
Università degli Studi di Napoli “Federico II”
Dottorato di ricerca in Scienze Computazionali e Informatiche

XXVI ciclo

Numerical treatment of
Evolutionary Oscillatory Problems

Ph.D. Director:
G. MOSCARIELLO

Scientific Advisor:
B. PATERNOSTER

Tutor:
E. MESSINA

Ph.D. Student:
GIUSEPPE SANTOMAURO

Università degli Studi di Napoli “Federico II”
Dottorato di ricerca in Scienze Computazionali e Informatiche

XXVI ciclo

Numerical treatment of
Evolutionary Oscillatory Problems

Ph.D. Director:
G. MOSCARIELLO

Scientific Advisor:
B. PATERNOSTER

Tutor:
E. MESSINA

Ph.D. Student:
GIUSEPPE SANTOMAURO

To my family and my friends

“Science is but a perversion of itself, unless it has as its ultimate goal the
betterment of humanity.”

Nikola Tesla

Contents

Contents 5

List of Figures 8

List of Tables 10

Acknowledgments 12

Introduction 13

1 Evolutionary problems 16
1.1 Introduction . 16
1.2 Integrals over unbounded intervals 17

1.2.1 A brief overview . 17
1.2.2 Infinite integrals with peridioc integrands 17
1.2.3 Examples . 18
1.2.4 Theoretical results . 23

1.3 Volterra Integral Equations 24
1.3.1 A brief overview . 24
1.3.2 VIEs with periodic solution 26
1.3.3 Examples . 26
1.3.4 Theoretical results . 31

1.4 Ordinary Differential Equations 34
1.4.1 A brief overview . 34
1.4.2 Special second-order ODEs with periodic solution . . . 36
1.4.3 Examples . 37
1.4.4 Theoretical results . 39

1.5 Aim . 41

5

CONTENTS 6

2 Exponentially fitted methods 43
2.1 The Exponential Fitting Technique 43

2.1.1 The six step procedure 45
2.2 The η-functions . 51

3 EF-Gauss-Laguerre quadrature formulae for infinite oscilla-
tory integrals 52
3.1 The state of art . 53
3.2 The exponentially-fitted Gauss-Laguerre quadrature rule . . . 54
3.3 Computation of weights and nodes 57
3.4 Numerical illustrations . 62
3.5 Comparison with Filon-type rules 69

3.5.1 Filon versus EF quadrature rules over finite integration
intervals . 70

3.5.2 Construction of Filon quadrature rules over infinite in-
tegration intervals . 73

4 EF-Direct Quadrature methods VIEs with periodic solution 75
4.1 The state of art . 76

4.1.1 Mixed collocation method 76
4.1.2 Direct Quadrature method based ef Simpson rule . . . 78

4.2 Exponentially fitted Gaussian quadrature rule 79
4.2.1 Newton method . 82
4.2.2 Error analysis . 84
4.2.3 Stability . 86

4.3 The ef-Gaussian DQ method 86
4.3.1 Algebraic interpolation 89
4.3.2 ef interpolation . 89

4.4 Convergence analysis . 97
4.5 Numerical illustrations . 99

4.5.1 Tests on the ef-based quadrature rule 100
4.5.2 Tests on the ef-based DQ method 103

5 EF-Runge-Kutta-Nyström methods for special second-order
ODEs with periodic solution 110
5.1 Introduction . 110
5.2 Revised operators . 111
5.3 Construction of a family of methods 113

CONTENTS 7

5.4 Parameters estimation . 115
5.5 Numerical illustrations . 115

5.5.1 The Prothero-Robinson problem 115
5.5.2 The undamped Duffing problem 116

6 GPU implementations 119
6.1 Introduction . 119
6.2 Basic notes on programming with CUDA 120

6.2.1 GPU computing . 121
6.2.2 CUDA . 121
6.2.3 CUDA architecture . 121
6.2.4 Execution model . 122
6.2.5 Hardware implementation 126
6.2.6 Memory . 129
6.2.7 Compiling process . 132
6.2.8 Performances Guidelines 132
6.2.9 Maximize the throughput of Memory 137
6.2.10 Shared Memory Architecture 137

6.3 Parallel quadrature formulae: the Simpson rule 139
6.4 Numerical illustrations . 143

6.4.1 Numerical test 1 . 143
6.4.2 Numerical test 2 . 145

Conclusions and future developments 148

Bibliography 151

List of Figures

1.1 Thin conducting disk . 18
1.2 Elliptical tank . 19
1.3 Nonlinearity extraction and modeling 27
1.4 Nonlinear network scheme with periodic input 28

3.1 Variation with ω of the nodes and the weights of the N -point
EF Gauss-Laguerre rule for N = 1 and N = 2 65

3.2 Variation with ω of the nodes and the weights of the N -point
EF Gauss-Laguerre rule for N = 3 and N = 4 66

3.3 Variation with ω of the nodes and the weights of the N -point
EF Gauss-Laguerre rule for N = 5 and N = 6 67

3.4 The ω dependence of the errors produced by classic and EF
Gauss-Laguerre quadrature rule for N = 5 and N = 6 69

4.1 Contour plot of the sum in absolute value for the weights of
ef-Gauss-Legendre rule . 103

4.2 The variation with ω̄ of the accuracy gain between classic-DQ
and ef-DQ methods Gδ

ω and Gδ
α,ω 108

4.3 Work-precision diagrams of the ef DQ method and of the clas-
sical Gaussian DQ method . 109

6.1 CUDA architectural model . 122
6.2 Execution of a CUDA program 123
6.3 Structure of a CUDA kernel 123
6.4 Portion of the sample code . 124
6.5 Structure of a CUDA kernel 125
6.6 GPUs specifications . 128
6.7 Memory hierarchy . 130

8

LIST OF FIGURES 9

6.8 Compiling process . 133
6.9 Not coalescent access . 135
6.10 Coalescent access . 136
6.11 Shared Memory Architecture 138
6.12 No bank conflicts . 138
6.13 Bank conflicts . 139
6.14 GPU vs CPU on test 1 . 144
6.15 Speedup on test 1 . 145
6.16 GPU vs CPU on test 2 . 146
6.17 Speedup on test 2 . 146

List of Tables

3.1 Values of αi for N = 1, 2, 3, 4, 5, 6. 64
3.2 Error for EF Gauss-Laguerre rule with N = 3, 4 68
3.3 Error for EF Gauss-Laguerre rule with N = 5 69
3.4 Error for EF Gauss-Laguerre rule with N = 6 69
3.5 Error for classic, Filon-type and EF Gauss-Laguerre rule with

N = 3 . 74

4.1 Errors for the ef-based Gauss rule and for the classical Gauss-
Legendre rule with ω̄ = 10 . 99

4.2 Errors for the ef-based Gauss rule by Newton method and for
the classical Gauss-Legendre rule with ω̄ = 50 101

4.3 Errors for the ef-based Gauss rule and for the classical Gauss-
Legendre rule with ω̄ = 100 101

4.4 Errors for the ef-based Gauss rule and for the classical Gauss-
Legendre rule with ω̄ = 1000 102

4.5 Errors for the ef-based Gauss rule and for the classical Gauss-
Legendre rule with ω̄ = 10000 102

4.6 Error of ef DQ method with ef interpolation and with La-
grange interpolation of degree r = 3 (for α = ᾱ and ω = ω̄),
and of classic-DQ method with Lagrange interpolation of de-
gree r = 3 . 104

4.7 Error obtained by Gclass and Gδ
ω, for different values of δ with

ω̄ = 10, α = −1, . 105
4.8 Error obtained on problem with ω̄ = 10 and ω̄ = 50, by ef

DQ method and classical Gaussian DQ method with Lagrange
interpolation of degree r = 3 107

10

LIST OF TABLES 11

4.9 Error with ω̄ = 100, 1000 and 10000 by ef DQ method and
classical Gaussian DQ method with Lagrange interpolation of
degree r = 3 . 107

5.1 Error for standard and revised EF methods, without and with
approximation of parameter µ for Prothero-Robinson problem 116

5.2 Minimum and maximum value of approximated paramater µn
for revised ef RKN . 117

5.3 Error for standard and revised EF methods, without and with
approximation of parameter µ for undamped Duffing problem 118

6.1 Average execution time . 142
6.2 GPU vs CPU on test 1 . 144
6.3 GPU vs CPU on test 2 . 145

Acknowledgments

I wish to express my sincere thanks to all those who have guided, inspired
and supported me: the list is quite long, but I hope I will not forget anyone.

I desire to address my deep gratitude to my advisor, Prof. Beatrice Pa-
ternoster, for believing in me, encouraging and supporting my research: if I
had the chance to do all my doctoral experiences, it is because of her deep
interest and support.

I wish to express my sincere thanks to my tutor, Prof. Eleonora Messina, for
helping me during my Ph.D. experiences at the Department of Mathematics
and Applications “Renato Caccioppoli”.

I sincerely thank Prof. Liviu Gr. Ixaru, Dr. Dajana Conte, Dr. Angelamaria
Cardone and Dr. Raffaele D’Ambrosio with whom I had the opportunity to
closely collaborate in the scientific research.

I would like to thank from the depth of my heart my colleagues of the office
numbers 6 and 62 in Fisciano, my colleagues of the office numbers 17, 18
and 66 in Naples who have been my traveling companions and with whom I
have shared many experiences and emotions. The list is very long but I wish
to address a particular thank to Gemma, Maria, Elena, Giuseppe, Mara and
Pasquale.

Thanks to my friends Donato, Giuseppe D. M., Giuseppe S. and Paolo.

Last, but not least, a deep gratitude to my beloved family who has patiently
supported, encouraged and comforted me, every day with love.

12

Introduction

The purpose of this work is the construction, the theoretical analysis and
the implementation of new efficient and accurate numerical methods for the
approximated solution of evolutionary oscillatory problems. We focus our at-
tention on: oscillatory integrals over unbounded intervals, Volterra integral
equations with a periodic solution, special second-order ordinary differential
equations with a periodic solution.
These problems arise as mathematical models in several applications as, for
instance, the computation of the overlap integral between two wave func-
tions in Quanthum Mechanics [56], the study of seasonality of infectious
diseases [76] and the evaluation of the energy levels of nucleons in Nuclear
Physics [50]. Others applications, analytical aspects and theoretical results
are reported in Chapter 1.
The general purpose methods require a small stepsize in order to follow the
oscillations of the solution, especially in the case of stiff problems. So we
need for numerical methods specially tuned on the problem. The basic idea
is to exploit the qualitative knowledge of the problems in order to construct
new efficient and accurate numerical methods specially suited to their com-
putation. These methods are derived by using the Exponential Fitting (EF)
technique [68]. The EF is a theory useful to derive numerical methods that
are specially tuned for oscillatory problems. It is applicable to many numer-
ical problems (see [68] and references therein) i.e. numerical differentiation,
integration, interpolation, numerical solution of ordinary differential equa-
tions and recently Volterra integral equations. A more detailed description
of this technique is provided in Chapter 2.
For the computation of oscillatory infinite integrals a new class of expo-
nentially fitted (ef) quadrature formulae is studied and constructed. They
generalize the classical Gauss-Laguerre formulae. The weights and the nodes
of these ef formulae are dependent on the frequency of the integrand func-

13

INTRODUCTION 14

tion and they are solution of a nonlinear system. The latter is solved by a
suitable efficient Newton algorithm. We study the error behaviour of these
formulae and we prove that the error decreases as the oscillations increase.
Later, exponentially fitted Gauss-Laguerre rules with 1, 2, 3, 4, 5 and 6 nodes
are built. Numerical illustrations for significant test examples show that the
error is smaller as the frequency increases and the ef Gauss-Laguerre rules
present an efficient accuracy gain with respect to the classical ones. All these
results are described in Chapter 3.
An ef Direct Quadrature (DQ) method for the numerical solution of Volterra
integral equations (VIEs) with periodic solution is reported on Chapter 4.
This method is based on an ef two nodes Gaussian quadrature rule. The
weights and the nodes of this quadrature formula are solution of a nonlinear
system and they depend on the parameters of the kernel function, that are
the the amplitude and the frequency of the oscillations. This formula general-
izes the classical Gauss-Legendre formula of two nodes. The stability and the
error of the ef quadrature rule is studied. The results on significant oscilla-
tory test examples confirm the better perfomances of ef quadrature rule with
respect to the analogous classical one. The DQ method also requires a suit-
able intepolation technique which preserves the order of the whole method.
The interpolatory formula is built on four nodes which depend on the pa-
rameters of the problem. This interpolatory rule is derived by exploiting the
Exponential Fitting. The convergence analysis shows that the order of the
ef DQ method is four. Various numerical experiments are reported. They
show that on test VIEs with oscillatory or periodic solution, for the same
computational cost, the DQ method based on the ef Gauss-Laguerre quadra-
ture rule is more accurate than the DQ method based on the classical one.
The best performances also hold when the ef DQ method is based on an ef
quadrature rule and an interpolation formula whose coefficients depend on
an estimation of the parameters of the problem.
In Chapter 5, some ef numerical methods for special second order differential
equations (ODEs) with periodic or with exponentially decaying solution are
treated. By taking into account the multistage nature of the methods un-
der investigations, by considering the contributions of the stage errors in the
overall numerical scheme and by means the EF technique, a revised version
of some EF-based Runge-Kutta-Nyström (RKN) methods is developed. The
coefficients of these methods depend on the values of problem parameters,
i.e. the frequency of oscillations, for periodic problems, or the negative ex-
ponent, for problems with exponentially decaying solution. The coefficients

INTRODUCTION 15

of the revised ef-RKN method are suitably determined. Moreover, a suit-
able strategy which estimates the parameters of the problem when they are
not available is proposed. This strategy is based on the minimization or the
annihilation of the local truncation error. The proposed strategy does not
require further function evaluations. Then a revised explicit two-stages ef
RKN method is built. The numerical experiments underline the superiority
of this revised EF methods with respect to the standard ones and accuracy
of the parameter estimates.
Finally, in Chapter 6 the research is focused on the study and use of Graph-
ics Processing Units (GPU) in order to develop a parallel algorithm based
on quadrature formulas Newton-Cotes. This may be a preliminary study for
a possible numerical solution of multidimensional integrals and discretized
Volterra integral equations. Preliminary numerical results are reported us-
ing the multi-GPU cluster E4 belonging to the Department of Mathematics,
University of Salerno.

Chapter 1

Evolutionary problems

1.1 Introduction
In this work I will consider efficient numerical methods for the computation
of oscillatory integrals over unbounded intervals, for the solution of Volterra
integral equations with periodic solution and of second-order ordinary differ-
ential equations with periodic solution. The interest to this type of problems
arises from the possibility of modeling numerous applications, i.e., the com-
putation of the electric potential energy, the study of the seasonality of some
infectious diseases and the comprehension of some stellar structures.
The aim of this considered chapter is to provide an overview on the math-
ematical formulation of the problems, such as definitions, theorems on the
existence and the uniqueness of the analytical solution, sufficient conditions
able to ensure a periodic solution and so on. Another goal of this chapter is
to describe some examples of physical, biological and astronomical applica-
tions that have a preminent oscillatory behaviour and whose mathematical
formulation can be expressed by means of either an unbounded integral or a
Volterra integral equation or an ordinary differential equation of the second
order.

16

1.2. INTEGRALS OVER UNBOUNDED INTERVALS 17

1.2 Integrals over unbounded intervals

1.2.1 A brief overview
The theory of integration borns with the problem of the computation of the
areas and of the volumes, for plane and solid figures respectively. Some of the
earliest contributions related to these evaluations are attributed to Euclid and
Archimedes [43]. Afterwards, Newton had posed the problem of computing
the inverse operation of derivation, that is, the determination of a function
F such that F ′ = f with f assigned. The formulation of the Riemann theory
is inspired just by these considerations. More recently, in many applications
the evaluation of improper integrals plays an important role. For example,
when we have to compute the Laplace transformation of a function from the
time domine into the frequency domine, or when we want normalize a wave
functions, a problem of infinite integration we need to consider.

Infinite integrals

Integrals whose range of integrand is unbounded are known as improper or
infinte integrals. Such integrals are defined as the limit of certain proper
integrals [38].

Definition 1.2.1 Let g : [0,∞) → R a continuous function. We define an
improper integral over [0,∞) if exists the limit∫ ∞

0
g(x)dx := lim

b→∞

∫ b

0
g(x)dx

Similar definitions are used for
∫∞
a g(x)dx and for

∫ b
−∞ g(x)dx. Moreover,

this defintion can be extended to whole interval (−∞,∞).

Definition 1.2.2 Let g : R → R a continuous function. We define an
improper integral over (−∞,∞) if exists the limit∫ ∞

−∞
g(x)dx := lim

r→∞

∫ r

−r
g(x)dx.

1.2.2 Infinite integrals with peridioc integrands
The accurate computation of integrals of oscillatory functions over an infinite
domain is needed in numerous applications, in various branches of physics,

1.2. INTEGRALS OVER UNBOUNDED INTERVALS 18

Figure 1.1: Thin conducting disk

!

y!

x!

z!

q!

θ!
r!

a!

P(r,θ,z)!
!

engineering, and economics; see, e.g., [3], [5], [37], [49], [55], [61], [103]. The
problem is also on steady interest for mathematicians, see the recent contri-
bution [21] and references therein.
For this reason we consider the numerical computation of the integral

I =
∫ ∞

0
e−xf(x)dx, (1.2.1)

when the integrand f(x) is an oscillatory function of the form

f(x) = f1(x) sin(ωx) + f2(x) cos(ωx). (1.2.2)

The coefficients f1(x) and f2(x) are assumed smooth enough to be well ap-
proximated by polynomials. More assumptions on the form of integrand f(x)
for the convergence of integral (1.2.1) will be given in Subsection 1.2.4.

1.2.3 Examples
Example 1.2.1 (Thin conducting disk [3]) Consider a thin conducting
disk with radius a and a charge q as illustred in Fig. 1.1. The pontential ϕ

1.2. INTEGRALS OVER UNBOUNDED INTERVALS 19

of disk, in cylindrical coordinates, is

ϕ(r, z) = q

4πε0a

∫ ∞
0

e−k|z|J0(rk)sin(ak)
k

dk, (1.2.3)

where ε0 is the electric permittivity of free space, J0 is the usual Bessel func-
tion of first kind. The arguments, r and z, are the radial distance and height,
respectively. For the axial symmetry of the problem, the potential is indepen-
dent on the azymuth θ. The problem is very interesting because a black hole
or a galaxy (for example the Milk Way) can be cosidered as a thin conducting
disk with respect to the size of the Universe. Another problem, connected to
the computation of the integral (1.2.3), is the evaluation of Bessel function
J0. In integral form we can rewrite J0 as:

J0(x) = 2
π

∫ ∞
0

e−r er sin [(x(r + 1)]√
r2 + 2r

dr. (1.2.4)

The integrals in (1.2.3) and (1.2.4) are both of the form (1.2.1) with oscilla-
tory integrand.

Figure 1.2: Elliptical tank

2. Formulation

2.1. Baffled container

The baffled container geometry is shown in Fig. 1a. An incompressible and non-viscous liquid fills a rigid
horizontal elliptic tank, with the major and minor semi-axes ‘‘a’’ and ‘‘b,’’ to its half capacity, and two internal
horizontal longitudinal side baffles of length ‘‘L’’ partly cover free surface of the fluid as shown in the figure.
Such baffles or separators may be used in tank vehicles to impede the lateral slosh and improve rollover
stability and performance. The 2D Cartesian coordinates (x, y) are chosen in a plane perpendicular to the
cylinder generators. The x axis is in the plane of free surface, which occupies ðL" aÞoxoða" LÞ, and y axis
points vertically downwards through the midpoint of the free surface. Mathematically, the problem may be
stated as follows. The velocity potential for the small time-harmonic irrotational motion (the harmonic time
factor is omitted in the following) of the inviscid, incompressible fluid must satisfy Laplace’s equation in the
fluid domain [3]

r2Fðx; yÞ ¼ 0, (1)

with the linearized free-surface boundary condition

lFþ
qF
qy
¼ 0, (2)

where l ¼ o2=g, o is circular frequency of the oscillations, and g is the acceleration due to gravity. In addition,
the zero normal derivative at the rigid wall of the container implies that

qF
qn
¼ 0, (3)

where n is the normal to the container boundary (see Fig. 1). The above system describes an eigenvalue
problem with the eigenvalue l appearing in the boundary condition (2) rather than the differential equation.

ARTICLE IN PRESS

Fig. 1. Problem geometry: (a) baffled elliptical tank and (b) unbaffled elliptical tank.

S.M. Hasheminejad, M. Aghabeigi / Journal of Sound and Vibration 324 (2009) 332–349 335

Example 1.2.2 (Hydrodynamics [55]) Consider a liquid in half-full hor-
izontal elliptical tank. In Fig. 1.2 is illutred a cross section of an elliptical
container. We are interested to study the natural sloshing frequencies of
transverse modes. Mathematically, the problem may be stated as follows.

1.2. INTEGRALS OVER UNBOUNDED INTERVALS 20

The velocity potential for the small time-harmonic irrotational motion (the
harmonic time factor is omitted in the following) of the inviscid, incompress-
ible fluid must satisfy Laplace’s equation in the fluid domain

∇2Φ(x, y) = 0, (1.2.5)

with the linearized free-surface boundary condition

λΦ + ∂Φ
∂y

= 0, (1.2.6)

where λ = ω2/g, ω is circular frequency of the oscillations, and g is the
acceleration due to gravity. In addition, the zero normal derivative at the
rigid wall of the container implies that

∂Φ
∂n

= 0 (1.2.7)

where n is the normal to the container boundary. Next, utilizing the trans-
formation

ξ = α + iβ = 2 tanh−1(m1/4
1 sn

[
(2K1/π) sin−1 (z/c) |m1

]
Laplace’s equation (1.2.5) for the pontential Φ(α, β) can be written as

∂2Φ
∂α2 + ∂2Φ

∂β2 = 0, −∞ < α <∞, 0 < β < β0, (1.2.8)

the free surface condition (1.2.6) becomes[
λγ(α)Φ + ∂Φ

∂β

]
β=0

= 0 (1.2.9)

and the zero normal condition (1.2.7) is reformulated as

∂Φ
∂β

∣∣∣∣∣
β=β0

= 0 (1.2.10)

with sn(η|m) = sin[F−1(η,m)], where F (η,m) =
∫ φ

0
(1/

√
1−m sin2 θ)dθ,

and

γ(α) = cπ

m
1/4
1 K1

cos((π/2K1)sn−1[m−1/4
1 tanh(α/2)|m1])

[
1− tanh2(α/2)

]
√

[1−m−1/2
1 tanh2(α/2)][1−m1/2

1 tanh2(α/2)]
.

1.2. INTEGRALS OVER UNBOUNDED INTERVALS 21

The general solutions for (1.2.8)-(1.2.9), for antisymmetric (A) and symmet-
ric (S) oscillations, in term of Fourier integral are

ΦA(α, β) =
∫ ∞

0
A(τ̄)cosh[(β − β0)τ̄]

cosh(β0τ̄) sin(ατ̄)dτ̄ ,

ΦS(α, β) =
∫ ∞

0
B(τ̄)cosh[(β − β0)τ̄]

cosh(β0τ̄) cos(ατ̄)dτ̄ .

(1.2.11)

By substituting in (1.2.10) and making use of the Fourier sine and cosine
transformations, we reach the corresponding integral eigen-value problems

λ
∫ ∞

0
A(τ̄)IA(τ, τ̄)dτ̄ = τ tanh(β0τ)A(τ),

λ
∫ ∞

0
B(τ̄)IS(τ, τ̄)dτ̄ = τ tanh(β0τ)B(τ).

(1.2.12)

where
IA(τ, τ̄) = 2

π

∫ ∞
0

γ(α) sin(τα) sin(τ̄α)dα,

IS(τ, τ̄) = 2
π

∫ ∞
0

γ(α) cos(τα) cos(τ̄α)dα.
(1.2.13)

A numerical approach to solve (1.2.12) is to transform the eigen-value prob-
lems (1.2.12) into symmetric matrix eigen-value problems. If we use a N̄-
point Gauss-Laguerre quadrature formula of the form

∫ ∞
0

g(τ, τ̄)dτ̄ ≈
N̄∑
i=1

wieτ̄ig(τ, τ̄i),

with nodes τ̄i, weights wi, for i = 1, . . . , N̄ , and g(τ, τ̄) can be either A(τ̄)IA(τ, τ̄)
or B(τ̄)IS(τ, τ̄), we obtain

λMAA = KA,
λMSB = KB.

Here, the elements of vectors A = [Aj] = [A(τj)] and B = [Bj] = [B(τj)], for
j = i, . . . , N̄ , are unknown Fourier coefficients. The matrix K is defined as

K = [Kij] = Diag[τi tanh(β0τi)], i, j = 1, . . . , N̄ ,

1.2. INTEGRALS OVER UNBOUNDED INTERVALS 22

while MA = [MA
ij] and MS = [MS

ij] are given as

MA,S
ij = wieτiIA,S(τj, τi), i, j = 1, . . . , N̄ ,

The kernel integrals IA,S(τj, τi) in (1.2.13) can be also computed with an
opportune Gauss-Laguerre quadrature formula which takes into account the
oscillatory nature of the integrands.

Example 1.2.3 (Quantum Mechanics [56]) One important computational
problem in quantum mechanics is that of evaluating the so called overlap inte-
gral between two wave functions. Given the wave functions ψ1, ψ2, r ∈ [0,∞),

Iψ1,ψ2 =
∫ ∞

0
ψ1(ρ)ψ2(ρ)dρ.

One important case is when ψ1 on the asymptotic interval satisfies the Coulomb
wave function differential equation

d2

dρ2wl(ρ; η) +
(

1− 2η
ρ
− l(l + 1)

ρ2

)
wl(ρ; η) = 0, (1.2.14)

where l, a nonnegative integer, is called the orbital quantum number. Usually
the η argument is omitted. Physically this describes the emission of a charged
particle and parameter η refers to the charge and energy of that particle. In
the case of the two proton emission from the nucleus 45Fe, a hot subject in
the recent literature [40]. The equation (1.2.14) has two linear independent
solutions, one of which, denoted in [56] as gl(ρ; η) is highly oscillatory. The
amplitude of oscillations is non constant as the frequency slightly increases
with ρ. However, for big ρ these deviations tend to extinct down. By consid-
ering

ψ1(ρ) = gl(ρ; η),
and

ψ2(ρ) = exp(−aρ),
where a is a positive constant which describes the behaviour of a neutral
particle in a bound state, the overlap integral assumes the form

Iψ1,ψ2 =
∫ ∞

0
e−aρgl(ρ; η)dρ.

that is an infinte integral as in (1.2.1).

1.2. INTEGRALS OVER UNBOUNDED INTERVALS 23

1.2.4 Theoretical results
More in general speaking, integrals of the type (1.2.1) are well described
in the theory of Laplace transform. Starting from a real function f(t), an
integral of the form

L [f(t)] = F (s) =
∫ ∞

0
e−stf(t)dt (1.2.15)

is called Laplace transform of f . Here, we suppose t is a real variable and s is
a complex variable. The function F (s) is know as generating function while
f(t) is named determinig function. We observe that when s = 1 integral in
(1.2.15) is exactly as in (1.2.1). A Laplace integral as in (1.2.15) is convergent
for values of s lying in a half plane Re(s) > σ, and defines a single-valued
analytic function F (s) there. For more details on the convergence of the
Laplace tranform, the following results holds [38, 102]. We begin giving the
following defintions.

Definition 1.2.3 A function is called sectionally continuous or piecewise
continuous in an interval [a, b] if the interval can be subdivided into a finite
number of intervals in each of which the function is continuous and has finite
right and left hand limits.

Definition 1.2.4 If real constants M > 0 and σ exist such that for all t > T

|e−σtf(t)| < M or |f(t)| < Meσt

we say that f(t) is a function of exponential order σ as t → ∞ or, briefly,
is of exponential order.

Intuitively, functions of exponential order cannot “grow” in absolute value
more rapidly thanMeσt as t increases. In practice, however, this is no restric-
tion since M and σ can be as large as desired. Bounded functions, such as
sin(at) or cos(at), are of exponential order. Then we can state the following
theorem.

Theorem 1.2.1 If f(t) is sectionally continuous in every finite interval 0 <
t < T and of exponential order σ for t > T , then its Laplace transform F (s)
exists for all s > σ.

More in general, the assumption of piecewise continuity can be replaced by
an hypothesis of integrability for the function f .

1.3. VOLTERRA INTEGRAL EQUATIONS 24

Theorem 1.2.2 Analitic continuation to a larger region may be possible. If
f(t) grows at most exponentially, i.e., if f(t) satisfies an inequality of the
form

|f(t)| ≤Meσt, t→∞ (1.2.16)

and if for all T > 0 one has ∫ T

0
|f(t)|dt <∞ (1.2.17)

then Laplace integral converges for all Re(s) > σ.

Remark 1.2.1 For oscillatory function f(t) as in (1.2.2), with f1 and f2
either of exponential order σ ∈ [0, 1) or bounded in [0,∞), the Laplace trans-
form (1.2.15) exists for any s. In particular for s = 1.

1.3 Volterra Integral Equations
When we consider a physical or biological quantity, that evolves during a
time span and its current state depends on all its past, a natural way to
mathematically describe it is by means a Volterra integral equation (VIE).

1.3.1 A brief overview
Let’s start from giving the definition of Volterra integral equation.

Definition 1.3.1 Let g be a continuos function on I, called forcing function,
where I := [0, T], and T < ∞. Let be D := {(t, s) : 0 ≤ s ≤ t ≤ T} and
consider on D a continuous function K, called kernel, then the equation

y(t) = g(t) +
∫ t

0
K(t, s)y(s)ds, t ∈ I, (1.3.18)

is named linear Volterra integral equation of the second kind for the unknown
function y(t).

Functional equations as (1.3.18) are useful in order to model problems with
memory in many contexts such as Physics, Biology and Engineering. It is
worth noting that the upper limit of integration of the integral operator in
(1.3.18) is variable while the lower one is constant. It is only according to

1.3. VOLTERRA INTEGRAL EQUATIONS 25

custom that it is fixed to zero but this choice does not lose the generality of
the definition. It is also for this reason that when evolutionary problems in
the time are considered, the lower limit is called time zero.
A particular interest we focus when the kernel K in (1.3.18) has the special
form K(t, s) = k(t− s) on the domine D, i.e. the integral equation becomes

y(t) = g(t) +
∫ t

0
k(t− s)y(s)ds, t ∈ I, (1.3.19)

An equation as in (1.3.19) is so called linear convolution integral equation.
There exists also a nonlinear counterpart of (1.3.18) that is defined as it
follows.

Definition 1.3.2 Let g = g(t) be a continuous function on I, named forcing
function, where I := [0, T], and T < ∞. Let D := {(t, s) : 0 ≤ s ≤ t ≤ T}
and ΩB := {(t, s, z) ∈ D × R : |z − g(t)| ≤ B} where B is a positive constant.
Consider the continuous function K = K(t, s, z) on ΩB, named kernel, then
the equation

y(t) = g(t) +
∫ t

0
K(t, s, y(s))ds, t ∈ I, (1.3.20)

is called nonlinear Volterra integral equation of the second kind for the un-
known function y(t).

A subclass of these nonlinear VIEs is that of so called Hammerstein equations
where the kernel has the special form

K(t, s, y(s)) = k(t, s)G(s, y(s)).

They become very interesting when the function G is of the type

G(s, y(s)) = y(s) +H(s, y(s)),

in other words, in this particular case, the special Hammerstein equation of
the form

y(t) = g(t) +
∫ t

0
k(t, s) [y(s) +H(s, y(s))] ds, t ∈ I, (1.3.21)

can be viewed as semilinear equation or a perturbated equation of a linear
VIE (1.3.18). The interest arises from the fact that in many applications we
have a semilinear equation that describes the problem.

1.3. VOLTERRA INTEGRAL EQUATIONS 26

1.3.2 VIEs with periodic solution
Various physical and biological periodic phenomena with memory can be
modeled by Volterra integral equations with periodic solution of the type

y(x) = f(x) +
∫ x

−∞
k(x− s)y(s)ds, x ∈ [0, xend]

y(x) = ψ(x), −∞ < x ≤ 0,
(1.3.22)

where k ∈ L1(IR+), f is continuous and periodic on [0, xend], ψ is continu-
ous and bounded on IR−. Examples include the problem of finding periodic
response of nonlinear circuits to a periodic input [82, 93–95]. In [2] the op-
timal harvesting of an age-structured population in a periodic environment
(subject to periodic birth and mortality rates) is considered. Here the age
density population at the generic time t depends on the age density of zero
old population at the time t and this last one is solution of periodic VIE.
In [76] a threshold value for the existence and the uniqueness of a non-
trivial endemic periodic solution of an age-structured SIS epidemic model
with periodic parameters is studied. Finally, in [45] the authors describe the
Dirichlet-to-Neumann map for heat equation, in the time-dependent domain,
when Dirichlet boundary condition is a periodic function, with zero initial
condition and the boundary of the domain has linear dependence on time.

1.3.3 Examples
Example 1.3.1 (Nonlinear circuits response [82,93–95]) A major pro-
blem in nonlinear circuit simulation is finding steady-state response without
having to integrate through the transient regime, which is computationally
expensive in the case of lightly damped systems, such as power supplies and
high-Q amplifiers. Historically, the interest in the nonlinear steady-state
problem goes back, at least, to the van der Pol oscillator. Originally used
as a sine-wave generator, it has kept its popularity due to its simple struc-
ture and yet complex behavior. There are three types of nonlinear steady-state
response, all of which can be observed on the van der Pol oscillator: peri-
odic, quasi-periodic, and chaotic, and these have been studied extensively.
Authors in [82,93–95] concentrate on the periodic problem and whose results
can be extended to the quasi-periodic case. The periodic solution in a linear
circuit can be obtained easily through the application of Laplace transform
techniques. However, such methods cannot be used for a nonlinear circuit.

1.3. VOLTERRA INTEGRAL EQUATIONS 27

Consider a nonlinear circuit where all the nonlinear components and indepen-
dent sources have been extracted, thus leaving behind a linear interconnection
network. A simple example is shown in Figure 1.4(a). Let all of the nonlinear

Figure 1.3: Nonlinearity extraction and modeling

!

1\!+"

!!!
a!

!!!!

!!!
b!

!!!
u!

!!!i=G(x)!

(a) nonlinear circuit

!

1\!+"

!!!
a!

!!!!

1\!

!!!
b!

!!!
u!

!!!f(x)=G(x))gx!

!!!g

!
!!!
f(x)!

(b) linearized circuit

elements be modeled by a linear component in combination with a nonlinear
dependent source, as in Figure 1.4(b). Note that the terminal conditions for
the nonlinearities remain the same, even though the value of the linear mod-
eling component is free to be picked. This idea has been suggested elsewhere,
but it has nevertheless been the standard practise in the liturature to use only
a nonlinear controlled source in place of the nonlinearity. The aim is to con-
verge to the whole periodic solution as a waveform; hence, the value of the
modeling parameter can determine the extent of a linear approximation to the
nonlinear circuit in a describing function sense. The controlling variable for
the nonlinearity will be affected by both the input and the controlled source.
Therefore, the resulting formulation is of the following form:{

x̂ = Aû+BF (x)
ŷ = Cû+DF (x) (1.3.23)

where x̂(s) denotes the controlling parameter of nonlinearity (i.e., voltage
or current), ŷ(s) represents the output, û(s) is the periodic input and F
represents, in a purely formal way, the Laplace transform of f(x(t)), that is
the nonlinear source term. In fig. 1.4 is illustred a purely formal scheme
of a nonlinear network with periodic input. Operators A, B, C and D are

1.3. VOLTERRA INTEGRAL EQUATIONS 28

Figure 1.4: Nonlinear network scheme with periodic input

!
!
!
!
!
!
!
!
!

!
!
!

!
!
!
!
! !

u(t)! y(t)!

periodic!controlling!
parameter!

quasi5periodic!
output!

nonlinear!
circuit!

x(t)!

periodic!
input!

linear and they depend on the chosen value of the linear modeling element.
When we consider dynamic networks, Aû(s) and BF (x(t)) terms represent
convolution integrals in the time-domain. v̂ = Aû is the solution of a linear
problem, so we have to solve

x̂ = v̂ +BF (x), (1.3.24)

for x̂, which is assumed to be periodic. Since in frequency-domain the prod-
ucts are convolution integrals in time-domain, (1.3.24) becomes a Volterra
convolution equation:

x(t) = v(t) +
∫ t

−∞
ba(t− τ)f(x(τ))dτ (1.3.25)

where ba denotes the intrinsic impulse response of the circuit to the nonlinear
source.

Example 1.3.2 (Optimal harvesting [2]) The biological relevance of the
problem that we consider in this example is that natural populations are ac-
tually subject to seasonal fluctuations which have to be taken into account
when the harvesting strategy is planned. The main assumptions imply that
the population would go extinct if harvested at the minimum rate without any
infusion. In fact, the infusion sustains permanent oscillations of the system.
The aim it that the expected results may show that under some technical but
practically realistic conditions the optimal harvesting effort is independent of
the forcing term and only depends on the vital rates of the population. The
starting point is to consider the classical linear Lotka-McKendrick model for

1.3. VOLTERRA INTEGRAL EQUATIONS 29

some periodic age-dependent population dynamics, where some periodic vital
rates and a periodic forcing term sustain the oscillations. The periodicity
arises from the seasonal fluctuations which have to be considered when an
harvesting strategy is planned. This evolution problem is described by the
system:

pt + pa + µ(a, t)p = f(a, t)− u(a, t)p, (a, t) ∈ Q,
p(0, t) =

∫ a†

0
β(a, t)p(a, t)da, t ∈ R,

p(a, t) = p(a, t+ T), (a, t) ∈ Q,
(1.3.26)

where Q = [0, a†) × R, with a† ∈ (0,+∞) is the maximum attainable age,
p(a, t) is the age density of the population with

pa = ∂p

∂a
and pt = ∂p

∂t
.

Moreover, the vital rate β(a, t) and µ(a, t) (birth and mortality rates, respec-
tively) are supposed T -periodic with respect to time t, with T > 0. Also, it
is assumed that the population is subject to a T -periodic external flow f(a, t)
and to a T -periodic age-specific harvesting effort u(a, t). The aim is to find-
ing the optimal harvesting effort that gives the maximal yield. It can prove
that a unique positive periodic solution there exists and a unique correspond-
ing optimal control is established. The solution of (1.3.26) has the analytical
form:

p(a, t) = b(a, t)Π(a, t, a;u) +
∫ a

0
f(a− σ, t− σ)Π(a, t, σ;u)dσ, (1.3.27)

where

Π(a, t, x;u) = exp
{
−
∫ x

0
[µ(a− σ, t− σ) + u(a− σ, t− σ)] dσ

}
,

and b(t) = lim
h→0+

p(h, t + h) a.e. in R is a solution of the Volterra integral
equation:

b(t) =
∫ t

0
K(t, s;u)b(t− s)ds+ F (t), t ≥ 0. (1.3.28)

Here

K(t, s;u) =


β(s, t)Π(s, t, s;u), if 0 ≤ s ≤ min{t, a†}

0, otherwise
(1.3.29)

1.3. VOLTERRA INTEGRAL EQUATIONS 30

and

F (t) =
∫ ∞

0
β(a+ t, t)p(a, 0)Π(a+ t, t, t;u)da+

+
∫ ∞

0
β(a, t)

∫ min{t,a}

0
Π(a, t, σ;u)f(a− σ, t− σ)dσda,

with t > 0 and functions β, Π and p(a, 0) vanish outside the range [0, a†).
You can show that a unique T -periodic solution exists for (1.3.28). We finally
note that p(a, t) in (1.3.27) depends on the solution of VIE (1.3.28).

Example 1.3.3 (Seasonality of infectious diseases [76]) The seasonal-
ity of infectious diseases is one of most important research interests in mathe-
matical epidemiology, since the transmission parameters and host population
behavior usually depend on season. Consider a susceptible and infective popu-
lation subject to a seasonal disease. Let S(t, a) and I(t, a) be the age-densities
at time t and age a ∈ [0, ω] of susceptible and infective individuals respec-
tively, with ω < ∞ denotes the maximum attainable age. Assume µ(t, a) is
the age-specific mortality rate at time t, γ(t, a) is the age-specific recovery
rate, k(t, a, σ) is the transmission coefficient between susceptible individuals
aged a and infective individuals aged σ, f(t, a) is the agespecific fertility rate
and λ(t, a) is the force of infection to susceptible individuals aged a, at time
t, respectively. Let P (a, t) the total density of population aged a at the time
t, i.e.,

P (t, a) = S(t, a) + I(t, a)
and N(t) the total size at the time t, that is

N(t) =
∫ ω

0
P (t, a)da,

then the age-structured SIS epidemic model with time-periodic parameters
µ, f, γ, k is formulated by the following normalized Lotka-McKendrick system

(
∂

∂t
+ ∂

∂a

)
i(t, a) = λ(t, a)(1− i(t, a))− γ(t, a)i(t, a)

λ(t, a) =
∫ ω

0
β(t, a, σ)i(t, σ)dσ

i(t, 0) = 0, i(0, a) = i0(a)

(1.3.30)

with
i(t, a) = I(t, a)

P (t, a) , s(t, a) = S(t, a)
P (t, a) = 1− i(t, a),

1.3. VOLTERRA INTEGRAL EQUATIONS 31

and with the time-periodic transmission kernel given by

β(t, a, σ) = k(t, a, σ)θ(t, σ),

where θ(t, a) = P (t, a)N(t) is assumed as the attained periodic stable age
profile. You can prove that, under opportune assumptions, there exists a
constant α ∈ (0, 1) such that problem (1.3.30) has a unique periodic solution
i(t, a), that is given as solution of the Volterra integral equation

i(t, a) = e− 1
α
tetAi0(a)+ 1

α

∫ t

0
e− 1

α
(t−s)e(t−s)A [i(s, a) + αF (s, i(s, a))] ds, t > 0,

(1.3.31)
where the nonlinear part of kernel is defined as

F (t, i(t, a)) = (1− i(t, a))
∫ ω

0
β(t, a, σ)i(t, σ)dσ − γ(t, a)i(t, a),

and the operator (Aϕ)(a) := − d
daϕ(a) generates the C0-semigroup

(etAϕ)(a) =
{

0, t > a
ϕ(t− a), t < a

The kernel of Volterra integral equation (1.3.31) is as in (1.3.22) with a the
addition of a nonlinear part.

1.3.4 Theoretical results
For sake of completeness, we will report some main results on the existence
and the uniqueness of the solution for a general linear VIEs as in (1.3.18)
and for nonlinear VIEs as in (1.3.20) [8]. Also, we will report some theorems
concerning the form of the solution for the convolution VIEs and for the
Hammerstein equations. Finally, some results on the existence of periodic
solution will be provided.

Theorems on general VIEs

Let’s start to consider the following theorem on the linear Volterra integral
equations [8].

1.3. VOLTERRA INTEGRAL EQUATIONS 32

Theorem 1.3.1 Let K ∈ C(D), and let R denote the resolvent kernel asso-
ciated with K, i.e., R = R(t, s) is the unique uniform limit function of the
so called Neumann series defined by

R(t, s) :=
∞∑
n=1

Kn(t, s),

with

K1(t, s) := K(t, s), and Kn(t, s) :=
∫ t

s
K(t, v)Kn−1(v, s)dv, n ≥ 2,

then for any g ∈ C(I) the second-kind Volterra integral equation (1.3.18) has
a unique solution y ∈ C(I), and this solution is given by

y(t) = g(t) +
∫ t

0
(R(t, s)g(s)ds, t ∈ I.

From this theorem it is possible to prove that the solution of convolution
equation as (1.3.19) inherits the structure of the convolution kernel [8].

Theorem 1.3.2 If k ∈ C(D), then, for any g ∈ C(I), the convolution VIE
(1.3.19) has a unique solution y ∈ C(I) given by

y(t) = g(t) +
∫ t

0
ρ(t− s)g(s)ds, t ∈ I, (1.3.32)

where the resolvent kernel ρ is defined as

ρ(t− s) :=
∞∑
n=1

kn(t− s)

with

ρ1(t−s) := k(t−s), and ρn(t−s) :=
∫ t

s
k(t−v)kn−1(v−s)dv, n ≥ 2,

Corresponding theorems on the nonlinear case can be formulated as it follows
[8].

Theorem 1.3.3 Let g ∈ C(I), K ∈ C(ΩB) and K satisfies the Lipshitz
condition

|K(t, s, y)−K(t, s, z)| ≤ LB|y − z|, (t, s, y), (t, s, z) ∈ ΩB.

1.3. VOLTERRA INTEGRAL EQUATIONS 33

Then the terms of the series

y0(t) := g(t)
yn(t) := g(t) +

∫ t

0
K(t, s, yn−1(s))ds, n ≥ 1, t ∈ I.

are defined and continuous on the range I0 := [0, δ0], where

δ0 := min
{
T,

B

MB

}
,

and they tend on I0 to a solution y ∈ C(I0) of the nonlinear Volterra integral
equation (1.3.20). Moreover this solution is the unique continuous one on I0.

As well as it happens for the convolution equations, so for the semilinear
Hammerstein equations the solution inherits the semilinear structure.

Theorem 1.3.4 Suppose that the nonlinear integral equation (1.3.21) has a
unique solution y ∈ C(I), and let H : I × R→ R be (Lipschitz) continuous.
Then the solution of this equation may be written as

y(t) = y`(t) +
∫ t

0
R(t, s)H(s, y(s))ds, t ∈ I,

where y` denotes the (unique) solution of the linear part of (1.3.21) and it is
given by

y`(t) = g(t) +
∫ t

0
R(t, s)g(s)ds, t ∈ I,

with R = R(t, s)denoting the resolvent kernel corresponding to the given
kernel k = k(t, s).

Theorems on periodic VIEs

We finally report some special theorems on the existence of periodic solutions
when periodic assumptions are supposed [9].

Theorem 1.3.5 Consider the periodically forced VIE:

y(x) = f(x) +
∫ x

−∞
k(x− s)y(s)ds, x ∈ IR, (1.3.33)

where k : IR→ IR, k ∈ L1(0,∞) and k(x) = 0 for x < 0, f is continuous and
T–periodic. Let H(s) = 1 − K̂(s), where K̂(s) is the Laplace transform of
k. If H(s) does not vanish on the imaginary axis, then (1.3.33) has a unique
continuous T–periodic solution φ(x).

1.4. ORDINARY DIFFERENTIAL EQUATIONS 34

Theorem 1.3.6 Assume that hypotheses of Th. 1.3.5 hold. Then the solu-
tion of the initial value problem (1.3.22) is periodic if and only if the initial
function ψ(x) is the unique solution φ(x) of equation (1.3.33).

1.4 Ordinary Differential Equations

1.4.1 A brief overview
Many problems in science can be modeled by an Initial Value Problem (IVP),
i.e. by a so called Ordinary Differential Equation (ODE) with some initial
conditions. General speaking, an ODE is a relation containing one real in-
dependent variable x ∈ R, the real dependent variable y, and some of its
derivatives y′, y′′, ..., y(n), (with ′ := d

dx). The order of an ODE is defined
to be the order of the highest derivative in the equation. Besides ordinary
differential equations, if the relation has more than one independent vari-
able, then it is called a Partial Differential Equation (PDE). In general, an
nth-order ODE can be written as

F (x, y′, y′′, ..., y(n)) = 0, (1.4.34)

where F is a known function. A functional relation between the dependent
variable y and the independent variable x, that, in some interval J ⊆ R,
satisfies the given ODE (1.4.34) is said to be a solution of the equation.
Usually one assumes that the (1.4.34) can be solved explicitly for y(n) in
terms of the remaining (n+ 1) quantities as

y(n) = f(x, y′, y′′, ..., y(n−1)), (1.4.35)

where f is a known function. Differential equations are classified into two
groups: linear and nonlinear. An ODE is said to be linear if it is linear in y
and all its derivatives. Thus, an nth-order linear ODE has the form

p0(x)y(n) + p1(x)y(n−1) + . . .+ pn(x)y = r(x), (1.4.36)

and it is said nonlinear otherwise. In (1.4.36) if the function r(x) ≡ 0, then
it is called a homogeneous ODE, otherwise it is said to be nonhomogeneous
ODE. In applications we are usually interested in a solution of the ODE
(1.4.35) satisfying some additional requirements called initial or boundary

1.4. ORDINARY DIFFERENTIAL EQUATIONS 35

conditions. By initial conditions for (1.4.35) we mean n conditions of the
form

y(x0) = y0, y′(x0) = y1, . . . , y
(n−1)(x0) = yn−1, (1.4.37)

where y0, . . . , yn−1 and x0 are given constants. A problem consisting of the
ODE (1.4.35) together with the initial conditions (1.4.37) is called an initial
value problem. It is common to seek a solution y(x) of the initial value
problem (1.4.35), (1.4.37) in an interval J which contains the point x0.
If we deal with an ODE which can be solved in a closed form (in terms
of permutation and combination of known functions xn , ex , sin x), then
the answer to the question of existence of solutions is immediate. However,
unfortunately the class of solvable ODEs is very small, and today we often
come across ODEs so complicated that they can only be solved, if at all, with
the aid of a computer. Any attempt to solve a ODE with no solution is surely
a futile exercise, and the data so produced will not only be meaningless, but
actually chaotic. Therefore, in the theory of ODEs, the first basic problem
is to provide sufficient conditions so that a given initial value problem has at
least one solution.

Definition 1.4.1 A first order ordinary differential equation with initial
condition {

y′ = f(x, y)
y(x0) = y0 ∈ R x ∈ [x0, X] (1.4.38)

with f : [x0, X]× R→ R is known as an Hadamard well-posed Initial Value
Problem (IVP).

For the initial value problem (1.4.38), several easily verifiable sets of sufficient
conditions are given in order to have at least one solution. Fortunately, these
results can be extended to the systems of such initial value problems which
in particular include the problem (1.4.35), (1.4.37). Indeed, we can extend
Defintion 1.4.1 to the multidimensional case as it follows.

Definition 1.4.2 A system based on first order ordinary differential equa-
tions with initial conditions{

z′ = f(x, z)
z(x0) = z0 ∈ Rd x ∈ [x0, X] (1.4.39)

with f : [x0, X]×Rd → Rd is known as an Hadamard well-posed initial value
problem (IVP).

1.4. ORDINARY DIFFERENTIAL EQUATIONS 36

If we consider the generic initial value problem (1.4.35), (1.4.37) and later
we consider the following substitution

z1(x) := y(x)
z2(x) := y′(x)
z3(x) := y′′(x)
. . .

zn(x) := y(n−1)(x)

(1.4.40)

and setting
z(x) := [z1(x), z2(x), . . . , zn(x)]T , (1.4.41)

then, we can obtain a system of n ODEs as in (1.4.39) where

f(x, z) := [z2(x), . . . , zn(x), f(x, z)]T , (1.4.42)

and with initial condition

z0 := [y0, y1, . . . , yn−1]T .

We focus our interest on some special second-order differential equations

1.4.2 Special second-order ODEs with periodic solu-
tion

In some physicist contexts, such as molecular dynamics, sysmology, celestial
mechanics and etc. (see, for example, problems presented in [53,68,89] and on
the references therein.), special second order ordinary differential equations
(ODEs) of the type 

y′′ = f(x, y)
y′(x0) = y′0
y(x0) = y0

, x ∈ [x0, X], (1.4.43)

with prominent oscillatory solution or exponential decay solution, there oc-
cour. For this special problem, the second order equation in (1.4.43) does
not depend explicitly on the first derivative of y.

1.4. ORDINARY DIFFERENTIAL EQUATIONS 37

1.4.3 Examples
Example 1.4.1 (Energy levels of nucleons [50]) Consider the Schrödinger
equation in spherical coordinates

1
r2

∂

∂r

(
r2 ∂

∂r
Ψ
)

+ 1
r2∇θ,ϕΨ + 2µ

h2 (E − V)Ψ = 0, (1.4.44)

corresponding to a particle with reduced mass µ subject to the spherically
symmetric potential V (r). By using the separation of variables, we assume
that the wave function can be expressed as Ψ = Ψ(r, θ, ϕ) = R(r)Yl,m(θ, ϕ).
If we take into account that `2Yl,m = }2l(l + 1), where ` denotes the angular
momentum operator, while } = h

2π and h is the Plack constant, then we reach

d2

dr2χ+ 2µ
(
E − V − }2

2µ
l(l + 1)
r2

)
χ = 0. (1.4.45)

The second order equation (1.4.45) in term of χ(r) = rR(r) is the radial part
of the wave equation. We can rewrite equation (1.4.45) in simplified form as

ρ2χ′′(ρ) + fε,lχ(ρ) = 0, (1.4.46)

where
fε,l = 2ερ2 − 2vρ2 − l(l + 1), (1.4.47)

and
a = }2

µe2 , ρ = r

a
, E0 = }2e2

µ
, ε = E

E0
, v = v

E0
.

The prime in (1.4.46) denotes derivation with respect to the variable ρ. An
application of (1.4.46) can be find in Nuclear Physics in order to study the
energy levels of nucleons (protons and neutrons) inside the atomic nucleus.
For example, a widely accepted potential is the Woods-Saxon potential [4,44,
50]

v(ρ) = − v0

1− e ρ−Rα
that is a mean field potential and where R, α and v0 are parameters. For this
kind of potential, equation (1.4.46) cannot be solved analytically, and must
be treated numerically.

1.4. ORDINARY DIFFERENTIAL EQUATIONS 38

Example 1.4.2 (Lane-Emden equation [104]) A coupled set of nonlin-
ear differential equations is need to solve in order to study the stellar struc-
ture. The model begins with the polytropic equation of state where, after some
analysis, the fully convective physical system is reduced to Poisson’s equation
for the gravitational potential of an adiabatic gas sphere, better known as the
Lane-Emden equation

1
x

d
dx

(
x2 dy

dx

)
= −g(y), x > 0 (1.4.48)

with
g(y) = ym, m = 0, 1, 2

In addition to stellar structure, a large variety of other phenomena in theoret-
ical physics and astrophysics are described by the Lane-Emden equation, such
as, the thermal history of a spherical cloud of gas, isothermal gas spheres,
radiatively cooling, self-gravitating gas clouds, in the mean-field treatment
of a phase transition in critical absorption or in the modeling of clusters of
galaxies and thermionic currents, see [39, 78] and references therein. Some
more recent contributs can be found also in [104] and in [91]. In physical
terms, it is interesting to study the solutions of (1.4.48) when the so called
polytropic index m assume the integer values 0, 1, 2, 3, 4 and 5. For m = 0, 1
and 5, analytical solutions can be computed, while, for m = 2, 3 and 4, a
numerical approach is need and where a oscillatory behaviour of solution is
expected. It is easy to rewrite (1.4.48) as

xy′′ + 2y′ + xg(y) = 0, x > 0, (1.4.49)

with initial conditions

y(0) = 1, y′(0) = 0.

Then, by considering the substitution

u = x y,

from (1.4.48) follows the special second order ODE,

u′′ + xm−1um = 0, (1.4.50)

that is similar to (1.4.43).

1.4. ORDINARY DIFFERENTIAL EQUATIONS 39

Example 1.4.3 (Bessel’s equation [3]) In many contexts, such as Physics,
Chemistry and Engineering, the Bessel’s equation

x2y′′ + xy′ + (x2 − a2)y = 0, x > 0 (1.4.51)

plays an important role. Using the substitution

u =
√
x y,

it is easy to see from [1] that (1.4.51) can be write as

u′′ +
(

1 + 1− 4a2

4x2

)
u = 0, (1.4.52)

that is independent on the first derivative u′. In other words we obtain a
linear case of the special ODE (1.4.43).

1.4.4 Theoretical results
For sake of completeness, we will report some main results on the existence
and the uniqueness of the solution for a general system of ODEs as in (1.4.39).
Also, we will report some theorems concerning the existence of periodic so-
lution for special second-order ODEs as in (1.4.43).

Theorems on general ODEs

For the existence and the uniqueness of solution for (1.4.43) the classical
approach for ODEs can be used, i.e., the reduction of second order equation
(1.4.43) into a first order system (as made in (1.4.40), (1.4.41) and (1.4.42))
and then the application of the classical theorems on the existence and the
uniqueness of the solution for systems of first order ODEs [1, 57].

Theorem 1.4.1 (Local Existence) Let the following conditions hold:

(i) f(x, z) is continuous in Ω :=
{

(x, z) ∈ Rd+1 : |x− x0| ≤ a, ‖z− z0‖ ≤ b
}

and hence there exists a M > 0 such that ‖f(x, z)‖ ≤ M for all
(x, z) ∈ Ω.

(ii) f satisfies the uniform Lipschitz condition

‖f(x, z)− f(x,v)‖ ≤ L

for all (x, z), (x,v) ∈ Ω.

1.4. ORDINARY DIFFERENTIAL EQUATIONS 40

(iii) z0(x) is continuous in |x− x0| ≤ a and ‖z0(x)− z0‖ ≤ b.

Then the sequence {zm(x)} generated by the Picard iterative scheme
z0(x) = z0(x)

zm+1(x) = z0 +
∫ x

x0
f(t, zm(t))dt, m = 0, 1, . . .

converges to the unique solution z(x) of the problem (1.4.39). This solution
is valid in the interval Jh := (x0−h;x0+h) with h := min {a, b/M}. Further,
for all x ∈ Jh the following error estimate holds

‖z(x)− zm(x)‖ ≤ NeLh min
{

1, (Lh)m
m!

}
, m = 0, 1, . . .

where ‖z1(x)− z0(x)‖ ≤ N .

Theorem 1.4.2 (Global Existence) Let the following conditions hold:

(i) f(x, z) is continuous in ∆ =
{

(x, z) ∈ Rd+1 : |x− x0| ≤ a, ‖z‖ <∞
}

and hence there exists a M > 0 such that ‖f(x, z)‖ ≤M for all (x, z) ∈
Ω.

(ii) f satisfies the uniform Lipschitz condition

‖f(x, z)− f(x,v)‖ ≤ L

for all (x, z), (x,v) ∈ ∆.

(iii) z0(x) is continuous in |x− x0| ≤ a.

Then the sequence {zm(x)} generated by the Picard iterative scheme
z0(x) = z0(x)

zm+1(x) = z0 +
∫ x

x0
f(t, zm(t))dt, m = 0, 1, . . .

exists in the entire interval J := (a, b) and converges to the unique solution
z(x) of the problem (1.4.39).

1.5. AIM 41

Theorems on periodic ODEs

A more particular case we can discuss when equation (1.4.43) is linear, that
is, it has the following form:

y′′ + q(x)y = 0, (1.4.53)

with x ∈ J = [0,∞), q(x) ∈ C(J). In Example 1.4.3, equation (1.4.46), and,
in Example 1.4.3, equation (1.4.53) are just linear. For this case, you can
prove the following theorem [1].

Theorem 1.4.3 (Sturm’s Comparison) If α, β ∈ J are the consecutive
zeros of a nontrivial solution y(x) of (1.4.53), and if q1(x) is continuous and
q1(x) ≥ q(x), q1(x) 6= q(x) in [α, β], then every nontrivial solution z(x) of
the ODE

z′′ + q1(x) = 0

has a zero in]α, β[.

A direct consequence of this theorem is the following corollary [1].

Corollary 1.4.1 If q(x) ≥ (1 + ε)/(4x)2, with ε > 0 for all x > 0, then the
special linear ODE (1.4.53) is oscillatory in J = (0,∞).

1.5 Aim
Sometimes, for the simulation of evolutionary problems is needed to use a
numerical approach. For example, when the analytical solution is not known
in closed form or it is too complicated to evaluate, then a numerical method
that efficiently reaches a good approximation of solution is the better strat-
egy to consider. For problems as in (1.2.1), (1.3.22) and (1.4.43), in the next
chapters, we propose some new numerical approches in order to solve them.
Firstly an outline on the state of art of the existent numerical methods for
each of three considered mathematical problems is provided. Then, for these
special problems we take into account the qualitive behaviour of solutions,
that in general could be either oscillatory or with exponentially decaying.
It this for this reason that we consider as important tool for our pourpose
the Exponetial-Fitting (EF) technique [68]. In the following, we give more
details on this theory and a description how apply that to the problems.

1.5. AIM 42

The formulation of some so called special purpose methods requires the knowl-
edge of the analytical properties of the problem taken into account. For ex-
ample, if we know that the problem arises from an oscillatory phenomenon,
we can exploit this information in order to build ad hoc methods that com-
pute the solution more efficiently than a so called general purpose method.
Indeed, if we have to solve a highly oscillatory problem, the general purpose
methods is constrained to consider a small stepsize. We see that with a spe-
cial purpose method, as those built by EF, this requirement will not be so
hard.

Chapter 2

Exponentially fitted methods

We saw from the previous chapter that various physical and biological phe-
nomena are described by mathematical models that show a oscillatory or
periodic behaviour. In many cases the use of numerical methods is the only
strategy to solve the problem, such as in (1.3.28), where we know that a
unique periodic solution there exists but we do not have any information
about its analytical form. This reason togheter to the aim to build efficient
algorithms, gets us to consider some suitable techniques that exploit the pe-
riodic nature of the problem. So we focus on the Exponential Fitting theory,
that is succeffully applied for the numerical treatment of oscillstory problems
in the context of ODEs, VIEs, quadrature and interpolation.

2.1 The Exponential Fitting Technique
The basic idea behind Exponential Fitting (EF) is to derive numerical meth-
ods that are specially suited for oscillatory problems. These exponentially
fitted (ef) methods are always based on non-fitted counterparts. To make a
clear distinction between e.g. an exponentially fitted Trapezoidal rule and the
Trapezoidal rule, we will refer to the latter as the classical Trapezoidal rule.
In general, Exponential Fitting is applicable to many numerical problems
i.e. numerical differentiation, integration, interpolation, numerical solution
of ordinary differential equations and recently Volterra integral equations.
An extensive overview for these and other applications can be found in [68].
A classical method usually performs best when the solution is a polyno-
mial or can aptly be represented as one locally. A k-step Adams-Bashforth

43

2.1. THE EXPONENTIAL FITTING TECHNIQUE 44

method can even find a polynomial solution of degree k without errors. In
EF terminology, it is said that the method has a fitting space

FS =
{

1, t, . . . , tk
}

(2.1.1)

If the solution of the problem at hand is a linear combination of these mono-
mials, then the method can solve the problem up to machine accuracy. The
solution is said to fall within the fitting space of the method. To obtain an
exponentially fitted variant of a method, a few of the highest-order mono-
mials are replaced by exponentials. The most general fitting space is of the
form {

1, t, . . . , tK , eω0t, eω1t, . . . , eωP t
}
. (2.1.2)

Any solution that is a linear combination of these functions, can be found
up to machine accuracy by a method with said fitting space. Such a method
has coefficients that depend on the parameters ω0, ,, ωP multiplied by step-
size h. If all the parameter values tend to zero, then the classical counterpart
appears. For complicated fitting spaces, the coefficients functions sometimes
become numerically unstable for small parameter values. On should then
resort to MacLaurin expansions instead.
Example 2.1.1 The classical Euler method given by{

yn+1 = yn + hf(tn, yn)
y0 = y(t0) (2.1.3)

has FS = {1, t}. The exponentially fitted Euler method given byyn+1 = yn + h
ez − 1
z

f(tn, yn)
y0 = y(t0)

with z := ωh, has FS = {1, eωt}. We note that indeed

lim
ω→0

ez − 1
z

= 1.

Usually, however, the parameters are chosen symmetrically across the origin{
1, t, . . . , tK , e±ω0t, e±ω1t, . . . , e±ωP t

}
(2.1.4)

because the fitting space can also be written as{
1, t, . . . , tK , cosh(ω0t), sinh(ω0t), . . . , cosh(ωP t), sinh(ωP t)

}
. (2.1.5)

2.1. THE EXPONENTIAL FITTING TECHNIQUE 45

Example 2.1.2 The exponentially fitted Euler method with FS = {e±ωt} is
given by {

yn+1 = ayn + hbf(tn, yn)
y0 = y(t0)

with
a = cosh(z) = 1 + 1

2z
2 + 1

24z
4 +O(z6),

b = sinh(z)
z

= 1 + 1
6z

2 + 1
120z

4 +O(z6).

The coefficients clearly indicate that the method is fitted for exponential prob-
lems with frequency ω. If ω is purely imaginary, then the method is fitted for
trigonometric problems. We again see that, if ω → 0, we obtain the classical
Euler method (2.1.3). We also see that there are only even powers of z in
the series expansions of the coefficients. This is due to the symmetry in the
fitting space.

In principle, the parameters ω0, . . . , ωP can all be given different values. It
can however be interesting to specify a relation between the different pa-
rameters. The approach that we will consider in most of thi s work, is
ω0 = ω1 = . . . = ωP , a choice that leads to a fitting space of the form{

1, t, . . . , tK , e±ωt, te±ωt, . . . , tP e±ωt
}
. (2.1.6)

This is the approach taken for example by the authors in [66, 68, 98]. A
different strategy is to consider fitting spaces of the form{

1, t, . . . , tK , e±ωt, e±2ωt, . . . , e±Pωt
}

(2.1.7)

a choice made in [11] and in [83]. Regardless of the form of the fitting space,
it is usually imposed that the parameter value(s) are either real or imaginary
but also complex values can be considered.

2.1.1 The six step procedure
In [68], the authors provide a six-step procedure (the six-step flow chart) that
one can follow to construct exponentially fitted methods with a fitting space
of the form (2.1.6). Since we will follow this procedure in Chapter 3, we
here give a full outline. Remark that, in the last step, we use also a different
approach, based on the work [23].

2.1. THE EXPONENTIAL FITTING TECHNIQUE 46

Step I: the L operator

We define an operator L[h, a] with a structure that is closely related to the
scheme under consideration. Vector a is defined as the list of coefficients for
which we need to find expressions.

Example 2.1.3 Suppose we want to construct an exponentially fitted, im-
plicit, one-step method to solve the the general problem y′ = f(t, y). The
corresponding operator L[h, a] is then defined as

L[h, a]y(t) := y(t+ h)− a0y(t)− h[b0y
′(t) + b1y

′(t+ h)]

and a := (a0, b0, b1).

Step II: the Lm operator

We determine the maximum value of M such that the algebraic system

{L∗m(a) = 0|m = 0, . . . ,M − 1}

with
L∗m(a) := h−mL[h, a]tm|t=0

can be solved. In case of a symmetric scheme, one finds that

L∗2k+1(a)

any integer value of k.

Example 2.1.4 For the scheme in Example 2.1.3, we obtain

L∗0(a) =1− a0 (2.1.8)
L∗1(a) =1− b0 − b1 (2.1.9)
L∗2(a) =1− 2b1 (2.1.10)
L∗3(a) =1− 3b1 (2.1.11)

The fourth condition (2.1.11) is clearly incompatible with the third (2.1.10),
so we obtain M = 3.

2.1. THE EXPONENTIAL FITTING TECHNIQUE 47

Step III: construction of G± functions

To construct exponentially fitted methods, we start from

E∗0(±z, a) := e∓ztL[h, a]e±zt

where z := ωh and we build

G+(Z, a) := 1
2 [E∗0(z, a) + E∗0(−z, a)] ,

and
G−(Z, a) := 1

2 [E∗0(z, a)− E∗0(−z, a)] ,

with Z = z2. In case of a symmetric scheme, one finds that G−(Z, a) ≡ 0.
Later, in step V, we will also consider the derivativesG±(m)(Z, a) with respect
to Z. For this purpose, it is helpful to express G±(Z, a) in terms of the so
called η-functions that will be described in Section 2.2. The easy differential
computation of these functions makes easier to compute also the G±(m)(Z, a)
derivatives.

Example 2.1.5 For the scheme considered in Example 2.1.3, we find that

G+(Z, a) = η−1(Z)− b1η0(Z)− a0,

and
G−(Z, a) = η0(Z)− b1η−1(Z)− b0

Step IV: choice of the fitting space

We choose a reference set of M functions:{
1, t, . . . , tK , e±ωt, te±ωt, . . . , tP e±ωt

}
. (2.1.12)

with M = K + 2P + 3. The reference set can be characterised by the couple
(K,P). The set in which there is no classical (i.e. polynomial) component
is identified by K = −1, while the set in which there is no exponential
component is identified by P = −1.

2.1. THE EXPONENTIAL FITTING TECHNIQUE 48

Step V: algebraic system

The next is step to solve the algebraic system{
Lk(a) = 0, k = 0, . . . , K

G±
(p)(Z, a) = 0, p = 0, . . . , P

for a. The expression that we obtain, are the coefficients of our exponentially
fitted method. As P increases, more coefficients depend on the parameter ω
or, more specifically, on Z. It is know that, in the neighbourhood of zero,
numerically instabilities may arise. The use of truncated series is advised in
that region.
Example 2.1.6 For the scheme in Example 2.1.3, for which M = 3, we
have only two choice:
• (K,P) = (2,−1)
By solving the system given by (2.1.8)-(2.1.10), we obtain

a0 = 1, b0 = 1
2 , b1 = 1

2
as coefficients for our classic method.

• (K,P) = (0, 0)
For this case we have to solve the system given by (2.1.8),(2.1.10) and
(2.1.11). We find

a0 = 1

b0 = b1 = η−1(Z)− 1
η0(Z)Z = 1

2 −
1
24Z

2 − 17
40320Z

3 +O(z4).

Since M is odd and the fact that we only consider symmetric expo-
nential fitting, it is not possible to construct a fully exponentially fitted
method.

Step VI: the error

To investigate the error expression, we follow the approach as in [23] who
adapted a theory developped in [51] to the EF framework. The theory con-
siders formulae of the form∫ b

a
g(x)f(x)dx =

n∑
i=1

m−1∑
k=0

Akif
(k)(xi) + E[f]

2.1. THE EXPONENTIAL FITTING TECHNIQUE 49

with a ≤ x1 < x2 < . . . < xn ≤ b and where E[f] = 0 when f is a solution of
a linear differenatial equation L[f] = 0 of order m, related to the method at
hand. The L operator is defined as

L :=
m∑
k=0

ak(x) dm−k
dxm−k

with a0(x) ≡ 1. The error E[y] is given by

E[y] :=
∫ b

a
Φ(x)L[y](x)dx =

n∑
i=0

∫ xi+1

xi
φi(x)L[y](x)dx

in which the different φi can, for a given formula, be computed recursively
with

φi+1(x) = φi(x) +
m−1∑
k=0

Ak,i+1

[
∂k

∂tk
K(t, x)

]
t=xi+1

once φ0 and K(t, x) are known. The latter is the resolvent kernel correspond-
ing to operator L i.e., the solution of L[y](x) that satisfies[

∂k

∂xk
K(x, z)

]
x=z

= δk,m−1, k = 0, . . . ,m− 1

For some methods that we will consider, L := DK+1 (D2 − ω2)P+1, with
D := d

dx and ω denotes the frequency of an oscillatory problem.
If y ∈ Cm(a, b) and if the kernel Φ is of constant sign in (a, b) then the second
mean-value problem theorem for integrals gives

E[y] = L[ζ]
∫ b

a
Φ(x)dx

for some ζ ∈ (a, b). If Φ does non have a constant sign, we can rewrite

Φ(x) = Φ+(x) + Φ−(x),

where Φ±(x) = ±max(0,±Φ(x)), such that if y ∈ Cm(a, b) then the second
mean-value problem theorem for integrals gives

E[y] = L[ζ+]
∫ b

a
Φ+(x)dx+ L[ζ−]

∫ b

a
Φ−(x)dx

for some ζ+, ζ− ∈ (a, b).

2.1. THE EXPONENTIAL FITTING TECHNIQUE 50

Example 2.1.7 The scheme considered in Example 2.1.3 falls within this
framework if we take

g(x) ≡ 0, m = 3, n = 2, φ0(x) ≡ 0,

A01 = a0, A02 = −1, A11 = hb0, A12 = hb1,

x0 = x1 = 0, x2 = x3 = h,

and A = 0 elsewhere.
For the case (K,P) = (0, 0), we have

L := D
(
D2 − ω2

)
from which we can find the resolvent kernel to be

K(t, x) = 1
2ω2

[
eω(t−x) + e−ω(t−x) − 2

]
.

Since we must only consider one time interval, we quickly find

Φ(x) = φ1(x) = a0K(0, x) + hb0

[
∂

∂t
K(t, x)

]
t=0

= th2


(
η2
−1(Z)− η−1(Z)

)
η0(Zt2)

zη0(Z) − η0(Z)η−1(Zt2)


+h2η−1(Zt2)− 1
Z

,

in which x = ht. This expression appears to be of constant sign across
t ∈ [0, h] for all real Z, so we can simply rewrite

E[y] = L[y]
∫ h

0
Φ(x)dx

=
[
y(3)(ζ)− ω2y′(ζ)

]
h3 2η−1(Z)− Zη0(Z)− 2

Z2η0(Z)
=
[
y(3)(ζ)− ω2y′(ζ)

]
h3
[
−1

2 + 1
120Z −

17
20160Z

2 +O(Z3)
]
.

2.2. THE η-FUNCTIONS 51

2.2 The η-functions
The set of functions ηm(Z), m = −1, 0, 1, 2, . . . has been originally introduced
in [63] in the context of CP methods for the Schrödinger equation. The
functions ηm(Z) with m = −1, 0 are first defined by some formulae, viz.:

η−1(Z) =


cos(|Z|1/2) if Z ≤ 0

cosh(Z1/2) if Z > 0
(2.2.13)

and

η0(Z) =


sin(|Z|1/2)/|Z|1/2 if Z < 0

1 if Z = 0

sinh(Z1/2)/Z1/2 if Z > 0
(2.2.14)

and those with m > 0 are further generated by recurrence

ηm(Z) = 1
Z

[ηm−2(Z)− (2m− 1)ηm−1(Z)], m = 1, 2, 3, . . . (2.2.15)

if Z 6= 0, and by following values at Z = 0:

ηm(0) = 1
(2m+ 1)!! , m = 1, 2, 3, . . . (2.2.16)

The differentiation of these functions is of direct concern for this work. The
rule is

η′m(Z) = 1
2ηm+1(Z) , m = −1, 0, 1, 2, 3, . . . (2.2.17)

For more details on these functions see [25,68] or the Appendix of [64].

Chapter 3

EF-Gauss-Laguerre quadrature
formulae for infinite oscillatory
integrals

In this chapter we consider the numerical computation of the integral

I =
∫ ∞

0
e−xf(x)dx, (3.0.1)

when the integrand f(x) is an oscillatory function of the form

f(x) = f1(x) sin(ωx) + f2(x) cos(ωx). (3.0.2)

The coefficients f1(x) and f2(x) are assumed smooth enough to be well ap-
proximated by polynomials.
The chapter is organized as follows. In Section 3.1 we show an overview
on the contribution on the numerical integration, in Section 3.2 we present
the basic theoretical ingredients for the construction of the new EF-based
Gauss-Laguerre quadrature rules, in Section 3.3 we come with details on the
numerical computation of the weights and nodes of these rules, while in Sec-
tion 3.4 numerical experiments are carried out. In Section 3.5 a comparison
of the EF rules with the Filon-type ones is described.

52

3.1. THE STATE OF ART 53

3.1 The state of art
Finite integrals

Looking back in the history, the first contributions which gradually led to
the formulation of what in the meantime became the EF approach are rather
old but for a long period it has been believed that this approach is useful
only for amending algorithms for ordinary differential equations, [30, 31, 33–
35,65,97,105]. The fact that the EF technique can be applied for many other
operations, including numerical differentiation, quadrature or interpolation,
became clear much more recently, [64], and since then an important number
of contributions have been published in these new domains. In particular,
EF-based versions for numerical quadrature have been obtained in [64] for
the Simpson rule, in [71, 73, 74] for the more general Newton-Cotes rule,
in [67,72,81,106] for the Gauss-Legendre rule, and in [16,17,20] for integral
equations. However, it is important to underline that in all these cases the
quadrature interval is finite, and, more general, the definition interval for
f(x) is finite in all existing EF applications, irrespective of area. Outside the
EF technique, in [60, 70] the integral of an oscillatory function over a finite
domain has been computed by using an approach related to steepest descent
methods.

Infinte integrals

The case we treat in this chapter, where the integration interval is infinite,
is completely new in the context of the EF technique, except for some pre-
liminary results on the same problem recently reported in [26,29].
The spirit of these works is to adapt the classical Gauss-Laguerre quadrature
formulae to the case of integrals of oscillatory functions of the form (3.0.1).
The idea to adapt existing formulae to the computation of particular in-
tegrals over infinite intervals has been used also in the recent paper [101],
where the authors consider the steepest descent, extrapolation and sequence
transformation methods, and they adapt the three methods, by means of an
algorithmic refinement, to the computation of three particular semi-infinite
integrals, not necessarely with an oscillatory behaviour. A Filon-type ap-
proach for the computation of infinite range oscillatory integrals has been
considered in the paper [54], where a smoother variation of the weight is
accepted but the frequency has to increase with x. The computation of inte-
grals of oscillatory functions over infinite intervals has finally been considered

3.2. THE EXPONENTIALLY-FITTED GAUSS-LAGUERRE
QUADRATURE RULE 54

also in the recent work [80], where the idea is to transform the integral into a
non oscillatory one, in order to apply the classical Gauss-Laguerre quadrature
rules. On the contrary we use a direct approach, by modifying the quadrature
rules in order to directly accurately compute the oscillatory integral.

3.2 The exponentially-fitted Gauss-Laguerre
quadrature rule

We construct Gauss-Laguerre quadrature rules of the form

I '
N∑
k=1

wkf(xk), (3.2.3)

where the weights wk and the nodes xk, k = 1, 2, ..., N depend on the fre-
quency ω of function f(x). The new rules should be contrasted with the
classical Gauss-Laguerre rules [38] whose (constant) weights and nodes are
derived on the assumption that the whole f(x) is smooth enough to be well
approximated by polynomials. The classical rules actually represent the limit
case ω → 0 of the new ones. To build up the new rules we use the expo-
nential fitting (EF) approach, which is a well established procedure for the
construction of approximation formulae tuned on functions of special forms;
form (3.0.2) is one of these. For a monograph on the EF approach see [68].
The classical Gauss-Laguerre quadrature rule [38] is of the form (3.2.3), where
the weights and the nodes are obtained by imposing that the rule is exact on
the functions

xn−1, n = 1, 2, ..., 2N.

By defining the functional

L[f(x), a] =
∫ ∞

0
e−xf(x)dx−

N∑
k=1

wkf(xk),

where a is a vector with 2N components which collects the weights and
the nodes, viz. a = [w1,w2, ..., wN , x1, x2, ..., xN], the desired values of the
components of a are obtained by imposing the condition

L[xn−1, a] = 0, n = 1, 2, ..., 2N.

3.2. THE EXPONENTIALLY-FITTED GAUSS-LAGUERRE
QUADRATURE RULE 55

The expression of the error is (see Eq. (3.6.3) of [38])

eGL = (N !)2

(2N)!f
(2N)(θ), θ ∈]0,+∞[. (3.2.4)

The EF Gauss-Laguerre quadrature rule is instead obtained by imposing that
the formula is exact on the functions

xn−1e±µx, n = 1, 2, ..., N,

i.e. by imposing
L[xn−1e±µx, a] = 0, n = 1, 2, ..., N. (3.2.5)

Theorem 3.2.1 The weights and the nodes of the EF Gauss-Laguerre quadra-
ture rule are solution of the nonlinear system

N∑
k=1

wkx
2n−2
k ηn−2(x2

kZ)− 2n−1(n− 1)!
(1− Z)n = 0, n = 1, . . . , N

N∑
k=1

wkx
2n−1
k ηn−1(x2

kZ)− 2n−1(n− 1)!
(1− Z)n = 0, n = 1, . . . , N

, (3.2.6)

where Z = µ2 = −ω2.

Proof: We follow the procedure introduced in [64]. Thus we compute

L[eµx, a] = 1
1− µ −

N∑
k=1

wke
µxk , L[e−µx, a] = 1

1 + µ
−

N∑
k=1

wke
−µxk ,

and use these for expressing

G+(Z, a) = 1
2
[
L[eµx, a] + L[e−µx, a]

]
, G−(Z, a) = 1

2µ
[
L[eµx, a]− L[e−µx, a]

]
.

We obtain

G+(Z, a) = 1
1− Z−

N∑
k=1

wkη−1(x2
kZ), G−(Z, a) = 1

1− Z−
N∑
k=1

wkxkη0(x2
kZ).

Also important are the expressions of the successive derivatives of G+ and
G− with respect to Z. By using the differentiation properties of the ηm(Z)

3.2. THE EXPONENTIALLY-FITTED GAUSS-LAGUERRE
QUADRATURE RULE 56

functions (see Section 2.2) the following expressions result:
G+(m)(Z, a) = m!

(1− Z)m+1 −
1

2m
N∑
k=1

wkx
2m
k ηm−1(x2

kZ),

G−
(m)(Z, a) = m!

(1− Z)m+1 −
1

2m
N∑
k=1

wkx
2m+1
k ηm(x2

kZ).
(3.2.7)

Since, from [64], the nonlinear system (3.2.5) is equivalent to{
G+(n−1)(Z, a) = 0
G−

(n−1)(Z, a) = 0
, n = 1, 2, ..., N, (3.2.8)

then (3.2.6) immediately follows. 2

We observe that (3.2.6) represents a nonlinear system of dimension 2N in the
nodes and the weights, whose solution is a vector a depending on Z = −ω2,
i.e. on the frequency ω of oscillation:

a = a(ω) = [w1(ω), w2(ω), ..., wN(ω), x1(ω), x2(ω), ..., xN(ω)]. (3.2.9)

By setting ω = 0, we obtain the classical Gauss-Laguerre quadrature formu-
lae, in which the nodes x̄k := xk(0) and the weights w̄k := wk(0) are given
by

LN(x̄k) = 0, w̄k = x̄k

(N + 1)2 [LN+1(x̄k)]2
,

where LN(x) denotes the Laguerre polynomial of degree N .
As for the error of the EF Gauss-Laguerre quadrature rule, the direct ap-
plication of Eq. (3.57) of [68] for h = 1, µ = iω, Z = −ω2, K = −1 and
P = N − 1 gives the following expression for its leading term:

lteEF = T (a(ω))(D(2) + ω2)Nf(0), (3.2.10)

where D(2) = d2

dx2 and

T (a(ω)) = G+(0, a(ω))
ω2N = 1−∑N

k=1wk(ω)
ω2N . (3.2.11)

3.3. COMPUTATION OF WEIGHTS AND NODES 57

Remark 3.2.1 We have limω→0 T (a(ω)) = (N !)2/(2N)!, as it is normal
because the new rule tends to the classical one in this limit.

Remark 3.2.2 The expression for the genuine error of the EF version is a
sum of two terms of form (3.2.10) but with different arguments in f , viz.:

eEF = T+(a(ω))(D(2) + ω2)Nf(θ+) + T−(a(ω))(D(2) + ω2)Nf(θ−),
θ±(ω) ∈]0,+∞[, (3.2.12)

where T± which satisfy T+(a(ω)) + T−(a(ω)) = T (a(ω)) can be determined
numerically, see [23] for the theory. As also shown in [23], the two forms
(leading term and genuine expression) may predict slightly different rates for
the error variation when ω is increased. Yet, in both frames the error is
found to extinct down, in contrast to the classical rule where it increases as
ω2N . See also Section 3.4 below.

3.3 Computation of weights and nodes
In this section we develop an algorithm for the computation of the weights
and the nodes of the EF Gauss-Laguerre quadrature rule.
We have to solve the nonlinear algebraic system (3.2.6). We will use an
iteration procedure whose first stage consists in a convenient split of this
system with 2N equations into two subsystems of N equations each. In the
iteration procedure the first subsystem will be used as a linear system for
the weights wk while the second as a nonlinear system for the nodes xk.
Our procedure is somehow related, but not similar, to that used for the EF
Gauss-legendre rule, [67].
Each equation in (3.2.6) contains products of form wkx

p
k and the idea of the

splitting consists in collecting the equations with the biggest p in the linear
subsystem while all the others are retained in the nonlinear subsystem.
Specifically, by denoting s =

⌊
N
2

⌋
and r = N − s the linear and nonlinear

subsystems are

N∑
k=1

wkx
2n−2
k ηn−2(x2

kZ)− 2n−1(n− 1)!
(1− Z)n = 0, n = r + 1, . . . , N

N∑
k=1

wkx
2n−1
k ηn−1(x2

kZ)− 2n−1(n− 1)!
(1− Z)n = 0, n = s+ 1, . . . , N

.

(3.3.13)

3.3. COMPUTATION OF WEIGHTS AND NODES 58

and

N∑
k=1

wkx
2n−2
k ηn−2(x2

kZ)− 2n−1(n− 1)!
(1− Z)n = 0, n = 1, . . . , r,

N∑
k=1

wkx
2n−1
k ηn−1(x2

kZ)− 2n−1(n− 1)!
(1− Z)n = 0, n = 1, . . . , s,

. (3.3.14)

respectively. Remember that Z = −ω2.

Example 3.3.1 Let us consider the case N=1. Then the systems (3.3.13)
and (3.3.14) lead to: 

w1η−1(x2
1Z)− 1

1− Z = 0

w1x1η0(x2
1Z)− 1

1− Z = 0

i. e., 
w1η−1(−x2

1ω
2) = 1

1 + ω2

w1x1η0(−x2
1ω

2) = 1
1 + ω2

whose analytical solutions are:

x1(ω) = arctan(ω)
ω

+ kπ

ω
, k ∈ Z,

w1(ω) =



1√
1 + ω2

, |k| even

− 1√
1 + ω2

, |k| odd
.

(3.3.15)

We observe that when k = 0, the unique EF node x1(ω) = arctan(ω)
ω

∈
[−π/(2ω), π/(2ω)] tends to classic Gauss-Laguerre node x1 = 1 as ω goes
to zero. Also the EF weight w1(ω) = 1√

1+ω2 tends to classic Gauss-Laguerre
weight w1 = 1 as ω goes to zero.

3.3. COMPUTATION OF WEIGHTS AND NODES 59

Example 3.3.2 For N=3 the linear system (3.3.13) and the nonlinear sys-
tem (3.3.14) have the forms

 x4
1η1(x2

1Z) x4
2η1(x2

2Z) x4
3η1(x2

3Z)
x3

1η1(x2
1Z) x3

2η1(x2
2Z) x3

3η1(x2
3Z)

x5
1η2(x2

1Z) x5
2η2(x2

2Z) x5
3η2(x2

3Z)


 w1
w2
w3

 =


8

(1−Z)3

2
(1−Z)2

8
(1−Z)3


and 

w1η−1(x2
1Z) + w2η−1(x2

2Z) + w3η−1(x2
3Z)− 1

1−Z = 0
w1x

2
1η0(x2

1Z) + w2x
2
2η0(x2

2Z) + w3x
2
3η0(x2

3Z)− 2
(1−Z)2 = 0

w1x1η0(x2
1Z) + w2x2η0(x2

2Z) + w3x3η0(x2
3Z)− 1

1−Z = 0

respectively.

Remark 3.3.1 The linear system (3.3.13) in the weights w = (w1, . . . , wN)T
and the nonlinear system (3.3.14) in the nodes x = (x1, . . . , xN)T can be
written as

A(Z, x)w = b(Z), (3.3.16)
and as

F (Z,w, x) = D(Z, x)w − d(Z) = 0, (3.3.17)
respectively, where

Aij (Z, x) =


x

2(i+r−1)
j ηi+r−2(x2

jZ), i = 1, . . . , s,

x2i−1
j ηi−1(x2

jZ), i = s+ 1, . . . , N, j = 1, . . . , N,

(3.3.18)

bi(Z) =



2i+r−1(i+ r − 1)!
(1− Z)i+r , i = 1, . . . , s,

2i−1(i− 1)!
(1− Z)i , i = s+ 1, . . . , N,

,

Dik(Z, x) =


x2i−2
k ηi−2(x2

kZ), i = 1, . . . , r,

x
2(i−r)−1
k ηi−r−1(x2

kZ), i = r + 1, . . . , N,
, k = 1, . . . , N,

(3.3.19)

3.3. COMPUTATION OF WEIGHTS AND NODES 60

di(Z) =



2i−1(i− 1)!
(1− Z)i , i = 1, . . . , r,

2i−r−1(i− r − 1)!
(1− Z)i−r , i = r + 1, . . . , N.

(3.3.20)

The numerical solution of the nonlinear system (3.3.17) is carried out by
means of the Newton’s iterative method. On each iteration, the new, cor-
rected values of x, denoted by xnew, are determined in terms of the input
node values x by the formula

xnew = x+ ∆x.

Here the deviation ∆x is the solution of the linear system

B(Z,w, x)∆x = −D(Z, x)w + d(Z), (3.3.21)

where the matrix B denotes the Jacobian of F (Z,w, x) with respect to x,
and the matrix D and vector d are defined in (3.3.19) and (3.3.20), respec-
tively. The Jacobian matrix B can be computed by using the differentiation
properties of the ηm(Z) functions, as shown in the following theorem.

Theorem 3.3.1 The Jacobian matrix B of the Newton iterative method
(3.3.21) is

B(Z,w, x) = C(Z, x) · diag(w) +D(Z, x) · Jxw, (3.3.22)

where the matrix Jxw is computed by solving

A(Z, x) · Jxw = −JxA · diag(w). (3.3.23)

Here diag(w) is the diagonal matrix

diag(w) = (wiδij)i,j=1,...,N .

Cik(Z, x) =



x2i−3
k

[
(2i− 2)ηi−2(x2

kZ) + x2
kZηi−1(x2

kZ)
]
,

i = 1, . . . , r,

x
2(i−r−1)
k

[
(2(i− r)− 1) ηi−r−1(x2

kZ) + x2
kZηi−r(x2

kZ)
]
,

i = r + 1, . . . , N,
(3.3.24)

3.3. COMPUTATION OF WEIGHTS AND NODES 61

for k = 1, . . . , N

(JxA)ij =



x
2(i+r)−3
j

[
2(i+ r − 1)ηi+r−2(x2

jZ) + x2
jZηi+r−1(x2

jZ)
]
,

i = 1, . . . , s,

x
2(i−1)
j

[
(2i− 1)ηi−1(x2

jZ) + x2
jZηi(x2

jZ)
]

i = s+ 1, . . . , N,
(3.3.25)

for j = 1, . . . , N , and the matrices D and A are given by (3.3.18) and
(3.3.19), respectively.

Proof: From (3.3.17), by observing that the elementDik of the matrixD(Z, x)
in (3.3.19) depends only on Z and on the variable xk, that is Dik(Z, x) =
Dik(Z, xk), the Jacobian matrix B can be computed as

Bij(Z,w, x) = ∂Fi(Z,w, x)
∂xj

= ∂

∂xj

[∑N
k=1wk(x)Dik(Z, xk)− di(Z)

]
=

=
N∑
k=1

∂wk
∂xj

Dik +
N∑
k=1

wk
∂Dik

∂xk
δk,j.

So we obtain
Bij(Z,w, x) =

N∑
k=1

∂wk
∂xj

Dik + wj
∂Dij

∂xj
. (3.3.26)

By defining the matrix Jxw as

Jxw =
(
∂wi
∂xj

)
i,j=1,...,N

,

and by observing that the matrix C(Z, x) defined in (3.3.24) satisfies

Cik =
(
∂Dik

∂xk

)
i,k=1,...,N

we can rewrite the Jacobian (3.3.26) as (3.3.22).
For the computation of the matrix Jxw, we start from the linear system in
(3.3.16). By definition of the matrix A(Z, x), we remind that the element
Aij depends only on Z and on the variable xj, that is Aij(Z, x) = Aij(Z, xj),
for i, j = 1, . . . , N , and the element bi depends only on Z, that is bi = bi(Z).

3.4. NUMERICAL ILLUSTRATIONS 62

Then we make the derivative with respect to xj of the i-th equation of the
linear system (3.3.16), obtaining

0 = ∂bi
∂xj

= ∂

∂xj
(A · w)i = ∂

∂xj

[
N∑
k=1

Aik · wk
]

=
N∑
k=1

[
∂

∂xj

(
Aik · wk

)]

=
N∑
k=1

[
∂Aik
∂xj

· wk + Aik ·
∂wk
∂xj

]
=

N∑
k=1

[
∂Aik
∂xj

· δkj · wk
]

+
N∑
k=1

[
Aik ·

∂wk
∂xj

]
.

So, in matrix form, we have that

JxA · diag(w) + A · Jxw = 0,

which is equivalent to (3.3.23), where

JxA =
(
∂Aij
∂xj

)
i,j=1,...,N

,

which gives (3.3.25).
2

To summarize, each iteration of the Newton’s method, which takes the vec-
tor x for input to compute correspondingly updated values for the vectors of
weights and of nodes, requires to:

• solve the linear system (3.3.16) to update the vector of weights w;

• solve the linear system (3.3.21) after computing the matrix Jxw from
(3.3.23) and the matrix B as in (3.3.22). Note that (3.3.23) for matrix
Jxw consists in N linear systems having the same coefficient matrix A
and different second hand side for each column. This is an important
ingredient for an efficient computation of the whole Jxw.

3.4 Numerical illustrations
In this subsection we give some technical details on how the effective numer-
ical computation of the weights and nodes of the new rules should be carried
out, and report on two numerical experiments in which the classical and the
new EF-based rules are compared for accuracy. The computations have been
done on a node with CPU Intel Xeon 6 core X5690 3,46GHz, belonging to
the E4 multi-GPU cluster of Mathematics Department of Salerno University.

3.4. NUMERICAL ILLUSTRATIONS 63

EF Gauss-Laguerre formulae for N = 1, 2, ..., 6

As shown in Example 3.3.1, in the case N = 1 the weights and the nodes
can be computed directly; their expressions are given in (3.3.15). This no
more possible for bigger N such that for each N ≥ 2 we use the numerical
algorithm described in the previous subsection, based on Newton’s iterative
process. The important issue is how the starting vector of nodes should be
taken in order to ensure a fast convergence of the iteration process. We opted
for the idea of taking a form inspired from (3.3.15): for each given N and ω
we take the initial approximation x∗k of the form

x∗k(ω) = x̄k
arctan(αkω)

αkω
, k = 1, . . . , N. (3.4.27)

Here x̄k are the nodes of the N -th degree Laguerre polynomial and αk are
suitable chosen constants determined after a long set of experimental inves-
tigations. The values of αk for N = 2, 3, 4, 5 and 6 are listed in Table 3.1.
The number of iterations needed in order to obtain an accuracy of 10−14 is
around 10 in all cases.
It is also worth noticing that in our procedure starting data are required
only for the nodes, in contrast to the iteration procedure developed in [67]
for the EF Gauss-Legendre rule, where starting values were required also for
the weights.
The variation with ω of the weights and of the nodes for N = 1, 2, 3, 4, 5
and 6, and for ω between 0 and 50, are presented in Figs. 3.1, 3.2 and 3.3.
We observe that in all these cases the weights are inside [0, 1]. Moreover the
weights and the nodes tend to zero as ω increases. Due to the oscillatory
behaviour of η functions for negative Z = −ω2, different solutions may exist
also for N ≥ 2, as happens in Example 3.3.1 for N = 1. We choose the
initial approximation (3.4.27) in such a way that all the coefficients of the
EF Gauss-Laguerre formulae tend to classical ones when ω goes to zero, as
shown in Figures 3.1, 3.2 and 3.3. However, the existence of further solutions
may have only a minor influence on the accuracy of the new quadrature rule.
As a matter of fact, if we consider the expression of T (a(ω)) in (3.2.11), we
observe that it shows a decrease like ω−2N . Any different values of xk and wk,
if they exist, will affect only the numerator in T (a(ω)), while the decrease of
T (a(ω)) as ω−2N is untouched. As regard the accuracy in the computation
of weigths and nodes, it is worth mentioning that the condition number of
Jacobian matrix B in (3.3.21) increases with ω and N . Therefore for values

3.4. NUMERICAL ILLUSTRATIONS 64

Table 3.1: Values of αi for N = 2, 3, 4, 5, 6.

N ω α1 α2 α3 α4 α5 α6

2 0 ≤ ω ≤ 50 0.666 1.333
3 0 ≤ ω ≤ 50 0.500 1.000 1.500
4 0 ≤ ω ≤ 50 0.500 0.750 1.085 1.565

0 ≤ ω < 6 0.465 0.670 0.905 1.205 1.600
5 6 ≤ ω < 15 0.465 0.670 0.905 1.205 1.610

15 ≤ ω ≤ 50 0.465 0.670 0.905 1.205 1.620
0 ≤ ω < 3.5 0.443 0.560 0.735 0.940 1.210 1.600

3.5 ≤ ω < 7.5 0.443 0.585 0.765 0.975 1.245 1.625
6 7.5 ≤ ω < 10 0.443 0.585 0.770 0.995 1.265 1.640

10 ≤ ω < 15 0.443 0.600 0.788 1.005 1.275 1.650
15 ≤ ω ≤ 50 0.443 0.605 0.795 1.020 1.290 1.665

of ω outside the considered range [0, 50] and for N > 6, the algorithm can
show instability, see for instance [67].

Numerical tests

Test case 1. We consider the function

f(x) = x cos(ωx) + x sin(ωx), (3.4.28)

for which we have ∫ ∞
0

e−xf(x)dx = 1 + 2ω − ω2

(1 + ω2)2 . (3.4.29)

In Table 3.2 we compare the absolute errors |Iexact − Icomput| of the results
from classical and EF-based Gauss-Laguerre rules for N = 3, 4 and various
values of ω. We observe that the error from classical version is within the
round-off margin for ω = 0, but abnormally big for the other values. The
result is just normal because this version is exact if f(x) is a polynomial of
the (2N − 1)-th degree at most, and this holds true only when ω = 0 (where
it becomes a first degree polynomial, actually). For contrast, the EF-based
version is affected only by round-off error for all ω. This is also normal

3.4. NUMERICAL ILLUSTRATIONS 65

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
=1

: n
od

e

(a) Fig. 1

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
=1

: w
ei

gh
t

(b) Fig. 1

0 10 20 30 40 50
0

2

3.5

N
=2

: n
od

es

(c) Fig. 1

0 10 20 30 40 50
0

0.9

N
=2

: w
ei

gh
ts

(d) Fig. 1

Figure 3.1: Variation with ω of the nodes and the weights of the N -point EF
Gauss-Laguerre rule. (a) N = 1: node x1; (b) N = 1: weight w1; (c) N = 2:
nodes x1 (dashed), x2 (solid); (d) N = 2: weights w1 (dashed), w2 (solid).

3.4. NUMERICAL ILLUSTRATIONS 66

0 10 20 30 40 50
0

2

4

6

7

N
=3

: n
od

es

(a) Fig. 2

0 10 20 30 40 50
0

0.8

N
=3

: w
ei

gh
ts

(b) Fig. 2

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

N
=4

: n
od

es

(c) Fig. 2

0 10 20 30 40 50
0

0.7

N
=5

: w
ei

gh
ts

(d) Fig. 2

Figure 3.2: Variation with ω of the nodes and the weights of the N -point EF
Gauss-Laguerre rule. (a) N = 3: nodes x1 (dashed) ≤ x2 ≤ x3 (solid); (b)
N = 3: weights w1 (dashed) ≥ w2 ≥ w3 (solid); (c) N = 4: nodes x1 (dashed)
≤ x2 ≤ x3 ≤ x4 (solid); (d) N = 4: weights w1 (dashed) ≥ w2 ≥ w3 ≥ w4 (solid).

3.4. NUMERICAL ILLUSTRATIONS 67

0 10 20 30 40 50
0

2

4

6

8

10

12

14

N
=5

: n
od

es

(a) Fig. 3

0 10 20 30 40 50
0

0.7

N
=5

: w
ei

gh
ts

(b) Fig. 3

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

N
=6

: n
od

es

(c) Fig. 3

0 10 20 30 40 50
0

0.5

N
=6

: w
ei

gh
ts

(d) Fig. 3

Figure 3.3: Variation with ω of the nodes and the weights of the N -point EF
Gauss-Laguerre rule. (a) N = 5: nodes x1 (dashed) ≤ x2 ≤ x3 ≤ x4 ≤ x5 (solid);
(c) N = 5: weights w1 (dashed), w2 (solid) ≥ w3 ≥ w4 ≥ w5; (c) N = 6: nodes x1
(dashed) ≤ x2 ≤ x3 ≤ x4 ≤ x5 ≤ x6 (solid); (d) N = 6: weights w1 (dashed), w2
(solid) ≥ w3 ≥ w4 ≥ w5 ≥ w6.

3.4. NUMERICAL ILLUSTRATIONS 68

N rules ω = 0 ω = 10 ω = 20 ω = 30 ω = 40 ω = 50
3 Classic 1.11e-16 1.22e+00 6.04e-01 7.77e-01 1.23e+00 8.62e-01

EF 1.11e-16 4.51e-17 1.64e-17 4.98e-18 6.18e-18 5.69e-18
4 Classic 2.24e-12 4.95e-01 6.74e-01 2.62e-01 1.13e+00 8.14e-02

EF 2.24e-12 3.58e-15 1.35e-16 2.09e-16 2.50e-17 1.46e-16

Table 3.2: Error produced by the EF Gauss-Laguerre rule with N = 3, 4 on
problem (3.4.28).

because for this test function the new rule is exact irrespective of ω.

Test case 2. The function

f(x) = cos[(ω + 1)x] (3.4.30)

is of form (1.2.2) with f1(x) = − sin(x) and f2(x) = cos(x), and∫ ∞
0

e−xf(x)dx = 1
1 + (1 + ω)2 . (3.4.31)

In Tables 3.3 and 3.4 we report the results obtained by the classical and the
EF rule with N = 5 and N = 6 for different values of ω. The improvement
in accuracy with the new rule is impressive. For a better insight into the
things, in Fig. 3.4 we plot the variation with ω of the errors from the two
rules. The behaviors of the two errors confirm what we qualitatively expect
on the basis of Eqs.(3.2.4) and (3.2.10). Indeed, for the classical rule the
error is given by Eq.(3.2.4) which is a product of a constant and f (2N). For
functions of form (1.2.2), f (2N) will contain a term with ω2N and therefore,
when ω is increased, the error is also expected to increase.
For the EF Gauss-Laguerre rule the error is given by Eq.(3.2.10). Here the
front factor has the classical value when ω = 0 but it tends to behave like
1/ω2N when ω is increased; this is because the sum of the weights in the
numerator tends to zero for big ω. The other factor, i.e.

(
ω2 +D(2)

)N
f ,

increases only as ωN so that, altogether, at large ω the error decreases as
ω−N , a remarkable fact, indeed. This also suggests that the error decrease is
faster and faster when N is increased. This property is also nicely confirmed
in Figure 3.4.

3.5. COMPARISON WITH FILON-TYPE RULES 69

N = 5 ω = 0 ω = 10 ω = 20 ω = 30 ω = 40 ω = 50
Classic 5.41e-04 9.32e-01 3.88e-01 2.30e-01 1.05e-01 3.52e-02
EF 5.41e-04 2.10e-06 6.04e-08 6.39e-09 1.24e-09 3.44e-10

Table 3.3: Error produced by the five-point Gauss-Laguerre quadrature rule on
problem (3.4.30).

N = 6 ω = 0 ω = 10 ω = 20 ω = 30 ω = 40 ω = 50
Classic 2.62e-04 1.70e-02 5.04e-01 6.49e-01 5.34e-01 1.00e-01
EF 2.62e-04 9.96e-07 1.03e-08 6.47e-10 9.35e-11 3.16e-11

Table 3.4: Error produced by the six-point Gauss-Laguerre quadrature rule on
problem (3.4.30).

0 5 10 15 20 25 30 35 40 45 50
10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

N
=5

: A
bs

ol
ut

e
Er

ro
r

Classical rule
EF rule

(a) Fig. 4

0 5 10 15 20 25 30 35 40 45 50
10 12

10 10

10 8

10 6

10 4

10 2

100

N
=6

: A
bs

ol
ut

e
Er

ro
r

Classical rule
EF rule

(b) Fig. 4

Figure 3.4: The ω dependence of the errors produced by classic (solid) and EF
(dashed) Gauss-Laguerre quadrature rule for N = 5 (a) and N = 6 (b).

3.5 Comparison with Filon-type rules
In this section a comparison of the ef rules with The Filon-type formulae is
reported, both in the case of finite integration intervals and of infinite ones.

3.5. COMPARISON WITH FILON-TYPE RULES 70

3.5.1 Filon versus EF quadrature rules over finite in-
tegration intervals

As regards the computation of integrals of oscillating functions over finite
integration intervals, in the paper [77] the authors compare the EF and
Filon-type methods, by emphasizing the advantages and disadvantages of
both approaches, and by also introducing a new approach that conbines the
strenghts from both the EF and the Filon technique.

Exponential fitting quadrature rules

For the exponentially fitted case [67] (we refer to pure ef, i.e. K = −1 in the
six step procedure described in (2.1.12)), an integral of the form∫ 1

−1
F (x)dx,

is approximated by means of a quadrature formula

QEF
N [F] =

N∑
i=1
wi(ω)F (xi(ω)), (3.5.32)

which is derived, by imposing that it is exact on the set of functions

xn−1e±iωx, n = 1, ..., N.

Then EF rules are based on frequency dependent nodes and weights , whose
computation can be expensive due to the iteration for the solution of nonlin-
ear systems (Newton’s method) and ill-conditioning (which appears for large
N and ω). The advantage of EF rules is that they reduce to the classical N -
point Gauss-Legendre methods in the limiting case ω → 0, and consequently
have a similar error behaviour for small ω. Moreover in [23] it was shown
that, for ω →∞, the quadrature error decays as∫ 1

−1
F (x)dx−QEF

N [F] = O
(
ω−N+N̄

)
, (3.5.33)

with N̄ = b(N − 1)/2c.

3.5. COMPARISON WITH FILON-TYPE RULES 71

Filon quadrature rules

Filon methods consist instead in considering, for the integral∫ 1

−1
f(x)eiωxdx, (3.5.34)

a quadrature formula of the type

QF
N [f] =

N∑
i=1
ai(ω)f(xi),

where xi are fixed nodes (generally taken as Gauss-Legendre or Gauss-Lobatto),
obtained by approximating the function f(x) with its interpolating polyno-
mial with respect to xi. So the weights are given by

ai(ω) =
∫ 1

−1
Li(x)eiωxdx,

where Li(x) is the i− th Lagrange fundamental polynomial with respect to
the abscissae xi, i = 1, ..., N. For small ω, the Filon-type method has the
same ’classical’ order as the correspondiong traditional Gauss method with
the same quadrature nodes xi. For an increasing frequency they tipically
have smaller errors with respect to the classical methods, expecially when
the endpoints are included among the quadrature nodes. It can infact be
proven that, if x1 = −1 and xN = 1, we have the asymptotic error estimate∫ 1

−1
f(x)eiωxdx−QF

N [f] = O
(
ω−2

)
, . (3.5.35)

The disadvantage with respect to the Ef rules is that this error estimate is
independent on N . The advantage of Filon-methods is that we do not have
nonlinear systems to solve in order to compute the nodes.

Comparison

Altough EF and Filon-type methods have differents point of departure, their
basic underlying principle is the same: wherease classical Gauss quadrature
interpolates the whole integrand f(x)eiωx by a polynomial, they interpolate
the function f by a polynomial. In we infact apply the EF quadrature rule
(3.5.32) for the computation of the integral (3.5.34), we observe that a (pure)

3.5. COMPARISON WITH FILON-TYPE RULES 72

EF scheme is exact for f(x) = 1, x, ..., xN−1, so we can see the application
of an EF scheme to a problem of the form (3.5.34) as a specific Filon-type
method, obtained by considering the frequency-dependent nodes indicated
by the EF approach. In other words: Filon-type and EF rules coincide
when both schemes use the same quadrature nodes (given by the solution of
the nonlinear system individuated by the EF technique). However, a Filon
method can also take other quadrature points, and standards choices are
Legendre nodes or Lobatto nodes. Then, the advantage of Filon methods is
that the rootfinding process is avoided, while the EF nodes can be difficult
and expensive to compute for large N and ω. On the other hand the error
in EF formulae generally tends more quickly to 0 as the frequency increases,
as shown by the asymptotic error estimates (3.5.33) and (3.5.35).

Filon-type methods

It is worth mentioning that the asymptotic error estimate for Filon methods
can be improved by letting the interpolation polynomial depend on deriva-
tives of f : in [62], instead of Lagrange interpolation, Hermite interpolation
has been used. In this case the asymptotic behaviour is O (ω−p−1), where p is
the number of derivatives at the endpoints. High asymptotic order can also be
achieved without the computation of derivatives, but by allowing the nodes
xi to depend on ω, leading to a new family of Filon-type methods, called the
adaptive Filon-type methods. In the paper [77] adaptive Filon-type methods
have been constructed in order to share the property of optimal behaviour for
both small and large ω values with the EF rules, while avoiding the need for
iteration or the ill-conditioning issues when computing the frequency depen-
dent nodes. However more and more numerical stability difficulties appear
in the construction of such adaptive Filon-type methods, due to cancellation
effects when N increases (in the paper the construction up to N = 5 nodes
is carried out). For this reason, in order to build an automatic quadrature
scheme, in the paper [77] they propose an algorithm which combines a small
number N of ω-dependent nodes (they choose N = 2 or N = 4) with M
Chebyshev nodes in [−1, 1]. Then, in order to reach a prescribed tolerance,
the number N is left fixed, and the number M is increased as much as is
needed.

3.5. COMPARISON WITH FILON-TYPE RULES 73

3.5.2 Construction of Filon quadrature rules over infi-
nite integration intervals

A Filon-type approach for the computation of infinite range oscillatory inte-
grals has been considered in the paper [54], in order to compute integrals of
the form ∫ ∞

0
f(x)eiωg(x)dx, (3.5.36)

with the assumptions lim
x→∞

g(x) = lim
x→∞

g′(x) =∞, and lim
x→∞

f(x)
g′(x) = 0. These

assumptions are not satisfied by the integral

I =
∫ ∞

0
e−x (f1(x) cos(ωx) + f2(x) sin(ωx)) dx, (3.5.37)

as it can be recasted ino the sum of two integrals of the form (3.5.36), with
g(x) = x and g(x) = −x, so the condition lim

x→∞
g′(x) = ∞ is not satisfied.

Nevertheless, with the simple aim of numerically comparing the performances
of the ef quadrature rules with Filon-type quadrature rules, we used the Filon
technique to derive new quadrature formulae for the integral (3.5.37). Such
formulae are of the form:

I '
N∑
i=1

(ai(ω)f1(xi) + bi(ω)f2(xi))

where xi, i = 1, ..., N are fixed nodes (which we considered to be the Gauss-
Laguerre nodes), and ai(ω), bi(ω) are frequency-dependent weights, com-
puted as

ai(ω) =
∫ ∞

0
e−xLi(x) cos(ωx)dx,

bi(ω) =
∫ ∞

0
e−xLi(x) sin(ωx)dx,

where Li(x) is the i− th Lagrange fundamental polynomial with respect to
the abscissae xi, i = 1, ..., N .
In Table 3.5 are reported the errors on problem (3.4.30) of the quadrature
formulae with three nodes: the classical Gauss-Laguerre rule, the Filon-type
rule and the exponetially fitted rule, repectively, for various values of the
frequency omega. The results firstly underline the best accuracy of the ef
formula with respect to the other ones. Secondly you can observe the faster
convergence of the exponentially fitted rule as the frequency increases.

3.5. COMPARISON WITH FILON-TYPE RULES 74

N = 3 ω = 0 ω = 10 ω = 20 ω = 30 ω = 40 ω = 50
Classic 2.34e-02 1.80e-01 6.75e-01 5.65e-01 1.19e-01 6.92e-01
Filon 2.34e-02 7.30e-03 8.52e-03 6.77e-03 5.48e-03 4.58e-03
EF 2.34e-02 9.20e-05 6.98e-06 1.20e-06 3.83e-07 1.56e-07

Table 3.5: Error for classic, Filon-type and EF Gauss-Laguerre rule with N = 3
on problem (3.4.30).

Chapter 4

EF-Direct Quadrature methods
VIEs with periodic solution

Various physical and biological periodic phenomena with memory can be
modeled by Volterra integral equations (VIEs) with periodic solution of the
type

y(x) = f(x) +
∫ x

−∞
k(x− s)y(s)ds, x ∈ [0, xend]

y(x) = ψ(x), −∞ < x ≤ 0,
(4.0.1)

where k ∈ L1(IR+), f is continuous and periodic on [0, xend], ψ is continuous
and bounded on IR−. Examples include the evolution of an age-structured
population [2], analysis of the heat equation with periodic Dirichlet boundary
condition [45], and the response of nonlinear circuits to a periodic input [48,
82,93–95]. Other models which lead to a VIE with periodic or asymptotically
periodic solution can be found in [9, 14].
The chapter is organized as follows. In Section 4.1 an overview on the state
of art for the numerical solution of VIEs with periodic solution is given. In
Section 4.2 a two-node ef-quadrature rule of Gaussian type is introduced,
the error is analyzed and the procedure to compute the weights and nodes
numerically is illustrated. In Section 4.3 I derive the DQ method based on the
formula constructed in Section 4.2, with a suitable interpolation technique. In
Section 4.4 I analyze the order of convergence of the overall method. Section
4.5 shows the performances of the proposed methods on some significant test
examples.
Part of these results are described in [18,20].

75

4.1. THE STATE OF ART 76

4.1 The state of art
Surprisingly enough, the specialized literature offers only a few approaches
to the numerical solution of (4.0.1). In particular, [7] introduces a mixed
interpolation method and [9] derives a mixed collocation method. Much
more recently a Direct Quadrature (DQ) method has been proposed, which
is based on an exponentially fitted (ef) quadrature rule of Simpson type [19].

4.1.1 Mixed collocation method
The authors in [9] consider a mixed collocation method which approximates
the solution y(x) of (4.0.1) by some opportune trigonometric functions u(x).
Firstly, they consider a mesh on the interval [0, xend]

ZN := {xn : n = 0, 1, . . . , N} ,
with hn := xn+1 − xn and σn := [xn−1, xn]. Then, fixed an integer m, they
define the set of collocation points as

X(N) :=
N−1⋃
n=0
{xnj := xn + hncj : j = 0, 1, . . . ,m} .

The method consists in approximating the solution y(x) in each σn by op-
portune trigonometric functions un(x), i.e.

y|σn(x) ≈ un(x).
The solution of y is obtained on each subinterval σn as

y(xn + τhn) ≈ un(xn + τhn) :=
m∑
`=0

B`(τ)un(xn`), (4.1.2)

with τ ∈ [0, 1] and where the B` are particular combinations of trigonometric
functions defined in [9] that depend on a parameter ω.
The function un(x) are built by imposing that they exactly solve the VIE
(4.0.1) on the collocation points, i.e. by solving the nonlinear systems

unj = f(xnj) + (Qψ) (xnj) +
n−1∑
i=0

hi
m∑
`=0

w`(1)k (xnj − xi`)ui(xi`)

+hncj
m∑
`=0

w`(1)k (xnj − xn − hhcjc`)
m∑
p=0

Bp(cjc`)unp,

n = 0, 1, . . . , N − 1, j = 0, . . . ,m,

(4.1.3)

4.1. THE STATE OF ART 77

where unj := un(xn + cjhn) and

(Qψ) (x) :=
∫ 0

−∞
k(x− s)ψ(s)ds.

Here the authors make use of a quadrature formula of the type∫ x

0
g(s)ds ∼=

n∑
i=0

wi(x)g(xi)

where
wi(x) =

∫ x

0
Bi(s)ds.

Having found unj from (4.1.3), the values of y(xn + τhn) can be found from
(4.1.2).
By defining the following local errors in each subintervals σn,

‖en‖∞ := sup
x∈σn
|y(x)− u(x)|

En(xn + τhn) := y(xn + τhn)− un(xn + τhn),
τ ∈ [0, 1],

Qn(xn + τhn) :=
∫ τ

0
En(xn + shn)ds,

and the following global errors
TE(h) := max

0≤n≤N−1
0≤τ≤1

|En(xn + τhn)|,

TQ(h) := max
0≤n≤N−1
0≤τ≤1

|Qn(xn + τhn)|,

with h := max(hn), then the following theorem on the convergence holds.
Theorem 4.1.1 Let functions f , k in (4.0.1) be such that the conditions of
the existence and uniqueness theorem are satisfied and

TE(h) = O(hr0), TQ(h) = O(hr1),

then there exists a constant c1 such that

‖en‖∞ ≤ c1h
r,

where r = min(r0, r1).
So the error depends on the choice of the number m, the collocation param-
eters c1, . . . , cm and the value of parameter ω.

4.1. THE STATE OF ART 78

4.1.2 Direct Quadrature method based ef Simpson rule
The authors in [19] consider an exponentially fitted Direct Quadrature method
for integral equations of form (4.0.1) in which the specific feature is that the
kernel and the solution are of the form

k(x) = eαx, y(x) = a+ b cos(ωx) + c sin(ωx), (4.1.4)

where α, ω, a, b, c ∈ R.
The Exponential Fitting is an approach specially devised to work on pe-
riodic functions. Also, the ef formalism is extremely flexible to cover a
large diversity of numerical operations including interpolation, quadrature
and numerical solution of ordinary differential equations (ODEs) [64], and
massive experimental evidence has been accumulated along time that the
ef-based methods perform much better than classical methods, see, e.g.,
[24, 29–31,34,35,64,67,87] and the monograph [68].
The authors in [19] start to build a Simpson-type exponentially fitted quadra-
ture rule

Q[g](x) := h[a0g(x− h) + a1g(x) + a2g(x+ h)] ≈
∫ h

−h
g(s)ds,

which is exact on integrand of the form

g(x) = eαx(a+ b cos(ωx) + c sin(ωx)).

The weights a0, a1 and a2 of this formula depend on the stepsize h, the
amplitude α and the frequency ω of the oscillations. The quadrature rule is
fundamental in order to construct the following Direct Quadrature method

yn = f(xn) + (Inψ)(xn) + h
n∑

j=−σn
wnjk(xn − xj)yj, n = 0, . . . , N, (4.1.5)

where yn ≈ y(xn), xn := nh, with h = xend/N ,

(Inψ)(xn) :=
∫ −σn
−∞

k(xn − s)ψ(s)ds, σn :=
{

1 if n is odd,
0 otherwise,

and

wnj :=


a0, j = −σn
a0 + a2, j = n− 2, n− 4, . . .
a1, j = n− 1, n− 3, . . .
a2, j = n

The order of this method is three, as the following theorem shows:

4.2. EXPONENTIALLY FITTED GAUSSIAN QUADRATURE RULE 79

Theorem 4.1.2 Let yn be the numerical solution of (4.0.1) obtained by the
methods (4.1.5). Assume that f , k, and ψ are such that there exists a unique
solution y ∈ C4([0, xend]) of (4.0.1). Then, the error en := y(xn)−yn satisfies

max
1≤n≤N

|en| = O(h3), as h→ 0.

Numerical experiments by using this DQ method based on a ef-Simpson rule
for solving integral equations (4.0.1) with periodic solution y as in (4.1.4)
underline a definite improvement in the accuracy when compared with the
results from the classical Simpson rule, and the magnitude of the gain de-
pends on how good is the knowledge of the parameters problem α and ω.
The quadrature rule used in [19] is the ef-based Simpson rule but in this
chapter I go one step further. I propose a DQ method based on a two-
node ef-based rule of Gaussian type, which increases the accuracy of method
proposed in [19] without increasing the computational cost. Still, an extra
problem appears in this context, and this must be treated adequately: since
the abscissa points of the formulae of Gaussian type do not coincide with the
mesh points (the latter are usually equidistant), an interpolation technique
needs to be added, which both preserves the order of convergence of the
overall method and is suitable for oscillatory functions. This extra problem
is also considered in this chapter. An early introduction to this work can be
found in [16,20].

4.2 Exponentially fitted Gaussian quadrature
rule

Now, we consider the behavior of the whole integrand k(x − s)y(s), in the
sense that we approximate the whole integrand of (4.0.1) by suitable expo-
nential and trigonometric functions. In particular, we construct a method
which is exact when it is applied to equation (4.0.1) with

k(x) = eαx, (4.2.6)

and f(x) such that

y(x) = a+ bx+ c cos(ωx) + d sin(ωx), (4.2.7)

4.2. EXPONENTIALLY FITTED GAUSSIAN QUADRATURE RULE 80

where ω, a, b, c, d ∈ IR, that we name test equation. As a matter of fact,
if f(x) and ψ(x) have the same structure as y(x), and k(x) is of the type
(4.2.6), then the solution of (4.0.1) has the form (4.2.7). The aim is to obtain
a method which is more accurate than classical methods when it is applied
to more general periodic equations. A DQ method specially tuned for kernel
of the form (4.2.6) and solution of form (4.2.7) must have a procedure for
the accurate computation of the integral in (4.0.1) as its central ingredient.
As said, we choose a two-point Gauss quadrature rule. Thus, given X > 0
and h > 0, the integral

I[g](X) =
∫ X+h

X−h
g(x)dx,

will be computed by the two-point Gauss formula

Q[g](X) := h[a1g(X + ξ1h) + a2g(X + ξ2h)] (4.2.8)

with parameters

ai = ai(αh, ωh), ξi = ξi(αh, ωh), i = 1, 2, (4.2.9)

which take into account that g(x) is eαx multiplied by a linear combination of
functions 1, x, sin(ωx) and cos(ωx). From this point forward we use variables
ai and ξi, implying that they depend on (αh, ωh), as stressed by (4.2.9).
Expressed in other words, the weights a1, a2 and the nodes ξ1, ξ2 are derived
in such a way that Q[g] is exact if g is in the fitting space

B := {eαx, xeαx, e(α±iw)x}, (4.2.10)

hence it is made clear the dependence of the weights and nodes on αh and
ωh. To build up these coefficients we adopt the exponential fitting formalism
introduced by Ixaru (cfr. [64, 68]). Thus we introduce the functional L:

L[h, a, ξ]g(X) :=
∫ X+h

X−h
g(s)ds− h[a1g(X + ξ1h) + a2g(X + ξ2h)],

where a = (a1, a2) and ξ = (ξ1, ξ2).
Functions L[h, a, ξ]eαX and L[h, a, ξ]XeαX can be expressed in the compact
form:

L[h, a, ξ]eαX = `0e
αX ,

L[h, a, ξ]XeαX = (`0X + `1)eαX ,

4.2. EXPONENTIALLY FITTED GAUSSIAN QUADRATURE RULE 81

where

`0 = 2 sinh(αh)− αh(a1e
αhξ1 + a2e

αhξ2)
α

,

`1 = 2[αh cosh (αh)− sinh (αh)]− α2h2(a1ξ1e
αhξ1 + a2ξ2e

αhξ2)
α2 .

The quadrature rule (4.2.8) is exact on the fitting space (4.2.10) iff L[h, a, ξ]g(X) =
0 for each function g ∈ B, i.e.

αh(a1e
αhξ1 + a2e

αhξ2) = 2 sinh(αh)
α2h2(a1ξ1e

αhξ1 + a2ξ2e
αhξ2) = 2[αh cosh(αh)− sinh(αh)]

(α + iω)h(a1e
(α+iω)hξ1 + a2e

(α+iω)hξ2) = e(α+iω)h − e−(α+iω)h

(α− iω)h(a1e
(α−iω)hξ1 + a2e

(α−iω)hξ2) = e(α−iω)h − e−(α−iω)h

(4.2.11)

The last two equations are complex conjugate, therefore (4.2.11) is equivalent
to
u(a1e

uξ1 + a2e
uξ2) = 2 sinh(u)

u2(a1ξ1e
uξ1 + a2ξ2e

uξ2) = 2[u cosh(u)− sinh(u)]
a1e

uξ1(u cos(zξ1)− z sin(zξ1)) + a2e
uξ2(u cos(zξ2)− z sin(zξ2)) = 2 sinh(u) cos(z)

a1e
uξ1(z cos(zξ1) + u sin(zξ1)) + a2e

uξ2(z cos(zξ2) + u sin(zξ2)) = 2 cosh(u) sin(z)
(4.2.12)

where u := αh and z := ωh. As a consequence, the weights and nodes will
depend on u and z.
For subsequent work it is convenient to divide system (4.2.12) into two sub-
systems. The first one consists of the first two equations which are solved for
a1 and a2:

a1(u, z) = −2e−uξ1 [(uξ2 + 1) sinh(u)− u cosh(u)]
u2(ξ1 − ξ2) ,

a2(u, z) = 2e−uξ2 [(uξ1 + 1) sinh(u)− u cosh(u)]
u2(ξ1 − ξ2) .

(4.2.13)

The second subsystem consists of the last two equations of (4.2.12), where a1
and a2 are given by (4.2.13). When u, z → 0, these equations reduce to the
trivial equality 0 = 0. To avoid such event we apply a suitable regularization
technique, as done for instance in [64, Ch. 2, Sec. 2], i.e. we divide the first

4.2. EXPONENTIALLY FITTED GAUSSIAN QUADRATURE RULE 82

equation by z4 and the second one by z3. So we obtain the system:

((uξ1+1) sinh(u)−u cosh(u))(u cos(zξ2)−z sin(zξ2))
z4u2(ξ1−ξ2) −

((uξ2+1) sinh(u)−u cosh(u))(u cos(zξ1)−z sin(zξ1))−u2 sinh(u) cos(z)
z4u2(ξ1−ξ2) = 0

((uξ1+1) sinh(u)−u cosh(u))(u sin(zξ2)+z cos(zξ2))
z3u2(ξ1−ξ2) −

((uξ2+1) sinh(u)−u cosh(u))(u sin(zξ1)+z cos(zξ1))−u2 cosh(u) sin(z)
z3u2(ξ1−ξ2) = 0

(4.2.14)

When u, z → 0 the system (4.2.14) becomes
ξ1ξ2(ξ1 + ξ2) = 0

1
3 + ξ1ξ2 = 0

whose solution is:
ξ1 = − 1√

3
, ξ2 = 1√

3
,

while the weights (4.2.13) tend to a1 = a2 = 1. Thus we obtain the parame-
ters of classical two-point Gauss-Legendre rule.
This result is not surprising at all. Indeed, the above construction gua-
rantees that the new rule is exact for all functions in B and for any linear
combination of them, in particular for eαx, xeαx,−2eαx(cos(ωx)− 1)/ω2 and
−6eαx(sin(ωx) − ωx)/ω3. When α, ω → 0 (which implies u, z → 0) the
four functions tend to 1, x, x2 and x3. This spans the space of third degree
polynomials for which the classical Gauss-Legendre rule is exact.

4.2.1 Newton method
For general values of u and z, the solution ξi(u, z), i = 1, 2, of the nonlinear
system (4.2.14) is not known in closed form, thus a numerical procedure is
needed. Moreover, when we use the quadrature rule (4.2.8) in the compound
form (4.2.22), the parameter h can be small and therefore this numerical
procedure must furnish an accurate solution of (4.2.14) even for small values
of u = αh and z = ωh. We adopt the Newton iterative method. On each
iteration, the new value of the vector ξ = (ξ1, ξ2)T , denoted by ξnew, is
determined in terms of the input vector ξ by the formula

ξnew = ξ + ∆ξ.

4.2. EXPONENTIALLY FITTED GAUSSIAN QUADRATURE RULE 83

The deviation ∆ξ is the solution of the linear system

J(ξ, u, z)∆ξ = F (ξ, u, z), (4.2.15)

where the components of vector F (ξ, u, z) are the left-hand sides of system
(4.2.14) and the matrix J(ξ, u, z) denotes the Jacobian of F (ξ, u, z) with
respect to ξ. The components of J(ξ, u, z) are:

Jij(ξ, u, z) = ∂Fi(ξ, u, z)
∂ξj

, i, j = 1, 2.

i.e.:

J11 = 1
u2z4(ξ1 − ξ2)2

[
((uξ2 + 1) sinh(u)− u cosh(u))

(
cos(ξ1z)(u+ z2(ξ1 − ξ2))+

z((uξ1 − uξ2 − 1) sin(ξ1z) + sin(ξ2z))− u cos(ξ2z))] ,

J12 =− 1
u2z4(ξ1 − ξ2)2

[
((uξ1 + 1) sinh(u)− u cosh(u))

(
− cos(ξ2z)(u+ z2(ξ2 − ξ1))+

z(uξ1 − uξ2 + 1) sin(ξ2z) + u cos(ξ1z)− z sin(ξ1z))] ,

J21 = 1
u2z3(ξ1 − ξ2)2

[
((uξ2 + 1) sinh(u)− u cosh(u))

(
sin(ξ1z)(u+ z2(ξ1 − ξ2))+

z(u(ξ2 − ξ1) + 1) cos(ξ1z)− u sin(ξ2z)− z cos(ξ2z))] ,

J22 = 1
u2z3(ξ1 − ξ2)2

[
((uξ1 + 1) sinh(u)− u cosh(u))

(
sin(ξ2z)(u+ z2(ξ2 − ξ1))+

z(uξ1 − uξ2 + 1) cos(ξ2z)− u sin(ξ1z)− z cos(ξ1z))] .

When no better approximation is available, we suggest to use an initial guess
ξ0, the vector Gauss-Legendre nodes (− 1√

3 ,
1√
3).

It can be verified that, as u and z tend to zero, the Jacobian matrix tends
to:

lim
u,z→0

J(ξ, u, z) =


1
18

1
18

1
2
√

3 −
1

2
√

3

 ,
therefore system (4.2.15) does not become singular. This property ensures
that the iteration procedure leads to an accurate solution of (4.2.14) even in
the region of small u and z.

4.2. EXPONENTIALLY FITTED GAUSSIAN QUADRATURE RULE 84

4.2.2 Error analysis
We analyze the error of the quadrature formula (4.2.8):

E[g](X) :=
∫ X+h

X−h
g(s)ds−Q[g](X).

Theorem 4.2.1 Let assume that g(x) is differentiable indefinitely many times
on [X − h,X + h]. The error from the quadrature formula Q[g] (4.2.8) with
weights and nodes given by the system (4.2.12) is

E[g](X) =
∞∑
k=0

h5+kTkD
k(D − α)2((D − α)2 + ω2)g(X), (4.2.16)

where D is the derivative operator and

T0 = 2− (a1 + a2)
u2(u2 + z2) , (4.2.17)

T1 = 2u(2u2 + z2)[2− (a1 + a2)]− (a1ξ1 + a2ξ2)u2(u2 + z2)
u4(u2 + z2)2 . (4.2.18)

Proof: The proof follows the lines of the derivation of the discretization error
of ef formulas proposed in [64, Ch. 1, Sec. 4.3]. The space of linearly indepen-
dent solutions of the following ODE (called reference differential equation)

g(iv) − 4αg′′′ + (6α2 + ω2)g′′ − 2α(2α2 + ω2)g′ + α2(α2 + ω2)g = 0,

or, more compactly,

(D − α)2((D − α)2 + ω2)g(x) = 0, (4.2.19)

coincides with the fitting space B defined in (4.2.10). Expressed in other
words, the error E[g] vanishes for any g(x) which solves (4.2.19).

Consider the Taylor expansion of g(x) around x̄ ∈ [X − h,X + h]:

g(x) =
∞∑
m=0

(x− x̄)m
m! g(m)(x̄), (4.2.20)

then apply the linear functional E to both sides of (4.2.20) and evaluate at
X:

E[g](X) =
∞∑
m=0

E[(x− x̄)m](X)g(m)(x̄).

4.2. EXPONENTIALLY FITTED GAUSSIAN QUADRATURE RULE 85

We fix x̄ = X and we get:

E[g](X) =
∞∑
k=0

E[xm](0)g(m)(X). (4.2.21)

Now we impose that the error takes the expression (4.2.16) and compute the
coefficients Tk by equating the corresponding coefficients of the derivatives of
g(x) on the righthand sides of (4.2.16) and of (4.2.21). In fact, by equating
the coefficients of g(X), we get:

h5T0α
2(α2 + ω2) = E[1],

observing that E[1] = h(2 − (a1 + a2)), we obtain (4.2.17). Similarly, by
equating the coefficients of g′(x) of (4.2.16) and of (4.2.21), we get:

−h52α(α2 + ω2)T0 + h6α2(α2 + ω2)T1 = E[x](0),

and observing that E[x](0) = −h2(a1ξ1 + a2ξ2), expression (4.2.18) follows.
2

In order to derive the composite rule based on (4.2.8), we consider

I[g] =
∫ b

a
g(s)ds,

and introduce a set of equally spaced points in [a, b] : a = t0 < t1 < ... <
tm = b, with h = tj+1− tj = b−a

m
. By applying the quadrature formula (4.2.8)

on each subinterval [tj, tj+1], we get

I[g] ≈ Qm[g] := h
m−1∑
j=0

[
ã1g(tj + ξ̃1h) + ã2g(tj + ξ̃2h)

]
, (4.2.22)

with
ãi(u, z) = 1

2ai(u, z), ξ̃i(u, z) = 1
2 + 1

2ξi(u, z), i = 1, 2.

The error Em[g] = I[g]−Qm[g] is the sum of the errors on each subinterval,
given by (4.2.16). By simple calculations we have, for g ∈ C4([a, b]),

|Em[g]| ≤ C(b− a)h4, (4.2.23)

where C depends on ||(D − α)2((D − α)2 + ω2)g||∞.

4.3. THE EF-GAUSSIAN DQ METHOD 86

4.2.3 Stability
As known, the stability of a quadrature rule depends on the sum of the
absolute values of its weights (see for example [75]), therefore in the case of
ef rule (4.2.8), we have to analyze

|a1(αh, ωh)|+ |a2(αh, ωh)|

as αh and ωh vary. Since a1 and a2 are not known in closed form as functions
of αh and ωh, we will carry on this analysis numerically in Section 4.5,
showing that our formula is stable for the investigated values of α up to 5
and ω up to 100.

4.3 The ef-Gaussian DQ method
Consider a uniform mesh on [0, xend], Ih := {x0 = 0 < x1 < · · · < xN = xend},
with xn = nh, ∀n, h = xend/N . The equation (4.0.1) at x = xn takes the
form

y(xn) = f(xn) + (Iψ)(xn) +
∫ xn

0
k(xn − s)y(s)ds, (4.3.1)

where (Iψ)(x) is the known part of the integral (see also Rem. 4.3.1)

(Iψ)(x) =
∫ 0

−∞
k(x− s)ψ(s)ds, x ∈ [0, xn]. (4.3.2)

We approximate the integral over [0, xn] by the composite quadrature rule
(4.2.22), and obtain:

y(xn) = f(xn) + (Iψ)(xn) + h
n−1∑
j=0

[
ã1k(xn−j − ξ̃1h)y(xj + ξ̃1h)+

ã2k(xn−j − ξ̃2h)y(xj + ξ̃2h)
]
,

(4.3.3)

n = 1, ..., N .
In general, points xj + ξ̃ih do not belong to the mesh Ih such that a further
approximation is needed in order to compute (4.3.3). We adopt an inter-
polation technique to approximate y(xj + ξ̃ih), analogous to that employed
in [15] in the context of double delay VIEs. In particular:

y(xj + ξ̃ih) ≈ P(xj + ξ̃ih), (4.3.4)

4.3. THE EF-GAUSSIAN DQ METHOD 87

where P is the either algebraic or ef interpolating polynomial constructed on
the points:

(xj+l, yj+l), l = −r−, ..., r+, (4.3.5)
with yn ≈ y(xn), ∀n. By using (4.3.4) we have:

yn = f(xn) + (Iψ)(xn) + h
n−1∑
j=0

2∑
i=1

ãik(xn−j − ξ̃ih)P(xj + ξ̃ih), (4.3.6)

n = 1, ..., N .
As we will show in the following, both in the case of algebraic and ef inter-
polation, it results

P(xj + sh) =
r+∑

l=−r−
pl(s)yj+l (4.3.7)

where pl(s) does not depend on xj but only on r−, r+. Therefore we have:

yn = f(xn) + (Iψ)(xn) + h
n−1∑
j=0

2∑
i=1

ãik(xn−j − ξ̃ih)
r+∑

l=−r−
pl(ξ̃i)yj+l, (4.3.8)

n = 1, ..., N .
To avoid the use of future mesh points, the following condition should be
satisfied:

r+ ≤ 1.
The method is explicit for r+ = 0, and implicit for r+ = 1.

Remark 4.3.1 When the exact value of (Iψ)(x) is not available, a suitable
approximation (Ĩψ)(x) can be used as well, without deteriorating the accu-
racy of the overall method. Following the procedure adopted in [19], since
the integrand k(x − s)y(s) vanishes as s → −∞, we can approximate the
integration interval]−∞, 0] with a bounded one]−M(h), 0], namely:

(Iψ)(x) =
∫ 0

−M(h)
k(x− s)ψ(s)ds+R(x), x ∈ [0, xend]. (4.3.9)

If M(h) is chosen sufficiently large, under hypotheses of Th. 1.3.6, we have

|R(x)| ≤ Cψh
4, ∀x ∈ [0, xend], (4.3.10)

with Cψ not depending on h. Once we have applied formula (4.3.9), under
condition (4.3.10), we may compute the integral over]−M(h), 0] by a suitable

4.3. THE EF-GAUSSIAN DQ METHOD 88

quadrature rule, with the aim to obtain an approximation (Ĩψ)(x), with an
error (Eψ)(x) := (Iψ)(x)− (Ĩψ)(x) such that

|(Eψ)(x)| ≤ Dψh
4, ∀x ∈ [0, xend] (4.3.11)

with Dψ not depending on h.
In the following proposition, we give an a priori estimate of M(h) for the
test equation (4.0.1) with (4.2.6)(4.2.7).
Proposition 4.3.1 Assume that |k(x− s)ψ(s)| ≤ c · e−β(x−s), ∀s ≤ 0,∀x ∈
[0, xend], with β > 0, c > 0. If

M(h) ≥ − log(βh4) + log c
β

, (4.3.12)

then the inequality (4.3.10) holds.
Proof: The proof follows from (4.3.9), once one observes that under hypoth-
esis (4.3.12), we have∫ −M(h)

−∞
|k(x− s)ψ(s)|ds ≤ c · e−βx

∫ −M(h)

−∞
eβsds ≤ c

e−βM(h)

β
≤ h4.

2

Remark 4.3.2 It is worthwhile saying a few words on the estimate of pa-
rameters α and ω used in the method. First of all we may investigate the
biological or physical model we are solving. For example, in the age-structured
population dynamics model [2], ω is known and α can be estimated as the av-
erage value of the mortality rate plus the age-specific harvesting rate. In the
nonlinear circuits described in [48, 82, 93–95], the frequency is given by the
input signal and α−1 can be estimated as the transient time of the circuit. If
our knowledge about the model does not help, we can draw some conclusions.
Under hypotheses of Th. 1.3.6, the solution of (4.0.1) has the same frequency
as the known forcing function f(x). In any case, we may still estimate α and
ω adopting techniques similar to those proposed in the context of ODEs (see
for example [31, 109]). That is, we can write the error as a series of type
(4.2.16) and then find the pair (α, ω) which minimizes the first term of the
error expansion at x = 0. In this process, y(m)(0) can be approximated by
its left derivative, i.e. ψ(m)(0). However, this estimate deserves a deeper
theoretical and experimental investigation, which will be object of a future
work.

4.3. THE EF-GAUSSIAN DQ METHOD 89

4.3.1 Algebraic interpolation
In the case of classical algebraic interpolation, the polynomial in (4.3.4) is

P(xj + ξ̃ih) =
r+∑

l=−r−
Ll(xj + ξ̃ih)yj+l, (4.3.13)

where Ll is the l−th fundamental Lagrange polynomial on nodes xj−r− , . . .,
xj+r+ . Notice that

Ll(tj + sh) = pl(s)
where pl(s) is the l-th fundamental Lagrange polynomial on nodes−r−, . . . , r+,
namely,

pl(s) =
r+∏

i=−r−
i 6=l

s− i
l − i

, l = −r−, . . . , r+. (4.3.14)

Therefore (4.3.7) holds, with pl(s) given by (4.3.14).
We recall that, if yj+l = y(xj+l), l = −r−, . . . , r+, and y ∈ Cr+1([x−r− , xr+]),
it results:

|y(xj + sh)− P (xj + sh)| ≤ Cr‖y(r+1)‖∞ hr+1, (4.3.15)

with r = r− + r+. We observe that the constant Cr, when r is large, has an
exponential behavior, since it depends on the Lebesgue constant.

4.3.2 ef interpolation
In this case we introduce an ef interpolation polynomial specially tuned on
the fitting space

By = {1, x, e±iωx}, (4.3.16)
since the solution y(x) of the test equation defined by (4.0.1) and (4.2.6)(4.2.7)
belongs to By. The development of a more general ef interpolation polyno-
mial is beyond the scope of the present chapter. We follow the lines of the
ef interpolation on two nodes illustrated in [68, Cap. 4, Sec. 3].
Let y be defined in a suitable neighborhood of x, and consider the function
P interpolating y at x+ (l − r−)h, l = 0, . . . , 3:

P(x+ sh) = b0(s)y(x− r−h) + b1(s)y(x+ (1− r−)h)+
b2(s)y(x+ (2− r−)h) + b3(s)y(x+ (3− r−)h) (4.3.17)

4.3. THE EF-GAUSSIAN DQ METHOD 90

Set b = [b0(s) b1(s) b2(s) b3(s)] and

L[h, s,b]y(x) = y(x+ sh)− [b0(s)y(x− r−h) + b1(s)y(x+ (1− r−)h)+
b2(s)y(x+ (2− r−)h) + b3(s)y(x+ (3− r−)h)].

(4.3.18)

We require that L[h, s,b]y(x) = 0 for any function y belonging to the fitting
space (4.3.16), i.e.:

b0(s) + b1(s) + b2(s) + b3(s) = 1
b1(s) + 2b2(s) + 3b3(s) = s+ r−

b0(s) + eiωhb1(s) + e2iωhb2(s) + e3iωhb3(s) = eiωh(s+r−)

b0(s) + e−iωhb1(s) + e−2iωhb2(s) + e−3iωhb3(s) = e−iωh(s+r−)

(4.3.19)

The last two equations of (4.3.19) are complex conjugate, therefore system
(4.3.19) is equivalent to:

b0(s) + b1(s) + b2(s) + b3(s) = 1

b1(s) + 2b2(s) + 3b3(s) = s+ r−

b0(s) + cos(z)b1(s) + cos(2z)b2(s) + cos(3z)b3(s) = cos(z(s+ r−))

sin(z)b1(s) + sin(2z)b2(s) + sin(3z)b3(s) = sin(z(s+ r−))

(4.3.20)

where z = ωh. The solution of the linear system (4.3.20) is:

b0(s) = sin(z(r−+s−2))−(r−+s−2) sin(z)
sin(2z)−2 sin(z) ,

b1(s) = 2 sin(z(r−+s−2))+sin(z(r−+s−1))−(r−+s−2) sin(2z)−(r−+s−1) sin(z)
sin(2z)−2 sin(z) ,

b2(s) = (r−+s−1) sin(2z)−sin(z(r−+s−2))−2 sin(z(r−+s−1))+(r−+s−2) sin(z)
sin(2z)−2 sin(z) ,

b3(s) = sin(z(r−+s−1))−(r−+s−1) sin(z)
sin(2z)−2 sin(z) .

(4.3.21)

We wish to stress that bl(s), l = 0, . . . , 3 do not depend on x.
The ef interpolation polynomial (4.3.17) can be also derived by applying the
six step procedure introduced by Ixaru to find approximation formulae and
described in [68, Cap. 3, Sec. 3], by choosing the hybrid set of functions
(4.3.16). Thus, the following result can be easily proved.

4.3. THE EF-GAUSSIAN DQ METHOD 91

Theorem 4.3.1 Assume that y is infinitely times derivable in a suitable
neighborhood of x. Then

L[h, s,b]y(x) =
∞∑
k=0

h4+kTkD
2+k(D2 + ω2)y(x), (4.3.22)

where
T0 = (s+ r−)2 − b1(s)− 4b2(s)− 9b3(s)

2z2 ,

with z = ωh.

Proof: Since the fitting space is (4.3.16), and the dimension of L is zero,
following ef-theory, the error can be expressed as in (4.3.22), with the leading
term of the error (compare [68, Cap. 3, Sec. 3, eq. (3.57)]):

lte = h4L
∗[h, t,b]

2z2 D2(D2 + ω2)y(x) (4.3.23)

where L∗[h, t,b] := L[h, t,b]x2|x=0

h2 = (s+ r−)2 − b1(s)− 4b2(s)− 9b3(s). 2

The function P interpolating points (4.3.5) can be constructed by consi-
dering the interpolating function p(x + sh) of (4.3.17), with x = xj. We
have

P(xj + sh) =
3∑
l=0

bl(s)y(xj−r−+l) =
−r−+3∑
l=−r−

bl+r−(s)y(xj+l), (4.3.24)

therefore the ef-polynomial P(xj + sh) can be expressed as in (4.3.7) with
r+ = 3− r−, pl(s) = bl+r−(s).
Since we intend to apply the ef interpolation to the DQ method, we are
specially interested in the computation of bi(s), i = 0, . . . , 4, when |z| is
small. It is easy to verify that each bi(s) tends to the form 0/0 as z tends to
zero. By Hopital theorem you can proof that the limits of weights as z goes

4.3. THE EF-GAUSSIAN DQ METHOD 92

to zero exist and they are finite. In particular, they are, respectively:

lim
z→0

b0(s) = 1
6(r− + s− 2)

(
1− (r− + s− 2)2

)
,

lim
z→0

b1(s) = 1
2
(
r−

3 + (3s− 5)r−2 +
(
3s2 − 10s+ 6

)
r− + s

(
s2 − 5s+ 6

))
,

lim
z→0

b2(s) = 1
2
(
−r−3 − 3sr−2 + 4r−2 − 3s2r− + 8sr− − 3r− − s3 + 4s2 − 3s

)
,

lim
z→0

b3(s) = 1
6
(
(r− + s− 1)3 − r− − s+ 1

)
.

(4.3.25)

Although this indeterminacy can be easily removed by analytical tools, it
can cause loss of accuracy in the practical computation of bi(s), for small
values of |z|. To overcome this problem we apply a strategy similar to the
one adopted for the weights of the ef Simpson rule in [19]. Namely, we fix the
threshold value T = 0.01 and we choose to compute each bi(s) by formulas
(4.3.21) if |z| > T , and by the truncated Taylor expansion up to the sixth
term if |z| ≤ T . Such strategy ensures that the accuracy of the computation

4.3. THE EF-GAUSSIAN DQ METHOD 93

of each bi(s) is equal to the machine precision. So we have:

b0(s) =
[
−1

6s
3 +

(
1− r−

2

)
s2 +

(
− r2
−
2 + 2r− − 11

6

)
s+

+
(
− r3
−
6 + r2

− −
11r−

6 + 1
)]

+

+
[

1
120s

5 +
(
r−
24 −

1
12

)
s4 +

(
r2
−

12 −
r−
3 + 7

24

)
s3+

+
(
r3
−

12 −
r2
−
2 + 7r−

8 −
5
12

)
s2 +

(
r4
−

24 −
r3
−
3 + 7r2

−
8 −

5r−
6 + 1

5

)
s+

+
(
r5
−

120 −
r4
−

12 + 7r3
−

24 −
5r2
−

12 + r−
5

)]
z2+

+
[
− 1

5040s
7 +

(
1

360 −
r−
720

)
s6 +

(
− r2

−
240 + r−

60 −
7

480

)
s5+

+
(
− r3

−
144 + r2

−
24 −

7r−
96 + 5

144

)
s4+

+
(
− r4

−
144 + r3

−
18 −

7r2
−

48 + 5r−
36 −

49
1440

)
s3+

+
(
− r5

−
240 + r4

−
24 −

7r3
−

48 + 5r2
−

24 −
49r−
480 + 1

240

)
s2+

+
(
− r6

−
720 + r5

−
60 −

7r4
−

96 + 5r3
−

36 −
49r2
−

480 + r−
120 + 1

140

)
s+

+
(
− r7

−
5040 + r6

−
360 −

7r5
−

480 + 5r4
−

144 −
49r3
−

1440 + r2
−

240 + r−
140

)]
z4+

+
[

1
362880s

9+

+
(

r−
40320 −

1
20160

)
s8+

+
(

r2
−

10080 −
r−

2520 + 1
2880

)
s7+

+
(

r3
−

4320 −
r2
−

720 + 7r−
2880 −

1
864

)
s6+

+
(

r4
−

2880 −
r3
−

360 + 7r2
−

960 −
r−
144 + 49

28800

)
s5+

+
(

r5
−

2880 −
r4
−

288 + 7r3
−

576 −
5r2
−

288 + 49r−
5760 −

1
2880

)
s4+

+
(

r6
−

4320 −
r5
−

360 + 7r4
−

576 −
5r3
−

216 + 49r2
−

2880 −
r−
720 −

221
181440

)
s3+

+
(

r7
−

10080 −
r6
−

720 + 7r5
−

960 −
5r4
−

288 + 49r3
−

2880 −
r2
−

480 −
221r−
60480 + 1

6048

)
s2+

+
(

r8
−

40320 −
r7
−

2520 + 7r6
−

2880 −
r5
−

144 + 49r4
−

5760 −
r3
−

720 −
221r2

−
60480 + r−

3024 + 1
1800

)
s+

+
(

r9
−

362880 −
r8
−

20160 + r7
−

2880 −
r6
−

864 + 49r5
−

28800 −
r4
−

2880 −
221r3

−
181440 + r2

−
6048 + r−

1800

)]
z6

(4.3.26)

4.3. THE EF-GAUSSIAN DQ METHOD 94

b1(s) =
[

1
2s

3 + (3r−−5)
2 s2 + (3r2

−−10r−+6)
2 s+ (r3

−−5r2
−+6r−)
2

]
+

+
[
− 1

40s
5 + (25−15r−)

120 s4 + (−30r2
−+100r−−75)

120 s3+

+(−30r3
−+150r2

−−225r−+95)
120 s2+

+(−15r4
−+100r3

−−225r2
−+190r−−42)

120 s+

+(−3r5
−+25r4

−−75r3
−+95r2

−−42r−)
120

]
z2+

+
[

1
1680s

7 + (42r−−70)
10080 s6+

+(126r2
−−420r−+315)

10080 s5

+(210r3
−−1050r2

−+1575r−−665)
10080 s4+

+(210r4
−−1400r3

−+3150r2
−−2660r−+609)

10080 s3+

+(126r5
−−1050r4

−+3150r3
−−3990r2

−+1827r−−105)
10080 s2+

+(42r6
−−420r5

−+1575r4
−−2660r3

−+1827r2
−−210r−−90)

10080 s+

+(6r7
−−70r6

−+315r5
−−665r4

−+609r3
−−105r2

−−90r−)
10080

]
z4+

+
[
− 1

120960s
9 + (75−45r−)

604800 s8 + (−180r2
−+600r−−450)
604800 s7+

+(−420r3
−+2100r2

−−3150r−+1330)
604800 s6

+(−630r4
−+4200r3

−−9450r2
−+7980r−−1827)

604800 s5+

+(−630r5
−+5250r4

−−15750r3
−+19950r2

−−9135r−+525)
604800 s4+

+(−420r6
−+4200r5

−−15750r4
−+26600r3

−−18270r2
−+2100r−+950)

604800 s3+

+(−180r7
−+2100r6

−−9450r5
−+19950r4

−−18270r3
−+3150r2

−+2850r−−250)
604800 s2+

+(−45r8
−+600r7

−−3150r6
−+7980r5

−−9135r4
−+2100r3

−+2850r2
−−500r−−348)

604800 s+

+(−5r9
−+75r8

−−450r7
−+1330r6

−−1827r5
−+525r4

−+950r3
−−250r2

−−348r−)
604800

]
z6

(4.3.27)

4.3. THE EF-GAUSSIAN DQ METHOD 95

b2(s) =
[
−1

2s
3 +

(
2− 3r−

2

)
s2 +

(
−3r2

−
2 + 4r− − 3

2

)
s− r3

−
2 + 2r2

− −
3r−

2

]
+

+
[

1
40s

5 + (15r−−20)
120 s4 + (30r2

−−80r−+45)
120 s3+

+(30r3
−−120r2

−+135r−−40)
120 s2+

+(15r4
−−80r3

−+135r2
−−80r−+12)

120 s+

+(3r5
−−20r4

−+45r3
−−40r2

−+12r−)
120

]
z2+

+
[
− 1

1680s
7 + (56−42r−)

10080 s6+

+(−126r2
−+336r−−189)

10080 s5+

+(−210r3
−+840r2

−−945r−+280)
10080 s4+

+(−210r4
−+1120r3

−−1890r2
−+1120r−−189)

10080 s3+

+(−126r5
−+840r4

−−1890r3
−+1680r2

−−567r−+84)
10080 s2+

+(−42r6
−+336r5

−−945r4
−+1120r3

−−567r2
−+168r−−36)

10080 s+

+(−6r7
−+56r6

−−189r5
−+280r4

−−189r3
−+84r2

−−36r−)
10080

]
z4+

+
[

1
120960s

9 + (45r−−60)
604800 s8+

+(180r2
−−480r−+270)

604800 s7+

+(420r3
−−1680r2

−+1890r−−560)
604800 s6+

+(630r4
−−3360r3

−+5670r2
−−3360r−+567)

604800 s5+

+(630r5
−−4200r4

−+9450r3
−−8400r2

−+2835r−−420)
604800 s4+

+(420r6
−−3360r5

−+9450r4
−−11200r3

−+5670r2
−−1680r−+310)

604800 s3+

+(180r7
−−1680r6

−+5670r5
−−8400r4

−+5670r3
−−2520r2

−+930r−+200)
604800 s2+

+(45r8
−−480r7

−+1890r6
−−3360r5

−+2835r4
−−1680r3

−+930r2
−+400r−−312)

604800 s+

+(5r9
−−60r8

−+270r7
−−560r6

−+567r5
−−420r4

−+310r3
−+200r2

−−312r−)
604800

]
z6

(4.3.28)

4.3. THE EF-GAUSSIAN DQ METHOD 96

b3(s) =
[

1
6s

3 +
(
r−
2 −

1
2

)
s2 +

(
r2
−
2 − r− + 1

3

)
s+

(
r3
−
6 −

r2
−
2 + r−

3

)]
+

+
[
− 1

120s
5 + 1

2

(
1
12 −

r−
12

)
s4+

+1
2

(
− r2
−
6 + r−

3 −
1
12

)
s3+

+1
2

(
− r3
−
6 + r2

−
2 −

r−
4 −

1
12

)
s2+

+1
2

(
− r4
−

12 + r3
−
3 −

r2
−
4 −

r−
6 + 1

10

)
s+

+1
2

(
− r5
−

60 + r4
−

12 −
r3
−

12 −
r2
−

12 + r−
10

)]
z2+

+
[

1
5040s

7 + 1
2

(
r−
360 −

1
360

)
s6+

+1
2

(
r2
−

120 −
r−
60 + 1

240

)
s5+

+1
2

(
r3
−

72 −
r2
−

24 + r−
48 + 1

144

)
s4+

+1
2

(
r4
−

72 −
r3
−

18 + r2
−

24 + r−
36 −

11
720

)
s3+

+1
2

(
r5
−

120 −
r4
−

24 + r3
−

24 + r2
−

24 −
11r−
240 −

1
240

)
s2+

+1
2

(
r6
−

360 −
r5
−

60 + r4
−

48 + r3
−

36 −
11r2
−

240 −
r−
120 + 3

280

)
s+

+1
2

(
r7
−

2520 −
r6
−

360 + r5
−

240 + r4
−

144 −
11r3
−

720 −
r2
−

240 + 3r−
280

)]
z4+

+
[
− 1

362880s
9 + 1

2

(
1

20160 −
r−

20160

)
s8+

+1
2

(
− r2

−
5040 + r−

2520 −
1

10080

)
s7+

+1
2

(
− r3

−
2160 + r2

−
720 −

r−
1440 −

1
4320

)
s6+

+1
2

(
− r4

−
1440 + r3

−
360 −

r2
−

480 −
r−
720 + 11

14400

)
s5+

+1
2

(
− r5

−
1440 + r4

−
288 −

r3
−

288 −
r2
−

288 + 11r−
2880 + 1

2880

)
s4+

+1
2

(
− r6

−
2160 + r5

−
360 −

r4
−

288 −
r3
−

216 + 11r2
−

1440 + r−
720 −

157
90720

)
s3+

+1
2

(
− r7

−
5040 + r6

−
720 −

r5
−

480 −
r4
−

288 + 11r3
−

1440 + r2
−

480 −
157r−
30240 −

1
6048

)
s2+

+1
2

(
− r8

−
20160 + r7

−
2520 −

r6
−

1440 −
r5
−

720 + 11r4
−

2880 + r3
−

720 −
157r2

−
30240 −

r−
3024 + 3

2800

)
s+

+1
2

(
− r9

−
181440 + r8

−
20160 −

r7
−

10080 −
r6
−

4320 + 11r5
−

14400 + r4
−

2880 −
157r3

−
90720 −

r2
−

6048 + 3r−
2800

)]
z6

(4.3.29)

4.4. CONVERGENCE ANALYSIS 97

4.4 Convergence analysis
From the construction of the method it follows that the accuracy of the ex-
ponential fitting direct quadrature method (4.3.8) will depend both on the
order of the quadrature formula (4.2.8) and on the accuracy of the interpo-
lation polynomial (4.3.4). More precisely, the order of convergence of the ef
DQ method (4.3.8) is established by the following theorem.

Theorem 4.4.1 Assume that the functions f, k, and ψ in (4.0.1) satisfy
hypotheses of Th. 1.3.6 and the solution y(x) ∈ C5([0, xend]). Let {yn}Nn=1
be the numerical solution of (4.0.1) obtained by the ef DQ method (4.3.6),
where the polynomial P is either the Lagrange polynomial (4.3.13) with r :=
r+ + r− ≥ 3 or the ef-based interpolation polynomial (4.3.24). Let (Iψ)(x) be
discretized by (Ĩψ)(x), with (Eψ)(x) = (Iψ)(x)− (Ĩψ)(x) satisfying (4.3.11).
Then, the error en = y(xn)− yn satisfies:

max
1≤n≤N

|en| = O(h4) as h→ 0.

Proof: By subtracting (4.3.6) from (4.3.1), and considering that (Iψ)(x) is
approximated by (Ĩψ)(x), we get

en =
n−1∑
j=0

[∫ h

0
k(xn−j − s)y(xj + s)ds− h

2∑
i=1

ãik(xn−j − ξ̃ih)P(xj + ξ̃ih)
]

+ (Eψ)(xn).

We rewrite the error as en =
n−1∑
j=0

[Anj +Bnj] + (Eψ)(xn), where (cfr. (4.3.8))

Anj =
∫ h

0
k(xn−j − s)y(xj + s)ds−

∫ h

0
k(xn−j − s)P(xj + s)ds

=
∫ h

0
k(xn−j − s)

y(xj + s)−
r+∑

l=−r−
pl(s/h)yj+l

 ds,
Bnj =

∫ h

0
k(xn−j − s)P(xj + s)ds− h

2∑
i=1

ãik(xn−j − ξ̃ih)P(xj + ξ̃ih).

4.4. CONVERGENCE ANALYSIS 98

Set K = ‖k(x)‖[0,xend] and W = max
l=−r−,...,r+

‖pl(x)‖[0,1], it follows

|Anj| ≤ hK

max
[0,h]
|Ij(s)|+

r+∑
l=−r−

|pl(s/h)| |y(xj+l)− yj+l|


≤ hK

max
[0,h]
|Ij(s)|+W

r+∑
l=−r−

|ej+l|

 , (4.4.1)

where
Ij(s) = y(xj + s)−

r+∑
l=−r−

pl(s/h)y(xj+l)

is the interpolation error at xj + s. By hypotheses there exists Cr > 0, such
that (compare (4.3.15) and (4.3.23))

|Ij(s)| ≤ Crh
r+1, ∀s ∈ [0, h], (4.4.2)

where r = 3 in the case of ef interpolation (4.3.17). From (4.4.1) and (4.4.2)
it comes out:

|Anj| ≤ C̄rh
r+2 + C1h

r+∑
l=−r−

|ej+l|, (4.4.3)

where C̄r = KCr and C1 = KW .
Bnj is the quadrature error of the formula (4.2.8) applied to the function
k(xn−j − s)P(xj + s) on [0, h]. Thus, according to (4.2.16), there exists
Dnj > 0 such that

|Bnj| ≤ Dnjh
5. (4.4.4)

From (4.4.3), (4.4.4) and (4.3.11), it follows that

|en| ≤
n−1∑
j=0

C̄rhr+2 + C1h
r+∑

l=−r−
|ej+l|+Dnjh

5

+Dψh
4

≤ xn
(
C̄rh

r+1 + D̄h4
)

+ C1h(r + 1)
n∑
j=0
|ej|+Dψh

4

≤ xendCr,2h
4 + C1xend

n∑
j=0
|ej|,

where D̄ = maxn,j Dnj, Cr,2 = 3 max{C̄r, D̄,Dψ/xend} and therefore,

|en| ≤
Cr,2xend

1− C1xend
h4 + Crxend

1− C1xend

n−1∑
j=0
|ej|.

4.5. NUMERICAL ILLUSTRATIONS 99

ef-Gauss rule (4.2.22) class. Gauss-Legendre
ω = 10 ω = 9

h fsolve Newton Newton
1/8 3.55e-15 6.22e-15 2.73e-04 4.82e-03
1/16 3.78e-11 1.78e-15 1.57e-05 2.87e-04
1/32 1.78e-05 1.47e-14 9.58e-07 1.77e-05
1/64 1.11e-06 8.44e-15 5.96e-08 1.10e-06
1/128 6.94e-08 5.77e-15 3.72e-09 6.89e-08
1/256 4.34e-09 2.58e-14 2.32e-10 4.30e-09
1/512 2.71e-10 4.22e-14 1.46e-11 2.69e-10
1/1024 1.69e-11 6.22e-14 9.02e-13 1.68e-11
1/2048 1.10e-12 5.02e-14 2.84e-14 1.04e-12

Table 4.1: h dependence of the errors from the ef-based Gauss rule (4.2.22)
and from the classical Gauss-Legendre rule for integral (4.5.1) with ω̄ = 10.

We apply the Gronwall-type inequality [10, p. 41] and, since there are no
starting errors, it follows

|en| ≤
Cr,2xend

1− C1xend
exp

(
C1xend

1− C1xend

)
h4.

2

4.5 Numerical illustrations
This section describes some numerical experiments carried out both on the ef-
based quadrature rule (4.2.22) and on the DQ method (4.3.6). We compared
these methods with their counterpart based on classical Gaussian quadrature
rules. The computations have been done on a node with CPU Intel Xeon 6
core X5690 3,46GHz, belonging to the E4 multi-GPU cluster of Mathematics
Department of Salerno University.

4.5. NUMERICAL ILLUSTRATIONS 100

4.5.1 Tests on the ef-based quadrature rule
We consider the integral∫ 5

1
ex cos(ω̄x)dx = ex (cos (ω̄x) + ω̄ sin (ω̄x))

1 + ω̄2 (4.5.1)

with the exact values (up to 16 figures) −2.2684781432379239 when ω̄ = 10
and −2.852120449004837 when ω̄ = 50. Initially we consider the integral
(4.5.1) with ω̄ = 10. In a first set of tests we want to check the accuracy
of the determination of the weights ξi, i = 1, 2 by the proposed Newton
procedure with five iterations, and by the nonlinear equation solver fsolve
from Matlab R© (v. 7.14.0 R2012a) package. We use α = 1 and ω = 10 for
which the formula is exact and, if these weights are computed correctly, then
the error must be zero within the round-off limits; we have worked in double
precision arithmetics.
In a second set of tests we want to simulate a situation when the true value
of ω is known only approximately, and to see how much the accuracy is
deteriorated by such an approximation. We use α = 1 as before, but ω = 9.
Finally, we want to compare the results with those furnished by the standard
Gauss-Legendre rule. These data are collected on Table 4.1. Data from
ω = 10 show that the Newton iteration procedure works well (indeed, its
errors are within the round-off limits) but this does not hold always true for
fsolve. It is also seen that the results from the rule (4.2.22) are substantially
better than from its classical counterpart, even when an altered value is
accepted for ω. The order four of the new rule is also confirmed by these
data. In the following we will adopt only the Newton iteration procedure,
with maximum number of iteration equal to 5, unless otherwise specified.
Then we performed another set of tests on the integral (4.5.1) with ω̄ = 50,
using the quadrature rule (4.2.22) with α = 1, ω = 50 (exact) and also
approximated values ω = 49 and ω = 45. From results listed in Table 4.2
we draw conclusions similar to the case ω̄ = 10. Moreover, to give evidence
of the stability of the quadrature rule, we performed numerical experiments
on the integral (4.5.1) with α = 1, ω̄ = 100, 1000, 10000, using the ef rule
(4.2.22) with exact and approximated values of the frequency and the classical
Gauss-Legendre rule. The observed behavior is similar to the previous cases,
as shown in Tables 4.3, 4.4 and 4.5.
In order to investigate the stability of quadrature rule (4.2.8), we computed
|a1(αh, ωh)|+ |a2(αh, ωh)|, as α varies in [0, 5] and ω varies in [0, 100], with

4.5. NUMERICAL ILLUSTRATIONS 101

ef-Gauss rule (4.2.22) class. Gauss-Legendre
h ω = 50 ω = 49 ω = 45
1/8 1.64e-14 3.68e-03 1.76e-02 9.10e-02
1/16 4.44e-16 1.70e-04 8.17e-04 4.34e-03
1/32 8.88e-16 9.96e-06 4.78e-05 2.55e-04
1/64 4.00e-15 6.12e-07 2.94e-06 1.57e-05
1/128 2.66e-15 3.81e-08 1.83e-07 9.79e-07
1/256 4.88e-15 2.38e-09 1.14e-08 6.11e-08
1/512 4.44e-15 1.49e-10 7.13e-10 3.82e-09
1/1024 1.20e-14 9.29e-12 4.46e-11 2.39e-10
1/2048 4.44e-15 5.95e-13 2.78e-12 1.49e-11

Table 4.2: h dependence of the errors from the ef-based Gauss rule (4.2.22),
with nodes computed by Newton method, and from the classical Gauss-
Legendre rule for integral (4.5.1) with ω̄ = 50.

ef-Gauss rule (4.2.22) class. Gauss-Legendre
h ω = 100 ω = 99 ω = 95
1/16 7.66e-13 4.15e-01 2.01e+00 1.88e+01
1/32 8.99e-15 4.43e-04 2.16e-03 1.97e-02
1/64 1.77e-14 2.08e-05 1.02e-04 9.53e-04
1/128 1.25e-14 1.22e-06 5.96e-06 5.62e-05
1/256 9.21e-15 7.48e-08 3.66e-07 3.47e-06
1/512 3.05e-14 4.66e-09 2.28e-08 2.16e-07
1/1024 3.11e-15 2.91e-10 1.42e-09 1.35e-08

Table 4.3: h dependence of the errors from the ef-based Gauss rule (4.2.22),
and from the classical Gauss-Legendre rule for integral (4.5.1) with ω̄ = 100.

4.5. NUMERICAL ILLUSTRATIONS 102

ef-Gauss rule (4.2.22) class. Gauss-Legendre
h ω = 1000 ω = 999 ω = 995
1/16 4.28e-12 4.34e-01 2.15e+00 1.95e+01
1/32 1.23e-12 1.91e-01 9.58e-01 2.58e+01
1/64 2.00e-13 5.68e-03 2.84e-02 3.81e-01
1/128 2.82e-13 9.87e-04 4.92e-03 3.82e-01
1/256 9.31e-14 3.09e-05 1.54e-04 1.45e-02
1/512 1.11e-15 1.15e-06 5.76e-06 5.69e-04
1/1024 9.41e-15 6.48e-08 3.24e-07 3.23e-05

Table 4.4: h dependence of the errors from the ef-based Gauss rule (4.2.22),
and from the classical Gauss-Legendre rule for integral (4.5.1) with ω̄ = 1000.

ef-Gauss rule (4.2.22) class. Gauss-Legendre
h ω = 10000 ω = 9999 ω = 9995
1/16 2.20e-12 8.33e-02 4.16e-01 9.93e-01
1/32 1.93e-11 2.38e-02 1.20e-01 1.94e+00
1/64 5.74e-12 1.24e-02 6.19e-02 1.22e+00
1/128 1.42e-12 1.38e-03 6.89e-03 5.13e-01
1/256 2.43e-12 4.70e-04 2.35e-03 1.12e-01
1/512 7.19e-13 2.41e-04 1.20e-03 3.59e-01
1/1024 8.92e-14 6.04e-05 5.99e-04 5.46e-02

Table 4.5: h dependence of the errors from the ef-based Gauss rule (4.2.22),
and from the classical Gauss-Legendre rule for integral (4.5.1) with ω̄ =
10000.

4.5. NUMERICAL ILLUSTRATIONS 103

0.6
0.6 0.6

0.8 0.8 0.8

1

1 1 1

1.2

1.2 1.2 1.2

1.4

1.4 1.4 1.4
1.6 1.6 1.6

1.8 1.8 1.8

t

_

20 40 60 80 100

1
2
3
4
5

Figure 4.1: Contour plots of |a1(αh, ωh)| + |a2(αh, ωh)|, generated for α =
0.2, 0.4, . . . , 5, ω = 0.2, 0.4, . . . , 100 and h = 1.

h = 1. We have displayed on Fig. 4.1 contour plots. It is seen that this
sum is bounded and in particular is smaller than 2, therefore the quadrature
rule (4.2.8) is stable, in the considered ranges of α and ω. After fixing α,
for increasing values of ω, the sum of the wights is decreasing, and this
guarantees the stability of the rule.

4.5.2 Tests on the ef-based DQ method
Numerical experiments on a first VIE

We consider the test equation [9]

y(x) = f(x)− b
∫ x

−∞
k(x− s)y(s)ds, b > 0, 0 ≤ x ≤ xend

y(x) = ψ(x), x ≤ 0,
(4.5.2)

where xend = 10 and
k(x) = eᾱx, f(x) = A cos(ω̄x)−B sin(ω̄x) + 1,

A = B = 2. We take ᾱ = −1 by default. The true solution is

y(x) = λ cos(ω̄x)− µ sin(ω̄x) + 1
1 + b

provided the same expression is adopted for ψ(x). The parameters λ and µ
are

λ = (1 + b+ ω̄2)A− bω̄B
(1 + b)2 + ω̄2 , µ = (1 + b+ ω̄2)B + bω̄A

(1 + b)2 + ω̄2 .

4.5. NUMERICAL ILLUSTRATIONS 104

h ef DQ with ef DQ with classical Gaussian DQ
ef interp. Lagrange interp. with Lagrange interp

1/8 4.441e-16 1.846e-01 1.848e-01
1/16 4.441e-16 5.843e-03 5.843e-03
1/32 8.882e-16 5.668e-05 5.675e-05
1/64 1.332e-15 1.714e-05 1.714e-05
1/128 1.643e-14 1.474e-06 1.474e-06
1/256 7.994e-15 1.042e-07 1.042e-07
1/512 2.403e-13 6.878e-09 6.879e-09
1/1024 0.000e+00 4.412e-10 4.412e-10
1/2048 4.441e-16 2.792e-11 2.793e-11

Table 4.6: Error obtained on problem (4.5.2) with ω̄ = 10, by ef DQ method
(4.3.6) with ef interpolation and with Lagrange interpolation of degree r = 3
(for α = ᾱ and ω = ω̄), and classic-DQ method with Lagrange interpolation
of degree r = 3.

First we compare ef-DQ method (4.3.6) with Lagrange interpolation (4.3.13)
and with ef interpolation (4.3.24) when the method parameters α and ω
coincide with the exact frequencies ᾱ and ω̄, respectively. In addition, we
consider the DQ method based on classical 2-nodes Gauss-Legendre formula
with Lagrange interpolation. Results are listed in Table 4.6, where the error
is computed as

error = |y(xend)− yN | .

The ef DQ method (4.3.6)(4.3.24) with α = ᾱ and ω = ω̄ is exact on problem
(4.5.2); as a matter of fact the error is due only to rounding errors. Both the
ef DQ method with Lagrange interpolation (4.3.6)(4.3.13) and the classical
Gaussian DQ method confirm the theoretical order 4, and no substantial
improvement is obtained by the former method with respect to the latter.
For this reason we do not consider the method (4.3.6)(4.3.13) in the following.
The ef DQ method (4.3.6)(4.3.24), which is exact on problem (4.5.1) when
is applied with α = ᾱ and ω = ω̄, it is expected to be more accurate than
classical DQ methods when the frequency of the kernel ᾱ = ᾱ(x) slightly
varies around a constant value and the true solution is a linear combination of
{f1(x), f2(x)x, f3(x) cos(ω̄(x)x), f4(x) sin(ω̄(x)x)}, where fi(x), i = 1, . . . , 4
and ω̄(x) weakly depend on x. Thus, similarly to [19], to simulate a realistic

4.5. NUMERICAL ILLUSTRATIONS 105

Gδ
ω Gclass

h δ = −0.10 δ = −0.05 δ = 0.05 δ = 0.10
1/8 3.51e-02 1.80e-02 1.89e-02 3.88e-02 1.85e-01
1/16 1.09e-03 5.60e-04 5.87e-04 1.20e-03 5.84e-03
1/32 1.08e-05 5.55e-06 5.83e-06 1.19e-05 5.67e-05
1/64 3.26e-06 1.67e-06 1.76e-06 3.60e-06 1.71e-05
1/128 2.80e-07 1.44e-07 1.51e-07 3.10e-07 1.47e-06
1/256 1.98e-08 1.02e-08 1.07e-08 2.19e-08 1.04e-07
1/512 1.31e-09 6.70e-10 7.05e-10 1.45e-09 6.88e-09
1/1024 8.39e-11 4.30e-11 4.51e-11 9.47e-11 4.41e-10
1/2048 5.31e-12 2.73e-12 2.86e-12 5.87e-12 2.77e-10

Table 4.7: Error obtained on problem (4.5.2) with ω̄ = 10, α = −1, by Gclass

and Gδ
ω, for different values of δ.

situation, we assume that the frequencies ᾱ and ω̄ are known only within a
certain degree of accuracy. In particular we examine these cases

- Gδ
ω, the ef DQ method (4.3.6)(4.3.24), with α = ᾱ and ω = (1 + δ)ω̄,

- Gδ
α,ω, the ef DQ method (4.3.6)(4.3.24), with α = (1+δ)ᾱ and ω = (1+δ)ω̄,

- Gclass, the DQ method based on classical two-nodes Gaussian rule.

Both classical and ef DQ methods have order four, but we expect that latter
methods have a smaller error, at least for small values of δ. Results obtained
for ω = 10 by Gδ

ω and Gclass, for different values of δ, are collected in Tab. 4.7.
The values at δ = 0 are included in the first column of Tab. 4.6. Both Gδ

ω

and Gclass confirm the theoretical order of convergence, but Gδ
ω is much more

accurate in any case, especially for small values of |δ|. Similar results are
obtained by Gδ

α,ω.
To measure that gain in accuracy we introduce the parameter

acc.gain = errGclass/errG,

with G ∈ {Gδ
ω, G

δ
α,ω} and plot its values for h = 1/32 and for different values

of ω and δ in Fig. 4.2. We do not plot results at δ = 0, because in that
case both Gδ

ω and Gδ
α,ω are exact to the machine precision. In Fig. 4.2, Gδ

ω

exhibits best results, nevertheless is just slightly better than Gδ
α,ω. In any

4.5. NUMERICAL ILLUSTRATIONS 106

case we measure a noticeable accuracy gain and it is bigger when δ is smaller,
as expected. In particular we can conclude that ef-based DQ methods signif-
icantly improve classical Gaussian DQ method if the frequencies are known
with an error up to 10 percent.

Numerical experiments on a second VIE

Finally we consider the test problem

y(x) = f(x) +
∫ x

−∞
k(x− s)y(s)ds, 0 ≤ x ≤ 10

y(x) = ψ(x), x ≤ 0,
(4.5.3)

where
k(x) = eᾱx,

and

f(x) = ω̄
(
(3x− 2)ω̄2 + 3x− 8

)
cos(xω̄) +

(
(3x− 2)ω̄4 + (3x− 5)ω̄2 + 3

)
sin(xω̄)

ω̄4

The true solution is

y(x) = (1 + ω̄2)2

ω̄4 (3x− 2) sin(ω̄x),

provided the same expression is adopted for ψ(x). We take ᾱ = −1. In the
equation (4.5.3), k(x) is of type (4.2.6), while y(x) is an oscillatory function, but
is not of type (4.2.7). We applied ef DQ method (4.3.6)(4.3.24) and the classical
Gaussian DQ method to equation (4.5.3), and listed the results in Table 4.8. We
compared their performances by the work-precision diagrams plotted in Fig. 4.3,
too. The ef method compares favorably with respect to classical Gaussian DQ
method even in this case. Of course the ef method requires the additional cost due
to the initial computation of nodes and weights, nevertheless it is not expensive
since it consists of the solution of a single nonlinear system of dimension two and it
should be done one time. Finally, to give numerical evidence of the stability of the
method, we performed similar tests on equation (4.5.3) with ω̄ = 100, 1000, 1000
and list the obtained results in Table 4.9.

4.5. NUMERICAL ILLUSTRATIONS 107

ω = 10 ω = 50
h ef DQ class. Gauss DQ ef DQ class. Gauss DQ
1/16 5.35e-04 1.61e-02 1.30e-01 1.97e+00
1/32 7.75e-05 5.47e-03 5.31e-03 3.03e-01
1/64 5.83e-06 4.58e-04 4.57e-04 4.86e-02
1/128 3.87e-07 3.16e-05 1.32e-05 4.16e-03
1/256 2.47e-08 2.05e-06 1.41e-07 2.59e-04
1/516 1.56e-09 1.31e-07 1.35e-08 1.55e-05
1/1024 9.79e-11 8.24e-09 1.54e-09 9.41e-07
1/2048 6.13e-12 5.17e-10 1.18e-10 5.78e-08

Table 4.8: Error obtained on problem (4.5.3) with ω̄ = 10 (2nd and 3rd
columns) and ω̄ = 50 (4th and 5th columns), by ef DQ method (4.3.6)(4.3.24)
with r = 3 (for α = ᾱ and ω = ω̄), and classical Gaussian DQ method with
Lagrange interpolation of degree r = 3.

ω = 100 ω = 1000 ω = 10000
classical classical classical

h ef DQ Gauss DQ ef DQ Gauss DQ ef DQ Gauss DQ
1/64 3.05e-04 2.35e-02 6.44e-04 5.39e-01 4.20e-03 4.71e-01
1/128 4.95e-05 3.40e-02 6.85e-04 1.92e-01 1.27e-04 3.35e-01
1/256 4.42e-06 2.23e-03 2.63e-05 2.25e-01 2.29e-04 1.12e-01
1/516 2.79e-07 1.21e-04 6.51e-06 7.76e-02 6.28e-05 6.94e-02
1/1024 1.68e-08 6.69e-06 3.18e-06 2.82e-03 4.86e-07 4.50e-02
1/2048 1.02e-09 3.87e-07 1.29e-07 4.59e-04 4.21e-06 1.69e-02

Table 4.9: Error obtained on problem (4.5.3) with ω̄ = 100 (2nd and 3rd
columns), ω̄ = 1000 (4th and 5th columns) and ω̄ = 10000 (6th and 7th
columns) , by ef DQ method (4.3.6)(4.3.24) with r = 3 (for α = ᾱ and
ω = ω̄), and classical Gaussian DQ method with Lagrange interpolation of
degree r = 3.

4.5. NUMERICAL ILLUSTRATIONS 108

5 10 15 20 250

2

4

6

8

10

t

ac
c.

ga
in

b=+0.05

b=+0.10

b=+0.15

b=+0.20

(a)

5 10 15 20 250

2

4

6

8

10

t

ac
c.

ga
in

b=+0.05

b=+0.10

b=+0.15

b=+0.20

(b)

Figure 4.2: The variation with ω̄ of the accuracy gain between classic-DQ
and ef-DQ methods Gδ

ω (a) and Gδ
α,ω (b), at h = 1/32.

4.5. NUMERICAL ILLUSTRATIONS 109

0 2 4 6 8 10 12
104

105

106

107

108

109

cd

kv
al

(a)

0 2 4 6 8 10
104

105

106

107

108

109

cd

kv
al

(b)

Figure 4.3: Work-precision diagrams of the ef DQ method (4.3.6)(4.3.24)
(◦) and of the classical Gaussian DQ method (∗) on problem (4.5.3), with
ω̄ = 10 (a) and with ω̄ = 50 (b).

Chapter 5

EF-Runge-Kutta-Nyström
methods for special
second-order ODEs with
periodic solution

5.1 Introduction
The chapter is focused on the numerical solution of Hadamard well-posed special
second order ordinary differential equations (ODEs)

y′′ = f(x, y)
y′(x0) = y′0
y(x0) = y0

, x ∈ [x0, X], (5.1.1)

assumed to exhibit an a priori known periodic/oscillatory behaviour. Classical nu-
merical methods for ODEs may not be well-suited to follow a prominent periodic or
oscillatory behaviour because, in order to accurately follow the oscillations, a very
small stepsize would be required with corresponding deterioration of the numeri-
cal performances, especially in terms of efficiency. For this reason, many classical
numerical methods have been adapted in order to efficiently approach oscillatory
problems. One of the possible ways to proceed in this direction is obtained by
imposing that a numerical method exactly integrates (within the round-off error)
problems of type (5.1.1) whose solution can be expressed as linear combination
of functions other than polynomials: this is the spirit of the exponential fitting
technique (EF, see [68, 88] and references therein), where the adapted numerical

110

5.2. REVISED OPERATORS 111

method is developed in order to be exact on problems whose solution is linear
combination of

{1, x, . . . , xK , exp (±µx), x exp (±µx), . . . , xP exp (±µx)},

where K and P are integer numbers.
The methods we consider in this chapter belong to the class of explicit Runge-
Kutta-Nyström methods (compare [52,96] and references therein)

Yi = yn + cihy
′
n + h2

i−1∑
j=1

aijf(xn + cjh, Yj), i = 1, 2, . . . , s,

y′n+1 = y′n + h
s∑
i=1

b′if(xn + cih, Yi),

yn+1 = yn + hy′n + h2
s∑
i=1

bif(xn + cih, Yi),

(5.1.2)

and we aim to derive a suited EF adaptation of these methods, which takes into
account their multistage nature. In the context of Runge-Kutta and Runge-Kutta-
Nyström methods, exponentially-fitted methods have already been considered,
for instance, by Franco [46, 47], Simos [99, 100], Vanden Berghe [108], Van de
Vyver [107] while their trigonometrically-fitted version has been developed by Pa-
ternoster in [83]; mixed-collocation based Runge–Kutta–Nyström methods have
been introduced by Coleman and Duxbury in [22].
The standard EF technique [68] disregards the contribution of the error in the
internal stages Yi (given by the first equation in (5.1.2)) to the error of the overall
numerical scheme. Here, following the spirit of [35, 65], we explain how to derive
EF-based methods [36] which also take into account the error provided by the in-
ternal stages computation, which cumulates to the truncation error of the overall
scheme.

5.2 Revised operators
A fundamental role in the standard construction of EF-based explicit RKN meth-
ods (compare [68] and references therein) is played by the following s+2 functional

5.2. REVISED OPERATORS 112

operators

Li[h,a]y(x) = y(x+ cih)− y(x)− cihy′(x)− h2
i−1∑
j=1

aijy
′′(x+ cjh), i = 1, . . . , s,

(5.2.3)

L(1)[h,b′]y(x) = hy′(x+ h)− hy′(x)− h2
s∑
i=1

b′iy
′′(x+ cih), (5.2.4)

L[h,b]y(x) = y(x+ h)− y(x)− hy′(x)− h2
s∑
i=1

biy
′′(x+ cih), (5.2.5)

associated to (5.1.2). In standard derivations of EF Runge-Kutta methods, the
elements bi and b′i are computed under the tacit assumption that the error in the
internal stages is completely neglected, i.e. Yi = y(xn + cih). Our aim is now that
of deriving EF-based methods where the influence of the errors

εi = Yi − y(xn + cih), i = 1, 2, . . . , s, (5.2.6)

associated to the internal stages is also taken into account.
We consider the local error associated to the external approximation yn+1 in (5.1.2)

LR[h,b]y(x)
∣∣∣
x=xn

= y(xn+h)−y(xn)−hy′(xn)−h2
s∑
i=1

bRi f(xn+cih, Yi), (5.2.7)

where the superscript R denotes that we are considering revised EF methods.
Taking into account that

y′′(xn + cih) = f(xn + cih, Yi + εi) = f(xn + cih, Yi) + εify(xn + cih, Yi) +O(ε2
i)

(5.2.8)
we obtain the revised operators

L(1),R[h,b]y′(x)
∣∣∣
x=xn

= y′(x+ h)− y′(x)

− h
s∑
i=1

b′i
R (
y′′(xn + cih)− fy(xn + cih, Yi)εi

)
, (5.2.9)

LR[h,b]y(x)
∣∣∣
x=xn

= y(xn + h)− y(xn)

− hy′(x)− h2
s∑
i=1

bRi
(
y′′(xn + cih)− fy(xn + cih, Yi)εi

)
,

(5.2.10)

5.3. CONSTRUCTION OF A FAMILY OF METHODS 113

which, unlike (5.2.4) and (5.2.5), explicitly depend on the errors εi associated
to the computation of the internal stages Yi. Hereinafter f (i)

y is the short-hand
notation for fy(xn + cih, Yi).

5.3 Construction of a family of methods
Let us now consider, as a case study, the practical derivation of revised EF formulae
(5.1.2) with s = 2, by assuming as fitting spaces the

F̂ = {1, e±µx}, F = {1, eµx}, (5.3.11)

which are respectively associated to the external and internal stages computation:
i.e. the external value is exact on the linear space generated by F̂ , while the
internal stages approximations are exact on the linear space spanned by F . We
observe that, in the choice of the fitting spaces (5.3.11), we have totally neglected
the presence of monomials (which are typically at the basis of classical continuous
methods [6, 52]), in order to derive methods which are more exponentially fitted,
thus more suited to integrate differential problems with non-polynomial solutions.

In order to compute the unknown coefficients a21, b1′, b2′, b1 and b2, we proceed
as follows:

• we annihilate the operator (5.2.3) on F and, due to the invariance in trans-
lation [68], we restrict to x = 0, i.e. we compute the solution of

L2
R[h,b]eµx

∣∣∣
x=0

= 0,

obtaining
a21(z) = ec2z − c2z − 1

z2 .

We observe that the obtained a21(z) corresponds to ϕ2(c2z), a function
commonly used in the context of exponential integrators (compare [58]);

• we compute the error ε2, needed to compute the revised operators (5.2.9) and
(5.2.10). We observe that the basis functions of F in (5.3.11) are solutions
of the reference differential equation

y′′ ± µy′ = 0,

thus, the leading term of the error in the computation of Y2 is given by

ε2 = Y2 − y(xn + c2h) = h2α(z)(y′′(x)± µy′(x)), (5.3.12)

5.3. CONSTRUCTION OF A FAMILY OF METHODS 114

where α is the stage error constant associated to Y2. Following the procedure
used in [35,65], we compute α as solution of the linear equation

L2[h,a]x2
∣∣∣
x=0

= ε2
∣∣∣
y(x)=x2, x=0

,

obtaining

α(z) = c2
2 − 2a21(z)

2 ; (5.3.13)

• we finally evaluate the revised operators in correspondence to the elements
of F in (5.3.11). Since LR[h,b]1 = 0, we derive bR1 (z) and bR2 (z) as solution
of the linear system 

LR[h,b]eµx
∣∣∣
x=0

= 0,

LR[h,b]e−µx
∣∣∣
x=0

= 0,

obtaining

bR1 (z, fy) = 2µ2ec2z(z − sinh(z)) + β(z, fy)(ez − z − 1)
β(z, fy)z2 ,

bR2 (z, fy) = 2µ2(sinh(z)− z)
β(z, fy)z2 ,

with β(z, fy) = 2
(
µ2 − fy

)
sinh(c2z) + fy(c2z(c2z + 2) − 2 cosh(c2z) + 2).

In analogous way, we compute b′1
R(z) and b′2

R(z) as solution of the linear
system 

L(1),R[h,b]eµx
∣∣∣
x=0

= 0,

L(1),R[h,b]e−µx
∣∣∣
x=0

= 0,

obtaining

b′1
R(z, fy) =

(ez − 1)
(
µ2e(2c2−1)z − µ2e(2c2−1)z+z + γ(z, fy)

)
γ(z, fy)z

,

b′2
R(z, fy) = (ez − 1)2 µ2e(c2−1)z

γ(z, fy)z
,

with γ(z, fy) = e2c2z
(
µ2 − 2fy

)
+ fye

c2z(c2z(c2z + 2) + 2)− µ2.

5.4. PARAMETERS ESTIMATION 115

5.4 Parameters estimation
It is evident that, in order to effectively apply the methods derived in Section
5.3, it is necessary to provide an accurate estimation of the parameter µ (compare
[31,59,69,92]). To this purpose, we approximate the value of the parameter related
to the solution computed in the n-th step point by the formula

µn = ±y
′′(xn)
y′(xn) . (5.4.14)

We observe that this value annihilates the leading term of the local truncation
error which, due to choice (5.3.11) of the fitting space F , is equal to the reference
differential equation

(D(2) ± µD)y(x) = 0

times a constant term. Due to the nature (5.1.1) of the operator under investigation
and supposing that the problem is autonomous, we have

y′′(xn) = f(y(xn)),

thus
µn = ±f(yn)

y′n
, (5.4.15)

where yn and y′n are the approximations to the solution of (5.1.1) and its first
derivative carried out by the RKN method (5.1.2) in the n-th step point.

5.5 Numerical illustrations
We now provide a numerical evidence to highlight the behaviour of EF-revised
methods with respect to the analogous standard ones. The computations have
been performed on a node with CPU Intel Xeon 6 core X5690 3,46GHz, belonging
to the E4 multi-GPU cluster of the Department of Mathematics of the University
of Salerno.

5.5.1 The Prothero-Robinson problem
We first consider the Prothero-Robinson problem

y′′(x) = −
(
y(x)− e−µx

)
+ µ2e−µx

y′(0) = −µ
y(0) = 1

x ∈ [0, 1] (5.5.16)

5.5. NUMERICAL ILLUSTRATIONS 116

whose exact solution y(x) = e−µx belongs to the fitting space, thus the derived
methods are able to solve this problem exactly.

µ h
c2 = 1/2 c2 = 3/4

S R RA S R RA
1/512 1.0e-10 2.0e-13 7.2e-16 2.3e-10 8.6e-14 7.2e-16

1 1/1024 1.3e-11 1.1e-14 4.4e-16 2.9e-11 4.9e-15 3.9e-16
1/2048 1.6e-12 1.2e-15 4.9e-16 3.6e-12 6.6e-16 4.9e-16
1/4096 2.0e-13 4.4e-16 4.4e-16 4.5e-13 4.4e-16 4.4e-16
1/512 5.68e-07 3.0e-13 3.3e-16 1.4e-09 1.0e-12 3.0e-16

2 1/1024 1.42e-07 2.0e-14 1.8e-15 1.7e-10 6.6e-14 1.3e-15
1/2048 3.55e-08 2.4e-15 5.8e-16 2.2e-11 6.0e-15 7.8e-16
1/4096 8.89e-09 2.5e-16 2.8e-16 2.7e-12 1.1e-16 3.6e-16

Table 5.1: Numerical results originated from the application of standard and
revised EF methods to problem (5.5.16). S denotes the error for the standard
version. R and RA denote the error for the revised versions, without and
with approximation of parameter µ, respectively.

In Table 5.1, we report the global errors in the final step points, obtained in cor-
respondence of several fixed values of the stepsize and the abscissa c2. We observe
that both the standard (S) and revised (R and RA) versions exactly compute the
solution of problem (within round-off error), as expected. In addition, the revised
method R (without approximation of parameter µ, respectively) are able to achieve
a better accuracy than the standard one S, with the same computational cost. In
Table 5.2 we report the minima and maxima approximated values of the parameter
µ, computed by (5.4.15). From the the results we can observe that the parameter
estimation is sharp and it tends to exact value of µ as the stepsize decreases.

5.5.2 The undamped Duffing problem
We next consider the undamped Duffing problem

y′′(x) = −(1 + y2)y + (cos(x) + ε sin(10x))3 − 99ε sin(10x)
y′(0) = 10ε
y(0) = 1,

x ∈ [0, 100],

(5.5.17)

5.5. NUMERICAL ILLUSTRATIONS 117

µ h
RA

min(µn) max(µn)

1

1/4 1.0000000000000000 1.000000694302470
1/8 1.0000000000000000 1.000000018623597
1/16 1.0000000000000000 1.000000000529162
1/32 1.0000000000000000 1.000000000015725

2

1/4 2.0000000000000000 2.000074030808046
1/8 2.0000000000000000 2.000002393779446
1/16 2.0000000000000000 2.000000073872768
1/32 2.0000000000000000 2.000000002275468

Table 5.2: Minimum and maximum absolute value of approximated param-
eter µn on problem (5.5.16) for c2 = 1/2, various stepsize h and real value of
µ for revised ef RKN.

with ε = 10−3, whose exact solution y(x) = cos(x) + ε sin(10x) does not belong to
the chosen fitting space. Indeed it depends on two frequencies that are µ1 = 1i and
µ2 = 10i. The results, reported in Table 5.3, show a better accuracy of the revised
method RA (with appoximation of parameter µ) with respect to the revised one
R (without approximation) and the standard one S. The result is not unexpected
because the RA method uses an estimation of the parameter µ closer to the real
frequency of the problem which is a weighted sum of the two frequencies µ1 and
µ2.

5.5. NUMERICAL ILLUSTRATIONS 118

µ h
c2 = 1/2 c2 = 1

S R RA S R RA

1/2048 9.2e-05 9.2e-05 1.7e-06 2.6e-04 2.6e-04 1.7e-05
1/4096 2.6e-05 2.6e-05 2.3e-07 5.8e-05 5.7e-05 5.0e-07

10i 1/8192 6.7e-06 6.7e-06 2.2e-08 1.4e-05 1.4e-05 9.3e-07
1/16384 1.7e-06 1.7e-06 3.2e-09 3.4e-06 3.4e-06 6.7e-09

1/2048 2.4e-06 2.3e-06 1.8e-06 4.3e-06 4.7e-06 1.9e-05
1/4096 6.0e-07 5.9e-07 2.2e-07 1.1e-06 1.1e-06 4.3e-07

i 1/8192 1.5e-07 1.4e-07 2.3e-08 2.9e-07 2.9e-07 9.2e-07
1/16384 3.7e-08 3.7e-08 3.4e-09 7.3e-08 7.4e-08 6.9e-09

Table 5.3: Numerical results originated from the application of standard and
revised EF methods on problem (5.5.17). S denotes the error for the standard
version. R and RA denote the error for the revised versions, without and
with approximation of parameter µ, respectively.

Chapter 6

GPU implementations

6.1 Introduction
This chapter addresses the problem of parallelizing the numerical calculation of
definite integrals using the CUDA (Compute Unified Device Architecture) plat-
form, a hardware architecture for parallel processing on Graphics Processing Units
(GPUs) created by NVIDIA.
Both in science and in the technical problems often arise the need to use the nu-
merical quadrature, i.e. the approximation of calculating a definite integral. Some
examples can be found in physics (work force), statistics (normal distribution),
mechanics (calculation of the moment of inertia). In order to reduce the com-
putation time the parallel architectures can be usefully employed. There are also
problems in which, for example in the case of some multiple dimensions integrals, it
is practically impossible to obtain a response in reasonable calculation time with-
out the use of these architectures. On the other hand, the numerical quadrature
lends itself well to be accomplished by the parallel computation as the property
of additivity of definite integrals allows to decompose the problem into simpler
independent subproblems of minor size.
In general, it is increasingly evident that in scientific contexts to respond to the
many questions that still did not answer, but they are of great importance for hu-
man progress, scientific research can be conducted only by using high performance
computational resources. This motivates the design and the use of computational
tools more powerful, able to perform multiple tasks simultaneously. The tradi-
tional Central Processing Units (CPUs) do, however, find it hard to keep up with
the growing demand for performance. In addition, the infrastructure of parallel
computation based on CPU management are complex and often costly and in-
evitably destined to large computer centers, a big problem for this scientific use.

119

6.2. BASIC NOTES ON PROGRAMMING WITH CUDA 120

The advent of multi-core GPU programmable high performance at an affordable
cost has led, in recent years, researchers try to exploit this type of architecture to
dramatically reduce the computation time of their algorithms. For this reason it is
expected that the computer industry is next to a revolution in the field of parallel
computing and CUDA-C language is so far the most successful ever developed for
parallel computing.
A thorough study of the CUDA platform is made because, to take advantage of
the benefits made available by the modern GPUs, it is essential to master its ar-
chitectural complexity. Then an important part of the work is the development,
implementation and evaluation of the CUDA parallel algorithms for the computa-
tion of a definite integral, based on the composite Cavalieri-Simpson formula.
In particular it is developed the code simpsonGPU, which implements the compos-
ite Cavalieri-Simpson formula on a number of nodes fixed a priori. Major attention
is paid both to satisfy the hardware limitations and to take advantage of the fea-
tures provided by the GPU to boost the performances. In particular, the size of
the grid blocks, that are assigned to various multiprocessors of the GPU, the kernel
implementation and the choice of the number of concurrent threads are analyzed.
Performance evaluations show that these optimizations led to a reduction of the
computation time up to about 99% compared to serial algorithm simpsonCPU,
achieving speedup values of up to 92.
In the next section, after a brief mention of the GPU computing, we examine
the architecture of the CUDA platform, emphasizing physical characteristics that
should be considered to improve efficiency, such as the coalescence, the use of
shared memory, flow control and arithmetic operations and we analyze the way
how to evaluate the performance of the algorithms. In Section 6.3 is explained the
code which implements the algorithm on GPU based on the composite quadrature
formula Cavalieri-Simpson on a a priori fixed number of nodes. Finally, in Section
6.4 some numerical tests which compare the parallel algorithm on GPU with the
serial one on CPU are illustrated.

6.2 Basic notes on programming with CUDA
To take advantage of the features that modern GPUs provide (in particular the
NVIDIA GPU) is necessary to understand all the features that play a role in the
development of a program whose goal is to maximize the efficiency made available
by these tools. This section provides a comprehensive overview of what you need
to know before attempting to develop CUDA code by providing an introduction
on the knowledge acquired in the study of this instrument and used to improve
the efficiency of software presented.

6.2. BASIC NOTES ON PROGRAMMING WITH CUDA 121

6.2.1 GPU computing
The GPU, Graphics Processing Unit, is a co-processor of the CPU processing
used for extremely demanding in terms of processing power, such as graphical
transformations and the creation of three-dimensional images, and for which the
traditional CPU architectures do not have enough processing capacity. The idea
to exploit the parallel computing capabilities of GPUs, for different tasks, from
processing graphics, led to the birth of GPU Computing.
The GPU Computing supports a CPU to a GPU to accelerate the development
of scientific and technical applications. The combination of CPU and GPU is
very powerful because CPUs have a number of core content and are optimized
for serial processing, while the GPU have thousands of smaller and more efficient
cores designed for parallel processing. The serial portions of the code are executed
on the CPU while the parallel portions are executed on the GPU.

6.2.2 CUDA
CUDA is parallel computing architecture developed by NVIDIA that allows net in-
creases in computing performance by leveraging the computing power of the GPU.
The programming languages available in the development environment for CUDA
extensions are the most popular languages for writing programs. The main one is
‘C-CUDA’ (C with NVIDIA extensions).

6.2.3 CUDA architecture
The graphics chip, in the model of CUDA, is constituted by a series of multipro-
cessors, called Streaming Multiprocessors (SM). The number of SM depends on the
specific characteristics and performance of each class of GPU. Each SM is in turn
formed by 8 Stream Processor (SP). The number of SP is fixed for any type of
graphics chip. Each of these processors can perform basic mathematical operation
(addition, multiplication, subtraction, etc.) on integers or floating point numbers
in single precision (32 bits). In each SM there are also two units for special func-
tions (that perform transcendent as sine, cosine, inverse, etc..). In a SM is also a
shared memory, accessible by all SP, caches for instructions and data, and finally,
a decoding unit of the instructions.
There is only one instruction decoding unit every 8 SP, so we are in a situation of
type Single Instruction-Multiple Data (SIMD), where a statement is executed for
a number of different data. NVIDIA calls with the SIMT, Single Instruction Mul-
tiple Thread, because in fact in the CUDA model performs the same instructions
from different threads.

6.2. BASIC NOTES ON PROGRAMMING WITH CUDA 122

25

2.3 Architettura CUDA

Figura 1.1: Modello architetturale CUDA. DP=double precision, SP=stream processor,

SFU=special functionalunit, SM= streammultiprocessor

Il chip grafico, nel modello di CUDA, è costituito da una serie di

multiprocessori, denominati Streaming MultiProcessor (SM). Il numero di

SM dipende dalle caratteristiche specifiche e dalla classe di prestazioni di

ciascuna GPU. Ciascun SM è a sua volta formato da 8 Stream Processor

(SP). Il numero di SP è fisso per qualunque tipo di chip grafico. Ognuno di

questi processori può eseguire un’operazione matematica fondamentale

(addizione, moltiplicazione, sottrazione, ecc) su interi o su numeri in

virgola mobile in singola precisione (32 bit). In ciascun SM ci sono anche

due unità per funzioni speciali (che eseguono operazioni trascendenti come

seno, coseno, inverso ecc.). In un SM è anche presente una shared memory,

accessibile da tutti gli SP, delle cache per le istruzioni e per i dati e, infine,

una unità di decodifica delle istruzioni.

Vi è una sola unità di decodifica delle istruzioni ogni 8 SP, quindi siamo in

una situazione di tipo Single Instruction, Multiple Data (SIMD), dove

un'istruzione viene eseguita per una serie di dati diversi. NVIDIA la

denomina con SIMT, Single Instruction Multiple Thread, perché di fatto nel

Figure 6.1: CUDA architectural model. DP=Double Precision, SP=Stream
Processor, SFU=Special Functional Unit, SM=Streaming Multiprocessor

6.2.4 Execution model
A CUDA application consists of serial parts, normally performed by the system
CPU, or host, and parallel parts, called kernels, which are instead performed by
the GPU, that is, in the terms used by NVIDIA, from the device. A kernel is
defined as a grid (two-dimensional grid), and can in turn be decomposed into
three-dimensional blocks, which are assigned, sequentially, to the various SMs.
Within blocks, there is the fundamental unit of computation, the thread. CUDA
extends the C language allowing the programmer to define the kernel as C functions
that, when invoked, are executed N times in parallel by N different threads. A
function takes on the meaning of the kernel if its declaration is prefixed by the
specification __global__.
A thread belongs to a single block and is identified by a unique index accessible
within the kernel through the built-in variable threadIdx, and may have any
three-dimensional indices. For blocks two-dimensional indices are instead used.
There is a limit to the number of threads assigned to each block because all the
threads in a block should reside on the same SM and share the limited memory
resource of this SM. On current GPUs, a thread block can contain a maximum of
1024 threads.
The number of threads in a block and the number of blocks in the grid are specified
in the declaration <<< ... >>> and can be of type int dim3.
Each block within the grid can be identified by an index accessible within the
kernel through the built-in variable blockIdx. The size of the block is accessible

6.2. BASIC NOTES ON PROGRAMMING WITH CUDA 123

26

modello CUDA vengono eseguite le stesse istruzioni da thread diversi.

2.4 Modello di esecuzione

Un'applicazione CUDA è composta da parti seriali, normalmente eseguite

dalla CPU di sistema, o host, e da parti parallele, denominate kernel, che

vengono invece eseguite dalla GPU, ossia secondo i termini usati da

NVIDIA, dal device.

Figura 1.2: Esecuzione di un programma CUDA

Un kernel è definito come una grid (griglia bidimensionale), e può a sua

volta essere decomposto in blocchi tridimensionali, che vengono assegnati,

sequenzialmente, ai vari SMs.

All'interno dei blocchi, c'è l'unità di computazione fondamentale, il thread.

Cuda estende il linguaggio C permettendo al programmatore di definire i

kernel come funzioni in C che, quando invocate, sono eseguite N volte in

parallelo da N thread differenti. Una funzione assume il significato di kernel

se nella dichiarazione viene apposta la specifica __global__.

Figure 6.2: Execution of a CUDA program

27

Figura 1.3: Struttura di un kernel CUDA

Un thread appartiene ad un solo blocco ed è identificato da un indice

univoco accessibile all’interno del kernel attraverso la variabile built-in

threadIdx, ed è possibile assegnargli indici tridimensionali. Per i blocchi

invece si utilizzano indici bidimensionali.

C’è un limite al numero di thread assegnabili ad ogni blocco poiché tutti i

thread di un blocco dovrebbero risiedere sullo stesso SM e condividere la

limitata risorsa di memoria di questo SM. Sulle correnti GPU, un blocco di

thread può contenere un massimo di 1024 thread.

Il numero di thread in un blocco e il numero di blocchi per la griglia

vengono specificati nella dichiarazione <<<…>>> e possono essere di tipo

int dim3.

Ogni blocco all’interno della griglia può essere identificato da un indice

accessibile all’interno del kernel attraverso la variabile built-in blockIdx.

La dimensione del blocco è accessibile all’interno del kernel attraverso la

variabile built-in blockDim. Un blocco di 256 thread è spesso una scelta

comune.

Figure 6.3: Structure of a CUDA kernel

6.2. BASIC NOTES ON PROGRAMMING WITH CUDA 124

within the kernel through the built-in variable blockDim. A block of 256 threads
is often a common choice.
This listing shows the syntax to launch a kernel function named kernel_function.

dim3 blocksize(x,y,z); //threads number

dim3 gridsize (x,y) ; //blocks grid

kernel_function<<<gridsize,blocksize>>>(parameter1, parameter2,...);

For example, the code in Figure 6.4 adds two matrices A and B of size N ×N and
stores the result in the matrix C. The main() function, executed by the host in-

__global__ void matAdd(float A[N][N],float B[N][N],
float C[N][N])

{
int i = threadIdx.x;
int j = threadIdx.y;
C[i][j] = A[i][j] + B[i][j];

}

int main(){
// kernel invocation
dim3 dimBlock(N, N);
matAdd<<<1, dimBlock>>>(A, B, C);

}

Figure 6.4: Portion of the sample code

vokes the kernel function named matAdd. The specifier __global__ of the function
and the parameters between <<< >>> indicate to the compiler that the function is
executed on the device in a single block consisting of N ×N threads.
The kernels are executed sequentially between them, while the blocks and threads
are executed in parallel.
The physical number of threads running in parallel depends on their organization
into blocks and their requirements in terms of resources than those available in
the device.
The blocks are executed independently. This requirement of independence is de-
signed to ensure scalability. Consider the following example.

6.2. BASIC NOTES ON PROGRAMMING WITH CUDA 125

30

Figura 1.5: Scalabilità delle applicazioni CUDA

I thread di un blocco possono cooperare condividendo dati attraverso la

shared memory e sincronizzando la loro esecuzione per coordinare gli

accessi in memoria. Più precisamente, si possono specificare dei punti di

sincronizzazione nel kernel invocando la funzione __syncthreads(); questa

funzione agisce come barriera, cioè tutti i thread di un blocco devono

aspettare in questo punto finché tutti gli altri non siano arrivati allo stesso

punto. Per una efficiente cooperazione, la memoria condivisa è una

memoria a bassa latenza vicina a ogni processore e la funzione

__syhncthreads() è una funzione molto leggera.

La caratteristica fondamentale di CUDA, che rende il modello di

programmazione sostanzialmente differente da altri modelli paralleli

normalmente usati dalle CPU, è che per essere efficiente richiede migliaia

time

Figure 6.5: Scalability of the CUDA applications

Example 6.2.1 (Scalability) Suppose you have a CUDA program partitioned
into 8 blocks numbered from 0 to 7, and to have two GPUs: the first with two
SMs, and the second with four SMs (Figure 6.5). Because the blocks are executed
in parallel, if we run the program on the first GPU that has only two SMs, are
executed in parallel only two blocks at a time, then they are executed in parallel,
the block 0 on the first SM and block 1 on the second one, then the blocks 2 and 3
then the blocks 4 and 5 and finally the blocks 6 and 7.
If instead launch the program on the second GPU which has four SMs, four blocks
at a time are executed in parallel, then they are executed in parallel, on each SM
blocks 0, 1, 2, 3, and, after these, the blocks 4, 5, 6, 7, respectively.
Therefore, the same application can be run on both devices with different execution
times. In case it is subsequently available architecture with eight SMs, the appli-

6.2. BASIC NOTES ON PROGRAMMING WITH CUDA 126

cation automatically adapts to it and potentially have even better performance.

The threads of a block can cooperate by sharing data through shared memory and
synchronizing their execution to coordinate memory accesses. More precisely, one
can specify synchronization points in the kernel by calling the __syncthreads(),
this function acts as a barrier, i.e., all threads in a block have to wait at this
point until all the others have not arrived at the same point. For efficient cooper-
ation, shared memory is a low-latency memory near each processor and function
__syncthreads() is very light.
The key feature of the CUDA, that makes the programming model fundamentally
different from other parallel models normally used by the CPU, is that to requires
thousands of threads in order to be efficient, i.e. to exploit the typical structure
of graphics architectures that employ threads very ‘light’.

6.2.5 Hardware implementation
The CUDA architecture is built around an array of Streaming Multiprocessors
(SMs). Logically, this is what happens: when a CUDA program on the host
invokes a kernel, the blocks of the grid are numbered and distributed to SMs
available. The threads of a block are executed concurrently, and multiple blocks
can be executed concurrently on a SM. As soon as a block ends, new blocks are
launched on the available multiprocessors (as in Example 6.2.1).
Actually once a block has been assigned to an SM, the same block is further divided
into groups of 32 threads called the warp, with the first warp that contains the
threads with id that goes from 0 to 31, the second warp that contains threads with
id that goes from 32 to 63 and so on. Then physically on a SM are active one and
only one warp at a time, i.e. 32 threads at a time. The reason why the threads are
scheduled in this way is that there are some instructions, such as memory access,
which are characterized by a large latency; so while a warp expected that the
required data are ready, it is put on hold and is selected another warp, including
those assigned to the SM, to be executed. The purpose of this structure is to
allow hardware to be always occupied in the execution of a warp despite the large
latency of some instructions. This mechanism to hide the large latency operations
with the work of other threads is known as latency hiding. The selection of the
warp ready for execution does not introduce any waiting time, so we talk about
zero-overhead thread scheduling.
Individual threads composing a warp start running together at the same memory
address, but later each has its own program counter and status register and it is
free to pursue independent branches of execution (branch, jump).
A warp executes one common instruction at a time, so full efficiency is when all

6.2. BASIC NOTES ON PROGRAMMING WITH CUDA 127

32 threads in the warp agree on the path of execution. If some threads of a warp
execute different instructions from other threads of the same warp due to some
conditional jump (we speak in this case of divergence), the warp serially executes
each instruction disabling threads that are not on the same path and when all the
different paths have been completed, the threads re-converge to the same execution
path. The divergence only occurs within a warp, i.e. it affects only the threads of
the same warp.
Let’s try to understand in detail as a kernel execution runs. First, we must pay
attention to the limitations imposed by the hardware. For instance, for a GPU
with compute capability 2.0.

• each SM can manage a maximum of 1536 threads and a maximum of 8
blocks concurrently;

• each block may be composed of a maximum of 1024 threads;

• you cannot declare more than 65535 blocks of threads.

In terms of warp, a SM can manage a maximum of 48 warps (48*32=1536 threads).
It is convenient that the number of threads per block is a multiple of 32, which
is the number of threads per warp, in order to fill the processing capacity of
the SM. In fact, if we choose, for example, 512 threads, we have 512/32 = 16
warps for SM. If you choose 500 threads, because threads are scheduled in groups
of 32, we would have to add 12 fictitious threads. We try to find the optimal
configuration. We know that each SM can manage up to a maximum of 8 blocks
concurrently, so we have to choose the number of threads in order to get the
maximum number of blocks residing on a SM. For example, a block with 1536
threads is not recommended as a choice bacause although inside a SM can be
maximum 1536 threads simultaneously, we have a single block for SM, when we
may have up to a maximum of 8.
If we choose 1024 threads we always have only one block per SM, becasue with
two blocks a SM should manage 2048 threads, which is not possible for cards with
compute capability 2.0.
A block with 256 threads allows each SM to manage a maximum of 6 blocks at
the same time (256*6=1536). The minimum possible number of threads is 192.
Indeed, with 192 threads, we have exactly (1536/192 = 8) 8 concurrent blocks on
a SM.
Now, the question is: “Why we do not choose the number of threads in order to
have the maximun number of concurrent blocks on a SM? In this case, why we do
not choose 192 threads?” The answer is not trivial.

6.2. BASIC NOTES ON PROGRAMMING WITH CUDA 128

35

 Figura 1.6.1: specifiche tecniche per GPU con compute capability diverse
Figure 6.6: GPUs specifications

6.2. BASIC NOTES ON PROGRAMMING WITH CUDA 129

The true number of blocks on each SM also depends on how much each block
consumes in terms of resources such as shared memory and registers. This is the
moment in which these properties of the device become important. The hardware
fills each SM with a maximum of 8 blocks, but not necessarily the number is
exactly 8. Actually, in SM there are only those blocks that do not require too
many resources, i.e.: if in a SM there are 5 blocks concurrently executed, it means
that by inserting another block, the latter exceeds one of the available resources,
or registers or shared memory, and so on.
These resources are in fact divided equally among the active blocks. So the choice
of the best configuration also requires the knowledge of the number of registers
used by each block, and the shared memory used by each block.
It should be noted that if there is at least one active block, the kernel is launched.
For example, if we declare 70000 blocks, as this number exceeds the maximum
available number 65535, the kernel is not launched, and the same is true if each
block exceeds the maximum amount of shared memory (64KB) or the maximum
number of registers (32768) to be used. In Figure 6.6 there are illustred the major
technical specifications for GPUs with different compute capability.
If you decide for a configuration of 512 threads per block, a kernel writed by using
20 registers instead of 22 allows to pass from 5 to 6 blocks (from 160 to 192 warps)
active simultaneously for each SM. In fact, considering running 6 blocks for each
SM, if each thread uses 20 registers, the registers used in total are 6*256*10 =
30720, a value within the limits of available 32768. If we instead assume that each
thread uses 22 registers, then the registers used in total are 6*256*22 = 33792,
that is, a number that does not allow you to activate 6 blocks simultaneously on
a single SM.

6.2.6 Memory
In CUDA the knowledge and the right use of various types of memory (Figure 6.7)
that the GPU provides is fundamental in order to achieve maximum efficiency in
the programming. In the GPUs are the following types of memory:

Global Memory: is the main memory that you have available and it is also
the slowest and may be the real bottleneck for the slow data access. The advan-
tages of this memory are the size and the visibility, because it is the only memory
accessible by all the threads of the grid both in reading and in writing.

6.2. BASIC NOTES ON PROGRAMMING WITH CUDA 130

• Shared Memory;

• Registers;

• Local Memory;

• Global Memory;

• Constant Memory;

• Texture Memory.

37

2.6 Memoria

In CUDA la conoscenza e il corretto utilizzo dei vari tipi di memoria che la

GPU mette a disposizione è fondamentale al fine di ottenere la massima

efficienza nei programmi che si andranno a realizzare.

Nella GPU esistono i seguenti tipi di memoria:

x Shared Memory

x Registri

x Local Memory

x Global Memory

x Constant Memory

x Texture Memory

Figura 1.7: Gerarchia della memoria

Global Memory: è la principale memoria che si ha a disposizione ed è

anche la più lenta e può rappresentare il vero collo di bottiglia per la

lentezza di accesso ai dati. Il vantaggio di questa memoria oltre alle

dimensioni e anche la visibilità in quanto questa è la sola memoria che sia

in lettura che in scrittura sia accessibile da tutti i thread della griglia.

Figure 6.7: Memory hierarchy

Shared Memory: is the memory that is shared by all the threads belonging to
a block, the use of which, if possible, should be maximized as it offers the best
performances.
The Shared memory is divided into 16KB (48KB in the latest versions) of memory
per Streaming Multiprocessor. In order to maximize the performances, that is, to
occupy the most of the processing resources, and remembering that in each SM
can reside up to 8 thread blocks, then you should not allocate more than 2KB
(6KB) of memory to each block.
The variables that are stored in the shared memory has a lifetime limited to the
duration of the kernel, that is they born and die with its execution. They must be
created within the kernel itself by prefixing the variable type by the specification
__shared__.
Keep in mind that this type of variable is visible to all threads in a block, but
there exist different copies of them per thread belonging to distinct blocks.

6.2. BASIC NOTES ON PROGRAMMING WITH CUDA 131

Registers: they are 32bit memory locations offering the best access times among
the various types of memory, but at the same time they are one of the factors to be
taken into account in order to not break down the performances of the program. In
fact, each Streaming Multiprocessor, depending on the version of the video card,
has 8192, 16384 or 32768 available records. It may seem that it is a considerable
amount, but remembering that each SM can have up to 768, 1024 or 1536 threads,
each thread to avoid wasting resources should not use more than:

- 8192/768 = 10 registers for GPUs with 1.0 and 1.1 compute capability;

- 16384/1024 = 15 registers for GPUs with 1.2 and 1.3 compute capability;

- 32768/1536 = 20 registers for GPUs with 2.0 and 2.1 compute capability;

When this does not happen the number of threads simultaneously hosted in Stream-
ing Multiprocessor decreases, limiting the performances of the kernel. To copy the
data in the registers it does not need any special syntax, because the local kernel
parameters of the threads are automatically copied into the appropriate registers,
and each variable declared inside the kernel, that is not of array type, is also stored
in a special register. It may therefore be convenient to copy a memory location
(global, constant or texture), which is often read into the kernel in a special local
variable which ensures, being stored in a register, the best performances.

Local Memory: it is only visible to a single thread. This is the memory that
is generally less used both because it has access times comparable to those of the
global memory (thus relatively slow), and because, being local to the thread, it
is not intended to contain the overall results of the operations performed by the
kernel. Storing variables in this type of memory is not specified by the user, but
is usually automatically by the compiler for the following types of variables:

- array that is unable to determine whether it has a constant size;

- large structs or arrays that occupy excessive space of registers;

- any variable if the kernel uses more registers than those available (this phe-
nomenon is also known as register spilling).

Constant Memory: it is an area of read-only memory implemented in global
memory, and contains those values that remain constant during the whole execu-
tion of the kernel. The latency times are similar those of the global memory, but
this memory has a cache. Its presence drastically reduces the waiting time when
accessing many times to the same element. To use the constant memory you need
to create a variable with global scope of the the type __constant__, that is visible

6.2. BASIC NOTES ON PROGRAMMING WITH CUDA 132

from both the host code and the kernel code.
Only one copy of these variable is created and its life cycle is the duration of the
application and it is visible to all threads in the grid.

Texture Memory: it is another type of read only memory that can be used
in alternative to the constant memory. The texture memory offers as the constant
memory some caching mechanisms and it is used primarily for graphics operations.

6.2.7 Compiling process
Cuda C is a minimal extension of the C language. These extensions allow the
programmer can define a kernel as a function and use the new syntax to specify
the grid and block size every time the function is invoked. Each source file, usually
with the .cu extension, which contains some of these extensions must be compiled
using the nvcc compiler. The kernels can be written using the set of CUDA archi-
tecture instructions, called PTX. It is usually easier to use a high level language
as C. In both cases, the kernel can be compiled into binary code to be executed
on devices with nvcc. nvcc is a compiler that simplifies the process of compiling C
code or machine language PTX (Figure 6.8). nvcc accepts as input a .cu file, then
it extracts the host part and passes the rest in .gpu format to nvopencc compiler
which continues build the process. This compiler accepts many command line op-
tions, one of these is very interesting and it is the following: --ptxas-options=-v
through which you can see as a result of compiling the analysis of memory used
by the various kernel and in particular the number of registers used, which is es-
sential for the considerations in Subsection 6.2.5 on the performance limitations
that you may have using a large number of registers. This code sample shows the
compilation process:
nvcc --ptxas-options =-v simpson.cu

6.2.8 Performances Guidelines
Flow control

The SM executes, if it can, all the 32 threads of the same warp by running the
same instruction at the same time. The motivation is that in this way the cost to
fetch an instruction from memory and process it is amortized by the large number
of threads that are running. Any flow control instruction (if, switch, do, for,
while) can significantly impact the actual throughput, causing that threads of
the same warp diverge (e.g., because they follow different execution paths). If
this happens, the different execution paths must be serialized, increasing the total
number of instructions executed for this warp. When all the different execution

6.2. BASIC NOTES ON PROGRAMMING WITH CUDA 133

41

alto livello come C. In entrambi i casi, il kernel può essere compilato in

codice binario da essere eseguito sul device con nvcc. Nvcc è un

compilatore che semplifica il processo di compilazione di C o codice PTX

in linguaggio macchina (Figura 1.8).

Nvcc accetta in ingresso un file nome file.cu, ne estrae la parte host e passa

il resto in formato .gpu a nvopencc che prosegue il processo di

compilazione.

Questo compilatore accetta molte opzioni passabili in linea di comando, una

molto interessante è la seguente:--ptaxas-options=-v attraverso la quale è

possibile vedere come risultato della compilazione l'analisi della memoria

utilizzata dai vari kernel e in particolare il numero di registri utilizzati, cosa

fondamentale per le considerazioni fatte in precedenza (paragrafo 2.5) sulle

limitazioni prestazionali che si possono avere utilizzando un numero

elevato di registri.

Questo codice di esempio mostra il processo di compilazione:

nvcc --ptaxas-options=-v simpson.cu

Figura 1.8: Il processo di compilazione

Figure 6.8: Compiling process

paths are completed, the threads re-converge to the same execution path. To
obtain best performance when the control flow depends on the thread ID, the
control condition should be written so as to minimize the number of divergent
warps. This is possible because the distribution of the warps across the blocks is
deterministic. A trivial example is when the control condition depends only on
the ratio threadIdx/WARP_SIZE, where WARP_SIZE is the size of the warp. In this
case, no warp diverges because the control condition is perfectly aligned with the
warp. It is obvious that in the code points where the execution flow differs because
of the current running thread, the warp execution must be prolonged of as many
steps as many are needed to complete execution of all the executing branches.

Integer Arithmetic

The integer division and the operation of module operations are expensive and
therefore not recommended. They may be replaced by bitwise operations in some
special cases: if n is a power of 2, then i/n is equivalent to (i >> log2(n)) and
(i % n) is equivalent to (i & (n-1)).
A very simple example can be seen when we try to check whether a number i is
odd or even. Usually we consider instructions such as if ((i % 2) = = 0) but it
is simpler to evaluate the last bit of i. If i is odd then it is equal to 1 else it is equal
to 0. So it is convenient to consider the equivalent instruction if((i & 1) == 0).

6.2. BASIC NOTES ON PROGRAMMING WITH CUDA 134

Coalescence

The coalescence is one of the main aspects that must be considered in order to
increase the performances. This term refers to a mode of access to data which can
reach very high peak performance if it is adhered to. Coalescing access is always
related to the global memory access, very slow and often the main problem of
inefficiency. The accesses to a kernel are called coalescent if threads with consecu-
tive ids access through the same instruction in contiguous memory locations. The
advantage of this technique is that threads in a warp execute the same instruction
at any time. In this way the hardware combines all these accesses in a single one
through the which it requests the concerned memory area.
Usually, the memory accesses are grouped for all 32 threads of warp, but we think
in terms of half-warp, or in groups of 16 threads. The guidelines to be followed
in order to arrange the access to a half-warp to get the coalescence depend on the
compute capability of the device.
For graphics cards with compute capability 1.0 or 1.1, the accesses to a half-warp
are coalescent if they read a contiguous area of memory:

- 64 byte (each thread reads a word: int, float,...);

- 128 byte (each thread reads a double-word: int2, float2, ...);

- 256 byte (each thread reads a quad-word: int4, float4, ...).

Moreover, the following restrictions must be observed:

- The start address of a region must be a multiple of the size of the region;

- The k-th thread in a half-warp must access the k-th (read or written) element
of a block, the accesses that must be perfectly aligned amongs the threads.

An exception to these strict rules is that the accesses are coalescent even if some
threads are not participating (i.e., they do not read or write data).

6.2. BASIC NOTES ON PROGRAMMING WITH CUDA 135

46

Figura 1.9: Accessi non coalescenti

Ecco un esempio di accessi non coalescenti (Figura 1.9).

Vediamo due accessi che si incrociano (a sinistra) e accessi che partono

dall'indirizzo 132 invece che 128 (a destra). In entrambi i casi non sono

rispettatele condizioni per la coalescenza degli accessi dal punto di vista

dell'allineamento: nel primo caso, non c’è una corrispondenza sequenziale

tra gli accessi, nel secondo non si parte da un multiplo della granularità

della transazione (64 byte). L'esecuzione di accessi non coalescenti, con

architetture che hanno compute capability 1.0 o 1.1, comporta l'esecuzione

di ben 16 transazioni di memoria invece che 1.

Figure 6.9: Not coalescent access

In Figure 6.9 is illustred an eaxmple of not coalescent access. We see two accesses
that cross (left) and accesses starting at address 132 instead of 128 (right). In both
cases, the conditions for the coalescence of the accesses from the point of view of
the alignment are not respected: in the first case, there is not a correspondence
between the sequential accesses, in the second case the accesses do not start from a
multiple of the transaction granularity (64 bytes). The execution of not coalescent

6.2. BASIC NOTES ON PROGRAMMING WITH CUDA 136

accesses, with architectures that have compute capability 1.0 or 1.1, involves 16
memory transactions instead of 1.

46

Figura 1.9: Accessi non coalescenti

Ecco un esempio di accessi non coalescenti (Figura 1.9).

Vediamo due accessi che si incrociano (a sinistra) e accessi che partono

dall'indirizzo 132 invece che 128 (a destra). In entrambi i casi non sono

rispettatele condizioni per la coalescenza degli accessi dal punto di vista

dell'allineamento: nel primo caso, non c’è una corrispondenza sequenziale

tra gli accessi, nel secondo non si parte da un multiplo della granularità

della transazione (64 byte). L'esecuzione di accessi non coalescenti, con

architetture che hanno compute capability 1.0 o 1.1, comporta l'esecuzione

di ben 16 transazioni di memoria invece che 1.

Figure 6.10: Coalescent access

In figure 6.10 are illustred two cases of coalescent accesses. On the left, we see
16 to 32-bit accesses, starting from address 128, with one to one correspondence.

6.2. BASIC NOTES ON PROGRAMMING WITH CUDA 137

On the right, the situation is similar, but some threads do not execute accesses.
Because of the coalescence only a single memory access is performed.

6.2.9 Maximize the throughput of Memory
Pattern for memory access

The key point for performance optimization is to minimize accesses to global mem-
ory making the most of the shared memory. The threads of the same block must
work together in shared memory to load the area of global memory to process, and
then proceed by exploiting the increased speed of this memory area. The basic
steps for each thread are:

• load data from global memory to the shared memory;

• synchronize all threads of the block so that everyone can easily read the
shared memory positions filled by other threads;

• process the data in the shared memory;

• do a new synchronization as necessary to be sure that the shared memory
is updates with the results;

• write the results in the global memory.

In developing the algorithms in this thesis the shared memory is not used because
there are not input data to be processed in the global memory. Anyway, in the
following we refer to the architecture of the shared memory and the benefits arising
from its use.

6.2.10 Shared Memory Architecture
For GPUs with compute capability 1.x the shared memory is divided into 16 banks
(Figure 6.11) and it can serve so many simultaneous accesses as the number of its
banks. The simultaneous accesses to the same bank cause a conflict and then they
are serialized.

6.2. BASIC NOTES ON PROGRAMMING WITH CUDA 138

51

2.9 Architettura della Shared Memory

La memoria condivisa è divisa in 16 banchi (Figura 1.11) e può servire tanti

accessi simultanei quanti sono i suoi banchi.

Gli accessi contemporanei allo stesso banco provocano un conflitto e

vengono serializzati.

Figura 1.11: Architettura della Shared Memory

2.9.1 Shared Memory Bank Conflicts

La memoria condivisa è veloce come i registri nel caso in cui non vi siano

conflitti tra i banchi di memoria. Il caso migliore si ottiene se tutti i thread

di un half-warp accedono differenti banchi di memoria, infatti non ci sono

conflitti (Figura 1.12). Lo stesso accade se tutti i thread di un half-warp

accedono allo stesso banco; in questo caso il conflitto viene risolto

automaticamente (broadcast).

Figure 6.11: Shared Memory Architecture

Shared Memory Bank Conflicts

The shared memory is as fast as registers if there are no conflicts between the
memory banks. The best case is obtained if all threads of a half-warp access
different memory banks, in fact there are no conflicts (Figure 6.12). The same
happens if all the threads of a half-warp access the same bank, in this case the
conflict is resolved automatically (broadcast).

52

Figura 1.12: Assenza di conflitti

Il caso peggiore si ha se thread di uno stesso half-warp (non tutti) accedono

contemporaneamente allo stesso banco di memoria. Si ha un rallentamento

in quanto le operazioni sulla memoria vengono serializzate (Figura 1.13).

Figura 1.13: Presenza di conflitti

Figure 6.12: No bank conflicts

The worst case is if the threads of the same half-warp (not all) simultaneously
accessing the same memory bank. The operations on the memory are serialized
and a slowing-down occurs (Figure 6.13).

6.3. PARALLEL QUADRATURE FORMULAE: THE SIMPSON RULE 139

52

Figura 1.12: Assenza di conflitti

Il caso peggiore si ha se thread di uno stesso half-warp (non tutti) accedono

contemporaneamente allo stesso banco di memoria. Si ha un rallentamento

in quanto le operazioni sulla memoria vengono serializzate (Figura 1.13).

Figura 1.13: Presenza di conflitti

Figure 6.13: Bank conflicts

6.3 Parallel quadrature formulae: the Simp-
son rule

This section contains the code that implements simpson algorithm on GPU based
on the composite quadrature formula Cavalieri-Simpson on a a priori fixed number
of nodes [90]. We recall that the rule can be expressed as

S[f] =
∫ b

a

f(x)dx = h

3

[
f(a) + 2

m−1∑
i=1

f(a+ 2ih) + 4
m∑

i=1
f(a+ (2i− 1)h) + f(b)

]
+Rm[f]

(6.3.1)

where h = b− a
m

. The main interest is focused on the following points.

Dimension of the blocks grid

The grid size is initialized as

dim3 dim_grid(min(DIV_CEIL(nodes, dim_block.x), 65535));

where nodes is the number of nodes in input and dim_block.x is the number of
threads per block. This configuration is made to satisfy the hardware limitations
of the device. Without the min operation, if we have a high number of nodes, eg.
107 nodes, and a number of thread equal to 128, the number of blocks in the grid
would be (107/128) = 78125. But this is not possible because of the maximum
number of blocks per grid is 65535.

6.3. PARALLEL QUADRATURE FORMULAE: THE SIMPSON RULE 140

Dimension of the array

We introduce an integer variable, size as

size = min(65536*dim_block.x, nodes)

here nodes is the number of nodes in input and dim_block.x is the number of
threads per block. We also consider the following instructions

ss = (float *) calloc(size, sizeof(float));
cudaMemset((void *) d_res, 0, (size)*sizeof(float));

in order to avoid: possible errors of “out of memory”, in the case where the number
of nodes was too big; allocate an array of size greater than the number of running
threads. In this way each thread writes the result in its cell.

Kernel implementation

The initializing of the array size involves a suitable implementation of the kernel.
In fact, if the number of nodes is greater than the maximum number of threads,
since the array has size equal to the number of threads, there are the threads that
run more than once. By taking into account the formulation of composite rule as
in (6.3.1) the kernel implementation is developed so that the id of each thread is
in correspondence with the index i of the two summations, i.e. each thread runs
two evaluations of functions. The evaluations of f(a), f(b) and 4f(a+ (2m− 1)h)
are performed by the host. So the kernel, named simpson_kernel is

maxsize = threadIdx.x * 65535
__global__ void simpson_kernel(float a, float h, int nodes,

float *simpson){
int i = (blockIdx.x * blockDim.x + threadIdx.x);
int position=0;
while(i=<nodes){

if(nodes > maxsize)
position = i % maxsize;

else
position = i;

simpson[position] = simpson[position] + f(a+2*(i+1)*h)*2;
simpson[position] = simpson[position] + f(a+(2*i+1)*h)*4;
i+=maxsize;

}
}

6.3. PARALLEL QUADRATURE FORMULAE: THE SIMPSON RULE 141

Module operator

If the divisor is a power of 2, the module which is an operation among the most
expensive of CUDA may be replaced by bitwise operators:

x % pow(2,n) == x & (pow(2,n) - 1)

We therefore adopt the following strategy: assuming use 128 threads per block to
make efficient the operation of the module, when the number of nodes in the input
is greater than the maximum number of allocable threads, we allocate an array of
65536 ∗ 128 = 223 cells instead of 65535 ∗ 128 = 8388480 because the first one is a
power of 2.
So the 0 thread writes into the 0 cell only the first time, the second time it writes
in the cell 8388480 and the 127 thread writes in the last available cell. Before,
the array had a length equal to the number of threads, each thread through the
module operator always wrote in the same cell. Now there is a small shift only for
the first 128 threads and the kernel implementation becomes

#define MODULE 8388608 //65536*128
#define MAX_THREADS 8388480 //65535*128
__global__ void simpson_kernel(float a, float h, int nodes,

float *simpson){
int i = (blockIdx.x * blockDim.x + threadIdx.x);
int position=0;
while(i=<nodes){

if(nodes > MAX_THREADS)
position = i & (MODULE -1);

else
position = i;

simpson[position] = simpson[position] + f(a+2*(i+1)*h)*2;
simpson[position] = simpson[position] + f(a+(2*i+1)*h)*4;
i+=MAX_THREADS

}
}

Number of threads

An often crucial choice is the number of threads to use. We recall that the limita-
tions hardware for a GPU with compute capability 2.0 are:

• each SM can manage a maximum of 1536 threads and a maximum of 8
blocks concurrently;

6.3. PARALLEL QUADRATURE FORMULAE: THE SIMPSON RULE 142

• each block may be composed of a maximum of 1024 threads;

• you cannot declare more than 65535 blocks of threads.

Higher occupancy, i.e. to maximize the real number of simultanely active threads
for streaming multiprocessor, does not necessarily mean higher performance. If a
kernel is not bandwidth-limited or latency-limited, then increasing occupancy will
not necessarily increase performance. If a kernel grid is already running at least one
thread block per multiprocessor in the GPU, and it is bottlenecked by computation
and not by global memory accesses, then increasing occupancy may have no effect.
In fact, making changes just to increase occupancy can have other effects, such
as additional instructions, more register spills to local memory (which is off-chip),
more divergent branches, etc. As with any optimization, you should experiment to
see how changes affect the ‘wall clock time’ of the kernel execution. For bandwidth-
bound applications, on the other hand, increasing occupancy can help better hide
the latency of memory accesses, and therefore improve performance. We also recall
it is convenient that the number of threads per block is a multiple of 32, which is
the number of threads per warp, in order to fill the processing capacity of the SM.
Finally, we recall that the real number of concurrent blocks for SM is limitated by
the use of shared memory and the real number of threads per block depends also
on the number of registers that each one uses. So the carried out steps for the
heuristic selection are:

1. 100 runs of the algorithm with a 512 threads;

2. 100 runs of the algorithm with a 256 threads;

3. 100 runs of the algorithm with a 192 threads;

4. 100 runs of the algorithm with a 128 threads;

5. choosing the average execution time minimum.

The algorithm is evaluated on the integral
∫ 100

0.0001 log(x)dx with 107 nodes and then
the average execution time minimum is computed. From the results of Table 6.1
we fix the number of threads to 128.

512 threads 256 threads 192 threads 128 threads
36.7 ms 33.2 ms 32.4 ms 29.1 ms

Table 6.1: Average execution time

6.4. NUMERICAL ILLUSTRATIONS 143

Evaluation of the execution times

The execution times were evaluated with the CUDA event API.

cudaEventRecord(start, 0);
simpson_kernel<<<dim_grid, dim_block>>>(a,h,nodes,d_res);
cudaMemcpy(ss,d_res,(size)*sizeof(float),cudaMemcpyDeviceToHost));
simpson = thrust::reduce(ss,ss+size);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
float time;
cudaEventElapsedTime(&time, start, stop);
cudaEventDestroy(start);
cudaEventDestroy(stop);
printf("time spent CLOCK: %3.1f ms\n",time);

6.4 Numerical illustrations
In this section we show the results carried out on preliminary tests. The numerical
results are obtained by using the multi-GPU cluster E4 belonging to the Depart-
ment of Mathematics, University of Salerno. The results report the execution
times of the algorithms and the relative percentages gain and speedup of parallel
scheme compared with the serial one.
The percetage gain is obtained as:

%gain = timeCPU − timeGPU
timeCPU

∗ 100.

The speedup is defined as:

speedup = timeCPU

timeGPU
.

6.4.1 Numerical test 1
We consider the problem∫ 100

0.0001
log(x)dx ≈ 360.5157289413256, (6.4.2)

whose integrand has a singularity at the origin.

6.4. NUMERICAL ILLUSTRATIONS 144

Number of simpsonGPU simpsonCPU gain speedup
intervals (ms) (ms) %

104 0.50 0.76 34.21 1.52
105 0.90 3.71 75.74 4.12
106 4.60 32.79 85.97 7.13
107 28.80 312.22 90,78 10.84

Table 6.2: GPU vs CPU on test 1

104 105 106 1070

50

100

150

200

250

300

350

nodes

tim
e

GPU
CPU

Figure 6.14: GPU vs CPU on test 1

6.4. NUMERICAL ILLUSTRATIONS 145

103 104 105 106 107 1080

2

4

6

8

10

12

number of intervals

sp
ee

du
p

Figure 6.15: Speedup on test 1

6.4.2 Numerical test 2
We consider the problem∫ 100

0
cos(500000x)dx ≈ −0.0000195308493731, (6.4.3)

whose integrand has an high oscillatory behaviour.

Number of simpsonGPU simpsonCPU gain speedup
intervals (ms) (ms) %

104 0.50 7.12 92.98 14.24
105 1.00 32.26 96.90 32.26
106 4.90 305.14 98.39 62.67
107 32.60 3006.76 98.92 92.23

Table 6.3: GPU vs CPU on test 2

6.4. NUMERICAL ILLUSTRATIONS 146

104 105 106 1070

500

1000

1500

2000

2500

3000

3500

nodes

tim
e

GPU
CPU

Figure 6.16: GPU vs CPU on test 2

103 104 105 106 107 1080

10

20

30

40

50

60

70

80

90

100

number of intervals

sp
ee

du
p

Figure 6.17: Speedup on test 2

We recall that a parallel algorithm is scalable if the execution time limitedly in-

6.4. NUMERICAL ILLUSTRATIONS 147

creases as data size increases. From Tables 6.2 and 6.3 and from Figures 6.14, 6.15,
6.16 and 6.17 we observe the scalability of the parallel algorithm simpsonGPU.
Performance evaluations show that these optimizations led to a reduction of the
computation time up to about 99% if compared to the serial algorithm simpson-
CPU, achieving speedup values up to 92.

Conclusions and future
developments

In this thesis we constructed a new class of ef Gauss-Laguerre rules for the com-
putation of integrals of oscillating functions over infinite intervals. We developed
an algorithm for the computation of the weights and the nodes which depend on
the frequency of the problem. We studied the error behaviour of these formulae.
Finally we built ef Gauss-Laguerre rules with 1 up to 6 nodes. Numerical tests
pointed out:

• the convergence of the ef formulae to the classical ones when the frequency
tends to zero;

• the higher accuracy of the ef rules with respect to the classical ones for
oscillatory integrands;

• the massive improvement in accuracy provided by the new formulae when
the frequency of oscillation increases.

Future developments starting from this work may concern:

• the construction of adaptive Filon-type formuale for the computation of
integrals (3.0.1)-(3.0.2), where the nodes are not fixed (as in the classical
versions of the Filon rules) but depend on the frequency of the integrand.
The aim of this new strategy, inspired by that one adopted in [77] in the
case of finite intevals, is to share the property of optimal behaviour for both
small and large ω values with the EF rules and to avoid the derivation of
nodes as solution of a nonlinear system.

• the construction of exponentially fitted rules for the computations of the
Gauss-Hermite integrals: ∫ +∞

−∞
e−x2

f(x) dx, (6.4.1)

148

6.4. NUMERICAL ILLUSTRATIONS 149

with f(x) = f1(x) sin(ωx) + f2(x) cos(ωx). The construction of these new ef
rules requires similar steps and algorithms as in the the ef Gauss-Laguerre
ones and we hope to get also in this case promising results.

Another part of the research has been devoted to the development of a DQ method
for VIEs with oscillatory solution. Therefore we formulated an ef quadrature rule
of Gaussian type with two nodes. To apply the DQ method based on this rule we
formulated a suitable ef-based interpolation technique. Thanks to ef technique,
the method parameters depend on the problem parameters and it is possible to
well reproduce the behavior of oscillatory solution. We proved that the overall
method has order four, like the DQ method based on classical two-nodes Gaussian
rule, but the error is smaller when it is applied to VIEs with oscillatory solution.
By numerical investigation, is has been seen that

• the ef Gaussian quadrature rule is stable within a wide range of variability
of the parameters α and ω;

• the ef quadrature rule is more accurate than the classical Gaussian two-nodes
rule;

• the ef-Gaussian DQ method is more accurate than the classical Gaussian
DQ one for periodic problems;

• the accuracy gain also holds for approximate values of the problem param-
eters.

Future developments of this work may concern

• DQ methods based on ef Gaussian rules of higher order;

• explore and suitably adapt different approaches, like multistep collocation
methods [12, 13, 27, 28] and methods introduced in [79], which have been
successfully proposed for VIEs and Volterra integro-differential equations in
the non-periodic case.

Later, we introduced a revised technique for the computation of the coefficients of
EF-based RKN methods (5.1.2), which takes into account the multistage nature
of the methods under investigations, i.e. by considering the contributions of the
stage errors in the overall numerical scheme. The methods depend on the values
of parameters; if they are not available a suitable approximation strategy has been
proposed. We notice that this strategy does not require the computation of further
function evaluations. The numerical experiments showed:

• the superiority of the revised ef methods with respect to the ef standard
ones;

6.4. NUMERICAL ILLUSTRATIONS 150

• the accuracy of the parameters estimate strategy.

Further developments may regard the application of the revised technique to other
family of methods, such as two-step hybrid methods [30, 33, 34], two-step Runge-
Kutta-Nyström methods [84–86], general linear methods [32] for (5.1.1) and ODEs
with discontinuous right-hand side [41,42].

Bibliography

[1] R. P. Agarwal and D. O’Regan, An introduction to ordinary differential
equations, Universitext, Springer, New York, 2008.

[2] S. Aniţa, M. Iannelli, M.-Y. Kim, and E.-J. Park, Optimal harvesting
for periodic age-dependent population dynamics, SIAM J. Appl. Math., 58
(1998), pp. 1648–1666.

[3] G. Arfken, Mathematical methods for physicists, Academic Press, New
York, 1966.

[4] O. Aydoǧdu and R. Sever, Pseudospin and spin symmetry in the dirac
equation with woods-saxon potential and tensor potential, European Physical
Journal A, 43 (2009), pp. 73–81. cited By (since 1996)8.

[5] G. Bao and W. Sun, A fast algorithm for the electromagnetic scattering
from a large cavity, SIAM J. Sci. Comput., 27 (2005), pp. 553–574.

[6] M. Berardi and L. Lopez, On the continuous extension of Adams-
Bashforth methods and the event location in discontinuous ODEs, Appl.
Math. Lett., 25 (2012), pp. 995–999.

[7] P. Bocher, H. D. Meyer, and G. V. Berghe, Numerical solution of
Volterra equations based on mixed interpolation, Comput. Math. Appl., 27
(1994), pp. 1–11.

[8] H. Brunner, Collocation methods for Volterra integral and related func-
tional differential equations, vol. 15 of Cambridge Monographs on Applied
and Computational Mathematics, Cambridge University Press, Cambridge,
2004.

[9] H. Brunner, A. Makroglou, and R. K. Miller, On mixed collocation
methods for Volterra integral equations with periodic solution, Appl. Numer.
Math., 24 (1997), pp. 115–130. Volterra centennial (Tempe, AZ, 1996).

151

BIBLIOGRAPHY 152

[10] H. Brunner and P. J. van der Houwen, The numerical solution of
Volterra equations, vol. 3 of CWI Monographs, North-Holland Publishing
Co., Amsterdam, 1986.

[11] M. Calvo, J. M. Franco, J. I. Montijano, and L. Rández, Sixth-
order symmetric and symplectic exponentially fitted Runge-Kutta methods of
the Gauss type, J. Comput. Appl. Math., 223 (2009), pp. 387–398.

[12] A. Cardone and D. Conte, Multistep collocation methods for volterra
integro-differential equations, Applied Mathematics and Computation, 221
(2013), pp. 770–785. cited By (since 1996)1.

[13] A. Cardone, D. Conte, and B. Paternoster, A family of multistep col-
location methods for Volterra integro-differential equations, AIP Conference
Proceedings, 1168 (2009), pp. 358–361.

[14] A. Cardone, I. Del Prete, and H. Brunner, Asymptotic periodicity
of nonlinear discrete Volterra equations and applications, J. Difference Equ.
Appl., 18 (2012), pp. 1531–1543.

[15] A. Cardone, I. Del Prete, and C. Nitsch, Gaussian direct quadrature
methods for double delay Volterra integral equations, Electron. Trans. Numer.
Anal., 35 (2009), pp. 201–216.

[16] A. Cardone, M. Ferro, L. G. Ixaru, and B. Paternoster, A family of
exponential fitting direct quadrature methods for Volterra integral equations,
AIP Conference Proceedings, 1281 (2010), pp. 2204–2207.

[17] A. Cardone, L. Ixaru, and B. Paternoster, Exponential fitting direct
quadrature methods for volterra integral equations, Numerical Algorithms,
55 (2010), pp. 467–480. cited By (since 1996)6.

[18] A. Cardone, L. Ixaru, B. Paternoster, and G. Santomauro, Ef-
gaussian direct quadrature methods for volterra integral equations with peri-
odic solution, Mathematics and Computers in Simulation, (2013). cited By
(since 1996)0; Article in Press.

[19] A. Cardone, L. G. Ixaru, and B. Paternoster, Exponential fitting di-
rect quadrature methods for Volterra integral equations, Numer. Algorithms,
55 (2010), pp. 467–480.

[20] A. Cardone, B. Paternoster, and G. Santomauro, Exponential fitting
quadrature rule for functional equations, AIP Conference Proceedings, 1479
(2012), pp. 1169–1172. cited By (since 1996)1.

BIBLIOGRAPHY 153

[21] R. Chen, Numerical approximations to integrals with a highly oscillatory
Bessel kernel, Appl. Numer. Math., 62 (2012), pp. 636–648.

[22] J. P. Coleman and S. C. Duxbury, Mixed collocation methods for y′′ =
f(x, y), J. Comput. Appl. Math., 126 (2000), pp. 47–75.

[23] J. P. Coleman and L. G. Ixaru, Truncation errors in exponential fitting
for oscillatory problems, SIAM J. Numer. Anal., 44 (2006), pp. 1441–1465
(electronic).

[24] D. Conte, R. D’Ambrosio, and B. Paternoster, Two-step diagonally-
implicit collocation based methods for Volterra integral equations, Appl. Nu-
mer. Math., 62 (2012), pp. 1312–1324.

[25] D. Conte, E. Esposito, B. Paternoster, and L. G. Ixaru, Some new
uses of the ηm(Z) functions, Comput. Phys. Comm., 181 (2010), pp. 128–
137.

[26] D. Conte, L. G. Ixaru, B. Paternoster, and G. Santomauro,
Exponentially-fitted Gauss-Laguerre quadrature rule for integrals over an un-
bounded interval, J. Comput. Appl. Math., 255 (2014), pp. 725–736.

[27] D. Conte, Z. Jackiewicz, and B. Paternoster, Two-step almost col-
location methods for Volterra integral equations, Appl. Math. Comput., 204
(2008), pp. 839–853.

[28] D. Conte and B. Paternoster, Multistep collocation methods for
Volterra integral equations, Appl. Numer. Math., 59 (2009), pp. 1721–1736.

[29] D. Conte, B. Paternoster, and G. Santomauro, An exponentially
fitted quadrature rule over unbounded intervals, AIP Conference Proceedings,
1479 (2012), pp. 1173–1176. cited By (since 1996)1.

[30] R. D’Ambrosio, E. Esposito, and B. Paternoster, Exponentially fitted
two-step hybrid methods for y′′ = f(x, y), J. Comput. Appl. Math., 235
(2011), pp. 4888–4897.

[31] , Exponentially fitted two-step Runge-Kutta methods: construction and
parameter selection, Appl. Math. Comput., 218 (2012), pp. 7468–7480.

[32] , General linear methods for y′′ = f(y(t)), Numer. Algorithms, 61
(2012), pp. 331–349.

BIBLIOGRAPHY 154

[33] R. D’Ambrosio, M. Ferro, and B. Paternoster, Two-step hybrid col-
location methods for y′′ = f(x, y), Appl. Math. Lett., 22 (2009), pp. 1076–
1080.

[34] , Trigonometrically fitted two-step hybrid methods for special second
order ordinary differential equations, Math. Comput. Simulation, 81 (2011),
pp. 1068–1084.

[35] R. D’Ambrosio, L. G. Ixaru, and B. Paternoster, Construction of the
ef-based Runge-Kutta methods revisited, Comput. Phys. Comm., 182 (2011),
pp. 322–329.

[36] R. D’Ambrosio, B. Paternoster, and G. Santomauro, Revised ex-
ponentially fitted Runge–Kutta–Nyström methods, Appl. Math. Lett., 30
(2014), pp. 56–60.

[37] P. J. Davies and D. B. Duncan, Stability and convergence of collocation
schemes for retarded potential integral equations, SIAM J. Numer. Anal., 42
(2004), pp. 1167–1188 (electronic).

[38] P. J. Davis and P. Rabinowitz, Methods of numerical integration, Aca-
demic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers] New
York-London, 1975. Computer Science and Applied Mathematics.

[39] M. Dehghan and F. Shakeri, Approximate solution of a differential equa-
tion arising in astrophysics using the variational iteration method, New As-
tronomy, 13 (2008), pp. 53 – 59.

[40] D. Delion, R. Liotta, and R. Wyss, Simple approach to two-proton
emission, Physical Review C - Nuclear Physics, 87 (2013). cited By (since
1996)1.

[41] L. Dieci and L. Lopez, A survey of numerical methods for IVPs of ODEs
with discontinuous right-hand side, J. Comput. Appl. Math., 236 (2012),
pp. 3967–3991.

[42] , Numerical solution of discontinuous differential systems: approaching
the discontinuity surface from one side, Appl. Numer. Math., 67 (2013),
pp. 98–110.

[43] Euclide, Les éléments. Vol. 1, Bibliothèque d’Histoire des Sciences. [History
of Science Library], Presses Universitaires de France, Paris, 1990. Livres I–
IV: géométrie plane. [Books I–IV: plane geometry], Translated from the text
of Heiberg and with a commentary by Bernard Vitrac, With an introduction
by Maurice Caveing.

BIBLIOGRAPHY 155

[44] H. Feizi, M. Shojaei, and A. Rajabi, Raising and lowering operators
for the dirac-woods-saxon potential in the presence of spin and pseudospin
symmetry, The European Physical Journal Plus, 127 (2012), pp. 1–7.

[45] A. S. Fokas and B. Pelloni, Generalized Dirichlet-to-Neumann map in
time-dependent domains, Stud. Appl. Math., 129 (2012), pp. 51–90.

[46] J. M. Franco, Runge-Kutta-Nyström methods adapted to the numerical
integration of perturbed oscillators, Comput. Phys. Comm., 147 (2002),
pp. 770–787.

[47] , Exponentially fitted explicit Runge-Kutta-Nyström methods, J. Com-
put. Appl. Math., 167 (2004), pp. 1–19.

[48] D. Frey and O. Norman, An integral equation approach to the periodic
steady-state problem in nonlinear circuits, IEEE Trans. Circuits Systems I
Fund. Theory Appl., 39 (1992), pp. 744 –755.

[49] R. Frontczak and R. Schöbel, On modified Mellin transforms, Gauss-
Laguerre quadrature, and the valuation of American call options, J. Comput.
Appl. Math., 234 (2010), pp. 1559–1571.

[50] M. Gadella and L. P. Lara, An algebraic method to solve the radial
Schrödinger equation, Comput. Math. Appl., 60 (2010), pp. 2701–2711.

[51] A. Ghizzetti and A. Ossicini, Quadrature formulae, Academic Press,
New York, 1970.

[52] E. Hairer, S. P. Nørsett, and G. Wanner, Solving ordinary differen-
tial equations. I, vol. 8 of Springer Series in Computational Mathematics,
Springer-Verlag, Berlin, second ed., 1993. Nonstiff problems.

[53] E. Hairer and G. Wanner, Solving ordinary differential equations. II,
vol. 14 of Springer Series in Computational Mathematics, Springer-Verlag,
Berlin, 2010. Stiff and differential-algebraic problems, Second revised edition,
paperback.

[54] A. I. Hasçelik, An asymptotic Filon-type method for infinite range highly
oscillatory integrals with exponential kernel, Appl. Numer. Math., 63 (2013),
pp. 1–13.

[55] S. Hasheminejad and M. Aghabeigi, Liquid sloshing in half-full horizon-
tal elliptical tanks, Journal of Sound and Vibration, 324 (2009), pp. 332–349.
cited By (since 1996)13.

BIBLIOGRAPHY 156

[56] D. Hayward, Quantum Mechanics for Chemists, Tutorial chemistry texts,
Royal Society of Chemistry, 2002.

[57] E. Hille, Ordinary differential equations in the complex domain, Dover
Publications Inc., Mineola, NY, 1997. Reprint of the 1976 original.

[58] M. Hochbruck and A. Ostermann, Exponential integrators, Acta Nu-
mer., 19 (2010), pp. 209–286.

[59] D. Hollevoet, M. Van Daele, and G. Vanden Berghe, The optimal
exponentially-fitted Numerov method for solving two-point boundary value
problems, J. Comput. Appl. Math., 230 (2009), pp. 260–269.

[60] D. Huybrechs and S. Vandewalle, On the evaluation of highly oscilla-
tory integrals by analytic continuation, SIAM J. Numer. Anal., 44 (2006),
pp. 1026–1048.

[61] , A sparse discretization for integral equation formulations of high fre-
quency scattering problems, SIAM J. Sci. Comput., 29 (2007), pp. 2305–2328.

[62] A. Iserles and S. P. Nørsett, Efficient quadrature of highly oscillatory
integrals using derivatives, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.,
461 (2005), pp. 1383–1399.

[63] L. G. Ixaru, Numerical methods for differential equations and applications,
Mathematics and its Applications (East European Series), D. Reidel Pub-
lishing Co., Dordrecht, 1984. Translated from the Romanian.

[64] L. G. Ixaru, Operations on oscillatory functions, Comput. Phys. Comm.,
105 (1997), pp. 1–19.

[65] , Runge-Kutta method with equation dependent coefficients, Comput.
Phys. Commun., 183 (2012), pp. 63–69.

[66] L. G. Ixaru and B. Paternoster, A conditionally P-stable fourth-order
exponential-fitting method for y′′ = f(x, y), J. Comput. Appl. Math., 106
(1999), pp. 87–98.

[67] , A Gauss quadrature rule for oscillatory integrands, Comput. Phys.
Comm., 133 (2001), pp. 177–188.

[68] L. G. Ixaru and G. Vanden Berghe, Exponential fitting, vol. 568 of
Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht,
2004. With 1 CD-ROM (Windows, Macintosh and UNIX).

BIBLIOGRAPHY 157

[69] L. G. Ixaru, G. Vanden Berghe, and H. De Meyer, Frequency evalua-
tion in exponential fitting multistep algorithms for ODEs, J. Comput. Appl.
Math., 140 (2002), pp. 423–434.

[70] H. Kang and S. Xiang, On the calculation of highly oscillatory integrals
with an algebraic singularity, Appl. Math. Comput., 217 (2010), pp. 3890–
3897.

[71] K. Kim, Quadrature rules for the integration of the product of two oscillatory
functions with different frequencies, Computer Physics Communications, 153
(2003), pp. 135–144. cited By (since 1996)7.

[72] , Two-frequency-dependent gauss quadrature rules, Journal of Compu-
tational and Applied Mathematics, 174 (2005), pp. 43–55. cited By (since
1996)7.

[73] K. Kim, R. Cools, and L. G. Ixaru, Extended quadrature rules for os-
cillatory integrands, Appl. Numer. Math., 46 (2003), pp. 59–73.

[74] K. J. Kim, R. Cools, and L. G. Ixaru, Quadrature rules using first
derivatives for oscillatory integrands, J. Comput. Appl. Math., 140 (2002),
pp. 479–497.

[75] A. R. Krommer and C. W. Ueberhuber, Computational Integration,
SIAM, Philadelphia, PA, 1996.

[76] T. Kuniya and H. Inaba, Endemic threshold results for an age-structured
SIS epidemic model with periodic parameters, Journal of Mathematical Anal-
ysis and Applications, 402 (2013), pp. 477 – 492.

[77] V. Ledoux and M. Daele, Interpolatory quadrature rules for oscillatory
integrals, Journal of Scientific Computing, 53 (2012), pp. 586–607.

[78] B. Liu and J. You, Quasiperiodic solutions of Duffing’s equations, Nonlin-
ear Anal., 33 (1998), pp. 645–655.

[79] L. Lopez, Metodi ad un passo fortemente stabili per equazioni integrali di
Volterra di seconda specie di tipo stiff, Calcolo, 23 (1986), pp. 249–263.

[80] H. Majidian, Numerical approximation of highly oscillatory integrals on
semi-finite intervals by steepest descent method, Numer. Algorithms, 63
(2013), pp. 537–548.

BIBLIOGRAPHY 158

[81] G. V. Milovanović, A. S. Cvetković, and M. P. Stanić, Gaussian
quadratures for oscillatory integrands, Appl. Math. Lett., 20 (2007), pp. 853–
860.

[82] T. Neill and J. Stefani, Self-regulating Picard-type iteration for com-
puting the periodic response of a nearly linear circuit to a periodic input,
Electronics Letters, 11 (1975), pp. 413–415.

[83] B. Paternoster, Runge-Kutta(-Nyström) methods for ODEs with peri-
odic solutions based on trigonometric polynomials, Appl. Numer. Math., 28
(1998), pp. 401–412. Eighth Conference on the Numerical Treatment of
Differential Equations (Alexisbad, 1997).

[84] B. Paternoster, Two step Runge-Kutta-Nyström methods for y′′ = f(x, y)
and P-stability, in Computational science—ICCS 2002, Part III (Amster-
dam), vol. 2331 of Lecture Notes in Comput. Sci., Springer, Berlin, 2002,
pp. 459–466.

[85] B. Paternoster, Two step Runge-Kutta-Nyström methods based on alge-
braic polynomials, Rend. Mat. Appl. (7), 23 (2003), pp. 277–288 (2004).

[86] B. Paternoster, Two step Runge-Kutta-Nyström methods for oscillatory
problems based on mixed polynomials, in Computational science—ICCS 2003.
Part II, vol. 2658 of Lecture Notes in Comput. Sci., Springer, Berlin, 2003,
pp. 131–138.

[87] B. Paternoster, Present state-of-the-art in exponential fitting. a contri-
bution dedicated to liviu ixaru on his 70th birthday, Comput. Phys. Comm.,
183 (2012), pp. 2499–2512.

[88] B. Paternoster, Present state-of-the-art in exponential fitting. A contribu-
tion dedicated to Liviu Ixaru on his 70th birthday, Comput. Phys. Commun.,
183 (2012), pp. 2499–2512.

[89] L. R. Petzold, L. O. Jay, and J. Yen, Numerical solution of highly
oscillatory ordinary differential equations, in Acta numerica, 1997, vol. 6 of
Acta Numer., Cambridge Univ. Press, Cambridge, 1997, pp. 437–483.

[90] A. Quarteroni, R. Sacco, and F. Saleri, Numerical mathematics,
vol. 37 of Texts in Applied Mathematics, Springer-Verlag, Berlin, second ed.,
2007.

BIBLIOGRAPHY 159

[91] R. Rach, J.-S. Duan, and A.-M. Wazwaz, Solving coupled lane-emden
boundary value problems in catalytic diffusion reactions by the adomian de-
composition method, Journal of Mathematical Chemistry, 52 (2014), pp. 255–
267.

[92] H. Ramos and J. Vigo-Aguiar, On the frequency choice in trigonomet-
rically fitted methods, Appl. Math. Lett., 23 (2010), pp. 1378–1381.

[93] I. W. Sandberg and G. J. J. van Zyl, An algorithm with error bounds for
calculating intermodulation products, Microwave and Guided Wave Letters,
IEEE, 10 (2000), pp. 463–465.

[94] I. W. Sandberg and G. J. J. van Zyl, Evaluation of the response of
nonlinear systems to asymptotically almost periodic inputs, in International
Symposium on Circuits and Systems (ISCAS 2001), 6-9 May 2001, Sydney,
Australia, IEEE, 2001, pp. 77–80 vol. 2.

[95] I. W. Sandberg and G. J. J. van Zyl, The spectral coefficients of the
response of nonlinear systems to asymptotically almost periodic inputs, IEEE
Trans. Circuits Systems I Fund. Theory Appl., 48 (2001), pp. 170–176.

[96] P. W. Sharp, J. M. Fine, and K. Burrage, Two-stage and three-stage
diagonally implicit Runge-Kutta Nyström methods of orders three and four,
IMA J. Numer. Anal., 10 (1990), pp. 489–504.

[97] T. Simos, An exponentially-fitted runge-kutta method for the numerical inte-
gration of initial-value problems with periodic or oscillating solutions, Com-
puter Physics Communications, 115 (1998), pp. 1–8. cited By (since 1996)72.

[98] T. E. Simos, Some new four-step exponential-fitting methods for the nu-
merical solution of the radial Schrödinger equation, IMA J. Numer. Anal.,
11 (1991), pp. 347–356.

[99] , An exponentially-fitted Runge-Kutta method for the numerical integra-
tion of initial-value problems with periodic or oscillating solutions, Comput.
Phys. Comm., 115 (1998), pp. 1–8.

[100] , Exponentially-fitted Runge-Kutta-Nyström method for the numerical
solution of initial-value problems with oscillating solutions, Appl. Math.
Lett., 15 (2002), pp. 217–225.

[101] R. M. Slevinsky and H. Safouhi, A comparative study of numerical
steepest descent, extrapolation, and sequence transformation methods in com-
puting semi-infinite integrals, Numer. Algorithms, 60 (2012), pp. 315–337.

BIBLIOGRAPHY 160

[102] M. R. Spiegel, Theory and problems of Laplace transforms, Schaum Pub-
lishing Co., New York, 1965.

[103] W. Sun and N. Zamani, Adaptive mesh redistribution for the boundary
element in elastostatics, Computers and Structures, 36 (1990), pp. 1081–
1088. cited By (since 1996)17.

[104] A. Taghavi and S. Pearce, A solution to the Lane-Emden equation in the
theory of stellar structure utilizing the Tau method, Math. Methods Appl.
Sci., 36 (2013), pp. 1240–1247.

[105] M. Van Daele, T. Van Hecke, G. Vanden Berghe, and
H. De Meyer, Deferred correction with mono-implicit Runge-Kutta meth-
ods for first-order IVPs, J. Comput. Appl. Math., 111 (1999), pp. 37–47.
Numerical methods for differential equations (Coimbra, 1998).

[106] M. Van Daele, G. Vanden Berghe, and H. Vande Vyver, Exponen-
tially fitted quadrature rules of Gauss type for oscillatory integrands, Appl.
Numer. Math., 53 (2005), pp. 509–526.

[107] H. Van de Vyver, On the generation of P-stable exponentially fitted Runge-
Kutta-Nyström methods by exponentially fitted Runge-Kutta methods, J.
Comput. Appl. Math., 188 (2006), pp. 309–318.

[108] G. Vanden Berghe, H. De Meyer, M. Van Daele, and
T. Van Hecke, Exponentially-fitted explicit Runge-Kutta methods, Com-
put. Phys. Comm., 123 (1999), pp. 7–15.

[109] G. Vanden Berghe, L. G. Ixaru, and H. De Meyer, Frequency deter-
mination and step-length control for exponentially-fitted Runge-Kutta meth-
ods, J. Comput. Appl. Math., 132 (2001), pp. 95–105.

	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Evolutionary problems
	Introduction
	Integrals over unbounded intervals
	A brief overview
	Infinite integrals with peridioc integrands
	Examples
	Theoretical results

	Volterra Integral Equations
	A brief overview
	VIEs with periodic solution
	Examples
	Theoretical results

	Ordinary Differential Equations
	A brief overview
	Special second-order ODEs with periodic solution
	Examples
	Theoretical results

	Aim

	Exponentially fitted methods
	The Exponential Fitting Technique
	The six step procedure

	The -functions

	EF-Gauss-Laguerre quadrature formulae for infinite oscillatory integrals
	The state of art
	The exponentially-fitted Gauss-Laguerre quadrature rule
	Computation of weights and nodes
	Numerical illustrations
	Comparison with Filon-type rules
	Filon versus EF quadrature rules over finite integration intervals
	Construction of Filon quadrature rules over infinite integration intervals

	EF-Direct Quadrature methods VIEs with periodic solution
	The state of art
	Mixed collocation method
	Direct Quadrature method based ef Simpson rule

	Exponentially fitted Gaussian quadrature rule
	Newton method
	Error analysis
	Stability

	The ef-Gaussian DQ method
	Algebraic interpolation
	ef interpolation

	Convergence analysis
	Numerical illustrations
	Tests on the ef-based quadrature rule
	Tests on the ef-based DQ method

	EF-Runge-Kutta-Nyström methods for special second-order ODEs with periodic solution
	Introduction
	Revised operators
	Construction of a family of methods
	Parameters estimation
	Numerical illustrations
	The Prothero-Robinson problem
	The undamped Duffing problem

	GPU implementations
	Introduction
	Basic notes on programming with CUDA
	GPU computing
	CUDA
	CUDA architecture
	Execution model
	Hardware implementation
	Memory
	Compiling process
	Performances Guidelines
	Maximize the throughput of Memory
	Shared Memory Architecture

	Parallel quadrature formulae: the Simpson rule
	Numerical illustrations
	Numerical test 1
	Numerical test 2

	Conclusions and future developments
	Bibliography

