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ABSTRACT 

Background and purpose: MicroRNAs (miRNA) are single-stranded short RNA 

molecules that regulate gene expression by either degradation or translational 

repression of mRNA. Recent studies showed that several neurodegenerative 

disorders including cerebral ischemia significantly alter cerebral miRNA profiles, 

mediating profound effect on the disease outcome. In that scenario the Na+/Ca2+ 

exchanger, by mediating Ca2+ and Na+ fluxes in a bidirectional way across the 

synaptic plasma membrane, may play a pivotal role in the events leading to anoxic 

damage. The objective of this study was to set up a valid therapeutical strategy able 

to contrast the role of specific miRNAs that downregulate NCX expression  under 

experimental conditions mimicking stroke. 

Methods: NCX protein expression was evaluated after miRNA cell trasfection in 

PC12, BHK cell lines and neuronal cultures from rat embryons. Then, it has been 

tested the capability of AntimiRNA 103-1 to target mir-103-1 and to block its 

detrimental action on NCX1 RNA messanger. This second part has been conducted 

on a rat model of transient cerebral ischemia. 

Results: The results showed that NCX1 physiological expression was dramatically 

reduced when cells were treated with mir-103-1. This tight regulation of NCX by a 

specific microRNA represents the in vitro confirmation of a perfect complementarity 

existing between 3’UTR of NCX and seed sequence of miRNA 103-1 already 

evidenced by in silico analysis. Conversely, the in vivo approach consisted in 

administering, by intracerebroventricular infusion, miRNA 103-1 silencing 

(AntimiRNA) in a specific temporal delay from transient ischemia in which ischemic 

damage was at the highest level and NCX1 protein was strongly downregulated. 

Results showed that antimiRNA-103-1 protected brain from ischemia and sustained 

high level of neurobeneficial protein NCX1. 

Conclusions: The present findings support the idea that blocking mir-103-1 by 

microRNA inhibitor is a reasonable strategy to stop neurodetrimental downregulation 

of NCX occurring during ischemic conditions.   
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1. PREMISE 

 

Acute stroke is one of the leading factors of morbidity and mortality worldwide 

(Donnan et al., 2008). After cardiovascular disease and cancer, stroke ranks as third 

most common cause of death in industrialised countries (European Stroke 

Organization). Stroke as the most important cause of morbidity and it imposes an 

enormous economic burden. It is estimated that on average a person suffering from 

stroke in the acute phase of hospitalization, diagnosis and care, costs 10/15 

thousand euro. Permanent disability for people that exceed the acute phase 

determines an expense for years of about 80/120 thousand euro. Psychological 

consequences and family costs are incalculable. By the year 2020 the mortality from 

stroke will be duplicated because of the elderly and the persistence of smoking 

cigarettes. Stroke is caused by an interruption of blood flow to the brain prolonged in 

time. The CNS is more vulnerable to ischemic events than any other organ or system 

in aerobic metabolism. The loss of blood supply to the brain may be the result of two 

separate events: ischemic or hemorrhagic stroke. The first, more frequent, is due to 

the formation of a thrombus or an embolus responsible for obstruction of a vessel 

that supplies the brain tissue, the second, more frequently fatal, is due to rupture of a 

cerebral vessel. Interruption of cerebral vasculature for only 5 minutes produces 

neuronal death in the corresponding areas of the brain, whereas, for example, 20-40 

minutes of ischemia are necessary to cause myocyte death (Ogawa et al., 2007). In 

recent years, stroke has been increasingly recognised as a medical emergency. 

Current available treatments, particularly thrombolytic strategy, have a much greater 

chance of improving stroke outcome if they are started as soon as possible after the 

onset of ischemia. Educating the public and training health professionals to treat 
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stroke as a true emergency is likely to have real benefits for the outcome of patients 

with stroke. The key element of acute stroke management summarises the 

procedures and therapies currently available for use in acute stroke that may help to 

improve outcomes for stroke patients. It includes general stroke therapies, treatment 

of secondary complications, and thrombolytic therapy (ESO Annual Report, 2011). In 

stroke prevention, primary prevention aims to reduce the risk of stroke in 

asymptomatic people and secondary stroke prevention focuses on therapies that 

inhibit the ability of platelets to form thromboemboli. This objective can be achieved 

either through direct antiplatelet action or by regulating mechanisms that affect 

platelet aggregation.  

 

 

 

 

 

 

 

 

 



 
 

6 
 

2. INTRODUCTION 

 

2.1 STROKE PATHOPHYSIOLOGY 

Stroke originates from rupture or blockade of a blood vessel in the brain that causes 

rapid cell death in the core of the injured region and triggers mechanisms in the 

surrounding area – the penumbra – that leads among several mediators to changes 

in the concentrations of several ions such as intracellular Ca2+, Na+, H+, K+, and 

radicals such as reactive oxygen species (ROS) and reactive nitrogen species 

(RNS). All these transductional factors might initiate cell death. In particular, it is 

widely accepted that a critical factor in determining neuronal death during cerebral 

ischemia is the progressive accumulation of intracellular Na+ ions, which can 

precipitate necrosis and apoptosis of vulnerable neurons. Whereas the detrimental 

action of [Na+]i increase is attributable to both cell swelling and microtubular 

disorganization – phenomena that lead to cell necrosis – a change in Ca2+,Na+, K+, 

H+ ions has been shown to be a key factor in ischemic brain damage, for it modulates 

several death pathways, including oxidative and nitrosative stress, mitochondrial 

dysfunction, protease activation, and apoptosis (Annunziato et al., 2009, Springer). A 

large amount of work has been accumulated showing that glutamate extracellular 

concentrations briskly rise during acute brain injury, thus triggering an influx of Ca2+ 

and Na+ ions into neurons through ionotropic glutamate receptor subtypes. This 

evidence has led to the elaboration of the paradigm of glutamate excitotoxicity that 

explains ischemic neuronal cell death as a mere consequence of Na+ and Ca2+ influx 

through glutamate receptors (Olney et al., 1973). Although this theory has been 

guiding basic research in the field of neurodegeneration for almost three decades, 

more recently it has become the object of serious criticism and reassessment. What 
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has aroused such skepticism among researchers has been the fact that although 

first, second, and third generation glutamate receptor antagonists have long yielded 

promising results in animal models of brain ischemia, they have failed to elicit a 

neuroprotective action in stroke and traumatic brain injury in humans. Therefore, the 

theory of excitotoxicity can only explain some of the events occurring in the acute 

phase of anoxic insult but cannot be seen as a major target for developing new 

therapeutic avenues for brain ischemia. In the last decade, several seminal 

experimental works are markedly changing the scenario of  research of principal 

actors of an ischemic event. In fact, it has been shown that some integral plasma-

membrane proteins, involved in the control of Ca2+, Na+, K+, H+ ions influx or efflux 

and, therefore, responsible for maintaining the homeostasis of these four cations, 

might function as crucial players in the brain ischemic process. Indeed, these 

proteins, by regulating Ca2+, Na+, K+, H+ homeostasis, may provide the molecular 

basis underlying glutamate-independent Ca2+ overload mechanisms in neuronal 

ischemic cell death and, most importantly, may represent more suitable molecular 

targets for therapeutic intervention (Annunziato et al., 2009). What happens when 

brain hypoxia or ischemia occurs is that tissue energy demands can not be met, so 

ATP levels fall. Loss of ATP results in decreased function of active ion pumps, such 

as the Na+/K+-ATPase, the most important transporter for maintaining high 

intracellular concentrations of K+ (~155 mM) and low intracellular concentrations of 

Na+ (~12 mM). Loss of ion pump function allows rundown of transmembrane ion 

gradients, leading to membrane depolarization, the opening of voltagesensitive ion 

channels and a cascade of subsequent events, which, if sustained, lead ultimately to 

cell death. Depending on the circumstances, this death may be restricted to 

selectively vulnerable neuronal populations or may involve all cells (tissue infarction). 

Within seconds of an ischemic insult, normal brain electrical activity ceases due to 
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the activation of membrane K+ channels and widespread neuronal hyperpolarization. 

The hyperpolarization, presumably protective, however fails to preserve high-energy 

phosphate levels in tissue as concentrations of phosphocreatine (PCr) and ATP fall 

within minutes after ischemia onset. The fall in pO2 during ischemia leads to 

enhanced lactic acid production so there is a shift from aerobic metabolism to a 

dependence on glycolysis. The resulting lactic acidosis decreases the pH of the 

ischemic tissue from the normal 7.3 to intra-ischemic values ranging from 6.8 to 6.2. 

In addition, efflux of K+ from depolarizing neurons results in prolonged elevations in 

extracellular [K+] and massive cellular depolarization, a state known as spreading 

depression, which can propagate in the brain tissue. Rapid inactivation of O2-

sensitive K+ channels by decreased pO2 may represent one mechanism whereby 

neurons put a brake on this ongoing K+ efflux (Haddad and Jiang 1997). Other 

cellular ion gradients are also lost; thus, intracellular Na+ and Ca2+ rise and 

intracellular Mg2+ falls. Recently a great deal of interest has been devoted to clarify 

mechanisms  of modulation of dangerous cascade actived by cerebral ischemia. 

Within them an important role seems to be played by the non-coding RNA called 

microRNA (miRNA). Indeed, miRNA are small RNA able to modulate protein 

expression at post-trascriptionale level. As reported previously, cerebral ischemia 

triggers a multifaceted cascade of physiologic and biochemical events. It is believed 

that these events are mediated in part by alterations in molecular processes such as 

transcription and translation. To date, no exhaustive reports are available on the 

miRNA microarray profiling of the ischemic brain. Nevertheless, several reports have 

demonstrated the roles of specific miRNAs in neuronal differentiation, neurogenesis, 

neural cell specification, and neurodevelopmental function (Kim et al., 2004; Osada 

et al., 2007; Schratt et al., 2006; Jeyaseelan et al., 2008; Lim et al., 2008), therefore 

miRNa can be included in the list of potential druggable targets for stroke treatment. 
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2.1.1 CURRENT STRATEGIES FOR ISCHEMIC STROKE TREATMENT 

In acute stroke management, current evidence demonstrates that the most important 

declines in stroke incidence and mortality in developed countries have evolved from 

primary and secondary prevention measures aimed to better control of risk factors, 

including either pharmacological treatments or other procedures that decrease blood 

pressure, prevent consequences of atrial fibrillation, and reduce hyperglycemia and 

hyperlipidemia, among others. Although less successful, there have also been 

interventions with proven benefit for acute stroke treatment. One of the most 

significant advances has been the management of patients in stroke units, which has 

been shown to reduce mortality and to improve functional outcome by approximately 

20% (Donnan et al., 2008) after acute ischemic stroke (Langhorne et al., 1993). In 

addition, recanalization of the occluded blood vessel with thrombolytics, mainly 

recombinant tissue plasminogen activator and, more recently, by mechanical clot 

removal or disruption, appears to be one of the most effective treatments for acute 

ischemic stroke. However, there have been major disappointments in the area of 

pharmacological neuroprotection, where many clinical trials have so far failed. Some 

of these failures might be due to deficiencies in trial design rather than absence of 

efficacy of the agents tested. In this sense, many current efforts are now devoted to 

develop methods for better patient selection and for analysis of outcomes, a way in 

which recent trials have begun to provide some hope. Still, acute stroke treatment 

guidelines until now do not encourage treatment with any neuroprotectant. Lastly, 

there is a field for which there are hopes that some interventions could be useful for 

patients with stroke, which is the phase of recovery. Indeed, in this setting, strategies 

including rehabilitation programs or pharmacological/cell therapies may serve to 

promote repair in late phases and to decrease stroke-associated disability. A way to 

embark on the search for new drugs for the chronic phase of stroke is by boosting 
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endogenous plasticity mechanisms. Interestingly, many of these endogenous active 

recovery processes initiate very early, in the acute phase of ischemia. In this line, a 

very elegant perspective by Eng Lo has recently proposed that, because most 

molecular targets for therapy have biphasic roles in stroke pathophysiology, failure in 

neuroprotection may partly be due to the fact that many neuroprotectants inhibit not 

only mechanisms of damage, but also those mechanisms needed for repair (Lo EH, 

2008). This interesting hypothesis leads to propose that new drugs for acute stroke 

treatment should be able to promote a “safe” neuroprotection with the ability to 

preserve those mediators required for neural repair. One successful treatment 

strategy for salvaging ischemic tissue and improving functional outcome after 

ischemic stroke is reperfusion by trombolytic drugs. Thrombolytic therapy with rtPA 

(0.9 mg/kg body weight, maximum dose 90 mg) given within 4.5 h after stroke onset 

significantly improves outcome in patients with acute ischemic stroke (Hacke et al., 

1995). The importance of the correct time window is underlined by the ECASS 

(European Cooperative Acute Stroke Study) and ECASS II studies that  did not show 

statistically significant superiority of rtPA for the primary endpoints when treatment 

was given within 6 h (Hacke et al., 1995, 1998). The recently published trial ECASS 

III has shown that intravenous alteplase administered  between 3 and 4.5 hours 

(median 3 h 59 min) after the onset of symptoms significantly improves clinical 

outcomes in patients with acute ischemic stroke compared to placebo (Hacke W. et 

al., 1998); the  absolute improvement was 7.2% and the adjusted Odds Ratio of  

favourable outcome expressed in modified Ranking scale (mRS 0-1) was 1.42 (1.02-

1.98 CI of  OR). Treatment benefit is time-dependent. The number needed to treat to 

get one more favourable outcome drops from two during the first 90 minutes through 

seven within 3 hours and  towards 14 between 3 and 4.5 hours (Hacke et al., 1998). 

Moreover, trombolitic drug category comprises beyond just mentioned thrombolytic 
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agents (e.g., tissue plasminogen activator,urokinase, mechanical devices), anti-

thrombotic agents (e.g.,heparin, low molecular weight heparin), anti-platelet drugs 

(e.g., aspirin, dipyridamole, abciximab), and fibrinogen depleting agents (e.g., 

Ancrod). Admittedly, these agents protect the brain but do so primarily via 

hemodynamic rather than metabolic mechanisms. Clinical trials of neuroprotection for 

ischemic stroke have been analyzed in recent reviews (Cheng et al., 2004; Labiche 

and Grotta, 2004). The Internet Stroke Center website provides a comprehensive 

clinical stroke-trial database that  summarize the current universe of neuroprotection 

trials in acute ischemic stroke. This Internet Site provides patients, their families, and 

caregivers with valuable resources about how to recognize the symptoms of a stroke 

and understand how strokes are diagnosed and treated.  Of the ca. 160 such trials, 

one-quarter are currently ongoing and three-quarters have been completed (or 

prematurely terminated). It is instructive to consider the completed trials in greater 

detail. Eighty completed studies are, in fact, merely early-phase safety or feasibility 

trials with 200 or fewer subjects (Figure 1). Only 40 completed trials have enrolled 

over 200 subjects, and of these fewer than one-half have instituted neuroprotective 

treatment within the 4-6 h therapeutic window within which efficacious 

neuroprotection is considered possible. This fact alone is sufficient to explain the 

abundance of non-successful (‘‘failed’’) clinical trials (Ginsberg et al., 2008). 
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Figure 1. State of the art in stroke neuroprotection (modified from Ginsberg et al., 

2008 and Wang et al., 2013). 
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2.2 MICRORNA PATHWAYS 

 

2.2.1 BIOGENESIS OF MICRORNAS 

A microRNA (miRNA) is a small non-coding RNA molecule (ca. 22 nucleotides) found 

in plants and animals, which functions in transcriptional and post-transcriptional 

regulation of gene expression (Chen et al., 2007). MicroRNAs were discovered in 

1993 by Victor Ambros, Rosalind Lee and Rhonda Feinbaum during a study of the 

gene lin-14 in C. elegans development (Lim et al., 2005).  These short RNA 

molecules control the expression levels of their target genes acting as potent 

modulators of gene expression (He and Hannon, 2004). They have been found to 

play critical roles in a growing number of biological functions and human diseases 

(Thai et al., 2010; Dalmay and Edwards, 2006; Chang and Mendell, 2007; Zhang, 

2008; Meola et al., 2009). MicroRNAs are produced from either their own genes or 

from introns but, often , a microRNA gene is transcribed together  with its host gene 

as part of an unique transcription unit. The pathway of  miRNAs starts from the 

cellular nucleus where  genes coding for miRNAs are  transcribed by RNA 

polymerase II (Pol II). RNA polymerase II generates  long primary transcripts  named  

"pri-miRNA"  which have a stem-loop structure that in turn forms from a part of a 

several hundred nucleotides long miRNA precursor. A single pri-miRNA may contain 

from one to six miRNA precursors. These hairpin loop structures are composed of 

about 70 nucleotides each. Each hairpin is flanked by sequences necessary for 

efficient processing. The double-stranded RNA structure of the hairpins  is 

recognized by the enzyme Drosha a protein that cuts RNA, to form the 

"Microprocessor" complex (Gregory et al., 2006). In this complex, DGCR8 orients the 

catalytic RNase III domain of Drosha to release hairpins from pri-miRNAs by cleaving 

RNA about eleven nucleotides from the hairpin base (two helical RNA turns into the 
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stem). The product resulting has a two-nucleotide overhang at its 3’ end; it has 3' 

hydroxyl and 5' phosphate groups. It is often termed as a pre-miRNA (precursor-

miRNA). pre-miRNA hairpins are exported from the nucleus in a process involving 

the nucleocytoplasmic shuttle Exportin-5. In cytoplasm, the pre-miRNA hairpin is 

cleaved by the RNase III enzyme Dicer (Lund et al., 2007) This endoribonuclease 

interacts with the 3' end of the hairpin and cuts away the loop joining the 3' and 5' 

arms, yielding an imperfect miRNA : miRNA* duplex about 22 nucleotides in length 

(Lund et al., 2007). Overall hairpin length and loop size influence the efficiency of 

Dicer processing, and the imperfect nature of the miRNA:miRNA* pairing also affects 

cleavage (Lund et al., 2007; Lelandais-Brière et al., 2009). Although either strand of 

the duplex may potentially act as a functional miRNA, only one strand is usually 

incorporated into the RNA-induced silencing complex (RISC) where the miRNA and 

its mRNA target interact. 
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Figure 2. miRNA pathway.  
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2.2.2 RISC OR RNA INDUCING SILENCING COMPLEX 

The mature miRNA is part of an active RNA-induced silencing complex (RISC) 

containing Dicer and many associated proteins (Rana et al., 2007). RISC is also 

known as a microRNA ribonucleoprotein complex (miRNP)(Schwarz et al., 2002). 

RISC with incorporated miRNA is sometimes referred to as "miRISC." Dicer 

processing of the pre-miRNA is coupled with the incorporation of one strand of 

immature miRNA into the miRISC. The choise between two sequences is made on 

the basis of its thermodynamic instability and weaker base-pairing relative to the 

other strand (Krol et al., 2004; Khvorova et al., 2003; Schwarz et al., 2003). The 

position of the stem-loop may also influence strand choice (Lin et al., 2003). The 

other strand, called the passenger strand due to its lower levels in the steady state, is 

indicated with an asterisk (*) and is normally degraded. In some cases, both strands 

of the duplex are viable and become functional miRNAs that target different mRNA 

populations (Okamura et al., 2008). Members of the Argonaute (Ago) protein family 

are central to RISC function. Argonautes are needed for miRNA-induced silencing 

and contain two conserved RNA binding domains: a PAZ domain that can bind the 

single stranded 3’ end of the mature miRNA and a PIWI domain that structurally 

resembles ribonuclease-H and functions to interact with the 5’ end of the guide 

strand. They bind the mature miRNA and orient it for interaction with a target mRNA. 

Some argonautes, for example human Ago2, cleave target transcripts directly; 

argonautes may also recruit additional proteins to achieve translational repression 

(Pratt et al., 2009). Additional RISC components include TRBP (human 

immunodeficiency virus transactivating response RNA binding protein)(MacRae et 

al., 2008), PACT (protein activator of the interferon induced protein kinase), SMN 

complex (Survival of Motor Neurons gene), FMRP (fragile X mental retardation 

protein), Tudor-SN (Tudor staphylococcal nuclease-domain-containing protein), 

http://en.wikipedia.org/wiki/Argonaute
http://en.wikipedia.org/wiki/TARBP2
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MOV10 (putative DNA helicase) and the RNA recognition motif containing 

protein TNRC6B (Murchison et al., 2004; Mourelatos et al., 2002; Meister et al., 

2005). 

 

2.2.3 PROCESSING BODIES 

Once microRNAs and their associated RISCs are bound to an mRNA target, the 

whole complex can be sequestered into processing bodies (Pillai et al., 2005, 2007; 

Sheth and Parker, 2003). This action involves phosphorylation of Ago2 in the RISCs 

by p38 mitogen-activated protein kinase (Zeng et al, 2008). Processing bodies (P-

bodies) are distinct foci within the cytoplasm of the eukaryotic cell consisting of many 

enzymes involved in mRNA turnover. When a cellular stress signal releases the 

RISC bound mRNAs from processing bodies, the free mRNAs are recruited to 

ribosomes and translation can occur (Bhattacharyya et al., 2006). Sequestration of 

RISC-bound mRNAs in processing bodies also occurs in synapses (Konecna et al., 

2009), suggesting that this mechanism is an important regulator of mRNA translation 

in response to synaptic  activity (Saugstad, 2010). 

 

2.2.4 MICRORNA TURNOVER 

During miRNA maturation in the cytoplasm, uptake by the Argonaute protein is a 

mechanism by which the guide strand is stabilized, while the opposite strand (* or 

"passenger") strand is preferentially destroyed. Several miRNA modifications affect 

miRNA stability.  Mature miRNAs in plants appear to be stabilized by the addition of 

methyls at the 3' end. The 2'-O-conjugated methyl groups block the addition of uracil 

(U) residues by uridyltransferase enzymes, a modification that may be associated 

http://en.wikipedia.org/wiki/MOV10
http://en.wikipedia.org/wiki/TNRC6B
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with miRNA degradation. However, uridylation may also protect some miRNAs; the 

consequences of this modification are incompletely understood. Uridylation of some 

animal miRNAs has also been reported. Both plant and animal miRNAs may be 

altered by addition of adenine (A) residues to the 3' end of the miRNA. An extra A 

added to the end of mammalian miR-122, a liver-enriched miRNA important in 

Hepatitis C, stabilizes the molecule, and plant miRNAs ending with an adenine 

residue have slower decay rates. It is obvious to consider that a shorter mRNA half-

life generally correlates with reduced miRNA efficacy (Larsson et al., 2010). When 

miRNA terminals are exposed and appear to interact with AGO proteins (Wang et al., 

2008b) miRNA is stabilized against exonucleolytic degradation (Winter and 

Diederichs, 2011). Moreover recent studies suggest that while miRNAs are generally 

very stable in vivo they appear to be under a regulatory control in neurons that 

promotes rapid turnover (Saugstad, 2010). 

 

2.2.5 MECHANISM OF ACTION OF MICRORNAS 

Encoded by eukaryotic nuclear DNA, miRNAs function via base-pairing with 

complementary sequences with mRNA molecules, usually resulting in gene 

silencing via translational repression or target degradation (Bartel et al., 2009; 

Kusenda et al., 2009). miRNAs cause translational repression and mRNA 

degradation by binding, with an imperfect pairing, to the 3′ untranslated region (3′ 

UTR) of their target genes (Kim et al., 2006; Giraldez et al., 2006). miRNA : mRNA 

base-pairing usually includes a ‘‘nucleus’’ (or ‘‘seed’’), typically a perfect Watson- 

Crick base-paired stretch of approximately seven nucleotides with a key role both in 

target site recognition and repression of the target transcript. The nucleus is located 

at the 5’ end of the miRNA, typically between nucleotides 2 and 8 (Lewis et al., 

http://en.wikipedia.org/wiki/MiR-122
http://en.wikipedia.org/wiki/Eukaryote
http://en.wikipedia.org/wiki/Cell_nucleus
http://en.wikipedia.org/wiki/Base-pair
http://en.wikipedia.org/wiki/MRNA
http://en.wikipedia.org/wiki/Gene_silencing
http://en.wikipedia.org/wiki/Gene_silencing
http://en.wikipedia.org/wiki/Translation_(biology)
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2005). Initiation of translation requires a direct interaction between eukaryotic 

initiation factor 4E and a 7-methylguanosine sequence on mature mRNAs (Gebauer 

and Hentze, 2004; Merrick, 2004; Richter and Sonenberg, 2005). When microRNAs 

are bound to the mRNA 3’-UTR, Ago proteins in the RISC interact with the 7-

methylguanosine cap of the mRNA, which blocks eukaryotic initiation factor 4E 

binding to the mRNA and initiation of translation (Kiriakidou et al., 2007). This is the 

earliest event known to be regulated by microRNAs, but further mRNA degradation 

may serve to strengthen mRNA silencing (Mathonnet et al., 2007). Studies on miR- 

124 mRNA targets support that: (1) microRNAs reduce both translation and 

abundance of mRNA targets, (2) translation is blocked at beginning or ribosomes 

preferentially collapse near the translation start site, and (3) regulation of translation 

and mRNA decay are strictly correlated (Hendrickson et al., 2009). Thus, most 

mRNAs are not differentially targeted for either translational repression or mRNA 

decay. Estimated number of human miRNAs suggest (miRBase database, 

http://microrna.sanger.ac.uk/sequences/)(Griffiths-Jones, 2004), that their actual 

number may exceed 1000 (Bentwich et al., 2005). Current findings indicate that each 

miRNA may regulate, on average, the expression of 100–200 mRNAs (Ambros, 

2004; Lim et al., 2005). Currently, there are 718 annotated miRNAs in human 

(Griffiths-Jones et al., 2004), localized in intragenic (60% of cases) or in intergenic 

(40%) regions. Intragenic miRNAs are contained within transcriptional units termed 

“host genes” (Kim et al., 2009), which are generally protein-coding. Recent works 

demonstrated that several intronic miRNAs and their host genes are co-transcribed 

from a common promoter (Rodriguez et al., 2004; Kim and Kim, 2007). The large 

impact of miRNAs in the regulation of biological processes has generated a strong 

interest in novel technologies for the detection/prediction of miRNA target genes 

http://microrna/
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(Thomas et al., 2010) to dissect their regulatory gene networks and understand their 

function. 

2.2.6 CIRCULATING MIRNAS 

The presence of endogenous miRNAs circulating in human plasma has been 

recently demonstrated (Mitchell et al., 2008). Unlike mRNAs, circulating miRNAs 

displayed remarkable stability (Weber et al., 2010) and resistance to degradation 

from endogenous RNAse activity (Tsui et al., 2002; Wang et al., 2009) (see section 

2.2.4). In contrast, rapid degradation was observed within minutes when synthetic 

miRNAs were spiked into human plasma. Indeed, while naked miRNAs are 

susceptible to rapid degradation in plasma, circulating miRNAs are protected and 

resistant to RNase activity. The possible explanation is that circulating miRNAs can 

reside in microvesicles [exosomes, microparticles (MPs), and apoptotic bodies 

(ABs)], which account for shedding of miRNAs into the circulation and offer protection 

from RNase activity. Exosomes are small vesicles (50–90 nm) of endocytic origin 

(Camussi et al., 2010; Thery et al., 2009). Exosomes contain substantial amounts of 

RNA (Ratajczak et al., 2006; Skog et al., 2008) including both mRNA and 

miRNAs.(Wang et al., 2010; Skog et al., 2008; Valadi, 2007). A total of 121 miRNAs 

were identified in exosomes from mast cells and the expression of certain miRNAs 

was higher in microvesicles than in the parent cells (Valadi, 2007). In contrast, 

selective retention of specific miRNAs that are not released into the extracellular 

milieu was reported in cancer, implying that miRNAs can be selectively packaged 

(Pigati et al., 2010). Interaction of exosomes with recipient cells is thought to arise 

through receptor-ligand interactions,48 although fusion to the plasma membrane of 

target cells or endocytosis-like internalization of exosomes has also been observed. 

In an in vivo model that enabled close monitoring of miR-16 activity, nude mice were 
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implanted with cells engineered to express a reporter for the 3′ UTR of B-cell 

lymphoma 2, a validated target of miR-16. Subsequent intratumour injection of 

exosomes derived from HEK293 cells overexpressing miR-16 led to suppression of 

luciferase activity. Control exosomes had no effect on bioluminescence. These data 

indicate that exosomal miR-16 delivered its inhibitory ability on its target gene to the 

recipient cells in vivo (Iguchi  et al., 2010). 

 

2.2.7 MICRORNA IN PHYSIOLOGICAL PROCESSES 

Accumulating evidence have demonstrated that microRNAs play a major role in a 

wide range of developmental processes including cell proliferation, cell differentiation, 

cell  cycle, metabolism, apoptosis, developmental timing, neuronal  cell fate, neuronal 

gene expression, brain morphogenesis, muscle differentiation and stem cell division. 

miRNA expression can be induced by a variety of stimuli and mechanisms. These 

stimuli include direct transcriptional activation or repression from transcriptional  

enhancers, epigenetic modifications of the genome, genomic amplification or 

deletion, cellular stress and inflammatory  stimuli (Tili et al., 2008; Dai et al., 2011; 

Jopling et al., 2005). The biological effect of a  specific miRNA will depend on the 

cellular environment in which it is expressed, on its turnover rate and on the target 

sequence that the miRNA can bind (Tili et al., 2008, Dai et al., 2011).  

 

2.2.7.1 MICRORNA IN NEURODEGENERATIVE DISEASES  

The number of known miRNAs has sharply increased in recent years; the latest 

estimate is about 1000 different miRNAs in human cells. Each miRNA has the 

potential to target a large number of mRNAs (200–500 mRNAs for each miRNA), 

suggesting that a large fraction of the protein coding genes may be somehow 
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regulated by miRNAs (Friedman et al., 2009). Frequently, a single mRNA is regulated 

by different miRNAs that act on its 3′UTR, indicating that miRNAs may act in a 

cooperative and/ or combinatorial mode in the regulation of a target mRNA (Krek et 

al., 2005). Altogether, these features show that miRNAs are emerging as a class of 

master regulatory molecules that may add another level of complexity to the 

canonical regulatory networks necessary to govern complex cell processes. Given 

the complex architecture of the brain, it is not surprising that miRNAs are abundantly 

expressed in the brain, where they have been found to play important roles in the 

regulation of brain function (Saba and Schratt, 2010). A number of mechanisms are 

employed to maintain the integrity of nerve cell networks and to facilitate responses 

to external and internal environmental stimuli and maintain neuron integrity and 

functional capability after damage (Persengiev et al., 2012). The accumulation of 

toxic proteins transcribed from mutated genes causes inherited forms of Alzheimer’s 

disease (amyloid precursor protein and presenilins), Parkinson’s disease (α-

synuclein and Parkin), and trinucleotide repeat disorders (huntingtin, androgen 

receptor, ataxin, and others) by overcoming the endogenous neuroprotective 

mechanisms. Specific miRNAs have been shown and in some cases predicted with 

high confidence to be involved in Alzheimer’s disease, spinocerebellar ataxia type 1, 

Parkinson’s disease, and amyotrophic lateral sclerosis (ALS), in addition to the 

general dysregulation of miRNA expression observed in neurodegenerative disorders 

(Villardo, et al., 2010; Doxakis, et al., 2010; Lee, et al., 2008; Persengiev, et al., 

2011; Williams et al., 2009; Grimson et al., 2007; Lewis et al., 2003; Cogswell et al., 

2008; Lukiw, et al., 2007; Nelson et al., 2008; Johnson et al., 2009). Alzheimer’s 

Disease (AD) is an incurable, degenerative disease leading to dementia. The basis of 

the impairment in synaptic functions observed in that pathology consists in the 

accumulation, in brain hippocampus, of soluble oligomers of b-amyloid peptide (Ab), 
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cleaved from the amyloid precursor protein (APP) (Ma et al., 2010). It is conceivable 

that initial events causing toxicity in the neurons, for example the appearance of toxic 

Ab oligomers in incipient AD, could lead to changes in miRNA expression, which 

could then feed into an amplification loop, for example affecting the expression of the 

proteases responsible for the generation of the Ab peptides. Interestingly, miR-29a 

and miR-29b-1, which regulate BACE1 expression, are under control of transcription 

factor RE1-silencing transcription factor (REST) (Kim et al., 2007; Donmez et al., 

2010), which has a fundamental role in regulating neuronal gene expression and 

promoting neuronal fate. In addition, miR-29 is predicted to target the 3’UTR of REST 

and a substantial number of neuronal genes (Menghini et al., 2009). Such a 

regulatory pathway could become hypothetically compromised in the AD brain and 

would act in parallel with the increased BACE1 expression (Herbert et al., 2009) and 

possible Ab production in such patients. Notably, increased miR-146a levels 

observed in the AD brain (Lukiw et al., 2008) might be linked to a detrimental 

feedback loop between NFkB signaling, Ab generation and inflammation. Another 

important neurodegenerative pathology is Parkinson’s disease (PD). This disease is 

a neurodegenerative pathology that affects specific populations of central and 

peripheral neurons, including those in the Substantia Nigra pars compacta (SNpc) 

and sympathetic ganglia (Marras and Lang, 2008). The pathology of the disease is 

due to the accumulation of a protein called alpha-synuclein into inclusions called 

Lewy bodies in dopaminergic neurons. Also for Parkinson Disease, a 

neurodegenerative disorder caused by environmental and genetic factors, there is 

evidence for a role of miRNAs (Saugstad, 2010). For example, miR-133b is 

specifically expressed in midbrain dopaminergic neurons and regulates the 

maturation and function of midbrain dopaminergic neurons, but miR-133b is deficient 

in patients with PD (Kim et al., 2007). In addition, fibroblast growth factor 20 is a risk 
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factor for PD, and genetic analysis of single-nucleotide polymorphisms within the 

fibroblast growth factor 20 gene revealed association with a risk allele (rs12720208) 

in the 3’-UTR (Wang et al., 2008). Furthermore, miR-7 mainly expressed in neurons 

binds to the a-synuclein mRNA 3’-UTR to repress protein expression, which protects 

cells against oxidative stress (Junn et al., 2009). Huntington’s disease (HD) is a 

devastating neurodegenerative disorder characterized by progressive motor 

dysfunction, dementia and emotional disturbances. It is inherited in an autosomal 

dominant manner and its prevalence is 5–10 cases per 100,000. The HD gene codes 

for a large highly conserved protein named huntingtin (Sarkar et al., 2008). The 

transcription factor REST silences neuronal gene expression in nonneuronal cells, 

and REST is sequestered in the cytoplasm in part through binding to the Huntingtin 

protein. However, Huntingtin proteins that contain polyglutamine expansions cannot 

bind to REST, which frees REST to translocate to the nucleus where it represses 

neuronal gene expression. Recent studies revealed dysregulated expression of 

several neuronal- specific microRNAs in mouse models of HD and in human HD that 

likely result from REST repression (Johnson et al., 2008). The loss of microRNA 

expression correlates with increased expression of several mRNA targets, supporting 

that HD reflects a loss of neuronal identity caused in part by dysregulation of both 

transcriptional and posttranscriptional gene expression (Johnson et al., 2008). 

Moreover microRNA expression studies suggest a role for postinjury microRNAs in 

traumatic brain injury processes. In fact, in rat cortex and hippocampus, traumatic 

brain injury induced expression of several micro-RNAs and caused global 

upregulation of miR-21 after injury (Lei et al., 2009). Similarly, in rat and mouse 

hippocampus, controlled cortical impact injury decreased expression of 50 

microRNAs and increased expression of 35 microRNAs (Redell et al., 2009). 

Predicted targets of validated microRNAs regulated by impact (miR-107, miR-130a, 
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miR-223, miR-292-5p, miR-433-3p, miR-451, miR-541, and miR-711) include several 

proteins and pathways known to be initiated after injury, including signal transduction, 

transcriptional regulation, proliferation, and differentiation (Redell et al., 2009; 

Saugstad, 2010) The use of genetically modified animals that develop AD- or PD-like 

pathology and viceversa, which contain a specific knockout of candidate miRNA 

genes, provide good models to address the problem of clarifying specific miRNA 

function. miRNA expression profiles were recently investigated in mouse models of 

Huntington’s disease (HD) (Johnson et al., 2008) and PD (Gillardon et al., 2008) and 

compared with human patient profiles with some overlap. In addition to lower miR-

133b expression in PD, a decrease in miR-132, for instance, is observed in the HD 

mouse R6/2 model and in human HD patients. Recent studies performed in humans 

support the idea that changes in miRNA expression profiles or miRNA target 

sequences could contribute significantly to risk for major neurodegenerative diseases 

such as AD and PD. Of particular interest, miRNAs seem to participate directly in the 

regulation of expression of AD-related genes involved in Ab production. In this 

regard, miRNA research seems to be particular promising for the understanding of 

the very prevalent and poorly understood sporadic forms of AD and possibly PD.  

The challenge would be to address the role of specific miRNAs in biological models 

and expand the clinical studies. The search for disease-associated SNPs influencing 

miRNA function is also under way. Thus, apart from a direct role in regulating the 

expression of disease-related genes, it is clear that miRNAs might contribute in many 

additional aspects to the neurodegenerative process. Several studies have now 

addressed directly the role of miRNAs in neurodegeneration. Complete loss of 

miRNA expression in the brain leads to neurodegeneration in several animal models. 

Evidence from patient material is emerging that miRNA dysregulation could, indeed, 

contribute to neurodegenerative disorders (Hebert  et al., 2009).  
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2.2.7.1.1  MICRORNA IN BRAIN ISCHEMIA  

Several reports have demonstrated the effects of specific miRNAs in neuronal 

differentiation, neurogenesis, neural cell specification, and neurodevelopmental 

function (Kosik et al., 2006; Schratt et al., 2006). In stroke etiology, miRNAs have 

distinct expression patterns that modulate pathogenic processes, including 

atherosclerosis (miR- 21 and miR-126), hyperlipidemia (miR-33 and miR-125a-5p), 

hypertension (miR-155), and plaque rupture (miR-222 and miR-210)(Rink and 

Khanna, 2011). Furthermore, transient focal ischemia in adult rat brain regulates the 

expression of microRNAs predicted to target proteins known to mediate inflammation, 

transcription, neuroprotection, receptor function, and ionic homeostasis in the brain 

(Dharap et al., 2009). The mRNA levels for proteins important to microRNA 

biogenesis pathways, including Drosha, Dicer, the cofactor Pasha, and the precursor 

microRNA transporter Exportin 5, are not altered after transient ischemia. In a recent 

paper it has been demonstrated that ischemia repressed miR-145 expression, which 

resulted in increased translation of its mRNA target, superoxide dismutase-2, in 

postischemic adult rat brain (Dharap et al., 2009). In his study Dharap et al., found 

that mir-145 is one of the miRNAs upregulated significantly in the postischemic brain 

from 3 h to 3 days after transient MCAO. This information was confirmed by 

bioinformatics search showing that SOD2 is a major target mRNA of mir-145. 

Another evidence for miRNA involvement in stroke derives from a work by XiaHeng 

Deng et al., where it has been shown that Matrix metallinoprotease-9 (MMP9) plays a 

key role in the pathogenesis of post-ischemic blood brain barrier (BBB) disruption 

and the formation of lesions after cerebral ischemia. This study revealed that 

significantly upregulated of miR-21 occurred  in the hippocampus after stroke so, by 

silencing this miRNA (antagomiR strategy), levels of MMP9 protein after cerebral 

ischemia decreased with a strong amelioration of ischemia outcome in rats.  The 
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study suggested that cerebral ischemia up-regulates expression level of miR-21, 

which is involved in ERK-stimulated upregulation of MMP9 following cerebral 

ischemia via a calcium-dependent mechanism. Furthermore, in another recent 

publication it has been shown that in a female rats model of endothelin (ET)-1 

induced Middle Cerebral Artery occlusion (Biernaskie  et al., 2001; Selvamani et al., 

2010, 2010b)  IGF-1 (Insulin-like Growth Factor) infusion following stroke, prevents 

estrogen neurotoxicity. Authors have demonstrated that IGF-1 is negatively regulated 

by two microRNAs, miR1 and the Let7. So, when after four hours of ET-1 injection, 

animals received an intracerebroventricular (ICV) injection of antimiRNA agains two 

miRNAs it was observed a significant reduction in infarct volume compared to control 

female rats group subjected to icv administration of a scrambled miRNA.  More 

recently in a paper by Maged M. Harraz and collegues it has been proven that in rat 

brain overexpression of miR-223 lowering the levels of a subunit of glutamate 

receptor by targeting 3′-UTR in GluR2 and NR2B, inhibits NMDA-induced calcium 

influx in hippocampal neurons, and protects the brain from neuronal cell death 

following transient global ischemia and excitotoxic injury (Harraz et al., 2012). Stroke 

determines alteration in expression profiles of multiple miRNAs in SVZ neural 

progenitor cells and  introduction in cerebral ventricle of rats of miR-124a inhibited 

ischemic neural progenitor cell proliferation and promoted the neuronal differentiation 

of the progenitor cells. This mechanism provide new insights into the molecular 

mechanisms underlying stroke-induced neurogenesis (Liu et al., 2011). Studies also 

support the potential for microRNAs as novel biomarkers for vascular injury and 

diseases. Expression profiling of microRNAs in ischemic rat brains revealed 

significant changes in several microRNAs, and some of the microRNAs highly 

expressed  in ischemic brain were detected in blood samples (Jeyaseelan et al., 

2008). Peripheral blood examined in ischemic stroke patients revealed differential 
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expression of microRNAs implicated in endothelial cell and vascular function, 

erythropoiesis, angiogenesis, neural function, and hypoxia, and altered microRNAs 

were detectable even several months after the onset of stroke (Tan et al., 2009). Rat 

models of ischemia, brain hemorrhage, and kainate-induced seizures also revealed 

regulated expression of microRNAs in hippocampus and blood in each treatment 

group, many of which changed > 1.5-fold in both tissues (Liu et al., 2010). 

 

2.2.7.2  MICRORNA IN OTHER DISEASES 

Over the  past several years it has become clear that alteration in the expression of 

miRNA genes contribute to the pathogenesis of most human malignancies 

(Tsujimoto et al., 1985; Chang et al., 2007). These alteration  can be caused by 

various mechanisms, including deletions, amplifications or mutations involving 

miRNA loci, epigenetic  silencing or the dysregulation of transcription factors that 

targets specific miRNAs (Schetter et al., 2010; Calin et al., 2006). Malignant cells 

show dependence on the dysregulated expression of miRNA genes,  which in turn 

control or are controlled by the dysregulation  of multiple protein-coding oncogenes 

or tumor suppressor. Importantly, miRNA deficiencies or excess have been 

correlated with a number of clinically important diseases ranging  from myocardial 

infarction to cancers (Soifer et al., 2007). The loss or gain  of miRNA function can be 

caused by a single point mutation in either the miRNA or its target or by epigenetic 

silencing  of pri-miRNA transcription units (Soifer et al., 2007). Interestingly, a 

highthroughput analysis of miRNA expression in cancer demonstrated that some 

miRNA are over-expressed in cancer, while  others are markedly reduced in 

malignant tissue (Soifer et al., 2007). These  correlative data suggest that miRNAs 

function as both oncogenes and tumor suppressors (Soifer et al., 2007; Lynam-

Lennon et al., 2009; Zhang et al., 2007; Hernando et al., 2007; Osaki et al., 2008). 
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Numerous studies in  cancer cell lines show a direct functional link between aberrant 

miRNA expression and particular tumor types (Calin et al., 2006; Soifer et al., 2007; 

Zhang, et al., 2007; Jazbutyte et al., 2010). As before mentioned, recent studies also 

show that some miRNAs regulate cell proliferation and apoptosis processes that are 

important in cancer formation (Zhang et al., 2007). Furthermore accumulating 

experimental results clearly show that miRNAs play a significant role in 

cardiovascular development and disease, and that miRNAs are important for 

regulating cardiomyocytes self-renewal and differentiation, as well as for normal 

cardiac structural integrity (Small et al., 2010; Barringhaus et al., 2009; Latronico et 

al., 2009). In particular in acute myocardial  infarction that is the world’s leading 

cause of morbidity and  mortality there is a report showing that after infarction in 

humans and mice, muscle-enriched miRNAs, such as miR-1,  miR-133a, miR-133b, 

and miR-499-5p, are increased in plasma  and that miR-499 and miR-133a are highly 

expressed in heart,  whereas miR-1 and miR-133a are highly expressed both in  

heart and in skeletal muscel (Wang et al., 2010; Contu et al., 2010). This evidence 

indicate that circulating miRNAs may become helpful and reliable tools for the 

diagnosis ad prognosis of patients with cardiovascular diseases. 

 

2.2.8 IDENTIFYING PUTATIVE MIRNA TARGET SITES 

The first step in the workflow for elucidating miRNA networks that physiologically 

regulate gene products implicated in CNS disorders is to identify putative miRNA 

target sites in the transcript of interest. There are two general approaches to 

identifying these putative target sites: i) computational predictions, and ii) 

experimental methods for detecting physical interactions between miRNA and mRNA 

in a regulatory context. Computational predictions utilize algorithms to scan transcript 
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sequences (generally limited to the 3′-UTR) for putative sites of interaction with 

miRNA, whereas the experimental methods utilize pull-down assays to detect 

physical interactions between nmiRNA, AGO proteins and specific transcript sites. 

Since neither of these approaches assesses the functionality of miRNA interactions 

with putative target sites, validation experiments must be pursued to confirm 

regulatory effects mediated by miRNA and the specificity of the putative target sites. 

 

2.2.8.1 BIOINFORMATIC PREDICTIONS OF MIRNA TARGET SITES 

Current efforts are dedicated to both experimental (Baek et al., 2008; Selbach et al., 

2008) and bioinformatic (Krek et al., 2005; Betel et al., 2008; Friedman et al., 2009; 

Gennarino et al., 2009) approaches to address miRNA target identification. However, 

giving the laborious nature of the experiments needed for target validation, and 

considering that most ad-hoc developed high-throughput techniques (e.g. p-Silac) 

are costly and only validate a few target genes (Lim et al., 2005), it is imperative to 

improve in silico approaches to identify miRNA target genes. In order to identify true 

miRNA targets, it is essential to improve the efficiency of their in silico prediction by 

means of computational techniques (Maziere and Enright, 2007). Several 

computational approaches have recently been developed for the prediction of miRNA 

targets including,among the most popular ones, the miRanda, TargetScan, and 

PicTar softwares (Lewis et al., 2003; John et al., 2004; Krek et al., 2005; Rajewsky 

2006; Kuhn et al., 2008), which mainly rely on the identification of the seed region 

between the miRNA and the corresponding target genes. Unfortunately, the 

presence of a seed region, although conserved across evolution, is not in itself a 

reliable way to identify functional miRNA targets. It has been shown that a significant 

proportion of predicted miRNA–mRNA target pairs, in spite of the presence of an 
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appropriate seed region, are false positives (Lewis et al., 2005; Didiano and Hobert, 

2006), thus rendering the in silico preselection of miRNA targets very complex and 

laborious. The first open-source software for target prediction, miRanda 2005, 

revealed that overrepresented groups of microRNA targets include mRNAs for 

transcription factors, components of the microRNA machinery, and other proteins 

involved in translational regulation (John et al., 2004). In contrast, a large number of 

genes for proteins involved in basic cellular processes have very short 3’-UTRs and 

are specifically depleted of microRNA-binding sites (Stark et al., 2005). Vertebrate 

microRNAs target an average of 200 mRNA transcripts each (Krek et al., 2005), but 

the number of predicted targets per microRNA can vary from a few to > 800 

transcripts. MiRanda 2005 and 2008 (Betel et al., 2008; John et al., 2004), and 

PicTar (Krek et al., 2005), allow combinatorial analysis of microRNAs for common 

targets, which is important because mRNAs targeted by multiple microRNAs show 

enhanced translational repression (Doench and Sharp, 2004). Currently, the first type 

of approach to target prediction utilizes sequence alignments between the seed 

region of the microRNA and sequences within the mRNA target. However, specificity 

can be increased by analyzing the evolutionary conservation and structural 

accessibility of mRNA binding sites, as well as the nucleotide composition or location 

of binding sites within the mRNA 3’-UTR (Alexiou et al., 2009). Databases of targets 

with experimental validation include Tarbase (Sethupathyet al., 2006), Ago (Shahi et 

al., 2006), and miRNAMAP (Hsu et al., 2006, 2008). At the present time, there is no 

universal standard for establishing a causal relationship between microRNAs and 

predicted mRNA targets, such as Koch’s postulates for the relationship between a 

microbe and a disease. However, Kuhn et al. (2008) proposed that four criteria 

should be met before microRNA target validation is considered confirmed: (1) the 

micro- RNA/mRNA interaction must be experimentally verified, (2) the microRNA and 
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mRNA target must be coexpressed, (3) a given microRNA must have a predictable 

effect on target protein expression, and (4) microRNA-mediated regulation of target 

gene expression should equate to altered biological function (Kuhn et al., 2008). 

Thus, rapid and continued evolution of prediction tools and criteria for experimental 

validation are essential to establish the functional effects of microRNAs on their 

mRNA targets. 

 

2.2.8.1.1 MIRANDA 

The software Miranda was initially designed to predict miRNA targets in D. 

melanogaster (Enright et al., 2003: John, et al., 2004) and consisted of three basic 

steps: (i) the identification of a sequence that can be linked by a miRNA; (ii) the 

calculation of the free energy for the formation of 'heteroduplex miRNA-mRNA; ( iii) 

the identification of evolutionary conservation between D. melanogaster, D. 

pseudoobscura, and Anopheles gambiae. This method has identified 9 of 10 miRNA-

target interactions published and the false positive rate was estimated by 24%. As 

TargetScan, all the functions of the target genes predicted  is enriched transcription 

factors, emphasizing the possible importance of miRNAs in the development, 

morphogenesis and function of the nervous system. The same algorithm was applied 

to the prediction of human miRNA targets. About 2000 human putative target genes 

of miRNAs have been identified, which suggests that 10% or more of all human 

genes are regulated by miRNAs. Even in this case the target overrepresented 

included transcription factors, proteins involved in the translation, components of the 

complex miRNA / ubiquitin, representing a new feedback circuit in gene regulation. 
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2.2.8.1.2 DIANA 

This algorithm is specifically trained on a positive and a negative set of miRNA 

Recognition Elements (MREs) located in both the 3'-UTR and CDS (Coding DNA 

Sequence) regions. DIANA-microT-CDS provides a significant increase in sensitivity 

when compared with experimental proteomics data. It exhibited the highest sensitivity 

at any level of specificity, when compared against other state of the art 

implementations. Furthermore, microT-CDS users can examine the species where 

each binding site is conserved, filter results using score thresholds or by restricting 

the algorithm on genes belonging to specific pathways. DIANA-mirExTra is an 

algorithm that can identify microRNA effects on the expression levels of protein-

coding transcripts, based on the frequency of six nucleotide long motifs (hexamers) 

in the 3'UTR sequences of genes. Additional features include the combination of 

multiple hexamers corresponding to the same microRNA sequence, use of 

evolutionary conservation between human and mouse to increase robustness and 

correction of microarray data for single nucleotide compositional bias (Bernstein et 

al., 2001; Kiriakidou et al., 2004). 

 

2.2.8.1.3 MICROCOSM 

MicroCosm is a web resource that contains computationally predicted targets for 

microRNAs across many species. The miRNA sequences are obtained from the 

miRNA Registry and most genomic sequence from EnsEMBL. This resource uses 

the miRanda algorithm to identify potential binding sites for a given miRNA in 

genomic sequences. The current version uses dynamic programming alignment to 

identify highly complementary sites which are scored between 0 and 100, where 0 

represents no complementarity and 100 complete complementary. The algorithm 
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uses a weighted scoring system and rewards complementarity at the 5' end of the 

microRNA. Every potential target site in a 3'UTR detected is checked to see whether 

the site is conserved in orthologous transcripts from other species. It is necessary for 

a site to be conserved in order to be detected at the same position in a cross-species 

orthologous UTR alignment by an miRNA of the same family. Each target must be 

conserved in at least two species for inclusion in the database (with the exception of 

Human and Chimp whose sequences are too similar). The entire process of 

assembling miRNAs, genomic sequence, cross species UTR alignments and 

miRanda analysis is performed in parallel on a high-performance compute cluster. 

 

2.2.8.1.4 PICTAR 

An important property of miRNAs is represented by their high conservation between 

species. This characteristic has been exploited by those software as PicTar (Krek et 

al., 2005), who base their prediction on comparative data for any species to identify 

common targets for specific miRNAs. Furthermore, PicTar calculates the probability 

that a given sequence in the target is linked by one or more miRNAs. The target 

mRNAs are first predicted based on common criteria, such as an optimal binding free 

energy, and are then tested statistically using an alignment of the genome of eight 

vertebrates to filter out false positives. The false positive rate for PicTar has been 

estimated to be approximately 30%. However, sequences, already  known as miRNA 

targets were correctly identified using this software. Krek et al. have used this 

algorithm to the prediction of miRNA targets in vertebrates and have suggested that, 

on average, about 200 transcripts are regulated by a single miRNA (John et al., 

2004; Krek et al., 2005). 
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2.2.8.1.5 TARGETSCAN 

The software TargetScan combines the prediction of structure (modeling) of miRNA-

mRNA heteroduplexes, based on thermodynamics, with a comparative analysis of 

sequence, based on conservation between species. It has been observed that  the 

bases 2-8 at extremity 5' end of miRNA, the well known seed sequence, could pair 

with Watson-Crick complementarity to its target. Based on that,  was developed an 

algorithm looking for the pairing between the sequences "seed" of the miRNA 

sequences and 3' UTR of mRNAs, calculating the thermodynamic properties with 

software RNAFold. Eleven of the 15 predicted targets obtained by this software were 

validated experimentally. In addition, the false positive rate was estimated to be 

between 22% and 31% for the targets of mammal, and for the first time, the software 

was used to predict potential targets of miRNA 451. Even if the predicted target 

included a wide range of functions, was an enrichment for genes involved in 

transcriptional regulation. Subsequently, the algorithm was improved and was 

proposed TargetScanS, which requires the annealing of a sequence more short, of 

only six nucleotides, independent from thermodynamic stability or by the presence of 

multiple target sites and an adenosine base preserved in seed sequence (Lewis et 

al., 2005). The authors have also added two species in more for the analysis of 

conservation between species, dog, and chicken. These changes have reduced the 

estimation of false positive rate of the algorithm to 22% in mammals. In addition, the 

algorithm has been able  to successfully predict all known miRNA-target interactions 

and a total of more than 5,300 human genes as potential mRNA targets of miRNAs. 

Thus, these analyzes indicate that more than one third of human genes are 

conserved miRNA targets and therefore potentially regulated by them (Hake et al., 

2003; Jidong et al., 2005; Lewis et al., 2003). 
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Figure 3. Comparison between different prediction software of miRNA-mRNA 

interactions. 

 

2.2.9 PROBLEMS WITH IN SILICO PREDICTIONS OF INTERACTIONS 

New studies have been conducted to compare different prediction software, and 

suggested that in reality no program is superior to others (RAjewsky et al., 2006; 

Sethupathy et al., 2006). A common practice among researchers is to use different 

programs for the prediction of the target and focus on the outcome of their 

intersection (Sonkoly et al., 2007; Megraw et al., 2007). The bioinformatic prediction 

of miRNA targets is certainly an important first approach in the study of the functional 

role of miRNAs themselves, but the predicted hypothetical target must always be 

validated by specific experimental methodologies. This is the reason why there are 

designed database that collect the miRNA interactions: target experimentally 

validated, such miRecords and TarBase (Feifei et al., 2009; Sethupathy et al., 2006). 
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In particular, miRecords that is an integrated software for the detection of miRNA-

target interactions in animals. MiRecords is a useful resource not only at an 

experimental level for students miRNAs, but also for computer scientists who are 

working on developing next-generation programs for the prediction of target. Often to 

associate miRNAs and their expression to specific biological processes or pathways 

is needed to use different computational analyses, complex and time-consuming. 

One method consists in identify the target mRNAs of microRNAs and classify them 

according to their molecular function. On this approach is based on software and 

miRGator MAMI, which categorize the targets of miRNAs according to the terms of 

Gene Ontology and the associations of disease (Nam et al., 2008; Mami Site web). 

Instead, a different approach to identify which biological processes are affected by 

miRNAs, is to study their expression and relate it to that of their target. In fact, one of 

the first studies, carried out by microarray, demonstrated that the overexpression of a 

miRNA induces downregulation of a large number of transcripts (Lim et al., 2005). 

More recent work has confirmed this inverse correlation between the levels of 

expression of miRNAs and their target mRNA, despite the biological effect to occur 

primarily on the levels of the protein (Wang et al., 2006; Linsley et al., 2007; Stark et 

al., 2005; Sood et al., 2006; Creighton et al., 2008). Therefore have been developed 

a series of programs that bioinformatics be used to correlate the expression levels of 

miRNAs and their predicted targets, taking into account their own inverse correlation. 

One of the first methods developed named SigTerms use Microsoft Excel to compare 

experimental data on gene expression publicly available with the predictions of 

miRNA targets (Xie et al., 2005). SigTerms allows to make an enrichment analysis of 

gene expression data for the targets of miRNAs. In this way, before they are 

identified miRNAs and mRNAs differentially expressed significantly, in the same 

experimental conditions. The results are compared with the targets of deregulated 
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miRNAs, predicted at least by three different algorithms (TargetScan, PITA and 

PicTar). 

 

2.2.9.1 TRANSCRIPTOME PROFILING APPROACH 

Some of the earliest experimental approaches for identifying putative miRNA target 

sites relied on transfection of specific miRNAs into cell types followed by high-

throughput mRNA expression analysis by microarray (Grimson et al., 2007; Lim et 

al., 2005; Linsley et al., 2007). Transcripts with reduced expression were then 

scanned for putative target sites by identifying sequences complementary to the 

miRNA seed sequence. These studies demonstrated that mRNA transcripts 

deregulated following miRNA transfection were significantly enriched for matches to 

the seed sequence of the transfected miRNA. Since delivery of supraphysiological 

levels of an exogenous miRNA may mediate non-specific effects, knockdown of 

miRNA using antisense oligonucleotides followed by microarray analysis of global 

transcript expression has been employed (Elmén et al., 2008; Krützfeldt et al., 2005). 

Transcript destabilization is not the exclusive mechanism by which miRNA inhibit 

gene expression; translational repression is another. Therefore, similar studies have 

been performed utilizing proteomic approaches to detect repressed protein 

expression following miRNA transfection (Baek et al., 2008; Selbach et al., 2008). 

Similar scanning of deregulated transcripts revealed enrichment for sequences 

complementary to the seed sequence of the transfected miRNA (Long et al., 2012). 
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2.2.10 HOCTAR DATABASE 

Recently, the Tigem Research Team lead by Professor Sandro Banfi has developed 

a new and efficient approach to perform miRNA target prediction, the HOCTAR (Host 

Gene Oppositely Correlated Targets) procedure (Gennarino et al., 2009). Current 

estimates indicate that each miRNA may regulate, on average, the expression of 

100–200 mRNAs (Ambros, 2004; Lim et al., 2005). Currently, there are 718 

annotated miRNAs in human (Griffiths-Jones, 2004), localized in intragenic (60% of 

cases) or in intergenic (40%) regions. Intragenic miRNAs are contained within 

transcriptional units termed “host genes” (Kim et al., 2009), which are generally 

protein-coding. Recent work demonstrated that many intronic miRNAs and their host 

genes are co-transcribed from a common promoter (Rodriguez et al., 2004; Kim and 

Kim,  2007). 

 

Figure 4. HOCTAR database homepage. 
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2.2.10.1 THE HOCTAR PROCEDURE 

Based on the evidence that it is possible to use a miRNA host gene as a proxy for 

the expression of the miRNA itself (Tsang et al. 2007), authors have hypothesized 

that the expression behavior of a miRNA host gene may be inversely correlated to 

that of the targets of the embedded miRNA. As a result, an increase in the 

expression levels of the host gene should correspond to a decrease in the 

expression levels of the targets of its embedded miRNA, at least in some tissues or 

cellular conditions. In this study, have been tested whether such an inverse 

correlation can be exploited to improve the prediction of miRNA targets. To achieve 

this goal, we devised a novel strategy that we termed HOCTAR. For each intragenic 

miRNA authors compiled a non-redundant list of predicted mRNA targets by pooling 

all corresponding miRanda, TargetScan, and PicTar predictions. Expression 

correlation analysis of miRNA host genes and putative targets was based on total of 

217 microarray data sets (3583 microarray experiments) downloaded from GEO 

repository (http://www.ncbi.nlm.nih.gov/geo/) (Barrett et al., 2007). All experiments 

were performed on the same microarray platform, the HG-U133A GeneChip array 

(GPL96, Feb 19, 2002) and each dataset was normalized and pre-processed 

independently. For each probe targeting a miRNA host gene, the 3% most anti-

correlated probes (using Pearson correlation coefficient) were selected in each data 

set and all the lists were combined and ranked according to the number of 

occurrences and to the average rank in the single lists. As “host gene” have been 

considered those genes that a) had a sequence overlapping that of the precursor 

miRNA either in introns, exons, or UTRs, b) were transcribed from the same strand 

as the miRNA, and c) were represented in the HG-U133A Affymetrix platform, which 

mostly includes known genes. By using HOCTAR have been analyzed 230 host 

genes and 377 Affymetrix probes corresponding to 290 human miRNAs. 265 miRNA 
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target predictions are present in HOCTARdb corresponding to a non-redundant total 

of 9963 genes. All host gene intragenic miRNA relationships were manually verified 

by using the UCSCGenome Browser (release 2006/March; http://genome.ucsc.edu/). 

The analysis of dozens of validated miRNA targets showed that the HOCTAR 

procedure is generally applicable to all intragenic miRNAs and that its performance 

overruns that of first-generation prediction softwares, which are based on sequence 

analysis alone (Gennarino et al., 2009).  

 

2.2.11 IDENTIFICATION OF MIRNA 

Under a standard nomenclature system, names are assigned to experimentally 

confirmed miRNAs before publication of their discovery (Ambros et al., 2003; 

Griffiths-Jones et al., 2006). The prefix "mir" is followed by a dash and a number, the 

latter often indicating order of naming. For example, mir-123 was named and likely 

discovered prior to mir-456. The uncapitalized "mir-" refers to the pre-miRNA, while a 

capitalized "miR-" refers to the mature form. Often there is a great rate of 

conservation in nucleotides of 18-25 usual sequence of miRNA between species. For 

example it has been found that the sequence of the mature form of human miRNA 

has-mir-103-1 ( accession number in mirBase MIMAT0000101) is the same of  rattus 

norvegicus rno-mir-103-1 whose accession number is  MIMAT0000824 (mirBase). 

This gave the rationale to choose an human database of miRNA (HOCTAR) to infer 

on putative homologous miRNAs in rattus norvegicus species useful for our purpose 

to identify what miRNAs are modulated during transient cerebral ischemia in rats. 

2.2.12 IBM 22; VALIDATION OF  MIRNA-MRNA INTERACTION 

rna22 (http://cbcsrv.watson.ibm.com/rna22.html) is a method for identifying 

microRNA binding sites on 3’UTR of target genes based on thermodynamic stability 

http://genome.ucsc.edu/
http://cbcsrv.watson.ibm.com/rna22.html
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of corresponding heteroduplexes. Rna22 does not rely upon cross-species 

conservation, is resilient to noise, and, unlike previous methods, it first finds putative 

microRNA binding sites in the sequence of interest, then identifies the targeting 

microRNA. Computationally, it has been demonstrated that rna22 identifies most of 

the currently known heteroduplexes. On the experimental point of view, this resource, 

with luciferase assays, have evidence of an  average repression of 30% or more for 

168 out of 226 tested targets. The analysis suggested that: (1) some microRNAs may 

have as many as few thousand targets, and (2) between 74% and 92% of the gene 

transcripts are likely under microRNA control through their untranslated and 

aminoacid coding regions. The method’s key idea was also extended to a low-error 

microRNA-precursor-discovery scheme; thus suggesting that the number of 

microRNA precursors in mammalian genomes likely ranges in the tens of thousands 

(Lewis et al., 2005; Miranda et al., 2006). 

 

2.2.13 STRATEGIES OF MIRNA MODULATION 

2.2.13.1 DELIVERY OF MIRNA MODULATORS 

Experiments utilizing either miRNA inhibitors or target protectors require that they are 

transfected or otherwise delivered into cell cultures or other model systems  and that 

gene expression is measured thereafter. In vivo delivery of miRNA modulators to the 

CNS is still difficult but direct cortical or intraventricular injection of modified synthetic 

molecules (Krützfeldt et al., 2007) or transgene expressing  viral particles is an 

option. The exosome strategy previously mentioned may also represent a facile 

method for systemic administration of miRNA modulators to the CNS and warrants 

further testing (Alvarez-Erviti et al., 2011). 
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2.2.13.2  ANTIMIRNA STRATEGY TO BLOCK AN ENDOGENOUS MIRNA 

Antisense oligonucletides (ASOs) have been widely used to target specific mRNAs to 

study gene function. Several independent chemical modifications of ASOs that 

improve affinity and stability have been used to inhibit miRNA function both in vitro 

and in vivo. In some cases, miRNA ASO inhibition leads to target miRNA 

degradation. Indeed, recent studies have shown that the stability of miRNAs is 

defined by the Argonaute protein with which it binds, and the degree of 

complementarity between the miRNA and its target (Ameres et al., 2010). 

“AntagomiRs” were the first miRNA inhibitors demonstrated to work in mammals 

(Krutzfeldt et al., 2005). These ASOs harbor various modifications for RNAse 

protection and pharmacological properties,such as enhanced tissue and cellular 

uptake. They contain 2′-O-Methyl- modified ribose sugars (2′-OMe), a terminal 

phosphorothioate linkage instead of a natural phosphate linkag, and a cholesterol 

group at the 3′ end. Although AntagomiRs have been found to inhibit a specific 

miRNA in several tissues, they require higher doses to achieve the same efficacy as 

other ASO strategies. Locked Nucleic Acid (LNA) antisense nucleotides introduce a 

2′, 4′ methylene bridge in the ribose to form a bicyclic nucleotide. LNA modification 

increases the RNA:RNA melting temperature by 2–4 °C per modification and confers 

resistance to many endonucleases. These features make LNA-antimiR more specific 

and permit the use lower levels of antisense nucleotides. LNA ASOs have been used 

succesfully in several in vitro studies to inhibit specific miRNAs. Studies in mice have 

demonstrated that the delivery of LNA-antimiRwith phosphorothioate modifications 

may inhibit miR-122, a miRNA that binds the hepatitis C virus (HCV) and stimulates 

its replication. 
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2.2.13.3 MIRNA DELIVERY IN VIVO 

The delivery of miRNA mimic and miRNA antagonists oligonucleotides in vivo is 

possible but there are limiting factors to overcome, including the low stability of RNA 

nucleotides in vivo, the lack of regulated expression, and the inefficient uptake of 

oligonucleotides by neurons. Tools based on recombinant viral vectors derived from 

lentivirus, adeno-associated virus (rAAV), and retrovirus (Papale et al., 2009) reach a 

high efficency rate in neuronal cells and have been used to study miRNA function in 

neurons in vitro and in vivo. However, even if we bypass the problem of overcoming 

the BBB, the toxicity of therapeutic small oligonucleotides would remain a problem. 

Viral delivery of miRNA-based molecules, as reported in viral-shRNA studies, might 

lead to toxicity and tissue damage (Boudreau et al., 2009; McBride et al., 2008).  
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2.3 SODIUM/CALCIUM EXCHANGER 

The Na+/Ca2+ exchanger (NCX) is one of the major membrane proteins involved in 

Ca2+ extrusion at the plasma membrane. The regulation of Ca2+ and Na+ homeostasis 

is a crucial physiological phenomenon in neurons. In fact, Ca2+ ions play a key role as 

a second  messenger in the cytosol and in the nucleus (Choi, 1988), while the Na+ 

ion regulates the cellular osmolarity, inducing action potentials (Lipton, 1999), and it 

is involved in the signal translation (Yu et al., 1997). The control of this regulation is 

delegated to ionic channels selective for Ca2+ and Na+, to Na+ pumps, Ca2+ ATP-

dependent and to NCX (Blaustein and Lederer, 1999). The NCX family, which 

exchanges three Na+ ions for one Ca2+ ion or four Na+ ions for one Ca2+ ion 

depending on [Na+]i and [Ca2+]i (Reeves and Hale, 1984; Fujioka et al.,  2000; Hang 

and Hilgemann, 2004) consists of three dominant genes coding for the three different 

isoforms of the exchanger: NCX1 (Nicoll et al., 1990), NCX2 (Li et al., 1994), and 

NCX3 (Nicoll et al., 1996) proteins. These three genes appear to be dispersed, since 

NCX1, NCX2, and NCX3 have been mapped in mouse chromosomes 17, 7, and 12, 

respectively (Nicoll et al., 1996). At the post-transcriptional level, at least 12 NCX1 

and 3 NCX3 proteins are generated through alternative splicing of the primary 

nuclear transcripts. These variants arise from a region of the large intracellular f-loop, 

are encoded by six small exons defined A to F, and are used in different 

combinations in a tissue-specific manner. To maintain an open reading frame, all 

splice variants must include either exon A or B, which are mutually exclusive 

(Quednau et al. 1997). NCX1 is composed of 938 amino acids in the canine heart 

and has a molecular mass of 120 kDa and contains nine transmembrane segments 

(TMS). NCX1 amino terminus (N-terminal) is located in the extracellular space, 

whereas the carboxyl terminus (C-terminal) is located intracellularly. The nine 

transmembrane segments can be divided into an N-terminal hydrophobic domain, 
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composed of the first five TMS (1–5), and into a C-terminal hydrophobic domain, 

composed of the last four TMS (6–9). These two hydrophobic domains are important 

for the binding and the transport of ions. The first (1–5) TMS are separated from the 

last four (6–9) TMS through a large hydrophilic intracellular loop of 550 amino acids, 

named the f-loop (Nicoll et al., 1999). Although the f-loop is not implicated in Na+ and 

Ca2+ translocation, it is responsible for the regulation of NCX activity.  

 

2.3.1 MECHANISM OF ACTION OF SODIUM/CALCIUM EXCHANGER 

NCX can facilitate both Ca2+ and Na+ flow in a bidirectional way through the 

plasmamembrane (Blaustein and Lederer, 1999; Philipson and Nicoll, 2000) with a 

stoichiometry of 3 Na+ ions versus 1 Ca2+ ion. Depending on the intracellular levels of 

Na+ and Ca2+, NCX can operate in the forward mode by extruding one Ca2+ against 

three entering Na+, using the Na+ gradient across the plasma membrane as a source 

of energy (Blaustein and Lederer, 1999; Annunziato et al., 2004). Alternatively, in the 

reverse mode, NCX can function as Na+ efflux–Ca2+ influx. Because of its high 

exchange capacity, NCX is well-suited for rapid recovery from high intracellular Ca2+ 

concentrations ([Ca2+]i) and may play an important role in maintaining Ca2+ 

homeostasis and protecting cells from Ca2+ overload and eventually death (Blaustein 

and Lederer, 1999; Annunziato et al., 2004). 

 

2.3.2 SODIUM/CALCIUM EXCHANGER ISOFORM 1 DISTRIBUTION IN BRAIN 

The NCX1 gene displays an ubiquitous expression and therefore is present in 

several tissues, including brain, heart, skeletal muscle, smooth muscle, kidney, eye, 

secretory, and blood cells whereas NCX2 and NCX3 gene products have been found 

exclusively in neuronal and skeletal muscle tissues (Lee, 2004). NCX1 has several 
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splicing variants that appear to be selectively expressed in different regions and 

cellular populations of the brain (Quednau et al., 1997; Yu et al., 1997). In cerebral 

cortex, NCX1 is intensively expressed in the pyramidal neurons of layers III and V 

within the molecular layer of the cerebral motor cortex. This area, which contains the 

terminal dendritic field of the pyramidal cells, displays an intense NCX1 

immunoreactivity. NCX1 protein expression is particularly intense in the granule cell 

layer and in the hilum of the dentate gyrus, which constitutes the terminal field of the 

perforant pathway, the major excitatory input to the hippocampus originating from the 

enthorinal cortex. NCX1 mRNA can be detected in the substantia nigra pars 

compacta, in which dopaminergic cell bodies are localized; the NCX1 protein isoform 

is present in the striatum, in which the terminal projection fields of dopaminergic 

nigrostriatal neurons are found. Interestingly, the transcript and the protein, encoded 

by  NCX genes, is abundantly expressed in the nucleus accumbens (Canitano et al., 

2002; Papa et al., 2003), a brain region involved in the motivational control of motor 

coordination and damaged following middle cerebral artery occlusion. 

 

2.3.3 REGULATION OF SODIUM/CALCIUM EXCHANGER 

During brain ischemia there is a dramatic impairment of mechanisms regulating the 

homeostasis of sodium and calcium ions between the internal neurons and their 

extracellular melieu. One of the crucial actor of these biochemical deleterious events 

leading to neuronal cell pain is represented by the sodium/calcium exchanger. The 

activity of this  membrane antiporter protein has been focused for several years of 

experimental work of our research group. The exchanger acts by modulating in 

excitable cells the intracellular concentrations of Na+ and Ca2+ ions, thus providing for 

the maintenance of cell ions homeostasis. NCX mediates ions fluxes of Ca2+ and Na+ 
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ions across the plasma membrane in a bidirectional way (Blaustein et al., 1999; 

Philipson et al., 2000; Annunziato et al., 2004). There are several factors that 

regulate the activity of the exchanger sodium calcium, among which: (i) the 

concentration of the two cations transported, Na+ and Ca2+; (ii) the intracellular pH; 

(III) compounds related to metabolism, ATP, PIP2, PKA and PKC, and (iv) reactive 

oxygen species (ROS) and reactive nitrogen species (RNS). The concentration of 

calcium regulates NCX through CBD (Ca2+-binding domain) in the same way the Na+ 

ion plays a regulatory function. In particular when the sodium concentration 

increases, it binds to the site of transport of the heat exchanger, and after this influx 

of sodium, is an inactivation of the same. This process of inactivation, is very similar 

to the phenomenon that occurs in the voltage-gated ion channels, and is called 

sodium-dependent inactivation. The exchanger can also be regulated by the 

intracellular pH. A strong acidity inhibits the activity of NCX leaving it under a 

constant steady state, in fact, reductions in pH value below 0.4, can induce an 

inhibition of NCX than 90%. The ATP, which acts as a donor of phosphate groups, 

can increase the activity of the exchanger in different ways. First, activating the G 

protein-coupled receptors for endogenous and exogenous ligands. As a second, ATP 

can stimulate the activity of NCX through the pathway involving PKC or PKA; each 

isoform of NCX is presumed to have several phosphorylation sites. Finally, another 

mechanism by which NCX can be activated requires the production of lipid PIP2. In 

fact, this lipid binds the XIP region of the loop "f" eliminating the inactivation of NCX, 

thus stimulating its function. Interestingly, the depletion of ATP within the cell act 

differently on the three isoforms of the exchanger by inactivating both NCX1 and 

NCX2 but not by influencing the activity of NCX3 (Secondo et al., 2007) . The 

sodium-calcium exchanger is sensitive to reactive oxygen species, in fact by altered 

redox cell can result increases the activity of NCX (Annunziato et al., 2004). Among 
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the several factors that regulate the activity of NCX can be probably included 

miRNAs as it has been already demonstrated to fine-tune numerous target genes at 

the post-transcriptional level. 

 

2.3.4 SODIUM/CALCIUM EXCHANGER ROLE IN ISCHEMIC STROKE 

In an in vivo model of cerebral ischemia, reproduced in our laboratories, based on 

permanent middle cerebral artery occlusion (pMCAO) it has been observed a 

downregulation of about 90% of the levels of expression of NCX1 and NCX3 in 

ischemic core and in the peri-ischemic regions. In other brain districts, belonging to 

the ischemic penumbra, after cerebral ischemia, there was an increase of the levels 

of RNA messenger of NCX3 and NCX1. In contrast, in the same regions, the pMCAO 

causes a decrease in mRNA expression of NCX2. The up-regulation of NCX3 in peri-

infarct tissue has been interpreted as a compensatory mechanism to offset the 

reduced activity of NCX2, that in the course of ischemia is down-regulated and to 

keep at a proper homeostasis ions Na+ and Ca2+. In essence, the expression of 

NCX1 and NCX3 after permanent middle cerebral artery occlusion (pMCAO) in rats is 

regulated in a differential manner, depending on the region involved in the insult 

(Boscia et al., 2006; Pignataro et al., 2004a). Furthermore, antisense-induced 

downregulation of NCX1 and NCX3 or genetic ablation of NCX3 worsens the 

experimentally-induced ischemic damage in mice and rats (Molinaro et al., 2008; 

Pignataro et al., 2004a). Evidence for NCX3 neuroprotective role relies in the 

remarkable broadening of the infarct volume occurring when NCX3 protein is 

knocked down with a selective antisense oligonucleotide, thereby worsening the 

neurologic deficits (Pignataro et al., 2004). Accordingly, it has been recently showed 

in ischemic NCX3–/– mice that NCX3 exerts a neuroprotective effect  (Molinaro et al., 
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2008). For instance, in homozygous ncx3−/− mice subjected to MCAO, an increased 

brain damage occurs (Molinaro et al., 2008). In addition, the silencing of NCX1 and 

NCX3 expression by RNA interference increases cerebellar granule neurons 

vulnerability to Ca2+ overload and excitotoxicity (Bano et al., 2005; Secondo et al., 

2007). Moreover, the vulnerability to chemical hypoxia of BHK cells overexpressing 

NCX1 or NCX3 considerably increases when either NCX1 or NCX3 is silenced (Bano 

et al., 2005; Secondo et al., 2007). Finally, ischemic rats treated with NCX1 or NCX3 

antisense display a remarkable enlargement of the infarct volume (Pignataro et al., 

2004a). In a recent paper published by Pignataro et al., it has been shown that 

among the three NCX brain isoforms, NCX1 represent a new molecular effector 

involved in a neuroprotective mechanism named “ischemic preconditioning” 

(Pignataro et al., 2011, 2013). In effect, the brain possesses internal defense 

mechanisms that can be triggered by several stimuli. Among these mechanisms, 

preconditioning has recently attracted a great deal of interest. Preconditioning  is a 

phenomenon whereby a subliminal injurious stimulus applied before a longer harmful 

ischemia (Dirnagl et al., 2003; Gidday, 2006; Kirino, 2002) is able to exert a 

remarkable neuroprotection, thus establishing a state of tolerance to anoxic 

conditions. Pignataro has demonstrated that among the three NCX brain isoforms, 

NCX1 and NCX3 represent two molecular effectors involved in the neuroprotective 

mechanisms of ischemic preconditioning. So, results of Pignataro work support the 

importance of NCX1 and NCX3 in the pathogenesis of ischemic lesion and, most 

important, offer a new possible interpretation of the neuroprotective mechanism 

elicited by ischemic preconditioning. Furthermore the overexpression of NCX1 and 

NCX3 observed during preconditioning may be related to their ability to counteract 

the dysregulation of intracellular Na+, ([Na+]I ) and Ca2+, ([Ca2+]I ) homeostasis 

occurring in the brain under anoxic conditions corresponding to an harmful ischemia. 
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In a rat model of cerebral transient ischemia the reduction in NCX1 expression 

induced by the ischemic insult alone (Boscia et al., 2009; Pignataro et al., 2004b) 

was completely prevented when the animals were exposed to preconditioning alone. 

Indeed, since NCX1 and NCX3 silencing partially prevented ischemic 

neuroprotection mediated by preconditioning these results have shown that it would 

be reasonable to tune up a pharmacological strategy able to modulate NCX1. This 

approach has been derived from the evidence that is possible to hypothesize that the 

increased expression of certain proteins induced by a neuroprotective strategy like 

preconditioning could render the brain tissue ready to withstand subsequent, more 

severe brain conditions. Interestingly, the activation of these mechanisms has 

appeared to be longlasting, as relatively to sodium/calcium exchanger protein the 

upregulation of NCX1 and NCX3 was still present even after 72h after 

preconditioning induction, thus suggesting that both NCX1 and NCX3 might be 

considered as two possible effectors of delayed preconditioning. More important, the 

increased expression of NCX1 and NCX3 observed at early time points does not 

necessarily implicated that the neuroprotection might have occured at the same time 

points. The results mentioned in this study have suggester that, in order to reduce 

the extension of the infarct volume after a harmful ischemic insult an enhancement of 

NCX1 and NCX3 expression and/or activity might be desirable. Subsequent studies 

in spontaneously hypertensive rats also observed that multiple microRNAs 

downregulated after preconditioning are predicted to target MeCP2 mRNAs (Dharap 

et al. 2009, and Vemuganti et al., 2010). MeCP2 is a potent transcriptional repressor 

(Nan et al, 1998) and transcriptional activator (Chahrour et al., 2008). Mutations in 

the MeCP2 gene cause Rett syndrome (Hite et al., 2009) and several other CNS 

disorders including mental retardation, Angelman syndrome, and autism (Gonzales 

and LaSalle, 2010). Given that repressed gene expression is a feature of tolerance, it 



 
 

52 
 

was significant hat expression of MeCP2 rapidly increased in preconditioned mouse 

cortex with no correlating changes in mRNA expression and MeCP2 knockout mice 

showed increased susceptibility to ischemia (Lusardi et al., 2010), suggesting that 

MeCP2 may be an effector of preconditioning-induced tolerance. 
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3. AIM OF THE STUDY 

 

The role of miRNAs in cerebral ischemia has been largely unexplored. Giving that 

one miRNA regulates more than one hundred gene targets, and one gene can be 

regulated by a great number of miRNAs, it is mandatory to improve the knowledge of 

rules that govern miRNA-mRNA interaction and functional outcome when that 

interaction is modulated. In the last years robust biological validation of miRNA 

targets is moving us ever closer to better understand the complex molecular 

mechanisms associated with pathological outcome. In the light of these premises the 

present thesis work has been focused on the identification of microRNA pathways 

able to modulate sodium/calcium exchanger during an ischemic event in the brain. 

The choice of NCX as putative target of miRNA involved in stroke pathophysiology 

derives from previous work produced in our Department. Indeed, in the last 20 years 

our results gave a strong contribution in demonstrating that NCX activation 

represents an important mechanism of neuroprotection. In fact, brain ischemia 

determines a permanent decrease in NCX protein expression that is paralleled to the 

maximum evolution of ischemic damage. More interestingly, NCX activation is able to 

induce a remarkable neuroprotection (Pignataro et al., 2011, 2012, 2013). 

Furthermore, NCX1 has been recently included in the list of effectors recruited in the 

course of the well known neuroprotective phenomenon called ischemic 

preconditioning (Pignataro et al., 2011, 2012). In this regard, due to the difficulty to 

translate preconditioning into a valid clinical perspective, my purpose has been to 

tune up a reasonable pharmacological strategy able to reduce the extension of the 

infarct volume after an harmful ischemic insult by the enhancement of NCX1 

mediated by miRNA. To achieve this aim we used a strategy comprising the following 
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steps: (1) identification of a candidate miRNA; (2) overexpression experiments with 

miRNA Mimic; (3) loss of function experiments with miRNA inhibitors; (4) in vivo block 

of miRNA pathway. In fact, two main experimental strategies have been used during 

identification of candidate microRNA: overexpression by adding exogenous miRNAs, 

and loss-of-function approaches. Overexpression strategies are frequently criticized 

because artificially increasing the intracellular concentration of miRNAs may result in 

the repression of mRNAs that are not physiological targets. By contrast, loss of- 

function approaches, if carefully designed to avoid off-target effects, may reveal 

miRNA functions that rely on physiological miRNA levels. Another problem has 

concerned the delivery of miRNA mimic and miRNA antagonists oligonucleotides in 

vivo that is possible as operative strategy, but there have been some limiting factors, 

including the low stability of RNA nucleotides in vivo, the lack of regulated 

expression, and the inefficient uptake of oligonucleotides by neurons that have been 

exceeded by using chemical modified miRNAs directly infused 

intracerebroventricularly. 



 
 

55 
 

 

Figure 5.  A schematic approach to miRNA functional studies. 
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4. MATERIALS AND METHODS 

 

4.1 SPECIFIC  MIRNA IDENTIFICATION 

The database HOCTAR is an opensource resource that allows to obtain a so-called 

"ranking list", a list miRNAs that includes miRNAs most likely able to base-pair  the 

region at 3 'UTR of RNA messenger of the protein of interest, in our case  the 

sodium/calcium  exchanger isoform 1. The HOCTAR analysis aims to create a lists of 

miRNAs organized on the basis of the possibility of NCX1 gene transcript modulation 

based on the number of times that a given host gene (in which a specific miRNA is 

contained) is inversely correlated to the gene of interest (NCX1). In this way, 

considering that most of miRNAs are part of a single transcriptional unit together with 

the confining host genes, it is conceivable that by monitoring  thes genes is possible 

to obtain indirect information on the embedded miRNA. Inverse correlation 

information between all host gene and target genes derives from experimental data 

on miRNA-mRNA interactions validated by microarray experiments. This procedure 

allows to believe that miRNA, contained in its host gene, directly modulates target 

gene inversely correlated. The list shows in descending order miRNAs that have 

progressively lower probability to bind NCX RNA messenger. Then, the order of 

decreasing probability of this matching has to be confirmed by the existence of a 

more or less strict complementarity, based on Watson-Crick annealing between the 

"seed sequence" of the miRNA of interest (usually a region of 6-8 nucleotides at the 5 

'end of miRNA) and the sequence targeted on NCX1 mRNA, usually on 3’ UTR of 

gene. For this purpose has been used the pairing software RNA 22. 
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4.2 DRUGS  AND CHEMICALS 

For gain of function studies, miRIDIAN microRNA hsa-miR-103a-3p (C-300522-03-

0005 5 nmol ) mimic corresponding to mirbase accession: MIMAT0000101 and 

miRIDIAN Mimic Trasfection Control with Dy547 (Cp-004500-01-05 5nmol) were 

purchased from Thermo Fisher Scientific Inc.  

For loss of function experiments, Locked nucleic acids (LNA) AntimiRNA 103-1 

(414336-00 Pre-designed miRCURY LNA ™ microRNA Inhibitor, 5nmol) and 

Negative Control A miRNA (199004-00, microRNA miRCURY LNA ™ Power 

Antisense Control A, 5nmol)  were purchased from Exiqon, Denmark. 

 

4.3 CELL CULTURES 

 

4.3.1 BHK CELLS 

Baby hamster kidney (BHK) cells, stably transfected with canine cardiac NCX1, were 

grown on plastic dishes in a mix of DMEM and Ham's F12 media (1:1) (Gibco, 

Invitrogen, MI, Italy) supplemented with 5% fetal bovine serum, 100U/ml penicillin, 

and 100μg/ml streptomycin. Cells were cultured in a humidified 5% CO2  

atmosphere; the culture medium was changed every 2 days (Secondo et  al.,  2007).  

 

4.3.2 PC-12 CELLS 

Rat pheochromocytoma cells (PC-12 cells) were grown in 85% RPMI 1640, 10% 

horse serum and 5% heat-inactivated fetal bovine serum, containing 5 U/mL penicillin 

and 5 lg/mL streptomycin, at 37 °C with 5% CO2 (Pannaccione et al. 2005). For all 

the experiments, cells were seeded at low density on glass cover-slips coated with 
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poly-L-lysine (50ng/ml). Differentiation of PC-12 cells was achieved by NGF 2.5S 

treatment (50ng/ml) for 7-9 days (Greene and Tischler, 1976). 

 

4.3.3 RAT CORTICAL NEURONS 

Cortical neurons were prepared from brains of 14-d-old mouse embryos (Charles 

River), plated on coverslips, and cultured in MEM/F1(Invitrogen) containing glucose, 

5% of deactivated fetal bovine serum and 5% horse serum (Invitrogen), glutamine (2 

mM), penicillin (50 U/ml), and streptomycin (50 g/ml). Cytosine--D-arabinofuranoside 

(10 M) was added within 5 d of plating to prevent them growth of non-neuronal cells. 

Neurons were cultured at 37°C in a humidified 5% CO2 atmosphere and used after 

7–10 d in vitro (DIV) (Scorziello et al., 2007). 

 

4.3.4 TRANSFECTION OF BHK CELLS, PC12 AND RAT CORTICAL NEURONS 

PC12 cells and BHK were transfected with 10, 50, 100 and 150 nM of hsa-mir-103-1 

Mimic and with 10, 50, 100 and 150 nM of microRNA Mimic Trasfection Control. As 

transfection agent, use is made of 10 ul of HiPerFect Trasfection Reagent, according 

to the manufacturer’s protocol. After an incubation period of 5 hours, the medium was 

replaced and respectively to 24, 48 and 72 hours after the transfection, the cells were 

harvested and used for western blot or PCR Real Time analysis. Conversely rat 

cortical neurons were transfected with 150 nM of hsa-mir-103-1 for a period of 72 

hours. 
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4.3.4.1 IN VITRO EXPERIMENTAL GROUPS 

Group 1. BHK-NCX1 cell clones transiently transfected with miRNA Mimic 103-1 at a 

concentration of 10 nmol; the cells were harvested at 24 and 48 hours and analyzed 

by western blot for the protein NCX1. 

Group 2. BHK-NCX1 cells clones transiently transfected with miRNA Mimic 103-1 at 

a concentration of 50 nmol; the cells were harvested at 24 and 48 hours of temporal 

delay from the beginning  of transfection and analyzed by western blot for the protein 

NCX1. 

Group 3. BHK-NCX1 cells transiently transfected with miRNA Mimic 103-1 at a 

concentration of 100 nmol; the cells were harvested at 24 and 48 hours hours of 

temporal delay from the beginning transfection and analyzed by western blot for the 

protein NCX1. 

Group 4. PC12 cells transiently transfected with miRNA Mimic 103-1 at a 

concentration of 50 nmol; cells were harvested at 24 and 48h of distance and 

analyzed by western blot for the protein NCX1. 

Group 5. PC12 cells transiently transfected with miRNA Mimic 103-1 at a 

concentration of 100 nmol; the cells were harvested at 24 and 48 and 72 hours apart 

and analyzed by western blot for the protein NCX1. 

Group 6. PC12 cells transiently transfected with miRNA Mimic 103-1 at a 

concentration of 150 nmol; the cells were harvested at 48 and 72 hours apart and 

analyzed by western blot for the protein NCX1. 

Group 7. Embryonic cortical neurons transiently transfected  with miRNA Mimic 103-

1 at a concentration of 150 nmol; neurons were collected at 72 hours of temporal 
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delay from  the beginning  of the trasfection and analyzed by western blot for the 

protein NCX1. 

4.4 INDUCTION OF CEREBRAL ISCHEMIA 

Male Sprague–Dawley rats (Charles River) weighing 250 to 300 g were housed 

under diurnal lighting conditions (12 h darkness/light). Experiments were performed 

according to the international guidelines for animal research. The experimental 

protocol was approved by the Animal Care Committee of the “Federico II” University 

of Naples. Transient focal ischemia was induced by suture occlusion of the middle 

cerebral artery (MCA) in male rats anesthetized using 2% sevofluorane, 60% N2O, 

and 38% O2 (Pignataro et al., 2008). Under an operating stereomicroscope (Nikon 

SMZ800, Nikon Instruments, Florence, Italy) the right carotid bifurcation was carefully 

exposed and the external carotid artery (ECA) coagulated distal to the bifurcation. A 

silicon-coated nylon filament (Doccol, Ca, USA) was inserted through the ECA stump 

and gently advanced (19 mm) into the right internal carotid artery until it blocked the 

origin of the MCA. The surgical wound was closed and the filament left in place. After 

100-minutes MCA occlusion, the filament was gently withdrawn in order to restore 

blood flow. Animals were allowed to recover from anesthesia at room temperature. 

Achievement of ischemia was confirmed by monitoring regional cerebral blood flow in 

the area of the right MCA. Cerebral blood flow was monitored through a disposable 

microtip fiber optic probe (diameter 0.5mm) connected through a Master Probe to a 

laser Doppler computerized main unit (PF5001; Perimed, Sweden) and analyzed 

using PSW Perisoft 2.5 (Kawano et al., 2006). 
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4.4.1 IN VIVO EXPERIMENTAL GROUPS (I) 

To assess both endogenous levels of expression of mir-103-1 (by means of TaqMan 

probes) and protein NCX1 (antibody Swant) after ischemic event up to 6, 24 and 72 

hours after MCA occlusion three different experimental groups have been planned; 

Group 1. 8 Rats subjected to tMCAO procedure and sacrificed after 6 hours from 

MCA occlusion. Samples from temporoparietal ipsilateral cortex and striatum caudato 

putamen have been harvested. 

Group 2. 8 Rats subjected to tMCAO procedure and sacrificed after 24 hours from 

MCA occlusion. Samples from temporoparietal ipsilateral cortex and striatum caudato 

putamen have been harvested. 

Group 3. 8 Rats subjected to intervention of tMCAO and sacrificed after 72 hours 

from MCA occlusion. Samples from temporoparietal ipsilateral cortex and striatum 

caudato putamen have been harvested. 

Group 4. 5 sham-operated rats. Samples from temporoparietal ipsilateral cortex and 

striatum caudato putamen were harvested. 

Brain specimens obtained in the above described way were used  both to compare 

mir-103-1 level of expression in rats underwent to tMCAO to control levels observed 

in sham-operated rats (Real Time PCR) and  to analyze  the levels of expression of 

proteins NCX1, NCX2 and NCX3 in specific brain regions (Western Blot). 
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4.5 INTRACEREBROVENTRICULAR ADMINISTRATION OF ANTIMIR-103-1 

 

The continuous release of AntimiRNA by infusion into brain lateral ventricle has been 

achieved using osmotic pumps (Alza Co., Palo Alto, CA, USA). In rats positioned on 

a stereotaxic frame implantation of the osmotic pump in brain was carried out 24 

hours before the induction of transient ischemia (Vemuganti et al, 2004; Satriotomo 

et al, 2006). The osmotic pump was connected to a brain infusion kit (Alzet, n° 

0004760) made of a stainless steel cannula that was implanted into the right lateral 

ventricle using the stereotaxic coordinates from the bregma: 0.4 mm caudal, 2 mm 

lateral and 2 mm below the dura and secured to the skull with dental cement. 

(Paxinos and Watson, 1997; Pignataro et al., 2004b). The pump was placed in the 

skin fold on the neck of the rat (Dharap et al. 2009). Infusion of antimiRNA lasting 48 

hours has allowed to overcome problems relatively to the short half-life of miRNA (ca. 

1-3,5 h). AntimiRNA 103-1 and the Negative Control A were diluted to the final 

concentration in saline solution (0,9% NaCl g/l) previously filtered (Microglass filters). 

The initial concentration used to test the efficacy of antimiRNA in modulating 

endogenous miRNA 103-1 levels was increased by 40 times (considering CSF 

volume as factor of dilution) according  to the concentration of corresponding mir-

103-1 Mimic capable, in vitro, to exert the maximal effect of reduction in the NCX 

protein levels of expression respectively both in cortical neurons and in PC12 cells. 

The release of antimiRNA by the osmotic pump within rat cerebral ventricle  was set 

up at a speed of 1ul/hr. AntimiRNA has been used at two different concentrations on 

rats: 20uM and 60 uM. 
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4.5.1 IN VIVO EXPERIMENTAL GROUPS (II) 

Group 1. 7 Rats treated with antimiRNA 103-1 at a concentration of 20uM subjected 

to tMCAO surgery and sacrificed 24 hours after  the beginning of reperfusion. 

Samples from ischemic brain were obtained. 

Group 2. 7 Rats treated with antimiRNA 103-1 at a concentration of 60 uM subjected 

to tMCAO surgery and sacrificed 24 hours after the beginning of reperfusion. 

Samples from ischemic brain were obtained. 

Group 3. 7 Rats treated with LNA Negative Control subjected to tMCAO surgery and 

sacrificed 24 hours after the beginning of reperfusion. Samples from ischemic brain 

were obtained. 

Group 4. 3 Sham-operated rats. Samples from ischemic brain were obtained. 

 

4.6 WESTERN BLOT ANALYSIS 

PC12 cells, BHK cells, rat cortical neurons and rat brain samples were homogenized 

in a lysis buffer (50 mmol/L Tris–HCl, pH 7.5, 100 mmol/L NaCl, 1% Triton X-100) 

containing protease and the phosphatase inhibitor. After centrifugation at 12,000 g at 

4 °C for 5 min, the supernatants were collected. Protein concentration was estimated 

using the Bradford reagent. Then, 50 μg of protein was mixed with a Laemmli sample 

buffer and boiled at 95 °C for 5 min. The samples were resolved by sodium dodecyl 

sulfate polyacrylamide gel electrophoresis and transferred to polyvinylidene difluoride 

membranes. Blots were probed with antibodies to NCX1 (1:1000 Swant), NCX2 

(1:1000, Alpha Diagnostic), NCX3 (1:2000, a kind gift from Prof. Philipson and Prof. 

Nicoll), and α-tubulin (1:2000; Abcam, MA, USA) diluted in tris buffered saline (TBS-

T) 1% bovine serum albumin overnight (4 °C).  
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4.7 ANALYSIS BY REAL-TIME PCR 

Total RNA was extracted from cells with TRIZOL according to the manufacturer's 

protocol (Invitrogen). The cDNA was synthesized from 5 grams of total RNA 

extracted from cells using reverse transcriptase MultiScribe  for the retro-transcription 

polymerase reaction. The semi-quantitative polymerase reaction was performed 

according to the following conditions: 95 ° C for 3 hours, 30 or 35 cycles of reaction 

(95 ° C for one hour, 48 ° C for one hour, 72 ° C for one hour) and 72 ° C for 10 

minutes. The pairs of oligonucleotides used were: 5'-ACCACCAAGACTACAGTGCG-

3 and 5'-TTGGAAGCTGGTCTGTCTCC-3 'and 5'-

CCTGCTGGATTACATTAAAGCACTG-3’ for NCX1 and 5'-

CCTGAAGTACTCATTATAGTCAAG-3 'for the HPRT gene. The Real Time PCR 

reaction  was carried out with Universal Master Mix No UNG provided by TaqMan kit 

(Life Technologies) in a 7500 Fast Real-time polymerase chain reaction system 

apparatus (Applied Biosystems). Normalization of data was performed using  HPRT 

gene (Hypoxanthine-guanine phosphoribosyltransferase) as an internal control. The 

differences in mRNA content between groups were calculated as described by 

Formisano et al., 2007. The microRNA extraction from brain samples of cerebral 

cortex and striatum was achieved using Mirvana miRNA Isolation Kit (Applied 

Biosystems). Samples have been obtained from rodents after sacrifice by 

euthanization up to 6, 24 and 72 hours. The amplification and the normalization of 

the microRNA of interest was performed by real-time PCR (qRT-PCR). The probes 

used were TaqMan types (Life Technologies Co.). miRNA assay for rno-mir-103-1 

(batch ID 4427975 miRNA mature sequence detection) and miRNA assay for rno-mir 

4.5S (H) as endogenous control (batch ID 001716). For both miRNA of interest it was 

provided a primer for reverse transcription of cDNA from RNA extracted (TaqMan ® 

MicroRNA Reverse Transcription Kit, Applied Biosystems) and a pair of PCR primers 
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(forward and reverse) optimized for the detection and sensitive amplification of 

specific miRNAs by RT-PCR. 

 

4.8 ANALYSIS OF ISCHEMIC VOLUME 

To assess the effects of neuro protective treatment based on AntimiRNA 103-1 in 

rats subjected to ischemia after rats euthanization by an overdose sevoflurane to 

brains were removed from the skull to analyze them in order to determine the extent 

of ischemic damage. The brains were sectioned coronally at 1 mm intervals, and 

stained by immersion in the vital dye (2%) 2,3,5-triphenyltetrazolium hydrochloride 

(TTC). The infarct volume was calculated by summing infarction areas of all sections 

and by multiplying the total by slice thickness. The percentage of the infarct was 

calculated by dividing the infarct volume by the total ipsilateral hemispheric volume 

(Pignataro et al., 2008). Edema was calculated as follows: (volume of hemisphere 

ipsilateral to the lesion) – (volume of hemisphere contralateral to the lesion). This 

value was expressed as percentage of the volume of the hemisphere ipsilateral to 

the lesion (volume of edema: volume of hemisphere ipsilateral to the lesion = x: 100). 

This percentage was subtracted from the volume of the infarct. The person who did 

the image analysis was blinded to the study groups (Pignataro, Meller et al. 2008). 

 

4.8.1 IN VIVO EXPERIMENTAL GROUPS (III) 

Group 1. 7 Rats treated with antimiRNA 103-1 at a concentration of 60uM subjected  

to tMCAO surgery and sacrificed at 24 hours after MCAO occlusion. 
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Group 2. 7 Rats treated with negative control underwent tMCAO surgery and 

sacrificed 24 hours after MCAO occlusion. 

Group 3. 7 Rats treated with vehicle alone, subjected  tMCAO and sacrificed 24 

hours after MCA occlusion. 

 

4.9 EVALUATION ON GENERAL AND FOCAL DEFICITS 

Neurological scores were evaluated after 24 hours of reperfusion according to 2 

scales: a general neurologic scale and a focal neurologic scale (Clark et al., 1991) . 

In the general score, the following 6 general deficits were measured: (1) hair 

conditions, (2) position of ears, (3) eye conditions, (4) posture, (5) spontaneous 

activity, and (6) epileptic behavior. For each of the 6 general deficits measured, 

animals received a score ranging between 0 and 12 depending on the severity of 

signs. The scores of investigated items were then summed to provide a total general 

score.  In the focal score, the folllowing 7 areas were assessed: (1) body symmetry, 

(2) gait, (3) climbing, (4) circling behavior, (5) front limb symmetry, (6) compulsory 

circling, and (7) whisker response. For each of these items, animals were rated 

between 0 and 4 depending on severity. The 7 items were then summed to give at 

total focal score. 

 

4.10 STATISTICAL ANALYSIS 

Data obtained in cultured cells were expressed as mean±standard error and 

statistical significance of differences between groups was valuated by two-way 

ANOVA. p<0.05 was considered to be significant. For the evaluation of the protective 



 
 

67 
 

effect of antimiRNA 103-1 in vivo, on the infarct volume, data were expressed as 

mean±standard error and statistical analysis was performed by 2-way ANOVA 

followed by Newman Keuls test. Data relative to focal and general neurological 

deficits, being ordinal data, were analyzed using the non-parametric Kruskal–Wallis 

test, followed by the Nemenyi test for the non-parametric multiple comparison. 

Statistical significance was accepted at the 95% confidence level (p<0.05). 
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5. RESULTS 

 

5.1 IDENTIFICATION OF MIR-103-1 BY HOCTAR DATABASE AND IN SILICO VALIDATION 

OF ITS INTERACTION ON 3’UTR OF NCX1 RNA MESSENGER. 

By using as “Target Gene Name” query in HOCTAR screen database the word 

Slc8a1 for isoform 1 of sodium/calcium exchanger, (Figure 6), it has been obtained a 

list of all intragenic miRNAs predicted to bind the selected target gene. Intragenic 

miRNAs inversely correlates with target NCX1 transcripts have been ordered using 

two different colours  to indicate miRNAs whose predicted targeting fall, respectively, 

above or below the set threshold corresponding to the 50th percentile of the 

HOCTAR prediction ranked lists as seen in (Figure 6A). By analyzing miRNAs affinity 

for 3’UTR of NCX1 messenger of first 50 percentile of ranking list it has been 

possible to identify mir-103-1 that has shown to pair up perfectly with 7 nucleotides of 

its sequence (seed nucleus) to the 3 'UTR of rat NCX1 with a release of free 

interaction energy equal to -28.5 kCal / mol by heteroduplex formation (Figure 6B). 

Thanks to these interaction data it has been supposed that miR-103-1 is a likely 

interactor of NCX1. 
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Figure 6. (A) A screen-shot of HOCTAR during research for putative interactors of NCX1. (B) IBM 

RNA 22 showing  sequences (FASTA format) of mir-103-1 and RNA messenger of Slc8a1 (NCX1) 

before annealing. (C) Representation of 3’ UTR region of NCX1 that interacts, by Watson-Crick rules, 

to miRNA. 
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5.2 TRANSIENT TRANSFECTION OF MIR-103-1 IN BHK‐NCX1 CELLS DETERMINES A 

REDUCTION IN NCX1 EXPRESSION.  

In order to verify whether NCX1 was actually a target for miRNA 103-1, BHK cells 

transfected with NCX1 were treated with increasing concentration of miRNA 103-1. 

These results showed that the transient transfection with miRNA 103-1 was able to 

induce a remarkable downregulation of NCX1 in BHK-NCX1 cells. In particular, a 

significant reduction in NCX1 expression was obtained by exposing cells to 10 nM of 

miRNA 103-1 (69,6 ± 7,8) and 100 nM (42,4 ± 3,1) compared to control (100 ± 

1,9)(Figure 7A).This effect was also present at  48 hours of distance from transient 

transfection with 10nM (79,5 ± 2,2) and 100 nM (51 ± 1,7) miRNA 103-1 compared to 

control (100 ± 1,6)(Figure 7B). Interestingly, the effect of NCX1 downregulation 

mediated by miRNA 103-1 was not time dependent and was present at the two used 

concentrations of 10 nM and 100nM both at 24 and at 48 hours from transfection.  

 

Figure 7. Representative Western blot of NCX1 protein levels and densitometric quantification 

after BHK-NCX1 cell transfection with mir-103-1.  (A) MiRNA 103-1 mimic transfection in BHK cell 

clones determins a dose dependent modulation on NCX1 protein levels at 24h. (B) A parallel trend of 

downregulation of NCX1 protein at 48h after transfection. The given quantization of NCX1 is 
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expressed normalized with respect to α-tubulin. The experiment has been made in triplicates. The 

values are expressed as mean±SEM of 3 independent experimental sessions. *p<0.05 versus their 

respective controls. 

 

5.3 MIR-103-1 CAUSES A DOSE AND TIME DEPENDENT REDUCTION IN NCX1 

EXPRESSION IN PC12 CELLS. 

In order to prove the species specificity, miRNA 103-1 was transfected in PC12 cells. 

Data indicated that increasing concentration of miRNA 103-1 reduced NCX1 

expression levels at all time points considered. Notably, at 10 nM concentration there 

was no significant modulation on NCX1 both at 24 hours of transfection (97 ± 5,2) 

and at 48 hours (105 ± 8,3) compared to controls (100 ± 4 ,8 at  24h and 100 ± 3,5 at 

48 h respectively) (Figure 8A) (Figure 8B). By increasing doses of miRNA-103-1 

Mimic it was observed no significant modulation on NCX1 at 24h (104 ± 8,9) 

compared to control. Conversly 100nM at 48 hours downregulated significantly levels 

of NCX1 expression (59,5 ± 7,3); this effect was more impressive at 72h (12 ± 3,4) 

compared to control 72h (100 ± 11,5). To the highest dose of miRNA mimic tested, 

150 nM, corresponded a stronger reduction in NCX1 expression levels both at 48h 

(51 ± 8,1) and at 72h (6,2 ± 5,3) compared to respective controls  (Figure 8)  
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Figure 7. Representative Western blot of NCX1 protein levels in PC12 cell transfected with 

increasing doses of miRNA mimic 103-1 at several time-points. (A), (B) and (C) MiRNA mimic 

tested at several time from transient trasfection acts as a potent repressor of NCX1 protein expression 

in particular by 100nM concentration, 48h transfection. Each of the experimental groups has been 

made in triplicates. The values are expressed as mean±SEM of 3 independent experimental sessions. 

*p<0.05 versus control group;  each column represents the mean ± S.E.M.  

 

5.4 MIRNA MIMIC 103-1 REDUCES NCX1 EXPRESSION WHEN TRANSIENTLY 

TRANSFECTED IN EMBRYONIC RAT NEURONS. 

In order to verify whether miRNA 103-1 was able to induce NCX1 reduction also in 

neurons, cortical neurons were exposed to 150nM miRNA 103-1. Notably, at 72h 

from transient transfection, 150 nM miRNA Mimic 103-1 significantly downregulated 

NCX1 levels (50 ± 6,0) compared to neurons treated with vehicle alone (100 ± 9,8).  
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Figure 9. Western blot of NCX1 protein expression in cortical neurons transfected with 150 nM 

of miRNA mimic 103-1.  Once identified the maximum dosage and the best time of transfection able 

to modulate significantly NCX1 in PC12 and BHK cells, this dosage downregulated significantly NCX1  

also in neurons. NCX1 levels of expression have been normalized to α-tubulin. Each of the 

experimental groups has been made in triplicates. *p<0.05 versus vehicle group; each column 

represents the mean ± S.E.M.   

 

5.5  CORRELATION BETWEEN MIR-103-1 LEVELS OF EXPRESSION OF AND CONCOMITANT 

LEVELS OF NCX1 PROTEIN EXPRESSION IN RAT BRAIN. 

A time-course analisys of miRNA 103-1 levels and NCX1 expression after stroke 

revealed that miR-103-1 inversely correlates with NCX1. Indeed, in rat 6h after 

transient ischemia endogenous levels of mir-103-1 both in cerebral cortex (1,23 ± 

0,33) and in striatum (1,14 ± 0,22) were similar to those observed in cortex (1 ± 0,14) 

and in striatum (1 ± 0,156) of sham-operated animals (Figure 10A) . At 24h mir-103-1 

expression levels were dramatically increased both in cerebral cortex (2,8 ± 0,22) 

and in striatum (2,97 ± 0,47). Finally at 72 hours, levels of endogenous mir-103-1 fell 

down both in cortex samples (0,14 ± 0,32) and in striatum (0,7 ± 0,59) compared to 
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control levels. For the three time points considered (6, 24 and 72h), NCX1 protein 

levels of expression significantly decreased both in cerebral cortex (80,2 ± 5,8, 67,8 ± 

5,4 and 72,8 ±1,8 respectively at 6, 24 and 72h) and in cerebral striatum (76,2 ± 0,2, 

64,7 ± 6,8 and 68,9 ± 7,6 respectively at 6, 24 and 72h from tMCAO) compared to 

control sham-operated levels observed in cerebral cortex (100 ± 3,1) and striatum 

(100 ± 6,1). (Figure 10 B). 

 

Figure 10. Inverse correlation between the levels of expression of mir-103-1 and the protein 

NCX1 in samples from rat cerebral ischemic cortex and striatum dissected from animals at 

various time-points. (A) Time-course of levels of expression of miRNA 103-1 in cerebral cortex and 

brain striatum samples dissected from rats subjected to 100 'tMCAO and subsequently sacrificed at 6, 

24 and 72 hours. Results are expressed as fold changes of expression of miRNA 103-1 compared to 

sham. (B) Time course of level of protein NCX1. Expression levels have been normalized to α-tubulin 

and compared to sham. On the right side is depicted a representation of the brain area in which the 

analysis has been carried out. n=3 animals per group. *p<0.05 versus sham operated group in both 

expression profiles. Each point of the graphic line represents the mean ± S.E.M.  
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5.6 INTRACEREBROVENTRICULAR INFUSION OF ANTIMIRNA 103-1 REVERTS ISCHEMIA-

INDUCED NCX1 DOWNREGULATION. 

In order to prove whether AntimiRNA 103-1 upregulated NCX1 in brain ischemic 

area, an experiment in which ischemic rats were continuously injected with 

AntimiRNA  was carried out. This experiment revealed that  20 µM AntimiRNA 103-1 

did not affect NCX1 expression levels (102 ± 18) compared to levels of sham-

operated animals (100 ± 9,9).  More interestingly, 60 uM AntimiRNA caused a strong 

elevation in NCX1 protein levels (124 ± 9,5) compared both  to  ischemic animals 

treated with Negative Control miRNA (68 ± 5,3) and to sham.  

  

Figure 11. Quantitative analysis of NCX1 protein expression levels from ipsilateral damaged 

brain area of rats subjected to tMCAO and treated respectively with Negative control, 

AntimiRNA 20 uM and AntimiRNA 60 uM. n=5 animals per group. Data were normalized on the 

basis of α-tubulin levels and expressed as percentage of sham-operated controls (CTL). *p<0.05 

versus sham operated group; **p<0.05 vs Negative Control group and vs. sham operated group 

group. Each column represents the mean ± S.E.M. 
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5.7 ANTIMIRNA 103-1 PREVENTS ISCHEMIA-INDUCED REDUCTION IN NCX1 PROTEIN BY 

PRESERVING NCX1 GENE TRANSCRIPTS. 

AntimiRNA-103-1 increased RNA messenger levels of NCX1  targeting endogenous 

elevation of mir-103-1. In presence of Negative Control NCX1 transcript levels were 

highly degraded in cerebral cortex of ischemic rats (45 ± 8,9) compared to sham-

operated animals (100 ± 5,4) while AntimiRNA caused an increase of NCX1 mRNA 

(143 ± 12,1). In the striatum AntimiRNA preserved NCX1 mRNA levels from 

endogenous miRNA elevation (156 ± 19,4) compared to sham-operated animals (100 

± 12,8) and Negative Control treated ischemic rats (36 ± 15,1).   

  

Figure 12. Changes in expression levels of ncx1 mRNA in ischemic brain cortex (panel A) and 

striatum (panel B) of animals sham-operated (Sham), subjected to tMCAO and treated with 

Negative Control (NegCTL) and subjected to tMCAo and treated with AntimiRNA (AntimiRNA 

103-1 60 µM). *p<0.05 vs. sham-operated animals. mRNA levels are expressed as percentage of 

sham-operated controls (CTL). **p<0.05 vs both  Negative Control groups  and Sham-operated 

groups. n=3 animals per group. Each column represents the mean ± S.E.M. 
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5.8 ANTIMIRNA 103-1 SIGNIFICANTLY AND SELECTIVELY UPREGULATES NCX1 PROTEIN 

AFTER ISCHEMIA BOTH IN CORTEX AND IN STRIATUM OF RAT BRAIN. 

In order to test the specificity of AntimiRNA 103-1 for NCX1 the  possible effects of 

AntimiRNA treatment on other two brain isoforms of NCX, NCX2 and NCX3, was 

evaluated. AntimiRNA 103-1 induced an upregulation of NCX1 both in cerebral 

cortex (114,2 ± 6,2) and in striatum (130,4 ± 6,2) in rats subjected to ischemic stroke 

compared to Negative Control ischemic rats (67,6 ± 5,8 and 65,3 ± 5,2 respectively in 

cerebral cortex and in striatum) and to sham-operated animals (100 ± 3,1 and 100 ± 

6,1 respectively in cerebral cortex and in striatum) (Figure11 A).  AntimiRNA 103-1 

administrated in ischemic rats did not regulate NCX2 protein expression (98,6 ± 11,5 

and 97,8 ± 10,8 respectively in cerebral cortex and in striatum) compared to Negative 

control ischemic rats (91,22 ± 8,5 and 90,7 ± 8,8 respectively in cerebral cortex and 

striatum) and to sham-operated rats (100 ± 12, 3 and 100 ± 12,8 respectively in 

cerebral cortex and in striatum). Similarly to NCX2,  AntimiRNA 103-1 administrated 

in ischemic rats did not regulate significantly NCX3 protein expression (94,5 ± 18,1 

and 75,3 ± 4,8 respectively in cerebral cortex and in striatum) compared to Negative 

control ischemic rats (74,1 ± 6,9 and 69,5 ± 5,8 respectively in cerebral cortex and 

striatum) and to sham-operated rats (100 ± 3,9  and 100 ± 4,5  respectively in 

cerebral cortex and in striatum). 
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Figure 13. Isoform-specificity of drug treatment based on antimiRNA 103-1 evaluated by 

western blotting at 24 hours of reperfusion after ischemic event.  (A), (B) and (C), expression 

levels of three different isoforms of NCX in brain cortex and striatum at 24h after ischemia. n=3 

animals per group. All left panels are referred to NCX expression in the cortex, while right panels are 

referred to NCX expression in striatum. *p<0.05 versus sham operated group; **p<0.05 vs sham 

operated group for each isoform. Each column represents the mean ± S.E.M. Data were normalized 

on the basis of α-tubulin levels and expressed as percentage of sham-operated controls (CTL). 

 

5.9 ANTIMIRNA 103-1 IS ABLE TO EXERT A STRONG NEUROPROTECTIVE EFFECT ON 

ISCHEMIC DAMAGE.  

In order to demonstrate whether  AntimiRNA 103-1 was able to induce a reduction in 

the ischemic volume, it was administered in rats subjected to ischemia. Results show 

that AntimiRNA 103-1  reduced the extent of brain ischemia by ~ 60% (19 ± 3,4) 

compared to rats subjected to 100 min of tMCAO alone treated with vehicle (51 ± 6,3) 

or with negative control (59,5 ± 7,9). 
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Figure 14. Quantification of infarct volume after 100 minutes of MCAO and administration of 

AntimiRNA 103-1. *p<0.05  versus 100 minutes of MCAO (vehicle) and vs. ischemic rats treated with 

Negative Control. n=5-6 animals per group. Each column represents the mean ± S.E.M. 

 

5.10 ANTIMIRNA 103-1 TREATMENT IMPROVES GENERAL AND FOCAL DEFICITS 

To verify whether the reduction in the infarct volume observed after AntimiRNA 

administration was accompanied by an amelioration in the neurological deficits, the 

animals were scored for general and focal deficits immediately before they are killed. 

Obtained results demonstrated that antimiRNA is able to induce a dramatic reduction 

in the neurological scores when evaluated 24 hours later (Figure 14). 

 

  

Figure 15. Performance of general and focal neurological deficits after AntimiRNA drug 

treatment in ischemic rats.  Effect of AntimiRNA 60 uM on general and focal scores when rats were 

euthanized 24 hours after tMCAO plus Negative control or tMCAo plus AntimiRNA.*p<0.05 versus 

ischemic rats treated with Negative Control. *p<0.05  versus rats subjected to 100 minutes of MCAO 

and treated with Negative Control. 
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6. DISCUSSION 

 

The present study demonstrates that AntimiRNA 103-1, a locked nucleic acid able to 

block endogenous mir-103-1 is able to enhance NCX1 expression thus exerting a 

remarkable neuroprotective effect in stroke. This action translates in a marked 

improvement of neurological conditions of animals which have received an ischemic 

insult. It is notable that AntimiRNA displayed a potent upregulation effect on NCX1 

24h following brain ischemia, counteracting brain damage caused by stroke when it 

reaches the maximum stage of temporal evolution. By constrast, the neuroprotective 

effect exerted by AntimiRNA 103-1 due to its action on NCX1 expression, is 

demonstrated by the fact that it has no effect on the expression of the other two brain 

isoforms of NCX, NCX2 and NCX3. A possible explanation of the neuroprotective 

effect exerted by AntimiRNA 103-1 derives from the fact that the specific knocking 

down or knocking out of the three NCX isoforms worsens ischemic brain damage in 

in vitro and in vivo models of cerebral ischemia (Pignataro et al., 2004a; Jeon et al., 

2008; Molinaro et al., 2008) whereas its activation reduces infarct volume (Pignataro 

et al., 2004a; Molinaro et al., 2008). Indeed, the stimulation of the antiporter, by 

modifying the dysregulation of intracellular Na+ and Ca2+ ion homeostasis, could help 

the rescue of injured neurons in the ischemic and peri-ischemic areas of the brain. 

However, to date, only non selective NCX activators have been reported to stimulate 

NCX activity, including lithium (Iwamoto et al., 1999), redox agents (Reeves et al., 

1986; Secondo et al., 2011), agonists of G-protein-coupled receptors (Stengl et al., 

1998; Eriksson et al., 2001; Woo and Morad, 2001; Annunziato et al., 2004), 

diethylpyrocarbonate (Ottolia et al., 2002), concanavalin A, nerve growth factor, and 

insulin (Gupta et al., 1986; Makino et al., 1988; Formisano et al., 2008). The 
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identification of microRNA able to regulate sodium/calcium exchanger isoform 1 at 

brain level paves the road for a future therapeutic treatment in stroke and sheds light 

on an important molecular mechanism of protein regulation. Interestingly, by a time 

course analysis of endogenous miRNA 103-1 after ischemia a marked increase 

occurs at 24h while corresponding levels of protein NCX1 targeted remain elevated 

both at 24h and at 72h from ischemia. These findings might corroborate the 

hypothesis that an early elevation of miRNA 103-1 levels (24 hours) needs a 

complete turnover of NCX1 bound RNA messenger in order to show its modulatory 

effects. The use of miRNAs as potential therapeutic targets remains more 

controversial with regard to methods of delivery and target specificity. Several siRNA 

delivery systems for in vivo purposes are currently being developed, including vector-

based, chemically modified and ‘packaged’ RNA oligonucleotides (Kim et al., 2007) 

and progress in the latter area will immediately translate into progress in the miRNA 

area because both are based on the same principles. They both operate at the post-

transcriptional level and miRNAs and siRNAs are chemically identical. With the 

present work we have demonstrated, following the path already traced by Dharap et 

al. in a work appeared in 2009 on Journal of Cerebral Blood Flow & Metabolism, that 

is possible by using specific designed miRNA Inhibitors, such as Locked Nucleic 

Acids or Antagomirs filled into osmotic minipumps for continuous infusion in cerebral 

ventricle, to overcome problem of delivering in vivo such “packaged” small RNA 

modulators. However the big question is whether these different approaches will 

crystallize in clinically feasible therapies because bioavailability and toxicity issues 

are inherent to all these approaches and the blood–brain barrier constitutes an 

enormous hurdle for the effective delivery of these experimental drugs in the brain 

(Hebért et al., 2008).  miR-103 and miR-107 are intronic miRNAs contained in three 

PANK (Pantothenate kinase) loci of the human genome, in particular for what 
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concerns mir-103-1 is contained into PANK3  (i.e., PANK1, 2, and 3 correspond  to 

pri-miR-107, pri-miR-103-2, and pri-miR-103-1, respectively). Recently, Martello et al. 

indicated that miR-103/107 family is able to target Dicer, a key component of the 

miRNA processing machinery. Furthermore, in human breast cancer, high levels of 

miR-103/107 have been associated with metastasis and poor outcome. Therefore, 

mir-103 in human malignancies by reducing the expression of Dicer, causes a global 

reduction of miRNA abundance in cell cytoplasm, thus playing a causal role in the 

transformed phenotype (Kumar et al., 2007; Lu et al., 2005; Ozen et al., 2008; 

Martello et al. 2010). Conversely, in another recent paper by Harraz and collegues, it 

has been demonstrated that overexpression of a specific miRNA, miR-223, lowers 

the levels of GluR2 and NR2B by targeting their 3′-UTR target sites (TSs) thus 

inducing an inhibition of NMDA-induced calcium influx in hippocampal neurons 

(Harraz et al., 2008). This effect protects the brain from neuronal cell death following 

transient global ischemia and excitotoxic injury (Harraz et al., 2008). The conclusion 

of the authors is that the blockade of this miRNA pathway in a model of global 

ischemia might be deleterious. In the light of the above and according to the recent 

findings by Martello et al., our working hypothesis is that an elevation of endogenous 

levels of miRNA 103-1 might occur also after brain damage, thus causing a general 

reduction of miRNA global aboundance. This effect might be deleterious in the 

course of brain ischemic damage evolution since it might cause an increased 

expression of those proteins, such as specific subunits of glutamate receptors, 

normally downregulated, by those miRNAs that are no more synthesized, this effect 

precipitating brain damage caused by glutamatergic excitotoxicity. Furthermore, there 

are other evidences for neurobeneficial effect of downregulated miRNA 103-1 levels 

on stroke outcome (Lee et al., 2010). These researchers demonstrated that in 

normoxic conditions elevated levels of miR-200 family by binding 3’UTR of PHDs 
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hydroxylate (f prolyl hydroxylase 2)  determine hydroxylation of HIF-1α allowing its 

proteosomal degradation. HIF-1α is a well established transcription factor that is 

rapidly induced by hypoxia and accounts for the transcription of 89% of upregulated 

and 17% of downregulated genes during hypoxia and ischemia (Lee et al., 2010). 

Since blocking mir-103-1 action (AntimiRNA) causes miRNA global increased levels  

in neuroblast cells,  this effect may reduce activity of PHD (targeted at its 3’UTR by 

mir-200) and consequently the HiF-α degradation mechanism is turned off. Resulting 

increased levels of HIF-α might be responsible for protective induced upregulation of 

those neuroprotective genes regulated at a trascriprional level by this transcriptional 

factor (Greijer et al., 2005). 
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7. FUTURE DIRECTIONS 

 

Starting from the evidence that different patterns of miRNA expression occur in brain 

and blood  24h after brain ischemia, brain hemorrhage, kainate seizures, compared 

with sham operated  animals (Da-Zhi et al., 2010), our purpose would be to analyze 

specific miRNAs modulated in our model of brain ischemia.  In that scenario a 

pioneristic work by Liu and collegues has been conducted in order to compare 

miRNA levels found in blood samples obtained from rat tail vein after middle cerebal 

arthery occlusion to those present in hippocampus samples of rats subjected to the 

same experimental procedure. Results have shown  that a great number of miRNAs 

were significantly regulated (P < 0.05) more than 1.5-fold in brain and blood after 

each brain injury. Several miRNAs were upregulated or downregulated in both brain 

and blood after the injury; and a few miRNAs, including miR-298, mir-155, mir-362- 

3p, etc., were upregulated or downregulated in both brain and blood after several 

different injuries. These results pave the road for the possible use of blood miRNAs 

as biomarkers for selected brain miRNAs after one or more specific types of brain 

injuries. They also provide a partial mechanism for specific miRNA induced mRNA 

expression profiles in brain and blood after different types of brain injury.  
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