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ABSTRACT 
 

The advent of next generation sequencing technologies (NGS) has deeply 

transformed today’s biology. Thanks to this new approach, many areas of study have 

been developed and scientists have the ability to analyze nucleic acids of any 

biological entity. Metagenomics is one of the most recent and promising fields 

among NGS applications. It allows microbial community analysis within a specific 

environment in order to obtain knowledge on genomes and taxonomic composition 

of environmental microbes and entire microbial communities. In this context, the 

human microbiota, represented by the total ecological community of commensal, 

symbiotic, and pathogenic microorganisms coexisting in our bodies (Lederberg J; 

Scientist. 2001;15:8), is drawing research’s attention as it plays a central role in 

maintaining healthy status or leading to disease conditions (Wang, Zi-Kai WJG. 

2013:1541). Particularly, the human gut is colonized by thousands of different 

microbial species, of which several billions are bacteria involved in important 

functions: gut permeability, immune system development and activation, metabolic 

function and colonization resistance (Prakash S. Nature. 2012;231-241). Many 

evidences relate the role of the gut microbiome in common bowel inflammatory 

diseases and autoimmune disorders (Xavier R. J. Nature. 2007:427-434). 

Here, I present two distinct studies based on amplicon metagenomics analysis 

in Crohn’s disease and celiac disease, using next generation sequencing 

techniques. The aim of the project is to deeply analyze the gut microbiome 

composition, from duodenal biopsies of Crohn’s disease and celiac disease affected 

patients. The first study compares the microbiome bacterial composition of a child 

affected by Crohn’s disease before and after a nutritional therapy together with a 

matched healthy control. The second study pertains to the gut microbiome 

characterization (bacteria and fungi) in adults with active celiac disease, compared 

with healthy controls and a group of non-active celiac disease patients, following a 

gluten free diet. The goal is the identification of microbial signatures that could be 

related to the pathogenesis or contribute to the disease phenotype in both Crohn’s 

and celiac disease. 
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CHAPTER 1 

 
INTRODUCTION 

 
 
1.1 Next generation sequencing technologies 
 
 
     Deciphering nucleic acid sequences has always been a major interest 

among scientific community. The early 21st century was characterized by the 

announcement, for the first time in the human history, of the complete 

decryption of the human genetic code [1]. Thanks to the use of capillary 

electrophoresis (CE)-based Sanger sequencing, scientists gained the ability to 

reach paramount steps in biomedical research. Consequently, Sanger 

technology was adopted in many laboratories around the world. Besides the 

new promising results obtained and the important contribution made to 

biomedical research and molecular diagnostics, Sanger sequencing has always 

been confined by inherent limitations in throughput, versatility, speed, 

resolution and cost. Those limits often preclude scientists from obtaining the 

essential information they need for their course of study, especially in the 

context of large-scale genome studies.  

In the past few years, the advent of Next-Generation Sequencing (NGS) 

technologies has given a quick and decisive turning point in response to the 

ongoing needs of the scientific world, deeply contributing to a better 

understanding of biological processes. These new methods have influenced 

the way scientists extract genetic information from biological systems, leading 

to new fields of study that consider the entire characterization of the studied 

object [2].  

In this context, different areas of science have lead to what is currently called 

the –omic era, which based on use of next-generation sequencing 

technologies, has dramatically transformed today’s biology [3], [4], [5]. 
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The main goal of NGS technologies is producing millions of reads 

concurrently, in order to decrease the cost and time to obtain biological 

sequences of interest. For that purpose, different platforms, based on different 

chemical sequencing approaches, have been developed and constantly 

upgraded in the last ten years (Table 1), [6], [7], [8].  

NGS technologies include a number of methods that widely differ in terms of 

template preparation, sequencing and data analysis. Every platform presents a 

unique combination of specific protocols, which determine the type of data 

produced.  The output generated by each platform is different, thus comparing 

all the available NGS technologies is still a challenge. In fact, even if every 

NGS Company provides an appraisal related to data quality and cost, there is 

no general agreement that can establish if a “quality output” from one 

platform is equivalent to that from another platform [2]. Each platform has 

strengths and weaknesses.  

For instance, if the user is looking for the most throughout per hour, then Ion 

Torrent PGM would be the best choice [9].  If the goal is to obtain the highest 

number of sequences in a single experiment, then the best choice would be the 

Ilumina MiSeq [9].  In case the experiment is based on generating long reads, 

the Roche 454 is best [8]. All of the instruments use different kinds of PCR 

(polymerase chain reaction) as preliminary step before the sequencing 

experiment. This lead to a basic issue associated with the sequencing 

chemistries that is not possible to stem. Generally two major sources of errors 

are generated with NGS platforms, which are related to nucleotide 

substitutions (the instrument reads an incorrect base) and indels due to 

homopolymers (insertions and deletions of incorrect base), [10].  

The main reason why scientific groups decide to adopt one NGS technologies 

rather to another, basically resides in the cost and the type of data they want to 

generate (i.e. mostly related to the number and the average length of 



	
  

	
   4	
  

sequences and the cost), [11]. A summary of next generation sequencing 

platforms and their pros and cons is reported in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
  

	
   5	
  

Table 1. Comparison of next-generation sequencing platforms. 

 

 

Method 

Single-
molecule 
real-time 

sequencing 
(Pacific Bio) 

Ion 
semiconductor 
(Ion Torrent 
sequencing) 

Pyrosequencing 
(454) 

Sequencing by 
synthesis 

(Illumina) 

Sequencing by 
ligation 
(SOLiD 

sequencing) 

Chain 
termination 

(Sanger 
sequencing) 

Read length 

5,000 bp 
average; 

maximum 
read length 

~22,000 base 

Up to 400 bp 700 bp 50 to 250 bp 50+35 or 50+50 
bp 400 to 900 bp 

Accuracy 

99.999% 
consensus 
accuracy; 

87% single-
read accuracy 

98% 99.9% 98% 99.9% 99.9% 

Reads per run 
50,000 per 
SMRT cell, 

or ~400 
megabases 

up to 80 million 1 million up to 3 billion 1.2 to 1.4 
billion N/A 

Time per run 30 minutes to 
2 hours 2 hours 24 hours 

1 to 10 days, 
depending upon 
sequencer and 
specified read 

length 

1 to 2 weeks 20 minutes to 
3 hours 

Cost per 1 
million bases (in 

US$) 
$0.75-$1.50 $1 $10 $0.05 to $0.15 $0.13 $2400 

Advantages 
Longest read 
length. Fast. 

Detects 4mC, 
5mC, 6mA. 

Less expensive 
equipment. Fast. 

Long read size. 
Fast. 

Potential for high 
sequence yield, 
depending upon 
sequencer model 

and desired 
application. 

Low cost per 
base. 

Long 
individual 

reads. Useful 
for many 

applications. 

Disadvantages 

Moderate 
throughput. 
Equipment 
can be very 
expensive. 

Homopolymer 
errors. 

Runs are 
expensive. 

Homopolymer 
errors. 

Equipment can be 
very expensive. 
Requires high 

concentrations of 
DNA. 

Slower than 
other methods. 

Have issue 
sequencing 
palindromic 
sequence. 

More 
expensive and 
impractical for 

larger 
sequencing 

projects. 
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1.2 Next generation sequencing applications 
 
 

Next generation sequencing methodologies may be applied in a wide range of 

fields by providing the order of individual nucleotides in DNA or RNA 

molecules (A, C, G, T, and U) that can be isolated from cells of animals, 

plants, bacteria, or virtually any other source of genetic information. This has 

led to increase our scientific knowledge in a quick and effective way, which 

was unthinkable to obtain before NGS approached the market. For instance, in 

the molecular biology area, new genomes have been annotated, associating 

diseases and phenotypes with the possibility to design new drugs for specific 

biological targets. New studies comparing different organisms and how they 

evolved have highly advanced our knowledge in evolutionary biology. 

Biomedical research, ecology, epidemiology, forensic identification, and the 

biotechnology industry in all its applications have had a remarkable 

improvement with the use of NGS. Since those approaches have been adopted 

from different research groups in the entire world, a variety of new fields of 

biology have been developed, mainly based on what kind of biological 

molecule is analyzed and sequenced.  

For instance, a DNA based approach level will most likely lead to study in the 

area of: 

 

 

1. De Novo Sequencing 

• Annotation of genetic code and assembly of novel genomes 

 

2. Whole genome sequencing 

• Discovering the genetic variations in a genome-wide range 
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3. Amplicon and target region sequencing 

• Finding novel variants or validate candidate variants in a target 

region 

 

On the other hand a RNA based level will focus on studies in the area of: 

 

1. Transcriptome Sequencing 

• Annotation of the whole transcriptome for the analysis of 

differential gene expression 

• Discover of novel genes 

• RNA editing analysis (alternative splicing, gene fusion) 

• Discover disease-related functional genes 

 

 

2. NON coding RNA sequencing 

• Analysis of miRNAs and their regulatory networks 

• Discover disease-specific biomarkers 

• Study of long non coding RNAs 

 

These are just few examples of the effective analysis power offered by NGS 

technologies. Lately genomics and transcriptomics studies have been the most 

promising and interesting fields of study in biomedical research, contributing 

to the annotation of genetic codes of many different organisms (De Novo 

Sequencing), and highlighting the mechanisms that regulate post-

transcriptional gene expression (transcriptomics). However, most recently, 

new different fields of study have been developed, concurrently to the idea of 

considering our bodies as complex-ecosystems, in which thousands of 

different species coexist at the same time. The delicate balance that 

accompanies the simultaneous presence of multiple species in the same habitat 
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has increased the interest of studying the totality of microorganisms present in 

a given biological system. This approach is a recent field in biology 

commonly known as metagenomics [12]. A summary of the main next 

generation sequencing application is reported in Figure 1, [77]. 
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Figure 1. Summary of Next Generation Sequencing applications. 
 

Over the past few years next generation sequencing technologies (NGS) have 

been applied in a variety of contexts, including whole-genome sequencing, 

gene expression analysis, SNP discovery, non-coding RNA expression 

profiling and metagenomics. Those applications have transformed today’s 

biology, allowing scientists to increase knowledge in the area of biomedical 

research, ecology, epidemiology and forensic identification, with new low-

cost and fast sequencing methods. NGS approaches have lead to the 

development of new field of studies leading to what is currently called the       

–omic era.  

(http://en.wikipedia.org/wiki/DNA_sequencing#cite_note-quail2012-3). 
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1.3 Metagenomics and the human microbiome 

 

Metagenomics is officially defined as "the application of modern genomics 

techniques to the study of communities of microbial organisms directly in 

their natural environments, bypassing the need for isolation and lab cultivation 

of individual species" [13]. Basically, this new area of study related to NGS 

methodologies, offers the possibility of sequencing the totality of 

microorganisms in a given environment. The need to develop this new 

approach relies mainly within the limits of the standard cultivation-based 

approaches used in microbiology, which have been shown to miss the vast 

majority of microbial biodiversity [14]. The application of metagenomics 

allows the deep study of biological systems, and is not limited to the 

biomedical area, but may be applied to agriculture, ecology and engineering 

[15].  

In this context, a microbiome is defined as the totality of microorganisms, 

including their genetic elements (genomes), and environmental interactions in 

a given environment [16], [17]. Is well known that hosted microorganisms 

living in our bodies play a central role in human health, but they are still 

several unclear factors, which do not allow to completely highlight the 

composition and functions of the human microbiome. 

The human microbiome is represented by the totality of the microorganisms 

coexisting in our body, including bacteria, fungi and archeae, and only in the 

last five years researches are asking questions related to the association of the 

microbiome alteration and human health [18]. Interestingly, is well known that 

humans born without any microorganism, but soon after birth a rapid 

colonization of different body tracts occurs (skin, oral/respiratory tract, 

genitourinary system and gastrointestinal tract).  
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An average adult body may contain up to 100 trillion microbial cells, which 

means there are at least ten times as many bacteria as human cells (~ 1014 

versus 1013)  [19], [20].  

The whole human microbiome may constitute the 1-3% of the total body mass 

[21]. Even if bacteria can be found in all exposed regions of the human body 

(skin, eyes, nose, mouth) the majority of them is localized along the intestinal 

tract. 

 

1.4 Role of the human gut microbiome 

 

Although the human genome codes approximately 23,000 genes, this is not 

sufficient to carry out all the body’s biological functions [22], [23]. In fact, 

only the bacteria of the human gut may encode 3.3 million genes, meaning 

that a strong interactive influence occurs between human and bacteria gene 

products [24]. Different studies show the importance of the microbes in the 

gastrointestinal tract and the interest in this area has rapidly increased since 

researches first described differences in the composition of the gut 

microbiome associated with inflammatory bowel disease [25]. The human gut 

is rapidly colonized after birth and the biodiversity of the microbiome plays a 

role in the development of gut morphology and physiology. After 2 years of 

age, the gut microbiome starts to be closer in composition to an adult gut 

microbiome than to the one of an infant [26]. Thus, changing in microbial 

colonization of the gastrointestinal tract may represent a major risk factor in 

the development of food-related autoimmune diseases [27]. The gut 

microbiome is involved in many essential processes, related to metabolic 

functions, immunity and development of diseases (Table 2). Those are only 

some of the basic functions associated with the human gut microbiome. 

Unfortunately, while we share mostly similarity in the human genetic code, 

the microbiome seems to be really different from one individual to another. 
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Many studies tried to draw a picture of the different composition of the human 

gut microbiome across age, population and geography besides health and 

disease condition.  For instance, is known that common patterns are present in 

the gut microbiome composition during life, demonstrating that the bacterial 

diversity is higher in adults compared to children, but in children there are 

more interpersonal differences [42].  Interestingly, it has been demonstrated 

how the human gut microbiome differs across different geographical 

locations. Obviously, the daily dietary is a key factor in influencing the 

composition and diversity of the microbiome. Consequently, cultural 

differences may affect the composition of the microbiome because of different 

dietary habits. Thus, an isolated population of Latin America will most likely 

have a different microbiome composition to one in Europe [43]. However, 

genetic factors are less important than dietary factors in determining the 

microbiome diversification. This hypothesis has been confirmed studying 

different families, where the microbiome composition presented a similar 

trend, even when the family members were not directly genetically related (i.e. 

husband-wife) [42]. Studies in mice have also shown how the composition of 

the gut microbiome may be influenced.  

For example, using germ-free mice scientists have modulated the bacteria 

diversity in mice guts using different type of diets. Furthermore, other studies 

have been characterized via microbiome transplantation by colonization of 

germ-free mice guts with bacteria isolated from human twins discordant for 

obesity. Surprisingly, mice developed similar symptoms associated to obesity 

that were present in the affected twins were the microbiome was isolated [44].  

Similar studies using germ-free mice have evaluated the importance of the gut 

flora in response to antibiotic and during inflammation, reshaping the gut 

microbiome with bacterial transplantation and antibiotic intake [45].  
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Table 2. Essential processes involving the human gut 
microbiome. 
 
 

Metabolic Immunity Disease 

Positive control on 
intestinal cell 
proliferation [28] 

Promoting 
development of gut’s 
mucosal immune 
system [31], [32], [33] 

Prevent tumor 
formation [31] 

Mediate vitamins 
syntheses [29], [30] 

Reduce reaction in 
allergies and auto-
immune disease [34] 

Key role in obesity [38], 

[39] 

Absorption of ions [28] Preventing 
inflammation [35], [36] 

May play a role in 
mental health [40] 

Removal of 
biochemistry end 
products and dietary 
carcinogens [28] 

Influence the oral 
tolerance [37] 

Central role in 
inflammatory bowel 
disease [25], [32], [33], [41] 
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CHAPTER 2 

 

THE HUMAN GUT MICROBIOME IN COMMON 
DISEASES OF THE HUMAN GUT 

 
 
2.1 Inflammatory bowel disease  
 
 
Inflammatory bowel disease (IBD) represents a group of chronic inflammatory 

conditions that occur in the gastrointestinal system. They are considered 

autoimmune disorders since the body’s immune system is involved, targeting 

the digestive system [58] [59]. IBD is a multifactorial disease that includes 

interaction of environmental and genetic factors. The rule of the microbiome 

seems to be crucial and alterations to enteral bacteria can contribute to IBD 

onset and progression [60][61]. Unfortunately, the genetic factors are still not 

totally defined, but around 300 genes have been identified as being involved in 

IBD [62].  

Two main forms are really common in IBD affected people: Crohn’s disease 

and ulcerative colitis. Those two disorders basically differ in the location and 

the nature of inflammation. Another associate disease, even if not classified as 

IBD, is Celiac disease. In fact, inflammatory bowel disease (IBD) and Celiac 

disease are both autoimmune disorders that affect digestion and food 

absorption, and cause similar symptoms but they are not classified in the same 

group. In fact, while IBD is a term for both Crohn’s disease and ulcerative 

colitis (two diseases that cause adverse autoimmune responses in the digestive 

tract), Celiac disease instead has a definite cause and effect, which is related to 

the ingestion of gluten. A person affected by IBD could also suffer from 

Celiac disease or other kind of gluten sensitivity but they are classified as two 

distinct diseases with different causes and effects.  
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It is unclear the cause of the irregular autoimmune response in IBD since it’s a 

complex of genetics and environmental factors. Surely though, IBD is not 

associated with any food ingestion, as for gluten in celiac Disease.  

However, Crohn’s disease, ulcerative colitis, other IBDs, and celiac Disease 

are considered autoimmune disorders affecting the gastro intestinal tract. 

 

2.2 Celiac disease 

 
Celiac disease (CD) is one of the most common autoimmune-disease based 

disorders, triggered by the ingestion of cereal gluten (a protein find in wheat, 

rye, and barley) in genetically susceptible individuals. People affected by CD 

suffer damage to the villi in the lamina propria and crypt regions of their 

intestines when they eat specific food-grain antigens. CD can develop at any 

age after an individual starts eating gluten and symptoms include abdominal 

pain, chronic constipation, diarrhea and some time anemia and general fatigue. 

Other disorders caused by nutrient deficiencies, such as vitamin deficiencies, 

may develop due to malabsorption [46]. As a result of increased screening in 

the population more people are daily diagnosed of CD. About 1% of the 

population in the US and Europe is affected by CD while less people are 

diagnosed among the African and Asian population due to different genetic 

background. Furthermore, CD seems to be twice as frequent among female 

than male [47], [48], [49]. 

Is well known that a genetic predisposition plays a key role in CD that appears 

to be polyfactorial, where more genetic factors are involved and more than one 

is necessary to cause the disease. Two allelic variants have been widely 

associated with CD: HLA-DQ2 or HLA-DQ8 and 96% of affected people 

have one of the two HLA-DQ protein types [50], [51]. HLA-DQ belongs to 

the human leukocyte antigen (MHC-II) system that is an essential element in 
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the immune system in order to discriminate between self and non-self cells. 

DQ2 and DQ8 are associated with the risk of developing CD since the 

receptors formed by these genes may strongly bind gliadin peptides more than 

any other antigen-presenting receptor [50]. HLA-DQ2 allele is common and 

carried by approximately 30% of Caucasian individuals. Nonetheless, HLA-

DQ2 or HLA-DQ8 is necessary for CD development but is not sufficient, even 

if there is an estimated risk of ~36% [47]. 

Being CD a digestive and autoimmune disorder, it occurs in the small 

intestine, which is formed with a carpet of small finger-like extroflexions 

called villi and even smaller projections called microvilli. These structures are 

of paramount importance for food absorption and to increase intestinal surface 

so that the body can absorb more essential nutrients (carbohydrates, proteins, 

and fats), vitamins, and minerals necessary for the daily body diet. When a CD 

affected subject eats food-containing gluten, after the early stages of digestion, 

it is metabolized in two smaller components: gliadin and glutanin. The 

majority of the problem related to CD is attributed to gliadin because this 

compound is resistant to membrane proteases actions in the intestine, 

remaining intact after the rest of the gluten is digested. Specifically, gliadin is 

absorbed in the intestinal epithelium and progresses into the lamina propria. 

At this point the enzyme trasnglutaminase deanimated the gliadin, which 

changes its form increasing its capability to cause an immune response. This is 

a crucial point since the new compound, which we know being harmless, is 

marked as non-self, meaning that the immune system marks it as potentially 

dangerous for the body. Due to this reason, the APC (antigen-presenting cells) 

bind the gliadin using HLA-DQ2 or DQ8 receptors.  The gliadin is then 

presented to gliadin-reactive CD4 T cells through a T-cell receptor.   

The T cells mediate release of cytokines, such as intereleukin-15, responsible 

for activating the immune system and intraepithelial lymphocytes.  
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The overexpression of interleukin-15, different cytokine classes and molecules 

related to the inflammatory cascade causes a progressive destruction of the 

cells in the intestinal villi. After this process, the T cells and B cells form 

memory cells, which will trigger the cycle of inflammation and progressive 

villous atrophy every time a person affected with CD will eat gluten, causing 

in time a chronic inflammation. Currently, there is no official and definitive 

cure for CD. The only recognized treatment is following a lifelong gluten free 

diet, limiting the onset of symptoms [52]. In fact, once gluten is removed from 

the diet, intestinal inflammation gradually disappeared within a few weeks, 

although a new exposure to gluten, can lead to a rapid relapse. Even if CD is 

totally compatible with life (as long as the affected subject follows a gluten 

free diet) the quality of life itself is dramatically compromised, leading also to 

social problems suffered by affected people [53]. Particularly, teenagers with 

CD face different social and school issues related to their condition. This 

affects newly diagnosed teens, which need to start following a restricted 

gluten-free diet, but also teens that have been diagnosed earlier in their life 

since the gluten sensibility is lifelong.  

Furthermore, following a gluten-free diet represents problem for the families 

of affected people since the food is very expansive. In	
   fact,	
   gluten-­‐free	
  

substitute	
   foods	
   cost	
   an	
   average	
   of	
   240%	
   more	
   than	
   their	
   wheat-­‐based	
  

counterparts.	
  In	
  fact,	
  gluten-­‐free	
  diet	
  includes	
  fresh	
  fruits	
  and	
  vegetables	
  as	
  well	
  

as	
  unprocessed	
  foods,	
  which	
  are	
  more	
  expensive	
  than	
  processed	
  foods. 

 

2.3 Crohn’s disease 

 

Crohn syndrome is one of the most common IBD, caused by interactions 

between multifactorial elements such as environmental, immunological and 

bacterial factors in genetically susceptible individuals [54], [55].  
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The anatomy location affected by Crohn’s disease may be in any part of the 

gastrointestinal tract, comprising all the digestive system.  

Even though, most frequently it occurs at the ileum level and the beginning of 

the large intestine. For that reason, symptoms may vary according to the 

disease location, but generally are similar to CD including: abdominal pain, 

diarrhea, fever, nausea, vomiting and rectal bleeding [57]. Complications 

associated with Crohn’s syndrome are more common and severe than those 

associated with CD. In fact they may include obstructions of the intestinal 

tract and increased risk for colorectal cancer.  
As for CD, Cronh’s disease may occur at any age, but there is a prevalence of 

incidence during the adolescence (14-17 years old), although not rare are the 

cases diagnosed in the range of 50-70 years old [54]. The annual incidence of 

Crohn’s disease ranges from 1 to 10 cases per 100.000 people annually and 

contrary to CD it is equally distributed among males and females. 

Interestingly, people who use tobacco products are two times more likely to 

develop Crohn's disease and healthy siblings of affected people have been 

reported to have an higher risk to develop Crohn’s disease [63], [64].  

Similarly to CD, there is no cure for Crohn's disease, and common treatments 

are only based on controlling symptoms and avoiding relapse. Contrary to CD 

though, Crohn syndrome is a better understood disease in which clear is the 

relation that links genetic risk factors with the immune system [56].  In fact, 

more than thirty genes have been associated with Crohn’s disease, especially 

NOD2 gene and its variations, because the resulting protein products sense 

bacterial cell walls.  

Crohn’s disease pathogenesis seems to be primarily caused by a deregulated 

proinflammatory response to commensal bacteria and mutations in those 

related genes might disrupt mucosal defense mechanism. Mucosal defenses 

are really important mechanisms in order for the body to maintain sterility of 

the intestinal crypt.  



	
  

	
   19	
  

They include barriers like mucus-coated epithelium and the secretions of IgA 

and defensins that are naturally antibiotics produced by Paneth cells that along 

with Goblet cells, enterocytes, and enteroendocrine cells, represent the 

principal cell types of the epithelium of the small intestine. Being NOD2 

directly involved in the recognition of bacterial peptidoglycan, mutations may 

affect its function and cause a decrease in defensing production. The 

progressive decrease and depression of defense mechanisms causes an 

uncontrolled microbial proliferation with the consequent production of pro-

inflammatory molecules (cytokines, interleukins and chemokines) that amplify 

an abnormal inflammatory response causing the appearance of symptoms [66], 

[67]. Scientists agree that the inability to control bacteria proliferation in the 

intestinal walls causes microorganisms to take advantage of the host mucosal 

layer that are most weakened in affected people, compared to the healthy 

condition. Also thanks to the use of antibiotics targeting different bacteria 

strains, a particular resistance has been highlighted in Crohn’s disease, leading 

researches to think that different pathogens are involved [68]. In opposite to 

CD, Crohn’s Disease is not due to an abnormal reaction to specific foods, even 

though following a specific diet may help reducing symptoms and promote 

healing. Generally, people affected by Crohn's disease find that soft, bland 

foods cause less discomfort than spicy or high-fiber foods.  

 

2.4 Influence of the gut microbiome in common human gut diseases  
 

Over the past years scientific research has contributed to highlight our 

understanding of the role of microorganisms inhabiting human body in health 

and disease conditions. Our body is a complex ecosystem where distinct 

populations of organisms coexist, belonging to each of the three domain of 

life: Archeae, Bacteria, and Eukarya [69]. An alteration in the microbiome 

composition is commonly known as dysbiosis [78].  
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Currently, the human gut microbiome and associated dysbiosis is an 

interesting field of study, describing the role of microorganisms in numerous 

diseases, including IDB, CD, metabolic disorders, cancer and infections. 

Different types of interactions occur within our cells, the intestinal mucosa 

and the hosted species in our body, establishing a delicate host-microbial 

mutualism. For example, the intestinal epithelium interacts with the gut 

microbiome providing nutrients in form of mucus, in order to support bacterial 

metabolism. On the other hand, there are several human genes which products 

are associated with the development of IBDs since they are part of important 

pathways. Alterations in the balanced relationship between host and 

microbiome can lead to an uncontrolled inflammation. Not surprisingly, the 

incidence of intestinal diseases has rapidly increased over the past few 

decades, primary due to alterations in microbial environment. For this reason, 

changing in different aspects of our environment during time, including 

dietary habits, increasing of vaccinations and antibiotics, together with 

changes in different aspects of modern lifestyle (living conditions, sedentary 

life, food processing) have dramatically influenced the microbiome 

composition. Currently we have only explored approximately the 40% of the 

gut microbiome that is still uncultured [70]. Is well defined that the 

composition of a healthy gut microbiome is characterized by four major 

bacterial phyla: Firmicutes, Bacteroidetes and less represented Proteobacteria 

and Actinobacteria [71], [72]. Globally, different studies have observed 

dysbiosis in the gut microbiome of IBD patients, mainly regarding a decreased 

biodiversity, a less presence of Firmicutes and an increase of 

Gammaproteobacteria [73], [74], [75], [76]. In opposite, CD is unique among 

autoimmune diseases since there is a double factor triggering the pathology, 

represented by both genetic elements and gluten. Different environmental 

components other than gluten are thought to influence CD development and 

are still poorly understood.  
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The interesting fact is that less than 10% of individuals with an increased 

genetic susceptibility develop CD clinical conditions, and most of them 

present symptoms even years after their first exposure to gluten. This evidence 

suggests that other environmental factors could be involved in the pre-

autoimmune process, besides gluten. The attention of researchers has been 

focused particularly on the gluten T-cell specific response. Some assumptions 

regarding the mimicry of microorganisms proteins and gluten have been made, 

since our body is continuously exposed to exogenous elements. In this context, 

some rod-shaped bacillus have been directly associated with the mucosa in CD 

affected people during the actual disease activity and during the inactivity (for 

example when patients are under a gluten-free diet) but not in healthy controls 

[79]. Different studies reported an overall higher incidence of Gram-negative 

and pro-inflammatory bacteria in duodenal microbiota of CD affected children 

compared to healthy controls and symptom-free CD patients, suggesting a 

direct link with the symptomatic presentation of the disease [80].              

Several bacteria groups have also been identified to be related with CD, some 

of those are Bacteroides, Escherichia coli and Clostridium leptum, 

significantly more abundant in CD patients with active disease than in healthy 

controls, although these bacterial deviations are normalized in symptom-free 

CD patients [81]. A similar scenario occurs for the Staphylococcus abundance 

[82]. Less presence of Lactobacillus-Bifidobacterium has been reported in CD 

patients with either active or inactive disease compared with controls. Lastly, 

in the majority of the available studies, similar bacterial groups have been 

related to CD both in biopsies and feces [83], [84]. This is an interesting fact 

that may indicate how the composition of fecal microbiome partly reflects that 

of the small intestine in CD patients, and could constitute a convenient 

biological index of this disorder.  
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However, this hypothesis is somewhat discordant, since other studies have 

shown that the microbiome composition deeply changes across different 

sections of the gastrointestinal system [85], [86]. Being that CD and IBD 

inflammation occur in pretty well known tracts of the gastrointestinal system, 

prior to the experimental design choosing the anatomy section to analyze, 

represents a crucial point in the metagenomics studies of the human gut.  
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CHAPTER 3 

BIOINFORMATICS APPROACHES AND TOOLS FOR 
METAGENOMICS ANALYSIS 

 
 

3.1 Classification of metagenomics sequencing methods  

 

The increasing of knowledge related to the mechanisms that regulate the 

development of biological systems, the onset of diseases and the use of new 

therapies has produced enormous amount of data, which has inevitably led to a 

more frequent use of computational methods, in order to extract useful 

biological information for scientific purposes. Currently, there are hundreds of 

different databases, which annotate genetic codes, variants, non-coding RNAs, 

proteins and all relevant biological molecules followed by an even more 

amount of tools, pipelines, and entire open-source projects which allow the 

analysis of biological data. The study of metagenomics requires the use of 

different computational methods depending on the experimental design. 

Historically, the traditional approach was based on the use of small plasmids, 

known as bacterial artificial chromosomes (BACs), as vectors for DNA 

cloning and the DNA was sequenced using Sanger method [87]. After the 

revolution made by next generation sequencing technologies, thousand of 

microbial genomes have been annotated and whole microbial environments 

reconstructed including phylogenetic comparisons, profiling and metabolic 

reconstructions. The pyrosequencing approach has a much higher throughput 

and a lower error rate per base sequenced, compared to Sanger sequencing.  

In fact, the first metagenomics study has been conducted using 

pyrosequencing technologies on an ancient Mammoth DNA [88].  
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Since 2006, after the first metagenomics study was published, several studies 

have been performed and at the state of the art, we have access to more than 

10.000 species, annotated in different biological databases [89]. In terms of 

data collected only the human gut microbiome gene catalog has identified 

almost 3.3 million of genes for a total of ~600 gigabases of sequences data 

[90]. The steps from the data collection to the extraction of relevant biological 

information represent a delicate process and having the right computational 

power is a challenge, considering the enormous amount of data daily 

generated. Two main approaches are currently used for the study of 

metagenomics: large scale shotgun metagenomics sequencing and 

amplification of small subunit RNA (16S rRNA or SSU sRNA). The first 

approach is based on the whole DNA sequencing of fragments extracted from 

microbial population. This method captures the complete genomes of all 

organisms in a selected environment and allows an accurate phylogenetic 

inference and a reconstruction of all bacteria genes in the population.  The 

second approach uses 16S rRNA bacteria sequences, which are highly 

conserved and can be used as a phylogenetic marker for microbial taxonomic 

classification. The 16S represents more than 80% of total bacteria RNA, and is 

perfectly suitable for PCR amplification and sequencing. Obviously, there are 

advantages and disadvantages deriving from the two approaches. For instance, 

the shotgun sequencing avoids amplification and cloning bias, which are 

related to PCR protocols [91], [92]. This is a limit related to the PCR primes 

and the 16S conserved regions. In fact, those regions during long evolutionary 

periods may undergo some changes and suffer a loss of hybridization to the 

probe, resulting in underestimation of evolutionary relationships within the 

population. In this context, has been demonstrated how the V6 bacteria rRNA 

region amplification may cause overestimation of species richness.  

 



	
  

	
   25	
  

On the other hand, sequencing of the V4 region has been really useful in 

building phylogenetic trees [93]. Another limit that is present in 16S 

amplification compared to shotgun sequencing is known as mosaics. 

Mosaicism is an occurrence due to bacterial horizontal gene transfer. This 

process, like every significant genomic rearrangement, can not be reported 

using 16S rRNA region amplification, and it may occur in 16S regions during 

bacteria genes transfer [94], [95]. Thus, the 16S approach may lead to 

misidentification, since the identified marker could be a transferred gene. 

Furthermore, there is no consistent relationship between the 16S rRNA 

conservation and the total bacteria genome, especially at strain level 

identification, where two bacteria strains belonging to the same genus may 

share 98% of 16S rRNA but only 30% of the total genome [96]. On the other 

hand though, 16S rRNA approach focuses on a small part of the microbial 

genome, dramatically reducing the sequencing cost. This approach has been 

particularly effective in monitoring fluctuations in populations. Furthermore, 

due to the easiness of the techniques prior to the sequencing experiment, this 

approach is still the most used for large-scale microbiome studies. In fact, 

multiple samples can be used in the same experiment leading to describe a 

global taxonomic profile and associated phylogenetic relations within a 

selected environment. 

 

3.2 Metagenomics shotgun sequencing analysis 

 

Every next generation sequencing analysis starts with a pre-quality filtering 

procedure, and in this context, metagenomics data need to pass specific pre-

filtering steps. Generally, those filters are related to removal of redundancy, 

low-quality sequences and the total isolation and elimination of any eukaryotic 

sequence. These steps are really important especially considering 

metagenomes of human origin.  
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Filtering and normalization techniques are mandatory for the second step of 

metagenomics shotgun sequencing analysis that consists in the sequences 

assembly. Once the data set passes the pre-filtering steps, an assembly 

procedure occurs. Assembly is the primary goal in shotgun sequencing 

analysis [97]. A common approach is extracting homologous sequences and 

assembling them with a comparative assembler or an alignment tool. This is 

really useful, especially when a fully sequenced genome is available and there 

are different databases where sequences can be aligned and compared to each 

other [98], [99]. Not every study has access to appropriate template genomes, 

especially in the context of non-well studied environment, where non-

annotated species are expected to coexist at the same time. In this case, the 

traditional alignment approaches can not work and instead is generally 

preferred an overlap-consensus assembly approach. With this method, 

sequences are clustered in scaffolds (contiguous sequences with known size 

gaps) with an overlapping approach, where a consensus sequence is built from 

the totality of the available reads.  

This overlap-consensus method has several limits, of which the most 

commons are: polymorphisms (that are highly present due to different reads 

from different individuals in the same population) and false overlaps (due to 

conserved regions shared between species).  

To avoid the polymorphisms and the over-laps, generally a single-genome 

assembly is performed followed by a manual post-processing in order to 

correct assembly errors. Unfortunately, this method is really time-consuming 

and depends specifically on the user skills. Currently, new different 

approaches are being tested, including co-assembly (that uses close related 

genomes at the same time to correct scaffold errors), even though no 

promising results have been obtained so far. Once the assembly phase is 

completed and scaffolds have been obtained, then a gene prediction step 

occurs.  
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Depending on the goal of the analysis two distinct ways can be used. The first 

is used when users want to annotate a pre-assembled genome or multiple 

genomes that have produced large contigs. In this case it is possible to use 

different existing tools specifically designed for genome annotation, of which 

one of the most useful is RAST [100].  

With the second method, users can directly annotate an entire community 

using short contigs or reads that have not yet been assembled. Generally, 

known genes are first identified and then putative genes functions are 

assigned. Different algorithms have been developed for gene prediction and 

they can arrive to have a 95% of accuracy, reducing false negative. Some 

genes will most likely be lost in the annotation process and the way to avoid 

this limit is performing a BLAST-based search. Although the last method can 

annotate the majority of the genes in a microbial community, the huge size of 

metagenomics data set makes this approach computational expensive and very 

time consuming.  

 

3.3 Amplicon-based metagenomics analysis 

 

The amplicon-based metagenomics analysis focuses on relatively short reads 

length (~500 nucleotides). DNA-pyrosequencing applications (454) are really 

suitable for this purpose, especially considering hypervariable regions within 

small ribosomal-subunit RNA genes (i.e. 16S rRNA genes). The 

computational power required for analyzing millions of reads can be a major 

issue, thus the algorithms developed to analyze and compare amplicon-based 

metagenomics data have been specifically designed to decrease the amount of 

power required for a complete analysis.  

Different tools are currently available for amplicon-based metagenomics 

analysis:  QIIME [101], MG-RAST [102], MEGAN [103] and Mothur [104].  
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They basically differ in the way the phylogenetic marker genes are detected, 

the way the taxonomy is assigned and in the diversity analysis metrics. They 

also differ in terms of usability, since a tool can be characterized by an easier 

installation and a user-friendly interaction, while another may require a hard 

installation process, including third party dependencies and only limited to a 

terminal user interface. Generally, if is not possible to install a tool natively, it 

means that it is most likely accessible through an on-line server, offering a 

graphical-user interface (i.e. MG-RAST). Although people with no any 

computational skills may use those kinds of tools, they are limited in terms of 

versatility, throughput and amount	
  of	
  data	
  that	
  can	
  be	
  uploaded. However, in a 

typical amplicon analysis once the raw data have been produced, different pre-

analysis steps are performed. Those are universal steps, based on a pre-

filtering phase that every tool can perform. One of the major advantages of 

amplicon-sequencing approaches relies in the possibility to process multiple 

samples in the same experiment, globally reducing the cost.   

Every sample is associated with a specific barcode sequence, unique to that 

sample. After the data are generated is possible to identify every sample using 

bioinformatics methods, in a process called demultiplexing. The first part of 

the analysis is represented by the quality-filtering step, the primer detection 

and the assignment of every sequence to a specific sample (demultiplexing). 

In fact, the majority of the NGS platforms generate sequences that begin with 

the barcode sequence (unique for every sample), which is followed by a linker 

primer sequences (i.e. a region of the 16S rRNA) and both are automatically 

removed during the pre-quality filtering step. 

The filtering procedure takes into account at least the quality of the reads 

(using the Phread quality score, which is a measure of the base-rate error, 

[105]) and different parameters related to the length of the sequences and the 

number of errors within the molecules linked with the amplified region (i.e. 

barcodes, primers). 
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Different variables are tacking into account and can be set as excluding 

parameters: 

 

• Phread quality score  

 

• Minimum and the maximum sequences length  

 

• Maximum number of ambiguous bases and homopolymer 

 

• Maximum number of primer mismatch 

 

• Maximum number of errors in barcode 

 

3.3.1 16S rRNAs detection, clustering and identification  

 

After the pre-quality filtering procedure, the resulting dataset can be analyzed 

using a metagenomics amplicon-based analysis workflow. Currently, the best 

approach in this area of analysis is represented by the phylogenetic markers 

detection, performed with an OTU-picking procedure. An Operation 

taxonomic Unit (OTU) is defined as the taxonomic level of sampling selected 

by the user to be used in a study, such as individuals, populations, species, 

genera, or bacterial strains [106]. The definition has been made intentionally 

vague and could refer to an individual organism, a taxonomic group or a set of 

sequences evolutionary related that share a set of characters. In the area of 

amplicon-metagenomics, an OTU is defined as a cluster of reads with a 

predetermined similarity (usually 97%), which is supposed to correspond to a 

microorganism species. Obviously, the more the taxonomic classification will 

be categorized, (i.e. at species level), the more the OTU may produce false 

negative results. This is understandable if we consider that some species may 
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share sequences with more than 97% similarity and some cluster may be due 

to artifacts (generally read errors or chimeras). Nevertheless, different new 

algorithms have been developed specifically designed for the bacterial 16S 

rRNA detection, that take into account the possible errors generated during the 

detection. However, the taxonomy assignment up to the genus level is well 

characterized by the available methods and may give a sufficient and useful 

global picture in a metagenomics study. After the genus level (i.e. species), 

false results are most likely to be reported, and the specificity tends to 

decrease. This is independent from the tool or the phylogenetic marker 

detector used, and it is mostly due to the high similarity of the marker gene at 

the species level. For instance, two organisms belonging to the same genus 

(but of two different species level), may share the majority of the nucleotides 

in the marker gene sequences and differing only for a few base pairs.  

Those bases are necessary to distinguish one species from another and the 

detectors may fail to associate the correct taxonomy, due to the high similarity 

in that region or to the presence of chimera that may generate errors.  

Most of the metagenomics analysis tools (i.e. QIIME), provide three high-

level protocols for the 16S rRNA detection belonging to the OTU picking 

procedure: de novo, closed-reference, and open-reference OTU picking: 

 

De novo OTU picking 

The de novo OTUs picking procedure is recommended when users need to 

analyze not common marker genes (where a reference sequences collection is 

not available) but it can not be use when analyzing non-overlapping regions or 

huge data set (i.e. >10 millions of reads).  

It consists in a process where reads are first clustered against each other, 

usually at 97% identity, without any reference sequence collection. The final 

data is a set of OTUs formed by multiple reads belonging to different samples. 
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Closed-reference OTU picking 

In the closed-reference procedure, reads are clustered against a reference 

sequences collection, discarding from downstream analyses all of those reads 

that do not hit the reference collection. This procedure is useful when 

comparing non-overlapping amplicons (i.e. V2 and V4 of the bacterial 16S 

rRNA) and is the fastest method in terms of speed. Moreover is really useful 

for very large data set but the novel diversity discovering may be affected, 

since the reads that do not hit the reference database are discarded. Indeed the 

choice depends on the environment where the sequences have been extracted 

(i.e. common and well studied environments such as human gut or not 

common environments such as soils or deep waters). If the environment has 

already been well characterized, losing the novel diversity would not represent 

an issue, since we do not expect any new species. In opposite, the closed-

reference procedure may be limited when the study is based on a non-well 

characterized environment, where unknown are the species and thus losing 

information may affect the real result. 

 

Open-reference OTUs picking 

The open-reference OTUs picking is a procedure where reads are first 

clustered against a reference sequences collection (same as the closed-

reference procedure) but in this case sequences who do not hit the reference 

database are clustered de novo. This procedure can not be used when 

comparing non-overlapping amplicons and when users can not provide any 

reference sequences collection. In this case all the reads are clustered, but the 

analysis time could be long, especially when using sets with a lot of novel 

diversity and where sequences are only partially present in the reference 

database. Although the open-reference procedure speed is faster than the de-

novo OTUs picking, it can still take lot of time when analyzing samples with a 

lot of novel diversity or big data set.  



	
  

	
   32	
  

Different studies have compared methods for clustering marker gene 

sequences into OTUs. In general, a hierarchical clustering method seems to 

perform better using low dissimilarity thresholds. Furthermore, the sequences 

abundance plays an important role in the OTU detection. The UCLUST 

algorithm seems to better handle the limits related to the OTUs picking 

procedures and currently is the best choice for rRNA clustering and detection 

[112], [113]. In UCLUST when a cluster is generated, it contains similar 

sequences based on a similarity threshold, t% identity.  Each cluster has a 

representative sequence (its seed), and all sequences in a cluster are required 

to have identity ≥t with the seed.  

However, there are different available algorithms that can perform the OTU 

picking procedures with different characteristics, which differ in the way the 

clustering is performed (Table 3). 
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Table 3. Clustering methods for the OTU picking procedures. 
 

Clustering Methods Description 

CD-hit [107]  Sequences are clustered using a 

longest-sequence-first list removal 

algorithm. Erroneous and chimeric 

reads are filtered out, combining 

sequence clustering and statistical                            

simulations.  

Blast [108] Sequences are compared and 

clustered against a reference 

database of sequences. 

Mothur [109] For clustering sequences it requires 

the use of an input file of aligned 

sequences. The sequences are 

aligned in a FASTA file to a 

template sequence alignment. 

UCLUST [110] It creates “seeds” of sequences, 

which generate clusters based on 

percent identity; it can take a 

reference database to use as seeds. 

USEARCH [111] It was developed before UCLUST 

and works in a similar way but 

with less general performance. 
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3.3.2 Taxonomic and phylogenetic assignment  

 

Once the OTU-picking procedure is completed it generates a file, which 

contains a set of OTUs. Each OTU is formed by a representative set of 

sequences, without loosing the frequency information. This is really useful to 

decrease the amount of data to analyze in downstream analysis and in order to 

reduce the computational power and analysis time. The next step in an 

amplicon-based metagenomics analysis is represented by the taxonomic 

assignment. Once all the OTUs are obtained, they need to be associated with 

specific taxa in order to have a picture of the microbiome composition, based 

on marker gene amplicons. Assigning taxonomy to a representative set of 

sequences may be performed with different algorithms and databases, 

depending on the studied species. Concerning the different methods that, 

given a set of sequences, attempt to assign the taxonomy of each sequence, the 

most used are: The Ribosomal Database Project (RDP) classifier [114], 

BLAST [108], RTAX [115], and Mothur [109]. According on which amplicon 

region has been used in the experimental design, different databases may be 

used against the identified groups of OTU, in order to perform the taxonomy 

assignment. When using common applicon regions, like 16S rRNA sequences, 

there will be more available databases, previously confirmed with other 

methodologies and generally more accurate. One of the most cited for the 

purpose of assigning taxonomy to 16S rRNA sequences is the Green Gene 

database [116]. Using not common amplicon regions or non 16S rRNA 

sequences, generally custom databases can be used for assigning taxonomy. 

Most likely though, those databases have yet to be confirmed and will not 

have any accurate phylogenetic classification. Having this information is 

really important for diversity analysis of microbial communities when 

phylogeny inference is necessary. A summary of the different methods for 

taxonomic assingment can be found in Table 4. 
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Table 4. Common methods to assign taxonomy to OTUs. 
 

Taxonomy 

assigning methods 

Description 

RDP classifier [114]  This method assigns taxonomy by matching 

sequence segments (8 nucleotides) against a 

pre-built database of previously assigned 

sequence. The quality scores provided by the 

RDP classifier are confidence values. 

BLAST [108] This method assigns taxonomy by searching 

input sequences against a blast database of pre-

assigned reference sequences. The quality 

scores assigned by the BLAST taxonomy 

assigner are e-values. 

RTAX [115] The taxonomy assignment is made by searching 

input sequences against a FASTA database of 

pre-assigned reference sequences. Every match 

within 0.5% of identity is collected. When more 

than half of the collected matches agree, then 

the taxonomy assignment is reported.  

Mothur [109] Similar to the RDP Classifier, this method 

requires a set of training sequences and 

associated id-to-taxonomy assignments.  
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Inferring a phylogenetic tree relating the sequences 

 

Simultaneously to the taxonomic assignment, in an amplicon-based 

metagenomics analysis pipeline, it is common to generate a phylogenetic tree 

to correlate the sequences. This step is necessary since the tree is used with 

phylogenetic tools involved in downstream analysis (i.e. diversity analysis). 

Generally the alignment can be performed de novo or assigning sequences to 

an existing template alignment, on the basis of which the tree will be 

generated. The difference between de novo alignment and the pre-built 

alignment resides basically in the quantity of sequences involved in the study. 

For instance, for small studies (with less than 1.000 sequences) a de novo 

alignment can be performed using specific tools. One of the most useful for 

this purpose is MUSCLE [117]. For studies involving more than 1.000 

sequences, is preferable to use a pre-built alignment methods, since the de 

novo aligners would be too slow. Thus, in large studies, other tools are 

generally involved. The most used aligner tool using a pre-built template 

alignment is PyNast [118].  Template alignments for common amplicon 

sequences are widely available (i.e. 16S rRNA). On the other hand, if non-

common amplicon are involved in the study, a template alignment is not 

available (i.e. 18S rRNA and ITS) and the de novo option does not lead to 

accurate results. This is due to both the huge time required to perform a de 

novo alignment and the computational power involved. Furthermore, not so 

many studies involving non 16S amplicon regions have been performed in the 

metagenomics area, therefore having a phylogenetic tree based on input 

sequences set is still a challenge. This is a limit when diversity community 

analysis involves phylogenetic relationship. The final output will be a 

phylogenetic tree. Metagenomics tools generally generate trees in Newick tree 

format and they can be visualized with several tree visualization softwares 

[143].  
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3.3.3 Basic input and expected analysis output  

 

The Meta data file: A collection of information used as analysis input 

 

In a large-scale metagenomics analysis, it is mandatory to have all the 

information related to each sample in order to address biological questions. In 

this context, regardless the metagenomics tools, the user is supposed to 

provide a meta-data mapping file. This file should contain all the information 

related to the samples necessary to perform the data analysis. The file should 

report a list of variables, provided by the user, associating every sample or 

group of samples with a category. For instance they could be information 

related to the patients (i.e. age, sex, disease status, geographical origin, dietary 

habit, clinical background) or related to the experiment (i.e. library kit used, 

NGS platform, amplicon region). The more variables are reported, the more 

will be easy to address biological question during downstream analysis. At 

least the meta data file should contain the name of each sample, the barcode 

sequence used for each sample (useful for multiplexing and to associate every 

single sequence to the sample it belongs) and the linker/primer sequence used 

to amplify the sample.  

 

Output reporting the taxonomic composition: The Biological Observation 

Matrix 

 

During an amplicon metagenomics analysis, once the taxonomic assignment is 

completed, it is necessary to generate a readable output reporting all the taxa 

associated with the samples. The output should take into account, the different 

taxonomic relationship within every sample and the frequency of which a 

taxon occurs in a sample. The best way to represent this type of data is a 

matrix that relates samples and taxa reporting the respective frequencies.   
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At the state of the art, all the metagenomics analysis tools are going in a 

common direction in terms of output generated in their pipelines. The current 

universal recognized standard is the Biological Observation Matrix (BIOM) 

format [119]. The BIOM format is specifically designed for representing 

biological sample by observation contingency tables. It is a recognized 

standard for the Earth Microbiome Project (http://www.earthmicrobiome.org/) 

and a candidate for the Genomic Standards Consortium (http://gensc.org/). It 

was first developed to facilitate the handling of large-scale comparative –omic 

data, allowing the storage of contingency table data and sample/observation 

metadata in a single file. Secondly, it was developed to facilitate the use of 

taxonomic tables between the available tools in order to create a common 

standard format. The primary use of the biome table format is to represent 

OTU tables in a metagenomics analysis. In this case, the observations are 

OTUs and the matrix contains counts corresponding to the number of times 

each OTU is observed in each sample.  The function of the biom format is not 

limited to the storage of taxonomic composition in a metagenomics study. In 

fact, the table can be used in many different contexts. For example it can be 

uploaded in external tools in order to generate plots representing the 

taxonomic profile; it can be used within different algorithms to perform 

mathematical operations (i.e. filtering or summary). Furthermore, it can be 

used to compute statistical analysis and it is a standard format necessary to 

perform community diversity analysis. Currently, all the available 

metagenomics analysis tools recognize the biom format and even new 

algorithms, are integrating the biom table as a standard output format.  
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3.3.4 Diversity analysis 

 

One main goal in metagenomics analysis is describing the microbial diversity 

within a study. In ecology, different type of species within a community and 

their abundance at a specific scale represent the biological diversity. Two 

common terms for measuring biodiversity have been described: alpha and beta 

diversity [120]. 

 

Alpha diversity 

 

Alpha diversity, computes the diversity within a particular area or ecosystem, 

and is represented by the number of species (species richness) in a biological 

system. Basically the alpha diversity tries to answer different questions related 

to the community richness, such as: How different is the composition in every 

sample presents in a dataset?  How many different species are present in every 

single sample? How does the number of sequences in every sample influence 

the species richness? The first definition of alpha diversity was introduced in 

1972 by Whittaker as the species richness of a place [120]. However, the 

practical development of this concept has been redefined tacking into account 

the structure of the community. The most common expression links both the 

number of species and the proportion in which each species is represented in 

the community. Basically, if in a community the number of different species is 

high and their abundances are similar, then the alpha diversity has a high 

index. 

However, before computing alpha diversity, it is necessary to take into 

account the number of sequences generated for every sample. In fact, we can 

expect in a sequencing experiment that if more sequences are generated, then 

more species will be identified. This may represent a limit, considering that 

we can have X reads from one sample and 1/5 X reads from another sample.  



	
  

	
   40	
  

In fact, we could expect to find more species for that sample if we sequence 5 

times more. In order to avoid this problem, before the community diversity is 

computed, generally a rarefaction step is performed. A rarefaction is basically 

a random collection of sequences taken from a sample, with a specified depth 

(related to the number of sequences). For instance, a rarefaction with a depth 

of 100 reads per sample would be a simulation of what the sequencing result 

would be if the sequencing experiment generated exactly 100 reads for each 

sample. Usually, many rarefactions at multiple depths and repeated many 

times at each depth are performed. This is a common way to normalize the 

sequences/samples generated after a NGS experiment. The most important 

factor prior to the rarefaction procedure is to choose the rarefaction depth 

based on the total sequences per sample.  

Generally, the rarefaction depth is the number corresponding to the minimum 

number of sequences belonging to a sample within the dataset, if and when 

that number is close to the average of the sequences in every sample. 

Obviously we need to carefully consider the overall data generated and the 

number of samples in the study. For instance, we can imagine our data having 

an average of 10.000 sequences/sample. In case some of the samples (no more 

than the 5% of the total) have less than 1.000 sequences each, we would 

choose a high number of rarefaction depth (~10.000), excluding those 

samples.  On the other hand, if more than the 5% of our samples has a sensible 

different number of sequences compared to the average, we would asses to 

1.000 the rarefaction depth in order to not lose the majority of the samples. 

The goal is trying to find the best rarefaction depth parameter, considering the 

average of the sequences per sample but also the total number of samples in 

the dataset. This is important for not excluding samples, but at the same time 

for not compromising the statistical power.  

The rarefaction is computed on the OTU biom table generated after the 

taxonomic assignment, and the results will be multiple OTU tables.  
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The alpha diversity is computed on every rarefied OTU table and then 

collapsed in a single table. The final output will be a normalized OTU table 

reporting the average of the alpha diversity. Several indices have been 

developed in order to compute the alpha diversity and the choice of a different 

index depends on the type of data. Every method computes the species 

richness of every sample considering different parameters:  

 

• The number of observed species per number of sequences/sample  

 

• The presence of singleton (species with only one sequences) or 

doubletons (species with exact two sequences) 

 

• Phylogenetic distance 

 

• Species evenness (how	
  close	
  in	
  numbers	
  each	
  species	
  in	
  an	
  environment	
  

are) 

 

A summary of the main alpha diversity indices is reported in Table 5. 
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Table 5. Summary of the main Alpha Diversity Indices. 
 

Alpha diversity Index Function 

Observed Species [121] Is one of the most used alpha 
diversity index. It compares the 
number of identified species with 
the number of sequences in every 
sample. It takes into account the 
number of unique OTUs found in 
every sample. 

Chao1 [122] It computes the species richness 
by using the number of rare 
species that are found in a sample, 
as a way of calculating how likely 
is the presence of undiscovered 
species. Basically, it compares the 
total number of the species found, 
the number of singleton (species 
with only a single occurrence in a 
sample) and the number of 
doubletons (species with two 
occurrences). 

Shannon Index [123] Shannon's index accounts for both 
abundance and evenness of the 
species (how close are in numbers 
each species in an environment). 
It provides estimates of the 
effective number of species 
present by including or ignoring 
the relatively rare species. 

Phylogenetic Diversity [124] The phylogenetic diversity (PD) 
measures both species abundance 
and phylogenetic distances.  
It requires a phylogenetic tree 
together with the OTU table. 
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Beta diversity 

 

The beta diversity (diversity between samples) is a term used in ecology for 

the comparison of samples to each other. It tries to answer basic questions that 

correlate the samples: How samples from environment A differ to the samples 

from environment B? How different (in terms of species) are my samples 

compared to each other? Do samples within the same environment cluster 

together?  

Opposite to alpha diversity, which calculates a value for each sample, the beta 

diversity computes distances between pairs of samples. The output is a matrix 

of the distances of all samples compared to all other samples. As for the alpha 

diversity, sequencing depth can influence beta diversity analysis. To avoid this 

limit a rarefaction step (as described for alpha diversity) is generally computed 

prior to beta diversity analysis in order to standardize the data obtained from 

samples with different sequencing counts. The matrix reporting the distances 

between every pair of the community samples will reflect the dissimilarity 

between the samples. There are different metrics to produce the distance 

matrix. The input on which the matrix is computed is the OTU table reporting 

the number of sequences observed in each OTU and for each sample. Beta 

diversity methods are phylogenetic and non-phylogenetic based. Generally at 

least one phylogenetic metric is supposed to be considered in the analysis, 

since the result can be vastly more useful to address biological questions 

[125]. The most common phylogenetic metric for beta diversity analysis is 

Unifrac [126]. Unifrac is an online tool that allows the microbial communities 

comparison using phylogenetic information. The input it requires is an OTU 

table, generated previously in the analysis workflow and a phylogenetic tree 

containing sequences derived at least from two different comparisons (i.e. 

different environments or different disease status).  
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The Unifrac tool helps to determine if our dataset has significant different 

communities and if those differences are remarkable associated with a 

particular lineage in the phylogenetic tree. It clusters together samples to 

assess if some variable (provided by the user in the meta data file) influences 

the observed clusters. Furthermore, it is also used as a standard to highlight 

differences between environments that are geographically distant. 

Unifrac allows two main different measures: weighted and unweight.  

The weighted Unifrac is a quantitative measures ideally suited to reveal 

community differences that are due to changes in relative taxon abundance. It 

takes into account the number of sequences and it is useful when some taxa 

decrease or increase in the environment do to external changes (i.e. a limited 

nutrient).  

The unweighted Unifrac is instead a qualitative measure that does not consider 

the number of sequences but only the presence/absence of a taxon. This is 

useful to highlight what species are present in a particular environment (i.e. 

extreme temperatures, PH, and pressure) and also to avoid the abundance of a 

particular taxon to obscure other patterns of variation. Usually both the 

weighted and unweighted Unifrac metrics should be used [127]. When a 

phylogenetic tree is not available, (i.e. when using non-common amplicon 

regions), other beta diversity metrics can be used that do not consider 

phylogenetic relationship.   

Non-phylogenetic metrics are less informative than phylogenetic metrics, but 

are useful to cluster samples within an environment based on the sequence 

similarity. In this context, one of the most used non-phylogenetic metric is 

Bray-Curtis dissimilarity [128]. It describes the dissimilarity between the 

structures of two communities based on the abundance of the sequences.  
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The Bray-Curtis index is computed for every pair of samples and the 

computation involves summing the absolute differences between the counts 

and dividing this by the sum of the abundances in the two samples.  

To illustrate its function, we can consider the count of OTUs for two samples, 

A and B:  

 

 OTU1 OTU2 OTU3 OTU4 OTU5 SUM 

Sample(A) 11 0 7 8 0 26 

Sample(B) 24 37 5 18 1 85 

 

 

The Bray-Curtis dissimilarity index (b) for the pair of samples A, B will be: 

 

b(sA,B) = |!!!!"|  !  |!!!"|  !  |!!!|  !  |!!!"|  !|!!!|
!"!!"

 = 0.568 

 

This measure is represented on values between 0 (identical samples) and 1 

(samples completely different). A matrix is built reporting all the distance 

values between every pair of samples in the dataset. The beta diversity metrics 

will generate distance matrices with different methods according to the metric 

used. The matrices are the basis for downstream analysis, allowing the 

clustering and visualization of the sample distances (principal coordinate 

analysis, hierarchical clustering, and distance histograms). A summary of the 

most common beta diversity metrics is reported in Table 6. 

Since the data obtained after the beta diversity analysis are represented by 

multidimensional data, it can be hard to find patterns between samples. For the 

purpose of the beta diversity analysis visualization, different methods are used 

to identify patterns and to highlight similarities and differences.  

A standard method to graphically represent the data is Principal Coordinate 

Analysis (PCoA). It is a technique that helps to extract and visualize 
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informative components of variation from complex, multidimensional data. 

Basically the goal of PCoA is to map samples from a distance matrix in a set 

of orthogonal axes. The principal coordinates can be plotted in two or three 

dimensions. This is useful to have an intuitive visualization of the data 

structure in order to find differences between the samples, or looking for 

similarities by sample category (a variable in the meta data file).  

PCoA uses a method, known as multidimensional scaling, that computes a 

linear transformation of the variables into a lower dimensional space, retaining 

the maximal amount of information.  

Each of the samples will be visualized in a graph, explaining the variability 

between every sample and within a category. Multiple graphs are generally 

generated as output, in order to find possible associations (express by clusters) 

that can be useful to address biological questions. The more variables have 

been included as input in the mapping file, the more plots will be generated. 

Every plot will report a cluster of samples within a specific category. In this 

way, it is intuitive to identify if samples from a category (i.e. affected) cluster 

together, compared to samples belonging to another category (i.e. healthy). 

The basic idea is that the more the sample are close in a cluster, the more their 

microbiome is similar.  
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Table 6. Summary of the main Beta Diversity Metrics. 
 

Beta diversity Metrics Function 

Unweighted Unifrac A qualitative phylogenetic metric that 
considers the presence/absence of a 
taxon in a phylogenetic tree. Useful 
in extreme environment studies to 
avoid the abundance of particular 
species to obscure other less present 
species. 

Weighted Unifrac A quantitative phylogenetic metric 
ideally suited to reveal community 
differences that are due to changes in 
relative taxon abundance. Useful 
when the abundance of some species 
changes in the environment due to 
external changes (PH, temperature, 
pressure). 

Bray-Curtis Dissimilarity A non-phylogenetic metric that 
describes the dissimilarity between 
the structure of two communities 
based on the abundance of the 
sequences and their similarity 
between the samples.  
Useful when a phylogenetic tree is 
not available due to non-common 
amplicon regions (i.e. ITS). 
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3.3.5 Statistical analysis 

 

Sequencing amplicon shotgun regions from microbial communities with NGS 

technologies generates millions of reads. Because of the huge amount of data 

and the associated information, different statistical methods are required for 

the data evaluation. Numerous arithmetic and statistical models are available 

to assess the composition and diversity of microbial communities. The first 

statistical analysis is computed using the OTU table. Being this type of file a 

biological matrix (reporting samples and associated taxa with every single 

frequency), it is possible to use various approaches to identify statistical 

significance within the samples and by different categories. For that reason, 

the meta data file is necessary as initial input. In fact, it contains information 

that links the variables by different categories. We could be interested in the 

statistical evaluation of certain identified species, considering different 

variables. For example, it is possible to identify taxa that are abundant in a 

specific subcategory of the samples compared to another (i.e. affected patients 

versus healthy controls, female versus male or young versus old).  

To determine the statistical significance of each taxon assigned, the elective 

tests is the Analysis of Variance (ANOVA) using a Bonferroni correction 

[129], [131]. ANOVA can find OTU differentially represented across 

experimental variables, computing a p-value for each taxa and then adjusting 

the p-value with the Bonferroni correction to avoid the problem of multiple 

comparisons.  

Concerning the statistical evaluation of the diversity analysis matrices, the 

majority of the currently available comparison techniques are based on the 

ANOVA family of statistical methods. These methods determine if the 

grouping of samples by a given category is statistically significant.  
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The statistical tests used in diversity analysis comparison, are nonparametric 

and they use permutations of the data to determine the p-value and the 

statistical significance. 

The methods universally accepted for the statistical analysis of microbial 

community data have been evaluated empirically, using simulated data sets to 

verify their reliability on microbial community data. Although the methods 

have been tested, they can present some limits. Due to their nonparametric 

data, the methods do not assume any normality of the data but instead they 

assume equal variance of every group of samples. Due to the equal variance 

assumption they can suffer from low specificity (i.e. detecting significance of 

some group even when it is not expected). Furthermore, it has been evaluated 

that the more the number of samples in the study increases, the more increases 

the possibility to find significant p-values. The more used tests are the 

Analysis of Similarity (ANOSIM) and the permutational multivariate analysis 

of variance (ADONIS) [132], [133], [134]. The two tests are similar and they 

are generally used independently on the same data set in order to see if they 

agree.  

ANOSIM is a method that tests whether two or more groups of samples are 

significantly different. This is useful when we want to find significant 

differences that associate samples in groups (based on the variables specified 

in the meta data file). Since ANOSIM is a nonparametric test, statistical 

significance is determined through permutations. The test will generate both a 

R-value and a p-value.  

The R-value will be in the range of  +1 and 0. This means that the more the 

value is close to 1 the more there is a strong dissimilarity between the groups.              

The R-value together with the p-value at an alpha of 0.05 will help indicating 

if the grouping of samples by a specific category is statistically significant.  
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The ADONIS test is also a nonparametric statistical method that computes the 

statistic on a distance matrix file (generated with beta diversity metrics). In 

this case too, a meta data file is required as input, specifying a category to 

determine sample grouping. The effect size, expressed as an R2 value, will be 

in form of percentage of variation explained by the subcategory indicated and 

extracted from the meta data file. A p-value is also computed determining the 

statistical significance. The R2 is created identifying the relevant centroids in 

the data and then calculating the squared deviations from these points. The p-

value instead is computed using F-tests on sequential sums of squares from 

permutations of the data. Thus, specifying a category in the meta data file, the 

result will be an R2 = X%, indicating that approximately X% of the variation 

in distances is explained by that grouping. The p-value will define if the 

grouping of samples is statistical significant. 

A complete amplicon-based metagenomics analysis consists of different steps 

from the raw data to the statistical evaluation. Every single step can be 

performed with the available metagenomics analysis tools and the pipelines 

can be modified according with the user needs and the type of experiment. It is 

important to have a clear idea of what kind of workflow will be used prior to 

the raw data upload. In fact, even just changing a single parameter in the 

workflow can dramatically influence the final result. In Chapter 3, I described 

in details what are the current methods to perform a complete amplicon-based 

metagenomics analysis.  

Regardless the different algorithm belonging to every single analysis step, a 

complete workflow summary of a general amplicon-based metagenomics 

analysis is reported in Figure 2. 

 

 

 

 



	
  

	
   51	
  

 
 
Figure 2.  Amplicon metagenomics analysis flowchart.  

Essential bioinformatics steps performed during an amplicon-based 

metagenomics analysis. From the raw input data, the sequences are quality 

filtered and demultiplexed. From the obtained output, the OTUs are picked 

and the taxonomy is assigned. The final output is a biological matrix table 

(.biom). The .biom table is used as input in order to obtain phylogenetic 

assignment, diversity analysis and statistical evaluation. 
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CHAPTER 4 
 
 

AIM OF THE PROJECT AND MOTIVATION 
 

 

Based on the evidence, that the gut microbiome plays the same role in 

common bowel inflammatory diseases and celiac disease, I present two 

distinct studies, conducted using an amplicon-based metagenomics approach. 

The first study investigates the microbiome composition in Crohn’s disease. 

As mentioned in Chapter 2.3, its pathogenesis is not well known but recent 

evidence directly associates the gut microbiome with the development of 

Crohn’s disease. It is also well known that nutritional therapy is effective in 

children affected by Crohn’s disease by inducing remission of mucosal 

inflammatory reactions with an overall beneficial effect on the child's 

nutritional status and growth [135]. Recent studies have suggested that 

nutritional therapy may also modify the fecal microflora in affected children 

[136].  

The aim of the first study was to characterize the gut mucosal microbiome in a 

child affected by Crohn’s disease at diagnosis and after nutritional therapy. 

For comparison purposes, the analysis was performed also on the microbiome 

of a healthy child of the same age and sex as the affected patient. The 

microbiome profile was characterized by 16S rRNA sequencing using a high 

throughput sequencing approach. In celiac disease (CD) (described in Chapter 

2.2) genetic factors are not sufficient to explain the onset of the disease. Other 

factors such as environmental factors, the innate and adaptive immune system 

and the intestinal microbiota may play a role in the different manifestations of 

CD. The role of intestinal microbiota in CD is still unknown, therefore I have 

analyzed the duodenal microbiota composition of adult patients with CD and 

matched healthy controls.  
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Since dietary intake of gluten, seems to be the main CD triggering factor, in	
  

this	
   study	
   I	
   have	
   included	
   a	
   group	
   of	
   patients affected by CD adhering to a 

gluten-free diet (GFD). The goal is to highlight differences in the microbiome 

composition of the affected patients compared with healthy controls, and also 

to understand if diet can directly influence the microbiome composition.  

The analysis was performed on duodenal biopsy samples of 15 patients with 

CD, 10 control subjects and 6 CD patients at GFD undergoing CD follow-up. 

Since no study has characterized the ileum microbiome in CD, and since the 

microorganisms that may be associated with symptoms are unknown, the 

study was designed to elucidate both the bacterial and fungal composition. 

The microbiome profile was characterized using 16S and ITS (bacteria and 

fungi) ribosomal RNA (rRNA) gene sequencing together with a high 

throughput sequencing approach to evaluate if imbalances in the composition 

of gut microbiota may be related to CD presentation.  
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CHAPTER 5 
 

MATERIALS AND METHODS 
 
 

5.1 Patients and sampling collection 

 

In the Crohn’s study a 14-year-old boy was enrolled with pediatric active 

Crohn's disease. After colonoscopy, he started a nutritional therapy. The diet is 

restricted to a daily powder constituted by proteins, antioxidants, and anti-

inflammatory fats for a period of 8 weeks. After this time, a clinical re-

evaluation revealed disease remission. The samples were obtained from 

endoscopic ileum mucosal at diagnosis and after nutritional therapy. Another 

sample was obtained from the ileum tissue of a non-Crohn’s disease 15-year-

old boy.  

For the celiac disease study, thirty-one unrelated Caucasian individuals were 

recruited, in a one-year period. Several exclusion criteria for the enrolment 

have been adopted in order to not alter the gut microbiome composition. The 

criteria were related to any known food intolerance, IgA deficiency, therapies 

with antibiotics, antiviral or corticosteroids or assumption of probiotics in the 

2 months before the sampling time.  

The samples are formed by ileum endoscopy of: 

I) 15 subjects (87% females, mean age/range 34/20-51 years, with the 

exception of a 14-year-old female) with active CD; II) 10 individuals (80% 

females, mean age/range 33/20-52 years) as clinical controls; III) 6 subjects 

(83% females, mean age/range 38/25-53 years) with non active CD following 

a Gluten Free Diet (GFD) from at least 2 years before sampling time.  

A summary of the subjects enrolled for both Crohn and celiac disease study is 

reported in Table 7. 
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Table 7. Subjects enrolled in Crohn and celiac disease study. 
 
 
 

Celiac Disease Controls CD- 
Patients 

GFD-
Patients 

N. of subjects 10 15 6 

Age (Mean/range) 33/ 20-52 34/ 20-51§ 38/ 25-53 

Sex (Female/Male) 8F/2M 13F/2M 5F/1M 

 
 
 
Crohn’s Disease Controls          Patients*      
N. of subjects 1 1 
Age (Mean/range) 15 14 
Sex (Female/Male) M M 
   
*Same subject sampled again after nutritional therapy 
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5.2 16S and ITS rRNAs amplification and sequencing 

 

For both the studies I used the same amplification approach and sequencing 

technology. In the Cronh’s disease study only the 16S rRNA analysis has been 

performed, while for the celiac Disease study both 16S and ITS rRNA.          

Specifically, the total DNA was extracted from duodenal biopsies (3 

mg/sample). To assess the quality of the genomic DNA extracted, a gel 

electrophoresis was performed excluding any RNA contamination or 

degradation.  

The genomic DNA (gDNA), whose quality was assessed by gel 

electrophoresis, resulted to be free of RNA contamination and degradation. An 

aliquot of the duodenal DNA was used for PCR amplification and sequencing 

of bacterial 16S (for both celiac and Cronh’s disease studies) and fungal ITS 

rRNA genes (only for the celiac study). To deeply investigate the bacterial 

composition of duodenal samples, a 548 bp amplicon, spanning from V4 to 

V6 variable regions of the 16S rRNA gene, was amplified using specific 

primer [138]. ITS rRNA amplicons were obtained as previously described 

[139].  

The primers were checked on RDP database reporting ~175.000 match for 16S 

and ~10.000 match for ITS. After visualization by gel electrophoresis, each 

PCR products was individually purified, assessed for quality and quantified.       

Equimolar amounts of each amplicon were pooled together to obtain multiple 

amplicon libraries (1 library/subject). Every sample was associated with a 

unique MID identifier and the pool library was loaded in a 454 FLX+ 

Titanium (Roche) to generate thousands of sequences for further analysis.  
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5.3 Bioinformatics analysis 
 
All the dataset was analyzed using the QIIME package v. 1.7.0 [101]. It stands 

for Quantitative Insights Into Microbial Ecology and is an open source 

software package for comparison and analysis of microbial communities based 

on high-throughput amplicon sequencing data. A based-amplicon 

metagenomics analysis was performed, following a specific workflow 

(described in Chapter 3.2). 

 

5.3.1 Quality filtering, primers detection and demultiplexing 

 

The preliminary analysis steps included quality filtering, primers detections 

and demultiplexing in order to label every sample by a unique nucleotide 

barcode identifier. Those steps provide the use of a script integrated in QIIME 

(split_library.py) with the following parameters used for both the studies:  

 

Min average quality Phread score allowed in reads = 25 

Minimum sequence length, in nucleotides = 200 

Maximum sequence length, in nucleotides = 1000 

Maximum number of ambiguous bases = 6 

Maximum length of homopolymer run = 6 

Maximum number of primer mismatches = 0 

Maximum number of errors in barcode = 1.5 

 

The previous steps were performed for 16S bacteria and ITS fungi dataset in 

both the studies. 
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5.3.2 Pick Operational Taxonomic Units (OTUs) and pick a 

representative sequence from each OTU 

 

The quality-filtered sequences were submitted in the QIIME OTUs picking 

pipeline, using an open-reference OTUs picking approach (described in 

Chapter 3.2.1). The OTU picking step assigns similar sequences to operational 

taxonomic units by clustering sequences based on a defined similarity 

threshold. Sequences that are similar at or above the threshold level are taken 

to represent the presence of a taxonomic unit in the sequence collection. 

Different clustering methods have been implemented in QIIME. For both 

celiac and the Crohn’s disease dataset, UCLUST algorithm was chosen for 

clustering the sequences and for the OUTs picking procedure [110]. UCLUST 

creates “seeds” of sequences that generate clusters based on percent identity. 

In this case, a 97% identity was set, enabling reverse strands matching for the 

OTU picking. The UCLUST algorithm was chosen since it is the most suitable 

for this type of data [112]. The output from UCLUST was summarized in 

order to obtain a representative sequence of each OTU without loosing the 

relative expression level information.  

 

5.3.3 Assigning taxonomic identity to OTU using a reference database 

 

After the OTU picking procedure, a representative list of OTUs was obtained. 

The representative OTUs were associated to a 16S rRNA and ITS sequences 

database to identify the taxonomic composition. This step is crucial to provide 

the correct microbial lineages belonging to each sample. QIIME by default 

uses different taxonomy assigner. In this case the RDP classifier v 2.2 was 

chosen because of its flexibility, accuracy and moderate computational power 

demanding [114].  
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The 16S OTUs were classified using the green genes database v. 2012, while 

the ITS OTUs were classified with the UNITE ITS database v. 2012 with a 

minimum of assign taxonomy confidence of 80% [141], [142]. Using the 

taxonomic assignment combined with a user built meta data file (containing 

metadata information such as age, sex and disease status) QIIME assembles a 

readable matrix of OTU abundance for each sample with meaningful 

taxonomic identifiers for each OTU. The OTU matrix table is in .biom format 

[119]. The .biom format is based on JSON (JavaScript Object Notation). 

JSON is a widely supported format with native parsers available within many 

programming languages. More info on .biom format can be found here: 

http://biomformat.org/documentation/format_versions/biom-1.0.html 

 

5.3.4 Aligning OTU sequences, filtering the alignment and building a 

phylogenetic tree 

 

Alignment of the sequences and phylogeny inference is necessary for 

subsequently analysis with phylogenetic tools. To perform this kind of 

analysis a template alignment is necessary to associate microbial sequences 

within a phylogenetic tree. At the state of the art, for ITS sequences a template 

alignment is not yet available, thus building a phylogenetic tree for ITS fungi 

sequences is still a challenge. Currently, different research groups are 

collaborating to provide an accurate answer. For this reason, the template 

alignment analysis step was performed only on 16S rRNA sequences. QIIME 

can perform alignment of the sequences through assignment to an existing 

template alignment using PyNast [118].  PyNast is a python implementation of 

the NAST alignment algorithm [144]. The NAST algorithm works aligning 

every sequence to the best-matching sequence in a pre-aligned database of 

sequences (the “template” sequence).  
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PyNast does not allow introducing new gap characters into the template 

database, so the algorithm introduces local mis-alignments to preserve the 

existing template sequence. In this case too, a minimum quality thresholds is 

the main requirements for matching between a candidate sequence and a 

template sequence.  

Default parameters were chosen, setting the minimum sequence length to 150 

nucleotides and the minimum percent identity to 75%. Even if pyrosequencing 

reads are long (~400 bp) in order to be compatible with the NAST algorithm, 

PyNast by default sets the minimum sequence length to 150 nucleotides.          

The sequences were aligned against the Greengenes template alignment [141].          

Once the alignment output file is generated, a filtering procedure is highly 

recommended in order to remove columns comprised of only gaps, and 

locations known to be excessively variable. This is essential to remove 

positions which are formed by gaps and that could negatively influence the 

phylogenetic inference.  Finally, the filtered alignment file produced, is used 

to build a phylogenetic tree in the Newick format using a tree-building 

program [143].  

After these initial steps in the workflow analysis, several files are generated. 

Particularly the workflow generated OTU tables in .biom format (respectively 

for bacteria and fungi) that contain taxonomic information as well as metadata 

information related to every sample, for both celiac and Crohn’s disease study.  
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5.3.5 Diversity analysis: Alpha and Beta diversity 

 

Once the OTU .biom tables and the phylogenetic tree were obtained, they 

were  combined to compute diversity analysis. 

For both alpha and beta diversity, sequencing depth can influence beta 

diversity analysis. The sequence depth is only related to the results (number of 

sequences/sample) obtained after the next generation sequencing experiment.       

To avoid this limit a rarefaction step was computed prior to diversity analysis 

in order to standardize the data obtained from samples with different 

sequencing counts. Many rarefactions at multiple depths and repeated many 

times at each depth were performed. This is a common way to normalize the 

sequences/samples generated after the next generation sequencing experiment. 

Rarefaction curves and diversity indexes were calculated using default 

parameters at a sequence evenness related to the average of sequences. The 

result is represented by multiple-OTU tables at different rarefactions depth. 

The alpha and beta diversity are computed on all the multiple tables and 

finally the result is collapsed into a single merged table. 

Specifically, for the alpha diversity analysis I used the (I) Observed Species 

(22) metric, which is one of the most used alpha diversity index; the (II) 

Shannon Diversity Index [23] which accounts for both abundance and 

evenness of the species (how close are in numbers each species in an 

environment). It provides estimates of the effective number of species present 

by including or ignoring the relatively rare species. The (III) Chao1 [24] 

richness estimator, that computes the species richness by using the number of 

rare species that are found in a sample, as a way of calculating how likely is 

the presence of undiscovered species. Basically it compares the total number 

of the species found, the number of singleton (species with only a single 

occurrence in a sample) and the number of doubletons (species with two 

occurrences). 
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For the Beta Diversity I used both phylogenetic and non-phylogenetic metrics.     

In fact, in order to compute beta diversity based on phylogenetic distances, an 

input phylogenetic tree is required. Since for ITS fungi sequences a tree is not 

still available, the phylogenetic beta diversity was computed only on the 16S 

rRNA data while for the ITS a non-phylogenetic beta diversity index was 

used. Generally, at least one phylogenetic metric is supposed to be considered 

since the results can be vastly more useful to address biological questions [25].  

Specifically, the goal is to generate a matrix reporting the distances between 

every pair of the community sample that will reflect the dissimilarity between 

the samples.  

The most common phylogenetic metric for beta diversity analysis is Unifrac 

[26]. Unifrac is an online tool that allows the microbial communities 

comparison using phylogenetic information. The input it requires is an OTU 

table, (generated previously in the analysis workflow) and a phylogenetic tree 

containing sequences derived at least from two different comparisons (i.e. 

different environments or different disease status). The Unifrac tool helps to 

determine if our dataset have significantly different communities and if those 

differences are remarkable associated with a particular lineage in the 

phylogenetic tree. 

The most common non-phylogenetic metric (used here for computing the beta 

diversity of the ITS CD data set) is Bray-Curtis [27], which describes the 

dissimilarity between the structures of two communities based on the 

abundance of the sequences. Both the metrics produced a matrix.  

The data obtained after a beta diversity analysis are represented by 

multidimensional data collected in a matrix and it might be hard to find 

patterns between samples. For the purpose of the beta diversity analysis 

visualization, different methods are used to identify patterns and to highlight 

similarities and differences.  
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A standard method to graphically represent the data is Principal Coordinate 

Analysis (PCoA). It is a technique that helps to extract and visualize 

informative components of variation from complex, multidimensional data. 

Basically the goal of PCoA is to map samples from a distance matrix in a set 

of orthogonal axes. The principal coordinates can be plotted in two or three 

dimensions. Each of the samples will be visualized explaining the variability 

between every sample and within a category. Multiple PCoA graphs were 

generated as output, in order to find possible associations (express by clusters) 

that can be useful to address biological questions.  

 

5.3.6 Statistical analysis 

 

To assess the composition and diversity within a microbial community, 

several statistical models have been identified to be suitable in the context of 

metagenomics data evaluation. 

Usually the first thing to be considered in the microbial profile is the 

abundance count. In metagenomics, it is an integer (0 or positive) that reports 

the number of taxon identified. Basically it represents the number of times a 

taxon is identified. For that purpose, the first statistical analysis is computed 

using the OTU table. Being this type of file a biological matrix reporting 

samples and associated taxa with every single frequency, it is possible to use 

various approaches to identify statistical significance within the sample and by 

different categories. Normalization plays a central role, since it is used as a 

mean to mitigate the contribution of non-experimental variables in order to 

minimize their contribution to observed trends. Different variables may affect 

the differences in the distribution (i.e. healthy versus affected, sample mean, 

locations). Those variables need to be considered in order to remove 

variability that is not under experimental control. For that reason, the meta 

data file is necessary as initial input. In fact, it contains information that link 
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the variables by different categories. We could be interested in the statistical 

evaluation of certain identified species, depending on different variables. For 

example, it is possible to identify taxa that are abundant in a specific 

subcategory of the samples compared to another (i.e. affected patients versus 

healthy controls, female versus male or young versus old).  

To determine the statistical significance of each taxon assigned, in both 

studies I used the Analysis of Variance (ANOVA) test [129], together with a 

Bonferroni correction [131], computed on the OTU tables. For the diversity 

analysis statistical evaluation I used the ANOSIM [132] and ADONIS [133] 

tests. Both the tests were used independently on the same data set in order to 

see if they agree.  
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CHAPTER 6 
 

RESULTS 

 

 
              6.1 Sequencing results 

 

The next generation sequencing experiment, performed on a 454+ Titanium 

platform (Roche), generated 730.257 total raw sequences (seq) for the celiac 

Disease experiment and 40.621 total raw sequences for the Crohn’s Disease 

study. 

After the quality filtering step a total of 30.351 sequences, associated with 16S 

rRNA, were obtained for the Crohn’s Disease study, distributed as: 

Crohn’s affected patient / 27.831 seq, Healthy Control / 22.260 seq, and 

Patient after nutritional therapy / 8.861 seq. Concerning the OTU picking 

procedure, 705, 1.328 and 2.171 OTUs were identified, in the patient before 

and after therapy, and in the control subject, respectively. 

The celiac Disease dataset instead, obtained a total of 583.520 post quality 

filtered sequences associated with 16S rRNA and ITS. Specifically, by 16S 

bacterial rRNA sequencing I preliminarily obtained 214.999 post quality 

filtered sequences. After the OTUs picking procedure I identified a total of 

2.399 Operational taxonomic units (OTUs). By ITS fungal rRNA sequencing I 

preliminarily obtained 368.521 post quality filtered sequences. After the OTUs 

picking procedure a total of 696 Operational taxonomic units were identified. 

(OTUs). 

A sequences summary for both the studies is reported in Table 8. 
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Table 8. Summary of quality filtering and OTUs picking results 
for the celiac Disease and Crohn’s Disease study. 
 

 

 

 Celiac Disease Crohn’s Disease 

Number of raw 

sequences 

730.257 40.621 

Sequences outside 

the length of <200 

>1000 nucleotides 

26.586 1.089 

Low quality 

sequences  

(Phred < 25) 

2.462 551 

Mean sequences 

length (nt) 

508 511 

Post quality filtered 

sequences 

583.520 30.351 

16S rRNA 

associated 

sequences 

214.999 30.351 

ITS associated 

sequences 

368.521 n/a 

16S OTUs 2.399 4.204 

ITS OTUs 696 n/a 
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6.2 Taxonomic classification 

 
6.2.1 16S rRNA bacteria profile 

 

Four main phylogenetic levels characterized the ileum microbiome of the 

Crohn’s disease samples: Bacteriodetes, Firmicutes, Fusobacteria, 

Proteobacteria. As shown in Figure 3, Proteobacteria were more abundant, 

and Bacteroidetes less abundant in the Crohn’s disease patients before therapy 

(PATIENTS–BT) than in the control. Interestingly, after nutritional therapy 

(PATIENT–AT) the composition of the ileum microbiome in the patient was 

virtually the same as in the control. The Fusobacteria phylum was present 

only in the control subject. The Family level classification showed interesting 

differences between the 3 subjects. Particularly, the Bacteroidacae family, 

belong to the Bacteriodetes phylum was dramatically low in patients before 

therapy, compared to control and patient after therapy. In opposite, the patient 

before nutritional therapy reported the highest number of all the taxa in the 

Crohn’s study belongs to the Enterobacteriacae family (Proteobacteria 

phylum). In fact, in both control and patient after therapy this family was 5 

times less represented. Other minor differences have been reported. An overall 

taxonomic profile at family level is shown in the heatmap table of Figure 4. 

The heatmap was obtained filtering the OTUs using a threshold of 100 

seq/sample. In brownish red are highlighted the most significant alterations in 

the bacterial composition of gut microbiome detected in the Cronh’s disease 

patient before therapy. Every number in the heatmap indicates the number of 

sequences associated with a specific bacterial family.  

The taxonomic composition for the celiac disease (CD) study was computed 

from 2.399 Operational taxonomic units (OTUs) identified. From all the 

OTUs, ~0,5% were unclassified and 95% known bacteria after the taxonomic 

classification (Figure 5).  
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Seven main phyla were identified: Actinobacteria  (9,6%), Bacteroidetes 

(16,9%), Cyanobacteria (0,8%), Firmicutes  (18,6%), Fusobacteria (6,8%), 

Proteobacteria (45,6%), Spirochaetes (1%). The analysis of the sequences 

showed also a 0,5% of unclassified bacteria phyla and 217 sequences of which 

only the phylum could be assigned. These latter sequences were mainly 

assigned to the Firmicutes, Proteobacteria and to TM7 phyla and 

interestingly, they were present twice in CD-Patients than in Controls or in 

gluten diet free patients (GDF-Patients). After filtering the OTUs with a 

minimum of 10 sequences per OTU, 33 Classes, 56 Orders, 98 Families, and 

170 different genera of known bacteria were identified. A significant 

difference between CD-Patients and Controls subjects was observed at the 

class level in Betaproteobacteria (p = 0.005, ANOVA).              

The Order level comparison among groups highlighted a statistical 

significance difference (p = 0.048, ANOVA) in the order Neisseriales, which 

abounded in the active CD-Patients (19%) respect to GFD-Patients (2%) and 

Controls (6%), (Figure 6). I observed that this difference remained significant 

between CD-Patients and Controls at genus level only for Neisseria (p = 

0.008, after Bonferroni correction). Furthermore, Neisseria is the most 

represented (99,8%) over all the genera associated to the order Neisseriales 

(Neisseria, Conchiformibius, Elkenella, Kingella). The majority of known 

bacteria sequences were classified within five genera: Acinetobacter  (12,5%), 

Sreptococcus (10,6%), Haemophilus (9,2%), Prevotella (8,6%) and Neisseria 

(8,5%), (Table 9).  After filtering the OTUs with a minimum of 500 sequences 

per OTU, 12 most represented species were identified, while for other 9 taxa 

the taxonomic assignment was not able to associate any bacteria species 

(Table 9). The identified species Parainfluenzae belong to the Haemophilus 

family was the most represented in the Controls and in CD-Patients, while it 

was ten times less present in GFD-Patients, in which less species have been 

identified compared to the other groups (Table 9). 
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Figure 3. Phylum composition of Crohn’s disease study. 

 

Composition of the ileum microbiome characterized in the control subject and 

in the Crohn’s disease patient before therapy (patient-BT) and after therapy 

(patient-AT) by next-generation sequencing of the 16S rRNAs. Proteobacteria 

were more abundant and Bacteroidetes less abundant in the Crohn’s disease 

patient before therapy (patient–BT) than in the control. The Fusobacteria 

phylum is present only in the control subject. After nutritional therapy the 

composition of the ileum microbiome in the patient after therapy (patient-AT) 

was virtually the same as in the control. 
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Figure 4. Heatmap of family level taxonomic classification identified 

in Crohn’s disease study. 

The heatmap was obtained filtering the OTUs at a threshold of 100 

seq/sample. Every number in the heatmap indicates the number of sequences 

associated with a specific bacterial family. In brownish red are highlighted the 

most significant alterations in the bacterial composition of the gut microbiome 

detected in the Cronh’s disease patient before therapy (patient-BT). In green 

are reported the bacterial families, which are equally distributed between the 

control and the patient after therapy (patient-AT). In blue are reported all the 

families equally distributed or with non-significant differences between the 

three subjects. The Bacteroidacae family, belonging to the Bacteriodetes 

phylum, was dramatically low in the patient before therapy, compared to 

control and patient after therapy. In opposite, the patient before nutritional 

therapy reported the highest number of all the taxa in the Crohn’s study, 

belonging to the Enterobacteriacae family (Proteobacteria phylum). The 

number of OTU ID (last column), refers to the number of genera potentially 

belonging to a family. Enterobacteriacae is the richest family in terms of 

different bacteria genera than every other identified family. 
 

Phylum Class Order Family Control Patient-
BT 

Patient 
-AT 

#Number of 
OTU ID 

Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae 158 0 0 1 
Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae 2625 138 4908 5 
Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae 1294 7610 2639 10 
Firmicutes Clostridia Clostridiales Lachnospiraceae 5 56 48 1 
Firmicutes Clostridia n\a n\a   144 210 1 
Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae 7 441 6 2 

Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae 10 0 367 2 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae 106 0 61 1 
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Figure 5. Phylum level classification among the 3 tested groups 
(Controls, CD-Patients, GFD-Patients) in celiac disease study. 
 

Phylum level classification among the 3 tested groups (Controls, CD-Patients, 

GFD-Patients) reporting the number of bacterial sequences found. Seven main 

phyla were identified: Actinobacteria (9,6%), Bacteroidetes (16,9%), 

Cyanobacteria (0,8%), Firmicutes (18,6%), Fusobacteria (6,8%), 

Proteobacteria (45,6%), Spirochaetes (1%). Proteobacteria was the most 

represented phylum in all the groups while Cyanobacteria was less abundant. 

Proteobacteria were highly increased in CD-Patients compared with the other 

two groups even if no significant differences were found in each of the 

identified phylum among groups. Unclassified bacteria represented the ~0,5% 

in the average of every group.  
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Figure 6. Order level comparison among groups in celiac disease.  
 

The Order level comparison highlighted the presence of 56 different orders 

identified among the 3 groups. Pasteurellales was the most abundant in CD-

Patients and second most abundant in controls after Lactobacillales. The order 

Pseudomonadales was the most abundant in GFD-Patients and controls. The 

comparison among groups highlighted a statistical significance difference            

(p = 0.048, ANOVA) in the order Neisseriales, which abounded in the active      

CD-Patients (19%) compared to GFD-Patients (2%) and Controls (6%).          

Inside the Proteobacteria phylum, was observed a trend in reduction for the 

Pseudomonadales order  (Gammaproteobacteria class) in active-CD Patients 

respect to the other groups, which was significant at family level for 

Pseudomonacae (p = 0.002) between active-CD and GFD Patients. 

 

 

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

-.
/0
/1

/.
23
4/
56
78
#

9:
;5
</
45
.=
72
/5
67
8#

>?
23
3.
3.
.5
67
8#

>2
@A
=3
A?

@=
5#

B
/=2
38
A/
25
67
8#

C?
@.
/8A

?5
72
56
78
#

D
E%

$!
$#

>5
1
A@
63
45
.=
72
56
78
#

FG
E$

'H
!,
#

G
7=
?@
63
A?

/65
67
8#

I
.7
5;
38
A/
2/6
65
67
8#

C2
3.
54
5.
=7
2/5

67
8#

-.
?3

67
A6
58
1
5=
56
78
#

G
@.
3A

65
81

5=
56
78
#

JK
&,
#

>D
!'

!#
>5
20
/3
45
.=
72
/5
67
8#

I
8.
/66
5=
32
/5
67
8#

E7
8L
6M3

</
42
/3
;5
67
8#

JN
'$
#

F7
1
1
5=
56
78
#

-6
=7
23
1
3;

50
56
78
#

O@
;7

2:
/8=
56
78
#

P7
:/
3;

76
65
67
8#

E7
/;
3.
3.
.5
67
8#

J?
/Q3

4/
56
78
#

>?
65
1
@0
/5
67
8#

O3
6/2
L4

23
45
.=
72
56
78
#

O5
A2
38
A/
25
67
8#

J?
30

34
5.
=7
25
67
8#

OA
?/
;:
34

5.
=7
2/5

67
8#

J/
.R
7S

8/5
67
8#

T5
;=
?3

1
3;

50
56
78
#

OA
/23

.?
57
=5
67
8#

J?
30

38
A/
2/6
65
67
8#

-7
23
1
3;

50
56
78
#

N5
./
665
67
8#

>5
L6
34

5.
=7
25
67
8#

F7
1
76
65
67
8#

>3
2/3

45
.=
72
/5
67
8#

U2
@8
/A
76
3=
2/.
?5
67
8#

OA
?/
;:
31

3;
50
56
78
#

O=
27
A=
3A

?@
=5
#

>@
=3
A?

5:
56
78
#

N0
76
63
</
42
/3
;5
67
8#

U;
=7
23
45
.=
72
/5
67
8#

B
7/
88
72
/5
67
8#

J?
30

3.
@.
65
67
8#

K6
5<
34

5.
=7
2/5

67
8#

>6
38
=2
/0
/5
67
8#

NL
2R
?3

60
72
/5
67
8#

KL
83
45
.=
72
/5
67
8#

C5
8=
7L

27
665
67
8#

-.
V;

31
@.
7=
56
78
#

P5
.=
34

5.
/66
56
78
#

N5
.=
72
3/
05
67
8#

C8
7L

03
1
3;

50
56
78
#

Controls CD-Patients GFD-Patients 



	
  

	
   73	
  

Table 9. Species level taxa count among groups in celiac disease.  
 

 

Phylum Class Order Family Genus Species Controls CD- 

Patients 

GFD- 

Patients 

Actinobacteria Actinobacteria Actinomycetales Micrococcaceae Rothia Mucila-

ginosa 
83 514 21 

Actinobacteria Actinobacteria Actinomycetales Propionibacteriaceae Propionibacterium acnes 389 647 529 

Bacteroidetes Bacteroidia Bacteroidales Paraprevotellaceae Prevotella n\a 306 463 149 

Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas n\a 100 418 50 

Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas Endo- 

dontalis 
51 223 60 

Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella intermedia 51 301 19 

Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella Melanino-

genica 
846 698 447 

Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella nanceiensis 59 247 24 

Firmicutes Bacilli Gemellales Gemellaceae n\a n\a 81 262 80 

Firmicutes Bacilli Lactobacillales Carnobacteriaceae Granulicatella n\a 215 158 223 

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus n\a 1368 827 285 

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus infantis 1098 551 147 

Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Bulleidia moorei 153 108 121 

Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium n\a 939 2268 174 

Proteobacteria Beta- 

proteobacteria 

Neisseriales Neisseriaceae Neisseria all others 793 2613 84 

Proteobacteria Beta- 

proteobacteria 

Neisseriales Neisseriaceae Neisseria subflava 294 1752 49 

Proteobacteria Gamma-

proteobacteria 

Pasteurellales Pasteurellaceae Actinobacillus Parahaemo-

lyticus 
288 744 8 

Proteobacteria Gamma-

proteobacteria 

Pasteurellales Pasteurellaceae Haemophilus n\a 227 535 19 

Proteobacteria Gamma-

proteobacteria 

Pasteurellales Pasteurellaceae Haemophilus Para-

influenzae 
2194 2339 270 

Proteobacteria Gamma-

proteobacteria 

Pseudomonadales Moraxellaceae Acinetobacter n\a 2512 785 1551 

Proteobacteria Gamma-

proteobacteria 

Pseudomonadales Moraxellaceae Acinetobacter johnsonii 206 181 50 
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6.2.2 ITS fungal profile in celiac disease study 

 

By ITS fungal sequences, only two main phyla were identified in the celiac 

disease study: Ascomycota (50%) and Basidomycota (44%). There were no 

statistical differences in the phylum level abundance in the 3 tested groups.  

A 6% of sequences belonged to unidentified or uncultured fungi (Figure 7). 

Even if the ANOVA test reported a significant difference (p < 0.05) for the 

order Malasseziales, belonging to the Basidomycota phylum, after Bonferroni 

correction the value was not statistically significant. 

At the family level, a total of 36 families were identified, of which 20 belong 

to the Ascomycota phylum and 16 families to the Basidomycota (Figure 8). 

The family Mycosphaerellaceae was the most represented in the three groups, 

even though no statistical difference was found. 

Using a filter of 200 seq/sample a total of 46 genera were identified in the two 

phyla Ascomycota and Basidiomycota (Table 10). The most represented 

genera were Cladosporiumin and Candida in the Ascomycota and 

Cryptococcus in the Basidiomycota. In particular, the Candida genus was 

more abundant and Cryptococcus less abundant in CD-Patients than in the 

other two groups, even if at not statistically significant level. 
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Figure 7. ITS phylum level classification in celiac disease study. 

 

Two main fungal phyla were identified in the 3 groups of studied subjects. 

Ascomycota (50%), Basidiomycota (44%), Unidentified (0,5%), Uncultured 

(5,5%). Uncultured are those ITS that have been identified but not yet 

annotated. Unidentified are those ITS that have not been yet identified and not 

yet annotated. The latter ITS represents the 1% of the total ITS number in CD-

Patients, 0,2% in the controls group and 0% in GFD-Patients. Ascomycota 

phylum was less abundant in GFD-Patients compared to the other groups, but 

there were no statistical differences in the phylum level abundance in the 3 

tested groups. 
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Figure 8. ITS family level classification in celiac disease study. 

 

A total of 35 families were identified within the Ascomycota and 

Basidiomycota phyla. The most represented were Mycosphaerellaceae and 

Incertae sedis family belonging to Capnodiales and  Saccharomycetales order 

respectively (both within the Ascomycota phylum), which were both more 

abundant in active-CD and GFD-Patients than in the controls. 
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Table 10. ITS genus level classification in celiac disease. 

 
 
Phylum Class Order Family Genus Controls CD -

Patients 
GFD- 
Patients 

Ascomycota Dothideomycetes Capnodiales Other Other 0 665 0 
Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Other 1338 4995 3 
Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Cladosporium 26396 24763 12614 
Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Ramularia 0 1981 0 
Ascomycota Dothideomycetes Dothideales Other Other 0 308 0 
Ascomycota Dothideomycetes Dothideales Dothioraceae Aureobasidium 3287 9831 1265 
Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria 895 7446 0 
Ascomycota Dothideomycetes Pleosporales Pleosporaceae Epicoccum 0 4461 0 
Ascomycota Dothideomycetes Pleosporales unidentified unidentified 1874 0 0 
Ascomycota Eurotiomycetes Chaetothyriales Herpotrichiellaceae unidentified 0 2967 3 
Ascomycota Eurotiomycetes Eurotiales Trichocomaceae Penicillium 5282 1652 0 
Ascomycota Pezizomycetes Pezizales Tuberaceae Choiromyces 59 0 0 
Ascomycota Saccharomycetes Saccharo-

mycetales 
Incertae_sedis Candida 6471 24209 7045 

Ascomycota Saccharomycetes Saccharo-
mycetales 

Pichiaceae Pichia 2 1854 4400 
Ascomycota Saccharomycetes Saccharo-

mycetales 
Saccharomycetaceae Debaryomyces 3262 539 2447 

Ascomycota Sordariomycetes Other Other Other 4726 0 0 
Ascomycota Sordariomycetes Diaporthales Schizoparmaceae Coniella 0 473 0 
Ascomycota Sordariomycetes Hypocreales Clavicipitaceae Other 0 1045 0 
Ascomycota Sordariomycetes Sordariales Lasiosphaeriaceae Other 196 0 0 
Ascomycota Sordariomycetes Xylariales Diatrypaceae Other 4 0 1252 
Ascomycota Sordariomycetes Xylariales Diatrypaceae Eutypa 0 0 34 
Basidiomycota Agaricomycetes Other Other Other 0 1484 0 
Basidiomycota Agaricomycetes Agaricales Marasmiaceae Hemimycena 0 4617 0 
Basidiomycota Agaricomycetes Agaricales Schizophyllaceae Schizophyllum 5598 0 0 
Basidiomycota Agaricomycetes Polyporales Other Other 0 3052 0 
Basidiomycota Agaricomycetes Polyporales Hapalopilaceae Bjerkandera 1 0 9849 
Basidiomycota Agaricomycetes Polyporales Hapalopilaceae Ceriporiopsis 1 5691 0 
Basidiomycota Agaricomycetes Russulales Peniophoraceae Peniophora 265 9979 0 
Basidiomycota Agaricostilbomycetes Agaricostilbales Agaricostilbaceae Bensingtonia 0 0 2327 
Basidiomycota Exobasidiomycetes Incertae_sedis Incertae_sedis Tilletiopsis 2814 29 0 
Basidiomycota Incertae_sedis Malasseziales Other Other 6232 7353 8637 
Basidiomycota Incertae_sedis Malasseziales Incertae_sedis Malassezia 7636 2850 4115 
Basidiomycota Incertae_sedis Malasseziales unidentified unidentified 1864 582 170 
Basidiomycota Microbotryomycetes Sporidiobolales Incertae_sedis Sporobolomyces 5 0 4199 
Basidiomycota Tremellomycetes Other Other Other 3286 16808 9513 
Basidiomycota Tremellomycetes Cysto-

filobasidiales 
unidentified unidentified 1199 0 2 

Basidiomycota Tremellomycetes Filobasidiales Filobasidiaceae Cryptococcus 21013 4809 14 
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6.3 Diversity Analysis 
 
6.3.1 Alpha diversity analysis in Crohn’s disease study 

 
The alpha diversity was computed using Observed Species method [121], 

Chao1 estimator [122], the Shannon Diversity Index [123] and the Faith’s 

Phylogenetic Diversity (PD), [124]. The data support the reduced bacterial 

diversity as computed with all the four different methods for the Crohn’s 

disease patient before therapy than after therapy and even when compared 

with the control subject. In fact, every method reported a significant bacterial 

diversity reduction in the Crohn’s disease patient before therapy (p < 0.005). 

The observed species metric (Figure 9), at a sequence depth of 10.000 

sequences, reported a higher number of different 16S rRNA bacteria species in 

the control subject, a medium species diversity in the Crohn’s disease patient 

after nutritional therapy (Patient-AT) and the lowest bacteria diversity in the 

patient before nutritional therapy (Patient-BT). 

The alpha diversity computed with Chao1 estimator reported similar results 

with a slight protrusion in the control subject curve at a rarefaction depth of 

4.000 sequences per sample (Figure 10). 

A phylogenetic metric, Faith's Phylogenetic Diversity (PD), was also used to 

compare the alpha diversity of the three samples, considering the phylogenetic 

distance found in the 16S rRNA sequences. The trend of the curves are very 

similar to those generated with observed species metric (Figure 11). 

Also, a Shannon Diversity Index was computed and the mean scores confirm 

the community richness within samples to be the highest for the control 

subject and the lowest for the patient before nutritional therapy. Asterisks refer 

to statistical significant differences between samples (p < 0.005), error bars 

represent the standard error (Figure 12). 
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Figure 9. Alpha diversity as observed species in Crohn’s disease. 
 

Alpha diversity of 16S rRNAs OTUs as measured using observed species 

method shows at a sequence depth of 10.000 sequences per sample, a higher 

number of different 16S rRNA bacteria species in the control subject, a 

medium species diversity in the Crohn’s disease patient after nutritional 

therapy (Patient–AT) and the lowest bacteria diversity in the patient before 

nutritional therapy (Patient-BT). The number of different bacteria species 

grows proportionally with the number of sequences, especially for the control 

subject. In opposite, the Patient-BT as deductible from the trend of his curve, 

would reach a limit in bacteria diversity even increasing the number of 

sequences exponentially. 
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Figure 10. Alpha diversity as Chao1 estimator in Crohn’s disease. 
 

The alpha diversity measured using Chao1 estimator shows a slight protrusion 

in the Control subject curve at a rarefaction depth of 4.000 sequences per 

sample. This may suggest that over the sampling depth of 4.000 sequences, 

more rare species are present in the control subject. The other two subjects 

present a proportional trend in the curves as the number of sequences 

increases, without showing differences in terms of rare species such as 

singleton (OTUs with only one sequence) or doubletons (OTUs with only two 

sequences) as computed in accordance with the Chao1 richness estimator. 
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Figure 11. Alpha diversity as Faith's Phylogenetic Diversity (PD) in 
Crohn’s disease. 
 

The alpha diversity was computed using the phylogenetic metric Faith’s 

Phylogenetic diversity.  The phylogenetic distances found within the samples 

confirmed the control subject to have the highest species richness. The 

Patient-BT presents the lowest bacteria phylogenetic diversity and the Patient-

AT is in the middle between the other subjects. The curve belonging to the 

control seems to present a potentially growth in the phylogenetic bacteria 

diversity as the number of sequences increases. Same scenario, even with a 

slower potential growth, occurs for the Patient-AT. The Patient-BT presents 

the lowest growth of the curve, meaning that species richness computed as 

phylogenetic distances, would not increase even with a higher number of 

sequences. 
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Figure 12. Alpha diversity as mean Shannon Diversity Index Score 
in Crohn’s disease. 
 
The mean Shannon Diversity Index scores confirm the community richness 

within samples to be the highest for the control subject and the lowest for the 

patients before nutritional therapy. Asterisks refer to statistical significant 

differences between samples (p < 0.005), error bars represent the standard 

error. 
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6.3.2 Alpha diversity analysis in celiac disease study 

 
In the celiac disease study, the alpha diversity analysis was computed for both 

bacterial and fungal communities. The same metrics used for computing the 

alpha diversity in Crohn’s disease (see 5.3.1), were used for the bacteria and 

fungal dataset in celiac disease. The only exception concerns the PD metrics, 

computed only on the bacterial data set (since a template alignment is not yet 

available for ITS sequences, see 3.3.2).  

The 16S rRNA rarefaction curves, at a depth of 420 sequences/sample, 

showed an equal trend in the number of observed species in all the 3 groups 

(Figure 13). The Chao1 estimator showed no statistically significant 

differences in the bacterial community richness, a part a slight lower 

divergence in the GFD-Patients (Figure 14). The alpha diversity computed 

with the phylogenetic metric PD, showed an opposite trend for the GFD-

Patients, which has the highest curve, while the other two groups showed a 

similar trend. Also in this case, no statistical significance differences were 

found. The Shannon Diversity Index Score confirmed that no difference is 

present in the alpha diversity between the three groups (Figure 16).  

The fungal community richness was lower than the one found in the bacterial 

dataset, at a depth of 2.178 sequences/sample. For both the Chao1 (Figure 17) 

and observed species (Figure 18) estimators, the Controls and GFD-Patients 

rarefaction curves showed a very close trend, while the curves obtained for the 

CD-Patients presented a lower trend. The differences found were statistically 

significant for both the estimators comparing the alpha diversity of CD-

Patients versus the other two groups (p < 0.05). No differences were found in 

the alpha diversity comparing Controls and GFD-Patients (p = 1), suggesting 

that there is lower fungal community richness in the CD-Patients group than 

Controls and GFD-Patients who reported quite close community richness. 
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Figure 13. Bacterial alpha diversity as observed species in celiac 

disease. 

  
The test was computed using a depth of 400 sequences per sample in order to 

normalize the number of sequences associated to each sample in the study.           

The rarefaction curves were obtained using observed species method. In this 

case, the alpha diversity shows no difference among the groups. The trend of 

each curve is similar, suggesting that the number of different bacteria species 

increases proportionally with the number of sequences for each sample in the 

groups of study. Bars represent the standard deviation of the mean at every 

sequence depth as computed in the rarefaction procedure. 
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Figure 14. Bacterial alpha diversity as Chao1 estimator in celiac 
disease.  
 

Alpha diversity of 16S rRNAs OTUs as measured using Chao1 estimator shows a 

slight even if not statistically significant difference between GFD-Patients and both 

active-CD patients and controls at a depth of 400 sequences per sample. The result 

suggests that controls and CD-Patients groups present a proportional trend in the 

curves as the number of sequences increases, without showing differences in terms of 

rare species. The curve computed for the GFD-Patients group instead presents a 

lower number of bacteria species diversity after a depth of 50 sequences/sample. The 

trend of the curve does not change as the number of sequences increases, meaning 

that the GFD-Patients group presents a less amount of rare species (singleton and 

doubletons) compared to the other groups. Bars represent the standard deviation of 

the mean at every sequence depth as computed in the rarefaction procedure. 
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Figure 15. Bacterial alpha diversity as Faith's Phylogenetic Diversity 
(PD) in celiac disease. 
 
The alpha diversity computed with the Faith’s Phylogenetic method reports an 

opposite result compared to the other methods. In this case, the GFD-Patients group 

shows the highest curve compared to the other two groups (controls and CD-

Patients), which shows no differences. The higher Faith’s PD index in GFD-patients 

group suggests that there is a more, even if not statistically significant, phylogenetic 

distance in the bacterial species within the GFD-patients group compared to the other 

two groups. Every curve grows proportionally with the number of sequences, 

meaning that the difference in the phylogenetic distance related to the identified 

bacterial species does not depend on the sequences depth. Bars represent the standard 

deviation of the mean at every sequence depth as computed in the rarefaction 

procedure. 
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Figure 16. Bacterial alpha diversity as mean Shannon Diversity 
Index Score in celiac disease. 
 
The mean Shannon Diversity Index scores confirm the community richness 

within samples to be similar for the three groups of study.  No statistical 

differences were found. Error bars represent the standard error. 
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Figure 17. Fungal alpha diversity as Chao1 estimator in celiac 
disease. 
 
Alpha diversity of fungal OTUs, as measured using Chao1 estimator at a depth 

of 2.178 sequences per sample, showed a statistically significant difference         

(p < 0.05) between GFD-Patients and both CD-Patients and controls. The CD-

Patients group reported a lower fungal diversity compared to controls and 

GFD-Patients, which curves, have similar trends according to the number of 

sequences in each sample. Bars represent the standard deviation of the mean at 

every sequence depth computed in the rarefaction procedure. 
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Figure 18. Fungal alpha diversity as observed species in celiac 
disease. 
 

The alpha diversity with observed species method was performed at a 

sequence depth of 2.178 sequences per sample. The graph shows an 

overlapping trend for the curves belonging to the controls and GFD-Patients 

group. The CD-Patients reported the lowest alpha diversity in terms of 

different fungal species identified. The curves grow in a similar way as the 

number of sequences increase, and the differences between GFD-Patients and 

both CD-Patients and Controls are statistically significant (p < 0.05). Error 

bars represent the standard deviation of the mean at each sequence depth 

computed during the rarefaction step. 
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6.3.3 Beta diversity analysis in celiac disease study 

 
The beta diversity, as expression of bacterial community similarity between 

the samples in the studied groups, was computed only for the celiac disease 

dataset. In fact, being Crohn’s disease study only formed by three samples, the 

beta diversity would not have been sufficient to highlight any real inter-

community similarity. 

The weighted and unweighted Unifrac tests were computed at a depth of 420 

sequences/sample, in order to explain the beta diversity using a phylogenetic 

distance matrix. The results are reported in form of PCoA for both the 

methods. The weighted Unifrac is reported in the PCoA plot (Figure 19) and 

highlights how the CD-Patients and GFD-Patients subjects cluster in two 

distinct groups, whereas control subjects showed a random distribution. The 

only exception in the CD-Patients group cluster, was represented by a 14-year-

old CD-Patient that clustered separately (Figure 19, black arrow).  

The unweighted Unifrac instead showed no significant clusters between the 

samples, suggesting that the presence/absence of taxa in the community of 

each sample is highly influenced by the number of sequences/sample 

collected.  

The fungal beta diversity was computed using Bray-Curtis matrix. The PCoA 

plot showed no significant clusters within the group of samples, even if a 

slight cluster can be observed in the center for the CD-Patients group, 

although with no statistical significance (Figure 21). 
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Figure 19. Bacterial beta diversity analysis among samples 
computed by weighted Unifrac in celiac disease. 
 
Beta diversity analysis among samples computed by weighted Unifrac at a 420 

sequences depth. Different clouds are associated with the subgroup of active-CD 

patients and GFD-patients. A random distribution is observed instead for the control 

subjects, which did not form any specific cluster. Interestingly, the only active CD-

Patients sample that did not cluster within the CD-Patients group is the only 14-year-

old female in the CD-patients enrolled in the study (black arrow). Although the 

weighted Unifrac result shows the presence of clusters, the statistical tests showed a 

non-significant variation to explain the observed variability, even if the value was 

close to the significance (p = 0.09; ADONIS, ANOSIM). In this case, only few 

samples highly influence the result, suggesting that a more significant variability 

could be observed increasing the number of samples in the study. 
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Figure 20. Bacterial beta diversity analysis among samples 
computed by unweighted Unifrac in celiac disease 
 
The beta diversity computed by non-weighted Unifrac method at a 420 sequences 

depth, showed a completely random distribution for every sample. In opposite to the 

weighted Unifrac method, which takes into account the number of sequences, the 

non-weighted Unifrac generates a qualitative result, only considering the 

presence/absence of a taxon among samples. Since the observed distribution is 

random, it might suggest that the number of sequences that belongs to each sample 

influences the observed microbiome profile. Samples with less sequences do not 

show the same microbiome profile as those with a higher number of sequences, 

meaning that the presence of more rare bacteria species is driven by the number of 

16S rRNAs amplicon sequences obtained after the next generation sequencing run. 



	
  

	
   93	
  

 
 
Figure 21. Fungal beta diversity analysis among samples computed 
by Bray-Curtis in celiac disease. 
 
The fungal beta diversity was computed with Bray-Curtis method at a depth of 

2.178 sequences per sample. A slight divergence is shown in the PC1 vs. PC2 

in the middle of the plot for the Controls and the CD-Patient groups, even if 

not significant clusters were reported. A random distribution is instead 

observed for the GFD-Patients group. The beta diversity between the samples 

for the fungal community of the gut microbiome does not seem to be related to 

the type of condition related to the enrolled subjects (healthy controls, active-

CD Patients, GFD-Patients). 
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CHAPTER 7 
 

DISCUSSION 

 

 
7.1 The altered gut microbiome in a Crohn’s disease patient is 
normalized after nutritional therapy 
 

The human gut hosts one of the most densely populated microbial community 

on earth, compared to several environments. The number of bacteria exceeds 

human cells by more than ten-fold and the number of the total bacteria genes 

holds 100 fold more genes than those of its host [90].  

Inflammatory bowel disease (IBD) represents a chronic inflammatory 

condition of the gastrointestinal tract and is widely associated with the 

microbial communities of the human gut. In the past few years, different 

studies have linked IBD with altered interactions between gut microbes and 

the intestinal immune system. Though, the precise nature of the intestinal 

microbiota dysfunction in IBD is unclear [145].  

Between the IBD a main subtype is of relevant interest due to its high 

incidence, and is known as Crohn's disease, which includes defined microbial 

perturbations and tissue localizations. Cronh’s disease may affect any part of 

the digestive tract, and the implications related to the microbial involvement 

are unclear [146].  

In fact, the role of the gut microbiome in Cronh’s disease onset and its 

alteration in the course of active treatment and recovery are still unknown. 

One of the causes may be correlated to the inability to control bacterial 

proliferation in the intestinal walls, which may drive microorganisms to take 

advantage of the host mucosal layer.  
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The use of different antibiotics targeting different bacterial strains, have 

highlighted particular taxa in Crohn’s disease, suggesting that different 

pathogens are involved [68]. Current medications designed to treat Crohn’s 

disease are focused in suppressing the abnormal inflammatory response that is 

the primary cause of the symptoms. The inflammatory suppression offers an 

initial relief for the Crohn’s disease patients, decreasing the symptoms and 

allowing the intestinal tissues to repair. Although long period treatments can 

extend remission, a definitive cure is not yet available. One of the most 

common treatments is associated with dietary intake. In particular, exclusive 

enteral nutrition (EEN) is a first-line treatment in children with active Crohn's 

disease. The way EEN acts in suppressing mucosal inflammation is not fully 

understood, but scientists agree that modulation of intestinal microflora 

activity is a possible explanation [147]. To explain the influence of the diet in 

modulating the microbiome composition of a subject affected by Crohn’s 

disease, in the first study I characterized the microbiome profile of an affected 

14-year-old child. The same patient was enrolled before and after a nutritional 

therapy and the analysis was performed also on the microbiome of a healthy 

child with same age and sex of the affected patient. The strength of this study 

relies in the samples origin. In fact, the majority of the studies are based on the 

metagenomics profile deriving from fecal samples. In this case, I opted to use 

ileum samples obtained with gastrointestinal endoscopy. The reason is mainly 

related to the origin of Crohn’s disease symptoms, which is mostly associated 

with the initial tract of the gut and because the microbiome composition 

dramatically changes across different tracts of the human gut [148], [149]. I 

used next generation sequencing approach, specifically 454 FLX+ Titanium 

(Roche), to obtain thousands of 16S rRNA sequences in order to profile the 

microbiome composition of the enrolled subjects.  

The sequences obtained (a total of 40.621 sequences, for 3 samples) were 

sufficient to perform a satisfactory bioinformatics analysis. 



	
  

	
   96	
  

For the analysis workflow, I chose to use the QIIME package [101], since it is 

the leading tool for metagenomics analysis, with more than 1.225 citations 

since 2010. Compared to other tools, QIIME offers the possibility to perform a 

complete analysis, including a wide range of sub-tools. It requires the user to 

have strong computational skills, but it offers to start the analysis from raw 

data and obtain high quality publishable results. According to other studies I 

found in my results, the ileum microbiome of the Crohn’s disease samples is 

characterized by four main phylogenetic levels: Bacteriodetes, Firmicutes, 

Fusobacteria, Proteobacteria [76], [148], [150]. 

Specifically, the bacteria phylum level composition showed that 

Proteobacteria were more abundant and Bacteroidetes less abundant in the 

Crohn’s disease patient before therapy (Patient-BT) than in the control. The 

most interesting thing was found in the patient after nutritional therapy 

(Patient-AT), (Figure 3). In fact, the composition of the ileum microbiome in 

the patients-AT was virtually the same as in the control. The Fusobacteria 

phylum was present only in the control subject in accordance with previous 

studies [151], [152]. A deeper analysis at the family level classification 

showed other interesting differences between the 3 subjects.  

The Bacteroidacae family, belonging to the Bacteriodetes phylum, was 

dramatically low in the patient before therapy compared to control and patient 

after therapy (Figure 4). Although no statistical significance was found (due to 

the limited number of samples), this result has been observed in fecal samples 

of Cronh’s disease affected patients in a previous study, confirming that 

alterations in the Bacteroidacae family may be associated with Cronh’s 

disease [153]. In opposite, the patient before nutritional therapy reported the 

highest number of all the taxa in the Crohn’s study belongs to the 

Enterobacteriacae family (Proteobacteria phylum), which alterations has also 

been observed in fecal samples of Cronh’s disease patients [154]. 
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Furthermore, in both control and patient after therapy the Enterobacteriacae 

family was 5 times less represented (Figure 4).  

The alpha diversity analysis, as it pertains to the within-sample diversity, was 

computed with different methods, considering the number of sequences at a 

specific rarefaction depth (10.000 sequences, in accordance to the average of 

sequences per sample obtained with the NGS experiment).  

I used both non-phylogenetic (Observed species, Chao1, Shannon Index) and 

phylogenetic (Faith's Phylogenetic Diversity) methods in order to highlight the 

bacterial community richness within every sample. The data support the 

reduced bacterial diversity (confirmed with all the four different methods) for 

the Crohn’s disease patient before therapy than after therapy and even when 

compared with the control subject. In every result was observed a significant 

bacterial diversity reduction in the Crohn’s disease patient before therapy (p < 

0.005). The observed species metric (Figure 9) at a sequence depth of 10.000 

sequences/sample, reported a highest number of different 16S rRNA bacteria 

species in the control subject, medium species diversity in the Crohn’s disease 

patient after nutritional therapy (Patient –AT) and the lowest bacteria diversity 

in the patient before nutritional therapy (Patient-BT). Interestingly, the 

diversity of the microflora in Crohn's disease patients compared with healthy 

controls subjects was already observed to be 50% reduced in a previous study 

[151]. Our results are supported by other studies performed with different 

techniques besides next generation sequencing technologies. Specifically, 

studies with quantitative real time analysis showed a significant alteration of 

two major groups of anaerobic bacteria.  

Bacteroides (belong to Bacteroidacae family), normally present in the 

intestinal microflora, were observed to be highly decreased in Crohn’s disease 

and IBD affected patients [155], [156]. Furthermore, single-strand chain 

polymorphism (SSCP) techniques in studies of Crohn’s disease microbiome, 

showed a close phylogenetic relationship to the Enterobacteriacae group, 
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which we found to be 5 times more represented in the patient before therapy. 

Generally, most of the species in this group are associated with the normal 

intestinal microflora, such as Escherichia coli and Enterobacter. However, 

other members of this group are pathogens and could drive to inflammation, 

such as Shigella, Salmonella, and Yersinia species.  

Concluding, some strains of Escherichia coli have been suspected to play a 

role in the etiology of IBD and Cronh’s disease [157]. 

 

7.2 Celiac disease may be associated with alterations in the gut 
microbiome  
 

Celiac disease (CD) is a unique autoimmune disorder were different factors 

are involved. Genetic components (HLA class II genes DQ2 and/or DQ8) and 

environmental trigger (gluten) are known and necessary, although not 

sufficient for its development [158]. Other environmental components 

contributing to CD are thought to be present but still poorly understood. 

Gluten intake is known to be responsible of CD manifestation and the time of 

its onset, depending on both the ingested quantity and the duration of intake. 

In opposite to Cronh’s disease, CD is not well understood. However, the role 

of the gut microbiota interacting with the human immune system seems to be 

important to maintain the mucosal integrity and functions [159]. Despite a 

large variability in microbiota composition across individuals, metagenomics 

showed that four main phyla dominate the human intestinal tract: 

Bacteriodetes, Firmicutes, Fusobacteria, Proteobacteria [76], [148], [150].  

Other phyla such as Actinobacteria, Verrucomicrobia, TM7 are only scarcely 

present. Compositional changes of the gut microbiota have been observed in 

relation to obesity and its metabolic disorders and in association with several 

gastrointestinal diseases [160]. In this study I analyzed the microbial 

composition in adult Italian celiac disease (CD) patients, both active and at a 

gluten-free diet (GFD-patients) and presenting the most relevant 
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compositional variations observed in these patients in comparison with adult 

controls. The analysis was performed with the same next generation 

sequencing approach as for the Cronh’s disease study, including the 

bioinformatics workflow performed with the QIIME package. In the celiac 

disease study though, I analyzed both the bacterial (16S rRNA) and the fungal 

(ITS) communities. For the 16S a total of 214.999 high quality filtered 

sequences was obtained. The ITS sequences were more abundant with a total 

of 368.521 high quality filtered sequences. The quantity of sequences obtained 

was perfectly in the average with other studies, and allowed a deep 

bioinformatics analysis in order to highlight the microbiome profile of every 

sample. Phylum level classification among the 3 tested groups (Controls, CD-

Patients, GFD-Patients) reported seven main phyla: Actinobacteria  (9,6%), 

Bacteroidetes (16,9%), Cyanobacteria (0,8%), Firmicutes  (18,6%), 

Fusobacteria (6,8%), Proteobacteria (45,6%), Spirochaetes (1%). This result 

agrees with other studies [148], [150]. The QIIME workflow allowed the 

identification of 170 different bacteria genera. As for Cronh’s disease, most of 

the available studies regarding the role of microbiome composition in celiac 

disease, investigated on fecal samples by using different methodological 

approaches and often limiting their observations to specific bacteria. Globally, 

they highlighted a reduction of Bifidobacteria and a decreased ratio of 

Lactobacilli in CD patients respect to healthy controls [161], [162].  

Globally, the data obtained on duodenal biopsies showed increased levels of 

Bacteroidetes and Prevotella, both belonging to the Bacteroidetes phylum, 

and decreased Lactobacillus belonging to Firmicutes phylum, whereas 

contradictory data have been reported concerning Clostridium presence [81], 

[163], [164]. At the state of the art, only one study used NGS methodology to 

investigate the intestinal microbiome in fecal samples of familial, first-degree 

relatives infants affected by CD with early or late gluten exposure [165].  
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This study is the first report on gut microbiome composition in adult CD 

patients, both active and at gluten-free diet and in control subjects, performed 

directly on duodenal biopsies using the NGS-based approach. I found that 5 

main phyla contributed over 97% to the microbiome composition in all the 

three groups under investigation. Within these phyla, Proteobacteria, 

Bacteroidetes and Fusobacteria were increased in active CD and decreased in 

GFD patients, whereas Firmicutes where decreased in both groups respect to 

healthy controls. Actinobacteria levels were similar in all the 3 groups. The 

CD patients enrolled in the study showed mixed phenotypes related to 

gastrointestinal symptoms and/or anemia. The data obtained agreed with those 

observed in duodenal samples of adult CD patients with gastrointestinal 

symptoms regarding Firmicutes, Fusobacteria and Proteobacteria [164]. This 

latter Phylum (45.6%, in CD patients of this study) was respectively less and 

more abundant in patients with gastrointestinal symptoms (70%) or dermatitis 

herpetiforme (<20%) respectively, as shown in a previous study [165].  

Furthermore, the same study reported Neisseria to be the most represented 

genera in active CD patients and the same result was obtained in this study. 

Increases in Haemophilus and Neisseria genera have been previously reported 

in duodenal biopsies of CD affected children [167].  Neisseria genus was also 

one of the most represented in duodenal biopsies of adult CD patients with 

gastrointestinal symptoms, suggesting that its interaction with the intestinal 

epithelium may be related with CD [166].  

The alpha diversity analysis performed at a depth of 420 sequences/sample, 

showed an equal trend in the number of observed species in all the 3 groups.  

Also the other methods used, did not show any statistical difference in the 

alpha diversity between the 3 groups a part a lower richness, identified in GDF 

patients compared to the other two groups. This lower diversity could be 

caused by a lower antigenic stimulation in the diet components of GFD 

patients. No comparison could be done with previous works, since currently 
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there is no study reporting the microbial diversity of ileum sample in celiac 

disease patients. Concerning the beta diversity, the weighted Unifrac method 

showed the duodenal microbiome composition of GFD patients clustering 

separately from CD active patients, while the control subjects reported a 

random distribution, suggesting that the CD condition may present more 

similar bacteria profiles compared to the healthy condition even after a gluten-

free diet. On the other hand, the unweighted Unifrac method, showed a total 

random distribution of the samples, suggesting that the number of 

sequences/sample is an important factor in associating microbiome profiles in 

celiac disease. In fact, the differences found with the two Unifrac methods, 

might be in part related to the abundance information (i.e. the number of 

sequences per specific taxa) that can obscure significant patterns of variation 

in which taxa are present [127]. 

A role of fungal infections in CD pathogenesis has been also suggested [168], 

however there are not systemic studies investigating the fungal composition of 

duodenal associated microbiome in CD patients. In this study, 2 main phyla 

(Ascomycota and Basidomycota) were identified with no significant 

differences between the three study groups.  

However, I identified a trend in increasing levels of the families 

Mycosphaerellaceae (within the Ascomycota phylum) in active-CD and GFD 

patients respect to the controls, even if at not statistically significant level.       

Using a filter of 200 seq/sample a total of 46 genera were identified in the two 

phyla Ascomycota and Basidiomycota (Table 10).  

The most represented genera were Cladosporiumin and Candida in the 

Ascomycota and Cryptococcus in the Basidiomycota. Candida genus was 

more abundant and Cryptococcus less abundant in CD-Patients than in the 

other two groups, even if at not statistically significant level. Interestingly, CD 

and Candida may be associated. In fact, it has been demonstrated that the cell 

walls of Candida, generally responsible for oral thrush, vaginal infections and 
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intestinal Candidiasis, contain the same protein sequence as wheat gluten and 

may trigger or stimulate celiac Disease. In fact, the actual sequence of proteins 

that triggers celiac disease is identical to sequence of proteins, which are 

present in the cell walls of Candida albicans [169]. 

The fungal community richness was lower than the one found in the bacterial 

dataset, at a depth of 2.178 sequences/sample. For both the method used 

(Chao1 and observed species), the Controls and GFD-Patients rarefaction 

curves showed a very close trend while the curves obtained for the CD-

Patients group presented a lower trend. The differences found were 

statistically significant for both the estimators comparing the alpha diversity of 

CD-Patients versus the other two groups (p < 0.05). No differences were 

found in the alpha diversity comparing Controls and GFD-Patients (p = 1), 

suggesting that there is lower fungal community richness in the CD-Patients 

group than Controls and GFD-Patients who reported quite close community 

richness.  

The fungal beta diversity computed with Bray-Curtis method did not show any 

cluster among the three groups, suggesting that there are no strong similarities 

in the fungal microbiome profile related to the type of condition (controls, 

active-CD, GFD-patients). 
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CHAPTER 8 
 

CONCLUSIONS 

 
 

In the past few years, scientific research has contributed to highlight our 

understanding of the role of microorganisms inhabiting human body in health 

and disease conditions. Alteration in the balanced relationship between host 

and the microbiome can lead to an uncontrolled inflammation. Not 

surprisingly, the incidence of intestinal diseases has rapidly increased over the 

past few decades, primary due to alterations in microbial environment. The gut 

microbiome is fundamental to the maintenance of health, the development of 

disease and human metabolic processes. However, a large variation has been 

observed in the microbial profile of the distal gut across individuals and 

populations, and its composition is deeply influenced by dietary, age, sex, 

geographical and pharmaceutical factors. In the near future, next-generation 

sequencing technologies and new bioinformatics approach will most likely 

lead to the development of experimental models that can easily associate the 

human gut microbiome with onset of diseases. Future metagenomics studies 

need to focus on the totality of microorganisms of the human gut microbiome 

including fungi, viruses, yeasts and parasites in order to understand how 

complex ecosystems inhabiting our bodies are associated with healthy or 

pathological conditions. Certainly, metagenomics has already revolutionized 

microbiology allowing non cultivation-dependent assay and exploration of 

large-scale microbial communities.  

Although it can provide information on the metabolic and functional capacity 

of a microbial community, being a DNA-based analysis, it fails to differentiate 

between expressed and non-expressed genes in a community.  
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This represents a limit and the actual metabolic activity can not be predicted 

[170], [171]. In this context, metatranscriptomics, defined as large-scale 

sequencing of mRNAs retrieved from natural communities, can better 

highlight microbial activities and how they are regulated [172]. Most recently, 

metaproteomics, the proteomic analysis of mixed microbial communities, 

represents a new emerging research area, which aims at assessing the 

immediate catalytic potential of a microbial community [173]. 

Only a limited amount of studies is currently available involving 

metatranscriptomics and metaproteomics, and new computational models are 

necessary in order to handle the millions of sequences continuously generated.  

Eventually the future of these fields of science will be represented by the 

aggregation of multiple meta-approaches. In fact, meta-analysis studies, which 

are only starting to be performed, will be the base to understand complex 

biological systems and their host interactions, with the possibility to design 

specific drugs and to increase the power of diagnosis in a fast and automated 

way.  

The microbiome profile defined in the Crohn’s disease study represents only 

one step in the functional investigation of the Crohn’s disease before and after 

a specific nutritional therapy. At the state of the art, only a limited amount of 

studies have analyzed the association between dietary intake and the 

composition of the gut microbiome in healthy subjects and in patients before 

and after nutritional therapy. Although my findings were obtained in one 

case–control study, and therefore may be considered preliminary, they 

strongly suggest that nutritional therapy can improve the inflammatory status 

of Crohn’s disease by restoring the composition of the mucosal microbiome.  

This case of Crohn’s disease gut microbiome dysbiosis that responded to 

nutritional therapy can be considered proof-of-concept to evaluate a similar 

approach in other pediatric clinical laboratories and may serve to prompt 
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multicenter studies and possible clinical trials. The study has been published 

in the American Journal of Gastroenterology [137]. 

On the other hand, celiac disease available studies, investigated only fecal 

samples by using different methodological approaches and often limiting their 

observations to specific bacteria. The study I proposed is the first report on gut 

microbiome composition in adult CD patients (both active and at gluten free 

diet) and in control subjects. Furthermore, this is the first study performed 

directly on duodenal biopsies by using next generation sequencing based 

approach.  

In conclusion, I decided to use the QIIME package instead of any other 

available tools since in a previous study I highlighted how QIIME is currently 

the most suitable tool for metagenomics bioinformatics analysis [174]. 
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