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Abstract 

As environmental concerns are gaining increased public attention and with the rapid 

growth of air traffic foreseen in the forthcoming years, the scientific community and 

aircraft manufacturers are devoting significant resources in developing fast and 

reliable methods to deliver low noise design solutions. 

 

Since fully-resolved Navier–Stokes equations (DNS), and even filtered Navier-

Stokes equations such as LES and DES methods, are still too computationally 

demanding for real applications, the present dissertation is focused on the theoretical 

and numerical formulation of different alternative computational aeroacoustic 

methods and their application to typical aeronautics low noise design problems. 

 

Following an introduction about the theoretical formulation of the Acoustic Analogy 

approach based on the Lighthill’s equation, the thesis is focused on the development 

of a Boundary Element Method (BEM) based on the convective wave equation for 

uniform mean flow. 

The BEM code kernel, developed for managing hybrid unstructured grids, builds up 

the global system matrix by assembling different matrix blocks for the governing 

equations and the boundary conditions. This strategy allows a more general and 

efficient implementation of the boundary conditions. 

The BEM code is also validated against classical analytical test cases for both 

internal and external problems. 

 

Moreover, the broadband noise generated by aircraft surfaces (Airframe noise) is 

presented with particular attention devoted to the development of RANS-based 

models for source field characterization. 

 

Finally the application of the developed methods to the analysis of the Landing Gear 

low-noise design problem is presented. 
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1. Context 

Aviation is an essential element of today’s global society. With 2.8 billion 

passengers yearly and $539 billion of world gross domestic product (GDP) generated 

per year, aviation brings people and cultures together and significantly contributes to 

the economic growth [1]. 

Due to the continuous and steady growth of air traffic, the aircraft manufacturers 

pose a growing interest to environmental issues like pollution, noise impact and 

climate change. 

 

In particular, as airports are often close to urban areas, people are often exposed to 

significant noise levels, radiated from airplanes especially during approach and take-

off. Due to the significant noise produced, aircraft operations are bound by strict 

regulations. Only aircrafts that comply with these regulations are allowed to takeoff 

or land.  

 

In this context, manufacturers need to adhere to noise regulations and have thus a 

great interest in reducing the noise levels radiated by their aircrafts. For this reason, 

they have increasingly considered aeroacoustic phenomena and mechanisms of 

sound generation and propagation as a relevant design parameter. 

 

Considering the growing social awareness of environmental issues the European 

Commission recently devoted significant funding to Research Programmes with the 

aim of developing new technologies able to reduce the environmental impact of the 

air transport system. 

Most of the developments presented in this thesis have been set up in the framework 

of the European Commission funded Clean-Sky programme. The Clean-Sky Joint 

Technology Initiative is a Public Private Partnership between the European 

Commission and the Aeronautical Industry that was established with the aim of 

developing aviation technologies compliant with increasingly stringent pollutant 

emissions and noise reduction goals. 
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2. Introduction 

 2.1. Background and Motivation 

In the context of Computational Fluid Dynamics (CFD), the application of Direct 

Numerical Simulation (DNS) to aeroacoustics is becoming more feasible with the 

growing advancement in computational resources. 

However, due to the large disparities of length and energy scales between fluid and 

acoustic fields, the use of fully-solved Navier–Stokes equations without turbulence 

modeling (DNS) is still restricted to low Reynolds number flows. 

 

The numerical simulation of aeroacoustics through the solution of filtered Navier 

Stokes equations, either using fully large-eddy simulation (LES) or hybrid RANS 

LES approaches such as the detached-eddy simulation (DES), is a major area of 

research. However, despite the increase in computational power, even these types of 

simulations are not yet feasible for industrial purposes. 

Indeed, industry interest is mainly devoted to reliable numerical tools to be applied to 

realistic configurations for re-design of old configurations and for the development 

of new technologies. Furthermore the growing interest on multi-disciplinary and 

multi-objective optimization necessarily lead to approaches that require low 

computational time. 

Therefore, Reynolds-Averaged Navier-Stokes (RANS) simulations still remain the 

more feasible approach for CFD applications of industrial interest. However, RANS 

computations alone are not able to model the aeroacoustic phenomena. 

 

The Acoustic Analogy approach, introduced by James Lighthill in 1952 [2,3], along 

with the recent development and improvement of RANS-based methods for turbulent 

field synthesis, constitute a valid alternative to LES or DES for noise prediction. 

The Acoustic Analogy approach allows to divide the computational domain into a 

non–linear source region and a wave propagation region. 

The turbulent unsteady flow is considered confined in the source region and used as 

a forcing input of the acoustic propagation. It is straightforward to underline that the 
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direct counterpart of the main assumption of the Acoustic Analogy is that no physical 

feedback occurs from the acoustic propagation to the flow field. 

 

Among the Acoustic Analogy methods, integral methods are widely used in CAA for 

solving open domains. (as Lighthill’s acoustic equation [2,3] and Ffwocs Williams 

and Hawkings formulation [4]). Despite these methods don’t require the volume 

discretization, they don’t allow treating confined aeroacoustic problems, where solid 

boundaries are present. 

Different techniques of volume discretization are available in the literature, as 

discontinuous Galerkin (DG), finite volume (FV) method and Finite Element (FE) 

method accounting for scattering in uniform and non-uniform mean flows. 

At last, Boundary Element methods (BEM) deserves a particular classification since 

it accounts for the interactions with solid surfaces discretizing only the solid surfaces.  

The main advantage of the BEM approach is the reduced time required for the 

generation of the computational grid. On the other hand, it leads to a dense system 

matrix that would require special algorithms, as Fast Multipole Methods (FMM), to 

reduce memory and computational time. 

 

Concerning the turbulent source region highlighted by the Acoustic Analogy, a lot of 

empirical semi-empirical and RANS-based approaches are available in the literature. 

Particularly attractive are the RANS-based models that allow a synthesis of the 

turbulent field throughout the turbulence statistical description of the Reynolds-

Averaged Navier-Stokes (RANS) equations. 

 2.2. Overview of the Thesis 

The present dissertation, divided into three main chapters, describes the theoretical 

and numerical formulation of different alternative computational aeroacoustic 

methods and their application to typical aeronautics low noise design problems. 

In particular, Chapter 3 deals with the theoretical bases of the Acoustic Analogy and 

the derivation of the convected wave equation in uniform mean flow. 
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Chapter 4 deals with the development of a Boundary Element method (BEM) for the 

convected Helmholtz equation. The numerical discretization issues, the implemented 

boundary conditions and the analytical test cases are also illustrated. 

Chapter 5 introduces broadband noise and the statistical models for the source field 

characterization. In particular, the use of RANS-based methods are finally presented 

and investigated by using both FEM and BEM approaches. 

Finally, Chapter 6 applies the developed methods to the low-noise design problem of 

the Landing Gear. 
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3. Acoustic Analogy and Wave equations 

 3.1. Introduction 

Aero-acoustics is the field which studies the sound generated by fluids. 

Since the fluid dynamics equations are non-linear an exact solution of these 

equations is not available. Following the Acoustic Analogy approach introduced by 

Lighthill [2,3], acoustics can be seen as the small perturbation limit of fluid dynamics 

in which non-linear effects are neglected, whereas, the mechanisms of sound 

generation, for instance the sound generated by turbulence, are revised as a source 

term of a classical acoustic equation. 

 3.2. The governing equations 

According to the continuum hypotheses used in fluid dynamics, fluid motion is 

described by using the laws of mass, momentum and energy conservation applied to 

an elementary fluid particle [5]. Applying these laws to an infinitesimal volume 

element the mass and momentum and energy conservation equations in differential 

form are achieved. The mass and momentum equations can be written as: 

 

  

  
   (  )    (3.1) 

 

 

  
(  )    (     )    (3.2) 

 

where, ρ is the fluid density, v is the flow velocity, m the mass source term, f an 

external force density (like the gravitational force) and P denotes the fluid stress 

tensor. 

 

The fluid stress tensor is related to the pressure p and the viscous stress tensor τ by 

the relationship: 
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       (3.3) 

 

where, I is the unit tensor. 

 

In general, a relationship between τ and the deformation rate of the fluid element, 

expressed in the rate-of-strain tensor ∇v +(∇v)
T
 exists . When this relation is linear 

the fluid is described as Newtonian and the resulting momentum conservation 

equation is referred to as the Navier-Stokes equation. Even applying a drastic 

simplification, for compressible fluids as considered in acoustics, the equations still 

remain quite complicated. A considerable simplification is obtained when the Stokes’ 

hypothesis is assumed, that the fluid is in local thermodynamic equilibrium, so that 

the pressure p and the thermodynamic pressure are equivalent. In this case: 

 

   [    (  ) ]  
 

 
 (   )  (3.4) 

 

where   is the dynamic viscosity, in general dependent on the temperature T and the 

pressure p. and the equation (3.4) represents the constitutive equation.  

For m = 0, the energy conservation law is given by: 

 

 

  
 (  

 

 
  )    (  (  

 

 
  ))   

       (  )    (   )      

(3.5) 

 

where v = |v|, e is the internal energy per unit of mass and q is the heat flux due to 

heat conduction. Adopting the Fourier’s law as linear constitutive equation for q: 

 

       (3.6) 

 

where K is the heat conductivity which depends on the pressure p and temperature T. 

Using the fundamental law of thermodynamics for a reversible process: 

 

         (   ) (3.7) 
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and the equation for mechanical energy, obtained by taking the inner product of the 

momentum conservation law (3.2) with v, we obtain the equation for the entropy: 

 

  (
  

  
     )            (3.8) 

 

where: 

 

       (   )    (   ) (3.9) 

 

and s is the specific entropy or entropy per unit of mass. When heat conduction ∇·q 

and viscous dissipation τ :∇v may be neglected, the flow is isentropic (adiabiatic and 

reversible). This means that the entropy s of a fluid particle remains constant: 

 

  

  
        (3.10) 

 

Equations (3.1)-(3.10) still contain more unknowns than equations. As a closure 

condition, let’s introduce an additional constitutive equation, for example e = e(ρ, s), 

which implies with equation (3.7): 

 

    (
  

  
)
 

 

  (
  

  
)
 

 

(3.11) 

 

In many cases we will specify an equation of state p = p(ρ, s) rather than e = e(ρ, s). 

In differential form this becomes: 

 

        (
  

  
)
 
   (3.12) 
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where     (
  

  
)
 
 is the square of the isentropic speed of sound c. 

When the same equation of state c(ρ, s) is valid for the entire flow, fluid is said 

homogeneous. When the density depends only on the pressure fluid is said 

barotropic. When the fluid is homogeneous and the entropy uniform (ds = 0) flow is 

said homentropic. 

 

The heat capacity at constant volume cV is defined for a reversible process by: 

 

   (
  

  
)
 

 (3.13) 

 

For an ideal gas the energy e is a function of the temperature only: 

 

 ( )  ∫     
 

 

 (3.14) 

 

For an ideal gas with constant thermal properties we will often use the simplified 

relation: 

 

      (3.15) 

 

That represents the equation of a perfect gas.  
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 3.3. Governing equation linearization and wave equations 

Starting from the conservation laws and the constitutive equations it is possible to 

obtain after linearization a wave equation. 

Sound is a small perturbation of a steady state pressure, p’/p0, which propagates as a 

wave and which is detectable by the human ear. In the acoustic phenomena also the 

density fluctuations ρ’/ρ0 and the fluid velocity fluctuation v’ associated with the 

wave propagation, are small. This justifies the use of a linear approximation of the 

governing equations.  

Even with the additional assumption that the flow is frictionless, the resulting 

equations may still be complex if it is assumed a non-uniform mean flow or a non 

uniform density distribution ρ0. A derivation of more general linearized wave 

equations is illustrated by Goldstein [6] and Pierce [7]. 

 

Consider the case of acoustic perturbations (p’, ρ’, s’, v’. . .) of a stagnant (u0 = 0) 

and uniform fluid (p0, ρ0, s0, . . .). In this condition the equations simplify to: 

 

   

  
          

  

   

  
       

   

  
   

(3.16) 

 

where second order terms in the perturbations have been neglected. The constitutive 

equation     (
  

  
)
 
 becomes: 

 

     
    (3.17) 

 

By subtracting the time derivative of the mass conservation law from the divergence 

of the momentum conservation law is possible to eliminate v’ to obtain the wave 

equation for stagnant flow: 
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        (3.18) 

 

Using the constitutive equation      
    leads to the wave equations: 

 

    

   
   

        

    

   
   

        

(3.19) 

 

In the presence of a mean flow that satisfies the following equations: 

 

         

              

         

         
        

(3.20) 

 

the linearized conservation laws, and constitutive equation for isentropic flow, 

become (without sources): 

 

   

  
                               

  (
   

  
              )                

   

  
                 

   

  
                 

 (
   

  
              ) 

+  
 (      ) (

  

  
 

  

  
) 

(3.21) 

 

A wave equation can be obtained from these equations if simplifying assumptions 

are introduced. For a uniform medium with uniform flow velocity we obtain the 

convected wave equation for uniform mean flow: 
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(
 

  
     )      

        (3.22) 

 

Where the 
 

  
      denotes the Lagrangian derivative. 

 

 3.4. Lighthill’s analogy 

Lighthill [2,3] derived from the exact equations of motion a non-homogeneous wave 

equation with the propagation term at the left-hand-side. 

Starting from the time derivative of the continuity equation and subtracting the 

divergence of the momentum equation, assuming the absence of external forces and 

mass sources, Lighthill achieved: 

 

    

   
   

 
    

   
  

     

      
 (3.23) 

 

where the Lightill’s stress tensor     is defined by: 

 

              (     
   )    (3.24) 

 

In     equation three basic aero-acoustic processes can be distinguished, which result 

in sources of sound: 

 the non-linear convective forces described by the Reynolds stress 

tensor      , 

 the viscous forces    , 

 the deviation from a uniform sound velocity c0 or the deviation from an 

isentropic behavior      
   . 

 

Without approximations, equation (3.23) is exact and it is not easier to solve than the 

original equations of motion, since the right hand side contains the acoustic field and 

cannot be solved as a wave equation in explicit way by means of Green’s function 

technique. 
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However, the analogy is not complete unless the following conditions are met: 

 

 Tij = 0 in the region where the sound is to be predicted (the postulated 

fictitious acoustic medium is identical to a region of the real flow where    is 

constant and there is no mean flow). 

 Exist a way to compute Tij indipendently of the left  hand side of the equation. 

 

Lighthill proposed some simplifications: 

 At high Reynolds numbers, viscous effect    are much smaller than inertial 

effects, so the viscous stress tensor can be neglected when compared to the 

Reynolds stresses      . 

 The assumption of isentropic flow      
      

 The hypothesis of low Mach number ensures that the flow can be assumed 

incompressible. 

 

In the hypotheses before mentioned, Lighthill’s tensor reads: 

  

           (3.25) 

 

where U is the mean velocity field. 

This represents an incompressible approximation of the real flow and can be used as 

a forcing term for the acoustic wave equation that can be solved with the Green’s 

function technique. It is important to highlight that under the Lighthill hypotheses the 

density based equation (3.23) is equivalent to the pressure based equation that reads: 

 

 

  
 

    

   
 

    

   
  

     

      
 (3.26) 

 

Tij could be determined experimentally or from direct numerical solutions of the 

Navier-Stokes equations or from semi-empirical or stochastic source models. 
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It is trivial to show that convective Lighthill’s equation assumes the same form of the 

equation (3.26) [8]. Considering the linearized Lagrangian derivative 
 

  
 

 

  
    

 , the convective equation reads: 

 

 

  
 

    

   
 

    

   
  

     

      
 (3.27) 

 

 3.5. Green's Functions of the standard and convected 

Wave Equations 

The acoustic analogy has the formal advantage of formulating the complicated 

problem of the noise generation and radiation in the more standard problem of the 

inhomogeneous wave equation. Indeed, assuming that the source terms are 

previously determined, the solution is given by the Green’s function approach. 

Consider the standard wave equation of the Lighthill’s equation (3.26). The Green's 

function  (        ) at the point x and time t, produced by the source at point    

and time τ, is the pulse response satisfying: 

 

 
 

  
 

   

   
 

   

   
    (    ) (   ) (3.28) 

 

With application of the Fourier transform to the standard wave equation, the 

frequency counterpart under the      convention reads: 

 

    ∇     (3.29) 

 

where it is tacit that the new variables are defined in the Fourier domain. 

Equation (3.29) represents the homogeneous Helmholtz equation and k is the wave 

number defined as     . The pulse response of the Helmholtz equation reads: 

 

    ∇     (    ) (3.30) 
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In the case of its inhomogeneous counterpart, a given space-dependent function is 

applied on the right hand side (RHS). In the simplest case of an harmonic point 

source  , the wave equation leads to the inhomogeneous Helmholtz equation: 

 

    ∇      (    ) (3.31) 

 

The wave solution of the inhomogeneous equation is provided by the product 

between the source term and the Green’s function of the homogeneous equation. 

In the general case of multiple point source terms, the wave solution reads: 

 

 ( )  ∫  (    ) (  )    (3.32) 

 

The analytical solution of the Green function in free-field conditions,  (    ), reads 

[9]: 

 

{
 (    )  

 

 
  

 [  ]          

 (    )  
 

   
             

 (3.33) 

 

where r is the source-observer distance and   
  is the Henkel function of the first 

kind and order zero. 

 

In the case of the convected wave equation (3.22), the frequency counterpart under 

the      can be expressed as: 

 

(       )   ∇     (3.34) 

 

Whereas, the pulse response of the Helmholtz equation reads: 

 

(       )   ∇    (    ) (3.35) 



Aeroacoustic Methods for Low-Noise Technologies Design 

____________________________________________________________________ 

23 

 

where   is the Mach number of the mean flow field. 

The analytical solution of the Green function in free-field conditions  (    ) reads 

[9]: 

 

{
  
 

  
  (    )  

  

 
    (       (    ))  

 [    ]          

 (    )      (       (    ))
 

    
           

   √  ((    )
 
  )

 

 (    )
 
 (    )

 (3.36) 

 

The Green function gradient can be expressed as a function of the Green function 

and the vector operator  (    ), that assumes a different form for the 2D and 3D 

cases: 
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where     is computed as: 
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4. The Boundary Element Method for the 

Convected Wave Equation 

 4.1. Introduction 

According to the Acoustic Analogy an alternative to LES or DES simulation for 

noise prediction consists of separating the noise radiation and noise generation 

problems. The noise radiation and the body scattering are dealt with acoustic 

equations whereas the noise generation problem is treated separately. 

 

Numerical approaches such as the Finite Element Method (FEM) and the Boundary 

Element Method (BEM) allow acoustic simulations accounting for scattering from 

arbitrary bodies [8,9,10,11]. 

 

This Chapter deals with a BEM method applied to the convected Helmholtz 

equation. The Boundary Element Method (BEM) is based on an application of the 

divergence theorem to the governing equations (Paragraph 4.2). This approach 

allows leading back the solution of a volume problem to the body surface one 

exploiting the collocation approach (Paragraph 4.3). 

After the solution on the surface is achieved with the collocation approach, the 

acoustic pressure can be easily predicted for any observer in the volume. 

A set of BEM boundary conditions (Paragraph 4.4) are implemented in a generic 

form and fill up the final BEM system matrix disjointed from the governing 

equations (Paragraphs 4.5). The CHIEF method is also implemented for external 

flow problems stability (Paragraphs 4.6). Finally the validation against internal and 

external test cases available in literature is presented (Paragraphs 4.8). 
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 4.2. Boundary Integral Equations 

Consider the Green function of the convected wave equation: 

 

(       )  (    )  ∇  (    )   (    ) (4.1) 

 

and the corresponding equation for the free-space conjugated Green’s 

function   (    ), which satisfies: 

 

(       )   (    )  ∇   (    )   (    ) (4.2) 

 

the difference between the product of   with equation (4.1) and the product of G 

with equation (4.2) leads to: 

 

  [   (   )     (   )  ∇ ]  

  [   (   )     (   )  ∇ ]   

   (    ) (    )   (    ) (    ) 

(4.3) 

 

    [  (   )   (   )  ] 

  [  (   )    (   )   ] 

  [ ∇      ∇  ] 

   (    ) (    )   (    ) (    ) 

(4.4) 

 

by introducing a vector operator P, the equation can be expressed in form of the 

divergence of P 

 

   (    )  

=  {    (    )  [ (         )   ]    [ ∇      ∇  ]} 

   (    ) (    )   (    ) (    ) 

(4.5) 
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Applying the integral over the entire volume V on both sides of equation (4.5), it is 

allowed to make use of the divergence theorem and the general point x reduces to the 

general surface point xs, whereas, the volume integral reduces to the surface integral: 

 

∭    (    )   ∯  (    )(  )  
 (  ) ( )

  

 ∭   (    ) (    )  
 ( )

 ∭  ( |  ) (    )  
 ( )

 

=  (  |  )    (  |  ) 

 

(4.6) 

 

where the evaluation of the right hand side   (  |  )    (  |  ) is achieved 

from the general property of the Dirac delta function ∭  ( ) (    )   ( )
 

 (  ). 

The divergence theorem uses normal unitary vectors pointing outwards from the 

fluid volume. Assuming that in the BEM code the normal unitary vectors are 

pointing inwards into the fluid volume, the normal unitary vector   in the equation 

(4.6) requires to be multiplied by the factor −1. 

The coefficient C allows accounting for different point location, C=0, for points 

outside the flow, C=1, for points inside the flow and C=1/2 for points in the surface 

boundaries. 

Indicating the general point    as   and exploiting the reciprocity theorem, for which 

  (  |  )   (  |  ), the Boundary Integral Equation reads: 

 

  ( |  )   ( |  )  ∮  ( (  |  )  (   
 ))     

 (  )

 (4.7) 

 

where the left hand side,  ( |  ), represents the total acoustic pressure whereas the 

right hand side represents the sum of a spherical incident wave,  ( |  ), and the 

scattered one (∮  ( (  |  )  (   
 ))     

 (  )
). 
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Introducing the local coordinates system (t, s, n) where t and s represent the 

tangential plane to the surface and n is the normal pointing away to the surface, the 

inner products can be expressed as: 

 

            

  

  
   

  

  
   

  

  
 

     
  

  
,       

  

  
,       

  

  
 

      ,        ,         
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(4.8) 

 

Solving the inner product    , and noting that the integral on a closed surface of the 

divergence of a general vector function f, ∮     ( )  
 (  )

, is zero, the Boundary 

Integral Equation reads: 
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(4.9) 

 

where the kernel equations,   (   
 ) and   (   

 ) are expressed as: 

 

  (   
 )  {       [     ]           [      ]} 

  (   
 )  (    

 )  
(4.10) 

 

and where the     [      ] term can be explicated as: 

 

    [      ]    [  

  

  
   

  

  
] (4.11) 
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 4.3. Collocation Approach 

The Boundary Integral Equation (4.9) (BIE) underlines that to compute the Green 

function G at any point  , the knowledge of the unknowns   and 
  

  
 on the body 

surface is needed. 

Since equation (4.9) is valid everywhere in the field, it is possible to compute the 

equation on the surface assuming the coefficient C=1/2. Afterwards, the Green 

function at a point  ̅  on the surface is achieved by: 

 

 

 
 ( ̅ |  )   ( ̅ |  )  ∮   ( ̅

    ) (  |  )  
 (  )

 ∮   ( ̅
    )

  

  
(  |  )  

 (  )

 

(4.12) 

 

Therefore, for a surface discretization of N nodes, the BIE leads to N equations, one 

for each node of the surface. Indeed, N equations with 2N unknowns are achieved (N 

unknowns for   and N unknowns for 
  

  
). The equation system can be solved 

introduced new N boundary conditions equations expressed as a linear relation 

between   and 
  

  
. The system solution leads to the knowledge of the 2N unknowns. 

 4.4. Boundary conditions 

All boundary condition are expressed as a relation between the Green function 

normal derivative 
  

  
 and the Green function G. The most of all are expressed as local 

relations, that is the Green function normal derivative at the point x, depends only on 

the Green function at point x, as: 

 

 
  

  
      (4.13) 

 

More sophisticated boundary condition in which the relation between the Green 

function normal derivative 
  

  
 and the Green function G is not local can be taken in 
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account. An example is the so-called plane-baffle free-field radiation described in 

[10]. 

 

 Impedance Boundary condition for uniform mean flow 4.4.1.

Considering an absorbing material with a given impedance Z applied on a vibrating 

structure as depicted in Figure 4.1. 

 

 

Figure 4.1 – Vibrating surface with absorbing material. 

 

The impedance, Z, is defined via the Fourier transformed signal as the ratio between 

the pressure and the normal relative velocity Vr, assumed positive pointing into the 

surface. 

 

  
 

  
 (4.14) 

 

Assuming with    the fluid normal velocity at the surface and with    the surface 

normal velocity, both defined positive pointing into the fluid, the impedance equation 

reads: 

     
 

 
    (4.15) 

 

The linearized momentum equation for uniform mean flow can be written as: 

 

  (
  

  
      )      (4.16) 
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Multiplying for the normal vector, n, pointing outward the surface and introducing 

the frequency domain counterpart of the linearized momentum equation with the 

–     convention, the momentum equation reads: 

 

  (        )    
  

  
 (4.17) 

 

where    and    are the mean flow density and velocity. 

Substituting the equation (4.15) in the linearized momentum equation (4.17), we 

achieve the impedance boundary condition for a wall with impedance Z, and a 

vibrating velocity    as it follows: 

 

  

  
    

 

(
 
      )

    
 

(
 
      )

   
(4.18) 

 

From the impedance boundary condition it is straightforward to deduce the Neumann 

boundary condition (vibrating wall) for      that reads: 

 

  

  
       (4.19) 

 

Assuming     , the Neumann boundary condition leads to the rigid wall boundary 

condition 
  

  
  . 

 

The impedance boundary condition is derived with the assumption of Vr pointing 

into the surface and the –     convention. 

If the impedance Z is available under the     convention, it has to be taken by 

changing the sign of the imaginary part of the impedance. Whereas, if Vr is assumed 

positive pointing into the fluid, it has to be taken by changing the sign to all the 

impedance. 



Aeroacoustic Methods for Low-Noise Technologies Design 

____________________________________________________________________ 

31 

 Dirichlet boundary condition 4.4.1.

A very simple boundary condition is achieved by imposing the acoustic pressure on a 

boundary surface as     . 

 

 Scattering boundary condition 4.4.1.

Consider the general problem of the acoustic scattering by a rigid body surface 

described by the convected wave equation as: 

 

{

(       )   ∇    
  

  
  

 (4.20) 

 

where p is the total pressure. Denoting with    the incident component and with    

the scattered component, the rigid wall boundary condition leads to: 

 

   

  
  

   

  
 (4.21) 

 

Therefore the scattering field can be achieved by solving the following problem for 

the scattering field where the 
   

  
 is assumed to be a known variable. 

 

{
(       )    ∇     

   

  
  

   

  

 (4.22) 

 

The total pressure can be finally determined as: 

 

        (4.23) 

 

The decomposition of the acoustic field in the incident and scattered parts allows 

separating the problem of the free-field noise generation by multipolar sources and 

the body surface scattering. A typical example is the rotor noise scattering by the 

helicopter fuselage or the propeller noise scattering by the wing-body and fuselage 
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[12,13]. The rotor noise is generally computed with free-field integral methods based 

on the FW-H equation [4,14]. Following the scattering boundary condition approach, 

the solution of the FW-H equation is seen as the incident field, whereas the scattering 

field by the fuselage is computed solving the equations (4.22). 

 4.5. Numerical implementation 

Consider a generic body with surface  , discretized with N surface panels   , such as 

  ∑   
 
   . The application of quadrature rule with a polynomial of degree zero for 

the integration of the BIE (4.9) leads to: 

 

  ( |  )   ( |  )  ∑  ( |  ) (  |  )  

 

   

 ∑  ( |  )
  

  
(  |  )  

 

   

 

(4.24) 

 

where    is the centroid of the generic panel of area   . Subsequently, the collocation 

approach for the BIE (4.12) leads to: 
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(  |  )  

 

   

 

(4.25) 

 

where    is the centroid of the panel for which the BIE solution is looked for. 
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(4.26) 
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and the generic boundary condition (4.13) leads to: 

 

 (  )
  

  
(  |  )   (  ) (  |  )   (  ) (4.27) 

 

The discretization provides a linear system with 2N equations and 2N unknown. 

Thus, the matrix of the Boundary Element (BEM) problem assumes the following 

form: 

 

[

 

 
 ̿   ̿  ̿ 

 ̿  ̿

] {
 ̅
  ̅

  

}  {
 ̅
 ̅
} (4.28) 

 

Or in compact form  ( )   (    )   (    ) where G is the unknowns vector 

and   is the angular frequency. 

 

In the equation (4.28)  (̿   ) represents the identity matrix,  ̿ (   ) and 

 ̿ (   ) contain the   (  |  ) and the   (  |  ) coefficients and the  ̿(   )  and 

 ̿(   )  are the diagonal matrixes containing the  (  ) and  (  ) coefficients. 

 

The integrands   and    contain the free-field Green functions that are singular for 

     , leading to singular values of    and   . 

These singularities don’t prevent the integral evaluation that is not singular. In order 

to evaluate numerically the integrals of the equation (4.26), the surface panels 

corresponding to the diagonal elements of the matrix are subdivided in three sub-

elements. For the linear property, the integral is evaluated as the sum of the integrals 

of each sub-element. The integrands   and    of each sub-element are computed 

respect to the centroid of the master element according to: 

 

  (     )   ∑  (     )  

 

   

 

  (     )   ∑  (     )  

 

   

 

(4.29) 
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where    ∑   
 
   . 

 

Once the system (4.28) is solved for each angular frequency and source point of 

interest, the Green function  ( |  )  for each observer,  , and source point,   , can 

be achieved by means the equation (4.9). 

 

 4.6. CHIEF method 

A typical problem of the BEM approaches for external problems is the non-

uniqueness that appears for some specific frequency values. For these frequencies, 

corresponding to some eigenfrequencies of the interior problem, the Helmholtz 

equation admits two solutions. This aspect produces, from a numerical point of view, 

an indetermination in the numerical system solution around these frequencies. 

The adopted strategy is a variant of the CHIEF method [15,16,17] proposed by [10]. 

It consists in the introduction of        equations in the system corresponding to 

       internal points. These internal points are collocated with a random procedure 

and the number        is achieved as a fraction of the total number of the points. A 

value of 5%-10% of the total number of points is considered adequate. 

For the internal points, the equation (4.24) is applied by using the coefficient C=0 

and the new equations system leads to: 

 

[
 
 
 
 
 

 
 ̿   ̿  ̿ 

 ̿ 

 
 ̿

 ̿  ̿ ]
 
 
 
 

{
 ̅
  ̅

  
}
 
 

 
 

 {
 

 ̅

̅

 ̅
} (4.30) 

 

Where the kernel  ̿ 

 
 is evaluated at the CHIEF internal points. The new system 

matrix has dimension [(         )   ] and requires to be solved with a least-

square technique. 
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 4.7. Numerical aspects 

The BEM approach has been implemented in order to manage hybrid unstructured 

grids treating segment, triangular and quadrilateral elements. 

The normal vector direction of each element (Eq. (4.10)) is managed with a semi-

automatic procedure only for single-connected domains by specifying an internal 

point of the domain and the type of simulation (internal or external problem) to be 

performed. However, for multi-connected domains a post-processing file is generated 

for checking the right direction of the normal vectors. 

The BEM approach builds up the global system matrix by assembling different 

matrix blocks for the governing equations and the boundary conditions (Eq. (4.30)). 

This strategy allows a more general and efficient implementation of the boundary 

conditions. 

The CHIEF kernel generates in a random way the needed internal points according 

the procedure described in Paragraph 4.6, once the user has previously defined 

bounding boxes where collocate the points. 

As viewed in Paragraph 4.5, BEM leads to a dense system matrix. This implies that 

computational time and memory increase quadratically with the number of elements 

which limiting the use of the BEM of large-scale simulations. Many methods have 

been developed to reduce the size of the system matrix: the most known and efficient 

is the Fast Multipole Method (FMM) [18,19,20]. The implementation of these 

methods is not the objective of this work. 

 4.8. Validation test cases 

The BEM code has been tested with two-dimensional and three-dimensional test 

cases for both internal and external flow-field problems. 

The external problems required the use of the CHIEF method in order to avoid 

possible instabilities as illustrated in the Paragraph 4.6 by using the least square 

technique. The        points have been obtained by setting an additional number of 

5% of the total number of points to be generated automatically and with a random 

procedure. Computations performed with and without the CHIEF method didn’t 

show significant differences. 



Aeroacoustic Methods for Low-Noise Technologies Design 

____________________________________________________________________ 

36 

 Acoustic scattering by a 2D rigid cylinder 4.8.1.

Consider the acoustic scattering of a point monopole source by a rigid cylinder of 

radius a, with microphones located at the spherical coordinates (r, θ) and a source 

located at a distance rq positioned on the axis at θ=0 (Figure 4.2). 

 

 

 

 

 

 

 

 

Figure 4.2 – Scheme of acoustic scattering of a point monopole source by a cylinder. 

 

The analytical solution of the total pressure reads [21,22]: 

 

{
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where    and    are the Bessel and Henkel functions of the first kind and order m, 

whereas,   
  and   

  denote the derivative terms. 

BEM analyses 

With the aim of comparing BEM results to the analytical solution, a two dimensional 

cylinder with radius a=1m is considered. 

A source point of unitary amplitude located at rq=2m and a microphones arc of 

radius r=1.5m around the cylinder are used for comparison. The air properties are 

assumed to be c =340 m/s and ρ =1.225kg/m
3
. 

Concerning the BEM model, the cylinder is treated as rigid wall, 
  

  
  , whereas the 

source point is modeled as a Dirac delta function applied at (rq, θ=0). A mesh with 

60 segment elements is considered (Figure 4.3). 

 

rq 

θ 

r 

a 
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Figure 4.3 – Cylinder discretization with 60 segments. 

 

BEM solutions are computed at three ka numbers, 1, 5 and 10. With the aim of 

performing a mesh sensitivity study, three resolution levels of the mesh are 

considered. Thus, the coarse mesh is discretized with 60 segments, the medium mesh 

with 180 segments and the fine mesh with 360 segments. 

Figure 4.4 illustrates the acoustic pressure in terms of real and imaginary part for the 

coarse mesh. Furthermore, the acoustic amplitude is compared for the three mesh 

levels underling the excellent agreement with the analytical solutions since with the 

medium mesh (Figure 4.5). 

The BEM analysis, by using the coarse mesh, is computed also for a microphones 

grid in order to show the wave scattering contours plots of the real part of the 

acoustic pressure (Figure 4.6) for the three ka numbers. 
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Figure 4.4a - Solution for ka=1 

 

Figure 4.4b - Solution for ka=5 
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Figure 4.4c - Solution for ka=10 

Figure 4.4 – Cylinder acoustic scattering - Real and Imaginary parts of the acoustic 

pressure. Comparison between analytical results (symbols) and numerical results with 

coarse mesh (continuous lines). 

 

 

 

 

Figure 4.5a - Solution for ka=1 
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Figure 4.5b - Solution for ka=5 

 

Figure 4.5c - Solution for ka=10 

Figure 4.5 – Cylinder acoustic scattering – Pressure amplitude directivity. Comparison 

between analytical results (symbols), numerical results with coarse mesh (continuous 

lines), numerical results with medium mesh (dot-dashed lines) and numerical results 

with fine mesh (dashed lines). 
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Figure 4.6a -  Microphones grid Figure 4.6b - Solution for ka=1 

  

Figure 4.6c - Solution for ka=5 Figure 4.6d - Solution for ka=10 

Figure 4.6 – Microphones grid and contour plots. Real part of the acoustic pressure at 

different ka numbers. 
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 Acoustic scattering by a 3D rigid sphere 4.8.2.

Consider the acoustic scattering of a point monopole source by a rigid sphere of 

radius a, with microphones located at the spherical coordinates (r, θ) and a source 

located at a distance rq positioned on the axis at θ=0 (Figure 4.7). 

 

 

 

 

 

 

 

 

Figure 4.7 – Scheme of acoustic scattering of a point monopole source by a sphere. 

 

The analytical solution of the total pressure reads [21,22]: 

 

{
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where    and    are the spherical Bessel and Henkel functions of the first kind and 

order m, whereas,   
  and   

  denote the derivative terms computed as: 

 

  
 ( )       ( )  

 

 
  ( ) 

  
 ( )       ( )  

 

 
  ( ) 

 

 

The spherical Bessel and Henkel functions are related to the Bessel and Henkel 

functions by the following identities: 
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BEM analyses 

With the aim of comparing BEM results to the analytical solution, a three 

dimensional sphere with radius a=1m is considered. 

A source point of unitary amplitude located at rq=2m and a microphones arc of 

radius r=1.5m around the sphere are used for comparison. The air properties are 

assumed to be c =340 m/s and ρ =1.225kg/m
3
. 

Concerning the BEM model, the sphere surface is treated as rigid wall, 
  

  
  , 

whereas the source point is modeled as a Dirac delta function applied at (rq, θ=0). 

Two levels of discretization are considered resulting in a coarse mesh with 3480 

quadrilateral elements and a refined mesh of about 19800 elements (Figure 4.8). 

 

 

  

Figure 4.8a - Coarse grid Figure 4.8b - Fine grid 

Figure 4.8 –Sphere grid. 

 

 

Solutions are computed at three ka numbers, 1, 5 and 10, comparing the acoustic 

pressure in terms of real and imaginary parts and in terms of acoustic amplitude. The 

mesh refinement study shows an excellent overlapping between the BEM and 

analytical solution even with the coarse mesh (Figure 4.9 and Figure 4.10). 
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Figure 4.9a – Solution for ka=1 

 

Figure 4.9b – Solution for ka=5 
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Figure 4.9c – Solution for ka=10 

Figure 4.9 – Sphere acoustic scattering - Real and Imaginary parts of the acoustic 

pressure. Comparison between analytical results (symbols) and numerical results 

with coarse mesh (continuous lines). 

 

 

 

 

Figure 4.10a - Solution for ka=1 
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Figure 4.10b - Solution for ka=5 

 

Figure 4.10c - Solution for ka=10 

Figure 4.10 – Sphere acoustic scattering – Pressure amplitude directivity. Comparison 

between analytical results (symbols), numerical results with coarse mesh (continuous 

lines) and numerical results with fine mesh (dashed-lines). 
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 Acoustic duct 4.8.3.

Consider the wave transmission in a duct as shown in Figure 4.11. 

The duct is driven by a uniform velocity, Vn, at z=0 and it is acoustically terminated 

by the surface acoustic impedance Z at the end z=L. 

 

 

 

 

 

Figure 4.11 – Scheme of one dimensional duct. 

 

The general solution of the one dimensional wave equation in z direction [23] 

assumes the form: 

 

        (    )         (    )  

 

where A and B are the coefficients to be determined by means the boundary 

conditions, k is the acoustic wave number and Mz is the uniform flow Mach number. 

Uniform velocity and Impedance boundary conditions 

The first set of boundary conditions analyzed concerns the case of a vibrating wall at 

z=0 and a impedance boundary condition at x=L. 

The set of boundary condition, using the       convention, reads: 

 

{
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where Vn is the normal velocity applied at z=0, Z is the impedance and Vns is the 

normal velocity applied at z=L. 

Assuming the normal unit vector pointing inside the domain and Vns=0, the boundary 

conditions, according to the z-axis, read: 

L 

 

z 
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The A and B coefficients are obtained by substituting the general solution in the 

boundary conditions. 

Uniform pressure and Impedance boundary conditions 

The second set of boundary conditions analyzed concerns the case of a uniform 

pressure applied at z=0 and an impedance boundary condition at z=L that reads: 

 

{

 (   )    

  (   )

  
  

  (   )

  
    

 

[
 
      ]

    
 

[
 
      ]

   
  

 

The A and B coefficients are obtained by substituting the general solution in the 

boundary conditions. 

BEM analyses 

With the aim of comparing numerical results to the analytical solution of the one 

dimensional wave equation, a three dimensional duct with square cross section is 

considered, with length L=1m, along the z-axis, and a section side a=0.05m (Figure 

4.12). 

For the BEM model the boundary conditions previously discussed are applied at z=0 

and z=L surface, whereas the lateral surfaces are treated as rigid wall, 
  

  
  . 

The air properties are assumed to be c =343 m/s and ρ =1.21kg/m
3
. 

Two BEM meshes at different refining levels are generated with respectively 2784 

and 10354 triangular elements (Figure 4.12). 
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Figure 4.12a - Coarse grid 

  
Figure 4.12b - Fine grid 

Figure 4.12 –Square-section duct grid. 

 

Solutions are computed at frequency f = 2kHz and considering the terminal surface 

once as a rigid wall (impedance Z=+ ∞) and once with the application of the 

characteristic impedance (impedance Z=ρc). Solutions with zero mean flow ad a non 

zero uniform mean flow, M=0.3, are computed. 

 

Figure 4.13a) shows the acoustic pressure amplitude along the z-axis with a uniform 

velocity, Vn=1m/s, at the inlet side and an infinite impedance at the outlet side, 

whereas, Figure 4.13b) highlights results achieved with characteristic impedance at 

the outlet side. The effect of the mesh refinement is also illustrated in Figure 4.13. 

The figures show an excellent agreement with the analytical solution and the curves 

are sufficiently overlapped except for Z=ρc condition for which the BEM solution 

exhibits moderate reflection effects. The characteristics impedance value produces a 

uniform pressure amplitude equal to       (    )   as can be obtained by the 

analytical solution. 
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Figure 4.13a - Impedance      at the outlet side. 

 

Figure 4.13b - Impedance      at the outlet side. 

Figure 4.13 – Duct acoustic solution. Vibrating boundary condition at the inlet side 

and impedance boundary condition at the outlet side. Comparison between 

analytical results (symbols), numerical results with coarse mesh (dot-dashed lines) 

and numerical results with fine mesh (continuous lines). Solutions at M=0 (blue lines) 

and M=0.3(green lines). 

 

The same results and conclusions are achieved by applying a uniform pressure, 

p0=1Pa, at the inlet surface, as shown in Figure 4.14. For this boundary condition, 

the characteristic impedance value produces a pressure amplitude equal to p0. 



Aeroacoustic Methods for Low-Noise Technologies Design 

____________________________________________________________________ 

51 

 

  

Figure 4.14a - Impedance      at the outlet side. 

  
Figure 4.14b - Impedance      at the outlet side. 

Figure 4.14 – Duct acoustic solution. Dirichlet boundary condition at the inlet side and 

impedance boundary condition at the outlet side. Comparison between analytical 

results (symbols), numerical results with coarse mesh (dot-dashed lines) and 

numerical results with fine mesh (continuous lines). Solutions at M=0 (blue lines) and 

M=0.3(green lines). 
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 Naca0012 airfoil 4.8.4.

The trailing-edge scattering of a 2D airfoil is validated against the CIRA’s FEM 

OptydB code [8,12,24]. 

With this aim, the same NACA0012 airfoil used in [25] is considered. The airfoil has 

a chord length of 0.3048m and the air properties are assumed to be c =342.8m/s and 

ρ =1.244kg/m
3
.Two different Mach numbers are investigated, M=0 and M=0.208. 

The effect of local velocity field near the airfoil is also evaluated with the FEM code 

by importing the local flow field from a RANS solution computed with the 

commercial CFD software Fluent by ANSYS at M=0.208. Figure 4.15 shows the 

local Mach variations in terms of (    )   . 

 

 

Figure 4.15 – Contour plot. NACA 0012 airfoil Mach number distribution. 

 

The BEM mesh consists of 500 segment elements whereas the FEM one consists of 

7444702 triangular elements. Figure 4.16 underlines the good agreement between the 

FEM and the BEM solutions also at mean flow condition. Furthermore, the 

comparison confirms that the effect of the not uniform mean flow predicted with the 

FEM code can be assumed negligible at relatively low Mach numbers. 
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Figure 4.16a - Real part of the acoustic pressure 

 

Figure 4.16b - Imaginary part of the acoustic pressure 

Figure 4.16 –. Directivity patterns. Comparison between the FEM numerical results 

(symbols) and BEM numerical results (lines) at different Mach numbers. Solutions at 

M=0 (blue), M=0.208 (green) and M=0.208 with non-uniform mean flow (red). 
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5. Broadband noise source models 

 5.1. Introduction 

While during departure the engine is recognized to be the main source of noise, the 

so-called airframe noise becomes more important during approach. 

Airframe noise is the broadband noise radiated by the airplane due to the turbulent 

fluctuations occurring in proximity of the aircraft surfaces. 

 

The two main sources for airframe noise are the landing gear and the high-lift 

devices. High-lift Devices (HLD) are deployed on the wing in order to increase the 

lift force, while the plane is decreasing in speed. These wing extensions often include 

a leading edge slat and one or multiple trailing edge flaps. 

 

The sound generation mechanism from a Landing-Gear is due to the vortex-force 

generated by the quasi-periodic unsteady flow separation behind the different 

structural components. The resulting noise is of broadband nature, spanning over a 

wide interval in the audibility range. 

Concerning the HLD broadband noise generation mechanism, it is due to the 

presence of a geometrical singularity. Indeed, the mechanism of conversion between 

turbulent kinetic energy and radiated acoustic energy is more effective than in the 

absence of solid surfaces (free-field turbulence noise) or in the absence of surface 

terminations (unbounded surface flow noise). 

Moreover, the termination of a lifting surface is the place where an intense turbulent 

mixing occurs and where, as in the case of a flap side edge, the flow recirculation 

induces unsteady flow phenomena, i.e., shear-layer instabilities, vortex rollup, and 

interaction between the tip vortex and the side-edge corner [26]. Also Rotating 

devices employed for aircraft propulsion generate broadband noise due to the 

interaction between turbulence and blades. 

 

The numerical simulation of these mechanisms through the solution of filtered 

Navier–Stokes equations, either using fully large-eddy simulation (LES) or hybrid 
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RANS–LES approaches such as the detached-eddy simulation (DES), is a major area 

of research [27,28,29,30,31,32,33]. However, because of the excessive 

computational cost, these types of simulations cannot be used for design purposes. 

 

An alternative to LES or DES for wing HLD noise prediction consists of using 

RANS-based methods that can be used for multi-objective optimizations of wing 

profiles in conjunction with two-dimensional (2-D) steady Reynolds-averaged 

Navier–Stokes (RANS) computations and final three-dimensional (3-D) assessment 

of a wing low-noise design. 

These allow to compute the far-field noise spectrum through an empirical source 

model and an analytical [34] or numerical [24,35,36,37] noise radiation model, or 

through the synthesis of stochastic flow fluctuations that are used to compute the 

right-hand side of an acoustic analogy equation [8,38,39]. 

 

Agarwall [35,36] presented a semi-empirical technique to estimate the broadband 

component of slat noise based on a modeling procedure similar to that used for jet 

noise predictions [40,41]. The noise in the far field is predicted by performing a 

convolution of numerical BEM Green's function with the modeled sources. 

 

Furthermore, the stochastic approach for the prediction of broadband noise spectra 

from wall-bounded turbulent flows has received a great deal of interest in recent 

years, [38,39]. 

It was introduced by Kraichnan [42], and it is based on the idea that Fourier 

components of solenoidal velocity fluctuations can be sampled in the wave-number 

space from a prescribed mono-dimensional energy spectrum. An extension of the 

Fourier approach to simulate the different kinematics and statistics of large and small 

scale eddies was proposed by Fung et al. [43]. 

The revision and improvement of these methods for aeroacoustic applications have 

produced the stochastic noise generation and radiation (SNGR) method [44,45,46]. 

The SNGR method has been further revised by Casalino&Barbarino [8] where the 

control of the two-point correlation of the velocity fluctuations has been improved 

with respect to the standard SNGR model, based on the local value of the turbulence 



Aeroacoustic Methods for Low-Noise Technologies Design 

____________________________________________________________________ 

56 

correlation length, and by applying a digital filter to the stochastic variables of the 

model. 

 

The advantages of the SNGR method are its simplicity and the possibility to control 

the spectral content of the velocity fluctuations. 

A recognized drawback of the SNGR method is the computational time and memory 

occupation, due to the large amount of information to be produced and managed at 

each grid point. 

 

In all RANS-based methods, the RANS turbulent kinetic energy and dissipation rate 

are used to define the magnitude and the length/time scales of the noise sources. The 

main limitation of any RANS-based method is that it follows from several modeling 

assumptions in the derivation of the source term or in the synthesis of the stochastic 

flow fluctuations, and this restricts the universal character of the method. As a 

consequence, RANS-based methods require the calibration of some model 

parameters through specific experimental campaigns. 

 

Among different HLD broadband noise generation mechanisms, one of the main 

source of airframe noise is represented by the wing trailing-edge noise due to the 

interaction between the turbulence in the boundary layer and the trailing edge (TE), 

usually referred as self-noise. 

The mechanism of TE noise generation and radiation has been extensively 

investigated in the past. 

A hybrid analytical-empirical method in frequency domain was developed for the 

first time in 1975 by Amiet for an airfoil [47,48]. This method consists in relating the 

noise spectrum to the wall pressure spectrum through an airfoil scattering function. 

In order to use a wall pressure distribution with the same characteristics it would 

have in the absence of the TE, Amiet assumed that the turbulence is statistically 

stationary when convected past the TE. 

In recent years TE broadband noise models based on Amiet formulation have been 

developed and validated against experimental data by Roger & Moreau [49,50] and 

by Blandeau & Joseph [51,52] in practical cases that are representative of aircraft 

wings, wind turbines, helicopter blades and cooling fan systems.  
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The original idea applied to an airfoil was also extended and successfully applied to 

rotor broadband noise prediction [53]. The extension of Amiet airfoil self-noise 

model to a rotating blade is made through a strip approach in which spanwise blade 

segments are treated as uncorrelated two-dimensional source. 

Döppler effects are accounted for by considering the blade segment rotational 

velocity. The same formulation has been used by Pagano et al. [54] to compute the 

broadband noise generated by a propeller in a pusher aircraft configuration. 

 

Casalino&Barbarino [24], for a 2D High-Lift Wing design, instead of using the 

RANS solution in the field to compute the source term of a wave equation introduced 

an alternative approach to compute the self-noise of a NACA-0012 airfoil. They used 

the boundary-layer properties in proximity of the trailing edge from a RANS solution 

to estimate the wall-pressure spectrum through a semi-empirical model 

[53,55,56,57,58]. This approach was used to compute an equivalent pressure to be 

finally applied as boundary condition of a wave equation solved with a FEM 

technique. 

 

More recently, Casper and Farassat [59,60,61,62] used the analytical scattering 

equation and the semi-empirical turbulence spectra to synthesize a stochastic 

pressure distribution in time domain. The dipoles distribution induced by turbulence 

was then propagated by means of the numerical integration of the FW-H equation in 

the time domain and applied to the airfoil noise prediction. This hybrid 

analytical/numerical approach was applied for the first time by Barbarino&Casalino 

[63] to a propeller, and the results were verified against the analytical results 

obtained in the frequency domain by means of a strip approach. 

 

This Chapter deals with a few part of the source models described in literature.  

Paragraph 5.2 deals with the introduction to the self-noise prediction based on the 

Amiet analytical model [47,48] and the extension of the analytical model to the BEM 

or FEM numerical scattering [24].  
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Paragraphs 5.3 and 5.4 propose more general approaches for broadband noise 

prediction by using the RANS-based models: respectively the SNGR [8] and the 

Agarwal [35,36] approaches. 

Finally, Paragraph 5.5 shows the application of the abovementioned methods to the 

trailing-edge noise prediction of a NACA0012 airfoil. 

 5.2. Semi-analytical and Hybrid Empirical/Numerical 

models for self-noise prediction 

Trailing edge noise (or self-noise) is due to the scattering of boundary layer vortical 

disturbances at the geometrical discontinuity of the trailing edge. 

The pressure fluctuations, in the boundary layer, generate lift fluctuations on the 

airfoil. According to the acoustic analogy these fluctuations can be seen as 

elementary dipoles that generates noise (Figure 5.1). 

 

 

Figure 5.1 – Trailing edge noise mechanism. 

 

Following Amiet and co-workers [47,48,53]. and Roger & Moreau [49,50] the TE 

noise power spectral density (PSD) at the observer x and the frequency ω, of the 

pressure fluctuation on the surface of a finite chord flat plate induced by the wave 

generated at the trailing edge reads: 
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where  ̅        and  ̅        are the dimensionless gust wavenumbers, 

 ̅     (   ) is the non-dimensional acoustic wavenumber,   √    (     ) 

is the Prandtl-Glauert transformed distance from the TE,   √    
  and     is 

the radiation integral function. 

This consists of a main contribution      derived from the assumption of a semi-

infinite flat plate (high frequency approximation), and a term      accounting for the 

wave back reflection at the LE (finite chord length correction). These two 

contributions read: 
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The notation  c  means that the imaginary part must be multiplied by the factor  . 

Figure 5.2 shows an airfoil section of chord c and span length L and the reference 

system used in the equation. 

 

 

Figure 5.2 – Coordinates system of the trailing-edge noise model. 

 

The wave-number frequency spectrum pp can be related to the frequency spectrum 

pp  and to the spanwise correlation length ly by writing: 
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where the spanwise correlation length can be estimated using the Corcos’ formula 

that reads: 
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with b denoting an empirical spanwise correlation constant. 
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It can be demonstrated that in the hypothesis of infinite span, only one spanwise 

wave number contributes to the wall-pressure fluctuations, )/( ykK y  , and this is 

proportional to the distance from the midspan plane. In fact, in the hypothesis of 

infinite span-wise length L, the cardinal sine can be substituted by the Dirac 

distribution by means of: 
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Considering the Dirac distribution property that: 
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The large aspect-ratio approximation can be written as: 
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The above equation shows that for a microphone symmetrically placed respect to the 

airfoil (y=0) just the wavenumber 0yK  contributes to the noise propagation. 

 

Considering the equation of the wave-number spectrum as function of the frequency 

wall pressure spectrum, )(pp
, the PSD becomes: 
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To extend the results of the airfoil analytical model to a generic blade, a strip theory 

approach is applied. The blade is divided into elements (Figure 5.3) which are 
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characterized by different values in spanwise direction of relative mean flow, local 

incidence angle, geometrical shape and statistical parameters of the fluctuations. The 

overall far field sound is calculated by summing each blade element noise 

contribution and by assuming uncorrelated sources [54]. 

 

 

Figure 5.3 – Rotor extension using a blade element theory. 

 

Furthermore, a frequency-shift correction is applied to each section in order to 

account for the Döppler effects by writing: 
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where Mz is the axial Mach number and Mt is the local spanwise tangential Mach 

number and Ψ denotes the azimuthal blade location. 

 

Finally, the overall noise is computed by assuming fully uncorrelated strip sources 

and averaging over all the angular positions of the B propeller blades, i.e.: 
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The wall-pressure PSD can be estimated through specific measurements. 

Experimental determinations of the frequency wall pressure spectrum caused by 

turbulent fluctuations and made by a lot of authors showed a relation with the 

boundary layer quantities of the inner and outer regions. Indeed, normalizing the wall 

pressure spectrum with the inner or outer boundary layer variables, the experimental 

points showed collapsing to a curve with a characteristic law. 

Since the low frequency part of the pressure spectrum is affected by the outer region 

of the boundary layer (boundary layer displacement thickness and boundary layer 

asymptotic velocity) and the high frequency part is affected by the inner region (wall 

shear stress and fluid viscosity) an effective normalization making use of mixed 

variables is expected. 

These considerations have been used in the past by a lot of authors to develop models 

for the frequency spectrum of wall pressure fluctuations beneath a turbulent 

boundary layer as a function of the boundary layer quantities. Different models have 

been developed normalizing the spectrum with the inner variables [53] the mixed 

variables [55] and taking into account the Reynolds number effect [56]. 

More recently, the adverse pressure gradient effect on the statistical properties of the 

wall pressure has been recognized [57]. 

 

Schlinker and Amiet [53] proposed an analytical formulation by using the outer 

boundary-layer scaling quantities and fitting the surface pressure spectrum data of 

Willmarth and Roos [58]: 
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where 
*  and 

eU  are respectively boundary layer displacement thickness and 

boundary layer asymptotic velocity. 

To reproduce the wall-pressure spectrum at the TE of a NACA0012 airfoil, since the 

above model is for a zero pressure gradient flat plate, Schlinker and Amiet proposed 
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an empirical correction function for a realistic airfoil that multiplies the flat plate 

wall pressure spectrum. 

Rozenberg [57] proposed an improved wall pressure spectrum model, based on 

Goody’s model [56], to take into account also the pressure gradient effect that can 

increase the wall pressure spectrum up to about 10dB. The model considers the 

normalization by means the mixed boundary layer variables and takes also into 

account the Reynolds number effect. 

An alternative hybrid approach, illustrated by Casalino & Barbarino in [24], consists 

in the use of the wall-pressure PSD in proximity of the trailing edge in order to 

define a value for the acoustic pressure to be used as Dirichlet Boundary condition of 

a wave equation (see Paragraph 4.4.1). 

In the frequency band [     ], the wall-pressure root mean square can be related to 

the Wall Pressure Spectrum of a semi-empirical model (see equation (5.10)) by: 

 

     √∫    (   )  
  

  

 (5.11) 

 

Since the Dirichlet boundary condition is imposed only in a few surface cells very 

close to the trailing edges, the wall pressure root mean square can be assimilated to 

the magnitude of a Fourier component p0 with phase arbitrarily set to zero (see 

Paragraph 4.4.1). 

 5.3. SNGR approach 

Following the concept proposed by Kraichnan [42], turbulent velocity fluctuation can 

be computed as a sum of Fourier components; that is, 
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 (5.12) 

 

where  ̂        are the magnitude, phase, and direction of the nth Fourier 

component, respectively. As proposed by Bailly and Juvé [45], each Fourier mode is 
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supposed to be convected at the local mean-flow velocity U, corrected by the vortex 

convection velocity ratio  . This factor may account for the wall induction effect that 

reduces the vortex convection velocity with respect to the mean-flow velocity at the 

location of the vortex core. For the self-noise prediction, the value        is 

assumed. The factor may also account for the vortical induction in a jet shear layer, 

but this effect is negligible for low-speed subsonic jets. Notice that the scalar product 

      accounts for the local time variation of the velocity field. Assuming 

incompressibility, the zero divergence condition applied to Eq. (5.12) results in the 

relationship        , stating that the wave vector is perpendicular to the velocity 

vector. 

By supposing that the turbulent flow field is isotropic, the magnitude of the n-th 

Fourier mode is related to the mono-dimensional energy spectrum E(k) by the 

expression,  ̂  √ (  )    where    and     are the wave number and the 

corresponding band of the n-th mode. The Von Kármán–Pao isotropic turbulence 

spectrum is assumed; that is: 

 

 ( )   (   )(    )(    )
    [  (    )][  (    )

 ]      (5.13) 

 

where K is the turbulent kinetic energy, A is a numerical constant,    is the wave 

number of maximum energy, and              is the Kolmogorov wave number. 

The constants A and   can be determined by equating the integral energy and the 

integral length scale derived from Eq. (5.13) to the RANS quantities K and    

    
   , respectively,    √     being the isotropic turbulent velocity and    a 

tuning parameter of the method. 

This provides         and           . The parameter   allows to tune the 

RANS turbulent integral length scale of the large-scale eddies. Its value is, by 

definition, close to 1, but its optimal value depends on the turbulent flow structure 

and conditions and on the RANS turbulence model. 

The stochastic velocity perturbation field can be generated by choosing probability 

density functions for all the random variables involved in Eq. (5.12). 

These stochastic variables are the angles    and   defining the direction of the wave 

vector   , as sketched in Fig. (5.12); the angle   defining the direction of the unit 
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vector   in a plane orthogonal to   ; and finally the phase angle   . By requiring 

that the wave vector is uniformly distributed in the 3-D wave-number space provides 

the following probability densities: 

 

 (  )  
 

  
                 (5.14) 

 

 (  )     (  )                       (5.15) 

 

Analogously, by supposing that the    vector is uniformly distributed in the plane 

normal to    yields: 

 

 (  )  
 

  
                 (5.16) 

 

Finally, the phase angle   is also supposed to be uniformly distributed in the    

range; that is: 

 

 (  )  
 

  
                 (5.17) 

 

 

Figure 5.4 –Representation of the wave vector    and velocity direction vector   , and 

definition of the stochastic angles. 
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The duration and sampling frequency of the synthetic velocity signals are defined on 

the basis of the prescribed minimum and maximum frequencies to be covered by the 

CAA analysis. 

In particular, in order to prevent aliasing effects, the time step is such that twice the 

value of the prescribed maximum frequency can be achieved. Interestingly, a number 

of stochastic realizations of the source field can be computed by seeding the random 

generators. For each of them, the radiated noise is computed and results are finally 

averaged in order to track statistically converged noise spectra. 

Additional details about the model are described by Casalino&Barbarino [8]. 

 

 5.4. Agarwal approach 

Consider the convective wave equation with a source term  (   ) as reported in [35]: 

 

    

   
   

         
  

  
 (5.18) 

 

where 
 

  
 

 

  
     . The Green’s function for this convected wave equation 

satisfies: 

 

(
  

   
   

   ) (         )   (    ) (    ) (5.19) 

 

Once the Green's function for wave propagation and the noise source terms are 

known, the acoustic field p can be obtained by a straightforward convolution of the 

Green's function with the sources. 

 

 (   )     ∫ ∫  (         )
  (     )

   
      

  

    

 (5.20) 
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Where    indicates the source location,   the observer position, and c is the free-

stream speed of sound. Applying the Fourier transform definition and introducing the 

frequency green function: 

 

 (   )  
   

  
∫    ∫    ∫   (    )

  (     )

   
    (    )

  

  

  

  

  
  

 (5.21) 

 

After some manipulation Agarwal achieved the following Spectral Density: 

 

 (   )  (     )  ∫    (    ) 
  

  
  
     

 
    

 

    
  

 (5.22) 

 

where: 

 

     
√  

 
          

 

 
       

  

 
        

√   

 
 (5.23) 

 

where    is the local turbulent length scale,    is the turbulent timescale and A is the 

amplitude of the overall predicted noise spectrum at the source location. 

The model includes also the constant lz for the local turbulent length scale in 

spanwise direction. Since most standard turbulence models are isotropic lz can be 

assumed equal to   . 

 

The parameters    and   denote the turbulence kinetic energy and the specific 

dissipation rate obtained from a RANS model, whereas,   ,    and A are the empirical 

constants of the model that control the local turbulent length scale,   , the turbulent 

timescale,   , at the source location and the amplitude of the overall predicted noise 

spectrum, A. 
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 5.5. Trailing-edge noise prediction of a Naca0012 Airfoil 

 CFD results 5.5.1.

CFD results carried out in the framework of the EU 7th Framework Clean Sky JTI 

ADOCHA Project and used in [8,24] are presented for a set of validation cases 

selected from the test report by Brooks et al. [25]. 

Emphasis is given to the boundary-layer quantities close to the trailing edge, since 

these are expected to have a major impact on the far-field noise spectra. 

A NACA-0012 airfoil of chord c = 0.3048 m at a zero angle of attack and four values 

of the freestream velocity U have been considered: 31.7, 39.6, 55.5, and 71.3 m/s. 

The turbulent transition is not triggered numerically, and the acoustic results are 

compared with the natural transition cases of [25]. 

Computations have been carried out using the CFD software Fluent by ANSYS. A 

pressure-based second-order upwind scheme has been employed to converge fully 

coupled RANS equations with turbulence accounted for through a     SST model 

in transitional flow modality. 

The turbulence level and length scale prescribed at the upstream boundary are 0.5% 

and 0.1 m, respectively. 

A hybrid computational mesh has been used with a first cell spacing in the wall 

normal direction that provides a maximum    distribution below the unitary value, 

thus ensuring a good resolution of the laminar sublayer. 

The chordwise variation of the boundary-layer displacement thickness   , 

momentum thickness  , and wall skin friction    have been extracted from the 

RANS solution. 

Figure 5.5 shows a comparison between the predicted values of   and   at 99.5% of 

the chord and the measurements made by Brooks et al.. The predicted values fall 

between the two sets of measurements, and the RANS results are very close to the 

untripped boundary-layer measurements. 
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Figure 5.5 –NACA-0012 boundary-layer results at 99.5% of the chord. Comparison 

between experimental data, RANS solution (●). Measurements: tripped boundary layer 

(solid lines) and untripped boundary layer (dashed lines). 

 

The RANS boundary-layer quantities at the trailing edge useful for the semi-

analytical noise prediction are finally collected in Table 5.1. 

 

 

Table 5.1– NACA-0012 boundary-layer RANS results at 99.5% of the chord in SI units. 

 

 Hybrid Empirical/FEM approach and analytical model 5.5.1.

To verify the hybrid approach described in Paragraph 5.2, the CIRA’s FEM code 

solutions of the Howe’s acoustic analogy equation [64] for a NACA-0012 airfoil are 

compared with analytical solutions for a zero-thickness airfoil obtained by using the 

formulation developed by Roger and Moreau (see equation (5.7)) 

The analytical solution uses the spanwise correlation length estimated using Corcos’s 

equation (5.5). 

The CIRA’s FEM solution accounts for the 3D effects by using the formula proposed 

by Ewert et al. [39]. This formula accounts for both the propagation and generation 

effects by adding the quantity       (       ) to the computed 2-D sound 

pressure levels, where b is an empirical spanwise correlation parameter that relates 

the spanwise correlation length to the freestream velocity and frequency, L is the 
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wingspan, R is the radiation distance, and M is the freestream Mach number. The 

parameter b is the same used in the Corcos’s formula. 

 

The boundary-layer quantities required by the wall-pressure spectrum model have 

been extracted from RANS solutions (Paragraph 5.5.1).  

Figure 5.6 shows the comparison between the semi-analytical PSD noise results and 

the CIRA’s FEM results. The agreement is very good at the four values of the 

freestream velocity. Also, the amplitude modulation due to the leading-edge 

backscattering is partially recovered by the CIRA’s FEM solution, although the 

rounded edge of the airfoil tends to smear out the lobes. It can therefore be argued 

that modeling the trailing-edge noise generation from an airfoil through a wall-

pressure fluctuation prescribed at the trailing edge provides numerical results that are 

in agreement with the classical Amiet’s theory. 

 

 

Figure 5.6 – NACA-0012 trailing-edge noise prediction. PSD computed using the 

Roger and Moreau’s analytical formulation (lines) and the FEM solution of Howe’s 

equation with a Dirichlet condition at the trailing edge (circles):U=71.3m/s (solid 

lines),U=55:5m/s (long dashed lines); U=39.6 m/s (medium dashed lines), and 

U=31.7m/s (short dashed lines). 
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 Stochastic Noise and Generation Model 5.5.2.

The SNGR approach has been tested in [8] by using the CIRA’s FEM code OptydB 

as following described. 

Computations have been carried out using the following values of the tuning 

parameters of the stochastic noise generation model: c1=2.0, c2=0.1, c3=10, and c4 

=0.9 [8]. A number NF = 100 of Fourier modes has been used. 

A number of 25 realizations of the stochastic source fields have been computed in 

order to achieve an appropriate level of statistical convergence of the noise spectra.  

The active source region is defined by prescribing a rectangular bounding box about 

the trailing edge that extends over 0.04 and 0.01 m along x and y, respectively 

(Figure 5.7). 

 

  

Figure 5.7 – Contour plot of the turbulent kinetic energy and bounding box extension. 

 

Then, the cells of the CFD mesh have been filtered out at 1% of the maximum mean-

flow velocity and 1% of the maximum turbulent kinetic energy in the source region. 

The resulting number of active source cells for the U=71.3 m/s case is 39.500. The 

size of the active source region has been determined by considering boxes of 

increasing size in both directions and by checking the convergence of the overall 

SPL (OASPL) at the 90 deg microphone for the higher freestream velocity case. 
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Figure 5.8 shows a comparison between the computed and the measured noise 

spectra in 1/3-octave bands for a microphone located at 90 deg with respect to the 

airfoil chord, at the same stream-wise location of the trailing edge, and at a radial 

distance of 1.22 m. The noise levels for the highest velocity case are over-predicted 

up to about 5 dB at the highest frequencies. Conversely, the low-frequency noise 

levels are under-predicted by about 5 dB for the lowest velocity case. Globally, the 

agreement between numerical predictions and measurements is fair. 

 

 

Figure 5.8 – Noise spectra in 1/3-octave bands at 90 deg for different free-stream 

velocities. Comparison between experimental data [25]. (lines) and numerical results 

(lines and symbols). Solid lines: U=71.3m/s, long-dashed lines: U= 55.5m/s, medium-

length dashed lines: U=39.6m/s., and short-dashed lines: U=31.7m/s. 

 

In addition, a verification process has been carried out by comparing the CAA results 

with semi-analytical results computed using boundary-layer quantities extracted from 

the same RANS solution used in the stochastic method (Figure 5.9). A good 

agreement has been observed at frequencies higher than about 4 kHz, which 

demonstrates the capability of the stochastic model to recover the two-point 

statistical properties of a wall-bounded turbulent flow-field. 
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Figure 5.9 – Noise power spectral densities at 90 deg for different free-stream 

velocities. Comparison between semi-analytical (lines) and numerical results (lines 

and symbols). Solid lines: U=71.3m/s, long-dashed lines: U= 55.5m/s, medium-length 

dashed lines: U=39.6m/s., and short-dashed lines: U=31.7m/s. 
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 Agarwal model 5.5.3.

The Agarwal model has been tested by using the BEM model described and 

validated in Chapter 4. 

Computations have been carried out using the following values of the tuning 

parameters of the Agarwal model:       ,        and      . 

The active source region is defined by prescribing a rectangular bounding box (BB) 

about the trailing edge as already illustrated in the Paragraph 5.5.1. 

The bounding box technique consists in the generation of an automatic rectangular 

grid which extension and number of points is chosen by the user. 

The active source region is selected by the BB extension and the CFD turbulent field 

is interpolated on the grid points of BB. 

A convergence study of the source region is performed with the aim of investigating 

the effect of both bounding box extension and number of active source points. Three 

different bounding boxes have considered as illustrated in the Figure 5.10. The first 

one (BB1) extends over 0.04 and 0.01 m along x and y, respectively, the second one 

(BB2) over 0.08 and 0.03 m and the third one (BB3) over 0.31 and 0.06m. No CFD 

cells filters have been developed for this method. 

 

 

Figure 5.10 – Bounding boxes extension. 
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The first bounding box (BB1) has been tested for 400 and 10000 point sources 

whereas the second and third ones (BB2 and BB3) only for 400 point sources. 

Figure 5.11 shows a comparison between the computed and the measured noise 

spectra in 1/3-octave bands for a microphone located at 90 deg with respect to the 

airfoil chord, at the same stream-wise location of the trailing edge, and at a radial 

distance of 1.22 m.  

The comparison between Figure 5.11a and Figure 5.11b shows that the influence of 

the source points number on the noise levels and curves shape is relatively low also 

increasing drastically the number of source points. On the contrary, by using the 

coarse grid points number (400 points) and the bounding box extensions BB2 and 

BB3, noise levels increase significantly. 

 

The noise levels for the highest velocity case are quite well predicted for the BB3. 

Levels at lower velocities are under-predicted especially for the lowest velocity case. 

This underestimation at lower velocities, even if of minor entity, is also partially 

noticed with the SNGR approach. This circumstance indicates that both RANS-based 

methods and CFD RANS solutions need further investigation. 

 

Also the effect of CFD cells filters on the convergence of the method, against the 

bounding box extensions and source points number, need to be investigated. 
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Figure 5.11a - BB1 with 10000 source points Figure 5.11b - BB1 with 400 source points 

  

Figure 5.11c - BB2 with 400 source points Figure 5.11d - BB3 with 400 source points 

Figure 5.11 – Noise spectra in 1/3-octave bands at 90 deg for different free-stream 

velocities. Comparison between experimental data [25]. (lines) and numerical results (lines 

and symbols). Solid lines: U=71.3m/s, long-dashed lines: U= 55.5m/s, medium-length 

dashed lines: U=39.6m/s., and short-dashed lines: U=31.7m/s. 
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6. Preliminary Analyses for Low-Noise Design 

of a Landing Gear 

 6.1. Introduction 

Landing gear noise is recognized to be one of the main sources for airframe noise, 

particularly on approach. Its prediction remains one of the most difficult challenges 

in aeroacoustics, because of the complexity of the gear geometry and the surrounding 

flow field. 

In the context of the Clean Sky JTI – Green Regional Aircraft project, Landing Gear 

configurations were analyzed and acoustic design solutions for noise abatement were 

investigated. 

In this Chapter the use of a wave equation analogy based on the approaches 

presented in the Paragraphs 4 (BEM) and 5 (RANS-based sources generation 

approach), for the preliminary design of low noise-devices is proposed. 

This strategy for Landing Gear noise reduction is illustrated for a 2D Landing Gear 

model. 

A CFD RANS solution (Paragraphs 5) or more simplified semi-empirical models 

[65] would allow generating noise sources. This aspect is out of the scope of the 

present Chapter, therefore, a fictitious point source is adopted as representative of the 

source field. This approach remains valid in general because the noise prediction can 

be achieved by means of the convolution approach once a source field is available. 

Finally, the acoustic field scattering is predicted with the BEM tool and the use of an 

absorber material, as low-noise device, is also presented. 

 6.2. BEM analyses of a 2D Landing Gear model 

A generic 3D configuration of a main landing gear installed on a mock-up fuselage, 

has been significantly simplified leading to two-dimensional sketched components, 

as depicted in Figure 6.1. The simplified two-dimensional model, however, is able to 
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represent the presence of the mock-up fuselage, the bay cavity, the main leg of the 

strut and the wheel. 

 

 
 

Figure 6.1a - 3D configuration Figure 6.1b - 2D model 

Figure 6.1 – 2D simplified Landing Gear configuration. 

 

The flow field properties have been assumed to be c=342m/s and ρ=1.212kg/m
3
. A 

grid mesh of 1142 segment elements has been generated. 

A source point of unitary amplitude has been located downstream the wheel at 

(5.25m,-1.5m) as representative of the source region (Figure 6.2a)). 

The BEM solution has been computed for both a microphones arc and a microphones 

grid (Figure 6.2). The microphones arc of 360 degree has been centered at the source 

location with a distance of 10m. 

 

  

Figure 6.2a - Source location and 

microphones arc 

Figure 6.2b - Microphones grid 

Figure 6.2 – Representation of the microphones arc and microphones grid. 

 

Figure 6.3 shows plots of the real part of the acoustic pressure and directivity 

patterns in terms of SPL for four frequencies, respectively at 300, 500, 700, 1000 Hz. 
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Pictures underline the scattering effects of the sketched components at different 

frequency values. 

 
 

  

Figure 6.3a - Real part of the acoustic 

pressure at 300Hz 

Figure 6.3b - SPL directivity pattern 

at 300Hz 
 

  

Figure 6.3c - Real part of the acoustic 

pressure at 500Hz 

Figure 6.3d - SPL directivity pattern 

at 500Hz 
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Figure 6.3e - Real part of the acoustic 

pressure at 700Hz 

Figure 6.3f - SPL directivity pattern 

at 700Hz 
 

  

Figure 6.3g - Real part of the acoustic 

pressure at 1000Hz 

Figure 6.3h - SPL directivity pattern 

at 1000Hz 

Figure 6.3 – Contour plots of the acoustic pressure and directivity patterns in terms of 

SPL[dB]. Cavity modeled as rigid wall. Solutions at different frequencies. 

 

The idea of applying an absorber material located in the cavity bay is illustrated. In 

order to investigate the effect of the absorber material, an impedance boundary 

condition has been applied in the cavity (Figure 6.4) with the characteristic 

impedance           . 

 

 

Figure 6.4 – Sketch of the impedance boundary condition applied in the cavity (blue 

line) and source point location (red dot). 

 

Looking at the directivity patterns depicted in Figure 6.5, it appears the impedance 

produces a directivity changing and a substantial noise levels reduction except at 

500Hz. 

For this frequency, directivity exhibits a noise level increasing in the upstream 

direction combined with a reduction in the downstream direction, thus, noise global 

level appears slightly increased. This frequency has been further investigated 

increasing the CHIEF internal points up to 30%. No modifications for both 



Aeroacoustic Methods for Low-Noise Technologies Design 

____________________________________________________________________ 

82 

directivity and levels occur with the increased internal points. This behavior could be 

generated by a sort of bay cavity resonance at that frequency and it requires to be 

further investigated. 

 

The design and optimization of a liner device to be applied as absorber in the cavity 

can be performed with the use of semi-empirical models as already showed by 

Casalino&Barbarino [24]. These models allow estimating the liner impedance from 

the knowledge of liner manufacturing parameters. 

 

  

Figure 6.5a - Real part of the acoustic 

pressure at 300Hz 

Figure 6.5b - SPL directivity pattern 

at 300Hz 

  

Figure 6.5c - Real part of the acoustic 

pressure at 500Hz 

Figure 6.5d - SPL directivity pattern 

at 500Hz 
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Figure 6.5e - Real part of the acoustic 

pressure at 700Hz 

Figure 6.5f - SPL directivity pattern 

at 700Hz 

  

Figure 6.5g - Real part of the acoustic 

pressure at 1000Hz 

Figure 6.5h - SPL directivity pattern 

at 1000Hz 

Figure 6.5 – Contour plots of the acoustic pressure and directivity patterns in terms of 

SPL[dB]. Cavity modeled as treated wall. Comparison between rigid wall (red 

continuous lines) and (blue dashed lines). Solutions at different frequencies. 

 

Liner consists of a single-layer sandwich with a solid backplate, a perforated 

facesheet and a honeycomb core as depicted in Figure 6.6a. The concept can be 

extended to a 2-DOF liner by simply adding a second layer of honeycomb separated 

by a porous septum, as sketched in Figure 6.6b. 
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Figure 6.6a - 1 DoF Figure 6.6b - 2 DoF 

Figure 6.6 – Illustration of 1-DOF and 2-DOF liners. 

 

Compared with a 1-DOF treatment, a 2-DOF treatment is effective on a wider 

frequency range. Since the noise generated by the Landing Gear is broadband in 

nature, a 2-DOF liner is expected to be more appropriate for broadband noise 

problems as showed by Casalino&Barbarino [24]. The general impedance formula 

for a 1-DOF liner [66] reads: 

 

 ̂     (     ) (6.1) 

 

Where   is the porous-surface resistance,   is the porous-surface mass reactance 

and    is the cavity reactance that reads: 

 

        (  ) (6.2) 

 

where   is the cavity depth (honeycomb thickness). In line with the typical 

assumption made in the literature, the      convention is used for the definition of 

the impedance. It is very important underline that, as illustrated in the Paragraph 

4.4.1, BEM method has been implemented with the      convention. Therefore is 

straightforward that the complex conjugate of impedance computed according to the 

procedure illustrated in this paragraph should be used in the BEM computation. 

 

The resistance term results from three distinct contributions: two linear contributions 

due to the energy loss across the orifices and in the facesheet boundary layer in the 

presence of grazing flow, and one nonlinear contribution due to the microjet from the 

orifice induced by the pressure wave and thus proportional to the magnitude of the 
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acoustic velocity fluctuation. The theoretical and experimental characterization of 

these effects is the objective of an important research area, but the simple choice of 

selecting the models reported in [66] is made. Moreover, the nonlinear contribution 

can neglected, supposing that the noise acoustic levels are not high enough to induce 

nonlinear energy losses. Hence, the facesheet and septum resistance and mass 

reactance are estimated using the following formulas: 

 

   
    

        
 

  

 (       
  

 
)
 

 

   
 [       (     √ ) (       

 )]

 
 

(6.3) 

 

where   is the porous-surface thickness,   is the fluid viscosity,   is the orifice 

diameter,    is a non-dimensional orifice discharge coefficient due to the contraction 

of the flow passage section across the orifice,    is the boundary-layer displacement 

thickness,    is the boundary-layer asymptotic Mach number, and       
    is 

the surface porosity defined as the ratio between the orifices area and the total area, 

   being the number of orifices for unit surface. A typical value of   is 0.76. Of 

course, the septum resistance and mass reactance are estimated by setting      in 

the formulas. 

Figure 6.7 shows the typical shape of the Admittance,  ̂     ̂ achieved by applying 

the equation (6.3) with the following flow conditions: 

 

                                                      

 

and where the following parameters are also assumed by the current manufacturing 

practices: 
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Figure 6.7 –Liner impedance performance computed with Motsinger&Kraft model [66]. 

 

Following the described approach, once the Green functions of the configuration 

with the acoustic device are computed for all the frequency range of interest and for 

all the source points characterizing the source region, the convolution approach 

would allow the noise prediction by means of RANS-based models (Paragraph 5) or 

more simplified semi-empirical models [65]. 
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7. Conclusions 

The present dissertation has focused on the development and validation of 

aeroacoustic methodologies able to address the aeroacoustic design of aeronautical 

low-noise technologies in an industrial context. 

 

The thesis starts with the theoretical formulation of the Acoustic Analogy approach 

based on the Lighthill’s equation (Chapter 3). Particular attention has been devoted 

to the convected Lighthill’s wave equation for uniform mean flow and the 

corresponding homogeneous wave equation in frequency domain. The analytical 

solution of the free-field Green function has also been presented. 

 

Chapter 4 describes the main aspects of the Boundary Element Method (BEM) 

technique. The BEM approach has been used to solve the convected Helmholtz wave 

equation for uniform mean flow. 

The BEM approach has been implemented in order to manage hybrid unstructured 

grids treating segment, triangular and quadrilateral elements. The normal vector 

direction of each panel is managed with a semi-automatic procedure only for single-

connected domains by specifying an internal point of the domain and the type of 

simulation (internal or external problem). However, for multi-connected domains a 

post-processing file is generated for checking the right direction of the normal 

vectors. 

The BEM approach builds up the global system matrix by assembling different 

matrix blocks for the governing equations and the boundary conditions. This strategy 

allows a more general and efficient implementation of the boundary conditions. 

Also a sufficiently large set of boundary conditions, for internal and external 

problems, has been implemented. Numerical instabilities for external problems are 

also avoided through the CHIEF method. The CHIEF kernel generates in a random 

way the needed internal points once the user has previously defined bounding boxes 

where collocate the points. 

Furthermore, classical analytical test cases for both internal and external problems 

has been also presented and used for the BEM approach validation. Comparisons 
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between numerical and analytical results have underlined the correct implementation 

of the method. Moreover, the comparison with the CIRA’s FEM code accounting for 

the non-uniform mean flow has been shown that the BEM approach provides good 

results for relatively low-Mach number flows. 

 

In Chapter 5 attention has been given to the broadband noise mechanism generated 

by aeronautical devices (called Airframe noise). 

After an overview of the best known semi-empirical and RANS-based approaches 

about the turbulent source field generation, the attention was devoted to some of 

them. 

The first approach to be presented concerns the use of semi-empirical wall pressure 

spectra in proximity of edges to be used as a Dirichlet boundary condition of a FEM 

or BEM problem. This semi-empirical model, being a function of the boundary layer 

variables, allows a direct connection to CFD RANS solutions. 

The approach has been applied to the self-noise prediction of a NACA0012 airfoil by 

using CIRA’s FEM code. The comparison with the semi-analytical model showed 

that modeling the trailing-edge noise generation from an airfoil through a prescribed 

wall-pressure fluctuation at the trailing edge provides numerical results that are in 

agreement with Amiet’s classical theory. 

The second approach concerns an extension of the SNGR approach recently 

developed by Casalino&Barbarino. This method has also been applied to the self-

noise prediction of a NACA0012 airfoil by using the CIRA’s FEM code at four 

different Mach numbers. The comparison with experimental results show that noise 

levels for the highest velocity case are over-predicted up to about 5 dB at the highest 

frequencies. Conversely, the low-frequency noise levels are under-predicted by about 

5 dB for the lowest velocity case. 

The third approach concerns the statistical RANS-based model developed by 

Agarwal and its application with the BEM solver. After a converge study of the 

source region, both poor and fair results have been achieved in comparisons with 

experimental data. In particular, the highest velocity has appeared quite well 

predicted, conversely the lowest velocities have been considerably underestimated. 
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This underestimation at lower velocities, even if of minor entity, is also partially 

noticed with the SNGR approach. This circumstance indicates that both RANS-based 

methods and CFD RANS solutions need further investigation. 

 

Finally in Chapter 6 the application of the BEM method to the analysis of the 

Landing Gear low-noise design problem is presented. The case study has been 

presented as one of the possible aircraft component to be investigated for the 

airframe noise reduction. In particular, the application of absorber materials in the 

bay cavity of the landing gear as acoustic low-noise device has been also 

investigated. Furthermore, a possible bay cavity resonance at a certain frequency 

seemed to appear. This last aspect requires further investigations. 

 

The present dissertation demonstrates that, in spite of the complexity of the 

aeroacoustic phenomena, different effective methods can be developed for the design 

of low noise technologies. Simplified approaches, such as those based on the 

acoustic analogy, are in particular effective in predicting noise during preliminary 

design and optimization studies, above all for complex configuration of industrial 

interest. 

 

Concerning the BEM approach, it has been demonstrated that it allows predicting 

acoustic scattering in uniform mean flow in an efficient way. 

Despite BEM allows an extensive simplification of the grid generation phase, it 

produces a dense system matrix that is highly demanding in terms of memory 

requirements and computing time for complex industrial configurations. However, 

Fast Multipole Methods developed in recent years and applied to the BEM approach 

allows to overcome these limits. 

 

Concerning RANS-based methods, it has been shown that they require both an 

accurate calibration of the model parameters and a careful use of RANS CFD 

solutions especially in regards to the turbulence models. Even if the results obtained 

with these approaches didn’t provide a perfect overlapping with the experimental 

data, the outcomes are however encouraging. RANS-based methods remain 
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promising methodologies for design and optimization phases to be further 

investigated. 

 

More computationally demanding approaches like LES, DES or DNS certainly 

remains the state of art in order to investigate complex noise generation mechanisms 

especially in flow conditions for which the separation between the acoustic 

propagation field and turbulent flow field is not an appropriate simplification. 
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