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ABSTRACT 
 

CA IX is a member of the carbonic anhydrase family of enzymes. It is a well 

known marker of hypoxia and it is involved in pH and survival regulation in 

hypoxic cells. The main aim of my PhD project was to identify molecular 

interactors of CA IX and, based on the knowledge of its ligands, to contribute to 

functional characterization of CA IX in neuronal cells.  

A complex protein network of novel CA IX interactors has been highlighted: 

several proteins of the nucleo-cytoplasmatic machinery have been found to bind 

CA IX under hypoxic condition; many of the CA IX protein interactors belong to 

the family of the ARM and HEAT-repeat containing proteins. Both in normoxic 

and hypoxic conditions CA IX also interacts with Cullin-associated NEDD8-

dissociated protein 1 (CAND1), which is a nuclear HEAT/ARM-containing 

protein that is involved in gene transcription and assembly of the SCF E3 

ubiquitine ligase complexes.  

Immunofluorescence (IF) analysis demonstrated an accumulation of CA IX in 

the nuclei of neuroblastoma cell lines and in neurons derived from murine 

ESCs. Putative NLS/NES sequences were identified in the CA IX protein 

sequence; IF analysis showed that they were able to affect distribution of the 

reporter protein GFP inside the cell.  

Collectively, these data suggest that subcellular localization and functions of CA 

IX are more complex than previously thought. CA IX may have intracellular 

functions different from those already known at the plasma membrane. A 

nuclear function for CA IX is in fact suggested by its localization on transcribed 

chromatin. 

Finally, the nematode Caenorhabditis elegans was used as an animal model, in 

order to characterize the function of two carbonic anhydrases of the worm, 

namely, cah-5 and cah-6, during hypoxic and anoxic stresses. Although 

preliminary, the observed phenotypes allow to predict fundamental roles for 

carbonic anhydrases in vivo. 
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1. INTRODUCTION 

 

1.1 Carbonic Anhydrases   

The carbonic anhydrases, or carbonate dehydratases (CAs), are ubiquitous 

metallo – enzymes present in prokaryotes and eukaryotes, encoded by five 

evolutionarily unrelated gene families. They are divided into α-CAs (present in 

vertebrates, bacteria, algae and green plants), β-CAs (in bacteria, algae and 

chloroplasts of monodicotyledons and dicotyledons), γ-CAs (in Archea and 

some bacteria) δ-CAs and δ-CAs (in some marine diatoms) 1-7.  

All human CAs (hCAs) belong to the α-class, and differ for their subcellular 

localization, tissue distribution and catalytic activity: CA I, II, III, VII and XIII are 

cytosolic enzymes, CA IV, IX, XII and XIV are associated to the cell membrane, 

CA VA and VB occur in the mitochondria; finally, CA VI is secreted in saliva and 

milk 8. 

Some isoforms have an intracellular catalytic domain (CA I, II, III), others indeed 

possess an extracellular catalytic domain (CAIV, IX, XII, XIV). Finally, CA VIII, 

X, XI are better defined as "CA-related proteins", because they have no 

catalytic activity (Figure 1). 

The carbonic anhydrases catalyze the reversible reaction CO2 + H2O ↔ HCO3
- 

+ H+ with the participation of a Zn++ ion, present in the active site in almost all 

CAs, that is essential for catalysis. This reaction is involved in many 

physiological and pathological processes such as pH and CO2 homeostasis, 

respiration and transport of CO2, bone resorption, calcification, electrolytes 

secretion in various organs and tissues, gluconeogenesis, lipogenesis, 

ureagenesis, tumorigenicity 9-12. For this reason, many CAs are considered 

possible therapeutic targets in order to treat various diseases including 

glaucoma, obesity, cancer, epilepsy and osteoporosis 13. 
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Figure 1. Schematic representation of the 15 members of human -Carbonic Anhydrase 

family. The cytosolic CAs and the mitochondrial CA VA and VB only possess a CA domain; the 

membrane-associated CA IV, IX, XII and XIV have a transmembrane domain and, with the 

exception of CA IV, a cytoplasmic tail; CA IX is the only isozyme with a N-terminal proteoglycan-

like domain; CA VI is secreted.. (Truppo et al.; Bioorg. Med. Chem. Lett. 2012, 22, 1560–1564). 

  

 

1.1.1 CA9 Gene and Its Products 

CA IX is a peculiar member of the CA family, since it is expressed in a limited 

number of normal tissues (mainly in the gastrointestinal tract), whereas it is 

generally expressed in hypoxic tissues, where its expression is mediated by the 

transcription factor HIF-1 14.  

The gene encoding for CA IX is located in the region p12-p13 of chromosome 9, 

and consists of 11 exons and 10 introns. The first exon encodes the putative 

signal peptide and the entire PG-like domain, the exons 2-8 encode the CA 

domain, and finally the exons 10 and 11 encode the transmembrane region and 

the intracellular tail, respectively (Figure 2) 15, 16.  
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Figure 2. Map of human CA IX gene (Opavsky et al.; Genomics 1996, 33, 480-487). 

 

Upon appropriate activation, ca9 gene is transcribed into a single mRNA of 1.5 

kb 17. In addition to this mRNA, an alternative spliced variant, lacking exons 8/9, 

has  been found. This variant is constitutively expressed at very low levels. This 

truncated form of CA IX presents a decreased enzyme activity.  

The expression of CA IX is regulated at the level of its promoter (-173; +31) 

(Figure 3) 18. The latter is characterized by six cis-acting elements, five with a 

positive and one with a negative influence on the transcription.  

Immediately upstream of the transcription start site (-3; -10), an Hypoxia-

Responsive Element (HRE), containing the TACGTG HIF-binding site (HBS), 

that is activated by HIF-1, is present. This activation is a critical element to 

recruit the transcriptional complex on the CA IX promoter 14, 19. 

PR1 (- 45 ; - 24) and PR5 (-163; - 145) are two positive cis-acting elements and 

bind SP1/SP3 factors 20-22, that can positively or negatively affect transcription 

23. 

Under normoxia, hypoxia and mild hypoxia (corresponding to high cell density 

culture), SP1/SP3 constitutively bind PR1/PR5 and this binding, when HIF-1 is 

activated, is critical for CA IX transcription 20, 21, 24.  
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Figure 3. Sequence of the CA IX promoter and its cis-acting elements. PR, protected 

region; HBS, HIF-binding site; transcription site is indicated by arrow. Each PR is in the boxs, 

the cognate transcription factors are in brackets, and their binding sites are in underlined bold.  

 

 

The structure of the encoded protein was initially analyzed on the basis of the 

sequence homology with other members of the same family 17, and then it was 

studied through X-ray crystallography 25. 

CA IX is a transmembrane protein of 459 amino acids (~58kDa) with an N-

terminal signal peptide (aa 1–37), an extracellular part (aa 38–414), a 

transmembrane tract (aa 415–434), and an intracellular C-terminal tail (IC; aa 

435–459). The extracellular part is composed of two domains: the PG-like 

domain (53-111) and a CA domain (135-391)(Figure 4) 15, 17.  

Crystallographic analysis of CA IX structure suggested a dimeric nature for this 

enzyme and showed that the dimer is formed through a symmetrical 

intermolecular disulfide bridge at the level of Cys41 placed on both monomers. 

These studies also show the existence of an intramolecular disulfide bond 

(Cys119-Cys229) and two glycosylation sites: an N-glycosylation (Asn309) in 

the catalytic domain and an O-glycosylation (Thr 78) near the PG domain 26.  

The X-ray crystallography described the catalytic domain as a globular domain 

in which the active site is located in a large conical cavity, that goes from the 

surface to the center of the protein, and a Zn++ ion is present on the bottom of 

this cavity. The active site is delimited by two distinct regions made of 

hydrophobic (Leu91, Val121, Val131, Leu135, Leu141, Val143, Leu198 and 

Pro202) and hydrophilic amino acids (Arg58, Arg60, Asn62, His64, Ser65, 

Gln67, Thr69, and Gln92). 
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The different domains of CA IX were associated to specific protein functions 27. 

The PG domain is associated with cell adhesion and intercellular 

communication 28-30. It also affects the enzyme activity of CA IX, ensuring a 

better catalytic efficiency at acid pH, indeed, the PG domain presents negatively 

charged amino acids that can interact with positively-charged residues that 

delimit the active site; this interaction may control substrate accession or 

participate in the proton transfer reaction 25.  

The catalytic CA domain is involved in cellular growth and survival 27, whereas 

the IC tail is essential for enzyme action and for a proper plasma membrane 

localization. Mutagenesis of several residues in the IC region does not allow a 

correct membrane localization, reduces the cell-cell adhesion, alters the 

interaction with other proteins involved in the signal transduction and abolishes 

the acidification of the extracellular environment 31. This happens because the 

IC tail possesses three phosphorylation sites, two of which, namely T443 and 

S448, modulate the CA IX catalytic activity, while the Y449 is involved in EGFR-

induced signal transduction to PI3K/Akt kinase pathway 32, 33.  

Recently, our work has highlighted the presence of putative nuclear localization 

sequences (NLS) and nuclear export sequences (NES) in the intracellular tail 

and transmembrane region of CA IX, respectively, that seem to drive 

intracellular distribution of CA IX 34. 
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Figure 4. CA IX dimer structure, based on the X-ray crystallography data. The catalytic 

domain is reported in cyan, with the glycan moieties in white. The PG domain is represented in 

magenta, the transmembrane tract in yellow and finally, the intracellular tail in green.  (Alterio et 

al.; PNAS 2009, 106, 38, 16233–16238); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

12 
 

1.1.2 CA IX – Protein Functions in Hypoxic Cells  

Hypoxia is a state of oxygen deficiency, in tissues and cells, sufficient to impair 

functions of the brain and other organs.  

Furthermore, hypoxia is one of the characteristics of solid tumors and correlates 

with the propagation of tumors, the malignancy and resistance to radio-and 

chemo-therapy. The metabolic changes occurring in hypoxic cells, which allow 

them to adapt to hypoxic stress when the oxygen tension falls below of 1-10 

mmHg, are largely regulated by HIF-1.  

As mentioned previously, also the expression of CA IX is regulated by the 

binding of HIF-1 to HRE sequences, present at the level of its promoter; in 

contrast to most of the other hypoxia-inducible-genes, CA IX is exclusively 

transactivated by HIF-1.  

HIF-1 is a heterodimeric transcription factor composed of an α subunit, 

stabilized by O2, and a β subunit, constitutively expressed (Figure 5). There are 

three α subunits (1α, 2α, 3α), but only HIF-1α is able to transactivate the CA IX 

promoter 35.  

In normoxic conditions, HIF-1α is addressed to the proteasome, through a 

process of ubiquitin-mediated degradation. This process is regulated by the 

prolyl-4-hydroxylase (PHD) that hydroxylates the Pro564 located in the oxygen-

dependent degradation domain (ODDD) of HIF-1α; this allows the binding of the 

protein pVHL, belonging to the E3 ubiquitin ligase complex, which leads to 

degradation of HIF-1α by the proteasome 36, 37. Moreover, HIF-1α is 

hydroxylated at asparagine residue (Asn803) within the C-terminal 

transactivation domain (C-TAD) by the factor inhibiting HIF-1 (FIH-1) which 

prevents binding of the p300/CBP coactivator 38, 39. In hypoxic conditions, the 

hydroxylation cannot take place and pVHL cannot target HIF-1α for 

degradation. HIF-1α is free to accumulate in the nucleus where dimerizes with 

HIF-1β and activates the transcription of genes that possess a HRE in the 

promoter (for example: VEGF, GLUT1/3, EPO1, CA IX) 40, 41. 

There are some discrepancies between CA IX and HIF1α expression. HIF1α is 

rapidly degraded in normoxic condition and rapidly stabilized under hypoxic 
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conditions. This kinetic has a critical effect on the expression of HIF1α target 

genes indeed, upon initiation of CA9 transcription, it takes several hours before 

CA IX protein is measurable. So, when the cells/tissue have only recently 

become hypoxic,  HIF1α is detectable, whereas CA IX not yet; alternatively in 

reoxygenated cells, HIF1α is rapidly degraded, whereas CA IX (extremely 

stable) is still present  42.  

In addition to hypoxia, other agents and genetic factors can inhibit the HIF-

degradative pathway, inducing CA IX expression. Indeed, overexpression of CA 

IX is related to inactivating mutations or epigenetic silencing of VHL, even under 

normoxic conditions 14, 22, 43.  

CA IX expression correlates with the stabilization of HIF-1α, but it also occurs in 

a HIF-1α independent manner. Indeed, in high density cell cultures, the p110 

subunit of PI3K can bind a specific cis-acting element of CA9 promoter and 

promote CA IX expression. This mechanism is mediated by a reduced oxygen 

tension (70 mm Hg), which is not sufficient to stabilize HIF-1α 44.    

Since the CA IX expression is closely linked to hypoxic conditions, it is 

considered an endogenous marker of hypoxia.  
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Figure 5. Mechanism of hypoxia-induced HIF1 stabilization and activation, leading to CA 

IX overexpression in hypoxic cells. Under normoxia, HIF1is hydroxylated by PHD and then 

bound by VHL that target HIF1 for degradation by the ubiquitin-proteasome system. Under 

hypoxia, PHD is inactive, HIFis not recognized by VHL and can move into the nucleus, where 

together with HIF1acts as transcription factor for target genes (Supuran CT, et al. Nat Rev 

Drug Dscov 2008, 7, 168-181).  

 

 

 

In normoxic conditions, cells convert glucose in glucose-6-phosphate, that is 

converted to pyruvate. Pyruvate is oxidized in the mitochondria to CO2 and H2O, 

generating 38 molecules of ATP per glucose molecule. In hypoxic conditions, 

oxidative phosphorylation cannot take place, so the pyruvate is reduced to 

lactate, generating 2 molecules of ATP per glucose molecule.  

However, in order to survive, hypoxic cells have to maintain a pHi close to 

physiological levels, so that the pyruvate and lactate products are released into 

the extracellular environment. In this way, a pH gradient occurs between the 
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inside and outside of the cell, stabilizing an extracellular pH (pHe) value around 

6, against the physiological value of 7.4  45.  

In hypoxic cells, CA IX function consists in maintaining this pH gradient through 

acidification of extracellular pH (pHe) and alkalinization of intracellular one, so 

counteracting hypoxia-induced acidosis 46. Indeed, bicarbonate and protons 

produced by CA reaction contribute to further increase intracellular pH (pHi) and 

decrease extracellular one, respectively. More specifically, CA IX interacts with 

bicarbonate transporters forming metabolons 47, that allow bicarbonate to be 

shuttled in the cytoplasm to buffer pHi, while the protons remain extracellularly; 

alternatively, bicarbonate can be transported to blood capillaries through anionic 

exchanger HCO3-/Cl- (Figure 6). 
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Figure 6. pH regulation within hypoxic cells. Hypoxic cells show a pH gradient characterized 

by acidic pH values in the extracellular microenvironment and by slightly alkaline pH values 

within them. (image modified from: Supuran; Nat Rev Drug Discov 2008, 7, (2), 168-81). 

 

 

 

 

 

 

 

 

Hypoxic cell 
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1.2 Nucleocytoplasmic transport 

In eukaryotic cells, the separation between nucleus and cytoplasm is defined by 

the nuclear envelope, a double-membrane system of highly selective 

permeability. A continuous interchange of material between these two 

compartments occurs through dedicated transport channels, that spans the 

nuclear envelope, namely the nuclear pore complex (NPC). 

The NPC is characterized by three substructures: the cytoplasmic filaments, a 

central core and the nuclear basket. The central core connects cytoplasmic ring 

to nuclear one through eight spokes, forming an aqueous channel. Each NPC is 

composed of about thirty different proteins, called nucleoporins, each of which 

is present in a large number of copies 48, 49.  

The nucloporins are divided into three groups: a first group includes 

transmembrane nucleoporins, which allow to anchor the NPC to the nuclear 

envelope; a second group  consists of FG-nucleoporins, characterized by 

phenylalanine and glycine repeats (FG repeats), which possess binding sites for 

karyopherins; finally, a third group includes structural nucleoporins, which form 

a scaffold that interacts with transmembrane nucleoporins and FG-nucleoporins 

50. 

Small molecules (up to 20 kDa), soluble in water, can diffuse through the 

channels of the NPC, instead, larger molecules are actively transported through 

hydrolysis of GTP, catalyzed by the protein Ran, and transport by the 

karyopherins-β.  

The karyopherins-β belong to a family of proteins of about 100 kDa; in humans, 

about 20 proteins have been identified, that are able to recognize the cargo 

proteins, thanks to their ability to change conformation. All karyopherins-β 

contain 19-20 helical HEAT repeats arranged into super-helical or ring-like 

structures 51. The karyopherins-β that mediate nuclear import are generally 

known as importins, whereas those mediating nuclear export are known as 

exportins. 
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Importin directlybind the cargo protein and is characterized by a critical 

region for recognition of cargo. This region is made up of 10 amadillo (ARM) 

repeats. The ARM repeat is an ~40 amino acids motif that form three α-helices 

(H1, H2, H3). The H3 helices form the inner concave surface of the importin α 

51.  

 

1.2.1 Nuclear import  

The molecules that have to be transported into the nucleus possess a nuclear 

localization signal (NLS), classically represented by three or five positively 

charged amino acid residues. The NLS can be monopartite (containing one 

cluster of positively charged amino acids), as in case of the large T antigen of 

the SV40 virus (PKKKRKV), or bipartite (possessing two clusters of positively 

charged amino acids), such as that of nucleoplasmin 

(AVKRPAATKKAGQAKKKKLD) 52, 53.  

In the cytoplasm, the cargo molecule binds, through the NLS, the ten ARM 

domains of the importin- α. At the N-terminus, importin α possess a importin β - 

binding (IBB) domain by which bind importin β, forming a ternary NLS-Imp α/ β 

complex (Figure 7). This complex is transported in the nucleus via the NCP, 

where RanGTP binds importin-β, causing cargo dissociation.  

The adaptor importin α returns in the cytoplasm by a dedicated receptor, the 

exportin Cse/CAS, upon hydrolysis of RanGTP to RanGDP. 

The importin-β drives the transport to the nucleus by interacting with the 

repetitions FG of nucleoporins. In a limited number of cases, importin β binds 

cargo directly. In this case, release of cargo in the nucleus is determined by 

mutually exclusive binding of cargo and RanGTP, as their binding site, at the N-

terminus arch of importin-β, are almost completely overlapping  54. 
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Figure 7. Schematic representation of nuclear import. The adaptor molecule importin α 

(impα) recognizes the NLS sequence present in the cargo to be transported, via its armadillo-

repeat domain (ARM). The importin β-binding (IBB) domain of importin α binds in a helical 

conformation to importin β (impβ). The cargo-impα/β complex is transported to the nucleus, via 

the nuclear pore complex (NPC). In the nucleus, the ternary complex is dissociated upon the 

formation of importin β-RanGTP complex. Impα is recycled back by the exportin Cse1/CAS 

(Cook et al.; Annu. Rev. Biochem. 2007, 76, 647–71). 
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1.2.2 Nuclear export  

In the nucleus, in the presence of RanGTP, the cargo proteins are bound by 

exportins and they are released in the cytoplasm upon conversion of RanGTP 

into RanGDP (Figure 8). 

One of the most studied exportin is XPO1 (also known as exportin-1 or CRM1).  

Generally, exportin-1 cargoes contain a nuclear export signal (NES), which is 

rich in hydrophobic amino acids, such as leucine.  

The crystal structure of C-terminal fragment of exportin-1 shows that this protein 

presents 20 HEAT repeats. These HEAT repeats are arranged into a ring and 

by an allosteric mechanism, allow exportin-1 to interact with the NES 

sequences of the cargoes and with the nuclear pore complexes, as well as 

happens for importins.  

In humans, the activity of XPO1 can be inhibited by Leptomycin B (LMB), an 

unsaturated fatty acid that blocks the XPO1 binding site for NESs, by covalent 

modification at a cysteine residue  55.  
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Figure 8. Schematic of nuclear export. In the nucleus, an exportin binds both cargo and 

RanGTP and release them in the cytoplasm, upon conversion of RanGTP into RanGDP (Cook 

et al.; Annu. Rev. Biochem. 2007, 76, 647–71).  
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1.2.3 The Ran cycle 

Transport directionality and karyopherin cargo interaction are regulated by 

the RanGTPase nucleotide cycle (Figure 9)  56.   

Ran is a small monomeric GTPase, belonging to the Ras superfamily, that is 

able to hydrolyze the GTP to GDP. There is a different distribution of Ran 

between nucleus and cytoplasm: RanGTP is concentrated in the nucleus, while 

RanGDP is more present in the cytoplasm. This compartmentalization depends 

on the activity of proteins that control the nucleotide state of Ran, indeed to 

hydrolyze GTP, Ran needs a Ran GTPase-activating protein (RanGAP), that is 

present in the cytoplasm and accelerates the hydrolysis of GTP to GDP. 

Conversely, in the nucleus, a guanine nucleotide exchange factor (GEF) (also 

known as regulator of chromosome condensation 1 or RCC1) increases the rate 

of nucleotide dissociation, promoting rapid GDP release after GTP hydrolysis 

and reloading of the G protein with GTP.    

RanGAP needs RanBPs (Ran-binding proteins) cofactors to increase GTPase 

activity of Ran. RanBP2 interacts with the cargo-importin-α/β complex at the 

level of NPC, so Ran-GTP binds importin-β causing a conformational change 

that induces the release of the protein transported and importin-α. The complex 

importin-β/Ran-GTP is carried in the cytoplasm, where Ran-GAP hydrolyzes 

GTP to GDP and the complex dissociates. Following hydrolysis, Ran-GDP is 

associated with protein NTF2 (nuclear transport factor 2) and is recycled back 

to the nucleus  57. 

In the nuclear export, the binding of Ran-GTP to exportin stabilizes the complex 

XPO1/protein. This complex is transported into the cytoplasm, where it is 

dissociated by the action of Ran-GAP, and the exportin  returns in the nucleus. 

Even if importin-α doesn’t have a classical NES, it is recycled in the cytoplasm, 

by the Cse-1 55. 
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Figure 9. Schematic description of the Ran cycle. In the cytosol, the high concentration of 

RanGDP is maintained by RanGAP, which is bound to the cytoplasmic fibrils of the nuclear pore 

complex. It acts on the RanGTP that enters the cytoplasm (via binding to exportins and 

importins). In the nucleus, the high concentration of RanGTP is maintained by RanGEF, a 

chromatin-bound guanine exchange factor (RCC1), which acts on the RanGDP, that enters the 

nucleus with its dedicated transport factor nuclear transport factor 2 (NTF2) (Cook et al.; Annu. 

Rev. Biochem. 2007, 76, 647–71). 
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1.3 The Ubiquitin-Proteasome system 

In the cell, in order to maintain intracellular protein homeostasis, proteins are 

continuously synthesized and degraded. The ubiquitin proteasome system 

control the degradation of the majority of intracellular proteins and consist of two 

principal steps. The first one is the covalent assembly of a chain of the small 

protein ubiquitin on the target protein and is catalyzed by the sequential action 

of three enzyme (Figure 10) 58, 59.  

In the first step, ubiquitin is activated by the ubiquitin-activating enzyme (E1), in 

the second one it is transferred to ubiquitin-conjugating enzyme (E2). E2 

charged with ubiquitin cooperates with ubiquitin ligase (E3), to ubiquitylate the 

target protein. Generally, several ubiquitins are added to a protein forming an 

ubiquitin chain  60.  

In the second step, the energy-dependent proteolysis of the ubiquitin chain-

trigged protein occurs by the 26S proteasome complex. The 26 proteasome 

complex is composed by the 20S proteasome and by a regulatory component, 

the 19S cap, that contains several ATPase subunits and other subunits involved 

in the action of the 26 proteasome on ubiquitylated proteins. Polyubiquitylated 

proteins are usually degraded by the 26 proteasome complex through an ATP-

dependent reaction that produces different types of products: free peptides, 

short peptides, still ubiquitylated and polyubiquitin chains. These last two 

products are converted to free and reusable ubiquitin by the action of ubiquitin-

C-terminal hydrolases or isopeptidases (Figure 10)  61. 

The SCF complex is a multisubunit ubiquitin ligase and it consists of three 

invariant subunits, Skp1, Cul1 and Rbx1 (also known as Roc1 or RING) and a 

variable F- box protein (FBP) subunit. Cul1 and Rbx1 are the catalytic core, 

Skp1 is an adaptor protein which interacts with a FBP. FBPs are the subunits 

that recognize and recruit the substrates in a protein-specific manner  62. 

The catalytic core (Cul1-Rbx1) cycles between an assembled, active state and 

a disassembled, inactive state (Figure 11). When Cul1 is conjugated with FBP-

Skp1and with the ubiquitin-like modifier Nedd8 at Lys720 (neddylation), the 
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enzyme is active, indeed the neddylation causes a conformational change in the 

cullin and Rbx1and increases ubiquitin ligase activity. 

Inactivation of SCF occurs by deconjugation of Nedd8 (deneddylation) by the 

COP9 signalosome complex (CSN)  63. Once deneddylated, Cul1 docks the 

sequestration factor CAND1/TIP120A, which dislocates FBP-Skp1 and making 

inactive the complex  64. Because CAND1 partially occludes both the FBP-Skp1 

binding site and Lys720 on Cul1, the active and inactive states of CUL1 are 

mutually exclusive. The combined action of Nedd8-conjugating enzymes and 

FBP-SKP1 dissociates CAND1, resulting in the reformation of an intact, Nedd8-

conjugated SCF complex 65, 66. 

 

 

 

 

 

 

Figure 10. Ubiquitin cycle and protein degradation. Degradation of a protein via the ubiquitin 

proteasome pathway (UPP) involves two discrete and successive steps: tagging of the 

substrate protein by the covalent attachment of multiple ubiquitin molecules; and the 

subsequent degradation of the tagged protein by the 26S proteasome, composed of the 

catalytic 20S core and the 19S regulator. 
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Figure 11. The Cul1 Cycle. a) Cul1 complexed with FBP-Skp1 and covalently modified with 

Nedd8 (N8) represents an active SCF. b) and c), Inactivation of SCF initiates when CSN binds 

active SCF and deconjugates Nedd8, returning the RING subunit Rbx1 to its inactive 

configuration. D), Cand1 dislocates FBP-Skp1 and binds Cul1, forming an inactive Cand1-Cul1 

complex. Restoration of an active SCF complex is brought upon by the combined action of 

Nedd8-conjugating enzymes and FBP-Skp1. Conjugation of Nedd8 causes a major 

conformational change in Cul1 and E2-recruiting Rbx1. This dynamic cycle of Cul1 is thought to 

enable a rapid sampling of the steady-state FBP-Skp1 population  
67

. 

 

 

 

Mutations in either the N- or C-terminal region of both CAND1 and Cul1 disrupt 

their binding, suggesting that their optimal interactions require the full-length 

sequences of both proteins. Moreover, CAND1 does not coexist with any 

detectable SKP1 or F-box proteins. 

CAND-1 is a nearly all-helical solenoid protein, consisting of 27 tandem HEAT 

repeats. Collectively, these repeats form an unusually superhelical structure 

with intimately coils around Cul1, making multiple intermolecular contacts 64. 
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1.4 Experimental models 

 

1.4.1 Embryonic Stem cells  

Mouse embryonic stem cells (ESCs) are pluripotent cells derived from the inner 

cell mass (ICM) of the preimplantation embryo at the blastocyst-stage  68, 69. 

ESCs posses two unique characteristics that distinguish them from all other 

organ-specific stem cells identified to date. First, in culture, they can be 

maintained and expanded as pure populations of undifferentiated cells for 

extended periods of time, retaining a normal karyotype. 

Second, they are pluripotent, and are capable to differentiate in cells and 

tissues of all three germ layers both in vivo and in vitro. In fact, the pluripotent 

nature of ESCs was demonstrated by their ability to contribute to all tissues of 

adult mice, including the germline, following their injection into host blastocysts  

70. In addition to their developmental potential in vivo, ES cells show a notable 

capacity to form differentiated cell types in vitro71, 72 . 

In order to maintain the pluripotency in vitro, it is crucial to prevent differentiation 

and to promote proliferation. Leukemia inhibitory factor (LIF) is one of the 

required extrinsic growth factors, that plays a central role in the maintenance of 

ESCs. These extrinsic factors are able to regulate and activate a network of key 

transcription factors that controls pluripotency. This network includes the 

homeodomain transcription factor Oct3/4 73, the variant homeodomain 

transcription factor Nanog 74 and the high mobility group (HMG)-box 

transcription factor Sox2  75. 

All pluripotent cells, during mouse embryogenesis, in mouse embryonic stem 

cells and in embryonic germ cell lines express the POU transcription factor Oct 

(octamer-binding transcription factor) 3/4. Oct 3/4  deficient mouse embryos fail 

to form the inner cell mass, lose pluripotency and differentiate into 

trophectoderm  76. 
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Sox2 is expressed both in the ESCs and in neural stem cells, it is a member of 

the HMG-domain DNA-binding-protein family and it is implicated in the 

regulation of transcription and chromatin architecture  77.  

Finally, several studies confirm that the homeodomain transcription factor 

Nanog is a key factor to maintain pluripotency.  It is known that Nanog can 

block primitive endoderm differentiation and neuronal differentiation 78. 

Furthermore, nanog can inhibit mesodermal differentiation, interacting with 

Smad1, to inhibit the expression of Brachyury  79.    

When the factor that maintain the pluripotency in ESCs are removed, under 

appropriate conditions, they are able to differentiate and generate the three 

embryonic layers. Three general approaches are used to initiate ES cell 

differentiation.  

In the first method, ES cells are allowed to aggregate and form three 

dimensional colonies also known as embryoid bodies (EBs) 72, 80. In the second 

method, ES cells are cultured on stromal cells, and differentiation takes place in 

contact with these cells  81. The third protocol involves differentiating ES cells in 

a monolayer on extracellular matrix proteins  82.  

Each of these approaches are able to differentiate ESCs and presents specific 

advantages and disadvantages. EBs provide a three-dimensional structure that 

enhances cell–cell interactions that may be important for certain developmental 

programs, on the other hand the complexity of the EBs can also be a 

disadvantage, because EBs generates cytokines and inducing factors that can 

complicate interpretations of experiments in which one is trying to understand 

the signaling pathways involved in lineage commitment. Moreover, EBs 

generation is generally performed in presence of retinoic acid  83 that is a strong 

teratogen but perhaps, it is able to perturb neural patterning, inducing 

suppression of the forebrain development 84, 85.  

Co-culture with stromal cells provides the beneficial growth promoting effects of 

the particular cell line used. However, these supportive cells produce undefined 

factors that may influence the differentiation of the ES cells to undesired cell 
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types. An additional problem is the difficulty to separate the ES-cell-derived 

cells from the stromal cells.  

Other protocols have been developed to differentiate ESCc into neurons, in vitro  

86-88. However, these procedures require extended in vitro culture  88 or results in 

low efficiency of neural induction 86, 87.  

Recently, efficient neuronal differentiation has been performed in serum-free 

conditions. However, this method requires both EBs formation and inducing 

factors 89, 90. Parisi and collaborators have recently defined a fast and simple 

method, namely, KSR-molayer method, to generate neurons and different 

neuronal sub-types from mouse ESCs, in absence of inducing factors and EBs 

formation  91.   

The feeder-independent E14Tg2a ESCs are cultured with KRS (Knockout 

Serum Replacement) and plated at low density in the proper differentiation 

method. Under this conditions, at 7 days of differentiation, a group of cells show 

neuron-like morphology. This phenomenon was accompanied by the formation 

of a complex neurite network surrounding the colonies. 

Furthermore, in this kind of culture a lower number of cells differentiates in 

astrocytes and only sporadically in oligodendrocytes, and this suggests that 

neuron formation is preferred, compared to the others neuroectodermal 

derivatives. Finally, KSR monolayer method allows to generate multiple 

neuronal subtypes able to produce different neurotransmitters, and this 

important feature could be useful to investigate specific neurodegenerative 

diseases or to screen molecules that impair or improve neuronal differentiation.  

 

Neuroblastoma SH-SY5Y cell line has generally been chosen as an 

experimental model for neuronal differentiation in order to study  pathogenesis 

of degeneration and for drug screening. Being derived from neuroblastoma, SH-

SY5Y cells are often induced to differentiate into neurons by different agents, 

such as retinoic acid (RA)  92. 

Neuronal differentiation induced by RA occurs with dopaminergic-like 

morphology, formation of neurites, whose length increases with time of 
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exposure, synthesis of neurospecific enzymes, neurotransmitters, 

neurofilaments formation and electrophysologic modifications as seen in normal 

neurons. 

RA treatment arrests cells at G1-phase of the cell cycle, inhibit DNA synthesis 

and growth already at 48 hours  93. 

   

 

1.4.2 Caenorhabditis elegans as an animal model 

Caenorhabditis elegans is a nematode of ~1 mm at the adult stage, that can be 

found in the soil all over the world. It is widely used as a model organism in 

molecular research for several reasons: 

- It has a small organization with a very simple anatomical structure. 

- It is transparent and this facilitates observation of biological structures 

and processes using optical microscopy. 

- It has a life cycle, which is completed in about 3 days, during which the 

worm passes through four larval stages. This very short life cycle allows 

to obtain, in a limited time, a large number of worms to study and 

analyze. 

- It has two sexes, male and hermaphrodite. This allows the genetic 

analysis of its biology. 

- It grows easily in the laboratory both on solid ground and in liquid 

medium, feeding bacteria (e.g. Escherichia coli). Fertile nematodes can 

be recovered after freezing (-80 ° C/-170 ° C), which facilitates the 

conservation of collections of mutant strains. 

- Its genomic sequence is fully available. 

- In addition to direct genetic approaches, C. elegans offers the possibility 

to use a wide range of reverse genetics methods for studying the 

function of genes of known sequence. A particularly important example is 

the use of interference with double-stranded RNA. 
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- It provides the opportunity to study in vivo the pattern of expression of a 

gene, using reporter genes or to study the function of specific protein 

domains via the generation of transgenic strains. 

Its nervous system, relatively simple, is formed by 302 neurons, identified and 

described for position, shape, connections and synapses. 

The complete sequence of the genome has documented the great conservation 

of gene sequences between nematodes and mammals, so that C. elegans has 

been used as a model to study the function and the role of certain genes in the 

molecular mechanisms involved in the pathogenesis of various human 

diseases. Indeed, C. elegans has been used as a model to study certain 

neurodegenerative diseases such as Parkinson's,  94 Alzheimer's  95 and other 

diseases by accumulation of toxic proteins such as those by polyglutamine 

expansion (e.g. Huntington's disease)  95. 

 

1.4.3 C. elegans and the oxygen deprivation response 

The nematode C. elegans is emerging as an excellent model organism to study 

how animals are able to adapt and survive oxygen deprivation. In fact, the worm 

responds in qualitatively different ways, under the conditions of hypoxia or 

anoxia. 

C. elegans can adapt to a " sublethal hypoxia (0.5% oxygen at 20 ° -22 ° C) 

activating or repressing genes controlled by the hypoxia-inducible transcription 

factor (HIF-1 ) 96. 

Several recent papers have described new roles for C. elegans HIF-1 and its 

interactors not only in stress responses but also in aging  97-101. Indeed, many of 

the genes activated by HIF-1 have predicted roles in signal transduction or in 

the regulation of gene expression, and this suggests that HIF-1 initiates 

cascades of events that can increase stress resistance and promote longevity. 

It is know that some of the genes downstream of HIF-1 contribute to the 

formation of stress-resistant dauer state, that is a larval, arrested developmental 

variant of C. elegans that forms at the second molt in response to 

environmental stresses. Hif-1-deficient animals exhibit an increased frequency 
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of dauer formation at high temperatures  102. Finally in 2008, Pocock anh Hobert 

demostrate that low oxygen levels cause cell-specific defects in the C. elegans 

nervous system, in particular increasing the frequency of some axonal 

pathfinding aberrations stabilizing HIF-1 in neurons and muscle. Furthermore, 

nervous system defects occour also when reactive oxygen species (ROS) 

stabilize HIF-1 during hypoxia  103.   

The nematode C. elegans can survive the complete loss of oxygen (anoxia at 

20 ° - 22 °   C) for at least one day in standard culture conditions, by entering a 

state of reversible arrest, called "suspended animation". Wild-type larvae and 

adults stop moving, eating, or laying eggs. Singularly, C. elegans can recover 

from 24 hours of anoxia-induced arrest and continue development. It has been 

shown that, in these conditions, several spindle  elements, such as san-1, mdf-2 

and bub-3, are implicated in the anoxia-induced metaphase arrest  104-107. This 

involvement is crucial for embryonic survival and it is hif-1 independent. At 0.1% 

oxygen, C.elegans arrests oocyte production and induces embryonic diapause 

in their embryios in utero. Also this process results hif-1 independent  108.  

Finally, challenge to long-term anoxia (48-72 hours) or hypoxia at high 

temperatures (<0.3% oxygen at 26-28 ° C) is lethal for the worm, although 

recent studies have identified genes and pathways that increase the ability of 

the worms to survive under these extreme conditions. Animals that have been 

incubated at high temperatures in severe hypoxia or anoxia for more than 20 

hours undergo to pathologies in multiple tissues, including muscle, the nervous 

system, and the pharynx 104, 109, 110. 

 

1.4.4 C. elegans carbonic anhydrases  

The genome of the nematode Caenorhabditis elegans encodes for six CA 

isoforms (cah-1, 2, 3, 4, 5 and 6)  111.  

In leterature it is known that one of these genes, cah-4, is regulated by both 

oxygen levels  112 and environmental pH  113. Furthermore, using a worm model 

of muscular dystrophy, it was demonstrated that cah-4 may also be involved in 
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the progression of muscle degeneration  114. cah-4 has two splicing variants, 

cah-4a and cah-4b.  

 

Amino acid sequence analysis revealed that the CAs of the nematode show an 

high homology to mammalian class isoforms and that  CAH-3, CAH-4 and 

CAH-5 present in their sequence three histidines that act as zinc ligands, as 

well as human CA II. 

Fasseas and collaborators found that during the development each gene 

follows an unique expression pattern, indeed cah-3 and cah-4 are more 

expressed during L1 and L3 stages, whereas cah-1, cah-2, cha-5 and cah-6 

show a less transcript accumulation  111.  

Interestingly, the C. elegans CAs can be clustered into two distinct groups that 

include: soluble isozymes, and acatalytic isozymes. CAH-1, CAH-2, and CAH-6 

are acatalytic isozymes, indeed they miss certain residues necessary for 

catalytic activity. CAH-3 and CAH-5 are most closely associated with the 

soluble, catalytic human isozymes, while CAH-4 is related to the catalytic 

isozymes. 

Experiments in which GFP expression is driven by CA promoters revealed that 

all nematode carbonic anhydrase are expressed in neurons (Figure 12). In 

general, only subsets of the 302 adult neurons expressed GFP, but it was found 

that CAH-6 and CAH-4a are expressed throughout the entire nervous system. 

Moreover, in addition to neuronal labeling, CAH-2a, CAH-3, and CAH-5 were 

strongly expressed in the intestine, CAH-4b and CAH-5 in the hypodermis, 

CAH-2a, CAH-3, CAH-4a, CAH-4b, and CAH-5 in various muscle cells including 

the vulva and pharynx.  

These experiments elucidated nematode CAs subcellular distibution. In 

particular, CAH-3, CAH-4b, and CAH-5, that were predicted to be catalytic, 

were found in the cytoplasm. CAH-1 and CAH-2, two of the putative acatalytic 

isozymes, were intracellular, but punctate. CAH-4a was also observed in the 

nuclear compartment  115.  This last observation was unforeseen, and further 
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investigations revealed that, in the first exon of cah-4 there is a sequence 

encoding for a putative NLS  115.   

 

 

 

 

 

Figure 12. Cah gene expresion patterns. Rappresentative confocal image of L4 worms in 

which GFP expression is driven by a specific cah promoter 
115

.  
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2. AIMS OF THE THESIS PROJECT 
 

Hypoxia is a state of oxygen deficiency, in tissues and cells, sufficient to impair 

functions of the brain and other organs. A consequence of this deprivation is a 

decrease of the intracellular pH of neurons and glial cells. The maintenance of 

an adequate pH is a key factor in the functioning of the Central Nervous System 

(CSN). It is important to better understand the pathways involved in the 

response to hypoxia and the processes that occur in mature neurons, in order 

to find possible players that can prevent neurodegeneration and trigger cell 

survival pathways.  

In a recent paper, I contributed to the characterization of the interactome of CA 

IX 34.  An unexpected, although exciting result emanating from such study did 

reveal CA IX as a nuclear protein in mammalian cell lines. Based on these 

results, I undertook functional analysis of CA IX and selected members of its 

interactome in neuronal cellular models. The first selected model is represented 

by a widely used human neuroblastoma cell line, SH-SY5Y, able to differentiate 

into dopaminergic-like neurons after treatment with retinoic acid. The second 

one corresponds to mouse ES pluripotent cells induced to differentiate to 

multiple neuronal subtype. Indeed, I evaluated subcellular distribution of CA IX 

in both models, and I revealed  the putative sequences involved in its nuclear 

trafficking. Taking advantage of the neuroblastoma model, I also evaluated 

functional interaction of CA IX with CAND1, and provided the first evidence for a 

nuclear function of CA IX. 

Finally, I performed a preliminary characterization of two carbonic anhydrases 

of the nematode C. elegans, in order to study carbonic anhydrases function in a 

animal model, taking advantage of such in vivo system.  
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3. RESULTS 

3.1 Characterization of CA IX interactome   

In order to characterize the interactome of CA IX, I selected a biochemical 

approach. For production of the biochemical bait, a DNA sequence encoding a 

C-terminal Strep-tag was fused to the full-length human CA IX cDNA; the 

corresponding construct was then transfected into HEK-293 cells line, due to 

the high transfection efficiency of these cells. The transfected cells were 

cultured both in normoxic and hypoxic conditions. 

To capture possible interactors of CA IX, the CA IX Strep-tag protein from the 

transfected cells was co-purified with the bound proteins on a Strep-tactin 

column. The co-purified proteins, from normoxic and hypoxic cells, were 

separated by SDS-PAGE and revealed by silver nitrate staining (Figure 13). 

After staining, in order to identify the bound proteins, each gel lane was cut in 

21 slices and analyzed by nLC-ESI-LIT-MS/MS for protein identifications (Table 

1). The analysis of the identified proteins showed a higher number of specific 

proteins in the hypoxic condition, compared to the few proteins found in the 

normoxic condition. The latter group includes the mitochondrial ATP synthase 

α/β subunits (ATP5A1 and ATP5B) and Ras GTPase-activating protein-binding 

protein 2 (G3BP2), a scaffold protein involved in the mRNA transport; also 

ribosomal protein RPS5, the catalytic subunit of the tRNAsplicing ligase 

complex UPF0027, and CAND1 (cullin-associated NEDD8-dissociated protein 

1) were identified among the potential CA IX interactors under normoxia. These 

last members were also captured in hypoxic cells. The interactome specific for 

the hypoxic condition, together with the acetyl-CoA carboxylase 1 enzyme 

(ACACA), the HEAT repeat-containing protein 3 (HEATR3), the mitochondrial 

trifunctional enzyme subunit alpha (HADHA), the protein SAAL1, and CAND2 

(cullin-associated NEDD8-dissociated protein 2), comprises a series of proteins 

belong to the nucleo-cytoplasmic transport machinery. 
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Figure 13.  SDS-PAGE analysis of the CA IX interacting proteins in HEK-293 cells. 

Proteins extracted from normoxic (N) and hypoxic (H) cells transfected with the Strep-tag CA IX 

vector were loaded on Strep-Tactin columns for co-purification of CA IX and its binding partners. 

Eluates were separated on a 10% SDS-PAGE gel and detected by silver nitrate staining.  After 

staining, each lane was cut into 21 slices to identify proteins by nLC-ESI-LIT-MS/MS analysis  
34

. 

 

 

The identified proteins were analyzed by the database STRING in order to 

understand the physical and/or predicted functional relationships between them 

(Figure 14). STRING analysis did indeed highlight a large network, including 

most of the identified proteins; they were related to the nucleo-cytoplasmic 

transport, such as importin-α (KPNA2), importin-β (IPO4, IPO5, IPO7, IPO9, 

TNPO1, TNPO3) and exportins (XPO1, XPO2/CSE1L, XPO5, XPOT). After 
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STRING analysis, the potential CA IX interactors were classified under gene 

ontology parameters (namely, biological process and INTERPRO) in the DAVID 

bioinformatic database. The platform DAVID confirms the cluster defined by 

STRING database. In addition, the DAVID platform highlights a less obvious 

group  of 13 out of the 25 identified proteins, characterized by ARM and HEAT 

repeats. Among these proteins are included most of the members involved in 

the nucleo-cytoplasmic transport machinery, and additional proteins, such as 

CAND1, CAND2 and HEATR3. 

 

 

Accessi

on 

Description Normoxi

a 

Hypox

ia Q16790 Carbonic anhydrase 9, CA9 [CAH9_HUMAN]  X (bait) X 

(bait) Q13085 Acetyl-CoA carboxylase 1, ACACA [ACACA_HUMAN]  X 

Q9UBB4 Ataxin-10, ATXN10 [ATXN10_HUMAN]  X 

P25705 ATP synthase subunit alpha, mitochondrial, ATP5A1 [ATPA_HUMAN] X  

P06576 ATP synthase subunit beta, mitochondrial, ATP5B [ATPB_HUMAN] X  

P00918 Carbonic anhydrase 2, CA2 [CAH2_HUMAN]  X 

Q86VP6 Cullin-associated NEDD8-dissociated protein 1, CAND1 [CAND1_HUMAN] X X 

O75155 Cullin-associated NEDD8-dissociated protein 2, CAND2 [CAND2_HUMAN]  X 

O14980 Exportin-1, XPO1 [XPO1_HUMAN]  X 

P55060 Exportin-2, CSE1L [XPO2_HUMAN]  X 

Q9HAV4 Exportin-5, XPO5 [XPO5_HUMAN]  X 

O43592 Exportin-T, XPOT [XPOT_HUMAN]  X 

Q7Z492 HEAT repeat-containing protein 3, HEATR3 [HEATR3_HUMAN]  X 

P52292 Importin subunit alpha-2, KPNA2 [IMA2_HUMAN]  X 

Q8TEX9 Importin-4, IPO4 [IPO4_HUMAN]  X 

O00410 Importin-5, IPO5 [IPO5_HUMAN]  X 

O95373 Importin-7, IPO7 [IPO7_HUMAN]  X 

Q96P70 Importin-9, IPO9 [IPO9_HUMAN]  X 

Q96ER3 Protein SAAL1, SAAL1 [SAAL1_HUMAN]  X 

Q9UN86 Ras GTPase-activating protein-binding protein 2, G3BP2 [G3BP2_HUMAN] X  

Q9Y5M8 Signal recognition particle receptor subunit beta, SRPRB [SRPRB_HUMAN]  X 

Q92973 Transportin-1, TNPO1 [TNPO1_HUMAN]  X 

Q9Y5L0 Transportin-3, TNPO3 [TNPO3_HUMAN]  X 

P40939 Trifunctional enzyme subunit alpha, HADHA [ECHA_HUMAN]  X 

Q9Y3I0 UPF0027 protein C22orf28, C22orf28 [CV028_HUMAN] X X 

P46782 40S ribosomal protein S5, RPS5 [RS5_HUMAN] X X  

    

Table 1. List of potential interactors of CA IX identified under Normoxic and Hypoxic 

conditions 
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Figure 14. Bioinformatic characterization of CA IX interactors. (A) To define possible physical 

and functional interactions among the 25 interactors of CA IX, the dentified proteins were subjected to 

String database. Proteins are connected by lines of different colors, according to the color code 

shown at the bottom. Values close to the lines report the confidence scores, as revealed by functional 

interaction analysis  
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The experiments aiming to characterize the interactome for CA IX were 

performed in HEK293 cells, taking advantage of an overexpression system, in 

which the CA IX protein was fused to an artificial Strep-tag. On the other hand, 

the obtained results clearly indicated that CA IX, despite its membrane 

topology, did behave similarly to a protein subjected to nuclear import and 

export. The subcellular localization of CA IX was then evaluated in human cell 

lines of different origin by confocal immunofluorescence analysis (Figure 15). In 

agreement with data present in literature, regarding the high expression levels 

of CA IX in high density cell cultures, the GEO cell line, derived from a 

colorectal carcinoma, showed a strong expression of CA IX at the level of the 

cell membrane. To this location is also associated, in some cells, weak staining 

at the nuclear and perinuclear regions. On the contrary, the remaining cell lines, 

including HEK-293 (kidney carcinoma), SHSY5Y (neuroblastoma) and BJ5ta 

(immortalized fibroblasts) showed a wider distribution of CA IX with extreme 

decrease in membrane staining and strong accumulation at the nuclear level. 

These data clearly support the interactome data, showing that CA IX may 

possess prevalent membrane localization in some cells, as well as a complex 

subcellular localization in most mammalian cells, including the SH-SY5Y 

neuroblastoma cell line (Figure 14) 34. These cells are indeed able to 

differentiate in response to a differentiating agent, such as all-trans-retinoic acid 

(RA) 116. These data encouraged me to further investigate the functional 

significance of nuclear CA IX and of its interactome in cellular models of 

neuronal differentiation, including the SH-SY5Y cells and murine embryo stem 

cells (ES). 
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Figure 15. Subcellular distribution of CA IX in human cell lines. GEO (colon 
adenocarcinoma), HEK-293 (embryonic kidney carcinoma), SH-SY5Y (neuroblastoma) and 

BJ5T (telomerase immortalized fibroblasts) cells were fixed and permeabilized to detect CA IX 
(green). In GEO cells, CA IX is localized in plasma membrane, whereas in the other cell lines it 
is broadly distributed, with a positive staining of nuclei. 

 

 

 

3.2 CA IX expression and subcellular distribution in cellular 

models of neuronal differentiation 

SH-SY5Y cells are able to differentiate, in vitro, into dopaminergic-like neurons, 

if stimulated with differentiating agents 116. In order to evaluate the potential role 

of CA IX as a pro-survival factor, I evaluated protein expression in differentiated 

cells. After three days of treatment, retinoic acid (RA)-differentiated and 

undifferentiated SH-SY5Y cells were cultured in both normoxic and hypoxic 

conditions. A western blot analysis was performed to appraise the expression of 

CA IX and its interactors (Figure 16). In normoxic and hypoxic conditions, 
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CAND1 and XPO1 present an equal amount of expression both in 

undifferentiated and in differentiated cells. Interestingly, the basal expression of 

CA IX protein in normoxia was increased in differentiated cells, compared to 

control cells. This difference in expression was also occurring, and even more 

pronounced, in hypoxic cells. 3-tubulin expression was evaluated as 

differentiation marker in the western blot experiment, while -actin was used as 

a  loading control.  

 

 

 

Figure 16. CA IX and its interactors in undifferentiated and differentiated SHSY5Y cell 
line. CA IX expression in differentiated cells is higher than in undifferentiated cells, both in 
normoxic. and in hypoxic condition. CA IX interactors, CAND1 and XPO1, present an equal 

amount both in undifferentiated and in differentiated cells. 3-Tubulin was used as differentiation 

marker and it was more expressed in the treated cells, while -actin was used as a loading 

control. 
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To confirm these data and to evaluate subcellular localization of CA IX in 

differentiated cells, I performed a confocal immunofluorescence analysis. The 

images show that in undifferentiated cells (bottom panel on the left in figure 17) 

CA IX is expressed in the cytoplasm and it is abundant in the nucleus too. In 

differentiated cells nuclear representation of CA IX is prominent, in comparison 

to their undifferentiated counterpart. So, these data are in agreement with the 

western blot data; furthermore, they clearly show nuclear enrichments of CA IX 

in  differentiated cells. 

 

 

 

Figure 17. Subcellular distribution of CA IX in undifferentiated and differentiated SHSY5Y 
cell line. CA IX is expressed in the cytoplasm, but it is much more abundant in the nucleus, 

compared to their undifferentiated counterpart. 3-tubulin is a differentiation marker and it is 
abundant in the neurofilaments of differentiated cells. 
 

 

 



 

44 
 

Western blot and immunofluorescence analysis were performed in murine 

embryonic stem cells too. This analysis did indeed reveal that CA IX was not 

expressed in undifferentiated embryonic stem cells (first lane, Figure 18). 

In cells induced to differentiate into neurons, at 5-days timepoint, when in the 

culture plate are present neuronal progenitor cells, CA IX expression is still not 

detectable (second lane), whereas it can be appreciated at 12 days, when the 

progenitors differentiate completely into neurons and glial cells (third lane). 

 

 

Figura 18. CA IX expression in murine stem cells. CA IX is not expressed in embryonic stem 

cells and In cells induced to differentiate into neurons (5 days), but it is expressed at 12days.  

 

 

In order to evaluate CA IX subcellular expression in embryonic stem cells and in 

differentiated cells, I performed an immunofluorescence analysis (Figure 19). 

Confirming biochemical data, these experiments revealed that CA IX (green) 

was not expressed in embryonic stem cells, that are indeed positive for OCT ¾ 

(red), a stem cell marker; CA IX expression was still not detectable at 4 days of 

differentiation, when cells were positive for SOX 1 (red), a neural progenitors 

marker.  

At 7 days of differentiation, there was a group of cells stained for CA IX (green) 

in the nucleus, but not for SOX 1 (red) too, and another group stained only for 

this marker; to assess whether the cells that express the nuclear CA IX are 

neuronal cells, I used tubulin, that is a marker for post-mitotic neurons. The 

three panels of figure 19 show that several cells were both CA IX (green) and 

3tubulin positive (red), and that CA IX was abundantly expressed in the 

nuclei of this subpopulation of neurons.  
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Figure 19. CA IX expression in ESCs and differentiated ESCs. CA IX (green) expression is 
not detectable in ESCs and in 4-days differentiated ESCs. At 7 days a group of cells are stained 
for CA IX in the nucleus, but not for SOX1 (red). At the same time point, another group of cells 

are positive for both CA IX and -tubulin (red). At 12 days of differentiation, the nuclear CA IX 

expression was still evident in neuronal cells, but also - tubulin negative cells. Nuclei are 
highlighted by DAPI staining (blue).   
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Finally, even at 12 days of differentiation, the nuclear CA IX expression was still 

evident in neuronal cells, but also in 3tubulin negative cells (bottom left panel, 

indicated by white arrows). Further investigations will be required to identify the 

nature of this last group of cells. 

In all the experiments, nuclei were highlighted by DAPI (blue). 

Altogether, these results support the existence of a nuclear pool for CA IX, both 

in human differentiated and undifferentiated cells (SH-SY5Y) and in mouse 

cells, but for this last group, its expression was restricted to differentiated cells. 

 

3.3 Analysis of putative nuclear localization and nuclear export 

signals in the CA IX sequence 

Although CA  IX is known as a transmembrane protein, our evidences define it 

as a nuclear protein in a variety of human cells. More interestingly, nuclear 

representation of CA IX is induced in hypoxic cells and is a prominent feature in 

two different models of neuronal differentiation.  

Interactome analysis revealed that CA IX interactors are mainly intracellular 

proteins; this occurrence was also confirmed by the identification of the 

cytosolic tail of CA IX as the actual binding site for its interactors. Using 

bioinformatic analysis on the CA IX protein sequence, I identified a hydrophobic 

region, which might act as nuclear export signal (NES) for interaction with 

exportin, being rich in leucine, and a basic region, similar to a nuclear 

localization signal (NLS), in the C-terminal region. Two softwares were used to 

analyze CA IX sequence: NetNES and NLStradamus. The software NetNES 

suggests that the sequence ILALVFGL is a putative NES (415-422), and the 

NLStradamus one indicates the sequence RRGHRRGTKGG as a putative NLS 

(436-446) (Figure 20).  

To assess whether the basic and the hydrophobic regions identified in CA IX 

can actually perform as NLS or NES, respectively, I evaluated whether they 

were able to drive the subcellular distribution of a reporter protein. To this aim, 



 

47 
 

several fusion constructs in which GFP was in-frame fused at the C-terminus 

with canonical and CA IX putative NES and or NLS sequences, were generated 

to be transfected in SH-SY5Y cells and analysed by confocal fluorescence 

microscopy (Figure 21). The patterns of subcellular distribution of the GFP 

fusions obtained from each CA IX construct were compared to the localizations 

of the corresponding proteins with the canonical signals, as well as to the 

pattern of the isolated GFP. 

Cells expressing only GFP showed a strong signal, which was equally 

distributed within cytoplasm and nucleus; the GFP_putative CA IX NLS 

localized predominantly in the nucleus, to a similar extent, compared to the 

canonical NLS signal. Nuclear localization of the reporter proteins was indeed 

confirmed by DRAQ5 staining (Figure 22).  

Adding a NES signal to the NLS canonical sequence clearly moves back to the 

cytoplasm the new protein encoded by the GFP_canonical NES+NLS construct. 

This happens in a even more pronounced occurrence in the cells expressing 

the GFP protein, fused to both putative NES and NLS sequences from CA IX 

(GFP_putative CA IX NES+NLS construct) (Figure 23).  
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Figure 21. GFP Fusion constructs. GFP was in-frame fused at the C-terminus with the 

following sequences: canonical NES+NLS, CA IX putative NES+NLS, canonical NLS and CA IX 

putative NLS.  

 

Figure 20. Bioinformatic analysis of CA IX (A) A putative NES sequence has been predicted 

by NetNES in the transmembrane region (http://www.cbs.dtu.dk/services/NetNES/); (B) A putative 

NLS sequence has been predicted by NLStradamus in the intracellular tail 

(http://www.moseslab.csb.utoronto.ca/NLStradamus/). 
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Figure 22. Subcellular localization of GFP_NLS fusion proteins. The nuclei of SHSY5Y cells 

transfected wit GFP, GFP canonical NLS and GFP_ CA IX putative NLS are highlighted with 

DRAQ5 staining (second column). The GFP is localized prevalently in the nucleus of all kind of 

cells, as show in the first column and highlighted in the merge column. 
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Figure 23. subcellular distribution of GFP_NES+NLS fusion protein. In cells transfected 

with the canonical signal, GFP  is diffused inside the cells, but the nuclear signal is more 

marked than that of the cells that expressed the GFP alone (Figure 10R). In cells that 

expressed the CA IX putative signal GFP expression is higher in the cytoplasm than in the 

nucleus. 

 

In conclusion, these data suggest that the putative NLS and NES sequences 

identified in the C-terminal tail of CA IX are actually able to direct a reporter 

protein to the nucleus (NLS), or to actively export it back to the cytosol (NES).  
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3.4 CA IX is bound to the chromatin of the 45S rRNA precursor  

Immunofluorescence analysis indicated that CA IX had a nuclear localization, 

furthermore, the presence of the ribosomal protein RPS5, a protein involved in 

the assembly of ribosomes and in the maturation of ribosomal RNAs (rRNA), 

among the identified interactor of CA IX, strongly supports the participation of 

CA IX to ribosomal biogenesis. Finally, previous investigation showed CA IX co-

localization with XPO1, in the nucleoli of HEK293 cells  34.  

In order to clarify a potential role of CA IX in ribosomal biogenesis, I performed 

a Chromatin-Immunoprecipitation assay (ChIp) in SH-SY5Y cells, grown under 

normoxic and hypoxic conditions, on the pre-rRNA 45S gene.  The Upstream 

Binding Factor (UBF), that is a transcription factor required for expression of the 

45S rRNA precursor  117 (from which 18S, 5.8S, and 28S ribosomal RNAs are 

generated), was used as a positive control for the ChIP assay. 

In normoxic conditions (Figure 24), ChIp experiments with CA IX antibody 

showed a significant enrichment of CA IX on two different DNA fragments from 

the pre-rRNA 45S gene (blue bars). In hypoxic condition, the recruitment of CA 

IX on the pre-rRNA 45S gene was strongly decreased (red bars). Interestingly, 

the ChIP experiment carried out with the UBF antibody showed a perfect 

complementary pattern, in comparison to CA IX, since the interaction of UBF 

with the pre-rRNA 45S gene was stronger in hypoxia  (red bars), compared to 

normoxia (blue bars). 

These data strongly suggest that CA IX has a role on pre-rRNA 45S gene  

transcription, although it is not possible to establish whether CA IX does bind 

directly to DNA, or it does act in scaffolding complexes. This experiment, 

however, strongly supports a functional significance for nuclear presence of CA 

IX in SH-SY5Y cells. 

In the same experiment I also investigated the presence  of CA IX on this gene 

in undifferentiated and differentiated SH-SY5Y cells. A decrease of CA IX and 

UBF binding to the gene promoter can be observed in RA-differentiated cells 
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(green bars) compared to DMSO-undifferentiated ones  (violet bars) (Figure 

25).  

 

 

 

 

Figure 24. Chromatin-Immunoprecipitation assay rRNA 45S gene. In normoxic conditions, 

CA IX is present on the the pre-rRNA 45S gene, conversely in the hypoxic condition. UBF show 

a complementary trend. 

 

 

 

Figure 25. Chromatin-Immunoprecipitation assay of rRNA 45S gene in undifferentiated 
and differentiated cells. CA IX and UBF binding decreased in differentiated SH-SY5Y cells 
compared to the undifferentiated counterpart. 
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3.5 Functional validation of CA IX-CAND1 interaction  
 

Among proteins identified as CA IX interactors rises a protein involved in 

important biological processes, including regulation of transcription and 

proteasome-mediated protein degradation, namely, CAND1 117
.  

To confirm this identification and the real physical interaction of CAND1 with CA 

IX, co-precipitation experiments were performed in SH-SY5Y cells (Figure 26). 

Results validated this interaction. Indeed, the figure shows that CAND1 co-

precipitated with CA IX under both normoxic and hypoxic conditions. In 

particular, the native complexes composed by both CAND1 and CA IX were 

most appreciable in hypoxia. 

 

 

Figure 26. Analysis of endogenous CA IX/CAND1 protein complexes in normoxic and 

hypoxic SH-SY5Y cells. Immunoprecipitates from normoxic (lane 2 and 3) and hypoxic (lane 4 

and 5) SHSY5Y cells were probed with CAND1 antibody. The extracts of lanes 2 and 4 were 

precipitated with control mouse IgGs, while the extracts of lines 3 and 5 were precipitated with 

CA IX VII/20 antibody. Input lysate was loaded in line 1  

 

Based on these results, showing a physical interaction of CA IX with CAND1, I 

undertook the analysis of a possible functional interaction between the two 

proteins. To this aim, I generated SH-SY5Y cell clones expressing decreased  

levels of CAND1 protein through RNA interference. The most effective 
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construct, eliciting CAND1 down-regulation, namely, sh2555, was used for 

further experiments. 

CAND1 protein is involved in regulation of protein stability through inhibition of 

assembly of SCF E3 ubiquitine ligase complex, that targets protein for 

degradation by 26S proteasome 67. Given that the CA IX/CAND1 complex was 

more abundantly represented in hypoxic cells, and CA IX is stabilized in 

hypoxia, we indeed evaluated whether CAND1 was actually involved in CA IX 

protein stabilization. Thus, I assessed the CA IX levels in cell lysates from 

sh2555.5 clone stably interfered with CAND1, by western blotting. Figure 27 

shows the results of this analysis. As expected, both in normoxia and in hypoxia 

CAND1 is downregulated in sh2555.5 clone, compared to cells expressing a 

non silencing construct (shNS); the western blot clearly shows that CA IX is 

more abundantly expressed in hypoxic cells, compared to normoxic cells. The 

main result clearly showed that in both conditions, CA IX did result down-

regulated in the sh2555.5 clone, compared to shNS; this actually occurred in 

both normoxia and hypoxia; interestingly, I also observed a parallel decrease in 

XPO1 protein levels in the clone interfered with CAND1 in comparison to control 

shNS cells.  These results support the hypothesis that CA IX is indeed a target 

of the Ubiquitin-Proteasome Pathway (UPP), and that a functional interaction 

between CA IX and CAND1 does actually occur, possibly resulting in a higher 

stability of CA IX protein. 
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Figure 27. CA IX and its interactors in SHSY5Y cell clone expressing decreased  levels of 

CAND1.Both in normoxia and in hypoxia CAND1 is downregulated in sh2555.5 clone, 
compared to shNS clone. CA IX did result down-regulated in the sh2555.5 clone, compared to 
shNS, in both normoxia and hypoxia; parallel decrease in XPO1 protein levels in the clone 

interfered with CAND1 in comparison to control shNS cells was observed too. actin was used 
as a loading control. 

 
 

In order to evaluate a possible functional interaction between CA IX and CAND1 

in ribosomal biogenesis too, I performed a ChIP assay on the pre-rRNA 45S 

gene in SH-SY5Y sh2555.5 stable clone interfered with CAND1 and in ShNS 

cells, grown under normoxic conditions. ChIP experiments showed that in 

sh2555.5 cells the recruitment of CA IX on the pre-rRNA 45S gene was strongly 

decreased (orange bars) compared to shNS cells (yellow bars) (Figure 28). 

These data suggest that decreased CAND1 expression levels indeed affect CA 

IX levels and its binding to the chromatin, thus suggesting that the physical 

interaction between the two proteins does indeed suggest a functional 

association for the CA IX/CAND1 complex.   
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Figure 28. Chromatin-Immunoprecipitation assay rRNA 45S gene in SH-SY5Y stable 
clone interfered with CAND1. The binding of CA IX on the pre-rRNA 45S gene is strongly 
decreased (orange bars) compared to shNS cells (yellow bars). 

 

 

3.6 Possible role of CA IX and CAND1 in survival of hypoxic 

neuroblastoma cells 

Generally, the expression of CA IX is linked to hypoxia, and because it is a 

condition of cellular stress, we can assume that CA IX can have a protective 

function in hypoxic cells. In order to assess whether really CA IX participates to 

the mechanisms of cell survival under hypoxic conditions, I tried to manipulate 

CA IX levels in SH-SY5Y cells by shRNA-mediated silencing and by 

overexpression with a vector containing the full-length CA IX sequence. I was 

not able to obtain cells with down-regulated CA IX (data not shown), while I was 

able to efficiently overexpress CA IX. I then used CA IX-overexpressing cells to 

detect cell death by the annexin-V. Fluorescein-conjugated Annexin V(FITC) is 

indeed capable to bind the phosphatidylserine (PS), a phospholipid normally 

present in the inner side of the cell membrane. When the PS is exposed outside 

the membrane, because there is an apoptotic or necrotic event, it can be 

revealed by the annexin V conjugate. The histogram of figure 29 shows the 

comparison between control cells and cells overexpressing CA IX, under 
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normoxic and hypoxic conditions. In normoxia (blue bars), in cells 

overexpressing CA IX and control cells there was a similar percentage of cells 

positive to annexin-V (25% and 21% respectively); following hypoxia (red bars), 

the percentage of cells positive to annexin-V was lower in cells overexpressing 

CA IX than in control cells (31% and 43%, respectively).  

These data suggest that cells overexpressing CA IX are protected from the 

hypoxic insult, compared to cells expressing endogenous levels of CA IX 

protein. 

 

 

 

Figure 29. Annexin V assay of SHSY5Y wild type cells and of cells that overexpress CA 
IX, under normoxic and hypoxic conditions. In hypoxia, the percentage of cells positive for 
annexin-V is lower in cells that overexpress CA IX than in control cells. 

 

 

A similar assay was performed in two different clones stably interfered with 

CAND1, namely sh2555.5 and sh2562.7, where is known that CA IX is 

downregulated, and in a population of control, shNS (Figure 30). In normoxia 

(blue bars), the percentage of cell death in shNS and sh2555.5 clones is 

comparable, whereas sh2562.8 clone presents a higher percentage of 
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damaged cells.  In hypoxia, the percentage of positive cells was higher in the 

two clones interfered for CAND1, compared to control cells.  

Figure 31 show the results of the western blot analysis performed to validate the 

downregulation of CAND1 of  the two clones interfered. sh2555.5 and sh2562.7 

clones showed a decreased level of CAND1 compared to shNS clone. 

These data suggest that the overexpression of CA IX protects cells against cell 

death while the deficiency of CAND1, with a consequent decrease in CA IX 

levels, leads to an increased sensitivity to cell death. 

 

Figure 30. Annexin V assay  of clones stably interfered with CAND1. In hypoxia, the 

percentage of positive cells is greater in the two clones interfered with CAND1 than in control 

cells. 

 

 

 

Figure 31. CAND1 downregulation in SH-SY5Y stable clones.  CAND1 is downregulated in  
sh2555.5 and sh2562.7 compared to shNS clone. 
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3.7 Carbonic anhydrases in C. elegans  

The redundancy of carbonic anhydrases in mammals prevents to analyze the 

functions of these enzymes in vivo. In fact, CA9-knock out mice show mild 

behavioural phenotypes  118. On the other hand, the C. elegans model revealed 

a precious system for the analysis in vivo of hypoxic and anoxic stresses. Thus, 

in order to evaluate whether the nematode C. elegans possesses a human CA9 

orthologue gene, I performed an in silico analysis, using a free bioinformatic 

tool, named Phobius (phobius.sbc.su.se), which is currently used for prediction 

of transmembrane topology and signal peptides from the amino acid sequence 

of a protein. This analysis revealed that, among the several carbonic anhydrase 

genes in C. elegans, only cah-5 does indeed possess a putative 

transmembrane region, from amino acid 285 to position 309, and a 

corresponding topology, compared to CA IX (Figure 32). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

61 
 

Prediction of sp|Q10462|CAH5_CAEEL 

ID  sp|Q10462|CAH5_CAEEL 
FT  SIGNAL    1   20     
FT  REGION    1   4    N-REGION. 
FT  REGION    5   16    H-REGION. 
FT  REGION    17   20    C-REGION. 
FT  TOPO_DOM   21  284    NON CYTOPLASMIC. 
FT  TRANSMEM  285  309     
FT  TOPO_DOM  310  310    CYTOPLASMIC. 

 

 

 

 

 

 

 

 

 

 

 

Figure 32. Prediction of transmembrane topology and signal peptides from the amino 
acid sequence of CAH-5. Bioninformatic analysis reveal that a putative transmembrane helix is 
in the 285-309 region of the protein. At the bottom, the plot shows, with different colors, the 
posterior probabilities of cytoplasmic (green) /non cytoplasmic (blue) /TM helix (gray)/signal 
peptide (red) regions of CAH-5. 

 

 

 

 

 

 

 

 

 

 

 



 

62 
 

On the other hand, it is largely known that cah-6 is strongly expressed in the 

nervous system of the nematode.  

So, I decided to investigate the role of these two carbonic anhydrases in vivo, in 

response to hypoxic and/or anoxic stimuli. To this aim, I generated worms in 

which cah-5 or cah-6 genes were silenced by RNA interference by feeding. In 

particular, regions of cDNA of carbonic anhydrase genes were cloned between 

two inverted T7 RNA polymerase promoters. The IPTG induction of the 

bidirectional transcription generated a dsRNA in the bacterial host, so in the 

worm fed with this bacteria the specific carbonic anhydrase were down-

regulated.  

A first group of wild-type worms (P0 generation) were fed bacteria carrying the 

dsRNA for cah-5 and exposed to hypoxic (0.5% oxygen) or anoxic (<0,1% 

oxygen) conditions, in order to evaluate the effects of the treatment in the F1 

generation (Figure 33). In normoxic conditions worms interfered by cah-5 didn’t 

show relevant phenotypes, in  comparison to the control worms.  

In hypoxic conditions the interfered worms showed a lower embryonic lethality 

compared to the control worms, in which the lethality was about 15%. In anoxic 

conditions, no differences were observed between the two groups of worms, in 

terms of embryonic lethality. These data suggest that cah-5 gene exacerbates 

the embryonic lethal phenotype in hypoxic worms, but not in anoxic ones. 
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Figure 33. Embryonic lethality phenotype observed in worms interfered for cah-5 gene. In 

normoxic conditions worms interfered by cah-5 didn’t show relevant phenotypes, in  comparison 

to the control worms. Under hypoxic condition, worms interfered for cah-5 gene show a lower 

embryonic lethality compared to the control worms. In anoxic conditions, no differences were 

observed between the two groups of worms. 

 

 

 

A second group of wild-type worms (P0 generation) were silenced for cah-6 

gene and exposed to anoxic (<0,1% oxygen) conditions, in order to study the 

phenotypes of the F1 generation. 

In these worms, we assayed two phenotypes, namely, embryonic lethality and 

the capacity of the hermaphrodites to lay eggs (Figure 34).  

Under normoxic conditions, both wt and silenced worms showed a low 

embryonic lethality and were able to lay a large, consistent number of eggs. 

Conversely, in anoxic conditions the silenced worms showed a higher 



 

64 
 

embryonic lethality and defects in the egg laying, compared to the control 

worms.  

These data suggest that normally cah-6 gene protects worms against 

embryonic lethality and egg-laying defects during anoxia. 

 

 

 

 

 

 

Figure  34. Embryonic lethality phenotype and defects in the egg laying observed in 
worms interfered for cah-6 gene. In normoxic conditions, both control and silenced worms 
showed a low embryonic lethality and were able to lay eggs. In anoxic conditions, the interfered 
worms showed a higher percentage of embryonic lethality and defects in the egg laying, 
compared to the control worms. 
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4. DISCUSSION 

Hypoxia is a state of oxygen deficiency, in tissues and cells, sufficient to impair 

functions of the brain and other organs. A consequence of this deprivation is a 

decrease of the intracellular pH of neurons and glial cells. The maintenance of 

an adequate pH is a key factor in the functioning of the Central Nervous 

System. It is relevant to better understand the pathways involved in the 

response to hypoxia and the processes that occur in mature neurons, in order 

to find possible players that can prevent neurodegeneration and trigger cell 

survival pathways.  

CA IX is a transmembrane protein, overexpressed in hypoxic cells, involved in 

pH and in survival regulation. 

Studying the interactome of CA IX, it was found that most of its interactors, 

especially in hypoxia, belong to the nucleo-cytoplasmic transport machinery.  

Immunofluorence analyses in undifferentiated SH-SY5Y neuroblastoma cell line 

revealed a surprising nuclear distribution of CA IX protein and this distribution 

was even more prominent in the differentiated counterpart.  

This unexpected subcellular localization was also observed in mouse embryonic 

stem cells differentiated into neurons. This suggests that CA IX doesn’t perform 

its function only at level of the membrane, but it can participate to so far 

unidentified mechanisms during neuronal differentiation and neuronal 

responses to hypoxia.  

A hypothetical nuclear function for CA IX was occasionally postulated on the 

basis of its ability to bind DNA in DNA-cellulose chromatography  17. Since then, 

no additional reports focused on nuclear CA IX localization and/or functions. 

Bioinformatic analysis highlighted the presence of a stretch of basic amino acids 

able to bind DNA. ChIP experiments described in this PhD thesis, propose a 

novel nuclear function of CA IX, more specifically in the nucleoli, and in the 

ribosomal RNA biogenesis. Indeed, I found CA IX bound to the promoter of the 

pre-rRNA 45S gene, although it is still unclear whether this is a direct interaction 

with DNA, or whether adaptor proteins are involved. Still unclear is the 
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functional significance of CA IX association to this promoter, although it appears 

inversely correlated to UBF occupancy, and decreased during hypoxia. Further 

experiments will be required to evaluate rRNA 45S expression during hypoxia 

and neuronal differentiation for proper association to ChIP data. 

 

It is known that the components of the nucleus-cytoplasmic transport play an 

important role in response to hypoxia to assist in the proper location of all the 

key factors that regulate cellular changes in response to hypoxic condition  119-121. 

Hypoxia also leads to changes in ribosome biogenesis, translation efficiency 

and protein degradation 122. So hypoxia modulates many of the pathways in 

which interactors of CA IX are involved, and this provides additional support to 

the experimental evidence described. 

Within the IC region of CA IX (aa 418-459) were identified hypothetical 

sequences NLS and NES, through the use of bioinformatics software. 

I verified that these sequences were actually able to drive the localization of 

GFP reporter protein in SH-SY5Y cells. Namely, the presence of the NLS 

sequence alone favors an accumulation of CA IX within the nucleus. The 

reporter protein containing NES+NLS the sequence is expressed with lower 

efficiency, but the combined signals clearly result in the nuclear exclusion and in 

the cytosolic accumulation of the GFP. This could be due to a dominant effect of 

the NES sequence on the NLS. However, these data demonstrate  that both 

sequences can actually act as a localization signals,  so that their presence in 

the CA IX sequence may justify its nuclear trafficking. 

It is indeed not unusual, for a membrane protein, to be able to traffic to the 

nucleus, in fact there are other similar cases described in the literature: c-Erb-

B2, EGFR, FGFR and CD44 123-125. The nuclear localization of these proteins 

requires prior transit in the membrane and their recycling through the endocytic 

pathway  124, before nuclear accumulation. Once in the nucleus, these proteins, 

including CA IX, now devoid of membrane vesicles, may expose the putative 

NES for further recycle to extranuclear compartments. 
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CAND1 is a nuclear protein previously associated both to the recruitment of 

general factors to initiate transcription by RNA polymerase II, and to the  

assembly of SCF ubiquitin E3 ligase complexes, involved in the degradation of 

specific proteins by the proteasome 26S. Since interaction of CA IX with 

CAND1 is more abundant during hypoxia, I postulated a functional significance 

for this interaction in the increased stability of the carbonic anhydrase during 

hypoxic stress. 

Biochemical data presented in this thesis indeed confirmed the interaction of CA 

IX and CAND1 in native complexes. Functional interaction between these two 

proteins was also validated in SH-SY5Y cell clones expressing stable 

decreased  levels of CAND1 protein through RNA interference. In fact, when 

CAND1 was dowregulated, CA IX expression decreased, both in normoxia and 

in hypoxia. ChIP experiments indeed paralleled this correlation, since CA IX 

showed a decreased chromatin association in the presence of down-regulated 

CAND1. These data strongly support the hypothesis that CAND1 levels actually 

affect CA IX stability.  

Cell death assays finally revealed that CA IX is involved in cell survival and 

plays a protective role against hypoxic stress; this function is abolished in cells 

expressing low levels of CAND1, in which CA IX is down-expressed. 

Unfortunately, I was not able to raise CA IX down-regulated clones. This can be 

probably explained, because of the suggested role for CA IX in cell survival, 

which prevents from selection of CA IX down-regulated cells. 

 

Finally, a preliminary characterization of two carbonic anhydrases of the 

nematode Caenorhabditis elegans was performed. A bioinformatic screening of 

the nematode genome for membrane-associated carbonic anhydrases revealed 

CAH-5 as a possible CA IX orthologue. Also CAH-6 was selected, as an 

additional carbonic anhydrase family member, not associated to the membrane. 

Using RNAi approach, cah-5 and cah-6 transcripts were down-regulated in the 

parental generation in order to study the phenotypes in the F1 generation. The 

most relevant defect were embryonic lethality and reduced egg laying.  
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Interestingly, worms silenced for cah-5 show different phenotypes during 

hypoxia and anoxia. Indeed, under normoxia and anoxia condition interfered 

worms didn’t show relevant phenotypes, whereas under hypoxia interfered 

worms show a lower level of embryonic lethality. In all three condition, these 

worms didn’t show defects in egg laying (data not show).  

These data suggest that cah-5 may have a role in the correct development of 

the embryos, in particular in the early stages and that the presence of cah-5 

gene exacerbates the embryonic lethal phenotype in hypoxic worms, but not in 

anoxic ones. It is interesting to note that worsening of a phenotype as a 

consequence of hypoxia was also shown by hif-1 mutant null worms in which, a 

lower level of axon-pathfinding defects were observed, compared to wild-type 

worms. So, it can be postulated that cah-5 acts as a target and an effector of 

HIF1, selectively during hypoxia, in C. elegans. In fact, in the worm hypoxia and 

anoxia are independent environmental conditions, and they are accordingly 

controlled by independent pathways. 

Worms silenced for cah-6 were less able to lay eggs, under anoxic condition. 

Furthermore in this condition, these worms present a high embryonic lethality. 

These data suggest that cah-6 may act in the late intra-uterine stages of 

development protecting worms against embryonic lethality and egg-laying 

defects and that it may control the activity of neurons involved in the egg laying, 

such as HSN or VCs motoneurons or acts on egg laying muscles contraction.  

In the present thesis work, experiments were presented, highlighting additional, 

molecular and functional features of carbonic anhydrase IX. 

Besides its involvement in cellular functions at the cell membrane, my data 

demonstrated that CA IX may work as a nuclear protein. It indeed interacts with 

the whole set of proteins, responsible for trafficking towards, and outwards the 

nuclear compartment. Its nuclear localization is particularly relevant in the 

neuronal cell models analyzed, where it may support survival under 

differentiating conditions and during hypoxic stress. The latter function is highly 

promising towards the identification of molecules with the ability to activate CA 

IX functions in pathological conditions dealing with hypoxia, such as stroke. 
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Thus, molecular characterization of the complexes of CA IX with selected 

interactors, such as CAND1, which is indeed responsible for its stabilization at 

the protein level, may be helpful to design small molecule activators of carbonic 

anhydrase IX with innovative therapeutic potential. 
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5. MATERIALS AND METHODS 
 

5.1 Cell lines, Caenorhabditis elegans maintenance and 
experimental treatments 

The HEK-293, SH-SY5Y, BJ5T and GEO cell lines were purchased from 

ATCC. Cells were cultured in DMEM containing 10% fetal bovine serum 

(Euroclone) and penicillin/streptomycin, 2mM glutamine at 37°C, in 5% CO2 

humidified atmosphere. 

Transient transfection of HEK-293 cells with the empty vector, pRcCMV, or the 

strep-tagged CA IX vector have been performed at a confluence of 70% using 

the calcium phosphate method. At 24 hours after transfection a group of cells 

was maintained under normoxic conditions while another one was subjected to 

hypoxic treatment, for sixteen hours, in an incubator with N2 atmosphere 

containing 2% O2 and 5% CO2.  

A day before retinoic acid (RA; Sigma) treatment, SH-SY5Y cells were cultured 

in DMEM containing 2% fetal bovine serum (Euroclone) and 

penicillin/streptomycin, 2mM gllutamine at 37°C, in 5% CO2 humidified 

atmosphere. After this, the RA were added to media at a final concentration of 

10 M for cells to be differentiated; control cells were treated with DMSO 

(0.1%). 

For analysis of putative NES and NLS CA IX sequences SH-SY5Y cells were 

transfected with the same method previous described. After 24 hours cells 

transfected with the constructs containing the NLS or NES+NLS sequences 

were grown in hypoxia for six hours or maintained under normoxic conditions. 

The hypoxic treatment were performed in a hypoxia chamber (Hypoxia 

Incubator Chamber, STEMCELL Technologies), blowing the gas (95%  N2 and 

5%  CO2,1.6 psi) for 4 minutes. The same treatment was repeated after 30 

minutes in order to expel all the O2 in the chamber. 

For annexin-V assay SH-SY5Y culture at a confluence of 70% was transfected 

using Lipofectamine (Lipofectamine 2000 Transfection Reagent, Invitrogen) with 
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the empty vector, pRcCMV or with the same vector containing the full-length CA 

IX gene sequence.   

SH-SY5Y were transfected with pSM2 vectors containing shRNAs targeting 

CAND1 mRNAs to interfere their expression. Stable clones were established by 

treating cells for two weeks with 2 μg/ml of puromycin and amplified using 0.2 

μg/ml of puromycin to maintain stable expression of constructs. 

E14Tg2a (BayGenomics) mouse ES cells were maintained on feeder-free, 

gelatine coated plates in GMEM (Sigma) containing 2mM glutamine (Invitrogen) 

100U/ml penicillin/streptomycin (Invitrogen), 1mM sodium pyruvate (Invitrogen) 

1x non essential amino acids (Invitrogen) 0.1 mM -mercaptoethanol (Sigma) 

10% FBS (Hyclone) and 103 U/mL leukemia inhibitory factor (LIF) (Chemicon). 

For neural differentiation cells were trypsinized into a single cells suspension 

and seeded at the density of 3x103 cells for cm2. Cells were cultured in 

Knockout Dulbecco’s minimal essential medium containing 10% Knockout 

Serum Replacement (all from Invitrogen) 0.1 -mercaptoethanol, 2 mM 

glutamine, 100 U/mL penicillin-streptomycin. 

Finally, nematodes were cultured at 20°C on Normal Growth Media (NGM) agar 

plates seeded with OP50 or Ht115 E. coli bacteria.  

For hypoxic treatment worms were maintained for 24 hr in the hypoxic chamber  

with 95.5% N2 and 0.5% O2, while for anoxic treatment worms were maintained 

for 24 or 36 hr with 95% N2 and 5%  CO2. 

 

5.2 DNA constructs 

The expression construct encoding the full-length CA IX protein was obtained 

by RT-PCR amplification of mRNA isolated from non small cell lung cancer 

explanted tumors with ImProm-II Reverse transcriptase (Promega) and Pfu 

DNA polymerase. The primers for cDNA amplification were synthesized at 

CEINGE oligonucleotide facility and were the following: ca9for, 5′-

cacaagcttagccgccatggctcccctgtgccccagc-3′; ca9rev, 5′-

cactctagattatcctcctcctttttgaactgcgggtggctccaggctccatctcggctacctc-3′. The last 

oligonucleotide contained additional bases encoding for the Strep-tag II 
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sequence WSHPQFEK, through which recombinant protein was tagged. The 

PCR product was cloned in the pRcCMV vector (Invitrogen). cDNA was fully 

sequenced for verification. 

Constructs containing NLS and NES+NLS sequences, canonical and CA IX 

putative, were generated in frame-fusing them at the C-terminus of EGFP in the 

vector of expression pEGFP_C1. 

The construct pEGFP_NLS-SV40 (TAg) was generated through annealing of 

the following synthetic oligonucleotides: NLS_SV40 (TAg) _US: 5’-

GATCTCCAAAAAAGAAGAGAAAGGTAG-3’; NLS_SV40 (TAg) _LS: 5’-

TCGACTACCTTTCTCTTCTTTTTTGGA-3’; 

The construct pEGFP_canonicalNES+NLS was produced using a synthetic 

forward oligonucleotide as template and a reverse oligonucleotide as primer to 

copy the template: NES_NLS_can_US: 5’-

ATAAGATCTCCAAAAAAGAAGAGAAAGGTAGGATCCGGCGGCGGCTTAGC

CTTGAAATTAGCAGGTCTTGATATC-3’; NES_NLS_can_Rev: 5’-

ACTGTAGTCGACGATATCAAGACCTGCTAATTTC-3’. 

The constructs pEGFP_CA IX putative NLS and pEGFP_CA IX 

putativeNES+NLS, encompassing sequence from 434 to 459 and from 412 to 

459 of the full length protein, respectively, were generated by PCR from cDNA 

of full length CA IX using the following oligonucleotides: CA9_Cterm_For: 5’-

ATAAGATCTGGTGACATCCTAGCCCTGGT-3’; CA9_Cterm_Rev:5’-

ACTGTAGTCGACGGCTCCAGTCTCGGCTACCT-3’; CA9_IC_For: 5’-

ATAAGATCTCAGATGAGAAGGCAGCACAGA-3’; CA9_Cterm_Rev: 5’-

ACTGTAGTCGACGGCTCCAGTCTCGGCTACCT-3’. 

Forward oligonucleotides contained the restriction site for BglII, whereas 

reverse oligonucleotides possessed the restriction site for SalI. They have been 

synthesized at CEINGE oligonucleotide facility and fully sequenced for 

verification. 

The pSM2 vector containing the shRNAs 2555 (5’-

TGCTGTTGACAGTGAGCGCGCAATGTAGATGATGATGAATTAGTGAAGCC

ACAGATGTAATTCATCATCATCTACATTGCATGCCTACTGCCTCGGA-3’) 
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targeting CAND1 mRNAs, together with the non silencing shNS construct, were 

selected from a library of shRNAs generated by Dr. Greg Hannon at Cold 

Spring Harbor Laboratory (CSHL) and provided us by the Open Biosystems. 

These shRNAs were designed to be expressed as human microRNA-30 

(miR30) primary transcripts to increase Drosha and Dicer processing of the 

expressed hairpins and consequently knockdown efficiency. Briefly the hairpin 

stem consists of 22-nt of dsRNA, complementary to mRNA target, the loop is 

formed by 19-nt from human miR30; the 125-nt of flanking sequence on either 

side of the hairpin are also from miR30. 

The 22-nt dsRNA portion of the shRNAs targeting CAND1 mRNAs is 

complementary to sequences present in the coding region. 

 

For the RNAi experiments, worms were fed with HT115 E. coli cells expressing 

dsRNA for cah-5 and cah-6 or with the pL4440 empty vector (population of 

control).   

The fragment of cah-5 and cah-6 were generated by PCR from genomic DNA 

extracted from a mixed-stage population of N2 (wild type) strain. The primers for 

cah-5 amplification were: CE_cah-5_RNAi_For  

TTCACGTGGCTGCGAGAATGAAA; CE_cah-5_RNAi_Rev 

AAACGCGACGCACAAAAGGTCA. The primers for cah-6 amplification were: 

CE_cah-6_RNAi_For  CCCACCAACCATGGCATTCC; CE_cah-6_RNAi_Rev 

CCCAGTCTCATTGACTAACCTG.  

The E. coli cells were transformed with the pL4440 vector containing the 

sequences amplified. NGM plates containing 50mg/ml ampicillin (mp) and 1mM 

IPTG seeded with transformed bacterial cultures (grown overnight in LB). After 

the induction of the dsRNA expression performed overnight at RT, sycrhonized 

worms were transferred to the plates and were kept at 20°C. 
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5.3 Cell lysates preparation, interactome characterization and 

mass spectrometry protein identification 

Cells were lysated in a buffer containing 50 mM Tris-HCl, 150 mM NaCl, 0,5% 

Triton X-100, 10% glycerol, pH 7.5, 50 mM NaF, 1 mM Na3VO4, 1 mM DTT, 

0,4 mM EDTA, pH 8.0, and a mixture of protease inhibitors (Sigma Aldrich) 126. 

Lysates were clarified by centrifugation at 12,000 g for 20 min at 4 °C and 

quantified using BioRad Protein Assay, based on the Bradford method, 

following the manufacturer’s instructions. 

Each lysate (2 mg) was challenged with 250 μL of Strep-Tactin resin (IBA), and 

incubated for 12 h, at 4 °C. After washing, proteins were eluted with 100 mM 

Tris-HCl, 150 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, 2 mM D-biotin, pH 8. 

Interactors eluted with CA IX were analyzed by 12% SDS-PAGE (14 cm × 16 

cm × 0.75 mm) in an SE600 vertical electrophoresis system (Hoefer), at 18 °C, 

using a constant current setting of 25 mA and a maximum of 150 V. 

Detection of proteins was performed by silver nitrate staining. Gel images were 

scanned by the Image Scanner III (GE Healthcare) apparatus and analyzed by 

the Image Master 2D Platinum 6.0 software (GE Healthcare), according to the 

manufacturer’s instructions. 

Each gel lanes from SDS-PAGE was cut and subdivided into 21 slices, which 

were then processed for downstream protein identification by mass 

spectrometry. Peptide digests of interactors were analyzed by nLC-ESI-LIT-

MS/MS. MS analysis was performed by Dr. G. Renzone and A. Scaloni, 

ISPAAM, CNR, Naples. 

 

5.4 Bioinformatic analysis 

Proteins identified by nLC-ESI-LIT-MS/MS were analyzed using the String v. 9.0 

database (http://string-db.org/) to discover functional interaction between them. 

A classification of the identified proteins under parameters of gene ontology was 

performed through the web-accessible DAVID (v 6.7) annotation system 

(http://david.abcc.ncifcrf.gov/home.jsp). 
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A bioinformatic analysis of CA IX C-terminal region to find putative NES and 

NLS sequences was performed using the predictive software NetNES 1.1 

Server (http://www.cbs.dtu.dk/services/NetNES/) and NLStradamus 

(http://www.moseslab.csb.utoronto.ca/NLStradamus/), respectively. 

Prediction of transmembrane topology and signal peptides of the carbonic 

anhydrases of Caenorhabditis elegans was performed using the predictive 

software Phobius (phobius.sbc.su.se)  

 

 

5.5 Antibodies, interaction assays and western blot analysis 

Antibodies used in biochemical experiments were the following: CA IX VII/20 

and M75, mouse monoclonals; CA IX, rabbit polyclonal (H-120, Santa Cruz 

Biotechnology); XPO1 (CRM1 C-20, Santa Cruz Biotechnology), goat 

polyclonal; CAND1 (TIP120A 48, Santa Cruz Biotechnology), mouse 

monoclonal, tubulin (TU-20, Santa Cruz Biotechnology), mouse monoclonal 

and actin (AC-15, Santa Cruz Biotechnology), mouse monoclonal. 

Affinity purification experiments were performed on 1mg of protein extracts on 

Strep-Tactin resin for 2 hours, at 4°C. Elution was preceded by 5 washes with 

lysis buffer. Eluates were analyzed by 10% SDS-PAGE. 

Co-immunoprecipitation experiments for analysis of CA IX-CAND1 native 

complexes were performed using an anti- CA IX antibody; immunocomplexes 

were captured by protein A/G plus agarose (Santa Cruz Biotechnology) and, 

once eluted, subjected to western blot analysis. 

 

5.6 Fluorescence and immunofluorescence analyses 

Immunofluorescence experiments were performed on HEK-293, SH-SY5Y, 

GEO and BJ5T cells. 

Cells used for analysis were platen on glass slides and, after being subjected to 

various treatments described in previous sections, fixed with 3% (w/v) 

paraformaldheyde, 1% (w/v) sucrose in PBS for 20 min. after washes with PBS 
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cells were permeabilized with 0.3% (w/v) Triton X-100 in PBS for 3 min, at 4 °C. 

Cells were then incubated with appropriate dilution of primary antibody CA IX 

VII /20, mouse monoclonal and/or . To visualize by fluorescence target protein, 

cells were incubated for 1h at 25°C with the secondary antibody Alexa-488-

conjugated rabbit antimouse (Jackson Laboratories). 

Fluorescence analysis at confocal microscope (Zeiss LM510) was performed on 

SH-SY5Y cells transfected with the constructs containing GFP fused at the C-

terminus with CA IX NES and NLS sequences. Cells were fixed with 3% (w/v) 

paraformaldheyde, 1% (w/v) sucrose in PBS for 20 minutes at room 

temperature (RT). Nuclei were stained with DRAQ5 (antrachinone dye for far-

red nuclear staining) and the signal was detected exciting cells with a 

wavelength of 647 nm ). 

For immunofluorescence of ESCs, the cells were fixed in 4% paraformaldehyde 

and permeabilized with 0.2% TX-100 in FBS (Invitrogen)/1% BSA in 1X PBS for 

15 minutes at RT. The cells were incubated with primary antibodies at the 

following working diluitions: anti tubulin (1:400 Sigma), anti-Oct3/4 (1:200; 

Santa Cruz), anti-Sox1 (1:100: Santa Cruz). Following primary antibodies 

incubation, the cells were incubated with appropriate secondary antibodies 

detecting mouse, rabbit and goat rat IgG conjugated with Alexa Flour 594 or 

488 (molecular Probes). Images were captured with an inverted microscope 

(DMI4000, Leica Microsystems). 

 

5.7 Chromatin Immunoprecipitation 

Cells were treated with 1% formaldehyde for 10 minutes at RT. Then, 

formaldehyde was inactivated adding 125mM Glycine. Chromatin was 

sonicated to an average DNA-fragment of 200-1,000 bp. Soluble chromatin 

extracts were immunoprecipitated using CA IX and UBF antibodies and mouse 

IgG as control. Supernatant obtained without antibody was used as input 

control. The amount of precipitated DNA was detected by real-time PCR relative 

to total input chromatin, and expressed as percent of total chromatin according 
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to the following formula: 2Ct x 10, where Ct represents the cycle threshold and 

Ct = Ct (input) – Ct (immunoprecipitation). 

All experiments have been done as independent triplicates and to measure 

statistical significance was used the Student’s t-test. 

Oligo sequences used to amplifying loci were: 45S pre-rRNA_RealTime_FOR 

CTCCGTTATGGTAGCGCTGC and  45S pre-rRNA_RealTime_REV 

GCGGAACCCTCGCTTCTC for region 1; 45S pre-rRNA_RealTime_FOR 

CTTCGGTCCCTCGTGTGTC and rDNA_45S_prom_ChIP_REV2 

GCCCGTGTCTCCAGAGC for region 2. 

All primers were used to a final concentration of 4 M in a 20 L Real Time 

reaction containing 10 L of syber Green 2X (Applied Biosystem) and 2 L 

DNA. 

 

 

5.8 Analysis of cell death 

For the analysis of cell death, SH-SY5Y cells were seeded in MW24 plates and 

transfected with Lipofectamie 2000. Upon 48 hr from the transfection, a group of 

cells was maintained under normoxic conditions while another one was 

subjected to hypoxic treatment. 

Phosphatidylserine externalization was detected by annexin V.  

At least 100,000 cells were collected with PBS-EDTA, and incubated with 

annexin V-fluorescein isothiocyanate (FITC) (Pharmingen/Becton Dickinson, 

San Diego, CA) conjugated in 100 μL binding buffer containing 10 mM HEPES 

(N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid)/NaOH pH 7.5, 140 mM 

NaCl, 2.5 mM CaCl2 for 15 minutes at room temperature in the dark. 

Subsequently, 400 μL of the same buffer was added to each sample and the 

cells were analyzed in the Becton Dickinson FACScan flow cytometer..  
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5.9 Measuring Egg Laying and Embryonic Lethality in 

C.elegans 

After synchronization of wild type worms by NaOH/chlorine bleaching, the eggs 

were transferred to plates seeded with HT115 bacteria expressing the pL4440 

empty vector or the pL4440 containing fragment of cah-5 or cah-6 gene. At the 

stage of gravid hermaphrodites, individual animals were moved to small NGM 

plates. The rate of egg laying and the total number of animals alive were 

measured at different time point with a last observation after 30-40 hr, both in 

normoxia and in hypoxia/anoxia.  

For embryonic lethality evaluation, the total number of eggs unhatched and the 

total number of nematodes alive were numbered at different time point, with a 

last observation after 30-40 hr, both in normoxia and in hypoxia/anoxia.  
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