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Abstract 

Adsorption using solid sorbents is recognized to be attractive to complement or replace the 

current absorption technology for CO2 capture due to its low energy requirement. However, 

the development of new highly specific CO2 adsorbent is necessary: a solution is represented 

by fine materials, whose properties can be tuned at a molecular level by means of 

functionalization processes to tailor their CO2 capture performance. Another point to be 

addressed is the adoption of an adequate reactor configuration, which can, on one hand, fully 

exploit the potential and properties of these new-concept adsorbent materials by maximizing 

the contact between the CO2 molecules and the adsorbent particles, and, on the other hand, 

improve the heat transfer. In this respect, a fluidized bed could be a good solution, due to 

larger gas-solid contact efficiency, higher rate of mass and heat transfer and lower pressure 

drops. In particular, a more suitable reactor configuration is a sound assisted fluidized bed, 

namely provided with a system for the generation of acoustic vibrations to overcome the high 

interparticles forces characterizing fine powders. On these bases, the present PhD thesis 

focuses on the CO2 capture process by temperature swing adsorption on fine porous materials 

in a sound assisted fluidized bed.  

In order to perform adsorption/desorption tests, a laboratory scale sound assisted fluidized bed 

experimental rig has been set up. It is equipped with a system for the sound generation and 

with a continuous analyzer for the CO2 concentration measurement in the effluent gas stream. 

For the regeneration tests the reactor is externally heated by an ad-hoc designed heating 

jacket, provided with a window to allow the fluidization quality to be visually assessed. Both 

common adsorbent materials, two activated carbons, zeolite HZSM-5 and zeolite 13X, and a 

highly specific adsorbent material, a metal organic framework HKUST-1, were used.  

The experimental results show that the application of the sound can improve the fluidization 

quality as well as the adsorption efficiency (by maximizing the gas-solid contact) of all the 

selected adsorbent materials in terms of remarkably higher breakthrough time, adsorption 

capacity, fraction of bed utilized until breakthrough and adsorption rate. The experimental 

campaign has been also carried out, at ambient temperature and atmospheric pressure, in 

order to highlight the effect of some operating variables on the adsorption performances, i.e. 

sound intensity (120-140dB) and frequency (20-300Hz), CO2 partial pressure (0.05-0.15atm) 

and fluidization velocity (0.1-4.5cm/s). In particular, increasing sound intensities yield better 

adsorption performances, whereas, sound frequency has a not monotone effect on the 
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fluidization quality and adsorption efficiency. The CO2 capture capacity increases with CO2 

partial pressure, coherently with the partial pressure being the thermodynamic driving force of 

the adsorption process. Finally, the dependence of the breakthrough time on the contact time 

is linear for the tests performed in ordinary conditions, whereas, it is not monotone for the 

sound assisted tests. At the end of the experimental campaign, all the investigated adsorbent 

materials have been compared and their different adsorption behaviours explained on the 

basis of their textural properties. In particular, it has been found that there is a specific pore 

size range, 8-12 Å, which is the key factor affecting the adsorption capacity of the studied 

materials under the investigated operating conditions.  

Desorption tests have been performed on the materials characterized by the best adsorption 

performances, the HKUST-1 and one activated carbon at atmospheric pressure. In particular, 

an extra-situ regeneration strategy (150°C under a vacuum of 50mbar) has been developed to 

study the stability of HKUST-1 to cyclic adsorption/desorption operations, since HKUST-1 

presents problems of thermal stability, limiting the desorption temperature to be used in a 

temperature swing adsorption process. The results show that HKUST-1 is very stable, keeping 

its adsorption performances over 10 adsorption/desorption cycles. As regards the activated 

carbon, two strategy of temperature swing adsorption have been tested in the sound assisted 

fluidized bed. The first regeneration strategy is an isothermal purge consisting in combining 

the effect of increasing temperature and decreasing CO2 partial pressure. The second 

regeneration strategy, heating and purge, consists in separating the thermal effect from the 

purging one. The application of the sound makes it possible, from one hand, to remarkably 

increase the desorption rate and, on the other, to significantly enrich the recovered CO2 

stream. CO2 recovery and purity have opposing trends: higher desorption times yield a higher 

CO2 recovery, but lead to a lower CO2 purity of the desorbing stream. The desorption rate is 

positively affected by both desorption temperature (25-150°C) and N2 purge flow rate (45.2-

90.4Nl h-1). The purity of the recovered CO2 stream is increased by increasing desorption 

temperatures, whereas, it is not affected by change of the N2 purge flow rate since dilution 

does not depend on the purge flow rate but only on the purge volume. 

The results obtained show that heating is very effective since 80% of the captured CO2 can be 

can be recovered with a 100% purity at a bland desorption temperature of 130°C. It is worth 

noting that for each desorption temperature the heating and purge strategy always makes it 

possible to enrich the stream of CO2 recovered with respect to the standard purge strategy, the 

CO2 recovery level being the same. The possibility to use the activated carbon in a cyclic 
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operation has been also assessed: it is very stable, keeping its adsorption performances over 

16 adsorption/desorption cycle. 

Finally, considerations about the energy cost and scale-up of the proposed technology for CO2 

capture by temperature swing adsorption have also been reported. 
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  drops	
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   frequency	
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   Effect	
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   frequency	
   on	
   pressure	
   drops	
   (b)	
   and	
   bed	
   expansion	
   (d)	
  
curves	
  at	
  fixed	
  SPL	
  (140dB).	
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Fig.	
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  fixed	
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  frequency	
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Fig.	
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  AC	
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  drops	
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  expansion	
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  (c)	
  under	
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  fluidization	
  conditions;	
  
pressure	
   drops	
   (b)	
   and	
   expansion	
   curves	
   (d)	
   under	
   sound	
   assisted	
   fluidization	
   conditions	
  
(140dB-­‐80Hz).	
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Fig.	
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   Effect	
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   drops	
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   the	
   tests	
   performed	
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   different	
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Fig.	
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  AC	
   Sigma:	
   Effect	
   of	
   sound	
   frequency	
   on	
  pressure	
  drops	
   for	
   the	
   tests	
   performed	
  at	
   different	
  
SPLs.	
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Fig.	
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  Sigma:	
  Effect	
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Fig.	
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  H-­‐ZSM-­‐5	
  pressure	
  drops	
  (a)	
  and	
  expansion	
  curves	
  (c)	
  under	
  ordinary	
  fluidization	
  conditions;	
  

pressure	
   drops	
   (b)	
   and	
   expansion	
   curves	
   (d)	
   under	
   sound	
   assisted	
   fluidization	
   conditions	
  
(140dB-­‐80Hz).	
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Fig.	
   37	
   13X	
   pressure	
   drops	
   (a)	
   and	
   expansion	
   curves	
   (c)	
   under	
   ordinary	
   fluidization	
   conditions;	
  
pressure	
   drops	
   (b)	
   and	
   expansion	
   curves	
   (d)	
   under	
   sound	
   assisted	
   fluidization	
   conditions	
  
(140dB-­‐80Hz).	
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Fig.	
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  Effect	
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  drops	
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  tests	
  performed	
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  different	
  sound	
  frequencies.	
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Fig.	
  39	
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  Effect	
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  different	
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   68	
  
Fig.	
  40	
  13X:	
  Effect	
  of	
  (a)	
  SPL	
  and	
  (b)	
  frequency	
  on	
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Fig.	
   41	
   HKUST-­‐1	
   pressure	
   drops	
   and	
   expansion	
   curves	
   for	
   (a)	
   ordinary	
   and	
   (b)	
   sound	
   assisted,	
  

140dB-­‐80Hz,	
  tests.	
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Fig.	
  42	
  HKUST-­‐1:	
  Effect	
  of	
  SPL	
  on	
  pressure	
  drops	
  (a)	
  at	
  fixed	
  frequency	
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  Effect	
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  frequency	
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  drops	
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  at	
  fixed	
  SPL	
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Fig.	
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  HKUST-­‐1:	
  Effect	
  of	
  (a)	
  SPL	
  and	
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  frequency	
  on	
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Fig.	
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   AC	
   Norit	
   breakthrough	
   curves	
   obtained	
   in	
   ordinary	
   and	
   sound	
   assisted	
   conditions,	
   in	
   (a)	
  

linear	
  and	
  (b)	
  logarithmic	
  scale.	
  u=1.5cm/s;	
  C0=10%vol.	
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Fig.	
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  AC	
  Norit	
  adsorption	
  rate	
  for	
  ordinary	
  and	
  sound	
  assisted	
  tests.	
  u=1.5cm/s;	
  C0=10%vol.	
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Fig.	
  46	
  AC	
  Norit	
  breakthrough	
  curve	
  obtained	
  switching	
  on	
  the	
  sound	
  at	
  t=t*.	
  u=1.5cm/s;	
  C0=10%vol.
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Fig.	
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   AC	
   Norit:	
   effect	
   of	
   SPL	
   on	
   CO2	
   adsorption.	
   a)	
   Breakthrough	
   curves;	
   b)	
   CO2	
   adsorption	
  

efficiency,	
  in	
  terms	
  of	
  nads,	
  tb	
  and	
  W.	
  u=1.5cm/s;	
  C0=10%vol;	
  f=80Hz.	
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Fig.	
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   AC	
   Norit:	
   effect	
   of	
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   frequency	
   on	
   CO2	
   adsorption.	
   a)	
   Breakthrough	
   curves;	
   b)	
   CO2	
  

adsorption	
  efficiency,	
  in	
  terms	
  of	
  nads,	
  tb	
  and	
  W.	
  u=1.5cm/s;	
  C0=10%vol;	
  SPL=140dB.	
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Fig.	
   49	
   AC	
   Norit	
   breakthrough	
   curves	
   in	
   ordinary	
   and	
   sound	
   assisted	
   conditions.	
   u=2cm/s;	
   a)	
  

C0=5%vol;	
  b)	
  10%vol.;	
  c)	
  15%vol.	
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Fig.	
  50	
  AC	
  Norit	
  adsorption	
  isotherms	
  in	
  ordinary	
  and	
  sound	
  assisted	
  test,	
  u=2cm/s.	
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Fig.	
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   AC	
   Norit	
   breakthrough	
   curves	
   in	
   ordinary	
   and	
   sound	
   assisted	
   conditions.	
   C0=5%vol;	
   a)	
  

u=2cm/s;	
  b)	
  u=1.5cm/s;	
  c)	
  u=1cm/s.	
  d)	
  Breakthrough	
  time	
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  function	
  of	
  contact	
  time.	
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   AC	
   Norit	
   breakthrough	
   curves	
   in	
   ordinary	
   and	
   sound	
   assisted	
   conditions.	
   C0=10%vol;	
   a)	
  

u=2cm/s;	
  b)	
  u=1,5cm/s;	
  c)	
  u=1.5cm/s.	
  d)	
  Breakthrough	
  time	
  as	
  function	
  of	
  contact	
  time.	
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Fig.	
   53	
   AC	
   Norit	
   breakthrough	
   curves	
   in	
   ordinary	
   and	
   sound	
   assisted	
   conditions.	
   C0=15%vol;	
   a)	
  

u=2cm/s;	
  b)	
  u=1.5cm/s;	
  c)	
  u=1cm/s.	
  d)	
  Breakthrough	
  time	
  as	
  function	
  of	
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Fig.	
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   AC	
  Norit	
   breakthrough	
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   as	
   functions	
   of	
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   time	
   for	
   ordinary	
   and	
   sound	
   assisted	
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Fig.	
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   a)	
   Breakthrough	
   curves	
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   sound	
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   and	
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  efficiency,	
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   tb	
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Fig.	
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  assisted	
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Fig.	
  57	
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  d)	
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Fig.	
   58	
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   breakthrough	
   curves	
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   ordinary	
   and	
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   assisted	
   conditions.	
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   a)	
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Fig.	
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   and	
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   assisted	
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  c)	
  u=1cm/s.	
  d)	
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   89	
  



INDEX 

 vi 

Fig.	
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   curves	
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   a)	
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  Breakthrough	
  time	
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  function	
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Fig.	
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  Breakthrough	
  curve	
  as	
  obtained	
  in	
  fluidized	
  bed	
  tests	
  carried	
  out	
  with	
  H-­‐ZSM-­‐5	
  in	
  ordinary	
  
conditions	
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  under	
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  acoustic	
   field	
   (140dB-­‐80Hz).	
  C0=10%vol.;	
  a)	
  u=2/s;	
  b)	
  
u=5cm/s.	
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Fig.	
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  H-­‐ZSM-­‐5	
  breakthrough	
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  obtained	
   in	
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  assisted	
  conditions	
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  with	
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  C0=10%vol.	
  and	
  (c)	
  C0=15%vol.	
  d)	
  Adsorption	
  isotherm.	
  u=1.5cm/s.	
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Fig.	
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   13X	
   breakthrough	
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   ordinary	
   and	
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  assisted	
   conditions	
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   (a)	
  
and	
  logarithmic	
  (b)	
  scale.	
  C0=15%vol.;	
  u=1.5cm/s	
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Fig.	
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   breakthrough	
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   assisted	
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   with	
   (a)	
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  C0=10%vol.	
  and	
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  d)	
  Adsorption	
  isotherm.	
  u=1.5cm/s.	
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Fig.	
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  13X	
  breakthrough	
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  in	
  ordinary	
  and	
  sound	
  assisted	
  conditions.	
  C0=5%vol;	
  a)	
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b)	
  u=3cm/s;	
  c)	
  u=1.5cm/s.	
  d)	
  Breakthrough	
  time	
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  function	
  of	
  contact	
  time.	
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Fig.	
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   breakthrough	
   curves	
   in	
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   and	
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   assisted	
   conditions.	
   C0=10%vol;	
   a)	
  
u=4.5cm/s;	
  b)	
  u=3cm/s;	
  c)	
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  d)	
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  time	
  as	
  function	
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Fig.	
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   13X	
   breakthrough	
   curves	
   in	
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   and	
   sound	
   assisted	
   conditions.	
   C0=15%vol;	
   a)	
  
u=4.5cm/s;	
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  u=3cm/s;	
  c)	
  u=1.5cm/s.	
  d)	
  Breakthrough	
  time	
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  function	
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  contact	
  time.	
   97	
  

Fig.	
  68	
  HKUST-­‐1	
  breakthrough	
  curves	
  obtained	
  in	
  ordinary	
  and	
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  assisted	
  conditions	
   in	
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(a)	
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  logarithmic	
  (b)	
  scale.	
  C0=15%vol.;	
  u=1.5cm/s	
   98	
  

Fig.	
  69	
  HKUST-­‐1	
  breakthrough	
  curve	
  obtained	
  switching	
  on	
  the	
  sound	
  at	
  t=t*.	
  u=1.5cm/s;	
  C0=15%vol.
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Fig.	
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  HKUST-­‐1:	
  effect	
  of	
  SPL	
  on	
  CO2	
  adsorption	
  performance.	
  a)	
  C0=5%;	
  b)	
  C0=15%.	
  f=80Hz.	
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  HKUST-­‐1:	
   effect	
   of	
   sound	
   frequency	
   on	
   CO2	
   adsorption	
   performance.	
   a)	
   C0=5%;	
   b)	
   C0=15%.	
  

SPL=140dB.	
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Fig.	
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  HKUST-­‐1	
  breakthrough	
  curves	
  obtained	
  in	
  sound	
  assisted	
  conditions	
  (140dB-­‐80Hz)	
  with	
  (a)	
  

C0=5%vol.;	
  (b)	
  C0=10%vol.	
  and	
  (c)	
  C0=15%vol.	
  d)	
  Adsorption	
  isotherm.	
  u=1.5cm/s.	
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Fig.	
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   Comparison	
   of	
   all	
   the	
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   materials	
   in	
   sound	
   assisted	
   conditions	
   (140dB-­‐80Hz).	
   a)	
  

C0=5%;	
  b)	
  C0=10%;	
  c)	
  C0=15%;	
  d)	
  Adsorption	
  isotherms.	
  u=1.5cm/s.	
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Fig.	
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   Comparison	
   between	
   the	
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   obtained	
   for	
   NH4-­‐Y	
   and	
   Na-­‐Y.	
   C0=10%;	
  

u=1.5cm/s.	
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Fig.	
  75	
  Correlation	
  between	
   the	
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  and:	
   (a)	
  BET	
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   (b)	
   total	
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Fig.	
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   Comparison	
   among	
   the	
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   of	
   all	
   the	
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   (a)	
   and	
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  adsorbed	
  (nads)	
  and	
  the	
  volume	
  of	
  specif	
  micropores	
  
(8.3-­‐12	
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  (b).	
   107	
  

Fig.	
  77	
  CO2	
  TPD	
  profiles	
  of	
  HKUST-­‐1	
  at	
  250°C	
  (a)	
  and	
  150°C	
  (b).	
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Fig.	
  78	
  HKUST-­‐1:	
  effect	
  of	
  the	
  regeneration	
  strategy.	
  SPL=140dB,	
  f=80Hz;	
  C0=15%;	
  u=1.5cm/s.	
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Fig.	
   79	
   Freshly	
   prepared	
   HKUST-­‐1	
   and	
   regenerated	
   after	
   10	
   cycles	
   (a)	
   XRD	
   patterns,	
   (b)	
   FT-­‐IR	
  

spectra,	
  (c)	
  thermogravimetric	
  analysis	
  in	
  N2,	
  (d)	
  particle	
  size	
  distribution,	
  (e)	
  SEM	
  analysis,	
  
(f)	
  pore	
  size	
  distribution.	
   110	
  

Fig.	
  80	
  Pore	
  size	
  distribution	
  of	
  freshly	
  prepared	
  HKUST-­‐1	
  and	
  after	
  TPD	
  at	
  250	
  and	
  150°C.	
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Fig.	
  81	
  CO2	
  outlet	
  concentration	
  profiles	
  during	
  not	
  isothermal	
  desorption	
  tests	
  under	
  ordinary	
  and	
  

sound	
   assisted	
   conditions.	
   The	
   sorbent	
   temperature	
   profile	
   is	
   also	
   reported.	
   N2	
   purge	
   flow	
  
rate=67.8Nl	
   h-­‐1;	
   heating=20°C	
  min-­‐1	
   up	
   to	
   Tdes=70°C.	
   Adsorption	
   step:	
   ordinary	
   fluidization;	
  
inlet	
  flow	
  rate=67.8Nl	
  h-­‐1;	
  C0=10%vol.	
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Fig.	
  82	
  CO2	
  recovery	
  level	
  (a)	
  and	
  CO2	
  mean	
  concentration	
  of	
  the	
  desorbing	
  stream	
  (b)	
  as	
  functions	
  of	
  
the	
   desorption	
   time.	
   N2	
   purge	
   flow	
   rate=67.8Nl	
   h-­‐1;	
   heating=20°C	
   min-­‐1	
   up	
   to	
   Tdes=70°C.	
  
Adsorption	
  step:	
  ordinary	
  fluidization;	
  inlet	
  flow	
  rate=67.8Nl	
  h-­‐1;	
  C0=10%vol.	
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Fig.	
  83	
  Comparison	
  between	
  the	
  ordinary	
  and	
  sound	
  assisted	
  (140dB-­‐80Hz)	
  desorption	
  tests	
  in	
  terms	
  
of	
  desorption	
  time	
  (a)	
  and	
  CO2	
  mean	
  concentration	
  of	
  the	
  desorbing	
  stream	
  (b),	
  at	
  different	
  
recovery	
  levels.	
  N2	
  purge	
  flow	
  rate=67.8Nl	
  h-­‐1;	
  heating=20°C	
  min-­‐1	
  up	
  to	
  Tdes=70°C.	
  Adsorption	
  
step:	
  ordinary	
  fluidization;	
  inlet	
  flow	
  rate=67.8Nl	
  h-­‐1;	
  C0=10%vol.	
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Fig.	
  84	
  CO2	
  outlet	
  concentration	
  profiles	
  during	
  not	
  isothermal	
  desorption	
  tests	
  under	
  ordinary	
  and	
  
sound	
   assisted	
   conditions.	
   The	
   sorbent	
   temperature	
   profile	
   is	
   also	
   reported.	
   N2	
   purge	
   flow	
  
rate=67.8Nl	
   h-­‐1;	
   heating	
   =	
   20°C	
   min-­‐1	
   up	
   to	
   Tdes=70°C.	
   Adsorption	
   step:	
   ordinary	
  
fluidization/140dB.80Hz;	
  inlet	
  flow	
  rate=67.8Nl	
  h-­‐1;	
  C0=10%vol.	
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Fig.	
  85	
  Comparison	
  between	
  the	
  ordinary	
  and	
  sound	
  assisted	
  (140dB-­‐80Hz)	
  desorption	
  tests	
  in	
  terms	
  
of	
  desorption	
  time	
  (a)	
  and	
  CO2	
  mean	
  concentration	
  of	
  the	
  desorbing	
  stream	
  (b),	
  at	
  different	
  
recovery	
  levels.	
  N2	
  purge	
  flow	
  rate=67.8Nl	
  h-­‐1;	
  heating=20°C	
  min-­‐1	
  up	
  to	
  Tdes=70°C.	
  Adsorption	
  
step:	
  ordinary	
  fluidization/140dB.80Hz;	
  inlet	
  flow	
  rate=67.8Nl	
  h-­‐1;	
  C0=10%vol.	
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Fig.	
  86	
  Comparison	
  between	
  three	
  consecutive	
  desorption	
  profiles	
  obtained	
  from	
  the	
  same	
  AC	
  Norit	
  
sample	
  under	
  both	
  ordinary	
  (a)	
  and	
  sound	
  assisted,	
  140dB-­‐80Hz,	
  (b)	
  fluidization	
  conditions.	
  
N2	
  purge	
  flow	
  rate=67.8Nl	
  h-­‐1;	
  heating=20°C	
  min-­‐1	
  up	
  to	
  Tdes=70°C.	
  Adsorption	
  step:	
  ordinary	
  
fluidization	
  (a)/140dB.80Hz	
  (b);	
  inlet	
  flow	
  rate=67.8Nl	
  h-­‐1;	
  C0=10%vol.	
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Fig.	
   87	
   CO2	
   outlet	
   concentration	
   profiles	
   during	
   desorption	
   as	
   a	
   function	
   of	
   the	
   desorption	
  
temperature.	
  N2	
  purge	
  flow	
  rate	
  =	
  (a)	
  45.2Nl	
  h-­‐1,	
  (b)	
  67.8Nl	
  h-­‐1	
  and	
  (c)	
  90.4Nl	
  h-­‐1.	
  SPL=140dB;	
  
Sound	
   frequency=80Hz.	
   In	
   the	
   inset,	
   td	
   and	
   Cm	
   vs	
   Tdes.	
   Adsorption	
   step:	
   SPL=140dB;	
   Sound	
  
frequency=80Hz;	
  inlet	
  flow	
  rate=67.8Nl	
  h-­‐1;	
  C0=10%vol.	
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Fig.	
   88	
   CO2	
   outlet	
   concentration	
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I INTRODUCTION 

In the history of civilizations, the 20th century can be regarded as a century of explosive 

growth in energy consumption and rapid increase in population worldwide along with 

unprecedented speed of inventions of new technologies and ever-increasing expansion of 

man-made materials. All these epochal revolutions have created a new world that has become 

increasingly dependent on combustion of hydrocarbon fuels such as gasoline and diesel fuel. 

Inventions of electrical power plants and electric home appliances have electrified the world, 

which is increasingly dependent on electricity largely generated from carbon-based resources 

such as coal and natural gas [1]. On a global scale, more than 80% of the primary energy 

supply is satisfied by fossil fuels [1,2], due to their availability, existing reliable technology 

for energy production, and energy density. However, combustion of fossil fuels produces CO2 

as waste.  

Total CO2 emissions from fossil fuel consumption and flaring of natural gas were 28 GtCO2 

per year in 2006 and this value is likely destined to rise because of the increasing worldwide 

energetic demand. As the dominant form of energy utilized in the world, fossil fuels account 

for about 75% of current anthropogenic CO2 emissions [3,4]. 

In the last decade, significant progress has been made towards a better understanding of the 

world climate and of the long-term impact of climate change. On February 2, 2007, the 

Intergovernmental Panel on Climate Change (IPCC) of the United Nations declared that the 

evidence of a warming trend is “unequivocal” and that human activity has “very likely” been 

the driving force in that change over the last 50 years. In particular, the observed increase in 

globally averaged temperatures since the mid-twentieth century is very likely to have 

occurred due to the increase in anthropogenic greenhouse gas concentrations that leads to the 

warming of the earth surface and lower atmosphere [5]. Where, the greenhouse effect is the 

phenomenon in which water vapor, carbon dioxide, methane, and other atmospheric gases 

absorb outgoing infrared radiation resulting in the raising of the temperature. Without 
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greenhouse gases, the average temperature on the Earth’s surface would be approximately 

255K, i.e. well below the freezing point of water, which means that life might not have 

evolved. Hence, the existence of CO2 in the atmosphere is vital to living organisms on Earth 

[6]. Among all the greenhouse gases, CO2 is blamed to be the main contributor in regard of its 

amount present in the atmosphere contributing to 60 percent of global warming effects [7], 

although methane and chlorofluorocarbons have much higher greenhouse effect per mass of 

gases [8]. IPCC further predicts that, by the year 2100, the atmosphere may contain up to 

570ppmv CO2, causing a rise of mean global temperature of around 1.9°C and an increase in 

mean sea level of 38m [9]. Also accompanied is species extinction. 

I.1 Reducing CO2 Emissions 

When industrialization took off, so did CO2 emissions (Fig. 1). The globally averaged CO2 

concentration changed only slightly over the period of a thousand years till 20th century, from 

280ppmv in 1000 to 285ppmv in 1800, whereas, it increased from this pre-industrial levels to 

a current level of 392ppmv – a 40% increase [10]. 

 

Fig. 1 Atmospheric CO2 concentrations during 1000–2004 based on the analysis of ice cores for 1000–1997 
and actual atmospheric CO2 analysis during 1958– 2004. 

In order to mitigate global warming, it is by now generally accepted that a reduction in 

emissions of greenhouse gases is necessary [11,12,13]. In particular, in 1997, the Kyoto 

Protocol was ratified by most of the developed countries setting the stage for an international 

effort to reduce CO2 emissions. Many research groups, companies and organizations are 

working hard to this aim suggesting several possible strategies, such as [14]: 
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• reducing energy consumption, for example by increasing the efficiency of energy 

conversion and/or utilization (including enhancing less energy-intensive economic 

activities); 

• switching to less carbon intensive fuels, for example natural gas instead of coal; 

• increasing the use of renewable energy sources (e.g., solar energy, wind, and 

biomass), each of which emits little or no net CO2; 

• sequestering CO2 by enhancing biological absorption capacity in forests and soils. 

Over time, these methods may be effective in reducing CO2 emissions, but generally they are 

not applicable to the large number of existing fossil fuel fired power plants. Moreover, in 

spite of all these efforts, there are many reasons to believe that fossil fuels will continue to 

dominate the supply of primary energy for several decades to come [15,16]. Hence, yet 

another way to reduce CO2 emissions has been suggested: combining the use of fossil fuels 

with CO2 capture and storage (CCS). It offers the opportunity to meet increasing demands for 

fossil fuel energy in the short to medium term, whilst reducing the associated greenhouse gas 

emissions in line with global targets [17,18]. In an idealized case, this would yield a “carbon 

neutral” source of heat and power.  

I.2 Carbon Capture and Storage (CCS) 

The CO2 emissions from various sources worldwide have been estimated by the International 

Energy Agency [19]. These are reported in Tab. 1. Among all the CO2 emissions sources, 

power generation is the single largest one, accounting for 45% of the entire CO2 emissions.In 

this respect, one approach that holds great promise for reducing CO2 emissions into the 

atmosphere from large fixed industrial sources is carbon capture and storage (CCS). It 

embodies a group of technologies [5] consisting in the separation of CO2 from large industrial 

and energy-related sources, transport to a storage location and long-term isolation from the 

atmosphere. This approach would lock up (sequester) the CO2 for thousands of years. 

However, applying current state-of-the-art flue gas CO2 capture and separation technologies 

to existing coal-fired power plants that have an average efficiency of 33% would reduce net 

plant power output by approximately one-third [20,21]. Therefore, for CCS technologies to be 

an effective mitigation option, research and development will be critical to achieve wide-scale 

deployment with acceptable economic and environmental impacts.  
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Tab. 1 Properties of candidate gas streams that can be inputted to a capture process.  

 
The first step, separation and compression (i.e. capture), is currently considerably more costly 

than transportation and sequestration. Thus, developing new technology to reduce capture 

costs is the principal research topic at present. In the following the capture techniques will be 

described, whereas, only a brief summary on the transportation and storage techniques will be 

presented. 

Capture 

When burnt with air, fossil fuels release in the atmosphere gases containing CO2, N2, H2O, 

small amounts of O2 and other elements, as reported in Tab. 2 [4]. Excluding CO2, they don’t 

contribute to the greenhouse effect, so they don’t need to be captured. However, N2 represents 

the biggest part of the entire gas volume, thus making the storage of the whole stream anti-

economic as system for the environmental safety. 

Tab. 2 Characteristic composition (%vol.) of flue gas deriving from the combustion of fossil fuels. 

Elements Carbon Natural Gas 
Ar 0.8 0.9 
O2 3.2 12.3 
N2 72 74.5 

H2O 10 8.2 
CO2 13.8 4.1 
SO2 0.1 0 

Therefore, the main issue to be solved is to separate CO2 from N2. In this respect, there are 

basically three technological pathways that can be pursued for CO2 capture: pre-combustion 

capture, post-combustion capture, oxy-fuel combustion and chemical looping cycle (CLC).  
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Pre-combustion capture: the N2 issue can be overcome preparing a C-free fuel (H2) and 

separating CO2 in this stage before the fuel combustion (Fig. 2) [22].  

 

Fig. 2 Pre-Combustion Capture. 

This process typically comprises a first stage of reaction producing a mixture of hydrogen and 

carbon monoxide (syngas) from a primary fuel [21]. The two main routes are to add steam 

(reaction 1), in which case the process is called ‘steam reforming’, or oxygen (reaction 2) to 

the primary fuel, in which case the process is often called ‘partial oxidation’, when applied to 

gaseous and liquid fuels, and ‘gasification’, when applied to a solid fuel, but the principles are 

the same. 

Steam reforming 

	
   22 )2( HyxxCOOxHHC yx ++↔+        (1) 

Partial oxidation 

22 22 HyxCOOxHC yx +↔+         (2) 

This is followed by the ‘shift’ reaction to convert CO to CO2 by the addition of steam.  

Water Gas Shift Reaction 

222 HCOOHCO +↔+          (3) 

Finally, the CO2 must be removed from the CO2/H2 mixture instead of the CO2/N2 mixture of 

a post-combustion process. The concentration of CO2 in the input to the CO2/H2 separation 

stage can be in the range 15-60% (dry basis) and the total pressure is typically 15-40bar, thus 

making the CO2 capture easier if compared to the post-combustion case. The separated CO2 is 

then available for storage. However, despite of the easier capture stage, pre-combustion 
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technique has a remarkable drawback: it can’t be applied to pre-existing plants, since the 

process is entirely different from a standard combustion process. 

Post-Combustion: capture of CO2 from flue gases produced by combustion of fossil fuels 

and biomass in air is referred to as post-combustion capture. Instead of being directly 

discharged to the atmosphere, flue gas is passed through an equipment that separates most of 

the CO2, which is then fed to a storage reservoir while the remaining flue gas is discharged to 

the atmosphere (Fig. 3) [23].  

 

Fig. 3 Post-Combustion Capture. 

The main advantage of post-combustion technique, with respect to the other capture options, 

is that it can be adapted to any existing plants.  

Oxy-fuel Combustion: a third option consists in avoiding the introduction of N2 in the 

combustion system by using pure oxygen or a mixture of pure oxygen and a CO2-rich 

recycled flue gas instead of air (Fig. 4) [24,25].  

 

Fig. 4 Oxy-Fuel Combustion. 
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However, combustion of a fuel with pure oxygen has a combustion temperature of about 

3500°C which is far too high for typical power plant materials (the combustion temperature is 

limited to about 1300-1400°C in a typical gas turbine cycle and to about 1900°C in an oxy-

fuel coal-fired boiler using current technology). Hence, the combustion temperature is 

controlled by the proportion of flue gas (CO2 and water) recycled back to the combustion 

chamber, thus making the oxy-fuel combustion applicable to pre-existing boilers, even though 

an additional air separation unit must be envisaged. The combustion products (or flue gas) 

consist mainly of carbon dioxide and water vapor together with excess oxygen required to 

ensure complete combustion of the fuel. The net flue gas, after cooling to condense water 

vapor, contains from about 80-98% CO2 depending on the fuel used and the particular oxy-

fuel combustion process. Even though the CO2 capture efficiency is very close to 100%, this 

capture process has a huge drawback, i.e. the extremely high cost needed for production of 

pure oxygen.  

Chemical Looping Combustion (CLC): the main idea of chemical looping combustion is to 

split combustion of a hydrocarbon or carbonaceous fuel into separate oxidation and reduction 

reactions [26,27]. CLC uses a solid oxygen carrier (generally a metal oxide) to transfer the 

oxygen from the air to the fuel. The advantage with this technique compared to normal 

combustion is that CO2 and H2O are inherently separated from the other components of the 

flue gas, namely, N2 and unreacted O2, and thus no extra energy is needed for CO2 separation. 

The CLC system is composed of two reactors, an air and a fuel reactor, as shown in Fig. 5.  

 

Fig. 5 Chemical Looping Combustion. 

The fuel is fed into the fuel reactor where it is oxidized by the lattice oxygen of the oxygen 

carriers according to: 
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2212 )2()2( nCOOmHOMmnHCOMmn xymnxy +++→++ −     (4) 

where MyOx is the fully oxidized oxygen carrier and MyOx−1 is the oxygen carrier in the 

reduced form which could be a metal or a metal oxide with lower oxygen content. The exit 

stream from the fuel reactor contains only CO2 and water vapor. The pure CO2 can be readily 

recovered by condensing water vapor, eliminating the need of an additional energy for CO2 

separation. The water-free CO2 can be sequestrated or used for other purpose. Once fuel 

oxidation completed the reduced metal oxide MyOx−1 is transported to the air reactor where 

it is reoxidized according the reaction: 

MyOx−1 +1 2O2 →MyOx + (air :N2 +unreactedO2 )       (5) 

Of course, the operating temperatures of the two reactors depend on the nature of the fuel and 

metal oxide used, but generally they vary in the range 600-1200°C. In particular, the 

reactoristic configuration which best fits this technique is a Dual Interconnected Fluidized 

Bed Reactor (DiFB Reactor). In particular, a high-velocity riser and a low velocity bubbling 

fluidized bed are considered as the air and fuel reactors, respectively. The solid particles 

leaving the riser are recovered by a cyclone and sent back to the fuel reactor. In the low 

velocity fluidized bed (fuel reactor), the oxygen is transferred from the carrier to the fuel. 

Transportation 

While no fully integrated, commercial-scale CCS projects are in operation to date, many of 

the component technologies for the compression and transportation (e.g., through pre-existing 

pipelines for instance) of CO2 are relatively mature. Indeed, transportation of CO2 from 

production site to storage site should constitute no major obstacle. Large-scale transportation 

of CO2 has already been practiced for decades for use in enhanced oil recovery. Both on-shore 

and off-shore pipelines are feasible. Whereas, ships offer the most cost-effective option for 

very long distances. 

Storage 

The idea behind carbon sequestration is to find large reservoirs for storing CO2 rather than 

allowing it to discharge to the atmosphere. Available options for the final handling of the 

captured CO2 include underground geological storage, ocean storage and mineral carbonation. 

Geological storage, which presently seems to be the most plausible alternative, basically 

means returning the carbon to whence it came. Potential geological storage sites include 

depleted oil and gas reservoirs, deep unmineable coal beds, deep saline water-saturated 

reservoir rocks (aquifers). In addition, the captured CO2 can be an effective solvent to 

improve oil recovery in Enhanced Oil Recovery (EOR) and used to increase the production of 

methane from coal beds (ECBM). 
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I.3 Separation Techniques in Post Combustion Capture 

On the basis of what said so far, it emerges that among all the possible CCS technologies, the 

best option to be applied to existing power plants is the post-combustion strategy. A major 

difficulty of post-combustion capture is to produce a highly concentrated CO2 stream 

matching the purity requirement for transportation and storage while the CO2 is diluted in the 

flue gas: between 4% for the natural gas combined cycle (NGCC) and 14% for pulverized 

coal (PC) [28]. One more explanation for the slow deployment of fully integrated commercial 

CCS schemes is the considerable cost of the capture phase, which represents approximately 

two thirds of the total cost for CCS [28]. In conclusion, the energy consumption has to be low 

while keeping high CO2 recovery. So, the development of an efficient and cost-effective CO2 

capture technique is considered to be one of the highest priorities in the field of CCS. 

An important factor to be taken into account in CO2 capture is the CO2 partial pressure of the 

gas stream to be treated, which is actually a key variable in the selection of the separation 

method. It can be said that the lower the CO2 partial pressure of a gas stream, the more 

stringent the conditions for the separation process. In other words, high CO2 concentrations 

are much easier to be captured and purified than lower ones. In this regards, the separation 

process of a flue gas is not simple, due to the relatively low CO2 partial pressure (Tab. 2).  

In general, there are four types of separation techniques to separate CO2 from the gas stream: 

absorption by means of solvents, membranes, cryogenics, adsorption by solid materials and 

calcium looping cycle [30]. 

Absorption with solvents 

The current leading separation process to perform CO2 capture from post-combustion flue 

gases is amine scrubbing. Chemical solvents like mono-ethanolamine (MEA) and di-

ethanolamine (DEA) can remove CO2 from a gas stream by means of a chemical reaction, 

which can be reversed by heating. Generally, these solvents are characterized by CO2 

recovery rates up to 98% and product purity higher than 99% [32,33,34].  

The main attraction of the absorption approach is that it is already commercially available, 

albeit on a very small scale relative to what would be required by a power station producing 

hundreds or thousands of megawatts of electricity [35,36]. In particular, MEA scrubbing 

technology has already started its scale-up, although it is still a technology with high energy 

penalties, between 4.2 and 4.8 GJ per ton of CO2 captured [28]. Besides, several other 

shortcomings affect this technology. First of all, the energy needed for the solvent 

regeneration is prohibitively expensive, thus detrimentally affecting the efficiency of the 

entire process. Indeed, if applied to a dilute gas streams (i.e. characterized by low CO2 
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concentration), as typical of post-combustion, a large quantity of solvents needs to be used in 

the capture stage and great amount of energy should be required for their regeneration. 

Besides, amine solvents have originally been developed to be employed in reducing 

conditions, therefore, the application to flue gases produced by power plant, namely in 

oxidizing environment, can lead to their deactivation, unless proper inhibitors are used, thus 

leading to a further costs increase as well. Also, stable solvent by-products (salts) can 

accumulate as a result of reaction with acid gas impurities (SOx and NOx) during operation. 

Moreover, amine and water may enter the gas stream, thus releasing amines (as gas and 

liquid) emissions to air, while possibly also forming other compounds in the atmosphere after 

emission [37,38]. In sunlight, amines undergo reactions with atmospheric oxidants involving 

oxidized nitrogen compounds (photo-oxidation) to form compounds such as nitrosamines, 

nitramines, and amides [39]. Nitrosamines are of particular concern, as they are toxic and 

carcinogenic to humans at extremely low levels [40]. 

All things considered, this capture method is clearly energy intensive and it is not cost-

effective for reduction of carbon emissions from power plants. In particular, the energy 

penalty for a coal-fired power station using traditional aqueous MEA for capture has been 

estimated as 25 to 40% [32]. 

Membranes 

Gas separation membranes allow one component in a gas stream to pass through faster than 

the others. There are many different types of gas separation membranes, including porous 

inorganic membranes, palladium membranes, polymeric membranes and zeolites [41,42]. 

However, in flue gases the low CO2 partial pressure difference provides a low driving force 

for gas separation. Therefore, membranes cannot usually achieve high degrees of separation 

(the maximum percentage of CO2 removed is lower than for a standard chemical absorption 

process), so multiple stages and/or recycle of one of the streams is necessary. This leads to 

increased complexity, energy consumption and costs; in other words, the removal of carbon 

dioxide using commercially available membranes results in higher energy penalties on the 

power generation efficiency compared to a standard chemical absorption process. 

Improvements can be made if more selective membranes become available. The membrane 

option currently receiving the most attention is a hybrid membrane-absorbent (or solvent) 

system, thus allowing to combine the best features of membranes and solvent scrubbing. 

Membrane/solvent systems employ membranes to provide a very high surface area to volume 

ratio for mass exchange between a gas stream and a solvent resulting in a very compact 
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system. This results in a membrane contactor system in which the membrane forms a gas 

permeable barrier between a liquid and a gaseous phase. 

Cryogenics 

CO2 can be separated from other gases by cooling and condensation. Cryogenic separation is 

widely used commercially for streams that already have high CO2 concentrations (typically 

>90%) but it is not used for more dilute CO2 streams [43]. A major disadvantage of this 

technique is the amount of energy required to provide the refrigeration necessary for the 

process, particularly for dilute gas streams. So, cryogenics is generally applied to high 

concentration and/or pressure gas streams, such as in pre-combustion capture processes. 

Calcium Looping Cycle 

Calcium looping cycle relies on the reversible reaction between calcium oxide and carbon 

dioxide to form calcium carbonate [44,45]. In particular, a calcium oxide (CaO) sorbent, 

usually but not exclusively derived from limestone, is repeatedly cycled between two vessels. 

In one vessel (the carbonator) carbonation of CaO occurs, stripping the flue gas of its CO2. 

The CaCO3 formed is then passed to another vessel where calcination occurs (the calciner) 

and the CaO formed is passed back to the carbonator leaving a pure stream of CO2 suitable 

for sequestration Fig. 1.  

)(3)(2)( sgs CaCOCOCaO ↔+          (6) 

Heat from the exothermic carbonation of lime can be used to run a steam cycle, making up for 

some of the energy losses elsewhere. The carbonation reaction is exothermic and the 

backward step, known as the calcination reaction, is endothermic. Carbonation is 

characterized by a rapid initial rate followed by an abrupt transition to a very slow reaction 

rate, whereas calcination typically proceeds rapidly to completion in minutes over a wide 

range of conditions [46]. The conditions in the calciner must be a compromise between the 

increased rate of reaction obtained at higher temperatures and the reduced rate of degradation 

of sorbent at lower temperatures. The conditions in the carbonator must strike a balance 

between the increased equilibrium conversion obtained at lower temperatures and the 

increased rate of reaction at higher temperatures.  
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Fig. 6 Schematic description of Calcium Looping Cycle. 

The reactoristic configurations which best fits this technique is a Dual Interconnected 

Fluidized Bed Reactor (DiFB Reactor), constituted by a reactor operated in the range of 

temperatures 600-700°C, acting as carbonator, and another in the range of temperatures 750-

950°C, acting as Calciner, both these two fluidized bed reactors are operated in bubbling 

conditions. The main drawbacks related to such technology are the sorbent deactivation 

during the repeated carbonation/calcinations cycles and the sorbent leakage due to 

comminution phenomena.  

Adsorption 

Adsorption relies on the thermodynamic properties of a substance to shift from the gas phase 

to attach itself to a solid material [47]. This attachment can be either physical (van der Waals) 

or chemical (covalent bonding). Adsorption encompasses the selective removal of CO2 from a 

gas stream to the adsorbent, followed by regeneration (desorption), which can be achieved 

either by reducing pressure (Pressure-Swing Adsorption or PSA), or by increasing 

temperature (Temperature Swing Adsorption, or TSA) or by passing an electric current 

through the adsorbent (Electrical Swing Adsorption, or ESA) or process hybrids (PTSA). A 

key concern for physical adsorbents is balancing a strong affinity for removing an undesired 

component from a gas mixture with the energy consumption required for their regeneration. 

Among all these technological options, adsorption using solid sorbents, together with calcium 

looping, is one of the most promising alternatives since it appears to offer potential energy 

savings together with lower capital and operating costs. In particular, the main argument in 

favor of solid sorbents is that the combination of a lower heat of sorption, a higher CO2 

loading and a lower heat capacity of the solid compared to the aqueous solution of MEA, thus 

lowering the energy consumption for regeneration [47]. On the contrary, absorption, 

membranes and cryogenics do not seem to be particularly suitable as capture solution, since, 

for different reasons, the advantages appear to be greatly outnumbered by the drawbacks, as 

clearly explained hereafter [31]. 

Calciner Carbonator

Gas Flue gas (with CO2) 

CO2 

CaO 

CaCO3 

Flue gas (without CO2)

Fresh
CaCO3 

Spent
CaCO3 

Calcium-Looping Cycle
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I.4 Adsorption Process 

Adsorption is a separation process in which certain components of a fluid phase are 

transferred to the surface of a solid adsorbent (Fig. 7). Usually the small particles of adsorbent 

are held in a fixed bed, and fluid is passed continuously through the bed until the solid is 

nearly saturated and the desired separation can no longer be achieved. 

 

Fig. 7 Adsorption mechanism 

In particular, molecules diffuse from the bulk of the fluid to the surface of the solid adsorbent 

forming a distinct adsorbed phase. Each separation process exploits a difference in a property 

of the components to be separated. Separation by adsorption depends on one component being 

more readily adsorbed than another. The selection of a suitable process may also depend on 

the ease with which the separated components can be recovered. The adsorbent has to be 

removed at intervals from the process and regenerated, that is, restored to its original 

condition. 

The thermodynamic drive of the process is, as always, to be found in the reduction of the free 

energy of the process. The adsorption is, obviously, characterized by a decrease of entropy of 

the adsorbed molecules; in fact, the molecules, previously free to move in the fluid phase, 

after being adsorbed can only move on the solid surface. Accordingly, the process spontaneity 

is assured by the liberation of heat involved in the adsorption; in other words, adsorption is an 

exothermic process. 

In particular, adsorption occurs when molecules diffusing in the fluid phase are held for a 

period of time by forces emanating from an adjacent surface. The surface represents a gross 

discontinuity in the structure of the solid, and atoms at the surface have a residue of molecular 

forces that are not satisfied by surrounding atoms such as those in the body of the structure. 
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These residual or van der Waals forces are common to all surfaces and the only reason why 

certain solids are designated “adsorbents” is that they can be manufactured in a highly porous 

form, giving rise to a large internal surface. In comparison the external surface makes only a 

modest contribution to the total, even when the solid is finely divided [48].  

On the basis of the nature of the forces involved in the attraction between the adsorbate 

molecules and the adsorbent, two kinds of adsorption can be defined: physical and chemical 

adsorption. 

In the former the target molecules are attracted to the surface of pore walls within a high 

surface-area sorbent by van der Waals forces (shown schematically in Fig. 8) and have a low 

heat of adsorption that is only slightly greater than heat of sublimation of the adsorbate (i.e. 

low bond energy of the order of 10kcal/mol). Since the forces involved are not strong, this 

adsorption may be easily reversed. On the contrary, in the latter, additional forces bind 

absorbed molecules to the solid surface (roughly equal to the heat of reaction, 100kcal/mol), 

involving the exchange or sharing of electrons, or possibly molecules forming atoms or 

radicals. In such cases the term chemisorption is used to describe the phenomenon. This is 

less easily reversed than physical adsorption, and regeneration may be a problem. Moreover, 

chemisorption is restricted to just one layer of molecules on the surface, although it may be 

followed by additional layers of physically adsorbed molecules. 

 

Fig. 8 In physisorption the CO2 is adsorbed weakly by the substrate itself, in chemisorption, the CO2 is 

adsorbed more strongly by specific binding sites. 

As said before, when molecules move from a bulk fluid to an adsorbed phase, they lose 

degrees of freedom and the free energy is reduced by the liberation of heat. For physical 

adsorption, the amount of heat is similar in magnitude to the heat of condensation. For 

chemisorption it is greater and of an order of magnitude normally associated with a chemical 

reaction [51]. If the heat of adsorption cannot be dispersed by cooling, the capacity of the 

adsorbent will be reduced as its temperature increases. 
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I.4.1 Thermodynamic Equilibria 

Adsorption equilibrium is a dynamic concept achieved when the rate at which molecules 

adsorb on to a surface is equal to the rate at which they desorb.  

The capacity of an adsorbent for a particular adsorbate involves the interaction of three 

properties: the concentration, C, of the adsorbate in the fluid phase, the concentration of the 

adsorbate in the solid phase (mass of adsorbed solute per grams of adsorbent), Cs, and the 

temperature, T, of the system. If one of these properties is kept constant, the other two may be 

graphed to represent the equilibrium. The commonest practice is to keep the temperature 

constant and to plot C against Cs to give an adsorption isotherm (Fig. 9) [48]. In gas–solid 

systems, it is often convenient to express C as a pressure of adsorbate.  

 

Fig. 9 Typical adsorption isotherms 

I.4.1.1 Types of Isotherms 

The linear isotherm goes through the origin, and the amount adsorbed is proportional to the 

concentration in the fluid. Isotherms that are convex upward are called favorable, because a 

relatively high solid loading can be obtained at low concentration in the fluid. All systems 

show a decrease in the amount adsorbed with an increase in temperature, and of course 

adsorbate can be removed by raising the temperature even for the cases labeled "irreversible." 

However, desorption requires a much higher temperature when the adsorption is strongly 

favorable or irreversible than when the isotherms are linear. An isotherm that is concave 

upward is called unfavorable because relatively low solid loadings are obtained and because it 

leads to quite long mass-transfer zones in the bed. 

A general classification of sorption phenomena of gas-solid systems is given by the 

International Union of Pure and Applied Chemistry (IUPAC) [48]. Sing et al. [48] use roman 



INTRODUCTION 

 16 

numbering from I to VI for their classification (Fig. 10). Type I is characterized by a constant 

sorption maximum and a convex shape. Type II exhibits an inflection point at which the shape 

changes from convex to concave. A concave isotherm is classified as type III. In some 

systems, three stages of adsorption may be discerned, giving rise to an isotherm referred to as 

Type IV. This has two plateaus and, in particular, it consists of two regions that are concave 

to the gas concentration axis separated by a region that is convex. The concave region that 

occurs at low gas concentrations is usually associated with the formation of a single layer of 

adsorbate molecules over the surface. The convex portion corresponds to the build-up of 

additional layers, whilst the other concave region is the result of condensation of adsorbate in 

the pores, so called capillary condensation. A concave isotherm with a sorption maximum is 

referred to as type V. This classification is based on physical adsorption of gases measured in 

porous or on dense solid materials. In addition to different shapes, it also takes into account 

different types of hysteresis loops that are caused by capillary condensation in pores.  

 

Fig. 10 Types of adsorption isotherms according to IUPAC classification. 

It is not possible to predict the shape of an isotherm for a given system, although it has been 

observed that some shapes are often associated with a particular adsorbent or adsorbate 

properties. Charcoal, with pores just a few molecules in diameter, almost always gives a Type 

I isotherm. A non-porous solid is likely to give a Type II isotherm. If the cohesive forces 

between adsorbate molecules are greater than the adhesive forces between adsorbate and 

adsorbent, a Type V isotherm is likely to be obtained for a porous adsorbent and a Type III 

isotherm for a non-porous one. In the activated alumina air-water vapour system at normal 

temperature, the isotherm is found to be of Type IV. 
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I.4.1.2 Isotherms Equations 

In the case of specific interactions between active sites and solute molecules the most 

accredited theory is the one proposed by Langmuir (1918) [48]. It is assumed that the process 

can be modeled by means of a chemical reaction between the adsorbed solute and the active 

site and no other kinds of interactions solute-solvent-active site exist. In spite of its substantial 

theoretical assumptions, the Langmuir model is one the most used in the practice, especially 

when the adsorbate concentration is low. In particular, this model is able to properly describe 

the case of one layer of molecules adsorbed on the surface of a solid. When this is not the 

case, other models can be adopted. When the solute concentration is very remarkably low 

and, in particular, lower than the value needed to realize the whole covering, the process can 

be described by a linear relation between the solute concentration in the fluid and in the solid 

phases. On the other hand, when it is possible to assume that the adsorbed solute is disposed 

over many layers, the interactions between the molecule adsorbed on an intermediate layer 

and the solute must be taken into account. The model of such a phenomenon has been 

developed by Bruner, Emmet and Teller (1938) [49] and is usually referred to as BET 

isotherm. 

I.4.1.2.1 Linear Isotherm 

At very low concentrations the molecules adsorbed are widely spaced over the adsorbent 

surface so that one molecule has no influence on another. For these limiting conditions it is 

reasonable to assume that the concentration in one phase is proportional to the concentration 

in the other, that is: 

Cs = KaC            (7) 

 This expression is analogous to Henry’s Law for gas–liquid systems even to the extent that 

the proportionality constant obeys the van’t Hoff equation and  

Ka = K0e
ΔH

RT            (8) 

where ΔH  is the enthalpy change per mole of adsorbate as it transfers from gaseous to 

adsorbed phase. At constant temperature, this equation becomes the simplest form of 

adsorption isotherm. 

I.4.1.2.2 Langmuir Isotherm 

The assumptions of the Langmuir model are: 

• surface is homogeneous, that is adsorption energy is constant over all sites; 
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• adsorption on surface is localized, that is adsorbed atoms or molecules are adsorbed at 

definite, localized sites, and do not migrate over the surface; 

• each site can accommodate only one molecule or atom; 

• there are no interactions between adjacent molecules on the surface. 

The Langmuir theory is based on a kinetic principle, that is the rate of adsorption (which is 

the striking rate at the surface multiplied by a striking coefficient, sometimes called the 

accommodation coefficient) is equal to the rate of desorption from the surface. 

The rate of striking the surface, in mole per unit time and unit area, obtained from the kinetic 

theory of gas is: 

𝑅! = 𝑃
2𝜋𝑀𝑅𝑇

          (9) 

where P is the pressure, T the temperature, R the ideal gas constant. Allowing for the sticking 

coefficient α (which accounts for non perfect sticking), the rate of adsorption in mole 

adsorbed per unit bare surface area per unit time is: 

Ra =
αP
2πMRT .          (10) 

This is the rate of adsorption on a bare surface. On an occupied surface, when a molecule 

strikes the portion already occupied with adsorbed species, it will evaporate very quickly, just 

like a reflection from a mirror. Therefore, the rate of adsorption on an occupied surface is 

equal to the rate given by (8) multiplied by the fraction of empty sites, that is: 

Ra =
αP
2πMRT

(1−θ )
         (11) 

where θ is the fractional coverage. Here Ra is the number of moles adsorbed per unit area 

(including covered and uncovered areas) per unit time. The rate of desorption from the 

surface is equal to the rate, which corresponds to fully covered surface (kd) multiplied by the 

fractional coverage, that is: 

Rd = kdθ = kd∞ exp −
Ed

RT
#

$
%

&

'
(θ

         (12) 

where Ed is the activation energy for desorption, which is equal to the heat of adsorption for 

physically sorbed species since there is no energy barrier for physical adsorption. The 

parameter kd∞ is the rate constant for desorption at infinite temperature. Equating the rates of 

adsorption (11) and desorption (12), we obtain the following famous Langmuir isotherm 

written in terms of fractional loading: 
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θ =
bP
1+ bP            (13) 

here b is an affinity constant which measures the strength the adsorbate molecules are 

attracted with on the surface: 

b(T ) = b∞ exp
Q
RT
"

#
$

%

&
'           (14) 

here Q is the heat of adsorption, R the gas constant and b∞ the pre-exponential factor of the 

affinity constant: 

b∞ =
α

kd∞ 2πMRT
          (15) 

which inversely proportional to the square root of the molecular weight. So, on that basis, the 

Langmuir equation in terms of concentration is: 

Cµ =Cµs
b(T )P
1+ b(T )P

          (16) 

where Cµs is the concentration of the adsorbed phase when the monolayer is complete (i.e. the 

maximum adsorbed concentration) and Cµ is the concentration of the absorbed phase (Fig. 11). 

 

Fig. 11 Behaviour of Langmuir equation 

The Langmuir isotherm is derived assuming a uniform surface, not always a valid 

assumption, but the relation works fairly well for gases that are weakly adsorbed.  

I.4.1.2.3 BET Isotherm 

In some cases, molecules first adsorb onto the solid surface as a layering process, and when 

the pressure is sufficiently high multiple layers are formed. Brunauer, Emmett and Teller are 

the first to develop a theory to account for this multilayer adsorption, and the range of validity 

of this theory is approximately between 0.05 and 0.35 times the vapor pressure. The BET 
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theory was first developed for a flat surface (no curvature) and there is no limit in the number 

of layers, which can be accommodated on the surface. This theory made use of the same 

assumptions as those used in the Langmuir theory, that is the surface is energetically 

homogeneous (adsorption energy does not change with the progress of adsorption in the same 

layer) and there is no interaction among adsorbed molecules. The corresponding equation is: 

V
Vm

=
CP

(P0 −P)[1+ (C −1)(P / P0 )]
        (17) 

Where Vm and C are parameters. 

I.4.2 Kinetics 

The performance of adsorption processes results, in general, from the combined effects of 

thermodynamic and rate factors. It is convenient to consider first thermodynamic factors. 

These determine the process performance in a limit where the system behaves ideally, i.e. 

without mass transfer and kinetic limitations. There are several resistances that may hinder the 

movement of a molecule of adsorbate from the bulk fluid outside a particle to an adsorption 

site on its internal surface. In broad terms, a molecule, under the influence of concentration 

gradients, diffuses from the bulk phase in the adsorption column to laminar boundary layer 

surrounding the particle; it then diffuse through this boundary layer to the particle external 

surface, and, finally, by various possible mechanisms, it diffuses through the pores or the 

lattice vacancies in the particle until it is held by an adsorption site (Fig. 12).  

 

Fig. 12 Mass transport mechanisms for molecule transfer from the surrounding bulk fluid phase to an 

adsorption site on the adsorbent pore wall. 

As regards, the intraparticle transport, several mechanisms has to be taken into account [52]:  
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i. Pore diffusion in fluid-filled pores. These pores are sufficiently large that the adsorbing 

molecule escapes the force field of the adsorbent surface. Thus, this process is often 

referred to as macropore diffusion.  

ii. Solid diffusion in the adsorbed phase. This is a diffusion process in pores sufficiently 

small that the diffusing molecule never escapes the force field of the adsorbent surface. In 

this case, transport may occur by an activated process involving jumps between 

adsorption sites. Such a process is often called surface diffusion or micropore or 

intracrystalline diffusion. The driving force for the process can thus be approximated by 

the gradient in concentration of the species in its adsorbed state.  

iii. Reaction kinetics at phase boundaries. Rates of adsorption and desorption in porous 

adsorbents are generally controlled by mass transfer within the pore network rather than 

by the kinetics of sorption at the surface. Exceptions are the cases of chemisorption and 

affinity-adsorption systems used for biological separations, where the kinetics of bond 

formation can be exceedingly slow. 

I.5 Regeneration Techniques 

For adsorption to be used as CO2 capture technique, an effective and less energy-consumed 

regeneration of the CO2 captured adsorbents is definitely needed. The regeneration techniques 

include: pressure swing adsorption (PSA), vacuum swing adsorption (VSA), temperature 

swing adsorption (TSA), electric swing adsorption (ESA).  

Both PSA and VSA are performed by altering the pressures. More specifically, in PSA, 

adsorption is typically performed at pressures higher than atmospheric pressure, while 

desorption is performed at atmospheric pressure. However, in a conventional PSA process, it 

is the least adsorbing species that can be recovered at high concentrations in the adsorption 

product [118,119]. However, our interest focuses on the concentration of strongly adsorbed 

species (CO2) in the desorption product while maximizing the CO2 capture efficiency. 

Moreover, other important shortcomings are that application of conventional pressure swing 

to combustion flue gas involves compression of a large fraction of inert nitrogen as well, 

which is expensive, [120] and that the sorbent selectivity for CO2 drops with increasing 

pressure, making it more difficult to achieve high purity CO2 in the desorption gas [119]. To 

overcome these pitfalls, VSA has been proposed, namely a version of the pressure swing 

process conducted at ambient pressure with regeneration under vacuum [120,121].  
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In a conventional TSA regeneration process the temperature of adsorbents is increased by 

purging the bed with a preheated gas (e.g. steam or N2) [122]. Direct heating using a carrier 

gas usually results in the dilution of the desorbed CO2 by the carrier gas. Also, use of large 

quantities of heated N2 for adsorbent bed regeneration would not be suitable for large scale 

applications. However, the heat for desorption of CO2 (for regeneration of the solid) can be 

provided in different ways: besides by directly contacting the solid with hot gas that flows 

through the bed, the adsorbent can also be heated up by indirect heating via heat exchanger 

tubes. In this way CO2 is desorbed without the use of any carrier gas and the desorbed gas can 

be recovered by thermal expansion thus overcoming the dilution problem (pure CO2 stream as 

desorption gas) [28]. In particular, it is worth noting that indirect heating can provide a lot 

more energy than direct heating because the heating fluid (which is by default water vapour) 

can be allowed to condense. The heat of condensation releases a lot more energy than a 

simple cooling down of the gas. 

In ESA, heat is generated by Joule effect via electric current passing through the adsorbents 

(i.e. the increase of temperature is obtained by conducting electricity through a conductive 

adsorbent). ESA offers several advantages including less heat demanded, fast heating rate, 

better desorption kinetics and dynamics and independent control of gas and heat flow rates as 

compared with PSA and TSA [123]. The main disadvantage of ESA compared to thermal 

swing regeneration is the consumption of electric energy, which is the product of the power 

plant, whereas, in the case of thermal regeneration, waste heat from the flue gas can be used 

for sorbent heating. Therefore, the viability of the process implementation depends on the 

energy spent per amount of CO2 captured. Moreover, employing ESA in CO2 capture depends 

on the availability of adsorbents that combine high CO2 capacity and selectivity together with 

electric conductivity. The reference adsorbent employed in ESA is activated carbon, due to its 

electric conductivity properties. On the contrary, other materials with favorable adsorption 

properties, like zeolites or MOF, do not conduct electricity and cannot be employed in ESA. 

I.6 Adsorbent Materials 

As already stated before, adsorption has been recognized to have all the potentialities to 

become the leader CO2 capture technology. In this respect, suitable adsorbents for CO2 

removal from flue gas should combine several attributes (Fig. 13), including: 
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Fig. 13 Properties of the required adsorbent. 

• High CO2 adsorption capacity: CO2 equilibrium adsorption capacity is one of the main 

properties used to screen new adsorbents. Knowledge of the equilibrium adsorption 

isotherms is of prime importance for early evaluation of potential adsorbents [53]. It is 

well established that from the slope of the adsorption isotherm at low pressure, it is 

possible to estimate the adsorbate affinity for a given adsorbent. Thus, in terms of CO2 

uptake, the ideal materials should exhibit a CO2 adsorption isotherm with steep slope 

(favorable CO2 adsorption isotherm) corresponding to high uptake at low CO2 partial 

pressure. A less steep slope (unfavorable CO2 adsorption isotherm) is indicative of a 

lower affinity toward CO2.  

• Fast adsorption/desorption kinetics: adsorption kinetics primarily affects the working 

adsorption capacity. A suitable CO2 adsorbent should have a high rate of adsorption, 

resulting in a working capacity close to equilibrium capacity over a wide range of 

operating conditions [53]; 

• High CO2 selectivity: the adsorbent selectivity toward CO2 has a direct impact on the 

degree of purity of the product. This in turn, plays a major role in the economics of the 

CO2 adsorption process [54]. Ideally, an adsorbent for flue gas treatment should not 

adsorb any nitrogen; 

• Stability during extensive adsorption–desorption cycling: the lifetime of adsorbents, 

which determines the frequency of their replacement, is a critical property of equal 

importance as the CO2 adsorption capacity, selectivity and kinetics, because of its direct 

impact on the economics of any commercial scale operation [55]; 

• Adequate mechanical strength of adsorbent particles [54]. 

In addition to the above-mentioned characteristics: 
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• Mild conditions for regeneration: the ease of regeneration of the adsorbent is a key 

property in the selection of materials for CO2 separation. More exactly, a key concern is 

balancing a strong affinity towards CO2 with the energy consumption required for the 

regeneration step [56]. Then, depending on the structural and chemical properties of the 

adsorbent, adsorption–desorption cycling may be achieved via temperature or pressure 

(or vacuum). In practice, incorporation of functional groups can be used to modify the 

adsorbent–adsorbate interactions (e.g., Van der Waals, electrostatic, hydrogen bonding 

or acid–base interactions) and affect the CO2 uptake and selectivity. Optimum 

interactions should be neither too weak nor too strong. Too weak bonding results in low 

CO2 adsorption capacity at low pressure, but easy regeneration. Conversely, strong 

bonding induces high adsorption capacity but desorption will be difficult and costly; 

• Tolerance to the presence of moisture and other impurities in the feed: in addition to 

CO2 and N2, flue gas contains water vapor and other impurities such as O2, SO2 and 

NOx. The degree of tolerance and the affinity of the adsorbent to such impurities may 

affect significantly the strategy to be used, with direct impact on the overall economics 

of the CO2 separation process. Moisture is known to adversely affect CO2 uptake in a 

variety of physical adsorbents such as zeolites and activated carbon [53]. Consequently, 

the strategies proposed for CO2 adsorption from flue gas is likely to include an upstream 

drying step. It is also generally established that CO2 adsorbents have high affinity to 

SO2 and even some affinity toward NOx, which may adversely affect the CO2 

adsorption capability of the material. Thus, abatement of SO2 and NOx from flue gas 

prior to CO2 capture is required in most cases [53]; 

• Low cost [56]. 

Typical physisorbents for CO2 capture include carbon materials, alumino-silicas such as 

zeolites (13X, 5A), alumino-phosphates (AlPOs) and alumino-silico-phosphates (SAPOs), 

and more recently metal organic frameworks (MOFs) and carbon nanotubes (CNTs). 

Whereas, the CO2 chemical adsorbents are those obtained through incorporation of functional 

groups into solid supports (i.e. amine-grafted silica, amine functionalized carbons) [57]. 

I.6.1 Carbons 

Because of their wide availability, low cost and high thermal stability, it is largely established 

that activated carbons have advantages over other CO2 adsorbents. Among the carbon-based 

adsorbents reported in the literature, activated carbons (ACs) and carbon nanotubes (CNTs) 
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are the most investigated materials. CO2 adsorption on activated carbons has been widely 

studied experimentally and theoretically [58] and has found commercial applications [48,51]. 

There is a wide range of activated carbons with a large variety of microporous and 

mesoporous structures. Activated carbon may be produced from many raw materials such as 

coal, coke pitch, wood or biomass sources (e.g. saw dust, coconut shells, olive stones), often 

via two steps: carbonization and activation [59]. Carbon molecular sieves (CMS) are a sub-

class of activated carbon with narrow pore size distribution (PSD). They have been 

commercialized mainly for the separation of air and the production of high purity N2 [60,61]. 

However, at low CO2 partial pressure, activated carbons exhibit lower adsorption capacity and 

selectivity than zeolites due mainly to their less favorable adsorption isotherms. In spite of the 

hydrophobic character of carbon-based adsorbents, their CO2 adsorption ability is adversely 

affected by the presence of water vapor [62]. 

As regards the CO2 vs N2 selectivity, it weakly dependent on temperature. This behavior of 

activated carbons was also pointed out by Dreisbach et al. [63] and Kurniwan et al. [64]. They 

found that CO2 selectivity over N2 for Norit type activated carbon is insensitive to the CO2 

pressure change. In terms of regenerability, in light of the low CO2 adsorption enthalpy 

(22kJ/mol) [65], it is generally established that activated carbons are easily regenerated 

allowing their use in pressure swing adsorption (PSA) and temperature swing adsorption 

(TSA). 

However, some activated carbons may contain functional groups that interact strongly with 

CO2, thus preventing complete desorption. CO2 adsorption kinetics on activated carbons is 

generally comparable to zeolites and depends on the type of diffusion involved, i.e., 

macropore, micropore or surface diffusion [66-68] and the heterogeneity of the material. 

I.6.2 Zeolites and Zeolite-like Materials 

Zeolites, which are highly ordered microporous crystalline materials [69], were heavily 

investigated because they are among the most promising materials for adsorption and 

separation of CO2 [70-75]. The great interest of zeolites arises from the fact that a number of 

their properties, such as pore size and architecture or chemical composition, affect their 

adsorption performance. For instance, the Si/Al ratio and the nature of extraframework 

cations can be varied systematically [76,77], playing a major role in controlling the CO2 

adsorptive properties. Exhaustive studies [78-80] reported that the most promising zeolites for 

CO2 adsorption are characterized by a low Si/Al ratio, corresponding to high content of 
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extraframework cations. The presence of aluminum atoms in these silicate-based molecular 

sieves introduces negative framework charges that are compensated with exchangeable 

cations within the pores. There are often alkali cations such as sodium or lithium that generate 

strong electrostatic interactions with carbon dioxide. The number and nature of 

extraframework cations affect the CO2 adsorption properties of zeolites. Maurin et al. [80] 

investigated experimentally and theoretically, the CO2 adsorption capacity and enthalpy for 

several faujasite-type zeolites in sodium form, with different Si/Al ratios, namely, 

dealuminated NaY (DAY, Si/Al=∞), NaY (Si/Al=2.4) and low silica NaX (NaLSX, Si/Al=1). 

At low pressure for both adsorption and desorption, 13X (or NaX with Si/Al=1.25) and NaY 

were claimed to be the most suitable adsorbents with favorable CO2 adsorption isotherms. 

Purely siliceous NaY [80], silicalite, ITQ3 and ITQ7 [71] exhibited at least 12 times lower 

adsorption capacity than NaY and NaLSX at 0.1 bar and room temperature. The adsorption 

capacity at 0.1 bar followed the sequence Cs<Rb≈K<Li≈Na for X zeolites, in a more recent 

contribution [81]. In terms of CO2 adsorption kinetics, zeolites are ranked among the fastest 

adsorbents, reaching equilibrium capacity within minutes [82]. Moreover, a large number of 

studies were devoted to NaX faujasite using different recycling configurations, including 

temperature swing and pressure swing adsorption [76,77,28]. Although the CO2 adsorption 

enthalpy on X and Y zeolites was found to be dependent on the nature of extraframework 

cations, within the range of 30–50kJ/mol, it is low enough to allow reversible CO2 adsorption. 

Zeolites generally operate without any loss in performance, provided that the feed stream is 

strictly dry. Although low silica materials exhibit high adsorption capacity and selectivity at 

low pressure with favorable isotherms, they are very sensitive to the presence of water, which 

strongly inhibits the adsorption of CO2 [83]. 

I.6.3 MOFs and Zeolite-like MOFs 

Although an emerging class of porous materials, metal organic frameworks (MOFs) have 

attracted a growing interest, motivating extensive studies, both theoretically and 

experimentally. In particular, their high surface area (e.g. MOF-177 was reported to have a 

record surface area of about 4500m2/g of material [84]) and the diversity of their metallic 

centers and organic functionalities direct the potential applications of these materials towards 

gas adsorption and separation. The structure of MOFs is obtained by the assembly of metallic 

centers and organic linkers through strong covalent bonds [85]. Depending on the metal and 

organic ligand selected, networks with various pore shape, size, volume and chemistry can be 
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synthesized and thus adapted to the specific needs of the adsorption process considered 

[85,86,87]. In particular, the pore sizes can be adjusted from several angstroms to a few 

nanometers by varying the sizes of the organic linkers [86,88-90]. Moreover, the properties 

and functions of the pores can be easily tuned for specific applications by post-synthetic 

modification of the parent MOFs [88,91-94]. The integrity of these pores and channels can be 

retained after careful removal of the guest species. The remaining voids within the 3D 

structures then can adsorb other guest molecules [88,95,96]. 

Considerable efforts have been expended on the synthesis of MOF materials in the last several 

years [88,89,97]. MOFs are synthesized generally by hydrothermal or solvothermal methods. 

Some novel electrochemical approach has also been reported recently [98]. The state of the 

art is in the choice of metal centers and design and synthesis of organic ligands.  

Contributions in the synthesis of novel MOFs and their CO2 adsorption properties were 

reported by Millward and Yaghi [99]. Their early work was followed by an extensive effort to 

develop new types of MOFs for the separation and storage of CO2 [100-107]. In terms of 

kinetics, MOFs are as fast CO2 adsorbents as zeolites according to some computational 

studies [101-112].  

Generally, self-diffusivities or intracrystalline diffusivities for gas adsorbed in MOFs are 

larger than in zeolites because of larger pores and open structures in MOF materials [113-116] 

Liu et al. [117] reported that the main resistance for CO2 adsorption in HKUST-1 (or CuBTC, 

BTC standing for benzene tricarboxylate) and Ni/DOBDC (DOBDC, standing for 2,5-

dioxido-1,4-benzenedicarboxylate) is macropore diffusion. So the CO2 adsorption rate is 

generally much faster than CO2 adsorption in NaX and 5A zeolites where micropore diffusion 

is the rate control mechanism. Due to the favorable properties mentioned above, MOFs stand 

out from other porous materials for gas storage and separation applications. However, it is 

generally recognized that by far the most critical issue for the stability of these materials is 

their hydrothermal stability. The behavior of MOFs and their subfamilies in hydrated 

conditions varies widely, from materials that irreversibly degrade even under mild conditions 

to materials that are highly stable in boiling water. 

I.7 Issues of CO2 Capture by Adsorption  

In light of what said so far, it occurs that, adsorption using solid sorbents is recognized to be 

attractive to complement or replace the current absorption technology due to its low energy 

requirement. It is also clear that the regeneration energy, followed by the capital cost of 
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capture-specific equipment, are the two variables contributing most significantly to the cost of 

CO2 capture [57]. One significant contributor to the regeneration energy is the maximum 

separation efficiency which can be achieved by a given capture material. Enhancing this 

efficiency will have the greatest potential for lowering the overall cost of capture systems in 

near-term, with improvements in the capture capacity of new materials representing one of the 

foremost challenges [57].  

Since the adsorption efficiency of a given material is the result of a complex combination of 

physical and chemical characteristics, the development of CO2 specific adsorbents is 

necessary. The need, in other words, exists to design new materials whose physical and 

chemical properties can be tuned at the molecular level [57]. In this respect, nanomaterials are 

very versatile and simple to adjust according to the application at hand. Indeed, solely owing 

to their special size and shape, ultra-fine particles are particularly suitable to be easily tailored 

and/or functionalized on the surface with different ligands to induce significant changes in 

their physical and chemical properties [124]. Just for instance, one viable route for enhancing 

the adsorption efficiency can be the increasing of the affinity of the adsorbent surface to CO2. 

In practice, chemical modification of the adsorbent material by the incorporation of functional 

groups with a great chemical affinity towards CO2 (i.e. basic functionalities) can be used to 

modify the adsorbent–adsorbate interactions [125,126] (e.g., Van der Waals, electrostatic, 

hydrogen bonding or acid–base interactions) and positively affect the CO2 uptake and 

selectivity. In particular, optimum interactions should be neither too weak (i.e. easy 

regeneration, but low CO2 adsorption capacity at low pressure) nor too strong (i.e. high 

adsorption capacity, but difficult and costly desorption) [57].  

It is evident that the materials development issue goes hand in hand with a process one. 

Indeed, as much as fulfilling an adsorbent material may be, each adsorbent 

strengths/weaknesses must be considered in the context of a practical adsorption process for 

effective CO2 separation. Therefore, the question of how the most promising materials will 

perform in an actual separation process must be addressed. Ultimately, winning adsorbents 

will be those that effectively work within a practical and efficient CO2 separation process 

[57].  

I.7.1 Reactor Configurations 

Although certain attributes of solid sorbents prove to be promising, they still must be 

integrated into a viable process, which includes the implementation of equipment that can 
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take full advantage of the sorbent properties and maximize the separation efficiency. If a 

solid-based CO2 capture technology is to be commercialized in the near future, processes and 

equipment that are already commercially available for other applications must be evaluated 

and employed to the greatest extent possible [127].  

The major constraints for CO2 capture for operating conventional power plants are as follows:  

i. Large volumetric flow rate per power plant. Typical flue gas flow rate of an operating 

500MWpower plant is in excess of 3.4 × 104 m3/min [128]. The final reactor design 

needs to result in a reasonable number of modules and reactor size.  

ii. Low available pressure drop for reactor design. The flue gas pressure at the tail end of 

a power plant is close to atmospheric. With proper integration it was estimated that the 

available pressure drop for CO2 capture reactor is approximately 0.21bar [128]. Any 

increase in pressure drop requirement will incur substantial fan cost to increase flue 

gas pressure.  

iii. Low CO2 partial pressure for adsorption. Although the CO2 generation in a fossil fuel-

fired conventional power plant is confined in the flue gas, the CO2 concentration in the 

flue gas is only about 10-15%. 

Common adsorption operations are generally performed in fixed-bed reactors. However, this 

technology does not appear suitable to fully exploit all the potential of an ad-hoc adsorbent 

material manufactured in the form of fine powder. Indeed, for fine materials to be used in 

fixed bed operations, a previous pelletization step should be needed to overcome the 

prohibitively high pressure drops related to fine particles beds. Therefore, serious benefits 

over fixed-bed adsorption methods are likely expected if a reliable and proper processing 

technology is developed to directly use these free-flowing fine powders. Moreover, for 

exothermic reactions (such as CO2 adsorption) and endothermic reactions (such as CO2 

regeneration), fixed beds are generally not recommended [128]. Temperature swing in fixed 

bed reactors, serving as both the adsorber and the regenerator, is inherently inefficient 

because the beds have to be alternately cooled and heated to the correct reactor temperature 

for the proper reactions to occur. Poor local heat dissipation for the exothermic adsorption 

reactions and poor heat transfer to the solid sorbents for the endothermic regeneration 

reactions also will produce local “hot” and “cold” spots, respectively, preventing efficient 

conversions (i.e. reduction of CO2 uptake during adsorption and slow-down of desorption 

kinetics during regeneration). In other words, a fixed bed operation will intrinsically involve 

temperature excursion inside the reactor. In particular, as already discussed in the paragraph 

about the regeneration techniques, a major problem linked to TSA is the large volume of gas 



INTRODUCTION 

 30 

required due to the low heat capacity of the heating gas. It can be easily expected that this 

drawback would be magnified in the case of a fixed bed reactor due to the intrinsically poor 

heat transfer coefficients. 

All these things considered, a viable alternative to fixed bed reactors is represented by 

fluidized bed reactors. Indeed, gas fluidization is generally considered to be one of the best 

available techniques to handle and process large quantities of powders. Indeed, this 

technology offers several advantages over fixed bed operation. In particular, fluidized beds 

are characterized by a very efficient gas-solid contact and intense solid mixing, thus 

increasing the efficiency of the reactor operation in terms of extremely high mass and heat 

transfer coefficients. This high heat transfer rate means an easier temperature control during 

both adsorption and regeneration step, namely the thermal equilibrium between the particles 

and the fluidizing gas can be attained very quickly. In particular, during adsorption, the heat 

generated due to the exothermicity of the process would be easily handled: due to a very 

efficient heat dissipation, the temperature of particles can be controlled within a very narrow 

temperature range around the desired CO2 adsorption temperature, thus obtaining a particle 

temperature uniformity which cannot be easily accomplished by any other reactor designs. 

Moreover, fluidized bed reactors would be an effective solution also in the unfortunate case of 

particularly large exothermic heat of adsorption causing the solid sorbent particles to be 

heated up beyond the desired CO2 adsorption temperature. Indeed, the solution would be to 

embed heat transfer surfaces inside the fluidized bed adsorber to remove the heat generated 

during CO2 capture, thus keeping the solid sorbents at the desired capture temperature 

(embedding heat transfer surface in fluidized beds is already practiced commercially in 

fluidized bed combustion of coal, for example [128]). Likewise, as regards the desorption 

step, in a fluidized bed reactor the bed of adsorbent material would be very quickly and 

uniformly heated up by the purge gas (in the case of direct heating) or by the introduction of 

immersed heat exchanger tubes (in the case of indirect heating), thus avoiding the presence of 

low temperature zones inside the reactor, which would decrease the desorption kinetics. As 

regards the shortcomings, a major problem generally linked to the fluidized bed technology is 

the attrition phenomenon. Indeed, the attrition in a fluidized bed tends to be higher than in a 

fixed bed, but the extent of attrition greatly depends on the operating velocity and the strength 

of the sorbents. Because of the small sizes of the solid sorbents employed, the operating 

velocity tends to be low and thus it can be expected that the attrition rate may not be 

excessive.  
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I.7.2 Sound-Assisted Fluidization 

On the basis of their primary particle size and material density, fine powders fall under the 

Geldart group C (<30 µm) classification, which means that fluidization is expected to be 

particularly difficult (i.e. characterized by plug formation, channeling and agglomeration) 

because of cohesive forces (such as van der Waals, electrostatic and moisture induced surface 

tension forces) existing between particles and becoming more and more prominent as the 

particle size decreases [129]. However, despite their Geldart classification, there are growing 

experimental evidences that nanoparticles can be smoothly fluidized for an extended window 

of gas velocities, thus implying that primary particle size and density cannot be taken as 

representative parameters for predicting their fluidization behaviour [130]. Indeed, because of 

the above-mentioned inter-particle forces, fine particles are always found to be in the form of 

large-sized porous aggregates [131,132], rather than as individual particles, when packed 

together in a gaseous medium. Therefore, gas fluidization of fine particles actually occurs in 

the form of aggregates, whose properties (size/density) highly affect the fluidization nature. 

Even though, on one hand, the agglomeration makes possible the fluidization of such 

materials, on the other hand, it limits their potential because of the undesired decrease in 

specific surface area. Accordingly, the formation of aggregates should be reduced to keep as 

small as possible the aggregate size in order to properly exploit the potential of fine powders. 

In other words, the achievement of a smooth fluidization regime is closely related to an 

efficient break-up of the large aggregates yielded by cohesive forces. To this aim and to 

overcome these inter-particle forces and achieve a smooth fluidization regime, externally 

assisted fluidization can be used, thus involving the application of additional forces generated, 

for example, by acoustic, electric, magnetic fields or mechanical vibrations to enhance the 

dynamics of the powder in the fluidized bed. Among all these available techniques, sound 

assisted fluidization has been indicated as one of the best technological option to smoothly 

fluidize fine and ultra-fine powders [133]. 

This technique holds several advantages. First of all it is not intrusive, since neither additional 

equipment nor materials must be inserted in the bed. Besides, the powders to be employed do 

not need to have any peculiar property. Moreover, it is widely reported in literature [136] that 

the application of acoustic field is capable of reducing the elutriation of fine particles from 

fluidized bed, preventing problems related to downstream carryover of fine particles such as 

clogging of valves. In Last but not least, this technique is extremely economic and user-

friendly, since the extra needed equipment (signal generator, audio amplifier loudspeaker and 

oscilloscope) is very easily available in commerce. 
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I.8 Aim of the PhD Thesis 

On the basis of the data collected from the bibliographic study, it emerges that adsorption 

using solid sorbents has the potential to become one of the leading CO2 capture techniques by 

complementing or replacing the current absorption technology due to its low energy 

requirement. To date, great attention is focused on the development of highly specific 

adsorbent materials, namely materials with great affinity towards CO2 molecules. Sure 

enough, the scientific community is moving in this direction, putting the emphasis on the 

manufacture of designed nanomaterials in which a molecular level of control can be achieved 

as a means of tailoring their CO2 capture performance. Beside the material issue, another 

crucial aspect is represented by the regeneration of the sorbent: for adsorption to be used as 

CO2 capture technique, an effective and less energy-consumed regeneration of the CO2 

captured adsorbents is definitely needed. In this respect, it emerges from the literature study, 

that temperature swing adsorption is one of the best technological alternatives, presenting 

several advantages over the other technological options:  

§ Pressure swing adsorption applied to combustion flue gas would involve compression 

of a large fraction of inert nitrogen, which is highly expensive. Moreover, the sorbent 

selectivity for CO2 drops down with increasing pressure, making it more difficult to 

achieve high purity CO2 in the desorption gas.  

§ The main disadvantage of electric swing adsorption is, instead, the consumption of 

electric energy, which is the product of the power plant, whereas, with the thermal 

regeneration, waste heat from the flue gas can be used for sorbent heating. Moreover, 

employing ESA in CO2 capture is limited by the availability of adsorbents that must 

combine high CO2 capacity and selectivity together with electric conductivity (for 

instance, materials with favorable adsorption properties, like zeolites or MOF, do not 

conduct electricity and cannot be employed in ESA). 

Therefore, on the basis of these concerns, a major point to be addressed is the development of 

an adequate reactor configuration, which can fully exploit the potential and properties of these 

new-concept adsorbent materials by maximizing the contact between the CO2 molecules and 

the adsorbent particles. Temperature swing in fixed bed reactors, serving as both the adsorber 

and the regenerator, is naturally inefficient because the beds have to be alternately cooled and 

heated to the correct reactor temperature for the proper reactions to occur. More specifically, 

fixed beds are recommended neither for exothermic reactions (CO2 adsorption) nor for 

endothermic reactions (CO2 regeneration), because poor local heat dissipation for the 
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exothermic adsorption reactions and poor heat transfer to the solid sorbents for the 

endothermic regeneration reactions will produce local “hot” and “cold” spots, respectively, 

preventing efficient conversions. In light of these considerations, a fluidized bed could be a 

viable alternative to the fixed bed configuration. Indeed, in fluidized beds the rate of mass and 

heat transfer between particles and gas per unit bed volume is extremely high due to the large 

interfacial particle-gas surface area. However, due to their intrinsic cohesive character, fine 

particles cannot be fluidized in ordinary condition, namely the use of assistance methods is 

required to achieve a smooth fluidization regime. Several externally assisted fluidization 

techniques are proposed in literature, all of that involving the application of additional forces 

generated, for example, by acoustic, electric, magnetic fields or mechanical vibrations to 

enhance the dynamics of the powder in the fluidized bed. Since the application of acoustic 

vibrations does not require any material modification, it is rather cheap and can be easily 

implemented from the technical point of view using simple sound generator devices, it is 

foreseen that sound assisted fluidization might be also competitive at the industrial level.  

Therefore, the objective of the present PhD thesis is the to study a CO2 capture process by 

temperature swing adsorption on fine porous materials in a sound-assisted fluidized bed 

reactor. To this aim several steps are needed: 

§ Design and setup of a suitable fluidized bed reactor to perform an experimental 

campaign, which will be: 

• made of Pyrex in order to work both at high and low temperature to carry out 

adsorption and desorption tests, as well, and in order to be optically accessible; 

• provided with equipment for the generation of the acoustic field; 

• provided with a system for the analysis of CO2; 

§ Selection and characterization of CO2 adsorbent materials with different chemico-

physical properties;  

§ Realization of a systematic experimental campaign to in-depth examine the main 

operating variables influencing the CO2 adsorption process; 

§ Study of a possible regeneration strategy in order to perform a cyclic process, with 

assessment of the stability of the sorbents to several adsorption/desorption cycles and 

the investigation of effect of the main operating variables affecting the desorption 

process. 

More specifically, the activity carried out during the first year consisted in an in-depth study 

and bibliographic investigation. This made it possible to point out the main characteristics of 

the CO2 capture by physical adsorption highlighting its problems and prospects. Moreover, a 
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lab-scale sound assisted fluidized bed reactor was designed to perform adsorption/desorption 

experiments and different adsorbent materials were selected. In particular, following the 

information retrieved from literature, common adsorbent materials, such as activated carbons 

and zeolites, were chosen, to firstly assess the capability of the sound assisted fluidization in 

actually promoting the CO2 adsorption process, whereas a highly specific adsorbent material, 

a metal organic framework, was selected, to apply the sound assisted fluidization technology 

also to cutting-edge materials. 

The second year was devoted to the realization and set-up of the sound assisted fluidized bed 

apparatus. Then, all the selected adsorbent materials were characterized from a chemico-

physical point of view by determining particles size distribution, pore size distribution and 

specific surface area, by SEM, XRD, Fourier Transform Infrared (FTIR) analysis, and by CO2 

Temperature Programmed Desorption (TPD) experiments. Once realized the experimental 

apparatus, ordinary and sound assisted fluidization tests were carried out to characterize the 

fluid-dynamic behaviour of all the sorbents. After this preliminary characterization, 

adsorption tests were carried out. In particular, the effect of different operating variables on 

the adsorption efficiency was studied: 

§ the characteristic parameters of the acoustic field (sound intensity and frequency);  

§ fluidization velocity;  

§ CO2 partial pressure. 

During the same year, a parallel research activity was carried out at the Department of 

Electronics and Electromagnetism - Faculty of Physics - University of Seville in order to 

further assess the capability of the sound in promoting the capture of CO2. In particular, 

during this stay, it was investigated the application of sound assisted fluidization technique on 

the capture of CO2 at Ca-looping conditions. The aim of this research activity was to apply 

the same technology, i.e. the sound assisted fluidization, and to assess its effectiveness also to 

a different CO2 capture process, which is characterized by remarkably higher operating 

temperatures. 

During the last year the research activity consisted in performing regeneration tests of the 

spent sorbents by TSA. According to several works reported in literature, the main drawback 

of TSA is the dilution of the desorbed CO2 by the carrier gas. Indeed in common TSA, the 

column is heated by a hot gas (air, nitrogen...) for the desorption step. Due to the low heat 

capacity of gases, a large volume of gas is required to significantly heat the bed, thus leading 

to the desorption of the adsorbate diluted in the heating gas. As a possible way to avoid this 

problem, the heat for regeneration of the solid can be provided by indirect heating, instead of 
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directly contacting the solid with hot gas that flows through the bed, thus remarkably reducing 

the volume of purge gas and limiting the dilution effect. Therefore, the standard regeneration 

strategy consisted in fluxing N2 at a fixed desorption temperature (isothermal purge): the 

temperature inside the reactor was firstly increased to the desired desorption temperature by 

external heating (i.e. without fluxing any purge gas) and then the CO2 partial pressure reduced 

by fluxing pure N2 through the already hot bed (purge). The possibility to perform 

adsorption/desorption cycles in the sound assisted fluidized bed apparatus was evaluated, thus 

also studying the sorbents stability to cyclic operation. Then, the effect of desorption 

temperature and purge flow rate was evaluated. A second regeneration method was tested in 

order to improve the desorption step, namely find a possible technique to enrich the recovered 

CO2 stream with respect to the standard regeneration strategy. The idea lying at the basis of 

this regeneration strategy was to discriminate the contribution to the CO2 recovery given by 

heating from that given by purge (in the standard regeneration strategy the thermal effect 

cannot be distinguished by that given by purge). Indeed during the external heating the CO2 

could be desorbed without the use of any carrier gas and the desorbed gas could be recovered 

by thermal expansion, thus completely eliminating the dilution problem (pure CO2 stream as 

desorption gas). More precisely, differently from the standard regeneration strategy, during 

the heating step the column was not isolated and the CO2 was contextually recovered, then, 

only when no more CO2 was desorbed (i.e. the thermodynamic equilibrium corresponding to 

the chosen desorption temperature was reached and the CO2 still adsorbed to the sorbent 

surface could not be recovered) N2 was fluxed inside the column and the remaining CO2 was 

recovered.  

Finally, considerations about the energy cost and scale-up of the proposed capture process 

have been also realized. 

I.9 Summary 

In Chapter II the description of the adsorbent materials, the different techniques used to 

characterize the materials as well as the designed and realized experimental apparatus for the 

adsorption/desorption tests and the test procedures employed in this study are described in 

details. 

Chapter III reports the experimental results. In particular, the results from the chemico-

physical and fluid-dynamic characterization of all the materials are firstly presented. Then, the 

results of the adsorption tests for each sorbent, the effect on the adsorption efficiency of the 
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main operating variables (sound parameters, fluidization velocity and CO2 partial pressure) 

and the comparison among their adsorption performances are reported. Following the results 

of regeneration and cyclic tests are presented. Finally, the results obtained from the parallel 

research activity on the capture of CO2 at Ca-looping conditions, carried out at the 

Department of Electronics and Electromagnetism - Faculty of Physics - University of Seville, 

is reported.  

Chapter IV summarizes the main conclusions achieved during the activity carried out in this 

PhD thesis. 
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II EXPERIMENTAL SECTION 

II.1 Materials 

Considering that the research activity will be initially devoted to the verification of the sound 

assisted fluidization in actually promoting the CO2 adsorption process, common adsorbent 

materials have been firstly used. On the basis of the data collected in the literature, it emerges 

that typical physisorbents for CO2 capture include activated carbons and zeolites.  

Two kinds of activated carbons and zeolites were used, because of their availability, and with 

different chemico-physical properties to investigate their effect on the adsorption 

performances. The activated carbons are: an activated carbon DARCO FGD (Norit) and an 

activated charcoal powder (Sigma Aldrich). They are characterized by a similar surface area 

but a different pore size distribution. As regards the zeolites, considering that a great number 

of properties (pore size and architecture, chemical composition, etc.), affect their adsorption 

performance [78-80], the choice has been made taking into account the Si/Al ratio and the 

nature of the extraframework cations. In particular, two opposite zeolites have been selected: 

a Zeolite H-ZSM-5 (Zeolite Int.), i.e. an acid high Si/Al ratio zeolite, and a Molecular sieves-

13X powder (Sigma Aldrich), i.e. a basic low Si/Al ratio zeolite. With reference to the effect 

of the extraframework cation, a limited number of tests has been performed on a zeolite Y in 

the ammonium (NH4-Y) and sodium form (Na-Y). In particular, these zeolites have been 

provided by the DICMaPI of the Federico II University of Naples. Hereafter all the materials 

will be addressed according to the nomenclature reported in Tab. 3. After the validation of the 

technology with the use of common adsorbents the attention has been focused on the 

application of the sound assisted fluidization to a new-concept adsorbent material: HKUST-1 

(or MOF-199). In particular, this specific MOF has been selected because it presents several 

advantages over other MOFs: elevated surface area, larger than that typical of common 

activated carbons; water stability; simple synthesis procedure (i.e. anhydrous conditions not 
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required); the precursors are easily available and not expensive. Unlike all the other materials 

used, this one is not commercially available. It was synthetized in the laboratories of the 

Istituto di Ricerche sulla Combustione of Naples.  

Tab. 3 Nomenclature used for the sorbent materials 

Materials Nomenclature 
Activated Carbon (Norit) AC Norit 

Activated Carbon (Sigma Aldrich) AC Sigma 
Zeolite H-ZSM-5  H-ZSM-5 

Zeolite 13X 13X 
Molecular sieve HKUST-1 HKUST-1 

This material is water-stable and contains Cu2+ dimers as the metallic units linked to oxygen 

atoms from benzene tricarboxylate (BTC) [134,135]. In particular, it was prepared by mixing 

10g of copper nitrate hemipentahydrate and 5g of 1,3,5 benzenetricarboxylic acid (BTC) in 

850mL of N,N dimethylformamide (DMF) followed by stirring and sonication for 5min. 

Ethanol (850mL) was then added to the mixture, which was then stirred and sonicated for 5 

more min. Finally, deionized water (850mL) was added to the mixture and then stirring and 

sonication for 30min. All crystals were dissolved at this point. The mixture was then heated at 

85°C in an oil bath. The mixture was kept in the oil bath for 21h under stirring. After cooling, 

the crystals were filtered, washed and immersed in dichloromethane. The crystals were 

collected after filtration and washing with dichloromethane. Drying was then performed by 

heating the crystals at 170°C for 28h. 

II.2 Materials and their Physico-chemical Characterization  

All the materials have been characterized using the experimental techniques reported below. 

§ Particles size distribution obtained by using a laser granulometer (Master-sizer 2000 

Malvern Instruments), after the dispersion of the powders in water under mechanical 

agitation of the suspension and with or without the application of ultrasound (US). This 

apparatus is based on the diffraction properties of the considered material introduced in 

a solvent (water in this case). Two LASER sources, the first He/Ne with 633 nm 

wavelength (red) and the second diode laser with 450 nm wavelength (blue), are aligned 

with a 3D photodiode revelator. Two low angle lateral and one back scattering detectors 

are also present in the analysis cell. This system allows detection of particles in the 

range 0.02-2000 µm. 
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§ Pore size distribution and superficial area measurements have been performed 

according to the BET (Brunauer Emmet Teller) method using N2 at 77K with a 

QUANTACHROM 1-C analyzer. Before each measurement the samples were subjected 

for 12h to a degassing treatment under vacuum at 150°C.  

§ Morphological characterization by SEM analysis have been carried out with a Philips 

XL30 SEM equipped with an EDAX instrument for micro-analysis in order to highlight 

the powders typical structures.  

§ Thermogravimetric analysis have been performed in order to characterize the thermal 

stability of the materials and to obtain some preliminary information on the adsorption 

performance with a Perkin-Elmer TGA-7 thermobalance coupled with a Perkin-Elmer 

spectrum GX FT-IR for the analysis of the released gases. In the former case, the 

sample of adsorbent material was heated both in inert environment (N2, 30ml min-1) and 

in air (30ml min-1) from 30°C up to 750°C at a rate of 10°C min-1. In the latter, the 

sample was heated at 10°Cmin−1 up to 120°C in N2 flow in order to remove possible 

moisture. Then, the sample was cooled down to ambient temperature and, after the 

stabilization of the weight, 10%vol. CO2 has been introduced. 	
  

§ XRD characterization was also performed on the materials in order to control their 

crystalline composition. The analysis was carried out using a Philips PW1710 

diffractometer operating between 5°2θ and 60°2θ with a Cu Kα radiation. 

§ Fourier Transform Infrared (FTIR) analysis. The spectra were recorded on a Nicolet 

iS10 spectrometer using the attenuated total reflectance (ATR) method by using a 

germanium crystal. The spectra were acquired on the powdered samples without KBr 

addition. 

§ CO2 Temperature programmed desorption (TPD) experiments were carried out with a 

Micromeritics AutoChem 2920 II equipped with a TCD detector. In particular, the 

sample (100mg) was pretreated in helium up to 150/250°C at 10°C min-1. The material 

was kept one hour at this temperature. Then the sample was cooled to ambient 

temperature. After that the material was subjected for 1 hour to an adsorption step with 

a 15%vol. CO2/N2 mixture. Then the flow was switched again to helium and the sample 

was heated up to 250°C at 10°C min-1 and kept for 1 hour at this temperature. Beside 

the CO2 TPD, also blank tests were performed. The sample was pretreated in He for 1h 

(the material was heated up to 150°C at 10°C min-1) and then cooled to ambient 

temperature (no CO2 adsorption was carried out). After that the sample was heated up to 

250°C at 10°C min-1 and kept for 1 hour at this temperature. 
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II.3 Experimental Apparatus  

The first aim of this PhD thesis was the design and set-up of a laboratory scale sound assisted 

fluidized bed experimental apparatus to perform adsorption/desorption tests. A view of the 

reactor is shown in Fig. 14a and the scheme of the plant is schematized in Fig. 14b.  

The fluidized bed consists of a Pyrex column of 40mm ID and 1500mm high, equipped with a 

porous gas distributor plate located at 300mm from the bottom of the column. The section of 

the column below the gas distributor acts as wind-box: it is filled with Pyrex rings in order to 

maximize the uniformity of the gas flow rate entering the fluidized bed. Indeed, this solution 

provides a good dispersion of the fluidizing gas and limits fluidization troubles due to the 

formation of preferential channels, namely the feed of the fluidizing gas through a limited 

number of points. 

 

Fig. 14 Experimental apparatus (a) picture and (b) scheme: (1) N2 cylinder; (2) CO2 cylinder (3) N2 flow 

meter; (4) CO2 flow meter; (5) controller; (6) 40 mm ID fluidization column; (7) filter; (8) microphone; (9) 

sound guide; (10) wind-box; (11) pressure transducer; (12) CO2 analyzer; (13) loudspeaker; (14) pump; 

(15) stack; (16) thermocouple; (17) temperature controller; (18) heating jacket; (19) two-way valve; (20) 

upper gas sampling probe; (21) lower gas sampling probe.  

The column is provided with a pressure probe located at 5mm above the gas distributor to 

measure the pressure drops across the bed of sorbent particles. This solution makes it possible 

to eliminate the contribution to the pressure drop given by the gas distributor plate. In 

particular, a Hartmann & Braun pressure transducer has been used. 

a b
a 
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A temperature probe is located at 400mm from the top of the column. In particular, the 

temperature inside the reactor is monitored at the center of the bed (60mm from the gas 

distributor) by means of a type K thermocouple (Chromel-Alumel) with a diameter of 1mm. 

This thermocouple is connected to a temperature controller in order to monitor it during the 

experimental tests and keep it at the desired value. 

Gas feed is prepared using separate N2 (99.995%) and CO2 (99.995%) cylinders. The 

flowrates have been set and controlled by two mass flow controllers (Brooks 8550S for CO2 

and Bronkhorst for N2).  

The acoustic field is introduced inside the column through a sound wave guide located at the 

top of the freeboard. The sound wave guide has been properly designed [136] to prevent the 

elutriated powders from dirtying the loudspeaker. The sound-generation system is made of a 

digital signal generator to obtain an electric sine wave of specified frequency whose signal is 

amplified by means of a power audio amplifier rated up to 40W. The signal is then sent to a 

8W woofer loudspeaker placed downstream the sound wave guide. This experimental set-up 

was also designed according to the Helmholtz resonator, i.e. one of the most used engineering 

noise control methods, in order to reduce the sound insulation even for high intensity acoustic 

fields. More specifically, by using this device sound is reflected back to the system, thus 

reducing the required sound insulation.  

The analysis system consists of a continuous analyzer, which is the best solution since the 

adsorption/desorption process is intrinsically a transient process. The analyzer is provided 

with an infrared (AO2020, URAS 14) and a paramagnetic detector (AO2020, MAGNOS 106) 

for the measure of the CO2 and O2 concentration, respectively. Since the top of the column 

needs to be open to the atmosphere for the acoustic system to properly work, only a fraction 

of the outlet gas stream is taken and sent to the analysis. In particular, the gas sampling is 

performed by means of a pump (SCC-S sample gas feed unit from ABB), which can sucks at 

the desired flow rate from two different sampling probes, located at 50 and 400mm from the 

top of the column. Since the analysis system is realized by means of very sensitive devices, a 

ceramic filter, able to capture all the elutriated fine particles, has been placed downstream the 

outlet of the column and before the inlet to the pump, thus preventing any damage to both the 

pump and the analyzer. The remaining part of the outlet gas flow rate is sent to the stack. 

The experimental apparatus is interfaced to a PC via Ethernet as regards the analysis of gas, 

and via a National Instrument data acquisition card as regards the acquisition of pressure 

drops. A program realized in LabView, provides the simultaneous reading and acquisition of 

the gas concentrations and values of pressure drops across the bed.  
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As regards the regeneration tests, to heat the column to the desired desorption temperature, a 

heating jacket (Tyco Thermal Controls GmbH) is wrapped around its external surface. In 

particular, it has been ad-hoc designed: it is 50cm high with an isothermal height of 35cm and 

it is also provided with a window, which allows the fluidization quality to be visually 

assessed also during the desorption step. According to the type of regeneration strategies to be 

applied, a system consisting in two two-way valves, located at the top (50mm below the upper 

sampling probe) and at the bottom of the column, makes it possible to isolate the fluidized 

bed reactor by sealing both the inlet and outlet.  

II.4 Preliminary Fluid-dynamic Characterization  

All the adsorbent materials have been previously characterized to assess their fluidization 

quality both in ordinary and sound assisted conditions. All the tests have been performed at 

ambient temperature and pressure using N2 as fluidizing gas in order to prevent any 

intensification of the powder cohesiveness due to air moisture. Each tests consists in 

recording the values of the pressure drops across the bed and of the height of the bed, for each 

selected value of the superficial gas velocity, in order to construct the corresponding 

fluidization and expansion curves. The adopted sound intensities (SPLs) and frequencies are 

reported in Tab. 4. For all the tests a proper amount of sorbent material has been loaded in the 

fluidization column in order to obtain a bed height of about 15cm. Tab. 4 also reports the 

amount of sorbent (m) loaded in each case. The experimental procedure involves different 

steps. The gas flow rate is rapidly increased up to its established maximum value and then 

gradually reduced in steps. For each reduction in the gas flow rate, the material is given a 

sufficient long time interval (3min) to reach steady state conditions. During this time the 

pressure drop across the bed and the superficial gas velocity of are monitored. After this time 

interval, the height of the bed, which is necessary to the evaluation of the bed expansion, is 

measured and its value inserted in the panel of the program. Once the value of zero gas flow 

rate is reached, the same procedure is repeated, but in the opposite direction, i.e. the 

superficial gas velocity is gradually increased until reaching again the initial maximum value 

of gas flow rate. The experimental procedure followed for the sound assisted tests is 

substantially the same as that used in the absence of sound. The only difference is that, after 

making all the preliminary actions, the desired acoustic field is switched on and the system is 

given a time of about 10min to be stabilized under its effect. From these data it is possible to 

obtain, the corresponding fluidization curves, plotting the dimensionless pressure drops (the 
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ΔP/ΔP0, ΔP0 being the static weight of the bed) as a function of the superficial gas velocity, 

and the relative expansion curves, plotting the dimensionless bed expansion ratio (H/H0, H0 

being the initial bed eight after loading in the fluidization column) versus the superficial gas 

velocity. Then, the minimum fluidization velocity, umf, has been calculated from the pressure 

drop curves by means of a graphic procedure. Finally, the bed expansion data have been 

elaborated in order to estimate the size of the fluidizing aggregates according to the method 

reported in [133].  

Tab. 4 Operating conditions of the fluidization tests. 

 SPL,  
dB 

Frequency,  
Hz 

m, 
g 

AC Norit 120, 125, 135, 140 20, 50, 80, 120, 300 110 
AC Sigma 125, 130, 135, 140 30, 50, 80, 150 30 
H-ZSM-5  140 80 85 

13X 125, 130, 135, 140 10, 30, 50, 80, 120, 150 88 
HKUST-1 125, 130, 140 20, 50, 80, 120, 300 50 

II.5 Adsorption Tests 

All adsorption tests have been carried out at ambient temperature and pressure. For all the 

sorbent materials, except from HKUST-1, each test has been carried out with a fresh batch. In 

particular, each batch has been treated prior to each adsorption test by heating the powder up 

to 140°C, in order to remove any trace of moisture. As regards HKUST-1, all the tests have 

been performed using the same sample. Therefore, at the end of each adsorption tests the 

sample has been regenerated by heating the powder up to 150°C under vacuum conditions 

(50mbar) in order to remove any trace of CO2 and moisture. 

In a typical experiment, the sorbent is loaded in the column in order to obtain a bed height of 

15cm. Then, in a pre-conditioning step of about 10min, N2 is fluxed in the column in order to 

stabilize a fluidization regime at fixed operating conditions in terms of superficial gas velocity 

and sound parameters. This is followed by the adsorption step in which a CO2/N2 gas mixture 

at a fixed CO2 concentration is fed through the column.  

The CO2 concentration in the column effluent gas is continuously monitored as a function of 

time (breakthrough curve) until the gas composition approaches the inlet gas composition 

value, i.e., until bed saturation is reached.  
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CO2 concentration profiles (breakthrough curves) have been obtained as a function of time t, 

which has been counted from the time the gas mixture takes to flow from the fluidized bed to 

the analyzer. This transit time has been previously measured for each gas flow rate by flowing 

the gas mixture through the empty bed. 

Each adsorption test has been performed both in ordinary and sound assisted fluidization 

conditions. In particular, the effect of sound parameters (SPL and frequency), fluidization 

velocity and CO2 partial pressure on adsorption efficiency has been investigated. Tab. 5 

reports all the operating conditions and the amount of sorbent selected for the adsorption 

experiments carried out in this work. The comparison among the adsorption performances of 

all the adsorbent materials has been made keeping constant all the operating conditions and in 

light of the their chemico-physical characteristics. 

Tab. 5 Operating conditions of the adsorption tests. 

 
Fluidization 

velocity,  
cm/s 

CO2 inlet 
concentration, 

%vol. in N2 

SPL,  
dB 

Frequency, 
Hz 

m, 
g 

AC Norit 
0.1, 0.25, 

0.5, 0.75, 1, 
1.5, 2 

5, 10, 15 120, 125, 
135, 140 

20, 50, 80, 
120, 300 110 

AC Sigma  1, 1.5, 2 5, 10, 15 140 80 30 
H-ZSM-5  1.5, 2, 5 5, 10, 15 140 80 85 

13X 1.5, 3, 4.5 5, 10, 15 140 80 88 

HKUST-1 1, 1.5, 2 5, 10, 15 125, 130, 
140 

20, 50, 80, 
120, 300 50 

 

II.6 Desorption Tests and Cyclic Operation 

Desorption tests have been performed on the materials characterized by the best adsorption 

performaces, the MOF (HKUST-1) and one activated carbon (AC Norit) at atmospheric 

pressure. In particular, since HKUST-1 presents problems of thermal stability, thus 

constituting an upper limit for the desorption temperature to be used in a TSA process, a 

preliminary TPD study has been performed to find a proper regeneration strategy. In 

particular, an extra-situ regeneration strategy has been realized, combining the increase of 

temperature (150°C) with a slight vacuum (50mbar). Cyclic adsorption/desorption tests have 

been performed according to this regeneration strategy, thus obtaining information about 
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HKUST-1 stability to cyclic operations and not on the desorption performances. In particular 

ten adsorption/desorption cycles have been performed. 

As regards AC Norit, which does not show significant limits on the choice of the desorption 

temperature, regeneration tests have been performed to recover the CO2 from the spent 

sorbent by means of TSA in the sound assisted experimental apparatus. As for the adsorption 

step, the desorption performances have been studied varying the operating conditions. More 

specifically, for regeneration two methods have been tested: isothermal purge and heating and 

purge. For both the strategies the previous adsorption step has been performed with an inlet 

CO2 concentration of 10%vol. in N2 and an inlet gas flow rate of 67.8Nl h-1 (corresponding to 

a superficial gas velocity of 1.5cm/s, i.e. higher than the minimum fluidization velocity of the 

material) under sound assisted conditions of 140dB-80Hz, representing the optimal values of 

sound parameters to maximize the fluidization quality and, then, the gas-solids contact 

efficiency, which, in turn, positively affects the CO2 adsorption performance of fine solid 

materials. All the desorption operating conditions are reported in Tab. 6. 

Isothermal purge: the desorption is realized by fluxing N2 through the heated bed of sorbent, 

namely the captured CO2 is recovered by the contribution of two contemporary effects, 

increasing temperature and decreasing CO2 partial pressure. Just after the adsorption step, the 

column is heated up to the desired desorption temperature (Tab. 6) by means of the heating 

jacket. During this heating step (lasting about 1h to reach thermal equilibrium), the column is 

isolated, namely the acoustic field is switched off, the inlet to the column is closed and the top 

of the column is also sealed by a two-way valve so that all the desorbed CO2 remains 

confined inside the column. When the bed reaches the desired temperature, the acoustic field 

is switched on, the inlet to the column is open (N2 is flowed) and the column exit is unsealed 

(purge step) so that both the already desorbed CO2 and that still adsorbed inside the pores of 

the sorbent left the column diluted in the N2 stream. The temperature of the column is 

maintained constant during the purge. In order to define the optimal operating conditions for 

CO2 recovery the effect on the desorption efficiency of the desorption temperature and the 

purge flow rate has been evaluated for this regeneration method.  

Heating and purge: the recovery of the captured CO2 is realized in two steps so that the effect 

of the increasing temperature (heating) and reducing CO2 partial pressure can be isolated, 

namely it has been possible to discriminate the amount of CO2 desorbed by heating from that 

recovered by purge. Just after the adsorption step, the column is heated up to the desired 

desorption temperature (Tab. 6) by means of the heating jacket. During this heating step, the 

inlet to column is closed and the acoustic field is switched off so that the desorbed CO2 can 
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leave the column only due to a thermic effect (i.e. the system continuously shifts to new 

adsorption equilibria as the temperature increases). More precisely, during the Heating step 

the outlet of the column is left open so that the pump can suck from the lower probe at a 

constant flow rate (40Nl h-1) both all the CO2 continuously desorbed from the bed and air 

from the atmosphere. So, the CO2 desorbed reaches the analyzer through the probe diluted in 

air. When the analyzer stops detecting CO2 in the outlet stream (i.e. the desired regeneration 

temperature and the corresponding adsorption equilibrium has been reached, so no more CO2 

is desorbed from the bed), the inlet to column is opened and nitrogen is flowed at a flow rate 

of 67.8Nl h-1 (purge step). The temperature of the column was maintained constant during the 

purge.  

Besides these two strategies, a not isothermal regeneration procedure has also been used to 

better highlight the differences between ordinary and sound assisted desorption tests. Indeed, 

the beneficial effect given by sound application is expected to be emphasized during a not 

isothermal desorption phase: the poor fluidization quality (i.e. channeling) characterizing the 

ordinary tests necessarily implies worse heat and mass transfer coefficients with respect to 

sound assisted tests (characterized by good gas-solid mixing), thus hampering the desorption 

process. 

Not isothermal purge: after the adsorption step (performed under ordinary or sound assisted 

conditions) the heating of the column (20°C min-1) up to the desired desorption temperature 

of 70°C is started and, at the same time, the feed is switched from 10%vol. CO2 in N2 to pure 

N2 (i.e. heating happens contextually to purge) under ordinary or sound assisted conditions 

(140dB-80Hz). The outlet desorption stream leaves the column and reaches the analyzer 

through the upper probe.  

Tab. 6 Operating conditions of the desorption tests. 

N2 purge 
flow rate, 

Nl h-1 

Desorption 
temperature, 

°C 

SPL,  
dB 

Frequency, 
Hz 

m, 
g 

45.2, 67.8, 
90.4 

25, 40, 70, 
100, 130, 150 140dB 80Hz 110 

Finally, the possibility to perform adsorption/desorption (the procedure for the adsorption test 

is fully described in the previous paragraph) cycles in the sound assisted fluidized bed 

apparatus was evaluated, thus assessing the sorbent stability to cyclic operation. A cycle is a 

sequence of adsorption-desorption steps. More precisely for the cycles tests the standard 

regeneration strategy has bee used (isothermal Purge). The cyclic tests have been performed 
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at 140dB and 80Hz and with an inlet gas flow rate of 67.8Nl h-1 (10%vol. CO2 in N2 and pure 

N2 during adsorption and desorption, respectively) both in the adsorption and desorption 

phase. The regeneration of the sorbent has been realized with a desorption temperature of 

70°C. The adsorption-desorption sequence is repeated for 16 consecutive cycles on the same 

sample in order to test its stability under repeated adsorption/desorption cycles. 
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III  RESULTS 

III.1 Materials characterization 

III.1.1 Activated Carbon Norit 

Fig. 15a and Tab. 7 report the cumulative size distributions and the Sauter mean diameter of the 

powder. The application of ultrasound (US) involves the break-up of aggregates (2µm without 

US) into smaller ones (0.39µm with US). According to the Sauter mean diameter, the powder 

belongs to Group C of Geldart classification. 

  

Fig. 15 Granulometric distribution (a) and SEM image (b) of the AC Norit. 

Tab. 7 Properties of AC Norit. 

DSAUTER,  
µm with/without US 

BET surface 
area, m2/g 

Bulk density, 
kg/m3 

Pore volume 
cm3/g 

0.39/2 1060 510 1.34 

 

b a 



RESULTS 

 49 

The analysis of the SEM images, reported in Fig. 15b, confirms that the powder appears in the 

form of aggregates as large as tens of microns.  

As clearly shown in Fig. 16a, the activated carbon is characterized by a significantly broad 

pore size distribution. Indeed, besides the pores in the mesoporosity (2nm < d < 50nm) it also 

has micropores (d < 2nm). In particular, the microporous region is bimodal with more than a 

half of the micropores characterized by a dimension lower than 0.9nm. As reported in Tab. 7, 

the powders is characterized by a relatively large surface area and pore volume.  

 

Fig. 16 Pore size distribution (a) and FT-IR spectra (b) of ACNorit. 

Fig. 16b reports the FT-IR analysis. The spectra are characterized by a broad shape thus 

confirming of the presence of a complex carbon network. In particular, it exhibits bands at 

1650-1750cm-1 (C=O stretching vibrations from carbonyl and carboxylic groups), 1500-

1600cm-1 (skeletal vibration of the sp2 graphitic domains). An enhanced broad band in the 

1300-1100cm-1 region ascribable to the overlapping of C-OH and C-O stretching vibrations is 

also visible.  

The thermal stability of the sample was characterized by thermogravimetric analysis. The 

curve in inert environment (Fig. 17a) exhibits a high weight loss at 300-350°C corresponding 

to the collapse of the structure (namely carbocarboxylate groups, the organic linkers of the 

structure) accompanied by the release of CO2. It emerges that AC Norit is stable up to 400°C 

(in Fig. 17a). Indeed, for temperatures higher than 400°C the sample starts thermally 

decomposing. As regards the thermogravimetric analysis in air (in Fig. 17a), the plot presents a 

deep weight loss between 400 and 600°C corresponding to the bulk oxidation of the graphitic 

core. The non-sharpness of the weight drop testifies the occurrence of the progressive 

decomposition of oxygenated functionalities (carbonylic/carboxylic). It is noteworthy that a 

high amount of unburned material (~ 20% in weight, possibly metal residuals) is detected. 

b 
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In order to have some preliminary information about the adsorption performance a TG 

adsorption test has been performed. In Fig. 17b the temperature profile and the percentage 

weight loss of the sample, obtained from this thermogravimetric analysis, are reported. The 

relative IR spectra have shown that only water is emitted up to 120°C. The amount of CO2 

adsorbed until saturation is 0.17mmol/g.  

 

Fig. 17 Thermogravimetric analysis of AC Norit in N2 and in air (a) and in CO2/N2 mixture (b). 

After the adsorption step has taken place (i.e. after the stabilization of the weight) the CO2 

concentration has been decreased to 5%vol. As expected, being the CO2 partial pressure the 

driving force of the adsorption process, the sample desorbs part of the CO2 adsorbed in the 

previous step, which has occurred in a CO2 richer ambient. Finally, the CO2 concentration has 

been set to zero. The sample entirely desorbs the CO2 previously adsorbed, as confirmed by 

the sample weight returning to the initial value. This evidence confirms that the CO2 is 

physisorbed on the activated carbon, namely no chemisorption has occurred. 

III.1.2 Activated Carbon Sigma Aldrich  

Fig. 18a and Tab. 8 report the cumulative size distribution and the Sauter mean diameter of the 

powder. The application of ultrasound (US) has only a slight effect, the dimension of the 

powder passing from 18.8µm to 15.4µm. According to the Sauter mean diameter, the powder 

belongs to Group C of Geldart classification. 

b a 
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Fig. 18 Granulometric distribution of AC Sigma.  

The analysis of the SEM image, reported in Fig. 18b, powder appears in the form of irregular 

particles, some of which are needle-shaped. Indeed the application of ultrasound has only a 

slight effect, that is to unfix the smaller particles from the larger ones.  

Tab. 8 Properties of AC Sigma. 

DSAUTER, µm 
with/without US 

BET surface 
area, m2/g 

Bulk density, 
kg/m3 

Pore volume 
cm3/g 

15.4/18.8 1038 318 1.14 

 

As for the BET surface area and total pore volume the values obtained are slightly lower than 

that obtained for the AC Norit. 

The activated carbon Sigma is characterized by a broad pore size distribution (micropores and 

mesopores) and by a total pore volume similar to that of AC Norit (Tab. 7), even though the 

pore size distribution is quite different. In particular, as regards the microporous region, a 

great amount of micropores is characterized by a dimension lower than 1.2nm. As reported in 

Tab. 7, the powders is also characterized by a relatively large surface area. 

The FT-IR spectrum of activated carbon Sigma, reported in Fig. 19 is very similar to that of 

AC Norit (Fig. 16b). Indeed, it also exhibits bands at 1650-1750cm-1 (C=O stretching 

vibrations from carbonyl and carboxylic groups), 1500-1600cm-1 (skeletal vibration of the sp2 

graphitic domains). An enhanced broad band in the 1300-1100cm-1 region ascribable to the 

overlapping of C-OH and C-O stretching vibrations is also visible. Differently from AC Norit, 

a broad band in at 3000-3500cm-1 indicates the presence of O-H functionalities. 

b a 
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Fig. 19 Pore size distribution (a) and FT-IR spectra (b) of AC Sigma.  

Also the thermal stability of this activated carbon is similar to that of AC Norit. From the 

thermogravimetric analysis in inert environment (N2) it emerges that AC Norit is stable up to 

400°C (Fig. 20). As regards the thermogravimetric analysis in air (Fig. 20), plot presents a deep 

weight loss between 400 and 600°C corresponding to the bulk oxidation of the graphitic core, 

the non-sharpness of the weight drop showing the occurrence of the progressive 

decomposition of oxygenated functionalities (carbonylic/carboxylic).  

 

Fig. 20 Thermogravimetric analysis of AC Sigma in inert environment (N2) and air. 

In conclusion, the two activated carbons are characterized by very similar chemical 

functionalities and thermal stability, whereas, they show some differences in the pore size 

distribution and BET surface area.  

III.1.3 Zeolite H-ZSM-5  

Zeolite H-ZSM-5 is the hydrogen form of ZSM-5 zeolite. In particular, it can be classified as 

a hig-silica zeolite, having a Si/Al=140. Considering that whenever an Al3+ cation replaces a 

b a 
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Si4+ cation, an additional positive charge is required to keep the material charge-neutral, with 

proton (H+) as the cation, the material becomes acidic (i.e. the acidity is proportional to the Al 

content). 

 Fig. 21a and Tab. 9 report the cumulative size distribution and the Sauter mean diameter of the 

powder. The application of ultrasound (US) involves the break-up of large aggregates 

(21.8µm without US) into smaller ones (1.62µm without US). According to the Sauter mean 

diameters, the powder belongs to Group C of Geldart classification. 

  

Fig. 21 Granulometric distribution of H-ZSM-5. 

Tab. 9 Properties of H-ZSM-5. 

DSAUTER, µm 
with/without US 

BET surface 
area, m2/g 

Bulk density, 
kg/m3 

Pore volume 
cm3/g 

12.6/21.8 400 450 0.41 

The analysis of the SEM image, reported in Fig. 21b, confirms that the powder appears in the 

form of aggregates as large as tens of microns.  

As clearly shown in Fig. 22, the zeolite used in this experimental campaign is basically 

microporous (d < 2nm). In particular almost all the pores has a dimension lower than 0.6nm 

(in particular, it has a mean pore size 0.55nm) and, as reported in Tab. 9, it is characterized by 

a pore volume remarkably lower than that of the two activated carbons and by a surface area 

of about 400m2/g. 

b a 
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Fig. 22 Pore size distribution of H-ZSM-5. 

III.1.4 Zeolite 13X  

Molecular sieve 13X is the sodium form of the type X crystal. In particular, it can be 

classified as a low-silica (or equivalently aluminium-rich) zeolite, having a Si/Al=1.25. As a 

consequence it contains almost the maximum number of cation exchange sites balancing the 

framework aluminum, and thus the highest cation contents and exchange capacities. These 

compositional characteristics combined give type X zeolites the most highly heterogeneous 

surface known among porous materials, due to exposed cationic charges nested in an 

aluminosilicate framework, which results in high field gradients. The presence of Na+ cations 

gives 13X a basic functionality. 

 Fig. 23 and Tab. 10 report the cumulative size distribution and the Sauter mean diameter of the 

powder. Differently from what observed for the other materials, in this case the application of 

ultrasound has a negligible effect, the dimension of the powder passing from 3.2 to 3.1µm. 

According to the Sauter mean diameter, the powder belongs to Group C of Geldart 

classification. 
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Fig. 23 Granulometric distribution of 13X.  

Tab. 10 Properties of 13X. 

DSAUTER, µm 
with/without US 

BET surface 
area, m2/g 

Bulk density, 
kg/m3 

Pore volume 
cm3/g 

3.1/3.2 960 467 0.41 

The analysis of the SEM images, reported in Fig. 24, confirms the powder appears in the form 

of aggregates. However, the size obtained from the granulometric analysis is the dimension of 

the primary particles.  

  
Fig. 24 SEM images of 13X. 

As clearly shown in Fig. 25 13X is basically microporous (d < 2nm) and it is characterized by 

the same pore volume as the H-ZSM-5 (Tab. 10). In particular, it exhibits pores in the range 

0.6-0.9nm. As reported in Tab. 10, the powders is characterized by a surface area larger than 

that of H-ZSM-5 but lower than both the activated carbons.  
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Fig. 25 Pore size distribution of 13X. 

III.1.5 HKUST-1 

Fig. 26a and Tab. 11 report the cumulative size distributions and the Sauter mean diameter of 

the powder. The application of ultrasound (US) has only aslight effect reducing the Sauter 

mean diameter from 5.6µmto 4.3µm. According to the Sauter mean diameter 4.3µm, the 

powder belongs to Group C of Geldart classification.  

  

Fig. 26 Granulometric distribution (a) and SEM image (B) of HKUST-1. 

Tab. 11 Properties of HKUST-1. 

DSAUTER, µm 
with/without US 

BET surface 
area, m2/g 

Bulk density, 
kg/m3 

Pore volume 
cm3/g 

4.3/5.6 680 265 0.66 

b a 



RESULTS 

 57 

The analysis of the SEM images, reported in Fig. 26b, clearly shows that the powder is formed 

by irregular particles. In particular, the morphology and shape of the crystals can be observed.  

As reported in Tab. 11, HKUST-1 is characterized by a surface area lower than that of the 

activated carbons and 13X. Moreover, the BET surface area obtained for HKUST-1 is lower 

than that reported in literature (up to values of 1780m2/g [84]). Most likely this discrepancy is 

due to the fact that, differently from what reported in literature [84], HKUST-1 was prepared 

in large amount for this experimental campaign, thus leading to a lower control on its 

chemico-physical characteristics. 

A diffraction experiment was run on standard glass slide for the background correction. The 

XRD spectra obtained (Fig. 27a) are those of the HKUST-1 [84], thus confirming its typical 

crystallographic structure.  

  

Fig. 27 a) X-ray diffraction (XRD) pattern of HKUST-1; b) FT-IR spectra of HKUST-1. 

The FT-IR spectra of the HKUST-1 (Fig. 27b) are plotted in the 600-3500 cm-1 wavenumber 

region. Spectra are baseline corrected and shifted for clarity. The spectrum of HKUST-1 is 

consistent to those reported in literature [84]. The bands at 1645 and 1590 cm-1 and at 1450 

and 1370 cm-1 correspond to the asymmetric and symmetric stretching vibrations of the 

carboxylate groups in benzene tricarboxylate (BTC), respectively. 

Similarly to what observed for the two zeolites, also HKUST-1 is a microporous material, 

with all the pores lower than 2nm (Fig. 28a). In particular, it exhibits a total pore volume 

intermediate between the activated carbons and the zeolites (Tab. 11).  

As regards the thermal stability of HKUST-1, the thermogravimetric curve in inert 

environment (Fig. 28b) exhibits that HKUST-1 structure collapses at 350°C. However, the 

decomposition of the material starts around 200°C. 

a 
 

b 
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Fig. 28 Pore size distribution (a) and thermogravimetric analysis in N2 (b) of HKUST-1. 

III.2 Fluid-dynamic Characterization 

In the following paragraphs the results of the ordinary and sound assisted fluidization tests for 

all the adsorbent materials are reported.  

III.2.1 Activated Carbon Norit 

Fig. 29 reports the dimensionless pressure drops (ΔP/ΔP0) and bed expansion curves (H/H0) 

obtained in ordinary and sound assisted conditions (140dB-80Hz), respectively. For uniform 

fluidization, the pressure drops are equal to the material weight per unit area (i.e. ΔP/ΔP0 = 1), 

thus meaning that the whole bed is fluidized. Without the application of any acoustic field the 

fluidization quality is particularly poor (channeling), as clearly confirmed by the fact that 

asymptotic value reached by the pressure drops is lower than 1. On the contrary, pressure 

drops and expansion curves obtained with the assistance of sound are far more regular, both 

qualitatively and quantitatively. Therefore, the application of the sound is required to achieve 

a proper fluidization regime, which is closely related to an efficient break-up of the large 

aggregates yielded by cohesive forces into smaller structures easily to be fluidized [131,133].  

b a 
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Fig. 29 AC Norit pressure drops (a) and expansion curves (c) under ordinary fluidization conditions; 

pressure drops (b) and expansion curves (d) under sound assisted fluidization conditions (140dB-80Hz).  

In particular, an in-depth study has been carried out in order to evaluate the most effective 

acoustic conditions, namely whether it is possible or not to find optimal values of SPL and 

frequency. The results on the effect of SPL and frequency on the fluidization quality are 

reported in Fig. 30, in terms of pressure drops and expansion curves. As regards the role played 

by the SPL, it is clear from Fig. 30a and c that sound intensities higher than or equal to 125dB 

are enough to obtain a good fluidization quality. In other words, 125dB is a kind of threshold 

value for this activated carbon. Indeed, all the tests performed at higher SPL (125, 135 and 

140dB) are characterized by quite similar pressure drops and expansion curves, which means 

that any additional increase of sound intensity does not succeed in further enhancing the 

fluidization quality. On the contrary, the test performed at 120dB is remarkably worse in 

terms of both pressure drops and expansion ratio.  
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Fig. 30 Norit activated carbon: effect of SPL on pressure drops (a) and bed expansion (c) curves at fixed 

frequency (80Hz); Effect of frequency on pressure drops (b) and bed expansion (d) curves at fixed SPL 

(140dB). 

As regards the sound frequency, the results reported in Fig. 30b and d show that it has a not 

monotone effect on the fluidization quality. Actually, it is possible to find an optimum range 

of frequency (50-120Hz) giving the best fluidization quality. Either too low or too high 

frequencies, which fall out of this range (20, 300Hz), correspond to worse fluidization 

qualities.  

All these remarks regarding the effects of SPL and frequency can be even more clearly 

inferred from Fig. 31, which reports the minimum fluidization velocity, umf, (evaluated from 

the pressure drops curves by means of a graphical method) as function of SPL and frequency. 

Firstly, all the sound assisted tests are characterized by lower umf with respect to the test 

performed in ordinary conditions, thus confirming the ability of the sound in enhancing the 

fluidization quality. As for the SPL, umf is sharply decreased passing from 120 to 125dB and 

then it holds steady, the further increase of SPL nonetheless. Provided the SPL is higher than 

120dB, a reasonably good fluidization quality can be attained. As for the frequency, the curve 
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is characterized by a minimum value (in the range 50-120Hz), corresponding to the best 

sound frequencies.  

 

Fig. 31 Activated carbon: effect of SPL (at fixed f = 80Hz) and frequency (at fixed SPL=140dB) on umf. 

As regards the SPL, the observed behaviour is do to the fact that an increase of the sound 

intensity implies an intensification of the energy introduced in the bed, namely the external 

force yielded by the acoustic field on the aggregates is enhanced. Therefore, large aggregates 

are likely expected to break into smaller ones, thus determining a consequent and reasonable 

decrease of umf. On the other hand, the explanation of the not monotone effect of sound 

frequency on the fluidization quality, which has already been found for other ultra-fine 

powders in a previous experimental campaign [131,133], is most likely that for too high 

frequencies the acoustic field is not able to properly propagate inside the bed and, in turn, to 

promote the break-up of aggregates; while for too low frequencies the relative motion 

between smaller and larger sub-aggregates, which leads to the break-up of the large 

aggregates originally present in the bed, is practically absent. Whereas, between these values 

there is a range of optimal frequencies able to promote a maximum aggregates break-up, 

leading to a decrease of umf. 

As a further validation of all these observations, the fluidizing aggregate size has been 

evaluated by working out the bed expansion data [133]. The application of the sound allows 

to remarkably reduce the aggregate size, thus confirming the capability of the acoustic field to 

improve the break-up mechanism of larger aggregates yielded by the strong interparticle 

forces existing between particles due to the cohesiveness. Indeed, the calculated aggregate 

size is 310µm in the ordinary test, varying in the range 80-100µm in the sound assisted tests. 

a 
 

b 
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III.2.2 Activated Carbon Sigma Aldrich 

Fig. 32 shows the dimensionless pressure drops and bed expansion curves for the ordinary and 

sound assisted tests (140dB-80Hz), respectively. In ordinary conditions, namely without the 

application of any acoustic field, the fluidization quality is particularly poor (channeling). The 

application of the sound, on the contrary, makes it possible to obtain far more regular pressure 

drops and expansion curves, both qualitatively and quantitatively. In other word, the 

application of the sound is necessary to achieve a proper fluidization regime, which is closely 

related to an efficient break-up of the large aggregates yielded by cohesive forces into smaller 

structures easily to be fluidized [131,133].  

 
Fig. 32 AC Sigma pressure drops (a) and expansion curves (c) under ordinary fluidization conditions; 

pressure drops (b) and expansion curves (d) under sound assisted fluidization conditions (140dB-80Hz).  

An in-depth study has been carried out in order to evaluate the most effective acoustic 

conditions, namely whether it is possible or not to find optimal values of SPL and frequency. 

Fig. 33 and Fig. 34 report the fluidization curves of all the tests performed as affected by SPL 

and frequency, respectively. In order to make it clear the effect of the sound parameters on the 

fluidization quality the trend on umf as function of SPL and frequency has been obtained (Fig. 

35).  
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Fig. 33 AC Sigma: Effect of SPL on pressure drops for the tests performed at different sound frequencies.  

As regards the role played by the SPL, it is clear from Fig. 33 that even at the lowest sound 

intensity (125dB) a good fluidization quality can be achieved, even though a slight 

improvement can be observed with the increase of SPL whatever the frequency. However, as 

clearly shown in Fig. 35 at fixed frequency, an increase of SPL results in a slight decrease of 

umf. In light of these results about the effect of SPL it emerges that all the investigated sound 

intensities are capable of promoting an efficient break-up of the initial aggregates in 

fluidizable aggregates, even though there is a slight beneficial effect with the increase of SPL, 

du to the intensification of the energy introduced in the bed and consequently a more efficient 

break-up of large aggregates into smaller ones. 

As regards the sound frequency, the results reported in Fig. 34 and Fig. 35 show that for the 

largest SPLs (140 and 135dB) it has a negligible effect. On the contrary at the lowest SPLs 

(125 and 135dB) frequencies higher than 50Hz make it possible to decrease the umf, thus 

obtaining a better fluidization quality.  
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Fig. 34 AC Sigma: Effect of sound frequency on pressure drops for the tests performed at different SPLs.  

 

Fig. 35 AC Sigma: Effect of (a) SPL and (b) frequency on umf. 

III.2.3 Zeolite H-ZSM-5  

Fig. 36 reports the dimensionless pressure drops and bed expansion ratio obtained in ordinary 

and sound assisted conditions (140dB-80Hz).  
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Fig. 36 H-ZSM-5 pressure drops (a) and expansion curves (c) under ordinary fluidization conditions; 

pressure drops (b) and expansion curves (d) under sound assisted fluidization conditions (140dB-80Hz). 

Differently from what observed for the activated carbons, also in ordinary conditions the 

zeolite fluidization quality is quite acceptable. In particular, the analysis of the curves 

suggests that the application of the sound results in a more regular behaviour in terms of both 

pressure drops and bed expansion ratio. Also in this case, the size of fluidizing aggregates has 

been evaluated: 280 and 660µm with and without the application of the sound, respectively. 

This trend is confirmed by the minimum fluidization values: 1 and 4cm/s for ordinary and 

sound assisted tests, respectively. 

III.2.4 Zeolite 13X 

In Fig. 37a and c the dimensionless pressure drops and bed expansion curves obtained in 

ordinary conditions are reported. The analysis of the curves suggests that also in these 

conditions (i.e. without the application of any acoustic field) the powder can be fluidized, 

even though with some instability as clearly confirmed by the fluctuations of the pressure 

drops around the asymptotic value (this behaviour is due to channels crossing the bed). 

Therefore, the application of the sound is required to achieve a stable fluidization regime and 

higher bed expansion, as clearly confirmed by the curves reported in Fig. 37b and d. 
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Fig. 37 13X pressure drops (a) and expansion curves (c) under ordinary fluidization conditions; pressure 

drops (b) and expansion curves (d) under sound assisted fluidization conditions (140dB-80Hz).  

Fig. 38 and Fig. 39 report the fluidization curves of all the tests performed as affected by SPL 

and frequency, respectively. In order to make it clear the effect of the sound parameters on the 

fluidization quality the trend on umf as function of SPL and frequency has been obtained (Fig. 

40).  

As regards the role played by the SPL, it is clear from Fig. 38 that sound intensities higher than 

or equal to 125dB are enough to obtain a good fluidization quality. However, as clearly 

shown in Fig. 40 at fixed frequency, an increase of SPL results in a decrease of umf. As already 

discussed for the two activated carbons, this behaviour is due to the fact that that all the 

investigated sound intensities are capable of promoting an efficient break-up of the initial 

aggregates in fluidizable aggregates. The slight beneficial effect observed with the increase of 

SPL is due to an intensification of the external force yielded by the acoustic field on the 

aggregates, which causes the large aggregates are to break into smaller ones. 
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Fig. 38 13X: Effect of SPL on pressure drops for the tests performed at different sound frequencies.  

As regards the sound frequency, the results reported in Fig. 39 and Fig. 40 show that it has a not 

monotone effect on the fluidization quality. Actually, it is possible to find an optimum range 

of frequency (10-80Hz) giving the best fluidization quality.  
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Fig. 39 13X: Effect of sound frequency on pressure drops for the tests performed at different SPLs.  

 
Fig. 40 13X: Effect of (a) SPL and (b) frequency on umf. 

III.2.5 HKUST-1 

In Fig. 41a the dimensionless pressure drops obtained in ordinary conditions are reported. The 

bed expansion curves are not presented because the powder adhered to the column wall 

making it impossible to read the bed height. In these conditions the material cannot be 

fluidized (channeling occurs inside the bed) as clearly confirmed by the pressure drops curve, 

which does not reach an asymptotic value. Therefore, the application of the sound is required 

to achieve a proper fluidization regime, which is closely related to an efficient break-up of the 
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large aggregates yielded by cohesive forces into smaller structures easily to be fluidized. This 

is clearly confirmed by the fluidization curves obtained in sound assisted conditions (Fig. 41b). 

 
Fig. 41 HKUST-1 pressure drops and expansion curves for (a) ordinary and (b) sound assisted, 140dB-

80Hz, tests. 
Fig. 42 reports the effect of SPL and frequency on the fluidization quality. In the first place, 

the analysis of these curves confirms that under the application of the acoustic field, the 

material can be properly fluidized. Indeed, regular pressure drop have been obtained. Then, as 

regards the role played by the SPL, it is clear from Fig. 42a that for sound intensities lower 

than 140dB the fluidization quality is remarkably worse. Indeed, both at 130dB and 125dB 

the fluidization curve is lower than in the tests performed at 140dB, thus meaning that a 

fraction of the bed is not properly fluidized. Fig. 43a reports the trend of umf as a function of 

SPL. Coherently to what observed from the fluidization curves, increasing SPLs result in 

lower values of umf. 

 
Fig. 42 HKUST-1: Effect of SPL on pressure drops (a) at fixed frequency (80Hz); Effect of frequency on 

pressure drops (b) at fixed SPL (140dB). 

As regards the sound frequency, the results reported in Fig. 42b and Fig. 43b show that it has a 

not monotone effect on the fluidization quality. More specifically, the frequencies falling in 

the range 50-120Hz represent in the optimum range for this material. The evaluation of the 
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fluidizing aggregates diameter was not carried out, since the impossibility of evaluating the 

expansion curves. 

 
Fig. 43 HKUST-1: Effect of (a) SPL and (b) frequency on umf. 

III.3 Adsorption Tests 

III.3.1 Activated Carbon Norit 

III.3.1.1 Effect of the Sound Application 

Fig. 44a reports the typical breakthrough curves (i.e. C/C0 versus time, C and C0 being the CO2 

concentration in the effluent and feed stream, respectively) obtained in ordinary and one of 

the sound assisted tests. These curves have been worked out to calculate: i) the moles of CO2 

adsorbed per unit mass of adsorbent, nads, calculated by integrating the breakthrough curves 

according to the following mass balance: 

𝑛!"# =
!
!"

𝑄!!!
!" − 𝑄!!!

!"#!!"
! 𝑑𝑡        (18) 

ii) the breakthrough time, tb, or break point, which is the time it takes for CO2 to be detected 

at the adsorption column outlet (5% of the inlet concentration); iii) the fraction of bed utilized 

at breakpoint (W), namely the ratio between the CO2 adsorbed until the break point and that 

adsorbed until saturation; iv) the rate of the adsorption process, which has been evaluated as 

the difference between the time it takes for CO2 to reach the 95% of the inlet concentration at 

the adsorption column outlet, t95, and tb. In order to highlight the most significant portion of 

the curve, namely the section before and soon after tb, the same graph has been also reported 

in logarithmic scale (Fig. 44b).  

a b 
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Fig. 44 AC Norit breakthrough curves obtained in ordinary and sound assisted conditions, in (a) linear 

and (b) logarithmic scale. u=1.5cm/s; C0=10%vol.  

Tab. 12 reports all the parameters of nads, tb, W and t95-tb obtained in the tests performed at 

three different CO2 inlet concentrations and fluidization velocities. The superficial gas 

velocities used in these tests are high enough to provide a good fluidization quality (see 

paragraph III.2.1) at all the different sound parameters, since they are all larger than the 

corresponding umf. The analysis of the curves (Fig. 44) and the results reported in Tab. 12 show 

that the application of the sound clearly affects both the adsorption rate and the global 

adsorption capacity. Indeed, the total amount of CO2 adsorbed until saturation, reported in 

Tab. 12, is strongly improved by the application of the sound: the percentage increase with 

respect to the tests in ordinary conditions moves from 13% for the test performed at 140dB-

80Hz, 2cm/s and 10%vol. of CO2 in the inlet stream up to 23% for the test performed at 

140dB-80Hz, 1.5cm/s and 10%vol. CO2. 

The sound greatly increases the breakthrough time, which in all the sound assisted tests is 

more than five times the value obtained in ordinary conditions (see Tab. 12). Consequently, the 

application of the sound also results for all the tests (i.e. for all the CO2 inlet concentration 

and for all the SPL investigated) in a great enhancement of the fraction of bed utilized at 

break point (W), which moves from values always lower than 4%, in the tests performed in 

ordinary conditions, up to values of about 15%, in all the sound assisted tests. The beneficial 

effect shown by the sound is due to the enhancement of the fluidization quality with respect to 

the tests performed in ordinary conditions, namely without the aid of any external force. In 

particular, the fluidization of cohesive powders is based on a break-up and re-aggregation 

mechanism, which is greatly enhanced by the application of acoustic fields [131,133]; so, the 

improved fluidization quality arising from the application of the sound is likely to be the main 

reason of the observed enhancement of the adsorption efficiency. In other words, the 

continuous aggregates break-up and re-aggregation mechanism makes the surface of the 

activated carbon more readily available for the adsorption process. 
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The application of the sound also greatly enhances the breakthrough time and the kinetics of 

the entire process. Indeed, under the application of acoustic fields the CO2 concentration 

profile goes to saturation in remarkably shorter times with respect to the tests performed in 

ordinary conditions, and also the values of t95-tb are notably decreases in the sound assisted 

tests. In order to point out the differences existing between the ordinary and sound assisted 

tests, the rate of CO2 concentration increase, rCO2, has been evaluated and plotted as a function 

of time (Fig. 45). Soon after t=tb, rCO2 abruptly rises up for the tests performed in ordinary 

conditions. 

Tab. 12 Results of the adsorption tests obtained for AC Norit.  

Superficial 
gas velocity 

Sound 
Parameters 

CO2 inlet concentration 
5% 10% 15% 

tb 
s 

nads  
mmol/g 

W 
% 

t95-tb 
min 

tb 
s 

nads  
mmol/g 

W 
% 

t95-tb 
min 

tb 
s 

nads  
mmol/g 

W 
% 

t95-tb 
min 

2cm/s 
Ordinary  15 0.22 3.6 44 8 0.30 2.7 36 7 0.37 2.7 24 
140dB-
80Hz 65 0.26 15 13 51 0.34 12 15 43 0.46 15 12 

1.5cm/s 
Ordinary  19 0.23 3 63 12 0.31 2.7 47 10 0.38 2.8 50 
140dB-
80Hz 80 0.27 11 30 63 0.37 15 22 58 0.44 14 19 

1cm/s 
Ordinary  27 0.23 2.8 78 20 0.31 3 71 15 0.38 2.7 57 
140dB-
80Hz 185 0.28 16 31 165 0.38 20 31 155 0.47 23 31 

The explanation of this evidence is likely to be found in the fluidization quality being 

extremely poor and unstable in ordinary conditions; indeed, unable to overcome the 

cohesiveness of the fine powder, most of the fluid menages to flow across the bed only by 

finding channels of minimum resistance. Spreading across the bed, these channels allow for a 

bypass of an appreciable volume of gas, thus hampering the quality of fluid-solid contact, 

which is the main factor ruling any adsorption process. 

 
Fig. 45 AC Norit adsorption rate for ordinary and sound assisted tests. u=1.5cm/s; C0=10%vol. 
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Therefore, it is most likely that adsorption mainly takes place on those aggregates placed at 

the wall of the gas channels, whereas most of the adsorption surface is nearly precluded to the 

fluid. Soon after the extremely quick saturation of the adsorption sites on those easily 

available aggregates, CO2 is logically found to appear in the effluent gas. Therefore, the rather 

steep slope (i.e. high rCO2) of the CO2 concentration profile is due to the above-mentioned 

majority of fluid bypassing the bed without truly taking part to the adsorption process. After 

this sharp rise, a likewise abrupt decrease of slope can be observed in the breakthrough curve, 

which very slowly goes to saturation. The explanation of this behaviour is twofold: the 

channels being subjected to perturbations, which bring fresh aggregates into contact with 

CO2, and the smaller portion of fluid actually permeating the bed. In other words, while most 

of the inflow CO2 bypasses the bed, only a small fraction takes part to the adsorption, which 

is actually very slow, as clearly confirmed by the extremely slow breakthrough curve tail, 

which practically accounts for the whole adsorption process. In particular, the extremely 

slowness of the breakthrough tail is probably due to action of two different aspects: the slow 

adsorption kinetics yielded by the poor fluidization quality and the fact that, despite a fixed 

flow of CO2 is fed to the bed, only a limited fraction takes part to adsorption while the 

majority flows through the bed unaltered (i.e. the CO2 flow actually undergoing adsorption is 

smaller than the nominal one, because of the bypassing gas), thus reasonably slowing down 

the process. On the contrary, the sound assisted tests are characterized by more regular 

breakthrough curves. Indeed, as clearly shown in Fig. 45, no abrupt change of slope is present. 

Moreover, the application of acoustic fields allows not only to enhance the adsorption 

capacity of the activated carbon (i.e. the total amount of CO2 adsorbed until saturation) but 

also to speed up the adsorption process (namely the time for CO2 to approach the saturation 

value is remarkably decreased) due to fastest adsorption kinetics. This is likely due to the 

enhancement of the fluidization quality (which brings better gas-solid contact and mass 

transfer coefficients) yielded by the application of the acoustic field. In particular, the 

application of the sound greatly enhances the break-up mechanism of fluidizing aggregates 

[131,133], thus continuously renewing the surface exposed to the fluid.  

In order to verify these considerations a further test has been carried out. This test has been 

started in ordinary condition, and only at a time t=t*, corresponding to the above-mentioned 

change of slope typical of ordinary adsorption test, the sound has been switched on (Fig. 46). 
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Fig. 46 AC Norit breakthrough curve obtained switching on the sound at t=t*. u=1.5cm/s; C0=10%vol.  

The analysis of the curve obtained clearly shows that for t<t* the CO2 concentration profile is 

reasonably the same as that obtained in ordinary conditions (i.e. the bypassing gas makes the 

CO2 concentration abruptly rise). At t=t* the CO2 concentration suddenly drops down before 

rising up again, but following now the typical trend of the sound assisted test. This behaviour 

confirms the ability of the sound to better exploit the adsorption capacity of the activated 

carbon. Indeed, as soon as the sound has been switched on, that specific surface, precluded to 

the fluid in ordinary conditions, suddenly becomes available causing CO2 concentration to 

drop down because of the renewed activated carbon adsorption capacity. 

III.3.1.1.1 Effect of SPL 

The effect of SPL on CO2 adsorption efficiency has been evaluated by carrying out tests at 

fixed frequency (80Hz) and different sound intensity (from 120 up to 140dB). The 

comparison among all the tests performed in terms of breakthrough curves, moles of CO2 

adsorbed, tb and W are reported in Fig. 47. The data obtained in ordinary conditions have also 

been reported for comparison. The analysis of these results is rather clear: the SPL effect on 

CO2 adsorption process reflects what observed in the fluidization tests. Indeed, the adsorption 

process undergoes a significant enhancement only when SPLs higher or equal to 125dB are 

applied, which is perfectly consistent with the obtained activated carbon fluid-dynamic 

behaviour. 
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Fig. 47 AC Norit: effect of SPL on CO2 adsorption. a) Breakthrough curves; b) CO2 adsorption efficiency, 

in terms of nads, tb and W. u=1.5cm/s; C0=10%vol; f=80Hz.  

In particular, the best performances are obtained when the fluidization quality is maximum, 

namely when the gas-solid contact efficiency is maximized. Indeed, 125dB is a sort of 

threshold intensity beyond which any further increase of SPL is ineffective, and sure enough 

all the tests performed at higher SPL are very similar in terms of breakthrough curves shape, 

moles of CO2 adsorbed, tb and W. Whereas, the behaviour observed at 120dB is intermediate.  

These results are an additional proof of the tight link existing between the adsorption 

efficiency and the fluid-dynamics of the system. 

III.3.1.1.2 Effect of Sound Frequency 

In order to point out the effect of sound frequency on CO2 adsorption efficiency, tests have 

been performed at fixed SPL (140dB) and varying the sound frequency (from 20 to 300Hz). 

The comparison among all the tests performed in terms of breakthrough curves shape, moles 

of CO2 adsorbed, tb and W is reported in Fig. 48. 

As well as for the SPL, also the results obtained in these tests are in perfect agreement with 

those obtained from the fluidization tests. Indeed, the best results in terms of CO2 adsorption 

efficiency can be achieved when sound frequencies falling in the same optimum range (50-

120Hz) are applied. In particular, the best performances are obtained when the fluidization 

quality is maximum, namely when the efficiency of the gas-solid contact is the highest. 

Indeed, the tests performed at intermediate frequencies (50, 80 and 120Hz) are characterized 

by very similar behaviours (breakthrough curves, nads, tb and W). Whereas, the adsorption 

tests carried out at 20 and 300Hz are remarkably worse. 
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Fig. 48 AC Norit: effect of sound frequency on CO2 adsorption. a) Breakthrough curves; b) CO2 

adsorption efficiency, in terms of nads, tb and W. u=1.5cm/s; C0=10%vol; SPL=140dB. 

III.3.1.2 Effect of CO2 Partial Pressure 

Fig. 49 reports the breakthrough curves obtained in ordinary and sound assisted conditions for 

the tests performed at a fixed fluidization velocity (2cm/s) and at three different inlet CO2 

concentration (5, 10 and 15%vol. in N2).  
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Fig. 49 AC Norit breakthrough curves in ordinary and sound assisted conditions. u=2cm/s; a) C0=5%vol; 
b) 10%vol.; c) 15%vol. 

The analysis of the results reported in  

Tab. 12, shows, as expected, that the CO2 capture capacity of the adsorbent at a fixed 

temperature increases with CO2 partial pressure. This trend is absolutely consistent from a 

thermodynamic point of view since the CO2 partial pressure represents the driving force of the 

adsorption process. The adsorption process becomes faster with the increase of the CO2 inlet 

concentration, as confirmed by the decrease of t95-tb. In this case the increase of the CO2 inlet 

concentration corresponds to a decrease of tb as the result of the combined effect of two 

phenomena: on the one hand, from a thermodynamic point of view, the increase of PCO2 

implies an increase of the adsorption capacity of the sorbent, thus involving a consequent 
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increase of tb; but on the other the increase of PCO2 makes the adsorption process faster, thus 

implying a quicker saturation of the sorbent and consequently a decrease of tb. Therefore all 

these things considered, the latter aspect prevails on the first. As regards W, the 

abovementioned aspects counterbalance each other, thus keeping it constant.  

The experimental results have been elaborated and fitted by the Langmuir [48] equation: 

𝑛!"# = 𝑛!"#! !!!"!
!!!!!"!         (19) 

where nads are the moles of CO2 adsorbed per unit mass of activated carbon, 𝑛!"#! the moles 

adsorbed until saturation, b the affinity coefficient between the adsorbent and adsorbed phases 

and PCO2 the CO2 partial pressure in the gaseous phase. Fig. 50 reports the adsorption 

isotherms calculated in ordinary and sound assisted tests. Analysis of the curves highlights the 

beneficial effect played by the application of the acoustic field on adsorption performances.  

 
Fig. 50 AC Norit adsorption isotherms in ordinary and sound assisted test, u=2cm/s. 

Under sound assisted fluidization the adsorption isotherms move to more favorable adsorption 

conditions. Further, this evidence has been confirmed by the values obtained for the fitting 

parameters of the Langmuir equation; the isotherms obtained in sound assisted conditions are 

characterized by higher values not only of 𝑛!"#!  but also of b, which, being an affinity 

coefficient between the two phases, is expected to be the same. Therefore, the observed 

increase of b confirms how the application of the sound intrinsically affects the adsorption 

process making the activated carbon more affine to CO2, due to improved availability of its 

surface to CO2 molecules. 
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III.3.1.3 Effect of Fluidization Velocity 

In order to point out the effect of the fluidization velocity on the adsorption process tests have 

been performed at three different gas velocities (1, 1.5 and 2cm/s) for each CO2 inlet 

concentration (5, 10 and 15%vol.). It is possible to define a contact time as the ratio between 

the mass of adsorbent and the CO2 volumetric flow. From the data reported in Tab. 12 it 

emerges that an increase of the contact time (tc), i.e. a decrease of superficial gas velocity, 

results, as one might expect, in an increase of tb. As regards t95-tb, it decreases with the 

increase of the fluidization velocity (i.e. a decrease of the contact time) because the adsorption 

process becomes faster. As regards nads, under sound assisted conditions a decrease of tc 

results in an increase of the moles of CO2 adsorbed. This is probably due to the fact that at the 

highest fluidization velocities (i.e. the lowest contact times) the time it takes the fluid to flow 

the height of the bed is too low with respect to the time it takes for the adsorption to be 

completed. In other words, it is most likely that the timescale of the adsorption process is 

higher than the contact time corresponding to that fluidization velocity, i.e. the residence time 

is low and some CO2 may have passed through the bed unreacted, even when adsorption sites 

are available. Under ordinary fluidization conditions nads are not affected by any change of tc 

(i.e. fluidization velocity). This evidence is probably due to the fact that without the 

application of any acoustic field the fluidization quality is particularly poor for all the 

investigated fluidization velocities (i.e. the limit to the full exploitation of AC Norit surface is 

the not effective gas-solid contact, therefore any change of tc is negligible in terms of CO2 

uptake). As regards W, it generally increases with an increase of tc for the sound assisted test, 

whereas it is basically not affected by tc in the tests performed under ordinary fluidization 

conditions. However, it must be noted that the trend of W with tc is the complex result of 

several contributions. As a matter of fact, tb has been found to monotonically increase with tc, 

nonetheless, the dependence between W and tb is not trivial. Even though W is linearly 

proportional to nads at tb, the increase of tb with the increase of tc (namely decrease of inlet gas 

flow rate) would necessarily implies an increase of nads at tb and consequently an increase of 

W, only in the case of constant inlet gas flow rate. Since different tc mean different inlet gas 

flow rate the trend of nads at tb and W with tc cannot be predicted a priori. W is also dependent 

on nads (which is the denominator of the formula to calculate W) and, as stated above, the 

increase of tc results in an increase of nads under sound assisted fluidization conditions. 

Finally, it should be noted that the increase of tc should be disadvantageous for W because it 

implies a decrease of the adsorption kinetics (as confirmed by the increase of t95-tb).  
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In particular, the dependence of the breakthrough time on the contact time has been pointed 

out. The curves obtained are shown in Fig. 51, Fig. 52 and Fig. 53, for CO2 inlet concentration od 

5,10 and 15%vol., respectively, and the results are reported in Tab. 12.  

 

Fig. 51 AC Norit breakthrough curves in ordinary and sound assisted conditions. C0=5%vol; a) u=2cm/s; 
b) u=1.5cm/s; c) u=1cm/s. d) Breakthrough time as function of contact time.  

As a matter of fact, the fluidization velocity is expected to affect the breakthrough time 

because the mere increase of the fluidization velocity results in decrease of the contact time. 

However, as clearly shown in Fig. 51d, Fig. 52d and Fig. 53d the dependence of the 

breakthrough time on the contact time, i.e. the fluidization velocity, is linear, as one could 

expect, only for the tests performed in ordinary conditions. Whereas, the breakthrough time is 

found to exponentially increase with the contact time, namely decreasing the fluidization 

velocity from 2 to 1cm/s, for the sound assisted tests. This evidence is likely due to the role 

played by fluidization velocity in sound assisted tests. Indeed, in ordinary conditions the 

system is quite insensible to changes of fluidization velocity, being the fluidization quality 

always very poor. Therefore, the observed linear increase of the breakthrough time with the 

decrease of the fluidization velocity is only due the CO2 taking more time to flow through the 

bed. On the other side, in sound assisted tests, changes of the fluidization velocity greatly 

affect the fluid-dynamics of the system. In particular, the decrease of the fluidization velocity 

results in a more homogeneous fluidization regime, which is characterized by a lower by-pass 
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of gas through the bed with respect to the tests performed at higher fluidization velocity. This 

evidence is confirmed by the bed expansion curves reported in Fig. 29b, which shows a quiet 

sharp change of slope at superficial gas velocities higher than 1cm/s, thus confirming the 

occurrence of bubbles (i.e. bypass of gas). 

 

Fig. 52 AC Norit breakthrough curves in ordinary and sound assisted conditions. C0=10%vol; a) u=2cm/s; 
b) u=1,5cm/s; c) u=1.5cm/s. d) Breakthrough time as function of contact time. 

As a consequence, the breakthrough time is more than tripled passing from 2 to 1cm/s. 

Moreover, the fluidization velocity slightly affects the adsorption capacity of the activated 

carbon and the fraction of bed utilized until breakpoint, as clearly shown in Tab. 12. All the 

results presented so far have been performed at velocities higher than the minimum 

fluidization velocities (0.2cm/s). Then, further tests have been performed at lower superficial 

gas velocities (0.75, 0.5 and 0.25 and 0.1cm/s) and at 10%vol. of CO2 in the inlet stream, in 

order to investigate the behaviour of the breakthrough time (Fig. 54).  

The analysis of Fig. 54 suggests, as reasonably expected, that in ordinary conditions the 

breakthrough time keeps linearly increasing for fluidization velocities lower than 1cm/s. 

However, the most remarkable observation is that the trend obtained for the sound assisted 

tests is not monotone. In particular, after the above-mentioned exponential increase obtained 

decreasing the fluidization velocity from 2 to 1cm/s, two more sections can be identified, 

corresponding to different windows of fluidization quality. In particular, a further increase of 
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the contact time, obtained decreasing the gas velocity from 1cm/s down to 0.25cm/s, results in 

an exponential decrease of the breakthrough time; whereas, a linear increase of the 

breakthrough time is obtained by finally decreasing the fluidization velocity down to 0.1cm/s. 

It is worth noting that in this last section the breakthrough times obtained in the sound 

assisted tests are basically the same obtained in the tests performed in ordinary conditions. 

 

Fig. 53 AC Norit breakthrough curves in ordinary and sound assisted conditions. C0=15%vol; a) u=2cm/s; 
b) u=1.5cm/s; c) u=1cm/s. d) Breakthrough time as function of contact time. 

The first exponential decreasing trend of the breakthrough time is due to the worsening of the 

fluidization quality as a result of the further decrease of the fluidization velocity. On the other 

hand, the last section of the curve, namely the linear increase of tb, is due to the fact that the 

bed is not actually fluidized in the tests performed at the lowest velocities (0.25 and 0.1cm/s), 

being the minimum fluidization velocity 0.2cm/s. In other words, the fluidization quality is 

very poor and qualitatively very similar to that of the tests performed in ordinary conditions. 

That is the reason why the breakthrough times trend is quantitatively and qualitatively the 

same as the tests performed without the assistance of any acoustic field. 
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Fig. 54 AC Norit breakthrough times as functions of contact time for ordinary and sound assisted tests, 

C0=10%vol. in N2. 

III.3.1.4 Fluidized Bed vs Fixed Bed 

Two additional adsorption tests (u=1.5cm/s and C0=10%vol.) have been carried out in fixed 

bed (the fixed bed conditions have been ensured by reversing the flow inside the column, i.e. 

the gas flow has been fluxed from the top of the column) in order to actually prove the 

unsuitability of this configuration to carry out CO2 adsorption on fine powders. In particular, 

the first additional test has been performed on the activated carbon fine particles, and the 

second one on the pelletized activated carbon (180-400mm). 

The curves obtained are shown in Fig. 55a, which also reports as comparison the curves 

obtained in ordinary and sound assisted fluidization tests (140dB-80Hz) under the same 

operating conditions. Fig. 55b summarizes the corresponding adsorption performances. As 

expected, the fixed bed operation with the fine particles strongly worsen the adsorption 

process, in terms of breakthrough time (6s), W (2%) and CO2 adsorption capacity 

(0.18mmol/g), which is less than a half of that obtained under sound assisted fluidization 

conditions. Indeed, after t=tb the breakthrough curve sharply rises and goes to saturation. This 

behaviour, as expected, is due to the strong cohesiveness of the materials making the gas pass 

through the bed only through channels, namely without actually permeating it. The pelletized 

activated carbon can adsorb 0.21mmol/g of CO2 under fixed bed conditions. In other words, 

the use of sound assisted fluidized bed technology improves the gas-solid contact efficiency, 

thus enhancing the capture capacity by 76% with respect to the test performed under fixed 

conditions even on pelletized sorbent. This is probably due to diffusive resistances inside the 

pellets, which limit the exploiting of the entire available surface of the material. 
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Fig. 55 a) Breakthrough curves in ordinary fluidization, sound assisted fluidization and fixed bed 

conditions with powder and pellets; b) CO2 adsorption efficiency, in terms of nads, tb and W. u=1.5cm/s; 

C0=10%. 

In order to assess the feasibility of the sound assisted fluidization and to make a comparison 

among different technologies for the CO2 capture by adsorption, the results obtained have 

been elaborated in order to identify the operating conditions of the bed which could allow 

reaching a 90% capture in a realistic application.  

In particular, three parameters have been evaluated to identify the best operating conditions: 

t*, n* and W*, namely the time at which the process must be stopped in order to achieve 90% 

of CO2 capture (in other words, once this time is reached the adsorption process must be 

stopped and the bed regenerated), the moles correspondingly captured in this time and the 

fraction of bed used, respectively. As clearly reported in Tab. 13, the application of the 

acoustic fields of proper intensity and frequency allows to better exploit the capture capacity 

of the bed. Indeed, for for the same capture efficiency (90%), the application of an acoustic 

field makes it possible to remarkably increase the amount of CO2 captured and the fraction of 

bed used. Indeed, in a hypothetical realistic process when the adsorption process is stopped 

and the bed switched to regeneration a lower amount of bed would be exploited under all the 

other cases (fixed bed, ordinary and worse sound assisted fluidized bed conditions). 

Tab. 13 Results of the adsorption tests when 90% of CO2 capture is reached. C0=10%; u=1.5cm/s. 

 t* 
min 

n*  
mmol/g 

W* 
% 

Ordinary Fluidization 0.7 0.03 8.2 
Fixed bed - powder 0.9 0.03 19 
Fixed bed - pellet 1.3 0.05 25 

140dB-80Hz 3.1 0.12 32 

Finally, the increase of temperature due to the exothermicity of the process is the same as that 

obtained in fluidization conditions (2-3K). Considering that the moles of CO2 adsorbed are 
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remarkably lower, the advantage of fluidized bed over fixed bed due to the higher heat 

transfer capacity is evident. In other words, the obtained temperature increase, normalized to 

the moles of CO2 adsorbed, is almost a half of that obtained under fixed bed conditions, being 

nads in fixed bed conditions a half of that obtained in fluidized bed conditions. This result is 

consistent with the data reported by other authors in fixed bed conditions [137]. The lower 

increase of temperature under fluidized conditions is due to the high heat transfer capacity 

typical of fluidized beds. 

On the basis of all these results, it can be inferred that sound assisted fluidization of fine solid 

sorbents is a valid alternative technology to the fixed bed one, which require also an 

additional previous step of pelletization.  

III.3.2 Activated Carbon Sigma Aldrich 

III.3.2.1 Effect of the Sound Application  

Fig. 56a and b show the comparison between the breakthrough curves obtained in ordinary and 

sound assisted fluidization conditions for the tests performed at 1.5cm/s and 15%vol. of CO2 

in linear and logarithmic scale concentration, respectively. 

 
Fig. 56 AC Sigma breakthrough curves obtained in ordinary and sound assisted conditions in linear (a) 

and logarithmic (b) scale. C0=15%vol.; u=1.5cm/s 

The analysis of the curves suggests that the application of the sound greatly enhances the 

breakthrough time, which, as reported in Tab. 14, in sound assisted conditions is about five 

times the value obtained in ordinary conditions. 

 

 

 

 

a 
 

b 
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Tab. 14 Results of the adsorption tests obtained for AC Sigma. 

Superficial 
gas velocity 

Sound 
Parameters 

CO2 inlet concentration 
5% 10% 15% 

tb 
s 

nads 
mmol/g 

W 
% 

t95-tb 
min 

tb 
s 

nads 
mmol/g 

W 
% 

t95-tb 
min 

tb 
s 

nads 
mmol/g 

W 
% 

t95-tb 
min 

2cm/s 
Ordinary 23 0.24 18 6 14 0.38 13 5 11 0.49 11 5 
140dB-
80Hz 63 0.31 38 5 54 0.48 39 4 42 0.64 33 4 

1.5cm/s 
Ordinary 31 0.21 21 7 24 0.38 17 7 12 0.49 9 8 
140dB-
80Hz 91 0.32 42 6 68 0.50 37 5 59 0.69 33 5 

1cm/s 
Ordinary 44 0.23 20 14 14 0.38 13 5 28 0.52 14 10 
140dB-
80Hz 174 0.35 52 8 143 0.51 51 7 126 0.71 47 7 

The application of the sound affects also the global adsorption capacity. Indeed, the total 

amount of CO2 adsorbed until saturation, nads, is increased of 28% with respect to the test 

performed in ordinary conditions (Tab. 14). W is also greatly enhanced by sound. Finally, the 

application of the sound improves the kinetics of the entire process, as confirmed by the 

values of t95-tb.  

III.3.2.2 Effect of CO2 Partial Pressure 

Fig. 57a, b and c reports the breakthrough curves obtained sound assisted conditions (140dB-

80Hz) for three different CO2 inlet concentration at 1.5cm/s. 

As regards the influence of CO2 partial pressure, the analysis of the results reported in Tab. 14, 

shows, as expected, that the CO2 capture capacity of the adsorbent increases with CO2 partial 

pressure. This trend is absolutely consistent from a thermodynamic point of view since the 

CO2 partial pressure represents the driving force of the adsorption process. Similarly to what 

observed for the AC Norit, the increase of the CO2 inlet concentration results in a decrease of 

tb and t95-tb.  

The experimental results have been elaborated and fitted by the Langmuir equation (18) in 

order to obtain the adsorption isotherm, reported in Fig. 57d. 
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Fig. 57 AC Sigma breakthrough curves obtained in sound assisted conditions (140dB-80Hz) with (a) 

C0=5%vol; (b) C0=5%vol. and (c) C0=5%vol. d) Adsorption isotherm. u=1.5cm/s. 

III.3.2.3 Effect of Fluidization Velocity 

In order to point out the effect of the fluidization velocity on the adsorption process tests have 

been performed at three different gas velocities (1, 1.5 and 2cm/s) for each CO2 inlet 

concentration (5, 10 and 15%vol.). The data reported in Tab. 14 show that an increase of the 

contact time, namely a decrease of fluidization velocity, results in an increase of tb. As regards 

the kinetics, an increase of the fluidization velocity results in a faster adsorption process, as 

clearly confirmed by the decreasing trend obtained for t95-tb. As regards nads, a decrease of tc 

results in a slight increase of the moles of CO2 adsorbed under sound assisted conditions. This 

is probably due to the fact that for the highest fluidization velocities the timescale of the 

adsorption process is slightly higher than the contact time corresponding to that fluidization 

velocity. On the contrary the CO2 uptake is not affected by changes of fluidization velocity 

under ordinary fluidization conditions because the fluidization quality is always very poor for 

all the investigated fluidization velocities (i.e. the any change of tc do not affect the 

availability of AC Sigma surface). As regards W, it generally increases with an increase of tc 

under sound assisted conditions, whereas the trend is not always monotone under ordinary 

fluidization conditions.  

a 
 

b 
 

c 
 d 
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Fig. 58 AC Sigma breakthrough curves in ordinary and sound assisted conditions. C0=5%vol; a) u=2cm/s; 

b) u=1.5cm/s; c) u=1cm/s. d) Breakthrough time as function of contact time. 

Several aspects influence the trend of W. As defined W is linearly proportional to nads at tb 

and, as stated above, tb has been found to be an increasing monotonic function of tc. However, 

this increase of tb with tc, does not necessarily lead to an increase of nads at tb, and 

consequently an increase of W, since at different tc correspond different inlet gas flow rates. 

Under sound assisted fluidization conditions the increase of tc also results, as said before, in a 

slight increase of nads, which is the denominator of the formula to calculate W (i.e. W is 

inversely proportional to nads). Finally, the increase of tc implies a decrease of the adsorption 

kinetics (as confirmed by the increase of t95-tb), thus negatively affecting W.  

As for the AC Norit, the dependence of the breakthrough time on the contact time has been 

pointed out. The curves obtained are shown in Fig. 58d, Fig. 59d and Fig. 60d, and the results are 

reported in Tab. 14. As observed for AC Norit, for the sound assisted tests the breakthrough 

time is found to exponentially increase with tc, namely decreasing the fluidization velocity 

from 2 to 1cm/s, whereas the trend is linear in ordinary conditions.  
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Fig. 59 AC Sigma breakthrough curves in ordinary and sound assisted conditions. C0=10%vol; a) 

u=2cm/s; b) u=1.5cm/s; c) u=1cm/s. d) Breakthrough time as function of contact time. 

This evidence is due to the fact that, the decrease of the fluidization velocity results in a more 

homogeneous fluidization regime, which is characterized by a lower by-pass of gas through 

the bed with respect to the tests performed at higher fluidization velocity. This evidence is 

confirmed by the bed expansion curves reported in Fig. 32, which shows a change of slope at a 

superficial gas velocities higher than 0.3cm/s, thus confirming the occurrence of bubbles (i.e. 

bypass of gas) for increasing values of fluidization velocity. 
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Fig. 60 AC Sigma breakthrough curves in ordinary and sound assisted conditions. C0=15%vol; a) 

u=2cm/s; b) u=1.5cm/s; c) u=1cm/s. d) Breakthrough time as function of contact time. 

III.3.3 Zeolite H-ZSM-5 

III.3.3.1 Effect of the Sound Application and Fluidization Velocity  

Fig. 61a and b the comparison between the breakthrough curves obtained in ordinary and 

sound assisted fluidization conditions in linear and logarithmic scale concentration, 

respectively. show the comparison between the breakthrough curves obtained in ordinary and 

sound assisted fluidization conditions, at a superficial gas velocity of 2 and 5cm/s, 

respectively. The analysis of the curves suggests that for this material the application of the 

acoustic field does not affect the shape of the breakthrough curves and, consequently, the 

global adsorption capacity, namely the CO2 adsorbed until saturation.  
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Fig. 61 Breakthrough curve as obtained in fluidized bed tests carried out with H-ZSM-5 in ordinary 
conditions and under the effect of an acoustic field (140dB-80Hz). C0=10%vol.; a) u=2/s; b) u=5cm/s. 

Analysis of data reported in Fig. 61 and Tab. 15, shows that in all the operating conditions the 

amount of CO2 adsorbed, nads, is about 0.3mmol/g.  
Tab. 15 Results of the adsorption tests obtained for H-ZSM-5. C0=10% 

Fluidization velocity 2cm/s 5cm/s 

 tb 
s 

nads 
mmol/g 

W 
% t95-tb tb 

s 
nads 

mmol/g 
W 
% t95-tb 

Ordinary Fluidization 90 0.29 39 22 39 0.30 39 3 
140dB-80Hz 119 0.29 52 4 45 0.29 47 2 

There is a positive effect of the application of sound on the breakthrough times, the kinetics of 

the process (t95-tb) and consequently the fraction of bed utilized until break point (W). As 

regards the effect of the fluidization velocity a higher superficial gas velocity corresponds to 

lower breakthrough times due to the decrease of the contact time between the gaseous and 

solid phases; in other words, the CO2 concentration front takes less time to reach the outlet of 

the bed, as confirmed by the linear dependence observed between the breakthrough times and 

the contact times.  

Similarly to what observed for AC Norit an increase of the fluidization velocity results, even 

though in a slighter way, in a decrease of W and t95-tb (i.e. improvement of the kinetics).  

III.3.3.2 Effect of CO2 Partial Pressure 

Fig. 62a, b, c and d reports the breakthrough curves obtained sound assisted conditions 

(140dB-80Hz) for three different CO2 inlet concentration at 1.5cm/s. 

As regards the influence of CO2 partial pressure, the analysis of the results reported in Tab. 16, 

shows, as expected, that the CO2 capture capacity of the adsorbent increases with CO2 partial 

pressure. This trend is absolutely consistent from a thermodynamic point of view since the 

CO2 partial pressure represents the driving force of the adsorption process. 
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Similarly to what observed for the two activated carbons, the increase of the CO2 inlet 

concentration results in a decrease of tb and t95-tb. Whereas, a decrease of W can be observed.  

The relative adsorption isotherm, obtained fitting the he experimental results by Langmuir 

equation (18), is reported in Fig. 62d.  

 
Fig. 62 H-ZSM-5 breakthrough curves obtained in sound assisted conditions (140dB-80Hz) with (a) 

C0=5%vol.; (b) C0=10%vol. and (c) C0=15%vol. d) Adsorption isotherm. u=1.5cm/s. 

Tab. 16 Results of the adsorption tests obtained for H-ZSM-5. u=1.5cm/s 

Sound Parameters 

CO2 inlet concentration 
5% 10% 15% 

tb 
s 

nads  
mmol/

g 

W 
% 

t95-tb 
min 

tb 
s 

nads  
mmol/g 

W 
% 

t95-tb 
min 

tb 
s 

nads  
mmol/g 

W 
% 

t95-tb 
min 

140dB-80Hz 80 0.16 42 9 96 0.26 36 8 130 0.33 33 7 

III.3.4 Zeolite 13X 

III.3.4.1 Effect of the Sound Application  

Fig. 63a and b show the comparison between the breakthrough curves obtained in ordinary and 

sound assisted fluidization conditions for the tests performed at 1.5cm/s and 15%vol. of CO2 

in linear and logarithmic scale concentration, respectively. 
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Fig. 63 13X breakthrough curves obtained in ordinary and sound assisted conditions in linear (a) and 

logarithmic (b) scale. C0=15%vol.; u=1.5cm/s 

The analysis of the curves suggests that the application of the sound greatly enhances the 

breakthrough time, which, as reported in Tab. 17, in sound assisted conditions is more than 

three times the value obtained in ordinary conditions. 
Tab. 17 Results of the adsorption tests obtained for 13X. 

Superficial 
gas velocity 

Sound 
Parameters 

CO2 inlet concentration 
5% 10% 15% 

tb 
s 

nads  
mmol/

g 

W 
% 

t95-tb 
min 

tb 
s 

nads  
mmol/g 

W 
% 

t95-tb 
min 

tb 
s 

nads  
mmol/g 

W 
% 

t95-tb 
min 

1.5cm/s 
Ordinary  81 0.09 40 5 64 0.18 31 6 64 0.27 31 4 
140dB-
80Hz 281 0.22 63 7 221 0.37 55 8 

201 0.41 64 4 

3cm/s 
Ordinary  83 0.19 41 5 69 0.33 37 7 59 0.34 43 3 
140dB-
80Hz 115 0.23 46 6 88 0.35 44 4 78 0.37 53 3 

4.5cm/s 
Ordinary  81 0.20 50 5 55 0.32 45 4 40 0.32 47 2 
140dB-
80Hz 80 0.23 47 4 65 0.34 49 3 54 0.35 59 3 

The application of the sound affects also the global adsorption capacity. Indeed, the total 

amount of CO2 adsorbed until saturation, nads, is increased of 51% with respect to the test 

performed in ordinary conditions (Tab. 17). W is also greatly enhanced by sound. Finally, the 

application of the sound improves the kinetics of the entire process as confirmed by the values 

of t95-tb.  

III.3.4.2 Effect of CO2 Partial Pressure 

Fig. 64a, b, c and d reports the breakthrough curves obtained sound assisted conditions 

(140dB-80Hz) for three different CO2 inlet concentration at 1.5cm/s. 

As regards the influence of CO2 partial pressure, the analysis of the results reported in Tab. 17, 

shows, as expected, that the CO2 capture capacity of the adsorbent increases with CO2 partial 
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pressure. This trend is absolutely consistent from a thermodynamic point of view since the 

CO2 partial pressure represents the driving force of the adsorption process. Also in this case, 

the increase of the CO2 inlet concentration results in a decrease of tb. 

The relative adsorption isotherm, obtained fitting the experimental results by Langmuir 

equation (18), is reported in Fig. 64d.  

 
Fig. 64 13X breakthrough curves obtained in sound assisted conditions (140dB-80Hz) with (a) C0=5%vol.; 

(b) C0=10%vol. and (c) C0=15%vol. d) Adsorption isotherm. u=1.5cm/s. 

III.3.4.3 Effect of Fluidization Velocity 

In order to point out the effect of the fluidization velocity on the adsorption process tests have 

been performed at three different gas velocities (1.5, 3 and 4.5cm/s) for each CO2 inlet 

concentration (5, 10 and 15%vol.). All the trends observed for the two activated carbons are 

confirmed. Indeed, the data reported in Tab. 17 show that an increase of tc, namely a decrease 

of fluidization velocity, results in an increase of tb and t95-tb, and a slight increase of nads under 

sound assisted conditions. As regards W, it has a not monotone trend in under sound assisted 

conditions, whereas it generally decreases with a decrease of the fluidization velocity under 

ordinary fluidization conditions.  
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Fig. 65 13X breakthrough curves in ordinary and sound assisted conditions. C0=5%vol; a) u=4.5cm/s; b) 

u=3cm/s; c) u=1.5cm/s. d) Breakthrough time as function of contact time. 

Like already stated for the two activated carbons, the trend of W with tc is not at all trivial 

and, consequently it cannot be predicted a priori. As defined, W is linearly proportional to nads 

at tb and inversely proportional to nads. Even though an increase of tc means, as stated above, 

an increase of tb, this does not necessarily lead to an increase of nads at tb and consequently of 

W. The increase of tc results under sound assisted fluidization conditions, as said before, in a 

slight increase of nads, which is the denominator of the formula to calculate W, and in an 

increase of t95-tb (i.e. slowdown of the adsorption kinetics), thus negatively affecting W. 

In particular, the dependence of breakthrough on the contact time has been pointed out. The 

curves obtained are shown in Fig. 65, Fig. 66 and Fig. 67, and the results are reported in Tab. 17. 

As observed for AC Norit, for the sound assisted tests the breakthrough time is found to 

exponentially increase with tc, namely decreasing the fluidization velocity from 2 to 1cm/s, 

whereas the trend is linear in ordinary conditions.  
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Fig. 66 13X breakthrough curves in ordinary and sound assisted conditions. C0=10%vol; a) u=4.5cm/s; b) 

u=3cm/s; c) u=1.5cm/s. d) Breakthrough time as function of contact time. 

This evidence is due to the fact that, the decrease of the fluidization velocity results in a more 

homogeneous fluidization regime, which is characterized by a lower by-pass of gas through 

the bed with respect to the tests performed at higher fluidization velocity. This evidence is 

confirmed by the bed expansion curves reported in Fig. 32, which shows a change of slope at a 

superficial gas velocities higher than 0.3cm/s, thus confirming the occurrence of bubbles (i.e. 

bypass of gas) for increasing values of fluidization velocity. 
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Fig. 67 13X breakthrough curves in ordinary and sound assisted conditions. C0=15%vol; a) u=4.5cm/s; b) 

u=3cm/s; c) u=1.5cm/s. d) Breakthrough time as function of contact time. 

III.3.5 HKUST-1 

III.3.5.1 Effect of the Sound Application 

Fig. 68a and b show the comparison between the breakthrough curves obtained in ordinary and 

sound assisted fluidization conditions (140dB-80Hz) for the tests performed at 1.5cm/s and 

15%vol. of CO2 in linear and logarithmic scale concentration, respectively. The analysis of 

the curves suggests that the application of the sound greatly enhances the breakthrough time, 

which, as reported in Tab. 18, in sound assisted tests is more than five times the value obtained 

in ordinary conditions. 
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Fig. 68 HKUST-1 breakthrough curves obtained in ordinary and sound assisted conditions in linear (a) 

and logarithmic (b) scale. C0=15%vol.; u=1.5cm/s  

The application of the sound affects also the global adsorption capacity. Indeed, the total 

amount of CO2 adsorbed until saturation, nads, is increased up to values of 53% with respect to 

the tests performed in ordinary conditions (Tab. 18). W is also greatly enhanced by sound, 

moving from values lower than 6%, in the tests performed in ordinary conditions, up to 33%, 

in the sound assisted tests. 
Tab. 18 Results of the adsorption tests obtained for HKUST-1.  

Sound Parameters 

CO2 inlet concentration 
5% 10% 15% 

tb 
s 

nads  
mmol/g 

W 
% 

t95-tb 
min 

tb 
s 

nads  
mmol/g 

W 
% 

t95-tb 
min 

tb 
s 

nads  
mmol/g 

W 
% 

t95-tb 
min 

Ordinary Fluidization 23 0.32 6 30 27 0.53 7 23 26 0.78 8 19 
140dB-80Hz 186 0.51 29 22 165 0.92 30 10 141 1.14 29 12 

Finally, the application of the sound greatly improves the kinetics of the entire process. 

Indeed, the application of acoustic fields allows to speed up the adsorption process: under 

sound assisted conditions the time for CO2 to approach the saturation value is remarkably 

decreased, being both the values of nads and average rate of CO2 adsorption higher than those 

obtained in ordinary conditions. This is also confirmed by the values of t95-tb. 

As for the AC Norit also in this case, the effectiveness of the sound in enhancing the 

adsorption process has been confirmed by switching on the sound during a test started in 

ordinary conditions (Fig. 69). 
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Fig. 69 HKUST-1 breakthrough curve obtained switching on the sound at t=t*. u=1.5cm/s; C0=15%vol.  

The analysis of the curve obtained clearly shows that for t<t* the CO2 concentration profile is 

reasonably the same as that obtained in ordinary conditions (i.e. the bypassing gas makes the 

CO2 concentration abruptly rise). At t=t* the CO2 concentration suddenly drops down before 

rising up again, but following now the typical trend of the sound assisted test. This behaviour 

confirms the ability of the sound to better exploit the adsorption capacity of the material. 

Indeed, as soon as the sound has been switched on, that specific surface, precluded to the fluid 

in ordinary conditions, suddenly becomes available causing CO2 concentration to drop down 

because of the renewed HKUST-1 adsorption capacity. 

III.3.5.1.1 Effect of SPL 

The effect of SPL on CO2 adsorption efficiency has been evaluated by carrying out tests at 

fixed frequency (120Hz) and different sound intensity (125, 130 and 140dB). The comparison 

among the tests performed in terms of breakthrough curves are reported in Fig. 70. The data 

obtained in ordinary conditions have also been reported for comparison. 

The analysis of these results is rather clear: the SPL effect on CO2 adsorption process reflects 

what observed in the fluidization tests. Indeed, for sound intensities lower than 140dB the 

adsorption process is remarkably worse. A sound intensities lower than 140dB are not enough 

to obtain a proper fluidization quality. It is most likely that the part of the bed which is not 

properly fluidized does not really take part to the adsorption process, thus worsening the 

adsorption effectiveness in terms of nads, tb, W. These results are an additional proof of the 

tight link existing between the adsorption efficiency and the fluid-dynamics of the system, 

namely with the gas-solid contact efficiency. 
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Fig. 70 HKUST-1: effect of SPL on CO2 adsorption performance. a) C0=5%; b) C0=15%. f=80Hz.  

III.3.5.1.2 Effect of Sound Frequency  

In order to point out the effect of sound frequency on CO2 adsorption efficiency, tests have 

been performed at fixed SPL (140dB) and different sound frequency (from 20 to 300Hz). The 

comparison among the tests performed in terms of breakthrough curves are reported Fig. 71. 

The data obtained in ordinary conditions have also been reported for comparison. 

As well as for the SPL, also the results obtained in these tests are in perfect agreement with 

those obtained from the fluidization tests. As inferred from the fluidization tests, the effect of 

the sound frequency in the investigated range is not monotone. More specifically, the 

frequencies falling in the range 50-120Hz represent in the optimum range for this material 

also in terms of adsorption efficiency.  

 
Fig. 71 HKUST-1: effect of sound frequency on CO2 adsorption performance. a) C0=5%; b) C0=15%. 

SPL=140dB.  

III.3.5.2 Effect of CO2 Partial Pressure 

Fig. 72a, b, c and d reports the breakthrough curves obtained sound assisted conditions 

(140dB-120Hz) for three different CO2 inlet concentration at 1.5cm/s. 
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As regards the influence of CO2 partial pressure, the analysis of the results reported in Tab. 18, 

shows, as expected, that the CO2 capture capacity of the adsorbent increases with CO2 partial 

pressure. This trend is absolutely consistent from a thermodynamic point of view since the 

CO2 partial pressure represents the driving force of the adsorption process. 

Similarly to what observed for the two activated carbons, the increase of the CO2 inlet 

concentration results in a decrease of tb. Whereas, W is kept constant.  

The relative adsorption isotherm, obtained fitting the he experimental results by Langmuir 

equation (18), is reported in Fig. 72d.  

 
Fig. 72 HKUST-1 breakthrough curves obtained in sound assisted conditions (140dB-80Hz) with (a) 

C0=5%vol.; (b) C0=10%vol. and (c) C0=15%vol. d) Adsorption isotherm. u=1.5cm/s. 

III.3.6 Comparison Among the Different Adsorbent Materials 

On the basis of the results obtained all the adsorbent materials have been compared (Fig. 73 

and Tab. 19) in terms of nads, tb, t95-tb, W and moles of CO2 adsorbed at tb (nads at tb). HKUST-1 

is by far the adsorbent characterized by the highest CO2 adsorption capacity, as clearly 

confirmed by the most favorable adsorption isotherm (Fig. 73d), whereas, the activated 

carbons and the zeolites follow, respectively. As regards the activated carbons, the Sigma 

Aldrich one is characterized by the best adsorption performances. Indeed, in all the 
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investigated conditions, it adsorbs a higher amount of CO2 (as also confirmed by the more 

favorable adsorption isotherm) in considerably less time.  

Tab. 19 Comparison of the experimental results obtained for all the adsorbent materials in the adsorption 

tests performed under sound assisted conditions (140dB-80Hz). u=1.5cm/s. 

Materials 

CO2 inlet concentration 
5% 10% 15% 

nads  
mmol/g 

tb 
s 

t95-tb 
min 

W 
% 

nads at tb  
mmol/g 

nads  
mmol/g 

tb 
s 

t95-tb 
min 

W 
% 

nads at tb 
mmol/g 

nads  
mmol/g 

tb 
s 

t95-tb 
min 

W 
% 

nads at tb 
mmol/g 

AC Norit 0.28 114 29 15 0.042 0.37 63 22 15 0.056 0.44 58 19 14 0.062 
AC Sigma 0.32 334 6 42 0.135 0.50 249 6 37 0.182 0.69 216 5 33 0.230 
H-ZSM-5 0.16 168 9 41 0.068 0.26 124 8 36 0.093 0.33 104 7 33 0.110 

13X 0.22 351 7 63 0.139 0.37 276 8 55 0.202 0.41 251 4 64 0.265 
HKUST-1 0.51 414 22 29 0.148 0.92 365 10 30 0.272 1.14 312 12 29 0.334 

Considering that different mass of adsorbent has been used for the different materials, tb are normalized to AC Norit. 

Moreover, it also gives the highest tb, W and kinetics. In particular, its kinetics is comparable 

to that obtained for zeolite 13X. Since the activated carbons are characterized by very similar 

FT-IR spectra (Fig. 16b and Fig. 19), the observed different adsorption performances cannot be 

referred to different chemical functionalities. Besides, not even the different BET surface area 

(Tab. 20) can account for these differences, since the AC Sigma BET surface is slightly lower 

than that of AC Norit. So their different behaviour is mainly due to the different pore size 

distribution.  

 

 
Fig. 73 Comparison of all the adsorbent materials in sound assisted conditions (140dB-80Hz). a) C0=5%; 

b) C0=10%; c) C0=15%; d) Adsorption isotherms. u=1.5cm/s.  
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Moreover, from the analysis of the TG curves obtained in air, it emerges that a high amount 

of unburned material (~ 20% in weight, possibly metal residuals) is detected in the case of AC 

Norit, thus meaning that it is characterized by a remarkable amount of inorganic matter. It is 

possible that this inorganic matter can be responsible of a different pore distribution with 

respect to the AC Sigma (i.e. some of the pores can be occluded). 

The results obtained for both the zeolites used in this work, agree with several works reported 

in literature, which rank zeolites among the fastest adsorbents, reaching equilibrium capacity 

within minutes [82]. They are both characterized by faster adsorption kinetics with respect to 

AC Norit, whereas, their kinetics are comparable to that of AC Sigma. In particular, the 13X 

is the zeolite giving the best adsorption capacity, tb, W and nads at tb. This difference could be 

due the different structure and nature of the extraframework cation of the two zeolites. Indeed, 

the Si/Al ratio and the number/nature of extraframework cations play a major role in 

controlling the CO2 adsorptive properties [76,77]. In particular, the most promising zeolites 

for CO2 adsorption are those having a low Si/Al ratio, corresponding to high content of 

extraframework cations, because the presence of aluminum atoms in the structure introduces 

negative framework charges that are compensated with exchangeable cations within the pores. 

In the case of zeolite 13X (Si/Al=1.25) these cations are Na+, which are capable of generating 

strong electrostatic interactions with carbon dioxide. In other words 13X has a basic 

functionality, which can interact with the acid CO2 molecules. On the contrary, the H-ZSM-5 

is characterized by a prevalence of Si atoms with respect to Al ones (Si/Al=140) and the 

extraframework cations are H+, which give the zeolite an acid character, thus reducing the 

affinity towards CO2 molecules with respect to zeolite 13X. However, the different behaviour 

shown by the two zeolites could also be to their different pore size distribution. In order to 

assess which one between the nature of extraframework cations and the pore size distribution 

is the main parameter influencing the adsorption process under the investigated operating 

conditions, a limited number of tests has been performed on a zeolite Y. In particular, this 

zeolite has been exchanged in the ammonium (NH4-Y) and sodium form (Na-Y) in order to 

analyze the effect of the extraframework cation, the pore size distribution being the same. The 

results obtained, reported in Fig. 74, show that the two zeolites are characterized by very 

similar adsorption performances (0.18 and 0.19mmol/g for NH4-Y and Na-Y, respectively), 

thus meaning that the adsorption process is predominantly affected by the pore size 

distribution rather than by the chemical nature of the extraframework cation under the 

investigated operating conditions. 
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From the comparison between the activated carbons and the zeolites it emerges that the AC 

Sigma is characterized by adsorption performances comparable to that of 13X, in terms of tb, 

whereas it has a higher adsorption capacity (nads) and kinetics and a lower W. So, AC Sigma 

is competitive with respect to 13X, despite the basic character of the zeolite.  

 
Fig. 74 Comparison between the breakthrough curves obtained for NH4-Y and Na-Y. C0=10%; u=1.5cm/s. 

Summing up, HKUST-1 is adsorbent characterized by the best CO2 adsorption capacity. As 

regards the kinetics, HKUST-1 is slower than both the zeolites and activated Sigma Aldrich 

(lower t95-tb). Moreover, it also has worse performances in terms of W. However, in the 

scenario of a real adsorption process the interest is focused on the CO2 adsorbed until tb, 

because when the concentration reaches the break point, the flow is stopped or diverted to a 

fresh adsorbent bed (so that the used bed can be regenerated). From this point of view, 

HKUST-1 is still the sorbent giving the best performances. The larger adsorption capacity 

compensates the lower W (namely slower adsorption kinetics) and indeed the moles adsorbed 

at tb are higher with respect to all the other adsorbent.  

On the basis of the above-mentioned considerations, it emerges that their different adsorption 

performances can be explained referring to their different pore size distribution. However, 

none of the textural properties, BET surface area and the total pore volume, can be considered 

as key adsorption parameters. Sure enough, AC Norit is characterized by the best textural 

properties (Tab. 20). On the contrary, HKUST-1 has a BET surface area lower than AC Sigma 

and comparable to that of 13X and AC Norit (Tab. 20).  

Likewise, its total pore volume is remarkably lower than that of both the two activated 

carbons. However, despite these average characteristics, HKUST-1 shows the best CO2 

uptake. This means that although the total pore volume is the highest in the activated carbons, 

not all the pores are effective for an optimum adsorption capacity. As a matter of fact, Fig. 75a 
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and b show that the amount of CO2 adsorbed is practically independent of the total volume of 

pores and BET surface area, respectively. Since no correlation can be found with the total 

pore volume one has to assume that there should be a specific pore size which is the key 

factor defining the total adsorption capacity on the studied materials.  

 
Fig. 75 Correlation between the amount of CO2 adsorbed (nads) and: (a) BET surface area; (b) total pore 

volume.  

In this sense, Fig. 76a and b show the comparison among the pore size distributions of all the 

adsorbents and the relationship between the adsorbed amount of CO2 and the total volume of 

micropores falling in the range 8.3-12Å (Tab. 21). In this case, an increasing correlation can be 

clearly observed, thus confirming the importance of a specific porosity for CO2 adsorption 

under the investigated operating conditions, i.e. at low CO2 partial pressure. In light of all 

these considerations, the excellent performance observed for HKUST-1 under all the 

investigated operating conditions can be explained. This sample, with an average BET surface 

area (680m2/g) as well as total pore volume (0.66cm3/g) with respect to the activated carbons 

and zeolites, exhibits the maximum volume of that specific micropores (0.15cm3/g) already 

suggested as primarily responsible for the observed uptake. In summary, the total amount of 

CO2 adsorbed increases with increasing volume of specific micropores. 

Tab. 20 Comparison among the textural properties of all the adsorbent materials. 

Materials Total pore Volume 
cm3/g 

BET surface are, 
m2/g 

AC Norit 1.34 1060 
AC Sigma 1134 589 

13X 0.41 751 
H-ZSM-5 0.41 400 
HKUST-1 0.66 734 

Na-Y/NH4-Y 0.40 756 
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This result is in agreement with literature works reporting that adsorbent materials 

characterized by a high volume of narrow micro-pores (< 1 nm) exhibited high CO2 

adsorption capacity [138-142], even though they refer to CO2 partial pressure as high as 1atm, 

i.e. larger than that typical of a post-combustion flue-gas (CO2 1−15%vol. and atmospheric 

pressure). On the other side, performances of solid sorbents under typical flue gas conditions 

have been poorly investigated. In particular, in micropores (<20Å [49]) adsorption is 

governed by CO2-surface interactions, with wall-wall interactions also playing a significant 

role. More specifically, adsorbate-adsorbent interaction energy is substantially enhanced 

when the adsorption takes place in very narrow pores because of the overlapping of the 

potential fields from the neighboring walls [140,141]. In other words, due to this extra strong 

pore wall-wall interaction, CO2 that is close to the pore walls has enhanced interaction with 

the surfaces, thus leading to the complete filling of the narrow micropores. Under these 

circumstances, the adsorption mechanism consists of volume-filling rather than surface 

coverage typical of meso-macroporous materials and the CO2 molecules occupying these 

narrow micropores are bound as significantly condensed phase (i.e in a liquid-like state). In 

particular, Sevilla et al. [140] reported that this enhancement of the adsorption energy is 

negligible for micropore widths larger than around three/four times the molecular diameter of 

CO2 molecules (3.3Å). Therefore, in agreement with the results obtained, the size limit for 

volume-filling can be reasonably established at about 12Å for CO2. On the contrary, other 

pores present in the adsorbent materials, such as either larger micropores (>12Å) and 

mesopores (>20Å) or too small micropres (<8.3Å), are most likely not relevant for CO2 

capture under post-combustion operating conditions (i.e PCO2 ≤ 1atm). This is because they 

are unable to adsorb significant CO2 amounts at the very low relative pressures existing under 

such conditions: micropores with dimension lower than 8.3Å are probably too small for these 

low CO2 partial pressures, whereas in larger pores (>20Å) CO2 is considerably less densely 

adsorbed, being the influence of the surface-surface interactions weaker. This is the reason for 

the lack of correlation between the CO2 adsorption capacity of sorbents and their overall 

textural properties such as total pore volume or BET surface area.  
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Fig. 76 Comparison among the pore size distribution of all the adsorbent materials (a) and correlation 

between the amount of CO2 adsorbed (nads) and the volume of specif micropores (8.3-12 Å) (b).  

Tab. 21 Volume of specific micropores of all the adsorbent materials 

Materials 
Volume of micropores in the 

range 8.3-12 Å, 
cm3/g 

AC Norit 1.79 10-2 
AC Sigma 4.03 10-2 

13X 1.43 10-2 
H-ZSM-5 1.06 10-2 
HKUST-1 1.54 10-1 

Na-Y/NH4-Y 6.92 10-3 

III.4 Desorption Tests 

III.4.1 HKUST-1 Regeneration Strategy  

An accurate study has also been carried out in order to select an efficient regeneration strategy 

for HKUST-1. From the thermogravimetric analysis (Fig. 28) it is clear that 350°C is a thermal 

limit of the material, even though the decomposition of the material starts around 200°C. So, 

two temperatures, 250 and 150°C have been investigated as possible regeneration 

temperatures. However, before testing the material in the fluidization column, a CO2 TPD 

analysis has been performed to have more detailed information about possible damages to the 

HKUST-1 structure. Fig. 77 reports the CO2 TPD profiles obtained at 250°C (a) and 150°C (b).  
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Fig. 77 CO2 TPD profiles of HKUST-1 at 250°C (a) and 150°C (b). 

As regards the CO2 TPD tests performed at 250°C (Fig. 77a), the first TPD profile is 

characterized by two peaks, the former at around 130°C and the latter around 250°C. The 

same sample subjected to two more TPDs showed a different behavior. In particular, the 

second peak tends to disappear while the first peak has a decreasing trend, thus meaning that 

the sample is not stable. In order to assess the nature of this instability, namely whether this 

instability is related to the fact that a temperature of 250°C is not enough to properly 

regenerate the material (so the CO2 desorbed tends to decrease with respect to the first TPD) 

or enough to decompose the material, a blank test has been performed without any previous 

CO2 adsorption step. The TPD profile obtained for the blank test was also reported in Fig. 77a. 

For temperatures lower than 210°C the sample does not desorb anything, whereas a peak is 

present at 250°C, thus confirming that HKUST-1 starts decomposing around 250°C, 

according to the thermogravimetric analysis in inert atmosphere. As next step, a lower 

temperature (150°C) was investigated. To this aim both pretreatment and TPD were 

performed at 150°C. Both the TPD profiles obtained present only a peak at 130°C, which, in 

particular, decreases in the second TPD (Fig. 77b). The lowering of the CO2 adsorption 

capacity cannot be attributed to the sample decomposition, since the blank test has 

demonstrated that it starts at 210°C. It can be concluded that the treatment at 150°C is too 

mild to properly regenerate the material by completely desorbing the CO2 trapped into the 

pores.  

On the basis of all these considerations, it clearly emerges that the sole thermal treatment is 

not effective to properly regenerate HKUST-1. Therefore, a mixed regeneration strategy has 

been adopted: bland temperature and vacuum have been combined by heating up the sample 

to 150°C under a vacuum of 50mbar. This treatment has not been performed in the fluidized 

bed apparatus but extra-situ. In order to verify the repeatability of the adsorption tests and the 

effectiveness of this regeneration strategy the two tests performed at 140dB-80Hz (with 5 and 

15% CO2 inlet concentration) have been carried out once again after 10 adsorption/desorption 
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cycles and the obtained results have been compared to those relative to the first adsorption 

test under the same operating conditions (Fig. 70). The adsorption effectiveness can be 

properly reproduced as confirmed by the overlap of the repeated test breakthrough curve with 

the original one (Fig. 78) and by all the adsorption parameters (Tab. 22).  
Tab. 22 Experimental results obtained for fresh and regenerated HKUST-1. SPL=140dB, f=80Hz 

 

CO2 inlet concentration 
5% 15% 

tb 
s 

nads  
mmol/g 

W 
% 

t95-tb 
min 

tb 
s 

nads  
mmol/g 

W 
% 

t95-tb 
min 

Fresh 146 0.48 24 22 141 1.14 29 12 
Regenerated after 10 cycles 141 0.45 25 20 150 1.11 31 10 

Regenerated without vacuum     41 0.94 17 10 

As a further confirmation the same test has been repeated but regenerating the sample without 

vacuum, namely only heating the powder up to 150°C. In this case the powder cannot be 

entirely regenerated. Indeed, the adsorption effectiveness is remarkably worsened (Fig. 78 and 

Tab. 22). 

All these remarks regarding the effectiveness of the regeneration process (bland temperature 

and vacuum) and the repeatability of the adsorption tests have been confirmed by 

characterizing the sample after it has been subjected to several adsorption-desorption cycles. 

 
Fig. 78 HKUST-1: effect of the regeneration strategy. SPL=140dB, f=80Hz; C0=15%; u=1.5cm/s.  

The comparison of chemico-physical characteristics between the freshly prepared and 

regenerated HKUST-1 after 10 cycles is reported in Fig. 79 and Tab. 23.  The FT-IR and XRD 

analyses showed that the sample keeps its chemical and crystallographic structure even after 

several adsorption-desorption treatments. This is also confirmed by the SEM image, which 

shows that the crystal is not affected by the treatments. Finally, the TG plot confirms structure 

is the same as the fresh sample, indeed the same collapse of the HKUST-1 structure can be 
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observed at 350°C. The particle size distribution is also substantially unvaried as well as the 

BET surface area and pore size distribution.  

 

 
Fig. 79 Freshly prepared HKUST-1 and regenerated after 10 cycles (a) XRD patterns, (b) FT-IR spectra, 

(c) thermogravimetric analysis in N2, (d) particle size distribution, (e) SEM analysis, (f) pore size 

distribution. 

Tab. 23 Properties of freshly prepared and regenerated after 10 cycles HKUST-1. 

HKUST-1 DSAUTER, µm 
with/without US 

BET surface 
area, m2/g Bulk density, kg/m3 

Fresh 4.3/5.6 734 265 
Regenerated after 10 cycles 3.2/5.5 662 265 

Fig. 80 reports the pore size distribution of HKUST-1 after being subjected to TPD analyses. It 

is clear that the material subjected to TPD at 250°C is characterized by a dramatic decrease of 

all the porosity and in particular of the microporosity falling in the range 8-12Å, i.e. that 

effective for the adsorption process. This loss of porosity, which is due to the degradation 

process that HKUST-1 undergoes at 250°C, negatively affects the adsorption capacity as 
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observed from the TPD analysis. On the contrary, after the TDP at 150°C, the material keeps 

its original porous structure (especially that in the effective range 8-12Å) and adsorption 

capacity, being the material stable after the regeneration strategy at 150°C (under vacuum).  

 
Fig. 80 Pore size distribution of freshly prepared HKUST-1 and after TPD at 250 and 150°C. 

III.4.2 TSA on Activated Carbon Norit 

III.4.2.1 Effect of the Sound application  

The effect of sound application on the desorption performances has been highlighted by 

performing desorption tests according to the isothermal purge strategy. Both the ordinary and 

sound assisted desorption tests have been performed after an ordinary adsorption step so that 

the comparison between the desorption tests could be made the adsorbed CO2 being the same. 

Fig. 81 reports the comparison between the desorption curves obtained under ordinary and 

sound assisted conditions. The desorption curve has the general form of a peak followed by a 

tail. In particular, the concentration pattern reaches a maximum in CO2 outlet concentration 

for relatively low desorption times (about 2min), indicating that most of the adsorbed CO2 is 

quickly removed from the samples. After this fast stage, the curves show a relatively longer 

tail indicating that the residual CO2 desorption takes place slowly as a result of driving force 

reduction. The sample can be completely regenerated, i.e. the amount of CO2 desorbed is the 

same as the amount adsorbed in the previous adsorption step, under both ordinary and sound 

assisted fluidization conditions. However, the desorption profiles are quite different. It is clear 

that the application of the sound makes it possible to obtain a more regular desorption profile, 

whereas, the desorption curve is particularly unstable under ordinary fluidization conditions. 

This is most likely due to the formation of gas preferential channels inside the bed, thus 
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inevitably hindering the regular desorption of CO2 from the bed of particles. The actual 

temperature profile inside the bed has also been reported in Fig. 81. As one could anticipate, 

the heating rate is faster under sound assisted conditions due to better gas-solid contact 

efficiency, and consequently higher heat transfer coefficients, with respect to the test 

performed under ordinary fluidization conditions. 

 
Fig. 81 CO2 outlet concentration profiles during not isothermal desorption tests under ordinary and sound 

assisted conditions. The sorbent temperature profile is also reported. N2 purge flow rate=67.8Nl h-1; 

heating=20°C min-1 up to Tdes=70°C. Adsorption step: ordinary fluidization; inlet flow rate=67.8Nl h-1; 

C0=10%vol.  
CO2 desorption curves have then been elaborated in order to analyze the desorption 

efficiency. In particular, the main parameters characterizing the CO2 desorption process are 

the CO2 recovery, the time required for the desorption process at a fixed regeneration level 

(td) and CO2 mean concentration in the desorbing flow (Cm), especially the latter being the 

key aspect to be considered for CO2 storage purposes.  

In particular, the CO2 mean concentration in the desorbing flow up to the time ti can be 

expressed as: 
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where 𝑉!
!"! and 𝑉!

!! represent the total volume of CO2 desorbed and the N2 purge gas volume 

fed to the column up to time td, respectively, 𝑄!!!
!"# 𝑡  and 𝑄!!

! , the CO2 outlet flow rate 

(which is function of the time t) and the N2 purge gas flow rate fed to the column. 

Due to the shape of desorbing profiles (Fig. 81), a higher desorption time (td) is expected to 

give a more effective regeneration, namely a higher CO2 recovery, but it leads to a lower CO2 

mean concentration (Cm) in the desorbing flow. This is clearly shown in Fig. 82: the CO2 

recovery is an increasing function of td, whereas, on the contrary, Cm is a decreasing function 
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of td. More specifically, higher recovery levels require higher time for desorption, but, at the 

same time, the desorption rate decreases with time due to a lower driving force, and, 

consequently, a larger purge volume is required to remove the residual adsorbed CO2, thus 

determining a dilution effect. 

 
Fig. 82 CO2 recovery level (a) and CO2 mean concentration of the desorbing stream (b) as functions of the 

desorption time. N2 purge flow rate=67.8Nl h-1; heating=20°C min-1 up to Tdes=70°C. Adsorption step: 

ordinary fluidization; inlet flow rate=67.8Nl h-1; C0=10%vol.  
A direct comparison between the ordinary and sound assisted desorption tests has been made, 

the CO2 recovery level being the same.  

 
Fig. 83 Comparison between the ordinary and sound assisted (140dB-80Hz) desorption tests in terms of 

desorption time (a) and CO2 mean concentration of the desorbing stream (b), at different recovery levels. 

N2 purge flow rate=67.8Nl h-1; heating=20°C min-1 up to Tdes=70°C. Adsorption step: ordinary 

fluidization; inlet flow rate=67.8Nl h-1; C0=10%vol. 
In particular, five different desorption times, ti, have been considered, each corresponding to a 

different CO2 recovery percentage (R = i) of the total adsorbed amount and CO2 mean 

concentration, Ci (e.g. t90 corresponding to a 90% of total CO2 recovered by desorption, and 

C90 being the related CO2 mean concentration in the desorbing flow). The values and trends of 

ti and Ci are reported in Fig. 83a and b, respectively. It is clear that the application of the sound 

makes it possible, from one hand, to remarkably increase the desorption rate (shorter 

desorption time needed to obtain the same CO2 recovery, Fig. 83a) and, on the other, to 
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significantly enrich the recovered CO2 stream (up to 32% more concentrated streams, the 

recovery being the same). 

Considering that in a real CO2 capture process the efficiency of the regeneration would 

obviously be affected by the previous adsorption step, a not isothermal desorption test has 

been performed after a sound assisted adsorption phase. The obtained desorption profile and 

the relative values and trends of ti and Ci are reported in Fig. 84 and Fig. 85, respectively.  

 
Fig. 84 CO2 outlet concentration profiles during not isothermal desorption tests under ordinary and sound 

assisted conditions. The sorbent temperature profile is also reported. N2 purge flow rate=67.8Nl h-1; 

heating = 20°C min-1 up to Tdes=70°C. Adsorption step: ordinary fluidization/140dB.80Hz; inlet flow 

rate=67.8Nl h-1; C0=10%vol. 
It is clear that the application of the sound in both the phases (adsorption and desorption) 

makes it possible to further increase the enrichment of the desorbing stream (up to 12% more 

concentrated stream than that obtainable from the same sound assisted desorption test 

performed after ordinary adsorption), since the amount of the capture CO2 is increased. As 

regards td, it is worth noting that for a fixed recovery level, the amount of CO2 to be desorbed 

after the sound assisted adsorption is larger than after the ordinary adsorption (since the total 

amount of adsorbed CO2 is larger). Nonetheless, the desorption time is slightly decreased. 
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Fig. 85 Comparison between the ordinary and sound assisted (140dB-80Hz) desorption tests in terms of 

desorption time (a) and CO2 mean concentration of the desorbing stream (b), at different recovery levels. 

N2 purge flow rate=67.8Nl h-1; heating=20°C min-1 up to Tdes=70°C. Adsorption step: ordinary 

fluidization/140dB.80Hz; inlet flow rate=67.8Nl h-1; C0=10%vol. 
Finally, three consecutive desorption tests have been performed on the same sample of AC 

Norit under both ordinary and sound assisted fluidization conditions (for the sound assisted 

case the acoustic field has been applied in both adsorption and desorption phase). The 

obtained desorption profiles are reported in Fig. 86. 

 
Fig. 86 Comparison between three consecutive desorption profiles obtained from the same AC Norit 

sample under both ordinary (a) and sound assisted, 140dB-80Hz, (b) fluidization conditions. N2 purge flow 

rate=67.8Nl h-1; heating=20°C min-1 up to Tdes=70°C. Adsorption step: ordinary fluidization 

(a)/140dB.80Hz (b); inlet flow rate=67.8Nl h-1; C0=10%vol. 

The regeneration process is very stable under sound assisted fluidization conditions, as clearly 

confirmed by the perfect overlapping of the three desorption profiles (Fig. 86b). On the 

contrary, the desorption curves are not replicable under ordinary fluidization conditions since 

when and where the formation of channels takes place inside the bed is random and, 

consequently, not predictable. 

III.4.2.2 Isothermal Purge Desorption Tests 

According to the experimental plan reported in Tab. 6, several CO2 recovery tests from the 

spent activated carbon were carried out in order to study the effect of operating conditions for 

CO2 capture by means of TSA. In particular, the effects of desorption temperature (Tdes) and 

N2 flow rate on AC Norit regeneration and CO2 recovery were investigated. Fig. 87 and Fig. 88 

report the CO2 desorption profiles as affected by desorption temperature and N2 purge flow 

rate, respectively.  

For each desorption temperature (even at ambient temperature) the adsorbed CO2 can be 

totally desorbed (recovery=100%), thus confirming that it is only weakly bonded on the AC 
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Norit surface, in agreement to literature indicating the CO2 adsorption on activated carbon as 

a physisorption [62]. Moreover, the concentration pattern reaches a maximum in CO2 outlet 

concentration, which, except for the desorption run at ambient temperature, is remarkably 

higher (at least doubled and up to almost 6 times) than the inlet value of 10% vol., for 

relatively low desorption times (about 2 min). 

As regards the effect of the regeneration temperature, as clearly shown in Fig. 87, the 

desorption curves become narrower and higher as the temperature increases, thus denoting a 

faster desorption process. This evidence can be ascribed to an enhancement of the 

regeneration kinetics, which is due to a decrease in CO2 adsorption capacity (i.e. enhancing 

the desorption) coupled to an increase in both N2 and CO2 molecular diffusivities. Similarly to 

what observed for Tdes, the results also show a positive effect on desorption rate induced by an 

increase of 𝑄!!
! , as confirmed by narrower desorption peaks corresponding to larger N2 purge 

flow rates (Fig. 88). More specifically, the time needed to obtain a desired CO2 recovery 

percentage monotonically decreases with both desorption temperature and N2 purge flow rate, 

as clearly observed in the inset of Fig. 87 and Fig. 88. The values of ti and Ci determined for 

each N2 purge flow rate and desorption temperature are listed in Tab. 24. 
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Fig. 87 CO2 outlet concentration profiles during desorption as a function of the desorption temperature. 

N2 purge flow rate = (a) 45.2Nl h-1, (b) 67.8Nl h-1 and (c) 90.4Nl h-1. SPL=140dB; Sound frequency=80Hz. 

In the inset, td and Cm vs Tdes. Adsorption step: SPL=140dB; Sound frequency=80Hz; inlet flow 

rate=67.8Nl h-1; C0=10%vol. 
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Furthermore, from Tab. 24 (plotted in the inset of Fig. 87 and Fig. 88), it is clear that, for each N2 

purge flow rate, the CO2 mean concentration in the desorbing flow increases with increasing 

temperatures but it decreases with higher CO2 recovery levels. Differently, for each 

temperature and for each CO2 recovery level, the purge gas flow rate has no influence on the 

maximum CO2 concentration, which is mainly due to the desorption temperature. Moreover, 

Ci slightly varies with 𝑄!!
!  and not monotonically (inset of Fig. 88). Indeed, from Equation 20, 

𝑉!
!"! is not dependent on the N2 purge flow rate, since for a fixed CO2 recovery level, the 

volume of CO2 desorbed is constant (i.e. it is the same fraction of the total volume of CO2 

adsorbed); on the contrary, 𝑉!
!!  is affected by 𝑄!!

! , since it is given by 𝑉!
!! = 𝑄!!

! ∙ 𝑡! , 

however, the dependence is not obvious. Indeed, when 𝑄!!
!  increases, the time, ti, required to 

reach the stated CO2 recovery level decreases accordingly, thus resulting in a not monotone 

trend of 𝑉!
!! and consequently of Ci. 

In conclusion, from the data reported in Tab. 24, it is clear that desorption temperatures lower 

than 70°C are always not favorable, because, for all the investigated 𝑄!!
! , the desorbing gas 

flow is more diluted than the gas stream treated during the adsorption step (i.e. Ci < 10%vol.). 

At 70°C, a 90% recovery level would yield a desorbing gas as concentrated as the inlet gas 

stream, whereas the mean CO2 concentration could be increased to about 15% for a solid 

regeneration level of 60%. However, this compromise would eventually lead to a 40% 

decrease in the activated carbon CO2 adsorption capacity after the regeneration. A desorption 

temperature of 150°C appears to be the best operating condition to obtain higher values of Ci: 

at 100°C and 130°C not even lowering the recovery level to 60% would yield an equally 

concentrated stream. Finally, it is worth to note that the time needed to obtain a 90% 

regeneration level at 150°C is almost the same that the time required to obtain a 70% 

regeneration level at 100°C (t90 at 150°C ≈ t70 at 100°C), whereas, t80 at 150°C is almost the 

same that t70 at 130°C. In order to maximize Ci for storage purpose, a desorption degree of 

80–90% obtained at 150°C and for desorption flow gas rate lower than 90Nl h-1 can be 

considered as the optimal operating conditions among those investigated, being a proper 

compromise between the amount of CO2 recovered and its concentration in the desorbed gas 

(26-29%vol.). 
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Fig. 88 CO2 outlet concentration profiles during desorption as a function of N2 purge flow rate. Desorption 

temperature= (a) 40°C, (b) 70°C and (c) 130°C. SPL=140dB; Sound frequency=80Hz. In the inset, td and 

Cm vs Qp. Adsorption step: SPL=140dB; Sound frequency = 80Hz; inlet flow rate=67.8Nl h-1; C0=10%vol. 
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Tab. 24 Results obtained from the AC Norit isothermal purge desorption tests. 

𝑸𝑵𝟐
𝒑 , Nl h-1 Tdes, °C t60 t70 t80 t90 C60 C70 C80 C90 

45.2 
40 8.8 10.9 13.9 18.5 9.6 9.0 8.2 7.0 
70 5.8 7.0 8.6 11.7 13.7 13.5 12.5 10.6 
130 2.8 3.1 3.5 4.2 25.2 26.3 26.4 25.1 

67.8 

25 10.7 14.0 18.8 26.4 6.1 5.5 4.7 3.8 
40 6.7 8.7 11.5 16.5 9.3 8.5 7.4 5.9 
70 4.0 4.9 6.2 8.7 14.5 14.0 12.8 10.5 
100 2.4 2.8 3.3 4.1 22.0 22.1 21.5 19.9 
130 2.0 2.2 2.5 3.0 26.2 27.1 27.2 25.4 
150 1.65 1.9 2.2 2.9 29.5 30.1 29.4 26.4 

90.4 
40 4.5 5.7 7.5 10.7 9.1 8.4 7.4 5.9 
70 2.6 3.1 3.9 5.1 14.7 14.3 13.3 11.7 
150 1.3 1.5 1.8 2.2 26.1 26.6 26.0 24.2 

III.4.2.3 Separate Heating and Purge Desorption Tests 

As already discussed in the previous paragraph the main parameters characterizing the 

efficiency of the desorption process are the purity of the recovered CO2 stream and the 

percentage of CO2 recovered with respect to that captured during the previous adsorption step. 

Since these two parameters have opposing trends, it is necessary to find the most convenient 

compromise between the two of them.  

In light of these considerations, a second regeneration method has been conceived in order to 

improve the performances in the desorption step, namely find a possible way to enrich the 

recovered CO2 stream with respect to the standard regeneration strategy (desorption by purge 

at a fixed temperature). So, the second regeneration strategy is based on the idea of separating 

the contribution to the CO2 recovery given by Heating, which could be capable of yielding a 

pure CO2 stream, from that given by purge, which necessarily causes a dilution effect. More 

precisely, differently from the standard regeneration strategy described in the previous 

paragraph, during the heating step the column is not isolated, so a first CO2 recovery happens 

contextually to the heating of the activated carbon bed (i.e. CO2 is recovered only due to a 

thermal effect). Then, when no more CO2 is desorbed (i.e. the thermodynamic equilibrium 

corresponding to the chosen desorption temperature is reached and the CO2 still adsorbed to 

the sorbent surface cannot be recovered at that temperature) N2 is fluxed inside the column 

and the remaining CO2 is recovered, thus enhancing the recovery obtainable by the only 

heating step.  

According to the procedure described in details in the Experimental section, during the 

heating step the CO2 is recovered by sucking at constant flow rate and it is diluted in air. So, 
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knowing the suction flow rate and the CO2 concentration, the recovered carbon dioxide has 

been calculated by integration. The results obtained are reported in Tab. 25. 

Tab. 25 CO2 recovery during the heating and purge steps. 

Tdes, 
°C 

Recovery by 
Heating, % 

Recovery by 
Purge, % 

Total, 
% 

40 17.73 82.07 99.8 
70 48.02 51.18 99.2 
100 66.94 32.46 99.4 
130 79.53 19.77 99.3 
150 81.73 17.67 99.4 

It is clear that increasing desorption temperature the amount of CO2 desorbed is increased. 

This behaviour is due to the fact that at higher temperatures the thermodynamic equilibrium 

shifts towards conditions more and more unfavorable for adsorption, so more CO2 is desorbed 

and less is still adsorbed within the AC Norit pores. Fig. 89a reports the trend of the CO2 

recovery obtainable with the sole heating step as function of the desorption temperature. 

Clearly, the recovery monotonically increases with the temperature, passing from a value of 

about 18% at 40°C up to a value of about 82% at 150°C. So, heating is very efficient for 

desorbing carbon dioxide since a large part of the adsorbed carbon dioxide can be recovered 

(80% at 130°C).  

 

Fig. 89 a) CO2 recovery during Heating and Purge as function of desorption temperature; b) CO2 outlet 

concentration profiles during the purge step. Purge step: N2 purge flow rate=67.8Nl h-1; SPL=140dB; 

Sound frequency=80Hz. Adsorption step: SPL=140dB; Sound frequency=80Hz; inlet flow rate=67.8Nl h-1; 

C0=10%vol. 

However, it is clear that it is impossible to get back all the carbon dioxide whatever the 

temperature of the regeneration. Indeed, to recover the remainder it is necessary to lower the 

partial pressure of CO2 and this is possible using N2 as purge gas (purge step). Fig. 89b reports 

the outlet CO2 concentration profiles obtained during the purge step at the different desorption 
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temperatures. The trend obtained is coherent with the results obtained from the heating step: 

clearly, as Tdes is increased the desorption peak becomes lower, since less CO2, still adsorbed 

on the AC Norit surface, remains to be desorbed. In other words the trend obtained for the 

CO2 recovery by purge is complementary to that obtained for the CO2 recovery by heating 

(Fig. 89a), namely monotonically decreasing with Tdes. The closure of the mass balance, 

reported in Tab. 25, has been obtained calculating the CO2 recovery by purge by integration of 

the desorption peaks. 

 

Fig. 90 a) CO2 mean concentration (Cm) and recovery as function of purge time at different desorption 

temperatures. Purge step: N2 purge flow rate=67.8Nl h-1; SPL=140dB; Sound frequency=80Hz. 

Adsorption step: SPL=140dB; Sound frequency=80Hz; inlet flow rate=67.8Nl h-1; C0=10%vol. 

As already stated above, the purity of the CO2 recovered during the heating step is 

unfortunately affected by the experimental procedure used for these tests, which envisaged 

the suction of air from the atmosphere beside the CO2 desorbed from the bed. In other words, 

limitations due to the experimental apparatus end up diluting a stream that would be 100% 

pure CO2. In other words, eliminating the contribution given by the air from the suction the 

stream recovered by heating is CO2 100%vol. A remarkable result is that 80% of the captured 
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carbon dioxide can be recovered at a temperature of 130°C (which is a quiet mild desorption 

temperature) as a 100%vol. CO2 stream. Moreover, as already shown in the previous 

paragraph, the dilution does not depend on the purge flow rate but only on the purge volume. 

So, the only way to limit the dilution effect is to make the purge time very short. Now, it is 

interesting to define a mean CO2 concentration of the recovered stream (Cm), which takes into 

account the two separate steps of heating and purge. Fig. 90a and b report the trend obtained 

for Cm and the corresponding CO2 recovery as a function of the purge time (tp). For each 

curve the initial state is the end of the heating step. The CO2 purity decreases immediately 

with the introduction of the purge gas, whereas the CO2 recovery is accordingly increased. 

The observed decrease trend of Cm is obviously slower when the regeneration temperature is 

higher. Indeed, in this case, there is less CO2 to desorb still remaining inside the bed, namely 

the majority of the whole CO2 captured has already been desorbed during the heating step.  

For each fixed value of CO2 recovery it is possible, by elaborating the curves reported in Fig. 

90, to obtain the value of CO2 purity (Cm), thus obtaining a trend of Cm as a function of CO2 

recovery. Fig. 91 shows the comparison between the two regeneration strategies at the different 

desorption temperatures. It is clear that for each desorption temperature the heating and purge 

strategy always makes it possible to enrich the stream of CO2 recovered with respect to the 

isothermal purge strategy, the CO2 recovery level being the same. However, at the lowest 

desorption temperatures (40 and 70°C) the difference between the two methods is not so 

remarkable since only a minor fraction of the total CO2 captured is recovered due to heating 

(i.e. the majority of the CO2 is still recovered by purge, thus making the two methods more or 

less equivalent). On the contrary, already at 100°C the difference starts becoming appreciable. 

Temperatures higher than 100°C are enough to obtain 100%vol. CO2 purity with recovery 

levels higher than 50% and the maximum recovery still corresponding to a pure CO2 stream 

increases with desorption temperatures. Obviously, even at the highest desorption 

temperatures, the trends of Cm corresponding to the two different regeneration strategies tend 

to converge with increasing the CO2 recovery level. Indeed, even though for temperatures 

higher then 100°C more than 70% of the CO2 is recovered as a pure stream after the heating 

step, with increasing CO2 recovery levels the purge time becomes large enough to cause a 

remarkable dilution effect.  
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Fig. 91 a) CO2 mean concentration as function of recovery obtained with the isothermal purge and heating 

and purge strategies at different Tdes. Purge step: N2 purge flow rate=67.8Nl h-1; SPL=140dB; Sound 

frequency=80Hz. Adsorption step: SPL=140dB; Sound frequency=80Hz; inlet flow rate=67.8Nl h-1; 

C0=10%vol. 

III.4.3 Cyclic Adsorption/Desorption Tests 

TSA cyclic tests have been performed in order to verify the possibility of AC Norit reuse, to 

determine its CO2 adsorption capacity within consecutive cycles of adsorption–desorption. In 

particular, the desorption stage has been carried out according to the isothermal purge strategy 

described in the Experimental section. Fig. 92a reports the CO2 breakthrough curves and Fig. 

40°C 70°C 

100°C 130°C 

150°C 



RESULTS 

 125 

92c the regeneration profiles obtained for all the consecutive adsorption/desorption cycles. 

These curves have been worked out to evaluate: nads, tb, t95-tb and W.  

 
Fig. 92 Results of 16 adsorption/desorption cycles under sound assisted fluidization conditions. a) CO2 

outlet concentration profiles during consecutive adsorption tests; b) CO2 adsorption performances vs the 

number of cycles; c) CO2 outlet concentration profiles during consecutive desorption tests; d) sequence of 

16 CO2 adsorption/desorption cycles. Adsorption step: SPL=140dB; Sound frequency=80Hz; inlet flow 

rate=67.8Nl h-1; C0=10% vol. Desorption step: SPL=140dB; Sound frequency=80Hz; Tdes=70°C; N2 purge 

flow rate=67.8Nl h-1. 

The overlap of the adsorption/desorption profiles indicates that the activated carbon is very 

stable to cycles. Moreover, Fig. 92b reports all the parameters evaluated to define the CO2 

adsorption performances of the activated carbon over 16 consecutive adsorption–desorption 

cycles. Results clearly indicate that all the parameters are practically constant upon the 

number of cycles, thus implying that the material can be completely regenerated (i.e. 

adsorption is reversible) due to the establishment of relatively weak interactions between CO2 

molecule and the sorbent surface active sites, as widely confirmed by the related literature 

which commonly classifies activated carbons as physisorbents [62]. Most importantly, this 

feature is extremely desirable for potential industrial scale applications, especially if 

compared to other technologies based on solid sorbents (e.g. Calcium looping), which suffer 

from a rapid degradation of CO2 capture capability during multiple capture/regeneration 
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cycles (caused for example by pore blocking or adsorbent sintering), thus requiring a 

continuous make-up of fresh sorbent.  

III.5 Energy Cost Estimation 

An estimation of the electricity consumption of CO2 capture from a typical flue gas by a fixed 

bed adsorption process and subsequent sorbent regeneration is reported to be around 

2MJ/kgCO2 [143]. In particular, this value was obtained under adsorption operating conditions 

which are very similar to those used in our work and regeneration operating conditions typical 

of activated carbons [144]. On the basis of this literature value and the data reported in Fig. 55 

(comparison among fixed bed, ordinary fluidized bed and sound assisted fluidized bed) an 

energy cost estimation can be evaluated for the sound assisted fluidized bed technology.  

The sound generation system used in the experimental set-up implies an additional 

consumption of electrical energy under the application of acoustic fields. On the other hand, 

the increase of adsorption rate would yield a saving of energy during the adsorption phase, as 

the time needed for capturing a given amount of CO2 would be reduced. Moreover, the 

application of the sound also increases the kinetics of the sorbent regeneration, as shown in 

the previous paragraphs, thus being energy saving also during the regeneration phase, as 

already assessed in a recent study.  

On the basis of the experimental results obtained on lab-scale we can estimate the additional 

energy consumption related to the application of sound. When subjected to an acoustic field 

of 140dB-80Hz it can be evaluated that the reactor absorbs a power of around 2W (this energy 

requirements is the same in large scale applications). Considering for example the test 

performed at 1.5cm/s and 10%vol. of CO2 inlet concentration on AC Norit, by taking into 

account the duration of the sound assisted test necessary to achieve a 90% capture (3.1min), 

corresponding to 0.12mmol/g of CO2 captured, it gives an electricity consumption of 

0.64MJ/kgCO2 (178kWh/tonCO2).  

However, this is not an effective additional cost with respect to the same test performed in 

ordinary fluidized bed or fixed bed conditions. 

Indeed, making a comparison with the same amount of CO2 adsorbed, the time needed to 

capture the same amount of CO2 (0.12mmol/g) under ordinary fluidized bed and fixed bed 

(with pelletized sorbent) conditions is 12 and 5.4min, respectively. Considering that all the 

tests were performed at the same operating conditions, the energy required to pump the inlet 

gas flow during the first 3.1min is equivalent for all the tests.  
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Thus, the total energy consumption in all cases differs only by the energy required to sustain 

the process in ordinary fluidized bed and fixed bed tests for the additional time (about 9 and 

2min, respectively) as compared to the energy necessary for generating the acoustic field 

during the sound assisted test (3.1min). In light of these considerations and assuming as 

reference the abovementioned literature data on the fixed bed conditions, the total electricity 

consumption for CO2 adsorption and sorbent regeneration in a sound assisted fluidized bed 

can be estimated as high as 1.78MJ/kgCO2. So, this value is lower than that corresponding to 

the use of fixed bed, and, most importantly, it is remarkably lower than that typically obtained 

in an amine based absorption process for post combustion CO2 capture (up to 4.8MJ/ kgCO2 

[28,145]). 

III.6 Large Scale Application of Sound Assisted Fluidization 

As carefully reviewed in a recent work [146], sono-processing has been proven as a useful 

technique way not only to improve the fluidization quality and gas-solid mixing but also to 

intensify heat/mass transfer controlled reactions in numerous processes carried out at high 

superficial gas velocity (1–10m/s). However, the superficial gas velocity of a sound assisted 

fluidized bed to be used in an actual industrial process strictly depends on the dimension of 

the particles. In particular, for fine particles (i.e. <100µm) to be used it is necessary to work 

with superficial gas velocities in the order of the cm/s. In this case one of the main problems 

regarding the scale-up of sound assisted fluidization arises from sound intensity attenuation 

across the bed height. In particular, for such fine materials and for low frequency sound 

waves (around 100Hz), it can be estimated that the SPL is reduced by 10dB for each 10cm of 

bed [146]. So, it would not be possible to use bed higher than 40-50cm. Accordingly, the only 

way to scale-up the process is represented by increasing the reactor diameter. 

However, this diameter increase would lead to another cause of sound intensity attenuation, 

namely the divergence of the acoustic wave. At a large distance r from the source, the wave 

can be no longer considered as a plane wave and the total energy of the wave front is spread 

out over a spherical surface area 4πr2. Therefore, the intensity of the expanding spherical 

wave would be decreased proportionally to 1/r2. A feasible technique to avoid spherical 

spreading loss is to use an array of loudspeakers, which may produce a plane wave if 

conveniently placed. Theoretical calculations as well as already existing practical 

implementations for the physical reproduction of plane-wave acoustic fields by continuous 

planar and linear secondary source arrangements can be found in the specialized literature 
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[147,148]. Moreover, the use of an array of loudspeakers would also provide a greater 

reliability for continuous operation, since replacement of one of the loudspeakers can be 

easily carried out without the interruption of the sound assisted process. 

III.7 CO2 Capture by Ca-looping in a Sound Assisted Fluidized Bed 

In this section the result of a study on the capture performance of a fluidized bed of CaO at 

Ca-looping conditions as affected by acoustic vibrations are reported. This research activity 

has been carried out at the Department of Electronics and Electromagnetism - Faculty of 

Physics - University of Seville. The aim of this research activity was to verify the capability 

of sound assisted fluidization to be to a different CO2 capture process, which is characterized 

by remarkably higher operating temperatures. 

Carbonation of CaO particles occurs in two phases [149]. A first fast carbonation stage is 

characterized by the sorption of CO2 on the free surface of the particles. After that a thin layer 

of CaCO3 (between 30 and 50nm thick [149]) covers the free surface of the sorbent particles 

and CO2 sorption turns to be controlled by a much slower phase characterized by the diffusion 

of CO2 through the solid CaCO3 layer. It must be taken into account that carbonation of CaO 

during the fast phase proceeds under mass/heat transfer control. Thus, the rate of CO2 capture 

in the fast phase by a fluidized bed is not just controlled by the kinetics of the chemical 

reaction itself, but also by the transport of CO2 and heat to the particles surface. In this regard, 

carbonation can be hindered by poor and heterogeneous gas/solids contact and mass/heat 

transfer [150]. 

Acoustic vibrations are useful to promote gas/solids mixing uniformity in fluidized beds by 

forcing particle vibrations, which reduces aggregation and disrupts gas channels thus 

homogenizing fluidization and increasing the gas/solids contact efficiency [131]. On the other 

hand, sound waves induce a number of phenomena taking place at the gas/solids interface, 

such as acoustic streaming, which contribute to enhance mass/heat transfer rates in gas/solids 

reactors [151]. The fundamental principle is that attenuation of acoustic energy flux makes 

momentum flux available to force streaming motions around the solids. Accordingly, it is 

seen that the imposition of acoustic vibrations on a steady gas flow yields remarkable 

improvements in the efficiency of industrial processes such as fuel combustion, 

pyrometallurgical, and pollutant removal processes involving gas-solid reactions at high 

temperatures [151]. Altogether, the improvement of gas/solids contact efficiency in a 

heterogeneous fluidized bed and the enhancement of mass/heat transfer at the gas/solids 
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interface, would serve to enhance fast capture of CO2 in a fluidized bed carbonator at Ca-

looping conditions. 

Natural limestones are considered as the most suitable candidates to be employed in the Ca-

looping process due to their low price, wide availability and easy handling [152]. The capture 

capacity of calcined limestones in the fast phase decreases with increasing the number of 

calcination/carbonation cycles, which is attributed to the decrease of the sorbent reactive 

surface area as a result of material sintering during calcination at high temperatures [150,152]. 

Most natural limestones exhibit a residual fast capture capacity that remains constant after a 

large number of cycles, which is just about 0.06 (grams of CO2 sorbed/grams of CaO) [153]. 

Such a small value can be compensated by high solid circulation rates to obtain sustained 

capture efficiencies in pilot plants [154]. Nevertheless, enhancing the fast capture capacity 

and regenerability of Ca-based sorbents would represent a substantial benefit on the CaL 

process performance as long as it would allow for a reduction of the solid circulation rates and 

energy requirements in the calciner [152]. 

III.7.1 Experimental Section 

III.7.1.1 Materials 

CaO from Sigma Aldrich has been used as CO2 sorbent. Fig. 93a reports the particle size 

distributions and the Sauter mean diameter of the powder obtained by means of laser based 

diffractometry using a Mastersizer 2000, Malvern Instruments. According to the Sauter mean 

diameter, reported in Tab. 26, the powder belongs to Group C of Geldart classification. 

 
Fig. 93 a) Particle size distribution of CaO samples suspended in isopropanol (stirred and ultrasonicated); 

b) Pore size distribution of CaO.  

 

 

a 
 

b 
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Tab. 26 Properties of CaO. 

Materials DSAUTER, µm 
with US 

BET surface 
area, m2/g 

CaO 4.27 2.79 

Fig. 93b reports the pore size distribution and Tab. 26 the BET surface area. CaO is basically 

mesoporous (2nm < d < 100nm) and it is characterized by a very low surface area.  

III.7.1.2 Experimental Apparatus  

The experimental setup used in these experiments is schematized in Fig. 94. The material 

(100g), corresponding to a bed height of 5cm, is placed in a 50mm i.d. quartz reactor where it 

rests over a porous quartz plate that serves as gas distributor.  

 
Fig. 94 Sketch of the experimental setup. 1: Compressed gas used for carbonation (15% CO2/85% N2 

vol/vol). 2: Compressed gas used for calcination (dry air). 3: Mass flow controllers. 4: Temperature 

controller. 5: Furnace. 6: Quartz reactor. 7: Sound wave guide. 8: Elastic membrane. 9: Microphone. 10: 

Loudspeaker. 11: Differential pressure transducer. 12: Particulate filter. 13: Mass flow meter. 14: Gas 

analyzer. 15: Signal amplifier. 16: Signal generator. 17: Oscilloscope. 

The sound generation system consists of a digital signal generator that produces an electric 

sine wave of fixed frequency, which is amplified by a power audio amplifier. The amplified 

signal excites a 8W woofer loudspeaker, which can be placed far from the high temperature 

zone thanks to the ability of sound waves to propagate through the gas without significant 

losses. The acoustic vibration is driven to the reactor by means of a PVC wave guide. The 

Sound Pressure Level is sampled by a l/4” condenser microphone. An elastic membrane in the 

sound wave guide serves to prevent gas leakages and to protect the loudspeaker from 

elutriated particles. Measurements of the differential gas pressure ΔP between a point just 

above the gas distributor plate and atmospheric pressure were also performed at ambient 
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temperature by using a 40mm i.d. polycarbonate cell to which acoustic vibrations could be 

also applied. The CO2 concentration in the inlet and outlet gas streams has been measured by 

a Servomex 4900 infrared gas analyzer. 

III.7.1.3 Preliminary Fluid-dynamic Characterization 

The CaO has been previously characterized to assess its fluidization quality both in ordinary 

and sound assisted conditions, at atmospheric temperature and pressure. All the adopted 

sound parameters are reported in Tab. 27. For each test, pressure drop curves have been 

obtained.  

Tab. 27 Operating conditions of the fluidization tests. 

 SPL,  
dB 

Frequency,  
Hz 

CaO 130, 140, 150 100, 130, 160 

III.7.1.4 Ca-looping Tests 

All the operating conditions of the Ca-looping tests are reported in Tab. 28. For each test a 

fresh batch of CaO has been used. The inlet gas flow is fixed to 2000cm3/min (which is about 

five times the umf) and can be switched to dry air (used for calcination) or to a mixture of 

15%vol. of CO2 in N2 (used for carbonation) by means of mass flow controllers. The material 

is firstly subjected to a calcination step (T=900°C) for 15min during which Ca(OH)2 and 

CaCO3, present as impurities, decompose to CaO. A carbonation step (T=650°C) then 

proceeds, followed by subsequent calcination up to complete decarbonation. The CO2 

concentration in the column effluent gas is continuously monitored as a function of time 

during both carbonation and calcination steps.  

Tab. 28 Operating conditions of the Ca-looping tests. 

 SPL,  
dB 

Frequency,  
Hz 

CO2 inlet 
concentration in N2, 

%vol. 
CaO 130, 140, 150 100, 130, 160 15 

A preliminary study on the cyclic operation has been performed both in ordinary and sound 

assisted conditions (140dB-130Hz). In particular, a typical test consists of two 

carbonation/calcination cycles, performed on the same batch, namely without unloading the 

reactor.  
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III.7.2 Fluid-dynamic Characterization 

Fig. 95 shows the dimensionless pressure drop vs. gas velocity for fresh CaO, which exhibits 

in ordinary conditions a rather heterogeneous behavior. Once the gas velocity is sufficiently 

high to fluidize the bed, ΔP is stabilized around a value notably smaller than the static weight 

of the bed (ΔP0) and displays strong oscillations due to the visible development of transient 

channels through which the gas finds a bypass indicating very poor gas-solids contact 

efficiency.  

 
Fig. 95 Fluidization curves under ordinary and sound assisted conditions as affected by acoustic 

vibrations of different intensities, 130dB (a), 140dB (b) and 150dB (c), and frequencies (indicated). 

a 
 

b 
 

c 
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On the other hand, Fig. 95 demonstrates that acoustic vibrations serve to smooth the 

fluctuations of ΔP/ΔP0, which reaches a plateau that approaches the unity. In particular, as 

regards the sound frequency, the improvement of the fluidization quality is far more 

remarkable passing from 100 to 130Hz, whereas a further increase to 160Hz causes a less 

evident effect. As regards the SPL, an increase of the sound intensity results in an 

improvement of the fluidization uniformity. Visually, it is observed that gas channels are 

destabilized, the bed is expanded and gas-solids mixing uniformity is improved. For example, 

applying sound of intensity ∼150dB and frequency f = 130Hz, it is ΔP/ΔP0 ∼ 1 for gas 

velocities u > 2.5 cm/s, indicating fluidization uniformity. 

III.7.3 Ca-looping Tests 

CO2 breakthrough curves as affected by acoustic vibrations are plotted in Fig. 96a, the curve 

obtained in ordinary conditions is also reported as comparison. In order to evaluate the 

efficiency of the Ca-loping process two parameters have been evaluated: t5 and t10, which are 

the time it takes for CO2 outlet concentration to reach the 5 and 10% of the inlet 

concentration, respectively. All the results are reported in Tab. 29. As can be observed, the 

sound causes a significant drop of the CO2 concentration measured in the effluent gas during 

the first minutes of carbonation (fast phase). This is also confirmed by the remarkable 

increase of t5 observed for the sound assisted tests with respect to the ordinary one (Tab. 29). 

Moreover, as expected, there is a clear correlation between the enhancement of CO2 capture 

in the fast phase, which is ruled by the gas-solids mass/heat transfer, and the improvement of 

fluidization uniformity (as seen in Fig. 95). The main effect is observed when the sound 

intensity is increased, while the effect of frequency is less relevant. Note also that the CO2 

breakthrough curves tend to converge at t ≃ 50min when %CO2 ≃	
  10% (as clearly shown by 

the values obtained for t10, reported in Tab. 29, which are substantially the same for all the 

tests). This suggests that from this point, CO2 sorption becomes ruled by the slow diffusive 

phase for which the gas-solids mixing efficiency is not a determinant factor. As regards the 

effect of the sound parameters, the results obtained confirm the tight link existing between the 

fluidization quality and the effectiveness of the capture process. Indeed, as regards the 

frequency, a remarkable enhancement of the capture process can be observed passing from 

100 to 130Hz, whereas a further increase of the sound frequency is substantially negligible. 

All these remarks are confirmed by the values of t5 (Tab. 29). As regards the sound intensity, 

the results obtained confirm the beneficial effect deriving from an increase of SPL, which has 
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been observed in the fluidization tests. Indeed the test performed at 150dB is better then the 

test preformed at 140dB (being the frequency the same, 100Hz).  

 
Fig. 96 a) CO2 concentration in the effluent gas of the fludized bed (u=2.1cm/s) measured during 

carbonation as affected by acoustic vibrations. Results from blank tests (empty cell) are also shown. b) 

CO2 breakthrough curves obtained by turning on/off the acoustic vibration. 
In order to further confirm the capability of the sound in promoting the CO2 capture an ad-hoc 

test has been performed. In particular, CO2 breakthrough curves have been obtained by 

turning on/off the acoustic vibration during carbonation (Fig. 96b). Turning on acoustic 

vibration at t ≃ 6 min yields a marked drop of the %CO2 while turning it off gives rise to an 

increase of the %CO2. Note, however, that in this latter case the CO2 breakthrough curve 

keeps well below the curve obtained for the ordinary test in spite that the sound had been 

turned off. This indicates that the acoustic vibration applied during the first minutes of 

carbonation preconditioned the material behavior likely by irreversibly disrupting particle 

aggregates and destabilizing channels. On the other hand, Fig. 96b shows that application of 

sound when %CO2 = 10% (t=50 min) does not affect CO2 capture. At the slow carbonation 

stage, CO2 sorption is no longer controlled mainly by the gas-solid contact efficiency but by 

the diffusion of CO2 through the carbonate layer on the particles’ surface. Thus, it is 

explainable that turning on sound when carbonation has reached the diffusion controlled stage 

does not yield a remarkable effect. 

Tab. 29 Experimental results of the Ca-looping tests. 

Sound Parameters t5, 
min 

t10, 
min 

Ordinary 6 47 
140dB-100Hz 16 51 
140dB-130Hz 18 51 
140dB-160Hz 18 49 
150dB-100Hz 29 52 

 

a 
 

b 
 



RESULTS 

 135 

III.7.3.1 Effect of Sound on Repeated Carbonation/Calcination Cycles 

Gas pressure drop curves, obtained both in ordinary and sound assisted conditions, for the 

material after being subjected to the second calcination step are plotted in Fig. 97a (the curves 

obtained for the fresh CaO are also reported for comparison). As indicated by the large 

fluctuations of ΔP/ΔP0, the level of fluidization heterogeneity exhibited by the cycled CaO 

has further increased as compared to the fresh CaO.  

 
Fig. 97 a) Fluidization curves for fresh CaO and for CaO subjected to one calcination/carbonation cycle in 

ordinary and sound assisted conditions. b) CO2 breakthrough curves obtained during the carbonation 

phases of two calcination/carbonation cycles carried out successively in ordinary and sound assisted 

conditions. 
Note also that the particle size distribution (Fig. 98) of cycled CaO is shifted to smaller particle 

sizes due to its loss of mechanical strength, which makes the material more cohesive after one 

carbonation/calcination cycle. Nevertheless, application of acoustic vibrations on the cycled 

material serves to recover the material fluidizability.  

Gas pressure drops curves for the fresh and cycled materials subjected to acoustic vibrations 

are similar (Fig. 97a), which leads us to expect that acoustic vibrations would serve not only to 

enhance the fast CO2 capture capacity but also to improve the material regenerability after 

being cycled.  

 

Fig. 98 Particle size distribution of CaO samples before and after one carbonation/calcination cycle.  

a 
 

b 
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This is confirmed by the CO2 breakthrough curves obtained for 2 calcination/carbonation 

cycles performed successively. As can be observed in Fig. 97b, while the fast capture capacity 

of the material has decreased in the second cycle carried out in the absence of sound, 

application of acoustic vibrations yields a similar CO2 breakthrough curve for the second 

carbonation, i.e. the fast capture capacity of the first cycle is maintained in the second cycle. It 

is worth noting that the application of the sound is effective only during the first stage of 

carbonation because regardless the sintering process within the pores (which is a thermal 

phenomenon not depending on the quality of gas-solid contact) the application of the sound 

avoids the phenomenon of sintering between particles (i.e. agglomeration) taking places 

during ordinary fluidization tests, thus consequently avoiding the collapse of the gas-solid 

contact efficiency, which is one of the key parameters ruling the fast carbonation stage.  

In summary, these results, even though concerning a preliminary study, suggest that 

application of acoustic vibrations would be a highly effective method to enhance the 

efficiency of the Ca-looping technology for CO2 capture. 
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IV CONCLUSIONS AND FUTURE PERSPECTIVES 

The present PhD thesis has been focused on the study of a CO2 capture process by 

temperature swing adsorption on fine porous materials in a sound-assisted fluidized bed 

reactor. In particular, the proposed reactor configuration should be capable to fully exploit the 

potential and properties of the sorbent by maximizing the contact between the CO2 molecules 

and the adsorbent particles and to better control the temperature of the process.  

To this aim the following steps have been followed: 

§ Design and setup of a laboratory-scale sound assisted fluidized bed reactor to perform 

an experimental campaign; 

§ Selection and chemico-physical and fluid-dynamic characterization of CO2 adsorbent 

materials; 

§ Realization of adsorption tests to firstly assess the capability of sound assisted 

fluidization to promote the adsorption of CO2 on fine powders and then to in-depth 

examine the main operating variables influencing the CO2 adsorption process and 

compare the adsorption performances of all the selected sorbents; 

§ Choice and study of possible regeneration strategies and investigation of the main 

operating variables affecting the desorption process; 

§  Realization of cyclic adsorption/desorption tests, with assessment of the stability of 

the sorbents to cycles.  

Design and setup of a suitable fluidized bed reactor 

As a first step of the thesis, an experimental plant at a laboratory scale, which allows the 

contact between the sorbent material and a CO2/N2 mixture, has been designed and set up in 

order to perform adsorption/desorption tests. It consists of a Pyrex column, equipped with a 

system for the generation of the acoustic fields introduced inside the column through a sound 

wave guide located at the top of the freeboard. For the regeneration tests the reactor is 

externally heated by an ad-hoc designed heating jacket, i.e. provided with a window to allow 
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the fluidization quality to be visually assessed. The experimental apparatus is equipped with 

an analysis system for the continuous monitoring of the CO2 concentration. 

Selection of adsorbent materials 

Commercial adsorbent materials, two activated carbons and HZSM-5 and 13 zeolites with 

different chemico-physical properties, were chosen, to firstly verify the capability of the 

sound assisted fluidization in actually promoting the CO2 adsorption on fine powders, 

whereas a more specific adsorbent material was selected, to apply the sound assisted 

fluidization technology also to cutting-edge materials (metal organic framework HKUST-1). 

All the sorbents have been characterized by a chemico-physical and fluid-dynamic point of 

view. 

Adsorption tests 

The experimental results of the adsorption tests show that the application of the sound can 

improve the fluidization quality (by maximizing the gas-solid contact) as well as the 

adsorption efficiency of all the selected adsorbent materials in terms of remarkably higher 

breakthrough time, adsorption capacity, fraction of bed utilized until breakthrough and 

adsorption rate.  

A systematic experimental campaign has been carried out at ambient temperature and 

pressure in order to highlight the effect of the main operating variables influencing the 

adsorption process:  

• Sound parameters: the influence of SPL (120-140dB) and frequency (20-300Hz) on 

the adsorption efficiency reproduces that observed on the fluidization quality, thus 

confirming a tight link between the adsorption efficiency and the fluid-dynamics of 

the system. In particular, increasing SPLs yields a better adsorption performance, 

whereas, sound frequency has a not monotone effect on the fluidization quality and 

adsorption efficiency. 

• CO2 partial pressure: the CO2 capture capacity increases with CO2 partial pressure 

(0.05-0.15atm), coherently with the partial pressure being the thermodynamic driving 

force of the adsorption process. 

• Fluidization velocity (0.1-4.5cm/s): the dependence of the breakthrough time on the 

contact time is linear for the tests performed in ordinary conditions, whereas, it is not 

monotone for the sound assisted tests. 

At the end of the experimental campaign, all the investigated adsorbent materials have been 

compared and their different adsorption behaviours explained on the basis of their textural 

properties. HKUST-1 is by far the adsorbent characterized by the highest CO2 adsorption 
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capacity, whereas, as regards the kinetics, it is slower than both the zeolites and activated 

Sigma Aldrich. In particular, it emerges that neither the BET surface area nor the total pore 

volume can account for their different adsorption performances. Indeed, under the 

investigated operating conditions the adsorption process is mainly affected by a specific 

microporosity (micropores falling in the range 8.3-12Å).  

Regeneration tests 

Desorption tests have been performed on the materials characterized by the best adsorption 

performances, the MOF (HKUST-1) and one of the activated carbons.  

In particular, since HKUST-1 presents problems of thermal stability, thus constituting an 

upper limit for the desorption temperature to be used in a TSA process, an extra-situ 

regeneration strategy (150°C under a vacuum of 50mbar) has been developed to study the 

stability of HKUST-1 to cyclic adsorption/desorption operations. Ten adsorption/desorption 

cycles have been performed showing that HKUST-1 is very stable and keeps its adsorption 

performances over 10 adsorption/desorption cycles.  

As regards AC Norit, which does not show significant limits on the choice of the desorption 

temperature, regeneration tests have been performed to recover the CO2 from the spent 

sorbent by means of TSA in the sound assisted experimental apparatus. The standard 

regeneration strategy consists in an isothermal purge (N2 is fluxed through the fluidization 

columns after the reactor has been heated to the desired desorption temperature).  

CO2 recovery and purity have opposing trends, so, it is always necessary to find the most 

convenient compromise between the two of them. In particular, due to the shape of desorbing 

profiles, a higher desorption time is expected to give a more effective regeneration, namely a 

higher CO2 recovery, but it leads to a lower CO2 mean concentration in the desorbing flow.  

The results obtained show that the application of the sound makes it possible, from one hand, 

to remarkably increase the desorption rate (shorter desorption time needed to obtain the same 

CO2 recovery) and, on the other, to significantly enrich the recovered CO2 stream.  

Similarly to the adsorption phase, the effect of the main operating variables affecting the 

regeneration efficiency has been evaluated: 

• Desorption temperature (25-150°C): For each desorption temperature (even at ambient 

temperature) the activated carbon can always been completely regenerated 

(recovery=100%), thus confirming that the CO2 molecules are only weakly bonded on 

its surface. Increasing desorption temperatures yield, from one hand, a faster 

desorption process due to faster adsorption kinetics, and, from the other, more 

concentrated CO2 streams. Desorption temperatures higher than 70°C are always not 
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favorable, because, for all the investigated N2 purge flow rates, the desorbing gas flow 

is more diluted than the gas stream treated during the adsorption step. 

• N2 purge flow rate (45.2-90.4Nl h-1): the desorption rate is also positively affected by 

N2 purge flow rate. Indeed, the time needed to obtain a desired CO2 recovery 

monotonically decreases with increasing N2 purge flow rate. On the contrary, it is 

noteworthy that the N2 purge flow rate has influence neither on the maximum CO2 

concentration, which is mainly due to the desorption temperature, nor on the mean 

CO2 concentration, which is mainly due to the total volume of CO2 fluxed during the 

desorption test.  

Aiming to the enrichment of the recovered CO2 stream with respect to the standard desorption 

procedure, the heating and purge regeneration strategy has been tested, consisting in 

desorbing part of the CO2 by the sole thermal effect, thus eliminating the unavoidable dilution 

effect caused by purge, and the remainder reducing the CO2 partial pressure. The results 

obtained show that heating is very effective since 80% of the captured CO2 can be can be 

recovered with a 100% purity at a bland desorption temperature of 130°C. Obviously, the 

CO2 purity decreases immediately with the introduction of the purge gas, whereas the CO2 

recovery is accordingly increased. It is worth noting that for each desorption temperature the 

heating and purge strategy always makes it possible to enrich the stream of CO2 recovered 

with respect to the standard purge strategy, the CO2 recovery level being the same. In 

particular starting from temperatures of 100°C, it is always possible to obtain 100%vol. CO2 

purity with recovery levels higher than 50%. Obviously, the maximum recovery still 

corresponding to a pure CO2 stream increases with desorption temperatures. 

Cyclic adsorption/desorption tests 

The possibility to use AC Norit in cyclic operation has been assessed. The results show that 

AC Norit can be completely regenerated due to the establishment of relatively weak 

interactions between CO2 molecules and the sorbent surface active sites. Therefore, it is very 

stable, indeed it keeps its adsorption performances over 16 adsorption/desorption cycle. 

Considerations about the energy cost and scale-up of the proposed technology for CO2 

capture by temperature swing adsorption have also been reported. 

A parallel research activity has been carried out at the Department of Electronics and 

Electromagnetism - Faculty of Physics - University of Seville in order to further assess the 

capability of the sound in promoting the capture of CO2. In particular, a lab-scale 

experimental study on the carbonation/decarbonation of a fluidized bed of CaO particles at 

Ca-looping conditions as affected by the application of a high-intensity acoustic field has also 
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been carried out. The results obtained demonstrate that both carbonation and decarbonation 

are remarkably enhanced for sound intensity levels above 140dB and frequencies of about 

100Hz. The application of the sound yields a strong agitation of the bed and improves the gas-

solid contact efficiency. On the other hand, an intense convection of gas flow (acoustic 

streaming) is generated on the surface of larger particles unmovable by the sound wave, 

which promotes the heat/mass transfer at the gas–solid boundary in this case. Either of these 

mechanisms, whose relative importance will depend on the average particle size and sound 

frequency, contribute to increase the carbonation and decarbonation rates of CaO fluidized 

beds in the Ca-looping technology. 

With reference to the CO2 capture by temperature swing adsorption, future perspectives for 

this PhD thesis could be the following: 

• The effect of temperature on the capture process could be investigated. A flue gas 

stream may be available over a range of temperatures (120-220°C) depending on the 

design and process operation of the power generation system. Even though cooling to 

lower temperatures is possible, it represents additional cost and cooling water 

consumption. Therefore, there is a desire to treat the flue gas stream without cooling. 

So adsorption tests at higher temperatures could be performed. Considering the strong 

thermodynamic influence of temperature on adsorption capacity, a large impact on 

adsorption performance can be expected. It can be anticipated that also the 

regeneration step will be affected, since higher desorption temperatures will be 

required with respect to a capture step realized at ambient temperature. 

• The effect of a change of purge gas could be assessed. Steam could be used, instead of 

N2 as purge gas, for the regeneration of adsorbents, thus solving the problems of 

dilution effect typical of common TSA operations, since CO2 could be very easily 

recovered by water condensation.  

• The composition of a real flue gas could be more accurately simulated by adding some 

of the typical pollutants (SOx, NOx, HCl). This is most likely expected to affect the 

adsorption process due to competition phenomena of these pollutants with the CO2 

molecules. 
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V NOMENCLATURE 

b affinity coefficient between the adsorbent and adsorbed phases in the Langmuir 

equation 

C  CO2 concentration in the outlet stream 

C0  inlet CO2 concentration 

Cm  CO2 mean concentration in the desorbing flow 

f  sound frequency 

H  actual bed height 

H0  initial bed height in condition of fixed bed 

H/H0  dimensionless bed expansion 

nads  moles of CO2 adsorbed per unit mass of adsorbent 

n!"!
!   the moles of CO2 adsorbed until saturation 

ΔP  actual pressure drop across the bed 

ΔP0  pressure drop equal to buoyant weight of particles per unit area of bed 

ΔP/ ΔP0 dimensionless pressure drop across the bed 

P!"!  CO2 partial pressure 

Q!"!
!"   CO2 inlet flow rate 

Q!"!
!"#  CO2 outlet flow rate 

Q!!
!   N2 purge flow rate 

R  CO2 recovery 

r!"!  the rate of CO2 concentration increase 

SPL  Sound intensity 

t10  the time it takes for CO2 outlet concentration to reach the 10% of the inlet 

concentration 
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t5  the time it takes for CO2 outlet concentration to reach the 5% of the inlet 

concentration 

t95  the time it takes for CO2 to reach the 95% of the inlet concentration 

t95-tb time difference indication of the adsorption rate 

tb  breakthrough time or break point 

tc  contact time 

td  desorption time 

Tdes  desorption temperature 

u  superficial gas velocity 

V!
!"!  total volume of CO2 desorbed 

V!
!!  N2 purge gas volume 

W  the fraction of bed utilized at breakpoint 
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