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A great discovery solves a great problem, 

 but the solution of any problem there is a hint of discovery. 
 Your problem may be modest, but if it stimulates your curiosity, 

 it brings up your creativity and solve it with your means, 
you may experience the tension and 

enjoy the triumph of discovery 
 

(George Pólya) 
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SUMMARY 
In recent years, a large number of materials and compounds have been produced 
without adequate knowledge on their interaction with the environment and of their 
influence on human health. This resulted in a continuous pollution by a wide array of 
hazardous chemicals with different structures and toxicity levels. These chemicals 
have deleterious effects on the reproductive systems of various animals, including 
humans. This dangerous situation has required the formulation of strict 
environmental regulations in order to reduce the emissions and to ban the production 
of the incriminated compounds. 
Furthermore, the development of news efficient and cost-effective technologies 
became necessary to resolve the problems of effluents treatment. To this aim 
physical and chemical processing were initially tested, but they resulted expensive 
and may generate a large volume of sludge.  
In the last years, biological wastewater treatments have represented an attractive 
alternative as they could be cost-effective and environmentally friendly. For these 
reasons, many biodegradation processes were encouraged to resolve this problem. 
In this context, the present research explores various methods for biodegradation of 
a class of above-mentioned chemicals: endocrine disrupting chemicals (EDCs). 
EDCs are able to interfere with endocrine function in a number of wildlife species, 
leading to adverse effects particularly in relation to reproduction. 
 
Two kinds of processes have been specifically analysed:  

 oxidation of these compounds using laccase enzymes from the white-rot 
fungus Pleurotus ostreatus;  

 biodegradation process based on the use of different mushrooms.  
 
As regard as laccases, their degradability performances, against each EDC, were 
studied in the presence and in the absence of mediators. Two different mediators 
were chosen, a natural and synthetic one. Mediator addition enhanced laccase 
activity, favouring oxidation of recalcitrant xenobiotics. Degradation capabilities of 
best enzyme were also studied against EDCs mixture. In order to increase oxidative 
capabilities of selected enzyme, its immobilization on glass beads was performed. 
 
As concern as various mushrooms, white-rot and aquatic fungi were chosen to 
analyse their degradative capabilities towards each xenobiotic. Moreover, to mimic 
real condition, their capabilities were studied also in the presence of EDCs mixture. 
 
In the end, considering the great amount of these micropollutants in the environment, 
a screening of mushrooms able to growth on EDCs was performed using ground 
sample. 
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RIASSUNTO 
 
Negli ultimi decenni la comunità scientifica ha assistito con crescente 
preoccupazione all’incremento di sostanze tossiche nell’ambiente. L’esposizione 
incontrollata a tale gruppo di sostanze comporta l’insorgenza di potenziali effetti 
negativi sia nell’ambiente sia alterazioni nel normale funzionamento del sistema 
endocrino degli animali e di quello umano. Tali sostanze sono state identificate come 
interferenti endocrini (IE) o endocrine disrupting chemicals (EDCs) e sono quindi 
riconosciuti come “sostanze esogene che interferiscono con la sintesi, la secrezione, 
il trasporto degli ormoni naturali, alterando quindi la funzione del sistema endocrino, 
provocando effetti avversi sulla salute in un organismo intatto, o sulla sua progenie”. 
Gli alteratori endocrini comprendono una vasta gamma di sostanze che possono 
essere sia di origine naturale (fitoestrogeni, micoestrogeni, etc) che sintetica (ftalati, 
bisfenoli, etc.); nella fattispecie questi ultimi sono stati largamente utilizzati per la 
produzione di plastiche, detergenti e prodotti di largo consumo.  
Gli IE scelti in questo progetto sono rappresentativi di differenti classi di sostanze 
xenobiotiche e sono stati selezionati considerando sia la loro disponibilità 
commerciale sia la loro presenza nell’ambiente. Ciò ha permesso di selezionare: il 
bisfenolo A (BPA), il nonilfenolo (NP), il metilparabene (MTPRB) ed il butilparabene 
(BTPRB), il dimetilftalato (DMPTL). Questi composti sono impiegati nella produzione 
di plastiche, prodotti per l’igiene personale e prodotti utilizzati nel settore agricolo e 
possono determinare l’insorgenza di patologie differenti, sia nell’essere umano sia in 
altre specie animali. In base al tipo di interazione con il sistema endocrino, queste 
sostanze possono indurre la formazione di tumori, causare sterilità e provocare danni 
al sistema nervoso centrale. Considerato quindi l’elevato fattore di rischio a cui siamo 
costantemente esposti, negli ultimi anni è stata definita e approvata una normativa 
sempre più stringente per l’emissione e l’utilizzo di tali sostanze in prodotti di largo 
consumo. 
L’ubiquitarietà di utilizzo di tali composti ne ha rappresentato la principale causa di 
diffusione nell’ambiente. Inoltre molte di queste sostanze risultano essere persistenti 
alla degradazione e solubili in acqua. In tale contesto, negli ultimi anni molti studi 
sono stati volti all’utilizzo di differenti metodi per la rimozione e/o degradazione di tali 
inquinanti dalle acque di scarico. I convenzionali metodi di trattamento chimico-fisico 
si sono rivelati estremamente costosi e inadeguati se rapportati alle differenti di 
strutture chimiche e agli ingenti volumi di reflui da trattare. Il biorisanamento, d’altra 
parte, rappresenta un’efficace alternativa ai metodi convenzionali, mostrandosi come 
una tecnologia valida, economicamente sostenibile, e a basso impatto ambientale. Il 
biorisanamento può sfruttare due differenti processi: il bioassorbimento e la 
biodegradazione. Il bioassorbimento consiste nella rimozione delle sostanze 
inquinanti presenti nei reflui da parte di biomasse microbiche, vive o inattivate. La 
biodegradazione sfrutta, invece, il naturale potenziale degradativo di diverse specie 
microbiche (batteri, lieviti, funghi), per la rottura e la successiva trasformazione (ed 
eventuale completa mineralizzazione) delle sostanze inquinanti. In particolare, i 
funghi white-rot trovano numerose applicazioni nel biorisanamento in virtù della loro 
capacità di degradare un ampio range di composti xenobiotici. Tali funghi, inoltre, 
sono in grado di secernere enzimi ossidativi -tra cui lignina perossidasi, manganese 
perossidasi e laccasi- i quali, per la loro bassa specificità di substrato, si rivelano in 
grado di degradare diverse classi di microinquinanti. 
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Processi di degradazione basati sia sull’utilizzo di enzimi ossidativi che sull’utilizzo di 
funghi sono stati esaminati in questo progetto di tesi. In tale contesto, è stato 
possibile affrontare la suddetta problematica con due differenti approcci: 

1. Utilizzo di enzimi ossidativi per il trattamento di alteratori endocrini; 
2. Sviluppo e applicazione di funghi per la degradazione di alteratori endocrini. 

 
1. Enzimi ossidativi. 
L’approccio basato sull’utilizzo di enzimi ossidativi per il trattamento di alteratori 
endocrini mira alla messa a punto di sistemi di sviluppo per l’ossidazione di composti 
inquinanti, sfruttando le naturali caratteristiche dei catalizzatori enzimatici selezionati. 
Comune denominatore di questa sezione è l’analisi delle performances degradative 
degli enzimi selezionati in presenza dei vari IE. Lo studio è stato incentrato su una 
classe di enzimi ossidativi particolarmente interessante dal punto di vista applicativo, 
le laccasi fungine. Le laccasi sono cuproproteine appartenenti alla classe delle 
fenolo-ossidasi, che catalizzano l’ossidazione di fenoli, polifenoli e ammine 
aromatiche variamente sostituite con relativa riduzione di ossigeno molecolare ad 
acqua. Esse trovano svariate applicazioni biotecnologiche: dall’industria alimentare o 
della carta, al settore tessile, fino ai processi di biorisanamento dei reflui. In molti 
funghi le laccasi sono codificate da complesse famiglie di geni, in numero variabile 
da specie a specie, che danno origine a proteine strettamente relazionate ma dotate 
spesso di proprietà catalitiche differenti. In particolare, il fungo basidiomicete 
Pleurotus ostreatus produce una vasta gamma di isoforme enzimatiche ad attività 
laccasica, di cui sono stati isolati i corrispondenti geni e cDNA. Cinque isoenzimi 
sono stai finora purificati e caratterizzati: POXC, il più abbondantemente prodotto in 
tutte le condizioni di crescita analizzate e caratterizzato da un elevato potenziale 
redox; POXA1b, dall’insolita stabilità a pH alcalino; POXA1w, particolare per il suo 
contenuto in ioni metallici; ed infine gli isoenzimi POXA3a e POXA3b, atipici per la 
loro struttura eterodimerica.  
In questo progetto di tesi sono state analizzate le capacità ossidative di due laccasi 
secrete da P. ostreatus: POXC e POXA1b, quelle di 1H6C, un mutante dell’enzima 
POXA1b, ed una laccasi commerciale disponibile sul mercato, Novoprime Base 268. 
In particolare, la laccasi POXA1b e il suo mutante 1H6C sono state prodotte in 
maniera ricombinante nel fungo filamentoso Aspergillus niger, ciò ha permesso di 
ottenere una overespressione delle proteine di interesse fino a 100 volte maggiore 
rispetto alla produzione delle stesse in altri sistemi di espressione (quali i lieviti 
Saccharomyces cerevisiae e Klyveromyces lactis). Questi enzimi sono stati purificati 
all’omogeneità e caratterizzati sia da un punto di vista chimico-fisico sia strutturale. 
Gli studi effettuati hanno evidenziato un maggiore potenziale redox del mutante 
rispetto all’enzima wild-type (770 mV vs 650 mV), rendendolo un adeguato candidato 
per l’ossidazione di composti recalcitranti alla degradazione. POXC è stata 
ugualmente purificata all’omogeneità da P. ostreatus e utilizzata per le analisi di 
degradazione. Le performances ossidative di tutti gli enzimi sono state studiate nei 
confronti di tutti gli IE selezionati. Gli enzimi hanno mostrato avere attività ossidativa 
solo nei confronti del bisfenolo A, mentre gli altri substrati si sono rivelati recalcitranti 
all’ossidazione. Per incrementare le performances di questi enzimi, sono stati 
utilizzati due differenti mediatori, ovvero molecole a basso peso molecolare che 
ampliano l’attività catalitica delle laccasi rendendole capaci di ossidare substrati 
recalcitranti alla degradazione. In tale contesto, sono stati utilizzati uno mediatore 
sintetico, ABTS, e uno naturale, acetosiringone (AS), a due differenti concentrazioni 
(20 µM e 200 µM). È stato interessante notare che, a basse concentrazioni 
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dell’ABTS, le laccasi POXC, POXA1b e 1H6C presentano un incremento di attività 
ossidativa nei confronti del BPA. L’utilizzo dell’ABTS per l’ossidazione del nonilfenolo 
ha implementato le performances degli enzimi. Per quanto riguarda gli altri tre IE 
selezionati, nessuno è stato suscettibile alla degradazione da parte di questi enzimi 
in presenza dell’ABTS. Per tale motivo, le analisi effettuate successivamente hanno 
previsto l’utilizzo di una maggiore quantità di mediatore per la degradazione di questi 
contaminanti. I risultati ottenuti hanno mostrato che POXC e 1H6C sono in grado di 
degradare il BTPRB in presenza di ABTS.  
Le stesse analisi sono state effettuate in presenza di acetosiringone. Anche in questo 
caso, a basse concentrazioni di AS, il mediatore utilizzato incrementa le 
performances degli enzimi prodotti da P. ostreatus, ma decrementa quelle 
dell’enzima commerciale nei confronti del BPA. Le laccasi selezionate presentato 
attività ossidativa implementata in presenza di AS nei confronti del NP, anche se con 
performances inferiori a quelle ottenute in presenza di ABTS. Anche in questo caso, 
come già osservato in precedenza, gli altri IE si rivelano estremamente recalcitranti 
all’ossidazione. Incrementando la concentrazione di mediatore naturale utilizzata, 
sono stati ottenuti interessanti risultati, in quanto tutti gli enzimi mostrano avere 
attività ossidativa nei confronti de due parabeni selezionati.  
Dai risultati ottenuti, si evince che le performances migliori sono state ottenute da 
POXC, per tale motivo questa laccasi è stata scelta per studiare le sue capacità 
ossidative in presenza di una miscela di IE. Tali analisi sono state effettuate sia in 
presenza dell’enzima in forma libera che in forma immobilizzata. La possibilità di 
produrre biosistemi enzimatici immobilizzati costituisce un’opportunità interessante 
da applicare al trattamento dei microinquinanti. L’immobilizzazione enzimatica, infatti, 
oltre a consentire il recupero ed il riutilizzo dei catalizzatori impiegati nel processo, 
comporta, nella maggioranza dei casi, un incremento della stabilità dell’enzima 
rispetto alla controparte in fase libera. La miscela di IE utilizzata è stata composta da 
BPA, NP e i due parabeni; il dimetilftalato non è stato utilizzato considerata la sua 
refrattarietà all’ossidazione da parte delle laccasi.  
Analizzando le performances di POXC in forma libera contro la miscela di IE, è stato 
possibile monitorare la scomparsa dell’80% di NP dopo un’ora di incubazione, 
mentre, nello stesso intervallo di tempo il 35% di BPA risulta essere ossidato. Per 
quanto riguarda in parabeni, questi sono risultati essere recalcitranti alla 
degradazione. Anche in questo caso, le analisi sono state effettuate in presenza dei 
due mediatori precedentemente selezionati. L’unico IE verso cui POXC mostra 
implementate attività ossidative in presenza dei mediatori è il BPA, infatti, in 
presenza di ABTS e AS, POXC mostra il 75% e il 100% di degradazione, 
rispettivamente. Per incrementare le performances di POXC, questo enzima è stato 
immobilizzato covalentemente su sfere di vetro. Le analisi sono state monitorate per 
un’ora e hanno evidenziato un incremento della capacità ossidativa solo per il NP, 
che risulta essere totalmente degradato dopo 15 min. Gli altri IE mostrano le stesse 
velocità di degradazione ottenute dall’enzima in forma libera. 
I risultati indicano che l’immobilizzazione dell’enzima comporta un incremento di 
attività nei confronti di uno dei quattro IE, rispetto alla controparte in fase libera.  
 

2. Funghi. 
Sviluppo e applicazione di funghi per la degradazione di alteratori endocrini. 
L’approccio basato sull’utilizzo di funghi per il trattamento di alteratori endocrini mira 
alla messa a punto di sistemi per la degradazione di composti inquinanti, sfruttando 
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le potenzialità applicative di differenti funghi. In tale sezione sono state analizzate le 
capacità degradative di funghi basidiomiceti e di funghi acquatici.  
-Biodegradazione degli alteratori endocrini mediante funghi white-rot: le potenzialità 
applicative dei funghi white-rot P. ostreatus, Phanerochaete chrysosporium e 
Trametes versicolor sono state analizzate impiegandoli come catalizzatori del 
processo di decontaminazione. Colture in liquido dei funghi sono state allestite con 
ciascuno dei microinquinanti selezionati, monitorando giornalmente la degradazione 
di ogni composto. I dati ottenuti sono schematizzati nella seguente tabella: 
 
Velocità di degradazione di ogni IE in funzione del tempo (giorni) per ogni fungo. 
 

Funghi 
BPA NP MTPRB BTPRB DMPTL 

t50% t100% t50% t100% t50% t100% t50% t100% t50% t100% 

P.ostreatus 3.5 8 0.5 >8 3 >8 >8 >8 2 >8 

T.versicolor 1 2 1 8 1.5 3 1.5 2 1 >8 

P.chrysporium 3 >8 1 >8 2.5 4 1 4 7 >8 

 
Come si evince dalla tabella, i risultati migliori sono ottenuti in presenza del fungo T. 
versicolor, che risulta essere in grado di degradare il 50% di tutti gli inquinanti in 24 
h. Questo fungo è stato quindi scelto per analizzare le sue capacità degradative 
minimizzando sia la fonte di carbonio che di azoto in presenza di un microinquinante 
modello, il BPA. Dopo 24 h di incubazione, tutto il BPA presente nel mezzo di coltura 
è stato totalmente degradato. Lo stesso esperimento è stato quindi allestito in 
presenza di solo BPA, senza alcuna fonte di carbonio e azoto. Anche in questo caso, 
dopo 24 h tutto il BPA è stato degradato. Lo step successivo ha riguardato l’analisi 
delle performances di degradazione del BPA da parte della stessa coltura di T. 
versicolor, in seguito ad aggiunte giornaliere dell’inquinante. Tali analisi sono state 
monitorate per 15 cicli, mostrando la giornaliera scomparsa del BPA e la capacità di 
tale fungo di degradare in maniera continua questo inquinante mantenendo inalterata 
la velocità di degradazione. 
Per mimare al meglio le condizioni di un refluo reale, le capacità degradative di 
questo fungo sono state studiate in presenza della mix di alteratori endocrini. È stato 
interessante notare che tra i 2 e i 4 giorni di crescita, tutti gli IE selezionati e utilizzati 
per ottenere la miscela, sono stati completamente degradati. Anche in questo caso, 
sono state effettuate analisi della degradazione della miscela eliminando la fonte di 
azoto e di carbonio. Dopo 24 h, si è registrata la totale degradazione della miscela. 
Questo importante risultato ha portato all’analisi delle performances di degradazione 
della stessa coltura in seguito ad aggiunte giornaliere della mix di IE. In questa fase è 
stato possibile monitorare la scomparsa di tutti i componenti della miscela dopo il 
primo ciclo, ma successivamente solo la parziale degradazione di alcuni composti è 
stata evidenziata. Nella fattispecie, il BPA e il BTPRB sono stati degradati in maniera 
continua, senza registrare il loro accumulo all’interno del brodo. Invece NP e MTPRB 
hanno mostrato un comportamento atipico, evidenziando un profilo di concentrazione 
di tipo gaussiano, determinato dall’alternarsi di totale degradazione, parziale 
accumulo, completa degradazione. Il DMPTL è stato totalmente degradato solo 
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durante il 1° ciclo, successivamente una parziale degradazione dello stesso è stata 
monitorata, determinandone quindi il progressivo accumulo nel brodo di coltura. 
Da tale studio si evince che i funghi white-rot selezionati presentano buone rese di 
degradazione nei confronti di questi alteratori endocrini. Nella fattispecie, le migliori 
performances sono state ottenute da T. versicolor, che risulta essere in grado di 
degradare in maniera continua molti microinquinanti, sia in miscela sia come 
composti singoli, senza l’utilizzo di alcuna fonte di carbonio e di azoto. Se riportati su 
scala industriale, questi risultati rappresentano un ottimo punto di partenza su cui 
basare processi di decontaminazione in situ. 
-Biodegradazione degli alteratori endocrini mediante funghi acquatici: in 
collaborazione con il Helmholtz Centre for Environmental Research, Leipzig 
(Germany), sono state esplorate le capacità degradative di differenti funghi acquatici 
nei confronti degli alteratori endocrini selezionati. In tale contesto, le performances di 
sei differenti funghi acquatici sono state studiate in multiwell in presenza dei differenti 
IE, e due di questi funghi sono stati scelti per il successivo scale-up in beuta. 
Cladosporium herbarum AP2-2009-7 e Phoma sp. UHH 5-1-03 hanno mostrato 
avere buone capacità degradative nei confronti dei due parabeni, esibendo una 
totale degradazione degli stessi in sei giorni. Gli altri IE sono risultati recalcitranti alla 
degradazione. Il successivo passaggio in beuta di C. herbarum AP2-2009-7 ha 
permesso di monitorare la totale degradazione del MTPRB in 2 giorni e del DMPTL 
in 7 giorni. Il BTPRB invece si è rivelato essere recalcitrante alla degradazione; 
stesse performance sono state osservate per il BPA e il NP. Per valutare se 
effettivamente questo fungo fosse in grado di crescere in presenza di questi 
microinquinanti, nuove colture sono state allestite utilizzando come inoculo una parte 
della biomassa sviluppatasi durante la prima crescita in beuta. Questa seconda 
crescita ha evidenziato che le capacità degradative di C. herbarum AP2-2009-7 nei 
confronti del MTPRB restano invariate, in quanto, dopo due giorni, è stata mostrata 
la totale scomparsa dell’inquinante. Stesse analisi sono state effettuate in presenza 
del DMTPL, ed in questo caso un incremento delle capacità degradative è stato 
rilevato, in quanto il DMPTL è stato totalmente degradato dopo 4 giorni. Analizzando 
le performances di tale fungo in presenza della mix, i due parabeni sono stati 
totalmente degradati dopo due giorni, il NP dopo 15 giorni, mentre il BPA e il DMPTL 
sono stati degradati solo parzialmente. Una parte della biomassa proveniente dalla 
prima crescita, è stata utilizzata per inoculare una seconda coltura, La degradazione 
del NP è avvenuta dopo 11 giorni, mentre le performance nei confronti degli altri 
substrati sono rimaste invariate.  
Stesse analisi sono state condotte in presenza di Phoma sp. UHH 5-1-03. Questo 
fungo è stato in grado di degradare il DMPTL in 7 giorni, e, rinoculando una parte 
della biomassa in colture contente lo stesso inquinante, si è monitorata una totale 
scomparsa dell’IE dopo 3 giorni. In presenza dei parabeni, invece, Phoma sp. UHH 
5-1-03 ha evidenziato un processo di biodegradazione associato ad un processo di 
bioassorbimento. Infatti, in presenza di MTPRB, è stato possibile notare che una 
parte del microinquinante era stata adsorbita sulla superficie del fungo dopo tre giorni 
di crescita. Dopo 4 giorni, il MTPRB presente nel brodo di coltura era stato 
totalmente degradato, mentre una parte dello stesso era adsorbita sulla membrana 
cellulare del fungo. Dopo 7 giorni, il MTPRB è stato totalmente degradato, sia in 
coltura che sulla superficie del fungo. L’utilizzo di una parte di questa biomassa per 
una nuova coltura contente MTPRB ha evidenziato la totale degradazione del 
composto inquinante in 3 giorni, senza evidenziare un processo di bioadsorbimento. 
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In presenza del BTPRB è stato possibile monitorare solo un processo di 
bioadsorbimento, senza però registrare l’effettiva degradazione dello xenobiotico. 
Analizzando infine le performances di Phoma sp. UHH 5-1-03 in presenza della mix 
di IE, è stato possibile notare la scomparsa di tutti i componenti della miscela dopo 2 
giorni di crescita. Successivamente, reinoculando una nuova coltura con parte di 
questa biomassa, è stata monitorata la totale degradazione solo dei due parabeni 
dopo tre giorni di crescita, mentre per gli altri IE è stata monitorata una parziale 
degradazione. 
-Biodegradazione degli alteratori endocrini mediante nuovi funghi: campioni di 
terreno provenienti da Cospudener See, un lago a sud di Lipsia, sono stati utilizzati 
per l’isolamento di nuovi ceppi fungini capaci di crescere su una miscela di IE. 
Questo screening ha permesso di isolare un ceppo fungino, le cui performances, in 
presenza dei vari IE, sono state valutate in colture liquide. Tale fungo ha mostrato 
attività degradativa solo nei confronti del NP e del MTPRB. In presenza della miscela 
di IE, le performances di degradazione sono state differenti, in quanto dopo 2 giorni, 
tutti i componenti della mix sono stati degradati del 50%, ma sono il NP risulta essere 
totalmente degradato dopo 10 giorni di crescita. Successivamente si è proceduto 
all’identificazione del fungo, analizzando le sequenze ITS (Internal transcribed 
spacer), ovvero sequenze specie-specifiche di DNA non codificante. Un’identità del 
99% è stata riscontrata con le ITS di Trichoderma virens. Analizzando il genoma di 
questo fungo, si è evidenziata la presenza di geni potenzialmente responsabili della 
produzione di enzimi ad attività ossidativa e idrolitica. 
 
I risultati ottenuti con questo lavoro di tesi hanno consentito di analizzare diverse 
alternative da applicare al trattamento di microiquinanti. In particolare, l’utilizzo di 
organismi per processi di biorisanamento ha evidenziato notevoli caratteristiche che 
li rendono una valida e competitiva alternativa ai metodi di degradazione 
convenzionali. 
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1. Endocrine disruptors: background information  
In the last years valuation and conservation of environmental quality has represented 
an interesting field of technologic applications. Concerning the industrialized states, 
the main problem is represented by a constant and continuous pollution of soil, 
water-bearing stratum, surface water and air. This has been due mainly to the 
introduction in the environment of contaminants toxic for many organisms, including 
humans. In this contest, endocrine disrupting chemicals (EDCs) play a significant 
role. Since the early 1990s, the presence in the environment of EDCs displaying 
oestrogen-like activities has become a major issue in environmental research and 
policy [1]. Various natural and synthetic chemical compounds induce estrogen-like 
responses, including pharmaceuticals, pesticides, industrial chemicals, and heavy 
metals [2]. EDCs are defined as “An exogenous agent that interferes with the 
synthesis, secretion, transport, binding, action, or elimination of natural hormones in 
the body that are responsible for the maintenance of homeostasis, reproduction, 
development, and/or behaviour.” [3-7]. These substances interfere with the endocrine 
system of humans and wildlife leading to adverse effects particularly in relation to 
reproduction and development of secondary sexual characteristics. Exposure to 
EDCs causes many different anomalies, as diminished fertility and reproduction, 
altered sex differentiation, changes in behaviour, abnormal growth, altered immune 
function, neurological impairment, altered hormonal levels and deformed organ 
histology among other effects [8-11]. For the first time, Sharpe and Skakkebæk 
hypothesized the existence of a correlation between EDCs and reproductive health in 
1993. This study showed a decreased of sperm count/quality and an increased 
incidence of testicular cancer, testicular maldescent and male reproductive tract 
malformations [12]. Moreover, all animals, from humans to invertebrates, are 
particularly sensitive to EDCs exposure during their sexual differentiation. Any 
hormonal variation or exposure to EDCs during this critical period may induce 
permanent gonadal and/or phenotypic sex reversal [13]. Obviously, the effects of 
EDCs may vary between species and between males and females, showing higher 
susceptibility of one of the sexes to a specific EDC. Estrogenic activity of these 
xenobiotics is correlated to phenolic ring para-substitution and polycyclic structure 
capable of assuming planar configuration. This phenolic moiety mimics natural 
steroid hormones and enable EDCs to interact with steroid hormone receptors as 
analogs or antagonists [14; 15]. 
The high toxicity at low dosage of these substances and the long-term exposure -
especially during crucial periods of life-cycle development- has caused alarm in 
political and scientific research communities. These substances are found in many 
products derived from cosmetic industries and working environment. Table 1 gives 
some examples of cases of endocrine disruptors observed in human and wildlife 
across the world. These xenobiotics represent latent crisis to humans and the 
environment. This crisis could be easily controlled by applying regulatory policies in 
order to reduce the emissions and to ban the production of the incriminated 
compounds and by their total removal from wastewater before final release into the 
environment. 
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2. Regulation of EDCs  
In the European Union, the absence of regulation on EDCs until the beginning of the 
new millennium has been due to the lack of knowledge about their impact on human 
health. In 2001, the Commission released a chemical regulation proposal to 
harmonize the existing and new substances and close the knowledge gap (safety 
data were lacking for existing substances). Considering that the endocrine disruptors 
show different mechanisms of action that may lead adverse consequences on 
humans and ecosystems, the first reaction of EU was the establishment of a priority 
list of substances for further evaluation of their endocrine disrupting effects. This 

prioritization work started in the year 2000. Somewhere, around 600 chemical 
substances were screened, evaluated and a preliminary priority list was established. 
Between 2000 and 2006, the Commission contracted three studies on identification 
and evaluation of this class of substances. In 2004 the first EU Directive -
67/548/EEC- for hazardous chemicals was drawn up, and today it is recognized as 
the backbone for chemical regulation in the EU [16]. Over the past six years, 575 
substances were investigated as endocrine disruptors. Among these chemicals, 320 
showed evidence or potential evidence for ED effects. In 2002, another study was 
carried out and 435 substances were analysed. Investigation was focused on 
candidate substances identified as High Production Volume Chemicals (HPVC), 
persistent in the environment and to which human- or wildlife-exposure could be 
expected. According to these criteria, 204 substances were selected and their 
endocrine disrupting effects were evaluated. 147 of them were identified, showing 
either clear and/or potential effects on endocrine system. In the last year, other 
investigations were carried out, increasing this list. Indeed, 1372 substances are 
prohibited in cosmetic products; furthermore, 256 substances are allowed only at low 
concentrations [17]. Considering the complexity of endocrine system, it is not 
surprising that a wide range of substances cause endocrine disruption and these 
include both natural and synthetic chemicals.  

Table 1. Toxic substances found in many products of daily use. 
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2.1. The different groups of EDCs  
The group of molecules identified as endocrine disruptors is highly heterogeneous 
and includes synthetic chemicals used as industrial solvents/lubricants and their by-
products, plastics, pesticides, fungicides, pharmaceutical agents, cosmetics and 
other personal care products [18]. The molecular structures of several EDCs, with 
accompanying varying functionalities, are summarized in Table 2.  
 

 
 
They are broadly classified into several categories, such as hormones (natural and 
synthetic estrogens or steroids), pharmaceuticals and personal care products 
(PPCPs), industrial chemicals, pesticides, combustion by-products, and surfactants 
[2; 11]. Moreover, natural chemicals found in human and animal food (e.g., 
phytoestrogens, including genistein and coumestrol) can also act as endocrine 
disruptors.  
Among various synthetic EDCs, bisphenol A, nonylphenol, parabens and 
phthalate have been investigated in this project.  

Table 2. Examples of various types of EDCs classified. 
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Bisphenol A (BPA) (CAS No: 80-05-7) is high production volume chemical used as 
an intermediate in the fabrication of polycarbonate plastic and epoxy resins which 
can be used in eyeglass lenses, medical equipment, water bottles, cell phones, 
electronics, baby bottles, water cooler jugs, drink, food packaging and plastic dental 
fillings [19-22]. Bisphenol A is one of the most widely used chemicals in the world 
with production of 650,000 tonnes per year [20]. The Environmental Protection 
Agency (EPA) identified Bisphenol A as EDC, World Wide Fund for Nature (WWF) 
declared this compound as a social, environmental and global issue. Due to the daily 
use of these products, high concentrations of BPA are observed in wastewater (WW) 
and in wastewater sludge (WWS) (0.004-1.36 mg/kg) [23]. The exposure to these 
chemicals varies from regions and lifestyle. According to the National Health and 
Nutrition Examination Survey (NHANES), BPA concentration is higher than 12 parts 
per billion (ppb) (12 nM) in North American waters [24]; this endocrine disruptor is 
present at a concentration of 43 ppb in European waters [25] and 191 ng/L in 
sediments [26]. Moreover, BPA is present at high concentration (1.16 μg/L) in urine 
of Canadians aged 6-79 [27], and -considering the short half-life of orally ingested 
BPA and the high detection frequency- the obtained data suggest continual and 
widespread exposure to this endocrine disruptor.  
Human exposure to bisphenol A may occur when this chemical leaches plastic 
because of the breakdown of the polymer upon heating [28]. In fact, after heating, a 
migration of free BPA has been displayed from various consumer products, such as 
baby bottles, into the food or beverage [29]. For this reason, in 2010 Canada became 
the first country to declare BPA to be a toxic compound and required its removal from 
infant formula bottles. In 2011, European Union banned BPA in infant formula bottles 
[30].  
Toxic effects of BPA influenced reproductive system of different species [31-34], for 
this reason, it is classified as a reproductive substance category three, which means 
that there is concern for human fertility. Animal studies provide sufficient evidence to 
reveal strong suspicions of reduced fertility in presence of toxic compound, but 
insufficient data were presented to place the substance in category two [29]. 
Nonylphenol (NP) (CAS No: 25154-52-3) is a mixture of para-, ortho-, and meta-
isomers, the most prevalent of them is para-NP (4-NP). It is viscous, colourless liquid 
and it is subjected to ethoxylation to give alkylphenol ethoxylates (APEs) [35]. It is 
used in the production of “nonylphenol ethoxylates, a non-ionic surfactants applied as 
emulsifying, wetting, dispersing or stabilizing agent in industrial, agricultural and 
domestic consumer products” [36-38]. Nonylphenol is present in polystyrene plastics, 
cleaning supplies, leather auxiliaries; it is used in paints, agricultural products and 
photographic equipment [1; 36]. In the last 50 years, NP was extensively used as 
surfactants with an annual world production estimated at 360,000 tonnes in 1988 
[39]. In Europe, in 1997 the total production was 73,500 tonnes. In China is about 
50,000 tonnes per year; approximately 70% of the NP is used for production of 
synthetic detergent [40]. Since 2000, 4-NP was included in the list of priority 
hazardous substances by Directive 2000/60/EC [41]. Nowadays only a few countries 
(e.g. Asian countries) continue to use APEOs [42].  
Because of the widespread use of NP, the potential exposure for human is high. 
Nonylphenol is valuated to be very toxic for the aquatic environment and may cause 
long-term harm as it is not biodegradable and because it shows high potential to bio-
concentrate [43]. Bounding to the soil, NP is unlikely to enter groundwater, for this 
reason contamination is found only in surface water. Toxicological studies on 
laboratory animals have proved that the exposure to NP is associated with 
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morphologic, functional, and behavioural anomalies related to reproduction [44-46]. 
The main sources of exposure for humans are food (fish and root crops) and drinking 
water. NP has also deleterious effects on central nervous system (CNS), causing 
alteration on neuroendocrine homeostasis, altering cognitive function, and 
neurotoxicity of tissues, etc. [335].  
Parabens (CAS No: 99-76-3) are esters of p-hydroxybenzoic acid. Since the 1930s, 
they are widely used as preservatives in food, pharmaceutical and cosmetic 
industries in order to prevent bacterial growth [48-50]. According to Ingerslev and co-
workers [50], approximately 12 parabens are used commercially as preservatives in 
cosmetics, food, and pharmaceutical products. In the EU, since 1976, cosmetic 
legislation has been harmonized through the Cosmetic Directive [51]. Parabens are 
the most predominant group of used preservatives; more than 35% of cosmetic 
products registered in the USA contain one or more parabens [52], and more than 
28% of Danish products contain at least one paraben [53]. In personal care products, 
parabens are used at relatively low concentrations. In the EU, for example, the 
maximal concentration is 0.4% for methyl- (MTPRB) or ethylparaben (ETPRB), or 
0.19% for propyl- (PP) or buthylparaben (BTPRB). Denmark has banned the use of 
these preservatives in cosmetic products for children up to three years old. Danish 
cosmetic regulations permit the preservations of cosmetics products with 
methylparaben, ethylparaben, propylparaben and buthylparaben up to a maximum 
combined concentration of 0.8% (w/w) [54]. Harvey and co-workers suggest a 
correlation between the increasing breast cancer and the heavy usage of parabens. 
This correlation is due to fast “parabens absorption through the skin as intact esters, 
their hormonal activity and their reproductive toxicity” [49]. The only paraben that has 
been associated with endocrine disruption and reproductive adverse effects is buthyl 
paraben [54; 55].  
Parabens are also present in many natural products (additives E 214-219), such as 
some fruits and vegetables, strawberries, grape juice, yeast extracts, barley, vinegar, 
cheeses, royal jelly, propolis. As concern this study, methylparaben and 
buthylparaben were chosen for degradative analyses. 
Phthalates are a group of persistent, high production volume chemicals, primarily 
used as additives in plastics, in order to make them more flexible. They are a family 
of industrial compounds with a common chemical structure, dialkyl or alkyl/aryl esters 
of 1,2- benzenedicarboxylic acid. Since the 1930s phthalates have been used for a 
variety of products, including personal care products (e.g. perfumes, lotions, 
cosmetics), varnish, medical devices, pharmaceuticals, solvents, additives and insect 
repellents; but phthalates are primarily used as plasticizers to impart flexibility to an 
otherwise rigid polyvinylchloride (PVC) [56-62]. The use of certain phthalates in many 
consumer products is banned in various countries, including Europe by EEC directive 
2005/84/EEC [63]. Phthalates may constitute up to 50% of the total weight of PVC 
plastics, and their worldwide annual production is approximately 2.7 million metric 
tonnes [64]. Phthalates are not classified as persistent compounds [65], but their 
occurrence in the environment has been widely reported, possibly arguing against a 
rapid biodegradation in some environments [66-69].  
Depending on the alkyl chain, phthalates have different properties and can be used 
in diverse applications. The long-chain phthalates, such as di(2-ethylhexyl) phthalate 
(DEHP), diisononyl phthalate (DINP), diisodecyl phthalate (DIDP), and di(2-
propylheptyl) phthalate (DPHP), are primarily used in PVC polymers and plastisol 
applications. Short-chain phthalates, such as dimethyl phthalate (DMPTL), diethyl 
phthalate (DEP), buthylbenzyl phthalate (BBP), and di-buthyl phthalate (DBP), are 
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often used in non-PVC products such as personal care products, paints, adhesives, 
and enteric-coated tablets [70]. Phthalates are easily released from plastics into the 
environment via direct release, migration, evaporation, leaching, and abrasion [69] 
because they are not chemically bound [71]. Analytical surveys of the presence of 
phthalate ester metabolites in urine, serum, and other body fluids have confirmed the 
ubiquitous nature of exposure to multiple phthalates [72]. Ingestion is the major route 
of exposure, although other ways, including inhalation, dermal, and parenteral routes, 
have also been recognized [72]. These substances have a low order of acute toxicity 
but they are embryo-toxic and teratogenic in mice and rats. They also present low 
propensity for bioaccumulation. Among various phthalates, this study is focused on 
dimethyl-phthalate (CAS No: 131-11-3).  
 

2.2. Applicable treatment options to remove EDCs 
Endocrine disrupting chemicals are present in large amount in environment and are 
recalcitrant to degradation, for these reasons, many initiatives have been tested for 
the degradation of these micropollutants. EDCs removal methods fall into three 
categories: physical removal, chemical advanced oxidation (CAO) and 
bioremediation. 
 

2.2.1. Physical removal 
Various separation or oxidation techniques have been considered as potential 
treatment options for the effective removal of EDCs from water. Unfortunately, the 
chosen treatment did not consistently conform to the desired removal efficiency level. 
Among physical removal, coagulation, flocculation and precipitation processes, are 
not effective in removing EDCs, especially for low molecular weight compounds 
ranging from 100 to 500 Da [73-75]. On the other hand, adsorption and membrane 
filtration normally show superior removal efficiencies (up to 95%), depending on the 
compounds tested [76]. Absorption can take place using both granular activated 
carbon (AC) and various matrices. The former removes most organic contaminants, 
including EDCs, by artificial and real wastewater in the laboratory and pilot and full-
scale plants [77-83]. Many factors influence physicochemical properties of AC 
determining strict control of adsorption parameters and operational factors, such as 
kinetic and equilibrium constants, contact time, solubility, carbon type, competition 
with natural organic matter, etc [73; 84-86]. On the other hand, membrane separation 
is efficient in removing micro-contaminants, such as EDCs [77; 87-89], but 
elimination is incomplete with fluctuations in the range of 10-95%. Indeed, 
hydrophobicity and surface charges play a significant role in the retention of such 
compounds [89-91]. Filtration and its performances are strictly dependent by the 
used matrix.  
 

2.2.2. Chemical advanced oxidation (CAO)  
Chemical advanced oxidation (CAO) is mechanisms of mineralization of pollutants in 
wastewater to CO2 or transfer of pollutants to other products through oxidation-
reduction reactions. To increase the removal effect, some combinations such as 
UV/O3, UV/H2O2, UV/Fenton are widely applied to the removal of EDCs. In this way, 
generation of the hydroxyl radical is obtained (redox potential 2.80 V) [92]. Thus, 
CAO uses generally the combination of two methods for the removal of EDCs. 
 
 
 



17 

 

2.2.3. Bioremediation  
Bioremediation is the use of biosystems (microorganisms and/or organisms able to 
degrade hazardous contaminants) to remove pollutants; environmental impact due to 
the use of biosystem is very low, water and sludges being the only products of the 
treatment. This technology utilizes the metabolic potential of microorganism for 
degradation of toxic compounds [93]. In this frame, bacteria, fungi and enzymes play 
a major role. 

 Bacteria are able to mineralize a wide range of aromatic compounds, using them 
as carbon source for microbial growth [94]. Indeed, they are used for activated 
sludge process. This process is widely used in the world and it shows high 
removal efficiency of EDCs [95-97]. 

 Fungi also represent a vastly bio-diverse group of organism showing degradation 
abilities towards several pollutant compounds [96].  

 Oxidative enzymes secreted by white-rot fungi are also able to degrade a large 
range of toxic aromatic pollutants. This is due to their broad substrate specificity 
and to the strong structure similarity between pollutants and their natural 
substrates. Oxidative enzymes are tyrosinases, peroxidases and laccases. The 
particularity of tyrosinases (EC 1.14.18.1) is their ability to catalyse two different 
reactions: the hydroxylation of monophenols to o-diphenols (monophenolase 
activity) and the oxidation of o-diphenols to o-quinones (diphenolase activity), 
which, in turn, polymerize to brown, red, or black pigments [97-99], both reactions 
use molecular oxygen [100]. Peroxidases (EC 1.11.1.7) are oxidoreductases that 
catalyse the reduction of peroxides, such as hydrogen peroxide (H2O2) and the 
concomitant oxidation of a variety of organic and inorganic compounds [101]. 
Laccases (EC 1.10.3.2) are blue multicopper oxidases, catalysing the oxidation of 
an array of aromatic substrates concomitantly with the reduction of molecular 
oxygen to water [102]. 

 
For the reason previously described, this project is focused on study of degradative 
capabilities of enzymes and organisms in the presence of selected EDCs. In this 
frame, white-rot fungi and laccases produced by these mushrooms were studied.  
 
3. Laccases: general features 
-Distribution: Laccases (benzenediol:oxygen oxidoreductase, EC 1.10.3.2) are a 
large group of multicopper oxidases [103] belonging to the family of blue oxidases 
produced by plants (Rhus vernicifrera), insects (Bombix sp.) and bacteria 
(Azospirillum lipoferum), and widely occuring in several species of filamentous fungi 
[104]. Laccases were first described 120 years ago, and then enzymes from plants 
and fungi have been extensively studied. Among the several different biological roles 
so far ascribed to fungal laccases [105], they have a main role in lignin degradation, 
together with lignin and manganese peroxidase [106; 107].  
-Biochemical features: laccases are cuproproteins that couple the four single-electron 
oxidations of the reducing substrate to the four electron reductive cleavage of the 
dioxygen bond, using four Cu atoms distributed against three sites, defined according 
to their spectroscopic properties [102]. Typical metal content of laccases includes 
one type-1 (T1) copper (Cu1) (where the reducing substrate place is), and one type-2 
(T2) and two type-3 (T3) copper ions (Cu2 and Cu3), with Cu2 and Cu3 arranged in a 
trinuclear cluster (TNC) (where oxygen binds and it is reduced to water) [108] (fig. 1). 
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Fig. 1. Laccase active site. The Type 1 copper is coordinated with two histidine ligands and two 

sulphurs one of methionine and the other of cysteine. The Type 2 center is 3-coordinate with two 
histidine ligands and water as ligands. The Type 3 coppers are each 4-coordinate, having three 
histidines ligands and bridging hydroxide [109]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
-Structural properties: Laccases are thought to be nearly ubiquitous among fungi, 
and their presence has been documented in virtually every fungus examined so far. 
Current knowledge about the structure and physico-chemical properties of fungal 
proteins is based on the study of purified proteins. Up to now, more than 100 
laccases have been purified and characterized from fungi. Based on the literature, 
general characteristics of these enzymes can be drawn out. In fungi, laccases carry 
out a variety of physiological roles including morphogenesis, fungal plant-
pathogen/host interaction, stress defence and lignin degradation. In general, fungal 
laccases are monomeric globular proteins of approximately 60–70 kDa with acidic 
isoelectric point (pI) around pH 4.0, although several exceptions exist [110]. The 
majority of fungal laccases are extracellular enzymes generally glycosylated, with an 
extent of glycosylation usually ranging between 10 and 25% and only in few cases 
higher than 30% [111]. Laccases secreted from native sources are usually not 
suitable for large-scale purposes, mainly due to low production yields and high cost 
of preparation/purification procedures. 
-Applications: Due to their broad substrate specificity, laccases display great 
biotechnological potential and high market expectative in several fields of industrial 
applications such as in pulp delignification [112], textile dye bleaching [113; 114], 
food industries [115], ethanol production [116], bioremediation [102; 117], and 
organic synthesis [118; 119]. Laccases possess relatively low potential redox (<0.8 
V) [120] and, to enhance their activity, it is possible to use small molecules, known as 
redox mediators. In the presence of these molecules, laccases are able to catalyse 
the oxidation of substrates which the enzyme is not able to oxidize directly either 
because of their large dimensions or their high redox potential [121]. Once oxidized 
by the enzyme and stabilized in more or less stable radicals, mediators diffuse far 
away from the enzymatic pocket and enhance the redox reaction [122]. The ideal 
redox mediator would be a small-size compound, able to create stable radicals (in its 
oxidized form) that do not inactivate the enzyme, and whose reactivity would allow its 
recycling without degeneration. In addition, taking into consideration their industrial 
and environmental applications, mediators should be environmental-friendly and 
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available at low cost. Mediators can be synthetic (e.g. 2,2'-azinobis-(3-
ethylbenzothiazoline-6-sulfonate, ABTS) and natural (e.g. acetosyringone).  
 

3.1. Fungal laccases: heterologous expression and immobilization 
For the aforementioned reasons, laccases represent one ‘ecofriendly’ enzyme thanks 
to their industrial versatility; however, laccases secreted from native sources are 
usually not suitable for large-scale purposes, mainly due to low production yields and 
high cost of preparation/purification procedures. Heterologous expression may 
provide higher enzyme yields and may permit to produce laccases with desired 
properties (such as different substrate specificities, or improved stabilities) for 
industrial applications [102]. One of the most common organisms used for 
recombinant expression of laccases is the yeast Saccharomyces cerevisiae. Indeed 
yeasts show fast-growing on simple medium and a high frequency of homologous 
recombination that facilitates genetic manipulation. Other yeasts, as Pichia pastoris, 
can be used to obtain over-production of these enzymes. In fact, level of expression 
in P. pastoris is 10-100 times higher than that of other expression systems. 
Moreover, it is characterized to easy genetic manipulation and the ability to perform 
higher eukaryotic protein modification [123]. These features make P. pastoris very 
useful as a protein expression system [124]. On the other hand, it is possible to 
increase enzymatic production using as expression host filamentous fungi as 
Aspergillus niger, a particular suitable fungus that shows the capability to secrete 
large amounts of heterologous proteins into growth medium [125].  
However, two major obstacles hamper the use of enzymes in industrial bioprocesses: 
their sensitivity to various environmental denaturants such as salts, solvents, and 
proteolytic enzymes and the difficulty of retaining the enzyme in a continuous flow 
bioreactor. These obstacles make the use of enzymes a costly alternative. To 
enhance the industrial applicability of enzymes, including the improvement of their 
stability and their repeated utilization, substantial efforts have been made to 
immobilize them in the presence or in the absence of a solid support. Well-known 
strategies to immobilize enzymes are followed reported:  

 Carrier-binding method is the oldest immobilization technique for enzymes. 
In this method, the amount of enzyme bound to the carrier and the activity after 
immobilization depend on the nature of the carrier. The carrier-binding method can 
be further sub-classified into: physical adsorption-based on the physical adsorption 
of enzyme protein on the surface of water-insoluble-, ionic binding-relied on the 
ionic binding of the enzymatic protein to water-insoluble carriers containing ion-
exchange residues-, covalent binding-based on the binding of enzymes and water-
insoluble carriers by covalent bonds.  

 Cross-linking method is centred on the formation of covalent bonds between 
enzyme molecules, by means of bi- or multi-functional reagent, leading to three-
dimensional crosslinked aggregates. The most common reagent used for cross-
linking is glutaraldehyde.  

 Entrapment method of immobilization is based on the localization of an 
enzyme within the lattice of a polymer matrix or membrane.  
Immobilization technology creates exciting new opportunities for commercial 
development and profits in a wide range of industrial sectors including, healthcare 
and medicine, agriculture and forestry, fine and bulk chemicals production, food 
technology, fuel and energy production, pollution control and resource recovery. Over 
the past ten years, immobilization of enzymes has been the subject of increased 
interest, and a number of papers on potential applications of immobilized enzymes 
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have been published [126; 127]. In bioremediation field, laccases are immobilized to 
eliminate xenobiotics using continuous stirred membrane reactor [128]. In this frame, 
benefits in terms of cost, and especially, improving enzyme performances under 
optimal process reaction conditions (e.g., higher activity and stability at extreme pHs, 
elevated temperatures or in organic solvents) are obtained.  
 
4. Fungi 
Recently, growing interest in white-rot fungi (WRF) is arisen. WRF are able to 
degrade lignin, a complex natural compound, which forms the hard cover that 
protects soft wood, by nonspecific extracellular enzymes (e.g. laccases). In addition, 
they show the capacity to degrade different xenobiotics [96; 129; 130]. The removal 
performances of xenobiotics by white-rot fungi depend on various factors including 
the chemical structure of the considered micropollutants, fungal species and their 
specific enzymes, culture medium, and methods to enhance fungal degradation 
capacity [131]. In this context, three different WRF were selected: Pleurotus 
ostreatus, Phanerochaete chrysosporium and Trametes versicolor. These fungi have 
showed efficient decolouration capability of synthetic anthraquinone and azo dyes 
[96; 132] making them very interesting for biotechnological applications. 
Marco-Urrea and co-workers [133] reported degradation rate of T. versicolor higher 
than degradation rate of P. chrysosporium against the same xenobiotic. On the other 
hand, considering the performances of P. chrysosporium and P. ostreatus in 
decolourization processes, different results were obtained. Indeed, P. chrysosporium 
is active in decolorizing direct wastewater model containing dyes with complex-
Trisazo, Polyazo, Stilbene- structures, whilst P. ostreatus provides decolourization of 
the acid wastewater model [96]. 
 
5. The thesis 
Global aim of this project has been the development of biosystems, based on the use 
of enzymes and/or fungi, for the degradation of endocrine disruptors. With this aim, 
the project is divided in different steps: 
 Selection of endocrine disruptors belonging to different chemical classes, based 

on information about the amount of molecules discharged per year and their 
commercial availability.  

 Analyses of the oxidative capabilities of different laccases against xenobiotics -
single EDCs and/or their mixture-, also in the presence of both synthetic and 
natural mediators. Optimization of reaction conditions by enzyme 
immobilization. 

 Analyses of the degradative capabilities of different fungal species against 
selected xenobiotics; selection of better performing fungi and analyses of their 
degradative capabilities against mixture of EDCs. 

 Screening of aquatic ascomycetous fungi for their ability to grow in the presence 
of EDCs*. 

 Isolation of new fungal species growing on EDCs and their characterization*. 
 
 
 
 
 
*Work carried out in collaboration with Dr. Dietmar Schlosser at the Helmholtz Centre 
for Environmental Research, Leipzig (Germany) 
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In this context, this work has been organised in the following sections: 
 

1. Application of laccases for the degradation of endocrine disrupting chemicals: 
Taking into account the role played by laccases in bioremediation processes, 
POXA1b laccase from P. ostreatus and its variant, 1H6C, were recombinantely 
expressed in the same host and fully characterised. Furthermore, their degradative 
capabilities together with those of other laccases were analysed against selected 
EDCs.  
 

2. Application of fungal biosystems for the treatment of endocrine disruptors: 
Different kinds of biosystems based on the white-rot fungi P. ostreatus, P. 
chrysosporium and T. versicolor have been developed and tested for the 
biodegradation of EDCs.  
Investigation about degradative capabilities of aquatic fungi was also performed, and 
new fungal species were isolated considering their ability to growth on EDCs. 
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Introduction  
Laccases have been intensely studied for their potential uses in industrial 
processes. They generally work under mild conditions: room temperature and 
atmospheric pressure. For a feasible industrial use of these enzymes, it is 
important to obtain both enhanced expression levels and also to produce new 
engineered laccases with improved properties such as a higher redox 
potential, optimal activity at neutral or alkaline pH, and thermostability.  
 
Aim of this work has been the overproduction, structural and chemical-
physical characterization of two fungal laccases, POXA1b and 1H6C. The 
former is high redox potential laccase (+650 mV), highly stable in the pH 
interval of 7 to 10. The latter is a POXA1b variant, obtained through random 
mutagenesis.  
Both laccases have been heterologously expressed in the filamentous fungus 
Aspergillus niger. Productions yields obtained for the two enzyme- 35,000 U/L 
for rPOXA1b and 60,000 U/L for 1H6C- are among the highest production 
levels obtained for laccase expression in this and other hosts. Both 
recombinant enzymes were purified to homogeneity, and theirs biochemical 
and catalytic properties were investigated. The mutant enzyme shows higher 
redox potential in comparison to POXA1b.  
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Introduction  
In the last years, high levels of contaminants are found in wastewaters. To remove 
these xenobiotics from the environment, biodegradation processes can be used. In 
this frame, oxidative enzymes represent a considerable choice. In particular, among 
oxidative enzymes, laccases are interesting enzymes, because of their versatility, the 
possibility to produce them in large-scale, and to modify their properties. 
 
Four different fungal laccases were chosen to test their ability to degrade five 
different EDCs. Three out of four of the selected enzymes are high redox potential 
laccases: POXC, POXA1b and 1H6C. The latter two enzymes were heterologously 
expressed in Aspergillus niger, and their characterization has already reported in the 
first chapter. A commercial laccase was also used. 
Laccase oxidative capabilities against selected EDCs were studied in the presence 
and in the absence of two mediators, ABTS and acetosyringone.  
 
This study also evaluated the effect of oxidative capabilities of better performing 
enzyme towards the pollutants mixture.  
Implementation of its performances against EDCs mixture was achieved through 
immobilization on glass beads.  
 
 
 
 
 
 



52 

 

Submitted to BioMed Research International. March 2014  1 

 2 

FUNGAL LACCASES DEGRADATION OF ENDOCRINE DISRUPTING 3 

COMPOUNDS 4 

 5 

Gemma Macellaro, Alessandra Piscitelli#, Cinzia Pezzella, Paola Cicatiello and 6 

Giovanni Sannia 7 

 8 

Department of Chemical Sciences, University of Naples “Federico II”, Complesso 9 

Universitario Monte S. Angelo, via Cinthia, 4 80126 Naples, Italy 10 

 11 

 12 

 13 

 14 
#To whom correspondence should be addressed: Alessandra Piscitelli, Department 15 

of Chemical Sciences, University of Naples “Federico II”, via Cinthia, 4 80126 Napoli, 16 

ITALY Tel: 0039 081 674338 E-mail: apiscite@unina.it 17 

 18 

E-mail addresses: gemma.macellaro@unina.it (Gemma Macellaro); 19 

cpezzella@unina.it (Cinzia Pezzella); p.cicatiello@gmail.com (Paola Cicatiello); 20 

sannia@unina.it (Giovanni Sannia) 21 

 22 

23 

mailto:apiscite@unina.it
mailto:gemma.macellaro@unina.it
mailto:cpezzella@unina.it
mailto:p.cicatiello@gmail.com
mailto:sannia@unina.it


53 

 

Abstract 1 

Over the past decades, water pollution by trace organic compounds (ng/L) has 2 

become one of the key environmental issues in developed countries. This is the case 3 

of the emerging contaminants called Endocrine Disrupting Compounds (EDCs). 4 

EDCs are a new class of environmental pollutants able to mimic or antagonize the 5 

effects of endogenous hormones, and are recently drawing scientific and public 6 

attentions. Their widespread presence in the environment solicits the need of their 7 

removal from the contaminated sites. One promising approach to face this challenge 8 

consists in the use of enzymatic systems able to react with these molecules. Among 9 

the possible enzymes, oxidative enzymes are attracting increasing attention because 10 

of their versatility, the possibility to produce them in large-scale, and to modify their 11 

properties. In this study five different EDCs were treated with four different fungal 12 

laccases, also in the presence of both synthetic and natural mediators. Mediators 13 

significantly increased the efficiency of the enzymatic treatment, promoting the 14 

degradation of substrates recalcitrant to laccase oxidation. The laccase showing the 15 

best performances was chosen to further investigate its oxidative capabilities against 16 

micropollutant mixtures. Improvement of enzyme performances in Nonylphenol 17 

degradation rate was achieved through immobilization on glass beads. 18 

 19 

1. Introduction 20 

In the last years assessment and conservation of environmental quality has 21 

represented an interesting field of technologic applications. The main problem in 22 

industrialized states is represented by a constant and continuous pollution of soil, 23 

water-bearing stratum, surface water and air. This is due to the introduction, in the 24 

environment, of toxic and dangerous contaminants for many organisms, including 25 

humans. In this context Endocrine Disrupting Chemicals (EDCs) play a significant 26 

role. EDCs have been found to disturb the endogenous hormone pathway and 27 

interrupt the function of hormone receptors via estrogens-mimicking chemicals, 28 

resulting in the alteration of physiological functions, such as reproduction and 29 

development of different species, including humans [1]. EDCs are found in many 30 

products derived from cosmetic industries and working environment [2]. Many natural 31 

chemicals (e.g. phytoestrogens, including genistein and coumestrol), found in human 32 

and animal food, can also act as endocrine disruptors [2, 3]. 33 

Between 2000 and 2006 the European Commission has contracted diverse studies 34 

on the identification and evaluation of this class of substances, and a list of 35 

substances potentially endocrine disruptor has been drawn up [4]. Efficient and 36 

applicable techniques for removing EDCs in wastewater treatment processes remain 37 

a challenge of high environmental and public health significance [5]. One promising 38 

approach consists in the use of enzymatic systems able to degrade EDCs into non-39 

toxic or easy to remove products [6]. The promise of phenol oxidases (laccases and 40 

tyrosinases) and peroxidases for the elimination of EDCs from aqueous solutions has 41 

been established over the last few years and is attracting an increasing attention [7, 42 

8]. Nonetheless, the application of enzymes in continuous systems such as 43 

wastewater treatment plants remains a challenge as it is limited by their non 44 

reusability, the instability of their structures and their sensitivity to harsh process 45 

conditions. Many of these undesirable limitations may be overcome by the use of 46 

immobilized enzyme. In the immobilized form, enzymes are more robust and more 47 

resistant to environmental changes allowing easy recovery and multiple reuses [8].  48 

As a fact, examples referring to treatment of EDCs molecules [9-11], as well as of 49 

contaminated synthetic water and municipal wastewater [12] with different fungal 50 



54 

 

peroxidases, laccases and tyrosinases are present in the recent literature. In all 1 

reported cases, estrogenic activities were completely removed. Recent efforts have 2 

been focused on the immobilization of bio-catalysts in order to tackle this major 3 

limitation and to facilitate their possible reuse [8]. 4 

Laccases (p-diphenol-dioxygen oxidoreductases; EC 1.10.3.2) are blue multicopper 5 

oxidases, catalysing the oxidation of a broad range of xenobiotics concomitantly with 6 

the reduction of molecular oxygen to water. This renders them very attractive 7 

compared to other enzymatic systems because no additional/expensive co-substrate 8 

or cofactor is required apart from oxygen. These enzymes usually contain four 9 

copper ions distributed in three active sites, which are involved in the electron 10 

transfer from the substrate (T1 active site) towards oxygen (T2/T3 active sites) [13].  11 

In this project, among various chemical classes, the EDCs bisphenol A (BPA), 12 

nonylphenol (NP), methylparaben (MTPRB), buthylparaben (BTPRB) and 13 

dimethylphthalate (DMPTL) (Figure 1) have been selected, based on information 14 

about their toxicity, the amount discharged per year and their commercial availability. 15 

BPA is a high production volume chemical used as an intermediate in the fabrication 16 

of polycarbonate plastic and epoxy resins [14]. Due to its daily use, high 17 

concentrations of BPA are observed in wastewater and in wastewater sludge (0.004–18 

1.36 mg kg-1). NP is a mixture of para-, ortho-, and meta-isomers, the most prevalent 19 

of them is para-NP. It is a viscous, colourless liquid and it is subjected to ethoxylation 20 

to give alkylphenol ethoxylates [15]. This compound is very toxic and recalcitrant, 21 

thus it shows a high potential to bio-concentrate [16]. Parabens are esters of para 22 

hydroxybenzoic acid, widely used as preservatives in food, pharmaceutical and 23 

cosmetic industries to prevent bacterial growth [17, 18]. Phthalates are a group of 24 

persistent, high production volume chemicals, used for a variety of products, 25 

including personal care products (e.g. perfumes, lotions, and cosmetics), varnish, 26 

medical devices, pharmaceuticals, solvents, additives, insect repellents [19]. 27 

Four different fungal laccases were used in this study to set-up EDCs enzymatic 28 

treatment, also in the presence of both synthetic and natural mediators. Three out of 29 

four selected enzymes were high redox potential laccases from Pleurotus ostreatus: 30 

POXC [20, 21], POXA1b [21, 22] heterologously expressed in the filamentous fungus 31 

Aspergillus niger [23], 1H6C, a POXA1b variant obtained through random 32 

mutagenesis [24] and produced in A. niger [23]. Finally, a commercial laccase, the 33 

Novoprime Base 268 (Novozymes), was also used for enzymatic treatment. 34 

Moreover, considering that in the natural environment pollutant mixtures are 35 

common, this study also evaluated the effect of the best performing enzyme, both 36 

free and immobilized, towards the presence of pollutants mixtures. 37 

 38 

2. Materials and Methods 39 

2.1 Organism and culture conditions 40 

The P. ostreatus (Jacq.:Fr.) Kummer (type:Florida) (ATCC no. MYA-2306) fungus 41 

was maintained through periodic transfer at 4°C on Potato Dextrose Yeast extract 42 

(PDY) medium (potato dextrose 24 g/L; yeast extract 5 g/L). Growth were carried out 43 

at 28°C in the dark by preinoculating 300 mL of PDY in 500 mL shaken flasks with 6 44 

agar plugs of mycelium grown on solid state on Petri dishes (11 mm diameter). 50 45 

mL of a 5-day-old culture were transferred in 1 L flasks containing 450 mL of PDY 46 

broth. Cultures were incubated in the dark at 28°C under agitation (150 rpm).  47 

A. niger D15#26 strain [25] was grown in liquid medium (300 mL) containing 70 mM 48 

NaNO3, 7 mM KCl, 200 mM Na2HPO4, 2 mM MgSO4 7H2O, glucose 5% (w/v), 2 g/L 49 
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casamino acids and 5 g/L yeast extract. pH was adjusted to 5.0 daily by adding 1 M 1 

citric acid [23]. 2 

2.2 Enzymes 3 

Laccase POXC [20] was purified from P. ostreatus with slight modifications in the 4 

purification protocol. After 10 days of culture, the medium was collected and filtered 5 

through gauze. 1 mM of the serine protease inhibitor, phenylmethanesulfonylfluoride 6 

(PMSF), was added to the surnatant. Secreted proteins were precipitated from the 7 

filtered medium by addition of (NH4)2SO4 up to 80% saturation and loaded on Phenyl 8 

Sepharose High Performance 35/100 (GE Healthcare, Milan- Italy). POXC was 9 

eluted with a linear gradient of decreasing (NH4)2SO4 concentration from 1 M to 0 M. 10 

Fractions corresponding to POXC were pooled, equilibrated in buffer 50 mM sodium 11 

phosphate (NaP) pH 6.5 and loaded onto a DEAE Sepharose Fast Flow column (GE 12 

Healthcare, Milan- Italy) with a linear gradient 0 M to 0.5 M NaCl, and fractions 13 

corresponding to POXC were pooled and desalted.  14 

POXA1b and 1H6C were heterologously expressed and purified from A. niger, as 15 

previously described [23].  16 

Laccase Novoprime Base 268 (Novozymes) was dissolved in 50 mM NaP pH 6.5. 17 

2.3 Assay of enzymatic activity 18 

Laccase activity was assayed at 25°C by monitoring the oxidation of 2,2'-azino-bis(3-19 

ethylbenzothiazoline-6-sulphonic acid) (ABTS) at 420 nm (ε420=36×103 M−1 cm−1). 20 

The assay mixture contained 2 mM ABTS in 100 mM sodium citrate buffer, pH 3.0.  21 

Immobilized enzyme activity was assayed incubating 10 mg of glass beads in 1 mL 22 

of 2 mM ABTS in 0.1 M sodium citrate buffer (pH 3.0). The activity was determined 23 

by measuring the absorbance at 420 nm every 30’’ following the reaction for 2 min. 24 

Enzymatic units were expressed as U/g.  25 

2.4 Laccase immobilization on glass beads 26 

Glass beads type S (0.4- 0.6 mm diameter) were supplied by Silibeads (Sigmund 27 

Lindner GmbH, Germany). Beads were pre-treated with 1.2 M HNO3 at 60°C for 4 28 

hours and then, extensively washed with water and dried at 60°C. Carrier 29 

derivatization was performed as follows: 5 g of dry pre-treated beads were mixed 30 

-aminopropyltriethoxysilane, Sigma-Aldrich) in 50 mL distilled 31 

water and incubated at 80°C for 2 h under constant mixing. The suspension was then 32 

washed thoroughly with 50 mM NaP buffer pH 6.5 and treated with 2.5% 33 

glutaraldehyde for 1 h at room temperature. The activated beads were extensively 34 

washed with the over cited buffer and finally incubated for 1h with a solution of 35 

laccase mixture in 50 mM NaP buffer, pH 6.5 at room temperature. Residual active 36 

glutaraldehyde was inactivated by 1 h incubation with 100 mM glycine at room 37 

temperature. Immobilization yield (Y) was defined as the ratio between laccase 38 

activity assayed on the solid biocatalyst and total activity available in the liquid 39 

solution at the beginning of the immobilization processes. A yield of 83% was 40 

obtained following this procedure. 41 

2.5 EDCs enzymatic degradation 42 

1 mM stock solution of each EDC (Sigma-Aldrich, Milan- Italy) was prepared in hot 43 

water. To improve the solubility of NP and DMPTL in hot water, methanol (0.4% v/v) 44 

and Tween 80 (0.1% w/v) were added, respectively. 100 µM of each EDC was 45 

incubated for 1 h at 25°C in a reaction mixture containing 1.5 U/mL of purified 46 

laccase in 50 mM sodium citrate buffer, pH 5.0, total reaction volume was set to 4 47 

mL. Amounts of EDC were quantified every 30 minutes (t0, t30’, t60’) by reverse-phase 48 

HPLC. Enzymatic reaction was stopped by adding 50 µL of hydrochloric acid (HCl) to 49 

500 µL of reaction mixture and centrifuging at 15,100 g for 15 min at room 50 
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temperature. 100 µL of the surnatant were analysed by HPLC. Degradation of EDCs 1 

mixture was performed in the same condition, using a final concentration of 25 µM of 2 

each EDC. Thus, the final concentration of EDCs mixture was of 100 µM. Control 3 

reactions were performed in the same conditions without enzyme addition. Mediators 4 

used were ABTS, dissolved in sodium citrate buffer 50 mM, pH 5.0, and 5 

acetosyringone (AS), dissolved in hot sodium citrate buffer, 50 mM, pH 5.0. 6 

Concentrations used for both mediators were 20 µM and 200 µM.  7 

Degradation of EDCs mixture by means of immobilized enzyme was performed in the 8 

same condition, using an amount of beads corresponding to 6 U total in the presence 9 

 10 

2.6 High-Performance Liquid Chromatography 11 

All EDCs were quantitatively analysed using a C18 column (Grace Vydac, Hesperia, 12 

California- USA) on a HPLC instrument (Agilent Technologies Italia). The fractions 13 

were eluted by using a linear gradient of water-acetonitrile (A solvent 0.1% 14 

trifluoroacetic acid in Milli-Q (MQ) water; B solvent 0.07% trifluoroacetic acid, 5% MQ 15 

water in acetonitrile) at a flow rate of 1 mL/min. The gradient program for BPA 16 

analysis was 0–3 min (acetonitrile 30%), 3–9 min (acetonitrile 30–90%), 9–12 min 17 

(acetonitrile 90%), 12–13 min (acetonitrile 90- 30%), and 13–15 min (acetonitrile 18 

30%). The eluted sample was monitored by UV absorbance at 227 nm. The retention 19 

time for BPA was 6.9 min under these conditions. As regards as NP, the applied 20 

gradient was 0–3 min (acetonitrile 20%), 3–9 min (acetonitrile 20–90%), 9–12 min 21 

(acetonitrile 90%), 12–13 min (acetonitrile 90- 20%), and 13–15 min (acetonitrile 22 

20%). The detection wavelength was 277 nm. The retention time for NP was 14.5 23 

min under these conditions. The gradient program for parabens analyses was 0–7 24 

min (acetonitrile 30–70%), 7–8 min (acetonitrile 70–90%), 8–11 min (acetonitrile 25 

90%), 11–12 min (acetonitrile 90- 30%), and 12–14 min (acetonitrile 30%). The 26 

detection wavelength was 254 nm. Under these conditions the retention times for 27 

MTPRB and BTPRB were 5.8 min and 8.8 min, respectively. As regards as DMPTL, 28 

the applied gradient was the same used for parabens, while the detection wavelength 29 

was 274 nm. The retention time for DMPTL was 6.8 min under these conditions.  30 

As far as the EDCs mixtures is concerned, each molecule was analysed with its 31 

optimised program.  32 

The peak area on the chromatogram was used to calculate the remaining amount of 33 

EDC as a percentage of the initial value. 34 

 35 

3. Results and Discussion 36 

3.1 Endocrine disruptors degradation by enzymes 37 

Enzymatic degradation of EDC bisphenol A (BPA), nonylphenol (NP), methylparaben 38 

(MTPRB), buthylparaben (BTPRB), and dimethylphthalate (DMPTL) was tested in 39 

solution at pH 5.0 in the presence of the different selected laccases. Among the EDC 40 

molecules, only BPA was degraded by enzymes in the absence of any mediator 41 

within the time of incubation analysed (Figure 2). After 1 hour of incubation 42 

Novoprime Base 268 was able to degrade 60% of BPA, whereas POXC degradation 43 

rate was slower than that obtained by Novoprime 268, reaching 30% of BPA 44 

degradation after both 30 minutes and 1 h incubation. Both POXA1b and 1H6C were 45 

less efficient, with the latter being more able to degrade BPA, probably thanks to its 46 

higher redox potential [23]. The rate of BPA degradation was comparable with that 47 

obtained for other laccases in similar condition. A carefully comparison of results 48 

present in the recent scientific literature reveals that different strategies have been 49 

used to obtain BPA removal, along with different time of reaction and concentration 50 
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of both enzyme and substrate. Gassara and co-workers [26] reported a rate of BPA 1 

degradation of 13% after 2 hours incubation in the presence of 0.05 U/mL of a 2 

laccase from Phanerochaete chrysosporium. A purified laccase from Grifola frondosa 3 

was able to degrade 15% BPA (0.65 mM) in 1 hour [27], whereas a purified laccase 4 

from Phlebia tremellosa [28] removed around 65% of BPA estrogenic activity after a 5 

3 h-incubation with 50 U of enzymatic activity. Interesting results were obtained using 6 

a purified laccase by Trametes villosa, able to totally degrade 2.2 mM BPA in 3 h-7 

incubation [29].  8 

3.2 EDCs degradation by enzymes in the presence of mediators 9 

With the aim to enhance laccase efficiencies towards selected EDCs, two different 10 

mediators, a synthetic and a natural one, were added to the reaction mix. The 11 

selected mediators were ABTS, the first acknowledged laccase mediator [30], and 12 

the natural mediator AS, an eco-friendly, easily and economically available mediator 13 

[31]. 14 

As it is shown in Figure 3A, the presence of both mediators enhances laccase 15 

performances towards BPA but for Novoprime 268, and ABTS mediator is more 16 

effective than AS with all the tested laccases. As a fact, in the presence of ABTS, 17 

POXC was able to almost fully degrade BPA (95%) in 1 hour reaction. It is also 18 

possible to note that in the presence of both mediators POXA1b and 1H6C showed 19 

the same efficiency. Unexpectedly, the presence of mediators did not influence or 20 

even decreased Novoprime base 268 efficiency. A similar effect has also been 21 

observed for a Coriolopsis polyzona laccase towards NP using 1-22 

hydroxybenzotriazole (HBT) as substrate [10]. 23 

Also when considering nonylphenol, the presence of both mediators enhances 24 

laccase performances, with ABTS being more effective than AS with all tested 25 

laccases (Figure 3B). In this case, POXC and Novoprime base 268 showed almost 26 

the same degradation rate both in the presence of ABTS and AS. On the other hand, 27 

POXA1b and 1H6C showed an opposite behaviour. As a fact, in the presence of 28 

ABTS, 1H6C was more effective than POXA1b, whereas in the presence of AS, 29 

POXA1b proved to be more efficient than its variant. This result seems indicate that 30 

no simple rule regarding redox potential or affinity can be easily drawn, being the 31 

whole reaction mechanism quite complex. The obtained results seem promising if 32 

carefully compared with other systems. Indeed, a laccase from the white rot fungus 33 

C. polyzona was able to eliminate 50% BP34 

35 

improve laccase degradation, an enhanced degradation of almost 1.3 fold for both 36 

substrates was observed, reaching a degradation of 95% and 80% for BPA and NP, 37 

respectively [32].  38 

39 

the best mediator, since all enzymes were able to also degrade methylparaben and 40 

butylparaben after 1 h-incubation (Table 1). Also in this case, POXC showed the best 41 

performances, being able to degrade in 30 minutes 50% and 60 % of methyl and 42 

butylparaben, respectively (degradation did not improve after 1 h-incubation). Among 43 

parabens, butylparaben was more susceptible to laccase degradation in the 44 

presence of mediators than methylparaben. In the scientific literature are present 45 

only few reports regarding paraben degradation by laccases. Mizuno and coworkers 46 

[33] demonstrated that both iso- butylparaben and n- butylparaben were almost 47 

completely removed (95%) after 2 h of treatment and completely disappeared after 4 48 

h of treatment with 0.5 U/mL of laccase activity in the presence of 2 mM HBT. The 49 



58 

 

only substrate recalcitrant to laccase oxidation in all the tested conditions was 1 

dimethylphthalate.  2 

3.3 Degradation of EDCs mixture by free and immobilized POXC 3 

POXC, the best performing enzyme, was chosen for further degradation analyses 4 

against a mixture of the selected EDCs in a total final concentration of 0.1 mM. The 5 

analyses were conducted in the presence of four out of five substrates. As a fact, 6 

DMPTL was not used, considering its recalcitrance to laccase degradation under all 7 

the tested conditions. It is worth to note that in the absence of any mediator POXC is 8 

able to degrade almost 40% BPA and 80% NP after 1 h-incubation, whereas methyl 9 

and buthylparaben were not degraded (Figure 4). As far as BPA is concerned, a 10 

slower degradation rate was observed when BPA concentration was lowered if 11 

compared with the degradation observed with high BPA concentration. When 12 

mediator was added to the reaction, the efficiency was greatly enhanced, and fully 13 

disappearance of BPA was observed in the presence of AS. On the other hand, 14 

POXC is able to efficiently degrade NP at low concentration also in the absence of 15 

mediators, and no increase is observed when mediators are added to the reaction 16 

mix. Thus, it may be hypothesized that the enzyme shows a higher affinity towards 17 

NP than towards BPA. Parabens at low concentration were not oxidised in presence 18 

of both mediators.  19 

When immobilized POXC was used towards EDCs mix in the presence of AS, NP 20 

degradation improved with respect to the free enzyme, reaching the same extent of 21 

degradation (80%) within only 15 min, and no further increase was observed. On the 22 

other hand, a slightly lower BPA removal was observed (80%) using the immobilized 23 

enzyme respect to the free one. Parabens were not degraded, following the same 24 

trend already observed for the soluble counterpart. No adsorption of EDC molecules 25 

on activated carrier was observed. Tests were carried out using the silanized and 26 

derivatized carrier (without enzyme) against the mix of EDCs and no adsorption on 27 

the carrier was observed. Laccase immobilized on glass beads maintained significant 28 

activity during storage at 4°C in 50 mM phosphate buffer pH 6.5. After one month of 29 

storage, the retained laccase activity was 100%.  30 

In order to assess reusability of the immobilized laccase against mixture of EDCs, six 31 

successive cycles of batch degradation were performed. After six cycles, there was a 32 

20% drop in laccase activity (Figure 5). As far as EDC removal is concerned, a 33 

gradual loss of BPA degradation during six cycles was observed. On the other hand, 34 

NP degradation was decreased up to 40% after the first cycle, but no further drop 35 

was observed during the following 5 cycles.  36 

 37 

Conclusions 38 

The growing attention accorded to the removal of EDCs from environmental 39 

matrices makes oxidative enzymes an attractive candidate in the bioremediation 40 

arsenal. Four different laccases were chosen for their interesting characteristics and 41 

tested towards EDC molecules. The obtained results have shown that all laccases 42 

are able to oxidize different EDCs. In particular, BPA is the only substrate oxidized 43 

under all conditions tested. Furthermore, to improve laccase capabilities, mediators 44 

were added to reaction mixtures. Among the chosen laccases, POXC was the 45 

enzyme with the highest bioremediation capacity under all conditions analysed. Its 46 

performances were increased in the presence of both mediators. Interesting results 47 

were obtained in the presence of the natural mediator acetosyringone. When used at 48 

high concentration, this natural mediator enhanced the bioremediation capacity of 49 

POXC determining a rate degradation of 50% of both parabens in 30 minutes. Thus, 50 
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results herein obtained confirm laccase capabilities [33] to degrade this kind of 1 

substrates, very poorly investigated till now. Furthermore, oxidative capabilities of 2 

POXC were also studied in the presence of EDCs mixtures. Removal rates were 3 

different in micropollutant mixtures if compared with removal rates obtained treating 4 

individually the different molecules with alternating results towards BPA and NP, 5 

respectively. These results highlight the influence in the enzymatic degradation 6 

efficiency of the ratio between xenobiotic concentration and enzyme affinity. Thus, a 7 

challenge still open to face EDCs degradation is the discovery/tailoring enzymes 8 

capable of degrading the target compounds with an affinity constant of the same 9 

order of magnitude respect to the actual concentrations of the EDCs in the 10 

environment. As a fact, since EDC concentration in real wastewater is very low 11 

(ng/L), enzyme displaying a very high efficiency (high turnover together with high 12 

affinity) towards this molecule are excellent candidates to efficiently achieve their 13 

removal. Improvement of enzyme performances in NP removal was achieved 14 

through immobilization on glass beads.  15 
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FIGURE 1 Chemical structure of endocrine disrupting substances used in this study. 

Bisphenol A (BPA) Nonylphenol (NP) Methylparaben (MTPRB) 

Buthylparaben (BTPRB) Dimethylphthalate (DMPTL) 
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FIGURE 2 Percentage degradation (%) of BPA by fungal laccases. Reaction 

0 mM sodium citrate buffer), 25°C and 
1.5 U/mL laccase, with a reaction time of 1 h. All results are averages from 
two replicate experiments and the standard deviation is less than 10% 
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FIGURE 3 □), or AS (■) on the removal of EDCs after a 1-h treatment at pH 5.0 

and at a temperature of 25°C with 1.5 U/mL of laccases. A. BPA; B. NP. All results are averages from two replicate 
experiments and the standard deviation is less than 10%. 
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FIGURE 4  the removal of EDCs mixtures by POXC. Reaction 

0 mM sodium citrate buffer), 25°C and 1.5 U/mL laccase, with a reaction 
time of 1 h. All results are averages from two replicate experiments and the standard deviation is less than 10%. 
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FIGURE 5 Percentage degradation (%) of BPA (■) and NP (■) by immobilized POXC. Reaction conditions: 6 UTOT 
each EDC, pH 5.0 (50 mM sodium citrate buffer), 25°C a
laccase activity is reported as filled black circle (●). All results are averages from two replicate experiments and the standard 
deviation is less than 10%.  
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Table 1. 
AS after a 1-h treatment at pH 5.0, 25°C with 1.5 U/mL of laccases. All 
results are averages from two replicate experiments and the standard 
deviation is less than 10%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enzymes MTPRB BTPRB 

 (% degradation) (% degradation) 

ABTS AS ABTS AS 

POXC -- 50 15 60 

rPOXA1b -- 35 -- 40 

1H6C 5 7 7 8 

Novoprime Base 268 -- 40 -- 50 
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CONCLUSIONS OF SECTION 1 
 
The work described in Section 1 has been aimed at evaluating the performances of 
laccases for wastewater treatment contaminated by endocrine disrupting chemicals. 
Four different fungal laccases were chosen in this study to set-up EDCs enzymatic 
treatment.  
 
Four different fungal laccases were chosen to test their ability to degrade five 
different EDCs. Three out of four of the selected enzymes are high redox potential 
laccases: POXC, POXA1b and 1H6C. The latter two enzymes were heterologously 
expressed in Aspergillus niger, and their characterization has already reported in the 
first chapter. A commercial laccase was also used. 
Analyses about oxidative capabilities of selected laccases were studied in the 
presence of different EDCs. Moreover, laccase activity was enhanced by presence of 
both synthetic and natural mediators. The best performaces were obtained by POXC, 
which showed higher degradation rate in almost all tested condition and its 
performances were increased by the addition of both mediators. Interesting results 
were obtained in the presence of the natural mediator acetosyringone. Indeed, it was 
able to degrade 50% of both parabens after 30 min of incubation. Moreover, 
considering that in the natural environment pollutant mixtures are common, analyses 
of degradative capabilities of POXC was also evaluated towards xenobiotics 
mixtures. Removal rates were different in micropollutant mixtures if compared with 
removal rates obtained treating individually the different molecules. Indeed, only an 
implementation of enzyme performances in nonylphenol degradation rate was 
achieved, without the use of any mediator. In the end, studies about oxidative 
capabilities of POXC were carried out through immobilization on glass beads. Also in 
this case, the best performance was monitored against NP. These results underlie 
the influence in the enzymatic degradation efficiency of the ratio between xenobiotic 
concentration and enzyme affinity. Thus, a challenge still open to face EDCs 
degradation is the discovery/tailoring enzymes capable of degrading the target 
compounds with an affinity constant of the same order of magnitude respect to the 
actual concentrations of the EDCs in the environment. 
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Section 2 

 
Application of fungal biosystems for the 

treatment of endocrine disruptors 
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INTRODUCTION 
In the last decades, a large number of materials and compounds have been 
produced without adequate knowledge on their interaction with environment and 
human health. The result is a continuous pollution by a wide array of hazardous 
chemicals with different structures and toxicity levels showing an effect on the 
reproductive systems of various animals, including humans [1; 2]. Among these 
substances, there are particular chemicals -the endocrine disrupting chemicals 
(EDCs)- known and/or suspected to alter the normal hormone regulations and 
damage the health of intact organisms or their progenies or subpopulations [3; 4]. 
Due to their widespread presence in the environment and toxic activity even at low 
concentrations, EDCs have received increased attention in water quality 
management and health care. Moreover, these compounds are characterized by high 
bioactivity, ubiquitous nature, toxicity and persistence. Among various EDCs, 
bisphenol A (BPA), nonylphenol (NP), two different parabens, methyl- and buthyl-
paraben, and dimethylphthalate (DMPTL) have been investigated; this selection was 
based on information about the amount of molecules discharged per year and their 
commercial availability. BPA is widely used for the production of epoxy and phenol 
resins, polycarbonates, polyester, and lacquer coatings on food containers, its 
production is 650,000 tonnes per year [5], determining an high concentration of BPA 
in wastewater and in wastewater sludge (0.004-1.36 mg/kg) [6]. Nonylphenol and 
phthalate esters, which are largely produced for use as surfactants and/or 
plasticizers in a variety of plastics industries, are also known to have estrogenic 
activities [7; 8]. Parabens are esters of p-hydroxybenzoic acid, they are widely used 
as preservatives in food, pharmaceutical and cosmetic industries in order to prevent 
bacterial growth [9; 10].  
For aforementioned peculiarities, it is extremely important to found a valid 
decontamination treatment. In the last years, physical and chemical processing were 
used, but they are expensive and may generate a large volume of sludge [11; 12]. 
On the other hands, biological wastewater treatments are an attractive option as they 
could be cost-effective and environmentally friendly [13-15]. A promising alternative 
is the application of ligninolytic fungi or isolated fungal enzymes for the 
biodegradation of these compounds [16; 17]. Among the mushrooms, most white-rot 
fungi (WRF) have the capability to degrade EDCs such as nonylphenol, bisphenol A 
and phthalates [18-21]. These white-rot fungi stand a wide range of pH and 
considerably high concentrations of aromatic substrates, allowing an extensive 
utilization of their pollutant degradation capabilities [22]. Indeed these mushrooms 
are already used for bioremediation of coloured industrial wastewaters [13; 23; 24].  
Another approach to solve this problem can be the use of filamentous ascomycetes, 
ascomycetous yeasts, or mitosporic fungi, which have gained considerable attention 
in the bioremediation process [25-29]. Indeed, in this context, due to the high variety 
of physicochemical conditions, the aquatic environment is a promising source for the 
isolation of interesting fungi. These organisms may be more suitable than other 
organisms for the treatment of micropollutants in wastewater, thanks to their living 
conditions and their possible adjustment mechanisms in different aquatic habitats. 
Furthermore, they are able to grow at high contents of inorganic ions found in both 
aquatic environments and industrial effluents [30-32] 
In this section, different approaches were carried out, testing their different 
degradative capabilities. 
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RESULTS AND DISCUSSION 
 

3.1 Endocrine disruptors degradation by fungi 
Analyses of degradative capabilities of different fungi against various EDCs were 

performed. All fungi were able to grow in presence of 100 µM of EDCs. In Fig. 1 
results obtained at the 3rd growth day are showed, they are representative of the 
tendency of degradative capabilities of mushrooms in the presence of single EDCs; 
even if T. versicolor gives the best results after only 2 days. It is worth to note that T. 
versicolor is the better performing fungus. Indeed, it was able to totally degrade BPA 
in 2 days, P. chrysosporium and P. ostreatus were able to degrade 50% BPA in 3 
days, and their performances remained constant during the growth. Cajthaml and co-
workers (2009) [17] reported the ability of P. ostreatus and T. versicolor to degrade 
44 µM of BPA in 3 and 7 days, respectively; on the contrary P. chrysosporium 
degraded BPA until 30%. Variances showed may be due to different concentrations 
analysed, indeed higher BPA quantity could inhibit degradative capabilities of P. 
ostreatus. As for T. versicolor, differences on the degradative capabilities may be due 
to the different culture conditions used.  

In the presence of NP, T. versicolor was the only fungus able to totally degrade 
this substrate in 8 days, P. chrysosporium and P. ostreatus degraded 80% NP in 2 
days, but this value remained stable during their growth. The data are in accordance 
with literature in which T. versicolor was the most efficient NP degrader among other 
tested ligninolytic strains [17; 33].  

Fig. 1. Degradation of 100 µM of each EDCs in the presence of different fungi at 3
rd

 growth day. 
 

Furthermore, analyzing cultures in the presence of nonylphenol, all mushrooms 
showed a morphologic change. As a fact, cultures exhibited smaller size mycelium 
with respect to the control and they displayed cellular lysis, maybe due to the 
presence of nonylphenol degradation compounds (Fig. 2). As for parabens, T. 
versicolor showed high rate degradation, indeed both substrates were degraded 
totally in 2 days. The performances of P. chrysosporium towards these EDCs were 
also interesting, indeed parabens disappearance was after 4 days. Only P. ostreatus 
was not able to degrade these compounds completely. This is the first work in which 
parabens have been studied and good results have been obtained. In the case of 
DMPTL, P. ostreatus gave the best performances showing 80% of degradation after 
8 days. These data are in accordance with results of Hwang and co-workers (2008) 
[34] demonstrating that P. ostreatus showed better characteristics in comparison of 
T. versicolor performances.  
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No EDCs absorption was monitored in control growth in all tested conditions. 
Laccase activity was monitored in all conditions and no significant increase was 
observed.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2 EDCs degradation by T. versicolor in minimal culture broth 
Since T. versicolor gave the better results in all conditions studied, it was chosen 

for further investigations. The next step was the analysis of fungus degradative 
capabilities against an EDCs mixture (20 µM final concentration of each substrate) in 
PDY. In this frame, T. versicolor totally degraded MTPRB and DMPTL in 2 days, the 
other substrates in 4 days. Comparing these results with those obtained in the 
presence of single compound, it was possible to observe that, at low concentration, 
this fungus totally degrades DMPTL. On the contrary, the degradation rate of BPA 
and BTPRB in the mixture was lower than that exhibited in the presence of single 
compound.  

To verify the performances of T. versicolor in real world condition, formulation of 
minimal culture broth was performed. This goal was obtained by reduction of both 
carbon and nitrogen source, using ten times diluted PDY and only BPA as growth 
medium. BPA was chosen as reference xenobiotic because of its high concentration 
in the environment. Degradation rate of 100 µM BPA was analysed in both different 
growth conditions showing, in both cases, totally disappearance of this substance 
after 1 day of growth (data not showed). Studies on the reuse of same biomass for 
BPA degradation were also carried out. Fifteen cycles of degradation were performed 
by daily addition of 100 µM BPA to the same culture. Interesting results were found, 
indeed totally disappearance of this micropollutant was found displaying that 
degradative performances of T. versicolor are constant during the growth (fig. 3). 

 
 
 
 

2C 

2A 2B 

Fig 2. Morphologic changes in 
nonylphenol culture broths. 2A. T. 
versicolor in PDY vs T. versicolor in 
0.1 mM NP; 2B. P. ostreatus in 0.1 
mM NP vs P. ostreatus in PDY; 2C. 
P. chrysosporium in 0.1 mM NP vs P. 
chrysosporium in PDY. 
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Fig. 3. BPA degradation rate during fifteen cycles of degradation. Daily addition of BPA was 
performed. Data represent means from triplicate cultures. 

 

The next step was carried out analysing degradative capabilities of T. versicolor 
against an EDCs mixture and using only water and EDCs mixture as nutrients. 
Surprisingly, all xenobiotics disappeared in only 1 day. Fifteen cycles of degradation 
were performed by daily addition of EDCs mixture to the same biomass. It is worth to 
note that BPA and BTPRB were daily degraded during all cycles. On the other 
hands, MTPRB and NP disappeared day by day in the first two cycles, then only 
partial degradation was monitored for the next five cycles. Anyway, performances 
were restored showing continue and total degradation of these substrates. As 
regards as DMPTL, it was totally degraded only in the first day of culture, but its slow 
degradation was monitored determining its accumulation after daily addition (Table 
1).  
 

EDCs 
EDCs concentration (µM) 

1 cycle 2 cycle 4 cycle 6 cycle 8 cycle 15 cycle 

BPA 0 0 0 0 0 0 

NP 0 0 23 25 0 0 

MTPRB 0 0 31 73 60 0 

BTPRB 0 0 0 0 0 0 

DMPTL 0 33 57 107 116 163 
Tab. 1. EDCs concentration (µM) in mixture before daily addition. EDCs degradation was 

monitored every day. BPA and BTPRB were daily degraded; other substrates showed a partial 
degradation determining theirs accumulation. Data represent means from triplicate cultures. 
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MATERIALS AND METHODS 
Organism and culture conditions- T. versicolor (NBRC4937) and P. ostreatus 
(Jacq.: Fr.) Kummer (type: Florida) (ATCC no. MYA-2306) were maintained through 
periodic transfer at 4°C on Potato Dextrose Yeast extract (potato dextrose 24 g/L; 
yeast extract 5 g/L) (PDY); P. chrysosporium Burdsall M1 (DSM 13583) was 
maintained through periodic transfer at 4°C on 1/10 PDY. In order to study EDCs 
degradation, liquid fermentations using PDY medium were conducted. Incubations 
were carried out at 28°C in the dark by preinoculating 300 mL of PDY in 500 mL 
shaken flasks with 6 agar plugs of mycelium grown on solid state on Petri dishes (11 
mm diameter), both for T. versicolor and P. ostreatus. The preinocula for liquid 
cultures of P. chrysosporium were prepared with 6 agar plugs of mycelium grown on 
solid state on Petri dishes (14 mm diameter) at the same way used for the other 
fungi. After 5 days of growth, preinoculum was homogenized and diluted 1:10 in 250 
mL flasks containing 150 mL of PDY broth (1/10 PDY broth for P. chrysosporium) 
supplemented with 100 µM EDC and 150 µM copper sulphate. The cultures were 
incubated in the dark at 28°C on a rotary shaker (150 rpm) and monitored for 8 days.  
Degradation of EDCs mixture was performed in the same condition, using a final 
concentration of 20 μM of each EDC. Thus, the final concentration of EDCs mixture 
was of 100 μM. In this case, the inocula were performed filtering fungal mycelium 
through cellulose nitrate filters (0.45 mm pore size; Sartorius) and resuspended it in 
the same broth of inoculum. Mycelial suspension obtained was homogenized and 
inoculated in broth and EDCs mixture. 
Autoclaved, tyndallized and inactivated inoculi were used as controls and they were 
performed in the same way of active cultures; inactivated cultures were prepared by 
adding sodium azide (500 mg/L). Laccase activities were monitored every day. 
Assay of enzymatic activity- Laccase activity was assayed at 25°C by monitoring 
the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) at 420 
nm (ε420=36×103 M−1 cm−1). The assay mixture contained 2 mM ABTS in 100 mM 
sodium citrate buffer, pH 3.0.  
EDCs degradation- 1 mM stock of each EDCs was prepared in hot water. To 
improve the solubility of NP and DMPTL in hot water, both methanol (0.4% v/v) and 
Tween 80 (0.1% w/v) were added.  
100 µM of each EDC was added to culture broth at the time of inoculation. Residual 
EDCs in the fungal cultures were analyzed every day by reverse-phase HPLC. 
Samples cell-free were mixed with an equal volume of methanol and vigorous mixing, 
kept at -20°C for 15 minutes and centrifuged at 15,100 g at 4°C for 15 min. Then, 100 
µL was injected into the HPLC column and analysed. Degradation of EDCs mixture 
was performed in same condition of previous experiments.  
High-Performance Liquid Chromatography- All EDCs were quantitatively analysed 
using a C18 column (Grace Vydac, Hesperia, California- USA) on a HPLC instrument 
(Agilent Technologies Italia). The fractions were eluted by using a linear gradient of 
water-methanol (A solvent 0.1% trifluoroacetic acid in Milli-Q (MQ) water; B solvent 
0.07% trifluoroacetic acid, 5% MQ water in methanol) at a flow rate of 1 mL/min. The 
gradient program for BPA analysis was 0-3 min (methanol 30%), 3-9 min (methanol 
30-90%), 9-12 min (methanol 90%), 12-13 min (methanol 90-30%), and 13-15 min 
(methanol 30%). The eluted sample was monitored by UV absorbance at 227 nm. 
The retention time for BPA was 6.9 min under these conditions. As regards as NP, 
the applied gradient was 0-3 min (methanol 20%), 3-9 min (methanol 20-90%), 9-12 
min (methanol 90%), 12-13 min (methanol 90-20%), and 13-15 min (methanol 20%). 
The detection wavelength was 277 nm. The retention time for NP was 14.5 min 
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under these conditions. The gradient program for parabens analyses was 0-7 min 
(methanol 30-70%), 7-8 min (methanol 70-90%), 8-11 min (methanol 90%), 11-12 
min (methanol 90-30%), and 12-14 min (methanol 30%). The detection wavelength 
was 254 nm. Under these conditions, the retention times for MTPRB and BTPRB 
were 5.8 min and 8.8 min, respectively. As regards as DMPTL, the applied gradient 
was the same used for parabens, while the detection wavelength was 274 nm. The 
retention time for DMPTL was 6.8 min under these conditions. As far as the EDCs 
mixtures is concerned, each molecule was analysed with its optimised program. The 
peak area on the chromatogram was used to calculate the remaining amount of EDC 
as a percentage of the initial value. 
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RESULT AND DISCUSSION 
 

4.1 Endocrine disruptors degradation by aquatic fungi 
Six different strains representing various species (Tab 1) were compared in term 

of their ability to degrade selected xenobiotics.  
 

Fungal strains Genera 

Phoma sp. UHH 5-1-03 Aquatic mitosporic fungus 

Clavariopsis aquatica WD(A)-00-01 Aquatic hypomycetes 

Trichosporon porosum JU-K-2 Basidiomycetes  

Acephala sp. JU-A-2 Ascomycetes 

Stachybotrys chlorohalonata A-2008-
2 

Ascomycetes 

Cladosporium herbarum AP2-2009-7 Ascomycetes 

Table 1. Fungal strains used within the present study 

 
A comparison was performed in 6-well plates, analysing the degradation rate of 

each fungus towards each EDC and EDCs mixture. Cultures were monitored during 
six days, and, in both cases, only parabens were totally degraded by three of the 
selected mushrooms (Tab. 2). It is worth to note that C. herbarum AP2-2009-7 was 
able to fully degrade these two micropollutants after only 1 day. Moreover, C. 
herbarum and Phoma sp also showed degradative capabilities against EDCs 
mixture, exhibiting total degradation of parabens after 6 days. On the other hand, no 
fungus was able to degrade BPA, NP and DMPTL, in all of the conditions tested. 

 
 

 

Table 2. Total degradation of EDC expressed in days. n.d.=not degraded. Data represent means 
from triplicate cultures. 

 

 
MTPRB BTPRB 

EDCs mix 

BPA NP MTPRB BTPRB DMPTL 

Phoma sp. UHH5 6 6 n.d. n.d. 6 6 n.d. 

C. aquatica  
WD(A)-00-01 

6 6 n.d. n.d. n.d. n.d. n.d. 

T. porosum  
JU-K-2 

n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Acephala sp.  
JU-A-2 

n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

S. chlorohalonata 
A-2008-2 

n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

C. herbarum  
AP2-2009-7 

1 1 n.d. n.d. 6 6 n.d. 
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Considering these results, C. herbarum AP2-2009-7 and Phoma sp. UHH 5-1-03 
were chosen for further scale up. Indeed, the degradation capabilities of these fungi 
were investigated in shaken flasks, both in single and in mixed cultures.  

C. herbarum AP2-2009-7 showed a total degradation of MTPRB after only 2 days. 
The fungus also exhibited interesting results in the presence of dimethylphthalte, 
being able to totally degrade it after 7 days. As for the other xenobiotics, included 
BTPRB, the fungus was not able to degrade them.  

In order to demonstrate the possibility of reusing this biosystem for EDCs 
degradation, fungal biomass was recycled after the first growth in EDCs. Obtained 
results were summarized in table 3. 

 

 
Table 3. Total degradation of selected EDC by C. herbarum AP2-2009-7 expressed in days. Data 

represent means from triplicate cultures. 

 
During second cycle, C. herbarum AP2-2009-7 was able to completely degrade 

MTPRB and DMPTL after 2 and 3 days, respectively, showing in the case of DMPTL, 
an enhanced of degradation rate. 

Analyses of degradative capabilities of C. herbarum AP2-2009-7 against EDCs 
mixture were also carried out and all results were summarized in table 3. Also in this 
case, recycling biomass in the presence of EDCs mixture was performed (table 3). 
During second cycle, an enhanced of NP degradation was monitored. 

No EDCs absorption on fungal biomass was monitored in control growth in all 
tested conditions. 

 
Furthermore, laccase activity was monitored and no significant increase was 

monitored in the presence of EDCs with respect to the values obtained in the 
absence of the micropollutants. The inability of some fungi to degrade xenobiotics 
could be related to the absence of laccase activity. Indeed, Junghanns and co-
workers (2005) [28] analysed the NP degradation rate by C. aquatica WD(A)-00-01 
and Phoma sp. and a slow degradation of this molecule was monitored for both fungi. 
When laccase activity was induced, an enhancement of NP degradation rate was 
observed in Phoma [35]. 

 
As for Phoma sp. UHH 5-1-03, its performance in the presence of methylparaben 

was fascinating. Indeed, at the third day of growth, analysing the amount of 
xenobiotic in the culture broth, 67% degradation was monitored. However, monitoring 
the amount of MTPRB in control growth, also bioadsorption of xenobiotic on fungal 
biomass was observed. For this reason, the real percentage of degradation was 
calculated as the difference between the amount of MTPRB present ab initio and 

 
C. herbarum AP2-2009-7 

1st cycle 2nd cycle 

MTPRB 2 2 

DMPTL 7 3 

EDCs 
mixture 

BPA >15 >15 

NP 15 11 

MTPRB 2 2 

BTPRB 2 2 

DMPTL >15 >15 
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both the amount bound on biomass surface and that remaining in the culture broth. 
At the 3rd day of growth, 33% MTPRB was present in culture broth, while 24% was 
found bound on fungal biomass and 43% was really degraded (Table 4).  

As regards as BTPRB degradation by Phoma sp. UHH 5-1-03, only the 
bioadsorption process was monitored, without degradation (Table 4).  

 

 

Table 4. Biodegradation and bioadsorption processes of Phoma sp. after 2, 3, 4 and 7 days of 
growth. Measured data represent means from triplicate cultures. 

 
Contrarily to behaviour of cultures in multiwell, the fungus also exhibited 

interesting results in the presence of dimethylphthalte, as already observed for C. 
herbarum AP2-1009-7. Indeed, total DMPTL degradation was accomplished in 7 
days. No fungal absorption occurred in this case. No degradation of the other 
compounds was observed. Reuse of fungal biomass, as previously described, was 
performed both for MTPRB and DMPTL and all results were summarized in table 5. 
In this case, no bioadsorption was monitored.  

Analysing Phoma sp. performance against EDCs mix, this fungus was able to 
completely degrade all EDCs in two days. Recycle of fungal mycelium was 
performed and results were showed in table 5. Methyl- and buthyl- paraben 
absorption was monitored in control growth in the presence of EDCs mixture, both in 
the first and in the second growth. For the other xenobiotics, no EDCs absorption 
was monitored in both control growth.  

 

Table 5. Total degradation of selected EDC by Phoma sp. UHH 5-1-03 expressed in days. Data 
represent means from triplicate cultures. 

 

Considering particular performances showed by Phoma sp. in the presence of 
parabens, further investigation about its degradative and adsorption capabilities were 
performed.  

EDCs 

EDCs remaining in 
culture broth (%) 

BIOADSORPTION  
(%) 

BIODEGRADATION 
(%) 

2nd 3rd 4th 7th 2nd 3rd 4th 7th 2nd 3rd 4th 7th 

MTPRB 75 33 0 0 0 24 10 0 25 43 90 0 

BTPRB 95 62 30 0 5 32 70 100 0 0 0 0 

 
Phoma sp. UHH 5-1-03 

1st cycle 2nd cycle 

MTPRB 7 3 

DMPTL 7 3 

EDCs 
mixture 

BPA 2 >15 

NP 2 >15 

MTPRB 2 2 

BTPRB 2 2 

DMPTL 3 >15 
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4.2 Biodegradation and bioadsorption ability of Phoma sp. UHH 5-1-03  
In order to study the different degradation processes of parabens from Phoma sp., 

a different growth was carried out. Preinoculum and inoculum of Phoma sp. was 
performed as in materials and methods section and the amount of inoculums was 
around 14 g/L, in all tested condition.  

Analysing the degradation rate of parabens after four hours, fascinating results 
were obtained. Indeed, their total biodegradation was monitored. Furthermore, 
washing active biomass with methanol and analysing the obtained sample, no 
bioadsorption was monitored. On the other hand, total bioadsorption of both 
parabens on control cultures was observed after four hours. These obtained results 
were opposite and did not underline the differences between the bioadsorption and 
biodegradation process. For this reason, new cultures were carried out and inoculum 
phase and only 25% of preculture biomass was inoculated. Degradation rates of 
these xenobiotics were monitored in 6 hours. As previously observed, in active 
cultures, no bioadsorption process was monitored for both parabens, being 
biodegradation the only process. On the other hand, bioadsorption profile was again 
observed in control growths, determining a total disappearance of both parabens in 
six hours. 

Thus it seems that in the active cultures, even if bioadsorption occurs, it is followed 
by a kind of xenobiotic uptake, since no xenobiotic is detected after methanol 
extraction form cells. 

In conclusion, Phoma sp. UHH 5-1-03 can be used in both processes, showing 
high rate of decontamination.  
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MATERIALS AND METHODS  
Organism and culture conditions- All fungi selected in this study were maintained 
through periodic transfer at 4°C on 2% (w/v) malt extract. In order to compare EDCs 
degradation, different liquid fermentations were carried out. The first analysis was 
performed in 6-well plates in 10 mL Stanier mineral medium (1966) [36] 
supplemented with 250 µM of each EDC or 250 µM EDCs mixture, at the time of 
inoculum. Incubations were carried out at 28°C in the dark with agitation (120 rpm) 
inoculating 0.5 mL of a mycelial suspension. This suspension was prepared by 
homogenizing of 30 agar plugs (7 mm diameter) derived from the margins of well-
grown agar plate cultures (3-4 weeks old) of each fungus with 30 mL of Stanier 
medium using an Ultraturrax. The cultures were monitored for 6 days. The second 
step was conducted in 100 mL Erlenmeyer flasks containing 30 mL Stanier medium 
supplemented with 250 µM EDC and 250 µM EDCs mixture for selected fungi. The 
inoculum suspension was prepared as previously described. In both steps, control 
cultures were prepared by adding sodium azide (0.5 g/L) to wells or flasks inoculated 
by each fungus in the presence of both single compound and EDCs mixture. 
Fungal biomass recycling was tested after full degradation of EDC molecule using 
5% of fungal biomass to start a new degradation cycle in the condition already 
described. 
Liquid precultures of Phoma sp. UHH 5-1-03 were conducted in Erlenmeyer flasks 
(100 mL) containing 30 mL of 2% (w/v) malt extract medium (pH 5.6-5.8) inoculated 
with 0.5 mL of a mycelial suspension, obtained as previously described. Flasks were 
incubated at 14°C and 120 rpm in the dark for nine days. After nine days, fungal 
mycelia were removed from culture media by sterile filtration through filter papers, 
and washed 3 times with 30 mL of Stanier medium. Then, the whole fungal biomass, 
or a 25% of fungal biomass, is transferred into new sterile 100 mL flasks containing 
30 mL mineral medium supplemented with 250 µM of each EDC or 250 µM EDCs 
mixture, at the time of inoculum. Finally, flasks were incubated at 28°C and 120 rpm. 
As regards as control, sodium azide was added at a final concentration of 0.5 g/L to 
inactivate the fungal cultures after 8 days of incubation of preinoculum. The laccase 
activity was daily monitored.  
Assay of enzymatic activity- Laccase activity was assayed at 25°C by monitoring 
the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) at 420 
nm (ε420=36×103 M−1 cm−1). The assay mixture contained 2 mM ABTS in McIlvaine 
buffer, pH 4.0.  
EDCs degradation- 50 mM stock of each EDC was prepared dissolving xenobiotic in 
methanol containing 10% Tween 80 (w/v). As regards as analyses in the presence of 
EDCs mixture, a 25 mM stock solution was prepared as previously described. 
Residual EDCs in the fungal cultures were daily analyzed by reverse-phase UPLC. 
Samples cell-free were vigorously mixed with an equal volume of methanol, kept at -
20°C for 15 minutes and centrifuged at 15,100 g at 4°C for 15 min.  
To analyse the EDC amount on biomass surface, 0.5 mL of fungal mycelium was 
washed with an equal volume of methanol, vigorously mixed, kept at -20°C for 15 
minutes and centrifuged at 15,100 g at 4°C for 15 min. After centrifugation, 
supernatants (900 µL) were transferred into 1.5 mL UPLC vials. Samples (3.3 µL) 
were injected into the UPLC column and analysed.   
Ultra-Performance Liquid Chromatography- Samples were subjected to an 
AcqutityTM UPLC system comprising a Binary Solvent Manager (BSM), a Sample 
Manager (SM), and a PDA eλ photo diode array detector, and equipped with an 
AcquityTM UPLC BEH C18 column (1.7 μm particle size; 2.1 x 50 mm; Waters, 
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Eschborn, Germany) operated at a column temperature of 40°C. The following 
solvents serve as mobile phases: solvent A - 10% methanol in deionised water, 
acidified to pH 3.0 with concentrated phosphoric acid; solvent B - 100% methanol, 
acidified to pH 3.0 with concentrated phosphoric acid. The following elution profile 
was applied: isocratic elution at 20% B for 0.14 min; linear increase to 100% B for 2.8 
min; isocratic elution at 100% B for 3.2 min; linear decrease to 20% B for 3.25 min; 
isocratic elution at 20% B for 3.5 min (0.5 mL/min flow rate). A wavelength range 
from 220 to 400 nm was recorded. Calibration of the method was carried out with 
external standards. In this condition, the retention times for EDCs were 1.076 min 
MTPRB, 1.278 min DMPTL, 1.783 min BPA, 1.992 min BTPRB and 2.756 min NP. 
The peak area on the chromatogram was used to calculate the remaining amount of 
EDC.  
Determination of fungal dry weights- Fungal cultures were harvested after 9 days; 
mycelia were removed from fungal cultures by filtration through filter papers, washed 
with 50 mL distilled water, dried at 80°C for 24 h, and weighed.  
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RESULT AND DISCUSSION 
 

5.1 Analyses of degradative capabilities of new mushroom 
Fungal growth on agar plates was monitored for 10 days. One fungal strain was 
growth on EDCs agar plates placed at 28°C showing radial expansion. Four 
sequential transfers were carried out on agar plates supplemented with 250 µM 
EDCs and a slowdown in growth rate was monitored. Liquid cultures were also 
performed analysing the degradation rate of this fungus against each xenobiotic and 
towards EDCs mixture. 

Cultures were monitored for 15 days, and nonylphenol and methylparaben partially 
disappeared, while the other xenobiotics were recalcitrant to biodegradation (Fig. 1).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. Degradation rate of nonyphenol and methylparaben in the presence of new fungus. Data 
represent means from triplicate cultures. 

 
When the fungus was grown in the presence of EDCs mixture, after two days of 

growth, all xenobiotics showed 50% disappearance, and a complete degradation was 
monitored for NP after 10 days (Fig. 2). Laccase activity was monitored in all 
conditions, and no detectable values were showed in the presence of EDCs.  
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Fig. 2. Degradation percentage of EDCs mixture. Data represent means from triplicate cultures. 

 
5.2 Identification of the newly isolated strain and enzymatic characterization 

Both the ITS1 and ITS2 regions were successfully amplified from DNA using specific 
universal primers ITS1–ITS2 and ITS3–ITS4. Results showed a 99% identity with ITS 
of Trichoderma virens. Trichoderma species are free-living fungi that are common in 
soil and root ecosystems. They have been widely studied for their capacity to 
produce antibiotics, parasitize other fungi, and compete with deleterious plant 
microorganisms [37]. In particular, T. virens is a plant beneficial fungus, enhances 
biomass production and promotes lateral root growth [38]. It also shows beneficial 
features to the plant conferring resistance to necrotrophic fungi [39]. This fungus is 
also studied for its biotransformation capabilities and tolerance to growth in the 
presence of aromatic amines [40]. Considering these interesting peculiarities, in 
particular its application in bioremediation field, an analysis of its genome was 
performed, and genes related to oxidative and hydrolytic enzymes were found.  
Analyses were carried out exploring the capabilities of this mushroom to produce 
laccase enzymes. With this aim, different culture broths and various laccase inducers 
were used to valuate this peculiarity, but no laccase activity was detected (data not 
showed). On the other hand, the production of hydrolytic enzymes was also studied. 
In this frame, culture medium was performed using minimal and synthetic broth in the 
presence of palm oil as inducer. Interesting results were obtained, reaching a 
production of 7 U/mL of lipase activity after 2 days of growth in the presence of 
minimal broth and palm oil (data not showed), a production similar to that of other 
fungi, as Penicillium sp., Trichoderma sp., Aspergillus sp., Mucor sp. after 3 days of 
growth [41]. To improve lipase production, different oils were used as carbon 
sources. These oils were selected considering their availability and their fatty acid 
composition. All selected carbon sources were chosen for high percent concentration 
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of oleic and linoleic acid (C18), a well know lipase inducer. Mustard Seed Oil, 
sunflower Seed Oil, palm oil and agro-industrial wastes (rapeseed cake and olive mill 
wastewater (OMW)), were used.  
 

 
 
Table 1. Fatty acid profiles for selected oils (in grey). 
 
As reported in table 2, lipase production was around 15 U/mL after one day of growth 
in almost all tested condition, only in the presence of palm oil 3 U/mL were produced. 
The interest for lipase activity is due to the reported application of this enzyme for 
phthalate biodegradation. Indeed, Dulazi and co-worker (2010) [42] reported 
interesting degradation rates using an immobilized lipase for the degradation of 
mixtures of different phthalates. It is possible that an enhancement of degradative 
capabilities of this fungus towards EDCs could be obtained inducing production this 
enzymatic activity.  
 

Table 2. Lipase activity in the presence of different carbon source. Measured data 
represent means from duplicate cultures. 

 
 

Caproic 

(Hexoic)

Caprylic 

(Octoic)

Capric 

(Decoic)

Lauric 

(Dodecanoic)

Myristic 

(Tetradecanoic)

Palmitic 

(Hexadecanoic)

Stearic                           

(n-Octadecanoic)

C10 C8 C10 C12 C14 C16 C18

Coconut Oil 0-0.8 5.0-9.0 6.0-10.0 44.0-52.0 13.0-19.0 8.0-11.0 1.0-3.0 5.0-8.0 ---- 0-1.0 0-0.5

Corn (Maize) Oil ---- 04.00 07.00 ---- 0.2-1.0 8.0-12.0 2.0-5.0 19.0-49.0 ---- 34.0-62.0 ----

Hemp Seed Oil ---- ---- ---- ---- ---- 5.0-7.0 1.0-3.0 11.0-13.0 24.0-26.0 54.0-56.0 ----

Linseed Oil (Flax Seed Oil) ---- ---- ---- ---- ---- 4.0-7.0 2.0-5.0 12.0-34.0 35.0-60.0 17.0-24.0 0.3-1.0

Mustard Seed Oil (Rap Seed 

Oil)

---- ---- ---- ---- ---- 01.05 00.04 22 06.08 14.02 ----

Palm Kernal Oil tr 3.0-5.0 3.0-7.0 40.0-52.0 14.0-18.0 7.0-9.0 1.0-3.0 11.0-19.0 ---- 0.5-2.0 tr

Palm Oil ---- ---- ---- ---- 0.5-2.0 32.0-45.0 2.0-7.0 38.0-52.0 ---- 5.0-11.0 ----

Rice Bran Oil ---- ---- ---- ---- 0.4-1.0 12.0-18.0 1.0-3.0 40.0-50.0 0.5-1.0 29.0-42.0 ----

Soya Bean Oil ---- ---- ---- ---- tr.0.5 7.0-11.0 2.0-6.0 22.0-34.0 5.0-11.0 43.0-56.0 ----

Sunflower Seed Oil ---- ---- ---- ---- ---- 3.0-6.0 1.0-3.0 14.0-35.0 ---- 44.0-75.0 0.6-4.0

Tea Seed Oil ---- ---- ---- ---- ---- ---- ---- ---- ---- 7.0-14.0 ----

22-27

16-20

21-22

FATTY ACID COMPOSITION (PERCENTAGE)

MP-Melting 

point (°C)

20-24

14-21

15-17

19-21

11.5-15

24-26

42-45

24-28

Oleic 

(C18:1)

Linolenic 

(C18:3)

Linoleic 

(C18:2)

Arachidic 

C20  

(Eicosanoic)

Name of the Oil

Carbon source U/mL 

Mustard Seed Oil (Rap Seed Oil) 15 

Palm Oil 3 

Sunflower Seed Oil 13 

Repeseed cake 13 

OMW 9 
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MATERIALS AND METHODS 
Source and maintenance of fungal strains- Fungal strain was isolate by ground 
sample from Cospudener See. Sediment samples (10 g) were shaken together with 
7.5 g glass beads in 100 mL of sterile 0.2% (w/v) sodium pyrophosphate solution for 
30 min at room temperature and 130 rpm. After sedimentation of the solid particles, 
aliquots (150 µL) from serial dilutions of the supernatants were poured onto 250 µM 
EDCs agar plates, in the presence of both Tetracyclin (250 mg/L) and Streptomycin 
(0.4 g/L). Moreover, agar medium was supplemented with 2.0 g/L KH2PO4, 0.5 g/L 
MgSO4 x 7 H2O, 0.1 g/L CaCl2, 1.0 g/L (NH4)2SO4, 10 mL mineral salt solution (3.0 
g/L MgSO4 x 7 H2O; 1.5 g/L Nitrilotriacetat; 1.0 g/L NaCl; 0.5 g/L MnSO4 x H2O; 
181.2 mg/L CoSO4 x 7H2O; 178.0 mg/L CaCl2 x 2 H2O; 100.0 mg/L FeSO4 x 7 H2O; 
100.0 mg/L ZnSO4; 18.4 mg/L AlK(SO4)2 x 12 H2O; 12.0 mg/L NaMoO4 x 2 H2O; 10.0 
mg/L CuSO4 x 5 H2O; 10.0 mg/L H3BO3), 1.5 mL Vitamin solution (10.0 mg/L 
pyridoxine x HCl; 5.0 mg/L 4-aminobenzoic acid; 5.0 mg/L D-(+)-calcium 
pantothenate; 5.0 mg/L lipoic acid; 5.0 mg/L nicotinic acid; 5.0 mg/L riboflavin; 5.0 
mg/L thiamine x H2O; 2.0 mg/L biotin; 2.0 mg/L folic acid), 15 g/L agar, pH 5-6. 
Fungal strain able to growth on this plate was transferred on 1% malt extract and was 
routinely used to maintain mushroom at 14°C in the dark.  
DNA preparation- Fungus was subcultured in Potato Dextrose Yeast extract (potato 
dextrose 24 g/L; yeast extract 5 g/L) (PDY), incubation was carried out at 28°C, 120 
rpm, for 48 to 72 h in the dark by inoculating 50 mL of PDY in 250 mL shaken flasks 
with 1 agar plug of mycelium grown on solid state on Petri dishes (11 mm diameter). 
10 mL of culture were mixed by vortex for 5 min. The mycelium was collected by 
centrifugation for 10 min at 9500 rpm, 0.5 mL mycelium were resuspended in 1 mL of 
water, mixed by vortex and centrifuged for 10 min at 9500 rpm. 0.4 mL lysis solution 
(2% triton X-100; 1% sodium dodecyl sulphate; 100 mM sodium chloride; 100 mM 
Tris, pH 8; 1 mM EDTA), 0.5 mL phenol-chloroform and 0.5 mL glass beads were 
added to the mycelium and mixed by vortex for 10 min. Then 0.2 mL TE (10 mM Tris 
pH 8, 1 mM EDTA) were added and centrifugation for 5 min at 13000 rpm was 
performed. Obtained surnatant was transferred to a new tube and addition 1 mL 
100% ethanol to precipitate the DNA was carried out. After centrifugation for 2 min at 
13000 rpm, the obtained pellet was resuspended in 0.4 mL TE and treated with 30 µg 
RNasi A, at 37°C for 30 min. 10 µL 4 M ammonium acetate plus 1 mL 100% ethanol 
were added to the sample, and, after inversion, the tube was placed on ice for 10 
min. Pellet was collected by centrifugation for 2 min at 13000 rpm, air dried and the 
obtained pellet was resuspended in 50 µL TE. 
ITS amplification- The fungus-specific universal primers ITS1 (5’-
TCCGTAGGTGAACCTGCGG-3’) and ITS2 (5’-GCATCGATGAAGAACGCAGC-3’) 
were used to amplify the ITS1 region, while universal primers ITS3 (5’-
GCATCGATGAAGAACGCAGC-3’) and ITS4 (5’-GCATATCAATAAGCGGAGGA-3’) 
were used to amplify the ITS2 region. PCR was performed in a total reaction volume 
of 50 µL consisting of 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 0.8 mM 
deoxynucleoside triphosphates (0.2 mM each), 1.2 U of GoTaq DNA polymerase, 0.4 
µM (each) of the ITS1 region primers (ITS1/ITS2) or the ITS2 region primers 
(ITS3/ITS4), 2 µL (1 to 5 ng) of DNA template, and 50 µL of a mineral oil overlay. 
PCR was carried out using the following conditions: initial denaturation at 95°C for 10 
min; 35 cycles of denaturation (95°C for 1 min), annealing (60°C for 1 min), and 
extension (72°C for 1 min); and a final extension step at 72°C for 10 min.  
All amplicons were purified using the QIA quick® Nucleotide Removal kit (Qiagen) 
following manufacturer instructions. 
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Identification of fungus by ITS sequencing- Fungal specie was identified by 
searching databases using the BLAST sequence analysis tool 
(http://www.ncbi.nlm.nih.gov/BLAST/). The ITS1 or ITS2 sequence was compared 
using nucleotide-nucleotide BLAST (blastn) with default settings. Species 
identification was determined from the higher expect value of the BLAST output. 
Growth condition for laccase and lipase activity- Fungus was subcultured in PDY, 
incubation was carried out at 28°C, 120 rpm, in the dark by inoculating 100 mL of 
PDY in 500 mL shaken flasks with 2 agar plugs of mycelium grown on solid state on 
Petri dishes (7 mm diameter). After 3 days, preinoculum was filtered, washed three 
times with water and resuspended in the same broth of inoculum. Obtained mycelial 
suspension was homogenized and inoculated in a ratio of 1:10 in 250 mL flasks 
containing 150 mL of PDY broth. To enhance laccase activity, different inducers were 
used in potato dextrose broth (PDA) (24 g/L): 0.15 mM copper sulphate (CuSO4), 
0.05 mM CuSO4 plus 1 mM vanillic acid, 0.05 mM CuSO4 plus 2 mM ferulic acid. 
To enhance lipase activity, during the first phase, different culture broths were used 
in the presence of the same inducer (0.2% tween 80, 2% palm oil): 1/10 PDA; Gal 
broth (1 g/L peptone, 20 g/L yeast extract, 2 g/L glucose, 5 g/L NaH2PO4, 1 g/L 
KH2PO4); African salt (5 g/L (NH4)2SO4, 6 g/L NaH2PO4, 3 g/L MgSO4, 3g/L CaCl2). 
During second step, different oils were added to African salt and 0.2% tween 80: 2% 
rapeseed cake; 2% olive mill wastewater; 2% Mustard seed oil; 2% sunflower seed 
oil 
Growth condition for EDCs degradation- Cultures were performed in 100 mL 
Erlenmeyer flasks containing 30 mL medium according to Stanier et al. (1966) [36] 
supplemented with 250 µM EDC and 250 µM EDCs mixture. Incubations were 
carried out at 28°C in the dark with agitation (120 rpm) by inoculating with 0.5 mL of a 
mycelial suspension. This suspension was prepared by homogenizing of 30 agar 
plugs (7 mm diameter) derived from the margins of well-grown agar plate cultures 
with 30 mL of Stanier medium using an Ultraturrax. The laccase activity was 
monitored in all flasks every day. 
Control cultures were prepared by adding sodium azide (0.5 g/L). 
Assay of enzymatic activity- Laccase activity was assayed at 25°C by monitoring 
the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) at 420 
nm (ε420=36×103 M−1 cm−1). The assay mixture contained 2 mM ABTS in McIlvaine 
buffer, pH 4.0.  
Lipase activity was assayed by a spectrophotometric method using p-nitrophenyl 
decanoate as a substrate. The p-nitrophenyl decanoate was dissolved in isopropanol 
at a concentration of 10 mM. The assay mixture contained 0.2 mM p-nitrophenyl 
decanoate in 50 mM Tris-HCl buffer, pH 8.0. The activity was assayed by detecting 
the product, p-nitrophenol, spectrophotometrically at 405 nm. The molar extinction 
coefficient of pNP was 3.39 x103M-1 cm-1 
EDCs degradation- 50 mM stock of each EDC was prepared dissolving xenobiotic in 
methanol containing 10% Tween 80 (w/v). 250 µM of each EDC was added to culture 
broth at the time of inoculation. As regards as analyses in the presence of EDCs 
mixture, a 25 mM stock solution was prepared in the same way previously described. 
Residual EDCs in the fungal cultures were analyzed every day by reverse-phase 
UPLC. Samples cell-free were mixed with an equal volume of methanol and 
vigorously mixed, kept at -20°C for 15 minutes and centrifuged at 15,100 g at 4°C for 
15 min. To analyse the EDC amount on biomass surface, 0.5 mL of fungal mycelium 
was washed with equal volume of methanol, vigorously mixed, kept at -20°C for 15 
minutes and centrifuged at 15,100 g at 4°C for 15 min. After centrifugation, 
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supernatants (900 µL) were transferred into 1.5 mL UHPLC vials. Samples (3.3 µL) 
were injected into the UPLC column and analysed. Degradation of EDCs mixture was 
performed in same condition of previous experiments.  
Ultra-Performance Liquid Chromatography- Samples were subjected to an 
AcqutityTM UPLC system comprising a Binary Solvent Manager (BSM), a Sample 
Manager (SM), and a PDA eλ photo diode array detector, and equipped with an 
AcquityTM UPLC BEH C18 column (1.7 μm particle size; 2.1 x 50 mm; Waters, 
Eschborn, Germany) operated at a column temperature of 40°C. The following 
solvents serve as mobile phases: solvent A - 10% methanol in deionised, acidified to 
pH 3.0 with concentrated phosphoric acid; solvent B - 100% methanol, acidified to pH 
3.0 with concentrated phosphoric acid. The following elution profile was applied: 
isocratic elution at 20% B for 0.14 min; linear increase to 100% B for 2.8 min; 
isocratic elution at 100% B for 3.2 min; linear decrease to 20% B for 3.25 min; 
isocratic elution at 20% B for 3.5 min (0.5 mL/min flow rate). A wavelength range 
from 220 to 400 nm was recorded. Calibration of the method was carried out with 
external standards.  
The retention times for EDCs were 1.076 min MTPRB, 1.278 min DMPTL, 1.783 min 
BPA, 1.992 min BTPRB, 2.756 min NP. The peak area on the chromatogram was 
used to calculate the remaining amount of EDC. 
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CONCLUSIONS OF SECTION 2 
The work described in Section 2 has been aimed at evaluating the performances of 
different biosystems for wastewater treatment contaminated by endocrine disrupting 
chemicals. In this context, three different approaches were pursued, using ligninolytic 
fungi, aquatic fungi and exploiting microflora present in the environment.  
As regard as ligninolytic mushrooms, interesting results were obtained, because all 
selected fungi were able to degrade EDCs, and the best results were showed by T. 
versicolor. In only two days it was able to totally biodegrade three of the selected 
EDCs. For this reason, it was used for biodegradation process in the presence of 
EDCs mixture and, also in this case, good degradation rates were monitored. 
The performance of this fungus was also studied in the presence of BPA as the only 
carbon source. Surprisingly, after 1 day this xenobiotic was totally disappeared. This 
result led us to investigate the possibility of recycling the same biomass for multiple 
cycles of BPA degradation. During fifteen cycles of degradation, the performances of 
T. versicolor were constant, showing totally disappearance of this micropollutant.  
Same analysis was carried out against EDCs mixture as nutrients. In this case, all 
xenobiotics were degradaded, only DMPTL resulted recalcitrant to biodegradation 
and its accumulation in colture broth was monitored. 
As for aquatic fungi, Phoma sp. UHH 5-1-03 and C. herbarum AP2-2009-7 showed 
interesting degradative capabilities against parabens and phthalates. Indeed, they 
degraded these compounds in seven days. Moreover, Phoma sp. UHH 5-1-03 also 
showed bioadsorption capabilities joined to degradative performances in the 
presence of parabens. Experiments to understand the different rates of these 
processes were carried out. 
Furthermore, a fungal strain able to growth on EDCs mixture was selected from 
ground sample. Degradative capabilities of this fungus against EDCs were studied in 
liquid cultures, in the presence of both single and mixture compounds. Results show 
that this fungus is able to totally degrade NP and MTPRB. On the other hand, in the 
presence of the mix only NP was completely degraded, other xenobiotics were 
partially removed. Molecular characterization allowed the identification of this fungus 
as Trichoderma virens. Analyses were carried out exploring the capabilities of this 
mushroom to produce laccase enzymes, however no production of laccase activity 
was detected, in all conditions tested so far. On the other hand, the production of 
hydrolytic enzymes was studied. The hyghest levels of production were obtained in 
the presence of Mustard Seed Oil and African broth, reaching up to 15 U/mL of lipase 
activity after one day of growth.  
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CONCLUSIONS 
 
In this project, different biodegradation processes were explored for decontamination 
of endocrine disrupting chemicals. In particular, two kinds of processes have been 
specifically analysed: oxidation-based processes and biodegradation-based 
processes. The former alternative has been explored studying enzymatic oxidative 
capabilities; the latter was based on degradative capabilities of different fungal 
strains. 
 
As for degradation based on enzymatic oxidative capabilities, among four different 
fungal laccases chosen for EDCs oxidation, the best performances were showed by 
POXC in all tested tested condition. Its oxidative capability was also studied towards 
an EDCs mixture in both free and immobilized forms.  
 
As for biodegradation by fungi, three different approaches were followed. The first 
one was related to the use of different white-rot fungi for EDCs degradation. Among 
selected mushrooms, Trametes versicolor was chosen because of its high 
degradation rate against each xenobiotic. Moreover, degradative capabilities of this 
fungus were analysed in the presence of EDCs mixture. In order to mimic real 
condition, the capabilities of T. versicolor were analysed in the presence of water and 
an EDC (BPA) as carbon source. In this way, reuse of same biomass for BPA 
degradation was carried out, in which the performances of T. versicolor were 
constant and totally disappearance of this micropollutant was monitored. The same 
analysis was carried out in the presence of only EDCs mixture, and in this case good 
degradation rates were showed. 
 
The second approach consisted in the use of aquatic ecosystems for biodegradation 
of water contaminants. In this way, two different fungi were chosen: Phoma sp. UHH 
5-1-03 and Cladiosporium herbarum AP2-2009-7. Their degradation capabilities were 
analysed in the presence of both single compound and EDCs mixture. Both fungi 
showed interesting degradative capabilities towards parabens and dimethylphthalate.  
 
Furthermore, a fungal strain able to growth on EDCs mixture was selected by ground 
sample. Degradative capabilities of this fungus against selected EDCs were studied 
in liquid cultures, in the presence of both single and mixture compounds, and the 
best degradation rates were monitored against NP and MTPRB in single culture. 
Identification of this fungus was carried out and it was identified as Trichoderma 
virens. 
 

This work analysed different biosystems for EDCs degradation and all tested 
biosystems exhibited different performances. The conclusion is that a single 
strain/enzyme may be not sufficient to solve the highly variable nature of wastewater 
effluents, since there are too many factors that may affect the biodegradation rate of 
EDCs. Thus, further work in this direction should be the analyses of both fungal 
consortia and enzymatic mixtures performances from different sources in order to 
exploit their potential synergistic effect. These results indicate that each process 
alone might not represent a universally applicable solution to wastewater treatment. 
Combination of different techniques is generally required to devise a technically and 
economically feasible option, in which the respective advantages of each method 
would be exploited. 
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Fungal laccases: Versatile tools for lignocellulose transformation
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1. Introduction

Lignocellulose is a complex of carbohydrate polymers
(cellulose and hemicellolose) tightly bound to lignin, and is
a major constituent of a wide variety of materials including
waste materials from agriculture, forestry, wood-based
industries, and municipal solid waste [1]. These materials
are produced in abundance, and represent a good option
for conversion to useful, high value products. Lignocellu-
lose conversion requires a pre-treatment step to degrade
or loosen the recalcitrant and heterogeneous lignin
fraction. This multi-faceted challenge is being addressed
by an ever-increasing suite of ligninolytic enzymes
isolated from various sources. Among these, fungal
laccases (benzenediol:oxygen oxidoreductase, EC
1.10.3.2) are known to play an important role in lignin
degradation/modification processes. These enzymes can
be successfully applied to paper manufacturing, enhance-

ment of fibre properties, production of improved forages
and pre-treatment of lignocellulosic biomasses for fuel
production.

Biotechnology can contribute to the development of
‘‘green tools’’ for the transformation of lignocellulosic
feedstocks by providing tailor-made biocatalysts based on
the oxidative enzymes responsible for lignin attack in
nature [1]. With this purpose, laccases are currently being
improved using (rational and random-based) protein
engineering [2].

Laccase is one of the oldest enzymes reported and it is
arousing great interest in the scientific community
because of its very basic requirements (it just needs air
to work and its only released by-product is water) and
huge catalytic capabilities, making it one of the ‘‘greenest’’
enzymes of the 21st century [3]. This enzyme is produced
by various fungi, plants, and certain bacteria or insects [4].
Laccase is able to catalyze direct oxidation of ortho- and
para-diphenols, aminophenols, polyphenols, polyamines,
and aryl diamines as well as some inorganic ions. It couples
the four single-electron oxidations of the reducing
substrate to the four electron reductive cleavage of the
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dioxygen bond, using four Cu atoms distributed against
three sites, defined according to their spectroscopic
properties. Typical metal content of laccase includes one
type-1 (T1) copper, and one type-2 (T2) and two type-3
(T3) copper ions, with T2 and T3 arranged in a trinuclear
cluster (TNC) [4].

Fungal laccases exhibit a similar molecular architecture
organized in three sequentially arranged cupredoxin-like
domains. Each of them has a Greek key b-barrel topology
[4]. T1 is located in domain 3, whilst the TNC cluster is
embedded between domains 1 and 3 with both domains
providing residues for copper coordination. The structure
is stabilized by two disulfide bridges between domains 1
and 3 and between domains 1 and 2.

Laccases are commonly classified as low-medium and
high redox potential laccases (HRPLs) according to their
redox potential at the T1 site ranging from +430 mV in
bacterial and plant laccases to +790 mV in some fungal
laccases. The latter are by far the most important from a
biotechnological point of view [5]. HRPLs are typically
secreted by ligninolytic basidiomycetes, the so-called
white-rot fungi [3].

The white-rot fungus Pleurotus ostreatus expresses
multiple laccase genes encoding isoenzymes with different
properties, being the physiological significance of this
multiplicity still unknown [6]. Among these, POXA1b, in
addition to its high redox potential (+650 mV) [7], is highly
stable at high temperature and in the pH interval of 7 to 10
[8]. Thus, this enzyme is a suitable scaffold for directed
evolution experiments, since the likelihood of achieving
required improvements without affecting its stability is
high.

This article reports the optimization of the functional
properties of POXA1b laccase expressed in the yeast
Saccharomyces cerevisiae [9]. We integrate these results
with a structural analysis of some of the generated
mutants that allowed us to suggest some of the reasons,
at a molecular level, for their enhanced activity.

2. Experimental

2.1. Strains, media, and plasmids

The S. cerevisiae strain used for heterologous expression
was W303-1A (MAT ade2-1, his3-11, 15, leu2-3, 112, trp1-
1, ura3-1, can1-100). The plasmid used for S. cerevisiae

expression was pSAL4 (copper-inducible CUP1 promoter).
S. cerevisiae was grown in selective medium (6.7 g L�1

yeast nitrogen base w/o amino acids and ammonium
sulfate; 5 g L�1 casaminoacids; 30 mg L�1 adenine;
40 mg L�1 tryptophane; 50 mM succinate buffer pH 5.3;
20 g L�1 glucose).

2.2. Random mutagenesis

Random mutations were introduced with low, medium,
and high frequency of mutation, into the POXA1b encoding
cDNAs using GeneMorphTM PCR Mutagenesis Kit
(Stratagene, La Jolla, CA). EP-PCR was performed with
primers POXA1bfw (ATAAAAGCTTGAATTCATGGCGGTTG-

CATTCG) and POXA1brev (TAAGGATCCAAGCTT TTATAAT-
CATGCTTC).

2.3. Construction of mutant library

The cDNA resulting from EP-PCR on poxa1b cDNA were
cloned in pSAL4 expression vector, digested with SmaI and
BglII restriction enzymes, by using homologous recombina-
tion expression system of S. cerevisiae. Yeast transformation
and selection was performed as already reported [10].

2.4. Library screening

Single clones grown on plate were picked and transferred
into 96-well plates containing 30 mL of selective medium
per well. Plates were incubated at 28 8C, 250 rpm for 24 h.
After 24 h, 130 mL of selective medium was added to each
well and the plates were incubated at 28 8C, 250 rpm for
24 h. Thirty microliters of each culture was transferred to a
new 96-well plate to measure the OD600 value. The plates
were then centrifuged for 10 min at 1500 g, 4 8C, and a
suitable volume of supernatant was transferred to a new 96-
well plate to perform laccase assay. Phenol oxidase activity
was assayed at 25 8C using 2 mM 2,20-azino-bis (3-
ethylbenzothiazoline-6-sulfonic acid) (ABTS) in 0.1 M sodi-
um citrate buffer, pH 3.0. Oxidation of ABTS was followed by
absorbance increase at 420 nm (e 36,000 M�1 cm�1), using
Benchmark Plus microplate spectrophotometer (BioRad,
Hercules, CA). Enzyme activity was expressed in interna-
tional units (U). Cultures in shaken flasks were also
performed. Pre-cultures (10 mL) were grown on selective
medium at 28 8C on a rotary shaker (150 rpm). A volume of
suspension sufficient to reach a final OD600 value of 0.5 was
then used to inoculate 250 mL Erlenmeyer flasks containing
50 mL of selective medium and cells were then grown on a
rotary shaker. Optical density and laccase activity determi-
nation were daily assayed.

2.5. Screening of library for stability

The collection of 3300 mutants obtained by random
mutagenesis of POXA1b laccase was analysed in three
different screenings. First and second screening were
effectuated in 96-well plate, while the third screening was
effectuated in shaken flask. In the first screening the library
was analysed after one-day growth in 96-well plate. The
supernatant was incubated for 48 hours at pH 3 in
Robinson and Britton buffer, and then activity towards
ABTS assayed. The positive clones were further analysed
during a three days growth in 96-well plate. Cellular
density and laccase activity production were followed for
three days. Every day the supernatant was incubated for
96 hours at 37 8C at pH 3 in Robinson and Britton buffer.
Laccase activity was analysed every 24 hours, in this phase
only clones that showed greater stability if compared to
the wild-type enzyme at pH 3 were selected.

2.6. Molecular modeling

The structure of POXA1b was obtained by homology
modeling from the crystal structure of Trametes versicolor
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(1GYC pdb entry), with which it shares 60% sequence
identity. The last 16 residues of POXA1b were modeled
using the coordinates of the corresponding residues at the
C-terminus of the crystal structure of the Melanocarpus

albomyces laccase (1GWO pdb entry). 3D model and in

silico mutants were generated using the SWISS-MODEL
web server by means of the project mode option that allow
to select the template and control the gap placement in the
alignment. Refinement of the models has been performed
by molecular dynamics simulations. Simulations on the
wild-type POXA1b and on the in silico generated mutants
1M9B and 3M7 C were performed with the GROMACS
package as already described [10].

2.7. Stability assays

Stability at pH values was measured using citrate-
phosphate buffer adjusted at pH 3, 5 and 7.0, and Tris–HCl
buffer adjusted at pH 10.

2.8. r4 cDNA construction

To obtain the laccase r4 cDNA the 30 terminal portion
(from the nucleotide 453) of the cDNA coding for 3M7 C
was ligated to pSAL4 vector containing the 50 terminal
portion (the first 50 terminal 452 nucleotides) of 1M10B
encoding cDNA, after KpnI digestion of pSAL4 vectors
containing the two cDNAs.

2.9. DNA sequencing

Sequencing by dideoxy chain-termination method was
performed by the Primm Sequencing Service (Naples, Italy)
using specific oligonucleotide primers.

2.10. Decolourization experiments

Batch decolourization experiments have been per-
formed incubating (1 mL final volume of reaction) crude
preparation of laccase containing different enzyme
amounts (0.1 U, 1 U and 3 U) in three wastewater models:
Acid (0.1 g L�1 Acid blue 62, 0.1 g L�1 Acid Yellow 49,
0.1 g L�1 Acid Red 266, 2 g L�1 Na2SO4, pH 5), Direct (1 g L�1

Direct blue 71, 1 g L�1 Direct Yellow 106, 1 g L�1 Direct Red
80, 5 g L�1 NaCl, pH 9) and Reactive (1.25 g L�1 Reactive
blue 222, 1.25 g L�1 Reactive Yellow 145, 1.25 g L�1

Reactive Red 195, 1–25 g L�1 Reactive Black 5, 70 g L�1

Na2SO4, pH 10) [11].
Performances of selected laccases in model wastewater

decolourization were evaluated by recording light absorp-
tion spectra between 280 and 800 nm at different times
(10 min, 20 min, 1 h, 2 h, 3 h and 24 h), and comparing them
with the corresponding spectra of controls (the waste
incubated with the supernatant of yeast cultures trans-
formed with the empty expression vector). Decolourization
was calculated as the extent of decrease of spectrum area
recorded between 380 and 740 nm with respect to a control
sample. All spectra were recorded after 1:100 dilution of the
sample in milliQ water. All experiments were carried out in
duplicates, and the mean values were taken. The standard
deviation for the experiments was less than � 5%.

3. Results and discussion

The white-rot fungus P. ostreatus expresses multiple
laccase genes encoding isoenzymes with different proper-
ties, being the physiological significance of this multiplicity
still unknown [6]. Investigation of the recently released
P. ostreatus genome (http://www.jgi.doe.gov/sequencing/
why/50009.html) has disclosed a complex multicopper
oxidase family of up to twelve members. The availability of
established recombinant expression systems for P. ostreatus

POXA1b [9] has allowed the improvement of enzymes
features through a combination of rational and random
mutagenesis [10,12,13]. Our starting point was the high
redox potential laccase POXA1b [14], which exhibits
remarkable stability at alkaline pH [8]. The idea behind
the evolution strategy is to create an ideal biocatalyst, able to
oxidise a wide assortment of substrates, and stable in a
broad range of pH. Thus, different screening criteria were
applied to search for such catalysts.

3.1. First generation

A library of almost 1100 mutants with low, medium
and high range of mutations was generated by error-
prone PCR (EP-PCR) using poxa1b cDNA as template [10].
Screening this library for variants with improved activity
at pH 3 using the non-phenolic substrate ABTS has
allowed the selection of one mutant, named 1M9B. It
shows a single mutation (L112F) leading to an improve-
ment of activity but a decrease of stability with respect to
the wild-type enzyme (POXA1b) in all the analyzed
conditions. In position 112, there is a generally conserved
leucine in all laccases from basidiomycetes, although a
phenylalanine seems to be conserved in laccase
sequences from ascomycetes. POXA1b 3D model shows
that the residue 112 is located in the channel through
which the solvent has access to the oxygen-reducing T2/
T3 site. To elucidate the role played by this mutation,
Molecular Dynamic (MD) simulations were performed on
the model of the mutant and compared with those of
POXA1b. The analyses show a movement of the sub-
domain around position 112 as a consequence of a
conformational rearrangement due to the presence of the
bulkier residue of phenylalanine. A significant effect
generated by the mutation is observed in the permeabili-
ty to water of the T2/T3 channel. Residue F112 is located
at the entrance of the channel and its steric hindrance
affects the passage of water molecules toward the TNC. As
a fact, a larger number of water molecules in the T2/T3
channel has been observed for 1M9B. These data could
suggest an increased affinity of this mutant toward
oxygen molecules, thus justifying its improved specific
activity.

3.2. Second generation

1m9b cDNA was used as template for a second round of
EP-PCR at low and medium frequency of mutation [10]. A
second generation library of 1200 clones was obtained and
screened using the same criterium described before. Three
mutants, 1L2B, 1M10B (L112F, K37Q, K51N), and 3M7C
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(L112F, P494T), were selected showing an activity increase
of up to three fold with respect to POXA1b.

Concerning 1M10B mutations, it finds out how
directed evolution can get the same result of natural
evolution, preserving the properties of mutated amino
acids. As a fact, positions 37 and 51 are generally
occupied by amidic residues. The mutant 3M7C displays
a high activity and an up to two fold increased stability
at acidic and neutral pH, as well as at high temperature.
1M10B variant is more stable at alkaline pH (about two
fold), whereas its stability is almost equivalent to that
of POXA1b in the other tested conditions. The mutation
P494T is located in the C-terminal loop that has already
been ascertained to affect the function of fungal laccases
[4]. MD simulations of this mutant and comparison
with the wild-type POXA1b revealed a lower flexibility
of the subdomain around position 112 probably respon-
sible of its higher stability. On the other hand, an
increased mobility of loops forming the reducing
substrate binding site, has been observed in 3M7C
leading to higher accessibility of water molecules to the
T1 copper site, and to an increased activity of the
enzyme.

First and second generation libraries (2300 clones) were
then screened for variants with improved activity at pH 5
using either the non-phenolic substrate ABTS, and the
phenolic one 2,6-dimethoxyphenol (DMP).

When DMP was used as substrate, two new variants
(2L4A and 3L7H) endowed with higher enzyme activity
(about three fold increase) than the wild-type laccase
were selected [12]. Both mutants doubled the stability
of the wild-type enzyme at pH 5. Q272H mutation
found in 2L4A may stabilize the protein structure at pH 5
allowing additional interactions – electrostatic and
hydrogen bonds – between the positively charged
imidazolic ring of His272 and the side chain of Asp287.

After screening with ABTS, one clone, 1L9A, was
selected, showing an increase of about three fold with
respect to wild-type. Besides the parental mutation
(L112F), 1L9A also presents the mutation R284H, located
in the loop Gly282-Thr289. This loop may play an
important role in protein stability [12]. As a fact,
concerning its properties, the mutant increases stability
at pH 5 (1.5 fold), while loosing the high characteristic
stability of POXA1b at alkaline pH.

3.3. Rational design

During the engineering of POXA1b, some of the
beneficial mutations discovered in the early stages of
evolution were merged in the rational designed R4
mutant. Synthesis of a laccase joining mutations of
3M7C and 1M10B variants [10] was performed to
combine the increased stability of 1M10B at alkaline
pH and the improved catalytic efficiency of 3M7C [13].
Joining these mutations a two-fold increase in laccase
activity with respect to wild-type enzyme was obtained.
The main improvement due to the chimer construction
is a slight increase in stability at high temperature, and
even more at neutral (about four-fold) and alkaline pH
values (about two-fold).

3.4. Third generation

The increased stability of R4 makes it an appropriate
scaffold to carry out directed evolution [15]. In fact, more
stable enzymes should also be more susceptible to
evolution since they have higher ability to tolerate
functionally beneficial but destabilizing mutations. There-
fore, directed evolution of R4 was chosen as strategy to
improve its performances [13]. A library of 1000 clones
with low, medium and high average of mutation frequency
was obtained through EP-PCR. When this new collection
was screened by assaying activity towards ABTS at pH 3,
two mutants, 4M10G and 1H6C, with higher activity
(about four-fold increase) than that of POXA1b wild-type
were selected. Both mutants display higher stability than
POXA1b at pH 5 (almost four-fold). 1H6C also retains R4
stability features at pH 10 and at pH 7. Sequence analyses
of the selected mutants led to the identification of the
mutations V126I for the 4M10G variant and V148L for the
1H6C mutant, besides those of the parental R4 enzyme.
Position 148 is located in a closely packed region of the
domain 2 [16] adjacent to the reducing substrate binding
site. The substitution of V with the larger L causes a close
contact of the leucine side-chain with the aromatic ring of
Y208, thus changing the conformation of the loop 204–208
forming the bottom of the reducing substrate binding site
[16]. This change could, in turn, influence the oxidation
rate of the reducing substrate but also the interaction
between the domains 2 and 3 [13].

Libraries generated after three rounds of molecular
evolution (3300 clones) were then screened for variants
with improved activity at pH 8 using the phenolic
substrate 2,6 DMP. One variant, 1L10A, was selected for
its higher activity (more than four-fold increase) at pH 8
respect to wild-type POXA1b. This mutant loses wild-type
stability at pH 7, while raises stability at pH 5 of three fold.

To complete the panel of laccase-based biocatalysts,
new selection rounds have been performed on POXA1b
mutants libraries. This step has been aimed to develop new
laccases more stable than the wild-type at pH 3. One
mutant, 3L2A, with higher stability (up to three fold
increase) was selected. This selected variant shows an
increased stability at neutral and alkaline pH respect to
wild-type, besides the higher stability at pH 3.

3.5. Application of improved laccases

Laccase improvement, along with elucidation of their
structure-activity-stability relationships, allows to design
and develop more suitable systems for specific industrial
applications either in the bioremediation field or for
lignocellulose conversion, increasing their real exploita-
tion. An ideal catalyst should be stable and active in
extreme conditions of pH, normally found in the industrial
wastewaters, as well as able to operate on a wide range of
substrates. Here we describe, as an example, the applica-
tion of mutated laccases to the decolourization of
industrial wastewaters. In these experiments, models of
acid, direct and reactive dye wastewaters from textile
industry – defined on the basis of discharged amounts,
economic relevance and representativeness of chemical
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structures of the contained dyes [11] – were used. POXA1b
variants represent good candidates thanks to their
properties best suited for wastewater conditions. Seven
out twelve of selected POXA1b variants show an increased
decolourization ability with respect to wild-type toward
the acid model. As a fact, a two fold increase in
decolourization percentage respect to that of POXA1b
has been obtained. In particular the mutant 3M7C shows a
higher decolourization capacity (up to 40% decolouriza-
tion after 3 hours of incubation). No significant decolou-
rization has been obtained towards the others analyzed
wastewaters, such as reactive and direct models. All the
trials have been performed in a period of time compatible
with the stability of the protein, being POXA1b and its
derived mutants very stable in a wide range of pH
[10,12,13].

4. Conclusion

Although some laccases are being employed success-
fully in industry, no natural laccase combines the desired
attributes of being stable and active over a wide range of
temperatures and pH values with a high reduction

potential [17]. High-potential laccases represent a starting
point to create an ideal catalyst, endowed with all these
desirable characteristics, through directed evolution
experiments.

In this research, three generations of libraries have been
screened using different criteria, and twelve variants have
been selected for their improved features (Table 1).
Although no a priori selection criterium for ‘‘more stable
laccase’’ has been applied, some mutations with beneficial
impacts on total enzyme activity also significantly
contributed to protein stability in different environmental
conditions. This work represents an example of how
random and rational approaches can be combined for the
engineering of protein function, and how such a strategy
could provide an inventory (Fig. 1) of enzymes better-
suited for different industrial applications.

Though recombinant production yield of P. ostreatus

native and mutated laccases in the yeast S. cerevisiae

achieves modest levels (0.2–1 mg l�1), the developed
system represents an invaluable tool for rapid screening
and selection of new improved laccase variants. Then, the
development of new heterologous expression systems in
optimised hosts, i.e. filamentous fungi, will provide higher

Table 1

Properties of selected POXA1b variants.

Mutants Substitution Activity Stability

pH 3 pH 5 pH 7 pH 10 60 8C

1M9B L112F 1.5� – – – – –

1L2B L112F, N248Y, N261K, V350I 2.5� = + – = =

1M10B K37Q, K51N, L112F 2.5� = + = ++ =

3M7C L112F, P494T 3� + ++ ++ = +

2L4A L112F, Q272H 2.7� – ++ = = =

3L7H L112F, S285N, N328S 2.7� – ++ – – =

1L9A L112F, R284H 3� – + = – =

R4 K37Q, K51N, L112F, P494T 2.5� – = +++ ++ +

1H6C K37Q, K51N, L112F, P494T, V148L 4.5� – +++ +++ ++ +

4M10G K37Q, K51N, L112F, P494T, V126I 4.5� – ++ ++ + =

1L10A K37Q, V48I, K51N,A391T 4.5� – +++ – + =

3L2A K37Q, K51N, L112F, S285N 3�a ++ = +++ ++ =

a This value represents an increase of stability at pH 3 with respect to the wild-type enzyme.

Fig. 1. Ribbon representation of POXA1b model. The mutated residues are in licorice rendering. Trinuclear coppers and T1 copper are highlighted in van der

Waals representation (yellow and blue, respectively).
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enzyme yields ensuring the exploitation of the selected
‘‘tailored’’ laccase mutant(s) for biotechnological applica-
tions on large-scale.
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