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Summary 
 
    Poly(ADP-ribose) polymerase (PARP) inhibitors are thought as 

breakthrough for cancer treatment in solid tumours such as breast cancer 

through their effects on PARP’s enzymatic activity. PARP enzymes are 

involved in the regulation of many cellular processes such as DNA repair, 

cell cycle progression and cell death.  

    Our previous findings showed that the hydrophilic PARP inhibitor PJ34 

enhances the sensitivity of p53 proficient MCF7 breast carcinoma cells to 

topotecan, a DNA Topoisomerase 1 (TOP 1) inhibitor. It is already known 

that poly(ADP-ribosyl)ated PARP-1 and PARP-2 counteract TOP 1 poisons 

through non covalent but specific interaction of poly(ADP-ribose) (PAR) 

with some TOP 1 sites which results in inhibition of DNA cleavage and 

stimulation of the religation reaction. Moreover, repair of DNA strand breaks 

induced by poisoned TOP 1 is slower in the presence of PARP inhibitors, 

leading to increased toxicity. 

    In a first section, we combined the classical TOP 1 poison camptothecin or 

its water-soluble derivative topotecan with PJ34 to investigate the 

potentiation of chemotherapeutic efficiency in MCF7 (p53
WT

), MDA-MB231 

(p53
mut

) breast carcinoma cells and SCC022 (p53
null

) skin squamous 

carcinoma cells.  

    We showed that, following TPT/PJ34 combined treatment, MCF7 cells 

exhibit apoptotic death while MDA-MB231 and SCC022 cells are more 

resistant to these agents. Specifically, in MCF7, (i) PJ34 in combination with 

TPT causes a G2/M cell cycle arrest followed by massive apoptosis; (ii) PJ34 

addition reverts TPT-dependent PARP-1 auto-modification and triggers 

caspase-dependent PARP-1 proteolysis; (iii) TPT, used as a single agent, 

stimulates p53 expression while in combination with PJ34 increases also the 

level of the pro-apoptotic isoform of p63 protein namely TAp63. 

   The identification of p63 proteins as new players involved in the cancer cell 

response to TPT/PJ34 is relevant for a better understanding of the PARP-1-

dependent signaling of DNA damage. Furthermore, our data indicate that, in 

response to TPT-PJ34 combined chemotherapy, a functional cooperation 

between p53 and TAp63 proteins may occur and be essential to trigger 

apoptotic cell death.  

    A yet unsolved problem is the discrimination between covalent and non-

covalent poly(ADP-ribosyl)ation (PARylation) of several nuclear proteins, 

including p53. Therefore, in a second section of the research, we got inside 

into this mechanism by using MCF7 breast carcinoma cells treated with 

topotecan, as we have demonstrated that they respond to DNA damage 

induced by topotecan treatment with p53 accumulation and PARP-1 auto-

modification.  



    By using in vitro analyses we were able to identify the phosphorylated 

form of p53 at serine 15 residue as a target/acceptor of the PAR synthesized 

in the nuclei of damaged cells.  

    Furthermore, by cells co-immunoprecipitation experiments, it was found 

that PAR linked to PARP-1 interacts with p53 and is crucial for its nuclear 

stabilization. 

    In a third section we focused on the role/influence of PAR either in 

p53/p63 physical and functional interaction. For this part of the project, we 

compared again MCF7 and SCC022 cells with a different status of p53 as 

they showed a different sensitivity to apoptosis induced by TPT-dependent 

DNA damage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Riassunto 
 
    Gli inibitori delle poli(ADP-ribosio) polimerasi (PARP) sono noti 

adiuvanti chemioterapici nel trattamento dei tumori solidi come il carcinoma 

mammario in base ai loro effetti sull’attività enzimatica delle PARP. Le 

PARP sono coinvolte nella regolazione di diversi processi cellulari quali il 

riparo del DNA, la progressione del ciclo cellulare e la morte cellulare. 

    Precedenti risultati hanno mostrato che l’inibitore di PARP idrofilico PJ34 

incrementa la sensibilità delle cellule di carcinoma mammario MCF7 p53
+/+

 

al topotecano, un inibitore della Topoisomerasi 1 (TOP 1). E' ormai noto che 

PARP-1 e PARP-2, in forma auto-modificata, contrastano l’effetto degli 

inibitori di TOP 1 mediante interazioni non covalenti ma specifiche del 

poli(ADP-ribosio) (PAR) con diversi siti di TOP 1, determinando l’inibizione 

del taglio al DNA e la stimolazione dell’attività di ricongiungimento ad opera 

di TOP 1. Pertanto, il riparo delle rotture sul DNA indotte dagli inibitori di  

TOP 1 è meno efficiente in presenza degli inibitori di PARP, che 

incrementano quindi la citotossicità dell’agente chemioterapico. 

    In una prima sezione, abbiamo combinato il classico veleno di TOP 1, la 

camptotecina, o il suo derivato idrosolubile topotecano al PJ34 al fine di 

valutare il potenziamento dell’efficienza chemioterapica in cellule di 

carcinoma mammario MCF7 (p53
WT

) e MDA-MB231 (p53
mut

) ed in cellule 

di carcinoma squamoso della cute SCC022 (p53
null

). 

    E’ stato osservato che, in seguito al trattamento combinato TPT-PJ34, le 

cellule MCF7 esibiscono morte apoptotica mentre le cellule MDA-MB231 e 

le SCC022 risultano più resistenti al trattamento con tali agenti. In 

particolare, in MCF7, (i) il PJ34 in combinazione con TPT causa un arresto 

del ciclo cellulare in fase G2/M, seguito da massiva apoptosi; (ii) l’aggiunta 

di PJ34 reverte l’auto-modificazione di PARP-1 dipendente da TPT e 

determina la proteolisi di PARP-1 caspasi-dipendente; (iii) il TPT, usato 

come agente singolo, stimola l’espressione di p53, mentre in combinazione 

col PJ34 incrementa i livelli di espressione della isoforma pro-apoptotica 

della proteina p63 denominata TAp63. 

    L’identificazione delle proteine p63 come nuovi effettori coinvolti nella 

risposta delle cellule tumorali al trattamento TPT-PJ34 è di rilevante 

importanza per la comprensione della segnalazione del danno al DNA ad 

opera di PARP-1. I nostri risultati indicano che, in risposta ad una 

chemioterapia combinata TPT-PJ34, un’interazione funzionale tra le proteine 

p53 e TAp63 potrebbe avvenire ed essere essenziale all’innesco del processo 

apoptotico.  

    Un problema ancora irrisolto è quello di discriminare tra poli(ADP-

ribosilazione) (PARilazione) covalente e non covalente di diverse proteine 

nucleari, tra cui p53. Pertanto, in una seconda sezione della ricerca, tale 



meccanismo è stato definito utilizzando cellule di carcinoma mammario 

MCF7 trattate con topotecano, avendo dimostrato che esse rispondono al 

danno al DNA ad opera del TPT con accumulo di p53 ed auto-modificazione 

di PARP-1.  

    Mediante saggi in vitro la forma fosforilata di p53 in serina 15 è stata 

identificata quale bersaglio/accettore del PAR sintetizzato nei nuclei delle 

cellule danneggiate. 

    Inoltre, mediante co-immunoprecipitazione in cellule si è osservato che il 

PAR legato a PARP-1 interagisce con p53 ed è cruciale per la sua 

stabilizzazione nucleare. 

    In una terza sezione, abbiamo infine valutato se il PAR è in grado di 

influenzare l’interazione fisica e funzionale tra p53 e p63. In questa parte del 

progetto, abbiamo nuovamente paragonato le cellule MCF7 ed SCC022 a 

diverso stato di p53, in quanto esse hanno mostrato una diversa sensibilità 

all’apoptosi indotta da un danno al DNA TPT-dipendente. 
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1. Introduction 
 
1.1 The role of Poly(ADP-ribose) polymerase (PARP) in the DNA damage 

signaling network 

 

    The structural integrity of the chromosomes is maintained by checkpoint 

pathways protecting cells and organisms from functional disturbances in 

DNA and cell cycling.  

    In higher eukaryotes, DNA strand breaks, either generated directly by 

ionizing radiation and oxidizing agents or arising as intermediates of repair 

processes, are sensed by an abundant, 113-kDa nuclear enzyme, Poly(ADP-

ribose) polymerase-1 (PARP-1). This is a member of a large family of 

enzymes with a homologous catalytic domain but with otherwise distinct 

structures, functions and localizations. PARP-1 binds with high affinity to 

DNA strand interruptions via 2 N-terminal zinc finger modules, with 

consequent activation of its catalytic C-terminal domain. Activated PARP-1 

uses β-NAD
+
 as a substrate to catalyze its auto-modification as a homodimer 

and, to a lesser extent, the modification of other nuclear proteins, with ADP-

ribose chains (Figure 1). Through recruitment of specific proteins at the site 

of damage and regulation of their activities, these polymers may either 

directly participate in the repair process or coordinate repair through 

chromatin unfolding, cell cycle progression and cell survival/cell death 

pathways. 

     Another nuclear member of the PARP family, PARP-2, is also able to 

catalyze DNA damage-dependent auto-modification and can homo- or 

hetero-dimerize with PARP-1. Although PARP-2 accounts for only 10%–

15% of the cellular poly(ADP-ribosyl)ation (PARylation) capacity under 

conditions of genotoxic stress, it can partially compensate for PARP-1 loss in 

knockout mice. Simultaneous deletion of both parp-1 and parp-2 genes is 

incompatible with development; embryos die at the onset of gastrulation.  

    In DNA-damaged cells, increased poly(ADP-ribose) (PAR) synthesis due 

to PARP-1 and PARP-2 activation is paralleled by an accelerated catabolism 

that reduces polymer half life from several hours to a few seconds. This 

allows rapid reversal of PARPs’ auto-modification and ensures that elevated 

PAR levels are present only transiently in the cell. An evolutionarily 

conserved enzyme, poly(ADP-ribose) glycohydrolase (PARG) is responsible 

for the specific degradation of polymers to monomeric ADP-ribose units 

(Malanga et al; 2005). It can be postulated that PARG endoglycosidic 

activity generates free PAR from PARylated protein, that could still interact 

with basic proteins, for example with constitutive components of chromatin, 

enzymes and transcription factors. Furthermore, an alternative PAR-

degradation pathway has been described resulting from the action of ADP 
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ribosylhydrolase 3 (ARH3) that regulates nuclear and cytoplasmic PAR 

levels (Mashimo et al; 2013).  

 

 

 
 

Figure 1. The poly(ADP-ribosyl)ation reaction. 

 

    PARP-1 is a protein comprised of three functional domains (Figure 2): 

-  the amino-terminal DNA-binding domain (DBD) contains the nuclear 

localization signal (NLS) and two zinc fingers that are important for the 

binding of PARP-1 to single-strand breaks (SSBs) and double-strand breaks 

(DSBs). A third zinc finger was recently described and found to be 

dispensable for DNA binding, but is important for coupling damage-induced 

changes in the DBD to alterations in PARP-1 catalytic activity; 

- in the central auto-modification domain, specific glutamate and lysine 

residues serve as PAR acceptors. This domain also comprises a BRCA1 

carboxy-terminal (BRCT) repeat motif, a protein-protein interaction domain 

that is found in other components of the DNA damage response pathway; 

- the C-terminal catalytic domain sequentially transfers ADP-ribose subunits 

from β-NAD
+
 to protein acceptors, thereby forming PAR (Rouleau et al; 

2010).  

    After attachment of the first ADP-ribose moiety, further units are rapidly 

added via α-gylcosidic bonds and branches can originate from the growing 

chain, depending on the synthesizing enzyme and interaction partner. In case 



Introduction 

3 
 

of PARP-1, the product PAR displays a tree-like structure, forming a highly 

negative charged cloud at the covalently modified protein, which impacts on 

functionality probably through electrostatic repulsion of affected enzymes 

from DNA.  

 

 

 
 

Figure 2. Structural and functional characteristics of PARP-1. 

 

    The main acceptor of PAR is PARP-1 itself, but also its interaction 

partners can be modified, as shown for several nuclear proteins in vitro and in 

vivo. In addition to covalent modification, proteins can interact with PAR in a 

non-covalent fashion. So far, three different motifs have been described: first, 

a sequence of basic and hydrophobic residues, the so called PAR-Binding-

Motif (PBM), which is present in many proteins involved in maintaining 

genomic stability, i.e., telomerase, p53, histones, base-excision-repair (BER) 

platform protein XRCC1, nucleotide-excision-repair (NER) protein XPA and 

many more. Next, it was reported that the macro-domain binds in an end- 

capping mode to the tip of a PAR chain. Both principles, covalent and non-

covalent interaction, can be present side-by-side within one protein. For 

example, the tumour suppressor p53 displays three covalent as well as three 

non-covalent binding sites. Interestingly, the interaction partner is one 

determinant that affects complexity of PAR, i.e., chain-length and branching. 
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Additionally, proteins differ in their ability to bind to different PAR 

structures. In summary, PARP-1 (respectively its product PAR) is able to 

change the surrounding environment by either excluding modified proteins 

from distinct sites, or by attracting factors containing PAR interaction-motifs 

(Beneke; 2012). 

    At the same time, the formation of PAR reduces the affinity of PARP-1 

and histones for DNA, providing a mechanism for removing PARP-1 from 

damaged sites and for the local modulation of chromatin compaction. The 

removal of PARP-1 provides access for repair proteins, but the enzyme 

remains in the vicinity of the breaks, recruiting other selected proteins into 

multiprotein complexes to accelerate DNA damage repair (Rouleau et al; 

2010). In contrast, when DNA damage exceeds cell repair capacity, PARP-1 

undergoes cleavage by caspases (3 and 7) into two fragments of 89 kDa and 

of 24 kDa, thereby avoiding futile cycling of PAR that would otherwise 

deplete the cell of β-NAD
+ 

required for the onset of apoptosis (Scovassi et al; 

1999). 

    PARP-1 and PARP-2 play a dual role as damage sensors and signal 

transducers to down-stream effectors (Figure 3).  

 

 

 
 

Figure 3. Role of PARP-1 in DNA repair. 

 

Both proteins share several common nuclear binding partners and have been 

described as contributors to base excision repair (BER). 
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Infact, PARP-1 interacts with X-ray repair cross-complementing 1 (XRCC1), 

DNA polymerase β and DNA ligase III, which are involved in BER 

(Schreiber et al; 2002). 

    PARP-1 is also involved in DSBs repair process. Eukaryotes have two 

pathways for repairing DSBs: homologous recombination (HR) and non 

homologous end joining (NHEJ). The relative contribution of these two 

DSBs repair pathways seems to differ depending on the cell cycle phase: HR 

acts mainly in the S and G2 phases and NHEJ mostly in the G1 phase 

(Khanna et al; 2001).    

    In regard HR, PARP-1 interacts with both ATR and ATM kinases 

suggesting another susceptible pathway for PARP inhibitors induced 

apoptosis (Haince et al; 2007). Cell cycle checkpoint activation and growth 

arrest in response to DNA damage rely on the ATM/ATR kinases and their 

downstream targets like p53 (Yoon et al; 2012). p53 activates p21WAF 

which binds PARP-1 during base excision repair (Cazzalini et al; 2010). 

Indeed, PARP-1 is reported to interact with and poly(ADP-ribosyl)ate the 

DNA-PK subunit Ku, an important factor of the alternative pathway NHEJ 

(Wang et al; 2006).  

 

 

1.2 Evolution of PARP inhibitors: from concept to the clinic 

     

    The inhibition of PARP has two potential therapeutic applications for drug 

discovery. The first application is as a chemopotentiator, since many 

anticancer therapeutics target DNA damage as a mechanism to destroy 

rapidly dividing cancer cells. Thus, the PARP mediated repair pathway is one 

major mechanism for DNA repair by many cancerous cell types leading to 

drug resistance and continued tumour growth. Hence, PARP inhibition in 

combination with DNA damaging chemotherapeutics or radiation would 

compromise the cancer cell DNA repair mechanisms, resulting in genomic 

dysfunction and cell death.  

    The second, a more recent discovery, is that PARP can be used as a stand-

alone therapy for tumour types that are already deficient in certain types of 

DNA repair mechanisms. Breast cancer associated genes BRCA1 and 

BRCA2 have long been characterized as tumour suppressor genes that play 

an integral role in the repair of DSBs in DNA through HR process. The 

increase of DSBs in the presence of HR deficient cell types leads to 

chromosomal aberrations and instability of the genome resulting in cell death 

(synthetic lethality). This research supported the hypothesis that PARP 

inhibitors could be used as single agents in cancer cell types with deficient 

DNA repair mechanisms (Ferraris; 2010).  
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    The potential of PARP inhibitors to increase the efficacy of chemotherapy 

has led to the development of a wide range of specific inhibitors-

quinazolinone derivatives– like NU1025 and PJ34, which display increased 

potency compared to the prototype 3-aminobenzamide (3-ABA) (Sandhu et 

al; 2010).  

    Certain PARP inhibitors including PJ34 induce a G2/M arrest when used 

in conjunction with methylating agents (Tentori et al; 2005) cisplatin 

(Sandhu et al; 2010) and Topoisomerase 1 poisons such as camptothecin 

(CPT) or its watersoluble derivative topotecan (TPT) (Smith et al; 2005), 

highlighting the existence of potentially different outcomes from PARP 

inhibition whose molecular mechanisms have not yet been conclusively 

determined.  

 

1.3  DNA Topoisomerase 1 (TOP 1) inhibitors as chemotherapic agents 

 

    The compact and supercoiled nature of the DNA double helix requires 

topological modification during important cellular processes such as 

transcription, replication and repair. This modification is conducted by DNA 

Topoisomerases and involves transient cleavage and religation of the double-

stranded DNA molecule. Topoisomerases are enzymes that cleave one or 

both of the sugar-phosphate backbones of double-stranded DNA, without 

altering its chemical composition (hence the term ‘isomerase’). Type 1 

Topoisomerases (TOP 1) cut a single strand of DNA to allow relaxation of 

torsional stresses before re-annealing. This mode of catalysis involves an 

intermediate known as the cleavage complex, which comprises the 

Topoisomerase enzyme attached to the cleaved DNA by a covalent 

phosphotyrosyl bond (Gilbert et al; 2012). 

    Camptothecin (CPT), the prototype of TOP 1 inhibitors, and its derivatives 

such as the clinically relevant drug topotecan stabilize the cleavage complex 

in the abortive complex, and thus prevents religation step of the enzyme 

catalytic cycle, generating an accumulation of SSBs (Figure 4). The 

cytotoxic mechanism of camptothecins is largely S-phase-dependent, 

indicating that is triggered by a collision between replication fork and the 

abortive complex. This may result in blockage of fork movement, and finally, 

the formation of DNA DSBs (Tomicic et al; 2005). 

    The camptothecin derivative Topotecan (TPT) is approved for the 

treatment of ovarian cancer, non small-cell lung cancer and under clinical 

investigation for a number of advanced solid tumours and haematological 

malignancies (Pommier et al; 2006). 

    For the reason that HR is S-phase-dependent, TOP 1 poisons-induced 

replication-dependent DSBs are usually repaired by the HR pathway.  
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It is known that PARP inhibitors increase the cytotoxic effects of TPT. 

Furthermore, the molecular mechanism underlying tumour 

chemosensitization to TOP 1 poisons by PARP inhibitors has been in part 

clarified by recent findings showing that PARP-1 and -2, in their auto-

modified form, counteract camptothecin action facilitating resealing of DNA 

strand breaks. This occurs through non covalent yet specific interaction of 

PAR with particular TOP 1 sites which results in inhibition of DNA cleavage 

and stimulation of the religation reaction (Malanga et al; 2004).  

 

 

 

 
 

Figure 4. Topoisomerase 1 catalitic cycle. 

 

    In this regard, it has been previously demonstrated that PJ34 can positively 

or negatively modulate p53 and its target p21WAF depending of the cell 

genetic background (Cimmino et al; 2007) or DNA damage stimulus, i.e., 

cisplatin (Gambi et al; 2008) or TPT (D’Onofrio et al; 2011). Indeed, 

regulating p21WAF expression is one model whereby PARP inhibitors, 

following the activation of different checkpoint pathways, can cause cell 

cycle arrest. It has recently been reported that in breast carcinoma MCF7 

cells, PJ34 causes a p21WAF-dependent mitotic arrest and that neither 

PARP-1 nor p53 is required for this mechanism (Madison et al; 2011). 

Furthermore, in triple negative breast cancer cell lines, PJ34 synergizes with 

cisplatin by reducing the levels of ΔNp63α with a concurrent increase of 

p21WAF (Hastak et al; 2010).     
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    On the light of all these evidences, the use of chemical inhibitors of PARP 

in combination with TOP 1 inhibitors CPT or TPT appears to be a promising 

approach to enhance the antitumour activity of these compounds. 

 

 

1.4 The p53/p63 superfamily 

 

    A factor supposed to be involved in determining the sensitivity of cells to 

TOP 1 inhibitor is p53. p53 plays a key role in transduction pathways 

induced by several types of cellular stress by regulating the expression of 

gene products that can either lead to cell cycle arrest, thereby preventing the 

replication of DNA before the damage is repaired, or cause cell death by 

apoptosis (Lane et al; 2003). p53 is a target of a plethora of post-translational 

modifications (i.e. phosphorylation, acetylation, ubiquitination, methylation) 

and these most likely regulate or integrate its sub-cellular distribution, 

function and interaction partners (Dai et al; 2010). Moreover, it has been 

reported that PARP-1 is a positive regulator of p53 (Wieler et al; 2003) and 

that PARP inhibition enhances p53-dependent and p53-independent DNA 

damage responses induced by DNA damaging agents (Nguyen et al; 2011). 

    Several nuclear proteins including p53 are PARylated by non-covalent 

interaction with PAR chain linked to PARP-1 (Malanga et al; 2005). 

Previous results have shown that p53 protein is able to strongly interact with 

PAR by means of 3 polymer binding motifs (PBMs) (Gagnè et al; 2008). 

However, it has been reported that in response to DNA damage, a covalent 

p53 PARylation is able to promote accumulation of p53 in the nucleus, where 

it exerts its transactivation function (Kanai et al; 2007). On the other hand, it 

has been quantified PAR binding affinity (10
-7

-10
-9

 M range) of several 

proteins (i.e. p53, XPA, DEK ) as a function of chain length (Fahrer et al; 

2010). They have shown that among them only p53 is able to interact with 

both short and long PAR chains with equivalent affinity. 

    ΔNp63α is a member of the p53 protein family highly expressed in 

squamous cell carcinoma and invasive ductal breast carcinoma (Di Costanzo 

et al; 2012). ΔNp63α and p53 have been shown to inversely regulate target 

genes such as p21WAF in the context of DNA damage (Schavolt et al; 2007). 

Owing to the presence of two promoters, the p63 gene encodes two major 

classes of proteins: those containing a transactivating (TA) domain 

homologous to the one present in p53 (i.e. TAp63) and those lacking it (i.e. 

ΔNp63) (Di Costanzo et al; 2011). In addition, alternate splicing at the 

carboxy-terminal (C-terminal) generates at least three p63 variants (α, β and 

γ) in each class (Figure 5). The TAp63γ isoform resembles most p53, 

whereas the α isoforms include a conserved protein–protein interaction 

domain named Sterile Alpha Motif (SAM). TAp63 proteins mimic p53 
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function including transactivating many p53 target genes and inducing 

apoptosis, whereas the ΔNp63α protein, has been shown to repress p53-target 

genes acting as an oncogene (Yang et al; 1998). 

 

 

 

 

 

Figure 5. Gene architecture of p53 family. 

 

Their structural similarities allow for both physical and functional 

interactions among the three p53 family members. The highest degree of 

homology among them is observed within the DBD (>60% amino-acid 

identity between p53 and both p63 and p73, and ~ 85% amino-acid identity 

between p63 and p73), including conservation of all essential DNA contact 

residues (De Laurenzi et al; 2000). 

    This finding implied that all three genes might regulate a shared subset or 

transcriptional target genes. Secondly, p53 protein(s) are required to form 

tetrameric complexes in order to function as a transactivator, and the 

oligomerization domain shared by all the three family members is highly 

homologous. The formation of hetero-tetramers composed of multiple p53 

family members might therefore represent another means of functional 

interaction. 
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    Indeed, cotransfection studies showed that p63 and p73 co-associate when 

ectopically overexpressed, while p53 binds more weakly to either p63 and 

p73 (Chan et al; 2004). Interestingly, residues implicated in the PAR binding 

domains identified in the p53 DBD (Malanga et al; 1998) are also conserved 

in p63 and p73. 

     

 

1.5 Scientific hypothesis and aim of the work 
 

    From the mean of such evidences, we have investigated the effect of PJ34 

used as a single agent or in association with CPT or TPT in the DNA damage 

response of mammary breast cancer cells (MCF7
p53wt

 and                      

MDA-MB231
p53mut

) and skin squamous carcinoma cells (SCC022
p53null

) 

showing an active involvement of p53 and p63 in the cellular response to 

these agents.  

    We postulate that the sensitivity to combined treatments is mediated by 

sustained DNA damage/inefficient DNA repair triggering p53 and TAp63-

mediated apoptosis. 

    In a second section of our study, we have used different experimental 

approaches to analyze p53 PARylation either in living cells, in nuclei and in 

vitro with the aim to discriminate between its covalent and/or non-covalent 

modification. As a model system, we used MCF7 cells subjected to TPT ± 

PJ34 treatments to perform PARP-1 and p53 co-immunoprecipitation 

experiments. In isolated nuclei, we immunodetected the PAR induced by 

TPT-dependent DNA damage and its target protein(s). Furthermore, for in 

vitro enzymatic assays we used human recombinant PARP-1 enzymes and 

p53 protein while for PAR-EMSA purified PAR. 

    In a third section, we focused on the role/influence of PAR either in 

p53/p63 physical and functional interaction. For this part of the project, we 

compared again MCF7 and SCC022 cells with a different status of p53 as 

they showed a different sensitivity to apoptosis induced by TPT-dependent 

DNA damage. That for we need to transfect cells and work with ectopically 

expressed p53 and/or p63 for immunological analyses. 
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2. Materials and Methods  

 
2.1 Drugs, media, antibodies and chemicals 

 

    CPT and TPT were from Glaxo Smith-Kline, PJ34 [N-(6-oxo-5,6,-

dihydrophenanthridin-2-yl)-(N,N-dimethylamino) Acetamide] was from 

Alexis Biochemicals. The cocktail of protease inhibitors was from ROCHE-

Diagnostic. 

    MCF7, MDA-MB231 and SCC022 cells were from CLS Cell Lines 

Service, Dulbecco’s modified Eagle’s medium (DMEM), heat-inactivated 

foetal bovine serum (FBS), Roswell Park Memorial Institute (RPMI) medium 

and Lipofectamine 2000 were from Invitrogen; penicillin, streptomycin and 

L-glutamine were from LONZA.  

    6-biotin-17-NAD (Bio-NAD) and anti-PAR mouse monoclonal antibody 

(4335) were supplied by TREVIGEN. 

        PVDF (poly-vinylidene-fluoride) and nitrocellulose membranes were 

from MILLIPORE S.p.A. Not-fat-milk power was from EUROCLONE.  

    Anti-DNA TOP 1 (Scl-70) human antibody was from Topogen. 

Recombinant p53 (RRM2B), anti-PARP-1 (C2-10), anti-p63 (4A4), anti-p53 

(DO-1), anti-p21WAF (F-5), anti-cyclin B1 (V152), anti-AIF (E-1), anti- 

GAPDH (6C5) mouse monoclonal antibodies and anti-p53 (FL-393), anti-

actin (H-196) rabbit polyclonal antibodies and protein A/G PLUS Agarose 

were from Santa-Cruz Biotechnology. Anti-phospho-p53(ser15) (9284), anti-

PARP-1 (9542), anti-γH2AX (ser139, 2577), anti-Bax (D2E11) rabbit 

polyclonal antibodies and anti-biotin (D5A7) rabbit monoclonal antibody 

were from Cell Signaling. Anti-MDM2 (Ab-2) mouse monoclonal antibody 

was from Oncogene Research Products. Anti-PAR (10H) mouse monoclonal 

antibody, PARP-1 human recombinant wild-type and [E
988

K] mutated were 

from Alexis Biochemicals. Goat anti-mouse and goat anti-rabbit IgG HRP-

conjugated antibodies were from Sigma–Aldrich. 

    All other chemicals analytical grade were of the highest quality 

commercially available. 

 

 

2.2 Cell cultures and transfection 

 

    Breast cancer-derived MCF7
p53wt

 and MDA-MB231
p53mut

 cells were 

maintained in Dulbecco’s modified Eagle’s medium (DMEM) containing 

10% (v/v) heat-inactivated foetal bovine serum (FBS), while squamous 

SCC022
p53 null 

carcinoma cells were maintained in Roswell Park Memorial 

Institute (RPMI) medium containing 10% (v/v) FBS, 100 U/ml penicillin, 

100 g/ml streptomycin, 5 mM L-glutamine and incubated at 37 °C in a 
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humidified atmosphere, plus 5% CO2. Cell transfection was performed using 

Lipofectamine 2000 (Invitrogen) following the manufacturers’ protocols. 

 

 

2.3 Cell treatments 

 

    Cells were seeded at 1 x 10
6
 cells in 10 ml and 24 h after seeding, treated 

with 1 µM CPT (stock solution 1 mM DMSO) or 5 µM TPT, 10x IC50  

(Devy et al; 2004), 10 µM or 20 µM PJ34 alone and in combination for 48 h 

in fresh medium. Culture medium was removed and, after PBS wash, cells 

were recovered 6 x 10
6
 cells/ml in 50 mM Tris–HCl pH 7.5, 150 mM NaCl, 5 

mM EDTA, 1% NP40 (Lysis Buffer) plus 2 mM PMSF and 1:25 dilution of 

protease inhibitors cocktail solution. After 40 min of incubation on ice, 

cellular suspensions were scraped and centrifuged at 16,000 x g for 20 min at 

4 °C.                                                                                                                                             

   Cell growth inhibition was assessed by cell counting at different time points 

(0–24–48h) or by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium 

bromide (MTT) assay using 1 x 10
4
 48 h treated cells. The experiments were 

performed in triplicate. 

 

 

2.4 Cytofluorimetric analysis 

 

    Control and treated cells were fixed in 70% ethanol and stored at -20 °C 

until analysis. After a washing in PBS w/o Ca
2+

/Mg
2+

, cells were stained in   

2 ml of propidium iodide (PI) staining solution [50 µg/ml of PI, 1 mg/ml of 

RNAse A in PBS w/o Ca
2+

/Mg
2+

, pH 7.4] overnight at 4 °C and DNA flow 

cytometry was performed in duplicate by a FACScan flow cytometer (Becton 

Dickinson Franklin Lakes) coupled with a CICERO work station 

(Cytomation). Cell cycle analysis was performed by the ModFit LT software 

(Verity Software House Inc. Topsham). FL2 area versus FL2 width gating 

was done to exclude doublets from the G2/M region. For each sample 15,000 

events were stored in list mode file. 

 

 

2.5 Isolation of nuclear and post-nuclear fractions 

 

    To isolate sub-cellular fractions, 3 x 10
6
 cells were suspended in 200 µl of 

30 mM Tris–HCl pH 7.5 buffer, containing, 1.5 mM MgCl2, 10 mM KCl,  

1% (v/v) Triton X-100, 20% glycerol, 2 mM PMSF and 1:25 dilution of 

protease inhibitors cocktail solution. After 30 min of incubation on ice, 

cellular suspensions were centrifuged at 960 x g for 90 sec at 4 °C and the 
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nuclear fractions recovered in the pellet. The supernatant represents the 

cytoplasmic fraction.  

    Nuclear fractions were resuspended in 50 µl of 20 mM HEPES pH 7.9 

buffer, containing 20 mM KCl, 0.2 mM EDTA, 1.5 mM MgCl2, 25% 

glycerol and the protease inhibitors cocktail solution. Protein concentration 

was determined using the Bradford protein assay reagent (BIO-RAD), with 

bovine serum albumin as a standard. 

 

 

2.6 Western blot analyses 

 

    Aliquots of 10 µl of cellular proteins (approx 50–100 µg) were separated 

by 10% SDS-PAGE and transferred onto a PVDF membrane using an 

electroblotting apparatus (BIO-RAD). The membrane was subjected to 

immunodetection after blocking with 5% non-fat milk in TBST 1 h, with 

anti-PARP-1 (C2-10; diluted 1:2,500), anti-TOP 1 (Scl-70; diluted 1:1,000), 

anti-PAR (10H; diluted 1:500), anti-p63 (4A4; diluted 1:200), anti-p53 (DO-

1; diluted 1:5,000), anti-p21WAF (F-5; diluted 1:1,000), anti-MDM2 (Ab-2; 

diluted 1:1,000), anti-cyclin B1 (V152; diluted 1:1,000), anti-γH2AX (2577; 

diluted 1:1,000), anti-Bax (D2E11; diluted 1:1,000), anti-AIF (E1; diluted 

1:2,000), anti-GAPDH (6C5; diluted 1:5,000), anti-actin (H-196; diluted 

1:2,000) for 2 h at room temperature or overnight at 4 °C. 

    As secondary antibodies goat-anti-mouse or goat-anti-rabbit IgG HRP-

conjugate (diluted 1:5,000–1:10,000) in 3% (w/v) non-fat  milk in TBST 

were used. Peroxidase activity was detected using the Luminol reagent Lite 

Ablot TURBO (Euroclone). Images were acquired using the ChemiDoc 

(BIO-RAD) and the Arbitrary Densitometric Units normalised on those of the 

GAPDH loading control. 

 

 

2.7 PARylation in nuclear fraction and on recombinant proteins 

 

    Isolated nuclei of MCF7 cells untreated or 1 h treated with TPT 10 µM 

were resuspended at 10 mg/ml of proteins in 50 mM Tris-HCl pH 8, 

containing 10 mM MgCl2, 1 mM DTT, 0.01% digitonin, 0.1 mM PMSF and 

a 1:25 dilution of the cocktail of protease inhibitors. Then, were incubated for 

30 min at 30 °C with 50 µM NAD plus 12.5 µM Bio-NAD. 

    Alternatively, PARP-1 human recombinant wild-type (200 ng) and [E
988

K] 

mutated (1 µg) in 50 mM Tris-HCl pH 8, containing 10 mM MgCl2, 1 mM 

DTT and after addition of DNase I activated DNA (600 ng) were incubated 

for 30 min at 30 °C with 1 mM NAD plus 12.5 µM Bio-NAD in the presence 

of 5 µg of recombinant p53. 
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    PARylation reaction was stopped by TCA addition (20% final 

concentration) and after 15 min standing on ice, the samples were collected 

by centrifugation at 1,200 x g for 15 min, washed twice with 5% TCA and 

three times with ethanol.  

    PARylated proteins were separated by 10% SDS-PAGE, transferred onto a 

PVDF membrane using an electroblotting apparatus (BIO-RAD) and 

subjected to immunodetection after blocking with 5% non-fat milk in TBST 

for 1 hr RT. The following antibodies were used: anti-PARP-1 (C2-10; 

diluted 1:2,500); anti-p53 (DO-1; diluted 1:5,000); anti-phospho-p53(ser15) 

(9284; diluted 1:1,000), anti-actin (H-196; diluted 1:2,000), anti-biotin 

(D5A7; diluted 1:1,000). All antibodies were diluted in 3% non-fat milk in 

TBST and incubations were for 2 hrs at room temperature or over-night at 

4°C. After washing x 3 with TBST, membranes were incubated with 

peroxidase-conjugated mouse- or goat-anti-rabbit IgG, (diluted 1:5,000-

1:10,000) in 3% (w/v) non-fat milk in TBST, for 1 h at room temperature. 

Finally, membranes were washed three times in TBST and peroxidase 

activity was detected using the Luminol reagent Lite Ablot TURBO 

(Euroclone). Images were acquired using the ChemiDoc (BIO-RAD). 

 

 

2.8 PAR electrophoretic mobility shift assay 

  

    Varying amounts of recombinant p53 were incubated in an appropriate 

volume of 10 mM Tris-HCl pH 7.4, 1 mM EDTA for 10 min at 25 °C before 

purified PAR was added and complex formation was allowed to proceed for 

20 min at 25 °C to reach equilibrium. Subsequently, the reaction mixture was 

supplemented with 10x loading dye (0,25% Xylen Cyanol and Bromo phenol 

Blue, 30% glycerol) resulting in a final volume of 22 μl. 

    The samples were subjected to a native 5% PAGE for 1.5 h at 160 V and 

electroblotted onto a nitrocellulose membrane at 260 mA for 1.5 h, followed 

by a heat-fixation at 90 °C for 1 h. The membrane was then subjected to 

immunodetection after blocking with 5% non-fat milk in TBST 1 h, with 

anti-p53 (DO-1; diluted 1:5,000) and anti-PAR (10H; diluted 1:1,000) 

antibodies and as secondary antibody goat anti-mouse HRP conjugate in 3% 

non-fat milk in TBST for 1 h at room temperature. Finally, membranes were 

washed three times in TBST and peroxidase activity was detected using the 

Luminol reagent Lite Ablot TURBO (Euroclone). Images were acquired 

using the ChemiDoc (BIO-RAD). 
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2.9 Co-Immunoprecipitation 

 

    Samples of MCF-7 cells (1-2 x 10
6
) untreated or 48 h treated with TPT   

2.5 µM, where resuspended in 50 mM Tris-HCl buffer pH 7.5, containing 

150 mM NaCl, 5 mM EDTA, 0.5% NP40, 10% glycerol, 1 mM PMSF and 

1:25 dilution of the cocktail of protease inhibitors. Protein A/G plus Agarose 

was equilibrated in the same buffer by 3 washes and centrifugations at 3,000 

rpm 5 min at 4 °C: 40 µl aliquots were incubated with 1 mg of protein extract 

in 1 ml final volume, by buffer addition. Anti-p53 (DO-1), anti PARP-1 (C2-

10) or anti-PAR (4335) monoclonal antibodies were added (3 µl) and the 

suspensions were incubated overnight at 4 °C under constant agitation. 

   Co-immunoprecipitated samples were washed 3 times with the same buffer, 

mixed 1:1 with 4x Laemmli Buffer and, together with total protein extracts 

(30 μg), were subjected to 10% SDS PAGE, transferred onto a PVDF 

membrane using an electroblotting apparatus (BIO-RAD) and subjected to 

immunodetection, after blocking with 5% non-fat milk in TBST for 1 h, with 

anti-PARP-1 (9542; diluted 1:1,000) and anti-p53 (FL-393; diluted 1:5,000) 

antibodies.
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3. Results Section 1: p63 involvement 

 
3.1. Effect of PJ34 on CPT/TPT-induced growth inhibition and cell cycle 

distribution in human carcinoma cells 

 

    Preliminary experiments, in breast carcinoma MCF7
p53wt

 cells, showed that   

1 µM CPT inhibits cell growth similarly to 5 µM TPT. To potentiate the 

CPT/TPT cytostatic effect, PJ34 concentrations were used in a sub-lethal 

range (10–20 µM). A 48 h of exposure, corresponding approximately to two 

rounds of MCF7
p53wt

 cell replication, was used according to the 

administration procedure during anticancer therapy. As shown in Figure 6, at 

24 h CPT/TPT treatment has a cytostatic effect, while PJ34 induces growth 

retardation in a dose-dependent way, whereupon cells start to recover but the 

rate of recovery was significantly affected by CPT-PJ34 combined treatment. 
 

 

MCF7 

 

 
 

 

Figure 6. Dose-dependent response of MCF7 cells treated with CPT/TPT 

and PJ34 as single agents or in combination. 
MCF7 were treated for 24-48 h with CPT 1 µM or TPT 5 µM and 10 or 20 µM PJ34 

alone or in combination: cell growth was measured by cell counting at different time 

points. Data refer to at least three experiments giving similar results.  
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     We next investigated the impact of CPT on MDA-MB231 and SCC022 

cell survival. MDA-MB231 express a mutant p53 (p53R280K) while 

SCC022 cells are p53 null. Cells were plated, treated with CPT 1 µM for 48 h 

and subjected to the MTT assay to compare viability of treated and untreated 

cells. As shown in Figure 7, CPT significantly reduces cell viability of all 

cell lines tested (around 50% of control). Moreover, treatment with PJ34 

alone affects MCF7 and MDA-MB231 cell viability, in a dose-dependent 

way, whereas SCC022 cells remain almost unaffected. Interestingly, 

compared with single drug treatments, combination of PJ34 with CPT results 

in a significant enhancement of cytotoxicity in MCF7 cells (37–33% of cell 

survival) while in MDA-MB231 and SCC022 cells addition of PJ34 to CPT 

has a lower impact on cell survival. Each plot represents the media of 

triplicates from three independent experiments ± S.E. Similar results are 

observed when PJ34 is added to TPT (data not shown). 
 

 

MTT ASSAY 

 

 
 

 

Figure 7. Cell growth inhibition in MCF7, MDA-MB231 and SCC022 

cells treated with CPT and PJ34 as single agents or in combination. 
Cells (10

4
 cells/plate) MCF7, MDA-MB231 and SCC022 48 h treated were used for 

determination of cell growth inhibition by MTT assay. Each plot represents the 

media of triplicates from three independent experiments ± S.E. 
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     We have previously reported that TPT at concentrations higher than 1 µM 

promptly arrested the cells in S phase, while concentrations equal or lower 

than 1 µM cause a G2/M arrest (D’Onofrio et al; 2011). To gain insight into 

the molecular mechanism of TPT-PJ34 interactive cytotoxicity, we analysed 

the cell cycle distribution of MCF7 cells treated with 10 or 20 µM PJ34 alone 

or in combination with 1 µM TPT. As shown in Figure 8, after 48 h 

treatment, 1 µM TPT as well as 10 or 20 µM PJ34 induce accumulation of 

cells in G2/M phase and the cell cycle distribution is less affected by 

treatment with PJ34 (10 or 20 µM) than TPT used as single agents. The 

difference in G2% of cells between PJ34 10 or 20 µM is considered not 

significant as sublethal doses. Furthermore, addition of 10 or 20 µM PJ34 to 

1 µM TPT causes a significant increase of G2/M cells, while S-phase cells 

are drastically reduced. Figure 8 (table) also shows that single treatments 

cause an increase of cells with a sub-G1 DNA content (from 6 to 19%), 

probably due to induction of apoptotic cell death. Remarkably, an increase up 

to 55% of sub-G1 cells is observed with TPT 1 µM + PJ34 20 µM combined 

treatment, showing a 2x potentiation factor of PJ34 on TPT cytotoxicity. 

 

 
 

 
 

 

Figure 8. Cell cycle analysis of MCF7 cells subjected to TPT and PJ34 

single and combined treatments.  
MCF7 cells were treated 48 h with TPT 1 µM and 10 or 20 µM PJ34 alone or in 

combination. Control and treated cells (1 x 10
6
) were fixed in 70% ethanol and used 

for flow cytometric analysis (see Section 2). Determination of DNA content after PI 

staining is shown and cells in G1, S and G2 phase are indicated as percentage 

(excluded sub-G1 cells). The table reports sub-G1 cells as the percentage of the 

entire population of cells. Data refer to one of three experiments giving similar 

results. 
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3.2. Analysis of CPT- or TPT-dependent TOP 1 inactivation 

 

    It is already known that CPT and TPT abolish the religation activity of 

TOP 1 generating an abortive complex to which the enzyme is covalently 

linked (Pommier et al; 2006). Therefore, we determined the efficacy of   

TOP 1 inhibitors by looking at their capacity of trapping the enzyme in the 

abortive complex. This was detected, by looking at the disappearance of the 

immunoreactive band of the TOP 1 soluble fraction by western blot analysis. 

After 48 h of treatment, both 1 µM CPT and 5 µM TPT are able to block, 

almost completely, the TOP 1 enzyme in the abortive complex, in all cell 

lines tested (Figure 9). According to previous findings (D’Onofrio et al; 

2011), PJ34 does not affect TOP 1 enzyme trapping when used in 

combination with CPT or TPT. 

 

 

 
 

 

Figure 9. Western blot analysis of TOP 1 soluble fraction in carcinoma 

cells untreated or 48 h treated with the indicated drugs.  
Untreated and treated whole cell extracts (50–100 µg of proteins) were subjected to 

10% SDS-PAGE, electroblotted on PVDF and incubated with the anti-TOP 1 

antibody. Immunodetection in MCF7 (A), MDA-MB231 (B) and SCC022 (C) cells 

is shown. 0.1% DMSO treated cells were analysed as CPT internal control. GAPDH 

was used as loading control. 
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3.3. Analysis of PAR synthesis in carcinoma cells after treatment with   

TPT ± PJ34 

 

    PJ34 efficacy as PARP inhibitor was assessed by looking at its effect on 

PARP-1 automodification. Proliferating MCF7 cells were exposed to the 

drugs and samples were then analysed by SDS-PAGE. As shown in Figure 

10, the identity of the PAR modified protein was detected by western blotting 

using a PARP-1 antibody showing a mobility shift of the immunoreactive 

band at the top of the gel (Figure 10A, lane 4). Such a behaviour indicates 

auto-modification of PARP-1 by long and branched ADP-ribose polymers 

(up to 200 residues in chain) on several sites (up to 25) of the auto-

modification domain. This process gives raise to higher molecular weight 

PARP-1 forms that do not enter the polyacrylamide gel matrix. Interestingly, 

TPT–PJ34 co-treatment in MCF7 cells induced apoptosis as demonstrated by 

the appearance of the 89 kDa fragment generated by the caspase-dependent 

cleavage of PARP-1 (Figure 10A, lanes 5 and 6).  

    Furthermore, we analysed the response of SCC022 squamous carcinoma 

cells to PJ34 and TPT treatment. Immunoblot with the PARP-1 specific 

antibody reveals that PARP-1 is modified since the unmodified 113 kDa 

band is strongly reduced (Figure 10B, lane 4). PJ34 co-treatment drastically 

reduces TPT-induced PARP-1 auto-modification thus leading to the 

accumulation of the 113 kDa band of PARP-1. However, we did not observe 

PARP-1 specific cleavage, thereby suggesting that cells were not undergoing 

apoptosis (Figure 10B, lanes 5 and 6).  

    Immunoblot analysis with PARP-1 antibody was also performed in   

MDA-MB231 cells subjected to the same treatments. As shown in Figure 

10C, in TPT-treated cells PARP-1 is auto-modified at a lower extent (lane 4) 

and there are no signs of apoptosis induction after TPT-PJ34 combined 

treatment (Figure 10C, lanes 5 and 6).  

    All together, our results suggest that, compared to MCF7, SCC022 and 

MDA-MB231 cells are less sensitive to the drugs combination and do not 

respond immediately with apoptosis to TOP 1 and PARP-1 inhibitors co-

treatment. 
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                      A         MCF7                                                    

 
 

 
                      B                             SCC022 

 
 

                      C          MDA-MB231 

 

 

 

 

 

 

Figure 10. Analysis of TPT-dependent PARP-1 activation or PJ34-

dependent PARP-1 inhibition in carcinoma cells untreated or 48 h 

treated with the indicated drugs. 
Whole cell extract (50-100 µg of proteins) after 10% SDS-PAGE and electroblotting 

on PVDF were incubated with anti-PARP-1 antibody. Immunodetection of PARP-1 

in whole cell protein extract from untreated and treated MCF7 (A), SCC022 (B) and 

MDA-MB231 (C) cells is shown. 
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3.4. Involvement of p63 in the cell response to TPT ± PJ34 treatment 

 

    To get insight into the molecular mechanism underlying the response of 

MCF7 cells to TPT ± PJ34 treatment, we analysed the expression of p53, p63 

and other cell cycle and apoptosis markers such as p21WAF, MDM2 and 

cyclin B1. In MCF7 cells we found that PJ34 addition to TPT strongly 

enhances the TPT-dependent stimulation of p53 expression. Remarkably, the 

p53 negative regulator MDM2 was down-regulated only upon combined 

treatment. Furthermore, using the 4A4 monoclonal antibody which 

recognizes all p63 isoforms, we only detected bands corresponding to the 

pro-apoptotic TAp63 α and γ isoforms; both isoforms are up-regulated by 

TPT–PJ34 co-treatments (Figure 11A).  

 

 
 

 

Figure 11. Western blot analysis of p53, p63, p21WAF, MDM2 and 

cyclin B1 expression in MCF7 cells untreated or 48 h treated with the 

indicated drugs. 
Whole cell extract (50–100 µg of proteins) after 10% SDS-PAGE and 

electroblotting on PVDF were incubated with the different antibodies.                   

(A) Immunodetection of p53, p63, p21WAF, MDM2, cyclin B1. GAPDH was used 

as loading control; (B) p53 and TAp63 α and γ band intensities were quantified by 

densitometric scanning. Data expressed as Arbitrary Densitometric Units (ADU) 

were normalized to the internal control GAPDH. Shown are the mean of three 

different experiments ± S.E. 
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Quantitation of proteins by densitometric scanning, reveals a 19–20-fold 

increase of the expression level for both p53 and p63 proteins after TPT–

PJ34 20 µM treatment (Figure 11B). The increase of p21WAF expression 

level was concomitant to a decrease of cyclin B1 thereby supporting the 

G2/M cell cycle arrest observed by cytofluorimetric analyses. 
     

    We also performed immunoblot analysis of MCF7 nuclear and cytoplasmic 

fractions. Figure 12A shows that following TPT ± PJ34 treatment both p53 

and TAp63γ accumulate in the nuclear compartment. Nuclear γH2AX 

expression and PARP-1 specific cleavage were monitored as markers of 

dsDNA damage and caspase-dependent apoptosis, respectively (Figure 

12A). Furthermore, the expression level of the pro-apoptotic BAX protein, 

whose gene is transcriptionally activated by p53 and TAp63, increases in the 

cytoplasmic fraction by either TPT alone or TPT–PJ34 combined treatment, 

while the level of the mitochondrial apoptosis inducing factor AIF is 

unaffected (Figure 12B).  
 

 
 

Figure 12. Western blot analysis of protein extract from nuclear and 

cytoplasmic fraction of MCF7 cells untreated or 48 h treated with the 

indicated drugs. 
Whole extract (50–100 µg of proteins) after SDS-PAGE and electroblotting on 

PVDF were incubated with the different antibodies. Immunodetection of p53, p63, 

PARP-1, γH2AX, BAX, AIF in nuclear (A) and cytoplasmic (B) fractions from 

MCF7 cells. Actin and GAPDH were used as loading controls, respectively. 
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Results Section 2: p53 PARylation 
 

3.5 PARylation in isolated nuclei 

 

    Nuclei were isolated from MCF7 cells untreated or 1 h treated with TPT 

10 M. Protein extracts were subjected to western blot analyses to determine 

functional changes in PARP-1 and p53 as a consequence of the treatment. 

Figure 13A shows in the untreated sample a PARP-1 immunoreactive band 

that in the TPT treated sample was split in widespread components. Such 

phenomenon is a consequence of the electrophoretic mobility shift 

determined by the auto-modification of PARP-1 by PAR chains of different 

length. Furthermore, the amount of the 89 kDa PARP-1 apoptotic fragment 

increased following the treatment. We also observed the TPT-dependent 

nuclear accumulation of p53 which was phosphorylated at serine15 residue, a 

sign of DNA damage (Figure 13A).  

 

 
    

 

Figure 13. Western blot analyses of nuclei isolated from MCF7 cells 

untreated or 1 h treated with TPT 10 M. 
Whole nuclear extracts (~100 µg of proteins) were subjected to 10% SDS-PAGE, 

electroblotted on PVDF and incubated with anti-PARP-1, anti p-p53
Ser15

 and anti-

actin antibodies (A) or previously incubated with a NAD plus Bio-NAD mixture and 

incubated with anti-biotin antibody (B) and anti-p53 antibody (C). 
 

    An aliquot of nuclei isolated from untreated and treated MCF7 cells was 

then incubated with NAD and biotinylated NAD (Bio-NAD) and PARylated 

proteins were identified by immunological analyses using an anti-biotin 

antibody. The anti-biotin immunodetection in Figure 13B shows a strong 
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induction of Bio-PAR synthesis associated with several nuclear components 

in TPT treated nuclei. Immunoreactive bands near the top of the gel can 

likely be ascribed to auto-modified forms of PARP-1, while that at the 

bottom of the gel to PARylated histones. Furthermore, the anti-biotin 

immunoreactive band in correspondence of the 50 KDa MWM, was identified 

by a subsequent immunodetection with an anti-p53 antibody (Figure 13C), 

thereby showing that p53 can be one of the PAR target/acceptor proteins in 

this experimental setting.  
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3.6 In vitro p53 PARylation 

 

    To better define the mechanism of p53 PARylation we set-up an in vitro 

assay by the use of recombinant p53 protein, PARP-1
wild type

 and a         

PARP-1
E988K

 mutant enzyme which lacks the ability of ADP-ribose 

elongation and branching (Rolli et al; 1997). Both PARP-1
wild type

 and    

PARP-1
E988K

 were incubated with a NAD plus Bio-NAD mixture in the 

presence of 5 g of p53.  

     In Figure 14A coomassie stained bands are shown for PARP-1
E988Kmut

  

and p53, while PARP-1
WT

 was not seen as it is spread in its multiple auto-

modified forms. Moreover, anti-biotin immunodetection demonstrates that 

PARP-1
E988K

 mutant was auto-modified by mono-ADP-ribose as known for 

such a form of the enzyme. Furthermore, as shown in Figure 14B, anti-biotin 

immunoreactive bands were evidenced (indicated by asterisks) in 

correspondance to the coomassie stained p53 band or slightly retarded by 

incubation with PARP-1
WT

.  
 

 

     

 

 

Figure 14. In vitro PARylation assays. 
Human recombinant PARP-1

WT
 (200 ng) and PARP-1

E988K
 mutated (1 µg) were 

incubated with a NAD plus Bio-NAD mixture in the presence of 5 µg of human 

recombinant p53. Protein samples were subjected to 10% SDS-PAGE and 

electroblotted on PVDF.  

A: coomassie stained bands on PVDF membrane; B: anti-biotin immunodetection. 
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    To analyse PAR p53 non-covalent interaction we performed a PAR 

electrophoretic mobility shift assay. Figure 15 panel A shows 

immunodetection of increasing amount recombinant p53 (1 - 4 g) incubated 

with PAR (~ 1 g) and subjected to 5% native PAGE and blotting on 

nitrocellulose filter; panel B shows the anti-PAR immunodetection of the 

same filter confirming the presence of the p53 protein in complexes with 

PAR. Free PAR was not detected since nitrocellulose membrane does not 

bind it (Malanga et al; 1998). 
 

 
 

 

Figure 15. PAR EMSA. 
Purified PAR was incubated with different aliquots of recombinant p53 and 

subjected to native 5% PAGE, blotting on nitrocellulose and immunodetection of 

PAR-proteins complexes with anti-p53 (A) and anti-PAR (B) antibodies. 
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3.7 p53 PARylation in TPT treated MCF7 cells. 

 

    The p53 PARylation deriving from TOP 1 inhibition-dependent DNA 

damage in MCF7 cells was evidenced by co-immunoprecipitation 

experiments. Aliquots of MCF7 lysates, after 48 h treatment with TPT        

2.5 M, were subjected to anti-p53, anti PARP-1 or anti-PAR 

immunoprecipitations, followed by anti-PARP-1 and anti-p53 

immunodetection.   

    Figure 16 panel A shows the presence of three major anti-PARP-1 

immunoreactive bands corresponding to the native enzyme (113 kDa), to its 

auto-modified forms (PAR-PARP-1) and to the 89 kDa apoptotic fragment 

both in the input sample and in the anti-PARP-1 immunoprecipitates. 

Interestingly, only the band corresponding to the auto-modified form of 

PARP-1 was evidenced in the p53 immunoprecipitated sample. 

Immunoprecipitation with an anti-PAR antibody is shown to confirm the 

identification of PARylated PARP-1.  

    Furthermore, Figure 16 panel B, shows that the p53 immunoreactive band 

of the input sample is also present both in anti-p53 and anti-PAR 

immunoprecipitated samples. Samples immunoprecipitated with an irrelevant 

IgG control are also shown (Figure 16, panel C). 

 
 

Figure 16. Western blot analyses of co-immunoprecipitation of MCF7 

cells 48 h treated with TPT 2.5 µM. 
Whole cell extract (input) and samples immunoprecipitated with anti-p53 (DO-1), 

anti-PARP-1 (C2-10) or anti-PAR (4335) antibodies, after 10% SDS-PAGE and 

electroblotting on PVDF membrane, were subjected to immunodetection with anti-

PARP-1 (9542) (panel A) and anti-p53 (FL-393) antibodies (panel B). 

Immunodetections of irrelevant IgG immunoprecipitated samples are also shown 

(panel C). 

        113 kDa 

   89 kDa 
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Results Section 3: Involvement of  PARP inhibitors in the 

p53/p63 signaling pathway 

 
    With this aim we analysed p53 null SCC022 cells that are known to 

express the ΔNp63α isoform, required for the survival of SCC cells (Devy et 

al; 2004). Furthermore, we compared cells transfected with p53 and/or p63 

and subjected to TPT ± PJ34 treatment. 

    Figure 17 shows the results of immunological analyses of SCC022 cell 

subjected to 24 hours treatment with 5 µM TPT ± 20 µM PJ34 compared 

with the same cells previously transfected with p53.  

In Panel A the TPT-dependent PARP-1 auto-modification is evident since 

the immunoreactive band is spread in its multiple auto-modified forms (lane 

3 PAR-PARP-1) while a band in correspondance of the native enzyme (lane 

4 PARP-1 113 kDa) is the consequence of PJ34 addition.   

Furthermore, ΔNp63α expression level is dramatically down-regulated by 

TPT treatment with or without PJ34. Concomitantly, cyclin B1 appears to be 

reduced while p21 is stimulated by TPT treatment with or without PJ34, 

suggesting a G2/M cell cycle arrest.  

Panel B shows the same analysis performed in cells transfected with p53 

(lanes 2 and 4) before TPT+PJ34 treatment. Interestingly, we observed that 

the TPT ± PJ34 dependent ΔNp63α down-regulation was not sufficient to 

induce caspase-dependent apoptosis, but p53 transfection was necessary as 

shown by the appearance of the PARP-1 89 kDa apoptotic fragment (lane 4).  

    Importantly, using an anti-p63 antibody (4A4), we were unable to detect 

p63 isoforms other than ΔNp63α both in untreated and TPT± PJ34 treated 

SCC022 cells (data not shown). 

    Therefore we subjected to the same analyses cells transfected with the pro-

apoptotic isoform TAp63

Figure 18 shows the results of immunological analyses of SCC022 cells 

transfected with p53 and TAp63 alone or together, and subjected to 5 M 

TPT + 20 M PJ34 combined treatment. 

Immunodetection with the anti-p53 antibody confirmed the ectopic 

expression of such protein. Furthermore, with the anti-p63 antibody, we were 

able to detect, beside the immunoreactive band corresponding to the 

endogenous ΔNp63α isoform, a weak band ascribed to the ectopically 

expressed TAp63Interestingly, as for the PARP-1 immunodetection, the 

89 kDa apoptotic fragment became evident as a consequence of 

TAp63±p53transfection. Moreover,  BAX expression was observed in the 

same samples as a marker of apoptosis induction. 

    In conclusion, we confirmed also in squamous carcinoma cells a p53-

dependent apoptosis induction as a consequence of PARP-1 inhibition.  
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Moreover we got evidences that, the change of cell fate can be related to the 

switch from the ΔNp63α anti-apoptotic isoform to the TAp63pro-apoptotic 

isoform expression. 

 
 

 

Figure 17. Western blot analysis of protein extract from SCC022 cells 

untreated or treated with TPT ± PJ34 before and after p53 transfection. 

Untreated and treated whole cell extracts (50–100 µg of proteins) (A), transfected or 

not with p53 (B) were subjected to 10% SDS-PAGE, electroblotted on PVDF and 

incubated with different antibodies. Immunodetection of PARP-1, ΔNp63α, p53, 

cyclin B1 and p21 is shown. GAPDH was used as loading control. 

 

 

 

 

 

 

 

 

 

 

       PARP-1 113kDa 
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Figure 18. Western blot analysis of protein extract from SCC022 cells 

transfected for p53 and/or TAp63 and treated with TPT + PJ34.  

Whole cell extracts (50–100 µg of proteins) from mock and p53/TAp63transfected 

cells, after 24 h treatment with 5 M TPT and 20 M PJ34, were subjected to 10% 

SDS-PAGE, electroblotted on PVDF and incubated with different antibodies. 

Immunodetection of PARP-1, p63, p53 and BAX is shown. GAPDH was used as 

loading control. 

 

                         89 kDa 
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4. Discussion 

 

    The efficacy of PARP inhibitors as chemosensitizers has led to the 

development of a multitude of such molecules with different bioavailability 

and pharmacokinetic properties that are currently under investigation in 

clinical trials (Rouleau et al; 2010). However, a clear understanding of how 

PARP inhibitors potentiate the activity of antineoplastic agents is still 

lacking. 

    The hydrophilic PARP inhibitor PJ34 has already been reported to 

synergize with cisplatin- and TPT-dependent apoptotic induction in triple-

negative breast cancer and human carcinoma cells expressing wild type p53 

(Hastak et al; 2010). We have already shown that PJ34, at a concentration of 

5 µM, inhibits PARP-1 activity without cytotoxic effects. Furthermore, in 

HeLa and MCF7 cells we found that TPT toxicity was higher when PAR 

synthesis was reduced by either PARP-1 silencing or PJ34 administration 

(D’Onofrio et al; 2011).  

    In the present study, we compared the response of MCF7
p53wt

,           

MDA-MB231
p53mut

 and SCC022
p53null

 cells to treatment with higher 

concentration of PJ34 (up to 20 µM) in combination with 1 µM CPT or 5 µM 

TPT. According to the previously reported specificity of PARP inhibitors for 

breast cancer (Bryant et al; 2005), we observed a higher sensitivity to PJ34 in 

MCF7
p53wt

 cells. In such cells we confirmed that TPT, which is known to be 

S-phase specific (Feeney et al; 2003), causes a G2/M cell cycle arrest when 

used at a lower concentration (1 µM). In addition, the TPT-dependent G2/M 

cell cycle arrest was enhanced by TPT + PJ34 combined treatment and 

resulted in a remarkable increase of cells with sub-diploid DNA, confirming 

a synergic cytotoxic effect of TOP 1 and PARP-1 inhibitors. 

    Consistent with the idea that poly(ADP-ribosyl)ation plays a role in the 

response to CPT/TPT-induced DNA damage, we observed the disappearance 

of a TOP 1 soluble/active fraction and the PARP-1 auto-modification in 

MCF7, MDA-MB231 and SCC022 cells thereby indicating that the response 

to DNA damage, induced by TOP 1 inhibitors, in skin squamous carcinoma 

cells is similar to that observed in breast carcinoma cells (Davis et al; 1998). 

    On the other hand, we found that prevention of PARP-1 auto-modification 

by PJ34 induces PARP-1 proteolysis only in MCF7
p53wt

 implying that 

apoptosis induced by inhibition of PAR synthesis requires the p53 wild type 

activity.  

    Given the similarity between p53 and p63, it was of interest to look at the 

effect of TOP 1 + PARP-1 inhibitors on p63 protein isoforms. Interestingly, 

TPT + PJ34 treatment in MCF7 cells causes a remarkable increase of TAp63 

α and γ protein levels. TAp63γ in particular, was reported to be a potent 

apoptosis inducer (Yang et al; 1998). Both p53 and TAp63γ accumulated in 
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the nuclear fraction where the proteins could functionally interact in the 

control of transcription. Consistently, TPT + PJ34 combined treatment 

caused a dramatic reduction of MDM2, a negative regulator of p53 

transcriptional activity and protein level. Remarkably, this is the first 

evidence of a PJ34-inducible proapoptotic response involving both p53 and 

p63 family members in breast carcinoma cells.  

    Furthermore, in SCC022
p53null

 cells we showed that CPT/TPT single or 

combined treatments suppressed the endogenously expressed ΔNp63α anti-

apoptotic isoform together with cyclin B1. It has previously been 

demonstrated that ΔNp63α is required for the survival of SCC cells by virtue 

of its ability to suppress p73-dependent apoptosis (Rocco et al; 2006). 

However, TPT + PJ34 treatment is not sufficient to induce apoptosis in these 

cells, thereby suggesting either the presence of a non-functional p73 or the 

existence of an alternative anti-apoptotic pathway able to overcome ΔNp63α 

depletion. Similarly, it has been reported that in MDA-MB468 cells 

expressing high level of ΔNp63α, PJ34 reduced ΔNp63α level, with a 

concomitant increase of p73. Interestingly, in SCC022 cells p53 transfection 

is necessary to induce cell detachment and apoptosis after TPT-PJ34 

combined treatment. 

    Therefore, it can be postulated that carcinoma cells, depending on their 

genetic background (p53/p63 null versus p53/p63 proficient), can trigger a 

p53-dependent pathway to induce cell cycle arrest and apoptosis, as a results 

of concomitant inhibition of PARP-1 and TOP 1. To this respect, the 

particular p63 isoform expressed may sustain (TAp63α and γ) or inhibit 

(ΔNp63α) the execution of the apoptotic program.  

    We have identified p63 as a new player of the PARP-1-dependent 

signaling of DNA damage. Interestingly, in the p63 DNA binding domain, 

both the PAR binding motif and the glutamic acid residues showed to act as 

covalent PAR acceptor sites are conserved.  

    Our findings contribute to the understanding of the molecular events 

triggered by TOP 1 and PARP-1 inhibitor-dependent genomic damage and 

provide a rationale for the development of new approaches to sensitize cancer 

cells to chemotherapy. 

    A yet unsolved problem is the discrimination between covalent and non-

covalent modification of proteins by PAR. It has already been shown 

(Malanga et al; 1998)  a non-covalent interaction between PAR and purified 

or recombinant proteins such as histone H1 and p53, blotted on nitrocellulose 

membrane. Indeed, PAR binding motifs have been identified in several 

proteins included H1 and p53 (Krietsch et al; 2013). Furthermore, covalent 

hetero-modification sites have been identified on histones by proteomic 

approach (Messner et al; 2010) and p53 by the analysis of deletion mutants 

(Kanai et al; 2007). 
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    Following DNA damage, the synthesis of PAR participates in the 

induction of p53 and for consequence in the expression of p53-responsive 

genes. In fact, p53 functions are impaired in cells exposed to PARP inhibitors 

(Valnezuela et al; 2002). 

    We have previously shown that, in response to DNA damage, TPT induces 

p53 over-expression in MCF7 breast carcinoma cells thus leading to a G2/M 

cell cycle arrest. 

    Here we have investigated on the mechanism underlying PARP-1 physical 

and functional interaction with p53 in the signaling of TPT-dependent DNA 

damage. With this purpose, we first determined the nuclear co-localization of 

an auto-PARylated form of PARP-1 and a phosphorylated form of p53 at 

serine 15 residue, that are known to represent activated forms of PARP-1 and 

p53 protein, respectively (Ray et al; 2012).  

    Furthermore, we performed both in vitro and in cell analyses aimed at the 

definition of the p53 PARylation mechanism.  

    Herein, we have identified p53 as a possible target or acceptor of the high 

amount of PAR synthesized in nuclei of MCF7 cells subjected to TOP 1 

inhibitor treatment. Free PAR deriving from PARG endoglycosidic cleavage 

of PARylated PARP-1 might be present in the nuclei. Indeed, it has been 

reported that free PAR can reach the mitocondria where it binds apoptosis-

inducing factor (AIF) (Wang et al; 2011). 

    To discriminate between covalent or non-covalent PARylation we set-up 

an in vitro enzymatic assay and a PAR-EMSA. However, from these 

approaches, we draw indications that p53 could act either as a substrate of 

hetero-modification reaction catalyzed by recombinant PARP-1 and as a free 

PAR interacting protein. 

    Such evidences can be matched considering that PAR polymers exhibit a 

high negative charge (2 for each ADPribose unit, double that of DNA), that 

allows them to easily interact with nuclear proteins (i.e. p53). 

    Nevertheless, in vitro approaches as test tube conditions are unlikely to 

mirror the situation in the cells. Therefore, we used co-immunoprecipitation 

experiments in DNA damaged MCF7 cells and we observed that PAR, 

covalently linked to PARP-1, interacts with p53.  

    This observation highlights a molecular mechanism by which the polymers 

clustered on PARP-1 at DNA breakage sites could affect the activation of 

p53 and/or interfere with its transcriptional function, in response to different 

levels of DNA damage (Malanga et al; 2005).  

    Moreover, in our experimental setting, we have evidenced that PAR 

covalently bound to PARP-1 may induce 
ser15

p-p53 accumulation in the 

nucleus, suggesting that a possible mechanism through which PARylation 

could modulate p53 transactivation activity is by contributing to p53 nuclear 



Discussion 

35 
 

retention  and/or stabilization. As a consequence, the expression of target 

genes as p21, cyclin B1 is stimulated in a DNA repair attempt. On the other 

hand, PARP inhibitors stimulate the expression of pro-apoptotic genes (i.e. 

BAX). 

Interestingly, p63 has been identified as a co-player of this                    

PARP-1-dependent signaling of DNA damage. In the p63 DNA binding 

domain, the PAR binding motifs determined in p53 are conserved (Malanga 

et al; 1998).  

    In conclusion these findings contribute to the understanding of the 

molecular events triggered by TOP 1 and PARP-1 inhibitor-dependent 

genomic damage.  

    In particular, evidences were got that PARP-1 inhibitors can act to 

overcome the apoptotic threshold determined by expression level of p53 

family proteins in different cellular contests, which have important 

implications for the effectiveness of p53-based cancer therapy. 
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p63 involvement in poly(ADP-ribose) polymerase 1 signaling of
topoisomerase I-dependent DNA damage in carcinoma cells
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1. Introduction

Poly(ADP-ribose)polymerase (PARP) inhibitors are touted as a
breakthrough for cancer treatment in solid tumors such as triple
negative breast cancer and ovarian cancer through their effects on
PARP-1’s enzymatic ADP ribosylation activity [1]; however, less
characterized PARP-1 additional functions have also been
reported and they can be critical for successful anticancer
therapies.

PARPs are involved in the regulation of many cellular processes
such as DNA repair, cell cycle progression and cell death [2]. PARP-
1 and PARP-2 are constitutive factors of the DNA damage
surveillance network, acting as DNA break sensor [3] and several
observations indicate that poly(ADP-ribosyl)ation plays an early
role in DSB signaling and repair pathways [4,5]. PARP-1 and 2 are
highly activated upon binding to DNA strand interruptions and
synthesize, within few seconds, large amounts of ADP-ribose
polymer (PAR) on several nuclear proteins including themselves,
histones, DNA-Topoisomerase 1 (TOP 1) and DNA-dependent

protein kinase (DNA-PK) [6,7]. Furthermore, in response to DNA
damage, PARP-1 interacts with both ATR and ATM kinases
suggesting another susceptible pathway for PARP inhibitors
induced apoptosis. [8].

Cell cycle checkpoint activation and growth arrest in response
to DNA damage rely on the ATM/ATR kinases and their
downstream targets like p53 [9–11]. p53 activates p21WAF which
binds PARP-1 during base excision repair [12].

Certain PARP inhibitors including PJ34 induce a G2/M arrest
when used in conjunction with methylating agents [13] cisplatin
[14] and TOP I poisons such as camptothecin (CPT) or its water-
soluble derivative topotecan (TPT) [15], highlighting the existence
of potentially different outcomes from PARP inhibition whose
molecular mechanisms have not yet been conclusively deter-
mined.

In brief, TOP I inhibitors reversibly abolish the DNA religation
activity of TOP I generating single strand breaks (SSBs) to which
the protein is covalently linked. Double strand breaks (DSBs)
arise when replication forks collide with the SSBs and run off.
Thus, CPT/TPT-induced DSBs are replication dependent or S
phase specific and are usually repaired by the HR pathway
[16,17]. According with previous findings poly(ADP-ribos)ylated
PARP-1 and PARP-2 counteract CPT through non covalent but
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specific interaction of PAR with some TOP I sites which results in
inhibition of DNA cleavage and stimulation of the religation
reaction [6].

We have previously shown that PJ34 can positively or
negatively modulate p53 and its target p21WAF depending of
the cell genetic background or DNA damage stimulus (i.e. cisplatin
or TPT) [18–20]. Indeed, regulating p21WAF expression is one
model whereby PARP inhibitors, following the activation of
different checkpoint pathways, can cause cell cycle arrest. It has
recently been reported that in breast carcinoma MCF7 cells, PJ34
causes a p21WAF-dependent mitotic arrest and that neither PARP-
1 nor p53 is required for this mechanism [21]. Furthermore, in
triple negative breast cancer cell lines, PJ34 synergizes with
cisplatin by reducing the levels of DNp63a with a concurrent
increase of p21WAF [22].

DNp63a is a member of the p53 protein family highly
expressed in squamous cell carcinoma and invasive ductal breast
carcinoma [23,24]. DNp63a and p53 have been shown to inversely
regulate target genes such as p21WAF in the context of DNA
damage [22,25]. Owing to the presence of two promoters, the p63
gene encodes two major classes of proteins: those containing a
transactivating (TA) domain homologous to the one present in p53
(i.e. TAp63) and those lacking it (i.e. DNp63) [24]. In addition,
alternate splicing at the carboxy-terminal (C-terminal) generates
at least three p63 variants (a, b and g) in each class. The TAp63g
isoform resembles most p53, whereas the a isoforms include a
conserved protein–protein interaction domain named Sterile
Alpha Motif (SAM). TAp63 proteins mimic p53 function including
transactivating many p53 target genes and inducing apoptosis,
whereas the DNp63a protein, has been shown to repress p53-
target genes acting as an oncogene [24,26].

On the light of all these evidences, the use of chemical inhibitors
of PARP in combination with TOP I inhibitors CPT or TPT appears to
be a promising approach to enhance the antitumour activity of
these compounds.

Here, we have investigated the effect of PJ34 used as a single
agent or in association with CPT or TPT in the DNA damage
response of mammary breast cancer cells (MCF7p53wt and MDA-
MB231p53mut) and squamous carcinoma cells (SCC022p53null)
showing an active involvement of p63 in the cellular response
to these agents. We postulate that the sensitivity to combined
treatments is mediated by sustained DNA damage/inefficient DNA
repair triggering p53 and p63-mediated apoptosis.

2. Materials and methods

2.1. Drugs, media, antibodies and chemicals

CPT and TPT was from Glaxo Smith-Kline (Verona, Italy) and
PJ34 [N-(6-oxo-5,6,-dihydrophenanthridin-2-yl)-(N,N-dimethyla-
mino) Acetamide] from Alexis Biochemicals (Vinci-Biochem,
Firenze, Italy). The cocktail of protease inhibitors was from
ROCHE-Diagnostic (Milano, Italy).

MCF7, MDA-MB231 and SCC022 cells were from CLS Cell Lines
Service (Eppelheim, Germany) Dulbecco’s modified Eagle’s medi-
um (DMEM), heat-inactivated foetal bovine serum (FBS) and
Roswell Park Memorial Institute (RPMI) medium were from
Invitrogen (GIBCO, Milano, Italy); penicillin, streptomycin and L-
glutamine were from LONZA (Milano, Italy).

Nicotinamide adenine [adenylate-32P] dinucleotide-[32P]-NAD+

(1000 Ci/mmole, 10 mCi/ml) was supplied by GE Healthcare
(Milano, Italy).

PVDF (poly-vinylidene-fluoride) membrane was from MILLI-
PORE S.p.A. (Milano, Italy). Not-fat-milk power was from EURO-
CLONE (Milano, Italy). Anti-DNA TOP I (Scl-70) human antibody
from Topogen (ABCAM, Cambridge, UK). Anti-PARP1 mouse

monoclonal antibody (C2-10), anti-p63 (4A4), anti-p53 (DO-1),
anti-p21WAF (F-5), anti-cyclin B1 (V152), anti AIF (E-1) and anti-
GAPDH (6C5) mouse monoclonal antibodies and anti-actin (H-
196) rabbit polyclonal antibody were from Santa-Cruz Biotechnol-
ogy (DBA, Milano, Italy). Anti-gH2AX (ser139, 2577) and anti-Bax
(D2E11) rabbit polyclonal antibodies were from Cell Signaling
(Invitrogen, Milano, Italy). Anti-MDM2 (Ab-2) mouse monoclonal
antibody was from Oncogene Research Products (Boston, USA).
Anti-PAR (10H) mouse monoclonal antibody was from Alexis
Biochemicals (Vinci-Biochem, Firenze, Italy). Goat anti-mouse and
goat anti-rabbit IgG HRP-conjugated antibodies were from Sigma–
Aldrich (Milano, Italy).

All other chemicals analytical grade were of the highest quality
commercially available.

2.2. Cell cultures

Breast cancer-derived MCF7p53wt and MDA-MB231p53mut cells
were maintained in Dulbecco’s modified Eagle’s medium (DMEM)
containing 10% (v/v) heat-inactivated foetal bovine serum (FBS),
while squamous SCC022p53 null carcinoma cells were maintained in
Roswell Park Memorial Institute (RPMI) medium containing 10%
(v/v) FBS, 100 U/ml penicillin, 100 g/ml streptomycin, 5 mM L-
glutamine and incubated at 37 8C in a humidified atmosphere, plus

5% CO2.

2.3. Cell treatments

Cells were seeded at 1 � 106 cells in 10 ml and 24 h after
seeding, treated with 1 mM CPT (stock solution 1 mM DMSO) or
5 m; TPT,10� concentration inhibiting cellular growth by 50%
(IC50) [27]. 10 mM or 20 mM PJ34 alone and in combination, for
48 h in fresh medium. Culture medium was removed and, after PBS
wash, cells were recovered 6 � 106 cells/ml in 50 mM Tris–HCl pH
7.5, 150 mM NaCl, 5 mM EDTA, 1% NP40 (Lysis Buffer) plus 2 mM
PMSF and 1:25 dilution of protease inhibitors cocktail solution.
After 40 min of incubation on ice, cellular suspensions were
scraped and centrifuged at 16,000 � g for 20 min at 4 8C.

Cell growth inhibition was assessed by cell counting at different
time points (0–24 48 h) or by the 3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide (MTT) assay using 1 � 104 48 h
treated cells. The experiments were performed in triplicate.

2.4. Isolation of nuclear and post-nuclear fractions

To isolate sub-cellular fractions, 3 � 106 cells were suspended
in 200 ml of 30 mM Tris–HCl pH 7.5 buffer, containing, 1.5 mM
MgCl2, 10 mM KCl, 1% (v/v) Triton X-100, 20% glycerol, 2 mM PMSF
and 1:25 dilution of protease inhibitors cocktail solution. After
30 min of incubation on ice, cellular suspensions were centrifuged
at 960 � g for 90 s at 4 8C and the nuclear fractions recovered in the
pellet. The supernatant represents the cytoplasmic fraction.

Nuclear fractions were resuspended in 50 ml of 20 mM HEPES
pH 7.9 buffer, containing 20 mM KCl, 0.2 mM EDTA, 1.5 mM MgCl2,
25% glycerol and the protease inhibitors cocktail solution. Protein
concentration was determined using the Bradford protein assay
reagent (BIO-RAD Milano, Italy) with bovine serum albumin as a
standard.

2.5. Cytofluorimetric analysis

Control and treated cells were fixed in 70% ethanol and stored at
�20 8C until analysis. After a washing in PBS w/o Ca2+/Mg2+, cells
were stained in 2 ml of propidium iodide (PI) staining solution
[50 mg/ml of PI, 1 mg/ml of RNAse A in PBS w/o Ca2+/Mg2+, pH 7.4]
overnight at 4 8C and DNA flow cytometry was performed in
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duplicate by a FACScan flow cytometer (Becton Dickinson Franklin
Lakes, NJ, USA) coupled with a CICERO work station (Cytomation).
Cell cycle analysis was performed by the ModFit LT software
(Verity Software House Inc., Topsham, ME, USA). FL2 area versus
FL2 width gating was done to exclude doublets from the G2/M
region. For each sample 15,000 events were stored in list mode file.

2.6. Analysis of [32P]-PAR synthesis

Following treatment with CPT/TPT � PJ34 of intact cell
(5 � 104cells/plate), [32P]-PAR synthesis was determined by substi-
tuting the culture medium with 1 ml of 50 mM HEPES pH 7.5 buffer,
containing 28 mM KCl, 28 mM NaCl, 2 mM MgCl2, 0.01% digitonin,
0.1 mM PMSF, 1:25 dilution of a cocktail of protease inhibitors,
0.125 mM NAD+ and 5 mCi [32P]-NAD+ (1000 Ci/mmole). After
incubation at 37 8C for 15 mins, cells were scraped, transferred to
eppendorf tubes and mixed with TCA at 20% (w:v) final concentration.
After 90 min standing on ice, samples were collected by centrifuga-
tion at 12000 rpm for 15 min, washed twice with 5% TCA and three
times with ethanol. [32P]-PAR incorporated in the TCA-insoluble
fraction was measured by Cerenkov counting using a LS8100 liquid
scintillation spectrometer (Beckman Coulter S.p.A. Milano, Italy).
Finally, TCA protein pellets were resuspended in Laemmli buffer;
proteins were separated by 10% SDS-PAGE and after electroblotting
on PVDF membrane, [32P]-PAR acceptors were visualized by
autoradiographic analysis by the PhosphorImager (BIO-RAD). Immu-
nodetection of specific proteins was accomplished on the same blots
after autoradiography.

2.7. Immunological analyses

Aliquots of 10 ml of cellular proteins (approx 50–100 mg) were
separated by 10% SDS-PAGE and transferred onto a PVDF
membrane using an electroblotting apparatus (BIO-RAD). The
membrane was subjected to immunodetection after blocking
with 5% non-fat milk in TBST 1 h, with anti-PARP1 (C2-10; diluted
1:2500), anti-TOP I (Scl-70; diluted 1:1000), anti-PAR (10H;
diluted 1:500), anti-p63 (4A4; diluted 1:2000), anti-p53 (DO-1;
diluted 1:5000), anti-p21WAF (F-5; diluted 1:1000), anti-MDM2
(Ab-2; diluted 1:1000), anti-cyclin B1 (V152; diluted 1:1000),
anti-gH2AX (2577; diluted 1:1000), anti-Bax (D2E11; diluted
1:1000), anti AIF (E1; diluted 1:2000), anti-GAPDH (6C5;
diluted 1:5000), anti-actin (H-196; diluted 1:2000) overnight at
room temperature.

As secondary antibodies goat-anti-mouse or goat-anti-rabbit
IgG HRP-conjugate (diluted 1:5000–1:10,000) in 3% (w/v) non-fat

milk in TBST were used. Peroxidase activity was detected using the
ECL Advance Western Blot Kit of GE Healthcare (Milano, Italy) and
quantified using the Immuno-Star Chemiluminescent detection
system GS710 (BIO-RAD) and the Arbitrary Densitometric Units
normalised on those of the GAPDH loading control.

3. Results

3.1. Effect of PJ34 on TPT/CPT-induced growth inhibition in human

carcinoma cells

The concentrations of the agents and the time points used in
this study were chosen on the basis of previously published data
[20,27]. Preliminary experiments, in breast carcinoma MCF7p53wt

cells, showed that 1 mM CPT inhibits cell growth similarly to 5 mM
TPT (Fig. 1A). To potentiate the CPT/TPT cytostatic effect, PJ34
concentrations were used in a sub-lethal range (10–20 mM). A 48-
h of exposure, corresponding approximately to two rounds of
MCF7p53wt cell replication, was used according to the administra-
tion procedure during anticancer therapy. As shown in Fig. 1A, at
24 h CPT/TPT treatment has a cytostatic effect, while PJ34 induces
growth retardation in a dose-dependent way, whereupon cells
start to recover but the rate of recovery was significantly affected
by CPT-PJ34 combined treatment (Fig. 1A).

We next investigated the impact of CPT on MDA-MB231 and
SCC022 cell survival. MDA-MB231 express a mutant p53
(p53R280 K) while SCC022 cells are p53 null. Cells were plated,
treated with CPT for 48 h and subjected to the MTT assay to
compare viability of treated and untreated cells. As shown in
Fig. 1B, CPT significantly reduces cell viability of all cell lines tested
(around 50% of control). Moreover, treatment with PJ34 alone
affects MCF7 and MDA-MB231 cell viability, in a dose-dependent
way, whereas SCC022 cells remain almost unaffected. Interesting-
ly, compared with single drug treatments, combination of PJ34
with CPT results in a significant enhancement of cytotoxicity in
MCF7 cells (37–33% of cell survival) while in MDA-MB231 and
SCC022 cells addition of PJ34 to CPT has a lower impact on cell
survival (Fig. 1B). Similar results are observed when PJ34 is added
to TPT (data not shown).

We have previously reported that TPT at concentrations higher
than 1 mM promptly arrested the cells in S phase while
concentrations equal or lower than 1 mM cause a G2/M arrest
[20]. To gain insight into the molecular mechanism of TPT-PJ34
interactive cytotoxicity we analysed the cell cycle distribution of
MCF7 cells treated with 10 or 20 mM PJ34 alone or in combination
with 1 mM TPT. As shown in Fig. 2, after 48 h treatment, 1 mM TPT

Fig. 1. Cell growth inhibition in MCF7, MDA-MB231 and SCC022 cells treated with CPT/TPT and PJ34 as single agents or in combination. Cells (104 cells/plate) were treated

48 h with CPT 1 m; or TPT 5 m; and 10 or 20 m; PJ34 alone or in combination: (A) MCF7 cell growth was measured by cell counting at different time points. Data refer to at

least three experiments giving similar results. (B) 48 h treated MCF7, MDA-MB231 and SCC022 cells were used for determination of cell growth inhibition by MTT assay. Each

plot represents the media of triplicates from three independent experiments.
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as well as 10 or 20 mM PJ34 induce accumulation of cells in G2/M
phase and the cell cycle distribution is less affected by treatment
with PJ34 (10 or 20 mM) than TPT used as single agents.
Furthermore, addition of 10 or 20 mM PJ34 to 1 mM TPT causes
a significant increase of G2/M cells, while S-phase cells are
drastically reduced. Fig. 2 (table) also shows that single treatments
cause an increase of cells with a sub-G1 DNA content (from 6 to
19%), probably due to induction of apoptotic cell death. Remark-
ably, an increase up to 55% of sub-G1 cells is observed with TPT
1 mM + PJ34 20 mM combined treatment, showing a 2� potentia-
tion factor of PJ34 on TPT cytotoxicity.

3.2. Analysis of CPT- or TPT-dependent TOP I inactivation

It is already known that CPT and TPT abolish the religation
activity of TOP I generating an abortive complex to which the
enzyme is covalently linked [16]. Therefore, we determined the
efficacy of TOP I inhibitors by looking at their capacity of trapping the
enzyme in the abortive complex. This was detected, by looking at the
disappearance of the immunoreactive band of the TOP I soluble
fraction by western blot analysis. After 48 h of treatment, both 1 mM
CPT and 5 mM TPT are able to block, almost completely, the TOP I
enzyme in the abortive complex, in all cell lines tested (Fig. 3).

Fig. 2. Cell cycle analysis of MCF7 cells subjected to TPT and PJ34 single and combined treatments. MCF7 cells were treated 48 h with TPT 1 m; and 10 or 20 m; PJ34 alone or

in combination. Control and treated cells (1 � 106) were fixed in 70% ethanol and used for flow cytometric analysis (see Section 2). Determination of DNA content after PI

staining is shown and cells in G1, S and G2 phase are indicated as percentage (excluded sub-G1 cells). The table reports sub-G1 cells as the percentage of the entire population

of cells. Data refer to one of three experiments giving similar results.

Fig. 3. Western blot analysis of TOP I soluble fraction in carcinoma cells untreated or 48 h treated with the indicated drugs. Untreated and treated whole cell extracts (50–

100 mg of proteins) were subjected to 10% SDS-PAGE, electroblotted on PVDF and incubated with the anti-TOP I antibody.

Immunodetection in MCF7 (A), MDA-MB231 (B) and SCC022 (C) cells is shown. 0.1% DMSO treated cells were analysed as CPT internal control. GAPDH was used as loading

control.
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According to previous findings [20], PJ34 does not affect TOP I
enzyme trapping when used in combination with CPT or TPT.

3.3. Analysis of PAR synthesis in carcinoma cells after treatment with

TPT � PJ34

PJ34 efficacy as PARP inhibitor was assessed by looking at its
effect on PARP-1 automodification. Proliferating MCF7 cells were
exposed to the drugs and PAR synthesis was measured in situ by
incubation in the presence of 0.01% digitonin with 0.125 mM [32P]-
NAD+. Samples were then analysed by SDS-PAGE followed by
autoradiography. As shown in Fig. 4A, a smear of the signal above
the PARP-1 molecular weight (113 kDa) is strongly increased in
TPT treated cells compared to the untreated sample (Fig. 4A, lane
4). As previously reported [2] such a behaviour indicates
automodification of PARP-1 by long and branched ADP-ribose
polymers (up to 200 residues in chain) on several sites (up to 25) of
the automodification domain. This process gives raise to higher
molecular weight PARP-1 forms that do not enter the polyacryl-
amide gel matrix. The identity of the PAR modified protein was
confirmed by western blotting using a PARP-1 antibody showing a
mobility shift of the immunoreactive band at the top of the gel
(Fig. 4B, lane 4). According to our observation, the autoradio-
graphic signals are absent in cells treated with the PARP-1 inhibitor
alone (Fig. 4A, lanes 2 and 3) or in combination with TPT (Fig. 4A,
lanes 5 and 6). Interestingly, TPT–PJ34 co-treatment in MCF7 cells
induced apoptosis as demonstrated by the appearance of the
85 kDa fragment generated by the caspase-dependent cleavage of
PARP-1 (Fig. 4B, lanes 5 and 6).

Immunoblot analysis with PARP-1 antibody was also
performed in MDA-MB231 cells subjected to the same treat-
ments. As shown in Fig. 4C, in TPT-treated cells PARP-1 is
automodified to a lower extent (lane 4) and there are no signs of
apoptosis induction after TPT-PJ34 combined treatment (Fig. 4C,
lanes 5 and 6).

Furthermore, we analysed the response of SCC022 squamous
carcinoma cells to PJ34 and TPT treatment. Immunoblot with the
PARP-1 specific antibody reveals that PARP-1 is modified since the
unmodified 113 kDa band is strongly reduced (Fig. 4D, lanes 4 and
5). Accordingly, immunoblot using a PAR antibody shows a
smeared signal of long and branched polymers above the PARP-1
molecular weight (Fig. 4E, lanes 4 and 5). PJ34 co-treatment
drastically reduces TPT/CPT-induced PARP 1 automodification thus
leading to the accumulation of the 113 kDa band of PARP-1.
However, we did not observe PARP-1 specific cleavage, thereby
suggesting that cells were not undergoing apoptosis albeit up to
50 mM PJ34 was used (Fig. 4D, lanes 6 and 7). All together, our
results suggest that, compared to MCF7, MDA-MB231 and SCC022
cells are less sensitive to the drugs combination and do not respond
immediately with apoptosis to TOP I and PARP-1 inhibitors co-
treatment.

3.4. Involvement of p63 in the cell response to TPT � PJ34 treatment

To get insight into the molecular mechanism underlying the
response of MCF7 cells to TPT � PJ34 treatment, we analysed the
expression of p53, p63 and other cell cycle markers such as p21WAF,
MDM2 and cyclin B1. In MCF7 cells we found that PJ34 addition to TPT
strongly enhances the TPT-dependent stimulation of p53 expression.
Remarkably, the p53 negative regulator MDM2 was down-regulated
only upon combined treatment (Fig. 5A). Furthermore, using the 4A4
monoclonal antibody which recognizes all p63 isoforms, we only
detected bands corresponding to the pro-apoptotic TAp63 a and g
isoforms; both isoforms are up-regulated by TPT–PJ34 co-treatments
(Fig. 5A). Quantitation of proteins by densitometric scanning, reveals
a 19–20-fold increase of the expression level for both p53 and p63
proteins after TPT–PJ34 20 mM treatment (Fig. 5B). The increase of
p21WAF expression level was concomitant to a decrease of cyclin B1
thereby supporting the G2/M cell cycle arrest observed by
cytofluorimetric analyses.

Fig. 4. Analysis of TPT-dependent PARP-1 activation or PJ34-dependent PARP-1 inhibition in carcinoma cells untreated or 48 h treated with the indicated drugs. Whole cell

extract (50–100 mg of proteins) after 10% SDS-PAGE and electroblotting on PVDF were either analysed by autoradiography or incubated with the different antibodies. (A)

Autoradiographic analysis, of whole cell protein extract from untreated and treated MCF7 cells incubated with 0.125 mM [32P]-NAD+ (see Section 2); (B) immunodetection of

PARP-1 on the blot shown in (A); (C) immunodetection of PARP-1 in whole cell protein extract from untreated and treated MDA-MB231cells; (D) immunodetection of PARP-1

in whole cell protein extract from untreated and treated SCC022 cells; (E) immunodetection of PAR on the blot shown in (D)
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Fig. 5. Western blot analysis of p53, p63, p21WAF, MDM2 and cyclin B1 expression in MCF7 cells untreated or 48 h treated with the indicated drugs.

Whole cell extract (50–100 mg of proteins) after 10% SDS-PAGE and electroblotting on PVDF were incubated with the different antibodies. (A) Immunodetection of p53, p63,

p21WAF, MDM2, cyclin B1.GAPDH was used as loading control; (B) p53 and TAp63 a and g band intensities were quantified by densitometric scanning. Data expressed as

Arbitrary Densitometric Units (ADU) were normalized to the internal control GAPDH. Shown are the mean of three different experiments � S.E.

Fig. 6. Western blot analysis of protein extract from nuclear and cytoplasmic fraction of MCF7 cells and from SCC02 cells untreated or 48 h treated with the indicated drugs.

Whole extract (50–100 mg of proteins) after SDS-PAGE and electroblotting on PVDF were incubated with the different antibodies. (A) Immunodetection of p53, p63, PARP-1,

gH2AX, BAX, AIF in nuclear (upper panel) and cytoplasmic (lower panel) fractions from MCF7 cells. Actin and GAPDH were used as loading controls, respectively; (B)

immunodetection of p63 and cyclin B1 in SCC022 cell extract. GAPDH was used as loading control.
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We also performed immunoblot analysis of MCF7 nuclear and
cytoplasmic fractions. Fig. 6A shows that following TPT � PJ34
treatment both p53 and TAp63g accumulate in the nuclear
compartment. Nuclear gH2AX expression and PARP-1 specific
cleavage were monitored as markers of dsDNA damage and
caspase-dependent apoptosis, respectively (Fig. 6A, upper panel).
Furthermore, the expression level of the pro-apoptotic BAX protein,
whose gene is transcriptionally activated by p53 and TAp63, increases
in the cytoplasmic fraction by either TPT alone or TPT–PJ34 combined
treatment, while the level of the mitochondrial apoptosis inducing
factor AIF is unaffected (Fig. 6A, lower panel).

Finally, as shown in Fig. 6B, in p53 null SCC022 cells, the
DNp63a anti-apoptotic isoform is dramatically down-regulated
by CPT/TPT treatment with or without PJ34. Cyclin B1 appears to be
concomitantly reduced suggesting a G2/M cell cycle arrest.
Importantly, using the 4A4 antibody, we were unable to detect
p63 isoforms other than DNp63a both in untreated and TPT � PJ34
treated SCC022 cells (data not shown). It has previously been
demonstrated that DNp63a is required for the survival of SCC cells
[27]. Interestingly, as shown in Fig. 4D, CPT/TPT � PJ34 treatments
was not sufficient to induce apoptosis in these cells thereby
suggesting the existence of an alternative anti-apoptotic pathway
able to overcome DNp63a depletion. In MDA-MB231 cells, no p63
immunoreactive bands were seen in all experimental conditions
(data not shown) thereby excluding a possible role for p63 in
TPT � PJ34-induced cytotoxycity in this cellular context.

4. Discussion

The efficacy of PARP inhibitors as chemosensitizers has led to
the development of a multitude of such molecules with different
bioavailability and pharmacokinetic properties that are currently
under investigation in clinical trials [1]. However, a clear
understanding of how PARP inhibitors potentiate the activity of
antineoplastic agents is still lacking.

The hydrophilic PARP inhibitor PJ34 has already been reported
to synergize with cisplatin- and TPT-dependent apoptotic induc-
tion in triple-negative breast cancer and human carcinoma cells
expressing wild type p53 [19–22]. We have already shown that
PJ34, at a concentration of 5 mM, inhibits PARP-1 activity without
cytotoxic effects. Furthermore, in HeLa and MCF7 cells we found
that TPT toxicity was higher when PAR synthesis was reduced by
either PARP-1 silencing or PJ34 administration [20].

In the present study, we compared the response of MCF7p53wt,
MDA-MB231p53mut and SCC022p53null cells to treatment with
higher concentration of PJ34 (up to 20 mM) in combination with
1 mM CPT or 5 mM TPT. According to the previously reported
specificity of PARP inhibitors for breast cancer [1,29], we observed
a higher sensitivity to PJ34 in MCF7p53wt cells. In such cells we
confirmed that TPT, which is known to be S-phase specific [30],
causes a G2/M cell cycle arrest when used at a lower concentration
(1 mM). In addition, the TPT-dependent G2/M cell cycle arrest was
enhanced by TPT + PJ34 combined treatment and resulted in a
remarkable increase of cells with sub-diploid DNA, confirming a
synergic cytotoxic effect of TOP I and PARP-1 inhibitors.

Consistent with the idea that poly(ADP-ribosyl)ation plays a
role in the response to CPT/TPT-induced DNA damage we observed
the disappearance of a TOP I soluble/active fraction and the PARP-1
automodification in MCF7, MB-MDA231 and SCC022 cells thereby
indicating that the response to DNA damage, induced by TOP I
inhibitors, in skin squamous carcinoma cells is similar to that
observed in breast carcinoma cells [31].

On the other hand, we found that prevention of PARP-1
automodification by PJ34 induces PARP-1 proteolysis only in
MCF7p53wt implying that apoptosis induced by inhibition of PAR
synthesis requires the p53 wild type activity. Given the similarity

between p53 and p63 it was of interest to look at the effect of TOP
I + PARP-1 inhibitors on p63 protein isoforms. Interestingly,
TPT + PJ34 treatment in MCF7 cells causes a remarkable increase
of TAp63 a and g protein levels. TAp63g in particular, was reported
to be a potent apoptosis inducer [32]. Both p53 and TAp63g
accumulated in the nuclear fraction where the proteins can
functionally interact in the control of transcription. Consistently,
TPT + PJ34 combined treatment caused a dramatic reduction of
MDM2, a negative regulator of p53 transcriptional activity and
protein level.

Remarkably, this is the first evidence of a PJ34-inducible pro-
apoptotic response involving both p53 and p63 family members in
breast carcinoma cells. Furthermore, in SCC022p53null cells we
show that CPT/TPT single or combined treatments suppressed the
endogenously expressed DNp63a anti-apoptotic isoform together
with cyclin B1. It has previously been demonstrated that DNp63a
is required for the survival of SCC cells by virtue of its ability to
suppress p73-dependent apoptosis [28]. However, CPT/TPT � PJ34
treatments is not sufficient to induce apoptosis in these cells thereby
suggesting either the presence of a non-functional p73 or the
existence of an alternative anti-apoptotic pathway able to overcome
DNp63a depletion. Similarly, it has been reported that in MDA-
MB468 cells expressing high level of DNp63a, PJ34 reduced DNp63a
level, with a concomitant increase of p73. However, in that
manuscript, apoptosis induction was not evaluated [22].

Therefore, it can be postulated that carcinoma cells, depending
on their genetic background (p53/p63 null versus p53/p63
proficient), can trigger a p53-dependent pathway to induce cell
cycle arrest and apoptosis, as a results of concomitant inhibition of
PARP-1 and TOP I. To this respect, the particular p63 isoform
expressed may sustain (TAp63a and g) or inhibit (DNp63a) the
execution of the apoptotic program.

Recently, it has been shown that PARP activity is required for
TOP I poisoning-mediated replication fork slowing [33] and
reversal [34]. In fact, PARP-1 is able to slow replication fork
progression in response to CPT-dependent HR DNA repair.
Furthermore, these data identify fork reversal as a means to
prevent chromosome breakage upon exogenous replication stress
and implicate still undefined proteins involved in fork reversal or
restart as factors modulating the cytotoxicity of replication stress-
inducing chemotherapeutics.

We have identified p63 as a new player of the PARP1-dependent
signalling of DNA damage. Interestingly, in the p63 DNA binding
domain, both the PAR binding motif and the glutamic acid residues
showed to act as covalent PAR acceptor sites are conserved [35,36].
Our findings contribute to the understanding of the molecular
events triggered by TOP I and PARP-1 inhibitor-dependent
genomic damage and provide a rationale for the development of
new approaches to sensitize cancer cells to chemotherapy.
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