
Fast Incremental Clustering and Representation

of a 3D Point Cloud Sequence with Planar Regions

Francesco Donnarumma, Vincenzo Lippiello, Matteo Saveriano

Abstract— An incremental clustering technique to partition
3D point clouds into planar regions is presented in this paper.
The algorithm works in real-time on unknown and noisy data,
without any initial assumption. An iterative cluster growing
technique is proposed in order to correctly classify a flow
of 3D points and to merge close regions. The computational
efficiency of the approach is achieved by using an Incremental
Principal Component Analysis (IPCA) technique, and with the
adoption of a compact geometrical representation based on the
concave-hull computation of each cluster. This solution adds a
more realistic representation of the observed environment and
reduces the number of points needed to identify the cluster
shape. The effectiveness of the proposed algorithm has been
validated with both synthetic and real data sets.

I. INTRODUCTION

The construction of an environment map is a key aspect

for the autonomous navigation of mobile and flying robots,

especially in indoor or cluttered environment. The ability to

recover the geometrical structure of visible surfaces is critical

for scene understanding.

Many robot mapping algorithms have focused on semantic

maps based on point clouds or grid-based representations.

However, both these representations are extremely dense,

i.e. the number of points or grid cells required to represent

an environment generally scales with the volume of the

environment and not with its complexity (e.g. the number

of objects detected). Hence, those approaches would rely on

many thousands of variables, and thus they could make a

reliable fast reconstruction (possibly in real-time) intractable

already for environments with a limited extension. On the

other hand, an alternative solution relies on the adoption of a

compact geometric representation of the environmental struc-

tures, which can be done using few geometrical primitives

together with a small number of parameters.

Our challenge is to develop a fast approach to be pro-

cessed by low-cost and low-resources hardware of a Micro

Francesco Donnarumma is with Istituto di Scienze e Tecnologie della
Cognizione, CNR, via S. Martino della Battaglia, 00185, Rome, Italy
francesco.donnarumma@istc.cnr.it.

Vincenzo Lippiello is with PRISMA Lab, Dipartimento di Informatica e
Sistemistica, Università degli Studi di Napoli Federico II, via Claudio 21,
80125, Naples, Italy lippiello@unina.it

Matteo Saveriano is with CoTeSys Lab, Fakultät für Elektrotechnik und
Informationstechnik, Technische Universität München, Karlstrasse, 80333,
Munich, Germany matteo.saveriano@tum.de.

The research leading to these results has been supported by the European
Community’s Seventh Framework Programme inside the AIRobots and
Goal-Leaders collaborative projects (FP7/2007-2013) under grant agree-
ments ICT-248669 and ICT-270108, respectively. The authors are solely
responsible for its content. It does not represent the opinion of the European
Community and the Community is not responsible for any use that might
be made of the information contained therein.

Unmanned Aerial Vehicle (MUAV), and at the same time to

be employed by an autonomous navigation control system.

Thus, a suitable environmental representation should be

abstract at such a level that one can discard the storing of

thousands of points, which are acquired during the execution,

and should be adapted to sparse and noisy points (and with

drift), which are collected by a 3D stereo vision systems. To

achieve this goal, we combine a RANSAC plane growing

together with and Incremental Principal Component Analysis

(IPCA) algorithm, and a shape retrieval by a Concave Hull

algorithm. Our contribution is in selecting and combining

different approaches in a novel procedure. Simulation and

tests on real data will prove the robustness of the proposed

approach with respect to noise and outliers.

A. Related Work

In the last decade, several approaches have been proposed

in order to address this problem. PCA can be used achieving

an efficient representation of the point clouds. In [1] this

approach is employed in a neighborhood of data points, and

then used incrementally. A combination of region growing

and plane fitting is proposed in [2], [3]. In [4] a compu-

tationally expensive 3D Hough transform is used for plane

detection, while in [5] the Radon transform is deployed to

detect planes in volume data.

Other plane extraction algorithms are highly specialized

for a specific application and are not in widespread use.

An Expectation Minimization (EM) algorithm to fit planes,

which are initially randomly generated, is used in [6]. In [7]

lines and in [8] planes are detected relying on the specific

properties of a laser scanner.

A combination of PCA and G-means (a modified K-means

technique) is proposed in [9] to automatically detect the

number of planes. Other approaches, such as K-planes [10]

and its generalization K-subspaces [11], which are both a

modification of the K-means algorithm, try to fit plane-

subspaces resembling PCA error function.

Other solutions employ triangle meshes for the preprocess-

ing of the original point data [12]. In [13] geometric prim-

itives are fit into triangle meshes. The proposed prototype

works for planes, cylinders and spheres and is easily exten-

sible to other primitives, but it is computationally expensive.

The Matrix Factorization (MF), which is an extension of

PCA from one to multiple subspaces, is proposed in [14] in

the case of independent and linear subspaces.

The Sparse Subspace Clustering (SSC) [15] approach

is based on the idea of writing a data point as a linear

combination of a sparse linear combination of all other data

2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 7-12, 2012. Vilamoura, Algarve, Portugal

978-1-4673-1736-8/12/S31.00 ©2012 IEEE 3475



points. However this approach scales with the number of

input points and thus is too slow for real-time purposes.

In [16] the Generalized Principal Component Analysis

(GPCA) is proposed. In detail, it is an algebraic-geometric

method for clustering data lying in subspaces by fitting a

union of K subspaces with a set of polynomials of degree

K, whose derivatives at a point give a vector normal to

the subspace containing that point, and then proceed on the

segmentation of these vectors.

In real applications, data is corrupted by the presence of

noise, outliers, etc. While robust estimation techniques have

been developed for the case of a single subspace, the case of

multiple subspaces is still an open issue. For this purpose,

the Random Sample Consensus (RANSAC) algorithm [17]

is often employed. For example, in [18] the authors adapted

RANSAC for plane extraction. This algorithm performs

precise and fast plane extraction, but only if the clustering

parameters have been fine-tuned properly. Moreover, for

the optimization process a knowledge is assumed which is

not readily available in point cloud data, such as normals,

neighboring relations and outlier ratios. A faster RANSAC

variant extending the previous work is given in [19].

II. REAL TIME INCREMENTAL CLUSTERING

Approaches that use point clouds or grid-based represen-

tation as environmental maps would rely on many thousands

of variables, and often become intractable for real-time

reconstruction. A solution is to rely on a compact geometric

representation of the environmental structures, which can be

done using few geometric primitives1. This solution requires

that 3D points acquired by the robot should be collected

(clustered) in homogeneous groups, and then represented

with geometric parameters. The crucial point to speed up the

algorithm is that representation should be used incrementally

on new points, without recurring on all so far points that have

been presented during execution.

Given a large number of point features corresponding to

the same environmental structure, a dimensionality-reduction

technique to extract a higher-order, lower-dimensional repre-

sentation, that still captures the data, should be employed [9],

[20]. Therefore, there is the need to simultaneously cluster

data into multiple subspaces, and to find a low-dimensional

subspace fitting each group of points (dimensionality re-

duction). In machine learning literature this is known as

a subspace clustering problem [21]. A typical algorithm to

model data by multiple subspaces would require:

• to detect how many planes are in the same scene;

• to cluster the points of the scene in different planes;

• to represent planes in a point-independent manner.

Thus, sequences of scenes are incrementally combined to-

gether with the advantage of speeding up the algorithm

without decreasing the performance. The main components

1Typical indoor environments usually comprise a large amount of planar
surfaces. Hence, with the adoption of closed and limited planar region

geometric primitives, the representation of the main structures present in
the environment can be achieved.

of the proposed fast incremental-clustering algorithm are

described in the following subsections.

A. Subspace clustering problem definition

The subspace clustering problem requires modeling of a

collection of data points in a union of subspaces. Let xi ∈
R

n, with i = 1, . . . , N , be a set of points drawn from an

unknown union of K subspaces Sk such that

Sk = {x ∈ R
n : x = µµµk + Uky} with k = 1, . . . ,K,

where µµµk ∈ R
n is a point of the subspace Sk, Uk =

{u1; . . . ;udk
} ∈ R

n×dk is a basis of Sk, and y ∈ R
dk is a

low-dimensional representation of x. When K = 1 the prob-

lem consists in finding µµµ ∈ R
n, the basis U ∈ R

n×d, and the

dimension d. The optimal solution (without noise/outliers)

is the Principal Component Analysis (PCA) [22]. PCA

computes a set of basis functions ordered in correspondence

of the variance of the data, with µµµ = 1
N

∑N

n=1 xn, and

produces a reduced representation of the data.

For a generic K, the solution is not straightforward. Hence,

the problem with n = 3 (i.e. 3D point) and dk = 2 (i.e.

only points that form planes are selected, while all points

that do not satisfy this requirement are treated as outlier) is

considered. In other words, all surfaces are searched as an

approximation of planes under a certain threshold.

There is a strong coupling between data segmentation

and the geometric primitive estimation. Specifically, if the

clustering of the data is known, one could easily fit a single

subspace to each group of points using PCA. Conversely, if

the subspace parameters are known, the data points that best

fit each subspace can be easily found. In practice, neither

the segmentation of the data nor the subspace parameters

are known and both problems have to be simultaneously

solved. This aspect becomes dramatic especially in indoor

environments with many planar surfaces to be detected.

The RANSAC algorithm is employed to fit planes by PCA

in a group of unlabeled points of the scene. At each image

scene, the RANSAC Plane Growing algorithm is performed,

which can be summarized in the following steps:

Algorithm 1 RANSAC Plane Growing

1. for i = 1 → maxExternalIterations do

2. for j = 1 → maxInternalIterations do

3. randomly take 3 unlabeled points from the scene

4. calculate principal components of the plane through

the 3 points

5. project unlabeled points onto the plane

6. label points under a certain distance threshold from

the plane as a new plane

7. end for

8. select the plane with the larger number of the inliers

9. end for

This procedure finds a maximum of maxExternalIterations

new planes in the scene. A small value (less than 10) is

sufficient in most cases as this procedure is meant to be ex-

ecuted on the new unlabeled points received. The RANSAC

3476



parameter maxInternalIterations allows the selection of the

best plane (i.e. with the largest number of points) in the

scene. This is crucial in order to cope with noise and outliers.

Points that do not fit any plane are left unlabeled.

B. Incremental cluster representation by IPCA

When considering different scenes, whenever new data

points are presented, they should be clustered in the most

efficient way. In the proposed approach, point storing ex-

plosion is avoided by using a procedure which relies on

Incremental Principal Component Analysis (IPCA) [23]. In

fact, with Nk(t) the number of points belonging to the cluster

before updating it, ICPA recursively computes, for all the

new M points xm, with m = Nk(t) + 1, . . . , Nk(t) + M ,

added to the k-th cluster, the new centers

µµµk(t+ 1) =
1

Nk(t+ 1)

(

Nk(t) ·µµµk(t) +

M
∑

m=1

xm

)

,

with Nk(t + 1) = Nk(t) + M and the new components

Uk = {u1,k,u2,k} at step t with the recursive equations

vi,m =
1

m

(

(m− 1)I +
(xm −µµµk)(xm −µµµk)

T

‖vi,m−1‖

)

vi,m−1

with vi,0 = ui,k(0) and i ∈ {1, 2}, and thus

ui,k(t+ 1) =
1

∥

∥vi,Nk(t+1)

∥

∥

vi,Nk(t+1)

In practice, the first time that the cluster is detected a

standard PCA is executed to compute ui,k(0). Then, for

all new points detected, IPCA is performed. We stress that

with this approach the principal components of the clusters

are iteratively estimated without requiring the storage of all

3D points. Thus, the finer bounding box of the clusters is

computed on a fixed limited number of stored points selected

on the basis of the following Concave Hull procedure.

C. Shape representation: concave hull estimation

In order to preserve the cluster shapes, the concave en-

velope, or concave hull of the clusters is computed. To this

purpose, the shape retrieval step is based on the Edelsbrunner

et al. [24] algorithm, which computes the concave hull of N

2D points with a complexity of O(N logN).
By projecting the cluster points onto the fitting plane, a

set of 2D points is achieved and the 2D concave hull can

be straightforwardly computed with known methods. In this

way, a compact but realistic representation of the cluster, i.e.

of the environment, with a reduced number of points needed

to identify its shape, is achieved.

For example, for a representation of a planar region by

means of the smallest bounding box surrounding the points, a

single rectangle is sufficient to approximate the cluster shape.

However, this solution is not adequate in many practical

cases. Let us consider the case of the floor of a corridor with

a turn, as shown in Fig. 1. By comparing the bounding-box

representation (the green line) with the concave hull (blue

line), it is clear that the latter allows the representation of

the exact shape of the region with a limited number of points.

Fig. 1. Simulation of a turn in a corridor. The blue line is the concave
hull, the green one is the bounding box.

Fig. 2. Rectangle with a rectangular hole inside. The blue line is the
external perimeter, the red one is the approximated cavity hull. The black
points also belong to the cavity hull but the algorithm doesn’t include them.

However, in large data sets it could be necessary to limit

the number of the points employed to represent each cluster,

in order to increase the computational performances. To this

purpose, the area of the concave hull can be employed as a

parameter to saturate the maximum number of points used

to represent it. To compute the area of the concave hull the

Shoelace Theorem can be used:

A =
1

2

∣

∣

∣

∣

∣

N
∑

i=1

(xiyi+1 − xi+1yi)

∣

∣

∣

∣

∣

,

with xN+1 = x1, where xi = (xi, yi) are the vertices of the

concave hull.

An additional advantage of this approach is that, given

a point cloud representing an indoor environment, it is

possible, by setting the parameter α, to identify the escapes

(e.g. opened doors and windows). In fact, these types of

structures correspond to a hole in the cloud points. Hence,

by computing the α-shape, it is possible to estimate the

contour of any hole in the cloud with a desired accuracy.

Figure 2 shows an example of a cloud with a rectangular

hole, where the blue line represents the estimated rectangle

perimeter, while the red one the estimated contour of the

hole. Notice that four points (the black points in Fig. 2) of

the real hole contour have not been included in the estimated

one. This is due to the threshold used to compute the α-

shapes. By increasing the threshold all points are collected.

A good trade-off between the number of points to be stored

and the desired accuracy has to be chosen.

D. Incremental matching of views

The joining of these partial views into a map is referred to

as scan registration. Scan registration is subject to matching

errors, sensor noise and systematic errors in the scans. Also

this phase is done in an incremental way in order to reduce

the execution time. In particular, new points are tested if

belonging to older clusters. This is done by controlling if

3477



they belong to the same geometrical plane, and at the same

time if they are close enough to previous points. After each

scene acquisition, if possible, unlabeled new points are added

to older clusters, and then new clusters are searched by

means of the RANSAC Plane Growing algorithm only on

the unlabeled points. Then, the cluster representations are

recomputed by means of IPCA and Concave Hull algorithm.

Thus, the resulting algorithm can be written as:

Algorithm 2 Incremental Matching

1. perform RANSAC Plane Growing on the first scene and

find representation Uk(0) for each cluster

2. while next scene do

3. scene = actual scene(t)
4. project unlabeled points and label points under a

certain distance threshold onto the planes Uk(t)
5. ambiguous points (labeled to more than one plane) are

assigned to the nearest plane in terms of:

a) distance from the plane ‖µµµk(t)+Uk(t)(Uk(t))
T (xn−

µµµk(t))− xn‖
b) distance from the centroids µµµk(t) of the clusters (intra-

cluster distance)
∑

Hk

h=1
‖x̄hk

−µµµk(t)‖
2

6. perform RANSAC Plane Growing on the remaining

unlabeled points searching for new Principal Compo-

nents bases Uk+1(t)
7. update representation:

a) add new Principal Components bases Uk+1(t) found,
k = k + 1

b) perform IPCA computing new centers µµµk(t + 1) and
Principal Components Uk(t+ 1)

c) perform ConcaveHull for each cluster k to save cluster

shape in a collection of points {x̂hk
}Hk

1

8. end while

This further incremental phase allows the algorithm to rely

only on the PCA representation, the principal components for

each plane Uk and the bounding concave hull points.

III. EXPERIMENTAL RESULTS

A. Implementation details

The Incremental RANSAC PCA algorithm has been im-

plemented in C++ and tested on an AMD Phenom II x4

945 processor. This implementation has been tested on a

large database consisting in the point cloud flow provided

by a stereo camera system presented in [25], which performs

the visual odometry and the 3D points estimation at 10 Hz,

during the navigation of an unmanned aerial vehicle within

a real building (see Fig. 3(a)). The point cloud flow has been

stored in a “.BAG” ROS (Robot Operating System2) file.

The proposed clustering algorithm has been encapsulated

in a ROS node, that reads the point cloud from a topic

linked with the BAG file. Moreover, another ROS node reads

clustered point clouds and computes the concave hull of each

cluster using the α-shape algorithm implementation of the

Point Cloud Library (PCL)3. The concave hull estimation is

2See http://www.ros.org/wiki/ for further details.
3See http://www.pointclouds.org/ for further details

performed only for the new planes or for those to which

new points are added. This software architecture, consisting

of three separated ROS nodes, allows the execution of each

node in a separate thread with different scheduling priority.

In this way, the Incremental RANSAC PCA algorithm is

executed without losing any frame from the vision system.

B. Synthetic dataset: Reliability with noise and outliers

Several tests have been performed to compare the pro-

posed approach with other plane clusterization methods. The

other methods considered for the comparison are:

• K-subspaces [11] enforced with RANSAC;

• the classic K-means clusterization [26];

• Generalized Principal Component Analysis (GPCA)

alone [16] and enforced with RANSAC;

• Matrix Factorization (MF) [14].

To evaluate the best performing algorithm in terms of ex-

ecution time, a dataset with synthetic 3D data has been

generated. For each K ∈ {2, . . . , 6} planes, M = 10 syn-

thetic scenes have been generated, for a total of 50 synthetic

scenes per experiment. As for each plane, about 100 points

are employed, hence in each scene there are from 200 to

1200 points. For each experiment we have produced different

noise cases, Gaussian Noise and Outliers. In order to simulate

Gaussian noise we considered for each point generated p a

noisy point generated as pn = p+σN (0, 1), with N (0, 1) a

Gaussian distribution centered in 0 with standard deviation 1.

The parameter σ was chosen as a percentage of the standard

deviation of the original non noisy data. Outliers are points

uniformly distributed in the considered space that do not

belong to any generated plane. We prepare corresponding

datasets with 5% or 10% of Gaussian noise together with

0% or 8% of outliers. The performance of the algorithm has

been estimated with an accuracy measure, i.e.

a =
Number of correct guesses

Number of samples
∈ [0, 1],

with a = 1 in the case of a perfect clusterization.

As shown in Tab. I, in the absence of noise, the best

performing approach is the GPCA, which is capable of

reaching an accuracy close to 1. However, the execution time

is slower than other approaches, especially while enforcing it

with the RANSAC algorithm. The fastest algorithm remains

the K-means, even if it must be stressed that for the tests of

this algorithm the knowledge of K (the number of planes)

is required. However, the problem of finding the right K is

not trivial and requires a non-neglecting execution time that

here has not been considered.

On the other hand, in presence of noise and outliers

the performance of the algorithms decreases. The proposed

RANSAC plane growing by IPCA, thanks to its incremental

part, is more robust to noise and outliers and worsens less

than other approaches. In general, while the other algorithms

try to model each point, the incremental step of this algo-

rithm is capable of finding the most reliable planes and of

discarding ambiguous points. Moreover, by suitably tuning

the threshold parameters and the iteration of the RANSAC,

it remains very competitive also in terms of execution time.

3478



TABLE I

COMPARISON OF SIX METHODS FOR PLANE CLUSTERING ON THE FIVE

SYNTHETIC DATASETS

Case 1: no noise and no outliers

Method TMF ā std(a)

Ransac K-subspaces 67.69 0.86 0.20

K-means 1.03 0.87 0.18

RansacPlane Growing by IPCA 1.70 0.95 0.04

GPCA 8.74 0.99 0.03

Ransac GPCA 80.39 1.00 0.18

Matrix Factorization (MF) 100 0.79 0.25

Case 2: 5% noise and no outliers

Method TMF ā std(a)

Ransac K-subspaces 58.90 0.81 0.19

K-means 0.74 0.78 0.15

RansacPlane Growing by IPCA 2.25 0.91 0.10

GPCA 9.30 0.83 0.15

Ransac GPCA 85.29 0.95 0.06

Matrix Factorization (MF) 100 0.71 0.11

Case 3: 5% noise and 8% outliers

Method TMF ā std(a)

Ransac K-subspaces 60.02 0.61 0.13

K-means 1.25 0.74 0.15

RansacPlane Growing by IPCA 3.55 0.87 0.17

GPCA 13.64 0.65 0.09

Ransac GPCA 138.19 0.84 0.13

Matrix Factorization (MF) 100 0.62 0.15

Case 4: 10% noise and no outliers

Method TMF ā std(a)

Ransac K-subspaces 65.43 0.58 0.18

K-means 0.60 0.61 0.13

RansacPlane Growing by IPCA 3.57 0.66 0.12

GPCA 10.21 0.58 0.21

Ransac GPCA 90.50 0.66 0.17

Matrix Factorization (MF) 100 0.53 0.20

Case 5: 10% noise and 8% outliers

Method TMF ā std(a)

Ransac K-subspaces 63.01 0.57 0.15

K-means 1.67 0.54 0.13

RansacPlane Growing by IPCA 5.42 0.63 0.15

GPCA 13.19 0.51 0.13

Ransac GPCA 139.56 0.60 0.19

Matrix Factorization (MF ) 100 0.56 0.14

Legend: TMF are the means of execution times in % of MF; ā ∈ [0, 1] is
the mean accuracy; std(a) is the standard deviation of the mean accuracy.

The mean time of execution of MF is M̄F = 3.45s.

C. A Building 3D points dataset

The proposed Incremental RANSAC PCA algorithm is

tested on a large dataset representing a real building. The

dataset consists of 6000 frames, that produce about 30 new

3D points for each frame, resulting in more than 15000

points. At the end of the process the algorithm have clustered

48 different planes, as shown in Fig. 3. Figure 3(a) represents

the point cloud obtained by performing the stereo vision al-

gorithm, while Fig. 3(b) represents the results of the proposed

algorithm (each plane is represented by its bounding box).

In the red circled box the concave hull on one of this planar

regions is highlighted. In particular, thanks to the adoption of

the concave hull representation, the real shape of a corridor

is rightly estimated. The number of points requested to store

this contour is very small compared with respect to the

original point set corresponding to this surface.

A choice of maxInternalIterations = 150 was suffi-

cient to cope with noise and outliers. The parameter α of

the concave hull algorithm has been chosen equal to the size

of the aerial vehicle employed for the building inspection.

This is a reasonable choice in order to find escapes (windows,

doors) useful for navigation. Moreover, a similar strategy has

been followed for setting the threshold of the plane noise.

This choice leads to a unique cluster for each entire staircase

and it is exactly what we were looking for: in our case of a

map-reconstruction for the autonomous navigation of a flying

robot, we are not interested in the reconstruction of each step

but in the slope of the stairs and in the distance from it for

a safe navigation. In this regard, notice that all the boxes in

Fig. 3(b) have three dimensions. In fact, the height of each

bounding box represents the standard deviation of the point

set with respect to the fitting plane. This information can be

fully exploited to endure a safe navigation of an autonomous

robot.

The required computational time is about 45 ms for each

frame of this dataset, which is less than the period of 100 ms

of the stereo acquisition vision system.

IV. CONCLUSION AND FUTURE WORK

In this paper a fast algorithm for the incremental clustering

and representation with planar regions of a point cloud flow

has been presented. The shape representation of each cluster

is based on a reduced and bounded number of points stored

by means of the concave hull evaluation. New representations

of the planes have been computed by means of IPCA, which

allows discarding of the old points already computed, without

losing the past information on clusters. The performance of

the proposed approach has been tested by stressing it both

on a synthetic dataset and on a large 3D dataset representing

a real building. It has been demonstrated that this approach

is fast enough to perform a reconstruction at the same frame

rate of a typical stereo vision system.

Our next research will focus on fast ways to introduce and

recall semantic labeling in order to identify and distinguish

different common properties, such as, walls, stairs, floors and

ceilings, in order to construct a high-level semantic map.

REFERENCES

[1] A.-L. Chauve, P. Labatut, and J.-P. Pons, “Robust piecewise-planar
3D reconstruction and completion from large-scale unstructured point
data,” IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pp. 1261–1268, 2010.
[2] D. Hähnel, W. Burgard, and S. Thrun, “Learning compact 3D models

of indoor and outdoor environments with a mobile robot,” Robotics

and Autonomous Systems, vol. 44, pp. 15–27, 2003.
[3] J. Poppinga, N. Vaskevicius, A. Birk, and K. Pathak, “Fast plane

detection and polygonalization in noisy 3D range images,” in 2008

IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 3378–3383, 2008.

[4] D. Borrmann, J. Elseberg, K. Lingemann, and A. Nüchter, “The 3D
hough transform for plane detection in point clouds: A review and a
new accumulator design,” 3D Research, vol. 2, pp. 1–13, 2011.

3479



(a) Point cloud

(b) Clustered planes

Fig. 3. Clustering of a building using Incremental RANSAC PCA (courtesy of ETH Zurich, which provided the flow of 3D points).

[5] U. Bauer and K. Polthier, “Detection of planar regions in volume
data for topology optimization,” Advances in Geometric Modeling and

Processing, pp. 119–126, 2008.
[6] R. Lakaemper and L. J. Latecki, “Extended EM for planar approxima-

tion of 3D data,” in IEEE International Conference on Robotics and

Automation, 2006.
[7] O. Wulf, K. O. Arras, H. I. Christensen, and B. Wagner, “2d mapping

of cluttered indoor environments by means of 3D perception,” in 2004

IEEE International Conference on Robotics and Automation, vol. 4,
pp. 4204–4209, 2004.

[8] H. Surmann, K. Lingemann, A. Nchter, and J. Hertzberg, “A 3d
laser range finder for autonomous mobile robots,” in International

Symposium on Robotics, 2001.
[9] E. Brunskill and N. Roy, “SLAM using incremental probabilistic PCA

and dimensionality reduction,” in 2005 IEEE International Conference

on Robotics and Automation, pp. 342–347, 2005.
[10] P. S. Bradley and O. L. Mangasarian, “k-plane clustering,” Journal of

Global Optimization, vol. 16, pp. 23–32, 2000.
[11] P. Tseng, “Nearest q-flat to m points,” Journal of Optimization Theory

and Applications, vol. 105, pp. 249–252, 2000.
[12] D. Viejo and M. Cazorla, “Geometric primitive extraction for 3D

model reconstruction,” Recent Advances In Artificial Intelligence Re-

search And Development, p. 267, 2004.
[13] M. Attene, B. Falcidieno, and M. Spagnuolo, “Hierarchical mesh seg-

mentation based on fitting primitives,” The Visual Computer, vol. 22,
pp. 181–193, 2006.

[14] J. Costeira and T. Kanade, “A multi-body factorization method for
independently moving objects,” International Journal of Computer

Vision, vol. 29, pp. 159–179, 1997.
[15] E. Elhamifar and R. Vidal, “Sparse subspace clustering,” in Inter-

national Conference on Computer Vision and Pattern Recognition,
pp. 2790–2797, 2009.

[16] R. E. Vidal, Y. Ma, and S. Sastry, “Generalized principal component
analysis (gpca),” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 27, pp. 1945–1959, 2005.
[17] M. A. Fischler and R. C. Bolles, “Random sample consensus: a

paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, pp. 381–395, 1981.

[18] R. Schnabel, R. Wahl, and R. Klein, “Efficient RANSAC for Point-
Cloud Shape Detection,” Computer Graphics Forum, vol. 26, pp. 214–
226, 2007.

[19] J. Elseberg, D. Borrmann, and A. Nüchter, “Efficient processing of
large 3d point clouds,” in International Symposium on Information,

Communication and Automation Technologies, 2011.
[20] M. Artač, M. Jogan, and A. Leonardis, “Mobile robot localization

using an incremental eigenspace model,” in IEEE Conference of

Robotics and Automation, pp. 1025–1030, 2002.
[21] R. E. Vidal, “Subspace clustering,” IEEE Signal Processing Magazine,

2011.
[22] I. T. Jolliffe, Principal Component Analysis. Springer, 2th ed., 2002.
[23] J. Weng, Y. Zhang, and W. S. Hwang, “Candid covariance-free

incremental principal component analysis,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 25, pp. 1034–1040,
2003.

[24] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel, “On the shape of a
set of points in the plane,” IEEE Transactions on Information Theory,
vol. 29, pp. 551–559, 1983.

[25] R. Voigt, J. Nikolic, C. Hürzeler, S. Weiss, L. Kneip, and R. Siegwart,
“Robust embedded egomotion estimation,” in 2011 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, pp. 2694–2699,
2011.

[26] S. P. Lloyd, “Least squares quantization in pcm,” IEEE Transactions

on Information Theory, vol. 28, pp. 129–136, 1982.

3480


