
USING VALIDATION AND VERIFICATION TECHNIQUES FOR ROBUST PLAN
EXECUTION

Andrea Orlandini1, Alberto Finzi2, and Amedeo Cesta1

1CNR – Consiglio Nazionale delle Ricerche, ISTC, Rome, Italy – name.surname@istc.cnr.it
2DSF – Università Federico II, Naples, Italy – finzi@na.infn.it

ABSTRACT

This paper describes the exploitation of a Validation and
Verification technique aiming at enriching the support ca-
pabilities of the KnowledgE ENgineering (KEEN) soft-
ware environment. In particular, the work reports on
the formal synthesis of a plan controller associated to a
flexible temporal plan. The controller synthesis exploits
Timed Game Automata (TGA) for formal modeling and
UPPAAL-TIGA as a model checker. The paper intro-
duces a detailed experimental analysis on a real-world
case study demonstrating the viability of the approach. In
particular, it is shown how the controller synthesis over-
head is compatible with the performance expected from a
short horizon planner.

Key words: Design Support System, Validation and Ver-
ification, Timeline-based Planning and Execution.

1. INTRODUCTION

Space missions are very demanding in terms of both re-
quirements and costs. Ensuring the validity of plans is of
key importance for accepting automated planning tech-
nology in the loop of space missions. For this reason
these authors are working at integrating Verification and
Validation (V&V) with plan generation tools [10]. In
particular to enhance the reliability and maintainability
of tools supporting plan generation, we are working at
the incremental synthesis of the KnowledgE ENgineering
(KEEN) environment [8]. The KEEN system has been
shown as well suited for supporting design and develop-
ment of timeline-based Planning and Scheduling (P&S)
applications in space mission operations. A particular
strong requirement for tools supporting space missions
is related to robust plan execution in uncertain and dy-
namic environments, which is a critical issue, for exam-
ple, for plan-based autonomous systems. In fact, once a
planner has synthesized a temporal plan, it is up to the
executive system to decide, at run-time, how and when
to exactly execute each planned activity preserving both
plan consistency and controllability. Such a capability is
even more crucial when the generated plan is temporally
flexible being such a plan only partially specified.

Previous works have tackled these issues within a
Constraint-based Temporal Planning (CBTP) framework

deploying specialized techniques based on temporal-
constraint networks. Several authors [19, 18, 23] pro-
posed a dispatchable execution approach where a flexi-
ble temporal plan is then used by a plan executive that
schedules activities on-line while guaranteeing constraint
satisfaction.

In our recent work [21], the robust plan execution is pur-
sued relying on Timed Game Automata (TGA) formal
modeling and controller synthesis. Recently, we have in-
tegrated such an approach in the KEEN system that now
is endowed with an alternative and novel approach to flex-
ible plan dispatching/execution. The technique used to
synthesize plan controllers is a direct consequence of the
formalization proposed in [9]. Analogously to that work,
the generated flexible temporal plan and the dynamic do-
main are encoded into TGA models. However, a different
perspective is investigated by exploiting a model checker
(i.e., UPPAAL TIGA) to directly synthesize a real-time
plan controller for the flexible plan. Such controller guar-
antees plan execution along with other domain dependent
properties.

This paper offers a synthesis of the recent developments
of the KEEN environment, in particular showing the
achievements in supporting plan execution.

2. PLAN-BASED ROBOT CONTROL

We started our work on the integration of V&V and P&S
within the EU Project ULISSE 1 while we have addressed
plan-based autonomy within the GOAC project 2. We are
currently pursuing the KEEN development as an internal
initiative of our group in the aim of integrating differ-
ent capabilities to support new research. In particular we
are focusing on capabilities for robust plan execution in
robots.

The Goal Oriented Autonomous Controller [5] is an ESA
effort to create a common platform for robotic software
development. In particular, the delivered GOAC architec-
ture has integrated: (a) a timeline-based deliberative layer
which integrates a planner based on the APSI Platform
[12] and an executive a la T-REX [22]; (b) a functional
layer which integrates Gen

oM and BIP [2]. In the pa-
per, we use a real-world running example taken from the

1http://www.ulisse-space.eu/
2ESA Contract TRP/T313/006MM

GOAC project. However, independent on our current use,
the work described in this paper is valid for any generic
layered control architecture (e.g., [15]) that integrates a
temporal planning and scheduling system.

The Robotic Domain. Let us consider a planetary rover
equipped with a Pan-Tilt Unit (PTU), two stereo cameras
(mounted on top of the PTU) and a communication facil-
ity. The rover is able to autonomously navigate the envi-
ronment, move the PTU, take pictures and communicate
images to a Remote Orbiter. Finally, during the mission,
the Orbiter may be not visible for some periods. Thus,
the robotic platform can communicate only when the Or-
biter is visible. The mission goal is a list of required pic-
tures to be taken in different locations with an associated
PTU configuration. A possible mission action sequence
is the following: navigate to one of the requested loca-
tions, move the PTU pointing at the requested direction,
take a picture, then, communicate the image to the orbiter
during the next available visibility window, put back the
PTU in the safe position and, finally, move to the fol-
lowing requested location. Once all the locations have
been visited and all the pictures have been communi-
cated, the mission is considered successfully completed.
The rover must operate following some operative rules to
maintain safe and effective configurations. Namely, the
following conditions must hold during the overall mis-
sion: (C1) While the robot is moving the PTU must be
in the safe position (pan and tilt at 0); (C2) The robotic
platform can take a picture only if the robot is still in one
of the requested locations while the PTU is pointing at
the related direction; (C3) Once a picture has been taken,
the rover has to communicate the picture to the base sta-
tion; (C4) While communicating, the rover has to be still;
(C5) While communicating, the orbiter has to be visible.

3. TIMELINE-BASED PLANNING AND EXECU-
TION

Timeline-based planning is an approach to temporal plan-
ning that has been applied in the solution of several real
world problems – e.g., [20]. The approach pursues a
general idea that planning and scheduling for controlling
complex physical systems consists in the synthesis of de-
sired temporal behaviors (or timelines).

State variables and timelines. According to this
paradigm a domain is modeled as a set of features with
an associated set of temporal functions on a finite set of
values. The time varying features are called multi-valued
state variables as in [20]. As in classical control theory,
the evolution of the features is described by some causal
laws and limited by domain constraints. These are spec-
ified in a domain specification. The task of a planner is
to find a sequence of decisions that brings the timelines
into a final desired set always satisfying the domain spec-
ification and special conditions called goals. We assume
that the temporal features have a finite set of possible val-
ues assumed over temporal intervals. The temporal evo-
lutions are sequences of operational states. Causal and
temporal constraints specify which value transitions are
allowed, the duration of each valued interval and synchro-
nization constraints between different state variables.

More formally, a state variable is defined by a tuple
〈V, T ,D〉 where: (a) V = {v1, . . . , vn} is a finite set of
values; (b) T : V → 2V is the value transition function;
(c) D : V → N × N is the value duration function, i.e. a
function that specifies the allowed duration of values in V
(as an interval [lb, ub]). (b) and (c) specify the operational
constraints on the values in (a). Given a state variable, its
associated timeline is represented as a sequence of values
in the temporal interval H = [0, H). Each value satisfies
previous (a-b-c) specifications and is defined on a set of
not overlapping time intervals contained inH.

Timeline specification for the robotic domain. To ob-
tain a timeline-based specification of our robotic domain,
we consider two types of state variables: Planned State
Variables to represent timelines whose values are decided
by the planning agent, and External State Variables to
represent timelines whose values over time can only be
observed. Planned state variables are those representing
time varying features like the temporal occurrence of nav-
igation, PTU, camera and communication operations. We
use four of such state variables, namely the RobotBase,
PTU, Camera and Communication.

Taking
Picture (?file)

CamIdle()

Camera

Comm
(?file2)

Comm
Idle()

Communication

PointingAt
(?p,?t)

MovingTo
(?p2,?t2)

?p = ?p2
?t = ?t2

Platine Unit

At(?x,?y)

GoingTo
(?x2,?y2)

?x = ?x2
?y = ?y2

RobotBase

[1,+INF]

[10,20]

[1,+INF]

[1,+INF]

[1,+INF]

[10,10]

[10,20]

[10,30]

Visible()

Not
Visible()

Orbiter Visibility

[1,+INF]

[1,+INF]

Figure 1. State variables describing the robotic platform
and the orbiter visibility (durations are stated in seconds)

In Fig. 1, we detail the values that can be assumed by
these state variables, their durations and the legal value
transitions in accordance with the mission requirements
and the robot physics3. Additionally, one external state
variable represents contingent events, i.e., the communi-
cation opportunities. The Orbiter Visibility state variable
maintains the visibility of the orbiter. The allowed val-
ues for this state variable is Visible or Not-Visible and are
set as an external input. The robot can be in a position
(At(x,y)) or moving towards a destination (GoingTo(x,y)).
The PTU can assume a PointingAt(pan,tilt) value if point-
ing a certain direction, while, when moving, it assumes
a MovingTo(pan,tilt). The camera can take a picture
of a given object in a position 〈x, y〉 with the PTU in
〈pan, tilt〉 and store it as a file in the on-board mem-
ory (TakingPicture(file-id,x,y,pan,tilt)) or be idle (CamI-
dle()). Similarly, the communication facility can be oper-
ative and dumping a given file (Communicating(file-id))
or be idle (ComIdle()).

3Note that variables (e.g., ?x) represents parameters with values in
a finite set of symbols, used to compactly represent the allowed values
for a given state variable. Moreover, the symbol +INF is used to state
the upper bound of the temporal interval [0,H).

Representing domain causality. Domain operational
constraints are described by means of synchronizations.
A synchronization models the existing temporal and
causal constraints among the values taken by different
timelines (i.e., patterns of legal occurrences of the opera-
tional states across the timelines).

Fig. 2 exemplifies the use of synchronizations imple-
menting the operative rules (see Section 2) in our case
study domain. The synchronizations depicted are: Go-
ingTo(x,y) must occur during PointingAt(0,0) (C1); Tak-
ingPicture(pic,x,y,pan,tilt) must occur during At(x,y) and
PointingAt(pan,tilt) (C2); TakingPicture(pic,x,y,pan,tilt)
must occur before Communicating(pic) (C3); Communi-
cating(file) must occur during At(x,y) (C4); Communicat-
ing(file) must occur during Visible (C5).

0	
Camera	

RobotBase	

Communication System	

GoingTo(1,4)	At(0,0)	 At(1,4)	

MovingTo(30,-45)	PointingAt(0,0)	 PointingAt(30,-45)	

CamIdle	TakingPicture(obj,1,4,30,-45)	CamIdle	

Off	 Communicating(file)	

Pan-Tilt	

DURING

DURING

BEFORE DURING

DURING

NotVisible	Visible	 Visble	
Orbiter Visibility	 DURING

Figure 2. An example of timeline-based plan with syn-
chronizations.

In addition to those synchronization constraints, the
timelines must respect transition constraints among
values and durations for each value specified in the
domain (see again Fig. 1).

Timeline-based planning. Planning goals are expressed
as desired timeline values in temporal intervals; the
planning task is to build a set of timelines that describe
valid sequences of values that achieve the desiderata.
Hence, a plan is a set of timelines, that is, a sequence of
state variable values, a set of ordered transition points
between the values, and a set of distance constraints
between transition points. When the transition points
are bounded by the planning process (lower and upper
bounds are given for them) instead of being exactly
specified, we refer to the timeline as time flexible while
a flexible plan is the plan resulting from a set of flexible
timelines. A flexible plan defines a set of admissible
temporal behaviors. Considering a partial horizon H ′

(with H ′ < H), the same flexible plan defines a set
of partial temporal behaviors PB. A flexible plan
P = {TL1, ..., TLn} is defined over a given horizon
H. A solution plan is valid with respect to a domain
theory if every temporal occurrence of a value satisfies
the expected synchronizations.

Plan execution. During plan execution, the plan, or
a partial segment of it, is under responsibility of the
executive system that forces value transitions over the
timelines dispatching commands to the functional lay-
ers while continuously accepting observations and, thus,
monitoring the plan execution. Additionally, not all the
value transitions are under responsibility of the executive,

but events exist that are under control of the environment.
In such cases, the values for the controllable state vari-
ables should be chosen so that they do not constrain un-
controllable events. This is the controllability problem
([24]). Controllability issues underlying a plan represen-
tation have been formalized and investigated for the Sim-
ple Temporal Problems with Uncertainty (STPU) repre-
sentation in [24] where basic formal notions are given
for dynamic controllability (see also [18]). In [9] these
notions have been extended to the timeline-based frame-
work.

In order to endow the executive system with an execution
strategy, a plan controller is needed taking into account
also the controllability problem. That is, the executive
system is to robustly execute a flexible temporal plan.
More formally, a plan controller C is a partial function
from the set of partial behaviors PB and possible hori-
zons to the set of controllable values for state variables
plus a special action λ representing the wait action, C :
PB × N→ V1 ∪ ... ∪ Vn ∪ {λ}.

4. THE KEEN ENVIRONMENT

Validation and Verification techniques may represent a
complementary technology, with respect to P&S, and
can be used to obtain richer software development en-
vironments able to synthesize a new generation of ro-
bust problem-solving applications [10]. In fact, devel-
oping a P&S application requires several design phases
and V&V support tools can alleviate the work of knowl-
edge engineers deputed to build such applications. In
particular we are here considering the perspective of a
ground segment mission environment within which plans
for a remote device are prepared and tested before up-
load. After quite an amount of work in developing spe-
cific applications for ESA (e.g., [6, 3, 7]) and in creat-
ing the APSI-TRF infrastructure for P&S [12] in more
recent work we have dedicated attention to knowledge
engineering supports for different users and in particular
on the issue of validating the work of a planner devel-
oped within such an infrastructure. Our starting point has
been to re-create within the APSI-TRF structured style of
implementation a general purpose timeline planner like
OMPS [14]. The use of the APSI-TRF is shown in the
central block of Figure 3: the Component-Based Mod-
eling Engine made available by the TRF coupled with a
search engine (called generically Problem Solver in the
figure) developed on purpose creates a complete planner
able to synthesize timeline-based solutions for planning
problems. Additional flexibility is offered by two input
languages (the Domain Description Language and Do-
main Description Language) that offer flexibility to the
use of the tool. Finally, a Plan Execution block has been
considered. This is based on a Dispatch Service to send
control commands to the controlled system (e.g., a robot)
and an Execution Feedback module that allows to receive
the telemetry from actual plan execution on physical sys-
tem. A possible instance of the Plan Execution layer is
the one described in [13] that can be easily tailored for
different ground segment needs. Around this core tool
we have built several engineering services based on our
recent work on V&V issues.

In [8], the KnowledgE ENgineering (KEEN) design sup-
port prototype system has been presented. It is composed
of different V&V modules implementing different design
support functionalities (see Figure 3).

KEEN	 Design	 Support	 System	

TGA	 	
Encoding	

Domain	
Valida1on	

Planner	 Valida1on	

Plan	
Verifica1on	

Plan	
Valida1on	

Plan	 Execu1on	 	
Valida1on	

Component
Based

Modeling
Engine

Domain
Description
Language

Problem
Description
Language

Current Plan

Dispatch	
Services	

Execu1on	
Feedback	

Plan Execution

TIGA

Problem Solver

APSI-TRF

Figure 3. The KnowledgE ENgineering (KEEN) Design
Support System.

A TGA Encoding module is deputed to implement a
translation from P&S specification to TGA. The encod-
ing method is the same presented in [9] allowing to share
the same formal results presented in [11]. The other mod-
ules rely on that encoding. A Domain Validation mod-
ule is to support the model building activity providing a
tool to assess the quality of the P&S models. A Planner
Validation module is deputed to assess the P&S solver
with respect to system requirements. In this regard, two
sub-modules are needed: Plan Verification to verify the
correctness of solution plans and Plan Validation to eval-
uate their goodness. Then, a Plan Execution Validation
module is to check whether proposed solution plans are
suitable for actual execution or not. To implement the
modules functionalities, verification tasks are performed
by means of UPPAAL-TIGA [1]. This tool extends UP-
PAAL [16] providing a toolbox for the specification, sim-
ulation, and verification of real-time games. As a result,
UPPAAL-TIGA is the core engine of the KEEN design
support system.

5. ENRICHING KEEN WITH ROBUST PLAN
CONTROLLER GENERATION CAPABILITY

Timed Game Automata [17] (TGA)allow to model real-
time systems and controllability problems representing
uncontrollable activities as adversary moves within a
game between the controller and the environment. Fol-
lowing the same approach presented in [9] (and briefly
discussed above), flexible timeline-based plan verifica-
tion can be performed by solving a Reachability Game
using UPPAAL-TIGA. To this end, we compile flexible
timeline-based plans, state variables, and domain theory
descriptions into a set of TGA (nTGA). This is obtained
with the following steps: (1) a flexible timeline-based
plan P is mapped into a nTGA Plan. Each timeline is
encoded as a sequence of locations (one for each timed
interval), while transition guards and location invariants
are defined according to (respectively) lower and upper

bounds of flexible timed intervals; (2) the set of state
variables SV is mapped into a nTGA StateVar. Basi-
cally, we define a one-to-one mapping from state vari-
ables descriptions to TGA. In this encoding, value transi-
tions are partitioned into controllable and uncontrollable.
(3) an Observer automaton is introduced to check for
value constraints violations and synchronizations viola-
tions. In particular, we have two locations: an Error loca-
tion, to state constraint/synchronization violations, and a
Nominal (OK) location, to state that the plan behavior is
correct. The Observer is defined as fully uncontrollable.
(4) the nTGA PL composed by the set of automata Stat-
eVar ∪ Plan ∪ {AObs} encapsulates flexible plan, state
variables and domain theory descriptions.

Considering a Reachability Game RG(PL, Init, Safe,
Goal) where Init represents the set of the initial locations
of each automaton in PL, Safe is the Observer’s OK lo-
cation, and Goal is the set of goal locations, one for each
automaton in Plan, plan verification can be performed
solving the RG(PL, Init, Safe, Goal) defined above. If
there is no winning strategy, UPPAAL-TIGA provides a
counter strategy for the opponent (i.e., the environment)
to make the controller lose. That is, an execution trace
showing a faulty evolution of the plan is provided.

5.1. Generating Controllers for Flexible Plan Execu-
tion: a TGA approach

Recently, the KEEN environment has been endowed with
a new functionality: a method to synthesize robust plan
controllers for timeline-based flexible plans solving a
TGA model checking problem [21]. Then, a one-to-one
mapping between flexible temporal behaviors over [0, H]
defined by P and the automata behaviors defined by PL
is presented. Moreover, for each partial temporal behav-
ior pb ∈ PB defined over H ′ < H , there exists a unique
temporal evolution ρpb of PL such that ρpb represents
the partial temporal behavior pb over the same horizon
H ′. That is, ρpb of PL represents the same valued inter-
vals sequence in P limited to H ′ and the duration of ρpb
is exactly the horizon H ′. As a consequence, the win-
ning strategy generated by UPPAAL-TIGA as a side ef-
fect of the verification process represents a flexible plan
controller that achieves the planning goals maintaining
the dynamic controllability during the overall plan exe-
cution. More formally, a plan controller Cf derived from
a winning strategy f can be defined as follows.

Definition 1 Given the reachability game RG(PL, Init,
Safe, Goal) defined as in Section 5, and the associated
winning strategy f generated by UPPAAL-TIGA, a plan
controller Cf is defined as follows: for each partial be-
havior pb ∈ PB over H ′, Cf (pb,H ′) = f(ρpb) = ac,
where each controllable action ac represents the associ-
ated values in V1∪ ...∪Vn (plus the special action λ cor-
responding to ”just wait and do nothing”), Cf (pb,H ′) is
undefined otherwise.

As a consequence, the following theorem holds:

Theorem 1 A controller Cf defined according to Defini-
tion 1 satisfies the following: (i) it correctly executes the
plan P reaching the given planning goals and (ii) main-
tains the dynamic controllability property during plan ex-
ecution.

Moreover, it is also possible to define optimized con-
trollers for flexible plans. Given a fixed temporal interval
[u, g] and a reachability game, UPPAAL-TIGA is able to
generate a winning strategy f∗ within that interval which
minimize the plan execution duration [4]. Since a flexible
plan is associated with a planning horizon [0, H], an op-
timized controller can be generated with [u, g] = [0, H].
This allows to conclude the following:

Theorem 2 Given a reachability game RG(PL, Init,
Safe, Goal) defined as above within the temporal inter-
val [u,g] = [0,H], the winning strategy f∗ provided by
UPPAAL-TIGA is time optimal and, because of Theo-
rem 1, the derived controller Cf∗ is also time optimal.

6. EMPIRICAL RESULTS

This section investigates the assessment of the practical
feasibility of the approach as well as the viability of the
new KEEN functionality by using our robotic case study
as a benchmark. Our aim is to test the controller gener-
ation performance in a real world scenario as well as to
check whether the KEEN on-line control synthesis func-
tionality is viable and compatible with the short latencies
of a planning and execution cycle. Then, in this context,
we want also to assess the controller synthesis overhead
w.r.t. to the planning and verification costs. For this pur-
pose, we introduce different planning/execution scenar-
ios obtained by varying the problem complexity along the
following dimensions: plan length by playing on both the
number of pictures to be taken and the plan horizon; plan
flexibility by modifying the allowed temporal tolerance
for uncontrollable actions; plan choices by changing the
number of communication opportunities. More specifi-
cally:

(1) Plan Length. We considered problem instances with
an increasing number of requested pictures (from 1 to 5).
At the same time, we consider flexible plans with a hori-
zon length ranging from 150 to 550 seconds.

(2) Plan Flexibility. For each uncontrollable activity (i.e.,
GoingTo, MovingTo, TakingPicture, and Communicat-
ing), we set a minimal duration, but allow temporal flexi-
bility on the activity termination, namely, the end of each
activity has a tolerance ranging from 0 to 20 seconds.
This temporal interval represents the degree of temporal
flexibility/uncertainty that we introduce in the system.

(3) Plan Choices. We define from 1 to 4 visibility win-
dows that can be exploited to communicate picture con-
tent.

Notice that an increasing number of communication op-
portunities raises the complexity of the planning prob-
lem with a combinatorial effect. More in general, among
all the generated problem instances, the ones with higher
number of required pictures, higher temporal flexibility,

and higher number of visibility windows result as the
hardest ones. In these scenarios, we analyzed the per-
formance of our method considering model generation,
controller synthesis, and plan execution. We used OMPS
[14] as a CBTP Domain Independent Planner. The exper-
iments have been ran on a MacBook Pro endowed with a
Intel Core i5 (2.5GHz) processor and 4GB RAM. In what
follows the reported timings are in seconds.

1 wind 2 wind 3 wind 4 wind
#pic 1 bytes 8108 8108 8671 8960
H 150 nr. of states 29 29 33 35
#pic 2 bytes 10094 10370 10674 10936
H 250 nr. of states 39 39 43 45
#pic 3 bytes 13051 13326 13603 13892
H 350 nr. of states 53 53 57 59
#pic 4 bytes 14102 14378 14655 14943
H 450 nr. of states 59 63 65 69
#pic 5 bytes 18151 16402 16678 16967
H 550 nr. of states 69 70 73 75

Figure 4. Size of generated models.

Model Generation. As a preliminary step of our evalu-
ation, we considered the cost of generating the UPPAAL-
TIGA model associated with the planning task. The di-
mension of the generated model is given in terms of num-
ber of generated states and the file size in bytes. As we
can see in Fig. 4, for all the configurations, the generation
process is very fast, taking less than 200ms for each in-
stance, while the dimension of the generated model grad-
ually grows with respect to the dimension of the flexible
plan in terms of both plan length and number of visibility
windows. The temporal flexibility does not affect the di-
mension of the generated models. Thus, we can conclude
that model generation is not a critical step in our method.

0	

50	

100	

150	

200	

250	

300	

0	 flex	 10	 flex	 20	 flex	 0	 flex	 10	 flex	 20	 flex	 0	 flex	 10	 flex	 20	 flex	 0	 flex	 10	 flex	 20	 flex	

1	 Comm	 Window	 2	 Comm	 Windows	 3	 Comm	 Windows	 4	 	 Comm	 Windows	

Se
co
nd

s	

Planning	 Costs	

1	 Picture	 2	 Pictures	 3	 Pictures	

4	 Pictures	 5	 Pictures	

Figure 5. Plan generation cost varying the number of pictures,
visibility windows and temporal flexibility.

Controller Synthesis. The cost of controller synthesis
has been analyzed with respect to the cost of planning and
the cost of plan verification (i.e., dynamic controllability
check). The planning costs are collected in Fig. 5 where
we can observe how the planner performance decreases
with increasing communication windows and temporal
flexibility. In particular, while simple instances (i.e., 1
or 2 communication windows) are solved in few seconds,
the hardest ones require an additional planning effort (i.e.,
4 communication windows and more than 3 required pic-
tures). Actually, in this case some of the instances are not

solved due to memory limit (in Fig. 5 values are miss-
ing for the last problem instances with 4 and 5 requested
pictures).

0	

50	

100	

150	

200	

250	

300	

350	

400	

0	 flex	 10	 flex	 20	 flex	 0	 flex	 10	 flex	 20	 flex	 0	 flex	 10	 flex	 20	 flex	 0	 flex	 10	 flex	 20	 flex	

1	 Comm	 Window	 2	 Comm	 Windows	 3	 Comm	 Windows	 4	 	 Comm	 Windows	

Se
co
nd

s	

Verifica:on	 Costs	

1	 Picture	 2	 Pictures	 3	 Pictures	

4	 Pictures	 5	 Pictures	

Figure 6. Dynamic Controllability verification cost.

The results collected for dynamic controllability check-
ing (see Fig. 6) and strategies generation (see Fig. 7)
show a quite different behavior. Interestingly, for hard
problem instances flexible plan verification and strategy
generation are very fast (3 and 4 communication windows
in Fig. 6 and 7). While, with simpler instances (1 and 2
communication windows in Fig. 6 and 7), we do not ob-
serve the expected improvement in performance.

0	

500	

1000	

1500	

2000	

2500	

3000	

0	 flex	 10	 flex	 20	 flex	 0	 flex	 10	 flex	 20	 flex	 0	 flex	 10	 flex	 20	 flex	 0	 flex	 10	 flex	 20	 flex	

1	 Comm	 Window	 2	 Comm	 Windows	 3	 Comm	 Windows	 4	 	 Comm	 Windows	

Se
co
nd

s	

Controller	 Genera;on	 Costs	

1	 Picture	 2	 Pictures	 3	 Pictures	 4	 Pictures	 5	 Pictures	

Picture	 1	 -‐	 opt	 Picture	 2	 -‐	 opt	 Picture	 3	 -‐	 opt	 Picture	 4	 -‐	 opt	 Picture	 5	 -‐	 opt	

Figure 7. Strategies generation cost for both optimized and
non optimized cases.

This is mainly due to the fact that simple planning prob-
lem instances are associated with few constraints to be
considered, hence our planner can generate highly flex-
ible temporal plans. However, this flexibility provides a
wide search space to the verification tool reducing its per-
formance. In contrast, harder planning problems lead the
planner to produce flexible plans that are strongly con-
strained, i.e., with a lower degree of flexibility. This sim-
plifies the UPPAAL-TIGA task which can check and gen-
erate strategies more quickly (see again the values for 4
communication windows in Fig. 6 and 7). Indeed, this
is an expected behavior of the verification tool. In fact,
the more non-determinism, the harder it is for UPPAAL-
TIGA to generate strategies.

Plan Execution. As a final evaluation of the generated
plan controllers, we considered the time needed for plan
execution comparing optimized and non-optimized con-
trollers. Besides providing empirical indications of the
controllers effectiveness, our aim here is also to assess
whether the gain in the execution performance in the opti-
mized case can justify the generation cost overhead. The
execution has been simulated in UPPAAL-TIGA consid-
ering time average and variance of 20 runs and randomly
generating the temporal occurrences (within their dura-
tion intervals) of the uncontrollable events mentioned in
the plan. In Fig. 8, the collected results show a slight
enhancement in time efficiency in the optimized version,
but this gain seems negligible, in particular when com-
pared with the generation cost. This seems to suggest
that sub-optimal controllers provide a better trade-off be-
tween control synthesis and plan execution.

Discussion. The experimental results show the practi-
cal feasibility of the TGA approach in increasingly com-
plex instances of a real-world robotic case study. The col-
lected data show also an interesting relationship among
the complexities of the planning tasks, generated flexible
plans, and generated controllers. We observe that addi-
tional efforts during the planning phase usually reduces
the cost of plan verification and control synthesis and,
vice-versa, simpler planning problems are usually associ-
ated with more complex controller synthesis tasks. Fur-
thermore, more complex planning tasks should be associ-
ated with longer execution latencies, hence if we contrast
the controller generation time w.r.t. the planning horizon
length (assuming a comparable time available for plan-
ning), taking apart the hardest instances (5 pictures, and
3 or 4 pictures with less than 3 visibility windows), all
the other cases are treatable. Moreover, if we consider
plan complexity (visibility windows) and control synthe-
sis cost overhead with respect to the plan generation cost,
we observe that with few required pictures (e.g., 1 or 2
pictures), the control synthesis cost remains acceptable
for all the visibility windows, while, with additional vis-
ibility windows (e.g., 4 visibility windows), additional
pictures can be introduced. In conclusion, this empir-
ical analysis shows how the control synthesis overhead
remains very low in most of the considered instances.
In particular, the controller synthesis method is compati-
ble with the performance required by a fast short-horizon
planner.

7. CONCLUSION

The paper has presented the exploitation of a V&V tech-
nique to enrich the KEEN environment enabling the auto-
matic synthesis of controllers for flexible temporal plans.
While flexible temporal plan execution is usually ad-
dressed using temporal constraint networks methods and
algorithms to reduce the plan in a dispatchable form, this
new functionality proposes an alternative and novel tech-
nique based on the generation of a winning strategy with
TGAs. According to this approach, the plan execution
problem can be solved completely as a side effect of dy-
namic controllability checking; hence, all the plan exe-
cution decisions can be available before the plan execu-

1 Comm. Window
pic 0s flex 10s flex 20s flex
1 139±0 146±3 148±1
2 243±0 211±6 243±6
3 242±0 291±2 339±7
4 431±0 427±5 542±7
5 535±0 537±9 542±7

Optimal
1 98±0 118±7 132±4
2 173±0 194±11 229±16
3 237±0 286±9 332±12
4 428±0 428±6 432±7
5 512±0 527±14 531±9

(a)

2 Comm. Windows
pic 0s flex 10s flex 20s flex
1 131±0 142±7 141±3
2 198±0 232±13 238±11
3 238±0 313±5 336±9
4 421±0 415±10 437±8
5 507±0 527±8 536±12

Optimal
1 81±0 97±6 121±8
2 167±0 211±9 218±13
3 231±0 307±8 327±4
4 418±0 411±11 430±12
5 494±0 518±6 521±10

3 Comm. Windows
pic 0s flex 10s flex 20s flex
1 132±0 137±6 145±3
2 213±0 231±8 230±8
3 231±0 284±6 337±12
4 423±0 401±6 423±6
5 538±0 525±7 528±10

Optimal
1 78±0 87±4 108±3
2 145±0 176±17 201±7
3 227±0 279±4 331±14
4 420±0 397±12 421±7
5 528±0 511±8 507±9

4 Comm. Windows
pic 0s flex 10s flex 20s flex
1 116±0 139±7 138±8
2 157±0 177±11 184±12
3 230±0 211±9 224±11
4 409±0 403±6 N/A
5 529±0 N/A N/A

Optimal
1 66±0 94±6 99±12
2 142±0 153±11 167±9
3 223±0 209±4 218±15
4 404±0 401±8 N/A
5 511±0 N/A N/A

(b)

Figure 8. Plan controllers execution performance (average durations and variances).

tion with an acceptable overhead with respect to the plan-
ning activity. It is worth mentioning how the KEEN sys-
tem and the discussed method rely foremost on off-the-
shelf planning/verification tools such as the OMPS and
UPPAAL-TIGA tool-chain and on an encoding tool tai-
lored to translate the plan specification into TGAs.

As an ongoing work we are making the whole environ-
ment more robust and self contained. We plan also to
realize in the near future additional functionalities to fa-
cilitate the use of the environment to users of different
skills. Additionally we plan to enhance knowledge engi-
neering support to domain modeling functionalities.

Acknowledgment. Amedeo Cesta is partially sup-
ported by MIUR under the PRIN project 20089M932N
(funds 2008). Alberto Finzi is partially supported by EU
under the AIRobots project (Contract FP7.248669). An-
drea Orlandini has been supported by a grant within “Ac-
cordo di Programma Quadro CNR-Regione Lombardia:
Progetto 3”.

REFERENCES

1. G. Behrmann, A. Cougnard, A. David, E. Fleury,
K. Larsen, and D. Lime. UPPAAL-TIGA: Time for
playing games! In Proc. of CAV-07, number 4590 in
LNCS, pages 121–125. Springer, 2007.

2. S. Bensalem, L. de Silva, M. Gallien, F. Ingrand,
and R. Yan. “Rock Solid” Software: A Verifiable
and Correct-by-Construction Controller for Rover
and Spacecraft Functional Levels. In i-SAIRAS-10.
Proc. of the 10th Int. Symp. on Artificial Intelligence,
Robotics and Automation in Space, 2010.

3. G. Bernardi, A. Cesta, and G. Cortellessa. De-
ploying RAXEM2: Planning Improvements in Daily
Work Practice. In SPARK-09. Scheduling and Plan-
ning Applications woRKshop at ICAPS, Thessaloniki,
Greece, 2009.

4. F. Cassez, A. David, E. Fleury, K. G. Larsen, and
D. Lime. Efficient on-the-fly algorithms for the anal-
ysis of timed games. In CONCUR 2005, pages 66–80.
Springer-Verlag, 2005.

5. A. Ceballos, S. Bensalem, A. Cesta, L. de Silva,
S. Fratini, F. Ingrand, J. Ocon, A. Orlandini, F. Py,
K. Rajan, R. Rasconi, and M. van Winnendael. A
Goal-Oriented Autonomous Controller for Space Ex-
ploration. In ASTRA-11. 11th Symposium on Ad-
vanced Space Technologies in Robotics and Automa-
tion, 2011.

6. A. Cesta, G. Cortellessa, M. Denis, A. Donati,
S. Fratini, A. Oddi, N. Policella, E. Rabenau, and
J. Schulster. MEXAR2: AI Solves Mission Plan-
ner Problems. IEEE Intelligent Systems, 22(4):12–19,
2007.

7. A. Cesta, G. Cortellessa, S. Fratini, and A. Oddi. MR-
SPOCK: Steps in Developing an End-to-End Space
Application. Computational Intelligence, 27(1),
2011.

8. A. Cesta, A. Finzi, S. Fratini, and A. Orlandini. En-
riching apsi with validation capabilities: the keen
environment and its use in robotics. In ASTRA-11.
11th Symposium on Advanced Space Technologies in
Robotics and Automation, 2011.

9. A. Cesta, A. Finzi, S. Fratini, A. Orlandini, and
E. Tronci. Analyzing Flexible Timeline Plan. In
ECAI 2010. Proceedings of the 19th European Con-
ference on Artificial Intelligence, volume 215. IOS
Press, 2010.

10. A. Cesta, A. Finzi, S. Fratini, A. Orlandini, and
E. Tronci. Validation and Verification Issues in a
Timeline-Based Planning System. Knowledge Engi-
neering Review, 25(3):299–318, 2010.

11. A. Cesta, A. Finzi, S. Fratini, A. Orlandini, and
E. Tronci. Flexible plan verification: Feasibility re-
sults. Fundamenta Informaticae, 107:111–137, 2011.

12. A. Cesta and S. Fratini. The Timeline Representation
Framework as a Planning and Scheduling Software
Development Environment. In PlanSIG-08. Proc. of
the 27th Workshop of the UK Planning and Schedul-
ing Special Interest Group, Edinburgh, UK, Decem-
ber 11-12, 2008.

13. S. Fratini, A. Cesta, R. De Benidictis, A. Orlandini,
and R. Rasconi. APSI-based deliberation in Goal
Oriented Autonomous Controllers. In ASTRA-11.
11th Symposium on Advanced Space Technologies in
Robotics and Automation, 2011.

14. S. Fratini, F. Pecora, and A. Cesta. Unifying Plan-
ning and Scheduling as Timelines in a Component-
Based Perspective. Archives of Control Sciences,
18(2):231–271, 2008.

15. E. Gat. On Three-Layer Architectures. In Artificial
Intelligence and Mobile Robots. MIT Press, 1997.

16. K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in
a Nutshell. International Journal on Software Tools
for Technology Transfer, 1(1-2):134–152, 1997.

17. O. Maler, A. Pnueli, and J. Sifakis. On the Synthesis
of Discrete Controllers for Timed Systems. In STACS,
LNCS, pages 229–242. Springer, 1995.

18. P. H. Morris and N. Muscettola. Temporal Dynamic
Controllability Revisited. In Proc. of AAAI 2005,
pages 1193–1198, 2005.

19. P. H. Morris, N. Muscettola, and T. Vidal. Dynamic
Control of Plans With Temporal Uncertainty. In Proc.
of IJCAI 2001, pages 494–502, 2001.

20. N. Muscettola. HSTS: Integrating Planning and
Scheduling. In Zweben, M. and Fox, M.S., editor,
Intelligent Scheduling. Morgan Kauffmann, 1994.

21. A. Orlandini, A. Finzi, A. Cesta, and S. Fratini. Tga-
based controllers for flexible plan execution. In KI
2011: Advances in Artificial Intelligence, 34th An-
nual German Conference on AI., volume 7006 of
Lecture Notes in Computer Science, pages 233–245.
Springer, 2011.

22. F. Py, K. Rajan, and C. McGann. A Systematic Agent
Framework for Situated Autonomous Systems. In
AAMAS-10. Proc. of the 9th Int. Conf. on Autonomous
Agents and Multiagent Systems, 2010.

23. J. Shah and B. C. Williams. Fast Dynamic Schedul-
ing of Disjunctive Temporal Constraint Networks
through Incremental Compilation. In ICAPS-08,
pages 322–329, 2008.

24. T. Vidal and H. Fargier. Handling Contingency in
Temporal Constraint Networks: From Consistency To
Controllabilities. JETAI, 11(1):23–45, 1999.

