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Abstract

In this work a thorough study of the electromagnetic resonances excited in a planar

metamaterial consisting of pairs of gold bars(dimers) arrayed on a dielectric substrate

is reported. In the case of equal bar lengths, bright resonance mode can easily be ex-

cited, which couple strongly to free space and posses a low Q-factor. The introduction

of bar length asymmetry induces the excitation of the so-called dark mode which cou-

ple very weakly to free space and show high Q-factors. The interaction of the dark and

bright resonant modes results in a Fano type profile of the resonance. With increasing

length asymmetry, coupling of the dark mode to free space is increased, resulting in

a lowered Q-factor. The dependence of both the dark and bright modes on the dimer

geometry and refractive index of the metamaterial environment is studied in order to

optimize the structure for a potential application as an optical bio or chemical sensor.

Effective material parameters are obtained from spectroscopic ellipsometry measure-

ments of the metamaterial deposited on a glass substrate and their physical meaning

and applicability are discussed. Experimental results show good agreement with sim-

ulation.
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CHAPTER 1

Introduction

1.1 Background

Metamaterials are a type of artificial materials which show properties that are usually

not found in naturally occurring materials. Artificially designed and fabricated struc-

tures can be arranged to control electromagnetic wave through such material, thereby

realizing novel electromagnetic effects[1].

Some of the exotic optical properties of such materials include negative refractive in-

dex, cloaking, electromagnetically induced, transparency(EIT), slow light and super-

lensing. Usually, the unit size of the particles of the metamaterial are much smaller

than the wavelength of interest. Also, the interactions between the meta-atoms of the

metamaterial can be controlled due to the flexibility in the geometry and size of the

particles, thereby opening up many interesting areas of research and applications for

such artificial materials. The size p or the unit cell of the "meta-atom" in a metamaterial

is usually smaller than the driving wavelength of light λ(p ≪ λ).

Victor Veselago first reported materials with the electric field E, magnetic field, and

wave vector κ, all forming a left handed system in his paper entitled "The Electrody-

namics of Substances with Simultaneously Negative Values of ǫ and µ" in 1967[2]. In

such a system, materials with both negative permeability and permittivity were shown
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to be theoretically possible and named negative index materials(NIM). The lack of nat-

ural materials possieing these unique properties made experimental demonstration of

NIM virtually impossible. However, practical demonstration of NIM was not shown

until a hallmark experiment by Smith et al[3]. A medium composed of copper split

ring resonators and continuous wires were shown to exhibit negative values of ǫ and

µ in the microwave region. The structure is considered as an LC-circuit, with the rings

forming the inductances and the gaps between the rings form the capacitors. For a

magnetic field whose orientation is perpendicular to the plane of the split rings, an

opposing magnetic field is induced and a frequency region of negative permeability

can result. A combination of the split ring resonator providing the negative µ and

the continuous wires providing the negative ǫ, led to a frequency region with both

µ and ǫ simultaneously negative. Other demonstrations of metamaterials exhibiting

negative index at microwave frequency have also been realized[4, 5]. Also of impor-

tance is the work of Pendry, in which he described the perfect lens for a NIM[6]. In

conventional lenses, light can not be focused beyond the diffraction limit. However,

Pendry showed that using a slab of negative refractive index material with ǫ = −1

and µ = −1, evanescent waves can be recovered, thus overcoming this limitation in

conventional lenses. In the GHz frequency range, a negative index of refraction was

experimentally demonstrated using a left handed material(LHM) composed of square

copper split ring resonators and copper wires strips on opposite sides of a fibre glass

circuit board by Shelby et. al in 2001[7]. The scattering angle of the transmitted beam

through a prism is measured, with negative refraction angles as predicted by theory for

a negative index material. Attempts have been made to realize optical metamaterials.

At optical frequencies, most materials are non magnetic with a permeability µ ≈ 1, a

positive refractive index and a positive dielectric permittivity. Thus, by scaling down
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the geometry and size dimensions of the meta-atoms, some of these exotic properties of

metamaterial can be realised at optical frequencies. With the advancement of fabrica-

tion technology, the scaling of metamaterials to optical frequencies was made possible,

hence the realization of these novel electromagnetic properties at optical frequencies.

In particular, it has been shown that by scaling down the dimensions of the split ring

resonator, negative magnetic permeability can be achieved in the terahertz frequency

range[8]. However, for frequencies in the near-infra red and visible ranges, it not al-

ways possible to scale down. Contributing to this are the limitations in fabrication

of structures with nanometer dimensions. Another limiting factor is the saturation of

resonance amplitude with decreasing size due to increasing losses in the metals[9, 10].

In metallic nanoparticles, coupling between them nanoparticles can support collective

electronic oscillations or surface plasmons. These interactions result in some phenom-

ena such as Fano resonances[11], and electromagnetically induced transparency(EIT)[12],

which have been demonstrated in meta molecules and still finding increasing research

interest. In metamaterials, an arrangement of the sizes and dimensions of the nanos-

tructures can lead to a control of these resonance interactions, thereby opening up pos-

sibilities for practical applications.

1.2 Motivation

In this dissertation I have investigated the resonant modes in nanowire metamaterial

dimer, from design, fabrication, optical characterization using spectroscopic ellipsom-

etry technique, and I studied possible applications of the device. The objectives were

to design a nano structured device for sensing, with operating frequency in the optical

regime. I demonstrate that the asymmetric dimer configuration of nanowires supports
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a strong Fano-type resonance, from interference between dark and bright resonances.

Experimental measurements show a good agreement with the numerical simulations.

At optical frequencies the behaviour of metals comprising the nanowires are very lossy

and can no longer be assumed to follow the standard Drude model. Obtaining low loss

and high quality factor is of interest at optical frequencies for applications in areas such

as sensing and tunable optical devices. In this thesis I also explored the possibility of

using the nanowire dimer for biological and chemical applications. Given the very

small dimensions and sizes of the nanostructures, fabrication of the device becomes

more stringent. Hence, another objective was to develop a fabrication process with

good repeatability for the fabrication of the nanostructures. A further objective was the

detailed investigation of the optical response of the structure using spectroscopic ellip-

sometry techniques. The ellipsometer as an instrument is quite sensitive as it not only

measures the intensities of light but also gives the ratio of the phase changes between

the polarizations. However, its use in metamaterial characterization is not widespread

and moreover is heavily debated in literature. Thus, in this dissertation I also explored

the feasibility of the optical characterization of the fabricated sample using ellipsomet-

ric techniques.

1.3 Thesis structure

In this dissertation, a thorough study of nanowire dimers and properties of the reso-

nances of the structure for the optical frequency regime is presented. Characterization

using the methods of spectroscopic ellipsometer is discussed.

In Chapter 2, the design of the nanowire dimer. The excitation of bright and dark

mode resonances in the structure has been investigated using Finite-Difference Time-
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Domain(FDTD) simulations. In the symmetric dimer configuration with equal lengths

of nanowires, only a bright mode resonance is present. However, with the introduc-

tion of a length asymmetry within the structure, the dark modes can be excited. The

behavior of the resonances is described using a hybridization model for the dimer. The

Fano-type resonance of the dark mode with a characteristic quality factor higher than

that for the bright mode is exploited for possible applications as a sensor due to its

high sensitivity and figure of merit(FOM). The possibility of a tunable device using the

dimer is discussed.

Chapter 3 reports the fabrication procedure for the dimer nanostructures described in

Chapter 2.

In Chapter 4 the optical characterization of the fabricated nanostructure using spectro-

scopic ellipsometry techniques is discussed. A description of the procedure involved is

outlined. Optical models were obtained from the matching of the measured ellipsome-

ter parameters Ψ and ∆ to those simulated by fitting to a model of structure. From

the fit, the dielectric properties of the substrate and the fabricated nanostructures is

extracted. Experimental measurements are shown to be in agreement with numerical

results that were discussed in Chapter 2.

Chapter 5 discusses the possible applications of the dimer metamaterial as sensors for

biological or chemical sensing. Here, we have shown that the dark modes are generally

sensitive to changes in the dielectric environment compared to the bright, due to the

higher quality factor resulting from a higher electromagnetic energy confinement. This

property of the dark modes has been employed towards realizing a possible sensing

device, with a Figure of Merit as high as 7. Also, the possibility of a tunable device has

been investigated, with the resonances being controlled by an anisotropic environment,
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with the dimer showing a high promise as a tunable device. Finally, we have discussed

the possible challenges and future extension to the work discussed so far.
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CHAPTER 2

Metamaterial Dimer Design

2.1 Introduction

Recently, the tremendous advances in material science and technology have led to the

implementation of new classes of artificial electromagnetic materials called metamate-

rials, that can be define as composites with useful and unusual electromagnetic prop-

erties offered by the specific response of constituents. In anomalous effects such as

negative refraction[13, 14], optical magnetism[15], optical activity without chirality of

scatterers[16] etc., the geometrical shape of "metamolecules" plays a decisive role. Most

of these properties originates from the ability of scattering elements to support res-

onances. The flexibility in the geometry of metamaterials has enabled the tailoring

of interactions between resonances. In symmetric "metamolecules", super radiant or

bright modes couple to the incident field, producing broad and lossy resonances. With

the introduction of asymmetry in the geometry, trapped or dark modes which are not

normally excited in the symmetric structure can be excited[17, 18]. These dark mode

resonances weakly couple to free space[19] and therefore have high quality factor Q.

A Fano type resonance can result from the interference of the bright and dark modes,

resulting in an asymmetric spectral profile[11]. Studies of this resonance in various

plasmonic systems have been carried out over the years[20]. Fano resonances caused
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by symmetry breaking have been reported in different structures such as vertically

stacked metal nanowire pairs of same length and displaced along their axis[21], split

rings[22], ring/disk systems[23, 24], just to list a few. These induced resonances have

the ability to concentrate the electromagnetic field in small regions thereby increas-

ing the interaction with matter, thus making them suitable for applications such as

sensors[25–29]. Increasing the Q factor of dark modes is particularly important for pla-

nar metamaterials (nanostructured metasurfaces) which are optically thin structures

and therefore don’t have a resonating volume for high energy confinement. Planar

metamaterials with engineered surface plasmon polaritons are promising for applica-

tion as chemical and biological sensors. Thus, the size and shapes of these nanoparticle

greatly affect the resonances, which is also known to be affected by the dielectric en-

vironment around the nanoparticles[30]. For near infrared or visible wave ranges, the

sizes and dimensions of the planar nanostructures necessitate the need for advanced

fabrication mechanism, which in most cases can be quite expensive, depending on the

complexity of the structure. Therefore, a reduction in the complexity of their geometry

is highly desirable, since this would decrease fabrication time and cost dramatically.

We numerically study a planar metamaterial composed of gold nanorod dimers and the

excitation of dark Fano type resonances in this structure. We report on the parametric

analysis of the modes excited by electromagnetic wave incident onto the metasurface.

The calculated transmission spectra are explained using distributions of local electric

field and current on the nanorod surface. The Fano resonance, which is excited due to

the asymmetry in the length of the nanorods of the dimer, shows a high quality factor

and a sharp dependence of its frequency on the ambient environment refractive index.

These properties of the dimer are discussed in view of the possible application of the

asymmetric dimer metamaterial for optical sensing.
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2.2 Dimer metamaterial geometry and numerical model

The periodic arrangement of metallic dimers can mimic magnetic atoms, which have

been shown in structures such as split ring resonators, etc. In the dimer configuration,

the arrangement of the nanowires is such that coupling between the nanowires can

result in resonances which display different responses to the incident electric field. The

observed resonance behavior resulting from the coupling can have peculiar properties

related to the manner in which the coupling occurs. Hence, depending on the coupling,

symmetric and asymmetric resonance behaviors can be excited in the structure. The

dimer metamaterial(metasurface) structure studied here is composed of gold nanorods

of varying length deposited on an Indium Tin Oxide(ITO) coated glass substrate. The

very thin(25nm) ITO film acts as an adhesive layer. The unit cell of the dimer structure

is sketched in Fig. 2.1 whereas in Fig. 2.2, a three dimensional view of the structure is

shown.

Figure 2.1: Schematic of the dimer metamaterial unit cell. The geometrical parameters

of the dimer are the lengths L1 and L2 of the gold nanorod(yellow). The

nanorods have equal widths of w = 70nm are separated by a gap size of

g = 50nm. The gold thickness is 30nm for both nanorods.
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Figure 2.2: Incident field is along the z direction, normal to the plane of the dimer,

with electric field polarization E along x direction. The periodicity of the

structure is 300nm along both the x and y directions.

The lengths of the gold nanowires(yellow) are L1 and L2. The value of L2 is fixed at

200nm, whereas L1 is varied. Both nanowires have equal width w = 70nm and thick-

ness(along z-direction) of 30nm. The nanowires are separated by a gap of g = 50nm.

The dimers are distributed periodically in the x and y directions with a periodicity of

300nm in both directions. The permittivity of the ITO layer and the glass substrate

are taken as 3.8 and 2.25 respectively. To model the gold response, a Drude model

for the dielectric function ε (ω), given by ε (ω) = 1 −
ω2

p

ω2+iγω
is used, where ωp is the

plasma frequency, γ the damping constant and ω the frequency. A plasma frequency

of 1.37 × 1016Hz is used. A damping rate of 1.2 × 1014Hz was used, taking into account

the scattering losses in the gold film[26, 31–33]. A finite difference time domain (FDTD)

commercial solver, CST MWS, was employed to perform the numerical electromag-

netic simulations for the structure. In the simulations, the incident wave propagation

direction is along the z-axis, normal to the plane containing the gold nanowires, and is

polarized along the x-axis as shown in Fig. 2.2. In this study of the metamaterial dimer,

we define a length asymmetry α = L2 − L1, that is the length difference between the

gold nanowires.
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2.2.1 Spectrum for single nanowire and dimer

The electromagnetic response of a single nanowire of the dimer can be firstly simulated.

In this case it is the nanowire of length L2 on the ITO coated glass substrate. With the

electromagnetic wave incident on the planar surface, as shown in Fig. 2.2, the spectrum

of the scattering parameter S21, corresponding to the transmission coefficient is shown

in Fig. 2.3.

In this single nanowire configuration, a broad resonance at around 300THz is excited.

This resonance is a dipolar type resonance, as seen from the electric field plot at reso-

nance, shown in Fig. 2.4.

Figure 2.3: Transmission spectrum for a single nanowire of the dimer.

Figure 2.4: Electric field distribution at resonance in the nanowire.

Also, the current density at resonance further shows the charge oscillation at resonance
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with a dipole like behaviour.

2.2.2 Symmetric and asymmetric dimer

A combination of the nanowires of length L1 and L2 is then investigated for differ-

ent dimer configurations. In the symmetric dimer, with L1 = L2, the resonance of

the structure is simulated again for an incident wave normal to the dimer surface and

electric field polarization along the dimer long axis as shown in Fig. 2.2. In the sym-

metric dimer with L1 = L2 or α = 0, a single resonance is excited at a frequency of

around 340THz (see Fig. 2.5). This resonance is similar to the one shown by the sin-

gle nanowire in Fig. 2.3. Thus, a combination of both nanowires in the dimer does

not effectively change the nature of the resonance. The electric field distribution in the

symmetric dimer at resonance is shown in Fig. 2.6. The symmetric dimer behaves as a

dipole with a field distribution which is in phase in both arms of the dimer. The field

distribution results in a current distribution in both arms of the dimer. From the cur-

rent density plot, a parallel current oscillation in both arms of the dimer is observed

as shown in Fig. 2.7. The field in both arms of the dimer interferes constructively, re-

sulting in the radiant nature of the observed broad resonance. In the absence of length

asymmetry or α0, a broad dipolar resonance therefore occurs at about 341.2THz, which

represents a bright or super radiant mode with a strong coupling to free space.
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Figure 2.5: Transmission spectrum for the symmetric dimer(L1 = L2).

Figure 2.6: Electric field distribution in the symmetric dimer at resonance with α = 0.

Figure 2.7: Current density in the symmetric dimer at resonance with α = 0.

We then consider the dimer structure with a length asymmetry parameter α = L2 −

L1introduced in the length of the nanowires. In the study, L2 = 200nm whereas L1 is

varied to introduce the asymmetry. The asymmetry is introduced from both ends of

L1(as shown in Fig. 2.8) such that a mirror plane still exists normally to the long axis of

the nanowires.
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Figure 2.8: Asymmetric dimer configuration. The asymmetry is introduced with the

length L1 of a single nanowire from both ends so that α = L2 − L1 6= 0.

For a dimer with lengths L1 = 170nm and L2 = 200nm or asymmetry length param-

eter of α = 30nm, we simulate its resonance response to the external field due to the

influence of the introduced asymmetry. With the introduction of asymmetry, we can

observe two resonances: a higher frequency resonance at around 360THz and an as-

sociated lower frequency resonance at around 270THz, as shown in the transmission

spectrum in Fig. 2.9. The lower frequency resonance is very narrow compared to the

broad higher frequency resonance.

Figure 2.9: Transmission spectra for the Asymmetric dimer with α = 30nm and L1 =

170nm. Inset shows the excited dark resonance.

The characteristics of these excited resonances in the asymmetric dimer can be high-

lighted from their field distributions. Thus, we calculate the electric field distributions
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at the respective resonances for the narrow lower frequency and the broad higher fre-

quency respectively. For the higher resonance frequency around 360THz, this is shown

in Fig. 2.10

Figure 2.10: Electric field distribution in the asymmetric dimer with α = 30nm for the

bright mode resonance. The electric field is in phase in both arms of the

asymmetric dimer.

Figure 2.11: Current density in the asymmetric dimer with α = 30 at the bright mode

resonance.

At resonance, this higher mode displays a dipole-like oscillation. In both arms of

the asymmetric dimer, the field distribution is in phase. This higher resonance is a

bright mode with characteristics similar to the bright mode resonance in the symmet-

ric dimer configuration. Likewise, the current distribution for this resonance is shown

in Fig. 2.11. A parallel current oscillation in both arms of the asymmetric dimer L1 and

L2 is induced at resonance for the bright mode, similarly to what happens for the bright

mode resonance in the symmetric dimer(Fig. 2.7).

As shown in Fig. 2.9, in addition to the already higher frequency resonance bright mode

which easily couples to the incident field, a lower frequency resonance mode is also

15



excited. In the symmetric dimer spectrum in Fig. 2.5, this lower resonance mode is not

present. This subradiant or trapped mode shows a weak coupling to the incident beam

[34], thereby displaying a narrow resonance profile compared to the bright mode. The

nature of this dark mode can be further seen from the field distribution in the arms of

the asymmetric dimer at resonance, in Fig. 2.12. An opposite field distribution can be

observed in the dimer arms L1 and L2, with a π phase difference between the fields.

This results in an antisymmetric current oscillation in both arms of the dimer at the

dark mode resonance as shown in the current density plot in Fig. 2.13, explaining the

very low radiation loss of this mode[19, 22, 35].

Figure 2.12: Electric field distribution in the Asymmetric dimer with α = 30nm for the

dark mode resonance, with opposite field distribution in the dimer arms

L1 and L2 respectively.

Figure 2.13: Current density in the asymmetric dimer with α = 30nm at the dark mode

resonance.

The surface current distribution shown in Fig. 2.13 indicates that the lower energy res-

onance is of magnetic origin. The induced parallel(Fig. 2.11) and anti-parallel(Fig. 2.13)

current behaviour for the bright mode and the dark mode respectively in the asym-
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metric dimer can be attributed to the bonding and anti-bonding modes in plasmon

resonance hybridization[36], as it will be explained in the next section.

Interference between the bright and the dark modes can occur, resulting in a Fano-type

profile of the resonance as seen from the dark mode resonance in Fig. 2.9. The sharp

asymmetric Fano-type profile of this resonance shows some characteristic dip and peak

features[19, 21, 22, 29, 37, 38].

2.2.3 Plasmon Hybridization in the dimer

In this section the resonance behavior in the dimer metamaterial using a plasmon hy-

bridization picture[36, 39] is described. The subradiant resonance of the asymmetric

dimer can be viewed in terms of an LC circuit. The anti-parallel currents contribute

to the inductance L, whereas the gap between the nanowires of the dimer contribute

to the capacitance C. The interaction between the individual nano wires of the dimer

gives the overall plasmon response of the dimer structure. Fig. 2.14 shows a picture

of the hybridization scheme for the dimer. For the symmetric dimer, only a single res-

onance appears at energy level | w0 >. With the introduction of asymmetry in the

dimer, with L1 6= L2, two resonances are excited. The plasmon hybridization in asym-

metric dimer results in the excitation of two separate modes with a higher energy level

| w+ > and a lower energy level | w− > as shown in the spectrum in Fig. 2.15. The

higher energy level is the bright dipolar resonance whereas the lower energy level is

the dark subradiant mode. At the higher energy mode | w+ >, an in-phase charge

oscillation results in a repulsive force between the nanowries L1 and L2 of the asym-

metric dimer. This is synonymous to the anti-bonding response. Whereas, at the lower

energy mode | w− >, the anti-phase charge distribution results in an attractive force

between the nanowires of the dimer, resulting therefore in a bonding response between
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the nonowries L1 and L2 of the dimer. The near field mode splitting is induced because

of the plasmon hybridization[17]. The near-field interaction is repulsive(attractive)for

the bright(dark) mode resonances, hence the energies are higher(lower), as depicted in

Fig. 2.14.

Figure 2.14: Hybridization scheme for the dimer. In the symmetric configuration, only

a single mode resonance at energy level | w0 > is present. In the asym-

metric dimer, with L1 6= L2, a degeneration of energy levels with a higher

energy | w+ > and a lower | w− > occurs.
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Figure 2.15: Transmission spectrum of the dimer. The even black curve shows the

spectrum for the symmetric dimer with dimer lengths L1 = L2 = 200nm.

The symmetric dimer shows a resonance at | w0 >. Whereas for the

asymmetric dimer with length asymmetry parameter α = 30nm two res-

onances | w− > and | w+ > at lower and symmetry higher energies are

excited.

2.2.4 Geometrical tunability of the dimer

The degree to which asymmetry affects the dark and bright mode is discussed in this

section. We calculate the dependence of the bright and dark resonance modes on the

asymmetry parameter α is studied. The resonance response for various values of α

have been calculated. With increasing values of α from 10 to 40nm, its effect on the

bright and dark modes is shown in Fig. 2.16.
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Figure 2.16: Bright and dark mode resonances as α is increased from 10 to 40nm.

Figure 2.17: Bright and dark mode frequencies for different values of length asymme-

try α ranging from 10 to 40nm. With increasing α, both bright and dark

modes are blueshifted.

From Fig. 2.16, with increasing length asymmetry, there is an increase in both the bright

and dark mode resonance to higher frequencies. The resonance frequency has an in-

verse dependence on the length of the dimer, and thus the observed blue shifts plotted

in Fig. 2.17. Then there is a broadening of both dark and bright modes respectively,

as also shown in Fig. 2.16. With increasing asymmetry, the modes show a higher cou-
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pling to free-space and consequently higher energy losses, resulting a lowering of the

Q factor value for both modes. However, on a careful examination, it can be observed

that the modes do not broaden at the same rate for a given value of length asymme-

try. The dark mode(Fig. 2.18), shows a greater degree of broadening compared to the

bright mode for each length asymmetry. Its behaviour is due to the higher coupling of

light to incident radiation than in the bright mode, as length asymmetry is increased.

Of course, a red shift is observed for negative values of asymmetry(L1 > L2).

Figure 2.18: Dark mode dependence on asymmetry. △ f and f0 shown for the length

asymmetry 30 nm.

This property of the dark mode is of importance for various applications due to its

responsiveness to perturbation, thus making it possible to build various optical sensing

devices. This will be discussed in Chapter 5.

So far, we have discussed the asymmetric dimer in which asymmetry is symmetrically

from both ends of the nanowire L1 as depicted in Fig. 2.8. However, length asymmetry

in the nanowire L1 from one end only can be introduced, for the same length asymme-

try parameter α, as depicted in Fig. 2.19.
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Figure 2.19: Asymmetric dimer configuration. Here the asymmetry is introduced

from one end only of the nanowire L1.

Figure 2.20: Electric field distribution at the dark mode resonance in the asymmetric

dimer depicted in Fig. 2.19 with α = 30nm.

Figure 2.21: Current density in the asymmetric dimer depicted in Fig. 2.19 with α =

30nm at the dark mode resonance. Anti-parallel current oscillation is in-

duced in both arms of the dimer.

Once again, Fig. 2.20 shows an anti-phase field distribution in the dimer at the dark

mode resonance. Thus, an antisymmetric current oscillation in both arms of the dimer

at the dark mode resonance is shown in current density plot of Fig. 2.21, similar to the

asymmetric configuration depicted in Fig. 2.8.

Likewise, for the bright mode, the field plots simulations in this asymmetric configu-

ration show an in-phase field distribution as shown in Fig. 2.22 and the corresponding
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current density distribution in both arms of the dimer in Fig. 2.23 respectively.

Figure 2.22: In-phase electric field distribution at the bright mode resonance with

asymmetric dimer depicted in Fig. 2.19 with α = 30nm.

Figure 2.23: Current density in the asymmetric dimer depicted in Fig. 2.19 with α =

30nm at the bright mode resonance. Parallel current oscillation is induced

in both arms of the dimer.

Irrespectively of the way in which the length asymmetry is introduced, similar reso-

nances can be excited in the dimer for the same parameter α. Therefore, the difference

in the dimer arms length appears to be the dominant factor responsible for the excita-

tion of the dark modes.

2.2.5 Loss and quality factor of the resonances

In Fig. 2.24, the effect losses play on the nature of the resonance is shown. Attenuation

in the metal can be considerably larger than the expected theoretical value using Drude

model, since minimum size is comparable with the mean free path and because of this

the complex fabrication techniques introducing additional losses in the structure. With

increasing loss, there is a significant change in the amplitude of the resonances. Curves
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show the spectral response for the asymmetric dimer with α = 30nm starting from the

theoretical value of the collision frequency in gold, wc = 0.4 × 1014.

Figure 2.24: Spectral response for α = 30nm for losses in the gold. The resonances are

strongly affected by the losses with a decrease in amplitude for different

values of collision frequency 0.4, 1.2, 1.6, 2.1× 1014.

In section 2.2.4 we have discussed the effect of asymmetry on the nature of the dark and

bright resonances, with both resonances broadening and blue shifting with increasing

asymmetry. Of particular importance here is the broadening of the resonances. We

discuss the effect of these broadening on the modes. As observed in section 2.2.4, the

dark modes appear to broaden at a larger rate than the bright mode for the same length

asymmetry α. This differing behaviour of the modes has some significant influence

on certain properties of the resonance, in particular the quality factor(Q-factor) of the

resonance.

The quality factor is usually defined as the ratio between the centre frequency and

the full width at half maximum(FWHM) of the resonance(Lorentzian curve). For the

Fano-type resonance of the dark mode the quality factor is defined as the ratio of the

average frequency f0 and the full width ∆ f between the peak and the antipeak (dip)

at resonance[23](see Fig. 2.9). Obtaining high Q-factors in metamaterial resonators is

highly desirable for sensing applications, since this implies a higher confinement of the
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electromagnetic energy[18, 40].

From the resonant behavior of the dark and bright modes(Fig. 2.9), the respective Q-

factors can be calculated for the corresponding asymmetry α, as presented in Fig. 2.25.

For α = 10nm, the Q-factor for the dark mode is 49 while the corresponding value for

the bright mode is larger than 2. With increasing α up to 40nm, a significant decrease

in the Q-factor at the dark resonance is observed, whereas in the bright mode the res-

onance shows very little variation with α. From Fig. 2.25, the Q factor for the dark

mode(black curve) is generally higher than that of the bright mode(red curve) for all

values of length asymmetry, due to a higher concentration of electromagnetic energy.

With increasing length asymmetry, the dark mode couples much stronger with free

space, with a faster broadening of the resonances and a corresponding lower Q factor.

Figure 2.25: Influence of length asymmetry on the dark resonance (black line) and

bright resonance( red curves) quality factors. With increasing length

asymmetry, the dark modes shows a higher decrease in its Q-factors.

2.2.6 Absorption in the Dimer Structure

We can look at the behavior of the dark and bright mode resonances from their absorp-

tion spectra. The absorption is given by A = 1 − R − T, where R is the reflectance

and T is the transmittance. For a dimer with α = 20nm, the calculated absorption is
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shown in Fig. 2.26. The absorption spectra for the dimer reveals a maximum at the

positions of the transmission peaks, corresponding to the dark/trapped mode regions.

At the respective bright and dark mode resonances, an absorption peak is observed

to occur, with dark mode showing a higher absorption than the corresponding bright

mode resonance peak.

Figure 2.26: Absorption and transmission spectra for α = 20nm
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CHAPTER 3

Dimer Fabrication

The size of the dimer structures(which are of the order of nanometers) necessitates

the use of an appropriate technology for its fabrication. Current patterning methods

employed for nanofabrication include electron beam, nanoimprint, sidewall transfer,

molecular beam epitaxy and other top-down fabrication methods, each one having

its own advantages and disadvantages. For the fabrication of our structure, we are

employing the electron beam lithography(EBL). The samples have been fabricated at

Boston College, USA.

Two different substrates have been used for the fabrication of the dimer, namely a sil-

icon substrate and an ITO coated glass substrate. We describe the basic procedures

involved in the fabrication process of the dimer, with a schematics of the basic fabrica-

tion procedure shown in Fig. 3.1.
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Figure 3.1: Fabrication procedure for the dimer. The photoresist(red) is spun on the

substrate(grey) and a beam writing is realized. Following this is the devel-

opment, and then the deposition of the gold(yellow), after which a lift of

procedure is carried out.

1. Substrate Preparation

• The substrate is cleaned using acetone an then dried with a Nitrogen gun

before the photoresist is spun.

2. Spin coating

• PMMA (polymethyl methacrylate) 495A8 is spin coated on the substrate.

The resist contains 50% of A8 and 50% of photoresist thinner. It was spin

coated at 3500rpm for 45 seconds, after which it was soft baked on hot plate

at 180 ◦ for 90 seconds.

• Next, a layer of PMMA (polymethyl methacrylate) 950A9, which is 25% A9

and 75% photoresist thinner is spun at 3500rpm for 45 seconds. Following

this, sample is then softbaked at 180 ◦ for 90 seconds.
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3. Electron beam lithography

• The pattern of the dimer is written into the photoresist layer using the elec-

tron beam lithography(JEOL JSM-7001F). The exposure dose is 500mJ/cm2 .

4. Development

• After the beam writing, the next step in the fabrication process is the de-

velopment. This involves dissolving the photolysis a suitable developer so-

lution depending on weather it is a positive or a negative photoresist. The

PMMA photoresist used is a positive type photoresist. Thus, the molecular

chains of the PMMA bonds are broken down during exposure to the electron

beam writing process, making the exposed areas of the PMMA layer soluble

in specific positive photoresist developers. The developer used is Methyl

isobutyl ketonebonds(MIBK). The sample is placed in MIBK for 5 minutes,

after which it is rinsed in Isopropyl alcohol(IPA) for 3 seconds. Then it is

rinsed in water and dried.

5. Metal deposition

• After the development, the next step in the process is the deposition of the

metal layer. The evaporation process was done under vacuum using the

Sharon Vacuum. First, 5nm Titanium(Ti) layer is deposited. This Titanium

layer acts as an adhesive layer for the gold metal.

• After the deposition of the Ti adhesion layer, a 30nm layer of gold metal is

evaporated onto the sample.

6. Lift off
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• After the gold deposition, a lift off procedure is performed. During the lift

off, a suitable solvent is used to completely etch the deposited PMMA pho-

toresist as shown in Fig. 3.1. For this procedure, a Microposit remover 1165

is used. The Microposit remover 1165 is a positive resist etchant for the pos-

itive PMMA resist. The wafer is put in a tank of Microposit remover 1165

and allowed to soak for 12 hours. After this, the wafer is removed and then

rinsed with isopropanol and water. The wafer is then dried with an air gun.

SEM images of the fabricated dimer on silicon and glass substrates are shown in Fig. 3.2

and Fig. 3.3 respectively.

Figure 3.2: SEM image of fabricated dimer on silicon.

Figure 3.3: SEM image of fabricated dimer on glass.

In the next chapter/sections we describe the optical characterization of the fabricated
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device using spectroscopic ellipsometry.
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CHAPTER 4

Spectroscopic Ellipsometry
Characterization of Metamaterial

Dimer

4.1 Introduction

In this chapter we use the spectroscopic ellipsometric method to experimentally char-

acterize the dimer metamaterial structure. The optical constants of the gold thin film

on glass and silicon substrates are measured as well. We also discuss the procedure

and highlight the advantages and disadvantages of using this procedure compared to

other spectroscopic techniques.

4.2 A short introduction to Ellipsometry

The collective resonant response of the electrons in the nanowires of the dimer leads to

high energy concentration, making them very sensitive to alterations in the dielectric

environment and size of nanostructures, which can be observed from the resonance fre-

quency positions, amplitude and absorption curves. With spectroscopic ellipsometry,

measurement of polarized light reflected from the surface of a material can be per-

formed and from these measurements the optical properties can be determined[41, 42].

However, the ellipsometric measurements were initially applied to macroscopic struc-
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tures such as thin films, isotropic and homogenous media due to the complicated mod-

elling nature of the process. The whole modelling process was simplified with the in-

troduction of computers, thereby leading to a great advancement in ellipsometry mea-

surements, and consequently its application to nano structures. When light is incident

on a material, the electric and magnetic field of the light undergoes changes after re-

flection or transmission through the material, resulting in charge displacements. The

resulting charge redistribution and currents in the material is described by Maxwell’s

equations relating the dielectric functions to the external electric and magnetic fields to

the fields inside the material. For the electric field, this is given by

D ≡ εε0E = ε0E + P (4.2.1)

where D is the electric displacement, E is the electric field, P the electric polarization,

ε0 the permittivity of vacuum and ε is the relative permittivity. For the magnetic com-

ponents we have

B ≡ µµ0H = µ0H + M (4.2.2)

where B is the magnetic field, H the magnetic induction, M the magnetic polariza-

tion, µ0 is the permeability of vacuum and µ the relative permeability. To determine

these optical properties of materials, the reflectance and transmittance (R&T) and el-

lipsometry measurements are required, though for some opaque materials, obtaining

a transmission measurement be a difficult task. Basically, polarization changes are in-

duced for light reflected(transmitted) from the surface of a material. This change in the

polarization of the light depends on the way the electric field is polarized with respect

to the incidence plane. Fig. 4.1 shows the schematic of reflection of polarized light from
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the surface of a material. The electric field components and normal to the plane of in-

cidence, p and s-polarizations respectively, acquire a phase difference ∆ after reflection

from a surface, with differing field reflected amplitudes.

Figure 4.1: Ellipsometer measurement process

Provided the polarization of the incident light is known, then from the measured el-

lipticity of the state of the light after reflection, the optical constants of the material

can be deduced. Depolarization can occur in certain samples with inhomogeneity in

thickness, roughness, slight change in incident angle of the probe beam etc. In such

situations, a Mueller matrix ellipsometry(MME) formalism is employed for the deter-

mination of the dielectric function. A Jones matrix can be used to describe the optical

behavior for non-depolarizing samples, given by:
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(4.2.3)

where Eip

(

Erp

)

and Eis

(

Erp

)

are the incident(reflected) p- and s- polarized component

of electric field respectively. The matrix reflection coefficients are: rsp for the reflected

s polarized light induced by an p-incident light, rps for the reflected p polarized light

induced by an s-incident light. The diagonal elements rpp and rss are the well known

Fresnel coefficients and are denoted as rp and rs respectively. Thus, in reflection mode,
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we can obtain the ellipsometric parameters Ψr and ∆r as

ρr =
rp

rs
= tanΨrexp(i∆r) (4.2.4)

where ρr is the complex-valued ratio between the reflection coefficient for orthogonal

polarizations.

Similarly, in transmission mode, the ellipsometric parameters Ψt and ∆t are described

from:

ρt =
tp

ts
= tanΨtexp(i∆t) (4.2.5)

The ellipsometry parameters Ψr(Ψt) and ∆r(∆t) are the amplitude ratio and phase dif-

ference for the reflection(transmission) coefficients respectively. The ellipsometer is a

sensitive instrument employed for the optical characterization of thin films . The high

sensitivity of the instrument has seen the areas of its application expanding also into

the field of metamaterials[43, 44]. Nevertheless, the exploitation of ellipsometric tech-

niques in metamaterial characterization is not very common. Including the angular-

dependent response should give a much better optical characterization of a sample.

The polarization state of light can be measured and from these the ellipsometer param-

eters Ψ and ∆ are obtained. From the ellipsometric parameters, optical properties such

as refractive index, permittivity, permeability and thickness of thin films, etc can be

indirectly deduced from the fitting procedure. An estimator for a good fit between the

model and the experimental data is the mean square error(MSE). The MSE is given by:

MSE =
1

2N − M

N

∑
i=1





(

Ψmod
i − Ψ

exp
i

σ
exp
Ψi

)2

+

(

∆mod
i − ∆

exp
i

σ
exp
∆i

)2


 (4.2.6)
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where N is the number of measured Ψ-∆ pairs, M is the number of fit parameters for the

model, σexp is the standard deviation on the measured experimental data. The model

and experimental data are represented by the superscripts mod and exp respectively.

For the fitting model parameters, minimizing the MSE is a necessity for a reliable fit.

The procedures involved in the measurements are outlined as follows

1. Measurement

• A measurement of the sample is performed to determine the optical parame-

ters. Since these optical parameters are not directly measured, the reflection

coefficients, R, transmission T, and the ellipsometric Ψ and ∆ as a function

of beam wavelength or angle of incidence is measured.

2. Develop a Model

• A model is fit to the measured data. The model generally contains unknown

quantities such as thickness of the layer and optical constants.

3. Fitting of model to measurement

• The unknown parameters are then varied and data are generated. These

unknown parameters are optimized to give the generated data that matches(

as close as possible) the measured data.

4. Best fit

• A best fit set of unique parameters is then established

The basic parts or components of the ellipsometer are shown in Fig. 4.2. The beam

from the monochromator (not shown) is channeled to the input unit through the optical

fibre. The input unit contains the polarizer and autoretarder(wave plate) for controlling
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polarization state of the input beam. The output arm contains a rotating analyzer and

two detectors: for visible and NIR wave ranges. The computer controls data acquisition

and elaboration.

Figure 4.2: The VASE Ellipsometer. The parts of the instrument include: (a)sample

stage, (b) input arm with focusing probe, (c) output arm, (d)and (e) are

goniometer for angular control and (f) computer.

4.3 Substrate characterization

The dimer structure has been fabricated on two different substrates, silicon and a glass-

ITO substrate respectively. To obtain good experimental results and fitting, we first

characterize the bare substrates on which the pattern have been deposited, after which

the actual fabricated dimer is characterized. In this section, we describe the method for

the substrate characterization.

4.3.1 Glass-ITO substrate characterization

The experimental data for the glass-ITO substrate are obtained for angles of incidence

varying from 20◦ to 70◦ with a step of 10◦. The ellipsometer parameters Ψ and ∆ are

shown in Fig. 4.3 and Fig. 4.4.
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Figure 4.3: Experimental and fit data(red) of Ψ for the glass-ITO substrate for various

angles of incidence.

Figure 4.4: Experimental and fit data(red) of ∆ for the glass-ITO substrate for various

angles of incidence.

The optical model for this substrate is shown in Table 4.1. The substrate consists of

the glass modelled as a Cauchy layer, a silicon dioxide layer Si02, and layer of ITO

formed by two sublayers: "ITO A" and "ITO B". Note that ITO is inhomogeneous along

z-direction because of complicated fabrication technique including evaporation and

subsequent annealing processes.

The refractive index n and wavelength λ of light for a material are related by the

Cauchy model, given by:
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ITO B 19.0950 nm

ITO A 38.3823 nm

Si02 41.0109 nm

Cauchy 1mm

Table 4.1: Model for the glass-ITO substrate.

n (λ) = A +
B

λ2
(4.3.1)

where the coefficients A and B can be obtained from the fitting. The Cauchy parameters

for the glass are An = 1.4949 and Bn = 0.019918. The parameters for the Si02 are taken

from[45]. A Lorentz model is used to describe the "ITO A" and "ITO B" layers. The

Lorentz model is given by:

ε (E) = ε1 (∞) +
N

∑
i=1

Ami

En2
i − E2 − iBriE

(4.3.2)

where ε (E) is the photon energy E dependent dielectric function, N represents the total

number of oscillators and ε1 (∞) is the real part of the dielectric function at very large

photon energies. The other parameters describing the oscillator are the amplitude Ai,

resonance position Eni(eV) and broadening Bri(eV) for the ith oscillator.

The "ITO A" layer is modelled with two Lorentz oscillators as shown in Table 4.2. The

oscillator parameters are: ε1 (∞) = 3.2884, Am1 = 5.3676 Br1 = 0.19496 and En1 = 0

for the first oscillator. For the second oscillator, the parameters are: Am2 = 16.922

Br2 = 1e − 5 and En2 = 4.8063.
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Am Br(eV) En(eV)

5.3676 0.19496 0

16.922 1e-5 4.8063

Table 4.2: Oscillator parameters for ITO layer A

Am Br(eV) En(eV)

1.569 2.5271 0

556.56 1e-5 9.8102

Table 4.3: Oscillator parameters for ITO layer B

The upper layer, "ITO B", was described with two Lorentz oscillators as shwon in Ta-

ble 4.3, with ε1 (∞) = −2.7737. The oscillator parameters Am1 = 1.569 Br1 = 2.5271

and En1 = 0 for the first oscillator, while for the second oscillator we have Am2 =

556.56 Br2 = 1e−5 and En2 = 9.8102.

The experimental results and the fit were obtained with a fitting error of MSE = 0.9. In

Fig. 4.3 and Fig. 4.4 the fitting curves obtained for the parameters Ψ and ∆ are plotted,

with both graphs showing a good agreement between the experimental data and the

model. From this fit, the real and imaginary index, n and k is obtained for the substrate.

It is worth noting that the description of a metamaterial layer as a homogeneous layer

with effective material parameters (EMP) is heavily debated in literature(see[44, 46]).

Actually material parameters should be applicable to different wave processes in the

sample independently of its shape, environment and kind of wave incidence. Very

often this is not the case for metamaterial samples, for several reasons. First, long-
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wavelength assumption implicit in applying EMP to metamaterials is generally vio-

lated, resulting in non-local electromagnetic response or spatial dispersion. The depen-

dence of optical parameters on the wave-vector appears to increase for large angle of in-

cidence on the metasurface. Second, optical properties of the metasurface strongly de-

pend on the substrate characteristics. Hence, EMP obtained even for normal incidence

can not be applied if one modifies complex permittivity of the substrate. Moreover, the

replacement of the metasurface by a bulk layer with finite thickness is non-physical and

usually the question arises as to which value of thickness must be ascribed to that layer.

That is why we provide the thickness which satisfies the ellipsometric, reflectance and

transmittance responses for the range of incidence angles simultaneously. Taking into

account the above considerations, one can use the results obtained in this section for

effective permittivity tensor either for simulation of metamaterial optical response for

small angles of incidence or for illustration of plasmonic resonances occurred.

4.4 Determination of optical constant for Gold

In the previous section, we have obtained the optical constants for the glass-ITO sub-

strate on which the metal nanostructures would be patterned. Here, we use the ellip-

someter to determine the Drude parameters of the metal layer, in particular the colli-

sion frequency. That study was necessary since optical properties of thin metal films

differ from those of a bulk metal because of the granular structure and enhanced effect

of surfaces. A 30nm thin film of gold is evaporated onto a glass substrate. Experimental

measurements were made for angles of incidences of 50, 60 and 70◦ and the correspond-

ing ellipsometric parameters, Ψ and ∆, were obtained. We put the upper limit of 1.5 eV

to the spectral range of measurements to be consistent with Drude model for optical

response of gold.
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Also, transmittance at normal incidence was measured as shown in Fig. 4.5. Ellipso-

metric data Ψ and ∆ are shown in Fig. 4.6 and Fig. 4.7 respectively.

Figure 4.5: Experimental(green) and fit data(red) for transmission measurements for

the gold film on the substrate.
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Figure 4.6: Experimental and fit data(red) of Ψ for gold on the glass-ITO substrate

for various angles of incidence. From the fitting procedure, the optical

parameters of the gold is extracted.

Figure 4.7: Experimental and fit data(red) of ∆ for gold on the glass-ITO substrate for

various angles of incidence.

The model is made up of a three layer material consisting of the glass substrate, the

gold metal(Drude model layer) and some roughness layer(thus can be neglected as it

appears from fit) as shown in Table 4.4.

The fitting parameters ρ = 1.5011e−5, τ = 4.3077F, thickness= 27.1790nm, with a

fitting error of MSE = 0.87.

A version of the Drude model given by:

ε (E) =
−h̄2

ε0ρ (τ · E2 + ih̄E)
(4.4.1)
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2 Roughness 0.0000 nm

1 Drude model layer 27.1790nm

0 Glass 1mm

Table 4.4: Ellipsometer fitting parameters the metal thin film with gold(Drude model

layer)deposited on a glass substrate.

where the resistivity ρ(Ω − cm)is

ρ =
m∗

Nq2τ
=

1

qµN
(4.4.2)

with scattering time τ(sec), carrier effective mass m∗, carrier concentration N(cm−3),

carrier mobility µ(cm2V−1s−1) and electron charge q(1.6 × 10−19). Comparing with

equation. 4.4.1, the fitting parameters An and Br can be written as:

An =
h̄

ε0 ∗ ρ
(4.4.3)

and

Br =
h̄

τ
(4.4.4)

where h̄ is the reduced Planck’s constant.

From these, the collision frequency for the gold is calculated as ωc = 0.21 × 1016Hz,

thus the experimentally measured parameter being different from that previously used

in simulations in Chapter 2. The plasma frequency was obtained from ellipsometric

measurements to be in agreement with its value for bulk gold provided in literature.

Thus, we simulated the spectral response considering different values for collision fre-

quency which is proportional to losses in gold, depicted in Fig. 4.8(is repeated here
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Fig. 2.24 for convenience).

Figure 4.8: Spectral response for α = 30nm for losses Gold. The resonances are

strongly affected by the losses with a decrease in amplitude from the theo-

retical case(black line).

With increasing losses, the amplitude of the bright and dark resonances both decrease.

Also, there is a broadening of both resonances as well. However, the dark modes are

more affected by this increase in metal losses, thereby showing much more broader

resonance with increasing loss than the bright mode. However, the resonance position

for the bright and dark modes are relatively unaffected by these metallic losses.

4.5 Dimer on glass substrate

In this section, we describe the optical characterization of the dimer using the Vari-

able Angle Spectroscopic Ellipsometry(VASE). The sample measurements were done

for various angles of incidence. The orientation of the dimer axis for the measurements

were carried out for the cases with the dimer axis along and normal to the incidence

plane. The reflection and transmission spectra and the ellipsometric spectra from the

measurements were obtained, with results compared to the numerical spectral from

simulation.
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4.5.1 Intensity measurements for incidence plane along dimer axis

Experimental measurements were performed with the nanowires of the dimer oriented

parallel to the plane of incidence shown in Fig. 4.9.

Figure 4.9: Dimer orientation with respect to incidence plane. Incidence plane is par-

allel to the nanowire lengths.

Reflection measurements were carried out for p-polarisation and s-polarisation for var-

ious angles of incidence. In reflection mode, the ellipsometer is limited to angle of inci-

dence not smaller than 15◦. In this set up, the incident electric field has the component

oriented along the dimer axis for p-polarization measurements.
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Figure 4.10: Measured Transmittance spectra for asymmetric dimer with α = 30nm at

normal incidence. E field along nanowires.

Figure 4.11: Simulated transmission for asymmetric dimer with α = 30nm at normal

incidence. E field along nanowires.

The transmittance spectra for the asymmetric dimer with α = 30nm is represented

in Fig. 4.10, for p-polarization. The sample was measured at normal incidence. Two

resonance dips in transmission spectra can be observed. Comparing with the calcu-

lated spectra in Fig. 4.11, the observed modes correspond to both the dark and bright

resonance. The expected dark modes in the experimental spectra is at a frequency of

226.3THz while the bright mode is at a frequency of 437.6THz. The resonances show a

generally good agreement with the calculated spectra. The discrepancy in the exact po-

sition of resonances can be attributed to the fabrication process, with slight variations

in the statistical distribution of the dimensions of the nanowires, as shown in Table 4.5.
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Table 4.5: Variation of the fabricated parameter dimensions for the nanostructure from

simulation. All dimensions are in nm. d is the spacing between nanowires

L1 and L2, a1 and a2 are the width of L1 and L2, Px and Py the period along

x and y directions respectively.

The reflection spectra were also measured, as depicted in Fig. 4.12. As expected, the

spectra shows reflectance peaks at the positions of the dark and bright modes. The

sample was measured with angles of incidence from 15◦ to 30◦, with an increment of

5◦. Note that for off-normal incidence the resonances appear in the visible range(450 −

600THz). These resonances are due to periodicity of the patterned structure(period

about 300nm) in analogy with Wood anomalies. They are sharp but their frequency

depends strongly on the angle of incidence. A discussion on these resonances goes

beyond the scope of this thesis.

Figure 4.12: Reflectance spectra for asymmetric dimer with α = 30nm, for angles of

incidence from 15 to 30 degrees. E field along nanowires.

In Fig. 4.13 and Fig. 4.14, the spectra for the s-polarization transmission and reflection
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spectra respectively are plotted. The s-polarized transmission and reflection spectra do

not show any resonances for the dark and bright modes, as expected.

Figure 4.13: Transmittance spectrum for s-polarization in asymmetric dimer with α =

30nm and with incidence plane parallel to the dimer axis.

Figure 4.14: Reflectance spectrum for s-polarization in asymmetric dimer with α =

30nm and with incidence plane parallel to the dimer axis

The absorption for the p and s-polarization as calculated from the data for reflectance

and transmittance, are shown in Fig. 4.15 and Fig. 4.16 respectively. For p-polarization,

two absorption peaks are noticeable at the resonance position for the dark and bright

modes, whereas for the s-polarization, no absorption peaks can be observed.
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Figure 4.15: Absorption spectrum for p-polarization in asymmetric dimer with α =

30nm for incidence plane parallel to the dimer axis. Absorption peaks ap-

pear at the dark and bright mode resonances of 226.3THz and 437.6THz

respectively.

Figure 4.16: Absorption spectrum for s-polarization in asymmetric dimer with α =

30nm for incidence plane parallel to the dimer axis. There are no absorp-

tion peaks for this polarization.

4.5.2 Intensity measurements for incidence plane perpendicular to dimer

axis

The measured sample in the previous section was for the case where the dimer axis is

along the incidence plane. In the following measurements, the sample is oriented such

that the dimer axis is normal to the incidence plane(see Fig. 4.17). The ellipsometer

measures both the s- and p-polarization components of the reflection and transmission.

For the p-polarised measurements, the electric field component of the wave is normal

to the dimer axis whereas for the s-polarization measurements, the electric field com-

ponent is along the dimer axis.
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Figure 4.17: Dimer orientation with respect to incidence plane. Incidence plane is per-

pendicular to the nanowire lengths.

The experimental data for oblique reflection measurements for both p-and s-polarisations

for various angles of incidences from 15◦ to 30◦ is shown in Fig. 4.18 and Fig. 4.19 re-

spectively.

Figure 4.18: Reflectance spectrum for s-polarization in asymmetric dimer with α =

30nm and with incidence plane perpendicular to the dimer axis.

Figure 4.19: Reflectance spectrum for p-polarization in asymmetric dimer with α =

30nm and with incidence plane perpendicular to the dimer axis.
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For the s-polarisation measurements at incidence angle of 15 degrees, two resonances

appear at 229.5THz and 464.8THz. These resonances are the dark and bright modes

respectively. These resonances are similar to those described in Fig. 4.12 where the in-

cidence plane is along the dimer axis. The small difference in the resonance position

is due to the accuracy in aligning the sample to the incidence plane after orientation.

Nonetheless, both results are still consistent and in agreement with numerical simula-

tion. For the p-polarized measurements in Fig. 4.19, no resonances are obtained, which

is consistent with the measured reflectance spectra for the s-polarized reflection for the

case where the incidence plane is along the dimer axis in Fig. 4.14.

Likewise, the measured experimental transmission data for this orientation for normal

incidence is shown in Fig. 4.20. The dark and bright resonances are at 229.5THz and

440.8THz, respectively, consistent with calculated spectrum. Moreover, for off normal

angles of incidence, from 5◦ to 30◦, the resonance positions are at about the same posi-

tion as depicted in the measured spectra in Fig. 4.21.

Figure 4.20: Transmittance spectra for asymmetric dimer with α = 30nm, for normal

incidence.
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Figure 4.21: Transmittance spectra for asymmetric dimer with α = 30nm, for angles of

incidence from 5◦ to 30◦.

4.5.3 Ellipsometric measurements and determination of effective parame-

ters for the metamaterial layer

Having described the resonances in the dimer from the measured intensity in trans-

mission and reflection modes with the incidence plane normal and perpendicular to

the dimer axis, we proceed to model the optical response of the structure using ellip-

sometric techniques described in section 4.2. The glass-ITO substrate model and fit has

been described in previous section and the obtained optical constant and thicknesses

of the substrate layers are used here. The model and fitting procedure is done con-

sidering the presence of the gold dimer nanostructure on the glass-ITO substrate. The

optical response of the nanostructure is described as a continuous layer "Metalayer",

with a thickness t. Considering that the response depends on polarization of incident

electromagnetic field(see sections 4.5.1and 4.5.1), a biaxial dielectric tensor (εx, εy, εz) is

used for describing effective material parameters of this layer. Table 4.6 shows the layer

model for the asymmetric dimer with α = 30nm. It is worth noting that it is not pos-

sible extract simultaneously both imaginary part of permittivity and the thickness for

the absorbing layer. That is why we fit ellipsometric data together with transmittance

and reflectance measurements to obtain the effective thickness of the Metalayer.
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Metalayer 16.3406 nm

ITO B 19.0950 nm

ITO A 38.3823 nm

Si02 41.0109 nm

glass 1 mm

Table 4.6: Optical model for the dimer.

The experimental data and simulated curves are shown in Fig. 4.22 and Fig. 4.23 for

ellipsometric parameters Ψ and ∆ respectively, for small angles, and Fig. 4.24 and

Fig. 4.25 for larger angles respectively, and in Fig. 4.26 and Fig. 4.27 for the transmit-

tance and reflectance respectively for a mean square error of fit MSE = 0.6736. A

good fit is observed between experimental and model curves(red) for small angles of

incidence. Insufficient fit for larger angles and high frequencies can be caused by in-

creasing effect of spatial dispersion.
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Figure 4.22: Experimental and fit data(red) for ellipsometer parameter Ψ for dimer

with α = 30nm.

Figure 4.23: Experimental and fit data(red) for ellipsometer parameter ∆ for dimer

with α = 30nm.
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Figure 4.24: Experimental and fit data(red) for ellipsometer parameter Ψ for dimer

with α = 30nm for larger angles.

Figure 4.25: Experimental and fit data(red) for ellipsometer parameter ∆ for dimer

with α = 30nm for larger angles.
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Figure 4.26: Experimental and fit data(red) for transmittance for dimer with α =

30nm.

Figure 4.27: Experimental and fit data(red) for reflectance for dimer with α = 30nm.

From the model fit, the dielectric constants for the nanostructure are extracted. The

real and imaginary part of the permittivity tensor components are given in Fig. 4.28

and Fig. 4.29 respectively. Being extracted from the Lorentz oscillator model, real and

imaginary parts of permittivity are Kramers-Kronig consistent so we explain below

the physical meaning of the imaginary part only, which is closely related to plasmonic

resonances in the patterned gold layer. The y-component of the permittivity tensor de-

scribes electromagnetic response for the field oriented along nanowire axis. It reveals

two main resonance peaks at 230 and 400THz which correspond to strongly absorb-

ing dark and bright modes respectively. Whereas the x-component characterizes small

absorption due to the plasmonic oscillations across nanowires which have resonance
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frequency about three time higher than longitudinal oscillations, i.e. over 700THz.

The x-component curve corresponds to the tail of these resonances. The most unex-

pected behaviour appears for z-component. This component has moderate and wide

absorption maximum centered at 350THz. Note that it cannot be due to the plasmonic

oscillations in z direction because small thickness of the gold layer together with anti-

bonding plasmon hybridization would provide much higher resonance frequency. The

nature of z-component behaviour needs more investigation.

Figure 4.28: Real components of Permittivity.

Figure 4.29: Imaginary components of permittivity.

It is worth noting that describing of metamaterial layer as a homogeneous layer with

the effective material parameters (EMP) is heavily debated in literature[44, 46]. Actu-

ally material parameters should be applicable to different wave processes in the sample
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independently of its shape, environment and kind of wave incidence. Very often it is

not the case for metamaterial samples for several reasons. First, long-wavelength as-

sumption implicit in applying EMP to metamaterials is generally violated which results

in non-local electromagnetic response or spatial dispersion. The dependence of optical

parameters on the wave-vector appears increasing for large angle of incidence on the

metasurface. Second, optical properties of the metasurface strongly depend of those

of the substrate. Hence EMP obtained even for normal incidence can not be applied

if one modifies complex permittivity of the substrate. Moreover, the replacement of

the metasurface by a bulk layer with finite thickness is non-physical and usually the

question arises which value of thickness must be ascribed to that layer. That is why

we provide the thickness which satisfies to ellipsometric, reflectance and transmittance

responses for the range of incidence angles simultaneously. Taking into account the

above one can use obtained in this section effective permittivity tensor either for simu-

lation of metamaterial optical response for small angles of incidence or for illustration

of plasmonic resonances occurred.

4.6 Dimer on Silicon substrate

4.6.1 Silicon Substrate characterization

In this section, we characterize the fabricated nanostructures on a silicon substrate.

Since silicon substrate is not transparent in the wave range under study, we performed

the reflection measurements only.

For small angles of incidence of 15◦, the measured reflectance spectra for p- and s-

polarizations are shown in Fig. 4.30. In the case of p-polarization with electric field

parallel to nanowires of dimer(red curve), one peak of reflectance is observed at about
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220THz, which is close to the simulated resonance frequency of the bright mode shown

in Fig. 4.31.

Figure 4.30: Experimental Reflectance amplitude for asymmetric dimer with length

parameter α = 30nm, on a silicon substrate for p-polarization(red) and

s-polarization(blue) for an incidence angle of 15◦.

Figure 4.31: Simulated Reflection amplitude for asymmetric dimer with length pa-

rameter α = 30nm, on a silicon substrate.

From the numerical calculated reflection spectrum in Fig. 4.31, the dark and bright res-

onances are at 138.4THz and 188.5THz respectively, for the asymmetric dimer with

a length parameter α = 30nm on a silicon substrate. The experimental resonance
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at 220THz in the asymmetric dimer appears to not depend on the incidence angle.

Though, the nature of this resonance is not clearly understood at this point since lower

frequency measurements are required for a complete analysis. Therefore, we can not

experimentally study the bright mode and especially the dark one because of the ellip-

someter frequency range is limited to 180THz.
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Conclusion and Future work

5.1 Optical sensing with the dimer

The resonant frequency of the dimer is highly dependent on the size dimensions of

the nanowire. The dependence of the spectral position of resonance on the permit-

tivity of the surrounding medium is essential for any refractive index sensing device,

with the sharp nature of the Fano-like resonances making them interesting for such

applications. Optical sensing of materials is an area that is of broad interest, given the

many possible applications of sensors in security, detection of biochemical substances,

etc. Various configurations of sensors based on metamaterials have been presented

in literature with different nanocomponents ranging from gold nanoparticles to nan-

odisks, pillars, etc.[47–49]. Typically, high sensitivity sensors are more desirable as they

are more responsive to minute changes in the dielectric environment[50–52]. The be-

haviour of the dimer resonances under a varying dielectric environment can provide

useful information with a view of its possible application as a sensing device. To inves-

tigate the applicability of the structure as a sensor, the dimer is coated with a dielectric

liquid(pink) as shown in the cross section in Fig. 5.1. Varying the dielectric environ-

ment around the dimer, the response of the dark and bright modes to these changes for

various length asymmetries is investigated.
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Figure 5.1: Cross section of the dimer in a dielectric environment(pink) of varying in-

dex.

With α = 20nm, the response of the dimer to a changing index around the dimer from

n = 1.1 to 1.3 is calculated, as shown in the spectrum of Fig. 5.2. With an index of n =

1.1, the resonance spectrum redshifts for both bright and dark modes. The bright mode

shifts from 355 to 348THz while the dark mode shifts from 266 to 260THz. Further

changing the index of the dielectric environment from n = 1 to n = 1.2, the resonances

down shift in frequency for bright mode to 343THz and 253THz for the dark mode

respectively. A further increase of the index to n = 1.3 similarly downshifts the bright

and dark modes to 338THz and 247THz respectively(see Fig. 5.2).

Figure 5.2: Spectral shifts in resonance for α = 20nm for changes in the index of the

dielectric material surrounding the dimer metamaterial.

From this response of the modes to changes in the dielectric environment, we can eval-

uate the sensitivities of the dark and bright modes respectively. The sensitivity S, is

usually defined as the ratio of the change in wavelength∆λ to the change in refractive
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index ∆n.

S =
∆λ

∆n
(5.1.1)

The unit of the sensitivity is nm/RIU, where RIU is the refractive index unit. For

α = 20nm, Fig. 5.3 shows the spectral shifts in wavelength ∆λ(nm) for the changes in

the refractive index n of the dielectric medium surrounding the dimer.

Figure 5.3: Sensitivity response for α = 20nm with varying index.

From the calculated frequency responses to the dielectric changes in Fig. 5.3, the sensi-

tivity for the respective bright and trapped mode resonances is evaluated. For the dark

mode, S = 300.1nm/RIU while for the bright mode S = 146.3nm/RIU.

Figure 5.4: Sensitivity response for α = 30nm with varying index.
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In a similar analysis, the respective spectra for α = 30nm and α = 40nm for changes in

index n from 1.1 to 1.3 is calculated. Fig. 5.4 shows the spectral changes to this variation

for an asymmetry parameter of α = 30nm and the calculated sensitivities for the dark

and bright modes are S = 284.7nm/RIU and S = 147.5nm/RIU respectively.

Figure 5.5: Sensitivity response for α = 40nm with varying index.

For α = 40nm, Fig. 5.5 shows the spectral changes to index variation at resonance,

with the dark and bright modes having sensitivities S = 276.1nm/RIU and S =

144.0nm/RIU respectively.

Therefore from the numerical results, the dark modes show a generally higher sensitiv-

ity compared to the bright modes under the same index variation. This characteristic

behaviour to changes in dielectric environment is advantageous as it offers the pos-

sibility of exploiting it for the development of a functional sensing device. Thus, for

the purpose of sensing we can concentrate on the dark modes. Keeping in mind sens-

ing is a possible application, we have to concentrate on the effects of the dark mode

properties.
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Length Sensitivity (nm/RIU) FOM (RIU−1)

asymmetry(nm) Dark(bright) Dark(bright)

20 300.1 (146.3) 7.0 (3.0)

30 284.7 (147.5) 5.2 (3.0)

40 276.1 (144.0) 4.1 (3.0)

Table 5.1: Sensitivity and Figure of merit(FOM) to changes in dielectric environment

for dimers with length asymmetry α = 20, 30, 40nm

Figure 5.6: Dark mode sensitivity response for values of α = 20, 30and40nm.

The response of the dark modes to these index changes appears to depend on the asym-

metry parameter, α. In Fig. 5.6, the sensitivities only at various values of α for the dark

modes is plotted. Low α values(smaller length asymmetry), give a higher response to

changes in the index of the dielectric environment. This behaviour can be explained

by the reduction of the electromagnetic field concentration at the metasurface with in-

creasing length asymmetry, which is confirmed by the lowered Q value(Fig. 2.25).

To compare the sensing performance of spectroscopic sensors operating at different
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wavelengths, the figure of merit (FOM) appears to be a more effective parameter than

sensitivity. FOM is defined as the sensitivity divided by the resonance width and it is

therefore inversely proportional to the smallest detectable refractive index change at

the sensor output(resolution)[53, 54], given as:

FOM =
sensitivity

∆λ
(5.1.2)

The FOM values for the dark mode at different values of length asymmetry 20, 30 and

40 nm are 7.0, 5.2, and 4.1RIU−1 respectively. The FOM is much lower for the bright

mode, staying approximately constant at 0.3RIU−1(see Table 5.1). Hence, the dark

mode in the dimer appears more suitable for the development of a simple spectroscopic

sensor, given the high values of both sensitivity and figure of merit. Conventional

surface plasmon resonance sensors have FOM much larger, in the range of 80, however

at the expense of a higher complexity since they rely on the use of prisms or gratings

to couple the impinging light to the surface plasmon. It is worth to emphasize that

provided FOM values in the asymmetric dimer configuration are larger than those for

an array of spherical gold nanoparticles with comparable dimensions(particle diameter

and lattice period)[55].

5.1.1 Dimer resonance in anisotropic environment

So far, in the previous section, we have investigated the resonance response behaviour

of the asymmetric dimer metamaterial in a changing dielectric environment, with a

potential towards its use as a sensor. However, for many applications tunable opti-

cal devices are desirable, whereby the resonance can be controlled. With active de-

vices, tunability can be achieved. For example, using a semiconductor, it has been
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experimentally demonstrated that a tunable metamaterial can be realized[56]. Here,

the semiconductor was incorporated into the metamaterial and by photoexcitation,

tuning of the resonance was achieved. Aside from using semiconductors for tunable

metamaterials[57, 58], other materials have also been employed. Among these ma-

terials are liquid crystals(LC)[59, 60]. Liquid crystals posses properties of liquid and

crystalline phase of matter and are also temperature dependent. The molecules of a

liquid crystal have the ability to align in a preferential direction called the director[61].

The birefringent nature of LC makes them a suitable candidate to be employed for tun-

able materials and devices. Under an external field, the molecular orientation of the

LC can be controlled and thereby offering the possibility of tunability due to the re-

sulting change in the index[62–68]. In the presence of external fields, the molecules

of the liquid crystals show a preferential orientation along the director, consequently

the refractive index of the medium varies depending on the director orientation. In

simulations, the dimer metamaterial is infiltrated with an E7 liquid crystal, which is

commercially available, with the following characteristics for the ordinary no and ex-

traordinary ne index at room temperature for the Infrared region(IR)[69]: [ne = 1.69]

and [no = 1.5]. An external electromagnetic field is used to reorient the director along

either the x, y or z axis. We show two possible cases: (i) LC orientation is parallel to

the dimer axis; (ii) LC orientation is normal to the dimer plane. In the calculations,

some assumptions have been made. We assume that the field is strong enough to align

all the molecules of the liquid crystal. Also, the surface anchoring effect has been ne-

glected. The surface anchoring effect is the tendency of the LC molecules to have a

particular orientation due to contact with the surface of the nanoparticles[70–72]. In

both configurations, the polarization of the incident field is along the long axis of the

dimer as depicted in Fig. 5.7 and Fig. 5.8. The incident field responds to different index
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depending on the director orientation.

(i) Director orientation parallel to Dimer axis

For a director orientation along the x axis, the incident field feels the extraordinary

index ne of the LC, whereas along the y and z directions it feels the ordinary index

no. Thus, we can write the index for this LC director orientation in the dimer as

[nx, ny, nz] = [ne, no, no] or since we are using in simulations E7, [nx, ny, nz] = [1.69, 1.5, 1.5].

The response of the dimer to this director orientation is shown in Fig. 5.9(blue curve).

Compared to the resonance response of the dimer in vacuum,(red curve of Fig. 5.9),

we can clearly distinguish the shifts in the resonances due to the influence of the LC

director orientation. The resonances for both bright and dark modes are red shifted

with respect to the case without LC. In this orientation, the incident field experiences

a higher effective index ηe f f and thus downward shifts in the resonance. The dark

mode resonance shifts from 271THz without LC to 232THz with the LC director orien-

tation along x and likewise, the bright mode resonance shifts from 363THz to 324THz

respectively.

Figure 5.7: Asymmetric dimer with liquid crystal oriented along dimer axis.

(ii) Director orientation normal to Dimer axis

The LC director can be oriented to be normal to the plane containing the dimer, as

shown in Fig. 5.8. With the director orientation along the z axis, the incident field
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(polarization along the X axis) experiences the ordinary index no. Along the y and z

axis is the ordinary no and extraordinary ne indices respectively. Thus, we can write

the index as [nx, ny, nz] = [no, no, ne] = [1.5, 1.5, 1.69]. The resonance response for this

director orientation is shown in Fig. 5.9(green curve).

Figure 5.8: Asymmetric dimer with liquid crystal oriented normal to dimer axis.

The transmission spectra show a redshift for both dark and bright modes(green curve)

in the presence of LC, compared to the case without LC(red curve). The dark mode

resonance shifts to 237THz from 271THz while the bright mode resonance shifts from

363THz to 332THz. Hence, as with the case of the director along the dimer axis(Fig. 5.9

blue curve), resonance shifts are observed for the director normal to the dimer plane(Fig. 5.9

green curve). However, the shifts are not of the same rate for the LC orientations. For

the LC director along the dimer axis(Fig. 5.7), a higher shift in the resonance is ob-

served compared to when the LC director in normal to the director axis(Fig. 5.8). This

is shown in Fig. 5.9, where the spectrum shows a higher shift in resonance for the di-

rector orientated along the dimer axis(blue curve) than with the director orientation

normal to dimer axis(green curve). Using LC we can dynamically control the response

of the metamaterial dimer. This behavior of the resonances to the dimer orientation is

due to the birefringent ∆n = ne − no nature of the liquid crystal. Thus a larger degree

of tuning can be realized with a liquid crystal of higher birefringence[73, 74].
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Figure 5.9: Transmission spectra for the Asymmetric dimer with α = 30nm.

In conclusion, we have investigated the effect of symmetry breaking in the plasmonic

dimer nanostructures. Calculated distributions of electric field and current at the sur-

face of metallic nanorods reveal excitation of radiant and subradiant modes in the

dimer. Both constructive and destructive interference between these modes results in

Fano-type resonance in transmission spectra of the planar metamaterial on the base

dark and bright mode coupling. The dominant factor in the excitation of the dark

modes, the introduction of asymmetry in the length of the nanorod dimer, is indepen-

dent of the way it is generated, rendering this metamaterial very robust to fabrication

defects or other structural imperfections. The sensitivity of the dark resonances to the

external dielectric environment of metasurface has been studied as well. The obtained

sensitivity and figure of merit values are promising for the possible application of this

simple planar nanostructure as a chemical or biological sensor. Optical characteriza-

tion of the fabricated nanostructure was carried out using spectroscopis ellipsometry.

The measured experimental results show good agreement with the simulation. Opti-

cal models for the dimer was constructed and dielectric parameters retrieved from the

ellipsometer parameters Ψ and ∆.
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5.2 Future work

Given the sensitive nature of the dark modes, the resulting sensor has been shown to

be very sensitive to very minute amount of refractive index changes of the ambient en-

vironment around the nanodimer. Functionalizing the dimer metamaterial is essential

as this opens up the possibilities to apply the metamaterial for index specific sensing.

Overcoming this drawback is a big step towards achieving this goal and thus a possible

research focus. A foreseen challenge is the possibility of a reusable sensor.
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