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INTRODUCTION 

Recent developments in the aviation industry to improve fuel efficiency and extent of the flight 

autonomy have accelerated the interest in the use of advanced composites as primary structural 

materials. Composite materials offer the possibility to design stiffness and strength characteristics 

of the final structure by suitably selecting the type of reinforcing fibers and the distribution of the 

reinforcing directions and allow to adapt these features as a function of the applied loads and 

structural requirements.  

 

 

Sources: GAO analysis of information from FAA (GAO-11-849, Sep. 21, 2011), NASA, Boeing Company, 
"Jane's All the World's Aircraft" and "Jane's Aircraft Upgrades". 
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They are being used for decades in transport airplane components. Prior to the mid-1980s, 

composite materials were used in transport category airplanes in secondary structures (e.g. wing 

edges) and control surfaces. The A320, introduced by Airbus in 1988, was the first airplane in 

production with an all-composite tail section; afterwards, in 1995, the commercial airplane 777, 

introduced by Boeing Company, was also with a composite tail section. In recent years, 

manufacturers have expanded the use of composites to the fuselage and wings because these 

materials are typically lighter and more resistant to corrosion than metallic materials that have been 

used traditionally in airplanes. In 2009, the Boeing 787 Dreamliner has become the first mostly 

composite large transport airplane in commercial service; it is about 50 percent composite by 

weight (excluding the engines); this airplane will be probably followed soon by the Airbus A350, 

having composite material roughly in the same proportion as its Boeing competitor (see Jackson 

PA, Hunter J, Daly M, Jane’s All the World’s Aircraft 2012/2013, Jane’s 626 Information, Group, 

2012). Some concerns have been raised related to the use of large proportion of composite on an 

airplane structure. These concerns mainly originated from the state of the science underpinning the 

expanded use of composite materials in commercial transport category airplanes, and the lack of 

experience with such design. 

The Government Accountability Office (GAO) studied how the US Federal Aviation 

Administration (FAA) and the European Aviation Safety Agency (EASA) certificated the 787. The 

GAO in the report Status of FAA's Actions to Oversee the Safety of Composite Airplanes (GAO-11-

849, Sep. 21, 2011) identified four concerns:  

 limited information: these regard the composite airframe structure behavior when they are 

damaged and as they age. The concerns are due to the limited in-service experience with 

composite materials used in the commercial aircraft structure and to the limited available 

information on the behavior of these materials compare to information on the metal 

behavior. Damage prediction is very important because it help form the basis for a new 
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airplane’s design or maintenance program but the limited amount of in-service performance 

data available to use as inputs to the models may create challenges for airplane designers. 

 
 technical concerns: these regard the challenges in detecting and characterizing damage in 

composite structures, as well as making adequate composite repairs. The damage in 

composites subjected to impact loading is unique and it may not be visible or may be barely 

visible, making it more difficult for a technician to detect than damage to metallic structures. 

In addition, the ability of composite nondestructive inspection techniques to adequately 

detect damage depends on the composite’s construction and the type of damage (e.g., 

delamination, disbonding, or water infiltration). Thus, damage may not be detected 

sufficiently or properly if repair technicians do not use or apply the correct nondestructive 

inspection technique. Furthermore, the strength of a bonded composite repair after it is 

completed can’t be measured by a nondestructive inspection technique. Composite repairing 

is also a concern partly because composite repairs are more susceptible to human error than 

metal repairs and because the quality (i.e., achieving the anticipated strength) of a composite 

repair is highly dependent on the process used. 

 
 limited standardization: composite materials and repair techniques are less standardized than 

metal materials and repairs and this can be attributed to business proprietary practices and 

the relative immaturity of the application of composite materials in airframe structures 

 
 level of training and awareness: these concerns regard repair technicians, designees, airport 

workers, FAA aviation safety inspectors receive that have worked with metal materials for 

decades generally may not be as familiar with composite materials, whose application in 

airplanes is relatively recent and whose unique characteristics are associated with technical 

challenges. Thus, repair technicians, designees, FAA agents, need adequate training about 

composites. 
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Source: GAO presentation of Boeing Company information (GAO-11-849, Sep. 21, 2011). 

a. Carbon laminate is a composite structure produced by layering sheets of carbon fiber materials one on top of the other until 
the product meets a specified thickness. 
  

b. Carbon sandwich is a composite structure involving the layering of carbon fiber sheets on top of a honeycomb structure. 

Among the above identified problems resulting from the use of composite materials, the damaging 

and its prediction are the focus of this work. The reason for this choice is that there is a need to 

better understand the complex and multiple mechanisms of damage in composite structures and to 

develop failure theories and damage prediction model more reliable. In this context, the damage 

prediction tools have become increasingly important because composite structural testing is very 

expensive for industry. One of the most powerful computational methods for the composite 

structure analysis is the finite element method. In this research are examined and developed some of 

the most recent studies in the field of damage prediction and it will describe the issues associated to 
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the application of these methods to composite structures. In detail the objective of the conducted 

research program is to enhance the damage prediction model capabilities for unidirectionally 

reinforced continuous carbon fiber reinforced polymers (CFRP). For this purpose, a cohesive-

frictional model for the prediction of interlaminar damage (delamination) and a non-local 

constitutive model for intralaminar progressive damage simulation in composite laminated 

structures were defined. The proposed constitutive models were developed for explicit solver of 

commercial finite element software ABAQUS which has demonstrated to be a powerful tool for 

implementation of FORTRAN Vectorized User-Material (VUMAT) and for the simulation of 

discontinuous and unstable events.  
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CHAPTER 1 

THE COMPOSITE MATERIALS 

1.1  Introduction to composite materials 

The term composite material signifies that two or more distinct materials are combined on a 

macroscopic scale to form a useful third material. While each component material retains its 

identity, the new composite material displays macroscopic properties better than its parent 

constituents, particularly in terms of mechanical properties and economic value. Therefore the 

advantage of composite materials is that their variable composition enables the engineer to design 

the final material itself which gives the design an additional degree of freedom; if well designed, 

they usually exhibit the best qualities of their constituents and often some qualities that neither 

constituent possesses. 

Applications of composites include aerospace, aircraft, automotive, marine, energy, infrastructure, 

armor, biomedical and recreational (sports) applications. The high-stiffness, high-strength and low-

density characteristics make composites highly desirable in primary and secondary structures of 

both military and civilian aircraft. The strongest sign of acceptance of composites in civil aviation is 

their use in the new Boeing 787 “Dreamliner” and the world’s largest airliner, the Airbus A380. The 

Boeing 777, for example, uses composite materials, such as carbon/epoxy and graphite/titanium, for 

approximately 50% of the weight of the Boeing 787, including wings, fuselage, horizontal and 

vertical stab, wing/body fairing, and most of the interior partitions and stow bins. Another good 

example of a composite in the flying world is the B-2 or Stealth Bomber, see Fig. 1.1. The body is 

engineered to deflect radar away from detection and the body and parts of the wings are covered in 

a radar absorbing composite material, making it virtually undetectable to radar. 
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Fig. 1.1 - The U. S. Air Force B-2 advanced “stealth” bomber, which is constructed to a large extent of 
advanced composite materials. Source: D. B. Miracle, S. L. Donaldson, Introduction to Composites, Air 
Force Research Laboratory. 
 

In contrast to metallic alloys, in a composite material each constituent retains its separate chemical, 

physical, and mechanical properties. The constituents are a reinforcement and a matrix. The fibers 

can be made of metals, organic materials, carbon and glass, while the matrix materials are often 

polymers, metals, ceramics, carbon, etc. The composites can be classified according to matrix 

material. They can also be classified according to the shape of the filler [1]. 
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If the composite is classified according to the matrix the distinction is the following: 

 polymer matrix composites, PMC: materials with high specific mechanical properties; 

 metal matrix composite, MMC: improved resistance to high temperature; 

 ceramic matrix composites, CMC: to improve the toughness. 

If the composite is classified according to the filler the distinction is the following: 

 composites with particulate inclusions; 

 composites with fiber inclusions: 

o short fibers; 

o long fibers. 

Overall, the properties of the composite are determined by [2]: 

1 the properties of the fiber: 

2 the properties of the matrix; 

3 the ratio of fiber to matrix in the composite (fiber volume fraction); 

4 the geometry and orientation of the fibers in the composite. 

However the ratio of the fiber to matrix derives largely from the manufacturing process used to 

combine matrix with fiber and weakly from the design of composite. In addition, the manufacturing 

process used to combine fiber with matrix leads to varying amounts of imperfections and air 

inclusions that reduce the performance of the material. In the following sections the constituent 

materials used in composite processing will be presented individually. 

 

1.2  The fiber reinforcement 

The good mechanical properties of composites are obtained through a suitable subdivision of the 

mechanical roles of reinforcement and fibers, in order to minimize the global weight [3]. 
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The reinforcement is usually a fiber or a particulate. Particulate may be spherical, platelets, or any 

other regular or irregular geometry. Particulate composites tend to be much weaker and less stiff 

than continuous fiber composites, but they are usually much less expensive. The most familiar 

example of the particulate composite materials is concrete used in a lot of construction work. 

Concrete is formed by bonding particles of sand and gravel together in a cement matrix, which has 

chemically reacted with water and hardened. As regards the fibers, instead, they can be particles, 

short fibers with a random orientation or continuous fibers. A fiber has a length and its diameter; the 

length-to-diameter ratio is known as the fiber aspect ratio and it can vary greatly. Continuous fibers 

have long aspect ratios, while discontinuous fibers have short aspect ratios. Continuous-fiber 

composites normally have a preferred orientation, while discontinuous fibers generally have a 

random orientation. Examples of continuous reinforcements include unidirectional, woven cloth, 

and helical winding (Fig. 1.2a), while examples of discontinuous reinforcements are chopped fibers 

and random mat (Fig. 1.2b) [4]. 
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Fig. 1.2 - Reinforcement types [4]: unidirectional, woven cloth, and helical winding (a); chopped fibers and 
random mat (b). 
 

However continuous-fiber composites are often made into laminates by stacking single sheets of 

continuous fibers in different orientations to obtain the desired strength and stiffness properties with 

fiber volumes as high as 60 to 70 percent. 

Fibers produce high-strength composites because of their small diameter; they contain far fewer 

defects (normally surface defects) compared to the material produced in bulk. As a general rule, the 

smaller the diameter of the fiber, the higher its strength, but often the cost increases as the diameter 

becomes smaller. In addition, smaller-diameter high-strength fibers have greater flexibility and are 

more amenable to fabrication processes such as weaving or forming over radii [5]. 

In general, since the mechanical properties of most reinforcing fibers are considerably higher than 

those of un-reinforced matrix systems, the higher the fiber volume fraction the higher will be the 

mechanical properties of the resultant composite material. Therefore the mechanical properties of 

the fiber/matrix composite are dominated by the contribution of the fiber to the composite. However 

in practice there are limits, since the fibers need to be fully coated in matrix to be effective, and 

there will be an optimum packing of the generally circular cross-section fibers.  

The fiber reinforcement give the stiffness and resistance to the composite material. The mechanical 

load is taken by the fibers and these can be oriented to provide properties in directions of primary 

loads; their role is, therefore, of fundamental importance to obtain good overall mechanical 

properties. The major importance characteristics of most reinforcing fibers are, therefore, high 
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strength, high stiffness, and low density. Most fibers show behavior which can be defined as elastic 

brittle, i.e., the stress–strain response is linear elastic until the fiber breaks [3]. Although many 

textile yarns fibers can be used for the matrix reinforcement only four principal classes dominate; 

they are: 

 glass fibers; 

 carbon (graphite) fibers (high modulus or high strength); 

 aramid fibers (very light); 

 boron fibers (high modulus or high strength). 

Others fiber types include natural polymers such as cellulosics (jute, flax and cotton) and synthetic 

polymers (polyamide, polyethylene, polypropylene) but these are less used. Typical values of the 

mechanical properties of fibers are shown in Tab. 1.1. 

The glass fibers are the most commonly used in low to medium performance composites due to 

their low cost. This fiber type shows isotropic behavior. The glass fibers have good tensile strength 

and low cost, but unfortunately their stiffness is not very high and they suffer from low fatigue 

endurance and property degradation due to severe hygrothermal conditions. 

The carbon fibers are used in high-performance composites; they have high stiffness, high tensile 

strength, low weight, high chemical resistance, high temperature tolerance but low compressive 

strength and low thermal expansion and these properties make them very popular in aerospace, civil 

engineering, military, and motorsports, along with other competition sports. However, they are 

relatively expensive when compared to similar fibers, such as glass fibers. Values of stiffnesses and 

strengths vary depending on the processing temperature and usually the increase in stiffness is 

obtained at the expense of strength. Unlike the glass type, carbon fibers are highly anisotropic; in 

fact, the stiffness of the fiber in axial direction is much higher than that in radial direction, usually 

the transverse modulus, perpendicular to the fiber axis, is 3–10% of the axial modulus [3]. As 

already said, carbon fibers have also high resistance to temperature; they can be heated above 
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2000°C retaining their properties, of course this relevant property cannot be exploited in polymer 

matrix composites, due to the limited resistance to temperature of most matrices, but it can be 

exploited advantageously in carbon/carbon composites. 

Other kinds of fibers, less used, are quoted here, such as aramid and boron. Aramid fibers are 

organic; they have high stiffness and tensile strength and high moisture absorption and they show 

an anisotropic behavior.  Thanks to their toughness aramid fibers are used where high 

impenetrability is required, e.g. bulletproof vests; however, their high water absorption, and their 

difficult post-processing do not allow a wide use of these fibers. Boron fibers have high stiffness 

and high cost. Their strengths often compare with those of glass fibers, but their tensile modulus is 

high, almost four to five that of glass. The technology of the boron fibers is very expensive, factor 

that together with its high density, it has led to a substantial abandonment. 

 
Specific weight, γ 

(kN/m3) 
Young’s modulus, E 

(GN/m2) 

Specific 
modulus 

E/γ 
(Mm) 

Tensile	
strength	
σR (MPa) 

Al 26.3 73 2.8 500 
Ti 46.1 115 2.5 1500 

Steel 76.6 207 2.7  
Glass S 24.4 86 3.5 3500 

Carbon (high 
strength) 

18 228-262 14 
3000-
4500 

Carbon (high 
modulus) 

18 353-393 21 2500 

 
Tab. 1.1 - Mechanical properties of fibers and metal alloys. It is observed that the fibers have high structural 
efficiency: high strength and high elastic modulus with minimum weight. 
 

1.3  The matrix phase 

The matrix in a composite material has the task of acting as filling material. Initially in the state of 

viscous fluid in order to fill all the spaces and perfectly adhere to the reinforcement, it undergoes a 

process of solidification which allows to give stability and geometry to the structure. Therefore the 
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matrix is the component that holds the reinforcement together to form the bulk of the material. It 

has the function to support and protect the reinforcement phase and to provide a means of 

transmitting the loads between the filler. The filler or reinforcement is the material that has been 

impregnated in the matrix to lend its advantage (usually strength) to the composite. In a fiber-

reinforced composite, the matrix (continuous phase) performs several critical functions, including 

mainly the maintenance of the fibers in the proper orientation and spacing and protecting them from 

abrasion and the environment; moreover, keeping the fibers separated decreases cracking and 

redistributes the load equally among all fibers. Thus, the matrix contributes greatly to the properties 

of the composites. The ability of composites to withstand heat, or to conduct heat or electricity 

depends primarily on the matrix properties since this is the continuous phase. Therefore, the matrix 

selection depends on the desired properties of the composite being constructed. There are three 

main types of matrices: polymer, metal, and ceramic. In polymer and metal matrix composites that 

form a strong bond between the fiber and the matrix , the matrix transmits external loads from the 

matrix to the fibers through shear stress at the interface [4]; indeed in ceramic matrix composites, 

the objective is often to increase the toughness rather than the strength and stiffness; therefore, a 

low interfacial strength bond is desirable. 

The plastic composites, the ones whose matrix consists of a plastic material, are without doubt the 

most famous and popular both for their application modes within everyone's means who don’t have 

sophisticated technologies and decreasing costs. They have supplanted other materials in a wide 

range of applications, and today they come to use in real structural elements. Polymer matrices can 

be subdivided into two main classes: thermosetting and thermoplastic. Main types of thermosetting 

matrices for composite materials are: phenolics; unsatured polyesters; epoxies; polyimides and 

bismaleimides. Indeed the main types of thermoplastic matrices for composite materials are: 

polyolefins (PE, PP); thermoplastic polyesters (PET, PBT, LCP); polyamides (PA6, PA66); 

polyaryl ethers (PEEK);  thermoplastic polyimide (PEI, PAI, LARC); polyaryl sulphides (PPS). 
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As general distinctive properties thermosetting matrices can be used approximately for temperatures 

below, they have good strength, and low fracture toughness. Thermosetting resins are the most used 

in engineering applications, among them it’s possible to find polyester and epoxy matrices, the 

latter being standard for aerospace applications. The thermoplastic matrices are more expensive, 

they can be used for temperatures higher than 2001, have good strength, and high toughness.  

Typical values of the mechanical properties of polymer matrices, taken from Ref. [3,6] are shown in 

Tab. 1.2.  

 

 

Tab. 1.2 - Mechanical properties of thermosetting and thermoplastic matrices. It is important to note that the 
these properties are significantly lower than those of the reinforcement. 

 
 

From the data in Tab. 1.2 it can be appreciated that the main difference between thermosets and 

thermoplastic matrices is the value of failure strain; in fact, as previously observed, thermoset 

matrices are brittle materials, while thermoplastic ones can undergo plastic deformation (permanent 

deformation). Furthermore, another important difference between thermosetting and thermoplastic 

matrices concerns their resistance to high temperatures, which is much higher in thermoplastic 

polymers [3]. 

 

 1.4  Laminated composites 

One of the most popular composites are the so called continuous fiber reinforced composite 

materials (sometimes referred to as long fiber reinforced composites). This type of materials consist 

of reinforcing continuous fibers of certain orientation which are embedded in a matrix system. In 

this combination the fibers give the material outstanding strength and stiffness while the matrix 
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allows for the force transmission between fibers. The type and quantity of the reinforcement 

determine the final properties. In Fig. 1.3 it’s shown that the highest strength and modulus are 

obtained with continuous-fiber composites. There is a practical limit of about 70 volume percent 

reinforcement that can be added to form a composite [3]. At higher percentages, there is too little 

matrix to support the fibers effectively. 

 

 

Fig. 1.3 - Influence of reinforcement type and quantity on composite performance [4]. 
 

Since reinforcing fibers are designed to be loaded along their length, and not across their width, the 

orientation of the fibers creates highly ‘direction-specific’ properties in the composite. This 
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“anisotropic” feature of composites can be used to good advantage in designs, with the majority of 

fibers being placed along the orientation of the main load paths. 

Composites are usually built up of separate thin layers of fibers and matrix, called ply or lamina. A 

single lamina with only one orientation of the fibers is called unidirectionally (UD) reinforced. 

Often laminas of different fiber orientations are stuck together to form a laminate. So, laminated 

composite materials or simply a laminate consist of layers of various materials (stacked plies). 

Because the fiber orientation directly impacts mechanical properties, it seems logical that the 

stacking sequence of laminas is optimised thus giving the laminate the desired stiffness and strength 

for a given application. 

In forming fiber reinforcement, the assembly of fibers to make fiber forms for the fabrication of  

composite material can take the following forms: 

 unidimensional: unidirectional tows (consist of thousands of filaments, each filament having 

a diameter of between 5 and 15 micrometers), yarns, or tapes; 

 bidimensional: woven or nonwoven fabrics (felts or mats); 

 tridimensional: fabrics (sometimes called multidimensional fabrics) with fibers oriented 

along many directions (more than two directions). 

Among the possible configurations, unidirectional (0°) laminae, for example, are extremely strong 

and stiff in the 0° direction. However, they are very weak in the 90° direction because the load must 

be carried by the much weaker polymeric matrix [4].  

From what has been said so far, it is clear that the heterogeneous composition of composites leads 

to direction dependent material properties. In order to distinguish the different material directions, a 

material coordinate system (1,2,3) is typically introduced as illustrated in Fig. 1.4. For 

unidirectional laminated composite, direction 1 (longitudinal dir.) refers to the orientation of the 

reinforcing fibers, direction 2 (transvers dir.) is defined by the direction normal to direction 1 and 
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in-plane of the fiber reinforcement, whilst direction 3 usually points in the through thickness 

direction if the lamina is embedded in a laminate, so it is normal to the lamina.  

 

 

(a) 

 

(b) 

Fig. 1.4 - Orientations in composite layers [7]: unidirectional ply (a); woven fabrics (b). The fabrics are made 
of fibers oriented along two  perpendicular directions, one is called the warp and, the other is called the fill (or 
weft) direction. 
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The continuous fiber reinforced composite materials are the focus of this study. Especially the 

combination of carbon fiber and epoxy resin will be investigated due to the high relevance in 

industrial applications. 

 

1.5  Stress-strain relationships 

Material behavior is mathematically characterized by the so-called constitutive equations, also 

called material laws. There is a very wide range of materials used for structures, with drastically 

different behavior. In addition the same material can go through different response regimes: elastic, 

plastic, viscoelastic, cracking, fracture. However, here, the attention is restricted to a very specific 

material class and response regime by making the following behavioral assumptions [8]: 

1. Macroscopic Model. The material is mathematically modeled as a continuum body; 

therefore its features at the micro and nano scales (fiber, molecules, atoms etc.) are ignored. 

2. Elasticity. In physics, elasticity is a physical property of materials which return to their 

original shape after they are deformed; in other words, it completely recovers its form when 

applied forces are removed; this means the stress-strain response is reversible and 

consequently the material has a preferred natural state. This state is assumed to be taken in 

the absence of loads at a  reference temperature. 

3. Linearity. The relationship between strains and stresses is linear. 

4. Small Strains. Deformations are considered so small that changes of geometry are neglected 

as the loads are applied. Violation of this assumption requires the introduction of nonlinear 

relations between displacements and strains. This is necessary for highly deformable 

materials such as rubber (more generally, polymers). Inclusion of nonlinear behavior 

significantly complicates the constitutive equations and is therefore left for advanced 

courses. 
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Therefore, assuming a initial linear elastic behavior of the material and infinitesimal deformations, 

the generalized 3-D Hooke's law in tensorial form is: 

0:   C   (1.1) 

In the Eqn. 1.1,   is the stress tensor,   denotes the strain tensor, C is a forth order tensor of called 

elasticity tensor which contains material elastic parameters and 0  are the initial stresses. For the 

general case of anisotropic or triclinic material, because the material has not plane of symmetry, a 

total of 21 independent material constants is needed to describe the stress-strain behavior.  If the 

anisotropic material has three mutually orthogonal planes of symmetry then the constitutive law 

involves only 9 independent material constants and the material is said orthotropic. 

 

Fig. 1.5 - The three planes of symmetry of the orthotropic material. 
 

Unidirectional plies are often treated as orthotropic because they exhibit three planes of material 

symmetry, the 1-2 plane, the 1-3 plane and the 2-3 plane (see Fig 1.5). As a result the Eqn. 1.1 in 

matrix form becomes: 

11 11 12 13 11

22 12 22 23 22

33 13 23 33 33

12 44 12

23 55 23

13 66 13

0 0 0

0 0 0

0 0 0

0 0 0 0 0 2

0 0 0 0 0 2

0 0 0 0 0 2

C C C

C C C

C C C

C

C

C

 
 
 
 
 
 

     
    
    
    

    
    
    
                 

(1.2)
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Special care should be taken to not confuse γ with ε, see Fig. 1.6. 

 

Fig. 1.6 - difference between γ and ε. 
  

Following the assumption that the stress strain relations are invertible, from the elastic tensor the 

compliance tensor is obtained:  

1S C   (1.3) 

and the Eqn. 1.1, with zero initial stresses 0 0 , can be now rewritten as: 

:= S    (1.4) 

allowing S to be expressed in terms of engineering constants. The Eqn. 1.4 in engineering notation 

becomes: 
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From Eqn. 1.5 it becomes clear that the number of elastic constants (9) that fully describes the 

linear elastic behavior of orthotropic material coincides with the number of engineering constants: 

E1, E2, E3, G12, G23, G13, ν12 , ν13 , ν23 .  

If the anisotropic material presents infinite planes of symmetry about an axis material then the 

constitutive law involves only 5 independent elastic/engineering constants. In fact, assuming that 

the  material properties are identical in any direction transverse to the fiber direction (1-direction) 

leads to isotropic material behavior in the 2-3 plane. This behavior is called transversally isotropic. 

For symmetry about the 1-axis the Eqn. 1.2 reduces to: 
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(1.6) 

Within the thesis work the material is generally assumed to behave as orthotropic. Only in some 

exceptions transverse isotropic behavior is considered. 
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CHAPTER 2 

DAMAGE IN COMPOSITE MATERIALS 

2.1  Introduction to damage in composite materials 

The increasingly more demanding mission requirements of modern aerospace vehicles and the use 

of non-traditional materials, such as non-metallic composites, in construction of aerospace 

structures lead to significant challenges [1]. In this framework, the evaluation of structural integrity 

and failure prediction of modern aerospace structures and flight vehicles are essential for the design 

and service life assessment. 

The evaluation of structural integrity is an important engineering problem in structural design. In 

fact it is well known that structural strength may be degraded during its design life due to 

mechanical and/or chemical aging. Therefore, the structural design depends upon a detailed 

knowledge of load, physics and material which is necessary to understand and predict how 

structures support and resist self-weight and imposed loads. Structural loads or actions are forces, 

deformations, or accelerations applied to a structure or its components and they may cause stresses, 

deformations, and displacements in structures. Assessment of their effects is carried out by the 

methods of structural analysis. Depending on the structural design, material type, service loading, 

and environmental conditions, the cause and degree of strength degradation due to the different 

aging mechanisms will vary. One of the common causes of strength degradation is crack 

development in the structure. When cracks occur, the crack size effects and growth rate on the 

fracture resistance of the material and the remaining strength and the structure life need to be 

determined. Therefore, another important engineering problem in structural design is the evaluation 

of structural reliability. In reliability analysis of structural systems the main problem is to evaluate 
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the probability of failure corresponding to a specified reference period; so, in critical applications 

the reliable performance of a structure depends on ensuring that the structure in service satisfies the 

conditions assumed in design and life prediction analyses. Reliability assurance requires evaluation 

of the stress state in the structure and the material’s strength allowable corresponding to a given 

failure criterion for a given loading condition and the availability of nondestructive testing and 

evaluation techniques to characterize discrete cracks according to their location, size and orientation 

thus leading to an improved assessment of the potential criticality of individual flaws [1]. 

In conclusion, excess load or overloading may cause structural failure, and hence such possibility 

should be either considered in the design or strictly controlled. Therefore, if the purpose of a 

structure is to carry loads, then a designer must assure that the structure has sufficient load-bearing 

capacity and if the structure is to function over a period of time, then it must be designed to meet its 

functionality over that period without losing its integrity [2]. These are generic structural design 

issues irrespective of the material used. There are, however, significant differences in design 

procedures depending on whether the material used is a so-called monolithic material, e.g., a metal 

or a ceramic, or whether it is a composite material with distinctly different constituents. 

As regards to composite materials, their heterogeneous microstructure, the differences between 

constituent properties, the interface presence as well as directionality of reinforcement that induces 

anisotropy in overall properties, provide significantly different characteristics to composite 

materials in how they deform and fail when compared to metals or ceramics. The consequences of 

all damages in composite structures are changes in stiffness, strength, and fatigue properties, 

therefore, it is imperative to understand the damaging mechanisms and to be able to predict them. 

The term damage refers to a collection of all the distributed irreversible changes brought about in a 

material by a set of energy dissipating chemical or physical processes, resulting from the 

application of thermomechanical loadings and it may inherently be manifested by atomic bond 

breakage [2]. Examples of damage in composites are multiple fiber-bridged matrix cracking in a 

unidirectional composite, multiple intralaminar cracking in a laminate, local delamination 
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distributed in an interlaminar plane, and fiber/matrix inter-facial slip associated with multiple 

matrix cracking. These damage mechanisms will be explained in detail in the following paragraphs.  

Another term typically used is “failure” and it should not be confused with term “damage”. The 

failure is the inability of a material system (and consequently, a structure made from it) to perform 

its design function. In reality, the failure event in a composite structure is preceded and influenced 

by the progressive occurrence and interaction of various damage mechanisms. Fracture is one 

example of a possible failure; but, generally, a material could fracture (locally) and still perform its 

design function. Upon suffering damage, e.g., in the form of multiple cracking, a composite 

material may still continue to carry loads and, thereby, meet its load-bearing requirement but fail to 

deform in a manner needed for its other design requirements, such as vibration characteristics and 

deflection limits. In the following paragraph the main damage mechanisms in composite materials 

will be discussed. 

 

 

2.2  Interfacial debonding 

The interface between the fiber and the matrix play a central role in the mechanical behavior of 

composite materials; it must transfers the load from matrix to fiber in order to allow a correct 

behavior of the whole composite. Many important phenomena may take place at the interface 

between fiber and matrix which tend to promote plastic deformation of the matrix and can influence 

the onset and nature of failure. The adhesion bond at the interfacial surface affects the macroscopic 

mechanical properties of the composite. In general terms, to have high modulus and high strength 

one needs a good adhesion between matrix and fiber. For instance, if the fibers are weakly held by 

the matrix, the composite starts to form a matrix crack at a relatively low stress. However, if the 

fibers are strongly bonded to the matrix, the matrix cracking is delayed and the composite fails 

catastrophically because of fiber fracture as the matrix cracks. The resistance of adhesion is mainly 
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due to van der Waals forces and can be influenced by many factors such as the electrostatic 

attraction, the interdiffusion and the chemical reactions [3]. Controlling interfacial properties can 

thus provide a way to control the performance of a composite structure. In order to improve the 

resistance to fiber–matrix debonding, surface treatment can be applied to the fibers, and the use of 

silane coupling agents can strongly improve the adhesion. 

One way to measure the interface resistance is promote a debonding process between fiber and 

matrix by moving the fiber with respect to the matrix. In the literature a number of tests have been 

proposed to do it as the single fiber pull-out and the single fiber push-out [4,5,6].  

 

 

Fig. 2.1 – Partial debonding at the fiber matrix interface detected by scanning electronic microscope [7]. 
 
 

 

2.3  Matrix microcracking/intralaminar (ply) cracking 

In composite materials the matrix must transfer stresses between fibers, stabilize fibers when loaded 

in compression, increase the resistance to impact damage. However, the properties of these 

materials in the directions dominated by matrix, as the transverse direction to the fibers in a 

unidirectional composite, are generally low precisely due to its presence because it is weak and 
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compliant (having a low stiffness) and in many cases the first form of damage which develops in 

laminate composites concerns just matrix. Considering a single ply under transversal tension, i.e. 

with a load direction at 90° with respect to the reinforcement direction (fibers), the lamina behavior 

is matrix-dominated and the failure occurs due to transverse matrix cracking. The matrix also 

dominates the behavior of single laminas loaded in plane shear, i.e., with a load direction at 45° 

with respect to the fiber direction. 

When the matrix is damaged, its function, discussed above, cannot be accomplished properly and 

the mechanical resistance of the composite material can be seriously altered. However, the 

existence of damage in the matrix does not necessarily mean catastrophic failure of the composite 

as it can be present only in certain plies (usually those transverse to the main loading direction) and 

while the fibers (which carry most of the load) remain intact. The terms matrix microcracks, 

transverse cracks, intralaminar cracks, and ply cracks are invariably used to refer to matrix 

damage. Such cracks are found to be caused by tensile loading, fatigue loading, see Fig. 2.2, as well 

as by changes in temperature or by thermal cycling. They can originate from fiber/matrix debonds 

or manufacturing-induced defects such as voids and inclusions. Although as already said above 

matrix cracking does not cause structural failure by itself, it can result in significant degradation in 

the thermomechanical properties of the laminate including changes in all effective moduli, Poisson 

ratios, and thermal expansion coefficients. Furthermore it can also induce more severe forms of 

damage, such as delamination and fiber breakage, which are the reason of complete failure of the 

composite structural member [8] and give pathways for entry of fluids [3]. 

The appearance of transverse cracks and their growth in the inner-ply of a cross-ply laminate 

[0m/90n]s under tension represent a classical problem, which has been known and studied for a long 

time [9,10,11,12]. First, some cracks appear in the direction orthogonal to the loading (transverse 

cracking), in the inner-ply for a certain strain, see Fig. 2.3. Next some interface cracks appear when 

transverse cracks reach the interface (or before reaching) between the inner and outer plies. Finally, 
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coalescence of the different interface cracks occurs leading to macroscopic interfacial damage 

(delamination).  

 
 

 
 
 

Fig. 2.2 – Transverse matrix cracking in cross-ply laminates resulting from fatigue loading: the 
horizontal bands are carbon fiber laminas. There are ten 90 degree laminas in the middle of this layup and 0 
degree lamina on the “top” and “bottom” of the layup. Source: Justin M. Ketterer , “Fatigue crack initiation in 
cross-ply carbon fiber laminates”, Thesis, Georgia Institute of Technology, 2009. 
 

 
 

    
 
 

Fig. 2.3 – Transverse matrix cracking in cross-ply laminates [11]. 
 
 
 

 
 

Fig. 2.4 – Photograph (David Hsu, Dan Barnard) showing damage in a 4-ply laminated: cracking of the 
matrix material within a ply and delaminations at the boundary between plies. 
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Therefore,  the importance of matrix cracking is due to the fact that generally it triggers other 

damage mechanisms, such as delamination, , see Fig. 2.4, which are the reason of complete failure 

of the composite structural member [13]. 

The usual tests for matrix microcracking are uniaxial tension on single laminas or laminate or the 

bending tests in which 90° layer are on the tension side of the laminate. More information 

concerning the behavior of matrix materials and their damage processes can be found, e.g., in 

Corigliano [3] and Kelly et al. [14]. 

 

 

2.4  Fiber microbuckling 

Fiber reinforced composite materials under compression loading may develop different types of 

failure mechanisms: microbuckling leading to kinking, delamination, and matrix damage. These 

different modes of failure occur either separately or simultaneously depending on the loading which 

affects the global response of the laminate. Therefore, it is of importance to study the interaction 

between these different types of failure mechanisms [15]. In most cases, the weakness under 

compression of fibrous composites severely limits the structural efficiency of the system and leads 

to under-utilization of the true material properties [16]. When a unidirectional composite is loaded 

in compression, the failure is governed by a mechanism known as microbuckling of fibers. The 

microbuckling is the buckling of fibers embedded in matrix foundation. So it is of fundamental 

importance to distinguish between the tensile and compressive behavior of fibers. Most fiber 

reinforced polymer matrix composites have a compressive strength less than their tensile strength. 

Therefore in many engineering applications, the compressive strength is a design limiting feature. 

Fiber strength in tension can be considered as a real fiber property; on the contrary, fiber strength in 

compression is highly limited by the risk of buckling of the load bearing fibers aligned with the 

loading direction. The buckling phenomenon is strongly affected by the initial imperfections of the 
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composite that were introduced during the manufacturing process including associated defects such 

as fiber misalignment, rich resin, and porosity [16]. Over the past ten years significant 

improvements have been made to tensile strength, but, unfortunately, compressive strength has 

shown little concomitant improvement. In general, it can be observed that the fiber strength in 

compression will depend on geometrical properties like the fiber aspect ratio (L/d), where L is the 

fiber length and d its diameter, and on mechanical properties of the fiber and of the matrix which 

have an influence on the local stiffness of the fiber during bending [3]. Usually, the phenomenon of 

local fiber buckling is accompanied by the formation of kink bands in the part of the fiber that has 

compressive stresses; it occurs mostly in the case of aramid fibers.  

 

 

Fig. 2.5 – The schematic diagram showing the formation of kinking failure mode in UD laminate: (a) fibers 
with an initial fiber misalignment, (b) deformation of fibers via fiber microbuckling mechanism when it is 
loaded in compression σ∞ and (c) fibers kinking phenomena causing laminate catastrophic fracture [18]. 
 

Kinking is highly localized fiber buckling. It is only occurs after microbuckling has already 

developed after the attainment of a peak compressive load when the region between breaks is 

deformed plastically; therefore kinking in polymer composites is a direct consequence of localised 
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plastic microbuckling coupled with low failure strain of the reinforcing material [17,18], see Fig. 

2.5 and Fig. 2.6. 

 

  

Fig. 2.6 – Typical kink bands in various laminae. Note the broken fiber demarcating the kink band [19]. 
 

More information concerning the behavior of composite materials under compression loading and 

their damage processes can be found, e.g., in Ref. [18,19,20,21]. 

 

 

2.5  Fiber breakage 

The failure of a composite reinforced with long brittle fibers ultimately is due to fiber breakage, see 

Fig. 2.7 and Fig. 2.8. In the broken fibers the stress is zero while in intact fibers it is recovered 

(stress redistribution between fibers and matrix) as axial distance increases from each break, 

affecting other fibers in the local vicinity of the broken fibers and possibly breaking some. In fact 

the fiber/matrix interface transfers the stress from the broken fiber back to the fiber at a certain 

distance, making another fiber break possible if the strength is exceeded by the stress. The 

important parameters describing stress transfer are the stress concentrations in the neighboring 

fibers around the broken fiber and the longitudinal ineffective length over which the broken fiber 



 

 

34 
 

recovers its load-carrying capacity [22]. More information concerning the fiber breakage can be 

found, e.g., in Ref. [2,3,22]. 

 

 

Fig. 2.7 – Ply loaded in longitudinal tension: rupture of fibers [3]. 
 

 

Fig. 2.8 – Scanning electron micrograph photography of random fiber breakage in [0]16 tensile test specimen 
of different magnifications: (a) global view [22]. 
 

 

2.5  Interlaminar Fracture: the delamination 

Interlaminar fracture or delamination is a typical failure mode of laminated composite materials and 

it is one of the major problems for fiber reinforced composites. It strongly influences structural 
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performance of composite structure because its occurrence greatly reduces the structure stiffness, 

leading to failure during service. Therefore, the delamination can be a substantial problem in 

designing composite structures as it can diminish the role of strong fibers and make the weaker 

matrix properties govern the structural strength. It is due to the low resistance of the thin resin-rich 

interface existing between adjacent layers, under the action of impacts, transversal loads or free-

edge stresses. Internal defects can propagate due to delamination which can be activated even by 

compressive loading and subsequent local buckling of the delaminated area; so, this form of 

damage is of particular concern in primary compression-loaded structures, since internal interfacial 

damages may result in dramatic reductions in compressive strength, even when undetectable by 

visual inspection of the laminate surface. In contrast to metals, in polymer composite laminates 

delamination can occur below the surface of a structure under a relatively light impact, such as that 

from a dropped tool, while the surface appears undamaged to visual inspection, see Fig. 2.9. In 

composite laminates, delamination can even occur at cut (free) edges, such as at holes, or at an 

exposed surface through the thickness. In the presence of free edges, delamination starts mainly due 

to tensile loading and propagates from the edge toward the interior of the laminate [3].  

 

 

Fig. 2.9 – Section view of a impacted composite material sample: delaminations without damage to the 
surface [23]. 
 

 

Delamination occurs with fracture at an interface when adjacent plies have different orientations 

and they are subjected to interlaminar normal and shear stresses. Apparently, interlaminar shear 
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stress and in-plane transverse tensile stress are the dominant stresses causing the critical matrix 

cracking. Such interlaminar stresses become significant and affect the overall performance where 

geometrical and material discontinuities exist. Interlaminar stresses in turn arise due to mechanical 

properties mismatch between adjacent layers. The delamination phenomenon can be explained by 

considering two laminas loaded in tension, the first in the direction orthogonal to the fibers, the 

second in the fiber direction. Due to Poisson’s ratio mismatch, being the lateral contraction of the 

first lamina governed by the fiber stiffness unlike the other, when the laminas are glued together to 

form a laminate, interlaminar shear stresses must arise for tension loading in order to preserve 

geometrical compatibility. The critical material property which gives rise to delamination is the 

interlaminar strength, which is determined by the matrix. Once the interlaminar cracks are formed, 

their growth is determined by the interlaminar fracture toughness, which is also governed by the 

matrix. If delamination is viewed as decohesion of the cohesive zone between the separating plies, 

then both the matrix strength and the fracture toughness act as material parameters. As a design 

approach, delamination can be reduced either by improving the interlaminar strength and fracture 

toughness or by modifying the fiber architecture to reduce the driving forces for delamination. 

Finally, it is important to note that after the onset of delamination, the fracture can propagate in 

different modes, as shown in Fig. 2.10. These failure modes can be classified as mode I, which is 

the opening component, mode II, the shear component perpendicular to the delamination front and 

mode III, which is the shear component parallel to the delamination front. 

 

 

Fig. 2.10 – Mode I, mode II and mode III crack propagation modes. Source: NDT – Resource Center. 
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A fracture not necessarily propagates as a single fracture mode but it can do it as a combination of 

them. When more than one mode of fracture is present, this is known as mixed mode.  

Due to the importance of delamination in the assessment of structural composite resistance, many 

attempts have been made in order to enhance interlaminar fracture properties in laminate 

composites. High-performance composites have been produced with enhanced delamination 

resistance by means of the introduction of some devices which create a direct connection between 

laminas in the transverse direction. Z-pinning and fiber stitching [24] are among the most effective. 

Further information on the delamination processes can be obtained from Ref. [25]. 

 

 

 

Fig. 2.11 – Figurative summary of damaging mode of a composite laminate.  Source: C. G. Dàvila, C. A. 
Rose, P. P. Camanho, P. Maimì, A. Turon, Progressive Damage Analysis of Composites, Aircraft Aging and 
Durability Project, Nasa 
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CHAPTER 3 

FAILURE CRITERIA 

3.1  Damage onset prediction in composite materials 

In general it is said that a laminate may fail in one of the following types of failure modes: 1) first-

ply failure (FPF); ultimate laminate failure (ULF) and 3) inter-laminar failure [1]. The first-ply 

failure indicates the failure of the laminate with the failure of the first layer. ULF is defined as the 

failure of the laminate when ultimate load capacity is reached following failure of all the plies. 

Intra-laminar failure is defined as the failure resulting from the separation of adjacent layers though 

the individual lamina remains intact. However the catastrophic failure of a structure in composite 

material rarely occurs at the load corresponding to the initial or first-ply failure. So the first-ply 

failure does not mean that the ultimate capacity of the laminate has been reached. In fact, when the 

first ply fails, other  plies may remain intact but with the failure of the first ply, a redistribution of 

stresses takes place in the remaining plies. The structure ultimately fails due to the propagation or 

accumulation of local failures (or damage) as the load is increased. 

In general, laminated composites may fail by fiber breakage, matrix cracking, or by delamination of 

layers. The mode of failure depends upon the loading, stacking sequence, and specimen geometry. 

In order to correctly identify the damage onset in an anisotropic material, failure criteria need to be 

defined. Failure criteria compare the loading state at a point (stress or strain) with a set of values 

reflecting the strength of the material at that point (often referred to as the material allowables). 

Both loading and strength values should be reflected in the same material coordinate system. For 

unidirectional materials, this is typically in the direction of the fibers. However, for woven and 
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knitted fabrics, this direction is not obvious and might change as the material is formed to shape. In 

general, the load is represented by a full stress or strain tensor having six independent components: 

 
 11 22 33 12 23 31, , , , ,     

  
(3.1) 

 

11 22 33 12 23 31, , , , ,     
   

(3.2) 

 
As mentioned in the previous chapter, a standard unidirectional composite ply coordinate system 

aligns the 1-axis with the fiber direction (1-axis coincides with the warp direction in fabric) and the 

2-axis orthogonal, i.e. rotated 90 deg., to the fiber direction in the plane of the composite ply (2-axis 

coincides with the fill direction in fabric), while the 3-axis is normal to the plane of the lamina. 

Failure criteria for composite materials are significantly more complex than yield criteria for metals 

because composite materials can be strongly anisotropic and tend to fail in a number of different 

modes depending on their loading state and the mechanical properties of the material. In metallic 

materials, strength and stiffness are independent of the direction; so, a failure criterion (e.g. Von 

Mises) can be expressed by defining: 

- a function of the stress state of stress; 

- a limit value based on experimental tests; 

 

11 22 33 12 23 31 0( , , , , , )f       
 

 (3.3) 

 
In composites the situation is generalized by defining one or more functions of the stress or strain 

state and a series of parameters that are generally expressible as a function of a set of limit values 

obtained from experimental data: 

 

1 11 22 33 12 23 31 1

2 11 22 33 12 23 31 2

( , , , , , , ) 0

( , , , , , , ) 0

....

f parameters

f parameters

     
     

 
  
 
   

 (3.4) 
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The parameters, typically strengths, can be identified on the basis of mechanical characterization 

tests.  The strength of the material can therefore be represented by seven independent variables: 

 tensile strength along the 1or X axis: XT 

 compressive strength along the 1 or X axis: XC 

 tensile strength along the 2 or Y axis: YT 

 compressive strength along the 2 or Y axis: YC 

 shear strength in the 12 or XY plane: Sxy 

 shear strength in the 23 or YZ plane: Syz 

 shear strength in the 13 or XZ plane: Szx 

Therefore, it’s possible written as follows: 

 
( , , , , , , , , )T T T C C C xy yz zxparameters X Y Z X Y Z S S S

 
(3.5) 

 
In general the parameters are a function of a set of allowables. Design allowables are statistically 

determined materials property values derived from experimental test data. They are limits of stress, 

strain, or stiffness that are allowed for a specific material, configuration, application, and 

environmental condition. The selection of appropriate design allowables for structures composed of 

composite materials is essential for the safe and efficient use of these materials [3].  

Failure mechanisms in composite materials are significantly complex, resulting in a large number of 

criteria. A large number of such criteria exists but no one criterion being universally satisfactory. 

The mechanism that lead to failure in composite materials are not yet fully understood [4]. The 

inadequate understanding of the damage mechanisms and the difficulties in developing tractable 

models of the failure modes explains the generally poor predictions by most participants in the 

World Wide Failure Exercise [5,6] (WWFE), an international activity conceived and conducted by 

Hinton and Soden concerning the assessment of the status of currently available theoretical methods 

for predicting material failure in fiber reinforced polymer composites. The results of the WWFE 

indicate that the predictions of most theories differ significantly from the experimental 
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observations, even when analyzing simple laminates under general load combinations that have 

been studied extensively over the past forty years [6]. 

In order to introduce the failure criteria a single ply is considered. The lamina to be a regular array 

of parallel continuous fibers perfectly bonded to the matrix. In general, there are five basic modes of 

failure of such a ply: longitudinal tensile or compressive, transverse tensile or compressive, or 

shear. Each of these modes would involve detailed failure mechanisms associated with fiber, matrix 

or interface failure. In the following the strengths in the principal material axes (parallel and 

transverse to the fibers) are assumed as the fundamental parameters defining failure. When a ply is 

loaded at an angle to the fibers, as it is probably part of a multidirectional laminate, the stresses in 

the principal directions must be determined and compared with the fundamental values. 

Failure criteria for composite materials are often classified into two groups: namely, non-interactive 

failure criteria (associated with failure modes) and interactive failure criteria (associated with 

failure modes and not). In the following sections, both types will be discussed. 

 

 

3.2  Non-interactive failure criteria 

A non-interactive failure criterion or limit criterion is defined as one having no interactions between 

the stress or strain components. In detail, it means that the failure criterion evaluates failure based 

on a single stress component and does not take into consideration a multi-axial stress state in a 

structure and how the combination of different stress components affect the failure initiation in a 

composite ply; therefore, this fact typically leads to errors in the strength predictions. These criteria, 

sometimes called independent failure criteria, compare the individual stress or strain components 

with the corresponding material allowable strength. The maximum stress and maximum strain 

criteria belong to this category. 
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The Maximum Stress Criterion for orthotropic laminae was apparently first suggested in 1920 by 

Jenkins [7] as an extension of the Maximum Normal Stress Theory (or Rankine’s Theory) for 

isotropic materials. It consists of five sub-criteria, or limits, one corresponding to the strength (or 

allowable) in each of the five fundamental failure modes [8]. If any one of these limits is exceeded, 

by the corresponding stress expressed in the principal material axes, the material is deemed to have 

failed. In mathematical terms it say that failure has occurred if the following set of inequalities is 

satisfied: 

 11 11 22 22 12 12, , , ,T C T CX X Y Y S        
 

(3.6) 

 

The inequalities in 3.6 can be merged to obtain the failure criterion in the following form: 

 

max. absolute value of 11 11 22 22 12

12

, , , , 1
T C T CX X Y Y S

     
 

   
(3.7) 

 
where 11 22 12, ,   are the applied stress aligned with fiber direction and , , , ,T C T C xyX X Y Y S are the 

strengths in lamina plane. It is assumed that shear failure along the principal material axes is 

independent of the sign of the shear stress 12 . 

In 1967, Waddoups proposed the Maximum Strain Criterion for orthotropic laminae [9] as an 

extension of the Maximum Normal Strain Theory (or Saint Venant’s Theory) for isotropic 

materials. The maximum strain criterion merely substitutes strain for stress in the five sub-criteria. 

As in the previous case, is a simple and direct way to predict failure of composites and no 

interaction between the strains acting on the lamina is considered. Therefore, the Max Strain failure 

criterion evaluates failure based on a single strain component and does not take into consideration a 

multi-axial strain state and how the combination of different strain components affect the failure 

initiation in a composite ply. This criterion predicts failure when any principal material axis strain 
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component exceeds the corresponding ultimate strain. In order, to obtain failure, the following set 

of inequalities must be satisfied:  

 

11 11 11 11 22 22 22 22 12 12, , , ,fail fail fail fail fail                
 

(3.8) 

 
 The inequalities in 3.8 can be merged to obtain the failure criterion in the following form: 

 

max. absolute value of 11 11 22 22 12

11 11 22 22 12

, , , , 1
fail fail fail fail fail

    
       

 
 

    
(3.9) 

 
where 11 22 12, ,   are the applied stress aligned with fiber direction and 11 11 22 22 12, , , ,fail fail fail fail fail         

are each obtained from the ratio between the resistance in a certain direction and respective elastic 

modulus. 

Both  discussed failure criteria indicate the type of failure mode. The failure surfaces for these 

criteria are rectangular in stress and strain space, respectively [10]. 

 

 

3.3  Interactive failure criteria 

Interactive failure criteria involve interactions between stress or strain components. The objective of 

this approach is to allow for the fact that failure loads when a multi-axial stress state exists in the 

material may well differ from those when only a uniaxial stress is acting. Interactive failure criteria 

are mathematical in their formulation. Interactive failure criteria fall into three categories: (1) 

polynomial theories, (2) direct-mode determining theories, and (3) strain energy theories. The 

polynomial theories use a polynomial based upon the material strengths to describe a failure surface 

[11]. The direct-mode determining theories are usually polynomial equations based on the material 

strengths and use separate equations to describe each mode of failure. Finally, the strain energy 

theories are based on local strain energy levels determined during a nonlinear analysis. Most of the 

interactive failure criteria are polynomials based on curve-fitting data from composite material tests.  
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The interactive failure criteria proposed to predict lamina failure could be divided in two main 

groups: failure criteria not associated with failure modes and failure criteria associated with failure 

modes. In the following sections, both types will be discussed. 

 

 

3.3.1  Failure criteria not associated with failure modes 

This group includes all polynomial and tensorial criteria, using mathematical expressions to  

describe the failure surface as a function of the material strengths. Generally, these expressions  are 

based on the process of adjusting an expression to a curve obtained by experimental tests.  The most 

general polynomial failure criterion for composite materials is Tensor Polynomial Criterion 

proposed by Tsai and Wu [12]. The Tsai and Wu (1971) failure criterion is a phenomenological 

criterion, i.e. based on observation rather than derived from fundamental theories. It was derived in 

an attempt to predict the failure of a material by its stress invariants. As such, a single polynomial 

expression is used to express the advent of failure. This criterion does not identify the failure type 

nor the direction. The Tsai-Wu criterion remains one of the most widely used failure criterion for 

composite material. The Tsai-Wu criterion for composite lamina may be expressed in tensor 

notation as: 

 
 1 , , 1,..., 6i i ij i j ijk i j kF F F i j k        

 
(3.10) 

 

where iF , ijF  and ijkF  are components of the lamina strength tensors in the principal material axes. 

The usual contracted stress notation is used except that 4 23  , 5 13   and 6 12  . However, 

the third-order tensor ijkF , is usually ignored from a practical standpoint due to the large number of 

material constants required [12]. Then, the general polynomial criterion reduces to a general 

quadratic criterion given by: 

 
1 , 1,..., 6i i ij i jF F i j    

   
(3.11) 
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 or in explicit form: 

 

1 1 2 2 3 3 12 1 2 13 1 3 23 2 3

2 2 2 2 2 2
11 1 22 2 33 3 44 4 55 5 66 6

2 2 2

1

F F F F F F

F F F F F F

        

     

     

       
(3.12) 

  

Considering that the failure of the material is insensitive to a change of sign in shear stresses (shear 

strengths are the same for positive and negative shear stress), all terms containing a shear stress to 

first power must vanish: F4 = F5 = F6 = 0. This single mathematical expression for failure cannot be 

justified physically. Laminated composites fail according to different mechanisms depending on the 

orientation of loading.  Other popular quadratic failure criteria include those by Tsai-Hill [13,14], 

Azzi and Tsai [15], Hoffman [16], and Chamis [17] can be represented in terms of the general Tsai-

Wu quadratic criterion and are summarized in Fig. 3.1.  

 

 

Fig. 3.1 – Quadratic Polynomial Failure Criteria [18]. 
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In Fig. 3.1, X, Y, and Z are lamina strengths in the x, y, and z directions, respectively, and R, S, and 

T are the shear strengths in the yz, xz, and xy planes, respectively. The subscripts T and C in X, Y, 

and Z refer to the normal strengths in tension and compression. X, Y, and Z are either XC, YC, and 

ZC or XT, YT, and ZT depending upon the sign of σ1, σ2 and σ3 respectively. Finally, K12, K13, and 

K23 are the strength coefficients depending upon material. 

The failure surfaces for these quadratic criteria are elliptical in shape, see Fig. 3.2. This class of 

criteria is nevertheless convenient, as only one criterion needs to be implemented, which explains 

why it has been programmed in numerous FEM codes. One of the disadvantages of these quadratic 

failure criteria is that they predict the initiation of failure but say nothing about the failure mode or 

how the composite fails.  

 

 

Fig. 3.2 – Maximum stress, maximum strain and Tsai-Hill failure surfaces in σ1-σ2 space. Source: Ronald F. 
Gibson, Principles of Composite Material Mechanics, Third Edition. 

 

 

3.3.2  Failure criteria associated with failure modes 

These criteria consider that the non-homogeneous character of composites leads different failure 

modes of the constituents. They are established in terms of mathematical expressions using the 
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material strengths and they have the advantage of being able to predict different failure modes, 

being therefore adequate to be used in a progressive damage analysis. The majority of the criteria 

proposed identify the following failure modes: fiber fracture; transverse matrix cracking; shear 

matrix cracking, etc. The origin of these criteria can be attributed to Hashin [19] which stated that 

the Tsai-Wu theory had an intrinsic problem since it could not distinguish among the various 

different failure modes of the composite material. He instead proposed a quadratic failure criterion 

in piecewise form based on material strengths, where each smooth branch represents a failure mode. 

According to the theory of Hashin, in unidirectional composites, there are two primary failure 

modes: a fiber mode and a matrix mode subdivided into either tension or compression failure. In the 

fiber mode, the lamina fails due to fiber breakage in tension or fiber buckling in compression. In the 

matrix mode, failure is due to matrix cracking. 

The model proposed by Hashin and Rotem (1973) [19] is one of the first widely used failure models 

specifically for unidirectional composite lamina. Whereas the maximum stress criteria are fully 

decoupled failure criteria, the Hashin-Rotem criteria are partially coupled, i.e. failure can involve 

normal and shear stresses. This failure model involves two failure mechanisms, one associated with 

fiber failure and the other with matrix failure, distinguishing between tension and compression: 

 

- tensile fiber failure occurs if:  11 TX    11( , 0)TX   

 

- compressive fiber failure occurs if: 11 CX    11( 0, 0)cX    

 

- tensile matrix failure occurs if:  
2 2

22 12 1
TY S

        
  

 22( 0)   (3.13) 

 

- compressive matrix failure occurs if: 
2 2

22 12 1
CY S

        
  

 22( 0)   

where: 
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 11 is the nominal stress in the lamina in the direction of the fibers; 

 22 is the nominal stress in the lamina in the transverse direction to the fibers; 

 12 is the nominal shear stress in the plane of the lamina; 

 XT is the tensile strength of the fibers; 

 XC is the compressive strength of the fibers; 

 YT is the tensile strength in the transverse direction of the fibers; 

 YC is the compression strength in the transverse direction of the fibers; 

 S is the shear strength. 

Therefore, based on observations of specimen failure in tension with different orientations of the 

fibers, the authors of this proposal failure model conclude that there are only two mechanisms of 

failure: fiber or matrix failure. With reference to the second, they do not distinguish whether the 

failure is exactly at the interface or inside the matrix and thus propose that both and contribute to 

the appearance of the failure (the proposal is in quadratic form). The historical importance of this 

proposal is that it initiates a different way of approaching the generation of composites failure 

criteria. The authors first set out to recognize modes of failure, then to recognize the variables 

associated with these modes and propose an interaction between them. The idea seems adequate for 

the type of materials under consideration, although it may be argued that not all failure modes that 

can appear in fibrous composites are covered in the proposal.  

Hashin later proposed a failure criterion for fibrous composites under a three-dimensional state of 

stress [20]. The Hashin criteria are a modification to the Hashin-Rotem criteria to account for the 

beneficial influence of compressive stresses on the matrix strength (Hashin, 1980). For the matrix 

failure mode, a quadratic approach was chosen because a linear criterion underestimates the 

material strength, and a polynomial of higher degree would be too complicated to deal with. 

Furthermore, the effect of the shear stress is now taken into account in the tensile fiber mode: 
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- stress tensile fiber failure criterion:    
2 2

11 12

12

1
TX S

    
    

   
 

 

- compressive fiber failure remains unchanged:   
2

11 1
CX

 
 

    
(3.14) 

 

- tensile matrix failure is also unchanged and occurs if: 
2 2

22 12

12

1
TY S

    
    

   
 

 

 

- compressive matrix failure now incorporates an additional term, taking the form: 

2 2 2

22 22 12

23 23 12

1 1
2 2

C

C

X

S S X S

          
           
           

 

Numerous failure theories are available for fiber-rein-forced composites to date but not all are 

discussed here. Therefore, for further information, it is recommended the reading of Ref. [5]. 
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CHAPTER 4 

COHESIVE-FRICTIONAL MODEL 

4.1  Introduction to cohesive bond 

The development of new and advanced materials leads to new challenges on the production 

technology and this is especially true when different materials must be joined together to make 

composites so as to preserve the beneficial properties of the individual components. In this 

perspective, the choice of joining techniques is often as important as the materials themselves. In 

industrial manufacturing, the structural adhesives are used to create connections (joints) 

representing a solution to assembly of a mechanical system. The adhesive bonding is the technique 

for connecting parts of a structure (or better yet their respective substrates), essentially similar or 

different materials, by means of adhesive. The "material-adhesive-material" system is called bonded 

joint. In a bonded joint, it is possible to distinguish three regions [1]: 

 an adhesion zone, where is established the contact between the adhesive material and the 

substrate of material to be bonded. The adhesion phenomenon is the result of molecular 

interactions between the substrate surface and the adhesive. These interactions can be 

divided into: weak intermolecular interactions (e.g. van der Waal forces, hydrogen bonds) 

and strong chemical bonds (e.g. covalent, metallic and ionic bonds); 

 a transition zone that separates the adhesive area from the cohesive area; in this zone the 

structure, the composition and the macroscopic properties of the adhesive are constantly 

changing; 

 a cohesion zone, where there is the adhesive inherent strength (just called cohesion), in 

which the adhesive is present in its normal state. 
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Fig. 4.1 – Joint section [1]. 
 

The adhesive bond have several advantages in comparison of mechanical fasteners such as high 

resistance to fatigue and corrosion and superior resistance properties that often allow the structures 

which are mechanically more durable (or equivalent) than conventional assemblies to be made with 

cost and lower weight. However adhesively bonded joints inevitably contain defects such as: voids; 

poor adhesion between adhesive and adherend; crack presence; these defects can evolve triggering 

the decohesion and the fracture formation. 

 

 

Fig. 4.2 – Defects in the joint. 
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4.2  Mechanical integrity evaluation approaches 

The evaluation of the mechanical integrity of each structure with defects requires the development 

of approaches. Two types of approach have been developed for these purposes. The first called 

macromechanical approach is essentially based on the LEFM (linear elastic fracture mechanics) 

and EPFM (elastic plastic fracture mechanics)  theories. The basic assumption is that the fracture 

strength can be measured in terms of a single parameter (energy fracture Gc, intensity factor Kc or J-

integral) [2]. This approach is very practical, but it clashes with certain limitations, especially in 

presence of large plasticity scale. The major disadvantage of the approaches based on the fracture 

mechanics is that the size and the position of the initial crack must be known, that is, the crack is 

supposed already existing (pre-existing crack – e.g. defects or notches), not allowing to simulate 

opening processes of the crack (e.g. it does not allow to predict the onset of delamination). 

Moreover, in the LEFM, the fracture process is considered to be concentrated at the end of the 

crack; therefore it does not provide a detailed description of what happens in the fracture process 

zone (FPZ). In reality, the area in front of the crack tip is a region of material degradation which is 

damaged and characterized by the presence of reclosing forces; this region is called cohesive zone 

and the forces which are opposed to propagation of the macrofracture in evolution are essentially 

cohesion forces (e.g. intermolecular forces of electrostatic nature or van ser Waals forces).  

 

 

Fig. 4.3 – The fracture process zone. 
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Another approach available sometimes erroneously called micromechanical approach has 

developed over the last thirty years and it is based on continuum damage mechanics theory; among 

the models that are based on this, the cohesive zone model has been mainly used for the adhesive 

joints. The idea of cohesive zone was originally introduced by Dugdale [3] and Barenblatt [4] which 

essentially postulated the existence of a process zone in front of the crack tip and divided the area of 

crack propagation (or crack simply) in a region affected by tractions and a region free from tractions 

thus eliminating the singularity at the crack tip, see Fig. 4.3. This new approach is based on the 

consideration that prior to the development of macroscopic fractures, there is a zone in a condition 

of progressive damage localized in front of the crack, in which occurs microscopic nonlinear and 

dissipative phenomena, the so-called cohesive process zone in which the crack is forming (that is, 

the material is damaging); in this zone, the material is partially damaged, because the surfaces of the 

fracture are still able to be transmitted tractions (cohesive tractions or tensile forces), so there is an 

interaction between the two sides of the crack. 

A cohesive zone model (CZM) allows the fracture simulation of an adhesive joint without requiring 

any pre-recruitment on the initial crack position and size thus allowing describes the nucleation, 

growth and propagation of interface cracks. Therefore according to the cohesive zone model the 

singular region introduced by the LEFM (the crack tip) can be  removed by introducing a region in 

which non-linear phenomena occur and wherein the fracture process is described by constitutive 

relations, Fig. 4.4, describing the evolution of traction generated through the crack faces [5] as a 

function of crack face opening displacements. 

The physical phenomena behind the process zone was first proposed for concrete materials as 

bridging due to second phase particles and away from bridging, micro-cracking were responsible 

[6]. This can be characterized as micro structural linkage units may be identified with cohesive 

bond in brittle solids, ductile filaments in plastic solids, transverse molecular chains in polymers 

[7]. For composites, however, load-bearing fibers, voiding and crazing are the physical phenomena 

resulting in such a process zone [7]. 
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Fig. 4.4 – Process zone and cohesive tractions (without shearing stress). In the cohesive zone model the 
basic assumption is the formation of process zone (extension of the real crack), where the material, although 
damaged, is still able to transfer stresses. The point separating the real crack (region free from tractions) 
from the process zone, is called the Real Crack Tip, while the point separating the process zone from the 
uncracked material is referred to as the Fictitious Crack. The crack will propagate when stress at the crack 
tip reaches the material’s ultimate tensile strength	 σu (or cohesive strength). At the fictitious crack tip, the 
stress will always be equal to the ultimate tensile strength, thus eliminating stress singularities. During crack 
propagation, the stresses transferred by the material are some form of decreasing functions of the crack 
separation [5]. All the energy dissipation takes place in the process zone, while the bulk material remains 
linear elastic. 
 

 

4.3  Cohesive constitutive law 

There are several ways to develop a constitutive law which binds the tractions to relating separation 

displacements and which represents the microscopic mechanism of fracture associated inelastic 

processes: deriving it from specific micromechanical models; by means of experimental or 

phenomenological way. The most constitutive laws for the cohesive zone in the literature, however, 

have been developed phenomenologically adopting different functions such as exponential function, 

trapezoidal or very commonly a bilinear function, see Fig. 4.5. 
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Among the various forms of cohesive laws, there is a common feature, namely the intensity of the 

traction typically, σ	 in Fig. 4.5, increases with the separation the cohesive surfaces,  ,  and after 

that a peak value critical is reached, σ0, the traction tends to zero with increasing separation. The 

descent after a peak tensile indicates the material softening within the fracture process. When the 

traction reaches the critical value of the displacement, c , the fracture process is completed. 

 

  

 

Fig. 4.5 - Examples of a traction-separation relations (constitutive laws for cohesive zone modeling): (a) 
constant tension for perfect plasticity, (b) regular non-linear, (c) trapezoidal, (d) bilinear or triangular [8]. 
 

A constitutive relation which describes interfacial (fracture) behavior is now discussed in detail. 

The constitutive law used is shown in Fig. 4.6. This law is a bilinear relationship between relative 

displacements and tractions. 
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Fig. 4.6 - Illustration of the traction-separation bilinear law [8]. 

 

The interface, subjected to opening stress σ, opens first elastically with initial elastic stiffness K0 

(the first branch 0-A represents an elastic relationship) until the stress reaches the cohesive interface 

strength σ0 (i.e. σ = σ0): this represents the stress limit for the cohesive zone on the basis of the 

resistance of the adhesive; the achievement of this limit represents the damage onset criterion (i.e. 

when σ = σ0 there is the damaging onset). A damage parameter D is used to describe the interface 

status and it evolves from 0 to 1 on the basis of a damage evolution law. When the interface is 

partially damaged (0<D<1), the required opening stress is linked linearly to the opening 

displacement in according to the following relationship: 

 

0(1 )D K    (4.1) 

This equation is valid both during loading and unloading. During the load application, the damage 

parameter D increases as the opening displacement increases. When c  , D = 1 and σ = 0: this 

condition indicates that the interface is completely broken. It is noted that during unloading (branch 

B-0) D remains constant; therefore, the stress decreases linearly as the opening displacement 

decreases with a slope K=(1-D)K0 as shown by the dashed line in Fig. 4.6.  
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Three parameters must necessarily be known to describe the shape and the size of this triangle: 

 the initial elastic stiffness K0 (the slope of linear branch); 

 the cohesive strength σ0 / elastic energy at damage onset G0; 

 the separation critical δc / fracture energy Gc. 

The last two parameters define respectively the curve height and width while the enclosed area 

represents the energy dissipated in the fracture process. As said above, the relations that describe 

the behavior of the cohesive interface are hence: 

 
( )

(1 ) ( )

0 ( )

c

c e

e

K Before damageinitiation

D K After damageinitiation

After complete damage

  
    

 


   
    

(4.2) 

 

 

4.4  Simulation of delamination in composites 

The delamination is an interface cracking phenomenon and one of the most common damage modes 

in layered structures [9] such as laminated composites. It may arise under various circumstances 

(low velocity impacts, temperature fluctuations, bearing loads in structural joints, etc.) and its 

occurrence greatly reduces the stiffness of a structure, often leading to catastrophic failure during 

processing or in service. Furthermore this damage mode is particularly important for the structural 

integrity of composite structures because it is difficult to detect during inspection. Although it has 

been extensively investigated, the delamination mechanism of composite panels is far from fully 

understood. One method to understand this damage mechanism is the use of finite element analysis. 

The simulation of delamination using the finite element method (FEM) is normally performed by 

means of the Virtual Crack Closure Technique (VCCT) [10] or using cohesive finite elements [11]. 

However there are some difficulties when using the VCCT in the simulation of progressive 

delamination. The calculation of fracture parameters requires nodal variables and topological 
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information from the nodes ahead and behind the crack front. Such calculations are tedious to 

perform and may require remeshing for crack propagation. The use of cohesive finite elements can 

overcome some of these difficulties. They can predict both the onset and the propagation of 

delamination allowing to describe the non-linear behavior of the surface of interlaminar adhesion 

and in particular to model the complex phenomena that occur in the so-called process zone, in the 

vicinity of the apex of the fracture. In this work, the delamination damage resulting from low 

velocity impact (LVI) is examined using cohesive elements. 

The application of cohesive model is performed by finite element analysis in which the candidate 

delamination surfaces are modeled by interface elements obeying cohesive zone constitutive 

relationship. As understood from the name “interface”, the elements are located between the 

adjacent plies where the delamination occurs. They are positioned in places where they potential 

crack can develops, for example where there is a mismatch of material properties (discontinuitiy) 

across the interface as in layered structures between two adjacent plies with different fiber 

orientations, see Fig. 4.7, and they are characterized by a traction-relative displacement relationship 

(typically non-linear) which describes the evolution of the process zone and the formation of free 

surfaces by means of tractions.  

 

 

Fig. 4.7 – Cohesive interfaces between two adjacent plies. 



 

 

66 
 

The cohesive elements can be used to simulate  the onset and growth of delaminations [12,13,14]. 

Cohesive finite elements can predict both the onset and the non-self-similar propagation of 

delamination. In general, they combine aspects of strength-based analysis to predict the onset of 

damage at the interface and fracture mechanics to predict the propagation of a delamination. 

The interface element consists of two surfaces which are connected to adjacent solid elements; 

initially the two surfaces coincide, but they may be driven apart mechanically. The interface 

elements, in which the process zone is concentrated, are supposed to be in zero or near-to-zero 

thicknesses because they are located in the interfaces without affecting the real thickness of 

structure. This is the reason why the constitutive relations depend on displacements, not strains. The 

displacements in a cohesive zone model are relative displacements between the top and bottom 

interface surfaces which represent the adjacent delamination surfaces (in other words, the lower and 

upper surfaces are adjacent laminas).  In order to predict the initiation and tridimensional growth of 

delamination, an 8-node cohesive element, available in most finite element commercial software 

packages such ABAQUS, see Fig. 4.8, is typically adopted. 

 

 

Fig. 4.8 – COH3D8 finite element characteristic available in ABAQUS: (a) representation, (b) thickness 
direction and (c) stack directions [15,16]. 
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By adopting this technique, the behavior of the material is divided into two parts: 

 continuous undamaged part with an arbitrary material law (modeled with standard solid 

elements as 3D 8-noded linear brick (hexahedral) elements); 

 the cohesive interface between the elements of the continuum, which specify only the 

damage of the material with cohesive properties (modeled with cohesive solid elements), see 

Fig. 4.9. 

 

 

Fig. 4.9 - Eight-node cohesive and standard elements. Cohesive elements are positioned between the ones 
of bulk material. 
 

Therefore, the elements of the cohesive zone does not represent any physical material, but describe 

the cohesive forces which occur when elements of material are pulled from opposite sides. The 

cohesive elements are connected with the layers above and below the interface, sharing nodes or by 

an interface bond (interface constraint or tie constraint). When the damage begins or grows, the 

cohesive elements are opened in order to simulate the crack onset or growth, see Fig. 4.10. 

 

Fig. 4.10 – The opening of the cohesive element [17]. 
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As previously anticipated, because the crack path can only follow these elements, the crack 

propagation direction depends on the presence (or absence) of cohesive zone elements, which 

means that the crack path is mesh dependent. If the crack propagation direction is not known in 

advance, the mesh generation must provide different possible crack paths. 

 

 

4.5  The cohesive zone model 

In the CZM, fracture is considered as a gradual phenomenon in which separation takes place across 

a cohesive zone resisted by cohesive tractions. The degradation of the material in the cohesive zone 

is represented by softening-type traction-separation laws which capture both strength-based bond 

weakening and fracture-based bond rupture. 

In the following paragraph, an cohesive zone law accounting for progressive irreversible damage 

prior to complete separation is presented. The cohesive zone model used here is based on the model 

proposed in reference [18]. A brief description of the 2D model, with special focus on the 

constitutive damage model, is presented. Then, the model will be adapted to be used in 3D finite 

element applications. The cohesive interface model is formulated within the framework of damage 

mechanics and it is presented for the simulation of delamination in a laminated composite structure. 

The main features of the model are: the introduction of a single energy based damage variable for 

describing the damage state of the interface whose evolution is related to that of a critical damage-

driving force and a treatment for the mixed-mode situation based on the definition of an equivalent 

energy release rate whose expression is consistently derived from the formulation. Damage onset 

and decohesion propagation conditions are obtained based upon two interaction criteria taken from 

the composite literature. 

To describe the model, initially an 2D assembly consisting of two elastic bodies (adherends) joined 

by a plane adhesive layer is considered as reference problem. The adhesive layer thickness is 
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assumed to be negligible compared to both that of the joined bodies and to its in-plane dimensions; 

therefore the adhesive layer can be conveniently schematized as a zero-thickness surface entity (i.e. 

as an interface) ensuring stress transfer between the adherends. The interface will be considered as 

the only source of material nonlinearity; all expected dissipative phenomena are thus supposed to 

take place at this level only. 

 

 

Fig. 4.11 – Interface schematization. 

 

The energy definition of a system is very important. The cohesive zone model which will be 

discussed is derived from the damage theory, so from a thermodynamic approach which starts own 

from an expression of the free Helmholtz energy density (or stored elastic specific energy function) 

under isothermal condition: 

 

       2 221 1 1
( , ) (1 ) (1 )

2 2 2
nn n s s nd d k u d k u k u   

 
    u

 
(4.3) 

 
where the subscripts n and s identify the normal and shear components respectively, see Fig. 4.11. 

Strictly speaking, the interfacial potential  describes only the energy stored in the elastic 

deformation of the cohesive material between microdefects such as crack or voids. The complete 

expression for free energy should also include a term corresponding to the surface energy of the 

microdefects. However, the presence of this term would be important only in coupled 

thermomechanical problems in which there is a substantial contribution of the mechanical 
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dissipation to the energy balance equation. For the present purpose, the surface energy term can be 

omitted. 

In the interfacial potential expression above u is displacement jump vector while    nu  u n
 
and 

   su  u s
 
are normal and sliding displacement components respectively (n and s denote the 

outward unit normal and the unit tangent vector to the interface respectively). The Macaulay 

bracket for normal displacement component takes the value zero if   0nu  to guarantee that a pure 

compressive stress does not contribute to damage; d is a scalar internal damage continuous variable 

or damage parameter used to describe interface status; it takes on values between zero (no damage) 

and one (failure). The parameter can be interpreted mechanically as a measure of the microvoids 

which develop in the interface on micromechanical scale. /n sk k  e nk  are the undamaged interface 

stiffnesses in tension and compression respectively; in particular nk 
 represents a penalty stiffness 

introduced to avoid the interpenetration of the fracture surfaces when   0nu  . In this model the 

crushing between the two fracture surfaces can not affect the quality of the cohesive zone; so the 

cohesive damage does not develop in compression. As stated above, only the stiffness k  is a model 

mechanical parameter and it can be estimated with good approximation by means of ultrasonic 

techniques. 

The constitutive equations follow from standard continuum thermodynamics; deriving the function 

 with respect to the pair   , du , the relations between this pair   , du and the its conjugate 

variables ( , )Yt  are obtained: 

       (1 ) (1 ) (the cohesive law)n n s s n nd k u d k u k u
   

 


    


t =

u
  (4.4) 
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where the subscript m is appended to the mixed-mode variables, t is the interface traction vector 

acting at the cohesive surface and mY is the work-conjugate of the damage variable. So, a 

constitutive relationship for the interface is given in terms of the displacement jump vector which 

has the meaning of interface strain, and the related traction vector, which plays the role of the stress. 

As regards the constitutive equation, obtained by differentiating the free energy with respect to the 

displacement jumps, when the interface is damaged (0<d<1) the traction is linearly related to the 

displacement. Instead as regards the work-conjugate of the damage variable, mY , which is also said 

equivalent mixed-mode energy release rate, it represents the damage driving force; in detail, it is the 

energy which should be stored in the interface if the interface is not damaged because in its 

expression the damage parameter is not present. Based on the above relationships, the equivalent, 

mixed-mode energy release rate Ym can be expressed as: 

 
21

2m nY k 
  

(4.6) 

 
where δ is an equivalent opening displacement given by: 

 

    
1
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n su u 


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(4.7) 

being: 

s

n

k

k
 

  
 (4.8) 

the parameter giving different weights to the normal and sliding components depending on the 

relevant initial elastic stiffnesses. A mixed-mode parameter β can be defined introducing the 

loading angle: 

 
 

arctan [0, ]
2

s

n

u

u




 
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(4.9) 
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So, the mixed-mode parameter is given by: 

 
tan( )      (4.10) 

The mixed-mode parameter allow to connect the pure-mode energy release rate with mY as follows: 

 

2

1

1I mY Y
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
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(4.11) 

2

21II mY Y






  (4.12) 

 
where IY and IIY  represent the mode I (opening) and mode II (sliding) energy release rate 

respectively.  

The two introduced equations, one for t and the other for mY , not define completely the interface 

constitutive behavior; so it is necessary to introduce a damaging criterion and a damage evolution 

law. As in classical internal variables theories, the damage-driving force is assumed to be bounded 

by a critical value. This can be characterized by means of a damaging criterion of the form: 

 
* 0m m mY Y     (4.13) 

where *
mY  represents an instantaneous mixed-mode energy threshold or the critical mixed-mode 

damage-driving force. The evolution of the threshold is governed by a monotonically increasing 

positive function mF (damage function in mixed-mode condition). 

The increase of variable m  is associated with the damage evolution and as such it is irreversible; 

this can be taken into account by specifying the damage evolution equations. The evolution law for 

the damage threshold and the damage variable is defined as: 

m
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where   is a damage consistency parameter used to define loading–unloading conditions according 

to the Kuhn–Tucker relations: 

 
0 ; 0 ; 0m m     

 (4.16) 

 
The critical damage-driving force definition for a mixed-mode model can be the following: 
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(4.17) 

The calculation of *
mY  requires a relationship between the energy threshold and the damage variable 

d and the two parameters determination which are 0mY  (the damage-driving force at damage onset 

under mixed-mode loading) and 
fmY (characteristic value of mY ) which are based on criteria 

determining the damage onset and propagation of decohesion. 

The damage onset, neglecting the effect of compressive, can be predicted using a Hashin-type 

[19,20] criterion which is a criterion using an interaction between the components of the energy 

release rate needs to predict damage onset; it can be conveniently written as: 
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(4.18) 

 
where G0I and G0II are the initial pure-mode damage thresholds while the exponents a1, a2 are model 

parameters that must be selected essentially in accordance with a curve fit to experimental test data; 

moreover they are assumed to be both strictly positive and non-necessarily integer.  

The initial mixed-mode threshold 0mY  can be computed from the previous equation, Eqn. 4.18, on 

account of : 
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So the damage onset criterion can be expressed in the equivalent form: 
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(4.21) 

 

Therefore, Eq. 4.20 implicitly defines mY  as a function of the mode-mixity β; as a consequence, for 

a given β there is always a unique solution 0mY  of Eq. 4.20 and its computation only requires a local 

iterative scheme. 

The criteria adopted to predict delamination propagation in composites under mixed-mode loading 

conditions are usually established in terms of the components of the energy release rate and fracture 

toughness. In this work, the adopted condition assumes that when the energy release rate, G, 

exceeds the critical value, the critical energy release rate cG , delamination grows. In this respect the 

criterion used to predict delamination propagation under mixed-mode loading is a generalized 

ellipse-like criterion called “power law criterion”; it is normally established in terms of a linear or 

quadratic interaction between the energy release rates [21,22]: 
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(4.22) 

 
As for damage onset, under mixed-mode loading the dependence of the fracture toughness on the 

mode ratio has to be properly accounted for. In this respect the adopted failure condition, stemming 

from one of the most widely used criteria to predict the propagation of delamination, is a 

generalized ellipse-like criterion [22]: 
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where T I IIG G G   and dI, dII have the same expressions as in (4.21), with G0I, G0II, a1, a2 being 

replaced by GcI, GcII, b1, b2. Clearly, all the considerations developed for (4.18) apply to (4.21) as 

well. 

 

Finally, the following expressions for mF  are available: 

 
2

0

2

0

( ) (bilinear model)
( (1 )

mf m
mA

m mf

Y Y
F d

Y d Y d

   

   

(4.24)

 

   
(4.25)

0 0( ) ( )[ log(1 )] (exponentialmodel)N
mC m mf mF d Y Y Y d       (4.26) 

 
Further information on the model discussed can be found in reference [18]. 

 

 

4.6  Model changes 

In the current paragraph, changes to the constitutive model for cohesive zone previously are 

presented. The changes consist essentially in the introduction of the third displacement component 

and then in the introduction of third mode energy release rate, IIIY , for application of the model to 

three-dimensional cases. The new model requires the introduction of a set of three unit vectors, 

orthogonal to each other, n, s, t, denoting respectively the outward unit normal vector to the 

interface, the unit tangent vector to the interface and the other unit tangent vector to the interface 

perpendicular to the previous ones. Normally, the shear modes II and III are represented together 

because their individual evaluation depends on the relative displacement between homologous 

nodes with respect to the crack front orientation [23]. Since at finite element scale level the crack 
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orientation is generally unknown, it is not possible to distinguish between modes II and III. So, the 

total mixed-mode relative displacement   is defined as: 

 

    
1

2 2 2
n shearu u 
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(4.27) 

where  nu  is the relative displacement in mode I, s

n

k

k
   con s tk k  (assumption), and  shearu  

is the Euclidian norm of the relative displacements in mode II and mode III:  
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(4.28) 

 
where    su  u s  and    tu  u t . 

Now the pure-mode contributions to Ym appear to be: 
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and: 

 

m I shearY Y Y     (4.31) 

 
where shear II IIIY Y Y  . 

However, there is no mixed-mode test method available incorporating Mode III loading; so, there is 

no reliable mixed-mode delamination failure criterion incorporating Mode III. Therefore, most of 

the failure criteria proposed for delamination growth are established for Mixed-modes I and II 

loading only. 
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For the above reasons, and following Li’s work [24,25], the concept of energy release rate for shear 

loading is used here and the criteria of damage onset and evolution are modified as follows: 
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(4.33) 

where shear II IIIY Y Y   , shear II IIIG G G   (it is the energy release rate for shear loading proposed in 

Ref. [24,25]), 0 0 0shear II IIIG G G  and 
shearc c II c IIIG G G  ; the latter two conditions on 0shearG  and 

shearcG ensure that the criteria are consistent for pure mode loading cases II or III; they are very 

common conditions because it is difficult to obtain appropriate values of 0IIIG  and c IIIG for mode III 

and typically they are considered equal to those of mode II. 

 

 

4.7  Friction contact implementation 

In this work, the delamination damage resulting from low velocity impact (LVI) will be examined 

hereinafter using cohesive elements. During low velocity impact loading, after a phase of 

delamination initiation principally related to mode I (opening mode) fracture characteristics, 

interlaminar damage propagation is mainly defined by mode II (sliding mode). Previous 

experimental studies [26] suggest that in the delamination mode II the friction component plays a 

decisive role in energy dissipation; so, it cannot be neglected and it is necessary to include frictional 

contribute in the modeling of local delamination. For the reasons above, in this thesis, the fracture 

of the interface in a composite laminate under LVI is studied using a frictional cohesive model. The 

model based on references [27] is founded on the assumption that the sliding resistance occurs only 

on the damaged part or delaminated area, in accordance with a Coulomb-like friction law.  
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The model in Ref. [18] and discussed in the previous paragraph is based on the assumption that the 

negative values of  relative normal displacement     0nu  u n  (mode I) have no physical sense 

because the cracks are closed and no damage is produced. Indeed when compressive forces act at 

the interface, in presence of interfacial damage (damage finite element), the cohesive response is 

accompanied by a frictional contact behavior on the damaged area. The presence of friction has 

been demonstrated to exist in mode II delamination tests where friction effects are the primary 

causes of the poor reproducibility of values of the measured fracture energy GcII [26] and  

modification of the load-deflection response.  

In this work, the model developed by the authors in [18] is enriched with the introduction of the 

friction component in according to studies conducted by the same ones in [28]. The approach is 

based on the concept that under the action of compressive forces, the crack faces are subjected to 

the contact and possible frictional sliding. The sliding in the present context is regarded as an 

independent phenomenon modelled at the outset from the cohesive relationship. The frictional 

components are introduced via an additive decomposition of the displacement jump across the 

interface into an elastic and inelastic component. In detail in analogy with the elasto-plastic case, 

the relative displacement is additively decomposed into an elastic-like (i.e. no-slip) part and a 

plastic-like (i.e. full-slip) part [29]: 

 

  e p       u u u  e   e p         u u u
 

(4.34) 

 
where e  u represents the elastic displacement jump and p  u is the plastic displacement jump 

corresponding to the inelastic sliding that may occur after complete decohesion.  

A modified Coulomb law, which allows for small elastic tangential displacements during frictional 

sliding, is then introduced. Based on Coulomb’s theory of friction, the friction function reads: 

 
( ) 0s nf 


  t t t

 
(4.35) 
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where st is the shear traction in the plane of fracture,

is the argument negative part and μ is the 

static friction coefficient. The condition ( ) 0f t lead to sticking case, ( ) 0f t  represents the slip 

condition while the condition ( ) 0f t is not admissible. The irreversible sliding occurs if the 

condition ( ) 0f t  is met and sliding takes place in the direction determined by the sign of the shear 

traction st . The maximum transmissible shear traction is expressed via the slip condition. 

In the case of sliding, when the friction law is violated and the initial assumption of sticking has to 

be neglected, the irreversible part pu    of the total slip is computed from the evaluation of the non-

associative friction rule: 

 
( )p d g   

 tu t
 

(4.36) 

 
where g represents a suitable defined real-valued “slip potential” ( ) sg t c t

 
and   is the 

consistency parameter obeying the loading/unloading conditions: 

 
( ) 0 0 ( ) 0f f    t t  (4.37) 

 
Using an implicit Euler scheme for integration, the sliding displacement jump increment is obtained 

in the following way: 

 

1

0
p p p

sn n

s

t

t




 
                
  

u u u

  

(4.38)

 

 
whereby no change occurs the normal force; on the contrary, the shear traction is updated according 

to: 

 

, 1
trial f p

s n s st t k      u s
  

(4.39) 
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where   1

trial f p
s s n n

t k


     u u s  is the tangential traction evaluated under the initial assumption of 

sticking, and f
sk  is a penalization parameter used to regularize the tangential response; experimental 

evidence indicates that this corresponds to stiffness of the interface roughness in the contact zone 

[30]. 

For stick-slip transitions a return mapping scheme is used to restore consistency of the elastically 

predicted frictional forces, that are relaxed onto the Coulomb surface by allowing the increase of the 

inelastic part of displacement jumps according to a non-associative flow rule. The radial return-like 

formula yields the discrete consistency parameter   as: 

 
trial

f
s

f

k
 

 
(4.40)

 

 
Under compressive forces the cohesive relationship is combined with the discussed frictional model 

by assuming that friction acts only on the contact area (i.e. damaged portion of the interface). The 

resultant tangential tractions are obtained by adding up the tangential tractions: 

 

, 1
trial f p

s n s st t k      u s
 

(4.41)
 

 
to their purely adhesive counterpart: 

 

 (1 )s s st d k u 
 

(4.42) 

 

 

4.8  Cohesive-frictional model application 

Low velocity impact is one of the most critical events for composite laminates. Indeed, laminated 

structures submitted to low energy impacts or small dropped objects, such as tools during assembly 

or maintenance operations, can undergo significant damage in terms of matrix cracks, fiber 
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breakage or delamination [32]. The interfacial damage is particularly dangerous because it 

drastically reduces the residual mechanical characteristics of the structure, and at the same time can 

leave very limited visible marks on the impacted surface [33]. 

In this section the use of cohesive interface elements for delamination damage prediction in a 

laminate subjected to low-velocity impact is investigated. Cohesive elements can simulate adhesion 

bonding failure or delamination. They play the role of interface decohesion elements which model 

progressive failure at interfaces when its load carrying capability is lost. The application of cohesive 

elements for delamination simulation is one of the key issues in this thesis. A modification of the 

cohesive model, including the friction effect, originally developed by authors in Ref. [18,28] was 

presented.  The model is implemented in the explicit finite element code ABAQUS by using a 

vectorized user material subroutine, called VUMAT, written in Fortran [31] in order to study 

computationally the consequences of a low energy impact on interface between plies of dissimilar 

orientation. The user material is associated with the cohesive elements available in ABAQUS 

software library (COH2D4 for 2D problems, COH3D8 for 3D applications).  

For the definition of the interface behavior, it’s necessary the knowledge of the cohesive properties. 

The macroscopic properties of the interface material, such as the critical fracture energy in pure 

mode I, II and III (previously referred to as c IG , cIIG  and c IIIG ) can be measured experimentally 

and used directly in the cohesive model; instead, the damage-driving force at damage onset in pure 

mode I, II and III may be obtained by experimental–numerical calibration procedure of model and 

the undamaged interface stiffnesses by means of empirical formulas. However, for the reasons 

presented in the paragraph 4.4, fracture modes II and III will not be distinguished and the cohesive 

properties associated with the Mode III will be considered the same as those relating to the mode II. 

For the purposes above, the studies reported in [34] were the reference. In the following the 

cohesive-frictional model with interface elements discussed in the previous sections will be first 

calibrated with the data available from authors by means of simulations of standard fracture 
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toughness tests and finally employed to model the impact response of cross-ply graphite/epoxy 

laminated plate analyzed in the same Ref. [34]. 

 
 
4.8.1  Cohesive input properties 

In composite structures the damage onset and evolution consist of combined inter-laminar 

(delamination) and intra-laminar ply damaging mechanisms. In fact the two physical damage forms 

are strongly coupled. Therefore it is necessary to identify experiments which isolate inter-laminar 

behavior (i.e., tests that result in minimal or no intra-laminar material failure) in order to use 

experimental data to characterize cohesive material properties. Moreover, it is necessary to identify 

tests test to characterize interfacial behavior which separate the normal and shear modes of 

delamination. In this regard the double cantilever beam (DCB) test is designed to produce pure 

normal mode delamination without any intra-laminar material damaging and it is commonly used 

for obtaining pure mode-I loading condition; while the end-notched flexural (ENF) specimen is 

designed to produce pure shear mode delamination without any intra-laminar material damaging 

and it is commonly used for obtaining pure mode-II loading condition. Utilizing experimental data 

to characterize cohesive behavior, the number of cohesive properties that must be determined is 

minimized [35]. Cohesive input properties include parameters that define the stiffness, elastic 

energies at damage onset and fracture energy of the cohesive material layer in each of its three 

deformation modes (e.g., a normal mode denoted by a subscript n), and two shear modes (denoted 

by subscript s and t respectively), see Tab. 4.1. In order to determining the input properties of 

cohesive elements that must be used in finite element models to fit numerical results of double 

cantilever beam (DCB) and end notched flexure (ENF) simulations with experimental ones derived 

from the same tests, three steps are necessary: 

1. to determine mesh size; 

2. to calculate cohesive stiffness:kn, ks; 

3. to calibrate elastic energy at damage onset: G0I , G0II. 
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Tab. 4.1 - Cohesive input properties. 

 

 

4.8.2  Mesh size 

Initially it's necessary to create DCB and ENF finite element models with loading and dimensions 

that match the experimental conditions. The DCB model is used to determine the normal cohesive 

properties (kn, G0I and GcI), and the ENF model is used to determine the shear cohesive properties 

(ks, G0II and GcII). The cohesive properties for the mode II and III are assumed to be equal. When a 

finite element model is created one must be cognizant of the fact that predicted cohesive behavior is 

mesh-dependent, i.e., using cohesive properties across a wide range of cohesive mesh densities a 

considerable range of predicted delamination responses will be obtained [34,35,36]. Since cohesive 

solutions are mesh dependent, it is important that the meshes for the DCB and ENF specimens use 

cohesive elements that are approximately the same size as the cohesive elements that are anticipated 

to be used in subsequent progressive failure analyses of composite structural components. The 

influence of effect of mesh density on the simulated response of DCB and ENF tests were 

investigated during the first phase of the study but it will not be discussed here. 

 

Normal mode: 

kn = Stiffness (MPa/mm), G0I = Elastic energies at damage onset (mJ/mm2), GcI = Fracture Energy (mJ/mm2) 

 

Shear mode: 

ks = Stiffness (MPa/mm), G0II = Elastic energies at damage onset (mJ/mm2), GcII = Fracture Energy (mJ/mm2) 

 

Shear mode: 

kt = Stiffness (MPa/mm), G0III = Elastic energies at damage onset (mJ/mm2), GcIII = Fracture Energy (mJ/mm2) 
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4.8.3  Cohesive stiffness 

The cohesive stiffness should be determined before the elastic energy at damage onset is obtained. 

It is important to realize that one cannot determine a definitive value of stiffness for cohesive layers 

when it is used to simulate the delamination between plies. The stiffness of the cohesive layer needs 

to be stiff enough so that it provides adequate load transfer between the bonded layers, but if it is 

too stiff, then spurious stress oscillations can occur. As such, the following equation presented in 

Ref. [36]  should be used to estimate the stiffness of the cohesive layer in the mode-I direction: 

 

3
n

E
k

t

   
                

(4.43)
 

 
According to the above formula, the interface stiffness is the elastic modulus of the resin per unit 

thickness, where E3 is the Young’s modulus of the laminate in the thickness direction, t is the larger 

of the sublaminate thicknesses above or below the cohesive layer, and α is a parameter that is much 

larger than 1 with a suggested value of 50 in Ref. [36] to obtain a stiffness of the cohesive layer 

which is small enough to avoid numerical problems, such as spurious oscillations of the tractions in 

an cohesive element, and also large enough to prevent the laminate from being too compliant in the 

thickness direction. Therefore, a value of α equal to 50 was used in the current study. In calculating 

the stiffness ks and kt in the shear directions associated respectively to mode II and mode III, the 

normal modulus of the composite material E3 is replaced with the shear moduli G12 and G13 of the 

laminate, respectively. 

 

 

4.8.4  Energies at damage onset 

After setting the stiffness of the cohesive material, the finite element models of the DCB and ENF 

specimens can be used to iteratively determine the elastic energies at damage onset of the cohesive 

material (G0I , G0II=G0III).  
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Properties for composite material [34]

E11  = 93.7 GPa; E22= E33 = 7.45 GPa 

G12 = G23 = G13 = 3.97 GPa 

ν12 = ν 23 = ν 13 = 0.261 

ρ = 1.5·10-9 ton/mm3. 

_________________________________________ 

Properties for cohesive interface [34] 

GcI = 0.520 mJ/mm2 

GcII = GcIII  = 0.970 mJ/mm2 

The double cantilever beam finite element model is used to calibrate G0I, and the end notched 

flexure finite element model is used to calibrate G0II (o G0III). 

The energy values predicted by the DCB and ENF finite element models are dependent on both the 

cohesive mesh density and the stiffnesses chosen for the cohesive material (previous steps), thus it 

is likely that the initial damage energy estimates need to be adjusted in order for the DCB and ENF 

models to match the experimental results obtained by the same tests. 

 

 

4.8.5  Calibration of the cohesive properties 

Mode I and Mode II delamination numerical simulations are now discussed. General guidelines to 

create finite element models of each test are given  in Ref. [34]; in this are reported essential 

mechanical properties and geometries of testing specimens.  

The dimensions of each specimen are 20 mm in width, 150 mm in length, with a total thickness of 3 

mm and an initial crack (crack-like defect) of 35 mm. The elastic properties of materials and the 

fracture properties of interface are reported in Tab. 4.2.  

 

 

 

 

 

 

 

 

 

 

Tab. 4.2 - Cohesive input properties 
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In Tab. 4.2, E11, E22, E33, are the Young’s modules in the direction of the fibers, in direction 

orthogonal to fiber and situated in the lamina plan and in the direction normal to the plane of the 

composite lamina respectively; ν12, ν13 and ν23 are the values of the Poisson’s ratio and G12, G13 and 

G23 are the shear modules; ρ is the composite material density and similar value is considered for 

the cohesive zone.; finally,  GcI, GcII=GcIII are fracture energy associated to fracture modes obtained 

from experimental tests. The experimental determination of critical energy release rates was 

conducted by authors in [35], by means of double cantilever beam (DCB) and the end notched 

flexure (ENF) specimens. DCB and ENF tests are performed on unidirectional composite laminates, 

which means that delamination growth occurs at a [0/0] interface and crack propagation is parallel 

to the fiber orientation. However, this kind of delamination growth will rarely occur in real 

structures [37]. 

 

 

Fig. 4.12 – Double cantilever beam specimen geometry. 

 

 

Fig. 4.13 – End-notched flexure specimen geometry. 
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Bidimensional finite element models are used to simulations because with this simplification a 

simulation produce results practically coincident with those obtained by three-dimensional models; 

this was noted also in [35]. 

The composite arms are modeled with continuum plane stress elements with four nodes and reduced 

formulation (CPS4R). The behavior of these elements is linear elastic without any possibility of 

damage. The elastic parameters for these elements are reported in Tab. 4.2. Between the two 

composite arms, there is the cohesive layer with the exclusion of pre-cracked zone. The interface 

between the sub-laminates (the cohesive zone) is modeled as a zero-thickness cohesive layer and 

discretized using four nodes cohesive elements (COH2D4) available in the commercial finite 

element code ABAQUS. Cohesive elements are formulated in terms if traction vs. relative 

displacement relationship. They were not introduced for all the length of the specimen FE models 

associated to tests, but only from the end of the crack length, where the tip of the initial crack is, 

until the end of the specimen. A convergence analysis was preliminary conducted to determine the 

appropriate element size but it will not be discussed here. The choice length of the cohesive element 

is 0.5 mm because with it the responses computed via finite element analyses do not exhibit false 

instabilities caused by coarse meshes, as reported by several authors [38,39]. Contact pair surfaces 

were introduced only in ENF tests, in order to avoid interpenetration of sublaminates in the pre-

cracked zone (contact between composite arms and contact between bottom ply and rigid supports). 

Finally  an appropriate displacement was prescribed at nodes of load application in according to 

considered experimental test. 

The cohesive model with interface elements adopting a exponential cohesive law discussed in the 

previous section is used to simulate delamination by means of user material subroutine 

implemented in ABAQUS. The onset of delamination is determined based on the inter-laminar 

quadratic nominal stress criterion and the delamination growth is based on a critical fracture energy 

criterion. Damage is modeled as an irreversible process by including a damage parameter. 
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The first numerical results presented regard the DCB simulation. It is obtained at the end of 

calibration. In Fig. 4.14 it is possible to see  the deformed shape of the DCB specimen captured 

during the simulation; moreover the process zone, in progressive damage condition and resulting 

from opening displacements applied to composite arms, is in evidence. In Fig. 4.15 the force-

opening curve is shown and this is compared with the same curve obtained in the experimental test. 

There is a good agreement between the elastic branch of the curve and also the onset prediction of 

the crack propagation looks adequate. 

 

 

 
Fig. 4.14 – Deformed shape of the specimen captured during the DCB simulation test. 

 

 

 

 

Fig. 4.15 – Calibration of the model with experimental result [35] for mode I: force vs. opening curve for the 
DCB test. 
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The second numerical results presented regard the ENF simulation. It is obtained at the end of 

calibration. In Fig. 4.16 it is possible to see  the deformed shape of the ENF specimen captured 

during the simulation; moreover the contact zones between ply and rigid supports and between ply 

and ply in the pre-cracked region are in evidence. In these zone a contact formulation to avoid the 

interpenetration is necessary. In Fig. 4.17 the force-sliding curve is shown and this is compared with 

the same curve obtained in the experimental test. There is a good agreement between the elastic 

branch of the curve and also the onset prediction of the fracture propagation looks adequate. 

 
 

Fig. 4.16 – Deformed shape of the specimen captured during the ENF simulation test. 

 

 

Fig. 4.17 – Model calibration with experimental result [35] for mode II: force vs. sliding curve for the ENF test. 
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4.8.6  Simulation of low energy impact 

A numerical study was conducted to investigate the predictive capabilities of the cohesive-frictional 

model discussed above when applied to a practical impact problem. In the present investigation, the 

explicit solver of finite element software ABAQUS was used to calculate the transient response of 

the impact on composite laminates. The transient response of the impact was analyzed on the basis 

of the following assumptions: frictionless between the impactor and composite structure; neglecting 

the damping effect in the composite structure; ignoring the gravity force during the impact period; 

ignoring strain rate effect; rigid body for the impactor. Numerical simulations were carried out to 

test the implemented model ability to predict the interfacial damage for low velocity impact on 

composite plate in terms of orientation, shape and dimension of delamination. For the purposes 

above, the studies reported in Ref. [34,40] were the reference sources; from these are obtained 

geometrical data of the laminate, boundary conditions, mechanical properties of composite material 

and the experimental results as X radiography image of specimen after impact and resulting 

delamination dimensions. The authors of indicated reference conducted numerical and experimental 

investigations on impact-induced delamination in cross-ply composite laminate. The graphite/epoxy 

composite material forming the laminate (object of study) has elastic properties reported in Tab. 

4.2. The plate is rectangular (45 mm x 67.5 mm) and simply supported with laminate stacking 

sequence of [03/906/03]; therefore, two potential interfaces for the development of delamination are 

present: [0/90] and [90/0]. In fact, it has been demonstrated that impact-induced delamination in 

composite laminates is strongly dependent on the stacking sequence: the larger the difference of 

fiber angles between two adjacent laminae, the larger the bending stiffness between them, and 

hence the larger the delamination area on the interface between them [41,40]. Moreover several 

additional studies have revealed the characteristic ‘‘peanut’’ shape delamination in unidirectional 

composite laminate [42-44]. The delamination of the peanut shape is of particular interest here and 

will be only considered in the present study. For Coulomb’s friction coefficient a generic value of 

0.5 taken from the literature [45,46] is assumed. The impactor is a spherical body in steel of radius 
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6.25 mm and mass 2.3 Kg. The impactor is modeled using an analytical rigid body which means 

there is no deformation of the impactor. The modeling performed for each ply consists of 8-node 

brick elements with single integration point (C3D8R); only one element through the thickness is 

considered for each group of plies. Moreover, because of symmetry, only one half of the model was 

built and analyzed. As regards to interfaces, 8-node three-dimensional cohesive elements 

(COH3D8) are placed between layers with different fiber orientations. However in Ref. [35,40] 

only the experimental results for the bottom interface [903/03] are available; therefore, only for this 

interface will be presented the numerical results. The introduction of cohesive elements requires 

partitioning of the model and this phase is shown in Fig. 4.18; in this way the cohesive layers are 

created. 

 

 

Fig. 4.18 –Model of composite plate in phase of partitioning. Initially the cohesive layer has finite thickness; 
after meshing the distance between the nodes on the opposite faces of the cohesive elements is reduced to 
zero. 
 

After meshing, cohesive elements are assigned to the resin sections (interfaces). In order to create 

zero thickness cohesive elements, the collapse of the cohesive element nodes on to each other is 

necessary. However, it should be noted that zero thickness cohesive elements are just an 

Cohesive layer 
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approximation. Fig. 4.19 shows the finite element mesh adopted for this study which represents a 

simplified model of the impact test set-up; the mesh size increased from the center toward the edges 

because a fine grid in the impact region of the target allows to obtain a smooth stress gradient. For 

proper contact definition between impactor and laminate, the “Surface-to-surface contact” 

formulation in ABAQUS is used. 

 
 

 

Fig. 4.19 – Structure mesh. 
 

 
Impact energy levels between 1 J and 2.5 J was considered. However, the limits of this range are 

sufficient to show the most important results. It is natural to expect that a significant delamination 

occurs at the highest impact energy. In Fig. 4.20 is shown the development of the damage interface 

to the interface farthest from the impact area when the impactor's kinetic energy is maximum. 
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Several studies [43,44] have found that each delamination oriented itself along the fiber direction of 

the bottom ply of the delaminated interface. In the analyzed case, the damage evolution and the 

delamination lobe occur precisely in the direction of the fibers oriented at 0 degree. Furthermore, 

the overall pattern of damage were similar to that seen in carbon fiber reinforced composites used to 

for the experimental investigation, Fig. 4.21. Therefore, the material model provides a good 

prediction both of the delamination peanut shapes, who area characteristic of the interface damage 

caused by impact loading in fiber-reinforced composite laminates, and of their orientations. 

 

      

Fig. 4.20 – Development of delamination in the interface region [90/0]. 
 

 

 

Fig. 4.21 – X-radiography of composite panel: peanut-shaped delamination on bottom interface in evidence. 
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Finally, in Fig. 4.22, a numerical experimental comparison about the delamination length is 

presented. Good agreement between the finite element results and experimental data was achieved. 

Furthermore from the two presented limiting cases it is possible to observe that until the energy of 

impact is low, the effect of friction is not visible. As the speed of the impactor increases (because 

the mass does not change) the delaminated area increases and therefore the friction between the 

damaged plies in contact becomes appreciable.  

 

 

Fig. 4.22 – Numerical experimental comparison about the delamination length. 
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However, this study does not aim to extinguish all doubt but especially proposes the simple 

introduction of the frictional component in a model of cohesive zone always neglected in the 

formulation of the cohesive approaches designed to simulate impact tests and whose ability in the 

prediction of delamination is just demonstrated here. Furthermore the importance of friction 

component shall be demonstrated by means of targeted and detailed experimental investigations that 

this thesis aims to promote. For example, it is not possible to conduct important research on the 

effect of friction at the interface closest to the region of impact because of lack of data; in this 

interface it is expected that the frictional component play a more important role being the 

compression stresses of greater magnitude. Moreover, the response sensitivity to the friction 

coefficient it was not investigated leaving these studies to future works. 
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CHAPTER 5 

PROGRESSIVE  DAMAGE MODEL 

5.1  Challenging issue in designing composites 

Composite laminates composed of fiber-reinforced plies are widely used in aerospace, civil, ship 

building and other industries because of their higher specific strength than those of metallic parts, 

and they can be engineered to obtain optimal material properties in desired directions. A 

challenging issue in designing composites is delineating various failure modes, such as fiber 

breakage, matrix cracking, fiber/matrix debonding, fiber kinking, and delamination between 

adjacent plies [1]. The difficulty of the problem was evidenced by the World Wide Failure Exercise, 

an international activity launched by Hinton, Kaddour and Soden [2] to establish the status of 

currently available theoretical methods for predicting material failure in fiber reinforced polymer 

composites materials in the course of which 12 of the leading theories for predicting failure in 

composite laminates have been tested against experimental evidence. This event revealed that very 

few theories successfully predicted failure of composite coupons deformed quasi statically. 

In general, the load carrying capacity of a structure does not vanish as soon as either failure or 

damage ensues at a material point and the structure can support additional load before it eventually 

fails. Thus it is important to quantify damage caused by the initiation of a failure mode and study its 

development and progression and the eventual failure of a structure with an increase in the applied 

load. So, in many structural applications, the progressive failure analysis is required to predict 

composite structure mechanical response under various loading conditions. 

Failure and damage in laminated structures can be studied by using a micro-mechanics approach [3] 

(see Ref. [1] for more information) but the damage studied at the constituent level is only 
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computationally expensive for a real size problem. The alternative is an approach based on 

continuum damage mechanics (CDM) in which material properties of the composite have been 

homogenized and failure and damage is studied at the ply/lamina level; e.g., see [4-9]. However a 

micromechanical approach can be used to deduce effective properties of a ply and CDM approach 

to study failure and damage at the lamina level. 

 

 

5.2  The continuum damage mechanics 

The issue of damage growth in fiber reinforced plastic (FRP) laminated composites has been 

addressed by an ever-increasing number of researchers through the use of Continuum Damage 

Mechanics (CDM). Usually it is recognized that CDM started with the papers by Kachanov (1958) 

and Rabotnov (1968). However the use of CDM for the simulation of composite behaviors has been 

popularized in the 1980s by Ladeveze [10] and Talreja [11]. The Continuum Damage Mechanics 

approach focuses on the effect of the presence of micro-failures in the material. In detail, it attempts 

to predict the effect of microscale defects and damage at a macroscale by making assumptions about 

the nature of the damage and its effect on the macroscale properties (e.g. elastic moduli) of the 

material. This damage theory describes the damage, i.e. the appearance of cracks, as a state variable 

that can be expressed as a scalar or as a tensor to quantify the isotropic or anisotropic damage. 

Therefore the CDM theories capture effects of microscopic damage by using the theory of internal 

variables. 

Different models have been developed to permit the damage prediction in composite structures 

under loading. Ladeveze and Dantec [14] formulated mesomechanical damage model for single-ply 

laminate considering as composite damages fiber/matrix debonding and matrix microcracking; these 

damage modes are represented by two internal (damage) state variables; the damage evolution is 

then governed by a law assumed to be a linear function of equivalent damage energy release rate. 



 

 

104 
 

Xiao et al. [15,16] used this approach in modeling energy absorption of composite structures in 

crashworthiness applications or to study damage during quasistatic punching of woven fabric 

composites; Williams and Vaziri [17]  used damage mechanics principles along with matrix and 

fiber failure criteria to model damage for low-velocity impacts; Yen and Caiazzo [18] implemented 

a damage model (MAT 162) in LS-DYNA by generalizing the layer failure model that exists (MAT 

161); their damage model is based on damage mechanics approach due to Matzenmiller et al. [19] 

and it incorporates progressive damage and softening behavior after damage initiation. In the thesis 

work, this model will be analyzed in the next paragraph and then implemented as material 

subroutine for the commercial finite element software ABAQUS for single integration point brick 

elements only. It will be used in progressive failure analyses to predict composite structure 

mechanical response. 

 

 

5.3  The damage constitutive model 

The continuum damage mechanics theory allows to represent the damage state of a material in 

terms of properly defined state variable (or damage variables) and to describe the mechanical 

behavior of the damage material and the further development of the damage by the use of these 

state variables [21]. The term damage is used to indicate the deterioration of the material capability 

to carry loads. From a general point of view, damage develops in the material microstructure when 

non-reversible phenomena such as microcracking, debonding between the matrix and the second 

phase particles and microvoid formation take place [22]. Kachanov [12] pioneered the subject of 

damage mechanics by introducing the concept of effective stress.  This concept is based on 

considering a fictitious undamaged configuration of a body and comparing it with the actual 

damaged configuration. The damage variable is defined in terms of both the damaged and effective 

cross-sectional areas of the body.  
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Kachanov [12] originally formulated his theory by using simple uniaxial tension. Following its 

work, a cylindrical bar subjected to a uniaxial tensile force F, as shown in Fig. 5.1, is now 

considered.  

 

 

  

Fig. 5.1 – Cylindrical Bar Subjected to Uniaxial Tension. 
 

The cross-sectional area of the bar is A and it is assumed that both voids and cracks appear as 

damage in the bar. The uniaxial stress σ in the bar is found easily from the formula F A . In 

order to use the principles of damage mechanics, a fictitious undamaged configuration of the bar, as 

shown in Fig. 5.1, on the right. 

In this configuration, all types of damage, including both voids and cracks, are removed from the 

bar. The effective cross-sectional area of the bar in this configuration is denoted by A and the 

effective uniaxial stress is σ. The bars in both the damaged configuration and the effective 

undamaged configuration are subjected to the same tensile force F. Therefore, considering the 

Damaged state (0<D<1) Equivalent fictitious 
undamaged state (D=0) 
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effective undamaged configuration, we have the formula ˆ sF A . Equating the two expressions of 

F obtained from both configurations, the following expression for the effective uniaxial stress ̂  is 

formed: 

ˆ
s

A

A
 

  
(5.1) 

 
Following Kachanov's work, the widely accepted definition in the macroscopic scale is the 

geometrical description of material damage in this way: 

d sA A A
d

A A


 

 
(5.2) 

where A is the nominal cross-sectional; As is the net area of the damaged specimen which excludes 

the area held by the damage entities (discontinuities) or in other words the effective resisting section 

area of the specimen reduced by the presence of microdefects and their mutual interaction and 

which carries the applied load; d sA A A  is the “damaged” cross section. Thus, the damage 

variable is defined as the ratio of the total area of voids and cracks to the total area; in its simplest 

form, it may be thought of as a reduction of area relative to the initial area of a specimen. Its value 

ranges from zero (for the case of an undamaged specimen) to one (for the case of complete rupture). 

The introduction of a damage variable, Eqn. 5.2, which represents a surface density of 

discontinuities, leads to the concept of effective stress that is stress calculated over the effectively 

resisting section. Lemaitre, using the effective stress definition proposed by Kachanov, determined 

the constitutive equations for ductile damaged material. According to principle of strain 

equivalence of Lemaitre [23,24], which assumes that the strain constitutive equations for a damaged 

material can be derived using the same formulations used for an undamaged material except that the 

stress is replaced by the effective stress. So, the mechanical behavior of a damaged material is 

usually described by using the notion of the effective stress, together with the hypothesis of 

mechanical equivalence between the damaged and the undamaged material. 
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The “effective” area is As or (1 )d A  and substituting this into Eqn. (5.1), one obtains the 

following expression for the effective uniaxial stress:  

ˆ
1 d

 
  

(5.3) 

The Eqn. 5.3 represents the relationship between macroscopic stress    and the corresponding 

effective stress ̂  in a damaged material and it is clear from this equation  that the case of complete 

rupture (d =1) is unattainable, because the damage variable d is not allowed to take the value 1 in 

the denominator. The corresponding strain of an effective stress is called effective strain.  

 

 

Fig. 5.2 – Hypothesis of effective stress (adapted from: Simo and Ju [25]). 
 

It is important to note that the presence of cracks in the material diminishes the relative area of 

material capable of withstanding loads, thereby increasing the stress in the undamaged material 

under a given strain. This is also a further justification to the concept of effective stress, which 

implies that a damaged material subject to a load σ under a certain strain ϵ can be modeled as an 

equivalent undamaged material also subject to the same strain ϵ, but under a modified load or 

effective stress state ̂ , see Fig. 5.2, and this can be expressed mathematically in tensorial form 
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simply replacing the scalar transformation between nominal and effective stress by a tensorial one 

as: 

    ˆ ( )M d 
 

(5.4) 

where  ( )M d  is a transformation tensor or damage effect tensor containing the damage variables 

which is a function of the damage state, d, and   , ̂ are respectively the actual stress and 

equivalent stress tensors. The form of the  ( )M d adopted in this model is: 

 

 
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 
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 
 

   

(5.5)

 

 
Note that here and throughout the paragraph the symmetric second order and fourth-order tensors 

are written in Voigt matrix notation. Using the effective stress–strain relationship:  

 

   0ˆ C      
(5.6) 

then the above equation becomes:  

       1 0[ ] [ ( )]M C C d   
 

(5.7) 

where 0[ ]C  is the stiffness tensor of the undamaged material and [ ( )]C d is the damaged or effective 

stiffness tensor (denotes the so-called “damaged” non-symmetric stiffness tensor). 
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The elements of matrix [ ( )]C d are the elastic coefficients, which are functions of the undamaged (or 

initial) elastic material constants and the damage: 

 

 
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(5.8) 

 
The extent of damage-induced stiffness loss is quantify by six damage variables jd with 1,..,6j  , 

one for each of the six elastic moduli. Therefore, the damaged stiffness tensor depends on six 

damage parameters, each associated to respective elastic constant. The elastic modulus reduction 

can be expressed in terms of associated damage parameter d  in the following way: 

 
(1 )reduced initialE d E    (5.9) 

From Eqn. 5.9, it is evident that the post-failure mechanisms in a composite material is hence 

characterized by a reduction in material stiffness.  

The role of a CDM model is to provide a mathematical description of the dependence of the elastic 

coefficients on the damage state and the change in the damage state with load state. For this 

purpose, similarly to the theory of plasticity, a loading function f , specifying elastic domain and 

the states at which damage grows, is introduced. In the damage theory, it is natural to work in the 

strain space and therefore the loading function is depending on the strain and on an additional 
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parameter r , which controls the evolution of the elastic domain and so describing the evolution of 

the damage. Physically, r  is a scalar measure of the largest strain level ever reached in the history 

of the material. The loading function usually is postulated in the form: 

 

i i if F r     (5.10) 

where i  is the subscript which identifies the damage type (e.g. fiber and matrix tensile/compressive 

failure modes), iF  is a function adopted in the form of Hashin’s failure criterion (e.g. function of 

the strain components, elastic moduli and strengths); ir  is the damage threshold corresponding to 

failure mechanism.  

States for which 0f   are supposed to be below the current damage threshold (i.e. the condition 

represents a set of states for which damage does not grow). Damage can grow only if current state 

reaches the boundary of elastic domain which is represented from condition 0f    (damage 

loading). Therefore, the variable r  describes the evolution of elastic domain. So it is possible to say 

that 0f   is the elasticity criterion and 0f   is the failure criterion [26].  

According to the Hashin-type failure criteria, the loading functions for different failure mechanisms 

are given in Tab. 5.1. 
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Tab 5.1.– Examples of failure criteria. All the failure criteria are expressed in terms of stress components 
based on ply level strains (ε1, ε2, ε3, ε12, ε23, ε31) and associated elastic moduli (E1, E2, E3, G12, G23, G31). 
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For simplicity, rate effects on the values of the parameter in the loading function f are ignored. 

This limits the initial application of the model to rate insensitive materials such as CFRP and, to a 

lesser degree, glass fiber-reinforced plastic (GFRP) composites. 

The function f and the rate of scalar variable r have to satisfy the Kuhn-Tucker loading-unloading 

conditions: 

0, 0, 0f r fr      (5.11) 

 
where the  overdot denotes differentiation with respect to time.  

The first condition means that r can never be smaller than F  and the second condition means that 

r  cannot decrease. Finally, according to the third condition, r  can grow only if the current values 

of F  and r are equal [27]. 

It remains to link the variable r  to the damage parameter d . As both r  and d grow monotonically, 

it is convenient to postulate an explicit evolution law: 

 
( )j id g r    (5.12) 

In the Eqn. 5.12, the generic damage parameter may depend on several i  types of damage. 

 The generic damage threshold, ir , which controls the size of the damage surface and depends on 

the loading history, initially is taken to one.  

The 3D damage model until now described may contain the formulation for different modes of 

failure, e.g. fiber breakage, fiber buckling or kinking, matrix cracking, matrix crushing etc. . These 

damage types are modeled by means of a combination of growth functions i  and damage coupling 

coefficients jiq (vector components). In fact, as suggested in Matzenmiller et al. [19], the growth 

rate of generic damage variable id (or rate of damage evolution),  is defined by the following type of 

evolution law: 

j i ji
i

d q 
  

(5.13) 
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where the scalar functions i  define the growth rate of damage mode, i , and the coefficients jiq  ( j

associated to damage variable, i  associated to damage mode) provide the coupling between the 

individual damage variables, jd , and the various damage modes provided by the damage criteria if . 

In general, the damage increases ( i  will be non-zero) if deformation path crosses the 

corresponding loading surface (or damage surface, 0f F r   ) or in other words, if the strain 

rate vector   forms an acute angle with the gradient f  at the given state of strain   on the 

loading surface: 

0 , 0

0 , 0

0 , 0

f
f loading

f
f neutral loading

f
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


 
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
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





  

(5.14) 

The prediction of damage growth thereby relies on obtaining the strain gradient when the strain path 

crosses the loading surface. In loading case (damage growth), the associated strain-vector increment 

has a positive component along the outward normal to the damage surface and in reference [28] it is 

shown that i  can assume the form: 

1
2

1
(1 ) ( )

2

m

i i i if f no summationover i 


  
  

(5.15) 

 
where i  is a variable representing the extent of mode-i damage, and im  is a material constant that 

quantifies sensitivity of the material stiffness to the extent of damage. Integrating appropriately the 

above Eqn. 5.15, it follows that: 

1
(1 )

1
mi

i
i

r
m

i e


    (5.16) 

from which, utilizing the damage coupling matrix, is derived the expression of the damage variable. 
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Therefore, the damage variable grows with the development of generic damage mode i  according 

to equation that follows: 

1
(1 )

1 , 1,....,6
mi

i
i

r
m

jd e j


  
 

(5.17) 

where jd  damage variable; im  is the strain softening parameter and ir  is the damage threshold. The 

damage variable jd  varies from 0 to 1.0 as ir  varies from 1 to ∞, respectively.  

The number of strain softening parameters can depend from number of damage modes and how 

these are connected in terms of material softening. These damage parameters provide the softening 

response in the post-failure regime of the stress-strain curve. 

The effect of the exponent m on the stress-strain response of the element is such that high values of 

m result in brittle failure of the material; low values of m clearly indicate a ductile failure response 

resulting in more energy absorption prior to complete damage with a gradual loss of stiffness after 

failure.  

The key to the success of all CDM models is to maintain a coherent link with the physical 

observations of damage growth and material response. So, it is important to note that in keeping 

with the thermodynamic constraints in damage mechanics, damage is considered to be an 

irreversible process; therefore the damage evolution rate should satisfy the following condition 

0jd  , implicitly contained in Eqn. 5.11, and this leads to say that jd  is a monotonically increasing 

function of time t such that: 

max[ | , ], 1,..,6t
j j jd d t d j   

 
(5.17) 

where t
jd  is the damage variable calculated from Eq. 5.17 for the current load state, and jd 

represents the state of damage at previous times t  .  

 

 



 

 

114 
 

5.4  The constitutive response 

In thesis work, the presented damage model will be enhanced with an nonlocal formulation to 

correct the mesh sensitivity problems due to strain localization in presence of material softening. 

The model has been implemented into ABAQUS/explicit within hexahedron solid elements and its 

ability to represent progressive damage is evaluated by simulating a tension test on one eight-node 

brick element. 

Therefore, a single element uniaxial stress test,  Fig. 5.3, was conducted to verify the constitutive 

response of the damage model. The predicted reaction/displacement curve of the cubic element 

subjected to monotonic tension is shown in Fig. 5.4. 

 

 

Fig. 5.3 – One-element test. Material data source in Ref. [29]. 
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Fig. 5.4 – The constitutive response. 

 

The one-element test is used to observe even the effect of the exponent m  on the constitutive 

response. This exponent determines the brittle/ductile response of the element. In fact it can be seen 

that smaller values of m  make the material more ductile that is a material that absorbs more energy 

prior to complete damage, with significant stiffness degradation prior to failure and a more gradual 

loss of stiffness after failure; conversely higher values give the material more brittle behavior with 

little or no loss in stiffness prior to failure and full damage corresponding to zero stiffness shortly 

after failure. These qualitative observations were used later as a guide in selecting values of the 

parameters im  in Eqn. 5.17. 

 

 

 

 



 

 

116 
 

References 

[1] R. C. Batra, G. Gopinatha, J. Q. Zheng, “Damage and failure in low energy impact of fiber-

reinforced polymeric composite laminates”, Composite Structures, 2012, 94:540–547. 

[2] P. D. Soden, A. S. Kaddour, M. J. Hinton, “Recommendations for designers and researchers 

resulting from the world-wide failure exercise”, Compos. Sci. Technol., 2004;64:589–601. 

[3] A. M. Moncada, B. A. Bednarcyk, “Micromechanics-based progressive failure analysis of 

composite laminates using different constituent failure theories”, Journal of Reinforced Plastics 

and Composites, 2012, 31(21):1467-1487.  

[4] R. Maa, J. Cheng, “A CDM-based failure model for predicting strength of notched composite 

laminates”, Composites Part B: Engineering, 2002, 33(6):479-489. 

[5] P. Maimí, P. P. Camanho, J. A. Mayugo, C. G. Davila. “A continuum damage model for 

composite laminates: Part I – Constitutive model”. Mechanics of Materials, Vol. 39, No. 10, pp 

897-908, 2007.  

[6] P. Maimí, P. P. Camanho, J. A. Mayugo, C. G. Davila. “A continuum damage model for 

composite laminates: Part II – Computational implementation and validation”, Mechanics of 

Materials, 2007, 39(10):909-919.  

[7] I. Lapczyk, J. A. Hurtado. “Progressive damage modeling in fiber-reinforced materials”. 

Composites Part A: Applied Science and Manufacturing, 2007, 38(11):2333-2341.  

[8] F. P. Van Der Meer, L. J. Sluys. “Continuum models for the analysis of progressive failure in 

composite laminates”. Journal of Composite Materials, 2009, 43(20):2131-2156. 

[9] X. Xiao. “Modeling energy absorption with a damage mechanics based composite material 

model”. Journal of composite materials, 2009, 43(5):427-444. 

[10] P. Ladeveze, “Sur une theorie de l’endommagement anisotrope”, Report 34, Laboratoire de 

Mecanique et Technologie, Cachan, France, 1983. 



 

 

117 
 

[11] R.. A. Talreja, “Continuum mechanics characterization of damage in composite materials”, 

Proc. Royal Soc. London, 1985,399:195–216. 

[12] L. Kachanov, “On the creep rupture time”, Izv Akad Nauk SSSR, 1958; 8:26–31. 

[13] Y. Rabotnov, “On the equations of state for creep. Progress in applied mechanics”. Prager 

Anniversary vol. New York: Macmillan; 1963. 

[14] P. Ladeveze P, E. Le Dantec, “Damage modeling of the elementary ply for laminated 

composites”, Compos. Sci. Technol. 1992;43:257–67. 

[15] J. R. Xiao, B. A. Gama, J. W. Gillspie. Progressive damage and delamination in plain weave S-

2 glass/SC-15 composites under quasi-static punch shear loading. Compos. Struct.; 2007; 

78:182-96. 

[16] X. Xiao, M. Botkin, N. Johnson, “Axial Crash Simulation of Braided Carbon Tubes Using LS-

DYNA, Part 1: Material Model”, ACC TR EM03-02, September 2003. 

[17] K. V. Williams, R. Vaziri, “Application of a damage mechanics model for predicting the 

impact response of composite materials”, Compos. Struct., 2001;79:997–1011. 

[18] C. F. Yen, A. Caiazzo, “Innovative Processing of Multifunctional Composite Armor for 

Ground Vehicles; ARL-CR-484; U.S. Army Research Laboratory: Aberdeen Proving Ground, 

MD, 2001. 

[19] A. Matzenmiller, J. Lubliner, R. L. Taylor. “A constitutive model for anisotropic damage in 

fiber composites”. Mechanics of Materials, 1995, 20(2):125-152. 

[20] K. Gupta, B. P. Patel, Y. Nath, “Continuum damage mechanics approach to composite 

laminated shallow cylindrical/conical panels under static loading”, Composite Structures, 2012, 

94(5):1703-1713. 

[21] S. Murakami, “Continuum Damage Mechanics – A Continuum Mechanics Approach to the 

Analysis of Damage and Fracture”, Springer: Dordrecht, Heidelberg, London, New York, 

2012. 



 

 

118 
 

[22] N. Bonora, “A nonlinear CDM model for ductile failure“,Engineering Fracture Mechanics, 

1997, 58(1):11-28. 

[23] J. Lemaitre, “Evaluation and dissipation of damage in metals submitted to dynamic loading”, 

Proceedings I.C.M.I. Kyoto, Japan, 1971. 

[24] J. Lemaitre, “A continuous damage mechanics model for ductile fracture”, J. Eng. Materials 

and Technol., 1985, 107: 83–89. 

[25] J. Simo, J. Ju, “Strain and stress based continuum damage models. Formulation”, International 

Journal of Solids and Structures, 1987, 23(7):821-40. 

[26] A. Sluzalec, “Theory of thermomechanical processes in welding”, Springer, 2005.  

[27] M. Jirásek, “Damage and Smeared Crack Models”, Numerical Modeling of Concrete Cracking 

CISM International Centre for Mechanical Sciences, 2011,  532:1-49. 

[28] “A progressive composite damage model for unidirectional and woven fabric composites”, 

User manual version 10.0, Materials Sciences Corporation & University of Delaware Center for 

Composite Materials, 2011. 

[29] H. Y. Choi, F. K. Chang, “A model for predicting damage on graphite/epoxy laminated 

composites resulting from low-velocity point impact”, J. Compos. Mater., 1992; 26(14):2l34-

2169. 

 

 

 

 

 

 

 

 

 



 

 

119 
 

 

 

 

 

 

 



 

 

120 
 

CHAPTER 6 

NONLOCAL APPROACH 

6.1  Strain softening and strain localization 

In many heterogeneous materials such as concrete, rock, filled elastomers, wood, paper, and 

especially fiber reinforced composite which are object of study in this thesis, failure occurs by 

progressive damage which is manifested by phenomena such as microcracking and void formation. 

The scale of these phenomena, as compared to the scale of practical finite element meshes, is 

usually too small to be modeled and their effect must be incorporated in the numerical analysis 

through a macroscopic description of damage which can be captured by a constitutive model that 

exhibits a gradual decline of stress to zero at increasing strain (the so-called strain softening) 

beyond some critical strain [1]; essentially the softening behavior acts as a precursor to complete 

rupture. 

Several studies [2,3,4] have shown that damage growth in a fiber reinforced polymer composite 

structure manifests itself in the form of overall strain softening of the material and that physical 

origin of softening is in the propagation and coalescence of defects such as voids or cracks. Strain-

softening models have received a great deal of attention in the last decade for describing the fracture 

of concrete and other heterogeneous brittle materials. 

Continuum Damage Mechanics (CDM) is one of the methods that can be used to capture the strain 

softening type behavior (material degradation). Continuum damage mechanics (CDM) is a 

constitutive theory that describes the progressive loss of material integrity due to the propagation 

and coalescence of the above said defects which lead to a degradation of material stiffness observed 

on the macroscale. In the framework of continuum mechanics, continuum damage models describe 
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the changes of material stiffness and strength, caused by the evolution of defects [5,6]. The density 

and orientation of microdefects can be approximated by certain internal variables whose number 

and character depend on the complexity of the model [7]. 

Unfortunately, numerical studies show that when strain softening behavior is introduced in a 

conventional local constitutive law then implemented in a finite element analysis software, the 

numerical result exhibits undesirable characteristics. It is well known that softening may lead to 

localization of inelastic strain into narrow process zone (this phenomenon is called strain 

localization). In detail, using a rate-independent strain softening material model, results dependent 

on the finite element discretization are obtained [8,9,10,11]; they show an extreme sensitivity with 

respect to the fineness and direction of the spatial discretization that is employed. Moreover upon 

refinement of the discretization, convergence is observed to a solution in which deformation is 

localized in an infinitely narrow band. This response is physically inappropriate in that with 

increasing mesh refinement the energy dissipated in the strain softening domain tends to zero; in 

other words, it does not allow for any energy dissipation in the fracture process [12]. 

The cause of this problem is the ill-posedness of the mathematical model. In fact, from the 

mathematical viewpoint, the underlying mathematical cause of the mesh dependence is that if 

softening is represented simply by a falling stress-strain curve in a rate-independent continuous 

material model, then the partial differential equations of motion or equilibrium which govern the 

deformation process locally will change characteristic type at the onset of softening, from 

hyperbolic to elliptic in dynamic problems and vice versa in static problems [8-12].  

In either case, the problem will become ill-posed, as the boundary and initial conditions for one 

class of equations are not appropriated for the other (initial-boundary value problem ill-posed) [8]. 

For example, in static problems, in the localization zone, where strain-softening occurs, the 

differential equations, which result from equilibrium, are no longer elliptic, while in the other parts 

of the structure, which will unload elastically, the equations stay elliptic. As a result, the governing 

equations no longer have the same character throughout the structure [13]. 
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Ill-posed problems can be regularized using different methods been presented in the open literature 

as discussed in [14]: including rate-dependence in the constitutive model [15,16,17]; by Cosserat or 

micro-polar models [18,19,20,21]; by higher-order gradient models [22,23,24,25]; by integral type 

nonlocal models [26,27,28,29,30]; changing the mesh topology in anticipation of material failure 

[31]; using a smeared cracking formulation [32]. 

Therefore, introducing higher temporal derivatives into the equations of motion or introducing 

higher special gradients into the equations of motion or using Cosserat theory or changing the mesh 

topology in anticipation of material failure or ensuring internal dissipation during failure by a 

smeared cracking formulation, it’s possible resolve some of the issues of ill conditioning when 

softening behavior is numerically implemented in finite element analysis software. All these 

approaches explicitly or implicitly introduce a material characteristic length to control the width of 

the localization band, thus prevent strain from localizing into infinitely narrow zones. The 

introduction of an internal length is justified by the material heterogeneity. The microprocesses 

which are responsible for material damage usually extend over a band and the thickness of which is 

comparable to the characteristic microstructural length (e.g. long ranging mechanisms such as 

microcrack interaction severely influence the stress state at a material point). Detailed reasons of the 

nonlocality can be found in Ref. [30] 

Out of all the methods presented here in order to avoid the discussed problem which afflicts 

continuum-based models expressed in terms of softening stress-strain relations, the nonlocal 

integral approaches are easy to program in the finite element method. Nonlocal integral formulation 

modifies damage models [29,30] by introducing nonlocal variables, which are space-weighted 

averages of local variables. The constitutive equation describing the strain localization phenomenon 

is nonlocal. In a nonlocal constitutive equation, typically, the stress in a material point not only 

depends on the strain in that point, but  also on the strain in a neighbourhood of that point. 
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In conclusion, as above said, a non-local model is able to describe the large variations of strain in 

the localization zone. The size of this zone is controlled by additional parameters, which are 

incorporated in the constitutive model. The model has to be chosen such that the governing 

differential equations remain elliptic also when softening occurs. Then, the differential equations 

stay of the same type throughout the structure when localization of deformation occurs, and a 

localization zone containing more than one element can be obtained. 

In this work, a simple and straightforward computational approach is presented for numerically 

integrating the non-local constitutive equations with little effort required to modify an existing finite 

element code. 

The nonlocal damage model presented here is founded on references [33,34] and it has been 

implemented in commercial explicit Finite Element code Abaqus via the Vectorized User MaTerial 

subroutine VUMAT. In order to prevent strain localization and strong mesh sensitivity of the 

solution, an integral-type of nonlocal model based on the weighted spatial averaging of a local 

quantity controlling material softening or degradation is developed. The desired local variable is 

turned nonlocal at a new instant time using a penality coefficient based on the local and nonlocal 

variable values at the last converged incremental step which are available for calculations. 

The effectiveness of the non-local model is assessed through the simulation of progressive damage 

growth around a notch in a composite laminate under different loading conditions.  

 

6.2  Strain softening: the problem statement  

To demonstrate that the pathological sensitivity of the numerical results to the discretization a 

simple one-dimensional localization problem is proposed by Jirásek [35] and here analyzed.  

Consider a straight bar of constant cross section A and total length L under uniaxial tension, see 

Fig. 6.1).  
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Fig. 6.1 – Bar under uniaxial tension (Jirásek) [35]. 
 
 

 

However, it’s possible to have even a material layer under shear loading and all the results can be 

reinterpreted in terms of the shear problem, simply by replacing the normal stress by shear stress, 

normal strain by shear strain, Young’s modulus by shear modulus, etc.  

A bilinear stress-strain constitutive relation with linear elastic behavior up to the peak stress, tf

(damage-onset strength) followed by linear softening, see Fig. 6.2, is assumed to represent the 

material response. 

 

 

Fig. 6.2 – Stress-strain diagram with linear softening (Jirásek) [35]. 
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If 0 /tf E   , where E is Young’s modulus of elasticity, the peak stress is attained. The tensile 

strain at which, after the damage onset, the transmitted stress completely disappears (tensile failure 

strain) is denoted by f  . 

When an displacement u  is applied at one of the supports, the response remains linear elastic up to 

peak stress tf  . After the peak stress, the resistance of the bar starts decreasing and at each cross 

section, stress can decrease either at increasing strain (softening behavior) or at decreasing strain 

(elastic unloading). The equation of equilibrium implies that the stress profile must remain uniform 

along the bar. However, at any given stress level  between zero and tf  there exist two values of 

strain s and u for which the constitutive equation is satisfied, Fig. 6.3, and so the strain profile 

does not have to be uniform. 

 

 

Fig. 6.3 –Two strain values corresponding to the same stress level (Jirásek) [35]. 
 

Denoting by sL  the cumulative length of the softening regions and by u sL L L  the cumulative 

length of the unloading regions, the material, for example, can be softening in an interval of length 
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sL  and unloading everywhere else in an interval of length uL . When the stress is completely relaxed 

to zero, the strain in the softening region is s f  and the strain in the unloading region is 0u  ; 

the total bar elongation is therefore s s u u s fu L L L      but the softening region length sL

remains undetermined and it can take any value within the interval [0,L]. This means that the 

structural problem has infinitely many solutions, and the corresponding post-peak branches of the 

load-displacement diagram fill the fan shown in Fig. 6.4. 

 

Fig. 6.4 – Fan of possible post-peak branches of the load-displacement diagram (Jirásek) [35]. 
 

The uncertainty in the length sL of the softening regions is removed if imperfections are taken into 

account. The imperfections can be associated with the material (its properties are non-uniform) or 

the bar geometry (bar sectional dimensions are non-uniform). If the strength in a small region is 

supposed slightly lower than in the remaining portion of the bar, when the applied stress reaches the 

reduced strength, softening starts and the stress decreases; consequently, the material outside the 

weaker region must unload elastically, because its strength has not been exhausted. Therefore if the 

loading process is performed on a bar with geometric or material imperfections, the strain will 

localize in the weakest cross-section in combination with vanishing energy dissipation. 
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As stated above it’s possible conclude that the softening region size cannot exceed the size of the 

region with minimum strength. However, the region with minimum strength can be arbitrarily 

small, and the corresponding softening branch can be arbitrarily close to the elastic branch of the 

load-displacement diagram. Therefore, as argued by Jirásek, the standard local damage model 

accounting for strain-softening leads to a solution that has several problems: (1) the region of 

material softening is infinitely small; (2) the load displacement diagram always exhibits snapback, 

independently of the structural size and of the material ductility; (3) the total amount of energy 

dissipated during the failure process is zero. 

 

Fig. 6.5 – Effect of mesh refinement on the numerical results: load-displacement diagrams (Jirásek) [35]. 

 

From the mathematical point of view, these problems are related to the so-called loss of ellipticity 

of the governing differential equation which occurs when the tangent modulus, after peak-stress, 

ceases to be positive and the boundary value problem becomes ill-posed, i.e., it does not have a 

unique solution with continuous dependence on the given data. From the numerical point of view, 

ill-posedness is manifested by sensitivity of the results to the size of finite elements. If a bar is 

discretized by finite elements and if the numerical algorithm properly captures the localized 

solution, the softening region extends over one element and the slope of the post-peak branch 

depends on the number of elements, see Fig. 6.5 [35] 
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6.3  Strain softening: the numerical problem 

The loss of uniqueness in the post-critical regime, from the numerical point of view, is manifested 

by pathological sensitivity of the results to finite element discretization (i.e. from size of finite 

elements). In this paragraph, the problems related to strain softening when a local constitutive 

model is used, are demonstrated by the example of a three-dimensional bar loaded in tension. The 

implemented local constitutive model in the software ABAQUS is that discussed in Chapter 5. 

The bar, with length L = 10 mm, uniform square transverse cross section of 1mm x 1mm and with a 

fixed end (it is prevented from moving longitudinally), is divided into eleven elements initially, then 

fifteen and finally thirty-one elements and it is loaded by prescribing the displacement at x = L (at 

non-fixed end), see Fig. 6.6. The model is meshed with linear 8-noded hexahedral elements 

(ABAQUS element type C3DR8), which possessed 3 degrees of freedom per node. The ABAQUS 

automatic mesh generator is used to build the mesh. The discretization is done in such a way that in 

the center of the bar there is one element. The bar is made of generic isotropic material that can be 

damaged when the strain in the longitudinal direction satisfies the maximum strain criterion. 

 
 

 

Fig. 6.6 – Bar loaded in displacement-controlled uniaxial tension. 
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Suppose the existence of a stress concentration in the center of the bar which is simulated by a 

marginally lower tensile strength for the central element, Fig. 6.7. 

 

 

Fig. 6.7 – Discretized bar (eleven elements) with weak element in its center. 
 

 

When the bar is subjected to-the prescribed displacement, the weakened element will reach its 

tensile strength first, and as a result the strain localizes into this element. In the other neighbouring 

elements, the tensile strength is not reached, and they will unload elastically. 

The response curves in Fig. 6.8 show that the normalized reaction force versus imposed normalized 

displacement response of the bar is mesh dependent. Because of the strain concentration, 

localization occurs in one element, irrespective of its size.  

Therefore if the numerical algorithm properly captures the most localized solution, the softening 

region extends over one element, and the length of the softening region is given by /s eL L N . The 

slope of the post-peak branch therefore strongly depends on the number of elements, and it 

approaches the initial elastic slope as the number of elements tends to infinity. 
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Fig. 6.8 – Normalized reaction force versus imposed normalized displacement at the right end of the bar. For 
an increasing number of elements, the contribution to the strain of the elements which unload increases and 
a more brittle post-peak response occurs. In the extreme case of an infinite number of elements, the post-
peak behavior doubles back on the original loading curve (elastic branch) and the dissipated energy tends to 
zero [35]. 
 

 

6.4  Integral type nonlocal model 

Nonlocal formulations have a regularizing effect on problems with strain localization. They can act 

as efficient localization limiters [7]. The nonlocal models of the integral type remove the classical 

assumption of locality and they assert that the material state at a point depends not only on the 

variables at that point but in general on the distribution of variables over the whole body, or at least 

on their distribution in a finite neighborhood of the point under consideration [35]. Details of the 

integral-type nonlocal models can be found in Ref. [30] 

Consider a solid three-dimensional Euclidean space that occupies the domain V, consisting of 

damaging elastic material. Generally speaking, the nonlocal approach consists in replacing a certain 

variable or more variables (typically, state variables) by their nonlocal counterpart obtained by 
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weighted averaging over a spatial neighborhood of each point under consideration. If ( )f x  is some 

“local” field in a domain V (the body of interest), the corresponding nonlocal field is defined as: 

 

( ) ( , ) ( )
V

f f d x x   
 

(6.1) 

 
where ( , ) x   is a given nonlocal space weight function that has as its purpose the description of 

the interactions between nearby particles. Therefore, a non-local variable can be obtained by 

averaging the associated local quantity through the above integral. The integral introduces a 

diffusive effect in the constitutive model, which prevents the non-local variable to spuriously 

localise into a narrow band as the spatial discretization becomes finer [36]. 

For physically sound formulations, the weight function is required to be positive and symmetric 

( , ) ( )  x x   as it depends only on the distance r  x  . It must have its maximum value 

for 0r   x   (i.e. for =x  ) and it must decrease monotonically and rapidly to zero for 

increasing r  (i.e. the nonlocal interactions are effective only in a small, but finite, neighbour of the 

field point). 

In an infinite domain, the space weight function depends only on the distance between the “source” 

point,  , and the “receiver” point, x . Indeed, in an finite body and in the vicinity of a boundary, the 

weight function is usually rescaled such that the nonlocal operator does not alter a uniform field 

[30]: 

( )
( , )
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ov
d








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x
x

x




 
 

(6.2) 

where 0 ( )r is a monotonically decreasing non-negative function of the distance r  x  . 

In the one-dimensional setting, x  and  are scalars and the domain of integration V reduces to an 

interval. 
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The weight function is often taken as the Gauss distribution function: 

 

2

0 2( ) exp
2
r

r
l


 

  
     

(6.3) 

 
where l  is a parameter representing the internal length of the nonlocal continuum. Another possible 

choice is the bell-shaped truncated quartic polynomial function: 
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(6.4) 

 
where R is a parameter related to the internal length. Since R corresponds to the largest distance of 

point   that effects the nonlocal average at point x , it is called the interaction radius. 

It is noted that the Gauss function has an unbounded support, i.e., its interaction radius is R   . In 

both cases l and R  play the role of an internal length parameter which controls the nonlocal spatial 

spread of the local variable. However, for computational applications, it is more advantageous and 

efficient to use attenuation functions with a finite support as the polynomial bell-shaped function 

[30]. 

 

 

6.5  Approximate nonlocal approach  

The implementation in a finite element software of a nonlocal regularisation method of integral-

type is not straightforward due to presence of the integral in the constitutive evolution equations 

that prevents the model to have the consistency condition fulfilled locally [36]. In fact, the 

numerical implementation of a nonlocal model in a commercial finite element software ABAQUS 
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requires access to all integration points of finite elements constituting the mesh in order to proceed 

with the global integration scheme. Generally this is not a problem if it’s possible have full access 

to the source code of the finite element software, or at least, if it’s possible have access to the 

algorithm that assembles the internal force vector. Unfortunately, most of the commercial FE codes 

do not allow the user a lot of freedom and restrict the constitutive model defined by the user to only 

some calculations in Gauss points of each element. However the global integration can be avoided 

by using an alternative formulation that approximates the nonlocal theory. This approach comes 

from a study of Cesar De Sa et al. [36] based on that proposed by Tvergaard and Needleman [37] 

and it consists in transforming a local variable in one nonlocal at the same instant of time using just 

a product: 

 

1 1var * varnonloc nonloc loc
n nfact   (6.5) 

 

where nonlocfact is a penality factor  defined as: 

var
var

nonloc
nonloc n

loc
n

fact 
  

(6.6) 

In the equation above, var loc
n and varnonloc

n are respectively the values of local and nonlocal at last 

incremental step convergent. The calculation is performed locally and the selected local variable at 

the new instant n+1, 1varloc
n , is penalized with the coefficient nonlocfact in order to obtain the nonlocal 

value of the same variable at the same instant of time, 1varnonloc
n .  

Therefore, with the nonlocal method, each integration point must query the surrounding integration 

points during the evaluation of material behavior. The limitation of this approach, as rightly stated 

by the authors in Ref. [36], is that the time step must be kept small enough to avoid instability in the 

solution. In explicit codes the size of the time step must be necessarily small in order to provide 
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stable solutions, so it’s not a severe problem. The use of an approximate expression such as the one 

in Eqn. 6.5 is very attractive from a point of computational view because the update can be 

performed locally and the time step will be necessarily small. 

The constitutive model which allows the material softening (damage) and in which the nonlocal 

approach is introduced is discussed in Chapter 5. The strain components that regulate the material 

softening after damage onset are the chosen local variables for nonlocal treatment above discussed. 

Alternatively, it’s possible consider the damage variables as demonstrated in Ref. [38]. 

 

 

6.6  Nonlocal damage model assessment  

To verify the effectiveness of the implemented nonlocal method, the bar in tension, with a weak 

part in the center, already used in paragraph 6.2 to demonstrate the mesh-size dependency problem 

associated with strain softening, is initially considered. 

 

  

Fig. 6.9 – Predicted force-displacement responses for a bar subjected to an axial load. The bar was 
simulated with two different numbers of elements: 15 and 31 elements. 
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Two different spatial discretization using 15 and 31 elements are taken. An explicit dynamic 

analysis is then performed on this structure. The simulations is carry out under displacement 

controlled condition where one end of the bar was pulled under a constant rate. The Fig. 6.9 shows 

the predicted force versus elongation curves for the two  mesh sizes. It can be noted that by refining 

the mesh, the response of the structure doesn’t change significantly. 

 

 

Fig. 6.10 – Specimen geometry of carbon/epoxy laminate (dimensions are given in mm). 
 
 

In order to demonstrate the effectiveness of the proposed procedure for the treatment of strain 

localization, a laminate structures with geometric imperfections is taken into account. In detail the 

structural response of a double-notched carbon/epoxy composite laminate under uniaxial tension is 

numerically investigated by means of ABAQUS/Explicit commercial code in which the model is 

implemented. Abaqus/Explicit is particularly well suited for the simulation of discontinuous and 

unstable events. The problem of a double notched specimen under uniaxial tension was 

experimentally and numerically analyzed by Pham Dinh Chi in [39]. The material under study is the 

unidirectional AS4/3501-6 and its mechanical properties obtained from [39] are given in Tab. 6.1. 

The laminate is quasi-isotropic with layup [45/90/-45/0]s. The finite element model is constructed 

with linear eight-node brick elements with reduced integration (C3DR8) and with a single element 

over the thickness of the ply. The boundary conditions of the model are shown in Fig. 6.11. Only 

half of the structure is modeled due to symmetry. The tensile loading is imposed by enforcing the 

longitudinal displacement of all nodes along the right edge.  
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Modulus in fiber direction E1 (GPa)  147 

Transverse moduli E2= E3 (GPa)  10.3 

Shear moduli G12=G13 (GPa)  7 

Shear modulus G23 (GPa)  3.7 

Poisson’s ratios v12= v13  0.3 

Poisson’s ratio v23  0.5 

Longitudinal tensile strength XT (MPa)  2280

Longitudinal compressive strength XC (MPa)  1725

Transverse tensile strength YT (MPa)  57 

Transverse compressive strength YC (MPa)  228 

Out‐of‐plane tensile strength ZT (MPa)  57 

Out‐of‐plane compression strength ZC (MPa) 228 

Shear strength S12=S13 (MPa)  75 

 
Tab. 6.1 – Material properties of carbon/epoxy composite. 

 

 

 

Fig. 6.11 ‐ Boundary conditions for carbon/epoxy specimen. 

 

The conditional stability for an explicit dynamic procedure requires the use of small time 

increments but this condition can be computationally impractical for the modeling of quasi-static 

events in their natural time scale (actual time taken for a physical process). Generally, it is safe to 

assume that performing an analysis in the natural time for a quasi-static process will produce 

accurate static results but to analyze quasi-static events in explicit solver event acceleration 

techniques must be employed to obtain an economical solution [40]. 
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Two methods to obtain an economical quasi-static solution with an explicit dynamic procedure are 

to increase the loading rates and to perform mass scaling [40]. In the first method the event duration 

is reduced artificially by increasing the rate at which the loading is applied while the second method 

the material density is increased artificially which in turn carries to an increase of the stable time 

increment. Only the method based on loading rate is used for the present analysis so that the same 

physical event occurs in less time as long as the solution remains nearly the same as the true static 

solution and dynamic effects remain insignificant. One approach to determining the extent to which 

the loading rate can be increased is to study the natural frequencies of the structure using a 

traditional implicit finite element analysis (Abaqus/Standard). In a static or quasi-static analysis the 

lowest eigenmode of a structure usually dominates the response; knowing this frequency and the 

corresponding time period of the lowest structural mode, it’s possible to estimate the time required 

to obtain a quasi-static response by explicit solver. One way to start the time setting is to specify a 

loading time greater than 10 times the period of the lowest eigenmode [41]. The application of 

loading must be as smooth as possible for reasons of quasi-static analysis accuracy and efficiency. 

In fact jerky movements cause stress waves, which can induce noisy or inaccurate solutions. 

Applying the load in the smoothest possible manner requires that the acceleration changes only a 

small amount from one increment to the next; if the acceleration is smooth, it follows that the 

changes in velocity and displacement are also smooth. In order to achieve this goal a displacement 

loading with SMOOTH STEP option (AMPLITUDE toolset in ABAQUS). 

As regard to length, R (for bell-shaped curve weight function), used in this work, or cl (for gaussian 

weight function), which denoted a characteristic internal length controlling the spread of the non-

local weight function, the its determination is very complex since it is related to the fracture process 

zone with a certain volume. This parameter should be considered as a material property reflecting 

the internal length scale of the microstructure, but in this study its link to the actual material is not 

considered. The aim is only to show that the strain localization problem is solved using a 

approximated nonlocal model. Therefore, the characteristic length, in the zone of interest, is 
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assumed to be at least two times the smallest finite element size since otherwise the analysis is 

equivalent to the classical local continuum analysis [42]. Therefore in the notch of the structure 

where the strain/stress is localized the finite element size must be lower than the characteristic 

length to make the nonlocal approach active. 

The Christensen failure criterion [43] is finally used in the material property degradation model to 

evaluate failure in an individual composite ply. This criterion identifies three distinct failure modes 

for a composite lamina: fiber tension, fiber compression, and matrix failure.  

The numerical results obtained by finite element simulation are compared with those present in the 

literature [39]. The progressive damage patterns predicted by the approximated nonlocal model, see 

Fig. 6.12, follow those reported in reference document and shown in Fig. 6.13, resulting in very 

close output.  

 

 

 

Fig. 6.12 ‐ Predicted damage patterns for matrix and fiber failure. In red the elements that have verified the 
Christensen criterion. The final failure in these models is caused by fiber failures in the 0° and ±45°. 
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Fig. 6.13 ‐ Predicted damage patterns for matrix and fiber failure from literature [39]. 

 

 
The ultimate load predicted by the implemented model, Fig. 6.14, is even very closely results 

obtained from experimental tests conducted on some specimens from author of Ref. [39].  

 

 

Fig. 6.14 ‐ Predicted damage patterns for matrix and fiber failure from literature [39]. 
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It is important to note that in the performed simulation no account was taken of the damage by 

delamination; so the result obtained through simulation in terms of ultimate load can overpredict the 

experimental results. Furthermore, the influence of the characteristic length on the force-

displacement curve was not taken into consideration in this work nor the influence of parameters 

that in damage model regulates the nature of matrix and fibers (brittle or ductile nature). However 

the numerical result is presented exclusively for the qualitative purpose and to demonstrate the 

effectiveness of an approximated nonlocal approach. 

Finally the problem of the strain localization in the absence of nonlocal approach is discussed. The 

strain localization is manifested by high strains in a narrow band, with a continuous transition to 

much lower strains in the surrounding parts of the body. A simulation was conducted to verify the 

problem. The damage model considered was always the same discussed in Chapter 5, but it was not 

enriched with nonlocal approach. Therefore the formation of strain localization bands near the notch 

root was numerically observed in the case examined if the local damage model was used. In Fig. 

6.15 the damage which results from this localization is shown. 

 

 

Fig. 6.15 ‐ Notch detail : damage in the absence of nonlocal approach. 

 
 
In conclusion, an approximated nonlocal approach introduced in a damage local model  constitutes 

an regularization technique that allows to describe strain localization properly, preserve the well-

posedness of the boundary value problem, obtain finite element results free from spurious 

discretization sensitivity and capture the correct damage pattern. 
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A last application of the damage model is presented in order to demonstrate the effectiveness of the 

proposed procedure for the damage prediction in laminate structures with geometric imperfections. 

In detail the structural response of a  polymer matrix composite open-hole specimen under tensile 

loading is numerically investigated by means of ABAQUS/Explicit. This investigation was 

concerns with determining the response, type and extent of damage in composite structure as a 

function of applied load. The problem of a laminated composites containing an open hole was 

analyzed by Tai in [44]. The material under study is the unidirectional IM7/5250-4 and its 

mechanical properties obtained from [44] are given in Tab. 6.2. The laminate is quasi-isotropic with 

layup [45/0/-45/90]s. The diameter of the hole is 12.7 mm and the width of the plate is 76.2 mm. 

The boundary conditions of the model are shown in Fig. 6.16. The finite element model is 

constructed with linear eight-node brick elements with reduced integration (C3DR8) and with a 

single element over the thickness of the ply, see Fig. 6.17. The tensile loading is imposed by 

enforcing the longitudinal displacement of all nodes along an edge.  

 

Modulus in fiber direction E1 (GPa)  172.4 

Transverse moduli E2= E3 (GPa)  10.3 

Shear moduli G12=G13 (GPa)  5.52 

Shear modulus G23 (GPa)  3.45 

Poisson’s ratios v12= v13  0.32 

Poisson’s ratio v23  0.4 

Longitudinal tensile strength XT (MPa)  2826.5

Longitudinal compressive strength XC (MPa)  1620 

Transverse tensile strength YT (MPa)  65.5 

Transverse compressive strength YC (MPa)  248 

Out‐of‐plane tensile strength ZT (MPa)  65.5 

Out‐of‐plane compression strength ZC (MPa) 248 

Shear strength S12=S13=S23 (MPa)  122 

 
Tab. 6.2 – Material properties of carbon/epoxy composite system. 

 

The failure criteria in [45] are used in the material property degradation model to evaluate the 

damage onset in an individual composite ply. The criteria identify four distinct failure modes for a 

composite lamina: fiber tension, fiber compression, matrix tension, matrix compression failure. 
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Fig. 6.16 – Geometry, dimensions and boundary conditions of open‐hole specimen [44]. 

 

 

 

Fig. 6.17 – Finite element mesh for open‐hole model. 
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The numerical results obtained by finite element simulation are compared with those present in the 

literature [44]. The ultimate load predicted by the implemented model, Fig. 6.18, is very closely 

results obtained both from experimental tests conducted on some specimens from author of the 

reference document and numerical simulation performed by the same through the use of a code 

based on “Element Failure Method” [46,47] and “Multi-continuum theory” [48]. 

 

 

Fig. 6.18 – Comparison with experimental results and another damage model. 

 

An example of progressive damage pattern predicted by the approximated nonlocal model is shown 

in Fig. 6.19; it is possible to note the development of tensile damage in the inner lamina when the 

load is transverse (90°) to the fiber direction. 

 

             

Fig. 6.19 - Development of matrix tensile damage for 90° ply. 
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CONCLUSIONS 

In this research are examined and developed some of the most recent studies in the field of damage 

prediction and the issues associated to the application of these methods to composite structures are 

discussed. In detail the objective of the conducted research program is to enhance the damage 

prediction model capabilities for unidirectionally reinforced continuous carbon fiber reinforced 

polymers. 

For this purpose, a cohesive-frictional model for the prediction of interlaminar damage and a non-

local constitutive model for intralaminar progressive damage simulation in composite laminated 

structures are defined. The proposed constitutive models are then implemented in the commercial 

finite element software ABAQUS which has demonstrated to be a powerful tool for implementation 

of FORTRAN Vectorized User-Material (VUMAT) and for the simulation of discontinuous and 

unstable events.  

The results obtained from research concern mainly the interfacial damage from low energy impact 

in the presence of friction and the numerical solution to the problem of the strain localization in the 

presence of material softening. They have helped to highlight the following aspects: a) the 

importance of a cohesive-frictional model used to predict the interlaminar damage induced by 

impact in composite laminates; b) the importance of a constitutive model based on the assumption 

of nonlocal continuous for the correct prediction of the damage pattern for matrix and fibers in the 

various geometric and loading conditions of the structure in composite material; c) a numerical 

procedure for the implementation of a non-local model for the explicit solver of the commercial 

software of finite element analysis ABAQUS. 

The activity of the thesis also introduces additional objectives to be achieved by future research as a 

detailed study of the delamination phenomenon at interfaces closer to the region of impact typically 

little discussed; a rigorous study of friction in laminated composite structures supported by a wide 
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experimental campaign; the investigation on the characteristic length which play important role in 

the proposed nonlocal damage model and in general the enhancement of the discussed damage 

models to make them capable of simulating a wider range of damage propagation problems in 

laminated composites. The tools to achieve the above remarks are provided in this thesis and look 

forward to new uses. 
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