their survey Marsh and Schilling [1994] indicated seven properties that should
be defined as axioms.

Anyway these properties highlight only if the measures are well defined or
not. Instead it is necessary to identify new properties describing the behavior of
equality measures in an optimization context, as has been provided for one of them
by Drezner and Drezner [2009]. We define a set of significative ones in order to
understand what happens when we adopt one of the different measures respect
to the others. In this way we list a second category of properties that we call
optimization properties.

In addition we classify the properties, for each one of the categories identified,
in binary and computable. With binary we intend properties that can be satisfied
or not by an equality measure; while with computable we indicate the properties
that can be satisfied with a different degree of satisfaction.

4.3 Properties Proposed in the Literature

In this section we illustrate the properties defined in the literature for location
problems. In the category of binary properties we insert: Principle of Transfer,

45
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Figure 4.1: Properties for Equality Measures in Location Context

Scale Invariance, Normalization, Impartiality. Afterwards we describe the Ana-
lytic Tractability, Sensitivity and Pareto Optimality that we have included in the
computable properties category (Figure 4.1).

4.3.1 Axiomatic Properties

The Principle of Transfer known as the Pigou-Dalton condition (from the name
of its inventors), provides that a distribution of income should become less unequal
if a monetary unit is transferred from a person, who is in a better economic situation
than the average, to a person in a worse situation. In a location context, as defined
by Erkut [1993], the distribution of distances should become less inequal if a farther
user becomes closer to its patronized facility at the expense of someone else who was
closer and move away, keeping constant all the other distances. Namely, given two
distributions of distances sorted in increasing way, S1 = {d1, d2, ..., di, dj, . . . , dn}
and S2 = {d1, d2, ..., di + ϵ, dj − ϵ, . . . , dn}, S2 is more equitable than S1, if the
absolute difference between (di + ϵ) and (dj − ϵ) is less than the absolute difference
between di and dj . Ohsawa et al. [2008] demonstrated the property for the Absolute
Difference measure. In similar manner it is possible to prove it for all measures.

The Scale Invariance principle (Erkut, 1993) is satisfied if the degree of equity
does not change varying the type of scale used to assess the measure itself. In a
location problem this means that a measure should not vary if the distances are
calculated according to a different scale.

The Normalization (Marsh and Schilling, 1994) occurs when measures are
somehow scaling or compared to a statistical measure. This way it is also possible
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to compare distributions in presence of different number of elements and of a
different average distance. The normalization is in relation to the scalar invariance
principle because if measures are normalized are also invariant.

The Impartiality property highlights that equity should only depend on the
social factors and data and not from other aspects like race, color, age or political.
In the location context this property is automatically satisfied because users are
not distinguished according these aspects.

4.3.2 Computable Properties

The Analytic Tractability property (Marsh and Schilling, 1994) concerns the
computational complexity of a measure. In this sense it can be calculated as the
number of operations needed to evaluate a given measure. However it should
be defined considering the contribute to the complexity of a given problem. For
instance it is expected that a non-linear measure makes a problem more complex
instead of a linear measure.

Sensitivity (Marsh and Schilling, 1994) is the feature that defines how the
solution varies with the variations of any parameter of the problem. In the context
of location problems the property takes into account variations of the measure in
dependence on changes of positions of demand points.

The Pareto Optimality solution will be considered better than another if at
least one user has a shorter distance from the facilities. Often this condition is
not considered necessary because this is a measure of efficiency and not of equality
(Campbell, 1990).

Finally, we can have the property of Appropriateness. Mulligan [1991] summa-
rized this concept arguing that some measures are not intuitively satisfactory and
most of the time, the use of an inappropriate measure in a decision-making process
leads to a certain failure; moreover, used measure should be easily understood in
order to be able to choose between different alternatives.

4.4 New Optimization Oriented Properties

Apart the Transformation Invariance property recently proposed by Drezner
and Drezner [2009] the existing defined properties are mainly axiomatic.

Then they do not provide indications about the behavior of a measure from the
optimization point of view, indications that could be useful to support the design of
effective optimization methods (exact and heuristic). For this reason we introduce
some "optimization oriented" properties (Figure 4.2) that we define considering
a standard regular location space. In particular we consider, as in Drezner and
Drezner [2009] a uniformly distributed demand in a disk of unit radius. Then
we consider the following properties in relation to the presence of this demand
distribution.

The Transformation Invariance was introduced in the context of location by
Drezner and Drezner [2009]. This property is satisfied if we transformed the space
of location and the position of the facility in the same way, we should obtain the
same result for the calculated measure. Drezner and Drezner [2009] analyzed three



48 CHAPTER 4. EQUALITY MEASURES: PROPERTIES

Figure 4.2: Optimization Oriented Properties for Equality Measures in Location Context

different kinds of transformation (Translation, Rotation and Expansion) and they
verified the property for the Gini Coefficient.

The Max-Min Position reveals the expected position of the maximum and the
minimum value inside and outside the circle.

The Monotonic property analyzes the trend of a measure over the distance from
the center of the demand distribution (Figure 4.3).

The Asymptotic property evaluates what is the value of a measure far from the
center of the demand distribution. A measure has an asymptotic behavior when,
moving the facility from the center of distribution, further than a certain distance,
the measure tends to assume the same value. Possible values for the asymptote can
be finite, infinite or zero (Figure 4.4).

We performed a study oriented to highlight the behavior of each measure in

Figure 4.3: Trend of an Equality Measure
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Figure 4.4: Evaluation of an Equality Measure at Big Distance

terms of optimization oriented properties. To this aim we realized an empirical
analysis considering a single facility location problem using as objective one by
one the equality measures indicated in Table 4.1. In order to better illustrate the
results we recall the notation introduced in Chapter 3:

I = {1, . . . , n} the set of the n demand points;
di the distance between the demand point i and the facility;
d̄ the average distance between the demand points and the facility defined as

i
di
n
;

In the Table 4.1 9 of 12 measures of the list performed by Eiselt and Laporte [1995]
and one measure indicated by Erkut [1993] are included. Measures 1-7 are not
normalized, while the remaining ones (8-9) are normalized. Furthermore, measures
3-5 and 8-9 represent deviations from the mean distance distribution.

In order to simulate a demand space with continuous uniformly distributed
demand we consider a space consisting in a unit circle in which we generated 5000
demand points according to a uniform distribution. To this purpose we followed
the procedure indicated in Weisstein [2011]. The procedure is characterized by the
following steps to define the position of a single demand point:

• generating two random numbers ρ and θ with uniform distribution such that:

ρ : 0 ≤ ρ ≤ 1

θ : 0 ≤ θ ≤ 2π

• calculating the coordinates of each demand point as:

X =
√
ρ cos θ

Y =
√
ρ sin θ

An example of demand space generated according to this procedure is illustrated
in Figure 4.5. In presence of a circular uniformly distributed demand, in order
to verify the above mentioned properties. We introduce an X axis whose origin
corresponds to the center of the demand space and whose direction coincide with
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Code Measure Formulation

CEN Center maxi∈I di

RG Range maxi∈I di- mini∈I di

MAD Mean Absolute Deviation


i∈I |di − d̄|

VAR Variance


i∈I(di − d̄)2

MD Maximum Deviation maxi∈I |di − d̄|

AD Absolute Difference


c∈I,d∈I |dc − dd|

SMDA SumMaxDiffAbs


c∈I maxd∈I |dc − dd|

SI Schutz’s Index 1
2Nd̄


i∈I |di − d̄|

VC Coefficient of Variation


i∈I(di−d̄)2

d̄

GC Gini Coefficient


c∈I,d∈I |dc−dd|
2n2d̄

Table 4.1: Selected Equality Measures for the Single Facility Location Problem
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Figure 4.5: Example of Test Problem

the direction of a radius. Then we calculated each measure inside and outside the
circular demand space. In particular inside the circle, we considered every point
on the X-axis for X = 0 to X = 1 assuming a step equal to 0,05 (Figure 4.6).
Outside the circle we considered points from X = 1 to X = 10 with a step equal to
1 (Figure 4.7).

4.5 Analysis of the Optimization Oriented Proper-
ties

The calculation of the value of each measure along the X axis let one analyzes
the above defined properties. To this aim we generated 10 different circular demand
spaces. We focus on the set of optimization oriented properties. In particular we
considered the transformation invariance as defined by Drezner and Drezner [2009]
an the new ones introduced:

• Max-Min Position

• Monotonicity

• Asymptoticity

In the following we describe the performed analysis and the conclusions drawn
about the behavior of each measure.
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Figure 4.6: The Considered Facility Inside the Space

Figure 4.7: The Considered Facility Outside the Space
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Translation
Invariance

Rotation
Invariance

Expansion
Invariance

CEN 1 1 1
RG 1 1 K

MAD 1 1 K
VAR 1 1 > K
MD 1 1 K
AD 1 1 K

SMDA 1 1 K
SI 1 1 1
VC 1 1 1
GC 1 1 1

Table 4.2: Transformation Invariance Properties

Transformation Invariance
In order to test the transformation invariance property we apply three different

transformations to the location space. In particular for verifying the Translation
invariance for each of the 10 generated instances we provided a "translated" version
of each instance by changing the position of each demand point incrementing
the value of the coordinates of the same quantity; i.e. indicating with K this
increment, a demand point with coordinates (X1, Y1) after the transformation its
coordinates become (X1 +K,Y1 +K). We also incremented, of the same quantity,
the coordinates of the position occupied by the facility.

For the Rotation invariance the methodology adopted is the same but, we
produced the new instances rotating all the coordinates of the points and of the
facility of the same angle α. Again for the Expansion invariance we "expanded"
both the coordinates of a certain value, i.e a demand point (X1, Y1) become (X1 ×
K,Y1 ×K).

In order to evaluate the properties we calculated the ratio between the measure
in the original space and the value obtained in the modified space at the center
of the distribution (Table 4.2). Thanks to the experimentation we can establish
that the rotation invariance and the translation invariance are satisfied for all
equality measures analyzed, because the value of the measures in the original and
in the generated instance is the same for all of them and so the ratio is equal to
1. For the Expansion Invariance it can be observed that while the normalized
measures (SI, VC, GC) satisfy the property, among the others apart the center all
the measures present an increment of the measure equal to K. We can note that all
normalized measures are invariant scalar, indeed the ratio is equal to 1; instead the
not normalized measures have all the same ratio corresponding to the coefficient of
multiplication K; only the variance (VAR) presents a ratio plus than K.

Max-Min position, Monotonicity, Asymptoticity
In order to describe the behavior of each measure in terms of min and max

position, monotonicity and asymptoticity we calculated for each test problem the
values of each measure along the X axis, inside and outside the circular space
according to the steps above described.
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Figure 4.8: Not Normalized Measures: Monotonic Property

Figure 4.9: Not Normalized Measures: Asymptotic Property
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Figure 4.10: Normalized Measures: Monotonic Property

Figure 4.11: Normalized Measures: Asymptotic Property
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Facility Position
X = 10 X = 100 X = 1000

CEN 10.99669 100.99661 1000.99661
RG 1.99139 1.99156 1.99157

MAD 2122.08092 2123.7162 2123.74822
VAR 1251.63765 1252.83111 1252.83446
MD 1.00692 1.00098 1.00121
AD 14409275.14 14416984.28 14417021.75

MSDA 7101.52532 7103.26279 7103.35337
SI 0.02119 0.00212 0.00021
VC 3.53352 0.35395 0.0354
GC 0.02878 0.00288 0.00029

Table 4.3: Values of Measures at Points Outside the Circular Space

In addition to verify the asimptoticity behavior we also evaluated measures at
point X = 10, 100, 1000, i.e. at a distance from the center respectively equal to 10,
100 and 1000 times. In Figures 4.8, 4.9, 4.10 and 4.11, we plot the average values
of the measures on the 10 generated instances in function of the distance of the
considered facility from the center. Moreover, since the measures have different
order of magnitude, for not normalized measures we divided all values for the
maximum value obtained in a given instance for each measure; in this way all values
will be included between 0 and 1.

In particular we show in Figures 4.8 and 4.9 the behavior of the not normalized
measures inside and outside the circular space while in Figures 4.10 and 4.11 we
indicate the same for the normalized measures. In Table 4.3 we report the average
values on the 10 instances obtained at points outside the circular space.

On the basis of the obtained results we point out that all the not normalized
measures present an increasing similar behavior inside the circle, from the center to
the extreme point (Figure 4.8).

The Center measure (CEN) has a constant increase as it represents the distance
from the farthest demand point; in presence of a very dense demand space if the
facility is positioned at point X = 10 its value is well approximated by the value in
the center plus the distance from the center. Moreover the Center measure (CEN)
is the only that has an asymptote at infinite value, while the others not normalized
measures have an asymptote at finite value (Figure 4.9).

The RG has the same behaviour of CEN inside the circle, while at larger distances
the difference between maximum and minimum distance tends to diminish.

The MAD, AD, MSDA and VAR have a same trend with an inflection point
immediately after the origin of the axis and another at the end of the distribution of
the points. The Measure MD has a trend more fluctuating inside the circle (Figure
4.8).

The asymptote for these measure is equal to the respective value in correspon-
dence of the facility positioned in point X = 1 as put in evidence from the value in
Table 4.3.
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Code Min Position Frequency Max Position Frequency
CEN Center 100% Farthest 100%
RG Center 100% Farthest 100%

MAD Center 100% Farthest 100%
VAR Center 100% Farthest 100%
MD Center 40% Farthest 100%
AD Center 100% Farthest 100%

SMDA Center 100% Farthest 100%
SI Farthest 100% Inside (65% of radius) 100%
VC Farthest 100% Inside (85% of radius) 100%
GC Farthest 100% Inside (65% of radius) 100%

Table 4.4: The Max/Min Position and Frequency on Ten Instances

Instead the normalized measures (GC, SI, VC) have an unimodal trend inside
the circle in fact they first increase and after decrease (Figure 4.10). On the contrary
outside the circle they assume a decreasing trend that tends asymptotically to zero
at a very high distance (Figure 4.11). At the position X = 1000, as indicated in
Table 4.3, the value is almost equal to 0.

In Table 4.4 we indicate the position of the facility we found the maximum
and the minimum values for all measures and also the frequency intended as the
number of times on ten for which the same correspondent position is obtained. We
point out that the minimum values for not normalized measures is obtained always
in correspondence to the centre except for the measure MD but, the position is
very close to the centre. On the contrary the maximum value is obtained for the
not normalized measures inside the circle always in correspondence of the position
on the circumference. For the normalized measures the minimum is always in the
farthest position analyzed. For the Gini Coefficient (GC), in according with the
analysis conducted by Drezner and Drezner [2009], the maximum value is about
65% of the radius of the circle. Still the maximum values of SI is about 65%, while
for VC is 85% of the radius of the circle.

Finally in Table 4.5 we provide a resume on how the optimization oriented
properties are satisfied; for the binary properties we indicate if they are satisfied (Yes)
or not (No), while for the computable ones the respective degree of computation. In
particular, with center we intend the center of the circle (the location space), while
with farthest a position outside the circle and a very big distance from it; inside,
instead, indicates a position in the circle different from the center. Increasing and
unimodal refer, as indicated before, to the monotonic property.

4.6 Analysis of the Correlation between Pairs of
Measures

Another objective of our analysis is oriented to determine correlations between
each pair of measures, i.e what happens to a measure when we optimize another
measure. To this aim we formulate the mathematical model of a general problem
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Code Transformation
Invariance

Asymptotic Monotonic Min
Position

Max Posi-
tion

CEN Yes Infinite Increasing Center Farthest

RG No Finite Increasing Center Farthest

MAD No Finite Increasing Center Farthest

VAR No Finite Increasing Center Farthest

MD No Finite Increasing Center Farthest

AD No Finite Increasing Center Farthest

SMDA
No Finite Increasing Center Farthest

SI Yes Zero Unimodal Farthest Inside

VC Yes Zero Unimodal Farthest Inside

GC Yes Zero Unimodal Farthest Inside
Table 4.5: Summary Proposed Properties



4.6. ANALYSIS OF THE CORRELATION 59

characterized by the location of p facilities with the objective of minimizing an
equality measure.

We use the following notation:
I = {1, . . . , n} the set of the n demand points;
J = {1, . . . , n} the set of potential locations for the facilities;
dij the distance between the demand point i and the facility in j;
d̄ the average distance between the demand points and the facilities defined as

i,j
dij
n

;
Then, allocation decisions are represented through the following x-variables:

xij =


1 if demand point i is allocated to facility j
0 otherwise, ∀i ∈ I, j ∈ J,

and location decisions are represented by

yj =


1 if a facility is located at point j
0 otherwise, ∀j ∈ J.

The proposed formulation is

min fk(dij, xij)

s.t.

j∈J

xij = 1 ∀i ∈ I, (4.1)

xij ≤ yj ∀i ∈ I, j ∈ J, i ̸= j, (4.2)
j∈J

yj = p (4.3)
j

dijxij + (M − dij)yj ≤ M ∀i ∈ I, j ∈ J, (4.4)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J, (4.5)
yj ∈ {0, 1} ∀j ∈ J. (4.6)

where fk(dij, xij) is one of equality measures chosen among those indicated in Table
4.6 and M is a very large number (M ≥ maxi,j dij).

Constraints (4.1) ensure that all the demand points are allocated. Constraints
(4.2) ensure that a point may receive allocation only if it is active. Constraint (4.3)
fixes the number of facilities to p. Constraints (4.4), as pointed out by Espejo et al.
[2012] permit to allocate each demand point to the closest facility. Constraints (4.5)
and (4.6) indicate that variables are binary.

The characteristic of this model depends on the chosen measure. If fk(dij, xij)
is not linear a linearization process can be applied.

In particular we adopt the approach used by Chang [2001]. We show how this
works in the case of the Gini Coefficient.
Introducing the following new variables:

t a real variable equal to t = 1
i∈I,i∈Jdijxij

;

fij a real variable substituting the product xijt in the objective function;
zij a real variable substituting the product xijt in the constraints;
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Code Measure Formulation

CEN Center maxi∈I,j∈J dijxij

RG Range maxi∈I,j∈J dijxij- mini∈I,j∈J dijxij

MAD Mean Absolute Deviation


i∈I |


j∈J dijxij − d̄|

VAR Variance


i∈I(


j∈J dijxij − d̄)2

MD Maximum Deviation maxi∈I


j∈J |dijxij − d̄|

AD Absolute Difference


c∈I,d∈I |


j∈J dcjxcj −


j∈J ddjxdj|

SMDA SumMaxDiffAbs


c∈I maxd∈I |


j∈J dcjxcj −


j∈J ddjxdj|

SI Schutz’s Index 1
2Nd̄


i∈I,j∈J |dijxij − d̄|

VC Coefficient of Variation


i∈I,j∈J (dijxij−d̄)2

d̄

GC Gini Coefficient


c∈I,d∈I |


j∈J dcjxcj−


j∈J ddjxdj |
2n2d̄

Table 4.6: Objective Functions Based on Equality Measures
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mij a real variable for the linearization of the absolute value.
The model becomes:

min
1

2n


i∈I,j∈J

mij

s.t. fij ≥ M(xij − 1) + t ∀i ∈ I,∀j ∈ J (4.7)
fij ≥ 0 ∀i ∈ I,∀j ∈ J, (4.8)
fij ≤ xij ∀i ∈ I,∀j ∈ J, (4.9)
fij ≤ t ∀i ∈ I,∀j ∈ J, (4.10)
i∈I,j∈J

xijdij = 1 (4.11)

zij ≥ M(xij − 1) + t ∀i ∈ I,∀j ∈ J, (4.12)
zij ≤ M(1− xij) + t ∀i ∈ I,∀j ∈ J, (4.13)
zij ≤ M(xij) ∀i ∈ I,∀j ∈ J, (4.14)
j∈J

fcjdcj −

j∈J

fdjddj ≤ mcd ∀c, d ∈ I, (4.15)
j∈J

fcjdcj −

j∈J

fdjddj ≥ −mcd ∀c, d ∈ I, (4.16)
j∈J

xij = 1 ∀i ∈ I, (4.17)

xij ≤ yj ∀i ∈ I, j ∈ J, i ̸= j, (4.18)
j∈J

yj = p (4.19)
j

dijxij + (M − dij)yj ≤ M ∀i ∈ I, j ∈ J, (4.20)

xij ∈ {0, 1} ∀i, j ∈ J, (4.21)
yj ∈ {0, 1} ∀j ∈ J. (4.22)

The constraints (4.7, 4.8, 4.9,4.10) assure that the new variable fij is equal to
xijt as suggested in Chang [2001]. The constraints 4.7 assure that the variable t is
equal to 1

i∈I,i∈J dijxij
. The constraints (4.12, 4.13,4.14) assure that the new variable

zij are equal to xijt in the formulation of the constraints, again as suggested Chang
[2001]. Constraints (4.15, 4.16) are the classical ones for linearizing the absolute
value in the objective function with the introduction of the new variables mij . The
other constraints are the same expressed in the p equality model.

In order to evaluate the degree of similarity between pairs of measures we solve
the model considering the equality measure v as objective function and we calculate
the value of another measures u, fu

v . For instance fAD
MAD represents the value of

measure Mean Absolute Deviation (MAD) when the model is solved by using the
measure Absolute Difference (AD) as objective function. This way considering a set
of problems, for each pair (u, v), two data sets can be obtained: the first representing
all the optimal solution values f ∗

u calculating using measure u as objective; the
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Figure 4.12: An example of Correlation Coefficient

second representing the values of the measure u, fu
v calculated using as objective

function v. For instance, Figure 4.12 reports the results of the experiments assuming
u corresponding to the Gini Coefficient (GC) and v corresponding to the Schutz’s
Index (SI).

If we calculate the correlation coefficient rv,u it can be viewed as a measure
or the degree of similarity of the measures (u, v) when a problem is solved. In
fact when the points are collected on a straight line means that the two measures
are perfectly correlated rv,u = 1; this means that if we use u or v as objective
function we systematically find the same solution. On the contrary, if points are
more distributed in the plane, the measures are less correlated. It has to be noticed
that, given its particular definition, generally the correlation coefficient rv,u is
not symmetrical. This correlation measure indicates how much a measure can
be considered a good "proxy" for another measure. In practice, high values of
rv,u indicate that by optimizing measure v one can obtain values very close to the
optimum ones for the measure u.

4.7 Empirical Analysis

We proposed an empirical analysis oriented to quantify potential correlations
between pair of measures. To this aim, we solved the general p-equality formulation
with the different measures indicated in Table 4.6.

In our analysis we considered two sets of test problems. The first one (10X10)
assuming |I| = |J | = 10. The second one (20X20) with |I| = |J | = 20 (an example is
shown in Figure 4.13). The experiments were conducted on 100 randomly generated
instances assuming with p = 2, 3, 4, 5 for the 10X10 set and p = 2, 4, 6, 8, 10 for
20X20 set. Throughout all the testing, we used a Pentium IV with 2.40 GigaHertz
and 4.00 GigaBytes of RAM running. The solver was Cplex v 12.00. For each pair
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Figure 4.13: An Example of Randomly Generated Instance with |I| = |J | = 20

of selected measures we calculated:

• the number of instances, out of 100, where two measures obtained the same
optimal solution;

• the correlation coefficient rv,u.
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We have in Tables 4.7 and 4.8 the minimum (min), the average (avr) and the
maximum (max ) number of coinciding solutions among those derived from all the
instances solved in the two different location spaces. We can note that a very
significant high number is obtained in the case of some particular pairs (RG-AD;
MAD-AD; VAR-AD; VAR-VC; GC-GC; GC-SI). On the other hand, for some pairs
of measures, for instance SI-MD, it is obtained the same optimal solutions a much
lower number of times. The most significant relationships noticed in the 10X10
case still persist also in the 20X20 case.
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In Tables 4.9 and 4.10 we report the minimum (min), the average (avr) and
the maximum (max ) values of the correlation coefficient, for each pair of measures,
obtained on all instances solved for the two location spaces (respectively 10X10 and
20X20) imposing a different number of opened facilities. We can note very high
values, in general, within homogeneous groups (namely, among pairs of normalized
measures and pairs of not-normalized ones). Among the selected measures, the
Coefficient of Variation (VC) and the Gini Coefficient (GC) show a very high
correlation with all the other measures. It is interesting to point out that Schutz’s
Index (SI) does not appear to be highly correlated to Mean Absolute Deviation
(MAD), nevertheless SI represents the normalized version of MAD.

4.8 Conclusion
In this chapter we described a classification of properties that can be associated

to equality measures. In addition to properties indicated in the literature, we
provided mew ones oriented to describe the behavior of properties in presence of a
"regular" distribution of demand points. Then we proposed a measure of similarities
between pairs of measures and through an empirical analysis we pointed out how
much pairs of measures can be considered correlated.



Chapter 5

The Balancing Two Stage Location
Problem

5.1 Introduction

In this chapter we analyze how the equality measures can be used for formulating
problems apparently different from classical location problem. In particular we
tackle a transportation problem related to flows of material from some origins to a
depot whose performance can be formulated introducing an appropriate measure of
equality. In this chapter we propose two formulations for the problem, while in the
following chapter we show some developed solving procedures.

5.2 The problem

In its classical version, the transportation problem consists in to finding the way
of transporting homogeneous product from a set of origins to a set of destinations
so that the total cost can be minimized Hitchcock [1999].

For some real-world applications, the transportation problem is often extended
to satisfy several other additional constraints or it is performed in two or more
stages.

The transportation problem in two-stages was formulated, for the first time by
Geoffrion and Graves [1974] and afterwards by many others (i.e. Gen et al., 2006;
Hindi and Basta, 1999; Klose, 2000; Marín and Pelegrín, 1997, 1999).

The general idea underlying this problem is the following. In a first stage,
the customers’ demands are transported from the production plants to certain
distribution centers. Plants and distribution centers can be regarded as fixed or
their location may form part of the decision problem. Their capacity can be finite
or not limited. In a second stage, the demand is transported from the distribution
centers to the final customers. The problem to be solved involves designing an
optimal distribution structure which takes into account the installation cost of
the different plants, distribution centers and depots and the transportation costs
associated with both the stages. Any variation such as additional constraints or
costs give rise to different versions of the problem.

We propose a new two-stages version of the transportation problem that presents

70
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Figure 5.1: Example: Situation A

various particularities. In the first stage we suppose that material goes from a set of
origins to some intermediate Distribution Centers (DCs) while in the second stage
it has moved from DCs to a depot. While the position of the origins and of the
depot is fixed, those of DCs have to be chosen within the set of the positions of
origins.

We suppose that the depot has a limited operational capacity so the arrivals
of material have to be separated in time as much as possible. So, while in the
classical version of a transportation model the objective is the minimization of
the transportation and installation cost, in our case the objective is balancing
the arrival times of material to the depot, without considering explicitly capacity
constraints, but guaranteing that the operational capacity is respected thanks to
the maximization of the time between consecutive arrivals.

An example of practical applications is a distribution system of petrol. For
instance, assume that petrol has to be sent from several refineries (origins) to pump
stations (DCs) where it is pumped and after to a a storage tank (depot), that
receive the petrol from all the plants. If the storage tank can not receive all the
flows of material for its limited capacity, an appropriate schedule of the arrivals in
the time can avoid situation in which the depot can not receive more petrol.

In analogy with the location theory we see the origins a demand points and the
DCs as the facilities. So, while the position of the demand points and of the depot
is fixed, we have to choose the facilities (plants) to be opened. Once positions of
facilities have been determined, we have to allocate each demand point to one of
the available facility.

We introduce an example for better showing the problem. In Figure 5.1 (Situa-
tion A) we have seven demands points numbered by 1 to 7, that are also potential



72 CHAPTER 5. THE BALANCING TWO STAGE LOCATION PROBLEM

Figure 5.2: Example: Situation B

facilities; among these, the three plants have been represented with blue filled circles
(2, 6, 3). The depot has been depicted with a square. The flows represented in
the Figure 5.1 show that demand points 2, 6 and 3 have to be covered only the
distance among themselves and the depot. This because we suppose that if in a
demand point there is a facility, the correspondent demand point will be allocated
to that facility. Instead, the demand points 1 and 5 are allocated to the facility 2,
while the demand points 4 and 7 to 3. The demand points in which a facility is not
located are free to patronize each one of the opened facility.

We suppose that the arrival times are proportional to the distance to cover. So,
the total distance to cover for each demand point, representative of the complete
arrival time from the origin to the depot, is the sum of the distance from the
demand point to the facility at which its is allocated plus the distance from the
facility to the depot; in the Figure 5.1 these are indicated, for each demand point,
with a segmented arrow at which is associated a value.

We report also on a time line the arrival times of the different demand points.
From this we highlight the distribution in the time of the arrivals; if the "space"
between consecutive arrivals is more or less equal then the solution respect the
limited operational capacity of the depot. The "space" between consecutive time
arrivals can be identified as the differences between two consecutive time arrivals.

Think again to the distribution system of petrol. If the storage tank can not
adsorb all the flows of petrol at the same time, if the consecutive arrival times are
away in the time the flow, once time arrived, can be adsorb from the tank that in
this way can be ready to accept other flows of petrol.

While in the situation A the differences among arrival times are more or less the
same, instead in situation B, represented in Figure 5.2, they are very different. In
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Situation A Situation B
Origins Arrival Times Arrival Times

1 20 14
2 8 8
3 12 12
4 28 10
5 16 16
6 3 25
7 24 24

Table 5.1: Arrival Times

Situation A Situation B
Ordered Arrival Times Differences Ordered Arrival Times Differences

3 - 8 -
8 5 10 2
12 4 12 2
16 4 14 2
20 4 16 2
24 4 24 8
28 4 25 1

Table 5.2: Consecutive Arrival Times and Differences

this case we have different positions for the plants and also different flows defined,
namely at which facility are allocated the demand points. We can see that, in this
case, the arrival times are not equally dispersed in the time as in the first case but,
the arrival times in some cases are very near to each others.

Given the aim to do not cause operational stop for the depot we would like to
find solutions for the problem more similar to the first one.

For avoiding that arrival times are too near we can try to maintain the differences
among consecutive arrival times more bigger as possible. In the Table 5.1 we report
the arrival times of the two situations described before.

We can see in Table 5.2 that in the situation A the differences between two
consecutive arrival times, calculated as the biggest one minus the smallest, are
very similar (equal to 4 except in one case); instead, in the situation B there are
very small differences and in particular the last one is equal to one. So the aim
of our model can be considered to maximize all the differences among the arrival
times, or that is the same, the maximization of the minimum differences among
two consecutive arrival times.

We model this two stage-transportation problem as a facility location model
in which we choose the facilities to be opened maximizing the minimum difference
among consecutive arrival times, constraining just the number of plants to be opened.
We call this Balancing Two-Stage Location Problem (BTLP) for putting in evidence
the new type of objective function introduced and the two stage characteristics. In
the next section we formalize the qualitative elements described until now.
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5.3 Elements of the Model

The model is defined with the following elements: (i) a set J = {1, ...,M} of
demand points which also represent potential locations for the facilities, (ii) a depot
sited at point 0, (iii) a fixed number p of facilities (plants) to be located, and (iv)
an M × (M + 1) distances matrix d = (dij) that represent either the distance (cost,
travel time) between a demand point situated in i and the facility in j (if i, j ∈ J)
or the distance from the facility in i and the depot (when j = 0). Here we assume
dii = 0 ∀i ∈ J and dij > 0 ∀i ∈ J, j ∈ J ∪ {0} : i ̸= j.

The aim is to locate p plants among the M candidates and to allocate the
remaining M − p demand points to a plant (which is not necessarily the closest
one). Let ai be the plant to which demand point i has been allocated (assuming
ai = i if i is a plant itself). Then, M distances from demand points to the depot
will be obtained as δi := diai + dai0 ∀i ∈ M . We call these travel distances. The
goal is to maximize the minimum difference between two consecutive values in the
vector (δ1, . . . , δM).

Note that, when d represents times, the model can be easily extended by
considering an additional processing time in the plants. Also note that the minimum
distance between two demand points allocated to the same plant will be greater than
or equal to the optimal value of the problem, that is to say, the model naturally
spaces out the arrivals to the plants. A possible alternative is to force closest
allocation of demand points to facilities. To this end, closest allocation constraints
(CAC) have to be added to the formulations introduced in the next sections,
drastically worsening the solutions of the problem. CAC in discrete location have
been deeply studied in Espejo et al. [2012], where a complete classification of all
possibilities previously considered in the literature was carried out.

The value of the objective function can be determined comparing the travel
distance of each demand point with those of the others. Among all these differences
the minimum will be the value that the objective function maximizes.

In order to formulate the problem as an Integer Programming model it is
important to note that maximizing the minimum difference between consecutive
travel distances is equivalent to maximizing the minimum difference between any
pair of travel distances (associated with different demand points). The drawback
when formulating this problem is to identify which travel distance is greater than
or equal to the other, that is to say, absolute values of travel distances differences
have to be considered.

From the distances matrix (dij) we define the matrix (Dij) which measures the
distances from point i to the depot through plant j, that is to say,

Dij := dij + dj0 ∀i, j ∈ J.

5.4 Classical Style Formulation for BTLP

What we mean as "classical style formulation" is a model formulated through
variables generally used in classical discrete location problems, as shown in the
Chapter 1. Then, allocation decisions are represented through the following x-
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variables:

xij =


1 if demand point i is allocated to facility j
0 otherwise, ∀i, j ∈ J : i ̸= j,

and location decisions are represented with

xjj =


1 if a facility is located at point j
0 otherwise, ∀j ∈ J.

Variable z will represent the minimum difference between travel distances, i.e., the
objective function to be maximized. The proposed formulation is

(CBTLP) max z

s.t.

j∈J

xij = 1 ∀i ∈ J, (5.1)

xij ≤ xjj ∀i, j ∈ J, i ̸= j, (5.2)
j∈J

xjj = p (5.3)

z ≤

ℓ∈J

|Dia −Djℓ|xjℓ+ (5.4)

+ (zUB −min
ℓ∈J

|Dia −Djℓ|)(1− xia) ∀i, j, a ∈ J : i ̸= j, (5.5)

xij ∈ {0, 1} ∀i, j ∈ J. (5.6)

Constraints (5.1) ensure that all the demand points are allocated. Constraints
(5.2) ensure that a point receives allocation only if it is a plant. Constraint (5.3)
fixes the number of plants to p. Constraints (5.5) are used to obtain the value of
the objective function. In particular, due to constraints (5.1), for any j ∈ J the
first addend in the right hand side of (5.5) will take the value |dia − djℓ| for that
plant l to which j is allocated. If, additionally, site i is allocated to plant a, z will
be upperly bounded by |dia − djℓ|, as wished. Otherwise z will be bounded by zUB,
a known upper bound on the optimal value of the problem, plus a non negative
amount.

Since an upper bound is necessary for the formulation, we get a trivial one in
the following way:

zUB := (max
i,j∈J

{Dij} −min
i∈J

{Dii})/(M − 1).

This formulation has M2 binary variables and M3 + 1 constraints (excluding
binarity constraints). In many other discrete location problems, it suffices with
forcing the binarity of xjj ∀j ∈ J , reducing in this way the complexity of some
resolution methods. This is not the case with this formulation, as we show in the
following example.

Consider an instance with n = 4, four points in the plane located at (2, 2), (1, 1),
(1, 4) and (5, 0), respectively. The depot is in (2, 3). For ease of computation, we
use the Manhattan distance d((i1, i2), (j1, j2)) := |i1 − j1|+ |i2 − j2|. The optimal
solution to the instance with p = 2 is to locate facilities in points 1 and 4, and to
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allocate 2 and 3 to 4. The corresponding travel distances are 1, 11, 14 and 6, giving
an optimal value of 3. Relaxing in (CBTLP) the integrity of xij with i ̸= j, the
optimal solution is


1 0 0 0
0 0 0 1

1/2 0 0 1/2
0 0 0 1


,

i.e., exactly the same solution except that each half of point 3 is assigned to a
different facility. This fractional solution gives an objective value of 5.

5.5 Ordered Formulation for BTLP

We introduced an alternative formulation for the BTLP, using the so-called
ordered median formulation, well explained in Nickel and Puerto [2005].

In order to build the ordered formulation, some preprocessing is needed. First,
all different potential travel distances Dij = dij + dj0, i, j ∈ J , have to be sorted in
(strictly) increasing sequence:

D(0) := 0 < D(1) < D(2) < · · · < D(g) := max
i,j∈J

{Dij}.

We call G := {0, . . . , g} the set of corresponding indexes.
Similarly, all different travel distances from each point i are sorted in increasing

order:

Di
(0) := 0 < Di

(1) < · · · < Di
(gi)

:= max
j∈J

{Dij}.

The corresponding sets of indexes are named Gi := {0, . . . , gi}, i ∈ J .
Then, for this second formulation we introduce new binary variables yik and wik.

Allocation decisions are represented through y-variables as follows (i ∈ J, k ∈ Gi):

yik =


1 if the travel distance for point i is Di

(k),

0 otherwise,
.

The objective function is got from the y-variables through the w-variables, defined
as follows (j ∈ J, k ∈ G):

wjk =


1 if the (n− j + 1)-th travel distance is less than or equal to D(k)

and the (n− j)-th travel distance is strictly greater than D(k),
0 otherwise,

.
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Then the ordered formulation is

(OBTLP) max z

s.t.

k∈Gi

yik = 1 ∀i ∈ J, (5.7)
i∈J

yi1 = p (5.8)

yik ≤

j∈J

Dij=Di
(k)

yj1 ∀i ∈ J, k ∈ Gi, (5.9)


j∈J

j · wjk =

i∈J


ℓ≥ℓik

yiℓ ∀k ∈ G, (5.10)


j∈J

wjk ≤ 1 ∀k ∈ G, (5.11)

z ≤
g−1
k=1

D(k)(wjk − wj,k+1) ∀j ∈ J, (5.12)

yik ∈ {0, 1} ∀i ∈ J, k ∈ Gi, (5.13)
wjk ∈ {0, 1} ∀j ∈ J, k ∈ G, (5.14)

where

ℓik :=


min{s : Di

(s) ≥ D(k)} if D(k) ≤ D(gi),

gi + 1 otherwise.

Constraints (5.7) ensure that all demand points have to be allocated at some
given distance Di

(k). Constraint (5.8) ensures that exactly p plants are opened (note
that yi1 is equal to 1 if and only if the demand point i is allocated with a distance
Di

(1), i.e., allocated to itself). Constraints (5.9) make sure that yik = 0 if no plant
is opened at a distance equal to Di

(k). The wik variables are introduced in order
to calculate for each demand point the difference between the travel distance of
demand point i and the nearest travel distance of the other points. We need to
link these variables with the allocation variables yik. This can be done forcing
variables wik, for each demand point i, to be equal to one for all k for which D(k)

is less than or equal to its travel distance, and greater than the travel distance
of another demand point (namely when variable yik is equal to one for a different
demand point). Constraints (5.10) together with (5.11) assure this relationship.
Constraints (5.12) force the objective function to assume the correct value. Using
telescopic sum for the variables wik we assure for each demand point the evaluation
of the minimum difference among the travel distance from the other demand points.
Constraints (5.13) and (5.14) ensure the binarity of the variables.

The number of variables and constraints in (OBTLP) depends on the number of
different potential travel distances. In the worst case (all potential travel distances
different), this formulation has M3 +M2 variables and 3M2 + 2M + 1 constraints
(excluding binarity constraints). Binarity of the y-variables can be relaxed, since
they are linked to w-variables only through constraints (5.10) and not present in
the objective function. On the contrary, even under the binarity of y-variables,
binarity of w-variables cannot be relaxed.
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Consider again the data of the previous example, for CBTLP. Relaxing the
binarity of w-variables leads to the solution

y =


1 0 0 −
0 0 1 −
0 0 0 1
1 0 0 −


w =


0 0 0 0 0 0 0 0.5 0 1
0 0 0 0 0 0.5 1 0.25 1 0
0 1 1 1 1 0 0 0 0 0
1 0 0 0 0 0.5 0 0.25 0 0



with an objective value of 4.

5.6 An Illustrative Example for the OBTLP For-
mulation

Let J = {1, . . . , 4} and assume p = 2 plants to located. Let the potential travel
distances matrix Dij be as follows:

(Dij) =


4 11 13 12
13 6 10 8
12 7 3 10
16 9 8 7


.

Sorting all different values in this matrix we obtain

(D(1), . . . , D(11)) = (3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 16)

with G = {1, . . . , g = 11}, while sorting each row we get Gi = {1, . . . , gi = 4},
i = 1, . . . , 4, (D1

(k)) = (4, 11, 12, 13), (D2
(k)) = (6, 8, 10, 13), (D3

(k)) = (3, 7, 10, 12),
(D4

(k)) = (7, 8, 9, 16). In the optimal solution the values of the y-variables are:

(yik) =


1 0 0 0
0 0 0 1
0 0 1 0
1 0 0 0


.

The location of facilities is determined by the variables in the first column taking
value 1 (y11 and y41). Points 1 and 4 are allocated to themselves, so the travel
distance from 1 is D1

(1) = 4 while for 4 is D4
(1) = 7. Instead, demand points 2 and 3

are allocated, respectively, to 1 with D2
(4) = 13 and 4 with D3

(3) = 10, corresponding
to variables y24 and y33.

Since y-variables are defined only in k ∈ Gi, in (5.10) we use the index ℓik. For
example, for i = 3 we have

k 1 2 3 4 5 6 7 8 9 10 11
D(k) 3 4 6 7 8 9 10 11 12 13 16
ℓ3k 1 2 2 2 3 3 3 4 4 5 5
y3ℓ3k 0 0 0 0 1 1 1 0 0 0 0

In this way, constraint (5.10) with k = 7 is

w17 + 2w27 + 3w37 + 4w47 = y12 + y13 + y14 + y23 + y24 + y33 + y34 + y44 = 2.

From (5.11), it follows w27 = 1.
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D(1) D(2) D(3) D(4) D(5) D(6) D(7) D(8) D(9) D(10) D(11)

3 4 6 7 8 9 10 11 12 13 16
· 1 · · · · · 0 0 0 ·

yik · · 0 · 0 · 0 · · 1 ·
0 · · 0 · · 1 · 0 · ·
· · · 1 0 0 · · · · 0
1 1 0 0 0 0 0 0 0 0 0gi

ℓ=ℓik
yiℓ 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0

wjk 0 0 0 0 1 1 1 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0

Figure 5.3: Relationship between y- and w-variables

The Table provided in Figure 5.3 shows the values of the variables yik,
gi

ℓ=ℓik
yiℓ

and wjk and how they are linked. We can visualize, for example, that the second
row of sums of y-variables is linked to the first row of w-variables. In this way, the
rows of w-variables will represent the travel distances sorted in decreasing order.

Moreover, for each pair of demand points the differences between the two D(k)-
values corresponding to the last wik = 1 (depicted bold) are the differences between
travel distances. With the telescopic sum in (5.12) we evaluate for each demand
point only the minimum difference. For example, for j = 3

z ≤ D(1)(w31 − w32) +D(2)(w32 − w33) + . . .+D(10)(w3,10 − w3,11) +D(11)w3,11 =

3·(0−0)+4·(0−1)+6·(1−1)+7·(1−0)+8·(0−0)+9·(0−0)+. . .+16·0 = 7−4 = 3,

the difference between the second and third travel distances.

5.7 Valid Inequalities for OBTLP
We introduce fixing variable and valid inequalities for improving the OBTLP

formulation. We also define a separation procedure for selecting only some of them.
For each family we also propose a small example in order to show how they works.

First of all, on the basis of the variable meaning and structure we can trivially
fix some w-variables. First, wM1 = 1. Similarly, the w-variables in the right bottom
corner and in the left upper corner can be fixed to 0. Equivalently, we can add the
following constraints to the formulation:

M
j=M−k+1

wjk = 1 ∀k = 1, . . . ,M − 1, (5.15)

BTLP has some common aspects with other ordered discrete location problems
approached in the literature (Nickel and Puerto, 2005), for which several valid
inequalities have been developed and tested. Less obvious, there are also common
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aspects with several optimization problems in the field of Bioinformatics, like
protein sequence alignment. We consider here several families of valid inequalities
for (OBTLP). The first family, given by


ℓ∈J

min{a, ℓ}wℓk ≥

i∈A

gi
ℓ=ℓik

yiℓ ∀k ∈ G, ∀A ⊆ J : |A| = a, (5.16)

is based on similar constraints used in Marín et al. [2009] for the Discrete Ordered
Median Problem.

Although there are O(M22M ) inequalities in family (5.16), an efficient separation
procedure can be implemented. Starting with an optimal solution (y∗, w∗) to the
linear relaxation of (OBTLP), for each k ∈ G we sort (

g1
ℓ=ℓ1k

y∗1ℓ, . . . ,
gM

ℓ=ℓMk
y∗Mℓ)

in decreasing order, thus getting Y1 ≥ . . . ≥ YM . Then, for all a ∈ J , if
ℓ∈J min{a, ℓ}w∗

ℓk <
a

i=1 Yi, we add to the formulation the inequality in (5.16)
corresponding with the current value of k and the a maximum values of Yi.

Consider an instance with M = 4, p = 2, distances
4 10 8 6

11 3 7 9
8 6 4 6
7 9 7 3



where g = 8 and D(k) = (3, 4, 6, 7, 8, 9, 10, 11). The optimal solution to the linear
relaxation of (OBTLP) (including constraints (5.15) ), with optimal value 2.2, has
y- and w-values

1 0 0 0
0 0 0 1
0 0 1 −
1 0 0 −

0 0 0 0 0 1 1 1
0 0 1 0 0.2 0 0 0
0 1 0 0.66 0.53 0 0 0
1 0 0 0 0 0 0 0

The separation algorithm only identifies the first violated inequality for each column
k. There are two columns in this case. For k = 4 (respectively k = 5) the inequality
corresponds with |A| = 1 (resp. |A| = 1), namely

w14 + w24 + w34 + w44 ≥ y23 + y24,

w15 + w25 + w35 + w45 ≥ y23 + y24.

After re-optimizing, the linear relaxation gives optimal value 2, with the same
y-values as before and w-values

0 0 0 0.5 0.5 1 1 1
0 0 1 0 0 0 0 0
0 1 0 0.5 0.5 0 0 0
1 0 0 0 0 0 0 0.

Two more violated inequalities, corresponding with k = 4, |A| = 2 and k = 5,
|A| = 2 are detected. The re-optimization of the extended formulation gives the
optimal integer solution to the instance, with optimal value 1, the same y-values as
before and w-values

0 0 0 0 0 1 1 1
0 0 1 1 1 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0.
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The second family of valid inequalities is

M
j=1

wjkj ≤ 1 ∀k1 ≤ k2 ≤ . . . ≤ kM . (5.17)

Since the w-variables, taking value 1 in any feasible solution, has a ascending stair
shape when organized as in Figure 5.3, any two w-variables cannot take value 1
simultaneously if one of them is on the right and above (or at the same level) with
respect to the other. That is to say, all the variables in a descending stair (like in
(5.17)) are jointly bounded by 1. A similar situation happens in the comparison of
two proteins whose amino acids are represented by points in two parallel lines. Here,
points in both lines must be linked by a segment without crossing lines. Variables
which are similar to w are used to determine which pairs of points are linked, and
they arrange in an (strictly) ascending stair. This problem has been studied in
Lancia [2004].

There are (g +M − 1)!/(M !(g − 1)!) constraints if family (5.17), so we have
devised a separation procedure also for this family. Starting with constraint

M
j=1

wj1 ≤ 1,

from a fractional solution w∗ we successively get valid inequalities in (5.17) with
larger left hand sides by comparing

M
j=1w

∗
jkj

with

M
j=1

w∗
j,kj+aℓj

, ∀ℓ = 1, . . . ,M

where aℓj = 1 for all j ≥ ℓ such that kj = kℓ, aℓj = 0 otherwise. The process stops
after one step without improvement. If the left hand side of the last inequality is
greater than 1, the inequality is added to the formulation in the corresponding node
of the branching tree. We then repeat the process starting with

M
j=1wj2 ≤ 1 and

so on. After re-optimizing, separation is carried out again using the new optimal
fractional solution.

Consider an instance with M = 4, p = 2, distances
2 6 4 6
5 3 7 5
4 8 2 8
5 5 7 3



where g = 7 and D(k) = (2, 3, 4, 5, 6, 7, 8). The optimal solution to the linear
relaxation of (OBTLP) (including constraints (5.15)) has w-values

0 0 0 0 1 1 1
0 0 1 0.4 0 0 0
0 1 0 0.4 0 0 0
1 0 0 0 0 0 0

and optimal value 1.4. The first violated inequality found by the procedure is

w13 + w23 + w37 + w47 ≤ 1.
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Adding this constraint, the optimal value 1 is found, corresponding with the w-values

0 0 0 0 1 1 1
0 0 1 1 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0.

The third family includes a small number of inequalities which can be added to
the formulation without separation:

j∈J

wjk ≥

j∈J

wj,k+1 ∀k = 1, . . . , g − 1.

The fourth family is, in some sense, complementary with respect to the first
one:

M
ℓ=M+1−a

(ℓ+ a−M)wℓk ≤

i∈A

gi
ℓ=ℓik

yiℓ ∀k ∈ G, ∀A ⊆ J : |A| = a, (5.18)

Again the cardinality of this family is O(M22M ). The separation procedure is similar
to that of the first family. Starting with an optimal solution (y∗, w∗) to the lin-
ear relaxation of (OBTLP), for each k ∈ G we sort (

g1
ℓ=ℓ1k

y∗1ℓ, . . . ,
gM

ℓ=ℓMk
y∗Mℓ)

in increasing order, thus getting Y ′
1 ≤ . . . ≤ Y ′

M . Then, for all a ∈ J , ifM
ℓ=M+1−a(ℓ + a − M)w∗

ℓk >
a

i=1 Y
′
i , we add to the formulation the inequal-

ity in (5.18) corresponding with the current value of k and the a minimum values
of Y ′

i .
Consider an instance with M = 4, p = 2, distances

3 9 3 7
8 4 4 4
6 8 0 4
8 6 2 2



where g = 8 and D(k) = (0, 2, 3, 4, 6, 7, 8, 9). The optimal solution to the linear
relaxation of (OBTLP) (including constraints (5.15) ) has y- and w-values

0 0 1 −
1 0 − −
0 0 0 1
1 0 0 −

0 0 0 0 0 0 0 1
0 0 0 0 0.222 1 1 0
0 0 1 0.407 0.519 0 0 0
1 1 0 0.444 0 0 0 0

and optimal value 2.44. The first violated inequalities found by the procedure are

w44 ≤ y42 + y43,

w35 + 2w45 ≤ y22 + y42 + y43.

Adding these constraints, a better optimal value of 2.18 is found, corresponding
with the w-values

0 0 0 0 0 0.666 0.333 1
0 0 0.185 0 0.666 0 0.666 0
0 0.333 0.629 0.555 0 0.333 0 0
1 0.666 0.185 0.333 0.166 0 0 0.

The next iteration produces inequalities

w34 + 2w44 ≤ y42 + y43 + y32 + y33 + y34,
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Figure 5.4: Instance: M=10, Depot in Random Position

w45 ≤ y22,

w36 + 2w46 ≤ y22 + y43,

and the optimal value 2.
The last family is also given by a small number of inequalities which can be

added to the formulation without separation:


i∈J

gi
ℓ=ℓik

yiℓ ≤ 1 +
M
j=2

(j − 1)wjk ∀k ∈ G.

5.8 Computational Study
Since, to the best of our knowledge, this is the first definition of BTLP we have

to define new instances in order to test our models.
We decide to generate them in this way. In a location space delimited in a

square of a fixed dimension we generate randomly demand points and we fix the
depot in three different position: in the center of the square, in the right-low corner
of the square and in a random position of the space.

In Figure 5.4 is reported one of the instances defined, with the depot fixed in a
random position and M =10.

The testbed is composed of nine instances three instances for each position
occupied by the depot. We tested different combinations of M in {10, 15, 20, 25,
30} with different values of p depending on the case.
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Instance Xpress
Time (s) Nodes

M p Max Avr Min Max Avr Min
10 2 0,81 0,70 0,60 139 100 58
10 4 0,72 0,58 0,48 145 82 35
10 6 0,53 0,39 0,25 117 53 15
15 2 8,63 5,93 4,71 769 527 276
15 4 10,60 8,02 4,90 2421 1487 511
15 6 6,74 4,90 3,45 1455 807 293
20 2 47,93 37,18 22,20 2253 1698 547
20 4 598,22 333,80 161,76 66150 37512 14674
20 6 464,37 176,52 78,98 56169 25094 11801
20 10 75,08 35,45 18,53 10568 3777 1320
25 2 294,70 201,49 98,94 8563 4860 1800
25 4 > 2h > 2h > 2h > 2h > 2h > 2h
25 6 > 2h > 2h > 2h > 2h > 2h > 2h
25 12 717,07 235,84 35,37 45111 12941 53
30 2 1145,45 746,97 475,85 17391 9571 6055
30 4 > 2h > 2h > 2h > 2h > 2h > 2h
30 6 > 2h > 2h > 2h > 2h > 2h > 2h
30 15 4947,73 1635,16 457,56 161071 48814 8695

Table 5.3: Computational Results for CBTLP with Xpress (no cut strategy applied)

We considered among the demand points and the facilities and the depot
Euclidean distances. For instance, given the coordinates of a a demand point (ai, bi)
that is allocated to a facility in a point j with coordinates (aj, bj) the travel distance
within the depot in the center of coordinates (ac, bc) is:

Dij := [|ai − aj|2 + |bi − bj|2]1/2 + [|aj − ac|2 + |bj − bc|2]1/2

.
The formulations were implemented in the commercial solver Xpress IVE running

on a Pentium IV with 2.40 GHz and 4 GB of RAM memory. In Table 5.3 we report
the maximum, the average and the minimum computational times in seconds of the
overall solution process and the maximum, the average and the minimum number
of nodes of the branching tree obtained with the first formulation. The time limit
was fixed to two hours of CPU; in the Table "> 2h" indicates that this time has
been exceeded, at least, in solving one of the instances.

The results have been obtained disabling the cut generation option of Xpress
in order to show the performance of the formulation cleanly. We can see that the
time needed to solve the problem for small instance is very low, but it increases
a lot increasing the number of demand points. The time also increases when we
increment the number of facilities to be opened but decreases when this become
larger; in fact for the instances with 25 and 30 demand points we are not able to
solve the problem with p equal to 4 and 6 while we obtain the optimal solutions
with a value of p equal to M/2.
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Instance Xpress + Cut
Time (s) Nodes

M p Max Avr Min Max Avr Min
10 2 1,55 0,96 0,51 41 12 1
10 4 1,94 0,74 0,18 11 3 1
10 6 0,23 0,18 0,16 1 1 1
15 2 7,92 6,51 5,01 210 102 7
15 4 10,21 7,92 6,02 849 430 210
15 6 8,23 4,74 1,43 177 81 1
20 2 22,92 17,91 12,25 386 279 165
20 4 126,63 85,50 53,79 16724 7582 2815
20 6 109,57 61,06 27,38 20628 6648 1639
20 10 21,67 7,70 3,18 217 25 1
25 2 62,17 54,31 40,61 675 564 470
25 4 2403,36 1244,356 598,85 150271 68646 33993
25 6 > 2h > 2h > 2h > 2h > 2h > 2h
25 12 283,78 91,26 9,49 22380 5490 1
30 2 184,97 158,75 145,14 1374 1035 802
30 4 > 2h > 2h > 2h > 2h > 2h > 2h
30 6 > 2h > 2h > 2h > 2h > 2h > 2h
30 15 59,86 46,52 31,00 769 95 1
Table 5.4: Computational Results for CBTLP with Xpress Default

Instance Xpress Branch and Cut
Time (s) Nodes Time (s) Nodes

M p Max Avr Min Max Avr Min Max Avr Min Max Avr Min
10 2 2898 1037 41 231163 91168 25429 2303 819 59 262434 128246 30273
10 4 1695 628 166 163100 113936 64477 1853 690 96 272273 136895 40427
10 6 2698 390 2 92560 36276 701 931 168 17 262434 99370 2395

Table 5.5: Computational Results for OBTLP

In Table 5.4 we provide results using default cut strategy of software Xpress
that improves computational times and the number of nodes analyzed that decrease
for all instances. It also solves instances with 25 demand point and p = 4.

The second formulation is less efficient. We are able to find only solutions for
M=10 and not for all the other instances, as we can see in Table 5.5. In addition for
all the instances there is at least one in which the software does not find the optimal
solution in the time limit of two hours. Using the formulation with the branch and
cut illustrated in Section 5.7 we improve these results in terms of computational
times and number of nodes. Only in one instance for p equal to 6 the problem was
unsolved in the time limit imposed.
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5.9 Conclusion
In this chapter we have defined a new location model for representing a two-stage

transportation problem. We approach this model in a innovative way using an
equality measure as objective function in order to reach the balancing among the
arrival times of the material to the depot. We have proposed two formulations,
one of classical type and one based on so-called ordered formulation, putting in
evidence the computational complexity and also showing how they work. We also
have formulated valid inequalities for the second formulation. In the next chapter
we propose heuristic approaches for finding solutions for the problem.



Chapter 6

Procedures for the Balancing Two
Stage Location Problem

6.1 Introduction

In this chapter we introduce two different heuristics for finding solutions for the
Balancing Two Stage Location Problem. We first explain the implementation of the
genetic algorithm. Afterwards we provide the steps of a greedy procedure. We also
describe how we can use them in combination giving the solutions derived from the
greedy algorithm as initial solutions for the genetic procedure. We show the results
obtained by the empirical analysis.

6.2 Genetic Algorithm

Genetic Algorithm (GA) are a family of methodologies inspired by evolution
(Whitley, 1994). These algorithms encode a potential solution to a specific problem
on a simple chromosome-like data structure and apply recombination operators to
these structures so as to preserve critical information. Genetic algorithms are often
viewed as function optimizers, although GA have been applied to many problems.
An implementation of a GA begins with a population of chromosomes. One then
evaluates these structures and allocates reproductive opportunities in such a way
that those chromosomes which represent a better solution to the target problem
are given more chances to reproduce than those chromosomes which are poorer
solutions. The goodness of a solution is typically defined with respect to the current
population.

So, the first step in the implementation of any genetic algorithm is to generate
an initial population. In GA each member of this population will be a string of
length L which corresponds to the problem encoding. Each string is referred to a
"chromosome". In most cases the initial population is generated randomly. After
creating an initial population, each string is then evaluated and assigned a fitness
value.

The notion of evaluation and fitness are sometimes used interchangeably (Whit-
ley, 1994). However, it is useful to distinguish between the evaluation function and
the fitness function used by a GA. The fitness function transforms that measure of

87
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performance into an allocation of reproductive opportunities. The evaluation of
a string representing a set of parameters is independent of the evaluation of any
other string. The fitness of that string, however, is always defined with respect to
other members of the current population.

In GA fitness is defined by fi
f̄

where fi is the evaluation associated with string
i and f̄ is the average evaluation of all the strings in the population. Fitness in
other ways for example with a tournament selection.

The execution of GA can be divided in steps. It starts with the current
population. After selection is applied to the current population to create an
intermediate population. Then recombination and mutation are applied to the
intermediate the population to create the next population. The process of going
from the current population to the next population is a generation in the execution
of GA.

In the first generation the current population is also the initial population.
After calculating fi

f̄
for all the strings in the current population, selection is carried

out. In GA the probability that strings in the current population are copied and
placed in the intermediate generation is proportion to their fitness. There are a
number of ways to do selection. We might view the population as mapping onto a
roulette wheel, where each individual is represented by a space that proportionally
corresponds to its fitness. By repeatedly spinning the roulette wheel, individuals
are chosen using stochastic sampling with replacement to fill the intermediate
population.

After selection has been carried out the construction of the intermediate popula-
tion is complete and recombination can occur. This can be viewed as creating the
next population from the intermediate population. Crossover is applied to randomly
paired chromosomes with a given probability. After recombination we can apply a
mutation operator. Each element of the chromosome in the population, is mutated
with a given low probability (mutation probability). Typically the mutation rate is
applied with less than 1 % probability.

After the process of selection, recombination and mutation is concluded the next
population can be evaluated. The process of evaluation, selection, recombination
and mutation forms one generation in the execution of a genetic algorithm.

In the following we define the characterizing elements of GA: encoding, crossover
and mutation operators.

6.2.1 Encoding

In order to explain the encoding scheme, let us consider the solution shown in
Figure 6.1, with a total number of 8 nodes with 3 opened facilities (1, 5, 8). Each
demand point is allocated to one of the opened facilities as indicated by the arrows
in the Figure. In particular nodes 1, 2, 4, 6 are allocated to node 1 while nodes 3
and 5 are allocated to node 5 and nodes 7 and 8 are allocated to 8. This allocation
scheme can be represented through a string of 8 elements in which the generic
element j indicates the node patronized by demand point j. With reference to the
mentioned solution the corresponding string is:
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Figure 6.1: A solution for BTLP

Allocation 1 1 5 1 5 1 8 8
Demand Points 1 2 3 4 5 6 7 8

In order to effectively encode either the opened facilities and the allocation of
each demand point, we consider a string of M genes divided in two substrings. The
first substring (of length p) is representative of the p opened facilities. In our case
this substring is given by

Substring 8 1 5
Index 1 2 3

It is useful to stress that facilities can appear in this substring in any order.
The second substring (of length M − p) should indicate the allocation of the

demand points different from those corresponding to the opened facilities. In our
example the demand points are 2, 3, 4, 6, 7. In order to do that each generic
element k of this substring can assure a value between 1 and p which represents
the index value of the first substring. In practice in our example, the final encode
would result

8 1 5 2 3 2 2 1
Index 1 2 3 Demand Point 2 3 4 6 7

For instance, the value 2 associated to the demand point 4 is allocated to the
second element of the first substring, corresponding to node 1.

6.2.2 Operators

Another peculiarity in the implementation of a genetic algorithm is given by the
genetic operator; in our proposal we consider the two classical operators (crossover
and mutation).
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Crossover Operator
We implemented two different schemes for the two considered substrings. For

the first we distinguish between "fixed" gens and "probable" genes. Fixed genes
are those (if existing) comparing in both parents. For each children each of these
genes is assigned to an element randomly chosen. The probable genes are used to
fill the remaining part of the substring in random way.

For instance let us consider the two parents substrings:

Parent 1 8 1 5

Parent 2 1 2 4

The fixed genes are represented by node 1 while the set of probable genes are
given by nodes 2, 4, 5, 8. Then node 1 randomly assigned to some elements of child
1 as for instance the following.

Child 1

then nodes 2, 4, 5, 8 are randomly chosen to fill the empty parts of the substrings,
providing, for instance, the substring

Child 1 2 5

The same procedure is applied to generate the child 2.
For the second substring we used the classical crossover implementation by

randomly generating a cross point and combining the first part of the Parent 1 and
the second part of the Parents1 to obtain the child 1 and viceversa for the child 2.
As an example considering the two substrings in Figure 6.2.

Figure 6.2: Crossover Second Substring

Mutation Operator
We apply a mutation operator in different ways in the two substrings. In the

first substring we randomly select one of the opened facility and we replace it with
one not opened. Then the demand points that were allocated to the closed plant
will be randomly allocated to one of opened plants . In the second part we randomly
change the allocation of some demand points allocating.
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6.2.3 Setting Parameters

For the implementation of the algorithm we need to set some parameters as

• Number of iterations;

• Population size;

• Crossover Probability;

• Mutation Probability.

In particular for the mutation probability we propose to adapt it to the diversification
of the population. In other words, when the population is composed by elements
that are all similar, at least with the same fitness value, we increase the mutation
probability in order to guarantee the diversification of the population. We also
regenerate some or all elements of the population after a specified number of
iterations for which the average fitness of all chromosomes it is the same.

6.3 The Greedy Heuristic

The algorithm developed is classifiable among the greedy heuristic approaches
in which a solution is constructed adding each element at a time. The procedure
proposed is divided in two steps. First we choose the set of p facilities to be opened
and after we decide the allocation the other demand points.

For the first step we initialize the algorithm imposing that all the facilities
are opened; so in the initial solution the travel distances from each demand point
correspond to the direct distance from each point to the depot (this list is indicated
with TL). After having sorted these distances in increasing way, obtaining TL0,
we evaluated the differences between each couple of consecutive elements. In order
to have the minimum difference between travel distances as large as possible we
want that the minimum difference individuated in TL0 will not be in the final
solution. For this reason, we eliminate from TL0 one of the two travel distances
that determine this minimum difference, choosing one of them at random. In this
way, we impose that at each eliminated distance we can not put a facility. We
iterate this procedure until the number of element in TL0 is equal to M (Figure
6.3).
In the second step of the heuristic we have to allocate the demand points to the
opened facilities.

Suppose that we have opened facilities 1,2,3. So we have considered In the
following we show an example of how the second step of the heuristic works.

Let J = {1, . . . , 8} and assume p = 3 plants to located. Let the travel distances
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Step 1: Opening Facilities
For i ∈ 1, . . . ,M

Set TL(i) = Dii

end-for
Set TL0 TL sorted in increasing way
repeat Set i∗ = min1,...,|TL0|−1(TL

0(i+ 1)− TL0(i))
Choose at random between i∗ and i∗ + 1
Eliminate the correspondent element from TL0

until |TL0| = p

Figure 6.3: Greedy Algorithm for Opening Facilities

matrix Dij be as follows:

(Dij) =



20 57 42 134 64 75 93 102
88 46 93 152 98 132 153 76
34 76 35 176 75 91 81 93
201 55 114 98 112 142 98 78
185 88 146 108 28 167 142 53
120 63 184 159 32 56 118 42
77 72 165 167 31 79 77 82
149 67 175 104 87 87 170 18


.

Suppose we have opened facilities 1, 3, 7. So we have to consider the distances
of the remaining demand pints to these facilities. In this way we have only these
travel distances indicated in the following matrix

(Dij) =



20
88 93 153

35
201 114 98
185 146 142
120 184 118

77
149 175 170


.

In practice as each opened facility is allocated to itself we have to fix the value
for each row (2, 4, 5, 6, 8) in such a way that the minimum of the mutual distances
will be as large as possible. In order to do that, we sort all the elements in a vector
in an increasing way. For each element we also indicate the indexed corresponding
to the position in the matrix Dij. For instance the element of value 120 is the
element of row 6 and column 1 in the matrix Dij. In this vector we individuate
the pair of consecutive elements which provides the minimum difference. In our
example we individuated the pair of values 184 and 185.
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Dij Row Column
20 1 1
35 3 3
77 7 7
93 2 3
98 2 1
114 4 3
118 6 7
120 6 1
142 5 7
146 5 3
149 8 1
153 2 7
170 8 7
175 8 3
184 6 3
185 5 1
201 4 1

So in order to avoid the contemporary presence of these two elements in the final
solution we randomly chose one of these two elements to be deleted. Eliminating,
for instance, the element 184 we obtained a reduced vector. This procedure is
iterated until we obtain a final vector of M elements in which there is only one
element for each row. Applying this procedure to our example we obtain the final
solution corresponding to the element of matrix Dij.

Dij Row Column
20 1 1
35 3 3
77 7 7
93 2 3
114 4 3
142 5 7
149 8 1
184 6 3

For the randomness of these procedure, determined by the choice of the elim-
inated distances, we can have different solutions every time that we repeat the
procedure. We define two possible ways of implementing the heuristic:

1. RSP Generation random of opened facilities and allocation of demand points
with step 2;

2. FPSP Generation of opened facilities for a fixed number of solutions with
step 1 and allocation of demand points with step 2;
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6.4 Computational Experience
We test the methodologies described on the same instances defined in the

previous chapter for which we are able to find the optimal solution.
For the genetic algorithm we fix the number of iterations equal to 200. The

number of elements of the population is chosen equal to 100, 200 and 300. The
crossover probability is equal to 0,7 and mutation probability is equal to 0,3. We
report the results with this combination of parameters because produced the best
solutions among the others tested. We use as starting solutions both random
solutions that the ones obtained with the greedy heuristic, and in particular we
verify that the best solutions are obtained with genetic algorithms in combination
with heuristic RSP; this happens because the solutions produced by FPSP are more
similar and so not useful for GA that converges too early.

The results are shown in Table 6.1. We have the number of elements (starting
solutions) for the initial population and the average times on the nine instances
employed by the procedure for each combination of demand points and opened
facilities. We also indicate a gap from the optimal value obtained with the exact
methodology. The gaps are evaluated for each instance as:

Gap =
OptimalV alue−HeuristicV alue

OptimalV alue
%;

we again report the average value obtained on the nine instances generated for each
combination of demand points and opened facilities.

The quality of the solutions improves when we increase the number of elements
of the population used, with a limited increment of the computational times. It
is also evident that the results are better when we adopt as starting solutions the
ones obtained with the heuristic procedure, with a limited increment of time for
the small instances. For instances with a small number of demand points we obtain
the optimal solutions in many cases and for some combinations of M and p, where
gap is equal to 0%, for all. With a bigger number of demand points the solutions
are not optimal, but are near to the optimal value. Moreover when also the number
of facilities opened is big, as for the case M = 30 and p = 15, the gaps are small.

We report the obtained results with FPSP; in this case we have to decide the
number of solutions to create. Given the random choice of the elements to add in
the construction of the solution, finding good solutions depends also by randomness
so increasing the number of solutions created we have a bigger probability of finding
better solutions. In particular we generate respectively 100, 1000 5000 and 50000
for each combination of M and p (50000 are generated only when we do not find
optimal solutions for all instances with a smaller number of solutions generated).
We show, in Table 6.2 the results concern the application of FPSP.

We can put in evidence how the gaps are small, often equal to zero that means
that we find the optimal solution in all the tested instances; with small M (10, 15)
we obtain optimal solutions in computational times small, but that depend on the
number of solutions generated. The instances complicated seem to be the ones with
M equal to 20 and p equal to 6 for which the gap is quite high.

We derive that for the Balancing Two Stage Location Problem there are instances
simple to solve that are the ones with small number of demand points (10, 15).
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Instance Genetic Algorithm Genetic Algorithm + RSP
M p N. Elements Time(s) Gap N. Elements Time(s) Gap
10 2 100 20,38 0% 100 21,26 0%

2 200 41,09 1% 200 42,45 0%
2 300 60,84 0% 300 65,22 0%

10 4 100 21,68 2% 100 23,74 0%
4 200 44,48 1% 200 48,23 0%
4 300 66,00 1% 300 72,54 0%

10 6 100 23,28 1% 100 25,36 0%
6 200 45,84 0% 200 52,54 0%
6 300 69,26 0% 300 79,91 0%

15 2 100 21,93 12% 100 23,82 2%
2 200 43,78 7% 200 47,46 0%
2 300 67,30 6% 300 71,76 0%

15 4 100 23,40 14% 100 27,50 16%
4 200 48,69 16% 200 56,92 11%
4 300 75,29 10% 300 86,12 9%

15 6 100 24,76 15% 100 30,91 6%
6 200 50,04 11% 200 61,43 2%
6 300 76,67 6% 300 92,59 1%

20 2 100 24,92 16% 100 27,19 5%
2 200 47,44 8% 200 55,13 1%
2 300 74,97 5% 300 82,72 0%

20 4 100 26,74 24% 100 33,21 19%
4 200 51,55 20% 200 67,08 16%
4 300 82,07 16% 300 100,41 14%

20 6 100 26,88 31% 100 38,48 25%
6 200 54,29 22% 200 76,37 20%
6 300 83,24 20% 300 115,66 17%

20 10 100 33,63 6% 100 46,95 0%
10 200 59,75 6% 200 93,97 0%
10 300 89,70 0% 300 143,64 0%

25 2 100 27,73 19% 100 31,03 16%
2 200 54,40 15% 200 62,57 9%
2 300 82,34 9% 300 93,50 7%

25 12 100 37,54 15% 100 67,60 8%
12 200 77,17 7% 200 146,57 6%
12 300 115,99 7% 300 242,61 6%

30 2 100 29,45 15% 100 34,46 0%
2 200 59,19 12% 200 69,00 0%
2 300 91,65 8% 300 104,20 0%

30 15 100 37,62 13% 100 103,59 7%
15 200 76,24 8% 200 208,35 8%
15 300 118,57 7% 300 311,26 3%

Table 6.1: Computational Results for Genetic Algorithm
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Instance Greedy Heuristic (FPSP)
M p N. Solutions Time(s) Gap
10 2 100 0,23 2%

2 1000 2,21 1%
2 5000 11,29 1%

10 4 100 0,43 4%
4 1000 4,20 1%
4 5000 21,18 0%

10 6 100 0,47 0%
6 1000 4,56 0%
6 5000 23,13 0%

15 2 100 0,40 9%
2 1000 4,12 0%
2 5000 19,93 0%

15 4 100 0,97 20%
4 1000 9,81 14%
4 5000 47,74 7%
4 50000 475,02 4%

15 6 100 1,37 11%
6 1000 13,89 5%
6 5000 72,35 3%
6 50000 702,05 2%

20 2 100 0,61 11%
2 1000 6,03 4%
2 5000 30,24 1%
2 50000 297,27 1%

20 4 100 1,77 29%
4 1000 17,57 17%
4 5000 86,62 12%
4 50000 838,32 7%

20 6 100 2,83 28%
6 1000 25,62 23%
6 5000 139,66 17%
6 50000 1392,03 11%

20 10 100 3,98 6%
10 1000 39,56 0%
10 5000 196,28 0%

25 2 100 0,88 21%
2 1000 9,11 8%
2 5000 44,25 4%
2 50000 446,72 3%
12 100 9,37 10%
12 1000 93,64 3%
12 5000 453,04 3%
12 50000 4583,86 1%

30 2 100 1,25 14%
2 1000 12,38 11%
2 5000 59,81 8%
2 50000 601,68 2%
15 100 18,60 1%
15 1000 181,70 3%
15 5000 907,32 1%
15 50000 8850,26 0%

Table 6.2: Computational Results for Greedy Heuristic
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Moreover the instances with p equal to 2 and p equal to M/2 are simpler to solve
respect to the ones with p equal to 4 and 6 and this is evident using both the
heuristics. The genetic algorithm works individuating solutions of worst quality
in terms of value but, for large instances the computational times are smaller. In
this regard we test GA also for big instances until 1000 demand points and the
computational times are about 300 seconds. Instead the greedy heuristic finds
better solutions with values more near to the optimal ones but the computational
times depend on the number of solutions generated. Given the criterion of choice
of elements, that presents some random characteristics, increasing the number of
solutions, is more likely finding good solutions. Anyway the best approach is to use
in combination the two heuristics that produces the best results.

6.5 Conclusion
In this chapter we illustrated two heuristics for finding solutions for BTLP.

The genetic algorithm and the greedy heuristic provided solutions that are often
equal or very near to the optimal solution for the same instances that we have
solved with exact methodologies. The computational analysis have shown the
differences in terms of computational times and quality of solutions. Anyway BTLP
seems to be very complicated and for this reason in the future we will define new
heuristic approaches (i.e. Lagrangian Relaxation) also in combination with exact
methodologies.



Conclusion

In this work we have analyzed a specific class of Facility Location Problems
(FLPs) in which equality measures are used as objective function. The analysis
of the literature about these problems shows a relevant interest of the scientific
community mainly oriented toward two different research streams: the theoretical
analysis about properties and characteristics that an equality measure should present
in order to effectively describe a FLP in which equality aspects in the definition of
the final solution are crucial; the proposal of mathematical models and solution
methods including equity and equality aspects either as objective function or as
constraints.

These two streams does not appear linked each other. In fact it would seem
that theoretical analysis does not provide a significant help in deciding, in a given
(mathematical and/or practical) context which measure would better represent the
problem.

For this reason the first objective of this work have been the definition of new
properties able to support the choice of decision makers of the more appropriate
measures to be adopted to effectively represent a FLP in a given context. To
this aim some empirical analyses have been performed in order to understand
the typical behavior of each measure in presence of uniform distributed demand
in a regular circular location space. In addition we have proposed a correlation
coefficient able to capture similarities between pairs of equality measures in solving
discrete FLPs. The evaluation of this coefficient has shown that some measures
can be considered more representative as they present higher correlation with the
others. This first significant result should be confirmed by additional experiments
considering different kinds of location spaces.

We also defined and formulated a transportation problem with multiple sources
and single destination in terms of FLP. In particular to reduce risks of congestion
in the dynamic of flow arrivals at the common destination, an appropriate equality
measure is introduced. In order to solve the formulated problem, some exact and
heuristic methodologies have been developed and implemented. Computational
results performed on randomly generated test problems show opportunities and
limits to efficiently solve the problem. The actual proposed procedures are able to
effectively solve problems of limited size. Further developments of research should
focus on the refinement of the proposed methodologies with the aim of increase the
size of problems solvable in optimal (or near optimal) way.
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