
 

 

UNIVERSITY OF NAPLES “FEDERICO II” 

 

PhD in Computational Biology and Bioinformatics  

XXVI CYCLE 

 

 

 

 

COMPUTATIONAL STRATEGIES TO INVESTIGATE 

TRANSCRIPTIONAL EFFECTS OF THE 

UPREGULATION OF GENES MAPPING TO 

CHROMOSOME 21 

 

 

Coordinator: PhD student: 

Prof. Sergio Cocozza Ferdinando Bonfiglio 

  

Tutor:  

Prof. Lucio Nitsch  

  

Co-tutor:  

Prof. Diego Di Bernardo  

 

 

ACADEMIC YEAR 2012/2013 



1 

 

TABLE OF CONTENTS 

 

LIST OF PUBLICATIONS .............................................................................. 2 

ABSTRACT ....................................................................................................... 3 

1. BACKGROUND ........................................................................................... 4 

1.1. Down syndrome (DS) .............................................................................. 4 

1.2. Gene expression in DS ............................................................................. 4 

1.3. Mitochondrial dysfunction in DS ........................................................... 11 

1.4. Upregulation of extracellular matrix (ECM) genes in DS ..................... 12 

1.5. Meta-analysis of expression data from microarray analysis .................. 14 

2. AIMS OF THE STUDY .............................................................................. 16 

3. MATERIALS AND METHODS ............................................................... 17 

3.1. Meta-analysis procedures ....................................................................... 17 

3.2. Procedures to identify and validate single Hsa21 genes responsible for 

DS phenotypes .............................................................................................. 22 

3.3. Methods for the validation of NRIP1 role in DS mitochondrial 

dysfunction .................................................................................................... 23 

4. RESULTS .................................................................................................... 27 

4.1. Data integration of microarray experiments shows genes consistently 

dysregulated in DS. ....................................................................................... 27 

4.2. Functional annotation using gene enrichment analysis .......................... 32 

4.3. Enrichment of TF motifs ........................................................................ 36 

4.4. Identification of single Hsa21 genes responsible for specific DS 

phenotypes in public expression data ............................................................ 38 

4.5. Validation of NRIP1 role in DS mitochondrial dysfunction .................. 45 

4.6. Analysis of public expression data suggest that RUNX1 affects ECM 

gene expression ............................................................................................. 51 

5. DISCUSSION .............................................................................................. 55 

6. CONCLUSIONS ......................................................................................... 68 

7. REFERENCES ............................................................................................ 70 

 

  



2 

 

LIST OF PUBLICATIONS 

1) Piccoli C, Izzo A, Scrima R, Bonfiglio F, Manco R, Negri R, Quarato G, 

Cela O, Ripoli M, Prisco M, Gentile F, Calì G, Pinton P, Conti A, Nitsch L, 

Capitanio N. Chronic pro-oxidative state and mitochondrial dysfunctions are 

more pronounced in fibroblasts from Down syndrome foeti with congenital 

heart defects. (2013) Hum. Mol. Genet. Mar 15;22(6):1218-32. 

2) Izzo A*, Manco R*, Bonfiglio F*, Calì G, de Cristofaro T, Patergnani S, 

Cicatiello R, Scrima R, Pinton P, Conti A, Nitsch L. NRIP1/RIP140 siRNA-

mediated attenuation counteracts mitochondrial dysfunction in Down 

syndrome. (2014) Hum. Mol. Genet. Accepted in print. 

*Co-first Authors. 

  



3 

 

ABSTRACT 

Down Syndrome (DS) is the most frequent autosomal aneuploidy compatible 

with post-natal life. Few meta-analyses of DS gene expression data have been 

conducted to date even though comprehensive comparative studies would be 

pivotal to understand genetic hallmarks of DS and molecular mechanisms 

responsible for DS phenotypes. 

For this reason, aim of this study was to provide new insights into the 

transcriptional changes influencing the molecular mechanisms associated with 

DS using computational strategies. We first performed a comprehensive 

computational analysis of expression feature-level extraction output (FLEO) 

files from transcriptome studies on different tissues from human DS subjects, 

with Affymetrix microarray technology. The non-biological experimental 

variation was adjusted with a recently developed algorithm, called ComBat. 

Comparative analysis of 44 DS samples versus 40 controls from 9 experiments 

identified 178 genes consistently dysregulated in DS. Functional class scoring 

of these genes revealed that Gene Ontology categories related to cellular 

morphogenesis, development, defects in synapsis and apoptosis were enriched 

among dysregulated genes. Hsa21 genes were globally upregulated and the 

pathway of PGC-1α, a key regulator of mitochondrial biogenesis, was altered.  

A second computational strategy was applied to identify Hsa21 genes likely 

responsible for 2 specific traits of DS, highlighted by a previous experiment of 

expression profiling performed on heart tissues from DS subjects, i.e. the 

downregulation of nuclear encoded mitochondrial genes (NEMGs), and the 

upregulation of genes encoding extracellular matrix (ECM) proteins. We 

speculated that most of the under-expressed NEMGs might be under the same 

regulatory control, as well as the overexpressed ECM genes and that these 

controls might be affected by the trisomy of Hsa21.  

Therefore, to investigate whether the overexpression of individual Hsa21 genes 

might alter either NEMG or ECM gene expression, we analyzed expression 

data, retrieved from public repositories. With this strategy we identified 

NRIP1, a repressor of PGC-1α activity, as a good candidate gene for NEMG 

downregulation, and RUNX1 for the upregulation of ECM genes. These 

predictions agree with the result of our comprehensive meta-analysis and are 

supported by literature and by the analysis of the promoter regions of the 

NEMGs and ECM genes dysregulated in DS. 

Finally, we successfully validated the predicted NRIP1 repressive role on both 

NEMG regulation and mitochondrial function, by modulating its expression in 

human fibroblasts from DS fetuses.  
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1. BACKGROUND 

1.1. Down syndrome (DS) 

Down Syndrome (DS) is the most frequent autosomal aneuploidy that is 

compatible with post-natal life. It results from complete or partial trisomy of 

chromosome 21 (Hsa21) and is characterized by a complex phenotype in which 

over 80 features occur with various degrees of expression and frequency 

[Epstein et al. 1991]. Constant features in trisomic subjects are mental 

retardation, hypotonia, developmental delay, a partial immune deficiency, 

especially of thymus dependent system, and an increased risk of leukemia. DS 

is a major cause of congenital heart defects (CHD). It is associated mostly with 

endocardial cushion defects [Ferencz et al. 1989, Park et al. 1977], the most 

frequent being atrio-ventricular canal defects (AVCD) followed by ventricular 

septal defects (VSD) and tetralogy of Fallot [Park et al. 1977]. 

 

1.2. Gene expression in DS 

It has been postulated that a triplicated Hsa21 causes an increase in the 

expression of trisomic genes as a primary dosage effect. This primary 

dysregulation produces, as secondary effect, the dysregulation of genes 

mapping on different chromosomes and consequently the DS phenotype (Fig. 

1). In agreement with the above hypothesis, several studies have reported a 

generalized overexpression of triplicated genes at the mRNA level in mouse 

models of DS and human DS tissues [Amano et al, 2004; Lyle et al, 2004; 

Kahlem et al, 2004; Dauphinot et al, 2005]. Interestingly, these studies 

indicated that only a subset of Hsa21 genes is consistently over-expressed in 

comparison to euploid controls and that the increase in expression may slightly 

differ from the expected ~1.5-fold [FitzPatrick et al. 2002; Mao et al. 2005, 

Conti et al, 2007]. Also, the set of over-expressed Hsa21 genes differs across 

the trisomic cell types [Li et al. 2006]. These findings indicate that other 

factors (e.g. developmental stage, tissue-specific differences) also affect gene 

expression [Sommer and Henrique-Silva, 2008]. 
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Figure 1. Primary and secondary effects of trisomy 21. Three copies of Hsa21 may cause a 

50% increase in the expression of trisomic genes as primary dosage effect. The abnormal 

mRNA levels of Hsa21 genes may cause alteration of disomic gene expression as secondary 

effects. Both primary and secondary effects will finally result in developmental defects and 

phenotypic alterations. 

 

Vilardell et al. (2011) performed a comprehensive meta-analysis from 45 

different human and mouse DS studies at transcriptomic and proteomic levels 

including quantitative data such as Affymetrix microarrays, qRT-PCR and 

MALDI studies as well as qualitative data such as SAGE and Western blot 

analyses. By using a computed score and an entropy criterion, they identified 

324 genes with consistent dosage effects in many of these studies. As expected, 

they observed a high fraction of Hsa21 genes (N = 77) but also a large amount 

of non-Hsa21 genes (N = 247). Besides well investigated genes in the context 

of DS, they also detected a significant proportion of novel ones (N = 62) 

mostly associated with neurodegenerative disorders including Alzheimer’s 

disease and age-related degeneration. The 324 genes were further investigated 

using functional information, molecular interactions and promoter analysis 

revealing overrepresented motifs of four transcription factors: RUNX1, E2F1, 

STAF/PAX2 and STAT3. Since the meta-analysis was enriched with brain 

experiments, a high fraction of genes related to neurodevelopment, synapsis 

and neurodegeneration (Tab. 1) was detected. 
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TABLE 1. ENRICHED NEUROPATHOLOGICAL PATHWAYS IN VILARDELL’S 

META-ANALYSIS WITH ADJ.P.VAL < 0.01 

PATHWAY Pathway 

size 

Genes on 

HSA21 

HSA21 

Interactors 

Others 

HUNTINGTONS DISEASE 

(KEGG) 

159 SOD1; 

DONSON 

REST BDNF; SOD2 

ALZHEIMERS DISEASE 

(KEGG) 

147 APP; BACE2; 

DONSON 

PPP3CA; 

GSK3B 

CAPN2 

SIGNALLING BY NGF 

(REACTOME) 

209 ITSN1; 

TIAM1 

PIK3R1; 

GSK3B 

RPS6KA2; RAP1A; 

KRAS 

AXON GUIDANCE 

(REACTOME) 

256 COL6A2 GSK3B;COL1

A1; COL1A2; 

COL4A1; 

COL4A2 

COL5A2; DPYSL3; 

RPS6KA2; LAMB1; 

COL3A1; COL5A1; 

ALCAM; KRAS 

PARKINSONS DISEASE 

(KEGG) 

105 DONSON   UBE2G2 

P75(NTR)-MEDIATED 

SIGNALING (PID) 

68 APP PIK3R1 BDNF 

NOTCH (NETPATH) 61 APP PIK3R1; 

GSK3B 

  

NEUROTROPHIN 

SIGNALING PATHWAY 

(KEGG) 

121   PIK3R1; 

GSK3B 

BDNF; RPS6KA2; 

RAP1A; KRAS 

NGF SIGNALLING VIA 

TRKA FROM THE 

PLASMA MEMBRANE 

(REACTOME) 

127   PIK3R1; 

GSK3B 

RPS6KA2; RAP1A; 

KRAS 

MEMBRANE 

TRAFFICKING 

(REACTOME) 

87   TJP1 GJA1; COPG 

NEUROTROPHIC 

FACTOR-MEDIATED TRK 

RECEPTOR SIGNALING 

(PID) 

60 TIAM1 PIK3R1 BDNF; RAP1A; KRAS 

EPO SIGNALING (INOH) 180   PIK3R1; 

GSK3B 

  

CDC42 SIGNALING 

EVENTS (PID) 

68 TIAM1 PIK3R1; 

GSK3B 

EPS8; YES1 

L1CAM INTERACTIONS 

(REACTOME) 

93     LAMB1; ALCAM1; 

RPS6KA2 
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1.2.1. Gene expression profiling in DS heart tissue 

A transcriptome study of DS fetal heart tissue was performed in our laboratory 

[Conti et al, 2007]. Gene expression profile of 15 fetal hearts (10 with DS 

versus 5 euploid controls) was determined by DNA microarray analysis using 

Affymetrix HG-U133A oligonucleotide arrays. The 22,283 probe sets 

represented on the Affymetrix chip corresponded to ~14,500 genes and 500 

expressed sequence tags and clones. 

Genes were considered differentially expressed with FC < -0.8 and FC > 0.8 

with Adj.P.val < 0.05 after Benjamini and Hochberg correction for multiple 

comparisons. Approximately half of the genes examined (87 of the 168 genes 

on Hsa21) were expressed in the heart at 18-22 weeks of gestation. Hsa21 gene 

expression was globally upregulated 1.5 fold in trisomic samples. However, 

not all genes were equally dysregulated and 25 genes were not upregulated at 

all. Genes located on other chromosomes were also significantly dysregulated. 

Functional class scoring and gene set enrichment analyses (GSEA) of 473 

genes, differentially expressed between trisomic and non-trisomic hearts, 

showed that the downregulation of nuclear encoded mitochondrial genes 

(NEMGs) and the upregulation of genes encoding extracellular matrix (ECM) 

proteins, appeared to be a hallmark of trisomy 21 (TS21) in fetal heart samples 

(Fig. 2 and Tab. 2-3).  
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Figure 2. Genes and gene pathways affected by Hsa21 trisomy. Pathway analysis 

performed with Pathway Miner software (http://www.biorag.org/pathway.html) showed one 

cluster of downregulated genes, including 16 genes involved in oxidative phosphorylation 

pathway. Two clusters of upregulated genes included ECM genes: cluster 2 (Focal adhesion) 

and cluster 3 (Cell adhesion). Green indicates downregulated genes (darker green = more 

downregulated); red indicates upregulated genes (darker red = more upregulated). 

 

TABLE 2. SIGNIFICANTLY DOWNREGULATED GENES IN DS FETAL HEARTS 

ENCODING NEMGs 

Probe_ID Gene_Name FC (DSH/NH) ratio 

214274_s_at ACAA1 0,647 

215210_s_at ACADM 0,548 

205412_at ACAT1 0,756 

208967_s_at AK2 0,757 

201322_at ATP5B 0,739 

208972_s_at ATP5G1 0,739 

211715_s_at BDH1 0,554 

205295_at CKMT2 0,699 

209746_s_at COQ7 0,721 

203858_s_at COX10 0,74 

218057_x_at COX4NB 0,738 

201597_at COX7A2 0,764 
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201633_s_at CYB5B 0,727 

208905_at CYCS 0,702 

209759_s_at DCI 0,729 

211150_s_at DLAT 0,568 

204824_at ENDOG 0,638 

201931_at ETFA 0,698 

202942_at ETFB 0,692 

213133_s_at GCSH 0,713 

221415_s_at GJA10 0,545 

200947_s_at GLUD1 0,758 

208813_at GOT1 0,671 

203745_at HCCS 0,678 

200691_s_at HSPA9B 0,645 

210046_s_at IDH2 0,743 

202070_s_at IDH3A 0,709 

210418_s_at IDH3B 0,751 

200955_at IMMT 0,704 

36830_at MIPEP 0,711 

219527_at MOSC2 0,701 

218027_at MRPL15 0,716 

203781_at MRPL33 0,741 

218890_x_at MRPL35 0,745 

204331_s_at MRPS12 0,735 

220864_s_at NDUFA13 0,638 

202077_at NDUFAB1 0,748 

218201_at NDUFB2 0,669 

201226_at NDUFB8 0,663 

201966_at NDUFS2 0,62 

201740_at NDUFS3 0,72 

201757_at NDUFS5 0,763 

202941_at NDUFV2 0,76 

218455_at NFS1 0,712 

202780_at OXCT1 0,705 

200980_s_at PDHA1 0,598 

214225_at PIN4 0,677 

203649_s_at PLA2G2A 0,657 

205241_at SCO2 0,724 

201093_x_at SDHA 0,591 

202675_at SDHB 0,744 

202004_x_at SDHC 0,722 

203340_s_at SLC25A12 0,688 

217961_at SLC25A38 0,705 

202825_at SLC25A4 0,607 

216841_s_at SOD2 0,734 

218119_at TIMM23 0,634 

203092_at TIMM44 0,612 
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220415_at TNNI3K 0,635 

209077_at TXN2 0,74 

201903_at UQCRC1 0,75 

200883_at UQCRC2 0,716 

208909_at UQCRFS1 0,744 

217140_s_at VDAC1 0,637 

217249_x_at WUGSC:H_RG162B04.1 0,68 

 

TABLE 3. SIGNIFICANTLY UPREGULATED GENES IN DS FETAL HEARTS 

ENCODING ECM PROTEINS. 

Probe_ID Gene_Name FC (DSH/NH) ratio 

222162_s_at ADAMTS1 1,93 

219935_at ADAMTS5 1,5 

220706_at ADAMTS7 2,24 

214953_s_at APP 1,668 

219087_at ASPN 1,829 

220988_s_at C1QTNF3 1,466 

219025_at CD248 1,342 

211809_x_at COL13A1 1,721 

203477_at COL15A1 1,413 

209081_s_at COL18A1 1,57 

202310_s_at COL1A1 1,546 

202403_s_at COL1A2 1,596 

212489_at COL5A1 1,595 

212091_s_at COL6A1 1,927 

209156_s_at COL6A2 2,391 

213622_at COL9A2 1,434 

204724_s_at COL9A3 1,6 

207420_at COLEC10 4,268 

209335_at DCN 1,73 

213661_at DKFZP586H2123 1,516 

206101_at ECM2 1,554 

202994_s_at FBLN1 1,716 

204359_at FLRT2 1,522 

209220_at GPC3 1,685 

206766_at ITGA10 1,378 

204989_s_at ITGB4 2,269 

221462_x_at KLK15 3,113 

202202_s_at LAMA4 1,591 

203417_at MFAP2 1,434 

203877_at MMP11 1,673 

201069_at MMP2 1,586 

205907_s_at OMD 1,961 

202465_at PCOLCE 1,482 

218585_s_at RAMP 1,48 

218452_at SMARCAL1 1,859 
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205236_x_at SOD3 1,372 

208606_s_at WNT4 2,534 

 

In agreement with these findings, functional studies performed by other authors 

suggest that multiple Hsa21 genes affect mitochondrial function and reactive 

oxygen species production, one-carbon metabolism and cell adhesion 

[Gardiner, 2003]. It is plausible to hypothesize that NEMG dysregulation might 

be a cause of the mitochondrial dysfunction in DS [Conti et al, 2007]. 

 

1.3. Mitochondrial dysfunction in DS 

TS21 has been associated to mitochondrial dysfunction, in several DS cell 

[Busciglio et al, 1995; Roat et al, 2007] and mouse models [Shuchman et al, 

2000; Shukkur et al, 2006], suggesting that a mitochondrial dysfunction 

contributes to DS phenotype. It has been hypothesized that the pathogenetic 

mechanisms may be ascribed to oxidative stress caused by reactive oxygen 

species (ROS) formation, to altered intracellular calcium homeostasis and to 

apoptosis [Valenti et al, 2011] 

To test the hypothesis that NEMG dysregulation is associated to mitochondrial 

dysfunction, we have performed molecular, morphological and functional 

analyses of mitochondria in primary cultures of human fetal fibroblasts (HFFs). 

With these experiments we demonstrated that TS21, while perturbing the 

expression of genes involved in mitochondrial pathways, disrupts the 

mitochondrial morphology, decreases oxygen consumption, and increases 

mitochondrial Ca
2+ 

load and ROS production [Piccoli et al, 2013]. A more 

severe mitochondrial dysfunction was observed in TS21 fibroblasts derived 

from fetuses with cardiopathy, thus suggesting that mitochondrial dysfunction 

contributes to generating a more severe phenotype.  

In the same study, peroxisome proliferator-activated receptor gamma, co-

activator 1 alpha (PGC-1α) was found hypo-expressed at the transcriptional 

and protein levels [Piccoli et al, 2013]. PGC-1α is known to play a central role 

in regulating mitochondrial biogenesis and respiratory function through the 

interaction with transcriptional partners, like NRF1, ERRα, PPARs, and YY1 

[Scarpulla et al, 2011].  

Several Hsa21 genes have been proposed as possible candidates for 

mitochondrial abnormalities, such as APP [Askanas et al, 1996], the 

transcription factor GABPA [O'Leary et al, 2004], the copper-zinc superoxide 

dismutase SOD1 [Shin et al, 2004], the kinase DYRK1A, and the transcriptional 

regulator DSCR1/RCAN1 [Bushdid et al, 2003]. The last two genes control 

PGC-1α via the calcineurin/NFAT pathway largely through the binding of 

NFATc to the PGC-1α promoter [Handschin et al, 2003].  
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It is so far unknown to what extent these genes affect PGC-1α expression and 

whether other Hsa21 genes play a key role in mitochondrial pathways.  

 

1.4. Upregulation of extracellular matrix (ECM) genes in DS 

Functional analysis of differentially expressed genes in DS hearts also 

demonstrates global upregulation of ECM protein genes. This group includes 

genes encoding adhesion and ECM proteins that map to Hsa21 such as 

ADAMTS1, ADAMTS5, APP, JAM2, COL6A1, COL6A2 and COL18A1, which 

are dose-dependently upregulated in trisomic samples, and genes that do not 

map on Hsa21 such as fibronectin, fibulin, collagen type I, type III, type V, 

type XV, metalloproteases (MMPs) and several adhesion molecule genes (Tab. 

3) Overexpression of this gene family is likely to affect cell adhesion 

properties, possibly determining an increase in adhesiveness. Cells explanted 

from endocardial cushion derived structures of fetuses with Hsa21 trisomy are 

more adhesive in vitro than those from controls [Wright et al, 1984]. A 

stochastic model has been proposed for septal defects in DS by which higher 

values of adhesiveness result in deficiencies of the atrio-ventricular (AV) canal 

development associated with clinical variability among individuals based on 

chance alone [Kurnit et al, 1985]. 

About 50% of the subjects with DS is affected by CHD. This high incidence 

suggests that the overexpression of genes mapping to Hsa21 alters the normal 

developmental process of the heart either directly or influencing the expression 

of genes mapping to other chromosomes.  

Many authors have either compared human subjects with partial Hsa21 

trisomies [Korenberg et al, 1990] or designed mouse models [Barlow et al, 

2001; Liu C et al, 2011; Liu C et al, 2013] to identify the smallest critical 

region for DS-CHD (Down Syndrome Congenital Heart Disease) with 

conflicting results. The genomic regions on Hsa21 are syntenically distributed 

in three regions of the mouse genome (Mmu), which are located on Mmu16, 

Mmu10 and Mmu17. Many mouse models of DS (Fig. 3) have been used to 

identify critical regions for specific phenotypical traits, including a critical 

region for cardiac defects. The smallest critical region so far identified spans 

from D21S3 to PFKL and it is included in the 21q22.2 and 21q22.3 cytobands 

[Barlow et al, 2001]. No Hsa21 ECM proteins are included in this region.  

It is also interesting that DNA microarray analysis from right ventricular 

biopsies of patients with tetralogy of Fallot demonstrated that genes encoding 

ECM proteins, such as collagen type I, III, IX, XV and fibronectin, were 

upregulated versus age-matched controls [Sharma et al, 2006], suggesting that 

the increase of these ECM proteins has a potential role in CHD. 
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Figure 3. Synteny of the different DS mouse models. 

 

A recently published paper [Vilardell et al, 2013] ascribed a key role in DS-

CHD pathogenesis to a large extracellular matrix glycoprotein, the Fibrillin 1 

(FBN1). A study reported, indeed, a case of a person affected by DS who 

carried mutations in FBN1, the gene causative for a connective tissue disorder 

called Marfan Syndrome (MFS). The fact that the person did not have any 

cardiac alterations suggested compensation effects due to DS. The hypothesis 

was reinforced by a computational analysis [Vilardell et al, 2013] aimed to 

identify genes potentially related to FBN1 and to test their relevance in DS 

hearts. The analysis proposes a new list of candidate genes related to DS, some 

of them display similar molecular mechanism affected in DS and in MFS 

mostly related to the extracellular matrix alteration. Deregulation of genes like 

VCAN [Hatano et al, 2012], LOX, ACTA2 and MMP2, related with heart 

development [Hinton and Yutzey, 2011], are good candidates to explain the 

higher risk of heart abnormalities in DS. The alteration of FBN1-associated 

network could be crucial to understand the cardiovascular characteristics 

associated with DS. 

This background evokes the interest in speculating which Hsa21 gene or genes 

might affect ECM upregulation in DS. 
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1.5. Meta-analysis of expression data from microarray analysis 

Many researchers have embraced microarray technology. Due to extensive 

usage of microarray technology, in recent years there has been an explosion in 

publicly available datasets. Examples of such repositories include Gene 

Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/), ArrayExpress 

(http://www.ebi.ac.uk/arrayexpress/) and Stanford Microarray Database (SMD, 

http://smd.princeton.edu/), as well as researchers' and institutions' websites. 

The use of these datasets is not exhausted, when used wisely they may yield a 

depth of information. Demand has increased to effectively utilize these datasets 

in current research as additional data for analysis and verification. 

Combining information from multiple existing studies can increase the 

reliability and generalizability of results. The use of statistical techniques to 

combine results from independent but related studies is called “meta-analysis” 

[Normand, 1999]. Meta-analysis has ranging benefits. Statistical power can be 

added to an analysis, obtained by the increase in sample size of the study. This 

aids the ability of the analysis to find effects that exist and is termed 

“integration-driven discovery” [Choi et al, 2003]. Meta-analysis can also be 

important when studies have conflicting conclusions as they may estimate an 

average effect or highlight an important subtle variation [Normand, 1999; 

Hong and Breitling, 2008]. 

Through meta-analysis, we can increase the statistical power to obtain a more 

precise estimate of gene expression differentials, and assess the heterogeneity 

of the overall estimate. Meta-analysis is relatively inexpensive, since it makes 

comprehensive use of already available data. Indeed, the advantages of meta-

analysis of gene expression microarray datasets have not gone unnoticed by 

researchers in various fields [Grützmann et al, 2005; Bianchi et al, 2007; 

Vilardell et al, 2011].  

There are a number of issues associated with applying meta-analysis in gene 

expression studies. These include problems common to traditional meta-

analysis such as overcoming different aims, design and populations of interest. 

There are also concerns specific to gene expression data including challenges 

with probes and probe sets, differing platforms being compared and laboratory 

effects. As different microarray platforms contain probes pertaining to different 

genes, platform comparisons are made difficult when comparing these differing 

gene lists. Often the intersection of these lists are the only probes to be retained 

for further analysis. Moreover, when probes are mapped to their “Entrez IDs” 

[Maglott et al, 2007] for cross platform comparisons often multiple probes 

pertain to the same gene. Due to reasons ranging from alternative splicing to 

probe location these probes may produce different expression results 

[Ramasamy et al, 2008]. Ideal methods for aggregating these probe results in a 

meaningful and powerful way is currently the topic of much discussion. 

Laboratory effects are important because array hybridization is a sensitive 
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procedure. Influences that may affect the array hybridization include different 

experimental procedures and laboratory protocols [Irizarry et al, 2005], sample 

preparation and ozone level [Fare et al, 2003]. 

In conclusion, the main objectives of a meta-analysis are to [Walker et al, 

2008]:  

• Summarize and integrate results from a number of individual studies; 

• Analyze differences in the results among studies; 

• Overcome small sample sizes of individual studies to detect effects of 

interest, and analyze end points that require larger sample sizes; 

• Increase precision in estimating effects; 

• Evaluate effects in subsets of patients or tissue dependent/independent 

processes; 

• Determine if new studies are needed to further investigate an issue; 

• Generate new hypotheses for future studies. 

For all these reasons, this kind of integrative and comparative study is pivotal 

for the analysis of such complex nature of gene expression and regulation in 

DS at a more general level [Antonarakis et al, 2006; Amano et al, 2004]. 
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2. AIMS OF THE STUDY 

High genome variability was observed in gene expression profiling of human 

DS samples and mouse models [Chou et al, 2009; FitzPatrick et al, 2002; Mao 

et al, 2003; Chrast et al, 2000; Saran et al, 2003]. Different experimental 

platforms, specific tissues, developmental stages or imperfect models introduce 

a high variation to the assessment of genome-wide effects. Few DS-related 

meta-analysis studies have been conducted to date even though comprehensive 

comparative studies, aimed to attenuate experimental influences and increase 

the number of compared samples, would be pivotal to understand genetic 

hallmarks of DS and molecular mechanisms responsible for DS phenotypes. 

For this reason, this study was designed to provide new insights into the 

transcriptional changes influencing the molecular mechanisms associated with 

DS using meta-analysis and other computational strategies. A comprehensive 

computational analysis of expression feature-level extraction output (FLEO) 

files from independent transcriptome studies performed with Affymetrix 

technology on different tissues from human DS subjects was carried out. We 

merged data from heterogeneous platforms and adjusted the non-biological 

experimental variation with a recently developed algorithm, called ComBat in 

order to identify genes consistently dysregulated in DS. These genes were 

further classified in functional categories to discover pathways possibly 

affected by Hsa21 trisomy. 

Aim of this study was to find Hsa21 genes likely responsible for pathways 

classified as dysregulated in DS based on previous experiments and meta-

analysis results. 

A computational strategy was therefore applied to identify Hsa21 candidate 

genes for the impairment of two Gene Ontology categories, i.e. the nuclear 

encoded mitochondrial genes (NEMGs) and the extracellular matrix (ECM) 

genes [Conti et al, 2007]. We speculated that most of the under-expressed 

NEMGs, as well as the overexpressed ECM genes, might be under the control 

of specific transcriptional regulators through molecular mechanisms influenced 

by the trisomy of Hsa21.  

We combined the analysis of expression data retrieved from public repositories 

with the study of the promoter regions of dysregulated genes to identify 

candidate Hsa21 genes to be validated in a biological system. 

.  
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3. MATERIALS AND METHODS 

3.1. Meta-analysis procedures 

The meta-analysis strategies are summarized in Figure 4. 

Data collection 

One-hundred-nine Affymetrix CEL files (FLEO files) from 9 different data sets 

were collected from the GEO (http://www.ncbi.nlm.nih.gov/geo/) and 

ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) databases or retrieved from 

the author's web pages. Expression data concerned human cell lines or tissues 

from DS subjects at different developmental stages, analyzed prior to Sept. 

2013, using the Affymetrix chipsets Human Genome U133 Plus 2.0, Human 

Gene 1.0 ST Array or Human Genome HG-U133A. The inclusion criteria for 

the current meta-analysis were as follows: 

i) Affymetrix technology; 

ii) human samples studies; 

iii) DS condition/control studies; 

iv) complete raw data (CEL files) publicly available for download; 

v) experiments performed and documented according to the MIAME 

standard. 

TABLE 4. DATA SETS INCLUDED IN THE META-ANALYSIS  

ACCESSION TISSUE ASSAYS AFFYMETRIX 

CHIP 

RELEASE DATE PMID 

GSE6283 CV cells/ 

amniocytes 

15 Human Genome 

U133 Plus 2.0 

2008-06-14 18253026 

E-MTAB-

1238 

limphoblast

oid cells 

12 Human Genome 

U133 Plus 2.0 

2013-08-06 23830204 

GSE48611 iPS cells 18 Human Genome 

U133 Plus 2.0 

2013-07-09 23716668 

GSE35561 iPS cells 6 Human Gene 1.0 

ST Array 

2012-09-24 23045704 

GSE16176 amniocytes 14 Human Genome 

U133 Plus 2.0 

2009-05-21 19474297 

GSE9762 skin 

fibroblasts 

10 Human Genome 

U133 Plus 2.0 

2008-06-16 not 

published 

GSE5390 brain 15 Human Genome 

HG-U133A 

2009-04-23 20138973 

GSE1789 fetal heart 15 Human Genome 

HG-U133A 

2008-06-11 17683628 

GSE1397 fetal heart 4 Human Genome 

HG-U133A 

2005-05-10 16420667 

Overview of the different sources of data, including different cells or tissues (brain, heart and 

others), different stages of development (adult, postnatal, embryonic) and different versions of 

Affymetrix GeneChips. 
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Data quality control 

Extensive quality control of the raw microarray data has been carried out using 

the methods implemented in the BioConductor packages “affy” [Gautier et al, 

2004], “affyQCReport” [Parman et al, 2008], “AffyPLM” [Bolstad et al, 2005; 

Brettschneider et al, 2007], “simpleaffy” [Wilson et al, 2005] and 

“arrayQualityMetrics” [Kauffmann et al, 2009]. In brief, all arrays were 

scanned for the overall sample quality (array image check, RNA degradation 

plots), signal distribution, intensity-dependent bias, and probe-set homogeneity 

(Normalized Unscaled Standard Error, NUSE, and Relative Log Expression, 

RLE). In addition, correlation plots and PCA analyses have been carried out in 

order to evaluate correlations between arrays. For each parameter a numerical 

score has been calculated and the values distribution plotted. Samples that 

showed more than two quality parameters out of the interquartile range of the 

distribution, were excluded from the analysis. Eighty-four out of 109 

microarrays showed excellent quality according to the standards and, thus, 

considered for further analysis. 

 

Affymetrix probes re-annotation 

Although Affymetrix GeneChip design is very well documented, tremendous 

progress in genome sequencing and annotation in recent years renders existing 

probe set information suboptimal [Dai et al, 2005]. Since, chip sequence-based 

re-annotation has been shown to improve the cross-platform reproducibility 

and analysis of independent experiments [Carter et al, 2005], all probes were 

re-annotated according to the latest release of the Ensembl Gene database 

(http://www.ensembl.org/index.html). Mapping information and merging were 

done using R and the BioConductor package software. The custom cdf files (v. 

17.1.0, ENSG) R packages for the re-annotated Affymetrix chipset are 

available for download at 

http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/17.1.0

/ensg.asp. 

 

Data Pre-processing 

CEL files were imported into R (R Development Core Team, 2008) and 

preprocessed using the robust multiarray average algorithm, RMA (Irizarry et 

al, 2003), implemented in the Bioconductor (Gentleman et al, 2004) package 

“affy”. In particular, the background correction and the summarization 

algorithms were firstly applied to individual series of data (see flow chart in 

Fig. 4); then, after merging data from the three different GenChips by the 

common Ensembl gene ID, the “quantile normalization” algorithm was 
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implemented to the resulting data frame consisting of 11547 Ensembl IDs in 84 

assays.  

Figure 4. Flowchart of the pipeline followed for the meta-analysis. 

 

Batch effects correction 

In order to correct the non-biological experimental variation or “batch effects”, 

normalized data were processed by the ComBat algorithm [Johnson et al, 2007] 

from the “sva” Bioconductor package. ComBat allows users to adjust for batch 

effects in datasets where the batch covariate is known, using methodology 

described in Johnson et al. 2007. It uses either parametric or non-parametric 
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empirical Bayes frameworks for adjusting data for batch effects. Users are 

returned an expression matrix that has been corrected for batch effects. In 

particular, the algorithm has been used with the nine different series as “batch” 

argument (GSE6283, E-MTAB-1238, GSE48611, GSE35561, GSE16176, 

GSE9762, GSE5390, GSE1789, GSE1397) and with the two types of 

karyotype as “covariate” argument (trisomic and euploid), keeping the other 

settings as default.  

 

Differentially expressed genes and gene set enrichment analysis 

Analysis of variance and moderated t-test were carried out for identifying the 

differentially expressed genes (DEG) in DS vs euploid samples, using the 

methods implemented into the Limma package [Smyth et al, 2005]. Benjamini 

and Hochberg method [Benjamini and Hochberg, 1995] was adopted for 

multiple test correction. We considered genes differentially expressed with a 

logarithmic Fold change (logFC) < -0.2 and > 0.2 with p-value ≤ 0.01. 

The list of significantly dysregulated genes was analyzed for functional class 

scoring using Fisher's exact test with DAVID (http://david.abcc.ncifcrf.gov/, 

[Huang et al, 2009]) and Web-based Gene Set Analysis Toolkit V2 

(http://bioinfo.vanderbilt.edu/webgestalt/ [Wang et al, 2013]) using GO term 

(biological process, cellular component, molecular function), Interpro domain 

and KEGG pathway enrichment with default settings. We considered enriched 

pathways with a significance threshold FDR < 5% and fold enrichment ≥ 1.5%. 

Gene Set Enrichment Analysis of the dysregulated genes was also performed 

with respect to pre-defined human pathways agglomerated from 22 pathway 

resources from the ConsensusPathDB (http://cpdb.molgen.mpg.de, [Kamburov 

et al, 2009]). 

Related GO terms found enriched among the dysregulated genes were then, 

summarized using REVIGO software (http://revigo.irb.hr, [Supek et al, 2011]). 

REVIGO is a web server that summarizes long, often unintelligible lists of GO 

terms by finding a representative subset of the terms using a simple clustering 

algorithm that relies on semantic similarity measures. Furthermore, REVIGO 

visualizes this non-redundant GO term set in multiple ways to assist in 

interpretation: multidimensional scaling and graph-based visualizations 

accurately render the subdivisions and the semantic relationships in the data, 

while tree maps and tag clouds are also offered as alternative views. 

GSEA analysis [Subramanian et al, 2005; Mootha et al, 2003] of pathways and 

gene-sets was performed running the java application (downloaded from the 

Broad Institute website, http://www.broadinstitute.org/gsea/index.jsp) on the 

normalized matrix of expression data obtained after RMA processing. We used 

all the seven collections of gene-sets downloaded from The Molecular 
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Signatures Database (MSigDB), including positional, curated, motif gene sets 

and GO terms. A total of 10,925 categories were screened in the analysis 

(MSigDB release v4.0). In order to assess the statistical significance, a 

permutation technique was applied to generate the null distribution of the 

enrichment score. Using a permutation test 1,000 times, the cut-off of the 

significance level p-values was chosen as 0.01 for the most significant 

pathways. The annotation of significant genes in each pathway was performed 

by using the biomaRt package (http://www.biomart.org/). Next, clustering on 

groups or genes was performed based on the identified genes’ expression in 

each significant pathway using the method of hierarchical clustering with 

Euclidean distance. 

 

Transcription factors binding analysis of co-regulated genes 

In order to scan promoter sequences from our input lists of upregulated or 

downexpressed genes, we used a web server called Pscan 

(http://www.beaconlab.it/pscan, [Zambelli et al, 2009]), looking for over-

represented TF motifs. This software provides hints on which factors could be 

responsible for the patterns of expression observed, or vice versa seem to be 

avoided (with P-values nearing 1). We considered enriched in targets, TF with 

adjusted P-values < 0.05. 

 

Gene network inference 

String 9.1 software [Franceschini et al, 2013] and the R/Bioconductor package 

minet [Meyer et al, 2008], which provides a set of functions to infer mutual 

information networks from a dataset were used. Once fed with a microarray 

dataset, the minet package returns a network where nodes denote genes, edges 

model statistical dependencies between genes and the weight of an edge 

quantifies the statistical evidence of a specific (e.g. transcriptional) gene-to-

gene interaction. Four different entropy estimators are made available in the 

package minet (empirical, Miller-Madow, Schurmann-Grassberger and shrink) 

as well as four different inference methods, namely relevance networks, 

ARACNE, CLR and MRNET. In addition, the package integrates accuracy 

assessment tools, like F-scores, PR-curves and ROC-curves in order to 

compare the inferred network with a reference one. 
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3.2. Procedures to identify and validate single Hsa21 genes responsible for 

DS phenotypes 

Public data expression analysis 

A set of expression data from GSE 19836 series [De Cegli et al, 2010] was 

obtained from Gene Expression Omnibus repository GEO 

(http://www.ncbi.nlm.nih.gov/geo). This set of data, derived from the analysis 

of a mouse embryonic stem cell bank in which 32 orthologs of human 

chromosome 21 genes, including transcription factors and protein kinases, 

were individually overexpressed in an inducible manner. A set of clones 

individually overexpressing 20 of the 32 genes, namely 13 transcription factors 

(Aire, Bach1, Erg, Ets2, Gabpa, Nrip1, Olig1, Olig2, Pknox1, Runx1, Sim2, 

ZFP295, 1810007M14Rik), one transcriptional activator (Dscr1-Rcan1) and 6 

protein kinases (DYRK1A, SNF1LK, Hunk, Pdxk, Pfkl, Ripk4), was 

transcriptionally profiled under inducing and non-inducing conditions with 

Affymetrix Gene Chip Mouse 430_2. Specifically, RNAs from 3 induced 

mouse ESCs and 3 controls were profiled for each inducible Hsa21 gene [De 

Cegli et al, 2010]. In our analysis, we used R software vers. 3.0.2. We 

considered genes differentially expressed with a Fold change (LogFC) > 0.3 

and < −0.3 with p < 0.05. Gene ontology (GO) functional class scoring of all 

the lists of significantly upregulated or downregulated genes was performed 

using the Web−based Gene Set Analysis Toolkit V2 

(http://bioinfo.vanderbilt.edu/webgestalt/, [Wang et al, 2013]). Special 

attention was given to mitochondria-related categories and pathways for 

downregulated genes and ECM for upregulated genes. 

 

Comparison of lists of differentially expressed NEMGs 

We compared 3 sets of gene expression data from different experiments, to 

identify genes consistently dysregulated across the 3 studies. The first set, SET 

1, included genes dysregulated by Nrip1 modulation in mouse adipocytes 

[Powelka et al, 2006]. The second set, SET2, included genes upregulated after 

PGC-1α induction in SAOS2 cells (human osteoblast like cells) [Schreiber et 

al, 2004]. The third set included mitochondria-related genes, downregulated in 

DS fetal heart tissue [Conti et al, 2007]. The 3 sets were filtered according to 

the GO cell component category "mitochondrion" with the above mentioned 

Web−based Gene Set Analysis Toolkit V2. The resulting genes – 123 genes in 

SET1, 129 in SET2 and 70 in SET3 – were intersected using the “suma2venn” 

package [Conesa and Nueda, R package]. A Venn Diagram was built, which 

shows overlapping genes across the 3 sets. 
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3.3. Methods for the validation of NRIP1 role in DS mitochondrial 

dysfunction 

Samples for validation of NRIP1 role 

Human primary lines of fetal fibroblasts (HFFs) were obtained from the 

"Telethon Bank of Fetal Biological Samples" at the University of Naples. All 

experimental protocols were approved by the local Institutional Ethics 

Committee. Eight skin biopsies were explanted from human fetuses with 

trisomy of Hsa21 (DS-HFF) after therapeutic abortion at 18-22 gestational 

weeks. Fibroblasts from biopsies were cultured in T25 flasks (BD Falcon) with 

Chang medium B+C (Irvine Scientific) supplemented with 1% 

penicillin/streptomycin (Gibco) at 37°C in 5% CO2 atmosphere; all the 

analyses described throughout this study were carried out at cell culture 

passages 4-5.  

 

Transfection protocol 

NRIP1 was transiently silenced in 8 DS-HFF lines using a pool of specific 

NRIP1-siRNAs (ON-TARGETplus SMARTpool, Dharmacon), with negative 

(ON-TARGETplus SMARTpool Non targeting siRNAs control, Dharmacon) 

and positive controls (ON-TARGETplus SMARTpool, GAPDH siRNAs, 

Dharmacon). Interferin transfection reagent (Polyplus transfection) was used. 

Cells were plated on 12-well plates (50000 cells/well) for RNA collection, on 

35 mm plates with 20 mm slides (Delchimica) (50000 cells/well) for ROS 

production analysis and on 24-well plates (30000 cells/well) (BD Falcon) for 

immunofluorescence and mitochondrial activity assays. DS-HFFs were 

transfected with 5nM and 20nM siRNA according to the manufacturer's 

protocol (Polyplus transfection). Seventy-two hours after transfection, the 

effects of NRIP1 silencing were evaluated. 

 

NRIP1 immunofluorescence 

For the evaluation of NRIP1 protein by immunofluorescence, 30,000 cells were 

plated in 24-well plates on 12 mm diameter round glass coverslips. Cells were 

fixed in 3:1 methanol: acetic acid for 15 min, washed twice with PBS, and then 

incubated twice in 0.1M Borate Buffer pH 8.5 for 10 minutes to neutralize the 

pH. After two washes with PBS, the cells were incubated with DNase 1:10 in 

RDD Buffer (Qiagen) at 37°C for 1h and then treated with 2% BSA in PBS to 

block non-specific protein-protein interactions. The cells were then incubated 

with the antibody anti-NRIP1 (30µg/ml, ab42126 Abcam, Cambridge Science 

Park, Cambridge, UK) overnight at +4°C. The secondary antibody (green) was 

Alexa Fluor® 488 goat anti-rabbit IgG (H+L) used at a 1/200 dilution for 1h. 
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Cells were finally mounted in 50% glycerol in PBS. Immunofluorescence 

analysis was performed at a confocal laser-scanning microscope LSM 510 

(Zeiss, Gottingen, Germany) equipped with an Argon ionic laser whose λ was 

set at 488nm, and a HeNe laser whose λ was set at 633nm. Emission of 

fluorescence was revealed by a BP 505-530 band pass filter for Alexa Fluor 

488 and by a 615 long pass filter for DRAQ5. Images were acquired at a 

resolution of 1024x1024 pixels. Analysis of data was performed with ImageJ 

software, version 1.37. Fifty random single cells were analyzed for each 

imaging analysis. 

 

Laser scanning confocal microscopy (LSCM) live cell imaging of ROS 

production 

For the evaluation of ROS production after NRIP1 siRNA transfection, 50,000 

cells were plated on 25 mm diameter round glass coverslips in an Attofluor cell 

chamber (Molecular Probe, Leiden, NL). Seventy-two hours later, the cells 

were incubated for 15 minutes at 37°C with 10 µM of 2,7-di-chloro-fluorescin 

di-acetate (DCF-DA) which is converted to di-chloro-fluorescein by 

intracellular esterases, for detection of H2O2, or with 5 µM of MitoSOX™ Red 

reagent (Life Technologies, Molecular Probes), which is a live-cell permeant 

which is rapidly and selectively targeted to the mitochondria. Once in the 

mitochondria, MitoSOX™ Red reagent is oxidized by superoxide and exhibits 

red fluorescence. After incubation cells were washed three times with medium 

w/o serum. To maintain the cells alive during observation and to create the 

proper environmental conditions, the specimen was placed in an Oko Lab (Na, 

Italy) Water Jacket Top Stage Incubator, kept at 37°C, under humidified 

condition of 5% CO2 and 95% air by means of temperature controllers, gas 

mixers, and humidifiers right on the microscope. The analysis of 

immunofluorescence was performed with a confocal laser scanner microscopy 

Zeiss LSM 510 (Carl Zeiss, Gottingen, Germany), equipped with Argon ionic 

laser whose λ was set at 488 nm, an HeNe laser whose λ was set at 546 nm, 

and an immersion oil objective 63x/1.4f. Emission of fluorescence was 

revealed by BP 505-530 band pass filter for DCF and 560 Long Pass for 

MitoSOX™ Red. Images were acquired in the green or in the red channels and 

then saved in LSM format to prevent the loss of information. They were 

acquired with a resolution of 1024x1024 pixel with the confocal pinhole set to 

one Airy unit. Analysis of data was performed with ImageJ software, version 

1.37. Fifty random single cells were analyzed for each imaging analysis. 
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Mitotracker immunofluorescence 

For the evaluation of mitochondrial activity MitoTracker® Red CMXRos 

(Molecular Probes) was chosen. MitoTracker® probes passively diffuse across 

the plasma membrane and accumulate in actively respiring mitochondria. 

Thirty-thousand cells were plated on 24-well plates on 12 mm diameter round 

glass coverslips and then incubated with 150nM of Mitotracker Red for 30 

minutes. After incubation cells were fixed for 20 minutes in PBS containing 

4% paraformaldehyde (Sigma) and then washed once with PBS 1X. Nuclei 

were stained with the DNA intercalant DRAQ5 (Bio status, Alexis 

Corporation). Cells were finally mounted in 50% glycerol in PBS. 

Immunofluorescence analysis was performed with a confocal laser-scanning 

microscope LSM 510 (Zeiss, Gottingen, Germany). The lambda of the two 

HeNe lasers was set at 546 nm and at 633 nm. Fluorescence emission was 

revealed by BP 560–615 band pass filter for Mitotracker Red and by 615 long 

pass filter for DRAQ5. Double staining immunofluorescence images were 

acquired separately in the red and infrared channels at a resolution of 

1024x1024 pixels, with the confocal pinhole set to one Airy unit, and then 

saved in LSM format. Fifty random single cells were analyzed for each 

imaging analysis using the ImageJ version 1.37. 

 

RNA extraction and Quantitative Real-time PCR 

Total RNA from each sample was extracted using TRIzol reagent (Gibco/BRL 

Life Technologies, Inc., Gaithersburg, MD) and was reverse transcribed using 

the iScript cDNA Synthesis kit (Bio-Rad Laboratories Inc., Hercules, CA, 

USA). Real-time PCR was performed using iQ Supermix SYBR Green 2X on 

a Bio-Rad iCycler according to the manufacturer’s protocols. PCR reactions 

were performed in triplicate. Primer pairs (MWG Biotech, Ebersberg, 

Germany) were designed using the Primer 3 software 

(http://frodo.wi.mit.edu/primer3) to obtain amplicons ranging from 100 to 150 

base pairs. In order to obtain correct amplifications, each primer pair was tested 

for its specificity and its thermodynamics parameters with Blast 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi), mFold 

(http://mfold.rit.albany.edu/?q=mfold) and OligoAnalyzer 

(http://eu.idtdna.com/analyzer/Applications/OligoAnalyzer/) software. 

Expression values were normalized either versus scrambled transfected cells or 

versus scrambled transfected euploid cells. ABELSON and GAPDH 

housekeeping genes were chosen as reference genes. To quantify the mtDNA 

content, we selected two genes: D-loop as the mitochondrial target and ACTIN 

as the nuclear target. Both targets were quantified by qRT-PCR using cDNA 

reverse-transcribed from RNA of 3 NRIP1-silenced trisomic samples and 

scrambled control. Normalization of gene expression was obtained using ABL 
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gene as housekeeping. The ratio between D-loop and ACTIN expression under 

each condition (NRIP1-silenced or scrambled trisomic cells) was calculated.  

 

Immunoblotting 

For immunoblotting, cells were scraped into ice cold phosphate-buffered saline 

and lysed in a modified 10 mM Tris buffer pH 7.4 containing 150 mM NaCl, 

1% Triton X-100, 10% glycerol, 10 mM EDTA and protease inhibitor cocktail. 

After 30 min of incubation on ice, the lysates were cleared via centrifugation at 

12,000 xg at 4°C for 10 min. Protein concentrations were determined by the 

Lowry procedure. Protein extracts (18 µg) were separated on 4–12% Bis-Tris 

acrylamide Gel (Life Technologies, NP0323) and electron-transferred to PVDF 

or nitrocellulose membrane according to standard procedures. Unspecific 

binding sites were saturated by incubating membranes with TBS-Tween 20 

(0.05%) supplemented with 5% non-fat powdered milk for 1 h. Next, the 

membranes were incubated overnight with primary antibodies [GAPDH (Cell 

Signaling, 2118); LUCIFERASE (Invitrogen, 356700)] and the detection was 

assessed by appropriate HRP-labeled secondary antibodies [Santa Cruz, sc-

2004 (goat anti-rabbit) and sc-2005 (goat anti-mouse)] plus a 

chemiluminescent substrate (Thermo Scientific, 34080). Equal loading of lanes 

was confirmed by incubation with an anti-GAPDH antibody. 

 

Luciferase measurements 

Cells were seeded on glass coverslips (13 mm diameter) for single sample 

luminescence measurements and allowed to grow until 50% confluence. The 

cells were then transfected with a cytosolic (untargeted) firefly luciferase 

(cytLuc) and a mitochondrially targeted luciferase (mtLuc). Cell luminescence 

was measured in the same purpose-built luminometer used for the aequorin 

measurements, constantly perfused with KRB, supplemented with 1 mM CaCl2 

and 20 mM luciferin. The light output of a coverslip of infected cells was in the 

range of 1,000 –10,000 counts per second (cps) versus a background lower 

than 10 cps. All compounds employed in the experiments were tested for non-

specific effects on the luminescence, but none was observed. 

 

Statistics 

The analyses applied to the microarray data have been described above. For all 

other experiments, analysis of variance was carried out, followed by post hoc 

comparison (ANOVA, F-test). Data were expressed as mean +/− SEM. 
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4. RESULTS 

4.1. Data integration of microarray experiments shows genes consistently 

dysregulated in DS. 

Genome-wide dosage effects were computed with the approach described in 

Materials and Methods. In total, nine case-control experiments performed 

using three different Affymetrix GeneChips (Affymetrix Human Genome HG-

U133A, Affymetrix Human Genome U133 Plus 2.0, Affymetrix Human Gene 

1.0 ST Array) were interrogated and 44 DS vs 40 euploid samples were 

compared (Tab. 4). All assays were quality checked and ~80% of them passed 

the defined cut-off thresholds (84 out of 109). Comparison between the DS and 

the euploid conditions and the statistical significance were calculated with the 

methods implemented in the limma package [Smyth et al, 2005]. 

Since gene chip re-annotation has been shown to improve the cross-platform 

reproducibility and analysis of independent experiments [Carter et al, 2005], all 

probes were re-annotated according to the last release of the Ensembl gene 

database (Version 17.1.0, ENSG). In particular all the probe sets initially 

contained in the three Chipsets analyzed (respectively 22283, 54675 and 

241576), were matched to 11926, 19750 and 22031 unique Ensembl gene 

stable identifiers. 

Before data processing, 11547 genes were considered in the meta-analysis 

corresponding to the Ensembl gene identifiers shared by the GeneChip 

analyzed. In order to compare expression data deriving from heterogeneous 

platforms in the correct way, we implemented in our pipeline the ComBat 

algorithm, developed in order to reduce the non-biological experimental 

variation or “batch effects”. Batch effect deriving from analyzing different 

GEO series was evident from the first heatmap in Fig. 5, in which arrays 

mostly cluster according to the series. After running ComBat on the matrix of 

normalized expression data, we removed, or at least reduced, this problem as 

demonstrated by the second heatmap in Fig. 5 that shows the correlation 

among the arrays after the ComBat adjustment.  
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Figure 5. Heatmap of array correlation using Euclidean distances before (left) and after (right) 

batch effect correction. It is easy to point out the batch effect before the correction, samples 

mostly cluster according to the different GEO series. 

 

We identified 178 genes consistently dysregulated among the experiments in 

DS vs controls (Tab. 5-6). Proportionally, Hsa21 contributed in great part to 

the global dysregulation (Fig. 6).  

 

Figure 6. Ideograms showing the position of dysregulated genes on chromosomes. 

Horizontal bars represent the chromosomal location for the biological database identifiers. The 

scale is 2 million bases per pixel. 
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As expected, Hsa21 genes were globally upregulated in gene expression 

studies. It is remarkable that only 50% of all Hsa21 genes (71 out of 135 

studied here using the Ensembl genome annotation [Flicek et al, database]) 

showed consistent effects across the different experiments, indicating that 

dosage effects were either compensated or not detected in the selected 

experimental data. 

 

TABLE 5. LIST OF THE 71 HSA21 GENES UPREGULATED IN THE META-

ANALYSIS  

ID LOG_FC P.VALUE ADJ.P.VAL GENE_ID CHR 

ENSG00000184787 0,386204 2,65E-14 3,06E-10 UBE2G2 21 

ENSG00000141959 0,393163 2,35E-13 1,36E-09 PFKL 21 

ENSG00000159140 0,48527 7,56E-13 2,33E-09 SON 21 

ENSG00000184900 0,380755 8,08E-13 2,33E-09 SUMO3 21 

ENSG00000185808 0,648185 6,40E-12 1,48E-08 PIGP 21 

ENSG00000160221 0,476313 2,83E-11 5,44E-08 C21orf33 21 

ENSG00000198862 0,435255 3,54E-11 5,83E-08 LTN1 21 

ENSG00000155313 0,53725 1,47E-10 2,12E-07 USP25 21 

ENSG00000142207 0,394657 1,86E-10 2,38E-07 URB1 21 

ENSG00000154640 0,680346 4,09E-10 4,72E-07 BTG3 21 

ENSG00000160209 0,328505 4,61E-10 4,84E-07 PDXK 21 

ENSG00000159128 0,369301 7,95E-10 7,65E-07 IFNGR2 21 

ENSG00000183527 0,453732 1,17E-09 1,04E-06 PSMG1 21 

ENSG00000159131 0,379272 1,31E-09 1,08E-06 GART 21 

ENSG00000159147 0,657731 1,57E-09 1,21E-06 DONSON 21 

ENSG00000182240 0,547411 1,71E-09 1,23E-06 BACE2 21 

ENSG00000154719 0,528216 1,86E-09 1,27E-06 MRPL39 21 

ENSG00000159086 0,432171 5,40E-09 3,46E-06 PAXBP1 21 

ENSG00000157538 0,407667 6,49E-09 3,95E-06 DSCR3 21 

ENSG00000160201 0,399059 7,37E-09 4,26E-06 U2AF1 21 

ENSG00000185658 0,288545 1,15E-08 6,32E-06 BRWD1 21 

ENSG00000142188 0,642974 1,44E-08 7,55E-06 TMEM50B 21 

ENSG00000157617 0,457443 2,61E-08 1,31E-05 C2CD2 21 

ENSG00000159256 0,424298 7,95E-08 3,82E-05 MORC3 21 

ENSG00000205726 0,248475 1,39E-07 6,43E-05 ITSN1 21 

ENSG00000160218 0,362649 1,76E-07 7,82E-05 TRAPPC10 21 

ENSG00000156239 0,348446 1,85E-07 7,92E-05 N6AMT1 21 

ENSG00000185917 0,348 1,97E-07 8,13E-05 SETD4 21 

ENSG00000160213 0,422201 2,25E-07 8,97E-05 CSTB 21 

ENSG00000156304 0,287182 2,76E-07 0,000106 SCAF4 21 

ENSG00000159228 0,493672 3,65E-07 0,000136 CBR1 21 
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ENSG00000156256 0,428437 4,23E-07 0,000153 USP16 21 

ENSG00000160294 0,235276 6,36E-07 0,000223 MCM3AP 21 

ENSG00000182093 0,52092 7,19E-07 0,000239 WRB 21 

ENSG00000183255 0,422953 7,25E-07 0,000239 PTTG1IP 21 

ENSG00000142166 0,344144 8,56E-07 0,000274 IFNAR1 21 

ENSG00000159055 0,538771 3,13E-06 0,000976 MIS18A 21 

ENSG00000142168 0,381354 3,26E-06 0,000991 SOD1 21 

ENSG00000159231 0,378271 3,39E-06 0,001003 CBR3 21 

ENSG00000155304 0,352388 4,97E-06 0,001384 HSPA13 21 

ENSG00000156261 0,319143 5,07E-06 0,001384 CCT8 21 

ENSG00000159216 0,466797 5,15E-06 0,001384 RUNX1 21 

ENSG00000185437 0,488504 5,80E-06 0,001506 SH3BGR 21 

ENSG00000160310 0,302425 8,50E-06 0,002135 PRMT2 21 

ENSG00000160299 0,311682 1,01E-05 0,002489 PCNT 21 

ENSG00000182670 0,544217 1,31E-05 0,003018 TTC3 21 

ENSG00000160285 0,399759 2,23E-05 0,00505 LSS 21 

ENSG00000142192 0,318108 5,41E-05 0,01157 APP 21 

ENSG00000156299 0,429725 5,52E-05 0,011598 TIAM1 21 

ENSG00000154727 0,281409 7,76E-05 0,015714 GABPA 21 

ENSG00000160208 0,245652 0,000121 0,023762 RRP1B 21 

ENSG00000154734 0,485059 0,000175 0,030642 ADAMTS1 21 

ENSG00000159259 0,294897 0,000258 0,043193 CHAF1B 21 

ENSG00000156253 0,287605 0,000271 0,044023 RWDD2B 21 

ENSG00000182871 0,441329 0,000432 0,063924 COL18A1 21 

ENSG00000159082 0,285239 0,000471 0,068786 SYNJ1 21 

ENSG00000180530 0,501849 0,000636 0,080917 NRIP1 21 

ENSG00000154721 0,367926 0,001008 0,109757 JAM2 21 

ENSG00000160216 0,21927 0,001666 0,156436 AGPAT3 21 

ENSG00000157601 0,494649 0,001911 0,175119 MX1 21 

ENSG00000160200 0,349411 0,001977 0,178367 CBS 21 

ENSG00000243646 0,322797 0,002116 0,186497 IL10RB 21 

ENSG00000142156 0,250492 0,002196 0,189607 COL6A1 21 

ENSG00000215424 0,291364 0,002526 0,198737 MCM3AP 21 

ENSG00000154639 0,311744 0,003256 0,226523 CXADR 21 

ENSG00000156273 0,239164 0,003482 0,235146 BACH1 21 

ENSG00000177692 0,212829 0,003991 0,254589 DNAJC28 21 

ENSG00000160191 0,260016 0,004398 0,267283 PDE9A 21 

ENSG00000157557 0,29883 0,004826 0,279563 ETS2 21 

ENSG00000142173 0,3151 0,00493 0,281797 COL6A2 21 

ENSG00000160307 0,21962 0,007483 0,334407 S100B 21 

 



31 

 

TABLE 6. TOP TWENTY NON-HSA21 GENES DYSREGULATED IN THE META-

ANALYSIS 

ID LOGFC P.VALUE ADJ.P.VAL GENE_ID CHR 

ENSG00000157014 -0,22981 4,92E-06 0,001384 TATDN2 3 

ENSG00000075413 -0,24075 5,87E-06 0,001506 MARK3 14 

ENSG00000162931 -0,21856 1,06E-05 0,002544 TRIM17 1 

ENSG00000105443 -0,2211 1,21E-05 0,002846 CYTH2 19 

ENSG00000123810 -0,20686 3,29E-05 0,007313 B9D2 19 

ENSG00000214063 0,359408 0,000111 0,022133 TSPAN4 11 

ENSG00000042493 0,53367 0,000136 0,026152 CAPG 2 

ENSG00000206549 -0,24367 0,000149 0,02773 PRSS50 3 

ENSG00000177731 0,208513 0,000158 0,028891 FLII 17 

ENSG00000124587 0,432463 0,000166 0,029978 PEX6 6 

ENSG00000141562 -0,26932 0,000173 0,030642 NARF 17 

ENSG00000168591 -0,22125 0,000194 0,033444 TMUB2 17 

ENSG00000120738 0,32309 0,000199 0,03376 EGR1 5 

ENSG00000151746 -0,27399 0,000268 0,044023 BICD1 12 

ENSG00000054277 -0,40794 0,000311 0,049848 OPN3 1 

ENSG00000198521 0,238111 0,00035 0,054621 ZNF43 19 

ENSG00000121691 0,415439 0,000392 0,059045 CAT 11 

ENSG00000104522 0,254573 0,00048 0,069353 TSTA3 8 

ENSG00000168306 0,335262 0,000532 0,073965 ACOX2 3 

ENSG00000256043 0,422635 0,000687 0,085341 CTSO 4 

 

Running GSEA with MSigDB_c1 positional database, two genomic regions on 

Hsa21 enriched with dysregulated genes have been identified: chr21q22 and 

chr21q21, (Fig. 7); these regions cover almost the entire chromosome 21 and it 

does not fit well with the hypothesis that a single region could be responsible 

for the molecular and phenotypic consequences of DS [Belichenko et al, 2007; 

Ronan et al, 2007]. 
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Figure 7. Mapping of the dysregulated genes on chromosome 21. Red bars indicate the 

genomic mapping of the genes. The two ideograms show also the cytogenetic bands (left 

ideogram) and the heatmap of the genic density (right ideogram). 

 

4.2. Functional annotation using gene enrichment analysis 

Functional classification of dysregulated genes into pathways and Gene 

Ontology (GO) categories was performed with Fisher’s test-based tools such as 

DAVID, WebGestalt Toolkit and ConsensusPathDb and with GSEA, which 

uses a running-sum statistics. The first three software showed comparable 

results and for sake of simplicity we only show results from ConsensusPathDb. 

The list of 178 dysregulated genes in the meta-analysis was used as input file 

of the tool and in Table 7 we reported the complete list of enriched GO 

biological process (BP3 level) terms obtained. This list of GO terms was then 

used as input of the REVIGO software [Supek et al, 2011] in order to 

summarize redundant and/or related terms (Fig. 8). The pathways most 

enriched with dysregulated genes referred mainly to cellular morphogenesis 

and development, and defects in synapsis (e.g. response to axon injury, 

dendrite regeneration and regulation of neuronal plasticity). In addition, 

apoptosis-related gene categories were also enriched. 
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TABLE 7. ENRICHMENT OF GENE ONTOLOGY BIOLOGICAL PROCESSES 

AMONG THE DYREGULATED GENES.  

TERM_GOID TERM_NAME SIZE P-VALUE ADJ.P.VAL 

GO:0000902 cell morphogenesis 1007 8,68E-06 0,00372 

GO:0065003 macromolecular complex assembly 1182 4,26E-05 0,00525 

GO:0071453 cellular response to oxygen levels 100 4,52E-05 0,00525 

GO:0071822 protein complex subunit 

organization 

1335 4,90E-05 0,00525 

GO:0071456 cellular response to hypoxia 91 2,22E-04 0,01903 

GO:0012501 programmed cell death 1650 3,40E-04 0,02170 

GO:0036293 response to decreased oxygen 

levels 

231 3,55E-04 0,02170 

GO:0036296 response to increased oxygen 

levels 

18 6,07E-04 0,03249 

GO:0048523 negative regulation of cellular 

process 

3078 6,87E-04 0,03268 

GO:0071455 cellular response to hyperoxia 5 8,69E-04 0,03550 

GO:0030198 extracellular matrix organization 321 9,68E-04 0,03550 

GO:0006921 cellular component disassembly 

involved in execution phase of 

apoptosis 

82 1,01E-03 0,03550 

GO:0048678 response to axon injury 48 1,08E-03 0,03550 

GO:0010941 regulation of cell death 1227 1,21E-03 0,03686 

GO:0071503 response to heparin 6 1,30E-03 0,03697 

GO:0007165 signal transduction 4424 2,84E-03 0,07233 

GO:0033273 response to vitamin 63 2,96E-03 0,07233 

GO:0014070 response to organic cyclic 

compound 

571 3,04E-03 0,07233 

GO:0007157 heterophilic cell-cell adhesion 32 3,35E-03 0,07376 

GO:0048858 cell projection morphogenesis 722 3,50E-03 0,07376 

GO:0009112 nucleobase metabolic process 67 3,70E-03 0,07376 

GO:0008354 germ cell migration 10 3,79E-03 0,07376 

GO:0032990 cell part morphogenesis 736 4,18E-03 0,07477 

GO:0043094 cellular metabolic compound 

salvage 

35 4,33E-03 0,07477 

GO:0044259 multicellular organismal 

macromolecule metabolic process 

113 4,37E-03 0,07477 

GO:0046660 female sex differentiation 115 4,70E-03 0,07744 

GO:0030574 collagen catabolic process 73 5,03E-03 0,07969 

GO:0007611 learning or memory 171 5,72E-03 0,08746 

GO:0097305 response to alcohol 231 6,42E-03 0,09131 

GO:0070633 transepithelial transport 13 6,45E-03 0,09131 

GO:0044243 multicellular organismal catabolic 

process 

80 6,94E-03 0,09131 

GO:0006066 alcohol metabolic process 358 7,04E-03 0,09131 
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GO:0097190 apoptotic signaling pathway 426 7,21E-03 0,09131 

GO:0030031 cell projection assembly 237 7,35E-03 0,09131 

GO:0001967 suckling behavior 14 7,48E-03 0,09131 

GO:0048168 regulation of neuronal synaptic 

plasticity 

43 7,73E-03 0,09131 

GO:0030705 cytoskeleton-dependent 

intracellular transport 

83 7,89E-03 0,09131 

GO:0022617 extracellular matrix disassembly 87 9,29E-03 0,10221 

GO:0000096 sulfur amino acid metabolic 

process 

46 9,31E-03 0,10221 

List retrieved from ConsensusPathDB. Adjusted P-value cut-off = 0.1. 

 

 

 

 

 

Figure 8. Graphical representation of GO terms found enriched on 178 genes 

dysregulated in DS samples. Heatmap colors represent the statistical significance of the 

enriched category. Adj.P.Value cut-off = 0.05. Plot obtained with REVIGO tool 

(http://revigo.irb.hr). 

 

GSEA (Broad Institute) differs from the other functional class scoring tools 

used because it adopts a running-sum statistics and it works on the whole 

expression matrix of normalized data, not on the simple lists of DEG. The 

analysis with this tool confirmed the enrichment of genes mapping to Hsa21 

(Fig. 9), as expected, but also revealed the enrichment for genes involved in the 
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cell cycle, among the upregulated genes, and the targets of PGC-1α (P.val < 

0.01), among the downregulated genes. This is supported by our previous 

studies on DS fetal fibroblasts in which we found PGC-1α significantly 

downregulated [Piccoli et al, 2013]. The protein encoded by this gene is a 

tissue-specific coactivator that enhances the activity of many nuclear receptors 

and coordinates transcriptional programs important for energy metabolism and 

energy homeostasis in mitochondria.  

 

 

Figure 9. Enrichment plots from the GSEA analysis. Plot retrieved from the GSEA java tool 

(Broad Institute). 

 

Molecular interactions among the 178 significantly dysregulated genes on 

Hsa21 and on other chromosomes exhibited a complex and enriched-in-

interactions network (111 interactions, instead of 12.8 expected with String 9.1 

software [Franceschini et al, 2013]) supporting the important role of physical 

interactions as transmitter of dosage effects (Fig. 10). 
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Figure 10. Gene network reconstruction of the 178 genes found dysregulated in the meta-

analysis. Connection lines represent the confidence of the physical/genetical interaction 

between the nodes (genes). Graph obtained with String 9.1 software. 

 

4.3. Enrichment of TF motifs 

We further analyzed the promoter sequences of the 107 non-Hsa21 genes 

dysregulated in the meta-analysis for enrichment of transcription factor (TF) 

binding sites through the Pscan software [Zambelli et al, 2009] using TF 

matrices from the Jaspar database. Significant enrichment was computed for 

the TF motifs showed in Table 8. TF enriched for their targets in the 

differentially expressed list of genes were: 

• EGR1, an early response transcription factor critical for certain types of 

memory and learning [Jones et al, 2001; Bozon et al, 2002; Knapska and 

Kaczmarek, 2004] and its expression is critical for neuronal plasticity and 

cognition.  

• TFAP2, which is highly expressed in early neural crest cells, suggesting a 

key role in their differentiation and development. This is also supported by 
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the fact that TFAP2A knockout mice die perinatally with cranio-

abdominoschisis and severe dysmorphogenesis of the face, skull, sensory 

organs, and cranial ganglia. 

• KLF4, which regulates the expression of key transcription factors during 

embryonic development. Plays an important role in maintaining embryonic 

stem cells and in preventing their differentiation, and is required for 

establishing the barrier function of the skin and for postnatal maturation 

and maintenance of the ocular surface. Being involved in the 

differentiation of epithelial cells, it may also function in skeletal and 

kidney development. It contributes to the down-regulation of p53/TP53 

transcription. 

• MYCN, which is a member of the MYC family encoding a protein with a 

basic helix-loop-helix (bHLH) domain. This protein is located in the 

nucleus and must dimerize with another bHLH protein in order to bind 

DNA. Amplification of this gene is associated with a variety of tumors, 

most notably neuroblastomas. 

• NFKB1, which is a transcription regulator that is activated by various 

intra- and extra-cellular stimuli such as cytokines, oxidant-free radicals, 

ultraviolet irradiation, and bacterial or viral products. NFKB1 is a 

pleiotropic transcription factor present in almost all cell types. It is the 

endpoint of signal transduction events initiated by a lot of stimuli related to 

different biological processes such as inflammation, immunity, 

differentiation, cell growth, tumorigenesis and apoptosis. 

• GABPA, a TF mapping to Hsa21 involved in activation of cytochrome 

oxidase expression and nuclear control of mitochondrial function. It is 

among the most studied genes involved in DS. 
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TABLE 8. TRANSCRIPTION FACTORS ENRICHED FOR TARGETS AMONG 

DYSREGULATED GENES  

TF_NAME MATRIX_ID Z_SCORE P_VALUE 

EGR1 MA0162.1 3,91755 4,32E-05 

TFAP2A MA0003.1 3,80988 6,80E-05 

KLF4 MA0039.2 3,80339 6,91E-05 

MYCN MA0104.2 3,66669 0,000119284 

NFKB MA0061.1 3,65114 0,000125895 

SP1 MA0079.2 3,59976 0,000155546 

ZFX MA0146.1 3,30231 0,000467916 

PLAG1 MA0163.1 2,96758 0,00146224 

NFKB1 MA0105.1 2,86088 0,00207677 

MYC MA0147.1 2,79364 0,00255516 

ETS1 MA0098.1 2,20932 0,0134846 

RELA MA0107.1 2,18276 0,0143475 

MAX MA0058.1 2,0039 0,022257 

USF1 MA0093.1 1,94528 0,0255732 

REL MA0101.1 1,84356 0,032259 

HIF1A::ARNT MA0259.1 1,72477 0,0419518 

GABPA MA0062.2 1,71586 0,0427221 

REST MA0138.2 1,69181 0,0448553 

Table showing transcription factors with targets enriched in the 107 non-Hsa21 dysregulated 

genes in the meta-analysis. TF matrices retrieved from Jaspar database. P.value cut-off = 0.05. 

 

 

4.4. Identification of single Hsa21 genes responsible for specific DS 

phenotypes in public expression data 

4.4.1. Analysis of public expression data suggests that NRIP1 affects NEMG 

expression. 

To identify which Hsa21 gene might down-regulate NEMG expression, we 

screened the Gene Expression Omnibus repository 

(http://www.ncbi.nlm.nih.gov/geo) for gene expression data related to the 

modulation of Hsa21 genes. We selected the GSE19836 experiment [De Cegli 

et al, 2010], a dataset derived from the analysis of a mouse embryonic stem cell 

(ESC) bank in which 32 orthologs of human chromosome 21 genes, including 

transcription factors and protein kinases, were individually overexpressed in an 

inducible manner. We re-analyzed this series by focusing on the mitochondria-

related categories and pathways dysregulated by the overexpression of each 

gene looking for Hsa21 genes that when overexpressed would induce NEMG 

downregulation. Among the 20 analyzed Hsa21 genes, only NRIP1, one of the 

7 genes considered "effective" for the expression perturbation in the 
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manipulated cells [De Cegli et al, 2010], was able to cause NEMG 

downregulation when over-expressed. Our analysis showed that NRIP1 over-

expression caused a significant enrichment of NEMGs among 298 

downregulated genes. The "Mitochondrion" was the most affected Cell 

Component Gene Ontology (GO) category (p < 10
-3

) (Fig. 11), with a cluster 

of 37 downregulated genes (Tab. 9). Motif enrichment analysis, by clustering 

downregulated genes based on their promoter regions, revealed a significant 

enrichment (p < 0.005) in genes with the ERRα motif. Twenty-five 

downregulated genes, instead of the expected 10, showed promoter regions 

around the transcription start site containing the ERRα motif.  

 

TABLE 9. GENES DOWNREGULATED AFTER NRIP1 OVEREXPRESSION IN THE 

GSE19836 BELONGING TO THE CELLULAR COMPONENT “MITOCHONDRION” 

(GO:0005739). 

PROBE_SET GENE_SYMBOL DESCRIPTION 

1434866_x_at Cpt1a carnitine palmitoyltransferase 1a, liver 

1417956_at Cidea cell death-inducing DNA fragmentation factor, alpha 

subunit-like effector A 

1455106_a_at Ckb creatine kinase, brain 

1428145_at Acaa2 acetyl-Coenzyme A acyltransferase 2 (mitochondrial 3-

oxoacyl-Coenzyme A thiolase) 

1427342_at Fastkd1 FAST kinase domains 1 

1454674_at Fez1 fasciculation and elongation protein zeta 1 (zygin I) 

1428516_a_at Alkbh7 alkB, alkylation repair homolog 7 (E. coli) 

1421010_at Mobp myelin-associated oligodendrocytic basic protein 

1424562_a_at Slc25a4 solute carrier family 25 (mitochondrial carrier, adenine 

nucleotide translocator), member 4 

1450048_a_at Idh2 isocitrate dehydrogenase 2 (NADP+), mitochondrial 

1418091_at Tfcp2l1 transcription factor CP2-like 1 

1422703_at Gyk glycerol kinase 

1434499_a_at Ldhb lactate dehydrogenase B 

1423108_at Slc25a20 solute carrier family 25 (mitochondrial 

carnitine/acylcarnitine translocase), member 20 

1416457_at Ddah2 dimethylarginine dimethylaminohydrolase 2 

1429021_at Epha4 Eph receptor A4 

1451504_at Chchd3 coiled-coil-helix-coiled-coil-helix domain containing 3 

1433855_at Abat 4-aminobutyrate aminotransferase 

1451744_a_at Ptgr2 prostaglandin reductase 2 

1439947_at Cyp11a1 cytochrome P450, family 11, subfamily a, polypeptide 1 

1418709_at Cox7a1 cytochrome c oxidase, subunit VIIa 1 

1431980_a_at As3mt arsenic (+3 oxidation state) methyltransferase 

1425140_at Lactb2 lactamase, beta 2 

1419656_at Slc25a36 solute carrier family 25, member 36 

1427705_a_at Nfkb1 nuclear factor of kappa light polypeptide gene enhancer 

in B cells 1, p105 
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1455991_at Ccbl2 cysteine conjugate-beta lyase 2 

1428140_at Oxct1 3-oxoacid CoA transferase 1 

1453738_at C330018D20Rik RIKEN cDNA C330018D20 gene 

1451084_at Etfdh electron transferring flavoprotein, dehydrogenase 

1456711_at 4932425I24Rik RIKEN cDNA 4932425I24 gene 

1417089_a_at Ckmt1 creatine kinase, mitochondrial 1, ubiquitous 

1418288_at Lpin1 lipin 1 

1416023_at Fabp3 fatty acid binding protein 3, muscle and heart 

1418640_at Sirt1 sirtuin 1 (silent mating type information regulation 2, 

homolog) 1 (S. cerevisiae) 

1434996_at Slc25a16 solute carrier family 25 (mitochondrial carrier, Graves 

disease autoantigen), member 16 

1424056_at Usp48 ubiquitin specific peptidase 48 

1437974_a_at Hk1 hexokinase 1 

 

Among the other Hsa21 genes which possibly interfere with mitochondrial 

pathways, neither DYRK1A, nor RCAN1, nor GABPA, all considered "silent" 

genes [De Cegli et al, 2010], caused NEMG downregulation when 

overexpressed. 
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Figure 11. GO terms tree of the cellular component categories enriched in the 298 

downregulated genes found in the reanalysis of GEO GSE19836  

 

4.4.2. Modulation of NRIP1 and PGC-1α expression dysregulates the same 

NEMGs downregulated in DS fetal hearts. 

To investigate whether the sets of genes regulated by NRIP1 and/or PGC-1α 

showed any overlapping to the NEMGs downregulated in DS fetal hearts 

[Conti et al, 2007], we performed a meta-analysis comparing 3 sets of gene 

expression data, SET1, SET2 and SET3. SET1 included 123 genes which were 

both upregulated after NRIP1 silencing and downregulated after NRIP1 re-

expression in mouse adipocytes [Powelka et al, 2006]. SET2 included 129 
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genes which were upregulated after PGC-1α induction in SAOS2 cells (human 

osteoblast-like cells) [Schreiber et al, 2004]. SET3 included the 70 genes 

downregulated in DS fetal heart tissues [Conti et al, 2007] belonging to the 

"mitochondrion" GO category. The comparison was aimed at identifying genes 

consistently dysregulated across these studies. 

The Venn diagram shows that NEMGs in SET3, which were downregulated in 

DS fetal hearts, overlap with both SET1 and SET2 (Fig. 12). The three sets of 

genes overlap each other for at least 25 genes. Fifteen genes are consistently 

dysregulated across all 3 experiments (Fig. 1B). Most of these genes are 

included in the electron transport chain, mainly in complex I, and in oxidative 

phosphorylation pathways. It is also interesting to note that 42 genes overlap 

between the sets of genes inversely regulated by NRIP1 and PGC-1α (SET1 

and SET2) in agreement with the antagonistic functions of the two co-

regulators [Fritah et al, 2010]. These results support a role of NRIP1 in 

downregulating NEMGs in DS fetal hearts. 

 

 

Figure 12. Comparison of NEMGs downregulated in DS fetal hearts with those dysregulated 

by NRIP1 and/or PGC-1α. A. Venn Diagram showing overlapping amongst the 3 sets of data. 

Out of the 70 mitochondrial genes that are downregulated in DS fetal hearts (SET3), 25 

overlap the list of NRIP1 regulated genes (SET1), and 29 overlap the list of PGC-1α regulated 

genes (SET2). B. List of mitochondria-related genes overlapping in the 3 sets of data. 
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4.4.3. Promoter analysis of genes downregulated in DS fetal hearts shows 

enrichment for transcription factors repressed by NRIP1. 

It has been recently demonstrated that the transcription factors NRF1 and 

ERRα and their targets are repressed by Hsa21 gene NRIP1 and induced by 

PGC-1α in a dose dependent manner in neonatal rat cardiomyocytes [Chen et 

al, 2012]. The promoter regions from -450bp to +50bp of mitochondrial genes 

downregulated in DS heart tissues were analyzed in order to recognize DNA 

binding motifs for both NRF1 and ERRα matrices by PSCAN software 

[Zambelli et al, 2009]. The list of downregulated genes was ranked according 

to the prediction of binding affinity of their promoter regions to NRF1 and 

ERRα binding sites with a cut-off of affinity score = 0.80 and p-value < 0.003. 

Interestingly, among the 65 mitochondrial genes found downregulated in fetal 

hearts, 40% of these genes have consensus DNA binding sites for the nuclear 

respiratory factor NRF1 in their 5’ flanking regions (Tab. 10), and 20% of 

them show a high affinity for the estrogen-related receptor ERRα (Tab. 11).  

 

TABLE 10. MITOCHONDRIAL GENES DOWNREGULATED IN DS HEART 

TISSUES WITH NRF1 BINDING SITE IN THEIR PROMOTER REGIONS. 

GENE NAME SCORE PROMOTER REGION 

POSITION 

BINDING SITE 

ECGF1 1,00 -13 CGCATGCGCA 

SCO2 1,00 -14 CGCATGCGCA 

PIN4 0,98 -282 CGCGTGCGCA 

IDH3A 0,97 -24 CGCTTGCGCA 

UQCRC1 0,96 7 CGCTTGCGCG 

NDUFB8 0,96 -9 CACATGCGCA 

RPL10 0,96 -12 CACATGCGCA 

ENDOG 0,91 -161 CGCCTGCGCA 

FPGT-TNNI3K 0,91 23 CGCATGCGCC 

SDHA 0,91 -88 CGCCTGCGCA 

UQCRC2 0,91 -264 CGCATGCGCC 

ETFB 0,90 -9 CGCCTGCGCG 

GLUD1 0,90 -31 CGCCTGCGCG 

NDUFAB1 0,90 -43 CGCCTGCGCG 

CYCS 0,90 -208 CGCAAGCGCA 

SDHB 0,90 -65 CGCATGCCCA 

HSPA9 0,89 -171 CGCATGTGCG 

MRPL15 0,88 -52 CGCGCGCGCA 

SLC25A12 0,88 -63 CGCGTGCGGA 

VDAC1 0,88 -59 TGCGTGCGCA 

HCCS 0,88 -25 CGCGTGCCCG 

IDH3B 0,87 -166 TGCTTGCGCA 
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IDH2 0,86 -262 CGCTTGCGAG 

COX4NB 0,84 -292 CACGTCCGCA 

COQ7 0,81 -363 CGCCCGCGCA 

ETFA 0,81 -71 CGCCTGCCCA 

GOT1 0,81 -395 CGCCCGCGCA 

NDUFA13 0,81 -265 GGCCTGCGCA 

NDUFS2 0,81 -78 CGCCTGCGTA 

PDHA1 0,81 -165 CGCAGGCGCT 

DLAT 0,80 33 AGCCTGCGCG 

GCSH 0,80 -18 CGCCTCCGCG 

MOSC2 0,80 -6 AGCCTGCGCG 

AK2 0,80 -303 CCCACGCGCA 

NRF1 target genes are sorted with a cut-off affinity score = 0.80 

 

TABLE 11. MITOCHONDRIAL GENES DOWNREGULATED IN DS HEART 

TISSUES WITH ERRα BINDING SITE IN THEIR PROMOTER REGIONS.  

GENE NAME SCORE PROMOTER REGION 

POSITION 

BINDING SITE  

HSPA9 0,95 -66 GACTCAAGGTCACA 

MOSC2 0,94 -174 CGCTGAAGGTCATG 

SDHA 0,93 -390 TTGTGGAGGTCACA 

TXN2 0,92 -298 ATCACGAGGTCAAA 

MRPL35 0,92 -231 ATCACAAGGTCAGG 

BDH1 0,91 -193 GGATCAAGGACAGA 

NDUFB8 0,90 -208 AGAAAAAGGACACA 

COX7A2 0,90 -48 TCGAAAAGGTCAGG 

SDHB 0,90 -446 ATCACGAGGTCAGG 

DLAT 0,89 -428 AACTGAAGGTGACA 

NDUFAB1 0,88 -417 AAAAAAAGGACAAA 

COQ7 0,88 -108 TCGAAGAGGTCACG 

MRPS12 0,88 23 ACCTAAAGGTGAGG 

TIMM23 0,87 -6 CCCGGAAGGTCAGC 

ETFA 0,87 -296 ACCCCGAGGTCAGC 

ATP5B 0,87 -289 TGATCTAGGTGACA 

IDH3B 0,86 -153 GTGGGGAGGTCATG 

ECI1 0,86 -292 AGCTCGCGGTCACG 

MRPL15 0,85 -112 ACTAAAAGGACAAC 

ETFB 0,85 -449 ACATGGAGGTGAAG 

COX4NB 0,85 -94 GCACGGAGGTCACC 

CYCS 0,84 -367 ACCTAGAGGTCTCC 

TNNI3K 0,84 -329 TTTTCAAGATCATT 

UQCRFS1 0,84 -236 ATCTCTAGGTCTTC 
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SLC25A4 0,83 -205 GTTTAAAGGGCACA 

GOT1 0,83 -405 TGGTCAAGGTCGCC 

PIN4 0,83 -99 TCTTATTGGTCAGA 

SCO2 0,81 -258 CCATGGCGGTCAGC 

NFS1 0,81 -92 CGAGCGAGGTGAGG 

CKMT2 0,81 -437 GGAAGGAGGTCCCT 

IMMT 0,80 -41 ATATCCAGCTCATA 

DLST 0,80 -191 TCCTGAAGGTGTAT 

MIPEP 0,80 -265 GCCTGAAGGAGAAG 

COX10 0,80 -14 GCCTGAAGGACTTC 

ERRα target genes are sorted with a cut-off affinity score = 0.80 

 

4.5. Validation of NRIP1 role in DS mitochondrial dysfunction 

4.5.1. NRIP1 attenuation by siRNA affects NEMG expression in DS-HFFs.  

We previously demonstrated that NRIP1 is upregulated in human fetal 

fibroblasts from DS fetuses (DS-HFFs) [Piccoli et al, 2013].  

To test the hypothesis that NRIP1 overexpression perturbs mitochondrial 

function and that this effect is associated with PGC-1α downregulation, we 

performed silencing experiments of NRIP1 gene in DS-HFFs. Seventy-two 

hours after transfection of a specific SMART pool of siRNAs in DS-HFFs, an 

inverse correlation between NRIP1 and PGC-1α expression, in a siRNA 

dosage-dependent way, was demonstrated by qRT-PCR (Fig. 13).  
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Figure 13. NRIP1 and PGC-1α expression in NRIP1-silenced DS-HFFs. A. NRIP1 mRNA 

expression level in euploid cells (N1-N5), and in trisomic (DS1-DS8) HFF lines used for 

silencing experiments. For each sample, values represent the average determination ± SEM for 

3 qRT-PCR experiments. A pool of euploid cells was used as calibrator. ** = p<10
-4

. P-value 

expresses significance for euploid vs trisomic comparisons. B. NRIP1 and PGC-1α expression 

levels in trisomic cells transfected with a scrambled siRNA and with a NRIP1-specific 

SMART pool of siRNAs. A decrease in NRIP1 expression level corresponds to an increase on 

PGC-1α expression level in a siRNA-dependent way. Values represent the average 

determination ± SEM for 8 NRIP1-silenced DS-HFFs carried out in triplicate. * = p<0.05, ** = 

p<0.01. P-values express significance for NRIP1-silenced vs scrambled comparisons. 

 

By immunofluorescence analysis we demonstrated that the NRIP1 fluorescent 

signal was more intense over nuclei of DS-HFFs (Fig. 14B) with respect to 

euploid HFFs (Fig. 14A) indicating a higher concentration of the NRIP1 

protein in trisomic cells. In DS-HFFs treated with siRNAs, NRIP1 fluorescent 

signal was significantly decreased in a siRNA dosage-dependent way (Fig. 

14D-E).  
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Figure 14. NRIP1 immunofluorescence in NRIP1-silenced DS-HFFs. Representative 

images of NRIP1 immunofluorescence analysis in (A) euploid cells, (B) trisomic cells, and 

trisomic cells transfected (C) with a scrambled siRNA, (D) with 5nM NRIP1 siRNA and (E) 

20nM NRIP1 siRNA. F. Semi quantitative analysis of the immunodetected signals, by ImageJ 

software (means ± SEM of 3 assayed samples). Fifty randomly selected, different cells for each 

sample/experimental condition were analyzed. A decrease of the fluorescent signal is observed 

in silenced vs scrambled DS-HFFs. Signal from 5nM NRIP1 siRNA transfected cells is 

comparable with euploid HFFs. Statistical significance: ** = p<0.01 for trisomic vs euploid 

comparisons; # = p<0.05 for NRIP1-silenced vs scrambled comparisons. 

 

To determine the effects of NRIP1 attenuation by siRNA on other 

mitochondria-related genes, we compared the expression of 7 genes in silenced 

vs scrambled cells using qRT-PCR. Five out of 7 analyzed genes were 

significantly upregulated after NRIP1 attenuation by siRNA (Fig. 15). Also the 

average mtDNA content, evaluated by measuring the D-LOOP/ACTIN ratio, 

was increased after NRIP1 attenuation by siRNA and consequent PGC-1α 

overexpression. 
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Figure 15. Mitochondria-related gene expression in NRIP1-silenced DS-HFFs. Relative 

mRNA expression of 7 mitochondria-related genes was measured in NRIP1-silenced DS-HFFs 

vs scrambled transfected DS-HFFs. Five out of the 7 genes show a significant increase in their 

expression level. Values represent the average determination ± SEM for 3 DS-HFF samples 

carried out in triplicate. A pool of scrambled transfected euploid cells was used as calibrator. * 

= p<0.05. P-value express statistical significance for NRIP1-silenced vs scrambled 

comparisons. 

 

4.5.2. Mitochondrial function is improved in DS-HFFs after NRIP1 attenuation 

by siRNA. 

ROS production was measured by confocal microscopy imaging of cells 

treated with the redox-sensitive fluorescent probe dichlorofluorescein (DCF). 

Seventy-two hours after transfection with NRIP1 siRNA, DCF-related 

fluorescence was lower with respect to scrambled DS-HFFs. Semi-quantitative 

analysis of fluorescent signals demonstrated that, on an average basis, the 

ROS-related DCF fluorescence decreased up to 50% in a siRNA dosage-

dependent manner (Fig. 16).  

 

Figure 16. ROS decrease in NRIP1-silenced DS-HFFs. Confocal microscopy live cell imaging 

of the DCF fluorescence in transfected DS-HFFs: (A) scrambled, (B) 5nM NRIP1 siRNA and 

(C) 20nM NRIP1 siRNA. D. Semi-quantitative analysis of the DCF-related fluorescence, by 

ImageJ software (means ± SEM of 3 assayed samples). Fifty randomly selected, different cells 

for each sample/experimental condition were analyzed. A significant decrease of DCF-related 

fluorescence is observed after NRIP1 attenuation in a siRNA-dependent way. ** = p<10
-4

. P-

value express statistical significance for NRIP1-silenced vs scrambled comparisons. 
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Then, to confirm even further that NRIP1 attenuation by siRNA improves 

mitochondrial function, we incubated trisomic silenced cells with the 

MitoTracker Red dye, a reagent that stains mitochondria in live cells and 

whose accumulation is dependent upon membrane potential. A significant 50% 

increase of the MitoTracker Red-related fluorescence was observed in NRIP1-

silenced cells when compared with scrambled controls, thus indicating an 

increase in respiratory activity (Fig. 17).  

 

Figure 17. Mitochondrial activity in DS NRIP1-silenced DS-HFFs. Confocal microscopy 

live cell imaging of the Mitotracker fluorescence in transfected DS-HFFs: (A) scrambled  and 

(B) with 20nM NRIP1 siRNA. C. Semi quantitative analysis of the Mitotracker-related 

fluorescence, by ImageJ software (means ± SEM of 5 assayed samples). Fifty randomly 

selected, different cells for each sample/experimental condition were analyzed. An increase of 

Mitotracker related fluorescence is observed in NRIP1-silenced DS-HFFs. ** = p<0.005. P-

value express statistical significance for NRIP1-silenced vs scrambled comparisons. 

  

ATP content was strongly increased in silenced DS-HFFs (Fig. 18). We used a 

chimera of the ATP-sensitive photoprotein luciferase specifically targeted to 

mitochondria (mtLuc) to obtain a dynamic monitoring of [ATP]m. Since basal 

ATP content is highly dependent on the abundance of transfected luciferase, 

we determined the exact amount of the luciferase transduced under our 

experimental conditions through an immunoblot assay. We found that the 

levels of luciferase protein transduced in NRIP1-silenced DS-HFFs were 

comparable with those detected in control cells transfected with the non-

targeting scrambled siRNA (Fig. 19).  
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Figure 18. Mitochondrial ATP measurement. A. Barplot of the mitochondrial ATP content 

and of the basal ATP content in scrambled and NRIP1 siRNA-transfected DS-HFFs. B. The 

traces show mitochondrial [ATP]m changes elicited by mitochondrial [Ca
2+

] increase in cells 

perfused with 100µM histamine as agonist. mtLuc luminescence data are expressed as a 

percentage of the initial value ± SEM (n=4). The traces are representative of four independent 

experiments. * = p=0.05, ** = p=10
-4

. P-values express statistical significance for NRIP1-

silenced vs scrambled comparisons. 

 

 

 

Figure 19. Luciferase expression following NRIP1 attenuation by siRNA. A. 

Representative immunoblot of luciferase protein in 3 NRIP1-silenced or scrambled DS-HFFs 

transfected with a luciferase–encoding plasmid specifically targeted to mitochondria (mtLuc) 

and cultured in complete medium for 72h. B. Quantification of luciferase accumulation by 

LUCIFERASE/GAPDH ratio. 
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4.6. Analysis of public expression data suggest that RUNX1 affects ECM 

gene expression 

To identify which Hsa21 gene might upregulate ECM gene expression, we 

screened the same GEO series used in the previous part of the study 

[GSE19836, De Cegli et al, 2010]. We reanalyzed this series by focusing on 

ECM-related categories and pathways dysregulated by the overexpression of 

each gene, looking for Hsa21 genes that when expressed would induce ECM 

upregulation. Among the 20 analyzed Hsa21 genes, only the Runt-related 

transcription factor 1 (RUNX1), was able to cause ECM gene upregulation 

when overexpressed. Our analysis showed that RUNX1 overexpression caused 

a significant enrichment among the 573 upregulated genes (logFC>0.3, Adj.P-

val <0.01). The “extracellular matrix” (GO:0031012) was the most affected 

Cell Component Gene Ontology category (P-val = 3.00e-04) (Fig. 20), with a 

cluster of 32 upregulated genes (Tab. 12). No other Hsa21 transcription factor 

or regulator under analysis showed a similar effect.  

 

 

Figure 20. GO terms tree of the cellular component categories enriched among the genes 

found downregulated in the reanalysis of GEO GSE19836 series 
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TABLE 12. GENES UPREGULATED AFTER RUNX1 OVEREXPRESSION IN THE 

GSE19836 BELONGING TO THE CELLULAR COMPONENT “EXTRACELLULAR 

MATRIX” (GO: 0031012). 

PROBE_SET GENE_SYMBOL DESCRIPTION 

1455965_at Adamts4 
a disintegrin-like and metallopeptidase (reprolysin type) 

with thrombospondin type 1 motif, 4 

1416298_at Mmp9 matrix metallopeptidase 9 

1416531_at Gsto1 glutathione S-transferase omega 1 

1419613_at Col7a1 collagen, type VII, alpha 1 

1450704_at Ihh Indian hedgehog 

1418910_at Bmp7 bone morphogenetic protein 7 

1418477_at Matn1 matrilin 1, cartilage matrix protein 

1424131_at Col6a3 collagen, type VI, alpha 3 

1437277_x_at Tgm2 transglutaminase 2, C polypeptide 

1419573_a_at Lgals1 lectin, galactose binding, soluble 1 

1426642_at Fn1 fibronectin 1 

1420569_at Chad Chondroadherin 

1415935_at Smoc2 SPARC related modular calcium binding 2 

1420855_at Eln Elastin 

1450673_at Col9a2 collagen, type IX, alpha 2 

1416589_at Sparc secreted acidic cysteine rich glycoprotein 

1460187_at Sfrp1 secreted frizzled-related protein 1 

1426231_at Vit Vitrin 

1419527_at Comp cartilage oligomeric matrix protein 

1419091_a_at Anxa2 annexin A2 

1438312_s_at Ltbp3 latent transforming growth factor beta binding protein  

1449335_at Timp3 tissue inhibitor of metalloproteinase 3 

1417389_at Gpc1 glypican 1 

1416740_at Col5a1 collagen, type V, alpha 1 

1421279_at Lamc2 laminin, gamma 2 

1448870_at Ltbp1 latent transforming growth factor beta binding protein  

1452106_at Npnt Nephronectin 

1460227_at Timp1 tissue inhibitor of metalloproteinase 1 

1448598_at Mmp17 matrix metallopeptidase 17 

1420891_at Wnt7b wingless-related MMTV integration site 7B 

1422571_at Thbs2 thrombospondin 2 

 

4.6.1. Promoter analysis of genes upregulated in DS fetal hearts shows 

enrichment for ECM genes induced by RUNX1. 

We, therefore, performed a transcription factor-binding site (TFBS) analysis on 

the list of ECM genes upregulated in DS fetal hearts with the PSCAN software, 

in order to scan promoters of these genes for consensus sequences according to 

JASPAR database. This analysis identified RUNX1 as transcription factor with 

high binding specificity with ECM genes upregulated in DS hearts (Tab. 13). 
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About 60% of ECM genes overexpressed in DS hearts shows consensus 

sequences for RUNX1. 

Molecular and functional studies are currently in progress in order to evaluate 

the effects of RUNX1-upregulation on ECM gene expression and on cellular 

phenotype in euploid and trisomic fetal skin fibroblasts. 

 

TABLE 13. ECM GENES UPREGULATED IN DS HEARTS WITH CONSENSUS 

SEQUENCE FOR RUNX1 

GENE_SYMBOL RUNX1_MATRIX_

SCORE 

DESCRIPTION 

 

ECM2 2,498 extracellular matrix protein 2, female organ and 

adipocyte specific [Source:HGNC Symbol;Acc:3154] 

COL6A2 2,107 collagen, type VI, alpha 2 [Source:HGNC 

Symbol;Acc:2212] 

GPC3 1,987 glypican 3 [Source:HGNC Symbol;Acc:4451] 

APP 1,823 amyloid beta (A4) precursor protein [Source:HGNC 

Symbol;Acc:620] 

ADAMTS5 1,567 ADAM metallopeptidase with thrombospondin type 

1 motif, 5 [Source:HGNC Symbol;Acc:221] 

ITGB4 1,481 integrin, beta 4 [Source:HGNC Symbol;Acc:6158] 

COL18A1 1,262 collagen, type XVIII, alpha 1 [Source:HGNC 

Symbol;Acc:2195] 

MMP11 1,254 matrix metallopeptidase 11 (stromelysin 3) 

[Source:HGNC Symbol;Acc:7157] 

FLRT2 0,958 fibronectin leucine rich transmembrane protein 2 

[Source:HGNC Symbol;Acc:3761] 

APP 0,841 amyloid beta (A4) precursor protein [Source:HGNC 

Symbol;Acc:620] 

COL3A1 0,766 collagen, type III, alpha 1 [Source:HGNC 

Symbol;Acc:2201] 

DCN 0,754 decorin [Source:HGNC Symbol;Acc:2705] 

ADAMTS7 0,714 ADAM metallopeptidase with thrombospondin type 

1 motif, 7 [Source:HGNC Symbol;Acc:223] 

COLEC10 0,710 collectin sub-family member 10 (C-type lectin) 

[Source:HGNC Symbol;Acc:2220] 

WNT4 0,687 wingless-type MMTV integration site family, 

member 4 [Source:HGNC Symbol;Acc:12783] 

HAPLN1 0,656 hyaluronan and proteoglycan link protein 1 

[Source:HGNC Symbol;Acc:2380] 

COL5A1 0,594 collagen, type V, alpha 1 [Source:HGNC 

Symbol;Acc:2209] 

DCN 0,516 decorin [Source:HGNC Symbol;Acc:2705] 

C1QTNF3 0,377 C1q and tumor necrosis factor related protein 3 

[Source:HGNC Symbol;Acc:14326] 

LAMA4 0,346 laminin, alpha 4 [Source:HGNC Symbol;Acc:6484] 

FBLN1 0,331 fibulin 1 [Source:HGNC Symbol;Acc:3600] 

COL9A3 0,316 collagen, type IX, alpha 3 [Source:HGNC 

Symbol;Acc:2219] 
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APP 0,245 amyloid beta (A4) precursor protein [Source:HGNC 

Symbol;Acc:620] 

VCAN 0,215 versican [Source:HGNC Symbol;Acc:2464] 

COL13A1 0,164 collagen, type XIII, alpha 1 [Source:HGNC 

Symbol;Acc:2190] 

COL14A1 0,121 collagen, type XIV, alpha 1 [Source:HGNC 

Symbol;Acc:2191] 

DTL 0,111 denticleless E3 ubiquitin protein ligase homolog 

(Drosophila) [Source:HGNC Symbol;Acc:30288] 

ASPN 0,026 asporin [Source:HGNC Symbol;Acc:14872] 

Data obtained with PSCAN software 
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5. DISCUSSION 

In this study we have used multiple strategies of meta-analysis of public 

expression data in order to address possible roles of Hsa21 genes involved in 

DS phenotypes. We first performed a meta-analysis merging data from 

microarray experiments and comparing DS samples versus controls. This meta-

analysis highlighted genes that are consistently dysregulated in different DS 

tissue including brain, heart and different DS cell cultures. 

We used a data integration approach of DS-related Affymetrix expression 

arrays starting from feature-level extraction output (FLEO) files (CEL files). 

Working with FLEO files, indeed, allows for better standardization of 

information and the incorporation of data from unpublished studies, even if it 

requires significant effort to acquire and manage the datasets due to increased 

data complexity [Ramasamasy et al, 2008]. In addition, our approach allowed 

to eliminate bias due to specific algorithms used in the original studies, and to 

permit consistent handling of all datasets. FLEO files are likely to be available, 

especially for newer studies, because the widely supported MIAME 

requirements [Brazma et al, 2001] now ask authors to make the FLEO data 

available in public microarray repositories.  

A great part of meta-analysis studies, and the only existing DS-related meta-

analysis study [Vilardell et al, 2011], were conducted on published gene list 

(PGL) or on gene expression data matrix (GEDM). PGL represents the genes 

that are considered as differentially expressed by the authors in a given study 

and are often presented in the main or supplementary text of microarray-based 

studies, and are thus easy to obtain. Unfortunately, PGLs are of limited use for 

meta-analysis since they represent only a subset of the genes actually studied, 

and information from many genes will be completely absent. Furthermore, 

PGLs depend heavily on the preprocessing algorithm, the analysis method, the 

significance threshold, and the annotation builds used in the original study, all 

of which usually differ between studies [Suárez-Fariñas et al, 2005]. Thus 

individual patient-level data (IPD), which for microarrays represents the 

measurement for every probe in every hybridization, are far more useful. The 

gene expression data matrix (GEDM) represents the gene expression summary 

for every probe and sample and is thus ideally suited as input for meta-analysis. 

Published GEDMs, however, are unsuitable for meta-analysis because they 

depend on the choice of the preprocessing algorithms used, which may produce 

non-combinable results.  

We have chosen a meta-analysis approach suitable to avoid or at least reduce 

the problem of “publication bias”, which is a consequence of selectively 

publishing statistically significant and favorable results [Dickersin et al, 1992]. 

Indeed, within a single-study microarray analysis, the particular choice of 

down-stream analysis may lead to different results depending on the objective 
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of the study [Mondry et al, 2007]. We do not expect to find a publication bias 

at a gene level in a given study because of the discovery-driven and high-

density nature of microarrays.  

Moreover, we have focused on the Affymetrix platform in order to reduce 

variance arising from platform inconsistencies. Despite this, non-biological 

experimental variation or “batch effects" are commonly observed across 

multiple batches of microarray experiments, often rendering the task of 

combining data more difficult. Batch effects have been observed from the 

earliest microarray experiments [Lander, 1999], and can be caused by many 

factors including the batch of amplification reagent used, the time of day when 

an assay is done, or even the atmospheric ozone level [Fare et al, 2003]. Batch 

effects are also inevitable when new samples or replicates are incrementally 

added to an existing array data set or in a meta-analysis of multiple studies that 

pools microarray data across different labs, array types, or platforms [Rhodes 

et al, 2004]. In order to correct or at least reduce the batch effects, we used a 

newly developed algorithm, called ComBat, which is based on empirical Bayes 

frameworks. This algorithm ran quite appropriately with our datasets, even 

though, as adverse effect, we observed a substantial flattening in the Fold 

change values.  

A weak point in our data integration approach, particularly while dealing with 

different chipsets, is the loss of a certain part of expression data. Specifically, 

in our case, even if we took into account chipsets with more than 22000 

annotated identifiers (i.e., Affymetrix Gene 1.0 ST array), during the merging 

process we lost all the identifiers not present in the totality of the arrays. We, 

thereby, covered a total number of 11547 unique Ensembl gene IDs. 

 

5.1. Meta-analysis of DS expression studies 

First, we performed a wide integration of gene expression raw data in DS 

samples and controls obtained from different cells or tissues (brain, heart and 

others), different stages of development (adult, postnatal, embryonic) and 

different versions of GeneChips. It is per se interesting that, in spite of such 

heterogeneity, common dosage effects could be identified at all and it should 

be highlighted that whole-genome data was fairly robust across experiments. 

We detected a clear enrichment of Hsa21 upregulated genes (Fig. 6). However, 

not a single region was identified but rather several small regions on Hsa21 

that agglomerate a large amount of significant dosage effects. This finding 

agrees with results obtained analyzing single DS-patients with partial 

duplications [Korbel et al, 2009; Lyle et al, 2009], and provides a discussion 

topic about the presence of a single DS critical region (DSCR) hypothesized 

before. 
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We studied 135 Hsa21 genes represented in the analyzed chips and matched 

with the probe sets using the latest Ensembl gene Id annotation (v. 17.1.0, 

ENSG). Seventy-one of these showed consistent dosage effects, while the other 

64 showed logFC and significance values under the threshold, indicating both 

an influence of the tissue specific expression and/or a strong mechanism of 

dosage compensation. The limitation of detecting reliable fold-changes of low 

magnitude with microarray technology is not excluded. 

Aside from the 71 Hsa21 genes, further 107 non-Hsa21 genes were found 

dysregulated after meta-analysis. Functional class scoring of the list of these 

genes showed that the most enriched categories or pathways were related to 

morphogenesis, apoptosis, synaptic plasticity and ECM. GSEA analysis also 

revealed that dysregulation affects many genes involved in cell cycle and cell 

proliferation. 

We have analyzed literature about studies on proliferation, differentiation 

morphogenesis and cell death in DS human subjects and murine models. Many 

studies consistently demonstrate altered proliferation and cell cycle regulation 

in the pre- and post-natal brains of both DS individuals and mouse models of 

DS [Bartesaghi et al, 2011]. The authors hypothesized that altered neurogenesis 

is implicated in the hypo-cellularity found in trisomic brains. Not irrelevant to 

the development of Alzheimer’s disease (AD), which is increased in DS 

subjects, might be Hsa21 dosage effects for APP (beta-amyloid precursor 

protein) involved in senile plaque formation in DS and AD disease [Rachidi 

and Lopes, 2007]. Apoptosis or programmed cell death is physiologically 

involved in development and aging, as well as in numerous pathological 

processes. Altered apoptosis has been proposed as a putative mechanism 

underlying many DS phenotypes. Indeed, different studies have demonstrated 

that apoptosis has a prominent role in other important DS phenotypes, such as 

neurodegeneration in later life stages, impaired retinal development, heart 

anomalies, immunological alterations and predisposition to the development of 

different types of cancers [Rueda et al, 2013]. Intellectual deficiency in DS 

features abnormalities in learning [Gardiner et al., 2010] and, most notably, in 

hippocampus-dependent explicit memory [Vicari, 2001]. Synaptic plasticity is 

believed to be the process central to learning and memory. This belief is 

strengthened by experiments where drugs that normalize aberrant plasticity in 

hippocampal slices isolated from mouse models of DS also confer 

improvements in cognition in intact adult mice [Cramer and Galdzicki, 2012]. 

Regarding the ECM genes, we previously found that this category of genes is 

significantly dysregulated in fetal hearts [Conti et al, 2007]. Overexpression of 

this gene family is likely to affect cell adhesion properties, possibly 

determining an increase in adhesiveness as extensively discussed in the 

background section. It is, therefore, reasonable to hypothesize that the 

overexpression of Hsa21 gene or genes mapping to this region might be 

responsible for an altered morphogenesis of the heart. 
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Analysis of the pathways affected by DS with GSEA software highlighted the 

dysregulation of the PGC-1α pathway. PGC-1α is the master regulator of 

mitochondrial biogenesis. It is highly expressed in metabolically active tissues, 

including heart, and it has been involved in increased mitochondrial 

respiration. PGC-1α is a coactivator for many factors including CBP, Scr-1, 

PPARa, GR (glucocorticoid receptor), THR (thyroid hormone receptor), several 

orphan receptors and MEF2. Moreover, Czubryt et al. (2003) identified PGC-

1α as a key target of the MEF2/HDAC regulatory pathway and demonstrated 

this pathway's importance in maintenance of cardiac mitochondrial function. 

Table 14 reports the genes belonging to the gene-set 

“BIOCARTA_PGC1A_PATHWAY” that were found dysregulated in the 

meta-analysis. ECM and mitochondrial implications in DS will be further 

discussed below. 

 

TABLE 14. GENES BELONGING TO THE PGC1Α PATHWAY ENRICHED IN THE 

META-ANALYSIS. Data retrieved from GSEA java application.  

GENE 

SYMBOL 

GENE_TITLE RUNNING 

ES 

CORE 

ENRICH. 

PPP3CA protein phosphatase 3 (formerly 2B), catalytic 

subunit, alpha isoform (calcineurin A alpha) 

-0.568 Yes 

CAMK2B calcium/calmodulin-dependent protein kinase 

(CaM kinase) II beta 

-0.542 Yes 

SLC2A4 solute carrier family 2 (facilitated glucose 

transporter), member 4 

-0.500 Yes 

MEF2A MADS box transcription enhancer factor 2, 

polypeptide A (myocyte enhancer factor 2A) 

-0.456 Yes 

CAMK2A calcium/calmodulin-dependent protein kinase 

(CaM kinase) II alpha 

-0.434 Yes 

ESRRA estrogen-related receptor alpha -0.377 Yes 

PPARGC1A peroxisome proliferative activated receptor, 

gamma, coactivator 1, alpha 

-0.289 Yes 

CAMK4 calcium/calmodulin-dependent protein kinase IV -0.192 Yes 

MEF2D MADS box transcription enhancer factor 2, 

polypeptide D (myocyte enhancer factor 2D) 

-0.094 Yes 

PPP3CC protein phosphatase 3 (formerly 2B), catalytic 

subunit, gamma isoform (calcineurin A gamma) 

0.014 Yes 

 

Finally, transcription factor binding analysis of the 107 non-Hsa21 genes 

dysregulated in the meta-analysis with Pscan software, demonstrated a 
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significant enrichment for the TF motifs showed in Table 8. We were 

particularly intrigued by EGR1 (also known as Zif268, KROX-24, and NGFI-

A), because it has been found dysregulated in gene expression studies of 

experimental models of other neurodegenerative diseases, including 

Huntington's [Crocker et al, 2006] and age-related cognitive impairment 

[Blalock et al, 2003]. It could be also a candidate gene involved in the higher 

risk of developing acute myeloid leukemia (AML) in DS [Stoddart et al, 2014]. 

Moreover, this gene may exert a protective role against neuroblastoma in DS 

subjects, since its expression increases during treatment of this pediatric 

malignancy with mitochondrial inhibitors [Wang et al, 2014]. 

Comparison of our meta-analysis with another meta-analysis [Vilardell et al, 

2011] integrating 45 DS experiments, showed variable dosage effects with 

respect to analyzed tissues. The two meta-analyses revealed a fair degree of 

concordance taking into account that the cell model, platform and, especially, 

the methodology used were completely different (Fig. 21). On these bases, the 

67 genes in common between the 2 methodologies (Tab. 15) acquire more 

relevance in the context of the development to the DS phenotypes.  

A group of 54 Hsa21 genes showed a common dosage effect in the 2 meta-

analyses: this group may represent a quota of genes independent from tissue, 

species or experimental specificity. These genes are also apparently less 

subjected to compensation mechanisms. Hsa21 dosage effects included, for 

example APP involved in senile plaque formation in DS and Alzheimer’s 

disease [Rachidi and Lopes, 2007]; COL6A2, COL18A1 and ADAMTS1, three 

ECM genes which are implicated in the heart morphogenesis [Wirring et al, 

2007; Camenish et al, 2001]; SUMO3, a protein that can modulate the activity 

of NRIP1 and PGC1α [Rytinki and Palvimo, 2007; Rytinki and Palvimo 2008]; 

the same NRIP1 and the transcription factor RUNX1 that are further discussed 

below.  

Among the non-Hsa21 gene, 13 were in common, included EGR1, which has 

been discussed above and SFRP1, a gene classified as tumor suppressor that 

that could have important implications in the higher risk of DS subjects in 

developing hematopoietic malignancies [Surana et al, 2014]. 
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Figure 21. Venn diagram showing the intersections between the list of the consistently 

dysregulated genes in DS found in meta-analysis performed in this study (green circle) and in 

the meta-analysis performed by Vilardell et al. (red) 

 

TABLE 15. LIST OF THE 67 DYSREGULATED GENES COMMON TO THE META-

ANALYSIS PERFORMED IN THIS STUDY AND THE VILARDELL’S META-

ANALYSIS 

ENSEMBL_ 

GENE_ID 

CHR GENE_ 

SYMBOL 

DESCRIPTION 

ENSG00000154734 21 ADAMTS1 ADAM metallopeptidase with thrombospondin 

type 1 motif, 1 [Source:HGNC Symbol;Acc:217] 

ENSG00000160216 21 AGPAT3 1-acylglycerol-3-phosphate O-acyltransferase 3 

[Source:HGNC Symbol;Acc:326] 

ENSG00000142192 21 APP amyloid beta (A4) precursor protein 

[Source:HGNC Symbol;Acc:620] 

ENSG00000182240 21 BACE2 beta-site APP-cleaving enzyme 2 [Source:HGNC 

Symbol;Acc:934] 

ENSG00000156273 21 BACH1 BTB and CNC homology 1, basic leucine zipper 

transcription factor 1 [Source:HGNC 

Symbol;Acc:935] 

ENSG00000154640 21 BTG3 BTG family, member 3 [Source:HGNC 

Symbol;Acc:1132] 

ENSG00000157617 21 C2CD2 C2 calcium-dependent domain containing 2 

[Source:HGNC Symbol;Acc:1266] 

ENSG00000159228 21 CBR1 carbonyl reductase 1 [Source:HGNC 

Symbol;Acc:1548] 

ENSG00000159231 21 CBR3 carbonyl reductase 3 [Source:HGNC 

Symbol;Acc:1549] 

ENSG00000160200 21 CBS cystathionine-beta-synthase [Source:HGNC 

Symbol;Acc:1550] 

ENSG00000156261 21 CCT8 chaperonin containing TCP1, subunit 8 (theta) 

[Source:HGNC Symbol;Acc:1623] 

ENSG00000182871 21 COL18A1 collagen, type XVIII, alpha 1 [Source:HGNC 

Symbol;Acc:2195] 

ENSG00000142173 21 COL6A2 collagen, type VI, alpha 2 [Source:HGNC 

Symbol;Acc:2212] 

ENSG00000160213 21 CSTB cystatin B (stefin B) [Source:HGNC 

Symbol;Acc:2482] 
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ENSG00000159147 21 DONSON downstream neighbor of SON [Source:HGNC 

Symbol;Acc:2993] 

ENSG00000157538 21 DSCR3 Down syndrome critical region gene 3 

[Source:HGNC Symbol;Acc:3044] 

ENSG00000157557 21 ETS2 v-ets avian erythroblastosis virus E26 oncogene 

homolog 2 [Source:HGNC Symbol;Acc:3489] 

ENSG00000154727 21 GABPA GA binding protein transcription factor, alpha 

subunit 60kDa [Source:HGNC Symbol;Acc:4071] 

ENSG00000159131 21 GART phosphoribosylglycinamide formyltransferase, 

phosphoribosylglycinamide synthetase 

[Source:HGNC Symbol;Acc:4163] 

ENSG00000155304 21 HSPA13 heat shock protein 70kDa family, member 13 

[Source:HGNC Symbol;Acc:11375] 

ENSG00000142166 21 IFNAR1 interferon (alpha, beta and omega) receptor 1 

[Source:HGNC Symbol;Acc:5432] 

ENSG00000159128 21 IFNGR2 interferon gamma receptor 2 (interferon gamma 

transducer 1) [Source:HGNC Symbol;Acc:5440] 

ENSG00000205726 21 ITSN1 intersectin 1 (SH3 domain protein) [Source:HGNC 

Symbol;Acc:6183] 

ENSG00000154721 21 JAM2 junctional adhesion molecule 2 [Source:HGNC 

Symbol;Acc:14686] 

ENSG00000160285 21 LSS lanosterol synthase (2,3-oxidosqualene-lanosterol 

cyclase) [Source:HGNC Symbol;Acc:6708] 

ENSG00000198862 21 LTN1 listerin E3 ubiquitin protein ligase 1 

[Source:HGNC Symbol;Acc:13082] 

ENSG00000160294 21 MCM3AP minichromosome maintenance complex 

component 3 associated protein [Source:HGNC 

Symbol;Acc:6946] 

ENSG00000159256 21 MORC3 MORC family CW-type zinc finger 3 [Source:HGNC 

Symbol;Acc:23572] 

ENSG00000154719 21 MRPL39 mitochondrial ribosomal protein L39 

[Source:HGNC Symbol;Acc:14027] 

ENSG00000157601 21 MX1 myxovirus (influenza virus) resistance 1, 

interferon-inducible protein p78 (mouse) 

[Source:HGNC Symbol;Acc:7532] 

ENSG00000180530 21 NRIP1 nuclear receptor interacting protein 1 

[Source:HGNC Symbol;Acc:8001] 

ENSG00000159086 21 PAXBP1 PAX3 and PAX7 binding protein 1 [Source:HGNC 

Symbol;Acc:13579] 

ENSG00000160209 21 PDXK pyridoxal (pyridoxine, vitamin B6) kinase 

[Source:HGNC Symbol;Acc:8819] 

ENSG00000141959 21 PFKL phosphofructokinase, liver [Source:HGNC 

Symbol;Acc:8876] 

ENSG00000185808 21 PIGP phosphatidylinositol glycan anchor biosynthesis, 

class P [Source:HGNC Symbol;Acc:3046] 

ENSG00000160310 21 PRMT2 protein arginine methyltransferase 2 

[Source:HGNC Symbol;Acc:5186] 

ENSG00000183527 21 PSMG1 proteasome (prosome, macropain) assembly 

chaperone 1 [Source:HGNC Symbol;Acc:3043] 

ENSG00000183255 21 PTTG1IP pituitary tumor-transforming 1 interacting 

protein [Source:HGNC Symbol;Acc:13524] 

ENSG00000159216 21 RUNX1 runt-related transcription factor 1 [Source:HGNC 

Symbol;Acc:10471] 

ENSG00000160307 21 S100B S100 calcium binding protein B [Source:HGNC 

Symbol;Acc:10500] 
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ENSG00000156304 21 SCAF4 SR-related CTD-associated factor 4 [Source:HGNC 

Symbol;Acc:19304] 

ENSG00000185437 21 SH3BGR SH3 domain binding glutamic acid-rich protein 

[Source:HGNC Symbol;Acc:10822] 

ENSG00000142168 21 SOD1 superoxide dismutase 1, soluble [Source:HGNC 

Symbol;Acc:11179] 

ENSG00000159140 21 SON SON DNA binding protein [Source:HGNC 

Symbol;Acc:11183] 

ENSG00000184900 21 SUMO3 small ubiquitin-like modifier 3 [Source:HGNC 

Symbol;Acc:11124] 

ENSG00000159082 21 SYNJ1 synaptojanin 1 [Source:HGNC Symbol;Acc:11503] 

ENSG00000156299 21 TIAM1 T-cell lymphoma invasion and metastasis 1 

[Source:HGNC Symbol;Acc:11805] 

ENSG00000142188 21 TMEM50B transmembrane protein 50B [Source:HGNC 

Symbol;Acc:1280] 

ENSG00000182670 21 TTC3 tetratricopeptide repeat domain 3 [Source:HGNC 

Symbol;Acc:12393] 

ENSG00000160201 21 U2AF1 U2 small nuclear RNA auxiliary factor 1 

[Source:HGNC Symbol;Acc:12453] 

ENSG00000184787 21 UBE2G2 ubiquitin-conjugating enzyme E2G 2 

[Source:HGNC Symbol;Acc:12483] 

ENSG00000156256 21 USP16 ubiquitin specific peptidase 16 [Source:HGNC 

Symbol;Acc:12614] 

ENSG00000155313 21 USP25 ubiquitin specific peptidase 25 [Source:HGNC 

Symbol;Acc:12624] 

ENSG00000182093 21 WRB tryptophan rich basic protein [Source:HGNC 

Symbol;Acc:12790] 

ENSG00000105655 19 ISYNA1 inositol-3-phosphate synthase 1 [Source:HGNC 

Symbol;Acc:29821] 

ENSG00000104067 15 TJP1 tight junction protein 1 [Source:HGNC 

Symbol;Acc:11827] 

ENSG00000133110 13 POSTN periostin, osteoblast specific factor [Source:HGNC 

Symbol;Acc:16953] 

ENSG00000119471 9 HSDL2 hydroxysteroid dehydrogenase like 2 

[Source:HGNC Symbol;Acc:18572] 

ENSG00000107104 9 KANK1 KN motif and ankyrin repeat domains 1 

[Source:HGNC Symbol;Acc:19309] 

ENSG00000164985 9 PSIP1 PC4 and SFRS1 interacting protein 1 

[Source:HGNC Symbol;Acc:9527] 

ENSG00000104332 8 SFRP1 secreted frizzled-related protein 1 [Source:HGNC 

Symbol;Acc:10776] 

ENSG00000075624 7 ACTB actin, beta [Source:HGNC Symbol;Acc:132] 

ENSG00000113657 5 DPYSL3 dihydropyrimidinase-like 3 [Source:HGNC 

Symbol;Acc:3015] 

ENSG00000120738 5 EGR1 early growth response 1 [Source:HGNC 

Symbol;Acc:3238] 

ENSG00000182551 2 ADI1 acireductone dioxygenase 1 [Source:HGNC 

Symbol;Acc:30576] 

ENSG00000159176 1 CSRP1 cysteine and glycine-rich protein 1 [Source:HGNC 

Symbol;Acc:2469] 

ENSG00000049245 1 VAMP3 vesicle-associated membrane protein 3 

[Source:HGNC Symbol;Acc:12644] 
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In order to address possible role of Hsa21 genes in two aspects of the DS 

phenotype, namely mitochondrial dysfunction and increased cell adhesiveness 

that are widely described in literature and that came out from our previous 

investigations [Conti et al, 2007], we applied a second strategic approach. We 

analyzed public expression data to identify genes affecting the regulation of the 

two main gene categories dysregulated in trisomic fetal hearts: NEMGs and 

ECM genes.  

 

5.2. Mitochondrial dysfunction in DS and validation of an Hsa21 candidate 

gene for NEMGs downregulation 

Previous analyses, demonstrated a global mitochondrial dysfunction in several 

DS models [Kim et al, 2001; Busciglio et al, 2002; Helguera et al, 2013; 

Shukkur et al, 2006] and a significant dysregulation of NEMGs in the heart 

[Conti et al, 2007], brain [Mao et al, 2005], and fibroblasts [Piccoli et al, 2013] 

from human fetuses with DS. From these studies it emerged that genes and 

transcription factors responsible for the activity of respiratory complexes and 

mitochondrial biogenesis are globally repressed. Thus, we speculated that most 

of the underexpressed NEMGs might be under the same regulatory control and 

that this control might be affected by the trisomy of Hsa21.  

We then, looked for a regulator of NEMGs that maps to Hsa21 and that is 

upregulated in DS samples, by virtue of a gene dosage effect. To this aim, we 

re-analyzed the expression data from the GEO repository 

(http://www.ncbi.nlm.nih.gov/geo) by focusing on an experiment in which 

regulatory genes mapping to Hsa21 were individually overexpressed in mouse 

ESCs [De Cegli et al, 2010]. Our analysis demonstrated that only one gene is 

able to cause NEMG downregulation and that no other Hsa21 tested gene 

exerts such an effect. This gene is NRIP1 which encodes for a corepressor 

protein. Although the mean dysregulation of each NEMG elicited by NRIP1 

overexpression was not very strong, the number of affected genes was 

significantly enriched (p < 0.001). The role of NRIP1 in mitochondrial 

dysfunction is supported by previous findings demonstrating that, both in 

cellular and in animal models, NRIP1 silencing upregulates the expression of 

genes responsible for mitochondrial biogenesis and oxidative phosphorylation 

whereas, NRIP1 re-expression downregulates them [Powelka et al, 2006; Seth 

et al, 2007]. Experiments of NRIP1 manipulation, performed in transgenic 

mice and human cells, have actually demonstrated that even mild variations in 

NRIP1 expression can significantly affect oxidative metabolism and 

mitochondrial biogenesis [Powelka et al, 2006; Seth et al, 2007; Fritah et al, 

2010; Chen et al, 2012]. 

NRIP1 is supposed to exert a repression of mitochondrial biogenesis by either 

interacting with nuclear receptors [Fritah et al, 2010; Nautiyal et al, 2013] or 
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regulating PGC-1α activity [Scarpulla et al, 2011; Hallberg et al, 2008; Rytinki 

et al, 2009]. Intriguingly, the pathway related to this gene has been found 

enriched among the downregulated genes in the meta-analysis. PGC-1α 

knockout mice show not only a decreased number of mitochondria but also a 

decreased respiratory capacity in skeletal muscle [Leone et al, 2005]. In 

particular, under physiological conditions, PGC-1α, by coactivating several 

transcription factors, including nuclear receptors such as PPARγ, PPARα and 

ERRα, promotes mitochondrial biogenesis and regulates mitochondrial 

respiratory efficiency [Leone et al, 2005; Scarpulla et al, 2011; Scarpulla et al, 

2012]. Interestingly among the 37 NEMGs downregulated after NRIP1 

induction in the GEO GSE 19836 experiment [De Cegli et al, 2010], we 

observed an enrichment both of genes involved in PPARs pathways (8 genes) 

and of genes containing the ERRα motif in their promoter regions (25 genes) 

(p<0.0005). Notably, the known targets of PGC-1α, namely, CIDEA [Hallberg 

et al, 2008] and ANT1/SLC25A4 [Schreiber et al, 2004], are included in the list 

of genes that are downregulated following NRIP1 overexpression [De Cegli et 

al, 2010].The alteration of the PGC-1α pathway also results of our meta-

analysis. 

To investigate whether the NEMGs repressed by NRIP1 and induced by PGC-

1α corresponded to the NEMGs downregulated genes in DS fetal hearts [Conti 

et al, 2007], we compared our microarray data with the results of 2 experiments 

in which the gene expression of NRIP1 or PGC-1α was modulated. We found 

that the correspondence between the three sets of genes was remarkably high, 

considering that they all derived from different species, tissues, and 

experimental approaches. The high number of overlappings among the three 

sets is in agreement with previous research indicating an interrelationship 

between PGC-1α and NRIP1 activity on mitochondrial pathways [Chen et al, 

2012].  

To biologically validate the important results coming from a bioinformatic 

strategy, we have verified the potential role of NRIP1 in mitochondrial 

dysfunction in DS demonstrating an inverse correlation between NRIP1 and 

PGC-1α expression. Moreover NRIP1 siRNA-mediated attenuation in DS-

HFFs, and the consequent PGC-1α and NRF1 upregulation, elicited a 

significant increase in mtDNA. This result fully corroborates similar 

experiments performed in cardiomyocytes [Chen et al, 2012]. In the same 

trisomic fibroblasts, ROS production was decreased and mitochondrial activity 

was increased, demonstrating that the induction of NEMG expression in 

silenced DS-HFFs counteracts mitochondrial impairment and partially rescues 

mitochondrial function. Interestingly, in NRIP1-silenced trisomic cells, we 

found a significant 50% increase in basal ATP content. These results, together 

with the finding that NRIP1 attenuation by siRNA leads to an increase in the 

adenine nucleotide translocators ANT1/SLC25A4 and ANT2/SLC25A5, suggest 
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that a more efficient exchange of adenosine 5′-triphosphate is induced, thus, 

benefitting the mitochondrial activity and function of these cells, as 

demonstrated by the reduction in ROS production at the mitochondrial level 

(Fig. 16).  

Furthermore, the NRIP1-dependent repression of genes involved in 

mitochondrial function is closely linked with post-natal impaired cardiac 

function because of reduced mitochondrial electron-transport chain activity and 

oxygen consumption. NRIP1 hyperexpressing mice, indeed, are affected by 

cardiac hypertrophy [Fritah et al, 2010].  

Mitochondrial dysfunction might also contribute to determining DS mental 

retardation and other DS associated post-natal pathologies, like Alzheimer’s 

disease (AD) and obesity. It is known that mitochondria also play a central role 

in many neurodegenerative diseases such as AD, Parkinson’s disease, 

Huntington’s disease, and amyotrophic lateral sclerosis. Impaired energy 

metabolism, defective mitochondrial enzymatic activity, abnormal 

mitochondrial respiration, mutated mtDNAs, and oxidative stress are all 

common features of these neurodegenerative conditions [Petrozzi et al, 2007]. 

It is interesting to note that the bioinformatic functional analysis of the 25 

genes overlapping SET1 (genes regulated by NRIP1) and SET3 (genes 

downregulated in DS fetal hearts) showed that 16 out of 25 genes are involved 

in the mitochondrial dysfunction pathways described in AD and Parkinson’s 

disease (KEGG Pathways http://www.genome.jp/kegg/, [Kanehisa et al, 

2000]). However, given that there is a high prevalence of AD in DS patients, 

we cannot neglect the possibility that the overexpression of the Hsa21 gene 

APP might have a main role in the development of AD in DS patients. 

Taken all together, the bioinformatic analysis corroborated by the biological 

approaches, suggest that NRIP1 is a key gene in the regulation of the 

mitochondrial pathways, even though possibly it is not the only protagonist 

responsible for mitochondrial dysfunction in DS.  

 

5.3. ECM genes dysregulation in DS and identification of a Hsa21 candidate 

gene 

In the last part of the study, we looked for a regulator of ECM genes that maps 

to Hsa21 and that is upregulated in DS samples, by virtue of a gene dosage 

effect. To this aim, we re-analyzed the same GEO series discussed above [De 

Cegli et al, 2010]. Our analysis demonstrated that only one gene is able to 

cause the overexpression of 32 ECM genes, when overexpressed, and that no 

other Hsa21 tested gene exerts such an effect. This gene is RUNX1. 
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The protein encoded by this gene represents the alpha subunit of CBF, a 

transcription factor thought to be involved in the development of normal 

hematopoiesis. The association of RUNX1 with the ECM genes is supported by 

experiments that demonstrated that ectopic expression of RUNX1 in 3T3 

fibroblasts induced deep alterations in the distribution of N-cadherin in favor 

of the plasma membrane, an increased expression of Integrin β5, and increased 

survival at confluence [Wotton et al, 2008].  

Furthermore, transcription factor-binding site (TFBS) analysis on the list of 

ECM genes upregulated in DS fetal hearts identified RUNX1 as transcription 

factor with high binding specificity with ECM genes upregulated in DS hearts 

(Tab. 13). About 60% of ECM genes overexpressed in DS hearts showed 

consensus sequences for RUNX1.  

Our interest in ECM proteins is justified by the role they play in cushion 

development. Since DS is a major cause of congenital heart defects, their 

dysregulation may represent a key pathogenetic mechanism. Intriguingly, 

among the genes with consensus sequence for RUNX1 we found in our study, 

there are crucial genes implicated in the embryonic development and in 

particular in the heart morphogenesis, such as VCAN, HAPLN1/CRTL1 and 

ADAMTS. RUNX1 is included in the 3.7 Mb minimal region for DS-CHD [Liu 

et al, 2013] 

Indeed, the development of the AV valves begins with the swelling of the 

endocardial lining of the AV junction and the formation of the AV cushions. 

The cushions then become populated by endocardially derived cells resulting 

from endocardial-to-mesenchymal transition (EMT). At this point in time, the 

endocardial cushion mesenchyme contains a variety of ECM components, 

including Crtl1, hyaluronan, and versican [Wirring et al, 2007; Camenish et al, 

2001]. 

Versican is a chondroitin sulfate proteoglycan abundantly expressed within the 

extracellular matrix compartment of the developing and mature cardiovascular 

system. Alterations in its expression have been associated with vascular disease 

[Wight and Merrilees, 2004] and its expression is required for normal early 

heart development [Mjaatvedt et al, 1998]. Analysis of Vcan transgenic mice 

has established the requirement for versican in cardiac development and its role 

in skeletogenesis. The ADAMTS family includes several versican-degrading 

proteases that are active during remodeling of the embryonic provisional 

matrix, especially during sculpting of versican-rich tissues. Versican is cleaved 

at specific peptide bonds by ADAMTS proteases, and the cleavage products are 

detectable by neo-epitope antibodies. Myocardial compaction, closure of the 

secondary palate (in which neural crest derived cells participate), endocardial 

cushion remodeling, myogenesis and interdigital web regression are 

developmental contexts in which ADAMTS-mediated versican proteolysis has 

been identified as a crucial requirement [Nandadasa et al, 2014]. 
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Vcan dysregulation can induce changes in the distribution of periostin, another 

important molecule of the heart cushion extracellular matrix, and then may 

affect the developing valves by altering the structural integrity of the ECM 

through altered interaction with other molecules such as fibronectin, collagen 

and other proteoglycans [Norris et al, 2007], found dysregulated in our data as 

well. Additionally, because it interacts directly with integrin, attachment-

dependent signaling may be altered affecting cell migration and epithelial 

mesenchymal transition in the cushion primordia of the septa and valves [Yan 

and Shao, 2006]. 

Cartilage Link Protein 1 (Crtl1; also known as Hyaluronan and Proteoglycan 

Binding Protein 1- Hapln1) is a glycoprotein found in the extracellular matrix 

(ECM) and is expressed in endocardial and endocardially-derived cells in the 

developing heart, including cells in the AV and outflow tract (OFT) cushions 

[Binette et al, 1994; Matsumoto et al, 2006]. Crtl1 is involved in the formation 

and stabilization of proteoglycan and hyaluronan aggregates [Matsumoko et a, 

2006] and is important for preventing aggregate degradation by proteases such 

as members of the ADAMTS and MMP families [Miwa et al, 2006]. Alteration 

in the expression of Crtl1 results in impairment of growth and development of 

several tissues, including the cartilage, heart, and central nervous system 

[Wirring et al, 2007]. Crtl1 null mice are characterized by craniofacial 

abnormalities and shortened long bones, abnormalities attributed to a reduction 

in aggrecan within the cartilage resulting in an inability of chondrocytes 

towards differentiation and hypertrophy [Watanabe et al, 1999]. Cardiac 

malformations seen in Crtl1 knockout mice include muscular ventricular septal 

defects, AV septal defects, and thin myocardium [Wirring et al, 2007]. Crtl1 

knockout mice die perinatally; this has has been attributed to compromised 

lung development [Watanabe et al, 1999]. 
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6. CONCLUSIONS 

Combination of different meta-analysis strategies led us to identify genes and 

pathways consistently dysregulated in nine independent studies on DS. In 

particular, two Hsa21 genes were identified, namely NRIP1 and RUNX1, which 

could play important roles in the development of DS phenotypes, as they affect 

mitochondrial function and ECM gene expression. 

These results provide the basis for clinical trials aimed at restoring altered 

functions in DS subjects to prevent specific phenotypic features such as 

neurodegeneration, cardiac hypertrophy, diabetes and obesity. 

For instance, a possible therapeutic approach to counteract mitochondrial 

dysfunction in DS could be based either on PGC-1α activators, already tested 

in other disease mouse models [Rodgers et al, 2005; Dong et al, 2007; Lagouge 

et al, 2006; Jager et al, 2007], or on PPARγ agonists, which attenuate 

mitochondrial dysfunction in AD mouse models [Bastin et al, 2008; 

Nicolakakis et al, 2008; Escribano et al, 2009; Johri et al, 2012; Yamaguchi et 

al, 2012]. Such drugs are routinely used in clinical practice for the treatment of 

metabolic syndromes, type 2 diabetes, and neurodegenerative diseases such as 

AD [Watson et al, 2005; Sato et al, 2011; Marciano et al, 2014] and could, 

therefore, be immediately introduced in clinical trials.  

ECM protein expression affects heart development [Combs et al, 2009]. Our 

analysis demonstrates that ECM genes are upregulated in DS tissues, 

suggesting that this altered expression might be a prelude to heart defects. 

Other factors, such as differences in the genetic background, different Hsa21 

haplotypes, stochastic and/or environmental factors, could play a critical role in 

determining the final pathogenetic result. The analysis identified in RUNX1 a 

candidate transcription factor mapping to chromosome 21 that could be 

responsible for the upregulation of ECM genes. Studies to biologically validate 

its role in DS are currently in progress. 
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Trisomy of chromosome 21 is associated to congenital heart defects in ∼50% of affected newborns.
Transcriptome analysis of hearts from trisomic human foeti demonstrated that genes involved inmitochondrial
function are globally downregulatedwith respect to controls, suggesting an impairment ofmitochondrial func-
tion.We investigated here the properties ofmitochondria in fibroblasts from trisomic foeti with andwithout car-
diac defects. Together with the upregulation of Hsa21 genes and the downregulation of nuclear encoded
mitochondrial genes, an abnormal mitochondrial cristae morphology was observed in trisomic samples.
Furthermore, impairment ofmitochondrial respiratory activity, specific inhibition of complex I, enhanced react-
ive oxygen species production and increased levels of intra-mitochondrial calcium were demonstrated.
Seemingly, mitochondrial dysfunction was more severe in fibroblasts from cardiopathic trisomic foeti that
presented a more pronounced pro-oxidative state. The data suggest that an altered bioenergetic background
in trisomy21 foetimightbeamong the factors responsible for amoreseverephenotype.Since themitochondrial
functional alterations might be rescued following pharmacological treatments, these results are of interest in
the light of potential therapeutic interventions.

INTRODUCTION

Down syndrome (DS) is characterized by a complex pheno-
type in which over 80 features occur with various degrees of
expression and frequency (1). DS is a major cause of congeni-
tal heart defects (CHD) mainly endocardial cushion defects,
the most frequent being atrioventricular canal defects followed
by ventricular septal defects and tetralogy of Fallot (2). By
comparing the gene expression profiles of 10 human hearts
from trisomic foeti to five foetal hearts of non-trisomic

controls, we previously demonstrated a global upregulation
of chromosome 21 (Hsa21) genes and a dysregulation of
≏400 genes localized on other chromosomes (3). Microarray
analysis clearly showed the downregulation of genes encoding
all five mitochondrial complex subunits and of genes impli-
cated in mitochondrial biogenesis. This suggested that the cor-
responding proteins and enzymatic activities might be reduced
in DS subjects and that mitochondrial function could be con-
sequently impaired.
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Trisomy of chromosome 21 has been associated with mito-
chondrial dysfunction in cells and tissues from DS subjects
(4–6) and in mouse models (7,8). These results led to the hy-
pothesis that mitochondrial dysfunction contributes to the DS
phenotype. Protein levels of mitochondrial complexes I, III
and V were decreased in cerebellar and brain regions of DS
subjects (9). Complex I was also deficient in mouse models
of trisomy of chromosome 16. The results were similar to
those obtained from models of Parkinson’s disease, suggesting
that different neurodegenerative diseases may be associated
with the same mitochondrial dysfunction (10).
Recently, it has been also reported that the mitochondrial

energy production apparatus was less efficient in foetal DS
fibroblasts, due to the dysregulation of adenine nucleotide
translocator, ATP synthase and adenylate kinase, and a select-
ive deficit of complex I, which contributes to reactive oxygen
species (ROS) overproduction in DS mitochondria. These
events were attributed to changes in the cAMP/PKA signalling
pathway (11,12), which is known to affect the abundance of
the transcriptional coactivator PGC-1a (peroxisome
proliferator-activated receptor gamma coactivator 1-alpha).
This protein, that plays a central role in regulating mitochon-
drial biogenesis and respiratory function through the inter-
action with transcriptional partners, like NRF1, ERRa,
PPARs and YY1, is negatively controlled by the co-repressor
RIP140, a gene mapping to Hsa21 (13).
Even though these results are indicative of widespread

mitochondrial dysfunction in DS, molecular studies have not
yet been performed to investigate the basis of mitochondrial
dysfunction at the transcriptional level. Furthermore, no
hypotheses have been formulated about the mechanisms by
which trisomy of Hsa21 genes might induce such a dysfunc-
tion.
The original contribution of the present study consists of a

contemporary analysis of mitochondrial features at the mo-
lecular, morphological and functional level in 13 human
primary lines of foetal fibroblasts (HFF) derived from Hsa21
trisomic foeti, with or without CHD, and from euploid con-
trols. The mitochondrial defects associated with DS were ana-
lysed taking into account the regulation of the Hsa21 and
mitochondrial-related genes and the cardiac phenotype, in
order to identify pathways involved in mitochondrial function
and dysrupted by the Hsa21 trisomy. A striking and more
severe ROS- and Ca2+-related mitochondrial dysfunction
emerged in cardiopathic-derived Hsa21 trisomic fibroblasts,
unveiling a more pronounced pro-oxidative state.

RESULTS

The present study combines the molecular, morphological and
functional analyses of mitochondria in 13 human primary cul-
tures of HFF. Five were from euploid foeti (N-HFF, N stand-
ing for normal), and eight (DS-HFF) were derived from Hsa21
trisomic foeti [four samples from DS foeti with heart defects,
named CDS-HFF (CDS standing for Cardiopathic Down Syn-
drome), and four samples from DS foeti without heart defects,
named NCDS-HFF (NCDS standing for Non Cardiopathic
Down Syndrome)].

Gene expression is dysregulated in DS-HFF samples

The analysis of HFF karyotypes demonstrated that all trisomic
fibroblasts showed three copies of Hsa21 as the only cytogen-
etic alteration (data not shown). The expression of some
Hsa21 genes was determined by quantitative real-time PCR
(qRT-PCR) experiments comparing DS-HFF versus N-HFF.
In particular, the Hsa21 genes BTG3, SOD1, ITSN1,
DYRK1A, NRF2 and RIP140 were upregulated in trisomic
fibroblasts when compared with controls (Fig. 1A), thus con-
firming the gene dosage effects that was previously demon-
strated in human foetal tissues (3,14). We then focused on
genes that mapped to chromosomes different from Hsa21
and were involved in multiple mitochondrial functions, such
as the respiratory chain, mitochondrial biogenesis and morph-
ology, and genes involved in related pathways, such as the
Calcineurin/NFAT (Nuclear factor of activated T-cells) axe.
Most of the analysed genes were significantly downregulated
in trisomic versus euploid fibroblasts (Fig. 1B), demonstrating
that trisomy of chromosome 21 perturbs the expression of
genes involved in mitochondrial pathways. Moreover,
NFATc3 and NFATc4 were significantly downregulated
while DYRK1A and RCAN1, two Hsa21 genes involved in
regulating the levels of NFATc phosphorylation, were upregu-
lated in trisomic versus euploid fibroblasts (Fig. 1C).

Mitochondria of DS-HFF show morphological
abnormalities

Electron microscopy (EM) of trisomic fibroblasts revealed that
a significant number of mitochondria had an abnormal morph-
ology, showing an increased size, irregular shape, evident
breaks, mainly of inner membranes. In addition, the mitochon-
dria showed alterations in the pattern of cristae where some
were broadened and arranged concentrically or oriented paral-
lel to the long axis of the organelle (longitudinal cristae)
(Fig. 2A). Broken mitochondria and mitochondria with con-
centric and longitudinal cristae were significantly more abun-
dant in trisomic samples than in the euploid ones (P , 0.05)
(Fig. 2B). Stereological analysis demonstrated that the mito-
chondrial volume density, expressed as a percentage of cellu-
lar volume, was similar in euploid and trisomic samples while
the cristae volume density, expressed as a percentage of mito-
chondrial volume, was significantly lower in all DS-HFF
samples when compared with N-HFF (P , 0.05) (Fig. 2C
and D).

The functional mitochondrial phenotype is altered
in CDS-HFF

Endogenous oxygen consumption rate in intact HFF
The respiratory activity of N-HFF and DS-HFF samples
was compared by high-resolution oxymetry. The oxygen con-
sumption rate (OCR) was assessed in intact cells relying
on endogenous respiratory substrates and corrected for the re-
sidual KCN-sensitive OCR and, therefore, attributable to mito-
chondrial respiratory chain-dependent activity. Figure 3A
shows the results of a systematic analysis whereby the activity
of each cellular sample was measured. Although a relatively
large inter-individual variability was observed within each of
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the three groups, on an average basis, the resting respiration of
DS-HFF showed a significant decrease that was more evident
in CDS-HFF (≈43% inhibition) when compared with N-HFF.
Conversely, a slight increase in the OCR in the presence of the
FoF1-ATP synthase inhibitor oligomycin was observed in
DS-HFF, whereas in the presence of the protonophoric uncou-
pler FCCP a slight, albeit significant, decrease (≈27% inhib-
ition) in the OCR was observed in CDS-HFF when
compared with N-HFF. The respiratory control ratio (RCR),
attained by dividing the uncoupled OCR by that in the pres-
ence of oligomycin, was as high as 14–16 irrespective of
the cell group analysed (Fig. 3B). The ATP-synthase inde-
pendent OCR (leak) was unchanged between N- and
DS-HFF, whereas the oxidative phosphorylation-dependent
OCR (OXPHOS) was significantly reduced in DS-HFF, and
more specifically in CDS-HFF, by 36% when compared with
N-HFF (Fig. 3B). The decrease in OCRRR, observed in
DS-HFF, individually correlated to the altered mitochondrial
morphology and cristae volume density assessed by EM
(Fig. 3C). Next, we measured the mitochondrial membrane
potential (DCm) by confocal microscopic imaging using the
specific mitotropic probe TMRE. A significant difference

was not observed in the TMRE-related fluorescence among
N-HFF, NCDS-HFF and CDS-HFF (Fig. 4A), even though a
finer analysis of the fluorescent signal revealed a less inter-
digitated mitochondrial network morphology in DS-HFF
(Fig. 4B).

Complex I activity
To assess if the observed respiratory deficit in DS-HFF
resulted from a specific defect in one or the other of the re-
spiratory chain complexes, the activity of the protonmotive
complexes I, III and IV was measured in cell lysates. The ac-
tivity of citrate synthase, which is an index of mitochondrial
mass, was also measured. Figure 5A shows that the activity
of complex I was significantly depressed (by about 50%) in
both NCDS-HFF and CDS-HFF when compared with
N-HFF. The decreased activity of complex I correlated with
the altered mitochondrial cristae morphology. Conversely, sig-
nificant differences in activities of complexes III and IV were
not observed among the three cell groups (Fig. 5B and C).
Likewise, the citrate synthase activity was practically un-
affected (Fig. 5D); therefore, following normalization to the
mitochondrial mass, the selective inhibition of complex I in
trisomic cells was confirmed (data not shown). Total protein
levels per cell were slightly less in trisomic samples but not
to a statistically significance degree compared with N-HFF
(Fig. 5E).

Mitochondria-related ROS production
Intracellular ROS level was assessed by confocal microscopy
imaging of cells treated with the redox-sensitive fluorescent
probe DCF. Every trisomic sample displayed an enhanced
ROS production when compared with N-HFF, with a larger
redox imbalance in CDS-HFF (Fig. 6A). Enlargement of the
confocal images showed a compartmentalized, brighter
signal of the DCF-related fluorescence with a very low vari-
ability within each group. On an average basis, the ROS-
related DCF fluorescence was much larger in CDS-HFF
when compared with NCDS-HFF (Fig. 6B). Plotting the
DCF fluorescence versus the normalized complex I activity
for each individual HFF sample suggested the presence of a
threshold value of complex I activity below which extra-ROS
production was generated (Fig. 6C). To further ascertain the
source of the ROS release in DS-HFF, cells were treated
with DPI, which is a pan-inhibitor of flavin-containing oxi-
dases (including complex I). DPI treatment was associated
with a marked decrease in the ROS over-production in repre-
sentative samples of both NCDS- and CDS-HFF, whereas it
was ineffective in N-HFF (Fig. 7). Production of ROS by
the respiratory chain complex I is fostered by the presence
of a DCm (15). Short-time incubation of cells with the uncou-
pler FCCP significantly inhibited ROS release both in NCDS-
and CDS-HFF with a larger effect in the latter (Fig. 7). It has
been recently reported that alteration of PKA-dependent sig-
nalling affects functioning of the oxidative phosphorylation
(OXPHOS) system (11,16,17). Treatment of cells with the
cAMP analogue db-cAMP significantly reduced ROS produc-
tion in both NCDS- and CDS-HFF although the redox state,
especially in CDS-HFF, was not fully renormalized to the
level of N-HFF (cf. Fig. 7 with 6B).

Figure 1. Gene expression is dysregulated in DS fibroblasts. Gene expression
fold change in DS-HFF samples versus N-HFF samples for Hsa21 genes (A),
nuclear-encoded mitochondrial genes (B) and calcineurin/NFAT-related genes
(C) as obtained by qRT-PCR. Values represent the mean of three replicates+
SEM. ∗P , 0.05, ∗∗P, 0.01, N-HFF, Euploid fibroblasts; DS-HFF, Hsa21
trisomic fibroblasts.
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Steady-state intra-mitochondrial calcium level
Deregulation of Ca2+ homeostasis and Ca2+-mediated signal-
ling has been described in cells derived from trisomic patients
or in murine models of DS (18–20). Mitochondria are known
to function as a Ca2+ buffer by taking up Ca2+ mainly via a
specific ruthenium red (RR)-inhibitable uniporter (21,22). To
verify this point, we evaluated the intramitochondrial level
of calcium (mtCa2+) using the specific probe Rhod-1.
Figure 8A and B shows representative confocal microscopic
images of the analysis along with statistical evaluation of
the results. It is shown that DS-HFF displayed a statistically

significant more intense Rhod-1-related fluorescence signal
when compared with N-HFF. However, this was mainly con-
tributed by the CDS-HFF samples. Closer examination of the
intracellular fluorescence unveiled a compartmentalization of
the brighter signal confirming that it was largely displaying
the steady-state mtCa2+ level. The enhanced mtCa2+ load in
DS-HFF correlated positively with the increase in ROS pro-
duction (Fig. 8C) consistent with the notion that calcium
entry in mitochondria induces redox state alterations (23).

To verify the interplay between calcium and ROS, represen-
tative trisomic samples were treated with RR and the redox

Figure 2. Mitochondria of DS fibroblasts show morphological abnormalities. (A) Electron micrographs of morphologically abnormal mitochondria in DS-HFF
(a–f) and normal mitochondria in N-HFF (g and h); (a and b) broken mitochondria; (c and d) mitochondria with concentric cristae (arrow); (e) mitochondria with
longitudinal cristae (arrow head); (f) mitochondria with significantly reduced cristae; (g and h) mitochondria with unchanged morphology in N-HFF. Scale bars:
500 nm. (B) Percentages of mitochondria with abnormal morphology in fibroblasts. (C) Mitochondrial volume density relative to cell volume. (D) Mitochondrial
cristae volume density relative to mitochondrial volume. In (B)–(D), the mean values+SEM are shown along with statistical analysis; ∗P significant cut
off, 0.05 Kolmogorov–Smirnov and Kruskall–Wallis tests. N-HFF, euploid fibroblasts; DS-HFF, Hsa21 trisomic fibroblasts; NCDS-HFF, Hsa21 trisomic
fibroblasts from DS foeti without heart defects; CDS-HFF, Hsa21 trisomic fibroblasts from DS foeti with heart defects.
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state assessed by DCF. As shown in Figure 9A and B, inhib-
ition of the mitochondrial Ca2+ porter by RR caused a sub-
stantial inhibition of ROS production, suggesting that the
entry of Ca2+ in the mitochondrial compartment was at least
partially responsible for the redox imbalance in trisomic cell
samples. Moreover, treatment with RR resulted in enhance-
ment of the respiratory activity in DS-HFF to the level of
N-HFF (Fig. 9C). Similar results were obtained evaluating
mitochondrial calcium levels by a different method based on

a calcium-sensible photoprotein, the aequorin (see Supplemen-
tary Material, Text S1 and Fig. S1).

Mitochondrial biogenesis is affected by Hsa21 trisomy

Lastly, to verify if the observed mitochondrial dysfunction
was associated to a decreased mitochondrial biogenesis, we
quantified the copy number of mitochondrial DNA by absolute
qRT-PCR. There was an average value of ≏600 copies per
nuclear genome (i.e. per cell) in N-HFF, 500 in NCDS-HFF
and 400 in CDS-HFF (Fig. 10A). A statistical significance
was attained only for CDS-HFF.
As the mtDNA replication is controlled by PGC-1a, which

is a master regulator of mitochondrial biogenesis (13), we ana-
lysed the correlation between PGC-1a expression and the
amount of mtDNA. The amount of PGC-1a gene transcripts
was reduced by ≏40–50% in trisomic samples versus
N-HFF (Fig. 10B). Western blotting of PGC-1a confirmed
at the protein level a significant decrease in NCDS-HFF and
an even more marked decrease in CDS-HFF when compared
with N-HFF (Fig. 10C). A direct correlation between
PGC-1a expression and amount of mtDNA was observed in
our samples (Fig. 10D).

DISCUSSION

We previously demonstrated that more than 80 genes, encod-
ing mitochondrial enzymes and respiratory chain subunits, are
downregulated in foetal trisomic heart tissues (3). Of these
genes, 40 % have consensus DNA binding sites for the
nuclear respiratory factor NRF1 in their 5’ flanking regions,
and 20 % of them show a high affinity for the oestrogen-
related receptor ERRa (see Supplementary Material, Text S2
and Tables S3 and S4). It has been recently demonstrated
that the transcription factors NRF1 and ERRa and their
targets are repressed by Hsa21 gene RIP140 and induced by
PGC-1a in a dose dependent manner in neonatal rat cardio-
myocytes (24). Our results indicate that NRF1 and PGC-1a
are significantly downregulated in DS HFF. Western blotting
of PGC-1a confirmed the downregulation also at the protein
level in trisomic fibroblasts. This downregulation correlated
well with the downregulation of complex I activity and with
the mtDNA copy number decrease (more evidently in
CDS-HFF). PGC-1a function has been investigated in
several specialized cell types and transgenic mouse models,
demonstrating its role in the regulation of mitochondrial oxi-
dative metabolism. PGC-1a null mice show reduced expres-
sion of mitochondrial genes in multiple tissues (25,26).
PGC-1a controls the expression of nuclear-encoded mito-
chondrial genes through interactions with its transcriptional
partners NRF1 and ERRa, which are also downregulated in
DS samples.
Morphological analysis of mitochondria in trisomic versus

euploid samples demonstrated ultrastructural changes in
DS-HFF mitochondria. These results provide additional evi-
dence of altered mitochondrial morphology observed in DS
brain tissues and mouse models (8,27). Silencing experiments
demonstrated that the downregulation of IMMT causes a
drastic change in the organization of the inner membrane

Figure 3. Respirometric analysis in DS fibroblasts. (A) OCRs normalized to
cell number were assessed by high-resolution oxymetry in intact cells as
described in the Materials and Methods. A comparative analysis between
five different euploid (N-HFF) and eight different trisomic (DS-HFF)
samples is shown; a distinction of the DS-HFF between non-cardiopathic
(NCDS-HFF, n ¼ 4) and cardiopathic (CDS-HFF, n ¼ 4) foetus-derived fibro-
blasts is also reported. The endogenous OCR were measured under resting
conditions (OCRRR), in the presence of oligomycin (OCROL) and in the
uncoupled state in the presence of FCCP (OCRUNC). (B) Respiration-linked
bioenergetic parameters computed by the OCR measurements shown in (A).
RCR, respiratory control ratio; Leak, non-ATP-synthase-controlled respiratory
activity; OXPHOS, ATP-synthase-controlled respiratory activity. The bars in
(A) and (B) are means+SEM of the average determinations for each
sample carried out at least in triplicate; when statistically significant, the dif-
ference when compared with the euploid samples is shown. (C) Correlation
plots between respiratory activity under resting conditions (OCRRR) and per-
centage of concentric or longitudinal cristae or of cristae volume density for
individual fibroblast samples (see the symbol legend).
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that formed concentric layers instead of organizing into
tubular cristae (28,29), leading to cristae patterns similar to
those observed in DS samples. It is interesting to note that
IMMT is significantly downregulated in DS fibroblasts.
Mitochondria have a key role in oxygen metabolism and

subsequently they are the major source of ROS formation.
Respirometry experiments conducted in this study demon-
strated that in DS fibroblasts the OCR was significantly

reduced in basal, uncoupled and ATP-synthase-dependent
respiratory conditions, thus suggesting an impairment in oxi-
dative phosphorylation competence, especially pronounced
in DS fibroblasts from cardiopathic foeti. A correlation
between the reduced respiratory activity and the morphologic-
al alterations in DS-HFF mitochondria indicates that the
occurrence of de-structured cristae might partly account for
the dysfunctioning oxidative phosphorylation in trisomic

Figure 4. Confocal microscopy analysis of mtDC in DS live fibroblasts. (A) Representative LSCM imaging of the TMRE-related fluorescence of euploid
(N-HFF) and DS (NCDS-HFF and CDS-HFF) fibroblasts. The horizontal histograms on the right show the statistical analysis of the fluorescence intensity
per cell as resulting from the averaged values+SEM of about 100 randomly selected different cells for each sample from at least in-duplicate experiments.
(B) Magnifications of intracellular selected details showing the mitochondrial functional network in representative samples of N-, NCDS- and CDS-HFF. A
false-colours rendering of the TMRE-related fluorescence imaging is also shown.
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samples as also suggested by other authors (30,31). The ana-
lysis of individual complexes in the mitochondrial respiratory
chain showed a strong reduction in the activity of complex I in
DS fibroblasts irrespective of whether they were derived from
cardiopathic trisomic foeti. Similar results have been recently
reported (11). The authors attributed the reduced activity of
complex I to defective cAMP/PKA-dependent phosphoryl-
ation. The impact of the OXPHOS decrease observed in DS
fibroblasts did not result, however, in a severe bioenergetic
failure compromising cell growth. This could be explained
by an adaptive compensatory increase in the glycolytic flux,
as shown in ref. (12), and by the gene-dosage effect of the
Hsa21-harbored regulatory glycolytic enzyme phosphofructo-
kinase PFKL (32).
In the present study, we observed a remarkable alteration in

the redox homeostasis in DS-HFF highlighted by an increased
production of ROS, which localized to an intracellular
compartment resembling the mitochondrial network and
was sensitive to the FCCP uncoupler and to the complex I in-
hibitor DPI. These two features would point to complex I as a
major ROS generator in DS-HFF sustained by a ‘forward
electron transfer’ mechanism (33,34). ROS production in
DS-HFF was substantially suppressed by db-cAMP treatment,

supporting the hypothesis that deregulation of post-
translational modification of complex I is involved in the
redox imbalance observed in DS-HFF.
A feature emerging from the present study is that the redox

imbalance observed in DS-HFF was much larger in fibroblasts
from cardiopathic foeti irrespective of the similar degree of in-
hibition of complex I in NCDS- and CDS-HFF. Release of
ROS has been repetitively reported to be associated with an
overload of Ca2+ into the mitochondria, although the mechan-
ism remains to be satisfactorily explained (35,36). Consistent
with this notion, we observed that DS-HFF displayed a
higher steady level of intramitochondrial Ca2+ when com-
pared with N-HFF, with the CDS-HFF exhibiting the highest
mtCa2+. A linear positive correlation was found between
mtCa2+ and ROS generation in the three cytotype samples.
Most notably, blockage of the major mitochondrial Ca2+-
transporting system resulted in substantial depression of
ROS overproduction in DS-HFF, whereas it was ineffective
in N-HFF. Moreover, ruthenium red treatment resulted in
full recovery of the respiratory activity in DS-HFF. All to-
gether, these observations would argue for a linkage
between chronic intramitochondrial Ca2+ levels, inhibition
of complex I and mitochondrial ROS production. Although

Figure 5. Enzymatic activities of the mitochondrial respiratory chain complexes of DS fibroblasts. The specific activities of (A) complex I (NADH-
dehydrogenase), (B) complex III (cytochrome c reductase), (C) complex IV (cytochrome c reductase) were measured in cell lysates under conditions of satur-
ating substrate as described in the Materials and Methods. The inset in (A) shows the correlation plot of the complex I activity versus either the OCRRR (left Y
axe) and the cristae morphological features (right Y axe; L.C., longitudinal cristae; C.C., concentric cristae); the values are means+SEM of the clustered N-,
NCDS- and CDS-HFF (same colour as the horizontal bars of the histogram). The citrate synthase activity, a marker of the mitochondrial content and the amount
of protein per cell number are also shown in (D) and (E), respectively. N, DS, NCDS and CDS refer to the fibroblast sampling described in the legend of Figure 3;
the bars are means+SEM of the average determinations for each sample carried out in triplicate; when statistically significant, the difference when compared
with the euploid samples is shown.
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we have not specifically addressed the cause of the Ca2+

homeostasis deregulation in trisomic cells, a survey of the lit-
erature suggests that cross-talk between PPARg and Ca2+ mo-
bilization/signalling (37) may be likely in this case. PGC-1a is
an important coactivator of the PPARs transcription factor
family, mainly PPARg (38,39). Depression of PGC-1a activ-
ity, observed in DS-HFF samples, would consequently affect
the transcriptional efficiency of PPARs-controlled genes.

PGC-1a function is both antagonized and regulated by a
gene mapping to Hsa21, the nuclear receptor interacting
protein RIP140. This highly conserved gene shows a 1.5- to
4-fold upregulation both in the heart and fibroblasts from DS
subjects. The upregulation of RIP140 protein was also demon-
strated in the DS hippocampus (40). In the same experiment,
the authors demonstrated that SUMO3 (another gene
mapping to Hsa21) is also upregulated in these cells. It was

Figure 6. Confocal microscopy analysis of ROS production in DS live fibroblasts. (A) Representative LSCM imaging of the DCF-related fluorescence of euploid
(N-HFF) and DS (NCDS-HFF and CDS-HFF) fibroblasts. A representative magnification of an intracellular selected detail (white rectangle) of the indicated CDS
sample is shown displaying compartmentalization of the brighter DCF fluorescence signal. (B) Statistical analysis of the fluorescence intensity per cell as result-
ing from the averaged values+SEM of about 100 randomly selected different cells for each sample from at least in-duplicate experiments; statistical analysis of
the differences is also shown. (C) Correlation plot between the complex I activity normalized to the CS activity and the DCF-related fluorescence signal/cell for
individual and averaged fibroblast samples (see symbol legend, means+SEM).
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demonstrated that the sumoylation of RIP140 modulates its re-
pressive activity (41). The simultaneous upregulation of both
the Hsa21 genes, due to the primary dosage effect, might
exert a synergistic effect. Silencing and re-expression experi-
ments showed that RIP140 expression significantly affects
oxidative metabolism and mitochondrial biogenesis (42).
Even mild RIP140 overexpression repressed nuclear mito-
chondrial genes involved in all the respiratory chain com-
plexes (43). We previously demonstrated that the same
genes were repressed in DS foetal hearts (3).
Two other genes mapping to Hsa21, the kinase DYRK1A

and the regulator of calcineurin 1 (DSCR1/RCAN1), were
demonstrated to control PGC-1a via the Calcineurin/NFAT
pathway, largely through the binding of NFATc to the
PGC-1a promoter (44). The concurrent overexpression of
the Hsa21 genes RIP140, SUMO3, RCAN1 and DYRK1A
and the downregulation of NFATc genes (45), observed in
DS samples, is expected to result in the depression of
PGC-1a expression.
In this study, we have demonstrated that some mitochon-

drial alterations are more pronounced in fibroblasts derived
from DS foeti with heart defects. It must be pointed out that
not all the subjects with trisomy 21 develop congenital cardio-
pathies, even though a heart developmental delay has been
demonstrated in all DS human embryos at 8–10 gestational
weeks (46). This suggests that a different inter-individual
genetic background may affect the severity of the cardiopathic
outcome in DS patients by impairing the oxidative metabol-
ism. Assuming that altered cardiovascular development in
DS likely originates from the trisomy of a critical Hsa21
region between Tiam1 and Kcnj6 (47), a more severe
cardiac phenotype might be associated with different bioener-
getic phenotypes characterized, at the cellular level, by a
larger mitochondrial Ca2+ load and related ROS generation,
as observed in CDS-HFF. Interesting is the evidence that the
induction of oxidative stress in pregnant mice on day 7.5 dis-
rupts cardiac neural crest migration and causes outflow tract
defects like that observed in DS, and that antioxidant adminis-
tration before the induction prevents the heart defects (48).

Implications of our findings have a potential therapeutic
value, as a number of drugs are becoming available to specif-
ically inhibit the observed mitochondrial alterations. Some
protocols are being developed to improve oxidative imbalance
in DS using antioxidants such as the coenzyme Q10 (49,50).
On the basis of our results, we also plan to investigate the
effects of PPARg agonists and/or of PGC-1a activators. The
combination of these pharmacologically active compounds
might correct mitochondria-related dysfunctions in trisomic
foeti/patients.

MATERIALS AND METHODS

Ethics Statement

Human primary lines of HFF used in this study were obtained
from the ‘Telethon Bank of Fetal Biological Samples’ at the
University of Naples according to protocols approved by the
local Institutional Ethics Committee.

Samples

Skin biopsies were explanted from 13 human foeti after thera-
peutic abortion at 18–22 gestational weeks and were classified
as follows: five euploid human foeti (N-HFF) and eight foeti
with trisomy of Hsa21 (DS-HFF) including four foeti with
CHD, named CDS-HFF and four foeti without heart defects,
named NCDS-HFF (Supplementary Material, Table S1).
Fibroblasts from biopsies were cultured in T25 flasks (BD
Falcon) with Chang medium B+C (Irvine Scientific) supple-
mented with 1% penicillin/streptomycin (Gibco) at 378C in
5% CO2 atmosphere; all the analyses described throughout
this study were carried out at passages 4–5. Karyotype ana-
lysis was performed by standard G-banding technique.
The presence of CHD was established by colour Doppler

foetal echocardiography followed by direct examination at
the time of tissue explantation and dissection.

RNA extraction and quantitative real-time PCR

Total RNA from each sample was extracted using TRIzol
reagent (Gibco/BRL Life Technologies, Inc., Gaithersburg,
MD, USA) and was reverse-transcribed using the iScript
cDNA Synthesis kit (Bio-Rad Laboratories Inc., Hercules,
CA, USA). Real-time PCR was performed using iQ Supermix
SYBR Green 2X on a Bio-Rad iCycler according to the man-
ufacturer’s protocols. PCR reactions were performed in tripli-
cate. Primer pairs (MWG Biotech, Ebersberg, Germany) were
designed using the Primer 3 software (http://frodo.wi.mit.
edu/primer3) to obtain amplicons ranging from 100 to
150 bp (Supplementary Material, Table S2). GAPDH and
RPL13A housekeeping genes were chosen as reference genes.

Morphological analysis

Fibroblasts from trisomic and euploid foeti were fixed and em-
bedded for the electron microscope, using agarose as an inter-
mediate embedding medium (51). Cells were fixed in petri
dishes with 4% paraformaldehyde and 5% glutaraldehyde in
PBS buffer (0.1 M, pH 7.3) for 30 min at room temperature,

Figure 7. Effect of FCCP, DPI and db-cAMP on ROS production in DS fibro-
blasts. Cultured foetus-derived fibroblasts representative of euploid (BIO23)
and DS non-cardiopathic (BIO45) or cardiopathic (BIO22) samples were
treated for 2 h with either of 0.5 mM FCCP, 100 mM DPI or 100 mM

db-cAMP and then assessed by LSCM for ROS production by DCF. The
values shown are means+SEM (n ¼ 3 under each condition) of the
DCF-related fluorescence intensity/cell normalized for each fibroblast
sample to untreated cells. When statistically significant, the difference
between untreated and compound-treated cells is reported.

1226 Human Molecular Genetics, 2013, Vol. 22, No. 6

 at U
n
iv

ersita d
i N

ap
o
li o

n
 F

eb
ru

ary
 1

4
, 2

0
1
4

h
ttp

://h
m

g
.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/dds529/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/dds529/-/DC1
http://hmg.oxfordjournals.org/
http://hmg.oxfordjournals.org/


then washed in buffer, scraped from culture plates and pelleted
by centrifugation for 10 min at 2000g; the supernatant was dis-
carded and the cells were resuspended in 1 ml of 2% liquid
agarose at 658C. Again, the reaction tube was centrifuged
for 5 min at 1000g to concentrate the cells in agarose. The
agarose-cell pellet was solidified in ice for 30 min, and then
the agarose cone was carefully taken out of the reaction tube
and divided into small pieces (1 mm3). The agarose-cell
blocks were post-fixed in osmium tetroxide (1% in PBS
buffer) for 1 h at 48C, dehydrated and transferred first to pro-
pylene oxide, then to a mixture of propylene oxide-Epon (1:1)
and finally embedded in Epon resin. The Epon blocks were
polymerized for 2 days at 608C and then sectioned with a

diamond knife to give thin sections, 70–80 nm each; the sec-
tions were picked up on 200 mesh copper grids, stained with
uranyl acetate (5% in 50% methanol) and Reynolds lead
citrate (52) and observed on a Philips 208S transmission elec-
tron microscope. Micrographs were acquired with a Mega
View II Soft Imaging System camera. Three N-HFF
(BIO-21, BIO-23, BIO-27) and six DS-HFF samples
(BIO24, BIO-36, BIO-37, BIO-44, BIO-48 and BIO55) were
analysed using the ‘fractionator’ method to obtain a systematic
and uniformly random sampling, which ensures that even for
relatively small samples, the error is so small that it may
safely be ignored (53). Fifty cells per sample were analysed
and for each cell the percentages of inner and outer membrane

Figure 8. Confocal microscopy analysis of mitochondrial Ca2+ in DS live fibroblasts. (A) Representative LSCM imaging of the Rhod-1-related fluorescence of
euploid (N-HFF) and DS (NCDS-HFF and CDS-HFF) fibroblasts. A representative magnification (white rectangle) of the indicated CDS sample is shown dis-
playing the punctuate compartmentalization of the Rhod-1-fluorescence signal. (B) Statistical analysis of the fluorescence intensity per cell as resulting from the
averaged values+SEM of about 100 randomly selected different cells for each sample from at least in-duplicate experiments; when statistically significant, the
difference when compared with the euploid samples is shown. (C) Correlation plot between the Rhod-1- and DCF-related fluorescence signal/cell for averaged
fibroblast samples (see symbol legend, means+SEM).
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breakages, branched mitochondria and mitochondria with
concentric or longitudinal cristae were determined. Further-
more, for each sample, 25 micrographs were collected to
evaluate the mitochondrial volume density (Vmt, relative
volume of mitochondria on cell volume) and mitochondrial
cristae volume density (Vmc, relative volume of mitochon-
drial cristae on mitochondria volume) (54). The volume
density (also named relative volume or volume fraction) is a
ratio between volumes. This is an intuitive parameter, unbia-
sedly estimated by overlaying a test system of points on
images and then counting those falling over the objects of

interest and those over the reference space. The ratio of
points gives the estimation of volume. According to Delesse’s
principle, the volume fraction of an object varies proportional-
ly to their area fraction as measured in random 2D
sections; this means that each point controls an area in a 2D
section and is related to a defined volume in the 3D organ (55).

Western blot analysis

Cells were washed twice with ice-cold PBS and lysed in RIPA
buffer (NaCl 154 mM; Deoxicolic Acid 12 mM; NaF 0.95 mM;

Figure 9. Effect of ruthenium red on ROS production and respiratory activity in DS live fibroblasts. Cultured foetus-derived fibroblasts representative of euploid
(BIO23) and DS non-cardiopathic (BIO45) or cardiopathic (BIO22) samples were treated with 10 mM ruthenium red (RR) for 4 h and then assessed by LSCM for
ROS production and mtCa2+ by DCF and Rhod-1, respectively. (A) DCF-related fluorescence imaging of untreated and RR-treated fibroblasts (representative of
three different experiments). (B) Statistical analysis of the DCF-related (upper histogram) and Rhod-1-related (lower histogram) fluorescence intensity per cell.
The average values+SEM of about 100 randomly selected different cells for each sample from three different experiments are shown. (C) Effect of RR on the
respiratory activity of the same representative samples of N-, NCDS- and CDS-HFF as in (A). The OCRRR was measured as described in the legend of Figure 3
and treatment with RR as in (A); the bars are means+SEM of the average determinations for each sample (untreated and RR-treated) carried out in triplicate.
When statistically significant, the difference between untreated and RR-treated cells is reported in (B) and (C).
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Triton X-100 1%; SDS 2%; PMSF 2 mM) in phosphate buffer
in the presence of protease inhibitors. The protein concentra-
tion was determined using the Bio-Rad protein assay
(Bio-Rad Laboratories Inc.). For western blot analysis, total
lysates were boiled for 5 min in Laemmli sample buffer and
analysed on 7.5% SDS–PAGE. Gels were then blotted onto
nitrocellulose transfer membranes (Schleicher and Shuell
GmbH, Dassel, Germany) using a Bio-Rad apparatus. After
transfer, the filters were blocked at room temperature for 1 h
with 5% BSA in TTBS (150 mM NaCl, 20 mM Tris-HCl pH
7.5). After washing twice with TTBS (150 mM NaCl, 20 mM

Tris-HCl pH 7.5, 0.1% Tween 20), filters were incubated over-
night at 48C with rabbit polyclonal primary antibody to
PGC-1a (1:1000, Abcam, Cambridge Science Park, Cam-
bridge, UK). The filters were washed extensively with TTBS
and incubated for 1 h at room temperature with anti-rabbit
peroxidase-conjugated secondary antibody (Amersham, Little
Chalfont, Buckinghamshire, UK) diluted 1:1000 in TTBS.
The filters were then washed six times with TTBS and once
with TBS and developed using an ECL western blotting sub-
strate detection method (Pierce, Rockford, IL, USA). For
reprobing, the nitrocellulose filters were re-hydrated and

Figure 10. Analysis of the mitochondrial DNA content and expression of PGC-1a in DS fibroblasts. (A) Absolute qRT-PCR analysis of mtDNA (see Materials
and Methods for details). The bars are means+SEM from five euploid and eight DS fibroblast samples; a distinction between non-cardiopathic (NCDS, n ¼ 4)
and cardiopathic (CDS, n ¼ 4) foetus-derived fibroblasts is also reported. (B) Expression analysis of the PGC-1a by qRT-PCR. The values, means+SEM, of the
DS samples are normalized to that of the euploid fibroblasts. (C) Analysis of the PGC-1a protein. (Panel on the left) Western blotting of PGC-1a on total cellular
protein extracts from euploid and DS samples (representative of two to three different analyses carried out for each sample). (Panel on the right) Densitometric
analysis of the PGC-1a-related immunodetected bands (means+SEM of two to three assays). To compare different electrophoretic runs, the densitometric value
(normalized to tubulin) of the euploid sample BIO-23 was taken as an internal reference. When statistically significant, the P-value, when compared with the
euploid samples, is shown in (A and B) and (C and D) Correlation plot between the normalized PGC-1a protein expression and the mt-DNA copy number for
averaged fibroblast samples (see symbol legend, means+SEM).
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stripped for 30 min at 378C in restore western blotting strip-
ping buffer (Pierce) and washed extensively with TTBS.
Results were standardized to alpha tubulin and analysed
using NIH Image J (Rasband, W.S., ImageJ, U. S. National
Institutes of Health, Bethesda, Maryland, USA, http://imagej.
nih.gov/ij/, 1997–2012).

Measurement of the respiratory activity in intact cells

Cultured cells were gently detached from the dish by tripsiniza-
tion, washed in PBS, harvested by centrifugation at 500g
for 5 min and immediately assessed for O2 consumption with
a high-resolution oxymeter (Oxygraph-2k, Oroboros Instru-
ments). About 1 × 106 viable cells per ml were assayed in
50 mM KPi, 10 mM Hepes, 1 mM EDTA, pH 7.4 at 378C;
after attainment of a stationary endogenous substrate-sustained
resting oxygen consumption rate (OCRRR), 2 mg/ml of
the ATP-synthase inhibitor oligomycin was added (OCROL)
followed by addition of 0.5 mM of the uncoupler carbonilcya-
nide p-triflouromethoxyphenylhydrazone (FCCP) (OCRUNC).
The rates of oxygen consumption were corrected for 2 mM

KCN-insensitive respiration. The RCR was obtained by the
ratio OCRUNC/OCROL, the leak by the ratio OCROL/OCRUNC

and the ATP-synthesis-linked respiration (OXPHOS) by the
ratio (OCRRR-OCROL)/OCRUNC (56).

Measurement of the activity of mitochondrial respiratory
chain complexes

The specific activities of NADH:ubiquinone oxidoreductase
(complex I), ubiquinone:cytochrome c oxidoreductase
(complex III) and cytochrome c oxidase (complex IV) were
assayed spectrophotometrically on frozen-thawn and
ultrasound-treated cells in 10 mM Tris, 1 mg/ml serum
albumin, pH 8.0. Complex I was assayed (in the presence of
1 mg/ml of antymicin A plus 2 mM KCN) by following the
initial 2 mg/ml rotenone-sensitive rate of 50 mM NADH oxida-
tion (1340nm ¼ 6.22 mM

21 cm21) in the presence of 200 mM

decylubiquinone (dUQ) as electron acceptor; complex III
was assayed (in the presence of rotenone plus KCN) by fol-
lowing the initial 1 mg/ml antymicin A-sensitive rate of
50 mM ferri-cytochrome c reduction (1550nm ¼ 21.1 mM

21

cm21) in the presence of 200 mM dUQH2 as electron donor.
Complex IV was assayed by following (in the presence of
antymicin A) the initial 2 mM KCN-sensitive rate of 20 mM

ferro-cytochrome c oxidation under aerobic conditions. The
activities were normalized to the initial cell number and to cel-
lular protein content (57). Citrate synthase catalyses the reac-
tion between acetyl coenzyme A and oxaloacetic acid to form
citric acid. Citrate synthase activity was assayed spectrophoto-
metrically (1412nm ¼ 13.6 mM

21 cm21) measuring the reaction
between CoA-SH and DTNB (5,5′-dithiobis (2-nitrobenzoic
acid)) to form 5-thio-2-nitrobenzoic acid (TNB) (58).

Laser scanning confocal microscopy (LSCM) live
cell imaging of mitochondrial membrane potential,
ROS and mtCa

21

Cells cultured at low density on fibronectin-coated 35-mm
glass-bottom dishes were incubated for 20 min at 378C with

the either of the following probes: 2 mM tetramethylrhodamine
ethyl ester (TMRE) to monitor mitochondrial membrane po-
tential (DCm); 10 mM 2,7-dichlorofluorescin diacetate, which
is converted to dichlorofluorescein by intracellular esterases,
for detection of H2O2; 5 mM X-Rhod-1 AM for mitochondrial
Ca2+. All probes were from Molecular Probes (Eugene, OR).
Stained cells were washed with PBS and examined with
a Nikon TE 2000 microscope [images collected using a ×60
objective (1.4 NA)] coupled to a Radiance 2100 dual-laser
LSCM system (Bio-Rad). TMRE and Rhod-1 red fluorescence
were elicited by exciting with the He–Ne laser beam (lex
543 nm), whereas dichlorofluorescein green fluorescence was
elicited with the Ar–Kr laser beam (lex 488 nm). Acquisition,
storage and analysis of data were performed with LaserSharp
and LaserPix software from Bio-Rad or ImageJ version 1.37.
Superimposed confocal planes were analysed by means of
the ‘stack’ function of the LCS-Analysis Tools, which
produced an xz intensity profile of the average value of
the pixels within marked edges, including a single cell, as a
function of each focal plane. The integrated value of the xz
profile was taken as a measure of the fluorescence intensity
of that individual cell relative to the selected emission
channel. Correction was made for the minimal background
by repeating the procedure in a cell-free field. About 100
single cells were analysed for each imaging analysis (57).

Statistics

The ANOVA test with Bonferroni post hoc correction was
applied to evaluate the statistical significance of differences
measured throughout the data sets presented. Concerning
stereological investigations, the data obtained from each
sample were averaged per group (N-HFF, DS-HFF,
NCDS-HFF and CDS-HFF) and statistical evaluations were
performed by using two nonparametric statistical tests, the
Kolmogorov–Smirnov and the Kruskal–Wallis tests. The
threshold for statistical significance (P-value) was set to 0.05.
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Mitochondrial dysfunction, which is consistently observed in Down syndrome (DS) cells and 

tissues, might contribute to the severity of the DS phenotype. Our recent studies on DS fetal hearts 

and fibroblasts have suggested that one of the possible causes of mitochondrial dysfunction is the 

downregulation of peroxisome proliferator8activated receptor gamma, coactivator 1 alpha (����

�α or ��������)—a key modulator of mitochondrial function—and of several nuclear encoded 

mitochondrial genes (NEMGs). Reanalysis of publicly available expression data related to 

manipulation of Hsa21 genes suggested the nuclear receptor interacting protein 1 (��	��
or 

�	����) as a good candidate Hsa21 gene for NEMG downregulation. Indeed, ��	�� is known to 

affect oxidative metabolism and mitochondrial biogenesis by negatively controlling mitochondrial 

pathways regulated by �����α. To establish whether ��	�� over8expression in DS downregulates 

both �����α and NEMGs, thereby causing mitochondrial dysfunction, we used siRNAs to 

decrease ��	�� expression in trisomic human fetal fibroblasts. Levels of �����α and NEMGs 

were increased and mitochondrial function was restored, as shown by ROS decrease, ATP 

production and mitochondrial activity increase.   

These findings indicate that the Hsa21 gene ��	�� contributes to the mitochondrial dysfunction 

observed in DS. Furthermore, they suggest that the ��	��������α axe might represent a potential 

therapeutic target for restoring altered mitochondrial function in DS.

Page 2 of 46Human Molecular Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For P
eer R

eview

 3 

������������ 

Data from several studies show that trisomy of chromosome 21 (TS21) affects both mitochondrial 

function and reactive oxygen species (ROS) production. Lower levels of the mitochondrial 

complexes I, III, and V have been observed in the cerebellar and brain regions of subjects affected 

by Down syndrome (DS) 5�6. Moreover, reduced mitochondrial redox activity and membrane 

potential have been observed in DS astrocytes and neuronal cultures 5,6,	5.63	Further evidence for 

mitochondrial dysfunction was found in	Ts1Cje mouse model for DS that shows decreased levels of 

ATP production 5�6. Similarly, fetal DS fibroblasts show both a decreased efficiency of the 

mitochondrial energy production apparatus, involving adenine nucleotide translocators, ATP 

synthase, and adenylate kinase, and a selective deficit of complex I, which might contribute to ROS 

overproduction by DS mitochondria. These events were correlated with changes in the cAMP/PKA 

signaling pathway 576,	586. Similar research conducted on human primary lines of fibroblasts 

(HFFs) from TS21 fetuses has revealed that TS21 disrupts mitochondrial morphology, decreases 

oxygen consumption, increases mtCa
2+

 load and ROS production 596. Moreover, by analyzing 

mitochondrial defects according to the cardiac phenotype, a more severe mitochondrial dysfunction 

was evidenced in cardiopathic8derived TS21 fibroblasts 596. A possible interpretation of these 

results is that a more pronounced pro8oxidative state might contribute to generating a more severe 

cardiac phenotype—a concept that might be extended to other phenotypic traits. Studies of genome8

wide expression analysis in DS have demonstrated that nuclear encoded mitochondrial genes 

(NEMGs) represent the main downregulated category in fetal TS21 heart samples 5:6. 

Downregulation is also manifest in DS fetal brains 5;6. These observations led us to hypothesize 

that NEMG dysregulation is likely a cause of mitochondrial dysfunction in DS	5:6. Among the 

dysregulated genes, the peroxisome proliferator8activated receptor gamma, coactivator 1 alpha 

(����1α/��������) has been found hypo8expressed at the transcriptional and protein levels in 

TS21 HFFs	596. ����1α is indeed known to play a central role in regulating mitochondrial 
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biogenesis and respiratory function through the interaction with transcriptional partners, like ���, 

���α, ����s# and ��� 5��6.  

A known repressor of �����α activity is the nuclear receptor interacting protein 1 (��	����	����) 

5��6, 5�,6, 5�.6. This protein is coded by a highly conserved chromosome 21 (Hsa21) gene with 

consistent dosage effect in many studies on DS samples 5��6. ��	��
acts as a scaffold protein  

recruiting regulatory factors, such as hystone deacetylases (HDACs) 5�76, COOH terminal binding 

protein (CtBP) 5�86# and hystone metyltransferases 5�96# to exert its corepressive function. 

Furthermore, ��	�� directly interacts with some nuclear receptors including PPARs, ERRs, and 

ERs 5�:6, 5�;6, 5,�6. More specifically, ��	�� negatively controls the expression and the activity of 

�����α as well as the expression of its targets. Indeed, in �����α null mice 5,�6,	5,,6, as well as 

in knock8in ��	�� mice 5,.6, NEMG expression is decreased. Likewise, ��	�� is always 

upregulated by 1.58 to 48fold in the heart 5:6	and fibroblasts 596	from DS fetuses. NRIP1 protein is 

also increased in the hippocampal tissue from DS subjects 5,�6. 

Thus, building upon previous research, in this study we endeavored to provide new insights into the 

transcriptional changes influencing the molecular mechanisms associated with mitochondrial 

dysfunction in DS. In particular, we first investigated whether Hsa21 gene overexpression causes 

NEMG downregulation by focusing on those Hsa21 genes, transcription factors, and kinases that 

have the highest probability of affecting the expression of many genes. To this aim, we analyzed the 

public expression data related to the manipulation of Hsa21 genes to investigate their effects on 

NEMG downregulation. These analyses led us to the identification of ��	�� as a good candidate 

for the downregulation of mitochondria8related genes in DS.  

Then, to determine whether ��	�� downregulation can effectively counteract mitochondrial 

dysfunction and some of its pathophysiological effects, we attenuated ��	�� expression in human 

fibroblasts from DS fetuses (DS8HFFs). 
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Understanding the molecular correlation between ��	�� expression levels, NEMG regulation, and 

mitochondrial function could lay the basis for the development of new therapeutic protocols for 

Down syndrome. 
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�� �<
�
	�(	41=��$	�>4%�

���	& � 	
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�
	�2 �	NRIP1	 ((�$�
	���*	�>4%�

���	

Several Hsa21 genes can possibly interfere with NEMG expression. For instance, ������ and 

����������� play key roles in the calcineurin/��� pathway, which affects mitochondrial 

activity and morphology during heart development 5,76. Two more genes, ��	�� 5,.6 and 

��������� 5,86 are also involved in mitochondrial pathways. 

To identify which Hsa21 gene might possibly downregulate NEMG expression, we screened the 

Gene Expression Omnibus 5,96 repository (http://www.ncbi.nlm.nih.gov/geo) for gene expression 

data related to the modulation of Hsa21 genes. We selected the GEO GSE 19836 experiment 5,:6, a 

set of data derived from a mouse embryonic stem cell (ESC) bank in which several orthologs of 

Hsa21 genes, with potential regulatory role, are individually overexpressed in an inducible manner. 

Expression data were available for 13 transcription factors (including ��	��, ����� and �����), 

the transcriptional activator ������ and 6 protein kinases (including ������) (for details see 

Materials and Methods). We reanalyzed this series of data by focusing on the mitochondria8related 

categories and pathways dysregulated by the overexpression of each gene looking for Hsa21genes 

that when overexpressed would induce NEMG downregulation. Among the 20 analyzed Hsa21 

genes, only ��	��, one of the 7 genes that are considered "effective" for the expression 

perturbation in the manipulated cells 5,:6, was able to cause NEMG downregulation when 

overexpressed.	Our analysis showed that ��	�� overexpression caused a significant enrichment of 

NEMGs among 298 downregulated genes. The "Mitochondrion" was the most affected Cell 

Component Gene Ontology (GO) category (p< 0.0001) (� =��	� and �144�3 ��)3	�), with a cluster 

of 37 downregulated genes. Motif enrichment analysis, by clustering downregulated genes on the 

basis of their promoter regions, revealed a significant enrichment (p<0.005) in genes with the ���α 

motif. Twenty8five downregulated genes, instead of the expected 10, showed promoter regions 

around the transcription start site containing the ���α motif.  
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Neither ������� nor ������ nor �����, all considered "silent" genes 5,:6, caused NEMG 

downregulation when overexpressed. 

 

��&1� ����	�(	NRIP1	 �&	PGC�1αααα	�>4%�

���	&<
%�)1� ��
	�2�	
 -�	���*
	&�?�%�)1� ��&	

��	��	(�� �	2� %�
	

To investigate whether the sets of genes regulated by ��	�� and/or �����α showed any 

overlapping to the NEMGs downregulated in DS fetal hearts 5:6, we performed a meta8analysis 

comparing 3 sets of gene expression data, SET1, SET2 and SET3. SET1 included 123 genes which 

were both upregulated after ��	�� silencing and downregulated after ��	�� re8expression in 

mouse adipocytes 5,;6. SET2 included 129 genes which were upregulated after �����α induction 

in SAOS2 cells (human osteoblast8like cells) 5.�6. SET3 included the 70 genes downregulated in 

DS fetal heart tissues 5:6 belonging to the "mitochondrion" GO category (�144�3	� =��	�). The 

comparison was aimed at identifying genes consistently dysregulated across these studies. 

The Venn Diagram shows that NEMGs in SET3, which were downregulated in DS fetal hearts, 

overlap with both SET1 and SET2 (��)3	��). The three sets of genes overlap each other for at least 

25 genes. Fifteen genes are consistently dysregulated across all 3 experiments (��)3	�'). Most of 

these genes are included in the electron transport chain, mainly in complex I, and in oxidative 

phosphorylation pathways. It is also interesting to note that 42 genes overlap between the sets of 

genes inversely regulated by ��	�� and �����α (SET1 and SET2), in agreement with the 

antagonistic functions of the two coregulators 5�;6. 


 

NRIP1	 ����1 ����	=<	
����	 ((�$�
	���*	�>4%�

���	��	�����
	    

We previously demonstrated that ��	�� is upregulated in human fetal fibrobasts from DS fetuses 

(DS8HFFs) in which Hsa21 trisomy negatively regulates NEMGs and impairs mitochondrial 

function 596.  
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To test the hypothesis that ��	�� overexpression perturbs mitochondrial function and that this 

effect is associated with �����α downregulation, we performed silencing experiments of ��	�� 

gene in DS8HFFs. In brief, after re8analyzing all DS8HFF lines used for silencing experiments, we 

demonstrated that ��	�� is significantly upregulated in all trisomic samples if compared to euploid 

controls (��)3	,�). Seventy8two hours after transfection of a specific SMART pool of siRNAs in 

DS8HFFs, an inverse correlation between ��	�� and �����α expression, in a siRNA dosage8

dependent way, was demonstrated by qRT8PCR (��)3	,'). By mmunofluorescence analysis we 

demonstrated that the NRIP1 protein localizes to the cell nucleus, as expected for a corepressor 

protein, both in euploid and in trisomic fibroblasts 5��)3	.6. Fluorescent signal was more intense 

over nuclei of DS8HFFs 5��)3	.'6	with respect to euploid HFFs 5��)3	.�6 indicating a higher 

concentration of the NRIP1 protein in trisomic cells. In these cells some fluorescent signal was also 

present over the cytoplasm 5��)3	.'6	likely due to the overexpression of the NRIP1 protein. In DS8

HFFs treated with siRNAs to attenuate ��	�� mRNA expression, NRIP1 fluorescent signal was 

significantly decreased in a siRNA dosage8dependent way (��)3	.). Quantitative evaluation of 

fluorescence intensities in euploid, trisomic, and siRNA transfected cells (��)3	.�) indicated that 

siRNA transfection reduces NRIP1 protein levels of trisomic cells down to the range of diploid cells 

or even lower (��)3	.��). 

To determine the effects of ��	�� attenuation by siRNA on other mitochondria8related genes, we 

compared the expression of 7 genes in silenced vs scrambled cells using qRT8PCR. Three genes, 

����� �����, ����� and �����, were chosen from the list of 15 genes that resulted 

consistently dysregulated across the 3 sets compared in the meta8analysis (��)3	�). The fourth gene, 

���, which is downregulated in DS hearts 5:6 and fibroblasts 596, was chosen because of its role 

both as a �����α partner and as its target. Finally, three other genes, ���., ������ �����, 

������ ����� and ������ ����!, which are downregulated in DS fetal fibroblasts (our 

unpublished data), were also chosen as �����α targets (SET2, �144�3	� =��	�) 5.�6. 

������ �����
is downregulated in SET3 and after ��	��
overexpression in the De Cegli's data 
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set 5,:6. The expression ratio of these genes in ��	��8silenced DS8HFFs versus scrambled 

transfected DS8HFFs demonstrated that 5 out of 7 analyzed genes were significantly upregulated 

after ��	�� attenuation by siRNA (��)3	�). 

Further, to verify the effect of ��	�� attenuation and consequent �����α upregulation on the 

mitochondrial biogenesis, we used qRT8PCR to quantify �� ��� and ���	� gene expression in 

scrambled and silenced cells, as mitochondrial and nuclear markers, respectively. The average of ��

 �������	� ratio increased by 2.5 fold in silenced trisomic cells (��)3	7), thereby suggesting that 

mtDNA content does increase after ��	�� attenuation by siRNA and consequent �����α 

overexpression. 

	

����$2��&%� �	(1�$����	�
	�-4%�@�&	��	�����
	 (��%	NRIP1	 ����1 ����	=<	
����	

We verified whether ��	�� attenuation by siRNA, along with the consequent increases in ����

1α and other mitochondrial genes, might counteract the mitochondrial dysfunction in trisomic cells. 

For this study, intracellular ROS production, mitochondrial activity, mitochondrial calcium, and 

ATP content were evaluated in DS8HFFs after transient ��	�� siRNA8mediated attenuation.  

ROS production was measured by confocal microscopy imaging of cells treated with the redox8

sensitive fluorescent probe dichlorofluorescein (DCF). Seventy8two hours after transfection with 

��	�� siRNA, DCF8related fluorescence was lower with respect to scrambled DS8HFFs. 

Semiquantitative analysis of fluorescent signals demonstrated that, on an average basis, the ROS8

related DCF fluorescence decreased up to 50% in a siRNA dosage8dependent manner (��)3	8).  

We then established whether decreases in ROS could depend on a rescue of respiratory chain 

complex activities. To this aim, we incubated silenced DS8HFFs with the specific mitochondrial 

superoxide indicator, MitoSOX Red. This reagent is a live8cell permeant that is rapidly and 

selectively targeted to mitochondria. Once in the mitochondria, MitoSOX Red reagent is oxidized 

by superoxide and exhibits red fluorescence. In experiments performed in ��	��8silenced DS8
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HFFs, a reduction of the MitoSOX Red signal was demonstrated thus suggesting that the decrease 

in ROS was partially associated with mitochondrial activity (��)3	9).  

Then, to confirm even further that ��	�� attenuation by siRNA improves mitochondrial function, 

we incubated trisomic silenced cells with the MitoTracker Red dye, a reagent that stains 

mitochondria in live cells and whose accumulation is dependent upon membrane potential. A 

significant 50% increase of the MitoTracker Red8related fluorescence was observed in ��	��8

silenced cells when compared with scrambled controls, thus indicating an increase in respiratory 

activity (��)3	:).  

  

NRIP1	 ����1 ����	=<	
����	&��
	���	 ((�$�	-���$2��&%� �	� 
,A
	2�-��
� 
�
	

In DS8HFFs the mitochondrial Ca
2+

 concentration is significantly greater than that of euploid fetal 

fibroblasts 596. Many extracellular stimuli exert their effect through an increase in cytosolic Ca
2+

 

concentration ([Ca
2+

]c) mediated by the influx of extracellular Ca
2+

 and/or the release of Ca
2+

 from 

intracellular stores, predominantly the endoplasmic reticulum (ER). When [Ca
2+

]c increases, 

mitochondria undergo a major rise in the matrix Ca
2+

 concentration ([Ca
2+

]m). The amplitude of this 

rise largely exceeds that observed in the cytosol thanks to electrochemical potential across the 

cation8impermeant inner mitochondrial membrane that provides the driving force for mitochondrial 

Ca
2+

 accumulation 5.�6. 

Variations in [Ca
2+

]m were measured as previously described 596. In brief, DS8HFFs were 

transfected with a mitochondrially targeted aequorin 5.,6 and then stimulated with histamine. This 

agonist elicited the production of inositol 1,4,5 trisphosphate (IP3) and the consequent release of 

Ca
2+

 from the ER, through the IP3 receptor (IP3R). 

We found no significant differences in the mitochondrial [Ca
2+

]m uptake in ��	��8silenced DS8

HFFs compared to control cells transfected with the non8targeting scrambled siRNA (42.0±2.6 QM 

vs. 38.7±3.9 QM, p=0.5) (��)3 ;). 

 

Page 10 of 46Human Molecular Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For P
eer R

eview

 11

NRIP1	 ����1 ����	=<	
����	
�%��)�<	��$%� 
�
	$���1� %	���	$������	

Levels of phosphorylated adenosine nucleotides, including the universal energy carrier adenosine 

5′8triphosphate (ATP), define the energy state in living cells and depend mainly on mitochondrial 

function 5..6. In ��	��8silenced DS8HFFs, we investigated the intramitochondrial ATP 

concentration ([ATP]m). For this purpose, we used a chimera of the ATP8sensitive photoprotein 

luciferase specifically targeted to mitochondria (mtLuc) to obtain a dynamic monitoring of [ATP] m. 

Luciferase has been widely employed to measure ATP content both in isolated mitochondria and in 

intact cells; its reaction with luciferin produces a flash of yellow8green light with a peak emission at 

560 nm, the intensity of which is proportional to the amount of substrates in the reaction mixture. 

We found that silenced DS8HFFs showed a very strong increase (+50%, p=10
84

) in basal ATP 

content, calculated by the luminescence values of the plateau generated after addition of luciferin 

(��)3	��). Since basal ATP content is highly dependent on the abundance of transfected luciferase, 

we determined the exact amount of the luciferase transduced under our experimental conditions 

through an immunoblot assay. We found that the levels of luciferase protein transduced in ��	��8

silenced DS8HFFs were comparable with those detected in control cells transfected with the non8

targeting scrambled siRNA (��)3	��).  

In parallel, ��	��8silenced cells were slightly decreased in mitochondrial ATP production 72h after 

transfection. This was calculated by subtracting the basal cellular luminescence plateau, generated 

after addition of luciferin, from the luminescence values of the second plateau, generated after 

addition of the Ca
2+

 mobilizing agent histamine (��)3	��).  
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This study originates from previous analyses demonstrating a global mitochondrial dysfunction in 

several DS models 5�6, 5,6, 5.6, 5�6 and a significant dysregulation of NEMGs in the heart 5:6, brain 

5;6,	and fibroblasts 596 from human fetuses with DS. From these studies it emerged that genes and 

transcription factors responsible for the activity of respiratory complexes and mitochondrial 

biogenesis are globally repressed. Thus we speculated that most of the underexpressed NEMGs 

might be under the same regulatory control and that this control might be affected by the trisomy of 

Hsa21. In the present study, we looked for a regulator of NEMGs that maps to Hsa21 and that is 

upregulated in DS samples, by virtue of a gene dosage effect. To this aim, we re8evaluated the 

expression data from the GEO repository (http://www.ncbi.nlm.nih.gov/geo) by focusing on an 

experiment in which regulatory genes mapping to Hsa21 were individually overexpressed in mouse 

ESCs 5,:6. Our analysis demonstrated that only one gene is able to cause NEMG downregulation 

and that no other Hsa21 tested gene exerts such an effect. This gene is ��	�� which encodes for a 

corepressor protein. Although the mean dysregulation of each NEMG elicited by ��	�� 

overexpression was not very strong, the number of affected genes was significantly enriched 

(p<0.001). The role of ��	�� in mitochondrial dysfunction is supported by previous findings 

demonstrating that	both in cellular and in animal models ��	�� silencing upregulates the 

expression of genes responsible for mitochondrial biogenesis and oxidative phosphorylation 

whereas, ��	�� re8expression downregulates them	5,;6,	5,.6. Experiments of ��	�� manipulation, 

performed in transgenic mice and human cells, have actually demonstrated that even mild variations 

in ��	�� expression can significantly affect oxidative metabolism and mitochondrial biogenesis 

5,;6#	5,.6#	5.�6#	5��6. 

We also considered the possible effects of the overexpression of other Hsa21 genes that have 

previously been implicated in the regulation of mitochondrial function such as ������, ������ 

and �����, but none of these genes turned out to regulate "�#
$� NEMG expression. �����, in 

particular, is a nuclear respiratory factor that would be expected to downregulate mitochondria8
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related genes when it is downregulated. However, ����� is never downregulated in DS samples. 

Indeed it was normoregulated in DS fetal hearts 5:6, upregulated in DS fetal fibroblasts 596	and 

inconsistently dysregulated in Vilardell's meta8analysis 5��6. 

On the other hand, the effect of ��	�� on NEMG expression could be further reinforced by another 

Hsa21 gene, ��%��, as sumoylation modulates ��	�� activity 5.76. We thus speculate that the 

simultaneous upregulation of both ��	�� and ��%�� exerts a synergistic effect on mitochondrial 

dysfunction. 

��	�� is supposed to exert a repression of mitochondrial biogenesis by either interacting with 

nuclear receptors 5�;6, 5�:6 or regulating �����α activity 5��6, 5�,6, 5�.6. �����α	knockout mice 

show not only a decreased number of mitochondria but also a decreased respiratory capacity in 

skeletal muscle 5,�6. In particular, under physiological conditions, �����α, by coactivating several 

transcription factors, including nuclear receptors such as ����γ,	����α	and ���α, promotes 

mitochondrial biogenesis and regulates mitochondrial respiratory efficiency 5,�6,	5��6,	5.86. 

Interestingly among the 37 NEMGs downregulated after ��	�� induction in the GEO GSE 19836 

experiment 5,:6, we observed an enrichment both of genes involved in ����s pathways (8 genes) 

and of genes containing the ���α motif in their promoter regions (25 genes) (p<0.0005). Notably, 

the known targets of �����α, namely, �	��� 5�,6 and ������ ����� 5.�6, are included in the 

list of genes that are downregulated following ��	�� overexpression 5,:6. 

Moreover, to investigate whether the NEMGs repressed by ��	�� and induced by �����α 

corresponded to the NEMGs downregulated genes in DS fetal hearts 5:6, we performed a meta8

analysis by comparing our microarray data with the results of 2 experiments in which the gene 

expression of ��	�� or �����α was modulated. We found that the correspondence between the 3 

sets of genes was remarkably high, considering that they all derived from different species, tissues, 

and experimental approaches. The high number of overlapping genes in SET1 and SET2 is in 
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agreement with previous research indicating an interrelationship between �����α and ��	�� 

activity on mitochondrial pathways 5��6.  

These results, combined with the data from previous research, finally led us to verify the potential 

role of ��	�� in mitochondrial dysfunction in DS. When we transiently attenuated ��	�� in 

trisomic fibroblasts, we demonstrated an inverse correlation between ��	�� and �����α 

expression. Accordingly, we found that this attenuation induced the upregulation of 5 out of 7 genes 

randomly chosen in SET3, all of which overlapped with the lists of genes regulated by ��	�� 

(SET1) and/or �����α (SET2). Moreover ��	�� siRNA8mediated attenuation in DS8HFFs, and 

the consequent �����α and ��� upregulation, elicited a significant increase in mtDNA. This 

result fully corroborates similar experiments performed in cardiomyocytes 5��6. 

In the same trisomic fibroblasts, ROS production was decreased and mitochondrial activity was 

increased, demonstrating that the induction of NEMG expression in silenced DS8HFFs counteracts 

mitochondrial impairment and partially rescues mitochondrial function. However, no significant 

alterations of mitochondrial [Ca
2+

] were observed after ��	��
attenuation by siRNA. A possible 

explanation to this phenomenon is either that 728hours  is not a sufficient time to determine 

detectable differences in Ca
2+

 uptake or that many other mechanisms affect calcium uptake in TS21 

cells, e.g. the trisomy of genes involved in the calcineurin pathway (������ and �����) 5,76. 

Other Ca
2+

 regulators could play a role. 

Interestingly, in ��	��8silenced trisomic cells, we found a significant 50% increase in basal ATP 

content. These results, together with the finding that ��	��
attenuation by siRNA leads to an 

increase in the adenine nucleotide translocators ������ ����� and ������ ����� (��)3	�), 

suggest that a more efficient exchange of adenosine 5′8triphosphate is induced, thus benefitting the 

mitochondrial activity and function of these cells, as demonstrated by the reduction in ROS 

production at the mitochondrial level (��)3	9).  
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Supporting evidence for the opposite effects of ��	�� and �����α on mitochondrial function and 

NEMG regulation is that in neonatal rat cardiomyocytes ��	�� mediates an antagonistic role versus 

�����α in the regulation of mitochondrial energy metabolism 5��6. Indeed, overexpressed ��	�� 

abrogates �����α8mediated induction of mitochondrial membrane potential and mitochondrial 

biogenesis 5��6. Furthermore, the ��	��8dependent repression of genes involved in mitochondrial 

function is closely linked with post8natal impaired cardiac function as a result of reduced 

mitochondrial electron8transport chain activity and oxygen consumption. ��	�� hyperexpressing 

mice are indeed affected by cardiac hypertrophy 5.�6.  

��	�� and �����α are also involved in glucose uptake and therefore in the physiopathology of 

diabetes through the regulation of the insulin sensitive glucose transporter � ���
expression and 

its sub8cellular localization 5.96. These findings correlate with the fact that cardiac hypertrophy and 

diabetes are two important post8natal complications of DS. 

Mitochondrial dysfunction might also contribute to determining DS mental retardation and other 

DS associated post8natal pathologies, like Alzheimer’s disease (AD) and obesity. It is known that 

mitochondria also play a central role in many neurodegenerative diseases such as AD, Parkinson’s 

disease, Huntington’s disease, and amyotrophic lateral sclerosis. Impaired energy metabolism, 

defective mitochondrial enzymatic activity, abnormal mitochondrial respiration, mutated mtDNAs, 

and oxidative stress are all common features of these neurodegenerative conditions 5.:6. 

It is interesting to note that the bioinformatic functional analysis of the 25 genes overlapping SET1 

(genes regulated by ��	��) and SET3 (genes downregulated in DS fetal hearts) showed that 16 out 

of 25 genes characterized the mitochondrial dysfunction pathways described in neurodegenerative 

diseases such as AD and Parkinson’s disease (KEGG Pathways http://www.genome.jp/kegg/ 5.;6). 

However, given that there is a high prevalence of AD in DS patients, we cannot neglect the 

possibility that the overexpression of the Hsa21 gene ���
might have a main role
in the 

development of AD in DS patients. 

Page 15 of 46 Human Molecular Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For P
eer R

eview

 16

Taken all together our study indicates that ��	��
is a key gene in the regulation of the 

mitochondrial pathways and that it is linked to mitochondrial dysfunction in DS. Accordingly, this 

should be taken into account when planning therapeutic approaches aimed at improving functions 

and cognitive performance in DS mouse models. Many of these models are indeed inadequate since 

they are not trisomic for all Hsa21 genes and may also have duplications of regions non syntenic to 

Hsa21. This is true, for instance, for the very popular Ts65Dn mouse that, among other Hsa21 

genes, is not trisomic for either ��	�� or ��%��. Thus, preclinical models of Ts65Dn will be 

unable to address all phenotypic problems and we speculate that clinical trial oftentimes fail 

because the overexpression of important genes like ��	�� is not taken into account. 

Our results do highlight that ��	��
plays a relevant role in DS mitochondrial dysfunction, as 

evidenced by the ability of ��	�� inhibition to counteract mitochondrial dysfunction. However, we 

cannot rule out the likelihood that other genes may, in fact, be involved. A case in point is that the 

DS mouse model Ts1Cje manifests mitochondrial dysfunction even though it is not trisomic for 

either ��	�� or for ��%���
Thus,
further studies
are indeed warranted to identify additional genes 

possibly responsible for DS mitochondrial alterations.    

Finally, these results provide the basis for clinical trials aimed at restoring mitochondrial function in 

DS subjects to counteract specific phenotypic features such as neurodegeneration, cardiac 

hypertrophy, diabetes, and obesity. Such therapeutic approach would be highly desirable 

considering that the very few therapeutic approaches undertaken so far in this direction using 

antioxidants and nutraceutics have yielded either poor or discordant outcomes 5��6, 5��6.  

Thus we speculate that a possible therapeutic approach in DS could be based either on �����α 

activators, which have been tested in other disease mouse models 5�,6, 5�.6,	5��6,	5�76,	or on 

����γ agonists, which attenuate mitochondrial dysfunction in AD mouse models 5�86,	5�96,	5�:6,	

5�;6,	57�6,	57�6. Such drugs are already routinely used in clinical practice for the treatment of 

metabolic syndromes, type 2 diabetes, and neurodegenerative diseases such as AD 57,6, 57.6, 57�6.  

Page 16 of 46Human Molecular Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For P
eer R

eview

 17

In conclusion, our study has provided further insights into the transcription factors that influence 

mitochondrial dysfunction in DS. Our findings could indeed pave the way for the development of 

new and more effective drugs capable of selectively targeting the intricate set of molecular 

mechanisms underlying the pathogenesis of this disease. 
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���������	���	�������	

 

�� �<
�
	�(	41=��$	�>4%�

���	& � 3	A set of expression data from GSE 19836 series 5,:6 was 

obtained from Gene Expression Omnibus repository GEO (http://www.ncbi.nlm.nih.gov/geo). This 

set of data, derived from the analysis of a mouse embryonic stem cell bank in which 32 orthologs of 

human chromosome 21 genes, including transcription factors and protein kinases, were individually 

overexpressed in an inducible manner. A set of clones individually overexpressing 20 of the 32 

genes, namely 13 transcription factors (��#�, �&'(�, �#), �*$�, �&+"&, �#�"�, �,�)�, �,�)�, 

�-./0�, �1.0�, ��2�, 3��4�, �5����6%����-), one transcriptional activator (�$'#���'&.�) and 

6 protein kinases (�������
��� �, 71.-, �80-, �9-,, ��"-�), was transcriptionally profiled 

under inducing and non8inducing conditions with Affymetrix Gene Chip Mouse 430_2. 

Specifically, RNAs from 3 induced mouse ESCs and 3 controls were profiled for each inducible 

Hsa21 gene 5,:6. In our analysis, we used GeneSpring software vers. 11.5 Multi−Omic Analysis 

(Agilent technologies Inc.) for data interpretation; however our criteria were different from those 

used by the authors of the gene expression data set, focusing on downregulated genes. We 

considered genes differentially expressed with a Fold change (LogFC) >0.3 and <−0.3 with p<0.05, 

thus producing 2 lists of dysregulated genes: 511 upregulated genes and 298 downregulated genes. 

Gene ontology (GO) functional class scoring of all the lists of significantly upregulated or 

downregulated genes was performed using the Web−based Gene Set Analysis Toolkit V2 

(http://bioinfo.vanderbilt.edu/webgestalt/) 5776,	5786. Special attention was given to mitochondria8

related categories and pathways.   

	

���  � �<
�
3	We compared 3 sets of gene expression data from different experiments, to identify 

genes consistently dysregulated across the 3 studies. The first set, SET 1,included genes 

dysregulated by �#�"� modulation in mouse adipocytes 5,;6.	The second set, SET2, included genes 

upregulated after �����α  induction in SAOS2 cells (human osteoblast like cells) 5.�6. The third 
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set included mitochondria8related genes, downregulated in DS fetal heart tissue 5:6 The 3 sets were 

filtered according to the GO cell component category "mitochondrion" with the above mentioned 

Web−based Gene Set Analysis Toolkit V2. The resulting genes – 123 genes in SET1, 129 in SET2 

and 70 in SET3 (Suppl. Table 1) – were intersected using the R software (http://www.R8

project.org/). A Venn Diagram was built, which shows overlapping genes across the 3 sets.  

	

��2�$
	�� ��-���3 Human primary lines of fetal fibroblasts (HFFs) were obtained from the 

"Telethon Bank of Fetal Biological Samples" at the University of Naples. All experimental 

protocols were approved by the local Institutional Ethics Committee. 

	

� -4��
3 Eight skin biopsies were explanted from human fetuses with trisomy of Hsa21 (DS8HFF) 

after therapeutic abortion at 18–22 gestational weeks. Fibroblasts from biopsies were cultured in 

T25 flasks (BD Falcon) with Chang medium B+C (Irvine Scientific) supplemented with 1% 

penicillin/streptomycin (Gibco) at 37°C in 5% CO2 atmosphere; all the analyses described 

throughout this study were carried out at cell culture passages 4–5.  

	

�% �
(�$����	4%���$��3	��	�� was transiently silenced in 8 DS8HFF lines using a pool of specific 

��	��8siRNAs (ON8TARGETplus SMARTpool, Dharmacon), with negative (ON8TARGETplus 

SMARTpool Non targeting siRNAs control, Dharmacon) and positive controls (ON8TARGETplus 

SMARTpool, GAPDH siRNAs, Dharmacon). Interferin transfection reagent (Polyplus transfection) 

was used. Cells were plated on 12 well plates (50000 cells/well) for RNA collection, on 35 mm 

diameter plates with 20 mm slides (Delchimica) (50000 cells/well) for ROS production analysis and 

on 24 well plates (30000 cells/well) (BD Falcon) for immunofluorescence and mitochondrial 

activity assays. DS8HFFs	were transfected with 5nM and 20nM siRNA according to the 

manufacturer's protocol (Polyplus transfection). Seventy8two hours after transfection, the effects of 

��	�� siRNA8mediated attenuation were evaluated. 
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�����	�--1��(�1�%�
$��$�3	For the evaluation of NRIP1 protein by immunofluorescence, 30,000 

cells were plated in 24 well plates on 12 mm diameter round glass coverslips. Cells were fixed in 

3:1 methanol: acetic acid for 15 min, washed twice with PBS, and then incubated twice in 0.1M 

Borate Buffer pH 8.5 for 10 minutes to neutralize the pH. After two washes with PBS, the cells 

were incubated with DNase 1:10 in RDD Buffer (Qiagen) at 37°C for 1h and then treated with 2% 

BSA in PBS to block non8specific protein8protein interactions. The cells were then incubated with 

the antibody anti8NRIP1 (30[g/ml, ab42126 Abcam, Cambridge Science Park, Cambridge, UK) 

overnight at +4°C. The secondary antibody (green) was Alexa Fluor® 488 goat anti8rabbit IgG 

(H+L) used at a 1/200 dilution for 1h 5796. Cells were finally mounted in 50% glycerol in PBS. 

Immunofluorescence analysis was performed at a confocal laser scanning microscope LSM 510 

(Zeiss, Gottingen, Germany) equipped with an Argon ionic laser whose λ was set at 488nm, and an 

HeNe laser whose λ was set at 633nm. Emission of fluorescence was revealed by a BP 5058530 

band pass filter for Alexa Fluor 488 and by a 615 long pass filter for DRAQ5. Images were 

acquired at a resolution of 1024x1024 pixels. Analysis of data were performed with ImageJ 

software, version 1.37 57:6. Fifty random single cells were analyzed for each imaging analysis. 

	

� 
�%	
$ ����)	$��(�$ �	-�$%�
$�4<	5����6	��@�	$���	�- )��)	�(	���	4%�&1$����3 For the 

evaluation of ROS production after ��	�� siRNA transfection, 50,000 cells were plated on 25 mm 

diameter round glass coverslips in an Attofluor cell chamber (Molecular Probe, Leiden, NL). 

Seventy8two hours later, the cells were incubated for 15 minutes at 37°C with 10�Μ of 2,78

dichlorofluorescin diacetate (DCF8DA) which is converted to dichlorofluorescein by intracellular 

esterases, for detection of H2O2, or with 5�Μ of MitoSOX™ Red reagent (Life Technologies, 

Molecular Probes), which is a live8cell permeant and is rapidly and selectively targeted to the 

mitochondria. Once in the mitochondria, MitoSOX™ Red reagent is oxidized by superoxide and 

exhibits red fluorescence. After incubation cells were washed three times with medium w/o serum. 
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To maintain the cells alive during observation and to create the proper environmental conditions, 

the specimen was placed in an Oko Lab (Na, Italy) Water Jacket Top Stage Incubator, kept at 37°C, 

under humidified condition of 5% CO2 and 95% air by means of temperature controllers, gas 

mixers, and humidifiers right on the microscope.  

The analysis of immunofluorescence was performed with a confocal laser scanner microscopy Zeiss 

LSM 510 (Carl Zeiss, Gottingen, Germany), equipped with Argon ionic laser whose λ was set at 

488nm, an HeNe laser whose λ was set at 546nm, and an immersion oil objective 63x/1.4f. 

Emission of fluorescence was revealed by BP 5058530 band pass filter for DCF and 560 Long Pass 

for MitoSOX Red. Images were acquired in the green or in the red channels and then saved in TIFF 

format to prevent the loss of information. They were acquired with a resolution of 1024x1024 pixel 

with the confocal pinhole set to one Airy unit. 

Analysis of data were performed with ImageJ software, version 1.37. Fifty random single cells were 

analyzed for each imaging analysis. 

 

�����% $B�%	�--1��(�1�%�
$��$�3 For the evaluation of mitochondrial activity MitoTracker® 

Red CMXRos (Molecular Probes) was chosen. MitoTracker® probes passively diffuse across the 

plasma membrane and accumulate in actively respiring mitochondria. Thirty8thousand cells were 

plated on 24 well plates on 12 mm diameter round glass coverslips and then incubated with 150nM 

of Mitotracker Red for 30 minutes. After incubation cells were fixed for 20 minutes in PBS 

containing 4% paraformaldehyde (Sigma) and then washed once with PBS 1X. Nuclei were stained 

with the DNA intercalant DRAQ5 (Bio status, Alexis Corporation). Cells were finally mounted in 

50% glycerol in PBS. Immunofluorescence analysis was performed with a confocal laser scanning 

microscope LSM 510 (Zeiss, Gottingen, Germany). The lambda of the two HeNe lasers was set at 

546nm and at 633nm. Fluorescence emission was revealed by BP 560–615 band pass filter for 

Mitotracker Red and by 615 long pass filter for DRAQ5. Double staining immunofluorescence 

images were acquired separately in the red and infrared channels at a resolution of 1024x1024 
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pixels, with the confocal pinhole set to one Airy unit, and then saved in TIFF format. Fifty random 

single cells were analyzed for each imaging analysis using the ImageJ version 1.37. 

 

���	�>�% $����	 �&	C1 ���� ��@�	�� ���-�	���3 Total RNA from each sample was extracted 

using TRIzol reagent (Gibco/BRL Life Technologies, Inc., Gaithersburg, MD) and was reverse 

transcribed using the iScript cDNA Synthesis kit (Bio8Rad Laboratories Inc., Hercules, CA, USA). 

Real8time PCR was performed using iQ Supermix SYBR Green 2X on a Bio8Rad iCycler according 

to the manufacturer’s protocols. PCR reactions were performed in triplicate. Primer pairs (MWG 

Biotech, Ebersberg, Germany) were designed using the Primer 3 software 

(http://frodo.wi.mit.edu/primer3) to obtain amplicons ranging from 100 to 150 base pairs. 

Expression values were normalized either versus scrambled transfected cells or versus scrambled 

transfected euploid cells. ��� ��� and ����7 housekeeping genes were chosen as reference 

genes.		

 

-����	D1 ���(�$ ����3	To quantify the mtDNA content, we selected two genes: �� ��� as the 

mitochondrial target and ���	� as the nuclear target. Both targets were quantified by qRT8PCR 

using cDNA reverse8transcribed from RNA of 3 ��	��8silenced trisomic samples and scrambled 

control. Normalization of gene expression was obtained using ��� ��� gene as housekeeping. 

The ratio between �� ��� and ���	� expression under each condition (��	��8silenced or 

scrambled trisomic cells) was calculated. 	

	

��D1�%��	-� 
1%�-���3 A chimeric aequorin targeted to the mitochondria (mtAEQmut) was used 

as probe. For the experiments with mtAEQmut, cells were incubated with 5 mM coelenterazine 

(Fluka, 7372) for 1–2 h in DMEM supplemented with 1% FBS. A coverslip with transfected cells 

was placed in a perfused thermostated chamber located in close proximity to a low8noise 

photomultiplier with a built8in amplifier/discriminator. All aequorin measurements were performed 
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in KRB supplemented with 1 mM CaCl2. Agonist was added to the same medium as specified in 

figure legends. The experiments were terminated by lysing cells with 100 mM digitonin in a 

hypotonic Ca
2+

8containing solution (10 mM CaCl2 in H2O), thus discharging the remaining 

aequorin pool. The output of the discriminator was captured by a Thorn EMI photon8counting board 

and stored in an IBM8compatible computer for further analyses. The aequorin luminescence data 

were calibrated offline into [Ca
2+

] values using a computer algorithm based on the Ca
2+

 response 

curve of mutant aequorins.	

	

�--1��=������)3 For immunoblotting, cells were scraped into ice cold phosphate8buffered saline 

and lysed in a modified 10 mM Tris buffer pH 7.4 containing 150 mM NaCl, 1% Triton X8100, 

10% glycerol, 10 mM EDTA and protease inhibitor cocktail. After 30 min of incubation on ice, the 

lysates were cleared via centrifugation at 12,000 g at 4°C for 10 min. Protein concentrations were 

determined by the Lowry procedure. Protein extracts (18 [g) were separated on 4–12% Bis8Tris 

acrylamide Gel (Life Technologies, NP0323) and electron8transferred to PVDF or nitrocellulose 

membrane according to standard procedures. Unspecific binding sites were saturated by incubating 

membranes with TBS8Tween 20 (0.05%) supplemented with 5% nonfat powdered milk for 1 h. 

Next, the membranes were incubated overnight with primary antibodies [GAPDH (Cell Signaling, 

2118); LUCIFERASE (Invitrogen, 356700)] and the detection was assessed by appropriate HRP8

labeled secondary antibodies [Santa Cruz, sc82004 (goat anti8rabbit) and sc82005 (goat anti8mouse)] 

plus a chemiluminescent substrate (Thermo Scientific, 34080). Equal loading of lanes was 

confirmed by incubation with an anti8GAPDH antibody. 

 

�1$�(�% 
�	-� 
1%�-���
3	Cells were seeded on glass coverslips (13 mm in diameter) for single 

sample luminescence measurements and allowed to grow until 50% confluence. The cells were then 

transfected with a cytosolic (untargeted) firefly luciferase (cytLuc) and a mitochondrially targeted 

luciferase (mtLuc) 57;6, 58�6.	
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�Cell luminescence was measured in the same purpose8built luminometer used for the aequorin 

measurements, constantly perfused with KRB, supplemented with 1 mM CaCl2 and 20 mM 

luciferin. The light output of a coverslip of infected cells was in the range of 1,000 –10,000 counts 

per second (cps) versus a background lower than 10 cps. All compounds employed in the 

experiments were tested for non8specific effects on the luminescence, but none was observed.	

	

�� ��
��$
3 The ANOVA test, with Bonferroni "/$*
(/' correction in case of multiple comparisons, 

was applied to evaluate the statistical significance of differences measured throughout the data sets 

presented. The threshold for statistical significance (pvalue) was set at 0.05. 
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��)1%�	�3	��-4 %�
��	�(	���*
	&�?�%�)1� ��&	��	��	(�� �	2� %�
	?��2	�2�
�	&<
%�)1� ��&	

=<	NRIP1	 �&��%	PGC�1α3	

�3	Venn Diagram showing overlapping amongst the 3 sets of data. Out of the 70 mitochondrial 

genes that are downregulated in DS fetal hearts (SET3) 5:6, 25 overlap the list of ��	�� regulated 

genes (SET1) 5,;6, and 29 overlap the list of
�����α regulated genes (SET2) 5.�6.  

'3	List of mitochondria8related genes overlapping in the 3 sets of data. The complete lists of genes 

are in Suppl. Table 1. 

	

��)1%�	,3	NRIP1	-�&1� ��
	PGC�1αααα	�>4%�

���	��	���
3  

�3	��	��
mRNA expression level in euploid cells (N18N5), and in trisomic (DS18DS8) HFF lines 

used for silencing experiments. For each sample, values represent the average determination ± SEM 

for 3 qRT8PCR experiments. A pool of euploid cells was used as a calibrator. 

** = p<10
84

. P8values express statistical significance for euploid vs trisomic comparisons. 

'3	��	�� and �����α expression levels in trisomic cells transfected with a scrambled siRNA and 

with a ��	��8specific SMART pool of siRNAs. A decrease in ��	��
expression level corresponds 

to an increase on �����α  expression level in a siRNA8dependent way.  

Values represent the average determination ± SEM for 8 ��	��8silenced DS8HFFs carried out in 

triplicate.  

* = p<0.05, ** = p<0.01. P8values express statistical significance for ��	��8silenced vs scrambled 

comparisons. 

	

��)1%�	.3 �����	�--1��(�1�%�
$��$�	��	NRIP1
����$�&	�����
3 

Representative images of NRIP1 immunofluorescence analysis in (�) euploid cells, (') trisomic 

cells, and trisomic cells transfected (�) with a scrambled siRNA, (�) with 5nM
��	�� siRNA and 
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(�) 20nM
��	�� siRNA. 

�3 Semiquantitative analysis of the immunodetected signals, by ImageJ software (means±SEM of 3 

assayed samples). Fifty randomly selected, different cells for each sample/experimental condition 

were analyzed. A decrease of the fluorescent signal is observed in silenced vs scrambled DS8HFFs. 

Signal from 5nM
��	�� siRNA transfected cells is comparable with euploid HFFs. 

Statistical significance: ** = p<0.01 for trisomic vs euploid comparisons; # = p<0.05 for ��	��8

silenced vs scrambled comparisons. 

	

��)1%�	�3	����$2��&%� %�� ��&	)���	�>4%�

���	��	NRIP1
����$�&	�����
3		

Relative mRNA expression of 7 mitochondria8related genes was measured in ��	��8silenced DS8

HFFs vs scrambled transfected DS8HFFs. Five out of the 7 genes show a significant increase in 

their expression level. 

Values represent the average determination ± SEM for 3 DS8HFF samples carried out in triplicate. 

A pool of scrambled transfected euploid cells was used as calibrator.  

* = p<0.05. P8value express statistical significance for ��	��8silenced vs scrambled comparisons. 

 

��)1%�	73	-����	$������	��	NRIP1
����$�&	�����
3	

Ratio between the mtDNA marker �� ��� and the nuclear DNA marker ���	� indicates an 

increase after ��	�� attenuation by siRNA. The ratio was calculated upon normalization to a 

reference gene (��� ���) by qRT8PCR.  

Values represent the average determination ± SEM for 3 ��	��8silenced trisomic samples carried 

out in triplicate.  

* = p<0.05. P8value express statistical significance for ��	��8silenced vs scrambled comparisons. 

 

��)1%�	83	���	&�$%� 
�	��	NRIP1
����$�&	�����
3	

Confocal microscopy live cell imaging of the DCF fluorescence in transfected DS8HFFs: (�) 
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scrambled, (') 5nM
��	�� siRNA and (�) 20nM
��	�� siRNA.  

�. Semiquantitative analysis of the DCF8related fluorescence, by ImageJ software (means±SEM of 

3 assayed samples). Fifty randomly selected, different cells for each sample/experimental condition 

were analyzed. A significant decrease of DCF8related fluorescence is observed after ��	�� 

attenuation in a siRNA8dependent way. 

** = p<10
84

.
 
P8value express statistical significance for ��	��8silenced vs scrambled comparisons. 

	

��)1%�	93	���% -���$2��&%� �	
14�%�>�&�	&�$%� 
�	��	NRIP1
����$�&	�����
3	

Confocal microscopy live cell imaging of the MitoSOX Red fluorescence in transfected DS8HFFs: 

(�) scrambled, and (') 20nM
��	�� siRNA. Note that the distribution of MitoSOX Red signal 

resembles the mitochondrial network. 

�. Semiquantitative analysis of the MitoSOX8related fluorescence, by ImageJ software 

(means±SEM of 3 assayed samples). Fifty randomly selected, different cells for each 

sample/experimental condition were analyzed. A reduction of the fluorescent signal over the 

mitochondrial network is detected. 

** = p<0.01. P8value express statistical significance for ��	��8silenced vs scrambled comparisons. 

	

��)1%�	:3	����$2��&%� �	 $��@��<	��	��	NRIP1
����$�&	�����
3	

Confocal microscopy live cell imaging of the Mitotracker fluorescence in transfected DS8HFFs: (�) 

scrambled  and (') with 20nM ��	�� siRNA.  

�. Semiquantitative analysis of the Mitotracker8related fluorescence, by ImageJ software 

(means±SEM of 5 assayed samples). Fifty randomly selected, different cells for each 

sample/experimental condition were analyzed. An increase of Mitotracker related fluorescence is 

observed in ��	��8silenced DS8HFFs. 

** = p<0.005. P8value express statistical significance for ��	��8silenced vs scrambled 

comparisons. 
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��)1%�	;3	����$2��&%� �	$ �$�1-	-� 
1%�-���.  

�. Barplot of the [Ca
2+

]m in scrambled and ��	�� siRNA transfected DS8HFFs. The light signal 

was collected and calibrated into [Ca
2+

] values, as described in Materials and Methods. Results are 

shown as the average of measurements from 4 different ��	��8silenced DS8HFFs ± SEM.  

'. Effect of histamine on [Ca
2+

]m. The traces show the average [Ca
2+

]m in DS8HFFs transfected 

with the mitochondrially targeted aequorin. Where indicated, the cells were treated with 100QM 

histamine added to KRB. 

No significant variation in [Ca
2+

]m is observed in the 2 conditions. 

	

��)1%�	��3	����$2��&%� �	���	-� 
1%�-���3  

�. Barplot of the mitochondrial ATP content and of the basal ATP content in scrambled and ��	�� 

siRNA8transfected DS8HFFs.  

'. The traces show mitochondrial [ATP]m changes elicited by mitochondrial [Ca
2+

] increase in cells 

perfused with 100QM histamine as agonist. mtLuc luminescence data are expressed as a percentage 

of the initial value ±SEM (n=4). The traces are representative of four independent experiments. 

* = p=0.05, ** = p=10
84

. P8values express statistical significance for ��	��8silenced vs scrambled 

comparisons. 

	

��)1%�	��3 �1$�(�% 
�	�>4%�

���	(����?��)	NRIP1	 ����1 ����	=<	
����3  

�. Representative immunoblot of luciferase protein in 3 ��	��8silenced or scrambled DS8HFFs 

transfected with a luciferase–encoding plasmid specifically targeted to mitochondria (mtLuc) and 

cultured in complete medium for 72h.  

'. Quantification of luciferase accumulation by LUCIFERASE/GAPDH ratio. 
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��'���	

� =��	�3	*���	������)<	$ ��)�%��
	 ((�$��&	=<	NRIP1	�@�%�>4%�

���	��	*��	�;:.8 
�%��
	?��2	 	4
@ �1�	F	�3�73	 
The "Mitochondrion" is the category most affected by ��	�� upregulation (enrichment = 37 observed genes 
instead of 17.7 expected genes with p< 0.001). 

 

'����)�$ �	�%�$�

	 *�	

$ ��)�%<	

*���
	��	

$ ��)�%<	

�=
�%@�&	 �>4�$��&	 ���	

� ���	

4@ �1�	

carboxylic acid metabolic process GO:0019752 630 20 7.51 2.66 0.0089 

cellular carbohydrate metabolic process GO:0044262 198 11 2.36 4.66 0.0089 

monocarboxylic acid metabolic process GO:0032787 339 14 4.04 3.47 0.0089 

carboxylic acid catabolic process GO:0046395 139 8 1.66 4.83 0.0100 

organic acid catabolic process GO:0016054 139 8 1.66 4.83 0.0100 

regulation of transmembrane receptor protein serine/threonine kinase 

signaling pathway 

GO:0090092 137 8 1.63 4.9 0.0100 

carbohydrate metabolic process GO:0005975 527 17 6.28 2.71 0.0100 

lipid metabolic process GO:0006629 881 23 10.5 2.19 0.0100 

oxoacid metabolic process GO:0043436 667 20 7.95 2.52 0.0100 

organic acid metabolic process GO:0006082 680 20 8.1 2.47 0.0100 

����$1� %	(1�$����	       

kinase activity GO:0016301 736 21 9.07 2.32 0.0219 

transferase activity GO:0016740 1574 34 19.4 1.75 0.0328 

transferase activity. transferring phosphorus8containing groups GO:0016772 857 21 10.56 1.99 0.0511 

cofactor binding GO:0048037 244 9 3.01 2.99 0.0602 

����1� %	$�-4�����	       

mitochondrion GO:0005739 1480 37 17.7 2.09 0.0009 

mitochondrial envelope GO:0005740 446 17 5.34 3.19 0.0010 

mitochondrial membrane GO:0031966 424 16 5.07 3.15 0.0013 

organelle inner membrane GO:0019866 330 13 3.95 3.29 0.0036 

mitochondrial part GO:0044429 548 17 6.56 2.59 0.0043 

mitochondrial inner membrane GO:0005743 312 12 3.73 3.22 0.0047 

organelle envelope GO:0031967 671 18 8.03 2.24 0.0122 

envelope GO:0031975 683 18 8.17 2.2 0.0133 

mitochondrial outer membrane GO:0005741 111 6 1.33 4.52 0.0174 

organelle outer membrane GO:0031968 125 6 1.5 4.01 0.0277 
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�''��G�������	

DS, Down Syndrome; TS21, Trisomy of chromosome 21; ROS, reactive oxygen species; cAMP, 

cyclic Adenosine Monophosphate; ���, Protein Kinase A; HFF, human fetal fibroblasts; ����

�α���������, peroxisome proliferator8activated receptor gamma coactivator 18alpha; ���, 

Nuclear respiratory factor 1; ���α, Estrogen8related receptor alpha; ����, peroxisome 

proliferator8activated receptor; ���, Yin Yang 1; NEMGs, Nuclear encoded mitochondrial genes; 

��	����	����, Nuclear receptor interacting protein 1/Receptor interacting protein 140; Hsa21, 

Homo sapiens chromosome 21; DS8HFFs, Down syndrome8human fetal fibroblasts; ������, dual 

specificity tyrosine8phosphorylation8regulated kinase 1; �����������, down syndrome critical 

region 1/regulator of calcineurin 1; ���, nuclear factor of activated T8cells; ���, amyloid beta 

(A4) precursor protein; �����/���, GA8binding protein alpha chain/Nuclear respiratory factor 

2; GEO, Gene Expression Omnibus; GO, Gene Ontology; qRT8PCR, quantitative Real8Time PCR; 

siRNA, short interfering RNA; �����, Cytochrome c oxidase subunit Va; �����, NADH 

dehydrogenase (ubiquinone) 1 alpha subcomplex; �����, NADH dehydrogenase (ubiquinone) 

Fe8S protein 3; ����, adenine nucleotide translocator 1; ����, adenine nucleotide translocator 2; 

����, adenine nucleotide translocator 3; DCF, dichlorofluorescein; ER, endoplasmic reticulum; 

IP3, inositol 1,4,5 trisphosphate; IP3R, inositol 1,4,5 trisphosphate receptor; ESCs, embyonic stem 

cells; ��%���
 small ubiquitin8like modifier 3;
 � ���, Glucose transporter type 4=
 ����7�


glyceraldehyde838phosphate dehydrogenase;
BSA, bovine serum albumin; PBS, Phosphate buffered 

saline; DCF8DA, dichlorofluorescein diacetate; LSCM, laser scanning confocal microscopy; H2O2, 

hydrogen peroxide; EDTA, Ethylenediaminetetraacetic acid; TBS, Tris8buffered saline; KRB, 

Krebs8Ringer buffer; AD, Alzheimer's disease. 
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