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Introduction

The advances in hardware technologies have made possible to produce data

continuously over time and at very high rate. Let’s think for instance to

sensor networks for controlling security systems, for monitoring electrical

consumptions, for detecting environmental pollution, for recording GPS

data, to name a few. Data produced in all these framework are usually

named data streams.

The first feature of data streams is the unbounded and increasing vol-

ume of the data. This means that the entire sequence of a data stream can

not be stored in the traditional database but, they have to be processed

as soon as they are available and then deleted. Obviously, using of algo-

rithms based on multiple scan of data cannot be considered feasible in this

context. Conversely, one pass and very fast algorithms could be more suit-

able to satisfy the storage and computational constraints of such kind of

data. The most frequent approaches to deal with this problem consists in

data reduction and sliding windows. In both cases, exact answers can not

be provided and a trade-off between accuracy and storage/computational

constraints is preferred. In particular, these techniques are based on using

of summaries structures which allow to preserve the information contained

in observations even after the data have been lost.



2 List of Figures

The second characteristic of data streams is related to the process gener-

ating data; in fact, examples are not generated randomly according to some

stationary probability distribution but the underlying structure can change

over time. Thus, a fundamental issue in data stream context is to monitor

how the pattern may evolve over time, commonly known as Concept drift.

Consequently, the methods for data stream mining have to be developed in

order to detect and monitor the presence of evolution of data.

In this thesis, after introducing a detailed overview about existing meth-

ods for data stream, we introduce new strategies dealing with two main

problems: summarization and change detection. In particular, we will pro-

pose two innovative approaches.

A first approach deals with summarizing data stream. Unlike the ones

existent in data streams literature, it uses in a new way, a tool able to

provide an intuitive graphic summarization of data. In fact, it discovers

new concepts or behaviors of a fast changing data stream, by means of the

comparison with representative statistical and graphical instruments: the

histograms. So, histogram becomes a useful tool for assessing changes of

data over time.

In the second approach, a method for monitoring the evolution over

time of a data stream summarized by histogram data is presented. This

proposal is based on an extension of the order statistics to the quantile

functions associated to the set of histograms. Thus, we first define the

Median, the First and the Third Quartile functions and then, we introduce

a generalized representation of the box and whiskers plot in order to identify

and classify the histogram outliers arriving along time.

The thesis is organized as follows. In Chapter 1, an introduction about

data stream management is presented. Chapter 2 describes some of the

methods and techniques introduced for dealing meanly with the two prob-
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lems we discuss in this thesis: summarization and change detection in data

streams. In Chapter 3 and 4, the two innovative strategies are illustrated.

Finally in Chapter 5, several experimental results on real applicative fields

are presented.





Chapter 1

Data Stream Mining: issues

and challenges

The data analysis has been characterized by several stages. The first was

the statistical Exploratory Data Analysis (or EDA) [83]. The goal was

to explore the available data in order to validate a specific hypothesis.

With the advances in computer science, to find computationally efficient

solutions to data analysis issues was necessary. So, computational statistics

[64] and machine learning [86] fields have arisen. Then, due to the increase

in database sizes, machine learning and statistical analysis techniques have

been modified and new algorithms have been proposed. So, Data Mining

[34] has been stated as interdisciplinary field to extract models and patterns

from large amounts of information stored in data repositories.

Nowadays, potentially infinite volumes of data generated continuously

by real-time surveillance systems, communication networks, Internet traf-

fic, on-line transactions in the financial market or retail industry, electric

power grids, industry production processes, scientific and engineering ex-
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periments, remote sensors, and other dynamic environments are also be-

coming increasingly common.

These data are named data stream and may be defined as a sequence of

ordered events which arrive at very high rate. According to this definition,

we can consider a data stream as a particular case of sequential data [75],

[8] indexed by time as well as time series.

Although their definition can be similar, there are several differences be-

tween data streams and time series. The main difference lies in the size of

data and the manner in which they are collected and processed. A data

stream is unbounded and arrives continuously over time. For this reason,

it is not possible to store the entire stream permanently in a database as

it occurs for time series rather it can be only processed on the fly. This

means the techniques for analysis of time series cannot be always used to

deal with data stream.

In recent years, a new research field, usually referred as Data stream min-

ing (in short DSM) has attracted the attention of the scientific community.

DSM consists into extracting knowledge from massive, fast changing, tem-

porally ordered and potentially infinite data streams. To achieve this aim,

some adjustments of existing techniques and methods have been proposed

while others have been introduced just for data streams.

1.1 Data Stream Model

In numerous applicative contexts data takes form of unlimited and contin-

uous data streams rather than bounded data sets. Using a more formal

wording:

Definition 1.1. A data stream is a infinite sequence of couples (yj , tj)

where yj is real-valued observation recorded in time-point tj belonging to
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the discrete time grid T = {t1, ..., tj , ..., } ⊆ <.

The input elements y1, . . . , yj , . . . arrive describing an underlying func-

tion F and, according its values, three different types of data stream model

can be detected [74]. In fact, we can consider:

• insert only model in which once an element yi is seen, it can not

be changed;

• insert-delete model in which each element yi can be deleted or

updated;

• additive model on which each yi is an increment to F [j] = F [j]+yi.

An example for the first type of model is represented by time-series gener-

ated by sensor networks, radio frequency identification is a case of Insert-

Delete Model and for Additive Model we can consider monitoring the max

(or min) of the sum of quantities.

Beyond the specific model, the main properties which identify a data

stream are the following [11]:

• data are potentially unbounded in size;

• data elements arrive on-line;

• once an element from a data stream has been processed it is discarded

or archived; it cannot be retrieved easily unless it is explicitly stored

in memory, which typically is small relative to the size of the data

streams;

• the system has no control over the order in which data elements arrive,

either within a data stream or across data streams;



8 Data Stream Mining: issues and challenges

• the distribution generating the items can change over time.

Taking into account these properties, different challenges in data stream

analysis such as storage, computational, querying and mining are emerged

which will discuss in next sections.

1.1.1 Issues of data stream model

In traditional data analysis, data are first stored and then processed using

algorithms that make multiple pass over the data. In data stream context,

it is not feasible because two main reasons.

Firstly, the volume of data is unbounded and increases continuously over

time with a rate more high than processing time. This poses a serious

problem because the traditional data bases are not designed to collect the

infinite sequence of data. Furthermore, even if every observation had been

stored, because of huge amount of data, accessing and processing the col-

lected items many times may become very difficult.

Secondly, data streams are often mined in a distributed fashion namely

they come from hundreds of sources (like smart sensors networks) which

are connected among them and to a central system. In this case, the basic

processing is performed at the sensor which have limited memory capability.

A summary of the differences between traditional and stream data pro-

cessing is presented in Table 1.1.

Therefore, a key challenge in data stream mining is to overcome the

issue of storing data.

A common approach consists in using approximate summary structures,

referred to in the literature as synopses. In recent years, several synopsis

structures have been developed [35], [44] and the main ones include the

sampling, wavelets, sketches and histograms. In Chapter 2, we present
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Traditional Methods Data Stream Methods

Number of passes Multiple Single
Processing Time Unlimited Restricted
Memory Usage Unlimited Restricted
Type of Result Accurate Approximate
Distributed No Yes

Table 1.1: Difference between traditional and stream processing

an overview of the main synopsis highlighting the challenges and trade-

offs associated with using different kinds of techniques, and the important

research directions for synopsis construction.

From a computational point of view, because it is not possible to access

data more than once, the multiple pass algorithm cannot be apply. New

algorithms with specific characteristics have to be developed. In particular,

they are able to run with high processing time and have to designed to be

applied directly on streams instead of storing data beforehand in a database.

The fundamental requirements can be identified in the following sentences:

• the algorithms will have to use limited computational resources, in

terms of computational power, memory, communication, and pro-

cessing time;

• the algorithms will have only a limited direct access to data and

may have to communicate with other agents on limited bandwidth

resources;

• algorithms have to perform only one scan of the data;

• the knowledge about data should be available at any point in time or

on user demand.
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This means that techniques should process the incoming observation in

short and constant times using a very reduced amount of memory and per-

forming a single scan of the data.

Since new data continuously arrive along time, a desirable property of these

algorithms is the ability of incorporating new data. This allows to perma-

nently maintain an accurate decision model as data arrive. Such issue

requires learning algorithms that can modify the current model whenever

new data is available at the rate of data arrival. Moreover, they should

forget older information when data is out-dated.

Some supervised learning algorithms are naturally incremental, for ex-

ample k-nearest neighbors and naive-Bayes. Others, like decision trees,

require substantial changes to make incremental induction. Moreover, if

the process is not strictly stationary, the target concept could gradually

change over time and algorithm have to be carefully designed to work with

a clear focus on the evolution of the underlying data.

1.2 Data Stream Mining

A number of algorithms have been proposed for extracting knowledge from

streaming data. In this section, we discuss the main data stream mining

problem and challenges relative to each of them.

1.2.1 Data Stream Clustering

Clustering is a widely studied problem in data mining literature. In partic-

ular, the methods proposed in the data stream framework may concern the

examples of a single stream or the streams selves (also called variables clus-

tering [39]). Data stream clustering allows to solve the problem of finding
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a partition of data into homogenuous groups of items (single observation

or stream selves) according to some similarity measure.

In the first case, the aim is mainly to provide a summary of the stream by

means of the centroid of each cluster. This is very useful because of the

impossibility to store the single observations belonging to the stream.

In the variables clustering or clustering of time series data streams, the goal

is to discover groups of streams having a similar behavior and to explore

the temporal evolution of underlying phenomenon.

Nevertheless, it is very difficult adapt any clustering algorithm to data

stream framework. In fact, considering dynamic behavior of data, clus-

tering over data streams should be addressed in an on-line manner using

incremental procedure, in order to enable faster adaptation to new concepts

and to produce better models over time. Obviously, traditional methods

cannot adapt to the high-speed arrival of new examples, and algorithms

developed to process data in real time. With respect to clustering analysis,

these algorithms should be capable of continuously maintaining a compact

description of the most recent data, processing examples in constant time

and memory at the rate they arrive.

Interesting proposals on clustering algorithm for single data stream are

the CluStream [1] and the STREAM algorithms [49].

CluStream divides the clustering process into on-line and off-line steps.

In the on-line step, some summary statistics about the data stream are

computed and stored at micro-clusters and the on-line updating of micro-

clusters is performed. In the off-line step, a K-means algorithm is computed

on the set of the stored summary statistics on the basis of a tilted time

frame model. In the chapter , we give a more detailed description of this

algorithm.

The STREAM algorithm aims at providing a solution to the k-median
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problem on data streams. The basic idea is to split data into non overlap-

ping windows, to find a k-median solution on each window and then, to

cluster the obtained centers which are weighed by the number of points as-

signed to them. The algorithm used to find the k-median solution on each

chunk of data is a variant of the local search [50] in which an initial solution

is refined by making local improvements. According to the authors, their

proposal to perform the local search is able to guarantee a constant factor

of approximation of the optimal solution.

The clustering of multiple data streams is, instead, a more recent chal-

lenge. Some results have been introduced in [16], [18], [78]. In the first,

an extension to the data stream framework of the k-means algorithm per-

formed on time series is proposed. The streams are split into non overlap-

ping windows and for each of them, a Discrete Fourier Transform is used

to reduce the dimensionality of data, and then, the k-means algorithm on

the coefficients of the transformation is performed. The k-means is ini-

tialized using the centroids of the clusters of the partition obtained by the

latest processed window. Taking into account this, the final data partition

only depends from the partitions obtained in previous window and it is

not possible to query about the clustering structure over user defined time

intervals.

In the second method, named Clustering On Demand (COD), an on-line

scan of the data for dimensionality reduction data streams using a multi

resolution approach based on wavelet transformation or on piecewise linear

regression. An off-line step is performed on the reduced data by using a

suitable clustering algorithm in order to obtain the partitioning structure

of the streams. This method allows to deal with evolving data streams but

the clustering is performed on compressed streams and it does not work if

new data streams are added.
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The third proposal is a top-down strategy referred as Online Divisive

Agglomerative Clustering (ODAC) and provides a hierarchical structure

according to a dissimilarity measure based on the correlation among the

streams. The procedure which allows to divide the clusters is based on a

comparison between the diameter of each cluster and a threshold obtained

using Hoeffding limits. The algorithm takes into account the evolution of

the data using a criterion to aggregate the leaves still based on the com-

parison between the diameters of the clusters and the limits of Hoeffding.

Finally, the strategy proposed in [28] for discovering changes in web

usage over time can be considered for monitoring the evolution of prox-

imity relations among multiple data streams. The incoming data streams

are split into non overlapping batches and then, a clustering algorithm is

performed on each batch as soon as it is recorded. In order to deal with

evolution in data is performed comparing the partitions intra batch through

an appropriate measure.

An interesting two steps clustering algorithm for multiple data stream

is furnished in [13]. In the first one, on-line arriving chunks of data are

clustered in a predefined number of clusters and a proximity matrix is

updated according to the membership of pairs of sequences to the same

cluster. In the second, a non-metric multidimensional scaling is performed

on the proximity matrix in order to represent the dissimilarities among the

streams on a low dimensional space. Finally a k-means algorithm is run to

provide the final partitioning of the streams.

1.2.2 Data Stream Classification

In data stream context, the classification represents a challenging problem

not only for the very large size of streams of examples but also for the evo-
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lution of the data over time. In fact, the presence of changes in underlying

data stream implies the need to introduce classification schema able to con-

tinuously update itself over time. In particular, the training model has to

adapt quickly to new changes selecting dynamically the most appropriate

classifier.

A first method for data stream classification is the Vary Fast Decision

Tree (or VFDT) [33]. It is a decision tree learning method based on Hoeffd-

ing trees and it requires a single scan of data by using constant processing

time and memory. The main drawback is that it is not feasible in environ-

ment which constantly evolves over time.

An on-line algorithm named On Demand Classification is proposed in

[3]. The aim is to deal with continuous changing in underlying distribution

of the data stream. The classification models obtained can be considered

sufficiently accurate unlike the static one whose accuracy may be compro-

mised if a sudden change for the data belonging to a specific class occurs. It

is based on the idea proposed in CluStream algorithm. In fact, this method

exploits the concept of supervised micro-clusters obtained by appropriate

modifications to the one proposed in the unsupervised clustering [1]. The

supervised micro-clusters are created from a training data and each of them

represents a set of points belonging to the same class.

A further classification algorithm is proposed in [88] and it is based

on an ensembles of classification models. The use of a combination of

classifiers, as an alternative to the traditional use of a single classifier,

allows to improve the ability to identify new concepts expressed by the

data. This algorithm solves the problem of the expiration of the old data

in the model by assigning a weight to each classifier which vary according to

the accuracy of the provided estimate. Also, the number of classifiers may

change along time without losing the accuracy of the classification process.
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1.2.3 Change Detection

In data stream context, it is very hard to assume that observations are

generated randomly by a stationary distribution over time. This is realistic

in many real applications as real-time surveillance system, telecommuni-

cation system, sensor network. In these cases, the distribution or concept

underlines data may shift time to time and new concepts may emerge.

The Change detection is widely dealt in literature [60], [61], [65], [90] and

several methods are proposed in DSM especially in the context of learn-

ing [36], [54], [62], [88]. As described in the previous paragraph, the main

challenge in learning methods is to continuously maintain an accurate de-

cision model updating it when new data arrive and deleting the outdated

information.

The nature of change can be very diverse and regards two aspect [40]:

the cause and the rate of change. In the first case, changes are due to

modifications of hidden and/or observed variables. In the second case, how

the change occurs is analyzed.

In [82], Concept Drift is used when a gradual changing of distribution gen-

erating data is working. If the change is abrupt, the term Concept Shift

is preferred. It is obvious that a rapid change is more easy to detect than

a gradual change. In this case, it may be required several observations to

detect the change. In fact, in the transient phase between the two consec-

utive concepts, the distributions are mixed and the newer distribution can

be viewed as noise for the old one. For this reason, the detection algorithm

have to be able to capture the new concepts distinguishing it by noise.

At this end, it is possible to evaluate the persistence (sensibility to change)

of observations belong to a new distribution respect to simple noise (ro-

bustness to noise). In [65], the author gives a definition of concept drift by
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means of the consistence and persistence.

Thus, the detection methods must be used in order to obtain meaningful

descriptions and a quantification of the changes.

A first approach is proposed in [63], in which the method allows to the

detect and estimate the change by comparing the distribution belonging to

two different time-windows. The first time-window refers to the distribution

representing the past behavior of data and is defined reference window. The

second window contains the new incoming data. Both windows contain a

fixed number of items and the reference window is updated when a change

is detected. In order to decide whether the distributions are different,

statistical tests based on Chernoff bound are performed.

Another approach is presented in [38] where the Very Fast Decision Tree

(VFDT) algorithm is extended just for dealing with concept drift. The goal

is a continuously tracking of differences between two class-distribution of

the examples: the distribution when a node was built and the distribution

in a time window of the most recent examples.

Change detection may also concern the clustering structure of a set of

(or multiple) data streams [78]. In this case, Structural drift identifies a

point starting from which the clustering structure obtained with previous

observation is no longer valid because of new relations of proximity and

dissimilarity between the streams. Also in this case, the multiple streams

clustering methods should be able to detect and to adapt to these changes

in order to maintain an updated clustering structure along time.

1.3 Summary

Nowadays, massive data generally named data streams are constantly pro-

duced by several sources. A data stream may be defined as a sequence of
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ordered observations arriving continuously over time and at very high rate.

For dealing with these data it is necessary to satisfy very stringent compu-

tational and memory constraints. In fact, the volume of data is unbounded

and increases continuously over time with a rate more high than processing

time. Furthermore, data streams are often mined in a distributed fash-

ion so, the basic processing is performed at the sensor which have limited

memory capability.

Data Stream Mining represents the set of techniques developed just for

data stream. They have to able to process data on fly by means of only

one scan and to update, in incremental way, the knowledge about data as

soon as new data arrive.





Chapter 2

Data Stream summarization

and dimensional reduction

In data stream framework, new data are constantly arriving and the size of

data grows continuously. This make not feasible to store the entire sequence

of a data stream. A typical approach to overcome this storage constraint

consists in using of summary structures known as synopsis [44].

A synopsis is defined as any data structure which is in size essentially

smaller than its native data set. Because new items are constantly incoming

along time, they must be designed for being maintained incrementally, that

is, updated each time that one observation or a new sequence of observations

is collected.

The general idea is that data after processing are discarded or archived

and become not easily available anymore [11]. At the same time, summary

structures are updated with the new incoming observations and then stored

for being used in the knowledge extraction process. Thus, the knowledge

is extracted starting from these summaries rather than directly from the
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observations.

Synopsis are used for summarizing the whole data stream but they also

play an important role in query processing over data streams because al-

lows to give answer to the continuous queries [23] which are typical in this

context.

The choice of a particular summary structure depends on the problem

which has to be solved. A synopsis used to answer a query is probably

very different from the ones used to deal with a data mining problems

such as change detection and classification. According to this premise,

summarization is a main task in data stream processing and it has been

widely dealt in literature. Main approaches are based on data histograms

[37], [14], wavelets [46], sketches [27] and micro-cluster [2].

Another possible approach to make data stream analysis tractable is the

dimension reduction. In particular, we can consider dimensionality reduc-

tion techniques proposed just for data streams but also suitable adjustment

of techniques for dimensionality reduction of stocked time series. Among

these we mention: Discrete Fourier Transform [7], Discrete Wavelet Trans-

form (DWT) [25], Piecewise Aggregate Approximation (PAA)[59], Sym-

bolic Aggregate approXimation (SAX) [66], Piecewise Linear Representa-

tion (PLR) [72].

In this chapter, we review the main synopses and techniques for dimen-

sionality reduction of data streams.

2.1 Types of synopses

One of the main challenging task in data streams analysis is querying. In

order to solve the query estimation problem, a frequent approach consists

in considering synopses on time windows. The main time window models
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considered in the literature are:

• Fixed windows: each window is obtained by considering a fixed num-

ber of elements (e.g. last 10 elements). This means that each window

has equal size as shown in Fig. 2.1);

Figure 2.1: A data stream divided in equal size windows

• Landmark windows [42]: each window is obtained by setting an initial

time point (landmark) and by increasing the size with the arrival of

new data until a new landmark is set to allow the start of a new

window.

• Sliding windows [2]: aims at processing only the most recent N ob-

servations. Each incoming data element expires after exactly N time

steps as in a first in, first out data structure.

• Tilted windows [52]: aims at giving more importance to recent data

without discard the oldest information. The most recent data are

stored inside the window at the finest detail. Oldest information is

stored at a coarser detail, in an aggregated way.

The knowledge extraction using a windows model can be strictly performed

on the data defined through a window or by aggregating the results of a
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processing set of windows.

2.1.1 Sketches

Sketches are widely used data structures for data stream processing able to

compute basic statistics about data in sub linear space. Some example of

tasks which are dealt using sketches are the computation of quantiles, the

detection of distinct items, the selection of frequent items. Unlike to other

techniques for data stream summarization, sketches require the definition

of an aggregation function. Especially, starting from two summaries of the

data of two data streams or from two summaries of two different parts of the

same data stream, sketches require the possibility to compute, efficiently, a

new data structure which picks the information from the two initial sum-

maries. If this aggregation function computes the sum or multiplication of

the two summaries, the sketch is said to be linear.

Several sketches have been developed for data stream processing. Ex-

ponential histograms [11]are a deterministic technique for maintaining ε-

approximate counts and sums over sliding windows in space and time that

is significantly sub-linear. Deterministic waves [44] address the histogram

computation problem with the same space complexity as exponential his-

tograms, but improve the worst-case update time complexity. The Count

Sketch introduced in [24] is a first proposal for addressing the problem

of frequency count which requires an accuracy parameter ε and ensures a

threshold on the probability of error. On the same topic, a widely used tool

is the Count-Min Sketch in [27]. The latter has a lower space occupation

but is weaker in its approximation guarantee.
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2.1.2 Histogram

Among the summarization methods more used for static data sets, an im-

portant tool is provided by histograms but they are widely utilized to give

a concise representation of data streams too . Allowing consider extreme

values and outliers, an histogram can be defined as a set of break points

y1, . . . , yk−1, and a set of frequency counts f1, . . . , fk−1, that identify k in-

tervals in the range of the distribution generating the data stream.

The algorithm to deal with data stream have to be incremental, namely,

to be able to incorporate new data forgetting old and outdated observa-

tions. In [37], [39] propose a incremental two-step strategy for constructing

histogram data termed Partition Incremental Discretization (or PiD). In

the first step, the range of histogram and the number K of bin are defined.

Without seeing data, the range is divided in K bin and when a new data is

available it is associated to a specific bin updating the value of frequencies

associated to that bin. In this way, a first histogram is constructed and

updated in a on-line manner. Fixed the final number of bin and using only

the frequency associated to previous bins, a second histogram is provided

on user demand.

The main source of inaccuracy of histogram is that an uniform distribu-

tion is assumed in each bin. A suitable solution is to consider equi-depth

(or equi-frequency) histograms [73]. In this case, each bin of histogram con-

tains the same number of points. It is evident that the design of equi-depth

histogram becomes equivalent to the problem of quantile estimation for a

data stream. In fact, equi-depth bins define different quantiles in the data.

For this reason, the aim is to develop one-pass and with limited memory al-

gorithm for computing quantile in data stream. Some results are proposed

in [47], [69], [70].
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Another type of histogram is V-optimal Histogram. It is based on the con-

cept of minimizing over all bins (or buckets) a quantity which is called the

weighted variance and denoted by V. In particular,

V =

n∑
i=1

niVi =

n∑
i=1

∑
j

(fij − f̄)2,

where n denotes the number of buckets, ni is the number of items in bucket

i, and Vi is the variance of frequencies in the ith bucket computed com-

paring the frequency fij of the jth value and f̄i is the average frequency in

that bucket.

In [57], a method for computing optimal V-Optimal Histograms for a given

data set using a dynamic programming is presented and in [51] this algo-

rithm is adapted to sorted data streams. Finally, in [45], the restriction to

sorted data stream is removed through an algorithm based on the sketching

technique. This algorithm provides a robust histogram of desired accuracy

and number of buckets, namely, such that adding a small number of buck-

ets, the representation quality does not improve significantly.

In the next chapters, we present two methods for summarizing and analyz-

ing data stream using histograms.

2.1.3 Micro-clustering

Among the knowledge extraction tools for data streams, clustering is prob-

ably the most frequently used in exploratory analysis. Clustering in data

stream framework is suitable for grouping items of a single data stream or

for grouping the stream selves.

We will deal with only the first type. Because huge amount data stream

is potentially unbounded, it would be very difficult and expensive to store
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each single item of the stream associated to a particular cluster. Then, the

goal becomes to provide a summary of stream by means the centroid of

each cluster.

Among data stream clustering methods, a recent method to capture

summary information is named CluStream [1]. This algorithm is made

by an on-line step and by an off-line step. The first one is on-line and it

aims at collecting statistical information updating, with the arrival of new

data points, summary structures called micro-clusters; the second one is

off-line and it provides a set of summaries by processing the micro-clusters

by means of a classical clustering algorithm like the k-mean.

Generally, this framework is designed for capturing summary information

about multidimensional records but here, we define the concept of micro-

cluster of unidimensional observations y1, . . . , yj , . . .

Definition 2.1. A micro-cluster mC for a set of observations yj1 , . . . , yjn

with time points tj1 , . . . , tjn is the 5-tuple (ssv, sv, sst, svt, n) wherein:

• ssv =
∑n

l=1 y
2
j is the sum of the squared of the data values;

• sv =
∑n

l=1 yj is the sum of the data values;

• sst =
∑n

l=1 t
2
j is the sum of the squared of the time stamps;

• st =
∑n

l=1 tj is the sum of the time stamps;

• n is the number of data elements maintained in the micro-cluster.

Such summary structures satisfy the additivity property which is essen-

tial for providing the micro-clusters on a specific time horizon. Further-

more, the larger number of micro-clusters more information about data is

detailed. In this regard, we can observe for example the Fig. 2.2.
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Figure 2.2: Example of the evolution of micro-clusters over time

The Fig. (a) shows 3 clusters denoted by a, b, c, which make a different data

structure at a last step Fig. (b). In fact, the cluster a is split in a1 and a2

whereas b and c are merged in bc. Only if we consider micro-clusters, we

are able to capture such evolution.

In the first phase of the on-line step, we need to create the set of the

initial Z micro-clusters, namely {mC1, . . . ,mCz, . . . ,mCZ}. This is done

by applying a off-line k-means clustering algorithm to the first InitNum

observations.

Then, every time a new data item (yj , tj) is collected, it concurs to the

updating of the statistics stored in one micro-cluster appropriately selected

through an allocation procedure in the set MC. It is allocated to the

micro-cluster mCz ∈MC if the distance between yj and the average value

of mCz is the lowest and the increasing of variance in mCz is not superior

to a threshold value. If the second condition is not satisfied for any micro-

cluster, a new one mCZ+1 is started and if the number of micro-clusters

reaches a threshold value (th) which is set in order to keep under control
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the memory occupation, the two micro-clusters having the nearest average

value are mixed into one. Obviously, the number of micro-clusters in the

on-line step can vary but has to be less than a fixed value. In order to

make this decision, we use the cluster feature vector of Mp to decide if this

data point falls within the maximum boundary of the micro-cluster Mp. If

so, then the data point Xik is added to the micro-cluster Mp using the CF

additivity property. The maximum boundary of the micro-cluster Mp is de

ned as a factor of t of the RMS deviation of the data points in Mp from

the cen- troid. We de

ne this as the maximal boundary factor. We note that the RMS devia-

tion can only be de

ned for a cluster with more than 1 point. For a cluster with only 1 previ-

ous point, the maximum boundary is defined in a heuristic way. Specifically,

we choose it to be the distance to the closest cluster.

The second part of the on-line step is named snapshots recording and

consists in storing the set of micro-clusters on some available media at time

stamps detected through a predefined temporal scheduling. With data

flowing, this step makes available several snapshots of the micro-clusters

which will be used for recovering the summarization of a user defined time

period. For example, if the current time is tj∗ and the user is interested to

a time-horizon h, that is, the user wants to find the status of the micro-

clusters formed in [tj∗−h; tj∗ ], then it is sufficient to recover the snapshot

temporally nearest to tj∗−h and the one corresponding to the current time

and subtracting the values of the statistics stored in the snapshot related

to tj∗−h to the corresponding ones of the current snapshot.

The off-line step of CluStream is a variation of the k-means algorithm

where the input data points are the average value of each micro-cluster and

the center of each cluster is computed as weighted average of the allocated
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data points.

2.2 Sampling

Sampling is a very natural way to summarize a data set and it is relatively

easy when the size of entire set of observations is fixed in advance. In the

data stream context instead, sampling is not a trivial problem because the

total amount of data is not available being data stream unbounded in size.

In order to deal with this drawback, appropriate algorithms which do not

require the knowledge of the size and the availability of the whole set of

observations have been proposed.

A known one pass over algorithm for sampling is the Reservoir Sam-

pling proposed in [87] and then, it has been also adapted to data streams.

It is based on probabilistic insertions and deletions on arrival of new points.

It builds a dynamic random sample or reservoir which is updated continu-

ously in order to reflect the current history in an unbiased way over time. It

detects a fixed size uniform random sample at the beginning of the stream.

Then, some elements are selected randomly from the stream with a decreas-

ing probability and replace randomly elements already in the sample. The

decreasing probability ensures that the sample is uniform over the entire

period.

An adjustment of this approach to the case of weighted sampling is [].

Another problem with sampling is that it might reduce the probability

of detecting changes and anomalies. In [4], an interesting sampling algo-

rithm for streams which gradually evolve over time is presented. Another

proposals are presented in [12], [22] which address the problem of sampling

from sliding windows. In this case, the basic idea is that rather sampling

on all of the data seen so far, we can consider only on recent data contained
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in the most recent window.

2.3 Reduction Techniques for time series

Among dimensionality reduction techniques for data streams, some used

in time series framework can be used provided the data stream computa-

tional paradigm is satisfied. In fact, a real data stream can be considered as

continuously arriving time series e.g. stock markets data. Among dimen-

sionality reduction approaches refer to stoked time series, there are: Dis-

crete Fourier Transform (DFT), Piecewise Linear Representation (PLR),

Piecewise Aggregate Approximation (PAA), Symbolic Aggregate ApproX-

imation (SAA).

2.3.1 The Discrete Fourier Transform (DFT)

The Discrete Fourier Transform (DFT) is based on Fourier Transform which

is first proposed time series data reduction technique and still widely used.

A DFT of a given time series is a particular transformation which allows to

move from the time domain to the frequency domain. In fact, it is usually

employed to analyze the frequencies contained in a sample signal and with

respect to the continuous Fourier Transform, it is considered for signals

observed in discrete time. A DFT can be considered as a data reduction

technique because it is demonstrated that for most real time series, the

first few coefficients contain most of the energy of a time series [7]. So,

it is reasonable to expect those coefficients are able to capture a concise

and acceptable representation of the time series. This means that those

coefficients can be summarize the entire time series and similarly can be

used for the data stream. This property of DFT come from Parseval’s
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theorem which guarantees that the DFT preserve the Euclidean distance

between time series. Based on Fourier Transform, a new signal processing

technique called Wavelet Transform has been also proposed [25].

Figure 2.3: A visualization of the DFT dimensionality reduction technique

2.3.2 Piecewise Linear Representation (PLR)

Piecewise Linear Representation (PLR) approximates a time series S , of

length n, by means of a number K << n of segments obtained with a linear

interpolation or linear regression. In data stream context, this technique is

generally used to produce the best approximation such that the error for

any segment does not exceed some threshold.

2.3.3 Piecewise Aggregate Approximation (PAA)

PAA is a technique for reducing the length of a time series from n dimen-

sions to N dimensions and it was presented both in [59] and [91] indepen-

dently. The technique divides time series in equi-sized overlapping windows

and calculates the mean of each of them. These values will be used for pro-

viding a representation of reduced data. When N = n, the transformed
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Figure 2.4: A visualization of the PLR dimensionality reduction technique

representation is identical to the original representation. When N = 1,

the transformed representation is simply the mean of the original sequence.

Similarly, it is used to reduce the length of a data stream.

Figure 2.5: A visualization of the PAA dimensionality reduction technique
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2.3.4 Symbolic Aggregate ApproXimation (SAX)

SAX introduced in [66] aims at transforming a time series into a sequence of

symbols that can be processed using tools for discrete data. The time series

is first normalized and then, two steps of discretization are performed. In

the first step, the coefficients of PAA are obtained dividing the time series

into a fixed number of equal-sized segments. In the second step, it converts

the PAA to symbols which belongs to a new alphabet chosen assuming that

normalized time series have a standard Gaussian distribution. So, dividing

the standard Gaussian distribution in k equi-probable regions, it is possible

to map each region to a symbol and then, to process these items (see the

Fig. 2.6).

Figure 2.6: A visualization of the SAX dimensionality reduction technique

Recently, a new approach to represent a data stream into a reduced

space has been illustrated in [15]. In this work, a real valued data stream is

transformed into a string of symbols, each of them includes two components:

the first one is a level component and the second one is a shape component.

This transformation allows to get a better representation of data while

maintaining a strong compression ratio (see the Fig. 2.7).
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Figure 2.7: A visualization of the SAX dimensionality reduction technique

2.4 Summary

Data Streams pose new challenges both from a storage and computational

point of view. A feasible approach is to store sequences of data steam

through compact summary structures also named synopsis. So that, it is

no longer necessary to store all the single observations but rather the ex-

traction of knowledge will occur from these summaries themselves. Clearly,

synopsis of data are not able to capture all the characteristics of the dataset,

therefore, approximate answers are produced when using such data struc-

tures.





Chapter 3

Data streams reduction by

histogram data clustering

In previous chapters, we have discussed about the problem of summariz-

ing data through synopsis structures. Likely, data summarization by his-

tograms is a of the most common techniques since it is parsimonious repre-

sentation with respect to storage requirements and it provides an idea of the

data underlying distribution by giving useful information about location,

variability and shape.

Histograms have a long history in data analysis. In fact, they are the

most used tool in exploratory data analysis [83]. In Symbolic Data Analysis

(SDA) the Histogram Variable is a particular case of symbolic multi-valued

modal variable and several techniques for Clustering, Regression and PCA

have been proposed in [20], [21] to analyze histogram data. Furthermore,

histogram is also the oldest and most widely used density estimator where

density estimation means the construction of an estimate of the density

function from the observed data [81]. Especially, histogram represents of
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course an extremely useful class of density estimates in the univariate case.

In this chapter, we introduce a new strategy for summarizing data

stream by means histogram data. In particular, a set of histograms summa-

rizes groups of data so that each histogram will represent a main concept

in the data.

At this aim, we use a clustering algorithm based on the CluStream [1] ex-

tended to histogram data. It is an efficient clustering algorithm for data

streams where the prototype of each cluster is an histogram and data are

allocated to clusters through the L2 Wasserstein distance.

The chapter is organized as follows. In the section 2, we give some formal

definitions for histogram data; in section 3, we furnish a detailed description

of the distances proposed for histograms; in sections 4 and 5, we illustrate

CluStream and the allocation strategy, respectively; the section 6 ends the

paper with an application on simulated data.

3.1 The definition of Histogram

Let Y be a continuous variable defined on a finite support S = [y; y],

where y and y are the minimum and maximum values of the domain of Y .

The variable Y is supposed partitioned into a set of contiguous intervals

(bins) {I1, . . . , Ik, . . . , IK}, where Ik = [y
k
; yk). Given n observations on the

variable Y , a function Ψ(Ik) =
∑n

u=1 Ψyu(Ik), where Ψyu(Ik) = 1 if yu ∈ Ik
and 0 otherwise, is associated with each semi-open interval Ik. Thus, it is

possible to associate to Ik an empirical distribution fk = Ψ(Ik)/n.

A histogram of Y is then the graphical representation based on a finite

number of rectangles with base the interval Ik along the horizontal axis and

the area equals to the relative frequencies fk associated to Ik.

Having so defined histogram data, we consider a set of N histograms
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{Hi, i = 1, . . . , N} identifying each histogram by a set of ordered cou-

ples, namely, Hi = {(Ii1, fi1), . . . , (Iik, fik), . . . , (IiKi , fiKi)}, i = 1, . . . , N .

For each elementary intervals of Hi, we define the cumulative weights as

follows:

wik =

 0 l = 0∑
h=1,...,k

fih k = 1, . . . ,Ki
. (3.1)

Furthermore, let U (a, b) be a uniform density defined on the interval [a, b],

we may assume that within each interval Iik = [y
ik
, ȳik) the values are uni-

formly distributed and also interpret a histogram description as a particular

mixture density distribution, i.e.:

Hi ∼
∑

k=1,...,K

fik U(y
ik
, yik).

Consequently, the cumulated distribution function (cdf) Fi(y) associated

to each Hi assumes the following form:

Fi(y) =


0 if y < y

i1

wik−1 +
y−y

ik
ȳik−yik

fik, if y
ik
≤ y < ȳik

1 if y ≥ ȳiKi .
(3.2)

Reminding that the quantile function (qf) of a probability distribution is

the inverse of its cumulative distribution function, the qf associated to each

Hi is:

Fi
−1(ξ) =


yi1 if ξ = 0

y
ik

+
ξ−wik−1

wik−wik−1
(ȳik − yik) if wik−1 ≤ ξ < wik

ȳiKi if ξ = 1

(3.3)
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Both the cumulative distribution function and the quantile function asso-

ciated to a histogram are piece-wise linear functions as shown in Fig. 3.1.
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Figure 3.1: From the left to the right: a histogram datum, its cumulative
distribution function (cdf ) and the corresponding quantile function (qf ).

3.2 Metrics for histogram data

An interesting problem when data are described by histograms concerns the

choice of the metric used to compare them. Since histograms can be consid-

ered as the representation of empirical frequency distribution, a possibility

consists in measuring the dissimilarity between the cumulated distribution

functions associated to them. In [43], a good review on metrics between

probability measures is proposed. Such metrics are summarized in Table

3.1. Generally, in order to define a metric, it is necessary to consider a

measurable space Ω with a σ-algebra B and letM be the space of all prob-

ability measures on (Ω,B). In the following, we denote with µ and ν two

probability measures (like the πih are) on Ω. Let f and g be the corre-

sponding density functions with respect to a σ-finite dominant measure λ.

It is notewortly that, if Ω = R, F and G denote just the corresponding

distribution functions.
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Abbreviation Metric

D Discrepancy
H Hellinger distance
I Relative entropy(or Kullback-Leibler divergence
K Kolmogorovo (or Uniformm) metric
L Lévy metric
P Prokhorov metric
S Separation distance

TV Total variation distance
W Wasserstein(or Kantorovich) metric
χ2 χ2 distance

Table 3.1: Some metrics between probability measures.

3.2.1 Discrepancy metric

It is defined on any metric space as:

dD (µ, ν) := sup
all closed balls B

|µ (B)− ν (B)|

It assumes values in [0, 1]. Diaconis (1988, p. 34) showed that it can

be used to study weak convergence on random walks on groups and show

some bounds for particular distributions using Fourier transformations of

probability measures on compact sets.

3.2.2 Hellinger metric

The distance is attributed to Hellinger (1901) that firstly used the quan-

tity
(
1− 1

2d
2
H

)
known as Hellinger affinity. For any measurable space, the
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distance can be formalized as:

dH (µ, ν) :=

[∫
Ω

(√
f −√g

)2
dλ

]1/2

=

[
2

(
1−

∫
Ω

√
fgdλ

)]1/2

.

For countable space its version is:

dH (µ, ν) :=

[∑
ω∈Ω

(√
µ (ω)−

√
ν (ω)

)2
]1/2

It assumes values in [0,
√

2].

3.2.3 F-divergence based measures

The f-divergence indexes are based on a family of metrics where for every

convex function φ one may define:

dφ (µ, ν) =
∑
ω

ν (ω)φ

(
µ (ω)

ν (ω)

)

• φ(x) = (x− 1)2 yields dχ2 , the Chi-square measure that thus cannot

be considered as a dissimilarity;

• φ(x) = x log x yields dI , the Kullback-Leibler (or Relative entropy)

divergence, that is not symmetric and, then, it is not a dissimilarity

measure;

• φ(x) = |x− 1|/2 yields dTV , the Total variation distance;

• φ(x) = (
√
x− 1)2 yields d2

H , the Hellinger distance.
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3.2.4 Kolmogorov (or Uniform) metric

It is defined on any metric space as:

dK (F,G) := sup
x
|F (x)−G (x)| , x ∈ R

It assumes values in [0, 1].

3.2.5 Prokhorov (and Lévi-Prokhorov) metric

It is defined on any metric space as:

dP (F,G) := inf {ε > 0 : µ (B) ≤ ν (Bε) + ε, for all Borel setsB}

where Bε = {x : infy∈B d(x, y) ≤ ε}. It can be also rewritten as:

dP (µ, ν) = inf {ε > 0; inf P [d(X,Y ) > ε] ≤ ε} .

It generalizes the Lévi distance that is defined on R

dL (F,G) := inf {ε > 0 : G (x− ε)− ε ≤ F (x) ≤ G (x+ ε) + ε,∀x ∈ R}

Also if it not easy to compute, this metric is theoretically important because

it permits to compute rate of convergence between two distributions on any

separable metric space [55]. The Prokhorov distance between two random

variables can be considered as the minimum distance in probability between

the two random variables generated by µ and ν.
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3.2.6 Total variation

For any measurable space is defined as:

dTV (µ, ν) := sup
A⊂Ω
|µ (A)− ν (A)| = 1

2
max
|h|≤1

∣∣∣∣∫ h dµ−
∫
h dν

∣∣∣∣
where h : Ω→ R satisfies |h (x)| ≤ 1.

For countable spaces it is:

dTV (µ, ν) :=
1

2

∑
x∈Ω

|µ (x)− ν (x)|

which is the half L1 norm between two measures. It assumes values in [0, 1].

For our aims, we focus our attention on the Wasserstein family of metrics.

3.2.7 Wasserstein distance

The Wasserstein metric has a colorful history with various historical sources

[79]. The term Vasershtein distance for comparing two probability measures

µ and ν on a metric space appeared for the first time in [89]. In particular,

it was defined as l1(µ, ν) = inf{Ed(X,Y )} where the inf is with respect

to all random variables X, Y associated to measures µ and ν. However,

the L1 metric had been introduced and investigated already in 1940 by

Kantorovich for compact metric spaces [58]. In 1914 Gini introduced the

L1 metric in a discrete setting on the real line and Salvemini (in the discrete

case) [80] and in [29], the representation of the general case was presented.

Mallows introduced the L2 metric in a statistical context [68]. Moreover,

starting from Mallows work, in [19] topological properties are described and

applications to statistical problems as the bootstrap are investigated.
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The general expression of Lp metric is:

dpW (µ, ν) :=

1∫
0

∣∣∣F−1
j (ξ)− F−1

j (ξ)
∣∣∣p dξ, p ≥ 1, (3.4)

where Fi and Fj are the cdfs of µ, ν respectively and the F−1
i and F−1

j

their corresponding qfs. It is worth noting that main drawback of (3.4) is

the invertibilty of cdfs. In [56], an interesting solution to this problem is

provided for p = 2. In this case, the previous distance can be rewritten as:

d2
W (µ, ν) =

1∫
0

(
F−1
i (ξ)− F−1

j (ξ)
)2
dξ, (3.5)

also known as Mallows distance. Let Hi and Hj be two histograms having

as cdfs Fi and Fj , respectively. In order to compare them by using the

distance (3.5), a set of uniformly dense intervals is derived from the set of

the cumulated weights of the two distribution Fi and Fj :{
w0i, ..., wui, ...., wHii, w0j , ..., wvj , ...., wHjj

}
(3.6)

as reported in [56]. Such set contains the sorted values of (3.6) (without

repetition) and it is denoted as

{w0, ..., wl, ...., wL} ,

where

w0 = 0, wL = 1, max(Hi, Hj) ≤ L ≤ (Hi +Hj − 1) .
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Thus, the distance (3.5) between two histogram Hi and Hj becomes:

d2
M (Hi, Hj) :=

L∑
l=1

wl∫
wl−1

(
F−1
i (ξ)− F−1

j (ξ)
)2
dt. (3.7)

At the other hand, each [wl−1, wl), l = 1, . . . , L allows us to identify two

new uniformly dense intervals, one for i and one for j, having respectively

the following bounds:

I∗il = [F−1
i (wl−1);F−1

i (wl)] and I∗jl = [F−1
j (wl−1);F−1

j (wl)].

Because intervals are uniformly distributed, we may express such intervals

by using the function of the center (mid point) and of the radius (half-

width) as: c+ r(2ξ− 1) for 0 ≤ ξ ≤ 1. The equation (3.7) can be rewritten

as:

d2
M (Hi, Hj) :=

L∑
l=1

πl

[
(cil − cjl)2 +

1

3
(ril − rjl)2

]
, (3.8)

where πl = wl − wl−1 and centers and radii are given by:

cil = (F−1
i (wl) + F−1

i (wl−1))/2 ; ril = (F−1
i (wl)− F−1

i (wl−1))/2.

Given a set of N histogram data, by it is possible to define the Average

histogram H̄. It is computed minimizing the following sum of distances:

f(H̄|H1, . . . ,HN ) = (3.9)

=

N∑
i=1

d2(Hi, H̄) =

N∑
i=1

L∑
l=1

πl

[
(cil − c̄l)2 +

1

3
(ril − r̄l)2

]
,
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Figure 3.2: Processing schema

and it is easy to prove that it holds a minimum when:

c̄l = N−1
N∑
i=1

cil ; r̄l = N−1
N∑
i=1

ril.

The Average histogram can be as the centroid (or barycenter) of the N

histogram data and can expressed by the couples: ([c̄l − r̄l; c̄l + r̄l] , πl) of

intervals with associated weights πl.

3.3 CluStream strategy for histogram data

Let Y = {(y1, t1), . . . , (yj , tj) . . .} be a data stream whose each observation

yj arrives continuously over time at fixed time stamps tj , j = 1, 2, . . . . The

method we propose adapts the CluStream algorithm (see paragraph 2.1.3)

to the processing the histogram data [14] according to the following schema:

• On-line phase

1. Splitting of incoming data into non overlapping batches;

2. Representation of each data batch through an equi-frequency

histogram;

3. Allocation of the histograms to a Histogram micro-cluster through

the L2 Wasserstein distance;



46 Data streams reduction by histogram data clustering

Symbol Description

Hi, i = 1, . . . , Any arriving histogram
HmCz, z = 1, . . . , Z Any histogram micro-cluster
Zmax Maximum number of histogram micro-clusters

HmCz, z = 1, . . . , Z Centroid of any histogram micro-cluster
HMCλ, λ = 1, . . . ,Λ Any histogram macro-cluster

HMCλ, λ = 1, . . . ,Λ Centroid of any histogram macro-cluster
Λ Number of the required histogram macro-clusters

Table 3.2: Symbols with corresponding description used in CluStream strat-
egy for histogram data.

4. Snapshot recording.

• Off-line phase

1. Clustering of the Histogram micro-Cluster in order to obtain the

summarization of the stream.

3.3.1 The on-line phase

Following the previous schema, in the on-line phase the data stream Y is

split into time windows Wi = {tj , . . . , tj+S} , i = 1, 2, . . . where S is the

total number of time points contained in Wi. At the other hand, each Wi

corresponds to a data batch Qi = {yj , . . . , yj+S} , i = 1, 2, . . . containing S

observations and such as Qi
⋂
Qi+1 = ∅, ∀i. Finally, for each data batch

Qi, we get a histogram Hi = {(Ii1, fi1), . . . , (Iik, fik), . . . , (IiKi , fiKi)}, i =

1, 2, . . . where Iik are bins obtained partitioning the domain of Qi and fik

are empirical frequencies associated to Iik.

In this proposal, a first decision regards the type of histograms used
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for synthesizing batches Qi. As it will be apparent below, we have chosen

equi-depth histograms, that is, each Hi is portioned in bins which have the

same number of data items and fik = fik′ , ∀k 6= k′.

This means that, since we have also considered batches of equal width, the

number of bins Ki is equal to K for each histogram Hi, ∀i. Furthermore,

the distance (3.8) between two histograms Hi and Hj is defined for L = K,

πl = 1
K , ∀l and is given by:

d2
M (Hi, Hj) :=

K∑
l=1

1

K

[
(cli − clj)2 +

1

3
(rli − rlj)2

]
. (3.10)

The histograms Hi are the data elements which concur to update summary

structures we call Histogram micro-clusters (HmC). They are an extension

of the concept of the micro-cluster introduced in paragraph 2.1.3.

Unlike, a Histogram micro-cluster stores basic statistics about a set of his-

tograms. Formally, by considering that each bin Iik, k = 1, . . . ,Ki of the

histogram Hi, i = 1, 2, . . . , can be expressed as function of its center and

radius, that is Iik = cik + rik(2t − 1) for 0 ≤ t ≤ 1 and then, a Histogram

micro-Cluster HmC can be defined as follows.

Definition 3.1. A Histogram micro-Cluster HmC for a set of histograms

is the (2K + 1)-tuple (c̄, r̄, n) where:

• c̄ is the vector of the centers c̄k with k = 1, . . . ,K of the bins of the

histogram H̄;

• r̄z is the vector of the radii r̄k with k = 1, . . . ,K of the bins of the

histogram H̄;

• n is the number of histograms which belong to the histogram micro-

cluster;
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wherein HmC is the histogram which assumes the role of centroid computed

as in paragraph 3.2.7.

Figure 3.3: Sequence of data and related histogram.

As in the first phase of the CluStream algorithm (see par. 2.1.3), we cre-

ate a initial set of Z histogram micro-clusters {HmC1, . . . ,HmCz, . . . ,HmCZ}.
This is done by applying a off-line k-means clustering algorithm to the first

InitHistNum histograms.

Then, every time a new batch of data Qi is available, the correspondent his-

togram Hi is computed and it is allocated to nearest micro-cluster HmCz,

selected on basis of the value of proximity between Hi and all centroids

HmCz, of the HmCz, z = 1, . . . , Z. This means that the allocation occurs

by detecting the minimum in the set of following distances:

d2
M (Hi, HmCz) =

K∑
l=1

1

K

[
(cil − c̄zl)2 +

1

3
(ril − r̄zl)2,

]
, z = 1, . . . , Z.(3.11)
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Then, once the allocation of Hi to any HmCz is performed, the number nz

is increased by one unit and the histogram micro-cluster centroid has to be

updated.

In our method, the size Z of the set of histogram micro-cluster is not defined

a priori but it adapts to the structure of data, however it strongly depends

on the choice of a boundary threshold thHmC which fix the size of the

histogram micro-clusters. Obviously, a too high value of thHmC involves

that only few histogram micro-clusters are generated; conversely, a too low

value might generate too many histogram micro-clusters. Furthermore, a

too low value of thHmC involves that a lot of processed histograms will

not be allocated to existing micro-clusters but they will start new ones.

At the opposite, a too high value implies that histograms will be always

allocated to some existing micro-cluster and it will be more difficult to

capture the emerging concepts. To deal with this issue we introduce an

heuristic to set the value of the threshold and a criterion to keep the number

of histogram micro-clusters under a maximum value Zmax (this allows to

keep a constant upper bound of the used memory space). Particularly, we

propose to compute the threshold thHmC as follows:

thHmC = min d(HmCz, HmCz′) ∀z, z′ = 1, . . . , Z with z′ 6= z (3.12)

that is, thHmC is set to the minimum distance allowed between the his-

togram micro-cluster centroids.

If the number of histogram micro-clusters grows too much so to exceed

the available memory resources, we propose to merge the two nearest his-

togram micro-clusters into one. The choice is made by evaluating the L2

Wasserstein distance between all couple of histogram micro-cluster and by
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selecting those ones closest among them:If argminz,z′d(HmCz, HmCz′) ∀z, z′ = 1, . . . , Z, z 6= z′

⇒ Merge HmCz, HmC
′
z

. The updating of the snapshot recording are performed as in CluStream

2.1.3. In fact, we provide a method to obtain the summaries of behavior

data for a user-defined time. It is based on the storing of a snapshot of the

set of Histograms micro-Cluster HmCz at a fixed time.

In order to get the summarization of the user defined time horizon, the

procedure identifies the snapshot that is temporally closer to the lower end

of the time interval (lower snapshot) and the one which is temporally closer

to the upper end (upper snapshot). The next step is to remove from the

state of the histogram micro-clusters the effects of the updates that oc-

curred before the beginning of the lower snapshot.

Since the centroid HmCz of each histogram micro-cluster is the average of

the allocated histograms, it is possible to recover the state of each HmCz

removing what has happened before the beginning of the time slot, by com-

puting a component by component weighted difference between the centroid

as available from the upper snapshot and the corresponding HmCz, ob-

tained from the lower snapshot (the weights are the number of allocations

stored in the parameter nz).

3.3.2 The off-line phase

In order to detect the final synthesis of the stream, the phase off-line ana-

lyzes the micro-cluster calculated in step on-line. From the output of the

previous step, the obtained centroids Z, together with the number of allo-
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cated items nz (which assumes the role of weight), become the data to be

processed by a algorithm like k-means which provides, as output, a parti-

tion of the Histogram micro-clusters centroids into a set of macro-clusters

{HMC1, . . . ,HMC, . . . ,HmCλ} (with Λ < Z) which are the final sum-

maries of the required time interval and a new set of centroids. Similarly to

the k-means, this algorithm minimizes an internal heterogeneity measure:

∆ =

Λ∑
λ=1

∑
HmCz∈HMCλ

d(HmCz;HMCλ)nz (3.13)

where d(HmCz;HMCλ) is computed according to the definition (3.8) be-

tween the centroid HmCz of histogram micro-cluster HmCz and the cen-

troid HMCλ of histogram macro-cluster HMCλ.

3.4 An application on simulated data

In this section, the strategy proposed is applied on several simulated data

sets. We have generated nine datasets composed by 110000 temporally or-

dered observations characterized by two main concepts. Especially for all

datasets, each concept have been kept for 50000 consecutive and ordered

time stamps and the observations are locally independent and identically

distributed. A further transition concept made by 10000 items has been

introduced in the datasets, especially observations by a mixture of the two

involved distributions with weights equal to 0.5 are generated. In all the

cases, the main concepts are obtained by a random simulation of two Gaus-

sian distributions having different parameters.

To discover if our strategy recognizes them, we have compared the proto-

type histograms obtained by the off-line clustering procedure with the ones



52 Data streams reduction by histogram data clustering

related to data generated by two Gaussian distributions. The comparison

is based on the distance between two histograms Hi and Hj introduced in

[85]:

dM (Hi, Hj) = (x̄i − x̄j)2 + (σi − σj)2 + 2σiσj(1− ρ(Hi, Hj)) (3.14)

where x̄i, x̄j , σi, σj and ρ(xi, xj) are mean, variance and correlation of

the quantile functions associated to two histograms. Through this distance

function, we can evaluate the matching of two histograms in terms of lo-

cation, size and shape. For this reason, we have distinguished three set of

experiments. In the first one, the two distribution have the same mean µ

and different standard deviation σi and σj ; in the second one, they have

different µi and µj and same σ values and in the third, they have different

µi and µj and σi and σj values. The dataset are generated according to

the distributions shown in the Table 3.3:

First Concept Second concept

Dataset Id µ1 σ1 µ2 σ2

1 0 1 0 5
2 0 1 0 7
3 0 1 0 7

4 2 1 5 1
5 2 1 7 1
6 2 1 10 1

7 2 1 5 5
8 3 1 9 2
9 5 1 14 10

Table 3.3: Parameters for simulated datasets

To run our procedure, we need to set the input parameters. The first



3.5. Summary 53

input parameter is the windows size ws which, for our data, corresponds

to 200 observations. According to the rule of the square root, we have set

the number of bins K (or nBin) of the histograms to 15.

Then, we have fixed the maximum number of the micro-clusters Zmax =

50 which represents a good compromise between the detail of summariza-

tion and the memory usage and the final number of summaries (macro-

clusters) Λ = 2 consistently with the number of main concepts in the gen-

erated data. Finally, the threshold thHmC is set automatically throughout

the execution of the algorithm.

The results in Table 3.4 show that for all the datasets, the procedure has

been able to catch the main concepts in the data. This emerges by looking

at the values of the distance but also at the values of the single components

of it. In particular, the values near to 0 for the first and second component,

highlight that the obtained histograms have a good match to the original

data in terms of average value and standard deviation while values near to

1, for the correlation component, show that there is also a very good match

in terms of shape of the histograms.

3.5 Summary

In this chapter, we have introduced a new strategy for summarizing a data

stream and then, we have evaluated it on simulated data. Our approach

provides, by a two-step clustering algorithm, a set of histograms which de-

scribes the main concepts emerging in a fast changing data stream. Unlike

existent approaches in data streams literature, we use histograms to sum-

marize the concepts emerging in data and to provide an intuitive graphic

representation of them. Further contributions are the introduction of a

Wasserstein derived distance to the context of data stream mining, as well
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as a more computationally efficient expression for comparing equi-frequency

histograms.
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Table 3.4: Results of the comparison between the histograms emerging from
the proposed procedure and the generated data.





Chapter 4

A graphical tool for data

stream summarization and

monitoring

In the previous chapter, the data stream summarization task has been dealt

with a clustering method which provides, as output, a set of histograms,

each one representing a distinct concept underlying the data stream.

In this chapter, we propose a more complex summary structure which ex-

tends the classic box-plot [83] to a set of quantile functions associated with

a set of histograms.

This tool provides a whole graphical representation of the concepts in a

stream by analyzing the histograms which synthesize the data contained in

each time windows. We introduce a method for monitoring potential out-

liers in a data stream with respect to the mean or the shape of the observed

histograms.

For this purpose, we present new descriptive statistics for histogram
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variables, and, in particular, new order skewness statistics. In the SDA

approach, some basic statistics like the sample mean and the standard

deviation for a histogram variable have been introduced in [17], [20], [21]

and [56]. However, there is a lack of consideration about the order statistics.

Usually, for defining order statistics, an order relationship is needed. In

data analysis, the ordering definition problem is not trivial. For example,

it is not possible to define a natural ordering for a set of units described in

Rd when d > 1. A well known approach is based on the concept of data

depth [83], [67], [92]. The data depth provides a center outward ordering

assigning to an object a value of centrality or depth with respect to the

data set which is as higher as the object is nearer to the center of a data

cloud.

The concept of depth has also been proposed in the context of the func-

tional data but the computational constraints do not allow you to apply

these techniques effectively in the context of data streams.

Consequently, starting from the properties of a particular families of dis-

tances, we propose to use the quantile functions associated with histograms

to define the order statistics. Especially, we make reference to a family of

Lp Wasserstein distances presented in the previous chapter; in particular,

we consider only the L1 and L2 norm (that is p = 1, 2).

The proposed order relation allows to define new functions representing

the order statistics for the set of quantile functions. These functions are

still piece-wise linear quantile functions which can be associated with a his-

togram data uniquely. By using the 1-st and 3-rd Quartiles, Median quan-

tile functions we propose an extension of the classic box-plot for describing

a set of histogram-valued data. Finally, some measures of variability and

skewness related to the box-plot are discussed.

The chapter is organized as follows. In the section 2, we give a detailed
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description of the algorithm for computing of order statistics for quantile

functions and its computational evaluation; in section 3, we illustrate the

procedure to construct the box-plot; in the section 4, we present also some

skewness indexes and, finally, the section 5 ends the paper with an appli-

cation on real data.

4.1 Box and Whiskers plot for quantile functions

Let Y = {y1, . . . , yl, . . .} be an univariate data stream whose observations

yl, l = 1, 2, . . . arrive continuously over time at a fixed time tl. The data

stream Y is split into non-overlapping time windowsWi = {tj , . . . , tj+S} , i =

1, 2, . . . having equal size S and the corresponding histogram is computed

for each of them.

The data stream Y can be represented by an infinite number of his-

tograms again indicated asHi = {(Ii1, fi1), . . . , (Iik, fik), . . . , (IiKi , fiKi)}, i =

1, 2, . . ..

Let us suppose to consider the first N time windows Wi, i = 1, . . . , N

and the associated histogram Hi summarizing the data stream. We define

the quantile function box-plot [77] as follows.

Definition 4.1. Quantile functions box-plot . A box-plot for a set of

quantile function is the graphical representation of five quantile functions

{QLow(ξ), Q1(ξ),Me(ξ), Q3(ξ), QUpp(ξ)} , ∀ξ ∈ [0, 1] where:

• QLow(ξ) is the lower whiskers quantile function;

• Q1(ξ) is the first quartile quantile function;

• Me(ξ) is the median quantile function;

• Q3(ξ) is the third quartile quantile function;
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• QUpp(ξ) is the upper whiskers quantile function.

In the next section, we will illustrate the procedure used to define the five

quantile functions forming the quantile function box-plot . In particular,

since we have used the same procedure for all five quantile functions we

will detail our proposal for the Median quantile function.

4.2 The Median quantile function and other order

statistics

Our first aim is to define the Median-qf and the corresponding Median-

histogram for a set of histogram data {Hi}i=1,...,N (see [76]).

Taking into account the proprieties of the median in descriptive statistics

and according to [10], the Median quantile function can be defined as the

histogram HMe obtained by solving the following minimization problem

based on L1 Wasserstein distance expressed in (3.4):

min
HMe

N∑
i=1

d1(Hi, HMe) = min
F−1(ξ)

N∑
i=1

1∫
0

∣∣F−1
i (ξ)− F−1

Me(ξ)
∣∣ dξ, (4.1)

where F−1
i and F−1

Me are the qfs associated with Hi and HMe respectively.

By (4.1), it can be observed that HMe is barycetric with respect to the

set of histogram data Hi according to the L1 Wasserstein distance so as the

Average histogram according to the L2 distance as shown in [56], [85] and

in the Chapter 3.

Considering the nature of the data, and the minimization of the function

in (4.1), we present a strategy for obtaining a level-wise median quantile

function, namely, a quantile function that, for each ξ ∈ [0; 1], leaves N/2
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quantiles before and N/2 quantile after the obtained value.

The procedure for computing the Median histogram and the Median qf can

be divided in two steps described in the next sections and named homoge-

nization and selection steps.

4.2.1 Homogenization step

As seen in the previous chapter, we set wik =
∑k

l=1 fil, k = 1, . . . ,Ki as

cumulative relative frequencies or levels. We firstly homogenize the set of

histograms, i.e. we detect a minimum set of values, allowing to define a set

of elementary intervals of levels that do not contain angular points. Thus,

w = {w10, . . . , w1K1 , . . . , wi1, . . . , wiKi , . . . , wN0, . . . , wNKN } (4.2)

is the set of the cumulated relative frequencies associated to all histograms

Hi, i = 1, . . . , N . After sorting the element of w and eliminating the

replicated values, the previous set becomes:

w = {w0, . . . , wl, . . . , wL} , (4.3)

where w0 = 0, wL = 1 and, denoting with K̄ = N−1
N∑
i=1

Ki, the value of L

varies in

max
1≤i≤N

Ki ≤ L ≤ (N(K̄ − 1) + 1).

For each wl, l = 0, . . . , L the values of F−1
i (wl) = yl, i = 1, . . . , N are

known or they can be easily computed by a linear interpolation (because

the qfs are piece-wise linear). So, each Hi, i = 1, . . . N is described by a

new set of L couples {(I∗il, f∗il); l = 1, . . . , L}, where: I∗il = [yl−1, yl] and

f∗il = wl − wl−1.
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4.2.2 Median level piece-wise selection step

Fixed l = 1, . . . , L, each elementary intervals of levels [wl−1, wl) contains

the segments F−1
i (ξ), (with wl−1 ≤ ξ < wl) associated to the quantile

functions F−1
i , i = 1, . . . , N .

Thus after computing the values F−1
i for each level wl−1, (i)-th order

statistics F−1
(i) (wl−1) on the set {F−1

1 (wl−1), . . . , F−1
i (wl−1), . . . , F−1

N (wl−1)}
is detected. If there are not intersections between F−1

(i) (ξ) and F−1
(j) (ξ), ∀ξ ∈

[wl, wl+1) and ∀j 6= i, then F−1
(i) (ξ) is the i − th piece-quantile function in

[wl−1, wl). Otherwise, the order of the pieces of the quantile functions

changes (as shown in Fig. 4.2) and it is necessary to select the new pieces

in position (i)-th.

According this procedure, we define the Median quantile function Me(ξ)

for the set {F−1
1 (ξ), . . . , F−1

i (ξ), . . . , F−1
N (ξ)}, ∀ξ ∈ [0, 1]. At this end, if N
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Figure 4.1: The black dotted curve represents the Median-qf obtained with
the proposed method.

is odd, we select for each level wl with l = 1, . . . , L the piece of quantile

function in position (N+1
2 ), that is, F−1

(N+1
2 )

(ξ), ∀ξ such that wl−1 ≤ ξ < wl.

If N is even, we consider the average between two quantile functions in
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position (N2 ) and (N2 + 1), that is, F−1

(N2 )
(ξ) and F−1

(N2 +1)
(ξ), ∀ξ : wl−1 ≤ ξ <

wl, in analogy of the classical case.
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Figure 4.2: Selection of the pieces quantile level of the Median quantile
function (the dotted path) in the elementary interval of levels [wl;w(l+1)]
with N = 3.

The median quantile function may correspond to an observed quantile

function or it is obtained by the selected the different segments in each

interval quantile level [wl−1, wl).

Definition 4.2. The Median histogram is the histogram associated with the

Median quantile function Me(ξ) of the set of the quantile functions F−1
i (ξ),

∀ξ ∈ [0, 1] , i = 1, . . . , N .

Since we may order the quantile functions for a given wl, this approach

proposes a level-wise ordering which however, it is not a full order or semi-

ordering relation. Naturally, if for each level wl−1 the ordering of the quan-

tile functions is always the same that is, there is no intersections between

quantile functions, we can extend the level-wise ordering to a full order

relation.

From a computational point of view we evaluate the processing time.

The selection step is performed for L times. The maximum number of in-
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tersection between the N segments to be evaluated is the order of O(N2).

Thus, taking into account the number of bins and the number of poten-

tial intersections, in the worst case, the computational cost of the whole

processing is of order:

O
(
[N(K̄ − 1) + 1]N2

)
= O(K̄N3).

The first and the third quartile quantile function can be computed by

means of the same algorithm used for the median Me(ξ), ξ ∈ [0, 1]. In fact,

for each p · N, p ∈ [0; 1] we can apply the procedure presented in 4.2 and

compute the relative order statistics for the set of quantile functions. In

order to distinguish such functions from the quantile functions F−1
i (ξ), we

denote them as Q(p·N)(ξ).

By analogy with the classical notation, we will denote with Q1(ξ) the quan-

tile function Q( 1
4
·N)(ξ) and with Q3(ξ) the quantile function Q( 3

4
·N)(ξ).

Finally, the proposed algorithm for searching the quantile functions guar-

antees a univocal correspondence between the histograms and the quantile

functions. Thus, the First Quartile histogram HQ1 is associated with Q1(ξ),

the Third Quartile histogram HQ3 with Q3(ξ) as well as the Median his-

togram HMe with Me(ξ).

4.3 The inter quartile range and whiskers defini-

tions

After defining Q1(ξ) and Q3(ξ), we can extend the concept of box and of

Inter Quartile Range (IQR).

Definition 4.3. The region bounded by the piece-wise quantile functions

Q1(ξ) and Q3(ξ) associated to the First and Third Quartile-histograms is
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defined as the box of the quantile functions box-plot representation.

We extend also the definition of the IQR by computing the L1 Wasser-

stein distance between Q3(ξ) and Q1(ξ). In particular, we can give the

following definition:

Definition 4.4. Given Q1(ξ) and Q3(ξ), the Inter Quartile Range for the

qfs box-plot representation is

IQR = dW (HQ1 , HQ3) =

1∫
0

|Q3(ξ)−Q1(ξ)|dξ = Q̄3 − Q̄1. (4.4)

Obviously, this definition is consistent with the metric used for defining

the order statistics like the Median and the Quartile functions.

Moreover, considering that Q3(ξ) ≥ Q1(ξ) ∀ξ ∈ [0, 1] IQR can be in-

terpreted as the difference of the mean values of the histograms associated

with the two Quartile functions1.

Finally, for the choice of the whiskers we can consider different criteria for

select the quantile functions corresponding to the QLow and QUpp. We take

into consideration three possible ways.

1. A first one is to choice the lower and the upper bounds according

to Q(0)(ξ), and Q(N)(ξ) (namely Min and Max quantile functions).

However, this solution can include also extreme or outlying quantile

functions.

1

IQR =

1∫
0

|Q3(ξ)−Q1(ξ)|dξ =

1∫
0

(Q3(ξ)−Q1(ξ)) dξ =

1∫
0

Q3(ξ)dξ −
1∫

0

Q1(ξ)d(ξ) = Q̄3−Q̄1
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2. A second way consists in choosing the bounding qfs according to

Q(0.05·N)(ξ), and Q(0.95·N)(ξ) (namely 90% most central quantiles).

This solution is less sensible to outlying quantile functions.

3. According to the formulation given for the IQR, a third way for defin-

ing the upper and the lower whiskers consists in translating Q3(ξ) and

Q1(ξ) of 1.5 times the Inter Quartile Range (IQR). In this case, the

whiskers have the same shape of Q1(ξ) and Q3(ξ) respectively, and

this can be a limit in the interpretation of the final results. Further-

more, HLow will be the histogram associated with Q(N
4

)(t)−1.5·IQR,

while HUpp is the histogram associated with Q( 3
4
N)(t) + 1.5 · IQR.
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Figure 4.3: The quantile functions box-plot consisting in five qfs: the me-
dian, the first and the third quartile qfs delimiting the box, an Upper and
a Lower bound qf are the extremes of the whiskers.

4.4 Variability and shape measures

The quantile functions box-plot as shown in Fig. 4.3 is constituted by the

quantile functions corresponding to the Median Me(ξ) (in the center), the
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Symbol Description

Hi, i = 1, . . . , Any arriving histogram

wl, l = 1, . . . , L relative cumulative frequencies or levels

Fi(ξ) Quantile function associated with Hi

F ci (ξ) Quantile function centered by mean value of Hi

Me(ξ) Median quantile function for the set of the Fi

Mec(ξ), Median quantile function for the set of the F ci
Q1(ξ) First Quartile quantile function for the set of the Fi

Qc1(ξ) First Quartile quantile function for the set of the F ci
Q3(ξ) Third Quartile quantile function for the set of the Fi

Qc3(ξ) Third Quartile quantile function for the set of the F ci
QLow(ξ) Lower Whisker quantile function for the set of the Fi

QcLow(ξ) Lower Whisker quantile function for the set of the F ci
QUpp(ξ) Upper Whisker quantile function for the set of the Fi

QcUpp(ξ) Upper Whisker quantile function for the set of the F ci

Table 4.1: Symbols with corresponding description used for defining quan-
tile function box-plot.

Q1(ξ) and the Third Quartile Q3(ξ) and similarly by the lower QLow(ξ)

and upper QUpp(ξ) whiskers.

The characteristics of the box-plot in descriptive statistics can be imme-

diately extended to this new graphical tool giving useful information about

the set of the quantile functions associated to histogram data {Hi}i=1,...,N .

We also propose some indices that can be associated to the box-plot

in order to measure the variability and the shape (skewness) of the set of

histogram data (or of their corresponding quantile functions). An extension
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of the well-known Inter Quartile Range (IQR) has been proposed in (4.4).

However the use of the Wasserstein distance (3.4) in norm L2 permits

the decomposition of the interquartile measure in two parts corresponding

to the double effect of the means and of the variability of the quantile

functions in the distribution of the histogram data around the Median,

that is:

IQR2 = d2
W (HQ1 , HQ3) =

1∫
0

(Q3(ξ)−Q1(ξ))2 dξ =

=
(
Q3 −Q1

)2︸ ︷︷ ︸
(IQR)2

+ (sQ3 − sQ1)2 + 2sQ3sQ1 (1− ρ(Q3, Q1))︸ ︷︷ ︸
∆(IQR)2

(4.5)

Firstly, the IQR can be used to measure the variability among the quan-

tile functions. Secondly, the position of Median quantile function within

the box and with respect to the First and The Third Quartile quantile func-

tions can indicate the degree of skewness of the set of quantile functions. If

the distribution of the (50%) central quantile functions is symmetric, the

Me(ξ) would have the same distance (computed by Wasserstein metric)

from Q1(ξ) and Q3(ξ); otherwise, it would be skewed.

As measures of shape we propose some skewness indices:

A1 =
d(HQ3 , HMe)

d(HQ1 , HMe)
=
Q3 −Me

Me−Q1

; (4.6)

A2 = d(HQ3 , HMe)− d(HQ1 , HMe) = Q1 +Q3 − 2Me; (4.7)

Therefore, an extension of the Bowley skewness (also known as quartile
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skewness coefficient), is:

A3 =
d(HQ3 , HMe)− d(HQ1 , HMe)

d(HQ3 , HQ1)
=

A2

IQR
. (4.8)

It corresponds to the normalized A2 index. Since we use the Wasserstein

L1 norm the skewness of the distribution of quantile functions with respect

to the Median quantile function can be expressed according to the mean

values of the first, median and third quantile function. In order to take into

account the skewness of the distribution of the quantile functions also with

respect to their variability and shape, we should use the L2 Wasserstein

distance.

Alternatively, we propose to define the index A2 for each level interval

[wl−1, wl), l = 1, . . . , L. Thus, we may express A2 as a piece-wise function

assuming constant values in the quantile intervals [wl−1, wl) as follows:

A2(l) =
wl∫

wl−1

|Q3(ξ)−Me(ξ)|dt−
wl∫

wl−1

|Q1(ξ)−Me(ξ)|dt =

=
wl∫

wl−1

[Q1(ξ) +Q3(ξ)− 2 ·Me(ξ)] dt
(4.9)

for wl−1 ≤ ξ ≤ wl and l = 1, . . . L where the number of the quantile levels

L are computed during the homogenization step. It gives an information

about the skewness of the distribution of quantile functions around the

Median quantile function for each quantile level. The value A3(l) = 0

means a symmetry of the pieces of quantile functions between the first

quartile and the median and the median and the third quartile; A3(l) < 0

(A3(l) > 0) means that, the concentration of pieces of quantile functions

between the first quartile and the median is on an interval of values larger
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(smaller) than the ones between the the median and the third quartile.

The A1 and A2 indices can be extended to a wider domain of quantile

functions considering rather than Q1(ξ) and Q3(ξ), with ξ ∈ [0, 1], the

quantile functions at 5% and 95% of the distribution (excluding extreme

quantile functions which can be outliers). The index A3 extended to a 5−th

and 95−th quantile requires a different normalization than the previous one.

In such way we propose:

A′3 =
d(H0.95N , HMe)− d(H0.25N , HMe)

N−1
N∑
i=1

d(Hi, HMe)

(4.10)

where the normalizing term N−1
N∑
i=1

d(Hi, HME) is a sort of mean absolute

deviation from the median measure among the set of the quantile functions

associated to the Hi (for i = 1, . . . , N) and the Median quantile function

computed according to the Wasserstein L1 distance.

4.5 Outlier detection

As said in the introduction of this chapter, we have introduced the quantile

functions box-plot in order to detect possible changes in data stream over

time and to identify potential outliers.

The first task can be performed by computing the box-plots related

to no-overlapping subsets of the data stream, each one including a fixed

number of time windows. In this way, from the comparison of the different

box-plots, we may monitor their evolution along time.

The second task is based on evaluating the outlyingness of new incoming

histograms with respect to a summarization of a first batch of data. At this
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end, we use two further different box-plots: the first one for catching the

outlyingness of the incoming histograms in mean; the second one for catch-

ing the outlyingness in the shape of the corresponding quantile function.

The former is the classical box-plot depicting the five mean values µQ1 , µMe,

µQ3 , and µLow µUpper associated to the histograms HQ1 , HMe, HQ3 , HLow

and HUpp computed on the set of the histograms Hi, i = 1, . . . , N .

The latter box-plot is the quantile functions box-plot on the set of the quan-

tile function F−1
1 , . . . , F−1

N associated with Hi, i = 1, . . . , N and centered by

their mean values. Thus, we denote with QcLow(ξ), Qc1(ξ), Mec(ξ), Qc3(ξ),

QcUpp(ξ) the five quantile functions which give rise the quantile functions

box-plot.

For each new histogramHN+j , j = 1, 2, . . ., its mean value and the shape

of the corresponding centered quantile function are evaluated. Since any

curves outside the bounds of the quantile function box-plot are identified

as potential outliers, we can distinguish four different situations. In fact,

if F−1 c
N+j(t) is the centered quantile function associated to the histogram

HN+j , j = 1, 2, . . .:

1. it can be included in the region between the First Quartile and the

Third Quartile quantile functions;

2. it can be included between the lower or the upper whisker quantile

functions;

3. it can intersect the lower or the upper whisker qf or both of them;

4. it can be to the below of the the lower whisker or to the above of the

upper whisker quantile function.

Naturally, in the fourth case, the histogram has to be considered as an

shape outlier. The other cases need further attention because a histogram
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not necessarily differs in mean if its quantile function is not included in

the quantile function box-plot. In general, different possibilities may arise

as described in Table 4.2: For a quantile function which differs in shape,

Table 4.2:
Outliers classification

Mean values box-plot
Quantile Functions box-plot

Yes No

Yes in mean and in shape only in mean

No only in shape No outlier

we also propose a dissimilarity measure in order to evaluate the degree of

outlyingness.

If ξ0 is the x-axis of the intersection point between the potential outlier

quantile function and the upper (or lower) whisker quantile function and

for ξ > ξ0 the FN+j(ξ) is outside the box-plot, then we define the following

measure:

RD :=

1∫
ξ0

∣∣∣F−1 c
N+j(ξ)−Qcp(ξ)

∣∣∣ dξ
1∫
0

∣∣∣F−1 c
N+j(ξ)−Qcp(ξ)

∣∣∣ dξ (4.11)

where the numerator represents the area beyond the box-plot (or distance

between F−1 c
N+j(ξ) and the lower or upper whiskers quantile functions) and

the denominator is the total area enclosed by two functions.

Similarly, if ξ0 is the x-axis of the intersection point between the potential

outlier quantile function and the upper (or lower) whisker quantile function,
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and for ξ < ξ0 the F−1
N+j(ξ) is inside the box-plot, then

RD′ :=

ξ0∫
0

∣∣∣F−1 c
N+j(ξ)−Qcp(ξ)

∣∣∣ dξ
1∫
0

∣∣∣F−1 c
N+j(ξ)−Qcp(ξ)

∣∣∣ dξ , j = 1, 2, . . . (4.12)

is the ratio between the area below the box-plot (or distance between

F−1 c
N+j(ξ) and QcLow or QcUpp) and the total area enclosed by two qfs.

It is worth noting that, the more this ratio is close to 1, the more F−1 c
N+j(ξ)

shows a different shape with respect to the empirical distribution of the

centered quantile functions. Furthermore, if the F−1 c
N+j(ξ) intersects both

whiskers, the numerator of RD (or RD’ ) will be equal to the sum of the

areas limited by F−1 c
N+j(ξ) with QcLow(ξ) and F−1 c

N+j(ξ) with QcUpp(ξ).

4.6 Summary

In this chapter, we have introduced a visualization tool for summarizing

a data stream and for monitoring its evolution over time. The first nov-

elty is that we have proposed suitable syntheses of quantile functions asso-

ciated to histogram data representing data stream in each window and a

graphical representation by box-plot of the empirical distribution of the qfs.

Moreover, our proposal allows to identify potential outlier quantile func-

tions classifying their degree of outlyingness with respect to their mean and

their shape by using a classical box-plot and a qf-box-plot representation,

respectively. Further investigation will regard feasible strategies for updat-

ing quantile function box-plot when it is can be considered outdated due

to new changes.





Chapter 5

Experimental results

In this section, we illustrate some experimental results obtained by applying

the two methodologies proposed in the previous chapters on two different

data stream examples. Thus, first we describe the two data streams and

then, we analyze the results for each strategy in the sections 1 and 2.

The first data set is available on-line 1. It records the electricity demand

of the Australian New South Wales Electricity Market from 7 May 1996 to

5 December 1998. In this market, the prices were not fixed but they were

affected by the demand and supply so, they were set every five minutes.

A key issue of the demand and price change is the time evolution of the

electricity market. During the analyzed time period, the electricity market

was expanded with the inclusion of adjacent areas, this allowed a more

elaborated management of the demand and supply. This dataset has been

already described in [36] and in [53], especially, the seasonality of the price

construction, the sensitivity to short-term events and weather fluctuations

have been analyzed.

1Dataset URL:http://194.117.29.249/ jgama/ales/ales5.html
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Figure 5.1: Plot of electricity demand curves recorded from 7 May 1996 to
5 December 1998

The dataset contains 45312 instances recorded every half hour, i.e. there

are 48 instances for each day. Each example on the dataset has 3 fields: the

day of week, the time stamp and the New South Wales electricity demand.

The second data stream was collected by using a HOBO Data Logger

device placed at the Marine Protected Area of the Gaiola Underwater Park

in the northwestern Gulf of Naples. In particular, the acquisition of envi-

ronmental data by this sensor is carried out as part of a regional project

for the monitoring of the coastline involving the Stazione Zoologica Anton

Dohrn. Especially, it is used for recording daily light intensity (expressed

by µmol/m2 · s) and temperature values (◦C) at 2.5 m under the sea level.

We have considered 21634 instances recorded from 22 June to 19 Novem-

ber 2012 every 10 minutes. Data collection is closely linked to daily light

hours so, the number of observations is not generally the same but varies

according to the season and the light hours. Accordingly, the sensor records
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Figure 5.2: Light intensity recorded from 22 June to 19 November 2012.

zero values during the hours of darkness.

In the following sections, we introduce the details of each experimental

evaluation. Especially, the chapter is organized as follows. In the section 2,

we give a description of experimental results concerning the application of

the CluStream strategy for histogram data on both datasets and, in section

3, we illustrate the performance of the box-plot based strategy on the same

datasets.

5.1 CluStream strategy for histogram data

In this section, we show as the methodology proposed in the third chapter,

can help to catch the main behaviors along a fixed period. We apply the

strategy to both data sets presented above.

The assessment of the method requires to set the input parameters for
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on-line and off-line step. The on-line parameters are:

• the size of each window ws;

• the number of bins of the histograms nBin;

• the maximum number of histogram micro-clusters Zmax.

The first input parameter depends on the choice of the period of monitoring

and the second should be chosen according to the required level of detail in

the approximation of the data distribution. Furthermore, it can be noticed

that the use equi-depth histograms in our strategy, implies that the value of

nBin is related to the number of quantiles of the approximated distribution.

The last parameter is determined according the amount of memory available

in order to store the histogram micro-clusters. According to this memory

constraint, typical value of Zmax is significantly larger than the natural

number of the concepts emerging from a massive data stream but also

significantly smaller than the number of the histograms (or equivalently, of

the time windows) which are computed in a long period of time.

As highlighted in Chapter 3, the boundary threshold thHmC is not an

input parameter because its value is determined automatically by algorithm

taking into account that a too low value of thHmC involves that a lot of

processed histograms will not be allocated to existing micro-clusters but

they will start new ones. At the opposite, a too high value implies that

histograms will be always allocated to some existing micro-cluster and it

will be more difficult to capture the emerging concepts.

Finally, for the off-line step, which is performed taking as input the

whole set of HmCz, z = 1, . . . , Z, we need to fix the maximum number of

the macro-clusters Λ.
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Figure 5.3: Plot of the quantile functions of the electricity demand recorded
from 7 May 1996 to 5 December 1998

5.1.1 Results for electricity data set

For the electricity demand dataset, in order to compute each on-line his-

togram, we have set ws = 48. Thus, each time window contains the same

number of observations and it corresponds to an entire day of tracking.

This means that we have considered 944 time windows.

For each of them, we have computed an equi-depth histogram considering

nBin = 7 (chosen by using the square-root criterion); the corresponding

the curve of electricity demand and the corresponding quantile function.

The set of the curves representing the electricity demand for the 944 days

of monitoring is shown in Fig.5.1 and, the set of the quantile functions

associated with each histogram is plotted in Fig.5.3.

The third parameter has to be set so that the number of on-line gen-

erated micro-clusters is the highest as possible under the constraint of the



80 Experimental results

HmCz nz HmCz nz HmCz nz HmCz nz

HmC1 126 HmC5 9 HmC9 3 HmC13 87
HmC2 76 HmC6 5 HmC10 106 HmC14 214
HmC3 113 HmC7 1 HmC11 60 HmC15 1
HmC4 16 HmC8 101 HmC12 12 HmC16 14

Table 5.1: Electricity data: number of the on-line histograms allocated to
each histogram micro-cluster

available memory space. This allows to pick at best the different behaviors

in data. According to this aspect, a good comprise between the details

of summarization and memory usage, the Zmax value is set equal to 100.

Finally, the boundary threshold thHmC automatically computed by algo-

rithm is 13000.

As shown in Tab.5.1, the 944 on-line histograms have been assigned to 16

different histogram micro-clusters. Especially, 12 histogram micro-clusters

collect more than 10 histograms so that, these are the ones that record

the main concepts in the data. The remaining histogram micro-clusters

summarize the anomalous or outlier behaviors.

In Fig.5.4, 5.5, we have also investigated the evolution of the histogram

micro-clusters HmCz, z = 1, . . . , Z, over the 944 time windows. Especially,

each plot represents one of the 16 different histogram micro-clusters and de-

scribes the membership of each histogram Hi, i = 1, 2, . . . to the histogram

micro-cluster HmCz, z = 1, . . . , 16 according to a characteristic function.

This characteristic function assumes value 1 if Hi belongs to HmCz and

the value 0 otherwise.

For instance, in the top of the Fig.5.4 we can observe as the histograms

have been associated to the HmC1 over the time.

The micro-cluster HmC1, summarizes, mainly, the data stream behavior
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Figure 5.4: Evolution over time of the micro-clusters on the electricity data
set
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of three temporal intervals. In fact, we note that the histograms have

been associated to this histogram micro-cluster between 40-th and 150-th

time window, between the 200-th and the 300-th and finally, between the

700-th and the 900-th time window. No on-line histograms are assigned

to HmC1 between the 400-th and the 700-th time window. This means

that, HmC1 represents a concept which occurs in the data quite frequently

over time. Conversely, other histogram micro-clusters like HmC13 and

HmC14 represent concepts appearing only from the 400-th time onwards
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Figure 5.5: Evolution over time of the micro-clusters on the electricity data
set
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being entirely absent before.

The off-line procedure, which is performed taking as input the whole set

of HmCz, z = 1, . . . , 16, provides a final summarization of the histogram

data. We are interested in discovering how the changes occur over the days

and if there are dominant structure in the histogram data behaviors. For

the selection of the final number of histograms we have taken into account

the micro-clusters obtained in on-line step and the value of the optimization

function related to the algorithm of the off-line clustering (see Fig. 5.6).
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Figure 5.6: Number of micro-clusters with respect to the values of the
optimization function.

A reasonable choice for the final number of histogram macro-clusters is 4

whose centroids are represented in Fig. 5.7.

As shown in Table 5.1.1, such histograms are very different in location,

variability and shape, so that, we can consider them like a summarization

of the 4 main concepts emerging from the data stream.

HMC Mean Std. Skewness Kurtosis
Deviation (Fisher Index) (Pearson Index)

HMC1 1964.50 376.95 0.1451 0.0183
HMC2 1154.12 237.84 0.0654 0.0206
HMC3 2456.11 417.5457 0.1216 0.0184
HMC4 1793.48 536.4652 0.4661 0.0205

Table 5.2: Descriptive statistics for the 4 histogram macro-clusters.
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Figure 5.7: The histogram data representing the centroids of the 4 macro-
clusters for the electricity data set.

5.1.2 Results for light intensity data set

As in the previous case, we have associated to each day of observation a

different time window. Since the light intensity may change from day to

day, the number of observation is variable and the window size ws is not

set a priori. However, ws varies between 61 to 95 so that, we have chosen

nBin = 8 (by using the square-root criterion). Finally, the Zmax param-

eter has been chosen equal to 30. The set of the curves representing the

light intensity in each day of monitoring is shown in Fig. 5.2 and, the

set of the quantile functions associated with each histogram is plotted in

Fig. 5.8. From the results (see Tab.5.3), we can observe that the 152 on-

line histograms have been assigned to 15 different histogram micro-clusters.
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Figure 5.8: Quantile functions of the light intensity recorded from 22 June
to 19 November 2012.

Especially, 8 histogram micro-clusters collect more than 10 histograms so,

these are the ones recording the main concepts in the data. The remaining

histogram micro-clusters summarize the anomalous or outlier behaviors.

As in previous case, we have also investigated the evolution of the his-

togram micro-clusters over the 152 time windows. The allocation of on-line

histogram to HmCz, z = 1, . . . , 15 along time is presented in the Fig. 5.9,

5.10.

The off-line procedure, which is performed taking as input the whole

set of HmCz, z = 1, . . . , 15, provides a final summarization of the data.

In order to set the number Λ of macro-clusters, we have considered an

optimization criterion whose graph is shown in Fig. 5.11. According to

it, we have chosen Λ = 5. The centroids of the histogram macro-clusters

obtained by running the k-mean algorithm are plotted in Fig. 5.12 and the
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HmCk nk HmCk nk HmCk nk HmCk nk

HmC1 12 HmC5 1 HmC9 20 HmC13 5
HmC2 8 HmC6 2 HmC10 11 HmC14 17
HmC3 13 HmC7 6 HmC11 14 HmC15 6
HmC4 1 HmC8 25 HmC12 12

Table 5.3: Light Intensity data: number of the on-line Histograms allocated
to each micro-clusters.

descriptive statistics for each of them are reported in Tab. 5.1.2. These

histograms can be considered like a summarization of the 5 main concepts

emerging from the data stream. Their differences in location, variability

and shape are expressed in the Table. 5.1.2.

HMC Mean Std. Skewness Kurtosis
Deviation (Fisher Index) (Pearson Index)

HMC1 160.02 162.74 1.1122 0.0311
HMC2 115.52 126.89 0.8191 0.0250
HMC3 87.20 85.44 0.9751 0.028
HMC4 56.85 55.95 0.9831 0.0278
HMC5 32.95 34.41 1.0350 0.0288

Table 5.4: Descriptive statistics for the 5 histogram macro-clusters.

5.2 Boxplot strategy

In this section, we validate the strategy proposed in the Chapter 4 through

both the data sets. Also in this case, the first step consists in dividing

the data stream in non overlapping time windows and in constructing the
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Figure 5.9: Evolution over time of the micro-clusters on the light intensity
data set
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histograms associated to each of them. For this reason, we have considered

the same time windows size ws and the same number of bins nBin used

for the previous strategy.

A parameter to be set for this algorithm is the initial number of his-

togram data, or equivalently the initial number of time windows, from
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Figure 5.10: Evolution over time of the micro-clusters on the light intensity
data set
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which to build the quantile function box plot. As explained in the previ-

ous chapter, the latter is defined through five curves, similarly to the five

summary statistics defining a classical box-plot. Especially, we have com-

puted the whiskers generalizing the empirical rule, by shifting the Q1(ξ)

and Q3(ξ) by 1.5 times the IQR.
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Figure 5.11: Number of micro-clusters with respect to the values of the
optimization function for light intensity data set.

5.2.1 Results for electricity data set

As said above, we have considered the same input parameters for com-

puting the set of the on-line histograms. This means that each day of

monitoring represents a time window whose size is ws = 48 (thus, we have

944 windows), and each equi-depth histogram has the same number of bins

nBin = 8. Finally, we set the initial number of time windows equals to 50.

According this choice, we have constructed the box-plot for the set of the

mean values associated with the first 100 histogram data and the box-plot

for the set of the corresponding quantile functions as shown in Fig. 5.13.

Especially, in Fig. 5.13, the median is the dashed black curve, the first

and the third quartile delimit the box in red and, the curve in blue are

the upper and the lower whiskers quantile functions. Naturally, the median

curves can be interpreted as the most representative observed pattern in

the Australian New South Wales Electricity Market.

Comparing the original curves to the quantile functions box-plot, we see

that the latter is very useful to summarize over time, the electricity demand

and it is very informative to identify the potential outliers. In fact, for each
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Figure 5.12: The histogram data representing the centroids of the 5 macro-
clusters for the light intensity data set.

new histogram Hi, i = 51, . . . , 944 its mean value and the corresponding

quantile function have been evaluated with respect to the five summary of

the two box-plot.

For example, we can notice a outlier with respect to the mean (red dot in the
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Figure 5.13: From left to right: mean values box-plot and quantile functions
box-plot related to the electricity demand.

left box-plot) and the shape (green curve in the right box-plot). Therefore,

it represents a histogram whose mean value is higher than upper whisker

and in terms of shape, its quantile function intersects the lower and the

upper whisker quantile functions. In data stream analysis, the frequency of

the observed (potential) outliers is a hint of the evolution of the data stream.

Different kinds of outlyingness (with respect to the mean or to the shape, or

both) can suggest a different types of evolution of the stream. Consequently,

the proposed box-plot can be updated with a new five quantile functions

computed considering the new changes occurring along time.
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Figure 5.14: From left to right: mean values box-plot and quantile function
box-plot related to the light intensity recorded from 22 June to 22 August
2012.

5.2.2 Results for light intensity data set

We have considered each day of monitoring as a different time window

whose size ws is not set a priori and for each time window, an equi-depth

histogram is computed by using a number of bins equal to 8. Unlike the

previous case, we have chosen to compare the box-plots related to different

periods of time as shown in Fig. 5.14, 5.15, 5.16. The first box-plot is

obtained considering the first 60 time windows in order to capture the
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behavior of light intensity during the period from 22 June to 22 August

2012; the second one the next 60 time windows related to the period from

22 August to 22 October 2012 and the third one consists in the last 32 time

windows for evaluating the period from 22 October to 19 November 2012.

Comparing the three mean values box-plots, we see that are very in-

formative in terms of mean range of variability. Especially the three cases

highlight three different mean range of variability. The first from 20 to 250,

the second from 10 to 230 and finally the third from 2 to 230.

More interesting results can be observed in terms of changes in the data

by the quantile function box-plot. The three boxplots differs mostly for:

the median histogram, that can be interpreted as the most representative

observed pattern of the light intensity data; the central region, that gives

a less biased visualization of the histogram changes.

More information is detected by observing the box (the two red lines) in

the three cases. It highlights for the first boxplot that changes of variability

in histogram data are lower among levels 0.2 and 0.4, since the trend of

the quartile functions are nearest around the median histogram. In the

same way but for different levels this happens for the second and third

boxplot. Especially the second and the third boxplot shows a low variability

in changes among the levels 0.7 and 0.8. Other information about the main

changes can be detected for the second and third boxplot by observing the

wishers(the blu lines). Especially the third boxplot highlights the presence

of a more wide range of variability in the histogram on the contrary to the

second one.

In the Fig. 5.14, we notice that there is one detected outlier with respect

to the average. Therefore, it represents a histogram whose mean value (red

point in the left box plot) is highest in magnitude than upper whisker. In

terms of the shape, the curves show a moderate degree of skewness.
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Figure 5.15: From left to right: mean values box-plot and quantile func-
tion box-plot related to the light intensity recorded from 22 August to 22
October 2012.

5.3 Summary

This chapter presented the effectiveness of the two proposals described in

the previous chapters: the CluStream for quantile functions and quantile

functions boxplot representation. These were applied to electricity demand

and light intensity datasets. We have shown as the techniques proposed can

be used for summarizing, analyzing and detecting outlier in data stream

context.
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Figure 5.16: From left to right: mean values box-plot and quantile function
box-plot related to light intensity recorded from 22 October to 19 November
2012.





Chapter 6

Conclusions and perspectives

In the last years the analysis of data stream has gained a lot of attention.

In this thesis two innovative statistical based approaches for addressing the

problem of knowledge discovery from data stream have been proposed.

The problems of representing, summarizing and monitoring the evolu-

tion over time of data streams have been addressed.

In particular, for what concern the problem of representing data stream,

histogram has been proposed in a diverse way as graphical tool for repre-

senting changes in the stream. In fact summaries are expressed by a set of

histogram that represent main concepts in the data. A finer summarization

of the data is then obtained by a CluStream based strategy extended to

histogram data.

In relation to the other mentioned problem of monitoring the evolution

over time of data streams, a second more complex tool has been proposed:

the boxplot for histogram data. It extends the classic idea of box-plot to

a set of quantile functions associated to a set of histograms. Especially

since histogram summarize a set of time windows, the boxplot monitors
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the evolution over the time and potential outliers in a data stream with

respect to the mean and the shape of the histogram distribution.

Further developments on this work will concern the experimentation of

multidimensional graphical tool for summarizes changes in multiple stream-

ing data.
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1

2 f unc t i on [ microCluster ]= c l u s t e r i n g ( dat i , wS, nBin , sogliaMC )

3 [ r c ]= s i z e ( da t i ) ;

4 cont =1;

5 [ bin , a l t e z z e ]= Istogrammi ( da t i (1 , cont : cont+wS−1) , nBin ) ;

6 f o r i =1:nBin

7 c e n t r i ( i )=(bin ( i , 1 )+bin ( i , 2 ) ) /2 ;

8 r a gg i ( i )=(bin ( i , 2 )−bin ( i , 1 ) ) /2 ;

9 end

10 microCluster (1 ) . c e n t r i=c e n t r i ;

11 microCluster (1 ) . r ag g i=r agg i ;

12 microCluster (1 ) .num=1;

13 microCluster (1 ) . t =1;

14 contMC=1;

15 contw=1;

16 whi le cont<c−wS−1

17 [ bin , a l t e z z e ]= Istogrammi ( da t i (1 , cont : cont+wS−1) , nBin ) ;

18 f o r i =1:nBin

19 c e n t r i ( i )=(bin ( i , 1 )+bin ( i , 2 ) ) /2 ;

20 r a gg i ( i )=(bin ( i , 2 )−bin ( i , 1 ) ) /2 ;

21 end
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22 f o r i =1:contMC

23 d i s t ( i )=Distanza ( c en t r i , ragg i , microCluster ( i ) . c en t r i ,

microCluster ( i ) . r ag g i ) ;

24 end

25 [ minDist , idx ] = min ( d i s t ) ;

26 i f minDist<=sogliaMC

27 microCluster ( idx ) . c e n t r i=microCluster ( idx ) c e n t r i ∗
microCluster ( idx ) .num;

28 microCluster ( idx ) . c e n t r i=microCluster ( idx ) c e n t r i+c e n t r i ;

29 microCluster ( idx ) . c e n t r i=microCluster ( idx ) . c e n t r i /(

microCluster ( idx ) .num+1) ;

30 microCluster ( idx ) . r agg i=microCluster ( idx ) . r a gg i ∗
microCluster ( idx ) .num;

31 microCluster ( idx ) . r agg i=microCluster ( idx ) . r a gg i+ra gg i ;

32 microCluster ( idx ) . r agg i=microCluster ( idx ) . r a gg i /

microCluster ( idx ) .num+1) ;

33 microCluster ( idx ) .num=microCluster ( idx ) .num+1;

34 numt=length ( microCluster ( idx ) . t ) ;

35 microCluster ( idx ) . t (numt+1)=contw ;

36 end

37 i f ( minDist>sogliaMC )

38 contMC=contMC+1;

39 microCluster (contMC) . c e n t r i=c e n t r i ;

40 microCluster (contMC) . r ag g i=r ag g i ;

41 microCluster (contMC) .num=1;

42 microCluster (contMC) . t=contw ;

43 end

44 cont=cont+wS ;

45 contw=contw+1;

46 end
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1 f unc t i on [ i s t B i n ]= Convers ioneIstogrammi ( i s t C e n t r i , i s tRagg i )

2 i s t C e n t r i=i s t C e n t r i ’ ;

3 i s tRagg i=is tRagg i ’ ;

4 [ r c ]= s i z e ( i s t C e n t r i ) ;

5 f o r i =1: r

6 i s t B i n ( i , 1 )=i s t C e n t r i ( i , 1 )−i s tRagg i ( i , 1 ) ;

7 i s t B i n ( i , 2 )=i s t C e n t r i ( i , 1 )+i s tRagg i ( i , 1 ) ;

8 end

1 f unc t i on [ d i s t ]= Distanza ( c ent r i 1 , ragg i1 , c en t r i 2 , r agg i 2 )

2 [ r c ]= s i z e ( c e n t r i 1 ) ;

3 d i s t =0;

4 f o r i =1: r

5 d i s t=d i s t +(( c e n t r i 1 ( i )−c e n t r i 2 ( i ) ) ˆ2−(1/3∗( ragg i 1 ( i )−ragg i 2

( i ) ) ˆ2) ) ;

6 end

7 d i s t=d i s t / r ;

1 f unc t i on [ bink1 bink2 ]= f u l l C l u s t e r i n g ( data , ws , nbin , s o g l i a , k

)

2 datab=[ data (1 : 50000 ) ; data (50001 :60000) ; data (70001 :120000) ] ;

3 [ microCluster ]= c l u s t e r i n g ( datab ’ , ws , nbin , s o g l i a ) ;

4 [ macroCluster , IDX, c r i t e r i o ]= macroCluster ing ( microCluster , k ,

nbin ) ;

5 [ bink1 ]= Convers ioneIstogrammi ( macroCluster (1 , 1 ) . c en t r i ,

macroCluster (1 , 1 ) . r ag g i ) ;

6 [ bink2 ]= Convers ioneIstogrammi ( macroCluster (1 , 2 ) . c en t r i ,

macroCluster (1 , 2 ) . r ag g i ) ;
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7 s i z e ( microCluster )

1 f unc t i on [ bin , a l t e z z e ]= Istogrammi ( dat i , numBin)

2 [ r c ]= s i z e ( da t i ) ;

3 dat iOrd ina t i=s o r t ( da t i ) ;

4 f r eqBin=f l o o r ( c/numBin) ;

5 cont =0;

6 e s t r e m o I n f e r i o r e=min ( da t i ) ;

7 bin (1 , 1 )=e s t r e m o I n f e r i o r e ;

8 bin (1 , 2 )=dat iOrd ina t i (1 , cont+freqBin ) ;

9 cont=cont+freqBin ;

10 a l t e z z e (1 )=freqBin /( bin (1 , 2 )−bin (1 , 1 ) ) ;

11 f o r i =2:numBin

12 bin ( i , 1 )=bin ( i −1 ,2) ;

13 bin ( i , 2 )=dat iOrd ina t i (1 , cont+freqBin ) ;

14 a l t e z z e ( i )=freqBin /( bin ( i , 2 )−bin ( i , 1 ) ) ;

15 cont=cont+freqBin ;

16 end

1 f unc t i on [ macroCluster , IDX, c r i t e r i o ]= macroCluster ing (

microCluster , k , nBin )

2 c l e a r macroCluster

3 [ r c ]= s i z e ( microCluster ) ;

4 f o r i =1: c

5 IDX( i )=f l o o r ( rand∗k ) +1;

6 end

7 f o r i t e r =1:10

8 f o r j =1:k
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9 i dxC lus t e r=f i n d (IDX==j ) ;

10 [ r c l u s t c c l u s t ]= s i z e ( idxC lus t e r ) ;

11 t o t P e s i =0;

12 f o r n=1: c c l u s t

13 t o t P e s i=t o t P e s i+microCluster ( idxC lus t e r (n) ) .num;

14 end

15 f o r n=1:nBin

16 macroCluster ( j ) . c e n t r i (n ) =0;

17 macroCluster ( j ) . r ag g i (n) =0;

18 f o r m=1: c c l u s t

19 macroCluster ( j ) . c e n t r i (n )=macroCluster ( j ) . c e n t r i (n )+

microCluster ( idxC lus t e r (m) ) . c e n t r i (n ) ∗microCluster (

idxC lus t e r (m) ) .num;

20 macroCluster ( j ) . r ag g i (n)=macroCluster ( j ) . r ag g i (n)+

microCluster ( idxC lus t e r (m) ) . r agg i (n) ∗microCluster (

idxC lus t e r (m) ) .num;

21 end

22 end

23 macroCluster ( j ) . c e n t r i=macroCluster ( j ) . c e n t r i / t o t P e s i ;

24 macroCluster ( j ) . r ag g i=macroCluster ( j ) . r a gg i / t o t P e s i ;

25 end

26 c r i t e r i o ( i t e r ) =0;

27 f o r i =1: c

28 f o r j =1:k

29 d i s t ( j )=Distanza ( macroCluster ( j ) . c en t r i , macroCluster ( j ) .

ragg i , microCluster ( i ) . c en t r i , microCluster ( i ) . r a gg i ) ;

30 end

31 [ minDist , IDX( i ) ] = min ( d i s t ) ;

32 c r i t e r i o ( i t e r )=c r i t e r i o ( i t e r )+minDist ;

33 end

34 end
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35 [ r c ]= s i z e ( macroCluster ) ;

36 wS=100

37 f o r i =1: c

38 [ i s t B i n ]= Convers ioneIstogrammi ( macroCluster ( i ) . c en t r i ,

macroCluster ( i ) . r ag g i ) ;

39 f o r j =1:nBin

40 a l t e z z e ( j )=(wS/nBin ) /abs ( ( i s t B i n ( j , 2 )−i s t B i n ( j , 1 ) ) ) ;

41 end

42 [ dat iStack , a l t e z z e S t a c k ]= plotIstogramma ( i s tBin , a l t e z z e , 1 ) ;

43 end

1 f unc t i on [ dat iStack , a l t e z z e S t a c k ]= plotIstogramma ( bin ,

a l t e z z e , prec )

2 [ r c ]= s i z e ( bin ) ;

3 cont2 =1;

4 f o r i =1: r

5 ampiezza=bin ( i , 2 )−bin ( i , 1 ) ;

6 s tep=ampiezza / prec ;

7 cont =0;

8 f o r j =1: prec

9 dat i ( i , j )=bin ( i , 1 )+cont ;

10 cont=cont+step ;

11 dat iStack ( cont2 )=dat i ( i , j ) ;

12 a l t e z z e S t a c k ( cont2 )=a l t e z z e ( i ) ;

13 cont2=cont2 +1;

14 end

15 end

16 f i g u r e ( )

17 bar ( dat iStack , a l t e z zeStack , ’ h i s t c ’ )
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1 f unc t i on [ ]= p lo tm i c roC lu s t e r s ( mic roClus te r s )

2 [ r c ]= s i z e ( mic roClus te r s ) ;

3 [ t nbins ]= s i z e ( mic roClus te r s (1 ) . c e n t r i ) ;

4 f o r j =1: nbins

5 a l t e z z e ( j ) =100/ nbins ;

6 end

7 f o r i =1: c

8 c l e a r i s t B i n ;

9 [ i s t B i n ]= Convers ioneIstogrammi ( mic roClus te r s ( i ) . c en t r i ,

mic roClus te r s ( i ) . r agg i ) ;

10 [ dat iStack , a l t e z z e S t a c k ]= plotIstogramma ( i s tBin , a l t e z z e , 1 )

11 end

1 f unc t i on [ sw i t che s ]=plotMicroTempo ( microCluster , numFinestre

)

2 [ r c ]= s i z e ( microCluster ) ;

3 sw i t che s=ze ro s ( c , numFinestre ) ;

4 f o r cont =1: c

5 num=length ( microCluster ( cont ) . t ) ;

6 f o r j =1:num

7 sw i t che s ( cont , microCluster ( cont ) . t ( j ) ) =1;

8 end

9 end

10 w=1: numFinestre ;

11 f i g u r e

12 f o r cont =1: c

13 subplot ( c , 1 , cont )
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14 p lo t (w, sw i t che s ( cont , : ) , ’ . k ’ )

15 end

1 f unc t i on [ ]= p l o t t i n g C e n t r o i d i ( macroCluster , nBin ,wS)

2 [ r c ]= s i z e ( macroCluster ) ;

3 f o r i =1: c

4 [ i s t B i n ]= Convers ioneIstogrammi ( macroCluster ( i ) . c en t r i ,

macroCluster ( i ) . r ag g i ) ;

5 f o r j =1:nBin

6 a l t e z z e ( j )=(wS/nBin ) /abs ( ( i s t B i n ( j , 2 )−i s t B i n ( j , 1 ) ) ) ;

7 end

8 [ dat iStack , a l t e z z e S t a c k ]= plotIstogramma ( i s tBin , a l t e z z e , 1 ) ;

9 end

1 f unc t i on [ vet ]=QQPlotIstogrammi ( bin , c en t r i , r a gg i )

2 [ i s t B i n ]= Convers ioneIstogrammi ( c en t r i , r ag g i ) ;

3 f i g u r e ( )

4 p lo t ( bin , i s t B i n )

5 vet =1;

6

7

8 c l a s s d e f d i s t r i b u t i o n

9 %d i s t r i b u t i o n i s a c l a s s t h a t d e s c r i b e s cumulat ive

d i s t r i b u t i o n f u n c t i o n s

10

11

12 p r o p e r t i e s

13 domain %the domain o f the d i s t r i b u t i o n
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14 cumulat %the c d f ( must have the same s i v e o f domain

)

15 m %the mean

16 s %the standard d e v i a t i o n

17 end

18

19 methods

20

21 f unc t i on obj=d i s t r i b u t i o n ( c ) %c o s t r u t t o r e

22 i f nargin>0

23 i f i s a ( c , ’ d i s t r i b u t i o n ’ )

24 obj = c ( : ) . ’ ;

25 e l s e

26 obj . domain=c ( : , 1 ) ;

27 obj . cumulat=c ( : , 2 ) ;

28 obj .m=0;

29 obj . s =0;

30 obj .m=meanH( obj ) ;

31 obj . s=stdH ( obj ) ;

32 end

33 e l s e

34 obj . domain = [ ] ;

35 obj . cumulat = [ ] ;

36 obj .m= [ ] ;

37 obj . s = [ ] ;

38 end

39 end

1 %1 D Squared Wasser te in L2 dis tance between two

his tograms
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2 f unc t i on [WD, dm, ds , dr ]=WASS DIST Q 1D( o1 , o2 )

3 WD=0;

4 dm=0;

5 ds =0;

6 dr =0;

7 i f i s a ( o1 , ’ d i s t r i b u t i o n ’ )&&i s a ( o2 , ’ d i s t r i b u t i o n ’ )

8 % o1=d i s t r i b u t i o n ( o1 ) ;

9 % o2=d i s t r i b u t i o n ( o2 ) ;

10 m1=o1 .m;

11 m2=o2 .m;

12 std1=o1 . s ;

13 std2=o2 . s ;

14 r=rho ( o1 , o2 ) ;

15 dm=(m1−m2) ˆ2 ;

16 ds=(std1−std2 ) ˆ2 ;

17 dr=2∗std1 ∗ std2 ∗(1− r ) ;

18 e l s e

19 i f i s a ( o1 , ’ d i s t r i b u t i o n ’ )

20 dm=(o1 .m−o2 ) ˆ2 ;

21 ds=o1 . s ˆ2 ;

22 e l s e

23 i f i s a ( o2 , ’ d i s t r i b u t i o n ’ )

24 dm=(o2 .m−o2 ) ˆ2 ;

25 ds=o2 . s ˆ2 ;

26 end

27 end

28 end

29 WD=dm+ds+dr ;

30 end
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1 f unc t i on mu=meanH( o1 ) % Average v a l u e a s s o c i a t e d to c d f

2 i f i s a ( o1 , ’ d i s t r i b u t i o n ’ )

3 c e n t e r s =(o1 . domain ( 1 : end−1 ,1)+o1 . domain ( 2 : end , 1 ) ) . / 2 ;

4 w=(o1 . cumulat ( 2 : end , 1 )−o1 . cumulat ( 1 : end−1 ,1) ) ;

5 mu=center s ’∗w;

6 e l s e

7 e r r o r ( ’ o1 i s not a d i s t r i b u t i o n ’ )

8 end

9 end

1 f unc t i on s=stdH ( o1 ) %Standard d e v i a t i o n a s s o c i a t e d to c d f

2 i f i s a ( o1 , ’ d i s t r i b u t i o n ’ )

3 c e n t e r s =(o1 . domain ( 1 : end−1 ,1)+o1 . domain ( 2 : end , 1 ) ) . / 2 ;

4 r a d i i =(o1 . domain ( 2 : end , 1 )−o1 . domain ( 1 : end−1 ,1) ) . / 2 ;

5 w=(o1 . cumulat ( 2 : end , 1 )−o1 . cumulat ( 1 : end−1 ,1) ) ;

6 s=w’ ∗ ( c e n t e r s .∗ c e n t e r s +1/3∗ r a d i i .∗ r a d i i )−(o1 .m) ˆ2 ;

7 s=s q r t ( s ) ;

8 e l s e

9 e r r o r ( ’ o1 i s not a d i s t r i b u t i o n ’ )

10 end

11 end

1 f unc t i on DM=mean set ( o1 ,w)%Wassertein b a r y c e n t e r

2

3 n=length ( o1 ) ;

4 i f nargin<2

5 w=ones (n , 1 ) ;

6 end
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7 w=w( : , 1 ) . / sum(w( : , 1 ) ) ;

8

9 DM=o1 (1 , 1 ) ;

10 DM. domain=w(1 , 1 ) ∗DM. domain ;

11 i f n>1

12 f o r i =2:n

13 tmpo=o1 ( i , 1 ) ;

14 tmpo . domain=w( i , 1 ) ∗tmpo . domain ;

15 DM=DM+tmpo ;

16 end

17 DM. domain=DM. domain ;

18 DM.m=meanH(DM) ;

19 DM. s=stdH (DM) ;

20 end

21 end

22

23 \begin { l s t l i s t i n g } [ frame=t r b l ]{}
24 f unc t i on STD=s t d s e t ( o1 , mea)%Wassertein s t d

25 i f nargin<2

26 mea=mean set ( o1 ) ;

27 e l s e

28 i f i s a (mea , ’ d i s t r i b u t i o n ’ )==0

29 e r r o r ( ’ the second input must be a d i s t r i b u t i o n ’ )

30 end

31 end

32 n=length ( o1 ) ;

33 STD=0;

34 i f n>1

35 f o r i =1:n

36 STD=STD+(o1 ( i , 1 ) . s ) ˆ2+(o1 ( i , 1 ) .m) ˆ2+(mea . s ) ˆ2+(mea .

m) ˆ2 ;%+ . . .
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37 % −2∗(o1 ( i , 1 ) ∗mea) ;

38 end

39 STD=STD− 2∗n∗(mea∗mea) ;

40 STD=s q r t (STD/n) ;

41 end

1 f unc t i on resu=p o s d i s s e t ( o1 , pos ) %the pos q u a n t i l e Fˆ−1(pos

) 0<=pos<=1

2 n=s i z e ( o1 , 1 ) ;

3 i f ( pos>n) | | ( pos<0)

4 re su = [ ] ;

5 warning ( ’p must be i n t e g e r and not g r a t e r then the

number o f d i s t r i b u t i o n s ’ ) ;

6 re turn

7 end

8

9 POS DIS=m u l t i p l e r e g i s t e r ( o1 ) ;

10 nint=s i z e (POS DIS , 1 ) −1;

11 re su = [ ] ;

12 tmp2=0;

13 f o r i =1: n int

14 i n t e r v=ze ro s (n , 2 ) ;

15 f o r j =1:n

16 i n t e r v ( j , : ) =[POS DIS( i , j ) POS DIS( i +1, j ) ] ;

17 end

1 f unc t i on va l=LRarea ( o1 , o2 )

2 %p o s i t i v e and n e g a t i v e area o f o1 w. r . t o2
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3 %o2 i s the r e f e r e n c e

4 %area t r a due d i s t r i b u z i o n i

5 %v a l =[LEFTarea RIGTHarea ] ;

6 re su=r e g i s t e r ( o1 , o2 ) ;

7 n=length ( resu ( : , 3 ) ) ;

8 va l =[0 0 ] ;

9 f o r i =1:n−1

10 tmp=LRareaint ( re su ( i , 1 ) , r e su ( i +1 ,1) , r e su ( i , 2 ) ,

r e su ( i +1 ,2) ) ;

11 w=resu ( i +1 ,3)−re su ( i , 3 ) ;

12 va l=va l+w∗tmp ;

13 end

14 end

1 f unc t i on qua=quant se t ( o1 , q ) %q−th q u a n t i l e o f o1

2 n=s i z e ( o1 , 1 ) ;

3 %d i s t r i b u z i o n e q u a n t i l e

4 p1=f l o o r (1+(n−1)∗q ) ;

5 p2=c e i l (1+(n−1)∗q ) ;

6 w1=1+(n−1)∗q ;

7

8 i f p1==p2

9 %una s o l a d i s t r

10 i f p1==0;

11 e l s e

12 re su=p o s d i s s e t ( o1 , p1 ) ;

13 end

14 qua=d i s t r i b u t i o n ( resu ) ;

15 e l s e

16 %due d i s t r i b
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17 re su=p o s d i s s e t ( o1 , p1 ) ;

18 qua1=d i s t r i b u t i o n ( resu ) ;

19 re su=p o s d i s s e t ( o1 , p2 ) ;

20 qua2=d i s t r i b u t i o n ( resu ) ;

21 w(1 ,1 ) =(p2−w1) /( p2−p1 ) ;

22 w(2 ,1 )=1−w(1 ,1 ) ;

23 qua=mean set ( [ qua1 ; qua2 ] ,w) ;

24 end

25

26 end

1 f unc t i on [ d i s t r s , IQR]= boxplot1 ( o1 , whi ) %b o x p l o t o f q f s

2 %b o x p l o t d i d i s t r i b u z i o n i punto punto

3 % mediana q1 q3 b a f f i ad 1.5

4 distrQ1=quant se t ( o1 , 0 . 2 5 ) ;

5 distrME=quant se t ( o1 , 0 . 5 ) ;

6 distrQ3=quant se t ( o1 , 0 . 7 5 ) ;

7 IQR=area ( distrQ3 , d istrQ1 ) ;

8 distrMIN=quant se t ( o1 , 0 ) ;

9 distrMAX=quant se t ( o1 , 1 ) ;

10 i f nargin<2

11 %whisker 1

12 distrW1= distrMIN ;

13 %whisker 2

14 distrW2= distrMAX ;

15 e l s e

16 i f l ength ( whi )<2

17 s h i f t =(whi−1)∗( d istrQ3 .m−distrQ1 .m) ;

18 %whisker 1

19 distrW1=distrQ1 ;
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20 distrW1 . domain=distrW1 . domain−s h i f t ;

21 distrW1 .m=distrW1 .m−s h i f t ;

22 %whisker 2

23 distrW2=distrQ3 ;

24 distrW2 . domain=distrW2 . domain+s h i f t ;

25 distrW2 .m=distrW2 .m+s h i f t ;

26 e l s e

27 distrW1=quant se t ( o1 , min ( whi ) ) ;

28 distrW2=quant se t ( o1 , max( whi ) ) ;

29 end

30 end

31 d i s t r s =[distrMIN ; distrW1 ; distrQ1 ; distrME ; distrQ3 ; distrW2 ;

distrMAX ] ;

32 end

1 f unc t i on [ val , d i s t r ]= skewness ( o1 ) %Bowley index extended

to q f s

2 %Bowley measure o f skewness

3 %sk =((Q3−ME)−(ME−Q1) ) /(Q3−Q1) ;

4 distrQ1=quant se t ( o1 , 0 . 2 5 ) ;

5 distrME=quant se t ( o1 , 0 . 5 ) ;

6 distrQ3=quant se t ( o1 , 0 . 7 5 ) ;

7 a1=area ( distrQ3 , distrME ) ;

8 a2=area ( distrQ1 , distrME ) ;

9 a3=area ( distrQ3 , distrQ1 ) ;

10 va l=(a1−a2 ) /a3 ;

11 re su=m u l t i p l e r e g i s t e r ( [ d i strQ3 ; distrME ; distrQ1 ] ) ;

12 d1=resu ( : , 1 )−re su ( : , 2 ) ;

13 d2=resu ( : , 2 )−re su ( : , 3 ) ;

14 d3=resu ( : , 3 )−re su ( : , 1 ) ;
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15 num=d1−d2 ;

16 d i s t r =[num. / ( d3+eps ) resu ( : , end ) ] ;

17 end

1 f unc t i on g=p l o t d i s t r ( o1 , para ) %p l o t a d i s t r i b u t i o n

2 n=s i z e ( o1 , 1 ) ;

3 g=0;

4 i f nargin<2

5 para=’−r ’ ;

6 end

7 hold on

8 f o r i =1:n

9 %p l o t t a una d i s t r i b u z i o n e

10 p lo t ( o1 ( i , 1 ) . domain , o1 ( i , 1 ) . cumulat , para ) ;

11 end

12 hold o f f

13 end

1 f unc t i on p l o t h i s t ( o1 , c o l ) %p l o t a his togram

2 n=s i z e ( o1 , 1 ) ;

3

4 i f nargin<2

5 c o l=’ r ’ ;

6 end

7 hold on

8 f o r i =1:n

9 f o r j =1:( s i z e ( o1 ( i , 1 ) . cumulat )−1)

10 %p l o t t a un istogramma



11 basemin=o1 ( i , 1 ) . domain ( j , 1 ) ;

12 basemax=o1 ( i , 1 ) . domain ( j +1 ,1) ;

13 i f ( basemax−basemin )>eps

14 heigthh=(o1 ( i , 1 ) . cumulat ( j +1 ,1)−o1 ( i , 1 ) . cumulat

( j , 1 ) ) /( basemax−basemin ) ;

15 e l s e

16 basemax=basemax+eps ;

17 heigthh=(o1 ( i , 1 ) . cumulat ( j +1 ,1)−o1 ( i , 1 ) . cumulat

( j , 1 ) ) /( basemax−basemin ) ;

18 end

19 patch ( [ basemin basemax basemax basemin basemin ] , [ 0

0 he igthh heigthh 0 ] , co l , ’ FaceAlpha ’ , 0 . 5 ) ;

20 end

21 end

22 hold o f f

23 end

24 end

25 end
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