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Abstract 

Advances in next generation sequencing in the last few years have enabled an increasing 

number of applications in biology and medicine, from whole genome to small-RNA 

sequencing, with increased throughput accompanied by plunging costs. This thesis is 

focalized on two of the most used applications, small-RNA sequencing, to investigate the 

biological function of the increasing population of small non coding RNA, including micro-

RNA and Exome sequencing to identify single nucleotide variations (SNV) and small 

insertion and deletions (InDel). In this context two different dataset were used: the first 

obtained from small-RNA-sequencing using human breast cancer MCF-7 cells in two 

different conditions and the latter obtained from exome sequencing in patients with a rare 

syndrome (malignant migrating partial seizures of infancy). A large amount of data were 

produce from each experiment, required comprehensive analysis pipelines to analyze them.  

Small-RNA sequencing represents a novel technology widely used to investigate with high 

sensitivity and specificity small non-coding RNA populations, comprising microRNAs and 

other regulatory transcripts. To gather biologically relevant information, such as detection 

and differential expression analysis of known and novel non-coding RNAs and target 

prediction, the analysis requires the implementation of multiple statistical and bioinformatics 

tools from different sources, each focusing on a single step of the analysis pipeline. As 

result, a novel modular pipeline called iMir for comprehensive analysis of miRNA-Seq data, 

from adapter trimming, quality filter to differential expression and biological target 

prediction together with other useful options was designed by integrating multiple open 

source modules and resources in an automated workflow. The pipeline was applied to 

analyze simultaneously miRNA-Seq datasets from human breast cancer MCF-7 cell, 

resulting in a  rapid and accurate identification, quantization and differential expression 

analysis of ~450 miRNAs, including several novel miRNAs and isomiRs, as well as 

identification of the putative mRNA targets of differentially expressed miRNAs.  

Exome sequencing, the targeted sequencing of coding regions of the genome, is a powerful 

and cost-effective technique for dissecting the genetic basis of diseases and traits that have 

proved to be intractable with conventional gene-discovery strategies. To reduce the number 

of false positive variations and simplify the understanding of results a comprehensive 

pipeline was developed, integrating different tools. Starting from quality check and 

alignment, base quality score recalibration and local realignment around indels were 
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performed and SNV and InDel were called. Finally, different filters were applied to discard 

variations with low quality and coverage. The pipeline was then used to analyze data from 

exome sequencing in six patients with malignant migrating partial seizures in infancy, also 

known as MMPSI or MMPEI. After analysis and filtering common variants between 6, 5, 4 

and 3 patients were studied to identify putative disease causing mutation(s). Results obtained 

indicate the accuracy of the pipeline to identify SNV and short InDels and the reliability to 

provide a global and quantitative catalogue of nucleotide variants in the exome. 
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1. NEXT GENERATION SEQUENCING 

The method developed by Frederick Sanger and colleagues in 1977 for determining 

nucleotide sequence in DNA by using 2’,3’-dideoxy nucleotides for chain termination 

marked a milestone in the history of DNA sequencing. This concept provided a basis for the 

development of automated Sanger Sequencing (Smith et al. 1986, Ansorge et al. 1987) that 

was the core technology of the Human Genome Project, started in 1990 with the goal of 

determining all three billion base pairs making up the human genome. The first results of the 

project were produced after ten years, in 2000 (Lander et al. 2001, Venter et al. 2001), and 

additional three years were needed to complete it (Jasny and Roberts, 2003). The advent of 

the so-called Next Generation Sequencing (NGS) have completely changed the way in 

which we think about genetic and genomic research, in a manner akin to the introduction of 

Sanger Sequencing in the 1970's. NGS technologies provide opportunities for global 

investigation of multiple genomes and transcriptomes in at unprecedented speed in 

combination with low costs per base (Figure 1). As a consequence, the number of 

sequencing related data, stored in public available databases has increased significantly over 

the last years (Figure 2). 
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Figure 1 Per Base Cost Development Of Dna Sequencing On A Log Scale. 

(http://www.nature.com/scitable/ blog/bio2.0/high_throughput_sequencing_and_cost) 

 

Figure 2 Sequence Read Archive (SRA) Growth.  
Growth rates of database sequences and their corresponding number of bases in the 

SRA shown In log scale. (Http://Www.Ebi.Ac.Uk/Ena/About/Statistics) 
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High-throughput sequencing without the traditional cloning step offered by next-generation 

sequencing has been applied to various research areas, including but not limited to global 

analysis of non-coding RNAs (Morin et al. 2008), mutation discovery such as SNPs or 

indels (Barcia et al. 2012), identification of DNA and protein interactions (Grober et al. 

2011), finding epigenetic modifications of histones and DNA (Eckhardt et al. 2006, Esteller, 

2006, Callinan and Feinberg, 2006) etc. 

From each of this application, a large amount of raw data is produced, therefore the 

bottleneck in sequencing shifted from sequence generation to data management and analysis. 

Consequently, an efficient computational infrastructure is needed to process and storage data 

as well as comprehensive and reliable analysis pipeline that enabled the correct 

understanding of results. 

This thesis focuses on two of the most widely used applications in biological and clinical 

field respectively: Small RNA Seq and Exome Sequencing.  
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2. SMALL RNA SEQUENCING 

2.1. MICRORNAS 

MicroRNAs (miRNAs) are short (~22 nucleotides) RNA molecules that control gene 

expression in eukaryotes by fine tuning mRNA translation (Bartel, 2004, He, Hannon, 2004, 

Flynt, Lai, 2008). They play pivotal roles in a variety of molecular processes, such as 

immune response (Tili et al., 2007), differentiation (Tay et al., 2008), development (Lagos-

Quintana et al., 2001, Lau et al., 2001, Lee, Ambros, 2001), infection (Gupta et al., 2006, 

Jopling et al., 2005) and cancer (Huang et al., 2008, Silber et al., 2008, Paris et al., 2012). 

miRNA genes are synthesized as long precursor RNA molecules (pri-miRNAs), generally 

by RNA polymerase II (Lee et al., 2004), that are rapidly processed in the nucleus by the 

Drosha RNase III to release approximately 70 nucleotides long miRNA precursor stem 

loops (pre-miRNAs) (Lee et al., 2003) that, in turn, are exported to the cytoplasm by 

Exportin 5 (Lund et al., 2004). In the cytoplasm, mature miRNAs are produced through the 

action of Dicer RNase (Hutvagner et al., 2001). These small RNAs regulate gene expression 

by binding to target sites generally in the 3' untranslated region (3’UTR) of target mRNAs, 

resulting in mRNA degradation or translation inhibition (Bartel, 2004, Nilsen, 2007). 

Identification by miRNAs of the 3’ UTR of their target mRNAs is mediated by 

complementary hybridization between nucleotides 2-8 at the 5’end of the small RNA (seed 

sequence) and the complementary sequences present in the 3’UTR of the mRNA (Bartel, 

2004, Ambros, 2004, Zamore, Haley, 2005). 
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2.2. IMIR: AN INTEGRATIVE PIPELINE TO ANALYZE 

MIRNA-SEQ 

Due to advancements in the high-throughput sequencing (HTS) technologies, small RNA-

Seq represents a rapid and an effective way to gather relevant biological information from 

small non-coding RNAs (sncRNAs), comprising of miRNAs and other regulatory 

transcripts. This technology allows to investigate, at unprecedented sensitivity, both known 

and novel sncRNAs by combining sequence output analysis with other biological and 

bioinformatics knowledge sources.  

Commonly, miRNA-Seq data analysis is performed by combining multiple statistical and 

bioinformatics tools available from different sources. Many useful programs for processing 

these data exist nowadays, such as RandA (Isakov et al., 2012), DSAP (Huang et al., 2010), 

miRTools (Zhu et al., 2010) and miRExpress (Wang et al., 2009). Two main issues hamper 

diffusion and implementation of such programs: (i) web-based tools have some restriction 

on data upload; (ii) stand-alone programs often lack one or more analysis steps, such as 

prediction of novel sncRNAs. 

As a consequence, the analytical workflow is slowed down by the need for the continuous 

interventions by the operator, a critical factor when a large number of samples need to be 

analyzed at once. To solve this problem, a novel modular pipeline, called iMir (Giurato et 

al., 2013 submitted), has been developed, that allow a  comprehensive analysis of miRNA-

Seq data integrating multiple open source modules and resources, linked together in an 

automated flow. iMir workflow is designed to carry out linker removal and sequence quality 

controls, identification of expressed sncRNAs, differential expression analysis, detection of 

novel miRNAs and, in addition, it provides the possibility to predict, for expressed miRNAs 

-or, alternatively, only for those differentially expressed, the corresponding mRNA targets. 

The pipeline described here allows at present to analyze miRNA-Seq data from human, 

mouse, rat and Drosophila, comprising in its database all corresponding libraries, and it can 
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be applied to FASTQ data generated by Illumina (GAIIx, HiSeq and HiScanSQ), Roche 

(FLX System) and Life Technology (IonTorrent PGM) next generation sequencers. 
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2.3. WORKFLOW DESCRIPTION  

The main disadvantage of the very large datasets generated with currently available Next 

Generation Sequencing (NGS) technologies is their management and analysis.  The iMir 

tool was developed to help solve this problem when dealing with miRNA-Seq data analysis. 

It is a stand-alone tool, that integrates several open source modules and resources, set 

together in an automated flow which provides a user friendly and efficient solution for 

miRNA-Seq data analysis. iMir is applicable to single or multiple sample analyses, 

computes the statistical significance of differential expression when case/control small RNA 

libraries are analyzed (both with or without biological/technical replicates), performs 

miRNA target prediction and allows to predict novel miRNAs. Furthermore, this tool can be 

easily adapted to large-scale miRNA-Seq analyses on multiple samples, such as, for tumor 

typing or other oncogenomics applications, producing a raw table with corresponding read-

count values for miRNAs expressed in all or selected sequenced samples that can be given 

as input to bioinformatics tools able to perform cluster analysis. The iMir workflow is 

shown in Figure 3, where all required and optional data analysis steps are displayed. In 

detail, the depicted flow takes in account two common situations that an user may have to 

deal with: one in which it is necessary to analyze case/control samples (with or without 

replicates) and an alternative, where just a sample or multiple independent samples need to 

be analyzed. In the first case, for a full analysis run, Steps 1 to 6 (including also optional 

processes) are performed, while in the second case, iMir skips Step 6, performing all 

remaining tasks. It is worth mentioning that iMir allows also to analyze in an unique run also 

a combination of these two conditions. As miRNA detection is, at present, the main focus of 

most miRNA-Seq analyses, let’s focus on iMir performance for this application. Reads 

obtained from NGS are usually longer than mature miRNAs (~22 nt) and contain part of the 

3' adapter that do not allow reads to align against the reference track. First essential task to 

carry out during analysis of such data is thus to find/identify the reads that contain adapter 

sequences and to remove such sequence information to allow reads to properly align against 

the reference track. Step 1 of iMir is the adapter removal and quality filtering, performing 

stringent quality filtering e.g. remove reads with low quality (representing reads affected by 

sequencing errors), with poly-A tail and/or without adapter sequences (both cases refer to 

fragments derived from RNA degradation) by using a PERL script “Adapter_trim.pl”, 

derived from miRTools (Zhu et al., 2010) website, before proceeding to Step 2. 
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In Step 2 of the iMir workflow, the output file from Step 1 is converted into a tab 

delimitated format (each line of the file is represented by the sequence and its corresponding 

read-count). This format is required for Step 3 and this conversion is performed by using the 

PYTHON script “Format_conversion.py”, that in addition allows the user to set a read-count 

cutoff (minimum expression level) for detecting known sncRNAs. In addition, iMir provides 

also the possibility to investigate changes in reads length after adapter sequence removal by 

generating a histogram that allows to easily evaluate read length distribution after this 

operation. 

In order to predict novel and identify known miRNAs (Step 3) iMir uses the miRanalyzer 

stand-alone version 0.3 that allows, to align reads against other libraries of  transcriptome 

and sncRNAs and to perform, in this way, prediction of potential novel miRNAs in the 

sample.  

Differential expression analysis module on known miRNAs (Step 4), exploits of the DESeq 

package (Anders, Huber, 2010), which computes the fold-change of the expression values 

and assesses its statistical significance. During this Step, iMir creates two graphs for a more 

comprehensive data interpretation: an heatmap showing the Euclidean distances between the 

samples (a dendrogram representing a hierarchical clustering), as calculated from the 

variance-stabilizing transformation of the count data, and a circle graph, displaying the 

percentage of miRNAs significantly up- or down- regulated and of those that have no 

statistical significant fold-change. 

Steps 5 and 6 of the workflow perform mRNA target prediction. iMir allows to predict, for 

miRNAs detected in the  sequenced samples and/or for those differentially expressed, the 

corresponding putative mRNA targets, using data retrieval in TargetScan (Lewis et al., 

2005, Grimson et al., 2007, Friedman et al., 2009, Garcia et al., 2011) and microRNA.org 

(Betel et al., 2010, Betel et al., 2008). Starting from miRBase version 17, the miR/miR* 

nomenclature has been modified in favor of a -5p/-3p nomenclature. The latest miRBase 

version available to date (e.g. v19) uses modified nomenclature for all species. While 

reference tracks in miRanalyzer refer to miRBase v19, TargetScan and microRNA.org are 

still based on previous versions of this database, making an automatic integration 

impossible.  To overcome the problem represented by the different miRNA nomenclatures 

used in the different versions of miRBase (Kozomara, Griffiths-Jones, 2011, Griffiths-Jones 

et al., 2006, Griffiths-Jones et al., 2008), iMir uses "miRNA_name_conversion.py" (Step 5), 

a new script that performs name conversions according to the miRBase release to be used 

for the subsequent analysis. Step 6 of the workflow searches then in TargetScan and 
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microRNA.org (local files) the putative mRNA target for each miRNA of interest, obtained 

with the previous analytical steps.   

 

Figure 3 iMir workflow. 

Graphic summary of iMir workflow: the pipeline accepts NGS data as input and 

then proceeds automatically to perform several independent analyses, most of 

which can be selected or excluded according to the user’s needs. Dotted lines 

represent optional steps of the pipeline.  

At present, iMir is a command line pipeline, while in a new version a graphic interface will 

be provide. Meanwhile a sample sheet (Table 1) is provided to help the user step by step. 
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Table 1 Schematic overview of Sample sheet used by iMir. 

Schematic overview of the Sample sheet that help the user to set parameters step by step  
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2.4. RESULTS AND DISCUSSION 

To assess the iMir functionality, it was tested on 6 miRNA-Seq datasets of 5-7 million 

sequence tags/run, obtained from human breast cancer MCF-7 cell lines in two different 

culture conditions: growth-arrest and exponential growth (Cicatiello et al., 2010, Ferraro et 

al., 2011). For each condition considered, three sequencing technical replicates were 

performed to allow a correct estimate variability during the  differential expression analysis. 

The iMir sample sheet was set to generate a full and comprehensive miRNA-Seq data 

analysis. The pipeline was executed on 64 bit Linux machine, where the analytical process, 

from pre-processing (adapter sequence removal and quality filtering), identification of 

known and novel miRNAs, differential expression analysis and mRNA target prediction was 

completed in about one hour. After the pre-process analysis, a small percentage of reads, 

all <15nt-long, is discarded as the algorithm is unable at present to manage them. The 

read-length distribution after adapter cleavage in all samples is reported to the right of 

Module 1 in Figure 4, to show how the majority of reads obtained after this first step 

are~22 nt long, suggesting that they are mainly due to miRNAs. This observation is 

further confirmed by the number of reads that actually match known miRNAs (Table 2), 

computed to account for more than 50% of the entire dataset in each case. 

 
MCF-7 cells  Raw 

reads 

Reads after 

adapter 

cleveage 

miRNA 

reads 

tRNA 

reads 

rRNA 

reads 

mRNA 

reads 

piRNA reads Remaining reads 

mapping to 

genome 

Reads not 

assigned 

Exponentially 

growing  

Replicate 1 4,327,501 4,068,141 2,310,200 16,989 91,040 391,750 15,753 597,037 69,516 

Replicate 2 4,337,535 4,075,320 2,314,040 17,042 92,178 404,148 16,438 614,614 70,165 

Replicate 3 4,354,046 4,091,633 2,374,218 17,737 94,961 420,175 16,949 636,708 71,737 

Growth-

arrested 

Replicate 1 6,071,484 5,844,875 4,626,170 13,588 72,460 181,084 14,831 234,955 40,941 

Replicate 2 6,075,950 5,846,690 4,621,008 12,470 75,251 185,803 15,122 242,065 40,667 

Replicate 3 6,084,784 5,855,090 4,725,975 12,705 77,842 192,161 15,582 249,638 41,494 

Table 2. Number of reads before and after adapter cleavage and reads mapped in each sncRNA library 

included in iMir  
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Figure 4 Graphic representation of iMir pipeline performances. 

miRNA-Seq analysis in exponentially growing (sample A) or growth-arrested (sample B) MCF-7 cells, 

performed in triplicate as described in the text, were input in iMir and analyzed with the standard, complete 

analytical workflow of the tool. The processing time of each module are highlighted in yellow and the 

graphic outputs of Modules 1 (histograms showing sequence read length distribution in each replicate) and 5 

(heat-map visualization of sncRNA profile differences among samples and pie-chart summarizing the results 

of the differential expression analysis) are shown to their right 

iMir made possible to identify ~450 miRNAs for each dataset, including those differentially 

expressed between the two growth conditions tested and their putative mRNA targets. In 

addition, ~45 putative novel miRNAs were predicted among the samples together with 

several isomiRs (Morin et al., 2008).  
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These results, when compared with previously published data relative to miRNA modulation 

in the same cell line (Paris et al., 2012, Cicatiello et al., 2010, Ferraro et al., 2011) 

demonstrate how iMir, that makes possible a rational use of several widely used and reliable 

open source tools, is useful to rapidly and efficiently perform reliable sncRNAs data 

analysis.  

For miRNA detection,  iMir utilizes miRanalyzer (v.0.3) and implements the latest version 

of miRBase database v.19. This is an important feature, since this version of miRanalyzer 

provides the possibility to visualize alignments of the reads to precursor together with 

prediction of pre-miRNA secondary structure, to customize databases, to perform isomiR 

analysis by classifying them in different classes and to predict novel miRNAs. 

Finally, for evaluation of sncRNA differential expression iMir utilizes DESeq package, the 

most performing and popular open source tool for this analysis that uses a negative binomial 

distribution model to estimate variance-mean dependence in count data from HTS 

experiments. Interestingly, this tool can be used also when the analysis has been performed 

without technical or biological replicates.  
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2.5. CONCLUSIONS 

As conclusion, iMir is a pipeline that integrates multiple open source modules /resources 

combined in an automated flow for high-throughput miRNA-Seq data analysis. iMir 

performs sncRNA sequencing data analysis rapidly, accurately and efficiently, allowing to 

examine multiple samples at once and thereby addressing a critical factor in analysis of 

high-throughput sncRNA sequencing data, represented by the need for continuous 

interventions by the operator.  The user-friendly compilation of the sample sheet is another 

of the advantages of iMir, allowing to customize data analysis according to different needs. 

iMir works on Linux and Mac operative systems with command line. In the future, based 

also on evolution of the NGS technologies and recommendations by users, we are 

determined to improve iMir features, such as for example by including GUI (Graphical User 

Interface) and tools for evolutionary sncRNA analysis across multiple species and specific 

analysis of different classes of small RNAs (pi-, si-, sn-, sno-, ti-RNA, etc). 
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3. EXOME SEQUENCING 

3.1. VARIATIONS IN HUMAN GENOME 

The total length of the human genome is over 3.1*10
9
 base pairs (bp) (Flicek et al., 2011), 

which enables an enormous potential for variation. Different kind of variations can be found 

in human genome from single base mutation also called SNV to structural variations that 

can be from 1 to 10kb in size, known as small structural variations, and from 10 kb to 

several Mb, known as large structural variations. A single base substitution can be defined 

where a single nucleotide is replaced by another nucleotide. These single base changes are 

also referred to as point mutations. These are the most frequent type of alterations in DNA. 

There are four categories of single base substitutions: missense mutations, nonsense 

mutations, silent mutations and splice site mutations. 

Missense mutation: In a missense mutation, base alters the codon which results in a 

different amino acid being incorporated into the protein (Figure 5). 

 

Figure 5 Missense mutation 

A substitution of “a” (in red) in the second codon to “g” (in red), leads to an amino acid 

substitution of glutamine (Q) to arginine (R)  

Nonsense mutation: In a nonsense mutation, the new base change in a codon that cause a 

stop codon (taa, tag, tga). This will cause translation of mRNA to stop prematurely and a 

truncated protein is produced (Figure 6).  
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Figure 6 Nonsense mutation 

A substitution of “c” (in red) in the second codon to “t” (in red), cause a change of 

glutamine (Q) to a STOP codon, leading to a premature termination of the protein.  

 

Silent mutation: Silent mutations are those that don’t cause any alteration in the final 

protein product and can only be identified by sequencing the gene. These mutations don’t 

have any deleterious effect because they don’t cause amino acid change. 

Splice site mutation: Splice site mutation occur within genes in the noncoding regions 

(introns), just next the coding regions (exons). They can have deleterious effects on the 

resulting protein, which may lead to disease. Before mRNA leaves the nucleus, the introns 

are removed and the exons are joined together.  

 

Figure 7 Splice site mutation 

(http://cancer.gov/cancertopics/understandingcancer). 

This process is calling splicing. Splicing is controlled by specific intron sequences, called 

splice-donor and splice-acceptor sequences, which flank the exons. Mutations in these 

sequences may lead to retention of large intronic DNA in the mRNA, or to entire exons 

being spliced out of the mRNA. These changes could result in production of a non 

functional protein (Figure 7). 

Structural variations: When the variations expand in size to cover larger regions, they are 

referred to as structural variations (Figure 8); in particular, if they cover from 1 to 10 kb 

they are known as small structural variations, while if they cover from 10 kb to several Mb 

they are known as large structural variations. Structural variations can be divided in few 

categories. One of these, is copy number variation (CNV), which includes deletions, 

insertions and duplications. Another class is represented by translocations, where a part of 
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chromosome is integrated into another chromosome. Finally, there are the inversions, where 

a chromosomal section is inverted so that its start and end points switch places. 

 

Figure 8 Example of structural variations 

(Schwab et al., 1983) 
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3.2. TARGETED RE-SEQUENCING 

Since its early days, medical research was aimed to identify the causes of disorders and 

establish therapeutic treatments and find cures. Because of the cost of whole genome 

sequencing the time required to analyze data and the more difficult interpretation of results, 

most of the research groups choose to use targeted re-sequencing, that isolates genomic 

regions of interest in a sample library, focusing on targets and mutations. Nowadays there 

are three major exome enrichment systems: Agilent Sure Select Human All Exon, Roche 

/Nimblegen SeqCap Ez Exome libraries and Illumina TruSeq Exome Enrichment. Although 

several methods exist, they all use a similar principle: they isolate a specific genomic 

fraction for subsequent NGS, ultimately resulting in an enriched pool of target sequences 

such that there is reduction in the genomic sequencing space, and hence greater sequence 

coverage for each targeted region (Figure 9, Table 3). 

 

 

Figure 9 Schematic representation of the three mayor enrichment protocol 

(www.genomics.agilent.com, www.nimblegen.com, www.illumina.com) 
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However, there are also inefficiencies in targeting process. For example, uneven capture 

efficiency across exons can produce DNA regions with low sequence coverage, and off-

target hybridization means that at least 20% of reads come from genomic DNA outside the 

exome (Majewski et al., 2011). Furthermore, the probes in sequence capture methods are 

designed based on information from gene annotation databases, therefore, unknown or yet-

to-be-annotated exons and other parts of the genome are not usually includes in capturing. 

Another important consideration is that NGS technologies have higher base calling error 

rates respect to Sanger sequencing, although this problem can be bypassed by increasing the 

depth of sequencing coverage to ensure minimal false calls (Koboldt et al., 2009). For this 

reason is important to validate variant genes using conventional sequencing techniques. All 

of these inefficiencies are gradually decreasing thanks to the continuous improvement of the 

sequencing and capture technologies. Importantly, the higher coverage of the exome that can 

be affordably achieved for a large number of samples makes exome sequencing highly 

suitable for mutation discovery and its use is becoming increasingly routine. 

 SureSelect Human All 

Exon 50 Mb 

TruSeq Human 

Exon 

NimbleGen 

SeqCapture 

Target Size 50 Mb 44 Mb 62 Mb 

Targeted Regions 

 

331,518 ~241,693 201,121 

CCDS (Nov.2010) 99.5% 98.4% 97.0% 

RefSeqGenes (Nov.2010) 99.0% 98.2% 96.0% 

GENCODE v.4 97.0% - 93.0% 

Addition of Custom Exome Yes No No 

Number of Hybds. Required 1 1 2 

Hyb. Time Required 24hrs 72hrs 24+24hrs 

Insert Size 150-250bp 150-250bp 300-400bp 

Amount of Seq. Required 5Gb 5Gb 5-10Gb 

Table 3 Three major exome enrichment platform 

Table shows (in bold) that SureSelect Human All Exon 50Mb gives you the most complete coverage of the 

coding content of the genome (www.genomics.agilent.com, www.nimblegen.com, www.illumina.com) 

Through Exome Sequencing, mutations can be studied using two different approches, not 

mutually exclusive: the first, is to sequence the exome of a group of affected individuals 

searching for mutated gene(s) in common between all or most of them; the second is to 

sequence one or more parents-affected child trios to identify de novo mutations present only 

in the patient(s). 
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3.3. MALIGNANT MIGRATING PARTIAL SEIZURES IN 

INFANCY: A RARE DISEASE OF UNKNOWN 

ETIOLOGY 

Malignant migrating partial seizures in infancy (MMPSI, MMPEI), described for the first 

time in 1995 by Coppola and colleagues, is a rare, severe early infantile epileptic 

encephalopathy, with a devastating course. Since, almost 80 cases have been reported 

worldwide, with males and females being equally affected. The main features of this 

syndrome are: (i) normal development before seizure onset, (ii) first manifestations of the 

pathology occur usually between 40 days and 3 months of age (range 1 day-6 months), (iii) 

multifocal bilateral independent seizures with ictal electroencephalogram (EEG) discharges 

arise from different areas of both hemispheres of the brain and “migrate” from one brain 

region to the other, giving the main features and name to this syndrome (Figure 10) 

(Coppola et al., 1995). Seizures are intractable to conventional antiepileptic drugs, causing 

in affected infants progressive psychomotor retardation and decline of head circumference 

percentile.  

 

Figure 10 Ictal Electroencephalogram in a 5-month old patient. 

A 5-month-old patient with long lasting and often difficult to identify seizures, the 

onset of which migrates from one cortical area to the other: left temporo occipital to 

right centro-temporal to right temporo-occipital to left temporal. (Coppola et al., 

1995). 
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Three distinct phases are described in the natural history of this syndrome, as described by 

Coppola et al., 1995. The first phase is heralded by the seizures beginning between the first 

week of life and 7 month. Seizure onset may also occur since the first day of life, but the 

mean age is 3 month
 
(Hmaimess et al., 2006). At onset, seizures are mainly focal motor 

involving one limb or one side, with frequent secondary generalization. Autonomic 

manifestations, such as apnea, flushing or cyanosis frequently occur. This phase usually lasts 

a few weeks or months. In a small number of patients seizures at onset may consist of status 

epilepticus (Coppola et al., 1995; Wilmshurst et al., 2000; Gross-Tsur et al., 2004; Marsh et 

al., 2005; Zamponi et al., 2008); in such cases, the syndrome begins directly with the second 

phase. 

The second phase, also defined as “stormy phase”, starts at an age ranging from 3 weeks to 

10 months. During this period, seizures become very frequent and polymorphous, occurring 

in multiple clusters in a day or being almost continuous for more days. Milder clinical 

manifestations may be easily overlooked by parents, and detection of frequent subclinical 

ictal manifestations is made possible only by long lasting video-EEG recordings. 

Sometimes, such stormy periods may be shortened or interrupted by a particularly favorable 

response to drugs. Finally, secondary tonic-clonic seizures tend to become more frequent; 

epileptic spasms are generally very rare in this syndrome.  

The third phase begins between 1 and 5 years of age and over. It is relatively seizure-free, 

although spontaneous intercurrent illnesses would easily trigger clusters of seizures or 

occasional status epilepticus (Dulac, 2005). 

The long-term outcome remains very poor in most patients. Most cases have psychomotor 

retardation and acquired microcephaly along with continuing seizures. Rarely, when seizures 

are controlled, using different drug combinations, children may acquire the ability to reach 

for objects and walk, but language is generally absent. A number of patients die before the 

end of the second year of age or later, during the follow-up, mainly because of prolonged 

status epilepticus and/or respiratory insufficiency. 
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3.3.1 ETIOLOGY 

The etiology of this pathology is not yet known, even if the involvement of a gene mutation 

coding for some ion channel cannot be excluded. A first attempt of genetic search took in 

consideration KCNQ2, KCNQ3, SCN1A, SCN2A, CLCN2 and MECP2 genes (Coppola et 

al., 2005). Mutational analysis of these genes was performed on three patients with clinical 

symptoms of MMPSI, but no genetic abnormality in the coding regions of sodium, 

potassium and chloride ion channel genes was found. Subsequently, because of some 

features suggest a genetic basis for this syndrome, several research groups looked for 

causative gene mutations. Recently, Freilich et al. (2011) and Carranza Rojo et al. (2011) 

identified missense mutation and deletion of the sodium channel gene SCN1A, while 

Bedoyan et al. (2010) reported a patient with duplication in the region 16p11.2 of 

chromosome 16. Furthermore, in the last year, Poduri et al. (2012) described an 

homozygous PLCB1 deletion in a child with MMPSI while Barcia et al. (2012) identified 

distinct mutations in the sodium-activated potassium channel KCNT1, in 6/12 affected 

individuals
 
(Table 4). 

Gene/Locus Chr Type of variation Mutation Deletion 
size 

Protein 
alteration 

Reference 

SCN1A 2 de novo missense 
mutation 

c.2584C>G  p.R862G 

Freilich et al, 
2011; Carranza 
Rojo et al, 2011 

q24.2q31.1 2 Deletion 
 

11.6Mb 
 

SCN1A 2 heterozygous missense 
mutation 

c.5006C>A  p.A1669E 

16p11.2 16 
Duplication 

 
598kb 

 

Bedoyan et al, 
2010 

PLCB1/20p12.
3 

20 
Deletion 

 
~476kb 

 

Poduri et al, 
2012 

KCNT1 9 heterozygous missense 
mutation 

c.2800G>A  p.A934T 

Barcia et al, 
2012 

KCNT1 9 heterozygous missense 
mutation 

c.1283G>A  p.R428Q 

KCNT1 9 
de novo mutation c.1421G>A  p.R474H 

KCNT1 9 de novo mutation c.2280C>G  p.I760M 

Table 4 Genes Associated with MMPSI 
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3.4. BIOINFORMATIC ANALYSIS FOR EXOME 

SEQUENCING DATA  

3.4.1 PHRED QUALITY SCORE  

The Phred quality score was used to automatically identify the DNA sequence and assign 

quality score for each base from DNA sequencing trace file. The Phred quality score has 

become a highly acceptable standard and is defined by logarithmical transformation of 

probability of sequencing error (Table 5). 

Phred Quality Score Probability of incorrect Base Call Base Call Accuracy 

10 1 in 10 90% 

20 1 in 100 99% 

30 1 in 1000 99.9% 

40 1 in 10000 99.99% 

50 1 in 100000 99.999% 

Table 5. The Phred quality scores and their corresponding error rates. 

 (Ewing and Green, 1998)   

3.4.2 FILE FORMAT  

3.4.2.1 FASTQ FORMAT  

FASTQ format is a text-based format for storing both a biological sequence (usually 

nucleotide sequence) and its corresponding quality scores. For better storage and 

interpretation, both the sequence letter and quality score are encoded with a single ASCII 

character. FASTQ format also contains a single line before the content of sequence 

beginning with “@” followed by the sequencing identifier and an optional description. Other 

three lines contain the raw sequence letters, a “+” character and the quality values for the 

sequence in Line 2 respectively. The last line must contain the same number of symbols as 

letters in the sequence. This is an example of FASTQ format: 
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@SEQ_ID 
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT 
+ 
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65 

3.4.2.2 SANGER FASTQ FORMAT  

Welcome Trust Sanger Institute first introduced the Sanger FASTQ format to combine 

sequence data and its corresponding quality. Early FASTQ file were used for Sanger 

capillary sequencing, and it was natural to use PHRED quality scores. Storing PHRED 

scores as characters was very easy to understand but required too much space. In order that 

the file be human readable and easily edited, this restricted the choices to the ASCII 

printable characters 32–126 (decimal), and since ASCII 32 is the space character, Sanger 

FASTQ files use ASCII 33–126 to encode PHRED qualities from 0 to 93. The wide range of 

error probability from 10
−9.3

 to 1 makes it easy to be adopted in raw sequence data storage 

and post processing for relative high base quality (Cock et al., 2010). 

3.4.2.3 SAM AND BAM FORMAT  

As the wide availability of next generation sequencing, many alignment tools have been 

developed for locating raw reads to their origins in the reference genome. The Sequence 

Alignment/Map (SAM) format describes the alignment of query sequences or sequencing 

reads to a reference sequence or assembly. It is a tab-delimited text based file and consists of 

one header section and one alignment section (Heng et al., 2009). Head should be in front of 

alignment part and start with “@”. The alignment part contains 11 mandatory fields, for 

incorporating essential alignment information, and a variable number of optional fields. 

Table 6 shows the mandatory fields in the SAM format.  
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No. Name Description 

1 QNAME Query NAME of the read or the read pair 

2 FLAG Bitwise FLAG (pairing, strand, mate strand, etc.) 

3 RNAME Reference sequence NAME 

4 POS 1-Based leftmost POSition of clipped alignment 

5 MAPQ MAPping Quality (Phred-scaled) 

6 CIGAR Extended CIGAR string (operations: MIDNSHP) 

7 MRNM Mate Reference NaMe (‘=’ if same as RNAME) 

8 MPOS 1-Based leftmost Mate POSition 

9 ISIZE Inferred Insert SIZE 

10 SEQ Query SEQuence on the same strand as the reference 

11 QUAL Query QUALity (ASCII-33=Phred base quality) 

Table 6 Mandatory fields in the SAM format 

(Heng et al., 2009)  

The conventional CIGAR format allows for three types of operations: M for match or 

mismatch, I for insertion and D for deletion, while the extended CIGAR format futher 

allows four more operations (Table 7), to describe clipping, padding and splicing: SAM 

files and its corresponding binary format, binary Alignment/Map (BAM) format, contain the 

same information. 
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Op. Description 

M Alignment match (can be a sequence match or mismatch 

I Insertion to the reference 

D Deletion from the reference 

N Skipped region from the reference 

S Soft clip on the read (clipped sequence present in <seq>) 

H Hard clip on the read (clipped sequence NOT present in <seq>) 

P Padding (silent deletion from the padded reference sequence) 

 Table 7 Operations in CIGAR format 

3.4.2.4 VCF FORMAT  

The Variant Call Format (VCF, Figure 11) is a standardized text file format for storing the 

most prevalent type of variations SNP, indel, and structural variation calls.  

 

 

 

Figure 11 Vcf Format 

(http://bioinf.comav.upv.es/courses/sequence_analysis/snp_calling.html) 

It is the primary (and only well-supported) format used by the GATK for variant calls and 

consists of a header section and a data section. The header contains an arbitrary number of 

meta-information lines, each starting with characters ‘##’, and a TAB delimited field 

definition line, starting with a single ‘#’ character (Danecek et al., 2011).  
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3.5. PATIENT SELECTION AND METHODS 

3.5.1 STUDY DESIGN  

Six individuals presenting clinical and EEG features of  MMPSI were selected. The patients, 

5 male and one female, were all Italian except one and fulfilled the criteria of the syndrome 

(Table 8). All children were born full-term and were normal except one that showed a mild 

perinatal cyanosis. Familial history was positive for epilepsy in two patients and for febrile 

seizures in one. Psychomotor development was normal in all patients before seizure onset 

that occurred during the first month of life, with an average age of 4 months. Seizures were 

refractory to various antiepileptic drugs that were used mostly in combination. All children 

developed a severe neurological impairment after seizure onset. Computed tomography (CT) 

and Brain MRI was normal in four patients, while two showed a mild enlargement of lateral 

ventricles. EEG for all individuals showed the typical features of malignant migrating partial 

seizures, after an average period of 2.5 months (range 2 weeks to 4 months). All children 

showed profound delay both psychomotor and mental. 

Patient 

sex 

Family history 

positive for 

epilepsy/febrile 
seizures 

Pregnancy 

and 

delivery 

Age at 

seizure 

onset 

Psychomotor 

development 

before seizure 
onset 

CT/MRI Drug 

resistance 

Clinical outcome 

at last follow-up 

1 
M 

No At term, 
normal 

4 m Normal Normal present Severe 
psychomotor 

delay/mental 

retardation 2 

M 

No Mild 

perinatal 
cyanosis 

2 m Normal Mild 

enlargement of 
lateral  

ventricles 

present Severe 

psychomotor 
delay/mental 

retardation 3 

M 

Yes (maternal 

uncle) 

At term, 

normal 

5 m Normal Normal present Severe 

psychomotor 
delay/mental 

retardation 4 

M 

No At term, 

normal 

1 m Normal Mild 

enlargement of 

lateral  

ventricles 

present Severe 

psychomotor 

delay/mental 

retardation 5 
F 

Yes (paternal 
uncle) 

At term, 
normal 

9 m Normal Normal present Severe 
psychomotor 

delay/mental 

retardation 6 
M 

Yes (mother with 
febrile seizures) 

At term, 
normal 

3 m Normal Normal present Severe 
psychomotor 

delay/mental 

retardation  

Table 8 Clinical overview of patients with MMPSI. 

“M” is male; “F” is female and “m” is month.  
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3.5.2 DNA ISOLATION  

For DNA isolation 5 ml whole blood was collected in the EDTA vacutainer from the 

patients participating in the study and salting-out protocol was used. For the osmotic lysis of 

the erythrocytes, blood was transferred into 50 ml Falcon tubes, about 25 ml (20-30 ml) 

NaCl 0.2% was added, shaked gently and incubated at 4°C for 15 minutes. After that, 

samples were centrifugated at 2500 rpm for 15 minutes and then the supernatant was 

carefully tipped off to waste leaving the pellet stuck to the bottom of the tube. Steps of 

centrifugation and the subsequent one were repeated to get a cleaner/whiter/purer pellet.  

Next, to each Falcon, 2 ml of WBC lysing solution was added and cell lysates were digested 

overnight at 37°C using for each ml of lysing buffer 65 μl of SDS 20% and 10 μl of protease 

K solution. After digestion was complete, 670 μl of saturated NaCl for each ml of lysing 

buffer was used, shaked vigorously for few seconds and then centrifugated at 2500 rpm for 

15 minutes at 4°C. The precipitated protein pellet was left at the bottom of the tube and the 

supernatant containing the DNA was transferred to another 15 ml tube. Exactly 2 volumes of 

room temperature absolute ethanol were added and the tubes inverted several times until the 

DNA precipitated. The precipitated DNA strands were removed with a sterile Pasteur, 

washed with ethanol 70% and dried. Finally the pellet was dissolved in an appropriate 

amount of sterile water and preserved at 4
o
C. 

3.5.3 EXOME SEQUENCING 

3.5.3.1 TARGET ENRICHMENT AND HIGH THROUGHPUT SEQUENCING 

3μg DNA from each of the six patients was used to perform massively parallel sequencing. 

After shearing using Bioruptor sonicator (95 cycles), the DNA fragments were blunt end 

repaired and adenylated at the 3’ end of fragments. Illumina adaptors were then ligated and 

fragments size selected for 350-400 bp products before amplification and validation using 

the Agilent Bioanalyzer. Exome capture was performed using the SureSelect Human All 

Exon 50Mb kit. DNA libraries were hybridized to streptavidin exome capture beads, 

washed, hybridized a second time, eluted and amplified. Quality was assessed using 

Bioanalyzer, Qubit and Real Time PCR and finally 72 paired-end enriched libraries were 
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sequenced-by-synthesis using an Illumina Genome Analyzer IIx according to Illumina 

Protocols. 

3.5.3.2 BASIC DATA PROCESSING 

Primary data analysis includes image analysis, base calling and demultiplexing to obtain 

fastq raw sequence files. 

The first two steps are automatically done by the GAIIx sequencer using the GApipeline, 

which implements image analysis (Firecrest) and base-calling (Bustard). 

There are four dominant source of noise affecting the intensities generated by the illumine 

sequencer: 

 Crosstalk: the intensity channel are not independent. This is due to the fact that fluorescent 

markers for A,C and G,T emit photons with similar wavelengths and get excited by the same 

laser. Moreover fluorescent markers from one cycle can only be chemically partially 

removed before the cycles for the next nucleotides. 

 Fading: with successive cycles, the absolute intensity of light emitted from the cluster of 

DNA strands decreases because fluorescent markers can only bind to fewer and fewer 

strands within the clusters. 

 Phasing: in any given cycle, a few DNA molecules within a cluster may fail to extend. This 

is referred to as “phasing”, as the molecules which fail to extend are now out of phase with 

the rest of the cluster. Phasing can occur when a base is not incorporated so that the resultant 

strand will be a base behind. 

 Pre-phasing: occurs when an unblocked base is incorporated in the growing DNA molecule, 

allowing a second nucleotide to be incorporated. The resultant strand will be then a base 

ahead (Figure 12). 
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Figure 12 Phasing and Prephasing Example 

( http://www.illumina.com) 

After the corrections have been done, the base with the highest intensity is chosen (Figure 

13). For quality control, a sample of the bacteriophage genome is included in one of the 

eight lanes of the flow cell (Ledergerber et al., 2011, Menges et al., 2011)
  
 

 

 

Figure 13 An example of a corrected intensity plot 

(http://www.illumina.com) 

 

Demultiplexing step is performed using the Perl script configureBclToFastq.pl. It takes as 

input .bcl files produced by Bustard and a text file, called sample sheet, that contains all 

information about sequenced samples. This procedure create different folders, one for each 

sample, in which put the fastq files. 
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/path/to/CASAVA/bin/configureBclToFastq.pl --input-dir <BaseCalls_DIR>  

--output-dir <Unaligned> --sample-sheet <Input DIR>/SampleSheet.csv 

 

cd /path/to/RunFolder/Unaligned 

 

nohup make –j <n> 

3.5.3.3 FASTQ QUALITY CONTROL 

To assess the quality of raw sequences, FASTQC tool was used that provides basic quality 

statistics and creates a comprehensive report by looking at the composition and quality of 

high throughput sequence library (Figure 14) (Andrews, 2010).  

 

Figure 14 Fastq quality report 

An example of statistics for one of our sample shows for all fields and in particular for “per base sequence 

quality ” quality is very good. 
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3.5.3.4 ALIGNMENT 

For alignment step BWA was used. It is a software package for mapping sequences against a 

large reference genome, such as the human genome. It consists of three algorithms: BWA-

backtrack, BWA-SW and BWA-MEM. The first algorithm is designed for Illumina 

sequence reads up to 100bp, while the rest two for longer sequences ranged from 70bp to 

1Mbp. For this experiment the first algorithm was used that is invoked with different sub-

commands: aln/sampe. The first command finds the suffix array (SA) coordinates of good 

hits of each individual read while sampe command converts SA coordinates to chromosomal 

coordinates and pairs reads (Li and Durbin, 2009). 

bwa aln -n 0.06 -t 4 -q 5 reference_genome.fa fastq_file1 > outputfile1.sai 

bwa aln -n 0.06 -t 4 -q 5 reference_genome.fa fastq_file2 > outputfile2.sai 

where: 

 “-n” is the false negative rate you are willing to accept. When given a false negative rate, 

bwa then select appropriate limits on substitutions. To do this, it needs to know how likely a 

substitution is, and it simply assumes 2%. So this parameter is nothing more than “the 

fraction of alignments missing assuming an error rate of 0.02”. 

 “-t” is the number of thread. 

 “-q” is the parameter used to trim read below that Q score according to. 

bwa sampe -a 800 reference_genome.fa outputfile1.sai outputfile2.sai fastq-file1 fastq-

file2 > output.sam 

where the parameter  

 “a” is the maximum insert size for a read pair to be considered being mapped properly. 

3.5.3.5 BAM CONVERSION AND SORTING 

The resulting SAM file was first converted in the binary format BAM, that contains the 

same information of the SAM, but reducing storage usage. Because after alignment 

sequence reads are not sorted in any order, it is requires sorting them on coordinate and 
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chromosome order of the reference. To this aim we used the java script SortSam.jar from 

Picard Tool (http://picard.sourceforge.net). 

java -Xmx2G -jar PICARD_DIR/SortSam.jar I=output.sam O=sample.bam 

SO=coordinate VALIDATION_STRINGENCY=SILENT 

where: 

 “SO” sort order of output file for coordinate. 

 “VALIDATION_STRINGENCY” when setting to SILENT can improve performance when 

processing a BAM file in which variable-length data (read, qualities, tags) do not otherwise 

need to be decoded. 

3.5.3.6 RAW VARIANT CALL 

There is a wide range of available variant callers. Depristo et al. at the BROAD Institute 

have suggested a best practice protocol tailored for use with 1000 genomes, that relies on the 

Genome Analysis Toolkit (GATK), currently one of the best tools for this purpose (De 

Pristo et al., 2011, McKenna et al., 2010).  

The first step in our pipeline is the raw variant call that was performed with Unified 

Genotyper tool. It takes the BAM file produced by BWA as input and the reference FASTA 

file and produce as output a .vcf file containing the raw variant called. 

java -jar GenomeAnalysisTK.jar 

-T UnifiedGenotyper 

-I sample.bam 

-o sample.raw.vcf 

-R REF_GENOME 

-glm BOTH 

-stand_call_conf 1.0 

-stand_emit_conf 1.0 

-A AlleleBalance 

-A DepthOfCoverage 

-deletions 1.00 
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-nt 4 

-rf BadCigar 

 

where: 

 “glm” calls SNP, INDEL or in our case BOTH. 

 “stand_call_conf” is the call threshold, that means what Phred confidence is required to 

consider a site confidently called. In the case of raw variant it was set to 1.0. 

 “stand_emit_conf” determines what GATK will write as a site, even if the confidence is 

below the call confidence. In the case of raw variant it was set to 1.0. 

 “A” is the annotations to apply to variant call. This annotations are added to the output VCF 

file. In particular AlleleBalance is the fraction of ref bases over ref + alt bases, while 

DepthOfCoverage is Total (unfiltered) depth over all samples. 

 “deletion” is the maximum number of reads with deletions spanning a locus for it to be 

callable. 

 “nt” is the number of thread. 

 “rf” is a read filter for reads with a bad cigar strings. 

3.5.3.7 LOCAL REALIGNMENT AROUND INDEL 

The local realignment tool is designed to consume one or more BAM files and to locally 

realign reads such that the number of mismatching bases is minimized across all the reads. 

In general, a lot of regions requiring local realignment are due to the presence of an insertion 

or deletion (indel) in the individual's genome with respect to the reference genome. Such 

alignment artifacts result in many bases mismatching the reference near the misalignment, 

which are easily mistaken as SNPs. Moreover, since read mapping algorithms operate on 

each read independently, it is impossible to place reads on the reference genome such at 

mismatches are minimized across all reads. Consequently, even when some reads are 

correctly mapped with indels, reads covering the indel near just the start or end of the read 

are often incorrectly mapped with respect the true indel, also requiring realignment. Local 

realignment serves to transform regions with misalignments due to indels into clean reads 

containing a consensus indel suitable for standard variant discovery approaches.  

There are 2 steps to the realignment process:  
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 Determining (small) suspicious intervals which are likely in need of realignment using 

RealignerTargetCreator tool. 

 Running the realigner over those intervals using IndelRealigner tool. 

Determining Intervals: 

java -jar GenomeAnalysisTK.jar 

-T RealignerTargetCreator 

-R REF_GENOME 

-o sample.gatk_target.intervals 

-I sample.bam 

-rf BadCigar 

-nt 4 

--known sample.raw.vcf 

Local Realignment: 

java -jar GenomeAnalysisTK.jar 

-T IndelRealigner 

-I sample.bam 

-R REF_GENOME 

-targetIntervals sample.gatk_target.intervals 

-o sample.real.bam 

3.5.3.8 DUPLICATE REMOVAL USING PICARD TOOL 

Examines aligned records in the BAM file to locate duplicate molecules. All records are 

then written to the output file with the duplicate records flagged. 

java -Xmx2G -jar PICARD_DIR/MarkDuplicates.jar 

I=sample.real.bam 

O=sample.real.nodup.bam 

M=sample.dup_metrics 

REMOVE_DUPLICATES=true 

READ_NAME_REGEX=\"[^:]+:[0-9]:([0-9]+):([0-9]+):([0-9]+).*\" 
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VALIDATION_STRINGENCY=SILENT 

where: 

 “M” in the name of file in which to write duplication metrics. 

 “READ_NAME_REGEX” is a regular expression that can be used to parse read names in 

the BAM file. Read names are parsed to extract three variables: tile/region, x coordinate and 

y coordinate. These values are used to estimate the rate of optical duplication in order to 

give a more accurate estimated library size 

The  ouput file sample.real.nodup.bam was finally indexing using samtool (Li et al., 2009)
 
. 

samtools index sample.real.nodup.bam. 

3.5.3.9 RECALIBRATION 

The recalibration walker is a two step procedure. The first determines the covariates (such as 

read group, quality score, machine cycle, and nucleotide context) affecting base quality 

scores in the BAM file and generates recalibration table based on various this covariates. 

The latter, walking through the BAM file and rewrite the quality scores. 

CountCovariates: 

java -jar GenomeAnalysisTK.jar 

-T CountCovariates 

-l INFO  

-R REF_GENOME 

-I sample.real.nodup.bam 

-cov ReadGroupCovariate 

-cov QualityScoreCovariate 

-cov CycleCovariate 

-cov DinucCovariate 

-recalFile OUTDIR/sample.real.nodup.cov_data.csv 

-dP illumina 

-nt 4 

where: 
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 “cov ReadGroupCovariate” is the read group this read is a member of. 

 “cov QualityScoreCovariate” is the reported base quality score for this base. 

 “cov CycleCovariate” is the cycle of for the considered base. 

 “cov DinucCovariate” is the combination of the considered base and the previous one. 

This step creates a .csv file which is needed to recalibrate reads. 

TableRecalibration: 

java -jar GenomeAnalysisTK.jar 

-T TableRecalibration 

-l INFO 

-R REF_GENOME 

-I sample.real.nodup.bam 

-recalFile OUTDIR/sample.real.nodup.cov_data.csv 

--out sample.bam 

-dP illumina 

Finally  samtools was used to index the recalibrated BAM file. 

samtools index sample.bam 

3.5.3.10 ANALYZE COVARIATES 

java -Xmx4g -jar AnalyzeCovariates.jar 

-recalFile OUTDIR/sample.real.nodup.recal.cov_data.csv 

-outputDir OUTDIR/recalibrated 

-ignoreQ 5 

This tool produces a PDF files that graphically show the various metrics and characteristics 

for BAM file given in input to CounCovariates walker. In order to show that any biases in 

the reported quality scores have been fixed through recalibration was run again on the bam 

file produced by TableRecalibration walker. In this way is possible to compare the analysis 

plots generated by pre-recalibration and post-recalibration .csv files. 
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CountCovariates: 

java -jar GenomeAnalysisTK.jar 

-T CountCovariates 

-l INFO 

-R REF_GENOME 

-I sample.bam  

-cov ReadGroupCovariate 

-cov QualityScoreCovariate 

-cov CycleCovariate 

-cov DinucCovariate  

-recalFile OUTDIR/sample.real.nodup.recal.cov_data.csv  

-dP illumina 

-nt 4 

AnalyzeCovariates: 

java -Xmx4g -jar AnalyzeCovariates.jar 

-recalFile OUTDIR/sample.real.nodup.recal.cov_data.csv 

-outputDir OUTDIR/recalibrated 

-ignoreQ 5 

3.5.3.11 UNIFIED GENOTYPER 

Finally UnifiedGenotyper walker was ran again on recalibrated bam files to call SNP and 

indels. 

java -Xmx4g -jar GenomeAnalysisTK.jar 

-T UnifiedGenotyper  

-glm BOTH  

-R REF_GENOME  

-I sample.bam  

-o sample.vcf  

-stand_call_conf 1.0  

-stand_emit_conf 1.0  

-A DepthOfCoverage  
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-A AlleleBalance  

-deletions 1.00  

-rf BadCigar 

-nt 4 

3.5.3.12 RECALIBRATION 

After obtaining BAM and VCF files for all the six samples, raw variants were filtered using 

RIKURATOR software (Figure 15). First the three parameters Call to 25%, Coverage to 8 

and Quality to 40 was set, to filter out all variants that are supported by less than 8 reads, 

with a fraction of alternative call over reference + alternative call less than 25% and with 

quality less than 40. Subsequently all variants in dbSNP 135 were filtered out leaving only 

novel variants. Finally common variants between three, four, five or six samples were 

searched. 

 

Figure 15 Screenshot showing the RIKURATOR software 
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3.6. RESULTS AND DISCUSSION 

The results are divided in two sections. The first, presenting results of the pipeline to 

demonstrate its reliability; the latter, reporting results of the experiment, performed in the 

Laboratory of Molecular Medicine and Genomics at University of Salerno where I worked, 

on six patients with clinical features of a rare syndrome called Malignant Migrating Partial 

Seizures in Infancy (MMPSI). 

3.6.1OVERALL STATISTICS OF EXOME SEQUENCING EXPERIMENT  

Exome sequencing was performed in six unrelated children showing the clinical features of 

MMPSI. An average of 8 Gb of sequence was generated per affected individual as paired-

end, 72-bp reads. Starting from more than 100 million of total reads, about 80% are uniquely 

mapped against human genome (Table 9).  

 GC_4 GC_6 GC_8 GC_11 CG_14 GC_16 

Total reads 106,007,833 125,276,108 89,518,042 136,240,122 122,366,061 114,755,522 

Uniquely mapped reads (#) 82,947,391 99,368,840 63,804,951 99,576,132 92,136,087 86,551,692 

Reads in targeted regions 

(%) 

66.25 67.04 65.53 66.5 66.55 66.29 

Reads in targeted regions 

+/- 200bp(%) 

84.5 84.46 84.92 84.94 84.52 84.32 

Targeted bases with 

minimum 10x coverage 

(%) 

83.49 86.04 76.42 83.01 81.51 81.33 

Targeted bases with 

minimum 20x coverage 

(%) 

72.97 77.08 64.04 73.31 71.37 70.78 

Targeted bases with 

minimum 40x coverage 

(%) 

57.53 62.95 46.88 59.63 57.35 56.07 

Average coverage (fold) 71.93 87.62 52.29 83.27 76.6 71.87 

Table 9 Summary statistics for exome sequencing experiment. 

The targeted bases constituted approximately 66% of all bases read. An additional 18% of 

bases were within 200 base pairs of targeted sequences. About 82% of targeted bases were 

sufficiently covered (coverage > 8x) to pass the thresholds and used for subsequent analysis.  
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Figure 16 shows the comparison of base quality along reads between unmapped and 

mapped reads. The X-axis is the position in each read, while the Y-axis is the base quality 

score (Phred quality score). The red and blue lines denote the median and mean of base 

qualities for each position along with the box plot in yellow. Comparing with unmapped 

reads, the mapped reads have high base quality, especially for the bases at the end of reads 

that have very low quality in unmapped reads.  

 

Figure 16 The box plots of base quality for each position in reads 
The red and blue lines represent the median and mean of Phred score.  

3.6.2 BASE QUALITY SCORE RECALIBRATION  

Base quality score recalibration is performed to avoid the effect of different covariates by 

adjusting reported base qualities approximate to empirical quality distribution. In the Figure 

17 (A) and (B), X-axis is the machine cycle (identical to position along reads in the previous 

figure) whose range is from -72 to 72, -72 to 0 and 0 to 72 denote the positions of two reads 

in the same read pair, respectively. Y-axis represents the differences between empirical and 

reported quality score. Before recalibration (A) the base quality is overestimated in some 

positions while underestimated in other ones. After recalibration (B), the reported base 

qualities at all positions are much closer to the empirical qualities, which is reasonable 

assigned the same weight for SNV calling. The base quality may be underestimated and 

overestimated respectively on the basis of the result from Figure 17 (C). All the reported 

base qualities are adjusted approximate to the empirical qualities after recalibration (Figure 
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17 (D)). The base quality may also be affected by the previous base. Figure 17 (E) shows 

quality distribution of dinucleotide. It is very chaotic and just few of them fit to empirical 

quality distribution. After base quality recalibration (F), the differences between reported 

and empirical qualities are close to zero. For each covariate, the root mean square error 

(RMSE) is calculated to evaluate the overall differences between empirical and reported 

qualities using the formula below:  

 

 

 

n denotes the total number of points in the figure, xreported,i and xempirical,i are the reported and 

empirical quality for a given point I, respectively. By comparing the value of RMSE before 

and after base quality score recalibration, is possible to say that the base quality score 

recalibration can effectively filter out the effect of various covariates and make reported 

base quality much closer to the empirical base quality which is necessary and crucial for 

SNV calling. 

n
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Figure 17 Quality score recalibration 

The effect of base quality score recalibration on three covariates: machine 

cycle, reported base quality and dinucleotide for one of the sequenced 

sample.  
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3.6.3 VARIANTS DETECTION  

The last step of the analysis is the identification of variants. Variants are detected based on 

mapped, local realigned and base quality score recalibrated reads to reduce the number of 

false positive. SNP and short indel identification were performed with Unified Genotyper 

tool provided by Genome Analysis Toolkit (see methods 3.4.3.11). Detailed information 

about each SNP or INDEL call are given in the generated VCF file which include total 

number of reads covering the site, ratio of reference supporting reads to total number of 

references (referred to as allele balance), number of identified alleles (referred to as allele 

count), allele frequencies for each allele, number of reads supporting the site with mapping 

quality zero, dbSNP id if variant is known, and strand bias. 

3.6.4 EXPERIMENTAL RESULTS  

The developed pipeline was used to analyze data from whole exome sequencing on six 

patients showing clinical features of MMPSI. Enrichment was performed using the 

SureSelect Target Enrichment 50Mb protocol followed by 72 base pair massively parallel 

sequencing using the Genome Analyzer IIx sequencer. The number of raw variants obtained 

was more than 45,000 in all samples except sample 8 where the number is about 35,000. To 

avoid false negative results, SNP and INDEL with coverage less than 8, quality less than 40 

and call (alternative/reference+alternative) less than 25% were filtered out. Then dbSNP 135 

and a European control were used to obtain only the novel variations that were used for the 

further analysis (Table 10). 
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 GC_4  GC_6  GC_8  GC_11  CG_14  GC_16  

SNP/short INDEL identified  48,443  52,957  35,184  47,795  47,386  47,887  

After filtering coverage>8, 

quality>40, call>25%  

10,592  10,999  8,769  10,743  10,671  10,683  

After filtering known variations  891  930  761  1,067  1,387  1,422  

After filtering European variations  740  758  625  916  1,247  1,288  

Table 10  Summary of variations identified per sample, before and filtering 

In order to identify variants that are clinically significant, common variants between at least 

3 samples were studied and different type of variations, non synonymous, framshift coding, 

stop gained and splice cite, were taken in consideration (Table 11). 

 6/6  5/6  4/6  3/6  

RARE VARIANTS IDENTIFIED  125  137  194  357  

NON SYNONYMOUS CODING  16  19  37  36  

FRAMESHIFT CODING  2  2  4  9  

STOP GAINED   2    

SPLICE SITE  5  7  8  31  

Table 11 Summary of common variants 

Common variants identified in common between 6, 5, 4 and 3 samples associated with 

variation effect. 
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3.6.4.1 VARIATIONS IN GENES ASSOCIATED WITH MMPSI 

After studied novel variations, the attention was focused on mutations, in all the six samples, 

regarding genes known from literature to be associated with MMPSI (Table 4). The first 

gene evaluated was PLCB1. A homozygous deletion (486 kb) in this gene was discovered 

by Poduri et al. in one patient with MMPSI. Considering that in this study large structural 

variation were not investigated, all the other possible variations in this gene were considered 

before and after filtering for coverage greater than 8. As shown in Table 12 mutations were 

found in intronic, splicing site and UTR regions, but no non-synonymous variations were 

identified. 

 

   
COVERAGE ≥8 

  VARIANT TYPE n°  n°  

PLCB1 

NOVEL VARIATIONS 

INTRONIC 159 8 

SPLICING SITE 1 1 

UTR 5 2 

  TOTAL 165 11 

Table 12 PLCB1 mutations   

After that, mutations in SCN1A were considered. Carranza Rojo et al., identified pathogenic 

genetic abnormalities in 2/15 (13%) patients, including a missense mutation and a deletion 

that encompasses the entire SCN1A gene as well as other sodium channel subunit genes. 

Freilich et al., discovered a novel missense mutation in a patient who clinically fulfilled the 

criteria for malignant migrating partial seizures of infancy. Table 13 shows 2 novel non 

synonymous mutations identified in our samples, the first in one patient and the latter in two 

patients (Table 14). Although both variations resulted in a high coverage, the ratio between 

alternative/alternative+reference was to the limit of call threshold, setted to 25%, in all of 

them, so the probability to have a false positive result was considered. To validate these 

variants, Sanger sequencing approach was used (Figure 18). As shown in the figure both the 

variations were not confirmed. 
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   COVERAGE ≥8 

  VARIANT TYPE n°  n°  

 
SCN1A 

NOVEL VARIATIONS 

INTRONIC 34 5 

NON SYNONYMOUS  2 2 

SPLICING SITE 2 2 

  TOTAL 38 9 

Table 13. SCN1A mutations 

 

    
ALTERNATIVE/REFERENCE+ALTERNATIVE 

CHR Position BaseChange AminoChange GC4 GC6 GC8 GC11 GC14 GC16 

2 166,847,950 G->T Asn1945Lys 
    

28/99 
 

2 166,847,956 A->T Asn1969Lys 
    

28/97 22/105 

 

Table 14 Two novel non-synonymous mutations in SCN1A 

 In red is the ratio between the number of read covering the alternative base over the total number of read   
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Figure 18 Sanger Sequencing of SCN1A mutations 

Sanger sequencing validation of the two novel non-synonymous mutations identified 

in SCN1A (exon 28, chr2:166,847,950 and chr2:166,847,956 ) 
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Finally KCNT1 gene was investigated. While the genes mentioned above had a good 

coverage, KCNT1 presented several targeted regions with very low coverage (Figure 19), 

leading to needs to validate all the variations found in them.  

 

Figure 19 KCNT1 coverage 

Screenshot of Rikurator in the KCNT1 targeted regions showing the low coverage 

Using exome sequencing, Barcia et al. identified de novo KCNT1 gain-of-function 

mutations in 6 of 12 patients with MMPSI.  

   COVERAGE ≥8 

  VARIANT TYPE n°  n°  

KCNT1 
NOVEL VARIATIONS 

INTRONIC 38 2 

SYNONYMOUS/UTR 1 - 

UTR 1 - 

NON SYNONYMOUS/UTR 3 1 

  TOTAL 43 - 

 Table 15 KCNT1 mutations 

This gene seems to be a major disease-associated gene for MMPSI; infact, the mutations 

described by Barcia et al., appear substantially more severe than those reported for other 

potassium channels. 
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For this reason all the variations identified were taken in considerations (Table 15). Three 

non-synonimous variants were identified in our sample without filtering for coverage, while 

after that only one remains in the list of possible candidates (Table 16). Considering the fact 

that one of the limitations of the exome sequencing is the possibility to have low coverage in 

some targeted regions, all the variants were validate with Sanger sequencing (Figure 20, 

21). 

    ALTERNATIVE/REFERENCE+ALTERNATIVE 

Chromosome  Position BaseChange  AminoChange  GC4 GC6 GC8 GC11 GC14 GC16 

9 138,660,705 G->T Val459Leu/UTR           1/5 

9 138,662,780 T->G Leu597Arg/UTR       1/1    1/4 

9 138,667,199 T->C Ser744Pro/UTR           5/11 

Table 16 Three novel non-synonymous mutations in KCNT1 

In red is the ratio between the number of read covering the alternative base over the total number of read. 
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Figure 20 Sanger sequencing in KCNT1 gene 

Sanger sequencing validation of the first novel non-synonymous mutations 

identified in KCNT1 (exon 15, chr9: 138,660,705) 
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Figure 21 Sanger sequencing in KCNT1 gene 

Sanger sequencing validation of the other two novel non-synonymous mutations identified in KCNT1 (exon 

17, chr9: 138,662,780 and exon 20 chr9: 138,667,199) 
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3.7. CONCLUSIONS 

The development of next generation sequencing technologies has provide an unprecedented 

opportunity to investigate and identify potential disease causing mutations for rare disease. It 

is a big challenge to accurately identify candidate SNVs and select the subset of functionally 

important variants from ten thousands of single nucleotide variations. For short reads 

alignment, sequencing errors are no longer a big challenge for BWT based algorithm. The 

preprocessing procedure for SNV calling, including PCR removal, indel realignment and 

base quality score recalibration can efficiently remove read pairs as PCR duplication, adjust 

false positive SNV calls due to indel misalignment and correct the effects of covariates. 

Base quality score recalibration can make reported base quality more approximate to the 

empirical quality by adjusting covariates such as machine cycle, dinucleotide etc. All these 

procedure can systematically adjust the alignment result from different aspects and make 

SNV calls more reasonable. 

Starting from six unrelated patients, with clinical features of MMPSI, exome sequencing 

was performed to look for disease causing mutation(s). The pipeline developed was used to 

analyze data from sequencer. After filtering for known variants, because MMPSI is likely to 

be genetically heterogeneous and, therefore, not all affected individuals will carry mutations 

in the same gene, common variants in a subset of patients were investigate. First of all, the 

attention was focused on novel variants in at least three patients, then, mutations known 

from literature to be associated with MMSI were taken in considerations. In particular, 

PLCB1, SCN1A and KCNT1 were considered. No variants were identified in PLCB1, while 

in SCN1A and KCNT1, 2 and 3 mutations were identified before filtering for coverage 

respectively. With coverage greater than 8, the mutations in SCN1A were still present in the 

list, but the percentage of alternative/reference + alternative call  was very close to the limit 

of threshold (25%), leading to the consideration that variants identified can be false positive 

results. After validation using Sanger sequencing, variations were discarded, confirming our 

observation.  

As with any technology, also exome sequencing has limitations, one of the main is the low 

coverage in some targeted regions, that can complicate the interpretation of data. This is the 

case of the last gene considered, KCNT1 that had very low coverage in some targeted 

regions. Because of its interesting role in MMPSI, all the mutations identified, before and 

after filetering for coverage, were validated. Also in this case, mutations were discarded. 
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The last few years have clearly shown how massively parallel sequencing can accelerate the 

pace of disease gene discovery and revolutionize the study of the genetic bases on several 

disorders. Despite these numerous successes, there is still much that is unknown about the 

variants found in the genome. Furthermore technical limitations, such as the low coverage in 

some targeted regions, lead to false positive results, making difficult to interpret data and 

need to re-sequence that regions. 
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Abstract 

Background: Qualitative and quantitative analysis of small non-coding RNAs by next generation 

sequencing (miRNA-Seq) represents a novel technology increasingly used to investigate with high 

sensitivity and specificity RNA population comprising microRNAs and other regulatory small 

transcripts. Analysis of miRNA-Seq data to gather biologically relevant information, i.e. detection 

and differential expression analysis of known and novel non-coding RNAs, target prediction, etc., 

requires implementation of multiple statistical and bioinformatics tools from different sources, each 

focusing on a specific step of the analysis pipeline. As a consequence, the analytical workflow is 

slowed down by the need for continuous interventions by the operator, a critical factor when large 

numbers of dataset need to be analyzed at once. 

Results: We designed a novel modular pipeline (iMir) for comprehensive analysis of miRNA-Seq 

data, comprising specific tools for adapter trimming, quality filtering, differential expression 

analysis, biological target prediction and other useful options by integrating multiple open source 

modules and resources in an automated workflow. As statistics is crucial in deep-sequencing data 

analysis, we devised and integrated in iMir tools based on different statistical approaches to allow 

the operator to analyze data rigorously. The pipeline created here proved to be efficient and time-

saving than currently available methods and, in addition, flexible enough to allow the user to select 

the preferred combination of analytical steps. We present here the results obtained by applying this 

pipeline to analyze simultaneously 6 miRNA-Seq datasets from either exponentially growing or 

growth-arrested human breast cancer MCF-7 cells, that led to the rapid and accurate identification, 

quantitation and differential expression analysis of ~450 miRNAs, including several novel miRNAs 

and isomiRs, as well as identification of the putative mRNA targets of differentially expressed 

miRNAs. In addition, iMir allowed also the identification of ~70 piRNAs (piwi-interacting RNAs), 

some of which differentially expressed in proliferating vs growth arrested cells. 

Conclusion: The integrated data analysis pipeline described here is based on a reliable, flexible and 

fully automated workflow, useful to rapidly and efficiently analyze high-throughput miRNA-Seq 

data, such as those produced by the most recent high-performance next generation sequencers. 
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ABSTRACT: Estrogen receptor alpha (ERα) is a ligand-
activated transcription factor that controls key cellular
pathways via protein−protein interactions involving multiple
components of transcriptional coregulator and signal trans-
duction complexes. Natural and synthetic ERα ligands are
classified as agonists (17β-estradiol/E2), selective estrogen
receptor modulators (SERMs: Tamoxifen/Tam and Ralox-
ifene/Ral), and pure antagonists (ICI 182,780-Fulvestrant/
ICI), according to the response they elicit in hormone-
responsive cells. Crystallographic analyses reveal ligand-
dependent ERα conformations, characterized by specific
surface docking sites for functional protein−protein inter-
actions, whose identification is needed to understand
antiestrogen effects on estrogen target tissues, in particular breast cancer (BC). Tandem affinity purification (TAP) coupled
to mass spectrometry was applied here to map nuclear ERα interactomes dependent upon different classes of ligands in
hormone-responsive BC cells. Comparative analyses of agonist (E2)- vs antagonist (Tam, Ral or ICI)-bound ERα interacting
proteins reveal significant differences among ER ligands that relate with their biological activity, identifying novel functional
partners of antiestrogen−ERα complexes in human BC cell nuclei. In particular, the E2-dependent nuclear ERα interactome is
different and more complex than those elicited by Tam, Ral, or ICI, which, in turn, are significantly divergent from each other, a
result that provides clues to explain the pharmacological specificities of these compounds.

KEYWORDS: estrogen receptor, antiestrogen, estradiol, tamoxifen, raloxifene, ICI 182,780, breast cancer,
histone H3 methyltransferase/DOT1L, Deleted in breast cancer gene 1/KIAA1967, pyruvate dehydrogenase E1 component/PDHA1

■ INTRODUCTION

Estrogens have important physiological effects on the growth,
differentiation, and function of hormone dependent tissues,
including breast epithelium, uterus, vagina, and ovaries. In
addition, they preserve bone mineral density, reducing the risk
of osteoporosis; protect the cardiovascular system by reducing
cholesterol levels; and modulate cognitive functions and
behavior. Estrogens are known to act mainly through a
genomic pathway, whereby they influence gene expression
and cellular phenotype by diffusing into the cell and binding to
estrogen receptors (ERs), which in turn translocate to the

nucleus, dimerize, associate with various coregulatory proteins,
and subsequently bind to DNA to control transcription of
responsive genes.1−3

The two known mammalian ER subtypes, ERα4 and ERβ,5

are characterized by distinct, but often overlapping, tissue
distribution. They share sequence homology within the DNA
binding domain and hormone recognition region, but they have
different transcriptional activation properties, suggesting that
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each of them interacts with a unique set of nuclear factors and
plays different roles in the regulation of gene expression.6−8 In
the normal mammary gland, proliferating cells express low
levels of ERα, which is downregulated, through an ubiquitin
proteasome pathway, in the presence of its cognate ligand 17β-
estradiol (E2). In contrast, ERα is readily detected in the
majority (70%) of human mammary tumors. This feature plays
a crucial role in the progression of the human BC, because it
facilitates epithelial mammary cells to switch from a hormone-
dependent to a hormone-independent status. Excessive/
deregulated expression of ERα is thus a risk factor for BC
development, and it is associated with tumor responsiveness to
hormonal treatment.9

The fact that estrogens promote tumorigenesis and cancer
progression led to the development of endocrine therapies for
BC treatment. Synthetic compounds that either act as ERα
antagonists (antiestrogens) or block the function of aromatases
(enzymes that catalyze locally androgen conversion to
estrogen) have been developed. Antiestrogens are designed to
antagonize hormone-mediated proliferation and ERα target
gene expression in mammary tumor cells by competitively
inhibiting E2 binding to the receptor. Such synthetic
compounds are important and widely used therapeutic
agents.10 Among antiestrogens, it is possible to distinguish
two major classes of drugs, depending upon their functional
effects. The “selective estrogen receptor modulators” (SERMs)
are able to act both as receptor agonists and antagonists (partial
antagonists), depending on cellular and gene promoter context
as well as on the ER isoform involved. The “selective estrogen
receptor downregulators/disruptors” (SERDs), instead, are
pure antiestrogens (full antagonists), capable of completely
blocking ERα activity, increasing receptor turnover, and/or
disrupting its nuclear localization, with a concomitant reduction
in ER expression in the cell both in vitro and in vivo. In general,
this class of compounds is used in second line therapy against
advanced BC in patients who develop resistance to SERM
treatment.11

All these molecules are able to bind the ligand-binding
domain (LBD) of ERs, whose transcriptional activity is
mediated by two separate activation functions (AFs): AF-1,
regulated by growth factors acting through the MAP kinase
signaling pathway,12 and AF-2, responsive to agonist ligands.13

Binding of agonists mainly triggers AF-2 activity, whereas
binding of antagonists does not.14 This difference relies on
specific structural features of ER bound to the different
compounds, as repositioning of helix 12 of E2-liganded ERα
creates a coactivator binding site that is, instead, absent in ER−
antiestrogen complexes.15,16 Mutational and structural analyses
revealed that the recognition surface created in the presence of
agonist ligands is necessary in order to allow coactivators to
bridge ER to the RNA pol II transcriptional machinery.17−19

The first antiestrogen introduced in clinical practice was
Tamoxifen (also referred to in the literature as Nolvadex), the
SERM prototype,20,21 a nonsteroidal antiestrogen that antag-
onizes the action of estrogen and is used for treatment of all
stages of ER-positive BC,22−25 that however can adapt to
chronic exposure to this drug developing resistance.26,27 It is
noteworthy that Tamoxifen acts as an estrogenic compound on
bone, blood lipids, and the endometrium,28 increasing the risk
of endometrial cancer and thrombotic events. Raloxifene (also
reported as LY 156,758, keoxifene, LY 139, 481-HCL, or
Evista) is a second-generation SERM, designed with the aim to
develop a new hormone replacement therapy to prevent

osteoporosis, while decreasing endometrial and breast cancer
risk as a beneficial side effect. Raloxifene and Tamoxifen exhibit
similar binding affinity for the ER, but the former shows a
higher estrogenic activity on bone cells.29 SERM-bound ERα is
able to dimerize and translocate to the nucleus, acquiring a
specific conformation that allows coactivator recruitment to the
receptor, with helix 12 directly affecting the structure and a
partial reorganization of AF-2. This, which implies an
incomplete recruitment of the AF-2 coactivators, is likely to
be the structural basis of the specific biological activities of the
SERM-activated receptor.
Fulvestrant (also known as ICI 182,780 and Faslodex), the

SERD prototype, is a steroidal molecule devoid of estrogen-like
activity that was designed to treat patients with ERα-positive
breast tumors that developed SERM resistance.30 In these
cases, the absence of agonist activity in SERDs is thought to
overcome the drug resistance. Indeed, proliferation of
tamoxifen-resistant BC cell lines is strongly inhibited by
fulvestrant.31,32 Correct alignment of ERα helix 12 is prevented
by SERDs, which therefore affects AF-2 function. Furthermore,
this conformation results in loss of receptor dimerization,
accelerated ER ubiquitination, and shuttling to the proteasome
for degradation.31,33

Clinical evidence shows that more than 30% receptor-
positive mammary tumors are unexpectedly nonresponsive to
endocrine treatments. The reasons for such failure have been
suggested to depend on the functions of ER and/or the
intracellular signaling pathway controlled by estrogens. In this
regard, dissection of the ER signaling networks in hormone-
responsive BC cells, a useful approach to identify the molecular
mechanisms of cell responsiveness to estrogen, may provide
new insights on resistance of breast tumors to endocrine
therapies.
Interaction proteomics led so far to the identification of a

large number of E2−ERα interactors in BC cell nuclei,
including transcriptional coregulators and components of the
nuclear actin pathway.34−37 The main purpose of this study was
to apply this technology to map the nuclear interactomes of
ERα bound to the antiestrogenic compounds commonly used
for BC treatment (i.e., ICI, Ral, and Tam), aiming at providing
new mechanistic information to help explain the pharmaco-
logical activities of these drugs in BC cells in vitro and in vivo.

■ EXPERIMENTAL PROCEDURES

Cell Cultures

The human hormone-responsive mammary carcinoma cell line
MCF-7 (Clontech-Takara) was cultured in Dulbecco’s
modified Eagle’s medium containing 1 mg/mL D-glucose
(Sigma-Aldrich) and supplemented with 2 mM L-glutamine,
10% FBS (HyClone), 25 units/mL penicillin, 25 units/mL
streptomycin, 250 ng/mL amphotericin B, and 100 μg/mL
G418 (standard growth conditions).
To study protein complexes assembly upon ligand treat-

ments, cells were estrogen deprived (starved) by exchanging
the medium to Dulbecco’s modified Eagle’s medium without
phenol red (Sigma-Aldrich) supplemented with 2 mM L-
glutamine and 5% stripped serum (dextran-coated charcoal-
treated FBS) 5 days prior to performing the ligand treatments
and to harvesting the cells, as described.38

MCF-7 cells were used to generate stable clones expressing
TAP (control cells) or C-TAP-ERα (TAP-ERα expressing
cells) as described earlier.36
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Preparation of Nuclear Extracts

The cells were harvested by scraping, washed twice in cold 1×
PBS, collected by centrifugation at 1000g, and resuspended in 3
volumes with respect to the cell pellet of hypotonic buffer (20
mM HEPES pH 7.4, 5 mM NaF, 10 mM sodium molybdate,
0.1 mM EDTA, 1 mM PMSF, and 1× protease inhibitor
mixture (Sigma-Aldrich)). Upon incubation on ice for 15 min,
0.5% Triton X-100 was added, and a cytosolic fraction was
discarded after centrifugation of the samples at 15,000g for 30 s
at 4 °C. The nuclear pellet was first washed twice in hypotonic
buffer to remove any residual cytosolic contaminations and
then was resuspended in 1 volume of nuclear lysis buffer (20
mM HEPES pH 7.4, 25% (v/v) glycerol, 420 mM NaCl, 1.5
mM MgCl2, 0.2 mM EDTA, 1 mM DTT, 1× protease inhibitor
mixture (Sigma-Aldrich), and 1 mM PMSF), incubated for 30
min at 4 °C on a rotating platform. The nuclear extract was
clarified by centrifugation at 15,000g, for 30 min at 4 °C and
then was diluted by adding 2 volumes of nuclear lysis buffer w/
o NaCl. The nuclear extracts were assayed, and nonsignificant
cross-contamination between the two cellular compartments
could be detected by Western Blotting using an anti-α tubulin
antibody.36

Western Blotting

Western blot analyses were performed using standard protocols
as previously described.39 In detail, protein samples were
denatured, separated on a 7 or 10% polyacrylamide and 0.1%
SDS (SDS-PAGE), and electrotransferred onto a nitrocellulose
membrane (Whatman GmbH-Schleicher & Schuell). The
membrane was blocked using 5% (w/v) fat-free milk powder
in 1× TBS supplemented with 0.1% (v/v) Tween20 (TBS-T).
The used primary antibodies were as follows: rabbit antihuman
ERα (sc-543, HC-20, Santa Cruz Biotechnology), rabbit anti-
TAP (CAB1001, Thermo Scientific-Pierce), rabbit anti-α-
tubulin (T6199, Sigma Aldrich), mouse anti-β-actin (A1978,
Sigma Aldrich), rabbit anti-α-tubulin (T6074, Sigma Aldrich),
mouse anti-DBC1/3G4 (#5857, Cell Signaling), rabbit anti-
Nucleophosmin (ab52644, Abcam), rabbit anti-DOT1L/
KMT4 (ab72454, Abcam), mouse anti-DBC1/3G4 (#5857,
Cell Signaling), and mouse anti-Pyruvate Dehydrogenase E1-
alpha subunit (ab110334, Abcam).
All antibodies were first tested to evaluate specificity and

sensitivity. After extensively washing with TBS-T, the
immunoblotted proteins were incubated with the appropriate
horseradish peroxidase-conjugated secondary antibodies (GE
Healthcare) and were detected by enhanced chemilumines-
cence (ECL Kit, GE Healthcare) and exposure to a medical X-
ray film (FujiFilm).
Isolation of ERα Nuclear Partners by Tandem Affinity
Purification

Control and TAP-ERα expressing cells (approximately 6 × 108

cells in 500 cm2 plates) were used for each tandem affinity
purification (TAP) procedure. The cells were starved and
stimulated with 1 × 10−8 M ligand (17β-estradiol/E2, 4-
hydroxytamoxifen/Tam, Raloxifene/Ral, or Fulvestrant/ICI; all
from Sigma-Aldrich) for 1 h. Cells were harvested, extensively
washed with ice-cold 1× PBS, and lysed as described above.
Nuclear extracts were incubated with 6 μL/mg protein IgG-
Sepharose beads (IgG-Sepharose 6 Fast Flow, GE Helthcare) at
4 °C for 4 h on a rotating platform. Before incubation, the
beads were equilibrated in 10 volumes of TEV buffer (50 mM
Tris-HCl, pH 8.0, 0.5 mM EDTA, 1 mM DTT, 0.1% Triton X-
100, and 150 mM NaCl), and washed four times with 20

volumes of IPP150 buffer (20 mM HEPES, pH 7.5, 8%
glycerol, 150 mM NaCl, 0.5 mM MgCl2, 0.1 mM EDTA, and
0.1% Triton X-100) at 4 °C for 15 min. At the end of the
incubation, the unbound proteins were collected by centrifu-
gation and the beads were washed with 100 volumes of IPP150
and 30 volumes of TEV buffer in a Poly-Prep Chromatography
column (0.8 cm × 4 cm, Bio-Rad) at 4 °C. Thereafter, 4 bead
volumes of TEV buffer containing 1 unit of TEV protease/μL
of beads (Invitrogen) were added and, following incubation for
2 h at 16 °C on a shaking platform (Thermomixer, Eppendorf),
the eluted proteins were collected by sedimentation.

Nano LC-MS/MS Analysis of TEV Eluates

The partially purified protein samples from the different
experimental points were concentrated by precipitation with
acetone/TCA, dried, sonicated, and resuspended in Laemmli
buffer followed by SDS-PAGE and visualization with Silver
Staining, as previously described.39

All lanes on the gels were excised and were sliced into six
pieces, and the proteins were in-gel digested with trypsin
solution (Sequencing grade Modified Trypsin, Promega) and
incubated at 37 °C overnight as described earlier.40,41

The resulting peptides were acidified and dissolved by
addition of 0.1% TFA (Sigma-Aldrich) and analyzed by LC-
MS/MS using an Ultimate 3.000 nano-LC (Dionex, Sunnyvalle,
CA, USA) and a QSTAR Elite hybrid quadrupole TOF-MS
(Applied Biosystems/MDS Sciex, CA, USA) with nano-ESI
ionization. The LC-MS/MS samples were first loaded on a
ProteCol C18 trap column (10 mm × 150 μm, 3 μm, 120 Å)
(SGE Incorporated, Austin, Texas, USA), followed by peptide
separation on a PepMap100 C18 analytical column (15 cm ×
75 μm, 5 μm, 100 Å) (LC Packings/Dionex) at 200 nL/min.
The separation gradient consisted of 0−50% B in 50 min, 50%
B for 3 min, 50−100% B in 2 min, and 100% B for 3 min
(buffer A: 0.1% formic acid; buffer B: 0.08% formic acid in 80%
acetonitrile). MS data were acquired using Analyst QS 2.0
software. The information-dependent acquisition method
consisted of a 0.5 s TOF MS survey scan of m/z 400−1400.
From every survey scan, the two most abundant ions with
charge states +2 to +4 were selected for product ion scans.
Once an ion was selected for MS/MS fragmentation, it was put
on an exclusion list for 60 s.
The LC-MS/MS data were searched against SwissProt

release 22062011 (529056 sequences; 187423367 residues;
Taxonomy Homo sapiens (human): 20236 sequences) for all
samples using the in-house Mascot (version 2.2, Matrix
Science) through the ProteinPilot 2.0.1 interface. The criteria
for Mascot searches were the following: human-specific
taxonomy, trypsin digestion with one missed cleavage allowed,
and oxidation of methionine as a variable modification and
carbamidomethylation as a fixed modification. For the LC-MS/
MS spectra the maximum precursor ion mass tolerance was 50
ppm and the MS/MS fragment ion mass tolerance was 0.2 Da,
and peptide charge states of +1, +2 or +3 were used. All
reported protein identifications were statistically significant
because, instead of a Standard Scoring, a MudPIT scoring was
used which automatically filters low scoring peptide masses.
Mascot search results are listed in the Supporting Information
(Tables S5−S8 for E2, ICI, Ral, and Tam, respectively).
Moreover, raw MS/MS fragmentation data for single peptide-
based protein identification are included in Supporting
Information Tables S9−S12 for E2, ICI, Ral, and Tam,
respectively. To eliminate the redundancy of proteins that
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appear in the database under different names and accession
numbers, the single protein member with the highest protein
score (top rank) was selected from multiprotein families for the
identification results.

Gene Ontology Analyses

Statistically over-represented biological processes were identi-
fied among the sets of proteins identified by MS analyses in
each of the four experimental conditions by means of
GOFFA,42 a bioinformatics tool for the functional analysis of
genomic and proteomic data, developed for ArrayTrack, that
starting from a list of genes or proteins identifies Gene
Ontology (GO) terms associated with each of them. GOFFA

determines the statistical significance of a GO term using
Fisher’s Exact Test. For this study, the list of genes expressed in
MCF-7 cells and identified by microarray-mediated gene
expression profiling (see below), was used as a reference and
for each dataset the GO terms over-represented respect to the
reference with a p-value ≤ 0.05 were selected. In addition, GO
analysis was performed also using as a reference a list of
proteins identified experimentally in MCF-7 cells (listed in
Supporting Information Table S14-A), by means of the Gene
Ontology Enrichment Analysis and Visualization Tool
(GORILLA; http://cbl-gorilla.cs.technion.ac.il).

Figure 1. Interaction proteomics and genomics of agonist- and antagonist-bound ERα in MCF-7 cells. (A) Western blot analysis of ERα and TAP-
ERα in MCF-7 nuclear extracts, normalized to nuclear β-actin (ACTB) concentration in the same samples, from cells treated with E2, ICI, Ral, and
Tam (10−8 M; 1 h). (C) Wild-type MCF-7 cells, not expressing TAP-ERα, stimulated with E2, used as negative control. Relative quantitation of
TAP-ERα and ERα compared to ACTB is shown in the histogram. (B) Heatmaps summarizing the results of transcriptome analyses of TAP-ERα-
expressing MCF-7 cells treated (10−8 M; 12 h) with E2 (top-left), ICI (midleft), Tam (bottom-left), or Ral (right). For each ligand, gene expression
fold-changes were calculated with respect to the untreated control. (C) Venn diagram showing overlaps of interactomes identified following cell
treatment with E2, Tam, or Ral (10

−8 M; 1 h). Numbers reported below each symbol indicate the total number of specific interactors identified in
purified samples by MS. The number within the isolated circle at the bottom of the panel indicates interactors specific for ICI treated cells.
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Protein Complexes Immunoprecipitation

For immunoprecipitation of endogenous ERα or DOT1L, to
nuclear extracts from MCF-7 cells (800−2000 μg proteins) was
added 2.0−2.5 μg/mg protein specific Abs (rabbit antihuman
ERα: sc-543, HC-20, Santa Cruz Biotechnology and rabbit anti-
DOT1L/KMT4: A300-954A, Bethyl), and the mixture was
incubated for 1−3 h at 4 °C with stirring via rotation; then
Protein A/G Plus-Agarose was added for 1 h. Immunopreci-
pitated proteins were collected by centrifugation, and after
extensive washing, the beads were resuspended in Laemmli
buffer and subject to SDS-PAGE and Western blotting as
described previously.36

RNA Purification

Total RNA was extracted from TAP-ERα expressing cells, using
the standard RNA extraction with TRI Reagent (Sigma-
Aldrich) method, as described.43 Cells were starved and total
RNA was extracted after stimulation with 1 × 10−8 M ligand
(E2, Tam, Ral, or ICI) or ethanol vehicle for 12 h. In each case
RNA extracted from two independent biological replicates was
used. Before use, the RNA concentration of each sample was
assayed with a ND-1000 spectrophotometer (NanoDrop) and
its quality assessed with the Agilent 2100 Bioanalyzer with an
Agilent RNA 6000 Nano kit (Agilent Technologies).
RNA Expression Profiling

For mRNA expression profiling, 500 ng of total RNA was
reverse transcribed, as described previously44 and used for
synthesis of cDNA and biotinylated cRNA according to the
Illumina TotalPrep RNA Amplification Kit (Ambion, Cat. no.
IL1791) protocol. For each sample, 750 ng of cRNA was
hybridized for 18 h at 58 °C on Illumina Human HT-12v4
BeadChips (Illumina Inc.), as described earlier,43 and
subsequently scanned with the Illumina iScan. Data analyses
were performed with GenomeStudio software v2011.1
(Illumina Inc.), by comparing all values obtained at each time
point against the 0 h values. Data were normalized with the
quantile normalization algorithm, and genes were considered as
detected if the detection p-value was lower than 0.01. Statistical
significance was calculated with the Illumina DiffScore, a
proprietary algorithm that uses the bead standard deviation to
build an error model. Only genes with a DiffScore ≤−30 and
≥30, corresponding to a p-value of 0.001, were considered as
statistical significant.43,44 Raw microarray data have been
deposited, in a format complying with the Minimum
Information About a Microarray Gene Experiment (MIAME)
guidelines of the Microarray Gene Expression Data Society
(MGED), in the EBI ArrayExpress database (http://www.ebi.
ac.uk/arrayexpress) with Accession Number E-TABM-1196.

■ RESULTS AND DISCUSSION

Evaluation of Ligand Effects on the Intracellular
Localization of Wild-Type and TAP-Tagged ERα

The cellular model used in this study was derived from
hormone-responsive human BC MCF-7 cells, naturally
expressing ERα and widely used to investigate signal trans-
ductions by ERs in BC and to test the pharmacological effects
of ER ligands. MCF-7 cells were stably transfected with an
expression vector encoding ERα fused at the C-terminus with a
TAP tag45,46 that can act as a “bait” for isolation of native ER-
containing multiprotein complexes by tandem affinity purifica-
tion (TAP). These cells have been used successfully for
mapping and functional characterization of E2-induced ERα

nuclear interactome by TAP.36,37,47 As antiestrogens have been
described to influence in different ways the cellular level and/or
localization of ERα, the behavior of the exogenous fusion
protein with respect to the endogenous receptor was assessed
upon cell treatment with either E2, ICI, Ral, or Tam. In all
cases, the nuclear levels of TAP-ERα were assessed by Western
blotting and compared to those relative to endogenous ERα in
the same samples or, for E2, in wt MCF-7 cells (Figure 1A).
Results, summarized in the histogram, show that the exogenous
receptor behaves similarly to the endogenous one in all cases, as
demonstrated previously by Ambrosino et al.36 Interestingly,
comparing the results obtained for edogenous receptor in E2-
treated wt and TAP-ERα cells, the former exhibit higher ERα
levels, possibly due to inhibition of endogenous receptor
expression by the exogenous protein.36 The pure antiestrogen
ICI disrupts nuclear-cytoplasmic shuttling of both ERα and
TAP-ERα, possibly by inducing proteasome-dependent ER
degradation,48,49 as 1 h treatment of the cells with this
compound causes a modest increase of receptor concentration
in the nuclear extracts, when compared to that elicited by E2
(Figure 1A). On the other hand, the two SERMs (Ral and
Tam) induce substantial nuclear accumulation of both receptor
forms, with Tam being less effective than E2, but more than Ral,
as described earlier for endogenous ERα in this cell type.50

Kinetic evaluation of nuclear translocation of ER was
performed after 1, 6, and 12 h of treatment with each of the
compounds studied by WB analysis of ERα and TAP-ERα both
in the nucleus and in the cytoplasm, with β-actin and α-tubulin,
respectively, used as controls. Results, reported in Supporting
Information Figure S1, show that while E2 and SERMs induce a
substantial accumulation of both ERs in the nuclear compart-
ment for up to 12 h of treatment, ICI effects are not only less
pronounced but also dynamic, since nuclear ER concentration
decreases between 1 and 6 h and then rises again at 12 h.

Effects of Estrogen and Antiestrogens on the
Transcriptome of TAP-ERα Expressing Cells

ERα exerts its biological effects through several mechanisms,
that all converge on regulation of target gene expression. As the
different ligands affect recruitment of coregulators on ERα,
their influence on the ER dependent transcriptome in MCF-7
cells was investigated by gene expression profiling with
oligonucleotide microarrays. To this end, TAP-ERα expressing
MCF-7 cells were stimulated for 12 h with either E2, ICI, Ral,
or Tam, and total RNA was extracted, fluorescently labeled, and
analyzed on high-density oligonucleotide microarrays. This
time of stimulation was chosen in order to better evaluate early,
primary responses to the ligands, with respect to late, secondary
events in TAP-ERα cells, as shown earlier for E2 in wt MCF-73

and another hormone-responsive BC cell line.51 Untreated
TAP-ERα cells were used as a control.
The results obtained are summarized in the heatmaps

reported in Figure 1B, where data are reported relative to
mRNAs that showed a ≥2 fold-change, with respect to the
control, in response to stimulation with each of the four
compounds tested. In each case, changes in expression of the
same mRNA under all four conditions are also reported, side-
by-side, to highlight similarities and differences in gene
response to different ER ligands. Results show that gene
activation clearly prevails over inhibition in response to E2
stimulation, as 2/3 of the transcripts show significantly higher
levels in treated vs untreated cells, while, on the contrary, gene
down-regulation events appear predominant following anti-
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estrogen treatment, independently from the nature of the drug
used. As expected, under these conditions most of the genes
regulated by estrogen do not respond similarly to antiestrogens.
When comparing the overall responses of the MCF-7 cell
transcriptome to the three antiestrogens tested, the effects
appear strikingly different. First of all, the total number of genes
responding to ICI is very low, when compared to the responses
elicited by two SERMs, in agreement with the low nuclear ER
concentration in the presence of this ligand and the known
effects of ICI in hormone-responsive BC cells,52 with ICI-
regulated genes generally responding similarly also to Tam and
Ral. Furthermore, Tam-responsive genes are more numerous
than ICI-regulated ones and show similar regulation by Ral, but
not by E2. This is in accordance with the observation that these
SERMs promote ERα translocation to the nucleus and induce
very similar conformational changes of the receptor, that are
different from those promoted by binding of the cognate
hormone. The effects of Ral on the cell transcriptome, however,
are much more evident and, in most cases, unique to this drug.
Taken together, the results shown in Figure 1 reproduce

correctly the known biological effects of these drugs in
hormone-responsive BC cells, that are here confirmed to be

strictly related to the chemical structure of each compound and
its ER binding properties, to indicate that the experimental
model described here is suitable to identify functional protein
partners of antiestrogen-bound ERα by interaction proteomics.

Identification of Proteins Recruited by ERα in the Nucleus
of BC Cells in Response to E2, ICI, Ral, or Tam

In order to identify ERα partner proteins specifically recruited
by the receptor upon binding of an agonist (E2) or of different
antagonist (ICI, Ral, Tam) ligands, partially purified ERα
protein complexes isolated from native MCF-7 cell nuclear
extracts were subjected to MS analysis (nanoLC-MS/MS). As
control, wt cells, lacking the TAP-tagged receptor, were subject
to the same purification−identification protocol and all proteins
identified in these samples were considered not specific, and,
for this reason, when present, they were discarded from the lists
of specific ERα interactors and not considered further, as
described previously.37 In addition, when focusing on SERMs-
specific ERα complexes, the proteins identified in ICI-treated
samples were subtracted from the number of the Ral and Tam
interactors and listed as a separate set. Two biological replicates
were performed, and when the resulting MS data were analyzed

Table 1. Proteins Identified Specifically in Nuclear Extracts from SERM-Treated Cells

peptides
matched

sequence
coverage (%) MOWSE score

SwissProt ID protein name gene name Ral Tam Ral Tam Ral Tam

B2RTY4 Myosin-IXa MYO9A 6 6 2 2 30 27
O95140 Mitofusin-2 MFN2 2 3 2 3 28 30
P08559 pyruvate dehydrogenase E1 component subunit α, somatic form PDHA1 5 1 11 3 38 48
Q5VUG0 Scm-like with four MBT domains protein 2 SFMBT2 2 1 1 1 30 30
Q8TEK3 histone-lysine N-methyltransferase, H3 lysine-79 specific DOT1L 5 2 3 0 28 27

Figure 2. Gene ontology analysis of the biological processes involving the proteins interacting with E2- (A), ICI- (B), Ral- (C), or Tam-bound (D)
ERα. For each treatment a pie chart highlights the most significant cellular processes involving the proteins recruited to the receptor by each of the
ligands studied.
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separately, a very good reproducibility was observed (>60%
identified proteins in common between the replicas),
suggesting reliability of the purification procedure. To identify
ligand-specific ER-associated nuclear proteins, the MS results
from the two biological replicates were combined and analyzed
together, to obtain more robust data sets. Results of this
analysis, detailed in the Experimental Procedures section, are
listed in Supporting Information Tables S1−S4 for E2, ICI, Ral,
Tam, respectively, and are summarized in Figure 1C.
Receptor activation by E2 resulted in interaction with a set of

nuclear proteins (210) significantly larger than those observed
with ICI (46), Ral (23), or Tam (49). This result, that confirms
our previous observations,36,37 is likely to be due to the optimal
receptor conformation promoted by the agonist, as well as to
formation of stable ER homodimers, that provide an efficient
docking site for interacting proteins. Furthermore, this could be
explained, at least in part, by the relatively higher concentration
of ERα in these samples, which may have facilitated isolation
and/or MS identification of interacting proteins. It is worth
mentioning that the number of molecular partners of ERα in
the sample treated with E2 for 1 h is comparable to what was
previously reported for a 2 h stimulation with E2 of the same
cells, but the two sets share only about 50% of proteins,37 in
agreement with the highly dynamic ER−protein interactions
occurring on BC cell chromatin during the earlier phases of
hormonal stimulation.53

The vast majority of the interactors identified are ligand
specific and, as mentioned above, their number in SERM-
treated cells is significantly lower than that in E2-stimulated
cells, with the compositions of the Ral and Tam interactomes
being rather different from each other and clearly distinct from
those of ICI samples. Indeed, comparative analysis of the lists of
ERα interactors identified with the four compounds tested
shows that the majority of them are ligand-specific: 200 for E2,
15 for Ral, 36 for Tam, and 21 for ICI (Figure 1C).
Interestingly, five proteins not present in the E2 treated
samples are specific to both SERMs (Table 1), suggesting that
they might represent specific SERM effectors (see also below).
It is worth mentioning that while the patterns of interactors
detected with the two SERMs and E2 are very different from
each other, the SERD appears to promote recruitment of a
relatively larger number of proteins in common with E2 (19/
46), a result that could relate to the fact that ICI, unlike
SERMs, has a steroid structure like that of E2 and could
therefore induce a conformational change on the receptor that,
to some extent, is structurally closer to that elicited by binding
of the natural hormone.
The number of interactors identified does not seem to

correlate only with concentration of ERα in nuclear extracts or
purified samples, since, for example, the amount of receptor in
Tam samples is only slightly lower than that in E2 samples but
much higher than that in Ral or ICI samples, while the
difference in number of binding proteins identified in E2 vs
Tam samples is significant and that in Tam vs Ral or ICI
samples is very small (compare results in Figure 1C with those
in Figures 1A and 2A). On the basis of this observation, the
known differences in biological activity in the BC cells of the
compounds tested, and the results reported in Figure 1B, we
suggest that the lists of ERα interactors identified in this study,
the majority of which were not shown before to be partners of
the antiestrogen-bound receptor, represent a snapshot of the
early and specific functional complexes formed by this protein
in BC cell nuclei upon binding to antiestrogens, exploitable

now to identify the molecular mechanisms that determine the
variegated pharmacological effects of these drugs in BC cells.
Functional analysis of the biological processes that involve

the ERα interacting proteins identified in this study by gene
ontology highlights significant differences between agonist
(E2)-, SERD-, and SERM-specific interactomes (Figure 2 and
Supporting Information Table S13), that reflect also known
effects of these ligands in BC cells. In particular, estrogen
promotes recruitment by ER of proteins involved in DNA
replication and cell cycle progression, chromatin remodeling,
gene transcription, and RNA splicing and actin cytoskeleton
organization, while components of the ICI-dependent inter-
actome participate in the control of mRNA stability and
translation and in regulation of apoptosis, all processes
associated with the cytostatic actions of this drug. On the
other hand, the proteins specifically bound to SERM-ER are
specifically involved not only in regulation of gene expression
and signal transduction but also in proteolysis, epithelial cell
differentiation, cell migration, and response to oxidative stress.
While most of these functions remain to be elucidated in the
context of hormone-responsive BC cells, this result confirms
the existence of common pathways controlled by estrogen and
SERMs in this cell type, clearly distinct from those specifically
affected by ICI. Similar differences between the four lists of
interactors were observed also when GO term enrichment
analysis was performed using as background (reference) a list of
MCF-7 proteins detected experimentally, obtained by combin-
ing published results (see Supporting Information Tables S14-A
to E for background list, E2, ICI, Ral, Tam, respectively).
To validate the results obtained by mass spectrometry, WB

analysis was carried out using a selection of antibodies directed
against some of the most interesting proteins exhibiting ligand-
specific association with ERα. Among these, we selected the
ICI-ERα specific interactor KIAA1967 protein, also known as
Deleted in breast cancer gene 1, whose expression in MCF-7
cell nuclei was unaffected by ligand treatment (Figure 3A). In
agreement with the MS results, KIAA1967 was prevalently
detected by WB in purified TAP−ERα complexes from SERD-
treated cells (Figure 3B), despite the low concentration of ERα
in these samples. A slight amount of this protein in E2 and Tam
samples was close to that detected in the control sample,
despite the very high concentration of receptor under these
conditions, confirming a preferential interaction of KIAA1967
with SERD-bound ERα. Recruitment of KIAA1967 by ICI-
liganded ERα may have important antitumor effects, as this
protein has been shown to be able to interact directly with
SIRT1 and to inhibit the activity of this enzyme both in vitro
and in vivo.54 SIRT1 is involved in cancer cell growth and
survival, due also to its antiapoptotic activity55,56 and ability to
silence tumor suppressor genes.57 Interestingly, KIAA1967 has
been found overexpressed in cancer cells,58−61 suggesting that
recruitment of KIAA1967 by ICI-liganded ERα may target key
cancer genes, resulting in their silencing by SIRT1.
Pyruvate dehydrogenase E1 component subunit α (PDHA1)

appears, instead, to be a preferred interactor of ERα−Ral and,
to a lesser extent, −Tam complexes, as confirmed by WB
(Figure 3). Surprisingly, a significant increase of PDHA1 can be
observed in the crude nuclear extracts upon treatment of the
cells with Ral and, to a lesser extent, with Tam, but not with E2
ICI (Figure 3A). This appears to be the result of drug-induced
nuclear translocation of the protein, as the total cellular
concentration of PDHA1 did not change significantly following
treatment (Supporting Information Figure S2) and WB analysis
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of the cytoplasm fractions showed reduction of the cytoplasmic
concentration of PDHA1 in correspondence with its increase in
the nuclear compartment (data not shown). Pyruvate
dehydrogenases, that exert a pivotal role in cellular metabolism,
were recently assigned an additional function in the nucleus as
coactivators in STAT5-dependent gene transcription in
response to interleukin IL-3. This was reported specifically
for the pyruvate dehydrogenase E2 component (PDHE2),
which interacts both in the nucleus and in the cytoplasm with
the E1 component (PDHE1),62 suggesting that PDHA1 may
contribute to the function of PDHE1 as coregulator of SERM−
ERα complexes for target gene regulation.
Nuclear levels of β-actin (ACTB) and Nucleophosmin

(Nucleolar phosphoprotein B23/Numatrin NPM1), two well
characterized functional partners of estrogen-activated ERα in
BC cell nuclei,36 were, instead, not affected by treatments
(Figure 3A), but these proteins were clearly detected in E2
stimulated samples (Figure 3B), in agreement with the MS
results, and to a much lower extent, in Tam-treated samples, in
agreement with previously published results36,37,63 and with the
MS output data, that in Tam samples detected peptides from

this protein but assigned a low MOWSE score. In view of the
role that β-actin plays in regulation of gene expression, by
recruitment of chromatin remodeling complexes and a positive
effect on RNA polymerase II activity, and the known role of
Nucleophosmin in ribosome biogenesis, a reduced recruitment
of these proteins to antiestrogen-bound ERα will result in
reduction of receptor effects on the above-mentioned
processes, which might explain the differences in gene
regulation shown in Figure 1B and the antiestrogenic effects
of SERMs and SERDs in BC cells both in vitro and in vivo.
Interestingly, an additional SERM-spcecific interactor, Myosin-
IXa, is itself a component of the actin-based motors involved in
intracellular movements and, in particular, in collective
epithelial cell migration that facilitate formation and main-
tenance of continuous cell layers. In MCF-7 cells, estrogens
promote acquisition of mesenchymal-like features associated
with metastasis development and stimulate movement of a
subset of estrogen-treated cells as cell clusters (collective
motility). Antiestrogens, such as Tam, prevent both phenom-
ena.64 Myosin-IXa has been suggested to locally regulate Rho
proteins and assembly of thin actin bundles associated with
nascent cell−cell adhesion, which is required to sustain the
collective migration of epithelial cells. Recruitment of this
protein by Ral- and Tam-bound ERα, identified here in the
nucleus, could also occur in the extranuclear compartment,
where it may result in reduction of the collective cell migration.
Alternatively, binding of this protein to SERM-ER could result
in accumulation of this protein in the nucleus, diverting it from
its activities outside this compartment.
Another interesting SERM-specific ERα interactor discov-

ered here is the DOT1-like, histone H3 methyltransferase
DOT1L protein, a histone code “writer” lacking the SET
domain. DOT1L, that is responsible for regulating gene
expression through histone-methylation (H3K79),65 can bind
to several MLL-fusion partners found in acute leukemia and,
through this binding, is thought to promote oncogenesis.66,67

In order to further investigate DOT1L-ERα interaction by an
independent experimental approach, coimmunoprecipitations
were performed. wt MCF-7 cells were stimulated with E2, ICI,
Ral, or Tam (10−8 M, 1 h) or the vehicle alone (V). Whole
nuclear protein extracts were immunoprecipated with specific
antibodies against either DOT1L or ERα, and the immuno-
precipitates were analyzed by Western Blotting with both Abs.
The results shown in Figure 4 confirm preferential DOT1L
interaction not only with SERM- but also with ICI-bound ERα.
Interestingly, inhibition of DOT1L has been shown to be a

valid therapeutic strategy in tumor treatment.68 Recruitment of
DOT1L by antiestrogen−ERα complexes (Figures 3B and 4
and Table 1) could thus play a role in controlling the enzymatic
activity of DOT1L and, therefore, modulate its downstream
targets.

■ CONCLUSIONS
This study provides for the first time a comparative analysis of
the effects of antiestrogens on the nuclear ERα interactome of
hormone-responsive human BC cells.
The results clearly show that the protein complexes recruited

by ERα upon estrogen (E2) and antiestrogen (ICI, Ral, Tam)
stimulation share few components, as the majority of the
receptor partners identified appear to be ligand-specific. This
evidence points to the possibility, suggested by a number of
indirect observations, that estrogenic and antiestrogenic
compounds may induce different biological effects in BC cells

Figure 3. Western blot analysis of selected ER nuclear interactors
identified by TAP. (A) Whole nuclear extracts from wild-type MCF-7
(C) or TAP-ERα cells stimulated with E2, ICI, Ral, or Tam (10−8 M; 1
h). (B) Validation of MS data. Confirmation of TAP-ERα interaction
with DOT1L (DOT1-like, histone H3 methyltransferase), KIAA1967
(Deleted in breast cancer gene 1/KIAA1967), PDHA1 (pyruvate
dehydrogenase (lipoamide) alpha 1), ACTB (nuclear β-actin), or
NPM1 (Nucleophosmin/Nucleolar phosphoprotein B23/Numatrin),
measured in partially purified samples (bound or eluate TAP
fractions). Double arrows indicate the presence of two bands detected
by the antibodies against human PDHA1 and KIAA1967 proteins.
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via ERα by promoting recruitment to the receptor of specific
molecular partners. Comparison of the number of interactors
shared between two receptor complexes to the total number of
interactors identified suggests that ERα complexes recruited
upon SERM stimulation share a relatively higher number of
common interactors. This result is in agreement with the
possibility of a direct relationship between the structure of the
compound, the molecular composition of the interactome, and
the biological effects elicited by the receptor. The known
functions of several proteins identified here open new venues to
investigate the molecular mechanisms underlying SERM
inhibition of BC cells proliferation and promotion of cell
death and to understand the events that lead to loss of breast
tumor sensitivity to antiestrogen-based therapies.
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Abstract Oestrogen receptor alpha (ERα) is a ligand-
dependent transcription factor that mediates oestrogen
effects in hormone-responsive cells. Following oestrogenic
activation, ERα directly regulates the transcription of target
genes via DNA binding. MicroRNAs (miRNAs) represent a
class of small noncoding RNAs that function as negative
regulators of protein-coding gene expression. They are
found aberrantly expressed or mutated in cancer, suggesting
their crucial role as either oncogenes or tumour suppressor

genes. Here, we analysed changes in miRNA expression in
response to oestrogen in hormone-responsive breast cancer
MCF-7 and ZR-75.1 cells by microarray-mediated expres-
sion profiling. This led to the identification of 172 miRNAs
up- or down-regulated by ERα in response to 17β-
oestradiol, of which 52 are similarly regulated by the hor-
mone in the two cell models investigated. To identify mech-
anisms by which ERα exerts its effects on oestrogen-
responsive miRNA genes, the oestrogen-dependent miRNA
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expression profiles were integrated with global in vivo ERα
binding site mapping in the genome by ChIP-Seq. In addi-
tion, data from miRNA and messenger RNA (mRNA) ex-
pression profiles obtained under identical experimental
conditions were compared to identify relevant miRNA tar-
get transcripts. Results show that miRNAs modulated by
ERα represent a novel genomic pathway to impact
oestrogen-dependent processes that affect hormone-
responsive breast cancer cell behaviour. MiRNome analysis
in tumour tissues from breast cancer patients confirmed a
strong association between expression of these small RNAs
and clinical outcome of the disease, although this appears to
involve only marginally the oestrogen-regulated miRNAs
identified in this study.

Keywords Oestrogen receptor . Breast cancer .MicroRNA .

Cell cycle . Gene expression

Introduction

The steroid hormone 17β-oestradiol (E2) is a key regulator
of growth and differentiation in the mammary gland [1, 2]
where it is involved in the pathogenesis and clinical out-
come of breast cancer (BC) [3]. In normal and transformed
mammary epithelial cells, the biological effects of E2 are
mediated primarily by oestrogen receptor alpha (ERα), a
ligand-inducible transcription factor of the nuclear receptor
gene superfamily. Following oestrogenic activation, ERα
mediates transcription by interacting directly with specific
oestrogen response elements (EREs) located in the promot-
er/enhancer region of its target genes; it can also interact
with other transcription factor complexes like Fos/Jun [4] or
SP-1 [5] influencing transcription of genes whose promoters
do not harbour ERE (tethering). This leads to transcriptional
activation or repression of target genes involved in impor-
tant cellular function such as cell cycle control, differentia-
tion and apoptosis [6–8]. Alternatively, oestrogens are able
to trigger rapid and transient cellular responses via ERα
crosstalk with different signal transduction pathways in the
cytoplasm [9, 10]. The cellular response to oestrogens
involves multiple biological events, including transcription,
RNA stability and post-translational modifications [11].
MicroRNAs (miRNAs) are a class of small RNAs of 23
nucleotides (nt) in length, which coordinate a broad range of
gene expression programs mainly through modulation of
gene regulation [12]. There are over 1,700 identified miR-
NAs in the human genome that are, themselves, subject to
regulation at both transcriptional and post-transcriptional
level. MiRNAs are encoded in several regions of the ge-
nome, both in protein coding and non-coding transcription
units. Approximately 50% of miRNAs are derived from
non-coding RNA transcripts and have their own promoters,

while an additional 40% are located within the introns of
protein coding genes and share the same transcriptional
control of the host genes [13, 14]. Moreover, many miRNAs
are encoded in the genome as clusters that can range from 2
to 19 miRNA hairpins, encoded in tandem and in close
proximity to each other [15]. After being transcribed,
miRNA carrier transcripts (pri-miRNA [16]) undergo a
step-wise processing: The long miRNA transcript is cleaved
into the nucleus by Drosha into pre-miRNA [17], exported
into the cytoplasm and there cleaved by Dicer into a
miRNA–miRNA* duplex [18]; mature miRNAs are loaded
into microRNA-induced silencing complex (miRISC),
which interferes with the transfer of transcriptome informa-
tion into proteome output via RNA-induced gene silencing
[19–21]. Regardless of the mechanisms, each miRNA can
potentially regulate gene expression of hundreds of genes,
and on the other hand, a single transcript can be targeted by
multiple miRNAs [22, 23]. In fact, almost one third of the
protein-coding genes are under the regulation of miRNAs,
and, as a consequence, many miRNAs seem to play a crucial
role in different biological processes such as differentiation,
proliferation and cell death in a context-dependent way [24].
Not surprisingly, aberrant miRNA expression is a hallmark
of several diseases, including cancer [25]. Several studies
have established a role of miRNAs in the pathogenesis of
BC, showing a link between E2/ERs and microRNAs ex-
pression either in BC cell lines or in cancerous breast tissues
[26–30]. These studies indicate that miRNAs can act as
either oncogenes or oncosuppressors [31]. In addition, iden-
tification of differential expression profiles of miRNAs be-
tween normal and neoplastic breast tissue or among human
BC subgroups confirms the hypothesis of a possible in-
volvement of miRNAs in tumour development and progres-
sion [32–35]. The expression of miRNAs has been
examined in different BC cell lines and biopsies. Among
these, the most consistently deregulated miRNAs following
E2 treatment were miR-206, miR-125a/b, miR-17-5p, miR-
34a and some member of let-7 family that may act as tumour
suppressor genes [36]. Some recent reports, in fact, have
shown that E2 treatment leads to alteration of miR-206
whose expression levels decrease in ERα-positive human
BC tissues. This miRNA is able to suppress ESR1 expres-
sion and to inhibit growth of MCF-7 BC cells [37]. More-
over, miR-17-5p represses the translation of AIB1 mRNA,
thereby inhibiting the function of E2F1 and ERα. Down-
regulation of AIB1 by miR-17-5p results in the suppression
of oestrogen-stimulated proliferation and oestrogen/ER-in-
dependent BC cell proliferation [38, 39]. MiRNA let-7, one
of the first discovered members of let-7 family, is poorly
expressed or deleted in many human cancers as well as miR-
34a, which has been shown to be transcriptionally regulated
also by p53 [40]. On the other hand, miR-21, miR-155 and
miR-10b may act as oncogenes, being consistently found
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over-expressed in cancer. Consistent with these findings,
miR-21 was also shown to be highly up-regulated in breast
tumours compared to the normal breast tissues, suggesting
its oncogenic role [41]. Moreover, miR-21 together with let-
7 and miR-98 are involved in a negative-regulatory loop that
controls c-Myc, E2F1 and E2F2 protein levels [28].

A number of genes involved in BC progression have
been identified by in silico analyses and then experimentally
proven to be targets of miRNAs that are deregulated in
breast tumours [42]. Furthermore, it has been shown that
miRNA deregulation in BC can occur not only at the tran-
scriptional level but also at the processing level. In fact, it
was recently reported that E2 is able to up-regulate Dicer1
gene expression in ERα-positive BC cells [28]. Further-
more, some miRNAs, including miR-221/222 and miR-
29a (highly expressed in ERα negative BC cells), directly
repress ERα and Dicer1 expression; in contrast, miR-200c
(highly expressed in ERα-positive BC cells) increases Dic-
er1 levels [43].

In this study, we performed a time-course analysis of
oestrogen-regulated miRNAs in MCF-7 and ZR-75.1 cell
lines, with the aim to identify all miRNAs showing identical
kinetics and type of response to the hormone in this BC cell
model. In order to identify relevant miRNA target tran-
scripts, we then performed a functional analysis of the E2-
regulated miRNAs by integrating data from both miRNA
and mRNA expression profiles obtained under identical
experimental conditions. To determine the mechanisms by
which ERα exerts its effects on target miRNAs, data derived
from global analyses of ERα in vivo binding sites to the
genome upon E2 stimulation in MCF-7 cells were integrated
with hormone-responsive miRNome data. Finally, to inves-
tigate the role of miRNA expression in primary breast
tumours, we analysed in silico miRNomes from tumour
specimens from patients with divergent clinical outcomes
following surgical treatment to evaluate existing correla-
tions between the expression patterns of oestrogen-
responsive miRNAs identified in cellular models of the
disease and clinical–pathological parameters of BC.

Materials and Methods

Cell Culture and Imunoblotting

Human hormone-responsive BC cells MCF-7 Tet-Off
(Clontech-Takara, Saint-Germain-en-Laye, France) and
ZR-75.1 (ATCC CRL-1500) were grown in Dulbecco’s
modified Eagle’s medium (Sigma-Aldrich, Milan, Italy)
supplemented with 10% foetal bovine serum (HyClone,
Cramlington, UK) and antibiotics: 100 U/ml penicillin,
100 mg/ml streptomycin, 250 ng/ml Amfotericin-B and
50 μg/ml G418. Cells were routinely tested for mycoplasma

infection using MycoAlert mycoplasma detection kit (Cam-
brex BioScience, Rockland, ME, USA). For G0–G1 syn-
chronisation, cells were plated at 20–40% confluence in
steroid-free medium (phenol red-free Dulbecco’s modified
Eagle’s medium with 5% foetal bovine serum, pre-treated
with dextran-coated charcoal and antibiotics) and main-
tained for 4 days with replacement of the same fresh medi-
um before stimulation with 10−8 M 17β-estradiol (+E2) or
EtOH (vehicle) as negative control. ER expression in cell
lines was assayed by sodium dodecyl sulphate (SDS) poly-
acrylamide gel electrophoresis and immunoblotting of total
protein extracts, using rabbit polyclonal anti-ERα (sc-543,
Santa Cruz Biotechnology, Heidelberg, Germany) as previ-
ously described [44].

Patients

Thirty-two frozen tumour specimens were selected from a
former cohort [45]. They were obtained from patients who
underwent primary surgical treatment between 1988 and
2001 at a median age of 57 (range, 32–79). Twenty-two
cases were oestrogen receptor (ER) positive and treated in
the adjuvant setting with 20 mg tamoxifen daily for 5 years
alone or in combination, while 10 cases were ER negative.
The average follow-up was of 89 months. ER and PgR
status was determined by immuno-histochemical stainings;
samples were defined positives when tumours contained
more than 10% positive cells. Details are provided as Sup-
plementary Table S3.

RNA Purification

Total RNA was extracted from control (+EtOH, −E2) and
from hormone-stimulated (+E2) cell cultures with Trizol
(Invitrogen, Carlsbad, CA, USA), as described previously
[46]. In each case, cells were collected from multiple paral-
lel cultures and pooled before RNA extraction as described
before [47]. For tumour samples, after surgical removal,
total RNA was isolated with Concert Cytoplasmic RNA
Reagent (Invitrogen Life Technologies, Carlsbad, CA,
USA) from 20 to 50 mg tumour tissues, according to the
manufacturer’s guidelines. Frozen tumours were placed in
this reagent and homogenised using a ball mill (MM200,
Retsch, Düsseldorf, Germany). The suspension was centri-
fuged at 14,000×g for 5 min at 4°C, then lysed with 0.1 ml
of 10% SDS followed by 0.3 ml of 5M sodium chloride and
0.2 ml of chloroform for milliliters of reagent. The lysate
was centrifuged at 14,000×g for 15 min at 4°C, and the
upper aqueous phase was removed and combined with 0.8
volume of isopropyl alcohol for 10 min at room tempera-
ture. The RNA was recovered by centrifugation, washed
with 75% ethanol and finally dissolved in RNase-free water.
Before use, RNA concentration in each sample was
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determined with a ND-1000 spectrophotometer (NanoDrop,
Wilmington, DE, USA) and quality assessed with Agilent
2100 Bioanalyser (Agilent Technologies, Santa Clara, CA,
USA).

Microarray Analyses

For miRNA expression profiling, technical replicates were
produced. For MCF-7 cells, 800 ng of total RNA were
fluorescently labelled and amplified in triplicate to be then
pooled for the hybridisation; for ZR-75.1 cells and breast
tumour samples, the same concentration of RNAwere fluo-
rescently labelled, amplified and hybridised at least in du-
plicate. Hybridisation reactions were performed with
Illumina v2 MicroRNA Expression BeadChips, according
to the protocols provided by the array manufacturer (Illu-
mina Inc., San Diego, CA, USA). The human microRNA
panel used comprises 1,145 probes designed on miRNA
sequence present in miRBase database (Release 12.0) and
on additional novel content derived using Illumina sequenc-
ing technology. For mRNA expression profiling, 500 ng
total RNA from MCF-7 and ZR-75.1 were reverse tran-
scribed, as described previously [48, 49], used for synthesis
of complementary DNA and biotinylated complementary
RNA (cRNA), according to the Illumina TotalPrep RNA
amplification kit (Ambion, Austin, TX, USA; category
number IL1791) protocol. For each sample, 700 ng of
cRNA were hybridised for 18 h at 55°C on Illumina
HumanWG-6 version 2.0 BeadChips containing 48701
probes (Illumina Inc., San Diego, CA, USA), according to
the manufacturer’s protocol. The BeadChips were scanned
using Illumina BeadArray Reader 500 according to the
manufacturer’s standard methods.

MicroRNA Expression Profiling Data Analysis

For data analysis, the fluorescence intensity files were load-
ed into the Illumina GenomeStudio v2009.1 software for
quality control and expression analysis. First, the quantile
normalisation algorithm was applied on the raw datasets to
correct systematic errors. This normalisation equalises dis-
tribution, median and mean of probe intensities among all
samples, as the normalised distribution is chosen by aver-
aging each quantile across samples. For differential expres-
sion analysis, technical replicates were grouped together,
and miRNAs with a detection p<0.01, corresponding to a
false positive rate of 1%, were considered as expressed.
Statistical significance was calculated with the Illumina
DiffScore, a proprietary algorithm that uses the bead stan-
dard deviation to build an error model. Only miRNAs with a
DiffScore ≤−20 and ≥20, corresponding to a p00.01, were
considered as statistical significant. The microarray data

were deposited in the Array Express repository database
with the following accession numbers: E-TABM-1194.

Breast Tumour Data Analysis

Raw data were normalised as described above using GenomeS-
tudio v. 2009.1, and only probes with p<0.05 were selected for
further analysis. A total of 1,021 probes had at least one valid
call in a tumour sample. Two tumour samples had <10 valid
data and were not included. Furthermore, to avoid unbalancing,
only probes showing valid calls in at least 20 tumour samples
were used in clustering and differential expression analysis
(739 probes). Data were normalised to the median value in all
tumour samples (N030) and converted to log (log ratio). Un-
supervised hierarchical clustering was performed using TMev
package (MultiExperiment Viewer, at www.t4m.org/mev) us-
ing the HCL with Pearson’s correlation with complete or
average linkage, depending on sample/gene number. Differen-
tial expression analysis was carried out using the SAM routine
in the same package, using 5,000 permutations and Tusher’s S0
[50]. Clusters defined by the HLCwere then compared in terms
of overall survival (OS) or disease-free survival (DFS) using
Kaplan–Meier log rank correlation. Survival curves were gen-
erated with PASW 18.0 statistical software.

Quantitative Real-time RT-PCR

Total RNA was extracted from MCF-7 cells before and after
stimulation for 72 h with 10−8 M E2 as described above.
Mature miRNAs were reverse transcribed using a miRNA-
specific stem loops and reverse transcriptase before real-time
PCR performed using Taqman microRNA assays (assay ID:
2439, 2445, 2441, 2126, 2174, 2440, 2333; Applied Biosys-
tems), as described by Grober et al. [51]. RNU49, unaffected
by hormone treatment (data not shown), was used as an inter-
nal control to normalise all data using the Taqman RNU49
assay (Applied Biosystems). All real-time PCR runs were
performed on a MJ Research PTC-200 Opticon Instrument.

ChIP-Seq Data Analysis

For determining the ERα genome-wide binding sites, we
have re-analysed the ChIP-Seq data (accession number E-
MTAB-131) previously published by Cicatiello et al. [48].
Enriched regions from MCF-7 cells stimulated with 17β-
estradiol for 45min (+E2) were compared with the same
from MCF-7 cultured maintained in steroid-free medium
(−E2), with FindPeaks [52], setting the value of subpeaks
parameter to 0.5. For selecting only the most relevant sites,
we have applied the first quartile as statistical cut-off. For
evaluating the nearest ERα binding sites to the miRNA
genes within 50 kb, we have used windowBed of the suite
programs BEDTools [53].
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MicroRNA Target Prediction and Functional Analysis
of Their Predicted MRNA Targets

For comprehensive prediction ofmiRNA target genes we used
TargetScan, release 5.1 (www.targetscan.org). To identify sta-
tistically over-represented ‘biological process’GeneOntology
terms among sets of selected mRNA targets, we used the
Database for Annotation, Visualization and Integrated Dis-
covery (DAVID, http://david.abcc.ncifcrf.gov) functional an-
notation tool [54, 55]. To this aim we used as background data
coming from gene expression profiling experiments previous-
ly performed [48] on the same cell lines and under the same
experimental conditions investigated in this study.

MiRNA Localisation in Host Genes

We annotated the genomic position and context of micro-
RNAs in human genome. This analysis was performed with
RegionMiner [56] application of the Genomatix software
suite, which generates statistic annotation and data for chro-
mosomal regions.

Results

Characterisation of ERα Positive Breast Cancer Cell Lines

The two ERα-positive breast carcinoma cell lines MCF-7
and ZR-75.1 were used as in vitro model of hormone-
responsive BC; ERα expression was monitored by Western
blot analysis, using as control extracts from ERα negative
SKBR3 cells (Fig. 1a). In these cell lines, E2 deprivation
induces G1 arrest [57], a quiescence status readily overrun
by administration of physiological concentrations of E2.
This determines resumption of cell cycle progression, me-
diated by regulation of cell cycle control pathways [58].
Indeed, analysis of hormone-deprived MCF-7 and ZR-75.1
cell cultures before and after oestrogen (E2 10−8 M) stimu-
lation show the timed accumulation of cyclins that charac-
terise cell cycle progression (Fig. 1b). In MCF-7 cells (upper
panel), oestrogen-induced accumulation of the G1 cyclin D1
is detectable already after 4 h of stimulation, remaining high
throughout the pre-replicative phase, and to a lower extent
also during the S phase. Cyclin E2 concentration is also
affected by hormone stimulation, showing a 1.5- to 2-fold
induction after 10 h and lasting for up to 24 h. The cellular
levels of the S-G2 phase cyclins A2 and B1 progressively
accumulate in a latter time. The results were also confirmed
in ZR-75.1 cells (lower panel of Fig. 1b), which show a
good degree of oestrogen dependence and a similar pattern
of cyclin gene activation occurring, however, faster than in
MCF-7 cells. These molecular responses to E2, occurring in

both cell lines, confirm the direct stimulatory action of
oestrogen under the conditions used for this study.

Identification of Oestrogen-Regulated MiRNAs

In order to study the effects of the oestrogen on miRNAs
expression, we performed a time-course analysis following
oestrogen in both BC cell lines selected for this study. To
this aim, total RNAwas extracted from MCF-7 and ZR-75.1
cells before and after different time points of stimulation

Fig. 1 Characterization of ERα-positive breast cancer cell lines. a
Expression level of ERα by Western blot analysis of protein extracts
from MCF-7 (lane 1), ZR-75.1 (lane 2) and SKBR3 (lane 3) cells. b
Monitoring of cyclin gene expression in G1-synchronised MCF-7 and
ZR-75.1 cell lines following stimulation with a mitogenic dose of E2
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with a mitogenic dose of E2 (6, 12, 24 and 72 h), and a
global analysis of miRNA expression profiles was carried
out by microarray hybridisation as described in ‘Materials
and Methods’, using a platform (Illumina MicroRNA Ex-
pression Beadchip) detecting most known and characterised
miRNAs. Results indicate that, in agreement with what
previously reported in this cell type [28, 30, 43, 48, 59,
60], this hormone can indeed affect significantly the intra-
cellular concentration of specific miRNAs. Among all
known miRNAs, we identified 230 showing significant
changes in expression in response to E2 (p≤0.01), including
110 that changed in both cell lines (52 responding similarly
and 58 showing opposite changes), 51 restricted to MCF-7
cells and 69 restricted to ZR-75.1 cells. The 52 miRNAs
showing concordant regulation in the two cell lines, 25
down- and 27 up-regulated (Fig. 2 central panel), were
considered good candidates to investigate miRNA involve-
ment in oestrogen signalling and for this reason selected for
further analysis. In Fig. 3 are displayed in graphic format the
actual values of the fluctuations detected for 14 miRNAs
showing representative expression profiles. Reliability of
the microarray platform used for this study was throughly
controlled in our laboratory in a previous study [30]; how-
ever, a test was performed by real-time RT-PCR on seven
miRNAs in MCF-7 cells 72 h after hormone (Supplementa-
ry Fig. S1). The results confirm a good correlation between
Q-PCR and microarray measurements.

Putative Targets of E2-Regulated miRNAs and Functional
Analysis of their Predicted Targets

In order to evaluate the functional roles of the 52 miRNAs
responsive to E2 treatment in both MCF-7 and ZR-75.1
cells, we performed an in silico functional analysis exploit-
ing previously described mRNA expression profiling data
obtained in the same cell lines under comparable experi-
mental conditions [48]. To this aim, we first searched for
mRNAs putative targets of these oestrogen-regulated miR-
NAs, results show that ∼30% of all expressed mRNAs
indeed represent potential targets of these small RNAs
[48], and the same is true for 33% mRNAs found regulated
by oestrogen in the same study. In order to identify biolog-
ical processes likely to be influenced by ERα via miRNAs
in our cell lines, a Gene Ontology analysis was performed
by DAVID tool, using as background the list of expressed
mRNAs identified previously [48]. The results reported in
Supplementary Fig. S2 show how several cellular processes
were found statistically enriched by ERα-responsive miR-
NAs, including those known to be affected by ERα, such as
response to hormonal stimuli, regulation of transcription and
cell proliferation, and other that represent key cellular pro-
cesses in tumour cells, such as cell migration, adhesion and
differentiation. Furthermore, starting from the assumption

that miRNA up-regulation might result in down-regulation
of its mRNA targets, and vice versa, we investigated the
existence of dynamic inverse relationships between miRNA
and mRNA levels in oestrogen-stimulated cells. To evaluate
this possibility, we first searched for the presence of perfect
or imperfect matches between the seed sequence of each
regulated miRNA and the untranslated region (UTR) of their
putative mRNA targets. Interestingly, we could find only
perfect complementarity between these two sequences, a
finding that strongly supports the possibility of the existence
of a pathway controlling mature mRNA half-life in
hormone-responsive BC cells, whereby E2-activated ERα
exerts a post-transcriptional control on its target gene activ-
ity via specific miRNAs. Indeed, when considering all
mRNAs targeted by a single miRNA, we observed a clear
inverse relationship between changes in miRNA concentra-
tion and that of the corresponding target mRNAs in about
50% of the cases 125 mRNAs of the 252 identified putative
targets (listed in Supplementary Table S1).

E2-Regulated miRNAs Associated with ERα-Binding
Sites or Located in the Intragenic Region
of Oestrogen-Responsive Genes

Current understanding of microRNA biogenesis indicates
that expression of these small RNAs can be modulated
either during their transcription or through the multiple steps
leading to their maturation. In order to identify the transcrip-
tional mechanisms by which activated ERα exerts its effects
on oestrogen-responsive miRNAs, we integrated two global
genomic analyses of ERα in vivo binding sites [48, 61] with
the miRNome expression profile obtained in this study. In
this way, we could observe that some E2-responsive miR-
NAs indeed display ERα binding sites within 10 kb of the
transcription unit (Table 1). In particular, six of these
miRNA genes are associated with one or more ERα binding
sites, suggesting a mechanism for direct regulation of RNA
biogenesis exerted also in this case by chromatin-bound ER.
However, recent findings suggest that the receptor is able to
perform its action even when its binding site is not in close
proximity of the regulated genes. In order to evaluate this
possibility, we expanded our search to 50 kb around miRNA
genes, leading to the identification of 18 more miRNA
genes linked to one or more ERα-binding sites (Supplemen-
tary Table S2). As approximately 50% of miRNAs are
transcribed from introns of protein-coding genes, while the
others are intergenic [62], we searched for E-regulated
protein-coding genes harbouring miRNA genes and aligned
the results with those relative to E2-regulated miRNAs. The
results are reported in Table 2 to show that six E2-regulated
miRNAs are located within oestrogen-dependent genes. In-
terestingly, in most cases, the miRNA follows the same
regulation trend of the harbouring gene.
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Regulation of miRNA Expression in Breast Tumour
Samples

We next evaluated expression of the hormone-regulated
miRNAs identified here in primary BC tissue samples.
For this, we performed miRNA expression profiling in

breast tumour samples as described in ‘Materials and
Methods’. All miRNA probes that showed valid calls in
at least 20 tumour samples were used in the statistical
analysis for correlation with clinic–pathological parame-
ters. Of these 739 probes, 161 were regulated by oes-
trogen in at least one cell line, whereas 49 were

Fig. 2 Effects of ERα on miRNome of human breast cancer cell lines.
Time-course analysis of miRNA expression profiles in MCF-7 and ZR-
75.1 cell lines after cells exposure to E2 for the indicated times. Oestro-
gen-regulated miRNAs are grouped as follows: regulated in MCF-7 cells
only (a), in both cell lines (b) or in ZR-75.1 cells only (c). Data displayed

represent the ratio between the fluorescence intensity values of each
miRNA at the indicated time after exposure to 10−8 M E2 vs the
corresponding 0 h time point. MicroRNAs marked in red represent those
regulated in BC cell lines in vitro and those displaying differential
expression between primary breast tumour subgroups (see Fig. 4)
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regulated in both cell lines examined. First, we consid-
ered whether the expression profile of in vitro regulated
miRNAs (161 probes) could discriminate between ER-

positive and ER-negative breast tumours. However, both
t test and SAM analysis failed to evidence any correla-
tion. On the contrary, unsupervised hierarchical

Fig. 3 Graphic representation of timed fold-change variations of selected E2-regulated miRNAs in MCF-7 and ZR-75.1 cell lines. MicroRNAs
shown are members of clusters (a, c) or are encoded as independent transcript (b, d)
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clustering of these probes gave two well-separated
branches (Fig. 4a) that correlated with disease-free sur-
vival (disease-free or relapsing; DFS) when all the
patients were considered (P<0.05 in the case of DFS;
Fig. 4b), while marginal significance was observed for
overall survival (surviving and not surviving; OS). Lim-
iting the analysis to the group of patients receiving
Tamoxifen treatment did not increase separation of sur-
vival curves, whereas DFS retained marginal signifi-
cance, this was lost for OS (Fig. 4c). A second kind
of analysis was performed to see whether in vitro reg-
ulated probes were present among those differentially
expressed in defined groups of samples. Again, SAM
analysis failed to evidence differentially expressed
probes in ER-positive versus ER-negative samples. On
the contrary, groups defined by the DFS status and by
the OS status were well differentiated. For DFS, we
chose 47 probes differentially expressed (median false
significant genes07.84): of these, five were regulated in
vitro in at least one cell line (hsa-miR-122, -194*,
-1238, -1305 and HS_94). For OS, 63 probes were
selected (median FSG06.3): Of these, nine were regu-
lated in at least one cell line (hsa-miR-122, -194*, -646,
-940, 1206, 1238, -1305, HS_94 and HS_275). MiRNAs
belonging to these groups are shown in Supplementary
Table S4.

Discussion

MicroRNAs represent a class of small non-coding RNAs
that control gene expression by targeting mRNAs and there-
by triggering either translation repression or RNA degrada-
tion. Among human diseases, it has been shown that
miRNAs are aberrantly expressed or mutated in cancer,
suggesting that they may play a crucial role as a class of
oncogenes or tumour suppressor genes. Multiple lines of
evidence show the involvement of specific miRNAs in the
pathogenesis of BC, where they may represent an alternative
molecular mechanism that could impact the onset, develop-
ment and progression of this hormone-responsive disease. In
this study, we investigated the role of oestrogen and its
nuclear receptor ERα in modulating miRNA expression in
human BC cells. Once chosen robust and validated cellular
models for our study, we performed a time-course profiling
analysis to identify miRNAs whose levels are affected by E2
in both MCF-7 and ZR-75.1 cells. This led to the identifi-
cation, among the 1,145 probes on the miRNA microarray
used, of 172 E2-regulated miRNAs (15% of total). Of these
small RNAs, 52 resulted commonly regulated in both cell
lines, 51 were regulated only in MCF-7 and 69 regulated
only in ZR-75.1 cells. These three sets, characterised by a
defined kinetic of response to E2, cluster in two concordant
groups of significantly down- or up-regulated miRNAs.

Table 1 ERα-binding sites within 10 kb from loci encoding E2-regulated miRNAs

miRNA gene Closest ERα binding sitea,b Closest ERα binding sitea,b Closest ERα binding sitea,c Closest ERα binding sitea,c

hsa-miR-135a-2 – 4773 (chr12:96486593-7225) −7265 (chr12:96474451-56) 8546 (chr12:96490366-0460)

hsa-miR-181c – – −3445 (chr19:13842950-3068) 5623 (chr19:13852245-2362)

hsa-miR-23a −6791 (chr19:13815263-6060) 191 (chr19:13807531-8210) −7212 (chr19:13815685-99) 786 (chr19:13807588-7661)

hsa-miR-27a −6933 (chr19:13815263-6060) 44 (chr19:13807531-8210) −7354 (chr19:13815685-99) 639 (chr19:13807588-7661)

hsa-miR-24-2 0 (overlapping) (chr19:
13807531-8210)

0 (overlapping) (chr19:
13807531-8210)

−7649 (chr19:13815685-99) 486 (chr19:13807588-7661)

hsa-miR-26b – 2814 (chr2:218978503-9023) – –

a Distance in bps
b ChIP-Seq data from Cicatiello et al. [48]
c ChIP-Seq data from Fullwood et al. [61]

Table 2 E2-regulated miRNAs in MCF-7 and ZR-75.1 cell lines located in the intragenic region of hormone-regulated genes

miRNA gene E2 effect on miRNA Host genea E2 effect on host gene

hsa-miR-25 (chr7:99.529.199-202) Up MCM7 (chr7:99.528.340-99.537.363) Up

hsa-miR-26a (chr12:56.504.649-742) Down CTDSP2 (chr12:56.499.977-56.527.014) Down

hsa-miR-424 (chrX:133.508.310-407) Up MGC16121 (chrX:133.505.073-133.508.326) Up

hsa-miR-618 (chr12:79.853.646-743) Down LIN7A (chr12:79.715.302-79.855.825) Down

hsa-miR-760 (chr1:94.084.976-5055) Up BCAR3 (chr1:937.999.37-940.852.94) Down

hsa-miR-942 (chr1:117.438.788-873) Up TTF2 (chr1:117.404.472-117.447.014) Up

a Oestrogen-dependent gene regulation data from Cicatiello et al. [48]
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Interestingly, our microarray data reveal that the miRNA
‘star’ strand, until recently considered the carrier strand
devoid of biological significance but now know to be fully
functioning and independently controlled by the Ago 2, is
most often regulated respect to the corresponding ‘non-star’
counterpart, which often do not show significant changes
when compared to the control (0h-EtOH). The abundance of
star sequences in our datasets could be explained by RISC
incorporation of star arms, due to the thermodynamic sta-
bility of the miRNA–miRNA* duplex. These alternate ma-
ture forms share similar evolutionary and structural
signatures, and show similar relationships with target 3’
UTRs. The results obtained here are also in agreement with
the involvement of oestrogen and its receptors in miRNA
maturation kinetics, as recently demonstrated for ERβ in
BC cells by Paris et al. [30]. As these alternate miRNA
species target different transcripts respect to non-star
strands, they increase the number of targets for each miRNA
gene and may constitute also a powerful evolutionary mech-
anism for the emergence of new miRNAs.

Considering the biological significance of the results
obtained, we focused our attention on E2-regulated miRNAs
in common between the two BC cell lines analysed as they
represent a good starting point to investigate the role of
miRNAs in modulating the final responses to oestrogen of
hormone-responsive genes in BC cells and to understand in
depth the spectrum of molecular mechanisms dependent upon
oestrogen in BC. Among the many observations made, we
noted that, together with miRNAs transcribed as independent
transcripts, several miRNA gene clusters show the same
changes in response to E2 in both cell lines, suggesting a
global effect of ligand-activated receptor on the entire gene
locus. Moreover, we observed that most regulated miRNAs
exhibit a significant variation in expression 24–72 h after E2
stimulation. This may be due to the fact that increase/decrease
of pri- and pre-miR expression level occurs early after E2
stimulation, while mature miRNA expression level start to
vary later, as shown by Castellano et al. [58], who focused
their attention on the cluster 17–92 and demonstrated that if
the pri-miR levels are quickly increased during the first 3 h of
oestrogen stimulation, while the mature forms result mainly
increased only after 24–72 h of oestrogen treatment.

As partial confirmation of the results described here, we
observed that a number of miRNAs found oestrogen-
responsive in our expression profiling assays were identified
also in other studies performed in BC cells. E2, for example,
was found to increase expression of some members of the
miR-17-92 cluster, as well as of miR-424*, miR-450b-3p/5p
and miR-542-3p and of miR-25* [28, 59]. Conversely, it
was shown to decrease expression of miR-34a*, let-7e*,
miR-125a-3p, miR-181a*, miR-181c*, miR-26b*, miR-
618 and star members of the miR-23a/27a/24-2 cluster
[28, 60].

Since miRNAs exert their actions on target mRNAs at the
post-transcriptional level, a variation of their cellular levels
upon E2 stimulation could have important functional roles.
As a consequence, identification of miRNA targets is crucial
to understand the functional significance of oestrogen-
mediated miRNA expression changes in BC cells. For this
reason, we performed an in silico target analysis on E2-
regulated miRNAs and found how almost 33% of E2-
responsive mRNAs represent putative targets of regulated
miRNAs. To identify inverse relationships between changes
in oestrogen-responsive miRNA levels and those of the
corresponding target mRNAs, we took in account all
mRNAs targeted by a single miRNA. Results reveal 125
mRNAs that show and correlation respect to the matched
miRNA (Supplementary Table S1), with a significant prev-
alence (p<0.003) for down-regulated mRNAs (14%, rang-
ing from 6% to 23% for each of the E2-responsive gene
clusters described in these same cell lines [48]), respect to
up-regulated ones (8%, ranging between 3% and 13% in the
activated gene clusters). These results indicate a deep impact
of E2/ERα on BC cell transcriptome regulation via E2-
responsive miRNAs. Considering the biological signifi-
cance of this finding, we searched biological functions
reflecting the activity of mRNAs that are significantly
over-represented among all predicted target transcripts by
Gene Ontology analysis. The results reported in Supplemen-
tary Fig. S2 show that several biological processes are
indeed controlled via the miRNA-dependent pathway de-
scribed here. Indeed, the presence of target genes involved
in the cell proliferation, gene transcription, signal transduc-
tion and apoptosis indicates that ERα affects in this way a
number of key cellular processes through this post-
transcriptional regulatory mechanism where ERs appear to
influence the activity of target genes through miRNA-
mediated post-transcriptional regulation of the activity of
gene networks.

Concerning the mechanism for miRNA regulation by the
oestrogen receptor, starting from expression profiling and
ERα ChIP-Seq and ChIA-Pet data, we propose at least two
different mechanisms for hormone-mediated regulation of
miRNA gene activity. One is represented by ERα binding in
proximity of miRNA-encoding genes that suggests a direct

�Fig. 4 Analysis of miRNA expression in 30 breast cancer samples. a
Hierarchical clustering of 161 miRNAs oestrogen-regulated in vitro in
at least one cell line. The blue bars denote ER+ samples. Numbers at
the top indicate individual tumour number (see Supplemental Table S3
for details). The two main branches were used in survival analysis: b
Kaplan–Meier survival analysis and log rank test concerning all 30
samples (p<0.05 for DFS, top; p<0.08 for OS, bottom) or c limited to
patients receiving adjuvant Tamoxifen (p<0.09 for DFS, top; NS for
OS, bottom). ‘N’ on the curves denotes the censored events in each
group. The miRNAs marked in red are in common between the
miRNAs classifying breast tumours and those E2-regulated in BC cell
lines
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involvement of the receptor in transcriptional regulation of
pri-miR synthesis by transcription. As shown in Tables 1
and S2, six E2-regulated miRNAs have an ERα binding site
within 10 kb from the miRNA gene at a major distance
(50 kb), but still compatible with the mechanism cited
above. The presence of binding sites for the receptor up-
stream and/or downstream of E2-downregulated miR-27a,
one of the components of the miR-23a-27a/24-2 cluster, is
particularly interesting as targets of this miRNA identified
based upon changes in protein levels after treatment with a
27a antagomiR include the transcriptional co-factor
ZBTB10/RINZF. ZBTB10 is a repressor of the SP1 tran-
scription factor, which is found overexpressed in a variety of
cancers and is thought to play a role in the G0–G1 to S
phase progression in BC cells [63]. Similarly, direct up-
regulation of miR-135a of is interest, considering that this
miRNA has been found to be oncogenic, able to regulate
APC and Jak2 gene transcripts, which both encode proteins
involved in cell survival and proliferation, angiogenesis and
immune evasion [64, 65]. The second E2-mediated miRNA
regulation mechanism suggested by the results reported here
is represented by the involvement of E2-inducibile expres-
sion of mRNA-encoding genes that harbour microRNA
genes in their intronic regions. In order to investigate this
mechanism, we controlled first which E2-regulated miR-
NAs were located in host mRNA genes and, subsequently,
which of these genes were E2-regulated. In this way, we
identified 6 E2-regulated miRNAs that are encoded by a
host gene that, in all but one case, is itself regulated by the
hormone with the same kinetics (Table 2). These consider-
ations do not exclude, of course, other potential mechanisms
by which ligand-activated ERαmight affect miRNA expres-
sion levels. For example, several studies have demonstrated
the presence of a crosstalk of the miRNA maturation path-
ways with intracellular signaling molecules as p53 [66],
Smad proteins [67] and ER itself. Recent findings, in fact,
suggest a role for E2/ERα action in the biogenesis of miR-
NAs, where ERα is able to down-regulate miRNA expres-
sion blocking Drosha-mediated processing of a subset of
miRNAs by binding to Drosha in a p68/p72-dependent
manner and inducing the dissociation of the microprocessor
complex from pri-miRNA [68].

Analysis of miRNA expression in clinical samples con-
firmed the general finding that these noncoding RNAs show
significant associations with clinical outcome more than
protein coding genes [69, 70]. In fact, significant survival
curve separations were observed in terms of both disease-
free and overall survival, despite the fact that the cohort of
patients examined here is small (N030). Notably, the group
of miRNAs regulated by oestrogen in vitro was found
comparably effective in discriminating survival, although
the small number of samples does not allow to evidence
specific effects in the group of ER-positive, Tamoxifen-

treated samples. In contrast, we could not find any associa-
tion of regulated miRNAs with ER status. One likely expla-
nation for this is that miRNA expression levels in tumours
respond to many different stimuli aside from oestrogen
receptor-mediated regulation. The same finding was in part
true for protein coding RNAs [71]. For the reason stated
above, we are not surprised by the fact that there is no direct
correlation between hormone-regulated miRNAs and the
miRNA profile that correlates with clinical follow-up. In-
deed, the number of RNAs found is not significant, as any
other set of corresponding size will contain similar numbers
of responsive probes.

Overall, our data indicate that miRNA expression play a
key role in oestrogen-dependent functions in BC and possi-
bly other cell types, suggesting that miRNA modulation by
ERα represents a novel genetic pathway controlled by these
steroid hormones that could impact oestrogen-dependent
breast tumour biology and, thereby, influence the clinical
and pharmacological profile of the disease.
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Estrogen effects on mammary epithelial and breast
cancer (BC) cells are mediated by the nuclear receptors
ERa and ERb, transcription factors that display func-
tional antagonism with each other, with ERb acting as
oncosuppressor and interfering with the effects of ERa on
cell proliferation, tumor promotion and progression.
Indeed, hormone-responsive, ERaþ BC cells often lack
ERb, which when present associates with a less aggressive
clinical phenotype of the disease. Recent evidences point
to a significant role of microRNAs (miRNAs) in BC,
where specific miRNA expression profiles associate with
distinct clinical and biological phenotypes of the lesion.
Considering the possibility that ERb might influence BC
cell behavior via miRNAs, we compared miRNome
expression in ERbþ vs ERb� hormone-responsive BC
cells and found a widespread effect of this ER subtype on
the expression pattern of these non-coding RNAs. More
importantly, the expression pattern of 67 miRNAs,
including 10 regulated by ERb in BC cells, clearly
distinguishes ERbþ , node-negative, from ERb�, meta-
static, mammary tumors. Molecular dissection of miRNA
biogenesis revealed multiple mechanisms for direct
regulation of this process by ERbþ in BC cell nuclei.
In particular, ERb downregulates miR-30a by binding to
two specific sites proximal to the gene and thereby
inhibiting pri-miR synthesis. On the other hand, the
receptor promotes miR-23b, -27b and 24-1 accumulation
in the cell by binding in close proximity of the
corresponding gene cluster and preventing in situ the
inhibitory effects of ERa on pri-miR maturation by
the p68/DDX5-Drosha microprocessor complex. These
results indicate that cell autonomous regulation of miRNA
expression is part of the mechanism of action of ERb in
BC cells and could contribute to establishment or
maintenance of a less aggressive tumor phenotype
mediated by this nuclear receptor.
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Introduction

Estrogens have a role in breast cancer (BC) pathogenesis
and progression by controlling mammary cell prolifera-
tion and key cellular functions via the estrogen receptors
(ERa and ERb: Heldring et al., 2007). ERs are members
of the nuclear receptors superfamily of ligand-dependent
transcription factors that both regulate gene expression
controlling the estrogen signal transduction cascade
with distinct and even antagonistic roles. In hormone-
responsive, ERa-positive BC cells ERb inhibits estro-
gen-mediated cell proliferation by increasing the expres-
sion of growth-inhibitory genes and by interfering
with activation of cell cycle and anti-apoptotic genes
by ERa in response to 17b-estradiol (E2: Chang et al.,
2006; Grober et al., 2011). ERb is frequently lost in BC,
where its presence generally correlates with a better
prognosis of the disease (Sugiura et al., 2007), is a
biomarker of a less aggressive clinical phenotype
(Novelli et al., 2008; Shaaban et al., 2008) and its
downregulation has been postulated to represent a
critical stage in estrogen-dependent tumor progression
(Roger et al., 2001; Bardin et al., 2004). Despite the
direct relationships between estrogen and breast
carcinogenesis, the divergent roles of the two ER
subtypes in BC are not fully understood, mostly because
they are complex, involving genomic and non-genomic
actions, regulation of gene transcription and control of
mRNA stability and translation efficiency.

MicroRNAs (miRNAs) are small (20–25 nt) non-
coding RNAs that can regulate gene activity in a
posttranscriptional manner. These molecules, frequently
transcribed as polycistronic RNAs, are synthesized
in the nucleus by RNA polymerase II or III as
long primary transcripts (pri-miRNAs), that are then
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processed by the class-2 RNase-III Drosha (Han et al.,
2004) in B70-nucleotide stem-loop RNAs (pre-miR-
NAs), that in turn are exported from nucleus to
cytoplasm by exportin 5 and Ran-GTP (Kim et al.,
2009) and cleaved by Dicer/TRBP endoribonuclease into
an imperfect miRNA/miRNA* duplex (Chendrimada
et al., 2005). Only one strand of the duplex is finally
selected to function as a mature miRNA, whereas the
other (passenger) strand is typically degraded (Okamura
et al., 2008; Newman and Hammond, 2010). Mature
miRNAs are then incorporated into an RNA-induced
silencing complex, which binds to target mRNAs,
determining gene silencing by either inhibition of
translation or mRNA degradation (Newman and
Hammond, 2010). miRNAs have been shown to
regulate a wide variety of cellular phenotypes, including
neoplastic transformation, cell proliferation, differentia-
tion and homeostasis (Garzon et al., 2009) and altered
expression of these small RNAs contributes to tumor-
igenesis, as some of them can function as either tumor
suppressors or oncogenes (Zhang et al., 2007; Croce,
2009). Interestingly, in solid tumors, such as prostate,
colon, stomach, pancreas, lung and breast, the spectrum
of miRNAs expressed (miRNome) is different from that
of the corresponding normal tissues (Volinia et al.,
2006), suggesting the involvement of miRNAs in
transformed cell biology. Differential expression of
miRNA genes was found associated with specific
pathological features of BC, where distinct miRNA
expression profiles in normal vs cancer tissue or between
different molecular and clinical tumor subtypes appears
to be the rule (Iorio et al., 2005; Lu et al., 2005;
Blenkiron et al., 2007; Tavazoie et al., 2008). There is
increasing evidence, in fact, that specific miRNAs may
be responsible at large for disease heterogeneity,
functioning as regulators of tumorigenicity, invasion
and metastasis (Tavazoie et al., 2008). Moreover, genetic
defects in key components of the miRNA biosynthetic
pathway have been described in tumors (Hill et al., 2009;
Melo et al., 2009, 2010), and several genes involved in
BC progression have been identified as targets of
miRNAs that, in turn, are found deregulated in BC
cells (Garzon et al., 2009).

Several evidences indicate that ERa is among the
transcription factors regulating miRNA biogenesis in
hormone-responsive BC cells (Bhat-Nakshatri et al.,
2009; Castellano et al., 2009; Maillot et al., 2009;
Yamagata et al., 2009; Cicatiello et al., 2010; Ferraro
et al., 2010, 2011). More recently, global mapping of
ERb binding to ERa-positive, hormone-responsive BC
cells chromatin in vivo showed ERb interaction with
several miRNA genes, suggesting the possible involve-
ment of this receptor in hormonal control of small non-
coding RNA biogenesis in this cell type (Grober et al.,
2011). Starting from this observation, we investigated
here miRNA expression pattern in estrogen-responsive
BC cell lines engineered to express full-length ERb and
in primary-tumor samples selected according to the
presence or absence of this nuclear receptor. Results
indicate a role of ERb in the control of miRNA
biogenesis and expression pattern in BC cells.

Results

ERb induces widespread changes in miRNA expression in
hormone-responsive cells
In order to investigate the role of ERb in BC, we
generated MCF-7 cells stably expressing full-length
human ERb (ERb-1) fused at the N- (N-TAP-ERb) or
C- (C-TAP-ERb) terminus to a TAP tag in pTRE2pur-
HA expression vector (Puig et al., 2001). As shown in
Figure 1a, the expression levels of C-TAP-ERb (two
independent clones: lanes 2–3), N-TAP-ERb (lane 4) or
C-TAP-ERa (used as control: lane 5) are comparable to
those relative to endogenous ERa, as detected by WB
under comparable test conditions, to avoid toxic and
artifactual events consequent to overexpression of the
exogenous protein. The functional integrity of tagged
ERb was assessed by measuring their ability to counter-
act induction of ERE-TK-luciferase reporter-gene
transcription by ligand-activated endogenous ERa. As
shown in Figure 1b, cell expressing TAP-ERb show a
marked reduction in E2-mediated activation of reporter-
gene transcription compared with wt cells, a phenotype
that could be almost completely recovered by stimula-
tion with the ERa-selective ligand 4,40,400-(4-propyl-
[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT). TAP-ERb
effects on E2-induced MCF-7 cell proliferation and cell
cycle progression were also investigated and the results,
reported in Figures 1c and d, show that cells expressing
exogenous ERb grow much slower in response to
estrogen than wt or C-TAP-ERa cells, consequent to
reduced G1–S transition (Figure 1d). It is worth
mentioning that the cell cycle inhibitory effects of ERb
are well known (Heldring et al., 2007; Grober et al.,
2011, and references therein) and are more evident at
relatively higher concentrations of E2 (X10�10), compa-
tible with the lower affinity of this ER subtype for the
hormone (compare, for each cell clone, the SþG2
fraction in hormone-stimulated vs -starved cells). The
efficiency of PPT in promoting cell cycle progression
(Figure 1d) relates to its ability to promote ERa-
mediated gene transcription (Figure 1b), confirming the
direct link between transcriptional activity of this
receptor subtype and the mitogenic effects of estrogen
(Cicatiello et al., 2010). Gene-expression profiling of
asynchronously growing cells showed no major differ-
ences between N- and C-TAP-ERb cells, whereas their
transcriptomes were significantly different from that of
C-TAP-ERa cells (Supplementary Figure S1), confirm-
ing previous results obtained in E2-stimulated cells
(Grober et al., 2011). Based on these results, expression
of the TAP-ERb fusion proteins appears to significantly
affect ERa-mediated estrogen signal transduction to
target genes and the cell cycle, confirming previous
observations indicating that they are fully functional
in vivo (Grober et al., 2011; Nassa et al., 2011).

Multiple roles have been proposed for miRNAs in
hormone-responsive BC, where the presence of ERb has
been shown to associate with less aggressive disease
forms. We decided to use our ERb-expressing cells to
investigate potential links between ERb and miRNA
activity in hormone-responsive BC cells, as these
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represent a useful in vitro model to investigate the
molecular mechanisms underlying the biological effects
of this receptor subtype in hormone-responsive tumors.
To this aim, total RNA was extracted from wt MCF-7,
N-TAP-ERb, C-TAP-ERb (2 independent clones) and
C-TAP-ERa cells. Global analysis of miRNome expres-
sion was peformed with microarrays detecting the vast
majority of known and characterized miRNAs (Illumina
MicroRNA Expression Beadchip, Illumina Italia, Mi-
lano, Italy) as described in Material and methods.
Results indicates that expression of ERb has a deep
impact on BC cell miRNome, as 84 miRNAs were found
differentially expressed in three ERbþ vs two ERb�
cell lines, whereas no significant differences could be
detected among cells expressing the different tagged
forms of ERb, or between C-TAP-ERa, wt and MCF7-
TAP cells (not shown), that express only the TAP
peptide and show no differences in ERa signaling with
respect to wt cells (Ambrosino et al., 2010; Grober et al.,
2011). To validate this result, we performed miRNA
expression profiling with a different microarray plat-
form (Agilent Human microRNA Microarrays
18� 15K v3, Agilent Technologies Italia, Milano, Italy)
and compared the results obtained in the two experi-
mental settings. As expected, we observed some
differences between the two data sets, likely due to
technical differences between the two microarrays plat-
forms (in particular sensitivity and quality of the probes)
and the two probe sets (Supplementary Materials and

methods and data not shown). Nevertheless, 73 among
the differentially expressed miRNAs identified with the
Illumina platform were either fully confirmed with the
Agilent array or, in some instances, could not be
detected here due to a lower sensitivity of this platform.
For this reason, we performed a further validation of the
results obtained with the Illumina arrays analyzing by
real-time RT–PCR (reverse transcriptase–PCR) the
expression levels of 10 miRNAs selected according to
their relative expression level, ranging from very low to
high, and including also miRNA undetectable with
Agilent arrays or differentially expressed between cell
lines (except for miR-181c, that was not differentially
expressed and is included as negative control). Results
(reported in Supplementary Figure S2) show a very high
correlation between rtPCR and Illumina array data
(correlation coefficient: 0.76), indicating reliability of
this microarray platform. The 73 differentially expressed
miRNAs listed in Figure 2a and Table 1 were thus
considered validated. To gather insights on the mole-
cular mechanisms for ERb effects on miRNAs, expres-
sion profiling was carried out in both cell types after
estrogen starvation. Under these conditions, no differ-
ences could be detected between ERbþ and ERb� cells
(left panel in Figure 2b, referring to average values
measured in ERb� vs ERbþ cell lines), indicating a key
role of the liganded in determining the observed
differences. For this reason, we next investigated
whether expression of the 73 miRNAs identified in the

Figure 1 Functional characterization of ERb-expressing MCF-7 cell clones. (a) Western blotting analysis of protein extracts from
control (wt, lane 1) and TAP-ERs (N-TAP-ERb: lanes 2–3, C-TAP-ERb: lane 4, C-TAP-ERa: lane 5) expressing cells. Asterisks mark
non-specific bands. (b) The ability of tagged ERb to interfere with ERa activity was assessed by comparing estrogen effects in wt,
N-TAP-ERb and C-TAP-ERb cells by ERE-TK-luciferase reporter-gene activation mediated by E2 or PPT (selective ERa agonist).
(c) Proliferation rate of wt, N-TAP-ERb and C-TAP-ERb cells was measured in hormone-starved cells stimulated with 10�8 M E2, respect
to untreated cells. Cell counting was performed with a colorimetric assay at the indicated times. (d) Analysis of cell cycle progression after
estrogen stimulation of wt or TAP-ERb-expressing cells. The percent of SþG2 phase cells was determined by flow cytometry in estrogen-
starved cultures 27h after treatment with either vehicle alone (EtOH) or the indicated concentrations of E2 or PPT.
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previous experiment was affected by estrogen. To this
aim, N-TAP-ERb, C-TAP-ERb and C-TAP-ERa were
E2-deprived and subsequently stimulated with 10�8 M
E2 for 6–72 hrs before miRNA analysis. Results
displayed in Figure 2b (right panel) show that all
investigated miRNAs respond to the hormone in a
time-dependent manner. Although kinetics and extent of
miRNA response to the stimulus were comparable
between the two ERbþ cell lines, they were significantly
different in ERbþ vs ERb� (C-TAP-ERa) cells. Direct
comparison of the data from the two cell types indicates
that the differences in steady-state miRNA levels
consequent to ERb expression are due to ERb antagon-
ism upon ERa activity or to a specific effect of ligand-
activated ERb. As shown in Supplementary Figure S3,
for example, expression of hsa-miR30a* and, to a lesser
extent, hsa-miR30a shows a time-dependent decrease
following E2 stimulation only in ERbþ cells, whereas it
is unaffected by the stimulus in the absence of ERb. On

the contrary, hsa-miR-23b and -23b*, hsa-miR-27b and -
27b* and hsa-miR-24 and -24-1* levels decrease in the
presence of E2 in ERb� whereas they increase in ERbþ
cells. The putative mRNA targets of the miRNAs
regulated by ERb were searched with TargetScan and,
subsequently, analyzed for Gene Ontology term over-
representation, in order to identify biological processes
likely to be influenced by this ER subtype via miRNAs.
In this way, several cellular processes were found
downstream of ERb-responsive miRNAs, including those
known to be affected by ERb, such as response to
hormonal stimuli, regulation of transcription and cell
proliferation and others that represent key cellular
processes in malignant cells, including cell motility,
migration, adhesion, differentiation and fate determina-
tion, and are targeted by regulatory cascades in cancer
cells (Supplementary Figure S4).

The data described above were obtained in vitro in a
BC cell model that, although it has been shown to reflect
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Figure 2 Correlations between ERb and miRNome expression in hormone-responsive BC cells and primary breast carcinomas.
(a) Heatmap showing 73 miRNAs differentially expressed between ERbþ and ERb� cells maintained in standard culture conditions.
Data displayed represent the ratio between the fluorescence intensity value of each miRNA in a given array (cell line) vs the average of
the fluorescence intensity value of the same miRNA in all arrays. (b) Heatmaps showing relative expression of 73 ERb-responsive
miRNAs in ERbþ and ERb� cells treated with vehicle alone (EtOH; left panel) or with E2 for the indicated times (right panel). Data
displayed represent the ratio between the fluorescence intensity value of each miRNA at the indicated time after E2 stimulation (þE2)
vs the same in hormone-starved cells (�E2, control). (c) Top: Principal component analysis (PCA) relative to differential miRNA
expression in 17 ERbþ and 19 ERb� primary BC samples. Bottom: Cluster analysis of 67 miRNAs discriminating between ERbþ
and ERb� BC samples. Data displayed represent the ratio between the fluorescence intensity value of each miRNA in a given array
(tumor sample) vs the average of the fluorescence intensity value of the same miRNA in all arrays. miRNA marked in red were
differentially expressed both in ERbþ cell lines and BC samples, whereas those marked in purple in C derive from the same pre-miR
of those differentially expressed in ERbþ cell lines and tumors.
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only in part the complexity of the hormone-responsive
phenotype, in several cases provided molecular insights
that could be validated and find application in the
clinical setting. For this reason, we considered these
evidences as an indication that ERb might indeed
influence miRNome activity also in primary breast
tumors. To this end, BC samples were selected, among
those originally included in the study reported by
Novelli et al. (2008), for presence or absence of
ERb expression according to immuno-histochemistry
(Supplementary Figure S5). Tumors were divided in two
groups of 22 ERbþ and 18 ERb� tumors, respectively,
that did not show significant differences from each other
with respect to key clinical and molecular parameters,
summarized in Supplementary Table S1, with the
notable exception of the presence of lymphnodal
metastases and a worst tumor grading for ERb�
tumors. RNA was extracted from formalin-fixed,
paraffin-embedded tissues and that from 17 ERbþ
and 19 ERb� tumors was of quality and concentration
apt to perform miRNA expression profiling as described
(Ravo et al., 2008). This led to the identification of 67
miRNAs, whose expression level discriminates ERbþ

from the ERb� breast tumors, including 10 miRNAs
that were found differentially expressed also in ERbþ
vs ERb� BC cells in vitro (Figure 2c and Supplementary
Table S2). These results confirm those obtained in cell
lines (Figures 2a and b), pointing to a role of ERb in the
control of BC miRNome and thereby indicating that
miRNAs are integral components of the gene regulation
cascade mediating the effects of this nuclear receptor in
tumor cells.

Direct regulation of miRNA biogenesis by
hormone-activated ERb in BC cells
Mature miRNA expression can be regulated through
control of either transcription or one of the key steps of
primary transcript (pri-miR) maturation. We analyzed
by chromatin immunoprecipitation sequencing (ChIP-
Seq) the entire ERa and ERb cistromes in the ERbþ
(Grober et al., 2011) and ERb� cells (Cicatiello et al.,
2010) upon E2 stimulation. Aligning ER-binding sites
and miRNA gene positioning in the genome we
observed that several miRNA-encoding genes differ-
entially expressed in ERbþ vs ERb� cell lines
(Supplementary Table S3A) and/or mammary tumors

Table 1 Seventy-three miRNAs differentially expressed following ERb expression in hormone-responsive human breast cancer cells

miRNA Fold-change
(ERbþ /ERb�)

P-value miRNA Fold-change
(ERbþ /ERb�)

P-value

HS_108.1 �1.58 0.03780 hsa-miR-24-2* 1.73 0.00002
HS_131 1.46 0.00782 hsa-miR-23b* 2.07 0.00016
HS_166.1 �2.00 0.00001 hsa-miR-27b* 1.60 0.00024
HS_266.1 �1.62 0.01176 hsa-miR-24-1* 2.06 0.00000
HS_305_b 1.84 0.00000 hsa-miR-24-1*(miR-189:9.1) 2.51 0.00000
HS_99.1 1.39 0.00505 hsa-miR-29a* 1.50 0.00857
hsa-let-7a �1.50 0.00648 hsa-miR-29b-2* 1.41 0.00509
hsa-let-7a* �13.48 0.00000 hsa-miR-30a* �2.97 0.00012
hsa-let-7c �4.02 0.00000 hsa-miR-30c-2* �2.05 0.00003
hsa-let-7f �1.62 0.00510 hsa-miR-30d* 1.62 0.00046
hsa-miR-100 �4.57 0.00000 hsa-miR-31 1.65 0.00435
hsa-miR-101* 1.53 0.00495 hsa-miR-32* �2.29 0.00000
hsa-miR-1257 1.46 0.00331 hsa-miR-330-5p 2.04 0.00003
hsa-miR-125b �2.37 0.00000 hsa-miR-335 �4.61 0.00000
hsa-miR-1267 1.40 0.00514 hsa-miR-338-3p 1.94 0.00000
hsa-miR-1285 �1.64 0.00090 hsa-miR-361-3p �1.44 0.00998
hsa-miR-1305 1.44 0.00254 hsa-miR-362-5p �1.67 0.00074
hsa-miR-148b* 1.41 0.00600 hsa-miR-365 �2.92 0.00000
hsa-miR-15a* 2.05 0.00097 hsa-miR-374b* �1.53 0.00680
hsa-miR-16-1* 1.98 0.00004 hsa-miR-375 1.65 0.00274
hsa-miR-17* 1.51 0.00113 hsa-miR-450b-3p 1.69 0.00645
hsa-miR-181c* 1.70 0.00005 hsa-miR-452*:9.1 �1.98 0.00024
hsa-miR-186 �7.14 0.00000 hsa-miR-501-5p �1.79 0.00033
hsa-miR-18a* 1.40 0.01173 hsa-miR-542-3p 3.22 0.00000
hsa-miR-18b 1.78 0.00000 hsa-miR-548d-3p �1.97 0.00001
hsa-miR-196b �1.65 0.00101 hsa-miR-556-5p �4.07 0.00000
hsa-miR-199a-5p 1.78 0.00412 hsa-miR-579 �2.31 0.00079
hsa-miR-199b-5p 1.52 0.00574 hsa-miR-616* �1.56 0.00366
hsa-miR-199a*:9.1 1.43 0.00283 hsa-miR-629* �1.67 0.00746
hsa-miR-199a-3p/199b-3p 1.72 0.00001 hsa-miR-642 1.79 0.00144
hsa-miR-19a 1.29 0.04889 hsa-miR-651 1.56 0.00148
hsa-miR-19a* 2.86 0.00000 hsa-miR-652 1.54 0.00179
hsa-miR-19b-1* 1.95 0.00800 hsa-miR-663b �1.37 0.02954
hsa-miR-20a* 1.46 0.00291 hsa-miR-708* 2.05 0.00478
hsa-miR-216a �2.47 0.02759 hsa-miR-935 1.53 0.00068
hsa-miR-23a* 1.93 0.00007 hsa-miR-99b* 1.56 0.00327
hsa-miR-27a* 2.10 0.00000

Bold entries denote miRNAs differentially expressed also in ERb-positive vs ERb-negative breast tumor biopsies.
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(Supplementary Table S3B) display ER-binding sites
within 10 kb of the transcription unit, including sites
where both ERs can be found together, likely associated
in heterodimers. This finding suggested us the possibility
that miRNA gene activity could be modulated in BC
cells by an interplay of the two ER subtypes bound to
chromatin, with ERb antagonizing ERa-mediated reg-
ulation of pri-miR biosynthesis and/or maturation rate.
To verify this possibility, we choose to investigate in
detail differences in miRNA precursor levels in ERbþ
vs ERb� cells following stimulation with E2, focusing
on miR-30a gene and the miR-23b/27b/24-1 chromoso-
mal cluster. The first was selected as it encodes two
miRNAs (miR-30a and -30a*) that are downregulated
by estrogen in ERbþ cells only (Supplementary Figure
S3) and it shows two binding sites for ERb in close
proximity —one upstream and one downstream— of the
transcription unit, but no ERa sites (Figures 3a and b).
The second caught our attention, instead, as it shows
sites for both receptors (Figure 4a and Supplementary
Figure S6) and it encodes three distinct couples of
miRNAs, all accumulating in ERbþ cells and decreas-
ing in ERb� cells in response to the hormone
(Supplementary Figure S3). Interestingly, in both cases
the effect of the hormone was more evident on the ‘star’

strand that, for this reason, led us first to their
identification (Figure 2a) and was routinely used here
to monitor ERb effects.

The results relative to the miR-30a locus are reported
in Figure 3 and show that ERb binding results in a
significant reduction of pri-, pre- and mature miR-30a
levels following E2 stimulation, detectable already after
2 h (Figures 3c–e), to indicate that the predominant
effect of ligand-activated ERb is to trans-repress basal
gene transcription by direct binding to this transcription
unit. Noteworthy, activation of ERa alone (wt cells) did
not affect miR-30a biogenesis, in agreement with the
lack of binding of this receptor to the locus (Figure 3a).
When combined, these results indicate a specific and
direct role of ERb in repression of miR-30a expression
in BC cells, possibly mediated by promoter trans-
repression. This could be due to direct transcriptional
repression, via recruitment of a repressor complex to the
chromatin by ligand-activated ERb, or, alternatively, to
inhibition of gene trans-activation caused by tethering of
ERb to a transcription factor constitutively bound to
the locus, resulting in displacement or inhibition of an
activator complex. The latter possibility, that could
explain also lack of ERa binding to such regulatory site,
is worth investigating further, extending the analysis

Figure 3 Analysis of ERb regulation of miR-30a and precursor biogenesis. (a) Genome browser view of the two ERb-binding sites
within 10 kb upstream or downstream from hsa-miR-30a locus on chromosome 6. (b) Validation of ERb-binding site by ChIP and real-
time PCR in wt or ERbþ cells before (-) and after stimulation with E2 for 45min. (c, d) Real-time rtPCR analysis of pri-miR-30a (c)
and pre-miR-30a (d) in wt or ERbþ cells before (-) and after stimulation with E2 for the indicated times. (e) Real-time rtPCR analysis
of mature hsa-miR-30a* in wt or ERbþ cells (C- and N-TAP-ERb cell RNA combined) before (-) and after stimulation with E2 for
the indicated times.
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also to other genetic loci selectively regulated by ERb in
BC cells under the same conditions.

Our attention focused next on the miR-23b/27b/24-1
cluster on chromosome 9, whose organization is showed
in Figure 4a. In this case, both ERb- and ERa-binding
sites are detected. Noteworthy, the two ERa-binding
sites identified by ChIP-Seq were also found by ChIP-

on-chip in an independent study (Hurtado et al., 2008)
and binding of the two ERs to both sites identified here
in ERbþ cells was confirmed by ChIP (Supplementary
Figure S6). The effects of ERb in regulation of the first
step in miRNA biogenesis were investigated by measur-
ing changes in pri-miR expression in control (wt),
N-TAP- and C-TAP-ERb cells before and after E2
stimulation. Results show that in the absence of ERb,
estrogen stimulation did not influence primary-tran-
script levels, assessed by both quantitative real-time
rtPCR and RNA-expression profiling (c9orf3 RNA;
Figure 4b and Cicatiello et al., 2010). On the other hand,
a slight but reproducible accumulation of pri-miR-23b/
-27b/-24-1 was detectable in ERbþ cells already 2 h
after E2 (Figure 4b). We next measured the intracellular
concentration of the individual pre-miR deriving from
this primary transcript (pre-miR-23b, -27b and -24-1) in
both cell types and the results obtained were surprisingly
very different. Indeed, as shown in Figure 4c, whereas
stimulation with E2 of ERb� cells caused a substantial
loss of pre-miR (ranging from �20 to �75%), the same
treatment caused instead accumulation of these pre-
miRs in ERbþ cells. This was reflected in comparable
changes in expression of the corresponding mature
miRNAs for up to 72 h after E2 stimulation (Figure 4d
and Supplementary Figure S3). These results indicate
that the presence of ERb in ERa-expressing, estrogen-
responsive BC cells can modify substantially the
response of miRNA genes to hormonal stimulus. In
the case of the miR-23b/27b/24-1 gene cluster, this
results from changes in pri-miR maturation, rather than
synthesis, leading to increase in pre-miR biosynthesis in
the presence of chromatin-bound ERb.

ERb interferes with ERa-mediated recruitment of Drosha
in inactive chromatin-bound complexes
Yamagata et al. (2009) reported ERa-mediated regula-
tion of miRNA maturation by direct interaction in the
nucleus of ERa with a protein complex comprising
Drosha and the DEAD box RNA helicase p68/DDX5,
resulting in inhibition of pri- to pre-miRNA conversion
by Drosha. We thus considered the possibility that the
enhancing effect of ERb on pri-miR-23b/-27b/-24-1
maturation shown in Figure 4 could result from
competition for binding of the ERa-p68-Drosha com-
plex to this locus by ERb, as recently described for other
target genes (Grober et al., 2011), thereby preventing the
inhibitory effect of ERa on nascent pri-miR maturation.
In both cases, we should expect inhibition of ERa-
mediated p68/DDX5-Drosha recruitment to miR-23b/-
27b/-24-1 chromatin by ERb. Indeed, this appears to be
the case, as E2-induced p68/DDX5 and Drosha binding
to ERb-G9242 and ERb-G9242 chromatin sites was
strongly reduced in C-TAP-ERb compared with wt cells,
concomitant with a reduction of ERa and appearance
of ERb (upper panel of Figure 5a and data not shown).
It is worth mentioning that binding of ERa to chromatin
in ERbþ cells occurs mainly via heterodimerization
with ERb (Grober et al., 2011). ERb-mediated inhibi-
tion of p68/DDX5 binding could be observed also at
the ERb-G5984 site of the TFF1/pS2 gene promoter,

Figure 4 Analysis of ERb regulation of miR-23b/27b/24-1 and
precursor biogenesis. (a) Genome browser view of ERb- and
ERa-binding sites within 10 kb upstream or downstream from
miR-23b/27b/24-1 cluster within the c9orf3 locus on chromosome 9.
(b–d) Real-time rtPCR analysis of the 23b/27B724-1 pri-miR (b),
pre-miR (c) and mature miRNA* (d) in wt or ERbþ cells (C- and
N-TAP-ERb cell RNA combined) before (-) and after stimulation
with E2 for the indicated times. The right columns in (b) show the
relative expression of c9orf3 RNA in ERbþ cells following E2
stimulation, measured by mRNA expression profiling (Grober
et al., 2011).
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although Drosha could not be detected tethered to this
site under any condition (lower panel of Figure 5b),
suggesting that association of this enzyme to chromatin
may be promoted by ERa only at sites of pri-miR
synthesis, where Drosha could be ‘locked’ in an inactive
complex comprising ERa and the hairpin structure of
the nascent pri-miR. Concerning the nature of the
physical interaction between ERa and Drosha, it was
suggested that this is mediated by p68/p72 RNA
helicases (Yamagata et al., 2009). Interestingly, a
systematic analysis of the ERb interactome of MCF-7
cell nuclei (Nassa et al., 2011) failed to identify p68/
DDX5 binding to this receptor subtype as well as to
ERa/ERb heterodimers, suggesting that the presence of
ERb could determine inhibition of p68/DDX5-mediated
sequestering of Drosha to the chromatin in an inhibitory
complex. This possibility would provide a rationale for
the ChIP results obtained in ERbþ cells, where we
failed to detect these two proteins in the presence of

both ERs (Figure 5a). To verify this possibility, we
performed co-purification analysis of all these proteins
in nuclear extracts from wt, C-TAP-ERa or C-TAP-
ERb cells. The two ERs were adsorbed to Sepharose-
bound IgG via their TAP tag, as described (Ambrosino
et al., 2010; Nassa et al., 2011). As shown in Figure 5b,
Drosha and p68/DDX5 could be co-purified with ERa
but not with ERb, demonstrating that ERb is unable
to bind these proteins. It is worth mentioning that as
under these experimental conditions ERa co-purifies
with C-TAP-ERb (Nassa et al., 2011 and lower section
of Figure 5b), ERa/ERb heterodimers do not bind
Drosha and p68/DDX5.

Discussion

The results described here demonstrates that ERb
controls synthesis, maturation and steady-state levels
of a significant number of miRNAs in BC cells by
interfering with ERa activity or acting autonomously, as
demonstrated here for the miR-23b/-27b/-24-1 cluster
and the miR-30a gene, respectively. This, in turn,
determines a profound effect on miRNome expression
and activity in tumors expressing ERb, which could help
explain their less aggressive clinical phenotype (Novelli
et al., 2008; Shaaban et al., 2008). Identification of the
intracellular targets of these ERb-regulated miRNAs,
and the effects they exert on key cellular functions of BC
cells, will now provide a new venue to understand the
pleiotropic role of this oncosuppressive factor in breast
carcinogenesis and tumor progression. Furthermore, it
is reasonable to conceive that proteins encoded by the
mRNAs targeted by these miRNA may represent
molecular markers exploitable for prognostic evaluation
of primary breast tumors or for prediction of the disease
responsiveness to hormonal therapy.

Materials and methods

Cell Culture, transient transfection and cell cycle analyses
Human hormone-responsive BC cells MCF-7 Tet-Off
(Clontech-Takara) expressing TAP (control cells), C-TAP-
ERa, C-TAP-ERb or N-TAP-ERb were described previously
(Ambrosino et al., 2010; Nassa et al., 2011). They were
propagated, hormone starved and analyzed for estrogen
signaling, cell cycle progression and cell proliferation as
described earlier (Cicatiello et al., 2000; Grober et al., 2011).

RNA purification
Total RNA was extracted from hormone-starved (þEtOH,
�E2) or stimulated (þE2) cell cultures as described previously
(Cicatiello et al., 2004). FFPE tumor samples were cut in
5-mm-thick sections on a microtome with a disposable blade.
RNA was extracted from three and eight sequential sections as
described (Ravo et al., 2008). RNA concentration in each
sample was determined with a NanoDrop-1000 spectrophot-
ometer (Thermo Fisher Scientific Italy, Cinisello Balsamo,
Italia) and quality assessed with the Agilent 2100 Bioanalyzer
and Agilent RNA 6000 cartridges (Agilent Technologies). For
microarray analysis, RNAs extracted from replicate samples of
the same tumor were pooled.

Figure 5 ER/Drosha interaction in MCF-7 cell nuclei. ChIP real-
time PCR results showing binding of ERa, ERb, p68 and Drosha
to miRNA 23b/27b/24-1 cluster and the TFF1/pS2 loci (a) in the
TFF1/pS2 loci (b) in wt and C-TAP-ERb cells; data are expressed
as % occupancy respect to input chromatin. (b) Western blot
analysis of whole nuclear extracts (lanes 1–3) and IgG-Sepharose-
affinity-purified nuclear extracts (lanes 4–6) from wt (lanes 1 and 4),
C-TAP-ERa (lanes 2 and 5) or C-TAP-ERb (lanes 3 and 6) cells,
probed with the indicated antibodies. Asterisks mark non-specific
bands.
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Microarray analyses
See Supplementary Materials and methods.

Protein-complex immunoprecipitations and analysis
Cells were hormone starved for 5 days and following
stimulation with 10�8 M E2 for 2 h, nuclear proteins were
extracted and incubated with IgG-Sepharose beads (GE
Healthcare, Milano, Italy) for 4 h at 4 1C, as described earlier
(Ambrosino et al., 2010). Affinity-purified complexes were
resuspended in SDS sample buffer (Invitrogen Life Technol-
ogies Italia, Milano, Italy) and analyzed by SDS–PAGE and
western blotting by using anti-TAP (CAB1001, Open Biosys-
tems, Euroclone Spa, Milano, Italy), anti-ERa (sc-543, Santa
Cruz Biotechnology), anti-Drosha (ab12286, Abcam, Cam-
bridge, UK) and anti-DDX5 (ab21696, Abcam) antibodies.
The primary antibodies were detected with a horseradish
peroxidase-conjugated anti-rabbit antibody (GE Healthcare)
and revealed by chemiluminescence and autoradiography.

Chromatin immunoprecipitation
Cells were hormone deprived for 4 days and chromatin was
extracted from replicate samples before (�E2) or 45min after
stimulation with E2 as described previously (Cicatiello et al.,
2010; Grober et al., 2011). Chromatin samples were incubated
at 4 1C overnight with Abs against the C- (HC-20, from Santa
Cruz Biotechnology, Europe) or N- (18–32, Sigma Aldrich
Italia, Milano, Italy) terminus of human ERa, anti-Drosha
(ab12286, Abcam, used as described by Nakamura et al.
(2007), anti-DDX5 (ab21696, Abcam) or, for TAP-ERb, with
IgG Sepharose 6 fast Flow (GE Healthcare) as described
earlier (Grober et al., 2011). As control, aliquots of the same
chromatin were processed in the same way but Abs were
omitted from the incubation mixtures (þE2/-Abs) or, where
required, underivatized Sepahrose was used.

Quantitative real-time rtPCR
Total RNAwas extracted from cell lines (as described before) after
stimulation for 2h and 4h with10�8M E2. For miRNA analysis,
mature miRNA was reverse transcribed using a miRNA-specific
stem-loop reverse transcriptase and real-time PCR was performed
using Taqman microRNA assays (Assay ID: 2822, 416, 2439,
2445, 2441, 2126, 2174, 2440, 2333, 482; Applied Biosystems
Italia, Monza, Italy) according to the manufacturer’s instruction.
RNU49 was used as an internal control to normalize all data
using the Taqman RNU49 assay (Applied Biosystems Italia).
RNU49 was unaffected by hormone treatment. For pre-miRNA
and pri-miRNA analysis, RNA was reverse transcribed using
Quantitect Rev. Transcription kit (Qiagen Italy, Milano, Italia)
and real-time PCR was performed in triplicates in three
independent experiments using Power Syber Green PCR Master
Mix (Applied Biosystems Italia) and normalized to U6 snRNA.
All the real-time PCR were performed on a MJ Research PTC-
200 Opticon Instrument (MJ Research, Waltham, MA, USA).
Primers used are listed in Supplementary Table 4.

ChIP-Seq data analysis
For ER-binding-site mapping in genome, ChIP-Seq data
relative to ERb (Grober et al., 2011; accession number
E-MTAB-345) and ERa (Cicatiello et al., 2010; accession
number E-MTAB-131) were analyzed as follows. Enriched
ChIP-Seq peaks were identified using FindPeaks (Fejes et al.,
2008), with a subpeaks value of 0.5. To select only highly
relevant sites, the statistical cut-off of the first quartile was
applied. The binding sites supported by a number of tags lower
than 25% of the range of the values was discarded. This led to

re-mapping of ERb-binding sites (renumbered here from
ERb_G1 to ERb_G12430); for ERa-binding sites, numbering
was the same as previously described (Cicatiello et al., 2010).

miRNA target prediction and functional analysis of their
putative mRNA targets
For comprehensive prediction of miRNA-target genes, we
used TargetScan, release 5.1 (http://www.targetscan.org). To
identify statistically overrepresented ‘biological process’ gene
ontology terms among sets of selected mRNA target, we used
the Database for Annotation, Visualization and Integrated
Discovery (DAVID, http://david.abcc.ncifcrf.gov/) functional
annotation tool (Dennis et al., 2003; Huang et al., 2009). To
this aim, we used as background data coming from gene
expression-profiling experiments performed on the same cell
line and under the same experimental conditions used in this
study.

Immunohistochemistry
See: Supplementary Materials and methods.

BC samples clinical hallmarks
For the purpose of this study, 40 breast carcinomas were
selected from a series of 936 cases with a median follow up
(FU) of 50 months (min 1–max 108) subjected to breast surgery
at the Regina Elena Cancer Institute between 2001 and 2005
(Novelli et al., 2008). Of these, 22 were ERbþ without any
recurrence, whereas 18 were ERb� and presented local or
distant metastasis. In these patients, ERb expression was
routinely determined at the time of surgical treatment along
with other conventional biological factors namely ERa and
progesterone receptors (PgR), HER2 and Ki-67, before any
adjuvant therapy was planned. As showed in Supplementary
Table S1, the group included 37 (92.5%) invasive ductal
carcinomas and 3 (7.5%) invasive lobular carcinomas. Among
these, 28 (70%) were pT1, 9 (22.5%) pT2 and 3 (7.5%) pT3-4,
27 (67.5%) were node negative and 13 (32.5%) were node
positive, 29 (72.5%) G1-2 and 11 (27.5%) G3. ERa was
positive in 37 tumors (92.5%) and negative in 3 (7.5%), PgR
was positive in 31 tumors (77.5%) and negative in 9 (22.5),
HER2 was positive in 12 tumors (30%) and negative in 28
(70%) and Ki-67 was positive in 16 tumors (40%) and negative
in 24 (60%). Tumors were graded according to Bloom and
Richardson and staged according to the Unione Internationale
Contre le Cancer tumor-node-metastasis system criteria, and
histologically classified according to the World Health Orga-
nization (Tavassoli and Devilee, 2003). In the selected group,
ERbþ was significantly associated to negative lymphnodes
(Po0.0001) and low tumor grade (G1-2) (P¼ 0.03) whereas, as
already described on a large series of BC patients, (Novelli
et al., 2008) no significant correlation was observed between
ERb expression and the other parameters analyzed. Follow-up
data were obtained from hospital charts and by corresponding
with the referring physicians.
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Roger P, Sahla ME, Mäkelä S, Gustafsson JA, Baldet P, Rochefort H.
(2001). Decreased expression of estrogen receptor beta protein
in proliferative preinvasive mammary tumors. Cancer Res 61:
2537–2541.

Shaaban AM, Green AR, Karthik S, Alizadeh Y, Hughes TA, Harkins
L et al. (2008). Nuclear and cytoplasmic expression of ERbeta1,
ERbeta2, and ERbeta5 identifies distinct prognostic outcome for
breast cancer patients. Clin Cancer Res 14: 5228–5235.

Sugiura H, Toyama T, Hara Y, Zhang Z, Kobayashi S, Fujii Y et al.
(2007). Expression of estrogen receptor beta wild-type and its
variant ERbetacx/beta2 is correlated with better prognosis in breast
cancer. Jpn J Clin Oncol 37: 820–828.

Tavassoli FA, Devilee P. (2003). World Health Organization

Classification of Tumors. Pathology and Genetics of Tumours of the

Breast and Female Genital Organs. IARC Press: Lyon.
Tavazoie SF, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD

et al. (2008). Endogenous human microRNAs that suppress breast
cancer metastasis. Nature 451: 147–152.

Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al.
(2006). A microRNA expression signature of human solid tumors
defines cancer gene targets. Proc Natl Acad Sci USA 103: 2257–2261.

Yamagata K, Fujiyama S, Ito S, Ueda T, Murata T, Naitou M et al.
(2009). Maturation of microRNA is hormonally regulated by a
nuclear receptor. Mol Cell 36: 340–347.

Zhang B, Pan X, Cobb GP, Anderson TA. (2007). microRNAs as
oncogenes and tumor suppressors. Dev Biol 302: 1–12.

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

miRNA regulation by ERb in breast cancer
O Paris et al

11

Oncogene



RESEARCH ARTICLE Open Access

Global analysis of estrogen receptor beta binding
to breast cancer cell genome reveals an
extensive interplay with estrogen receptor alpha
for target gene regulation
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Abstract

Background: Estrogen receptors alpha (ERa) and beta (ERb) are transcription factors (TFs) that mediate estrogen
signaling and define the hormone-responsive phenotype of breast cancer (BC). The two receptors can be found
co-expressed and play specific, often opposite, roles, with ERb being able to modulate the effects of ERa on gene
transcription and cell proliferation. ERb is frequently lost in BC, where its presence generally correlates with a better
prognosis of the disease. The identification of the genomic targets of ERb in hormone-responsive BC cells is thus a
critical step to elucidate the roles of this receptor in estrogen signaling and tumor cell biology.

Results: Expression of full-length ERb in hormone-responsive, ERa-positive MCF-7 cells resulted in a marked reduction
in cell proliferation in response to estrogen and marked effects on the cell transcriptome. By ChIP-Seq we identified
9702 ERb and 6024 ERa binding sites in estrogen-stimulated cells, comprising sites occupied by either ERb, ERa or both
ER subtypes. A search for TF binding matrices revealed that the majority of the binding sites identified comprise one or
more Estrogen Response Element and the remaining show binding matrixes for other TFs known to mediate ER
interaction with chromatin by tethering, including AP2, E2F and SP1. Of 921 genes differentially regulated by estrogen
in ERb+ vs ERb- cells, 424 showed one or more ERb site within 10 kb. These putative primary ERb target genes control
cell proliferation, death, differentiation, motility and adhesion, signal transduction and transcription, key cellular
processes that might explain the biological and clinical phenotype of tumors expressing this ER subtype. ERb binding in
close proximity of several miRNA genes and in the mitochondrial genome, suggests the possible involvement of this
receptor in small non-coding RNA biogenesis and mitochondrial genome functions.

Conclusions: Results indicate that the vast majority of the genomic targets of ERb can bind also ERa, suggesting
that the overall action of ERb on the genome of hormone-responsive BC cells depends mainly on the relative
concentration of both ERs in the cell.

Background
Estrogens are key regulators of cell growth and differen-
tiation in the mammary gland [1,2], where they are
involved in the pathogenesis and clinical outcome of
breast cancer (BC) [3]. These steroid hormones exert

their effects in normal and transformed mammary
epithelial cells by binding to specific receptors, ERa and
ERb, that mediate estrogen signaling by functioning as
ligand-dependent transcription factors. Ligand-activated
ERs drive gene cascades comprising primary genes,
whose transcription is directly controlled by the hormone
through physical interaction of ERs with regulatory sites
in the genome (genomic pathway) and/or with signal
transduction effectors (non genomic pathway), as well as
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downstream genes whose activity depends upon the
functions encoded by the primary responders [1,4].
ERs are able to bind DNA at specific sites in the gen-

ome and thereby control gene activity by recruiting tran-
scriptional mediators and co-regulators, as well as a host
of other nuclear proteins with different roles in ER-
mediated control of gene activity [5,6]. The two ERs
show 55% identity in their estrogen-binding domains
(LBDs) and approximately 97% similarity in the DNA-
binding domains (DBDs) [7]. Reflecting the high degree
of similarity in their DBDs, both receptors interact with
the same conserved estrogen response element (ERE) (5’-
GGTCAnnnTGACC-3’) as either homodimers or alpha/
beta heterodimers [8,9]. ERb, however, holds low trans-
acting capability on ERE-containing estrogen target genes
and alpha/beta heterodimers are less efficient than ERa
homodimers in promoting target genes activity [10]. The
different behaviour of ERa/ERb heterodimers respect
to ERa homodimers on transcriptional regulation of
ERE-containing genes might be explained by different
co-factor recruitment, as ERb could prevent efficient
co-activator binding to the ERa moiety of the heterodi-
mer, conversely inducing recruitment of co-repressors
and/or driving assembly of co-regulatory complexes
other than those involving ERa only. [8,11,12].
Although the two receptors are quite similar in

sequence and structure, in BC ERb has considerably dif-
ferent biological effects than ERa [1,13,14]. Further-
more, the two ERs show a remarkably different
expression pattern in BCs, with higher ERa and lower
ERb levels observed in malignant cells compared to nor-
mal mammary epithelial or benign tumor cells [15,16].
Furthermore, while ERa induces a mitogenic response
to estrogen, when expressed alone the b subtype is not
only unable to induce the same mitogenic response, but
it reduces basal, hormone-independent cell proliferation
[17-18 and R. Tarallo et al., unpublished]. Finally, ERb
was shown to change dramatically ERa-positive BC cell
behaviour in vivo, as its expression in the cell prevents
tumorigenicity in mouse xenograft models by reducing
tumor growth and angiogenesis [19,20].
Gene expression studies performed in BC cell lines

expressing endogenous ERa and recombinant ERb
[21-23] revealed multiple signaling pathways involving
the a and/or b receptor subtypes [1]. The two ERs
appear thus to share many target genes, although each
of them may affect specific downstream targets. For this
reason, inhibition of hormone-responsive BC cell growth
by ERb might be due to direct interference with ERa
activity on growth-promoting pathways as well as to the
activity of ERb-specific target genes [24].
Recently, next-generation sequencing technologies

combining chromatin immunoprecipitation (ChIP)
either with genomic DNA hybridization to microarrays

(ChIP-on-chip) or massively parallel sequencing (ChIP-
Seq, ChIP-PET), opened new venues for our under-
standing of physical and functional associations between
transcription factors and chromatin in vivo. These analy-
tical strategies led to genome-wide mapping of ERa-
binding regions in intact chromatin of cultured cell lines
[25-28], revealing important new information relative to
ERa interaction with the genome. Carroll et al. [25], for
example, using ChIP-on-chip demonstrated that the
Forkhead factor FoxA1 plays an important role as pio-
neering factor for ERa binding to chromatin in BC cells,
while Cicatiello et al. [26] identified novel gene regula-
tion cascades mediating estrogen actions in hormone-
responsive BC cells. In contrast, although several studies
focused on ERb interaction with the genome [29-32], a
thorough characterization of this important aspect of
ERb biology in BC cells, essential to clarify the mechan-
isms mediating its control of estrogen-dependent gene
pathways and the hormone-responsive phenotype, is still
missing. For this reason, we performed a comprehensive
analysis of ERb and ERa target sites in the genome of
MCF-7 cells engineered to express both receptors to
comparable levels, by integrating global mapping of in
vivo ER binding to the genome by ChIP-Seq with com-
parative gene expression profiling in ERb+/ERa+ vs
ERb-/ERa+ cells during early stimulation with 17-beta-
estradiol (E2), followed by in silico analyses of the ERb
binding regions and responsive genes identified.

Results and Discussion
Establishment and characterization of ERb-expressing
MCF-7 cells
Stabilized human BC cell lines expressing endogenous
ERa and ERb at comparable levels are not available. For
this reason, we first generated and characterized cell
lines derived from ERa-positive MCF-7 cells expressing
full-length human ERb (ERb1) at levels similar to those
of endogenous ERa. This strategy was adopted to pre-
vent artefacts due to ERb over-expression in the cell
and to mimic what observed in primary breast tumors,
where very high expression of this receptor has never
been observed. As suitable antibodies for efficient
immunoprecipitation of chromatin-bound ERb are not
available, the expressed proteins were tagged on either
their C- (Ct-ERb) or N-terminus (Nt-ERb) with the
TAP epitope. This approach allows to track tagged ERs
in different cell compartments and to efficiently immu-
noprecipitate and purify them in vitro by Tandem Affi-
nity Purification, to identify their molecular partners
[5,33], and ex vivo in chromatin immunoprecipitation
assays (see below). Preliminary tests were performed to
verify whether the presence of the TAP moiety could
influence intracellular redistribution of ERb in response to
17b-estradiol (E2) and its ability either to trans-activate an
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estrogen-responsive reporter gene or to interfere with
ERa activity on reporter gene transcription and BC cell
proliferation. To this end, ER expression and nuclear
translocation in response to E2 was determined in wt
MCF-7, Ct-ERb and Nt-ERb cells by subcellular fractio-
nation followed by SDS-PAGE and immunoblotting
(Figure 1A). In absence of hormone a larger fraction of
both ERs was found in the cytosol in all cases. Follow-
ing estrogen stimulation, both receptors migrated to the
nucleus, a crucial event to trigger target gene transcrip-
tion via the genomic pathway of the estrogen signaling
cascade. An antibody against a-tubulin was used as
control, and the absence of this protein in the nuclear
fractions indicates that they were indeed free from cyto-
solic contaminants. The ERb-expressing clones selected
for this study showed a ERb/ERa ratio <2, as verified by
immunoblotting analysis of the proteins in whole cell
extracts and quantitative rtPCR of the corresponding
RNAs [5, and data not shown]. To control that the pre-
sence of the TAP tag did not interfere with ERb activity,
ER-negative SKBR-3 BC cells were transiently trans-
fected with expression vectors encoding wt ERb, Ct-
ERb, Nt-ERb, ERa (HEG0) or ‘empty’ vector (pSG5), as
controls, and ERE-tk-luc [34], a reporter gene where
luciferase expression is driven by an estrogen-respon-
sive minimal promoter. Exposure of transiently trans-
fected cells to E2 induced reporter gene activation in
the presence of ERa, ERb, Ct-ERb or Nt-ERb, with the
activity of both tagged ERb proteins slightly (15-20%)
lower than that of wt ERb (Figure 1B, left). We then
tested whether the two recombinant forms of ERb were
able to interfere with target gene activation by the
endogenous ERa resident in MCF-7 cells. To this end,
wt, Ct-ERb+ and Nt-ERb+ cells were transfected with
ERE-tk-luc and the response of the reporter gene to E2
was determined. As shown in Figure 1B (right), ERb-
expressing cells showed in all cases a marked (50-60%)
reduction in reporter gene response to the hormone,
when compared to wt MCF-7 cells, indicating that both
tagged ERbs are able to interfere with the activity of
endogenous ERa. Results show that cell lines stably
expressing Ct-ERb and Nt-ERb display a marked reduc-
tion in proliferative response to the hormone, when
compared to wt MCF-7 cells (Figure 1C), in agreement
with the known effects of ERb in ERa-positive cells
[23,35-37]. Furthermore, comparative RNA expression
profiling in exponentially growing Ct-ERb and Nt-ERb
vs wt MCF-7 cells revealed extensive overlapping effects
of the two tagged ERb proteins on the activity of estro-
gen target genes [O. Paris et al., manuscript in prepara-
tion and data not shown]. Taken together, these

Figure 1 Functional characterization of ERb-expressing MCF-7
cells. (A) Nuclear translocation of ERa and ERb shown by western
blot analysis on cytosolic (c) and nuclear (n) protein extracts,
prepared from wt MCF-7, Nt-ERb and Ct-ERb cells after treatment
with either 17b-estradiol (10-8M, +E2) or vehicle alone (-E2) for 45
minutes. The amount of a-tubulin was also analyzed to verify the
absence of cytosolic contaminants in the nuclear fractions. (B) The
transcriptional activity of ERa, Nt-ERb and Ct-ERb was measured by
transient transfection in SKBR3 cells (left) and the ability of tagged
ERb to interfere with ERa activity was assessed by comparing
estrogen effects in wt, in Nt-ERb and Ct-ERb MCF-7 cells (right); in
all cases transiently transfected ERE-tk-luc was used as reporter
gene. (C) Proliferation of wt MCF-7, Nt-ERb and Ct-ERb cells was
measured by stimulating hormone-starved cells with 10-8M E2,
followed by cell counting with a colorimetric assay at the indicated
times.
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observations confirmed that both tag-ERb expressing
cell lines generated for this study show a well defined
phenotype, with respect to the known activities of this
ER subtype in BC cells, and are thus suitable to investi-
gate the genomic bases of ERb actions in this cell type.
As we could not exclude that the presence of the TAP
tag at either the N- or C- term of ERb may specifically
influence its activity on cellular targets or pathways dif-
ferent from those investigated above, all experiments
reported in this study were performed in both Ct-ERb
and Nt-ERb cells and the data were combined for analy-
sis, with the aim to focus on the most significant and
reproducible actions of ERb independently from posi-
tion of the tag in the receptor moiety.

Effects of ERb on the estrogen-responsive MCF-7 cell
transcriptome
Expression of ERb is known to cause significant changes
in the genomic response to estrogen in target cells. To
identify the genes whose estrogen regulation in hor-
mone-responsive BC cells is perturbed by ERb, we per-
formed gene expression profiling with microarrays in
estrogen-starved, quiescent wt and TAP-ERb+ (Ct-ERb
and Nt-ERb) MCF-7 cells following stimulation with
10-8M E2. Total RNA was extracted from the three cell
lines either before or after 2, 4 or 8 hrs stimulation, fluor-
escently labelled and analyzed on whole-genome micro-
arrays. Samples extracted from the two ERb-expressing
cell lines were pooled before analysis, to reduce the
impact of clone-specific differences and to focus on the
most significant effects of ERb, independent from tag
position in the protein. Results obtained in these samples
were then compared with those obtained under the same
conditions in wt MCF-7 cells. This analysis yielded 921
transcripts differentially regulated by the hormone in
ERb+ vs ERb- cells (Figure 2), including 234 mRNA
whose regulation was detected only in wt MCF-7 cells,
516 regulated only in ERb+ cells (see Venn diagram in
Figure 2), 154 showing a similar pattern of response in
both cell types (up- or down-regulated in all cases,
although at different levels) and 17 showing opposite
responses to the hormone in ERb+ vs ERb- cells (14 tran-
scripts repressed in wt cells but activated in ERb+ cells
and 3 showing an opposite behaviour). The full list of
these differentially regulated transcripts is reported, with
relevant information, in Additional Table S1. Taken
together, these results indicate that the presence of ERb
greatly influences the response of the MCF-7 cell genome
to estrogen, by interfering with ERa-mediated hormonal
regulation of 405 genes (Figure 2, left and central panels)
and promoting de novo regulation of 516 genes (Figure 2,
right panel). It should be noted that these analyses were
performed with data obtained after 8 hrs of hormonal sti-
mulation, a timing that allowed us to focus on early

response genes, positioned upstream in the composite
transcriptional cascade set in motion by the hormone in
this cell type and more likely to include primary genomic
targets of ERs [26]. It is thus possible that this analysis
missed ERb-responsive genes showing significant changes
in expression only at later times after hormonal stimula-
tion. However, analysis of the global effects of ERb on
gene expression in these same cells, performed as
described above in cultures exponentially growing under
continuous hormonal stimulus, suggests that the number
of regulated transcripts identified here is rather close to
the total number of genes targeted by this ER subtype in
MCF-7 cells [O. Paris et al., manuscript in preparation].

Global mapping of ERa and ERb binding to MCF-7 cell
genome
The widespread effects of ERb on MCF-7 cell transcrip-
tome are likely to result from multiple effects of this

Figure 2 Gene expression differences in absence or presence
of ERb. Top: Heatmap summarizing the effects of ERb expression of
the estrogen responsive transcriptome of MCF-7 cells, showing
changes in expression (log2 of the fold-change) of 921 transcripts
after cell exposure to 10-8M E2 for the indicated times. Transcripts
are grouped as follows: regulated only in wt MCF-7 cells (1), in both
cell lines (2) and only in TAP-ERb cells (3). Bottom: Venn diagram
showing the numbers of differentially regulated by E2 in wt MCF-7
only (1), both cell lines (2) or ERb expressing cells only (3).
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receptor in the cells, including direct regulation of pri-
mary response genes via genomic or non genomic
mechanisms, and indirect gene regulation events
mediated by the products of primary genes. The primary
ERb target genes are most likely to comprise also master
regulators of complex cellular responses to the receptor,
mediating its effects on the biological and clinical phe-
notype of BC cells. To identify such primary genomic
targets and investigate the mechanisms that allow their
regulation by ERb, a global analysis of in vivo binding of
this receptor to the genome was carried out in TAP-
ERb cells by chromatin immunoprecipitation coupled to
massively parallel sequencing (ChIP-Seq) [38], that
allows detailed mapping of in vivo TF binding to the
genome. In parallel, we studied ERa binding to the gen-
ome under the same conditions, to allow comparative
analyses between the two ER subtypes. Replicate chro-
matin samples were prepared from both Ct-ERb and
Nt-ERb cells before and after stimulation for 45 minutes
with 10-8M E2 and DNA-bound proteins were immuno-
precipitated either with antibodies against the N- and
C-terminus of ERa, or with IgGs binding with high affi-
nity the TAP moiety of tagged ERb (see Methods). Preli-
minary testing on several known ERb binding sites,
including the promoter-near region of pS2/TFF1 gene
[26], confirmed that the method selected to immunopre-
cipitate chromatin-bound Ct-ERb and Nt-ERb was effi-
cient and specific (data not shown). The resulting DNAs
were used to generate ChIP-Seq libraries for ERa and
ERb, respectively, that were then sequenced with the
Illumina Genome Analyzer. The sequence tags obtained
were then aligned to the human genome sequence and
peaks enriched in the libraries generated after E2-treat-
ment were identified using MACS (Model-based Analy-
sis of ChIP-Seq) [39]. This led to the identification of
9702 binding sites for ERb and 6024 sites for ERa, of
which 4506 were shared by both receptors (Figure 3A),
with an average False Discovery Rate (FDR) of 3%. The
full list of these binding sites is available, with relevant
information, in Additional Files 1 and 2. Interestingly,
about half (4862) ERb binding sites identified map
within transcription units, mainly (3942 sites) in intronic
regions. This distribution is maintained also in 424 ERb-
regulated transcription units (see below), where 966 ERb
binding sites located in the gene or within 10 kbps from
it are distributed as follows: 154 in promoter regions, 51
in exons, 471 within one or more introns and the
remaining either upstream of promoters (156) or down-
stream of the gene (134). In both cases the ERb binding
sites within genes did not show any preference with
respect to exon or intron position nor for know intra-
genic regulatory elements (splice sites, polyadenylation
sites, etc). It should be mentioned that the number of
ERb binding sites identified is significantly higher that

those mapped in MCF-7 cells by ChIP-on-chips [30,31],
possibly for technical differences due to ERb expression
levels in the different MCF-7 cell-derived clones used, in
immunoprecipitation efficiency and/or in DNA analysis.
Since only Zhao et al. [31] performed an unbiased
search for ERb binding with whole-genome chips, we
could confront our results only with those reported in
that study. This showed that 86% of high confidence
ERb sites described in that study appear also in our
dataset. The binding sites identified here were then sub-
jected to sequence analysis, searching first for the pre-
sence of EREs (Estrogen Receptor Elements), the
characteristic ER binding signature (Figure 3B). This
analysis revealed that in all three cases (i.e. ERb, ERa
and ERb+ERa) a high percentage of sites displayed one
or more imperfectly palindromic ERE (ERE+), with a
slightly higher positivity in ERa sites (58.89 vs 53.51%).
As ERs have been shown to bind both in vitro and in
vivo to PuGGTCA hemi-palindromes (hEREs), we

Figure 3 Sequence analysis of ERa, ERb and ERa+ERb binding
sites. (A) Venn diagram showing a summary of ERa and ERb
binding sites identified in TAP-ERb cells by ChIP-Seq. (B)
Classification of ERa and b binding sites based on the presence of a
perfectly or imperfectly palindromic Estrogen Response Element
(ERE, green), an ERE hemipalindrome (hERE, blue) or no ERE (none,
red). (C) ERE motif matrices identified in each of the three ER
binding regions indicated (left), classification of the binding sites
belonging to each region according to the presence of ERE (center)
and grid summarizing the results of TFBS matrix enrichment
(overrepresentation) analyses performed on the binding sites groups
indicated (right). Z-Score cut-off was 3.0 and only TFBSs showing an
over-representation score ≥4.0 in at least one of the ERE- (none)
binding site groups. Light grey cells indicate a Z-Score <3.0 while
dark grey cells indicate absence of the matrix.
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searched the sequence of the remaining (ERE-) sites for
perfect matches to this sequence. Results showed that
almost half of them indeed contained one or more
hEREs. The percentages of sites not carrying a known
ER-binding element (ERE- and hERE-) were similar for
both receptors (ERa: 22.34%, ERb: 28.38%). We observed
that ERa and ERb binding sites were often found in close
proximity to each other, a confounding factor when
attempting to discern and analyze separately ER subtype-
specific sites and target genes. This could be due to the
limits of the ChIP-Seq technology or of the algorithm
used for peak selection. To overcome this problem, and
allow the identification of potential ER subtype-specific
sites, we used a cartographic approach to group nearby
binding sites that might be the result, at least in part, of
shortfalls of the mapping methods applied. Each binding
peak was thus elongated in both directions by 1000 bp
and the overlapping ones obtained were merged into
8536 ERb and 5371 ERa ‘extended’ binding regions.
These regions were intersected to define ERa only, ERb
only or ERa+ERb binding regions. In this way we could
identify 1271 ERa-only and 4541 ERb-only binding sites,
comprised in these regions, none of which showed
nearby binding of the other receptor. These were named:
ER subtype ‘prevalent’ sites. The binding peak sequences
included in each of the three regions obtained (ERa only,
ERb only or ERa+ERb) were then re-analyzed for the
presence of ERE or hERE elements. In this way we could
observe that sites within the ERa+ERb regions showed
now a much higher percentage of ERE+ sequences
(62.90%), respect to those present in the ERa-only or
ERb-only regions (45.63% and 44.62%, respectively, Fig-
ure 3C). Since all three types of sites showed almost iden-
tical proportions of hERE+, this result suggests that
perfectly or imperfectly palindromic EREs are preferential
binding sequences for ERa-ERb heterodimers, while ERa
and ERb homodimers appear to be more flexible in DNA
recognition. ERE+ sequences were then analyzed in more
detail with MEME [40], to investigate if the three classes
of sites identified showed any difference in the relative
base composition of their respective ERE signatures. For
each list of sequences, the most significant position-
specific probability matrix generated by MEME was
compared to the matrices present in the JASPAR tran-
scription factor binding profile database [41], using the
STAMP tool-kit for DNA motif comparison [42]. As
shown in Figure 3C (left panels), this analysis revealed
that the ERE matrices derived from the three types of
binding regions identified (ERa selective, ERb selective
and ERa+ERb) are identical and, as a consequence, that
ERb does not appear to display ERE variant selectivity.
We then examined the ERE- sequences to search for
enriched binding motifs for other transcription factors
that might play a role in ER binding to chromatin in the

absence of canonical EREs. ERs are known to be able to
bind chromatin indirectly, by physically interacting with
DNA-bound TFs (tethering), including SP1 [43,44] or
the AP1complex [31,45,46], for gene trans-regulation.
TFBS enrichment respect to the whole genome was cal-
culated thus in ERE- sites with using the RegionMiner
tool [47] and only statistically significant (Z-score ≥3.0)
and highly enriched (over-representation ≥4-fold)
matrices were further considered. The results are sum-
marized in the right panel of Figure 3C, showing for
comparison the over-representation values scored in
hERE+ and ERE+ sites by the same matrices selected in
the ERE- sites. These numerical values, together with
relevant information, are reported in Additional Table
S2 [Additional file 3]. The enriched matrices found in
the ERE- set of ERb prevalent sites include V$SP1.01, V
$SP1.02, V$SP1.03, V$SP2.01 and V$GC.01, all belong-
ing to the GC-Box family targeted by SP1 and GCFC1
(GC-rich sequence DNA-binding) factors, V$CTCF.01
and V$CTCF.02, binding site matrices for the CCCTC-
binding factor CTCF, that is a known transcriptional
repressor of c-myc [48], V$NRF1.01, binding NRF1
(nuclear respiratory factor 1), a transcription factor that
regulates the expression of nuclear-encoded mitochon-
drial genes [49], V$ZF5.01, for the POZ domain zinc
finger protein ZF5, and V$ZNF9.01, recognized by the
zinc finger proteins ZNF148, 202, 219 and 281. The
majority of these TFs bind GC- and C-rich sequences
that are structurally related to each other, suggesting the
possibility that a significant portion of the sequence
elements listed above might indeed be recognized by
one or a limited number of TFs. On the other hand, the
V$GAGA.01 matrix was specifically enriched only in the
ERa prevalent ERE- binding sites. This sequence binds a
transcription factor known to influence chromatin struc-
ture in Drosophila [50] and to bind throughout the gen-
ome [51], but nothing is known about physical or
functional interactions of this factor with ERs or other
nuclear receptors. The results of this analysis point to
TFs that could act as partners of ERb for binding to
chromatin in the absence of canonical EREs. Interest-
ingly, the majority of these same matrices were found
enriched also in the ERb binding sites comprising
hEREs or EREs (Figure 3C), suggesting that one or more
such DNA matrices might cooperate with ERb for either
DNA binding or gene trans-regulation. We performed a
direct search for conserved motifs in the ERE- binding
sites of ERb with MEME [40], and the most significant
position-specific probability matrices were compared to
those present in the JASPAR TF binding profile data-
base [41]. The results failed to provide any conclusive
information, as each of several sequence motifs obtained
with this analysis was found only in a small fraction of
the binding sites analyzed.
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Identification of primary ERb target genes
To identify the genes directly controlled by ERb binding
to the genome, and analyze the interplay between the
two ERs in gene regulation, we combined the ChIP-Seq
data with those relative to estrogen responsive genes dif-
ferentially regulated by E2 in ERb+ vs ERb- MCF-7 cells
under the same experimental conditions (Figure 2).
Three sets of ER binding regions (defined as described
in Methods) were used for this analysis: ERb (8872, Set
1) and ERa (5558, Set 2) binding regions identified in
TAP-ERb cells, and all ERa binding regions identified
so far in wt MCF-7 (17888, Set 3). The regions from Set
1 (ERb in ERb+ cells) were intersected with those from
Set 2 (ERa in ERb+ cells), to define which of them was
binding both receptor subtypes (’heterodimer ERa+ERb’:
4186), only ERb (’homodimer ERb’: 4686) or only ERa
(’homodimer ERa’: 1372) in TAP-ERb cells. The ‘homo-
dimer ERb’ and the ‘heterodimer ERa+ERb’ groups were
further filtered against Set 3 binding regions (ERa sites
detected in ERb- cells), to identify the genomic sites
recognized by ERb, with or without ERa, but never by
ERa alone. This allowed us to classify the sites com-
prised in these regions as follows: Class 1, including
2126 sites occupied by ERa in wt MCF-7 cells and by
ERb in TAP-ERb cells (ERb vs ERa competition); Class
2, showing 4340 sites where ERa can bind in wt MCF-7
cells and both receptors are detected in TAP-ERb cells
(ERb+ERa); Class 3, with 2707 sites binding only ERb
and never, under any condition, ERa (ERb specific);
Class 4, comprising 529 sites where both receptors are
found in TAP-ERb cells but none in wt MCF-7 cells
(ERb+ERa specific); Class 5, including 617 sites where
ERa binds only in TAP-ERb but never in wt cells (ERa
displacement); Class 6, composed of 773 sites that bind
only ERa both in wt and TAP-ERb cells (ERa specific).
When combined with the results of the sequence ana-
lyses described above, this classification reveals that
ERb-specific cis-acting regulatory elements are unlikely
to exist in the genome, as all evidence point to the fact
that the two ER subtypes can recognize identical
sequence features.
To identify among the genes differentially regulated by

estrogen in ERb+ vs ERb- cells those representing direct
targets for transcriptional regulation by DNA-bound
ERb in our cell model, we extracted from the list in
Additional Table S1 [Additional file 3] the genes bearing
one or more ERb binding sites inside or within 10 kb of
the TU, and termed them ‘primary’, to indicate that
they are most likely to respond directly to the signal
conveyed by the E2-activated receptor [26]. Of these
424 genes - listed in Additional Table S3 [Additional file
3], whose kinetics of response to E2 in wt and TAP-ERb
cells is shown in Figure 4, 52 show one ERb site of
Class 1 (ERb vs ERa competition), 90 a site of Class 2

(ERb+ERa), 71 a site of Class 3 (ERb specific) and only
9 a Class 4 site (ERb+ERa specific), while 202 showed
multiple ERb sites belonging to different classes and
were thus classified accordingly (grey in Figure 4). In
the right panels of Figure 4 are reported examples for
each of the primary gene classes described above, show-
ing the location of the receptor binding sites respect to
the promoter and structural gene. It is worth mention-
ing that when the gene expression data from wt MCF-7
cells stimulated with E2 for 8hrs (Figure 2) were com-
bined with information concerning ERa binding regions
identified in wt MCF-7 cells under comparable condi-
tions (Set 3 described above), 228 putative primary ERa
target genes were identified -listed in Additional Table
S4 [Additional file 3], 71% of which (163 genes) showed
ERb binding in hormone-stimulated ERb+ cells. This
result supports the view that the two ER subtypes tend
to interact with the same targets in BC cells genome.
A functional analysis of the primary ERb target genes

identified here with Ontologizer [52] showed that most
primary ERb responsive genes are involved in key cellular
processes, including control of cell proliferation, survival
and differentiation status as well as cell motility, migra-
tion and adhesion, and can all greatly influence BC cell
phenotype and response to estrogen - listed in Additional
Table S5 [Additional file 4]. When GO analysis was per-
formed on the ERa target gene set from wt MCF-7 cells
(228 genes), results showed that the genes controlled
directly by this ER subtype appear to be involved in the
same cellular processes described above for ERb -com-
pare results reported in Additional Tables S5 and S6
[Additional files 4 and 5], providing a further indication
of the significant overlapping between gene pathways tar-
geted by ERb and ERa in BC cells. Focusing on the genes
differentially regulated by E2 in ERb- vs ERb+ cells
known for their involvement in cell proliferation, we
observed that many of them encode for transcription fac-
tors and other key proteins controlling large gene net-
works of cell division cycle and cell survival and, in
general, cell proliferation and differentiation pathways.
These include, in particular, CDK-6 (cyclin-dependent
kinase 6), CEBPA (CCAAT/enhancer binding protein,
alpha), DAB2 (Disabled homolog 2, mitogen-responsive
phosphoprotein), HES-1 (Hairy and enhancer of split
homologue 1), IGFBP-4 (Insulin-like growth factor bind-
ing protein 4), IRS-1 and -2 (Insulin receptor substrates 1
and 2), JAK-2 (Janus kinase 2), JunB, MITF (Micro-
phthalmia-associated transcription factor), MYC, SLIT-2
(Slit homolog 2, Drosophila), SMARCA-2 (SWI/SNF
related, matrix associated, actin dependent regulator of
chromatin, subfamily a, member 2), SOX-9 (Sex deter-
mining region Y-box 9), TGFB-2 (Transforming growth
factor beta 2), TGFBI/LCD-1 (transforming growth fac-
tor, beta-induced, 68 kDa), TGM-2 (Transglutaminase 2),
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Figure 4 Putative ERb primary targets. Left: Heatmap summarizing the effects of estrogen stimulation on 424 mRNAs encoded by genes
showing one (left) or more (right) ERb binding sites within 10 kb of the TU (primary response genes) transcriptome of MCF-7 cells, as changes in
expression (log2 of the fold-change) after cell exposure to 10-8M E2 for the indicated times. Transcripts are grouped as follows: regulated only in
wt MCF-7 cells (1), in both cell lines (2) and only in TAP-ERb cells (3). Vertical bars to the right of each heatmap indicate the class of ERb binding
site present, as indicated in the legend. When a regulated gene showed multiple ERb binding sites belonging to different classes it was included
in a separate group, classified as ‘combination of ERb sites’ (grey bar).Right: Genome Browser view of genomic loci representative of the different
ERa and ERb binding site categories identified. ChIP-Seq ERa and ChIP-Seq ERb indicate sites identified in this study, ChIP-Seq ERa1, ChIP-Seq
ERa2 and ChIP-on-chip indicates sites identified in MCF-7 cells by Cicatiello et al. [26], Fullwood et al. [27], and Hurtado et al. [28], respectively.
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TNS-3 (Tensin 3) and WISP-2 (WNT1 inducible signaling
pathway protein 2). Interestingly, the role of all these genes
in tumor cell proliferation and differentiation is known and
an involvement in hormone-mediated BC cell responses to
ERa has been reported for most of them, suggesting that
discovery of an ERb direct effect on transcription of these
genes provides a new molecular framework to elucidate
the anti-proliferative and differentiative effects of this
receptor subtype in hormone-responsive cells.
Among the RNAs encoded in the genome, micro-

RNAs (miRNAs) have emerged as master regulators of
gene expression for their ability to influence mRNA
concentration and activity by post-transcriptional
mechanisms. Recent results highlighted the role of
miRNA in BC cells response to estrogen [26,53-58] and,
in addition, several lines of evidence indicate extensive
miRNA deregulation in BC, including differential
expression of miRNAs in normal vs transformed mam-
mary epithelial cells [59-61]. For these reasons, we
focused our attention on the TUs encoding pre-miR-
NAs, to test the possibility that ERb binding sites might
be located in close proximity of these genes. Results
show that 52 miRNA-encoding loci (isolated or in geno-
mic clusters) show one or more ERb site within 10 kb
from the pre-miR sequence of the host gene - listed in
Additional Table S7 [Additional file 6]. Distribution of
these sites among the ER binding Classes described
above was comparable to what observed for primary
genes. Interestingly, in several cases ERb binds both
up- and down-stream of the pre-miR locus, further sug-
gesting that receptor docking might exert multiple regu-
latory actions on miRNA biogenesis.
We tested the hypothesis that the observed distribu-

tion of sites near the pre-miRNA loci occurred at ran-
dom by applying a bootstrap approach. To this end, we
repeatedly sampled 1000 times the same number of sites
of the real ERb binding set, with the same length distri-
bution, a similar distribution among chromosomes but
randomly selected coordinates. We then counted the
number of pre-miRNA loci and the number of randomly
generated sites found within 10 kb of each other and
compared their distributions with that of the experimen-
tally detected ones. The number of randomly generated
sites within 10 kb of a pre-miRNA never reached the
value detected experimentally, while the number of
miRNA loci scoring an artificial site in close proximity
was equal or above what measured only in 7.6% of the
cases. These results can be explained also by the obser-
vation that in several cases ERb binds both up- and
down-stream of the pre-miR locus, a result that support
a functional significance of this observation. In fact, the
ratio between the number of ERb binding sites and the
number of pre-miRNA loci within 10 kb of each other
is 1.5, while this varied between 0.5 and 1 for the

randomly generated sets (data not shown). We thus
conclude that although some of the ERb sites detected
in or near pre-miRNA loci may be the result of a ran-
dom, non functional event, these is likely to represent
rare events, as random distribution never reaches the
enrichment level observed experimentally. Indeed, preli-
minary miRNA profiling analyses carried out in wt
MCF-7 and TAP-ERb cells indicate that mature miRNA
expression undergo extensive deregulation in the pre-
sence of ERb [O. Paris et al., manuscript in preparation
and data not shown], suggesting that at least some of
the sites identified here might indeed be involved in
ERb-mediated regulation of miRNA biosynthesis in BC
cells.

ERb binding to the mitochondrial genome
Mitochondrial DNA (mtDNA) is usually overlooked in
whole-genome ChIP-seq analyses, since identification of
enriched peaks is more difficult here due to a much
higher noise, consequence of the high and variable num-
ber of mtDNA copies in the cell. ERb has been shown
to localize in the mitochondria in different cell types
[62] including human BC cells [63,64], and a role for
estrogen in mitochondrial function, with implications on
cell growth, has been established [65,66]. We thus ana-
lyzed the sequence reads that aligned on the mtDNA
sequence with the same method used for whole genome
data analysis, but applying a supplementary fold-inten-
sity filter (see Methods) to deal with the higher back-
ground noise. This analysis revealed one ERb binding
site in proximity of the mtDNA D-loop, but no ERa
binding sites either in wt MCF-7 or in TAP-ERb cells
(Figure 5A). Independent ChIP analysis confirmed this
results, showing ERb binding to this same mtDNA
region upon activation by E2 or its selective agonist 2,3-
bis(4-hydroxyphenyl) propionitrile (DPN) and lack of
ERa binding (Figure 5B). Furthermore, the presence of
ERb in mitochondria of TAP-ERb cells was confirmed
biochemically, by western blotting (Figure 5C), an analy-
sis that revealed also the presence of ERa in the orga-
nelle. When we analyzed the sequence of the ERb
mitochondrial site with MatInspector, we observed the
presence of the matrix V$GATA1.06, bound by GATA1,
a factor whose activity is strongly repressed by ERa [67],
and V$HMGA.01, bound by HMGA1, a non-histone
chromosomal protein that is highly overexpressed in
cancer cells [68] and has been shown to interact with
ERa and to enhance its binding to DNA [69].

Conclusions
The results of this study indicate that in vivo ERb can
interact with hormone-responsive BC cell chromatin
either alone or complexed with ERa, but in all cases the
two receptors share the same genomic targets. An
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observation that is in agreement with the conclusions of
previous studies based on analysis of ERa and ERb hetero-
dimerization and binding to the ERE [9,70-72]. When
both ER subtypes are expressed in the same cell, the main
action of ERb in the genome is thus achieved in combina-
tion with ERa, by either heterodimerization or competi-
tion for binding to the same target sites in chromatin.
Based on these observations, we propose that in hormone-
responsive BC the final cellular response to estrogen is
likely to depend upon the relative concentration of the
two ERs in the cell, their activation status and DNA bind-
ing kinetics and the presence of other factors influencing
their respective functions.

Methods
Plasmid preparation, cell lines, cell culture and stable
transfections
Different BC cell lines were used: MCF-7 TET Off (ER-
alpha positive; ATCC, Cat No. HTB-22) and SKBR3
(ER-alpha negative; ATCC, Cat No. HTB-30). MCF-7
TET Off cells (described here as wt or ERb-) were used
to produce stable clones expressing ERb tagged with
TAP-tag respectively at the C-term and at the N-term
(Ct-ERb and Nt-ERb) or C-tagged ERa (Ct-ERa), as
previously described [5,33]. All were grown in Dulbec-
co’s modified Eagle’s medium (DMEM), supplemented
with 10% fetal bovine serum (FBS) (both from Invitro-
gen), 100 U/ml penicillin, 100 mg/ml streptomycin, 250
ng/ml Amfotericin-B, 50 μg/ml G418 (normal growing
condition). For estrogen starvation, cells were plated at
40% confluence in steroid-free medium (phenol red-free
DMEM medium, with 5% fetal bovine serum pre-treated
with dextran-coated charcoal and antibiotics) and main-
tained for 5 days with replacement of fresh medium
before stimulation with 10-8M 17b-estradiol (E2).

Preparation of cell extracts, mitochondria isolation and
immunoblotting analyses
Cells starved in 100-mm dishes were stimulated for 45
minutes, harvested in cold PBS and collected by centri-
fugation at 1000 × g. The cell pellets were then resus-
pended in three volumes of Hypotonic Buffer (HB) (20
mM HEPES pH 7.4, 5 mM Sodium Fluoride, 10 μM
Sodium Molybdate, 0.1 mM EDTA, 1 mM dithiothreitol,
1 mM protease inhibitors, 1 mM Phenylmethyl-Sulfonyl
Fluoride). Cells were then incubated on ice for 15 min
and 0.5% Nonidet P-40 followed by spinning 30 sec at
4°C at 13000 × g. Supernatants were recovered and clar-
ified at 13,000 × g for 15 min at 4°C while pellets were
resuspended in hypotonic buffer, stratified on 25%
sucrose-HB solution and centrifuged at 6000 × g for 15
min at 4°C. The resulting pellets were then resuspended
in one volume of Nuclear Lysis Buffer [73] containing
800 mM NaCl, incubated for 30 min at 4°C with gentle
shaking and centrifuged for 15 min at 4°C at 13000 × g.
The supernatant fraction was recovered.
Mitochondria were isolated from 20 × 106 Ct-ERb or

Ct-ERa cells (in 150 mm culture dishes) as described [74],
with minor modifications. All steps during mitochondria
isolation were performed at 4°C, cells were washed twice
in PBS, scraped, and centrifuged at 290 × g, 5 minutes.
The samples were resuspended in buffer A (250 mM
Sucrose, 50 mM Tris-HCl, 2 mM EGTA), homogenized in
Glass-Teflon Potter homogenizer and centrifuged at 600 ×
g for 3 min, then the supernatants were re-centrifuged at
the same speed. Mitochondria were pelleted by centrifuga-
tion at 10400 × g for 10 min, resuspended in buffer A
and centrifuged again at 5300 × g for 10 min, in order to

Figure 5 Mitochondrial ER-beta binding sites . (A) Genome
Browser view of the ERb binding site identified in mitochondrial
genome. (B) Validation of ERb binding to mitochondrial DNA by
ChIP. Results shown are representative of duplicate analyses. E2:
10-8M 17b-estradiol; PPT: 10-8M 1,3,5-tris(4-hydroxyphenyl)-4-propyl-
1H-pyrazole (selective ERa agonist); DPN: 10-8M 2,3-bis(4-
hydroxyphenyl) propionitrile (ERb agonist). (C) Western blot analysis
of ERb and/or ERa in purified mitochondria from Ct-ERb and Ct-ERa
[33] cells. Cyt: cytosol depleted of mitochondria, H: whole cell
homogenate; Mito: purified mitochondrial fraction. ATPase is a
mitochondrial marker and a-tubulin was included to determine the
level cytosolic contaminants in ‘Mito’ samples.
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eliminate microsomal and cytosolic contamination. The
samples were dissolved in buffer A and centrifuged at
1500 × g for 4 min and then pelleted again at 9600 × g for
10 minutes. The final pellet was resuspended in Buffer B
(50 mM Tris pH 7.5, 150 mM NaCl, 1% Triton X-100,
0.1% SDS, 1% Na Deoxycholate, 1 mM PMSF, 1X Protease
Inhibitor) and incubated on ice for 20 min to extract mito-
chondrial proteins. A small portion of sample was col-
lected after homogenization and processed to obtain the
samples corresponding to homogenate and cytosol. An
equivalent protein amount was fractionated by SDS-PAGE
on Mini Protean Precast polyacrylamide gels 4-20% from
Biorad.
Homogenate, cytosol, nuclear or mitochondrial

extracts from equivalent cell number were fractionated
by SDS-PAGE. Immunoblot analysis was performed
using the following primary antibodies: Ct-ERa (HC-20;
sc-543) from Santa Cruz Biotechnology, Inc., TAP tag
(CAB1001) from Open Biosystems, a-Tubulin (T 6199)
from Sigma-Aldrich, ATPase B (ab14730) from Abcam.
Peroxidase-labelled anti-rabbit or -mouse immunoglobu-
lin antisera were used according to the manufacturer’s
instructions (Amersham Italia).

Transient Transfections and Luciferase Assay
Wild type MCF-7, Ct-ERb and Nt-ERb clones were
starved for 5 days in estrogen-free medium. Then 5 ×
105 cells/dish were seeded in 60 mm culture dishes and
transfected by using 25 μg/dish polyethylenimine (Poly-
sciences, Inc.) with 2.5 μg/dish DNA, including 300 ng
ERE-tk-Luc [75], 500 ng pSG-Δ2-NLS-LacZ vector [76],
co-transfected as an internal control for transfer effi-
ciency, and carrier DNA (Bluescribe M13+). At 48 hrs
after transfection, cells were treated for 24 hrs with
either vehicle (EtOH) or E2 (10-8M).
SKBR3 cells were grown to 60-70% confluence and

transfected with Lipofectamine 2000 reagent (Invitro-
gen) and OPTI-MEM (Invitrogen) according to the
manufacturer’s instructions. The plasmids used were
pSG5-ERb, encoding full-length ERb (ERb1), pSG-
HEGO, encoding the full-length ERa and the corre-
sponding pSG5 empty vector (Stratagene), pUSE-C-
TAP-ERb and pUSE-N-TAP-ERb, encoding full-length
ERb tagged, respectively, at the C-term and at the N-
term [5], ERE-tk-Luc and pSG-Δ2-NLS-LacZ. Six hours
after transfection, the medium was changed and 24 hrs
later cells were stimulated as described above for 24 hrs.
At the end of treatment, cells were washed with cold
PBS and lysed in 100 μl lysis buffer (Promega). Lucifer-
ase activity was measured in extracts using the Lucifer-
ase Assay Reagent (Promega), according to the
manufacturer’s instructions, and values were expressed
as relative light units normalized to the b-galactosidase
activity or to the protein concentrations measured using

the Bradford technique. For each condition, average
luciferase activity was calculated from the data obtained
from three independent dishes.

Cell Cycle Analysis
Estrogen-deprivation was always controlled by cell cycle
analysis as follows. Cells (1.5 × 105 cells/dish) were
starved in 60 mm culture dishes, stimulated for 27 hrs
and collected in PBS containing 50 μg/ml propidium
iodide, 0.1% (v/v) sodium citrate, 0.1% (v/v) Nonidet P-
40. Cell samples were incubated in the dark for at least
15 min at room temperature, or overnight at 4°C, and
analyzed by a FACScalibur flow cytometer using the
CellQuest software package (BD Biosciences), according
to standard protocols suggested by the manufacturer
[77,78]. Data analysis was performed with Modfit soft-
ware (Verity Software, Topsham). Values were plotted
as increasing of S-phase respect to unstimulated con-
trols. Results showed were obtained from two indepen-
dent experiments.

Cell Proliferation Assay
Hormone-starved cells (3000/well) were seeded in 96-
well dishes. After 12 hrs, medium was changed to
include the indicated compounds. After appropriate sti-
mulation, cells were washed in phosphate-buffered sal-
ine (PBS) and fixed with 12.5% glutaraldehyde for 20
min at room temperature, followed by washing with dis-
tilled water, incubation with 0.05% methylene blue for
30 min, rinsing and incubation with 0.33 M HCl for 18
hrs. Absorption was measured at 620 nm.

RNA purification
Total RNA was extracted from wt MCF-7, Ct-ERb and
Nt-ERb clones, generated as described above, using the
standard RNA Extraction method with TRIzol (Invitro-
gen) method, as described previously [79,80]. Cells were
estrogen-deprived and total RNA was extracted before
or at the indicated times after stimulation with 10-8M
17b-estradiol (+E2) or ethanol vehicle.
In each case RNA derived from two independent

experiments performed in duplicate was used. Before
use, RNA concentration in each sample was assayed
with a ND-1000 spectrophotometer (NanoDrop) and its
quality assessed with the Agilent 2100 Bioanalyzer with
Agilent RNA 6000 nanokit (Agilent Technologies).

Microarray analyses
Total RNA extracted from Ct-ERb and Nt-ERb cells
were pooled. For mRNA expression profiling, 500 ng
total RNA were reverse transcribed, as described pre-
viously [26,81] and used for synthesis of cDNA and bio-
tinylated cRNA according to the Illumina TotalPrep
RNA Amplification Kit (Ambion, Cat. n. IL1791)
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protocol. For each sample, 750 ng of cRNA were hybri-
dized for 18 hrs at 55°C on Illumina HumanHT-12 v3.0
BeadChips, containing 48,804 probes (Illumina Inc.),
according to the manufacturer’s protocol and subse-
quently scanned with the Illumina BeadArray Reader
500. Data analyses were performed with GenomeStudio
software version 2009 (Illumina Inc.), by comparing all
values obtained at each time point against the 0 hrs
values. Data was normalized with the quantile normali-
zation algorithm, and genes were considered as detected
if the detection p-value was lower than 0.01. Statistical
significance was calculated with the Illumina DiffScore,
a proprietary algorithm that uses the bead standard
deviation to build an error model. Only genes with a
DiffScore ≤-40 and ≥40, corresponding to a p-value of
0.0001, were considered as statistical significant.

Chromatin Immunoprecipitation
Ct-ERb and Nt-ERb cells were hormone-deprived for 4
days and chromatin was extracted in several replicates
before (-E2) and after stimulation for 45 minutes with
10-8M 17b-estradiol (+E2) or, where indicated, with the
10-8M selective ERa agonist 1,3,5-tris(4-hydroxyphenyl)-
4-propyl-1H-pyrazole (PPT) or 10-8M ERb agonist 2,3-bis
(4-hydroxyphenyl) propionitrile (DPN), from Tocris
Cookson.
Chromatin was prepared with the Millipore/Upstate

Chromatin Immunoprecipitation (ChIP) Assay Kit
(Millipore) according to the instruction provided by the
producer, using a variation of the protocol described at
the Upstate website. For each assay, a total of 5 × 106

cells were fixed with 1% formaldeyde for 10 min at
room temperature, the reaction was then stopped by
adding glycine at final concentration of 0.125 M. Fixed
cells were washed twice with ice-cold PBS, harvested by
scraping, centrifuged and the cell pellets were re-sus-
pended in SDS lysis buffer. Samples were sonicated with
a Diagenode Bioruptor (Diagenode) for 12 cycles of 30
sec at high power, centrifuged at 12500 xg for 15 min-
utes and diluted 8-fold in ChIP dilution buffer. After
removing an aliquot (whole-cell extract input), the chro-
matin sample was divided in three aliquots, that were
incubated at 4°C overnight with antibodies against either
the C-term (HC-20, from Santa Cruz Biotechnology) or
N-term (anti-Estrogen Receptor 18-32, from SigmaAl-
drich) of human ERa or with IgG Sepharose 6 fast Flow
(GE Healthcare Bio-Science AB) for TAP-ERb [5]. As
control, an aliquot of the same chromatins were pro-
cessed in the same way but Abs or IgGs were omitted
form the reaction. The samples were then precipitated
by binding to protein-A Agarose/Salmon Sperm DNA
beads (Millipore), for ERa, or as such for to ERb. The
beads were washed sequentially with ‘low-salt immune
complex wash buffer, ‘high salt immune complex wash

buffer, ‘LiCl immune complex wash buffer’ and TE buf-
fer, before elution in Elution buffer by ON incubation at
65°C and treatment with Proteinase K. DNA was puri-
fied from immunoprecipitated (IPP) chromatin by
extraction with phenol:chloroform:isoamyl alcohol
(25:24:1) and ethanol precipitation according to standard
procedures. DNA pellets were dissolved in nuclease-free
water and kept frozen before further use.
Primers for ChIP-QPCR validation of the mitochon-

drial genome ERb binding site were the following: 5’-
GATCACAGGTCTATCACCCTATTAACC (forward)
and 5’-CAGCGTCTCGCAATGCTATC (reverse).

Samples preparation for ChIP-Seq
DNAs from Ct-ERb and Nt-ERb cells treated with E2
were pooled together to generate an ERb +E2 sample and
the same was done for DNAs from hormone-starved
cells (ERb -E2 sample). Similarly, IPP DNAs obtained
with anti-C-term and anti-N-term ERa Abs were pooled
together to generate ERa +E2 and ERa -E2 samples.
About 20 ng of ChIP DNA was purified using the MinE-
lute PCR Purification Kit (QIAGEN, Italy), with a recov-
ery of 55-70%, as assessed with the Quant-IT DNA Assay
Kit-High Sensitivity and a Qubit Fluorometer (Invitro-
gen). Preparation of IPP DNA libraries for massively par-
allel sequencing was performed from 10 ng purified DNA
according to the Illumina ChIP-Seq sample preparation
kit protocol (Illumina Inc.). Libraries were sequenced
with the Illumina Cluster Station and Genome Analyzer
II according to manufacturer’s instructions.

ChIP-Seq data analysis
The sequence tags generated by massively parallel
sequencing were aligned on the human genome (hg18)
with the software ELAND, allowing up to 2 mismatches.
Enriched regions from ERa +E2 and ERb +E2 samples
were compared with the same from ERa -E2 and ERb
-E2 samples, respectively. The enriched ChIP-Seq peaks
were identified using MACS (Model-based Analysis of
ChIP-Seq) version 1.3.7.1 [39], with standard parameters
(p-value cut-off of 1e-5, mfold of 32). For mtDNA we
further filtered out sites with tag density below 0.5 (N/l;
N = number of tags, l = length of site)

Computational searches for ERE sequences
The ERE binding motif was searched in binding sites
with the MatInspector application [82], a part of Geno-
matixSuite software (Genomatix Software GmbH, Ger-
many). The matrices ER.01, ER.02, ER.03 and ER.04
(Genomatix Matrix Library 8.2), were used with a core
similarity threshold of 0.75 and a matrix similarity thresh-
old of Optimal -0.02. The sequences bearing a match of
any of the four matrices were termed ERE+ sequences.
On the remaining sequences, the hemi-palindromic ERE
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motif was searched with the same application, by defining
a custom half ERE matrix PuGGTCA (hERE). The
remaining sequences were classified as ERE- and were
scanned for other TF binding sites motifs contained in
the Genomatix Matrix Library using the standard para-
meters, as described previously [26].

TFBS over-representation analysis
ERE- sequences were analyzed to search for known TF
binding sites (TFBSs) that were enriched (over-repre-
sented) with respect to their relative frequency in the
whole human genome. This analysis was performed with
the RegionMiner application of the Genomatix software
suite [47]. The software automatically searches for all
TFBS matches present in the submitted sequence list and
calculates the over-representation value of the actual
number of matches over the expected value based on its
frequency in the reference set (genome or promoters) for
each matrix. It reports also the significance of the over-
representation ratio, expressed as Z-scores [83]. Enrich-
ment values with a Z-score <3.0 were not considered
further. A filter was applied also on the over-representa-
tion values, depending upon the range of values set for
each analysis, to highlight only the stronger associations.
Results are shown as heatmaps representing over-repre-
sentation values, generated with MeV software [84].

Classification of ERb binding sites and identification of
primary ERb responsive genes by combining ChIP-Seq
and expression profiling data
Three sets of ER binding sites were taken in consideration.
The first and second comprised, respectively, the ERb and
ERa sites mapped in TAP-ERb cells and the third (named
‘MCF-7 ERa’) included all ERa binding sites identified in
wt MCF-7 cells by ChIP-Seq [26,27] and/or by ChIP-on-
chip [28]. First of all, the ER binding sites from ChIP-Seq
analyses were elongated in both directions by 1000 bp.
Subsequently, using UCSC Table Browser [85], for each of
the first two sets the extended sites overlapping with each
other were merged in ERb or ERa binding ‘regions’,
respectively. For the third set (wt MCF-7 ERa), the
extended ChIP-Seq sites and the ChIP-on-chip sites over-
lapping with each other in the genome were all merged to
generate unique MCF-7 ERa binding ‘regions’. To identify
putative primary ERb responsive genes, the TUs corre-
sponding to RNAs differentially regulated by E2 in ERb+
vs ERb- cells that showed one or more ERb binding region
inside or within 10 kb were extracted using UCSC Table
Browser, as described previously [26].

Gene Ontology analysis
To identify Biological Process GO terms statistically
overrepresented in our regulated gene lists, we used
Ontologizer 2.0, a tool for GO term enrichment analysis

of genes derived from an experiment [52]. We identified
enriched terms in primary ERb or ERa target genes
against all genes expressed (detected) in the cell lines
under study, set as background of the analysis, with a p
value threshold of 0.01.

Microarray and ChIP-Seq data accession numbers
The microarray and ChIP-Seq data have been deposited
in the Array Express database ( HYPERLINK “http://
www.ebi.ac.uk/arrayexpress” http://www.ebi.ac.uk/
arrayexpress) with Accession Numbers E-TABM-1051
and E-MTAB-345, respectively.

Additional material

Additional File 1: Grober_ER-alpha_Binding_Sites ERa binding sites.
The UCSC genome BED formatted file lists the chromosome, start
coordinate, stop coordinate and identifier of the ERa binding sites.

Additional File 2: Grober_ER-beta_Binding_Sites ERb binding sites.
The UCSC genome BED formatted lists the chromosome, start
coordinate, stop coordinate and identifier of the ERb binding sites.

Additional File 3: Sheet 1: Additional Table S1 Differentially
Regulated Genes. Overview of the 921 genes differentially regulated by
E2 in ERb+ vs ERb- cells, containing the following additional information:
gene set membership, symbol, Entrez ID, gene name and expression
values (fold-change). Sheet 2: Additional Table S2 TFBS enrichment matrix.
The worksheet shows the over-representation values for the TF binding
matrices from ERE- binding sites. Sheet 3: Additional Table S3 Primary ERb
target genes, showing ERb binding sites within 10 kb of the TU.
Overview of the 424 putative ERb primary gene targets containing the
following additional information: gene set membership, category of ERb
binding sites, Symbol, Entrez ID, Gene Name, TU Coordinates, ERa
Binding Sites Coordinates and ERb Binding Sites Coordinates. Sheet 4:
Additional Table S4 Primary ERa target genes, showing ERa binding sites
within 10 kb of the TU in ERb- cells. Overview of the 228 putative ERa
primary gene targets containing the following additional information:
Symbol, Entrez ID, Gene Name, TU Coordinates.

Additional File 4: GO analysis of primary ERb target genes.
Containing the following information: Biological process, Gene Ontology
term, Name, Count in total GO population, Count in selected genes, %
genes and p-value.

Additional File 5: GO analysis of primary ERa target genes.
Containing the following information: Biological process, Gene Ontology
term, Name, Count in total GO population, Count in selected genes, %
genes and p-value.

Additional File 6: ERb binding sites in proximity of miRNA loci.
Containing the following information: miRNA name, ID of ER-b binding
site upstream, Distance from the closest ERb binding site upstream, ID of
ER-b binding site downstream and Distance from the closest ERb
binding site downstream.
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Exome sequencing - targeted sequencing of coding regions of the genome - is a powerful and cost-effective new tool for 

dissecting the genetic basis of diseases and traits that have proved to be intractable with conventional gene-discovery 

strategies. Until now many algorithms have been produced, each of them addressing a different task in the downstream 

analysis of next-generation sequencing (NGS) data. The aim of this work is to combine these algorithms into an accurate 

analysis pipeline to identify high quality variations in the data produced in our laboratory by exome capture using the Agilent 

SureSelect 50Mb exome capture kit and massively parallel sequencing with an Illumina GAIIx sequencer. After sequencing, 

paired-end reads were aligned to the hg19 reference genome using BWA [1] allowing more than one mismatch, and 

processed using SAMtools [2]. Base quality score recalibration and local realignment around indels were performed using 

the Genome Analysis Toolkit GATK [3] and PCR duplicates were removed using Picard tool [4]. SNPs calling was done 

using GATK UnifiedGenotyper, that applies a Bayesian model to estimate the most likely genotypes and allele frequency in 

a population of N samples, giving an annotated VCF file as output. Only variations supported by a number of reads greater 

than 8, calls greater than 25 and quality score greater than 40, were considered for the next steps. Subsequently, variants 

have been marked as missense or synonymous and then dbSNP was used to discard SNPs that were already known. 

Finally, the tendency of each missense mutation to be deleterious for the function of a protein as opposed to neutral was 

calculated using CONDEL [5], a software that computes a weighted average of the scores of the SIFT and POLYPHEN 

methods. The pipeline was tested on a sample derived from a human cell line sequenced in our laboratory. Starting from 

165.791 raw variants, we applied all filters described above reducing the list to 3.154 variations, ~1.000 of which were 

marked as deleterious by CONDEL and manually annotated according to the literature to identify variations of potential 

interest for the disease. 





AN ACCURATE PIPELINE FOR ANALYSIS OF EXOME SEQUENCING DATA  
 
De Filippo Maria Rosaria1,2, Giurato Giorgio1, Rizzo Francesca1, Ravo Maria1, Stellato Claudia1, 
Marchese Giovanna1  and Weisz Alessandro1,3  
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Exome sequencing - the targeted sequencing of the subset of the protein coding human genome - 
is a powerful and cost-effective new tool for dissecting the genetic basis of diseases and traits that 
have proved to be intractable with conventional gene-discovery strategies. Until now many 
algorithms have been produced, each of them addressing a different task in the downstream 
analysis of next-generation sequencing (NGS) data. The aim of this work is to combine these 
algorithms into an analysis pipeline to identify high quality variations in the data produced in our 
laboratory by an exome sequencing experiment using the illumina GAIIx sequencer. Exonic 
sequences were targeted using the Agilent SureSelect 50Mb exome capture kit and sequenced 
using the Illumina GAIIx. 72 bp paired-end reads were aligned to the hg19 reference genome using 
BWA and processed using SAMtools. Base quality score recalibration and local realignment 
around indels were performed using the GATK. Duplicate marking was conducted using Picard. 
SNP calling was done using GATK UnifiedGenotyper, that applies a Bayesian model to estimate 
the most likely genotypes and allele frequency in a population of N samples, giving an annotated 
VCF file as output. Only variations with coverage greater than 8, calls greater than 25 and quality 
score greater than 40, were considered for the next steps. Subsequently variants have been 
marked as missense or synonymous and dbSNP was used to discard SNPs that were already 
known. Finally, the tendency of each missense mutation to be deleterious for the function of a 
protein as opposed to neutral was calculated using CONDEL, a software that computes a weighted 
average of the scores of the SIFT and POLYPHEN methods. We tested our pipeline on a sample 
derived from human breast cancer MCF-7 cells sequenced in our laboratory. Starting from 165791 
raw variants, after filtering for coverage, quality and call, and removing known variants from dbSNP 
together with synonymous ones causing no amino acid change, we obtained a list of 3154 
variations (missense and truncating). After CONDEL prediction, 1140 variants were marked as 
deleterious and about 50 of them were found implicated in breast cancer by literature. 
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Development of pipeline for exome sequencing data analysis
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Motivations
Exome sequencing the targeted sequencing of 
the subset of the protein coding human genome 
is a powerful and cost-effective new tool for dis-
secting the genetic basis of diseases and traits 
that have proved to be intractable to conven-
tional gene-discovery strategies. Until now many 
algorithms have been produced, each of them 
addressing a different task in the downstream 
analysis of next-generation sequencing (NGS) 
data. The aim of this work is to combine these al-
gorithms into an analysis pipeline for the detec-
tion of SNP and deletion/insertion polymorphisms 
within DNA sequences obtained by whole ex-
ome sequencing. The pipeline tested with data 
obtained from SRA (http://www.ncbi.nlm.nih.gov/
sra), will then be applied to studies undergoing in 
our laboratory.

Methods
Starting from raw sequence data, we first per-
formed quality statistics and filtering of sequence 
reads and then aligned them to a reference ge-
nome. To this end, BWA was used to align both 
single- and paired-end reads for its computa-

tional efficiency and multi-platform compatibil-
ity. Post-alignment analysis, including removal of 
duplicate reads and quality score recalibration, 
was carried out using GATK, which takes into ac-
count several covariates such as machine cycle 
and dinucleotide context. Next, SNP calling was 
done using GATK UnifiedGenotyper, that uses 
a Bayesian model to estimate the most likely 
genotypes and allele frequency in a population 
of N samples, giving an annotated VCF file as 
output. Subsequently, variant quality score was 
recalibrated to estimate the probability of each 
variant being a true polymorphism, rather than 
a sequencer, alignment or data processing arti-
fact, and finally filtered to improve the accuracy 
of genotype and SNP calling.

Results
The results obtained support the accuracy of 
our pipeline to identify SNP and short indels, to 
provide a global and quantitative catalog of nu-
cleotide variants in the exome. The next step will 
be to apply this pipeline to samples sequenced 
in our laboratory.
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Computational approaches for genome-wide mRNA and miRNA expression profiling in human 
breast cancer cell lines expressing (ERβ+) or lacking (ERβ-) estrogen receptor beta by microarray 
hybridization and massively parallel sequencing (miRNA-Seq) 
 
Maria Rosaria De Filippo (1), Giorgio Giurato (1), Roberta Tarallo (1), Maria Ravo (1), Francesca Rizzo 
(1), Concita Cantarella (1), Giovanni Nassa (1),, Ernesto Nola (2) and Alessandro Weisz (1,2) 
 

(1) Laboratory of Molecular Medicine and Genomics, Faculty Medicine and Surgery of the University of 
Salerno, Baronissi (SA), Italy 
(2) Department of General Pathology of the Second University of Naples, Napoli, Italy 

 
microRNAs (miRNAs) are evolutionary conserved small non coding RNA that negatively regulate gene 
expression. Recent studies have demonstrated that mutations or aberrant expression of miRNAs are associated 
with cancer, suggesting that genes encoding these RNAs may act as oncogenes or tumor suppressors. Estrogen 
receptor alpha (ERα) and beta (ERβ) are transcriptional factors (TFs) that mediate estrogen signaling and define 
the hormone responsive phenotype of breast cancer. The two receptors can be found co-expressed, and play 
specific, often opposite roles, with ERβ being able to modulate the effect of ERα on gene transcription and cell 
proliferation. ChIP-Seq (Chromatin immunoprecipitation followed by sequencing) analysis of breast cancer cell 
lines (MCF7) showed that ERα and ERβ bind in close proximity of several miRNA genes, suggesting a direct 
involvement of these nuclear receptors in biogenesis of these small RNAs[1,2].Starting from these observations, I 
investigated miRNA expression patterns by miRNA-Seq (direct sequencing of small non coding RNA) and 
microarray hybridization in two ERα positive breast cancer cell lines: one lacking (ERβ-) and one expressing 
(ERβ+) estrogen receptor β. At first, I analyzed data obtained from microarray experiments (Agilent Human 
microRNA microarray). After normalization, student t-test was performed to identify differentially expressed 
miRNA between the two cell lines[3]. Subsequently, I focused on analyzing miRNA-seq data from the same cell 
lines. To this end, reads obtained from sequencing were analyzed with a specific bioinformatic tool, 
miRAnalyzer. The R Bioconductor’s package, DeSeq, was then used to perform differential expression analysis 
for sequence count data between ERβ- and ERβ+ cells. Comparison of data obtained from microarray analyses 
and miRNA-Seq was carried out to evaluate the reliability, sensitivity and reproducibility of the two analytical 
tools. Finally, differentially expressed miRNAs was used to search for their putative target mRNAs through the 
use of dedicated bioinformatics tools. The results of this analysis were exploited to reveal biological functions and 
molecular processes in which these miRNA targets are involved and are therefore controlled at a post-
transcriptional levels by ERβ via specific miRNAs. 
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