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Abstract 

 

Small signal stability is a crucial aspect to accurately keep under control in 
modern interconnected power systems in order to ensure their security and 
reliability. Such  an aspect could represent a serious limiting factor in the search 
for ever higher power systems exploitation levels. Power oscillations not well-
damped may jeopardize the system integrity on large scale: several incidents 
caused by the establishment of large oscillations have been recorded in the past 
around the world. Therefore, a basic assessment that must be done before 
setting a certain optimal operational framework is the determination of the 
actual dynamic stability margins.     

The fast deployment of measurement and instrumentation facilities provided 
by the Wide Area Measurement Systems (WAMS) technology offers a valid 
support in this sense. Large amount of data coming from Phasor Measurement 
Units (PMU) installed in the key points of power systems (e.g. primary 
substations) increases the Transmission System Operators (TSO) situational 
awareness. Thanks to accurate and timely information the stability margins can 
be precisely determined and optimized so that power systems can be operated 
at their actual full capacity while staying within the stability boundaries. 

A deep investigation about the WAMS currently in operation or under testing 
around the world confirms how power oscillations tracking is one of the main 
functionality/application envisaged in these architectures. Real time detection 
of dangerous power oscillations and hence their related continuous parameters 
estimation, in wide area sense, is vital in the framework pointed out above. The 
output of this task is therefore represented by estimates of the oscillations 
fundamental parameters (e.g. frequency, damping factor/ratio, amplitude and 
phase). If potential unstable phenomena are detected (e.g. estimating a 
damping ratio lower than a certain threshold value) all the necessary 
countermeasures have to be implemented for restoring secure and stable 
operating conditions (e.g. generators‘ re-dispatch, tie line flows adjustment, 
load reduction, network topology change etc.).  

It was moreover found that the major problems which characterize these 
infrastructures rely on their own technological complexity, on the data 
management but especially on the research of robust identification techniques 
for implementing all the Dynamic Security Assessment (DSA) tasks that must 
be run in parallel in the central control centres. In this regard, two fundamental 
approaches could be applied for tracking the electromechanical modes in an 
electrical power system. Model-based methods (a.k.a. Component-based method),  
which use an electric power system model linearized around a certain 
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equilibrium point to identify the electromechanical modes characteristics 
through eigenvalue analysis (whose chief rudiments are reported in the 
Chapter 3). Eigenvalue analysis is not suitable for on-line tracking, especially 
for large scale power systems due to both high computational time and 
uncertainties in power system modeling. Measurement-based methods (a.k.a. Mode 
Meters), estimate an updated model of the electric power system from direct 
system measurements which come from measurement devices installed on 
power systems. These techniques, freeing themselves from the system 
modeling, they consider the power system as a black box and by making use of  
the  signal processing expertise, estimate the  modal content of the acquired 
signals. Being moreover less expensive than the first class of methods in large 
scale  power systems model set up, it appears clear that they are suitable for an 
on-line DSA task.  

However, the set of available measurement-based estimation techniques is 
fairly wide. Besides I note that relevant journal databases are regularly filled by 
novel more and more advanced algorithms. My personal feeling in this regard 
is that the basic methodologies are really few, while several refinements of the 
same algorithms, aimed at overcoming specific weaknesses, are regularly 
proposed. From the experience gained working hardly on the topic I can state 
that no best estimator exists due to the lack of an accepted definition of 
optimality. Furthermore, it is a difficult task to assess the performance of 
different estimation methods because each of them was initially designed for a 
specific field, has its own features and sometimes presents parameters chosen 
according to experience or through heuristic considerations. This means that for 
instance a method could show good performance in damping and frequency 
estimation if the modes number is known while may fail if it is not know in 
advance. In addition, a method could work better than another for noiseless 
sampled signals while could deteriorate its efficiency when the signal-to-noise 
ratio (SNR) decreases.  

Nonetheless, there exist estimation techniques which are ―generally‖ 
characterized by good performance with respect to the others. The meaning of 
the term ―generally‖ should be intended as ―with respect to the main situations 
that may occur‖(different data typologies, various SNR levels, a priori 
knowledge of the intrinsic power system modes etc.). A wide set of estimation 
techniques will be analyzed in the present thesis. Afterwards, a performance 
comparison among the techniques will be accomplished with the objective of 
pointing out strengths and drawbacks of each of them. Once ascertained the 
points to improve, three novel estimation algorithms will be introduced. They 
represent a good complementary tool to the ordinary model-based methods 
implemented in the central control centres for real time monitoring power 
system oscillations. Almost all the estimation algorithms considered in the 
thesis were tested in real time on the Italian WAMS thanks to the support of the 
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TSO, Terna. The complex infrastructure owned by Terna, thanks also to the real 
time information exchange with some European partners, represents a vigilant 
eye on the entire European Network of Transmission System Operators for 
electricity-Continental European Synchronous Area (ENTSO-e CESA) for the 
purposes of analysis. The emphasis of this research was hence to tailor high 
accurate and resilient estimation algorithms for real time monitoring of 
electromechanical oscillations, in particular of inter-area type, in such a large 
interconnected system. Although the doctorate course ends achieving the 
predetermined objectives the research on the topic will continue.   
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Chapter 1 

 

Introduction 
 

 

In the most common structures of interconnected electrical power systems 
generators produce alternating current and are synchronized to operate at the 
same frequency network. In this structure kind, although the load demand 
should be conceptually shared among the machines according to their 
nameplate rating, the need to maintain frequency within a narrow operating 
range, leads the network operators to continuously adjust the generators power. 
Alternating current generators can lose the synchronism due to the self-
regulating properties of their interconnection: if the angular speed of one 
generator deviates from the synchronous one, the remaining generators are 
loaded in such a way to allow it the synchronous speed restoring. A 
fundamental role in re-establishing such as condition is played by generator 
moment inertia that can be understood as a measure of the generator 
overcorrecting expedition.  

Power system oscillations represent a characteristic phenomenon of electrical 
power systems caused by the continuous exchange of momentum among 
rotating masses, chiefly those of the synchronous generators. Therefore there is 
nothing extra-ordinary in the power oscillations arising, it deals with an 
inherent phenomenon of power systems, hence we should be surprised if they 
were absent. For this reason, to prevent power oscillations occurrence is 
generally recognized a futile strategy. System operators live constantly with 
these oscillations keeping them under constant control and mitigating their 
effects on system operations. These effects are basically determined by the 
damping levels.   

Different measures of damping for an electromechanical mode can be found in 
literature such as damping coefficient, time-domain damping, logarithmic decrement 
etc. The most adopted one is without any doubt the damping ratio ξ expressed 
in percentage. Such a definition underlies the assumption of a second order 
linearized model for describing the power system response to a certain 
perturbation able to excite a sole electromechanical mode. It appears clear that 
this manner of measuring the electromechanical mode damping level, although 
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widely employed, is quite simplified. In my opinion, significant efforts must be 
done in order to propose a more comprehensive index of evaluation. This is in 
any case behind the scope of this thesis. High damping ratios means that the 
power oscillation quickly decays (being stable) and does not represent an actual 
concern. Low damping ratios, essentially due to the lack of damping torque at 
the generator rotors, means large-amplitude variations in power system 
variables such as voltage, frequency, active and reactive power flows on the 
transmission lines which may result in system breakup and large-scale 
blackouts.  

Whilst establishing a closed-form analytical relationship between power 
oscillations and system operating parameters is not practical, it can be argued 
that the damping ratio depends non-linearly on several factors such as network 
topology, generators‘ production program, load levels, tie lines power flows etc. 
Furthermore it can be observed that damping ratio decreases significantly with 
the enhancement of the overall system exploitation levels. This highlights how 
in modern power systems situations of serious danger for the network stability 
and reliability might realistically occur, taking into account that the power 
systems are often asked to operate close to their nameplate capacity.  

Therefore, to exploit as much as possible the existing networks, ensuring at the 
same time adequate security levels determining the dynamic stability margins, 
the system operators must continuously monitor the power oscillations 
estimating their the fundamental parameters (e.g. frequency, damping 
factor/ratio, amplitude and phase). If potential unstable phenomena are 
detected (e.g. estimating a damping ratio lower than a certain threshold value) 
all the necessary countermeasures have to be implemented for restoring secure 
and stable operating conditions for instance generators‘ re-dispatch, tie line 
flows adjustments, load reduction, network topology change etc.  

Therefore, in order to prevent these catastrophic phenomena a continuous 
system tracking of power oscillations, in a wide-area sense, has to be 
performed. Power  oscillations tracking can be currently performed in real time 
thanks to the quick development of the WAMS. WAMS use sophisticated 
digital recording devices, i.e. phasor  measurement units (PMU), to record and 
export GPS-synchronized, high sampling rate (6-60 samples/second) dynamic 
power system data [1]. A deep investigation about the WAMS currently in 
operation or under testing around the world shows how power oscillations 
tracking is one of the main functionality envisaged in these architectures [2], [3], 
[4], [5], [6], [7]. It was moreover found that the major problems which 
characterize these infrastructures rely on their own technological complexity, 
on the data management but especially the research of robust identification 
techniques for all the analysis that must be run in parallel in the central control 
centres. In this regard, two fundamental approaches could be applied for 
tracking  the electromechanical modes in an electrical power system [8]. Model-
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based methods (a.k.a. Component-based methods),  which  use an electric power 
system model linearized around a certain equilibrium point to identify the 
electromechanical modes characteristics through eigenvalue analysis. 
Eigenvalue analysis is not suitable for on-line tracking, especially for large scale 
power system due to both high computational time and uncertainties in power 
system modelling. Measurement-based methods (a.k.a. Mode Meters), estimate an 
updated model of the electric power system from direct system measurements 
which come from measurement devices installed on power system [9]. These 
techniques, freeing themselves from the system modeling, they consider the 
power system as a black box and by making use of  the  signal processing 
expertise, estimate the  modal content of the acquired signals. Being moreover 
less expensive than the first class of methods in large scale power systems 
model setting up, it appears clear that they are suitable for an on-line DSA task. 
However, the set of available measurement-based estimation techniques is 
fairly wide. Among the other things, different versions (refinements) of the 
same method can be found in literature which have been developed with the 
aim of overcoming the specific weaknesses of the basic version. Driven by the 
same objective, also some integrated multi-steps methodologies which combine 
basic methods have also been proposed in literature. Essentially, the basic 
concept is that no best estimator exists due to the lack of an accepted definition 
of optimality [10]. Furthermore, it is a difficult task to assess the performance of 
different methods because each of them was initially designed for a specific 
field, has its own features and sometimes presents parameters chosen according 
to experience or through heuristic considerations. This means that for instance a 
method could show good performance in damping and frequency estimation if 
the modes number is known while may fail if it is not know in advance. In 
addition, a method could work better than another for noiseless sampled 
signals while could deteriorate its efficiency when the signal-to-noise ratio 
(SNR) decreases.  

The framework above has outlined numerous aspects which make the 
considered research problem quite complex, for this reason, the methodologies 
selection to tackle the problem was the result of a thorough literature review. 
Obviously, such a set of estimation techniques can not be considered exhaustive 
but represents without any doubt the review of the most popular and actually 
employed in real systems. Once known the state of art, the research consisted in 

the implementation of the mentioned techniques in Matlab environment on a 
leased computing unit of the Italian WAMS that receives real-time acquired 
data via proprietary protocol or standard Object Linking and Embedding for 
Process Control. The real-time behaviour of the investigated estimation 
algorithms, summarized in some test reports related to different test periods, 
allowed to recognize strengths and drawbacks of each of them. These results 
were really valuable for us to identify the weak points on which act. Hence the 
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work consisted in the development of some estimation algorithms, accurate and 
robust enough, to be employed in real time for tracking electromechanical 
oscillations in power systems. Thanks to the willingness and the support of the 
Terna‘s experts we had the possibility to work on a privileged application 
domain, exactly the ENTSO-e CESA. The experimental findings obtained in 
field on the widely interconnected system and the scientific awards recently 
obtained in the international accredited literature confirm the merit of the work 
done.    

 

 

1.1 Electromechanical oscillations in power systems 

 

As stated already, electromechanical oscillations are inherent to power 
networks, and are observed as soon as synchronous generators are 
interconnected to provide more power capacity and greater reliability. These 
power oscillations can be readily classified according to two different criteria: 
the operational setting in which they occur and the system equipment involved 
in. According to the former, oscillations can be divided into spontaneous, 
transient and forced [11]. Spontaneous oscillations are typically amplitude-
limited and characterized by reduced variations from the initial low values. 
They generally occur during ambient conditions; that is in steady-state 
conditions. Transient oscillations appear following a perturbation of a certain 
entity (generation/load disconnections, line trips, etc.), then assume large 
amplitudes already at their onset. They can become potentially unstable under 
certain circumstances. Forced oscillations arise between two asynchronous 
islands of an electrical system, just as the previous ones assume large 
amplitudes at the onset and persist until islanding has been completed. 
According to the second criterion, oscillations can be divided into local, inter-
area, intra-plant, control and torsional [12]. Local oscillations arise among 
generators installed in a certain area, with respect to the rest of the power 
system. They are characterized by a typical frequency range between 0.8 and 2.0 
Hz. Inter-area oscillations occur on power networks when two parts of an 
electrical system with a large number of generators are connected by a weak tie-
line. In this case, coherent generator groups swing against each other, with a 
typical frequency range between 0.1 and 0.8 Hz. Intra-plant oscillations appear 
at the same power generation site as a result of the installed machines 
oscillatory behaviour against the rest of the system. They show a typical 
frequency range between 2.0 and 3.0 Hz, depending on the entity of the 
installed capacity, and on the reactance values connecting the units. Control 
oscillations can arise from the erroneous tuning of the generators‘ control 
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systems, controllable loads, Flexible Alternating Current Transmission System  
(FACTS), High Voltage Direct Current (HVDC) systems etc., or from erroneous 
interaction among the aforementioned control systems. These modes are to be 
found in the frequency range from 3.0–10 Hz. Finally, torsional oscillations, 
associated to the turbine generator shaft systems, are particularly identifiable 
when a generator is connected to the grid through a series compensated line. 
They fall into a typical frequency range of 10–46 Hz. The present thesis will 
specifically evaluate the performance of several mode meters with respect to 
spontaneous and ambient/ringdown (transient) oscillations, as well as with 
respect to local and inter-area oscillations, although the employed 
methodologies are general enough to face with all the other oscillation classes 
described in this Section.               

 

 

1.1 Motivations  

 

The need for providing a reliable and safe service has historically induced asset 
owners to adopt conservative strategies in planning and management of electric 
power systems (EPS) [13]. In a deregulated electricity market this worst case 
approach appears inadequate considering that the maximization of the profits 
and social welfare involve performance push for each system component [14]. 
Furthermore, whereas the construction of new electric lines (and in general of 
EPS) is often prevented by several issues (economics, environmental, social etc.) 
it appears evident how is crucial to determine the real exploitation margins of 
the existing networks in order to safely accommodate growing power flows 
[15]. The stress exercised on the EPS lead themselves to operate close to the 
stability limits, hence a proper stability evaluation must be made in order to 
investigate the real loadability of the system. The traditional manner to face 
with power systems stability issue is to identify an updatable set of critical 
contingencies in a certain operating condition and to perform extensive 
simulation studies aiming at evaluating if the operation would be secure or 
insecure. Indeed the simulation models employed could not exactly describe 
the power system behaviour due to the several factors.  

A model will always be an approximated representation of a real-life system. 
Such an approximation is better the higher the level of detail. In order to realize 
more simple dynamic models to implement and simulate, in the electrical 
engineering practice, a certain mismatch between the dynamic behaviour of the 
simulated power system and the real power system is accepted. More 
specifically, for instance, information of the load dynamics is often unknown to 
the TSO or generally the grid model is not updated afterwards network assets 
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reinforcement or replacement. A further source of discrepancy between the 
simulated and the real dynamic behaviour of the power systems is represented 
by missing or incorrect data. Due to these differences, adequate operational 
margins have to be maintained between the actual implemented power systems 
loadability margins and the theoretical maximum power systems loadability 
margins, to maintain sufficient system security.  

Therefore one challenging task for TSO in grid operation and planning is to 
maximize system exploitation keeping the network security high. In this 
framework, to acquire advanced techniques for estimating power systems 
dynamic from real measurements is essential. This is perfectly in line with the 
major recommendations provided by the ENTSO-E downstream the most 
recent blackout on September 28th 2003 in Italy [16] and the system disturbance 
recorded in UCTE (Union for the Coordination of the Transmission of 
Electricity) power system on November 4th 2006 [17]: 

 

 

As can be noted, the recommendations above point out the strategic role of the 
wide area measurements, TSO coordination and state estimators (in wide sense) 
algorithms. They are the enabling technologies and practices to necessarily 
adopt for minimizing the disruption risk. Thanks to these tools, in the very  
short timescale (a few ms), a TSO is able to establish in real time if the system 
can be stable or not and hence implement all the necessary countermeasures. In 
line with this considerations the present thesis aims at providing enabling 
methodologies for real-time small signal stability investigations.  

 

Recommendation #1 

Extend the real time data exchange among neighbouring TSO. Data should 
be consistent to run the state estimators in a reliable way on a wider topology 
basis. 

Recommendation #2 

As a support tool for dynamic analysis and monitoring of the UCTE system, 
accelerate the ongoing WAMS installation programs. 
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1.2 Objectives  

 

The primary objective of this work is hence to develop estimation algorithms 
able to track in real time power oscillations on interconnected electrical systems. 
In order to support this complex activity each potential candidate should match 
the following requirements: 

 

 high accuracy, to precisely describe what is really happening on power 
system, augmenting the TSO situational awareness; 

 low computational burden, to be easily executed in parallel with other DSA 
tasks in the TSO central control centres; 

 high resiliency, with respect to the data typology in input and to the major 
effects of wide area communication networks, to avoid false alarm or 
disregarding instability phenomena; 

 sufficient flexibility, to be integrated into a real time simulation 
environments of a TSO. 

 

Obviously, the achievement of this objectives without the partnership of the 
Italian TSO, Terna, would not have been possible. Terna provided all the 
support needed to include the developed algorithms, presented in the Chapters 
3 and 4, in its own real time simulator-WAMS assisted.           

Recommendation #3  

UCTE has to develop standard criteria for regional and inter-regional TSO 
co-ordination approach aiming at regional security management, from 
operational planning to real time, in terms of joint training, enhancement of 
exchanges of data, results of security analyses and foreseen remedial actions. 

Recommendation #4  

UCTE has to set up an information platform allowing TSO to observe in real 
time the actual state of the whole UCTE system in order to quickly react 
during large disturbances. 
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1.3 Contributions  

 

The scientific contribution is threefold:  

 

 Do a performances analysis of the most popular (in literature) power 
system oscillations estimation techniques in actual large interconnected 
systems through the support of WAMS; 

 Analyze the effects of some wide area communication network issues on 
the estimation algorithms behaviour; 

 Propose three novel estimation algorithms to capture the modal content 
of the power system oscillations satisfying the requirements listed in the 
previous Section. 

 

The first one is a two-step procedure consisting of a preliminary evaluation of 
the electromechanical modes number by using Hankel Singular Value 
Decomposition (HSVD) and a subsequent application of the VARiable 
PRojection Algorithm (VARPRO) to estimate the featuring parameters of each 
of them. The principal strength of this algorithm lies in its intrinsic ability to 
face with potential matters in wide-area communication networks such as noise 
and data packet dropouts. 

The second one combines a recent signal decomposition theorem for separating 
an assigned signal into elemental ones, each of them characterized by a single 
frequency component and a robust preliminary nonlinear spectral analyzer, 
named the Lp periodogram. It aims at answering in a more simple and 
pragmatic manner to the main weaknesses of the Hilbert-Huang Transform 
(HHT) with respect to the major refinements in the relevant literature. This 
procedure results very appropriate for analyzing some critical cases of 
electromechanical oscillations, due to the Lp periodogram robustness against 
heavy-tailed noise and its intrinsic ability in estimating also closely spaced 
frequency components.  

The third one is an algorithm specifically developed for estimating the damping 
of electromechanical oscillations in power systems. The method is based upon a 
generalization of the classical nonlinear least squares approach which employs 
further information concerning the finite Hilbert transform (HT) of the power 
signals. A semi-analytic procedure is tailored with the aim to get an expression 
of the Cauchy principal value integral to suitably include in the objective 
function of the least squares minimization. The methodology is found to be 
very accurate in damping estimation as well as resilient against a critical effect 
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of the wide area communication networks, namely dropout packets. This is 
partially due to the inherent regularization action of the Hilbert transform in 
correspondence of the data lack. 

 

 

1.4 Thesis Outline 

 

The thesis remainder is the following one. 

Chapter 1 presents an comprehensive introduction of the thesis including the 
motivations for the research project, objectives and contributions of the 
research. Chapter 2 gives a brief description of the WAMS paradigm 
emphasising in its last part the need to pre-process real measured data, 
properly pre-classified, before to fed it to the estimation algorithms. Chapter 3 
presents the classical and the advanced literature approaches for estimating 
electrical power systems dynamic. Chapter 4 contains the actual chief 
contribute of the thesis consisting in some recent advances in the employment 
of the HT for addressing the outlined issue. Chapters 5 collects several 
experimental findings obtained on synthetic signals, near real life signals 
sampled by IEEE test networks (e.g. Kundur two area test system, IEEE 68 bus 
test system) and real measured data in the ENTSO-e CESA. Chapter 7 
concludes the work with interesting remarks drawing future developments and 
some interesting research lines. 
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Chapter 2 

 

Wide Area Monitoring Systems 

 

 

 

Nowadays, maintain the networks security high is one of the basic 
requirements for the TSO. In order to do this, the acquisition of more and more 
system information for predicting power systems dynamic evolution, in each 
operating condition, and for identifying the more appropriate and effective 
countermeasures which guarantee secure and stable operating conditions is 
essential. The major impediments in doing this are represented by the TSO 
inability to predict, with high accuracy, the system behavior but also the 
technological limits of the traditional Supervisory Control and Data Acquisition 
(SCADA) systems. A pragmatic solution to the highlighted issues is represented 
by the development of the WAMS. WAMS use sophisticated digital recording 
devices, i.e. PMU, to record and export GPS-synchronized, high sampling rate 
(6-60 samples/second) dynamic power system data. A Wide Area Control 
System (WACS) based on WAMS is a typical area network control system 
(NCS), in which the communication among sensors, actuators, and controllers 
occurs through a shared band-limited digital communication network [18]. 
Wide Area Protection System (WAPS) aims at enhance the actual 
interoperability level in a wide area by a proper management of the protection 
systems [19]. WAMPACS, Wide Area Monitoring Protection and Control 
System, is the term coined for describing a wide area system which implements 
monitoring, protection and control functionalities [20]. Further problems 
recognized by these infrastructures concern the research for robust 
identification algorithms for all the analysis that must be run in parallel in the 
central control centers. Not less significant, indeed particularly significant at the 
European level, is the integration with the neighbor national WAMS. The 
availability of large amounts of measurements coming from the system key 
points, i.e. from the primary substations, and the availability of computing 
power at low cost offer the possibility to perform a DSA in real time. One of the 
main functionality envisaged in the major WAMS currently in operation or 
under testing is exactly the power oscillations tracking, object of this thesis. In 
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this Chapter a generic description of the WAMS infrastructures is provided. 
Once analyzed the WAMS key elements, a focus on the Italian WAMS 
architecture and functionalities will be done. At last a characterization of the 
measurement data recorded by the WAMS and hence of the needed pre-
processing operations for accomplishing real time small signal stability 
investigations will conclude the discussion. 

 

 

2.1 WAMS: definition and constitutive sub-processes. 

 

Wide area monitoring is a relatively new concept firstly introduced by 
Bonneville Power Administration (BPA) in the late 1980s [21]. A substantial part 
of the experience gained in WAMS is due to the American‘s utilities and 
research institutes. Although a precise and comprehensive definition was 
initially introduced, it has been updated downstream the widespread of PMU 
and high speed-low cost communication systems. WAMS process includes 
three different interconnected sub-processes, exactly data acquisition, data 
transmitting and data processing, respectively performed by measurement 
systems, communication systems and Energy Management Systems (EMS) [22].  

Fig. 2.1 depicts an elementary view of the WAMS process. As can be argued, 
WAMS acquire power system data from conventional or advanced 
measurement devices and transmit it through proper communication systems 
to the control centres where a pre-processing stage aimed at implementing all 
the DSA functionalities is performed. The aforementioned three WAMS sub-
processes employ data resources, applications and communication 
infrastructure as essential methodologies. Each of them will be discussed in 
detail in the rest of the Chapter. 

 

 

Fig. 2.1 – WAMS process in power systems. 
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2.1.1 Data resources 

 

Data represent for WAMS the basic item to handle for executing analysis on the 
power systems. The presence of system data resources disseminated along the 
power systems, also called measuring devices, is hence ultimate. Power system 
data is very heterogeneous for this reasons a comprehensive classification is 
provided in Section 2.5. Nonetheless, at this stage, can be useful to classify it 
into two main group [23]: operational and not operational. The first group 
includes the instantaneous measurements of voltage and current (magnitudes 
and angles), breaker statuses, etc., recorded by the installed measurement 
devices. This data is continuously transmitted to the control centers through 
adequate communication systems for accomplishing all the analysis on the 
considered power system; sometimes it may be used locally for local decision 
making. The operational data is hence continuously conveyed to the control 
centers, i.e. through a continuous stream of data. This is the major difference 
between operational and non-operational data. Actually, the latter is typically 
conveyed at a specified time intervals (e.g. multiple of hours) or however at 
specified conditions. Furthermore, non-operational data is transmitted in 
different formats with respect to the operational one, e.g. numerical values, 
waveforms, COMTRADE (COMmon format for TRAnsient Data Exchange) etc. 
[23]. The non-operational data consists of records or logs of multiple events, e.g. 
series of faults, power fluctuations, disturbances and lightning strikes. 

As well as for data, also the data resources of power systems can be classified 
into two groups: 

 
- Operational data resources: 

- Supervisory Control and Data Acquisition; 
- Synchronized Phasor Measurement System. 

 
- Non-operational data resources: 

- Circuit Breaker Monitor; 
- Digital Fault Recorder; 
- Digital Protective Relay. 

 

Supervisory Control and Data Acquisition 

SCADA is the generic name for a computerized system capable of collecting 
and processing data by applying operational controls over long distances. 
SCADA systems are typically used in power transmission and distribution and 
in the pipeline systems. 
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In an electrical power system, a SCADA system provides three chief critical 
functions: 

 
- Data acquisition; 
- Supervisory control; 
- Alarm display and control. 

 
A SCADA system is essentially formed by both hardware and software 
component. SCADA hardware includes:  a Master Terminal Unit  (MTU)  
located in the control centers, one remote field site consisting of either a Remote 
Terminal Unit  (RTU) or Programmable Logic Controllers (PLC) or Intelligent 
Electronic Devices  (IED) and a communication system that provides 
communication route between remote site and the control center.  
The MTU (sometimes called SCADA center, SCADA server, or master station) 
is located in the control center and may be considered the heart of a SCADA 
system. It performs many functions: (i) manages all communications, (ii) 
gathers data of RTU, (iii) stores obtained data and information, (iv) sends 
information to other systems, (v) commands system actuators that are 
connected to RTU and (vi) interfaces with operators. 
The RTU is a stand-alone data acquisition and control unit that monitors and 
controls equipments at remote sites. RTU are generally microprocessor based 
and their functions are to control and acquire data from process equipments at 
the remote sites and to communicate obtained data to a master station, exactly 
MTU. 
Traditional RTU only communicate with a MTU, while  modern RTU may also 
communicate among together. In some cases, RTU can be configured as a relay. 
The may be classified in: 
 

- Small-size RTU :  include less than 10 to 20 analog and digital signals. 
- Medium-size RTU:  have 100 digital and 30 to 40 analog inputs. 
- Large-sized RTU: with more inputs. 

 
PLC is a small industrial computer. First it was employed for performing the 
logic functions carried out by electrical equipments, e.g. relays, drum switches, 
and mechanical timer/counters [24], but nowadays analog control is a standard 
part of it [25]. 
PLC are modular in nature, so that they can be expanded to monitor and 
control additional field devices at remote sites. Furthermore they can be 
programmed to perform local functions, even if communication with the master 
station is lost, because they have built-in microprocessor [26]. PLC are preferred 
to special-purpose RTU because they are more economical, versatile, flexible 
and configurable, physically compact and require less space than the RTU. The 
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communication systems provide communication routes between the master 
station and the remote sites, through private transmission media (e.g. fiber optic 
or leased line) or atmospheric means (wireless or satellite). There are three main 
physical communication architectures used in SCADA communications: point-
to-point, multipoint and relay station architectures. 
 
 

 

Fig. 2.2 – Supervisory and Control Data Acquisition architecture. 

 

 
Synchronized Phasor Measurement System 

The Synchronized Phasor Measurement System (SPMS), firstly developed and 
introduced into the power systems in the mid-1980s, is a device able to measure 
currents and voltages, and calculate the angle between them. SPMS uses time 
received from GPS as its sampling clock, to synchronize measured angles. 
Moreover these systems can measure local frequency and rates of frequency 
changes, and may be customized to measure harmonics, negative and zero 
sequence quantities [27]. 
A SPMS consists of three main parts:  
 

- Phasor Measurement Unit; 
- Phasor Data Concentrator; 
- Communication system. 
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Phasor Measurement Unit (PMU) 
The Phasor Measurement Unit (PMU) is a microprocessor based device, 
normally installed at remote sites, which measures the electrical waves 
(voltages and currents) on an electricity grid, at a typical rate of 48 samples per 
cycle (2400/2880 samples per second). 
A phasor is a complex number that represents both the magnitude and phase 
angle of the sine waves measured on the electrical power systems. Phasor 
measurements that occur at the same time are called synchrophasors, term 
specifically used also for the PMU devices that allow their measurement. In 
typical applications PMU are synchronized from the common time source of a 
Global Positioning System (GPS). GPS provides 1 microsecond accuracy and this 
error translates into 0.018° for a 50 Hz system and 0.021° for a 60 Hz system. A 
PMU works in this way: first, the analog AC waveforms are synchronously 
sampled by an analogical/digital (A/D) converter for each phase, and the time 
from GPS satellites is used as input for a phase-lock oscillator and thereby, 
waveforms of the entire system are sampled with 1 microsecond accuracy. In 
the next step, PMU use digital signal processing techniques to calculate the 
voltage and current phasors. Also, line frequencies can be calculated by PMU at 
each site. The measured phasors are tagged by GPS time stamps and are 
transmitted to a PDC at the rates 30-60 samples per second. Therefore, it can be 
stated that PMU and RTU have almost the same tasks in the SPMS and SCADA 
systems. Phasor Data Concentrator (PDC) is a node in a system where phasor 
data from the number of PMU or PDC is correlated and fed out as a single 
stream to other applications. A PDC gathers data from several PMU, rejects bad 
data, aligns the time stamps and finally creates a coherent record of 
simultaneously recorded data. Also in this case it is possible to compare SPMS 
system with SCADA system and it can be noted that the tasks and functions of 
PDC in SPMS systems are almost the same as those in SCADA systems. The 
communication systems of SPMS may be similar to the SCADA 
communications in terms of technology, architecture and employed media, but 
in terms of streamed data they are different. Actually, the phasor data is 
continuous and streaming in nature while RTU data is transmitted to the master 
station either in specified time intervals or when master station requests it. 
Furthermore data of a PMU has more value than data provided by a RTU, so 
the indispensable requirements of the communication system are high 
bandwidth and low latency communications, which guarantee that all phasor 
data can be transmitted to PDC without any packet drops allowing a real time 
streaming between PMU and PDC. 
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Fig. 2.3 – Synchronized Phasor Measurement System structure 

 

 
Digital Fault Recorder 
The Digital Fault Recorder (DFR) is typically installed in an important 
substation for recording highly accurate waveforms related to faults. The 
recorded data is a huge amount of analog and status data, respectively for [28]: 
 

- pre-fault conditions; 
- fault conditions; 
- post-fault conditions. 

 

This data may include maximum current, sequence of events, type of fault and 
the sequence of circuit breakers operations. DFR data can not be used in real 
time and in this case they are stored as samples for further offline processing. 
DFR has normally very high sample rate, about 64 to 356 samples per cycle. 

 

Digital Protective Relay  
In power system networks, protective relays are used to isolate the fault area 
and to reduce the impact of the faults from other parts of the system. At the 
beginning electromechanical relays were used, but from 1960s with the advent 
of electronic devices, electronic protection relays were introduced (nowadays 
partially replaced by the digital ones). A Digital Protective Relay (DPR) uses an 
advanced microprocessor to analyze voltages and currents and to detect faults 
in a power system. DPR can also measure and record analog and status data 
communicating with a centralized location. They collect current and voltage 
signals from instrument transformers and digitize them. Digital relays should 
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act very fast, but this fact should defeat the accuracy of measured data. So 
commonly, to overcome this problem, lower sampling rates are applied to A/D 
converters. Firstly, DPR sample rates were 4 to 20 samples per cycle, nowadays 
they have been increased at 64 to 128 samples per cycle [29]. DPR data, 
compared to other data resources, are generally less accurate. 
 
Circuit Breaker Monitor 
The Circuit Breaker Monitor (CBM) is an electronic device that monitors circuit 
breakers. The CBM works in real time, capturing detailed information about 
each breaker, for properly acting or manually by the operator or automatically 
by the protection and control equipments when necessary. The CBM data is 
also structured in COMTRADE format. 
 
 
 

2.2 WAMS applications/functionalities 

 
In power systems, WAMS applications are computer tools used to process the 
raw data measured by the data resources described in the previous Section. The 
purpose of these tools is to extract usable information for system operators, 
consumers and customers.  

WAMS applications can be divided into three main groups: 

- Generation; 
- Transmission; 
- Distribution. 

Generation applications are basically devoted to monitor the generator‘s 
operating in order to know in real time the actual status and for instance 
supervise possible transient angle instability phenomena. 

Transmission and sub-transmission applications operate at transmission, or 
sometimes at sub-transmission level. Historically, these tasks are performed by 
group of computer aided tools, the so called EMS. Some examples of 
conventional EMS applications are: 

- State Estimation; 
- Load flow ; 
- Optimal power flow; 
- Load forecast; 
- Economical dispatch. 
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Some modern WAMS applications include: 

- Integrated Phasor Data Platform; 
- Wide-Area Dynamic Monitoring and Analysis; 
- Synchronized Disturbance Record and Replay; 
- Online Low-Frequency Oscillation Analysis; 
- Power Angle Stability Prediction and Alarming; 
- PMU based State Estimation.  

Combination of these modern applications with the conventional ones forms a 
modern EMS in the control centers. 

In power systems, Distribution applications are also known as Automation 
applications. According to IEEE definition, Distribution automation systems 
have been defined as ―systems that enable a distribution company to monitor, 
coordinate, and operate distribution components and equipments from remote locations 
in real time‖. The Distribution applications have the objective to reduce costs, to 
improve service availability and to provide better services to the customers. 
Distribution applications may be classified into three main groups [30]:  

- Substation automation; 
- Feeder automation; 
- Consumer-side automation;  

 

 

2.3 WAMS Communication Infrastructures 

 
The WAMS communication systems allow data delivery both from data 
resources to the control centers and from control centers to the system 
actuators. Particular attention should be paid to communication infrastructure 
which is as important as the electrical infrastructure. This is clear since a 
possible failure of communication network may cause huge problems in system 
operation and control, especially in the execution of WAMS applications. New 
communication systems are based on Open System Interconnection (OSI) layer 
model. This model is an effective architecture for explanation, designing, 
implementation, standardization and use of communications networks. The OSI 
reference model is composed by seven layers which are (i) physical, (ii) data 
link, (iii) network, (iv) transport, (v) session, (vi) presentation and (vii) 
application. WAMS data resources and WAMS applications normally operate at 
the upper layers of network models. Fig. 2.4 shows the map between OSI layers 
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and three major blocks of WAMS system which are data resources, applications 
and communication system. 
 

 
Fig. 2.4 – Layering in WAMS based on OSI reference model 

 

The characteristics of the communication systems are seriously influenced by 
the characteristics of their media. Some of the chief characteristics of a 
transmission medium are: cost, bandwidth, propagation delay, security and 
reliability. Transmission media, as described below, can be classified as guided 
and unguided [30] .  
Guided transmission media guide the waves through a solid medium. Some 
examples are: twisted pair, coaxial cable, power transmission/distribution line 
and optical fiber. 
Unguided transmission media provide instead a mean to transmit 
electromagnetic waves, but however this medium does not guide the signals. 
The atmosphere and outer space are some examples of unguided transmission 
media. They are usually referred to as wireless communication. Unlike guided 
media, for which the media itself has the most important role in characterizing 
the limitations of transmission, in the case of unguided media, the signal 
strength provided by wireless antenna is more important than the medium 
itself. Tables 2.1 lists the major guided and unguided media adopted in WAMS 
architectures describing their characteristics and providing a comparison 
among them in terms of bandwidth, latency and security. 
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TAB. 2.1 a) WIDE AREA MONITORING SYSTEMS GUIDED MEDIA 

 

 

 

 
TAB. 2.1 b) WIDE AREA MONITORING SYSTEMS UNGUIDED MEDIA 

Media Description Band-
width 

Latency Security 

WPAN 

 

Wireless Personal Area Network is a network for 
interconnecting devices located around an individual 
person's workspace characterized by wireless connection. A 
WPAN uses some technology that allow the communication 
within a very short range (10 meters) One of the adopted 
technology in WPAN is the Bluetooth. 

 

Low-

Medium 

Low-

Medium 
Low 

Media Description Band-
width 

Latency Security 

Optical 

fiber 

 
OPC is employed for its flexibility to be bundled as a cable. 
In fiber cables the signal is a light wave either visible or 
infrared light. Types used in power industries are: Optical 
Power Ground Wire (OPGW) and All-Dielectric Self 
Supporting (ADSS). 
 

High Low High 

Power 

line 

carrier 

PLC transfers critical communications directly through 
transmission lines, so a possible failure of the power system 
infrastructure (e.g. line outage) causes communication 
problems. According to the data rate values, PLC systems 
may be classified in two groups: narrow band and broad band.  
 
 

Medium Low High 

Leased  

Line 

LL is used together with some technologies for transmitting 
wide area signals. These technologies are essentially the 
Digital Subscriber Line (DSL), able to provide digital data 
transmission over leased telephone circuits. According to 
their data rates and directionality of transmission, to 
distances to which those rates can be supported and to the 
size of the wire, several DLS versions can be identified. 
 

Medium 
Low-

Medium 
High 
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WLAN 

Wireless Local Area Network connects devices through a 
wireless distribution method. Wi-Fi is one of the most 
popular WLAN technologies and it provides high speed 
connection on short ranges. 

 

Low-

Medium 
Medium Low 

WMAN 

WiMAX, GPRS, GSM, CDMA and 3G mobile Carrier 
services are five Wireless Metropolitan Area Network 
technologies which are used for WMAN communication.  

Worldwide Interoperability for Microwave Access 
(WiMAX)  is a communication protocol which provides fix 
and fully mobile data networking. Its theoretical data rate is 
70 Mbps with a range of up to a maximum of 50 km with a 
direct line of sight (LOS). Near line of sight (NLOS) 
conditions seriously limit their range. 
Global System for Mobile (GSM) is a standard for mobile 
telephony system based on circuit-switching technology. 
Whit this technology connections are "always on". 
General Packet Radio Service (GPRS) is a packet data 
bearer service over GSM system. It uses a packet radio 
principle to transfer data at high bandwidth. When a device 
transmits packages the bandwidth is used, GPRS has hence 
higher data speed than the GSM. 
Code Division Multi-Access (CDMA) is another data 
networking technology for mobile communications. It 
allows all the users to utilize the entire frequency spectrum 
for all the time. CDMA can create 64 logical channels 
whereas 8 channels are available in GPRS. 
3G mobile Carrier services provide new data carrier 
services for mobile users. For example some networks 
support High Speed Packet Access (HSPA) data 
communication with HSDPA standard to provide improved 
downlink speeds. 
 

Medium Medium Low 

WWAN 

Wireless Wide Area Network, with satellite communications 
may be used in two cases: when a guided medium cannot be 
established between a remote site and the control center or 
when there is no line-of-sight between such a remote site 
and pre-installed communication network. One of the 
problem of satellites is their high latency that may create 

serious difficulties for some WAMS applications. 

 

Low-

Medium 
High Low 
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2.4 Italian WAMS architecture and functionalities 

 

The Italian WAMS project started in 2004 with the aim of achieving system 
benefits in terms of power system security and observability. In particular, 
running in real time several applications/functionalities, Italian WAMS  is able 
to: 

 
- improve the measure of proximity to critical conditions avoiding 

missing alarms; 
- give a better synthetic vision of the Italian power system and its 

―neighbours‖; 
- enhance the possibility of very fast reactions.  

 

In this way, the system is designed to support different applications and users. 
With reference to Control Room, Terna, the Italian TSO, is supported with real 
time trends and alarms related to: 

 

 Voltage magnitude (low/high); 

 Frequency (low/high); 

 Angle difference (high);  

 Damping (low; from online oscillatory analysis function);  

 Voltage collapse;  

 Under-frequency load shedding (from load shedding evaluation 
function);  

 Islanding, loss of synchronism and frequency stability.  

 
In addition, currently other functionalities of DSA are now under testing : 
 

 Line thermal loading (under testing);  

 SCADA state estimation integration with support of WAM platform 
(ongoing development);  
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Fig. 2.5 – Italian WAMS graphical user interface 

 

Fig. 2.5 depicts a typical graphical user interface customized for the operators 
working in the control room. The Italian WAMS consists of a set of about 60 
PMU data sources, a leased data network, based on Direct Numerical Circuit 
(DNC) channels and several WAMS applications/functionalities running at the 
National Control Center (NCC) in Rome. In NCC also data from three 
European partners converge this permitting to draw in real time dynamic 
behavioural of the entire interconnected synchronous European power system. 
The PMU installed on Italian network provides voltage and current phasors at 
the rate of 50 samples per second. This high data rate allows to monitor and 
control fast phenomena, such as transient stability. 
Data is stored in a shared memory devoted to short-term archiving. The short-
term memory has a matrix structure, whereas the rows are associated to a 
specific time tag (sampling time) and the columns are associated to the different 
measured quantities by the PMU. The shared memory is sized to allocate a 
maximum of 512 measures coming from 60 PMUs, for a duration of 30 minutes 
at a rate of 50 frames-per-second (i.e. one every 20 milliseconds). In parallel 
with the ―fast‖ acquisition and the storage task a ―slow‖ periodic saving of the 
data into a relational database is performed. In this way both the shared 
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memory are cleaned from oldest data which are then available for subsequent 
off line evaluations. 
The relational database is structured in two levels. The first receives the data 
from the shared memory every 30 minutes and keeps them for the next 24 
hours. The latter keeps the data collected in the last 30 days, with a sampling 
period of 100 milliseconds; it is updated on a daily basis. 
Fig. 2.6 illustrates an integrated view of the Italian WAMS. From the central 
system, the real time acquired data are available to: 

 
- Real time applications, embedded in central system; 
- Distributed calculations on clients interfaces; 
- External calculations on external servers (i.e. MATLAB® platform) via 

proprietary protocol or standard Object Linking and Embedding for 
Process Control (OPC); 

- Visualization clients. 
 

 

Fig. 2.6 –  Italian WAMS architecture 

 
A further feature of the Italian WAMS consists in a virtual acquisition function, 
a sort of ―field emulator‖, which feeds the acquisition and storage activities 
with data coming from sources such as text files. This function allows to test the 
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WAMS with critical situations of the power system, either recorded from the 
field or from simulation, thus testing the monitoring and alarm functions. 

 

 

2.5 WAMS measurement data classification 

 

The need for measurement data classification arises from the fact that, as 
already mentioned, algorithms‘ performance are situation-dependent that 
practically means data-dependent. For this reason it is essential to equip to the 
EMS in the control centres the most reliable estimation algorithms identifying 
the most indicated according to the situation on the basis of smart selection 
criteria. Generally, field measurement data can be classified into two categories: 
typical and non-typical data [31]. Typical data carries modal content information 
and can be described, in any case, by the identification algorithm mathematical 
framework. Non-typical data, such as for instance invalid data (NaN) and 
outliers, does not carry information about modal content and cannot be 
described by a generally linear model. Invalid data is often dropped data 
points, which may result from temporary communication and measurement 
device failure whereas outliers are values that significantly deviate from normal 
signal trend which may result for instance from a sensor failure. However, also 
transient data right before ringdown signals is considered non-typical, namely 
because it cannot be described by a linear prediction model. Typical data can be 
further categorized into ambient data, ringdown oscillation and probing data. Such 
a classification should not be intended as exhaustive. Ambient data is obtained 
when a system is working under an equilibrium condition and the major 
disturbance is from small amplitude random load changes [32]. Ringdown 
oscillation data occurs after some major disturbance, such as a line tripping, and 
it results in observable oscillations [33]. Probing data is obtained when low-
level pseudo-random noise is intentionally injected into the system to test its 
performance [34]. Fig. 2.7 depicts a real measured voltage magnitude on the 220 
kV Italian test system containing both ambient and ringdown data; part of the 
signal was intentionally polluted by non typical data, exactly invalids and an 
outlier. Information levels carried by the data categories just mentioned is quite 
different. The highest information density is carried by ringdown data which 
permits a fast convergence to the true oscillations parameters. Hence, a smart 
selection criterion that permits the switching towards those algorithms 
performing better on this data category at the onset of a transient phenomenon 
on the power system would be very useful in real time operation.   
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Fig. 2.7 – WAMS measurement data types  

 

 

2.6 Preprocessing synchronized phasor measurement data for 
capturing power systems dynamic 

 

The character of the synchronized phasor measurement data has been well-
described in the previous Section. The direct application of an estimation 
algorithm of the electromechanical oscillations on the acquired signal, without a 
proper preprocessing action, may produce inconsistent outcomes. Generally, 
such an action consists in [35]: 

 

 Removing defective data; 

 Parceling data sets; 

 Removing outliers;  

 Interpolating missing samples;  
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 Removing trends;  

 Filtering unwanted dynamics.  

 

Missing data has a strong negative influence on the estimation technique 
performance. Obviously, the greater the magnitude of the data loss the worst is 
the algorithm response. If the magnitude is limited, indicatively lower than the 
6 % of the data packet length, to omit the missing data and concatenate good 
data is best solution [36]. Besides this case, an interpolation process could be 
performed, as we already proposed in the reference [37] and it has been 
confirmed in [38]. On the contrary, if the magnitude of the data loss is not 
limited,      concatenation will introduce artificial transients while interpolation 
will result in noise, therefore both the actions are to exclude. An outlier 
handling mechanism [37], [39], [40] should be incorporated in the preprocessing 
module in order to avoid artificial transients that deteriorate the estimation 
algorithms accuracy. Furthermore a trend removal and low pass filtering, 
accomplished both with Finite Impulse Response (FIR) and Infinite Impulse 
Response (IIR) filters is necessary to discard the modal content which does not 
contain important information about the power system dynamic. Fig. 2.8 
depicts several functionalities of preprocessing. Defective data removal aims at 
discarding sequences of identical sample timestamps and/or values, samples 
with value zero and invalid measurements (e.g. NaN) caused by internal PMU 
failures occurrence. Data parceling aims at removing the missing samples to the 
data packets to furnish to the filters which are highly sensitive to potential gaps 
due to missing data. Removal of outliers aims at avoiding to induce artificial 
transients when the data is filtered. Interpolation aims at replacing missing 
samples as well as at removing data and outliers so capturing the signal trend: a 
linear interpolation may be simple and effective. Removing of mean and low pass 
filtering aims at suppressing the modal content which does not contain 
important information about the power system small signal stability. 

 

 

Fig. 2.8 – Preprocessing unit 
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Chapter 3 

 

Power Systems Dynamic 

Estimation Techniques 

 

 

Power systems small-signal electromechanical dynamic properties have been 
traditionally investigated through modal analysis which implicitly considers a 
linearized model around the current steady-state operating point. On-line 
implementation in some actual wide area monitoring systems revealed modal 
analysis limits: (i) high computational times for large scale power systems not 
compatible for real time application (ii) difference between the actual system 
dynamic evolution and the one described by the adopted model due to the 
modeling uncertainties of some network components. For this reason, over the 
past two decades, several signal processing techniques have been tailored for 
estimating the modal content using only time-synchronized power system 
measurements. In this Chapter, an overview of the most popular and successful 
analysis techniques is presented. Unfortunately, no best estimator can be 
globally recognized among them due to the lack of an accepted definition of 
optimality, as already said. Performance comparison is made further complex 
from the fact that, generally, each technique has to properly be tuned because 
for instance it presents parameters chosen according to experience or through 
heuristic considerations. This action can often depend on the signal typology. 
Some techniques are hence appropriate for ringdown signals, others are 
adequate for ambient signal conditions; other ones show good performance in 
damping and frequency estimation if the observable modes number is known 
while may fail if it is not know in advance, some techniques could work better 
than others for noiseless sampled signals while could deteriorate their efficiency 
when the SNR decreases. The mentioned cases are only part of the actual 
encountered situations, to argue that a technique is wholly superior to the 
others appears hence pretentious and almost less clever. Nonetheless, either for 
reasons related to the specific methodological core advantages or for reasons 
related to the specific practicality, the attention of the power system community 
has recently moved towards the Hilbert transform-based techniques. The 



Real Time tracking of electromechanical oscillations in ENTSO-e Continental European 

Synchronous Area 

March  2014 

 

 Page 45 

motivations behind this tendency is essentially due to the Hilbert transform 
ability to handle non-stationary and non-linear time series like the power 
systems oscillations as well as interesting properties not generally satisfied by 
other operators. It represents therefore, the starting point from which moves for 
developing advanced techniques aiming at solving the major drawbacks of the 
existing ones. The Chapter deals with the theoretical basis of several different 
estimation techniques postponing the numerical findings concerning computer 
simulations and actual experiments captured by the Italian WAMS. 

 

 

3.1 Modal Analysis 

 

As already mentioned, small signal stability analysis has been traditionally 
performed through the employment of the Modal analysis. This classical 
approach requires a detailed modelling of the electric power system under 
investigation. Such a model will be linearized around a certain equilibrium 
point, as described hereafter, in order to identify the electromechanical modes 
characteristics through the eigenvalue analysis. Before to do this, several basic 
concepts are introduced for favouring the topic understanding. Hence, the 
linearization process is then characterized. The latter introduces the state-matrix 
with respect to the whole stability analysis is focused.     

 

3.1.1     Fundamentals 

 

Small signal stability is the ability of the power system to maintain the 
synchronism when subjected to small disturbances [41]. A disturbance is 
considered to be small if the power system model can be linearized around an 
equilibrium point. Hence, the employment of linear techniques allows the 
extraction of information about the power system dynamic that might be a 
valid aid in power system design and control.  

The dynamic behaviour of an electrical power system can be described through 
the following set of n first order non linear differential equations: 

 

n1,2,...,ifor    )t;u,...,u,u,x,...,x,x(fx r21n21ii 


           3.1 
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with n the system order and r the number of inputs. In matrix notation it can so 
be arranged: 

 

)t,,( uxfx 


                3.2 
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where x is the state vector whose entries are the state variables xi and u the 
system inputs vector affecting the system behaviour from the external. The left 
hand side of the Eq. (3.2) is the vector of the state variable derivative with 
respect to the time t. The system is said to be autonomous if the latter is not 
explicitly time-dependent, in this case Eq. (3.2) simplifies to: 

 

 ),( uxfx 


                3.3 

 

System response can be interrelated with the state variables and the system 
inputs in this way: 

 

),( uxgy                             3.4 
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which are respectively the system outputs vector, y, and the vector of non-
linear functions relating the state and the input variables to the output 
variables, g.   

State variables represent a minimal set of n linearly independent variables (not 
necessarily physical quantities such as voltage magnitudes and phases, rotor 
angles etc.) that, along with the inputs of the system, permits to describe the 
system dynamic behaviour. Through the employment of these variables the 
system state can be uniquely determined. The state of the system represents the 
minimum amount of information about the system, at any time instant t0, that is 
necessary so that its future behaviour can be determined without reference to 
the input before t0 [42]. It can be represented in a n-dimensional Euclidean space 
named state space: whenever the system is not in equilibrium or the input is 
non-nil the system state change in time, tracing in this reference system a 
movement path called state trajectory. 

The state trajectory points at nil speed, that is those points where all the state 
variables derivatives vanish, represent the system equilibrium points also known 
as singular points: 

      

0)( 0xf                 3.5 

 

with x0 the state vector at the equilibrium point. All the variables are constant 
and unvarying with time at a singular point. The system is linear if all the 
components of f are linear, in this case the system has only one equilibrium 
state (excluding the case of non-singular state matrix). On the contrary, a non 
linear system, such as an electrical power system, could have more than one 
equilibrium point.  

Equilibrium points are inherently related to the system stability that for a non-
linear system is dependent on the type and magnitude of the system inputs and 
on the initial state. Stability of a non linear system can be classified according to 
the state vector disposal in the state space [43]: 

 

 Small signal stability (local stability) 

The system is locally stable about an equilibrium point if, undergone to a 
small perturbation, it remains within a small region surrounding the 
equilibrium point. Furthermore, if, as t increases, the system returns to the 
original state, it is said to be asymptotically stable in the small. 
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 Finite stability  

If the state of the system is contained within a small region , the system is 

said to be stable in . The above definition of asymptotic stability can be 
easily extended to this case.  

 Global stability  

In the particular case in which  is coincident with the entire finite space the 
system is said to be globally stable.  

 

This thesis is essentially focused on investigations about the first mentioned 
class, therefore, in the following, the fundamental aspects to perform such an 
analysis  are presented. 

 

 

3.1.2    Power system model linearization 

 

Small signal stability can be investigated by linearizing the non-linear system 
equations in (3.3) around the current equilibrium point. Let x0 be the initial state 
vector and u0 the input vector corresponding to the current equilibrium point; 
the following equation holds true: 

 

0),( 


000 uxfx                3.6 

 

By perturbing the system from the above state applying a prefixed small 

perturbation , such that x = x0+x and u = u0+u, the new reached state will 
satisfy the (3.3), hence: 

 

  )(),( uuxxfxxx 000 


            3.7 

 

The entity of the perturbations permits to expand in Taylor‘s series the non-
linear functions in f(x,u), by neglecting second and higher order terms. In this 
manner each entry of the linearized state vector derivative and of the linearized 
output vector derivative can be expressed as: 
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State space representation can be arranged in compact manner as follows: 

 

 uBxAx 


             3.10 

 uDxCy               3.11 

 

where: 

 

x is the n-dimensional state vector  

y is the m-dimensional output vector  

u is the r-dimensional input vector  

 

The  matrices A, B, C and D contain the partial derivatives evaluated at the 
equilibrium point around which the small perturbation is being analyzed: 
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A is called state matrix or plant matrix, B is the control matrix or input matrix, 
C is the output matrix and D is the feed-forward matrix defining the portion of 
input which appears directly in the output. Matrices size can be easily deducted 
above.  

Eqs (3.10) and (3.11) in the Laplace domain can be so formulated: 

 

)s()s()0()s(s uBxAxx             3.12      

)s()s()s( uDxCy              3.13 

 

A rigorous solution of the state equations can be derived by solving for x(s) 

and evaluating y(s) in the manner that follows: 

 

)s()0()s()s( uBxxAI                 3.14 

      

   )s()0(
)sdet(

)s(adj
)s()0()s()s( 1

uBx
AI

AI
uBxAIx 




             3.15 

 

whence 

 

  )s()s()0(
)sdet(

)s(adj
)s( uDuBx

AI

AI
Cy 




          3.16 

 

As can be noted, the Laplace transform of x and y are formed by two 
components: one depending on the initial conditions, named free component, and 

one depending on the inputs, named zero-state component. The poles of x(s) and 

y(s) are the roots of the equation 0)sdet( AI  which expanded represents 

the well-known characteristic equation. The values of the Laplace variable s that 
satisfy the characteristic equation are known as the eigenvalues of the state 
matrix A.            
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3.1.3    Stability analysis and related concepts 

 

The eigenvalues of the state matrix A are those values of the scalar parameter  

for which there exist non trivial solutions (e.g. other than =0) to the equation 
ΦAΦ λ . To find the eigenvalues, the latter can be re-formulated as 

0)λ(  ΦIA , hence for avoiding trivial solutions the following condition must 

be imposed : 

 

0)λdet(  IA                    3.17 

 

Once expanded, Eq. (3.17) provides the so called characteristic equation whose 

solution  = [1, 2, …n]T contains the eigenvalues of A that can be real or 

complex (in the latter case conjugate pairs always occur if A is real). If k is real, 

a non-oscillatory mode can be identified. If k is complex, e.g. k =k  k, two 
oscillatory modes can be identified having the form: 

 

 ti
k11k

kkeMz


    and  ti
k2k2

kkeMz


          3.18 

 

where M1k is the complex conjugate of M2k. Hence, the output of the system is 

real, and the complex mode will have the form )tsin(Ze t   in any output. 

The values of Z and  depend on the magnitude and the typology of input and 

on which output is selected. The real part of k indicates whether an 
electromechanical oscillation: 

 

 Decays, if σk is negative; 

 Persist with constant amplitude, if σk is zero; 

 Grows, σk is positive.  

 

Hence a negative real part indicates a damped oscillation whereas a positive 
real part represents an unstable oscillation of growing amplitude. Obviously, in 
the first case the larger its magnitude, the faster the decay.  The most common 
manner to measure the oscillations damping levels is through the damping ratio 
which is defined as: 
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22 


               3.19 

  

Damping ratio measures the decay rate of the oscillation amplitude. Since 
oscillatory modes have a wide characteristic frequency range, the employment 
of this index rather than the time constant of decay (and hence than the simple 
damping coefficient σ) is considered more appropriate for expressing the degree 
of damping [44].   

Instead, the mode oscillation frequency can be determined from the imaginary 

part of k: 

 

 










22

)(imag
f kk

k                         3.20 

   

Each eigenvalue k has a correspondent n-column vector k satisfying the Eq. 
(3.21) which is called right eigenvector: 

 

1,2,...nkfor     λk   ΦAΦ kk                       3.21 

 

and a correspondent n-row vector k satisfying the following one, named left 
eigenvector. 

 

1,2,...nkfor     λk   ΦAψ kk            3.22 

 

Sometimes left eigenvector is defined as the transpose of k which means that it 
is equal to the right eigenvector of the transpose of the state matrix A.  

Since for determining k the homogeneous equation 0)λ(  kΦIA  has to be 

solved, kk (with k any scalar multiplier) is also solution. Thus, eigenvectors are 
determined only to within a scalar multiplier. The left and right eigenvectors 

corresponding to different eigenvalues i and j are orthogonal, so ji=0 while 

in the case of eigenvectors corresponding to the same eigenvalue j, jj = Cj, 
with Cj a non-zero constant. A common practice is hence to normalize these 

vectors, so that jj =1 (e.g. Cj=1). 

Eigenvectors are very useful for determining the way in which a mode 
contributes to a specific state by exploiting the orthogonality property. Actually, 
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thanks to the mentioned property any vector of length n (states number) can be 
expanded in terms of the right eigenvectors: 

 





n

1k

Δ kkΦzx                          3.23 

 

The coefficient zi can be found by pre-multiplying the Eq. (3.23) by the ith left 

eigenvector i . Because the left and right eigenvectors are orthogonal, only the 
ith term of the resulting summation is nonzero, hence by scaling the 

eigenvectors so that jj =1, zi can be so determined: 

 

Δxψz ii                           3.24 

 

The coefficient zi in the state vector expansion of the Eq. (3.23) are essentially 
the oscillation modes. To reach a closed-form expression of these modes one 
can substitute the Eq. (3.23) in the state equation (3.10) and then pre-multiply by 

the ith left eigenvector i as before: 

 

n1,2,...,ifor    λi 


uBψzz iii                3.25 

 

In this manner, the n coupled linear differential equations of the state matrix 
have been decoupled in the same number of linear differential equations whose 
solutions, that can be determined by solving separately each of them1, are 
exactly the modes of oscillation.  

Generally, by applying any input perturbation u, the ith mode varies in time as 
follows: 

 







0

)t(
i d)(e)t(z i uBψi               3.26  

 

                                                 
1
 A special procedure must be applied in the case of equal eigenvalues since in this case the modal 

equations can not be completely decoupled [45] 
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Hence, the state vector x can be obtained by summing all the modes zi 

multiplied by the corresponding right eigenvector as in the Eq. 3.23. In 
conclusion, from a physical point of view the right eigenvector measures how 
each mode is distributed among the system states, it is also known as mode 
shape. On the other hand, the left eigenvector jointly with the control matrix B 

and the input vector u affects the amplitude of the mode. 

 

Eigenvalue Sensitivity  

Now, differentiating the Eq. (3.21) with respect to aij (element of the ith row and 

jth column of A), pre-multiplying by k and by keeping in mind that kk =1 

and k(A-λkI)=0  one has: 

 

ij

k

ij aa 







kk Φ

A
ψ              3.27 

 

where all the elements of ∂A/∂aij are zero, except that one placed at the ith row 
and jth column which is unitary. Therefore, 

 

 jkkiΦψ




ij

k

a              3.28 

 

Thus, the sensitivity of the eigenvalue λk to the element aij of the state matrix is 

equal to the product of the elements ki and jk. 

 

Participation factor 

Let now consider the sensitivity of λk to the aii element of the state matrix: 

 

kiki

ii

k
k Φψ

a
p 




                3.29 

 

In power system analysis it is termed participation factor of the ith state in the kth 
mode, e.g. the product of the ith element in the kth left (row) eigenvector and the 
ith element in the kth right (column) eigenvector. Participation factor is a nearly 
good indicator of the state importance to the mode from a control viewpoint, in 
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particular for the optimal placement of the power system stabiliser (PSS). 
Actually, if for each mode, the corresponding participation factor of the 
generator angular velocity is: 

 

 Nil, adding damping at that generator will produce any stability 
improvements; 

 Real positive, adding damping at that generator will increase the 
damping of the mode; 

 Real negative, adding damping at that generator will reduce the 
damping of the mode. 

 

The addition of mechanical damping at the generators shafts result in the 
modification of the diagonal terms of the state matrix (which become negative) 
referred to the generators angular velocity. Anyway, some ambiguity issues can 
arise in the case of equal system matrix eigenvalues due to the intrinsic 
definition in the Eq. (3.29).     

       

    

3.2 Fourier transform based methods 

 

Without any doubt, the first approach historically facing the problem of 
estimating electromechanical oscillations parameters were those ones based on 
Fourier Transform. Fourier Transform methods basically analyze the signal 
frequency spectrum composed by its component sine waves according to the 
Fourier series concept. If x(t) is a periodic signal with period T and hence 
fundamental angular frequency ω0 = 2π/T (rad/s), its Fourier series can be 
expressed as [46]: 

 

)tnsin()aa(i)tncos()aa(
2

a
)t(x 0

*
nn

1n

0
*
nn

0  




        3.30 

 

with an the coefficient of Fourier 

 







Tt

t

tin
n

*

*

0e)t(x
T

2
a              3.31 



Real Time tracking of electromechanical oscillations in ENTSO-e Continental European 

Synchronous Area 

March  2014 

 

 Page 56 

 

Often rewritten as: 

 

)tnsin(c)tncos(b
2

a
)t(x 0

1n

n0n
0  





         3.32 

 

with  




Tt

t

0n

*

*

dt)tncos()t(x 
T

2
 b      and      





Tt

t

0n

*

*

dt)tnsin()t(x 
T

2
 c  

 

keeping in mind the periodicity of x(t) and the lack of potential inter-frequency 
components. For our purposes, it is convenient to employ a numerical method 
for such an evaluation, that is the Discrete Fourier Transform (DFT): 

 






N

1m

Tim
D e)Ti(x

N

1
)m(X))Tk(x(F                     3.33 

 

whereas FD(.) denotes the DFT, ΔT the sampling time, N is the number of points 
in the sample (wich must span an integer number of x(t) periods) and ΔΩ which 
is the DFT frequency domain resolution. DFT can be easily computed through 
an exact evaluation method, namely Fast Fourier Transfrom (FFT), that 
exploiting some symmetry properties of the complex exponential, calculates the 
DFT with reduced computational burden with respect to the (3.33). As the 
sampling interval becomes smaller and smaller, and as N goes to infinity, it is 
can be demonstrated that the DFT becomes the Fourier Transform (FT) [47] : 

 

  




 dte)t(x)j(F)t(x ti            3.34 

 

and its inverse is 
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  




 


 de)j(F
2

1
)t(x)j(F tj1           3.35 

 

Therefore, by decomposing x(t) in a sum of sine and cosine functions 
(harmonics) according the mathematical tools just described, the power system 
modes number and the associated frequency can be estimated. As far as the 
damping coefficient is concerned, it can be determined from the signal DFT 
according to the Eq. (3.36): 

 

BW

2
                  3.36 

 

where BW is the 3dB bandwidth of the spectrum )m(X   which exactly 

corresponds to the damping coefficient in the case of single component signal. 
Alternative definitions are proposed by Yoshida, Bertocco, Rife-Vincent and so 
on enclosed in reference [48] .  

In practice, FFT is used jointly with a sliding window along the entire duration 
of the signal. The latter is considered stationary in this window, hence its size 
must be chosen small enough to satisfy the assumption. Obviously, the lower 
bound to this size is represented to the necessary time for all the 
electromechanical modes to establish themselves. The choice of the proper 
window size is not trivial due to the fact that power system oscillatory signals 
are generally non-linear and non-stationary, stochastic in nature, containing 
possible nonlinear high order interactions and characterized by closely-spaced 
frequency components. 

FFT would hence require harmonic components to track non-stationary real 
time-synchronized signals dissipating energy over a wide frequency range 
making little physical sense. For this reason some researchers have proposed 
Short-time Fourier Transform (STFT) as potential candidate to replace it [49], 
[50]. STFT uses a time window for analyzing the signals into a two-dimensional 
domain, time-frequency, in order to search for a compromise between time-
domain resolution and frequency-domain resolution. The main problem relies 
in the fact that once a particular size for the time window is chosen, such a 
window width has to be kept constant for all frequencies.  Rigorously speaking, 
STFT calculates a succession of spectra localized about a time t by firstly 
multiplying the signal by a window w(τ) centred about t = τ. The longer the 
window w(τ), the better the frequency resolution but at the expense of a 
reduced time-domain resolution and vice versa. Furthermore the optimal 
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rectangular window length is a function of the instantaneous signal frequency 
which is in turn unknown a priori, hence the STFT is limited in its usefulness 
[51]. Although sometimes the approximation of linear and stationary signal is 
not so far from the reality, no sufficient information can be obtained with the 
FT-based methods. For this reason, during the past, new estimation techniques 
are proposed replacing the basic idea to analyze the spectrum of the power 
system oscillatory signals with the one to analyze the instantaneous frequency 
and amplitude. This concepts will be introduced in this Chapter. 

 

 

 

3.3 Prony Analysis 

 

Among linear analysis techniques, Prony analysis, developed by Hauer, 
Demeure, and Scharf [52], allows to estimate power systems small-signal 
dynamic properties implementing a curve-fitting decomposition procedure able 
to separate a simulated or real measured signal into n exponential damped 
sinusoids:    

 







n

1k

k
t

k n1,2,...,kfor    )tsin(eA)t(x k

         3.37 

 

When this assumption is made, the technique is also recognized as a ringdown 
analyzer, this can be easily deducted from the concepts furnished in the Section 
2.5. Since it basically deals with an eigenvalue-based technique, Prony analysis 
furnishes the real and imaginary parts of the mode, corresponding respectively 
to the damping coefficient σ and to the modal damped frequency ω. Mode 
amplitude A and phase shift φ can also be readily determined so permitting to 
reconstruct the original signal in the time domain from the feasible components 
identified. The fundamental assumption of such a technique is the signal 
stationary, that being not always met, implies sometimes a not meaningful 
decomposition. Factors such as window length and sampling rate can affect the 
accuracy with which a non-stationary signal is approximated by a sum of 
stationary modes [47]. The mathematical framework of this technique is not 
reported since the next subsection presents an its improved version that 
through some expedients enhances the inherent consistency of the method with 
respect to the noisy. 
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Ongoing research into the study of power systems electromechanical dynamic 
revealed the practical inapplicability of the Prony analysis in presence of high 
noise levels and possible non-stationary real time-synchronized measurements. 
This has motivated the progressive abandonment in the use of this technique 
for estimating the modal behaviour of actual power systems favouring the 
development of new estimation techniques most of which are described in this 
Chapter. 

 

 

 

3.4 Tufts-Kumaresan method 

 

Despite the Prony analysis concerns presented in the previous Section, some 
actual WAMS projects around the world implement tasks of electromechanical 
oscillations tracking through the use of this technique. Some practical 
experiences come, for instance, from two regional electrical power systems in 
China [53], [54]. However, as already mentioned, some problems arise for 
increasing signals noise levels. A valid help in this sense is represented by an 
interesting refinement developed by D.W. Tufts and R. Kumaresan, consisting 
in a Prony extension to signals embedded in noise.  

More specifically, Tufts and Kumaresan in [55], [56] introduced a method, in the 
sequel TKM, for spectral estimation in presence of white Gaussian noise which 
is a quite satisfactory assumption for the cases of interest. The TKM 
mathematical framework preserves the assumption to model a certain observed 
data sequence x(n) with a sum of M exponential damped sinusoids corrupted 
by complex white Gaussian noise: 

 






n

1k

ns
k 1-N0,1,...,nfor       )n(wea)n(x k          3.38

 

    

 

whereas, sk=σk+iωk, with σk the damping factor of kth exponential damped 
sinusoid, ωk the angular frequency of kth exponential damped sinusoid lying in 
the interval (0, 2π) and ak the complex amplitude. TKM manages complex and 
conjugate data samples of the signal in backward direction through the 
following linear prediction equation: 
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           3.39

 

 

or in equivalent compact manner:  

 

hAb                 3.40 

                            

In Eq. (3.40) A is the linear prediction matrix, b is the vector of the backward 
prediction coefficients. From the equations system (3.40), the following 
homogeneous system can be rewritten: 

 

0HH bA                  3.41 

 

Where AH is the partition (h|A)  and b is the vector [1 b1 b2 . . . bL]T. If the signal 
is noiseless and L is chosen equal to M,  the zeros of the polynomial 

 

L
L

1
1 zb...zb1)z(B               3.42 

 

fall outside the unit circle because the linear prediction equation is written in 
reversed time direction. But if L>M this choice permits to increase the 
estimation accuracy of the zeros location. Actually, in this case the Eq. (3.42) has 
also L-M extraneous zeros and the system (3.41) is over-determined; by 

choosing the solution which minimizes the norm 
2

L

2

2

2

1

2
b...bbb  , 

the extraneous L-M zeros fall inside the unit circle [57].  

This is pointed out in Fig. 3.1 for the following bi-modal signal (M=2)  

 

n)6.2i2.0(n)3.3i1.0( ee)n(x                   3.43 

 

with n = 0,1,2,…99. As can be noted the M actual signal components fall outside 
the unitary circle with respect to the L-M extraneous components (L=20 in the 
specific case and hence L-M=18). 
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Fig. 3.1 – Zeros’ displacement of the B(z) polynomial in Tufts-Kumaresan method 

 

In this way it is facilitated the distinction among the actual zeros and the 
extraneous zeros of B(z) associated to the noise. When the signal is corrupted by 
high noise, several perturbations are introduced in the vector of the backward 
prediction coefficients and the adoption of the Singular Value Decomposition 
(SVD) is necessary. The basic idea is that the linear prediction matrix A has L 
non-zero singular values with the principal singular values s1, s2,…, sM greater 
than the sM+1, sM+2,…, sL which are associated to the noise. Hence, depending on 
the adequate M value chosen for describing the characteristic power system 
modes, the SVD of the linear prediction matrix can be written as: 

 

T
MM VSUA  

                                 
                       3.44 

 

where  SM is a diagonal matrix which has the first M elements equal to s1, s2,…, 
sM and the other L-M elements are imposed to be equal to zero. 

After this SVD truncate, the system in Eq. (3.40) becomes:  
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hbAM                  3.45                                 

 

The values of vector b are found as: 

 

hAb M


                                    
                         3.46 

 

where 
MA is the pseudoinverse matrix of AM. Therefore, from the roots of the 

polynomial in the Eq. 3.42 the values of the frequencies and of the damping 
factors of all the power system modes can be easily derived by using the 
following relationships: 

  

))e(log(real ks
k               3.47

              

                     
                     




2

))e(log(imag
f

ks

k              3.48
 

             
                   

 

 

3.5 Non linear least squares methods 

 
 

The non linear least squares (NLS) method considered in this thesis for 
estimating the parameters of electromechanical oscillations is the VARiable 
PROjection (VARPRO) method. VARPRO application requires the knowledge 
of the system order, and hence of the electromechanical modes number, that 
can be achieved for instance through Hankel Singular Value Decomposition 
(HSVD). Given m observations (ti, xi), let us define x = [x1, x2, . . . , xm]T the 
observation data vector. This can represent almost any variable representative 
of the power system operating, adequately processed if necessary such as 
generators angular speed, voltage magnitude, active power flow etc. The 
fundamental HSVD steps are summarized in the following, leaving its full 
discussion to the relevant literature (i.e. in [58], [59]) in order to do not 
complicate the discussion: 
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1. Construct the Hankel data matrix, H, having dimension LxM. L must be 
chosen greater than M, and in turn, M greater than K, with K the modes 
number; 
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                                                                          3.49 

 
 

2. Calculate the Hankel matrix SVD: 
 

 

            
 MXMLXMLXLLXM VSUH                        3.50 

 
 

3. Eliminate the singular values that correspond to the noise and compute 
an updated Hankel matrix having rank equal to K: 

 

           
 MxKKLxKK VSUH

                       3.51 

 
where U is an unitary matrix, V+ is the hermitian conjugate of the unitary 
matrix V and S is a rectangular diagonal matrix with real and positive 
singular values σ1 ≥ σ2 ≥…≥ σn. 

 
4. Compute the eigenvalues of the Z matrix in least squares sense: 

 

        LxK
T
LxK

1

LxK
T
LxK BAAAZ




                  3.52 

 
where A and B are obtained from U by eliminating the first and the last 
row. In this way, the modes number simply corresponds to the estimated 
eigenvalues number.  

 
The knowledge of the system model order allows us to develop a proper 
framework to process in the next proposed non-linear least square algorithm, 
exactly called the Variable Projection Method [60]. In order to clarify the 
VARPRO's working, let us consider that the number of oscillation modes 
detected by the HSVD is k, each represented by a damped sinusoid. Hence the 
following representation can be adopted: 
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k
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ii
t

i )tf2sin(eA)t(x i

                         
3.53 

 
where σi and fi are respectively the damping factor and the frequency of each 
mode to determine since they are unknown. Eq. (3.53) can be rewritten as: 
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k
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iii
tσ

i

t)πf2(coseCt)πf2(sineC       

sint)πf2(coseAcost)πf2(sineAx(t)

ii

ii

         3.54 

 
 
VARPRO peculiarity is to perform the fit only with respect to the non-linear 
parameters of the model above, exactly σi and fi, computing the remaining 
linear parameters, exactly C1i and C2i, through linear least squares, with no need 
for initial estimates. The objective function structure, L, is the one in the Eq. 
(3.55), whereas α is the vector of linear parameters [C11, C21, C12, C22,…, C1k, C2k]T, 
β is the vector of non-linear parameters [σ1, f1, σ2, f2, …, σk, fk ]T and at last Θ is the 
fitting function that, at the instant tk, depends only on the non-linear parameters 

);( tβΘΘ  . 

 

        2T

2h

1j

jj )()()(),t()-(t),( αβΘxαβΘxαβΘxαβΘxβαL 


       3.55 

 
with

 

h the number of available samples. 
 
The minimization can be reformulated as: 
 

 2
)(minmin),( αβΘxβαL

αβ




                                   3.56
 

 
As can be noted, if β is fixed, the internal minimization is a linear least squares 
problem, therefore the minimum of the linear parameters vector is: 

 

xβΘβα )()(                                             3.57 

 

where 
Θ is the pseudo-inverse matrix of )(βΘΘ  . Eq. 3.56 can be re-

formulated as: 
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





  

 2

)()(minmin),( xβΘβΘxβαL
αβ

                 3.58 

 
which depends only on the parameters in β that can be easily calculated 
through an iteration procedure, allowing consequently to determine α and to 
reconstruct the original signal. Summarizing, VARPRO method, through the 
described procedure, furnishes angular frequency fi and damping coefficient σi 
collected in β for each elemental component. Hence, by solving a linear least 
squares problem, amplitude and phase of the single component, implicitly 
collected in the α elements, can be computed according to the following 
relationships: 
 

 

2
2i

2
1ii CCA               3.59
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







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2i1
i

C

C
tg               3.60

  
                

             
 

3.6 Extended Complex Kalman Filter 

 

As already said an electromechanical oscillation can be often modelled with a 
sum of M exponential damped sinusoids corrupted by complex white Gaussian 
noise w(n). An equivalent expression to the one in (3.38) is the following:   

 

 
 




M

1k

M

1k

nT)j(
k

nT
k 1-N0,1,...,nfor      ea )n(wea)n(x skksk

      3.61

 

 

where now Ts is the sampling interval, ak the complex amplitude of the kth mode 
and at last λk =-σk + iωk is the signal eigenvalue referred to the kth power system 
oscillatory mode, with σk the damping factor and ωk the angular frequency. 

The Extended Complex Kalman Filter (ECKF) implementation requires to 
organize the observed signal x(n) in a state space representation. The method is 
called extended complex Kalman filter because it applies the standard Kalman 
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filter to a nonlinear system with additive white noise by continually updating a 
linearization around the previous state estimate [61]. The state transition and 
the observation models of the ECKF are hence [62]: 

 

)( n1n zfz                             3.62 

 

nnn wHzx                                     3.63 

 

The kth eigenvalue at the nth instant is represented by two states denoted as zn(k) 
and zn(k+1) expressed as: 

 

skk T)f2i(
n e)k(z


              3.64 

 

skk nT)f2i(
kn ea)1k(z


             3.65 

 

Hence, the acquired signal is characterize through 2M number of states (with M 
the number of exponential damped sinusoids). In this way the state transition 
and the observation models become: 
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           3.66 

 

nnnn w)M2(z)4(z)2(z)n(z             3.67 

 

with the measurement/observation matrix defined as: 

 

 ]1   0    1  0  1  0[M2x1 H             3.68 
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The ECKF operations are hence summarized in the following: 
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F              3.74 

  

where Rn , Qn , K and P are respectively the measurement noise correlation 
factor, the process noise correlation factor, the filter gain and the covariance 
matrix. Careful tuning of the measurement and process noise correlation factor, 
must be done in order to avoid biased estimations and to make the estimation 
procedure less sensible against the noise. The damping factor and the 
oscillatory frequency of the kth mode can be computed from the estimated state 
vector zn as follows: 

 

s

n
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T

))1k2(zln( 
              3.75 
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            3.76 

 

This estimation algorithm is able to track ringdown oscillations poorly damped, 
this means for instance that a fast transient event, like a capacitor switching can 
not be effectively monitored. Nonetheless, it enhances the performance of the 
standard linear Kalman filter adopted for the purpose. Estimation algorithm 



Real Time tracking of electromechanical oscillations in ENTSO-e Continental European 

Synchronous Area 

March  2014 

 

 Page 68 

performance are dependent from the initial conditions of the states, for this 
reason in reference [63] the employment of the HSVD is proposed for 
improving the convergence speed and the estimation accuracy. In this thesis we 
employ HSVD to detect the system order (which is the number of intrinsic 
modes captured in the signal) which highly affects the consistence of the 
obtained results by the VARPRO application. Due to the filter transient 
behaviour in the computing of the parameters in (3.75) and (3.76) at the initial 
and final part of the observation window, these values are provided as average 
value over a convenient one where the filter output is stable around the actual 
electromechanical oscillation parameter to estimate (respectively damping 
coefficient or frequency).          

 

 

3.7 Hilbert transform based methods 

 

Recently, both for reasons related to the specific methodological core 
advantages and for reasons related to the specific practicality, the attention of 
the power system community has recently moved towards the employment 
Hilbert transform-based methods. The motivations behind this tendency is 
essentially due to the HT ability to handle non-stationary and non-linear time 
series like the power systems oscillations and due to some remarkable 
properties not satisfied from other operators that will be discussed later. Being 
moreover specifically designed for working on non-stationary and non-linear 
time series, it exactly matches the characteristics of the electromechanical 
oscillations which are the inherent non-stationarity and the development on 
different time scales. HT offers the possibility to direct examine the 
instantaneous signal properties such as frequency, damping coefficient, 
amplitude and phase. For this reasons Hilbert-Huang transform has been 
extensively applied in various engineering fields such as mechanics, 
biomedical, geophysics as a direct tool for understanding the behaviour of 
complex systems. Apart from the electromechanical modes identification, HHT 
application fields in electrical power systems studies are essentially the power 
quality analysis [64] and faults diagnostic [65]. Basically, HHT is an empirically 
based data analysis method consisting of two parts. The first part is the 
Empirical Mode Decomposition (EMD) which attempts to decompose the 
original signal in elemental signals called intrinsic mode functions (IMF), through 
an iterative procedure named sifting algorithm. The second part is the ordinary 
HT application on each IMF with the aim of determining instantaneous 
frequencies and the instantaneous amplitudes. The manner of determining the 
instantaneous amplitude and frequency values is generally called analytical 
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signal method. Instantaneous damping factor or damping ratio estimates can be 
also easily achieved through simple mathematical derivations. 
 
 
 

3.7.1     Empirical Mode Decomposition 

 

Empirical mode decomposition developed by Norden Huang [66] is a signal 
decomposition algorithm based on a successive removal of elemental signals 
called intrinsic mode functions derived through an iterative procedure termed 
sifting algorithm [67], [68], [69]. It is more like an empirical method than a 
theoretical tool. The lack of an analytical formulation prevents any theoretical 
analysis: this justifies the empirical denotation of the method. In order to be an 
IMF a certain basis function must verify the following conditions:  
 

- The number of extrema and the number of zero-crossings differ by, at 

most, one along the entire signal duration; 

- The mean value of the envelope defined by the local maxima and the 

envelope defined by the local minima is nil at any point. 

 

In practice, a signal with any significant DC component can not be an IMF. 
Sifting algorithm, through three main steps, aims at subtracting away the large-
scale features of the signal repeatedly until only the fine-scale features remain. 
Therefore the signal to decompose x(t) can be seen as sum of elemental 
functions c(t) having finite-scale trait, namely IMF, and a residue r(t), 
x(t)=c(t)+r(t). The first important difference with respect the previously 
analyzed method is that, in this case, no assumption on IMF model is made.      

In the following the sifting algorithm steps are listed: 

 
1. Set r0(t)=x(t) at the stage k = 1; 

2. Extract the kth IMF through the following procedure 
 

2.1 Set m=1 and hm-1(t)=rk-1(t); 
2.2 Identify the successive local minima and the local maxima for hm-1(t). 

The time spacing between successive maxima is defined to be the time-
scale of these successive maxima; 

2.3 Interpolate the local minima and the local maxima with a cubic spline to 
form an upper envelop emax, m-1(t) and a lower on emin, m-1(t) for the entire 
data span; 
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2.4 Calculate the instantaneous mean of the envelopes  
 

im-1(t) = 0.5(emax, m-1(t)+ emin, m-1(t)) 
 
and refresh the estimate hm(t)=hm-1(t)-im-1(t) such that emin, m-1(t)≤ hm(t) ≤  emax, 

m-1(t). Set m=m+1; 
2.5 Repeat the steps 2.2-2.4 until hm(t) satisfies a set of predetermined 

stopping criteria (follows the pointed out conditions to recognize an 
IMF). Then set ck(t)= hm(t); 
 

3. Get an improved residue rk(t)= rk-1(t)-ck(t). Set k=k+1 and repeat the 
whole step 2 until the number of extrema in rk(t) is less than two. 

 

In this manner, low-amplitude riding waves and asymmetries with respect to 
the local mean are eliminated in the time series making the wave profile more 
balanced. The IMF ‗sifted‘ from this algorithm are orthogonal in nature and 
appear in decreasing order of frequency. At the end of the decomposition 
procedure only the fist n IMF identified contain informative content, the 
remaing ones togheter with the residue rn(t) contain less relevant non sinusoidal 
informative content. Unlike linear transform techniques such as Prony analysis 
or Fourier techniques, EMD separates components exhibiting ‗fast‘ (in some 
sense) variations from components varying more slowly without making any 
assumptions about the components model. Actually, while linear transform 
techniques adopt for each component an exponentially modulated sinusoid to 
carry out a fitting process for determining fundamental constant parameters 
such as frequency, damping coefficient, amplitude and phase shift, IMF do not 
approximate any specific model. The chief EMD difference with respect to the 
linear transform techniques relies in the concept of instantaneous frequency 
which overcomes the assumption of constant frequency for each component. 
Fourier analysis furnishes the frequency component from its time period, which 
is the time taken to complete one stationary time period. As already said, since 
electromechanical oscillations are generally non-stationary waveform 
characterized by incomplete time periods, the frequency definition is hence not 
trivial.    
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3.7.2     Hilbert transform 

 

The Hilbert Transform of a real signal x(t) is defined as: 
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)t(x)]t(x[H H         3.77 

           

where the integral is considered as a Cauchy principal value because of the 
possible singularity at τ=t or τ=0. Alternative definition reverse the sign. As can 
be noted from the Eq. (3.77), the HT represents the convolution between the 
transformer 1/πt and the function x(t), H[x(t)] = (1/πt) * x(t). A basic property 
of this operator is to shift the phase of the negative frequency components by 
π/2 radians and the phase of the positive frequency components by -π/2 
radians. For this reason HT is often interpreted as a π/2 phase shift operator. 
The signal x(t) and its Hilbert transform xH(t) can be arranged in a canonical 
representation called analytical signal g(t): 

 

)t(i
H e)t(A)t(jx)t(x)t(g                 3.78 

 

where 

)t(x)t(x)t(A 2
H

2  is the analytical signal amplitude; 

))t(x/)t(x(tan)t( H
1  is the analytical signal phase.  

 

The instantaneous angular frequency of g(t) can be calculated as:  

 

dt

)t(d
)t( u                 3.79 

 

where  (t)u is the continuous unwrapped phase,  (t)  (t)  (t)u  , with Λ(t)  

an integer multiple of π-valued function designed to ensure a continuous phase 
function. Hence the instantaneous frequency is evaluated as: 
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                    3.80 

 

As far as the instantaneous damping coefficient is concerned, it can be derived 
through simple mathematical derivations from the instantaneous frequency and 
magnitude. Rewriting the expression (3.78) according to the following one: 

 

)t(i)t()t(j e)t(e)t(A)t(g                         3.81 

      

with α(t) the time-dependent decay function modelled as: 
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Dividing the derivative of g(t) by the same g(t) one obtains: 
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The instantaneous damping can hence be calculated: 
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simplified in the case of purely exponential signal into the following 
relationship: 

 

)t(A

)t(A

dt

)t(d
)t(






             3.86 

 

since )t(  is constant and its derivative nil. 

 

 

HT Properties 

The great interest in HT relies on the fact that this operator satisfies three 
important properties [70] not satisfied from the major part of the other 
operators: amplitude continuity and differentiability, phase independence of 
scaling and homogeneity and at last the harmonic correspondence. A brief 
focus on Bedrosian theorem in Hilbert Transform is also reported since it 
represents a central point of the signal decomposition theorem presented in the 
Chapter 4 as valid alternative to the EMD.   

 

P.1 Amplitude Continuity and Differentiability 

By applying a small perturbation δx(t) to the original signal x(t), the following 
relationship maintains: 

 

0)t(x if     )]t(x[H)]t(x)t(x[H            3.87    

 

P.2 Phase Independence of Scaling and Homogeneity 

If the signal x(t) is replaced by )t(xk  ,with k a real positive constant, by using 

the transform linearity one can demonstrate that:  

 

)t(x

)]t(x[H

)t(kx

)]t(kx[H
                3.88 

e.g. )]t(x[kH)]t(kx[H                         3.89 
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P.3 Harmonic Correspondence 

By assuming constant and positive the amplitude and frequency of a single 
sinusoid, for each A, f and φ one must has: 

 

)tsin(A)]tcos(A[H              3.90 

 

Bedrosian Theorem 

As already mentioned, Bedrosian E. establishes a fundamental result for the 
Hilbert transform of the functions product [71]. In particular, he was the first to 
take care of the validity of the following relationship under the Hilbert 
Transform: 

 

)]t(g[H)t(f)]t(g)t(f[H              3.91 

 

where f(t) and g(t) are generally real-valued functions of the variable t in L2(R), 
and H[.] the Hilbert Transform operator. This spectral condition is generally 
somewhat restrictive to be useful in modal identification since exponential 
function has no bounded spectrum. Obviously, such a condition is satisfied 
with a good approximation for highly damped sinusoids. Appendix A contains 
all the mathematical derivations to reach the powerful outcome in the Eq. (3.91).  

Although less employed in power engineer literature, a more general 
expression of the Hilbert transform product of two complex functions, f(t) and 
g(t), has been developed in [72]: 

 

 )]t(g[H)]t(f[HH)]t(f[H)t(g)]t(g[H)t(f)]t(g)t(f[H              3.92 

 

this is essentially due to the fact that the Hilbert transform product remains. 

From the convolution properties, one can simply derive that the inverse Hilbert 
transform of a signal xH(t) is given by: 
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             3.93  

 

and therefore the double application of the HT returns the original signal with 
opposite sign. Tab. 3.1 lists the most used Hilbert transform pairs whereas those 
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ones of the trigonometric and exponential functions are of interest for our 
purpose [73]. 

 

TAB. 3.1 – HILBERT TRANSFORM PAIRS 

        Signal   Hilbert 
transform 
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
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
 

 

As can be noted, Hilbert transform of a cosine function is a sine function and 
similarly, the Hilbert transform of a sine function is a negative cosine function, 
as direct result of the Eq. (3.93).   
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3.7.3     Hilbert Huang transform limitations 

 

Power system oscillatory behaviour is described through non-stationary and 
possibly non linear signals characterized by frequency components in the 
interval 0-2 Hz that can lie furthermore within the same octave. An octave is 
basically the frequency range between one frequency and its double or half 
frequency. With respect to these, unfortunately HHT presents some limitations, 
due both to the EMD behaviour and to the discrete implementation of the HT, 
that could lead to a wrongful understanding of the electrical power systems 
dynamic. First of all, the sifting algorithm does not guarantee that each IMF has 
mono-component character especially if (i) the highest two frequencies in the 
original signal fall in an octave, (ii) the original signal consists of a weak high-
frequency component along with a dominating lower frequency component. 
This implies that first IMF is not a mono-frequency signal, but instead it exhibits 
a modes mixing, making little sense to expect useful physical interpretation 
through the application of the Hilbert analysis. The error on the first IMF is 
transmitted to the next IMF. Secondly, this decomposition process could 
generate spurious information not related to the actual signal modal content 
often due to the end effects associated with the decomposition. Thirdly, leakage 
errors caused by the transformation from the time domain to the frequency 
domain and vice versa, in HT numerical computation, could play a not-
negligible role in the success of the entire procedure. Indeed, the first two issues 
are major concerns with respect to the last one. Actually, the HHT refinements 
presented in the following are all developed for addressing exactly the 
described critical.  

To show the mode mixing issue in the EMD let consider the following signals: 

 

)t5.0sin()t5.1sin(8.1x1                        3.94 

 

)tsin()t5.1sin(8.1x2              3.95 

 

As can be noted the signals differ from the fact that the second one in (3.95) has 
two frequency component in the same octave with respect to the first one in 
(3.94). By applying the EMD and analyzing the Fourier spectrum of the first 
IMF in both the cases one can appreciate the issue outlined above, that is the 
first IMF for the second signal is not mono-component. 
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Fig. 3.2 – Fourier spectra of the signals in (3.94) and (3.95) 

 

 

3.7.4     HHT refinements 

 

Several HHT refinements, here reported, have been proposed for solving the 
modes mixing issue in the IMF furnished by the EMD. Apart from the 
Frequency Heterodyne Technique (FHT), which is here reported only for sake 
of completeness since somewhat hard to employ in practice, the main 
philosophy behind the others is to alter the modal content of the investigated 
signal with a masking signal. The masking signals achievement procedure and 
their direct employment criterion vary among the different proposals of 
refinement. The first one considered, exactly HHT with standard masking 
technique (M-EMD), although effective for power quality applications is 
demonstrated to be uneffective in the case of closely spaced frequency 
components. Fourier-Based Masking Technique (R-EMD), EMD with Energy-Based 
Masking Technique (A-EMD) and Targeted approach to apply masking signal-based 
empirical mode decomposition (T-EMD) have been specifically developed for 
extending the masking technique to electromechanical oscillations applications.    
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3.7.4.1    HHT with standard masking technique 

 
To enhance EMD resolution in HHT the use of masking signals has been firstly 

proposed in [66]. The rationale behind the refinement is to alter the original 

signal with the addition and the subtraction of a mask-signal to get two new 

signals. Classical EMD is performed on these two new signals to obtain the first 

IMF only, hence the average of the two IMF is then computed to yield the 

correct IMF of the original signal. Obviously, the masking signal must be 

properly constructed: to be effective its frequency must be chosen higher than 

the highest frequency component present in the original signal and that falls in 

its same octave. A systematic procedure to implement mask-EMD (M-EMD) 

can be so codified: 

 

1) Perform FFT to estimate the stationary equivalents of the possibly 

time-varying frequency components f1, f2,…, fn with f1< f2<…< fn; 

2) Construct n-1 masking signals of the type maskk = Mksin(2π(fk-1+ 

fk)t) for k = 2,3,…, n. Mk is empirically suggested to be 5.5 times the 

magnitude of fk, however case by case investigations have to be 

preferred.  

3)   Calculate two new signals x(t)+maskn and x(t)-maskn and apply 

on each of them the steps of the standard EMD described in the 

subsection 3.7.1 to get only the first IMF from each of them, )t(ci
 =IMF+ 

and )t(ci
 = IMF-. The correct IMF will be c1(t) = IMF = 0.5(IMF++ IMF-). 

4) Obtain the residue r1(t)=x(t)-c1(t); 

5) Perform steps 3 and 4, replacing x(t) with the residue obtained in 

step 4, iteratively until n–1 IMF containing frequency components f2, f3, 

..., fn have been extracted. The final residue rn(t) will contain the 

remaining component f1.  

 

Now, by applying the present refinement to the signal in (3.95) one can 

demonstrate the validity of the masking philosophy. In this case the unique 

masking signal to construct is depicted in Fig. 3.3. Superimposing the latter to 

the original signal and performing the steps above, the Fourier spectrum of the 

first IMF becomes the one illustrated in Fig. 3.4. 
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Fig. 3.3 – Masking signal 

 

 

Fig. 3.4 – Fourier spectrum of the first IMF from the M-EMD of the signal in (3.95)   
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3.7.4.2    Frequency Heterodyne Technique 

 

This technique is well-known in the telecommunication scientific community as 

heterodyne detection [75]. Practically, Frequency Heterodyne Technique (FHT) 

alters the spectral distance between two adjacent frequency components 

through an injection of a pure tone of frequency greater than the highest 

frequency present in the original distorted signal. The objective, as usual, is to 

overcome the modes mixing issue in the elemental components from the 

decomposition procedure. Obviously, the aforementioned expedient implies to 

know in advance the spectral content of the original signal. The major benefit 

ensured by FHT is to reduce loss of amplitude information while extracting the 

highest frequency component.   

The basic idea in FHT is to shift the frequency content of an original distorted 

signal x(t) around a new carrier frequency fc, multiplying it by the analytic 

representation of the carrier signal. The signal thus obtained xDSB(t) is referred 

to as double sideband modulated (DSB) with suppressed carrier as it contains two 

frequency shifted copies of the original signal on either side of the carrier 

frequency: 

 

 
tπf2i

DSB
cx(t)e(t)x                3.96 

 

 

A single sideband modulated (SSB) signal can be obtained by removing one of the 

sidebands using an appropriate filter or a Hilbert transformer. In the latter case, 

the lower sideband signal xSSB(t) can be readily derived by employing the 

analytic form of x(t) in the manner that follows: 

 

 

  tπf2i
HSSB

ce(t)ixx(t)Re(t)x


                  3.97 

  

 

From an operational point of view, let suppose that the original signal contains 

two frequencies f1 and f2 falling in the same octave (with f1<f2), the heterodyne 

frequency fc is chosen in the range f2< fc <2f2–f1. The SSB frequencies obtained by 

applying the aforementioned heterodyning are fc–f1 and fc–f2, positioned in 

different octaves if fc is properly selected. Hence, the subsequent application of 

the standard EMD furnishes IMF of frequencies fc–f1 and fc–f2 that can be 

heterodyned back to their original frequencies. They should realistically be 
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mono-component and slightly reduced in amplitude.  

An analysis on the error distribution in the EMD with masking and frequency 

heterodyning points out that while in the first case the error is distributed along 

the observation window, in the second one it is concentrated at the window‘s 

edges and near switching instants only. Indeed, selecting an adequate 

heterodyne frequency is a complex task which would require the detailed 

knowledge of the spectral content of the distorted signal. Unfortunately, this 

can be achieved only by performing a FFT-spectral analysis, that as already 

mentioned, could be approximated and possibly inaccurate. 

Let now image to adopt this refinement instead than M-EMD for solving the 

mode mixing issue in the IMF for the signal in (3.95). A proper choice of the 

heterodyne frequency is fc = 0.85 Hz. The lower sideband signal xSSB(t) is plotted 

in the Fig. 3.5 that follows: 

 

 

Fig. 3.5 – Lower sideband signal related to the one in (3.95)   

 

The SSB frequencies are now in different octaves, as demonstrated in Fig. 3.6 so 
permitting to the EMD to correctly extract IMF of frequencies about fc–f1 = 0.10 
Hz and fc–f2 = 0.35 that can be heterodyned back to their original frequencies 
exactly f1 = 0.75 Hz and f2 = 0.50 Hz.    
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Fig. 3.6 – Fourier spectrum of the lower sideband signal related to the one in (3.95)   

 

 

3.7.4.3    HHT with improved masking technique 
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transformer, seems to offer a better frequency and temporal resolution 

compared to the previous ones described so far. Without any doubt, the signals 

set with respect to the present HHT refinement correctly work is enlarged, 

nonetheless it can not be stated that these refinements solve completely the 

resolution issue in the EMD. This will be clearly pointed out in the Chapter 5 

containing a collection of experimental findings. However, two improved 

masking technique algorithms, namely EMD with Fourier-Based Masking 

Technique, R-EMD, and EMD with Energy-Based Masking Technique, A-EMD, 

are here presented. 
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Algorithm 1:  R-EMD. 

 

EMD with Fourier-Based Masking Technique consists of the following steps: 

 
1. Perform FFT to estimate the stationary equivalents of the possibly time-

varying frequency components f1, f2,…, fn with f1> f2>…> fn; 

2. Construct n-1 masking signals of the type maskk = Mksin(2π(fk+fk+1)t) for 

k = 1,2,…, n-1. Mk is empirically suggested to be 5.5 times the magnitude 

of fk, however case by case investigations have to be preferred. 

3. Depending on the numerical values assumed by the two highest 

frequencies f1 and f2 and by the related magnitudes M1 and M2 

distinguish two different cases: 

 

If any of these conditions is valid: 

a) f1  1 and M1 < R21M2 

b) f1 > 1 and f1 < R1f2 

c) f1 > 1 and  R1f2 < f1 < R2f2 and M1 < R22M2 

d) f1 > 1 and  f1  R2f2 and M1 < R23M2 

with R21 = 1.1, R1 = 1.5, R2 = R22 = 2;, R23 = 0.5 

 

then consider the Case a) otherwise the Case b)  

 

Case a) Case b) 

3.a Employ only the first masking 
signal for the entire decomposition 
process 

 

)t)ff(2sin(M)t(mask 2111   

 

4.a Construct two new signals 

x(t)+mask1(t) and x(t)-mask1(t), then 
apply on each of them the standard 

EMD to get all the IMF, )t(ci


= IMFi+ 

and )t(ci
 = IMFi- for i=1, 2, …, n and 

3.b Employ all the constructed 
masking signals.  

4.b Construct two new signals 
x(t)+mask1(t) and x(t)-mask1(t), then 
apply on each of them the standard 
EMD selecting only the first IMF from 

each one, )t(c1
 and )t(c1

 . Thus, the 

first IMF of x(t) is 

2

)t(c)t(c
)t(c 11

1

 
  
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also the residue rn+(t) and rn-(t). Hence: 
 

2

)t(c)t(c
)t(c ii

i

 
        

2

)t(r)t(r
)t(r nn

n

 
  

 

 

 

5.b Get the residue, )t(c)t(x)t(r 11   

6.b Use the next masking signal by 
performing iteratively the steps 4.b 
and 5.b while replacing x(t) with the 
residue obtained at each iteration, 
until n-1. 

7.b) Calculate the last residue 

)t(c)t(x)t(r nn   

8.b If the residue is above the 
threshold value of error tolerance, 
then repeat on it the step 2 of the 
sifting algorithm in Section 3.7.1 for 
getting the next IMF and the new 
residue.    

 

The reconstructed signal will be: 

)t(r)t(c)t(x
n

1i

ni




  

 

As can be argued, this algorithm extends the HHT refinement with standard 

masking technique (Case b)), specifically developed for power quality 

applications and hence for ―high frequency signals‖, by adding an alternative 

procedure (Case a)) in the case of ―low-frequency signals‖. In this manner the 

entire algorithm can handle the decomposition for a large set of signals both 

with high-and low-frequency components. As far as the numerical values of the 

parameters R1, R2, R21, R22, and R23, they are experimentally derived for 

matching the inter-area oscillations characteristics. The need for a tuning is not 

to exclude. This further increases the empirical connotation of the present HHT 

refinement.  

 

The application of this improvement to the signal in (3.95) makes more selective 

the first IMF extraction with respect to the M-EMD. This is illustrated in Fig. 3.7 

which depicts the Fourier spectrum of the IMF approximating the signal 

component at frequency f1 = 0.75 Hz. 
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   Fig. 3.7 – Fourier spectrum of the first IMF from R-EMD of the signal in (3.95) 

 

Sometimes the ordinary M-EMD could fail in extracting mono-components, R-
EMD can represent in that cases an option to investigate to solve the problem. 
At the best of our investigation anyway, its success is not globally guaranteed 
hence we recommend a critical employment for real time applications.  
 

 

Algorithm 2:  A-EMD. 

 

 

The chief criticism of the R-EMD algorithm is due to the increase of the total 

number of empirical assumptions for the heuristic choice of the mask 

parameters, frequency and amplitude, besides based upon the preliminary 

employment of the FFT which assumes to be stationary the signal in the time-

window analyzed. This philosophy could hence lead to a wrong understanding 

of the power systems behaviour caused by a lack of resolution. For this reason, 

the same authors who developed the R-EMD algorithm have proposed an 

alternative one based upon the delineated Case a) and the notion of energy 

weighted mean of the highest frequency. It is termed EMD with Energy-Based 
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Masking Technique, briefly A-EMD; its fundamental steps are listed in the 

sequel: 

 

1) Execute the standard EMD on the original distorted signal x(t).  

2) Use only the first IMF, c1(t), which is expected to contain the highest 

frequency component of the signal, fmax, but could also contain mode 

mixing. Determine the signal instantaneous frequency f1(t) and the 

instantaneous magnitude A1(t) by implementing the HT. 

3) Calculate the energy weighted mean of f1(t) with the available samples 

      number L: 

 








L

1k

11

L

1k

2
11_

)k(f)k(A

)k(f)k(A

f  

 

4) Observe Case a) from R-EMD, then replace step 3.a with the following 

one, completing all the steps: 

 

)t)fm(2sin(M)t(mask
_

11   

 

where  )k(AmaxM 1
L,..,1i

1


  and m>1. Generally, if the maximum frequency 

component in the analyzed signal is lower than 1 Hz, it is usual set m=2 as 

upper bound for ensuring an effective masking, so avoiding that the product 
_

fm  would be much higher than fmax.  

 

 

Like in the previous algorithm, the authors generalizes the results of other 

colleagues, specifically Deering and Kaiser in [74], who suggested the following 

masking signal form: 

 



















s

_

01
f

tf2
sina)t(mask  

 

As can be noted the sampling frequency fs is replaced by the parameter m, 

whereas furthermore an analytic criterion for the a0 choice is also introduced. 

The application of A-EMD on the signal in (3.95) produces similar results to the 
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R-EMD, although the choice of the parameter m in the masking construction is 

not a trivial task.  

 
 

 

 

3.7.4.4    Targeted approach to apply masking signal-based 
empirical mode decomposition 

 

 

A further HHT refinement aimed at addressing the mode mixing issue 

associated with closely spaced modes frequency modes in power system signals 

while applying EMD is due to Prince et al in [77]. The algorithm‘s steps are 

listed later since before applying them a pre-processing stage consisting in a 

detrending through a raw application of the EMD, is performed. The basic idea 

of the T-EMD is to target some modes to track through the FFT spectrum of the 

processed signal, to aggregate individually IMF in which the targeted modes 

are identified, to obtain in this way a concentrated signal on which apply the M-

EMD. T-EMD steps are hence here summarized: 

 

1. FFT spectral analysis is firstly performed and the modes to be extracted 

for a particular application are then identified; these modes will be 

denoted hereafter as targeted modes. 

2. If the magnitude of the targeted frequency fk is comparable in magnitude 

with the nearby frequencies in the analyzed signal (let‘s say at least half 

the strength of the dominant frequency), then go directly to step 4. 

3. Perform the standard EMD identifying the IMF in which the targeted 

mode, fk, is dominant via FFT or HT. Aggregate the identified IMF to get 

a concentrated signal. Replace the original signal with the concentrated 

one and go to step 2. 

4. Form an appropriate masking signal and carry out M-EMD. 

5. M-EMD provides in output the targeted frequency component fk, 

verifying successively that it has a complete mono-component trait. FFT 

or Hilbert spectrum can be used for the purpose. Algorithm accuracy can 

be enhanced through a further concentrating of the processed signal 

using step 3 repeatedly.  

 

A crucial aspect of this HHT refinement is the adequate choice of the 

observation window which is inherently depending on the need to ensure both 

the correct identification of the electromechanical oscillation frequencies and a 
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proper numbers of extrema points corresponding to the targeted modes in the 

sifting process. The authors suggest a minimum of two or three cycles for 

obtaining good frequency resolution from FFT analysis without giving 

information about the effect of the time window on the sifting process. At any 

rate, as in all the HHT refinements using FFT for estimating the 

electromechanical oscillation frequencies, wrongful interpreting of the power 

systems dynamic could be achieved as previously discussed. Evidently, this 

threatens the consistency of the algorithm in the presence of strongly nonlinear 

and non-stationary signals. With this Section the present Chapter, devoting to 

analyze the relevant literature addressing the electromechanical oscillations 

parameter estimation, ends. The next one, will present the basic thesis 

contributes to the literature, not forgetting anyway that the HSVD-VARPRO 

previously described, has been tailored by me and my supervisor Professor 

Lauria D.        
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Chapter 4 

 

                           Advances in the use of  

Hilbert Transform 

 
The estimation algorithms here presented represent, without any doubt, the 
chief thesis contribute. The first one, as the previous described in the Chapter 3, 
faces the issue to detect and estimate electromechanical oscillations in power 
systems. It has been tailored for answering in a more simple and pragmatic 
manner to the main weaknesses of the HHT and the related refinements so far 
presented. This algorithm combines a recent signal decomposition theorem HT-
based for separating an assigned signal into elemental ones, each of them 
characterized by a single frequency component with a robust preliminary 
nonlinear spectral analyzer. The second one is an improved non linear least 
squares method for estimating the damping levels of electromechanical 
oscillations. A semi-analytic procedure is tailored with the aim to get an 
expression of the Cauchy principal value integral to suitably include in the 
objective function of the least squares minimization. The algorithm, conversely 
to the first one, will be directly tested in this Chapter, to demonstrate its 
accuracy in damping estimation as well as its resiliency against a critical effect 
of the wide area communication networks, namely dropout packets. This is 
partially due to the inherent regularization action of the Hilbert transform in 
correspondence of the data lack.  
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4.1 An advanced methodology Hilbert Transform based for 
estimating the power systems modal content   

 

The estimation algorithm here presented has been specifically designed for 
answering in a more simple and pragmatic manner to the main weaknesses of 
the HHT and the related refinements so far presented [78]. This algorithm 
combines a recent signal decomposition theorem HT-based for separating an 
assigned signal into elemental ones, each of them characterized by a single 
frequency component with a robust preliminary nonlinear spectral analyzer, 
named Lp periodogram. This procedure results very appropriate for analyzing 
some critical cases of electromechanical oscillations, due to the Lp periodogram 
robustness against heavy-tailed noise and its intrinsic ability in estimating also 
closely spaced frequency components. The proposed approach bases its own 
foundations on very simple rudiments of the signal processing theory, showing 
also some appealing features worth of mention such as the inherent simplicity, 
the reliability and consistency of the performance and at last very low 
computational burden. The core of the mentioned theorem is the exact division 
of a general signal into two time functions whose spectra are non-vanishing 
over two mutually exclusive frequency ranges separated by a bisecting 
frequency. This theorem ensures, through several steps of bisecting, the 
separation of the original signal, having also multiple closely spaced frequency 
components, into elemental signals, each dominated by a single frequency 
component. As it will be experimentally demonstrated in Chapter 5, the 
following signal decomposition theorem, proposed in [79] for identification of 
mechanical systems and structural dynamics, represents a viable alternative to 
the standard EMD and related improvements, for separating electromechanical 
oscillations close in frequency in non-linear and non-stationary power signals. 
In this manner the empirical connotation of EMD, specifically of the sifting 
algorithm, is hence outdated through a more rigorous analytical approach. 

 

 

4.1.1    A signal decomposition theorem Hilbert transform 
based 

 

Let x(t) be a generic real signal of the real variable t characterized by m 

significant frequency components f1, f2,…, fm in L2(- , + ). It can be decomposed 

in m elemental signals xi(d)(t) whose Fourier spectra are equal to )(F
^

 over m 
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mutually exclusive angular frequency || < b1 and b1 < || < b2 and b(m-1) 

< ||: 

 






m

1i

d
i )t(x)t(x                4.1 

 

where )(F
^

 is the Fourier transform of x(t) and in particular bi  [i, i+1], for i 

= 1,2,…, m-1 are the bisecting frequencies. In this manner each signal having a 
narrow bandwidth can be determined by the following relations: 

 

)t(s)t(x)t(x),...,t(s)t(s)t(x 1m
d
m1ii

d
i                          4.2 

 

1,...,m-2,1for i)]tsin()t(x[H)tcos()]tcos()t(x[H)tsin()t(s bibibibii             4.3 

 

where s0(t)=0 and H[.] represents the Hilbert transform operator of the function 
in the square brackets. Since the theorem represents the core of the proposed 
algorithm for the electromechanical oscillations detection and estimation, I 
believe that it is appropriate to immediately demonstrate the powerful result in 
the Eq. (4.2). 

 

4.1.2    Decomposition theorem proof 

 

A certain time series x(t) can be expressed through the summation of two 

signals, )t(s1 and )t(s1 , whose Fourier transforms, )t(s1

^

and )t(s1

^

, respectively 

vanish for || > b and || < b : 

 

                  0, || > b 

)t(s1

^

=      )(F
^

 , || < b         

                 4.4 

                       
2

)(F
^


, || = b 
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                  )(F
^

 , || > b 

)t(s1

^

=        0, || < b         

                 4.5 

                        
2

)(F
^


, || = b 

As it can be noted, both the Fourier transforms are the same and equal to 
2

)(F
^



at the boundary || = b of the two mutually exclusive frequency ranges, with 

b an arbitrary positive value referred to as the bisecting frequency. This 
remarkable property is very useful since together with the Parseval‘s theorem 

in Fourier transform permits to establish that s1(t) and )t(s1 are real functions in 

L2(- , + ): 

 

 















dt|)t(x|2/d|)(F|d|)(s|dt|)t(s| 22

^
2

1

^
2

1          4.6 

 

 















dt|)t(x|2/d|)(F|d|)t(s|dt|)t(s| 22

^

1

^
2

1         4.7 

 

In order to demonstrate the validity of the signal decomposition theorem in the 

Eq. (4.2), let consider the functions sa(t) = cos(bt) and sb(t) = sin(bt), whose 
Fourier transform are non-vanishing over the same mutually exclusive 

frequency ranges with s1(t) and )t(s1  (consider in fact that they vanish at all the 

frequencies except for ||= b). The HT of the products sa(t)x(t) and sb(t)x(t) 
becomes: 

 

)]t(s)t(s[H)]t(s)t(s[H)]t(x)t(s[H 1a1aa                 4.8 

 

)]t(s)t(s[H)]t(s)t(s[H)]t(x)t(s[H 1b1bb                         4.9 

 

The above relations can be handled by using the Bedrosian identity in Hilbert 
transform which establishes that the Hilbert transform of the product of a low-
pass, fLP(t), and a high-pass(t) signal, fHP(t), with non-overlapping spectra is 
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given by the product of the low-pass signal and the Hilbert transform of the 
high-pass signal (see the Appendix A for detail): 

 

(t)](t)H[ff  (t)](t)fH[f HPLPHPLP             4.10 

 

Hence: 

 

)]t(s[H)t(s)]t(s[H)t(s)]t(x)t(s[H 1aa1a                       4.11 

 

)]t(s[H)t(s)]t(s[H)t(s)]t(x)t(s[H 1bb1b            4.12 

 

Eqs (4.11) and (4.12) represent an equations system in two unknowns, 

respectively s1(t) and H[ )t(s1 ] computable from the relations that follow: 

 

)]t(s[H)t(s)]t(s[H)t(s

)]t(x)t(s[H)t(s)]t(x)t(s[H)t(s
)t(s

baab

baab
1




                      4.13  

 

)]t(s[H)t(s)]t(s[H)t(s

)]t(x)t(s[H)]t(s[H)]t(x)t(s[H)]t(s[H
)]t(s[H

baab

abba
1




         4.14 

 

Since H[sa(t)] = sin(bt) and H[sb(t)] = -cos(bt) and  sb(t)H[sa(t)]- sa(t)H[sb(t)] = 1 
the previous Eqs can be rewritten as: 

 

    )]tsin()t(x[H)tcos()]tcos()t(x[H)tsin()t(s bbbb1         4.15 

  

  )]tcos()t(x[H)tcos()]tsin()t(x[H)tsin()]t(s[H bbbb1         4.16 

     

while the )t(s1 component and the HT of the s1(t) can be directly derived from 

the relationship x(t) = s1(t) + )t(s1 , that is:  
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)t(s)t(x)t(s 11               4.17 

 

)]t(s[H)]t(x[H)]t(s[H 11                           4.18 

 

Basically, Eq. (4.13) is the straightforward application of the Eq. (4.3) with 

bisecting frequencies bi with i = 1,2,…, m-1. By generalizing, the decomposition 
procedure in two signal components can be applied in two different manner for 

the m-1 bisecting frequencies identified b1, b2, …, b(m-1)  through a repetition 
of the bisecting process. 

The first manner can be defined as original signal decomposition procedure with 
respect to the second one that will indicate as modified signal decomposition 
procedure.   

The original version faces with the signal decomposition according to the 
following relations: 

   

)t(s)t(s)t(s)t(s)t(s)t(s)t(x 1m1m2211            4.19 

 

)t(s)t(x 1
)d(

1  ; 1m-2,3,...,ifor      )t(s)t(s)t(x 1ii
d
i          4.20 

 

in which si(t) and )t(s 1m have to be determined by the Eqs (4.15) and (4.17), 

selecting respectively the proper bisecting frequency value bi and b(m-1).  

Conversely, the modified version performs a bisection of the previously 
decomposed signals in sequence: 

 

)t(s)t(s)t(x 11  ; )t(s)t(s)t(s 221  ; )t(s)t(s)t(s 1m1m2m         4.21 

 

with the elemental signals of the Eq. (4.2): 

 

1m-2,3,...,,1ifor      )t(s)t(x i
d
1  ;    )t(s)t(x 1m

d
m          4.22 

 

Since the modified signal decomposition procedure can be less accurate than 
the original signal decomposition procedure, due to potentially accumulated 
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numerical errors in HT, the original one is adopted in the thesis for the 
electromechanical modes identification.  

 

 

4.1.3    A robust non linear spectral analyzer 

 

The actual applicability of the theorem in power system modes identification 
could be threatened by the inability to identify the actual frequency 
components of the acquired signals by looking at the Fourier spectrum. For this 
reasons a non linear spectral analyzer is employed for determining the bisecting 
frequencies, the Lp periodogram, which can be interpreted as a direct extension 
of the Laplace periodogram, p=1, and of the ordinary periodogram, p=2: 

 

 2,1pe)t(x
n

1
)(P

p
n

1t

it  


                 4.23 

 

where n is the number of the samples of x(t). The paper [80] shows how to 

design a harmonic regressor by employing  1,2p  in order to make the 

periodogram robust and efficient enough. In particular, by denoting with  the 

Euclidean norm, it is demonstrated that the following periodogram definition is 
well posed: 

 

2

n )(
4

n
)(P               4.24 

 

with  







n

1t

p
T
tn )(c)t(xminarg)(

2R
            4.25 

 

βn(ω) is the least square regression coefficient corresponding to the 
trigonometric regressor ct(ω) = [cos(ωt), sin(ωt)]T. 

Several signals, of different kind (synthetic, acquired by IEEE test networks, real 
PMU data), were considered in order to establish if the p-value choice would be 
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affected by signal typology. At the best of our simulations, we can confirm, as 
stated by Ta-Hsin Li, that the optimal p-value falls within the interval [1,2]; it is 
not possible to derive further practical considerations about the p-value choice 
with respect to the type of data analyzed. The p-value of 1.5 can be reasonably 
conceived as a trade-off between the robustness of the Laplace periodogram 
(p=1) against extreme heavy-tailed noise and the efficiency of the ordinary 
periodogram (p=2). Besides, the value of 1.5 resulted the mean value of the 
optimal p-values over all the performed simulations. 

From an operational point of view, the identification of the bisecting 

frequencies bi  [i, i+1], for i=1,2,…,m-1 can be performed by determining the 
m peaks of the signal Lp periodogram (with 1<p<2). Each elemental signal 
obtained by the Eq. (4.2) has the feature of being mono-frequency. By making 
use of the HT fundamentals reported in the Section 3.7.2, instantaneous 

amplitude and phase angle values of the ith component  )t(xd
i can be 

determined. The analytical signal notation for the ith component is:  

 

)]t(x[iH)t(xe)t(A d
i

d
i

)t(mi
mi

i 
                  4.26 

 

Once derived the instantaneous frequency fi in Eq. (4.27) and the damping 

factor i  in Eq. (4.28), by employing the linear least square procedure described 
in [81], their mean values can be respectively estimated from the slope of the 
phase angle θmi(t) versus time plot and from the slope of the decaying 
amplitude ln(Ami(t)) versus time plot:  

 

dt

)t(d

2

1
f mi

i




 ;             4.27 

 

dt

))]t(A[ln(d mi
i                  4.28 

 

Hence, roughly speaking, the average frequency for the ith component can be 
obtained as the slope of the straight line from the least-square fitting of the 
phase angle θmi(t) versus the time, whereas the average damping coefficient for 
the ith component can be obtained as slope of the straight line from the least-
square fitting of the decaying amplitude ln(Ami(t)) versus time plot. These 
straight lines are referred to as the average straight lines for phase angle and 
decaying amplitude.  
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4.2 Numerical implementation of the Hilbert transform  

 

The theory presented in Section 3.7.2 refers to the HT computation in 
continuous time. Obviously, continuous time power systems dynamic 
behaviour can only be approximated through sampled power system 
measurements. Discrete Hilbert Transform (DHT) algorithm of Matlab® 
package is based on the fundamental result that the Fourier spectra of the 
original and analytic signals are identical at positive frequencies, whereas at 
negative frequencies, the FT of the analytic signal is zero [82]. More specifically, 
hilbert command of Matlab® calculates the discrete-time analytic signal through 
the discrete approximation of the FT. Therefore the HT of the original time-
discrete signal is extracted as the imaginary part of the discrete-time analytic 
signal. The advantage in computing HT via the DFT is to avoid performing a 
convolution operation, exploiting the speed and the simplicity of the standard 
FFT routine. Disadvantages are essentially due to the aliasing inherent in the 
application of the DFT to a signal which is improbably real-band-limited and to 
the Gibb‘s phenomena at the ends of the observation window. The first issue 
can only be mitigated and not completely solved by increasing the sampling 
frequency the second one has been addressed in this thesis through the Hilbert 
Boche approach, tailoring a flexible routine in Matlab® environment.   

 

 

4.2.1    Hilbert Boche approach 

 

Let consider the class of square integrable and -band-limited functions (in  

for sake of standardization), indicating it as W and let g  W. Given an 
enumerable set of discrete instants {ti} and denoting with {xi} the corresponding 
values for which g exists, that is g(ti)=xi, a similar approximating expression 
adopted in the Shannon sampling series [83] is here considered: 

 


 




n

1k k

k
n,kn

)tt(

))tt(sin(
b)t(g             4.29 


 




n

1k ki

ki
n,kin

)tt(

))tt(sin(
b)t(g             4.30 
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where the coefficients bk,n can be computed through the resolution of the 
following system of n linear equations: 

 

Abg                4.31 

 

with 
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The elements of the matrix A are of the type 
)tt(

))tt(sin(
a

k

k
ik




 , hence for ti  tk 

and for ik A is regular and positive definite as well as symmetric. The 
procedure proposed by Boche and Protzmann in [84] consists in beginning with 
a first point ti, in each iteration step an additional point is added, giving the 
dimension n in the nth step in Eq. 4.31. The choice of ti follows the criterion that 
follows. 

For g  W the sequence of {gn}, with gn  W converges with g in L2(- , + ) 
resulting: 

 

0dt)t(g)t(glim
2

n
n







            4.32 

 

Because of the particular properties of the class W the sequence {gn} converges 

not only in L2(- , + ) but pointwise and even, too: 

 

0dt)t(g)t(gsuplim n
Rtn




 
            4.33 

 

Whereby, the instant ti for the next step can be selected by identifying the 

maximum of the values difference )t(g)t(g iin  . The knowledge of this 

maximum may be used for terminating the iteration.  
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The conjugate series of the one in Eq. (4.29), so the related Hilbert transform, is 
given by: 

 

  
 




n

1k k

k
n,kn

)tt(

))tt(cos(1
b)t(gH           4.34 

 

for every g  W  converges against the Hilbert transform of the function g with 

a pointwise or L2(- , + ) approximation error not greater than that of the 
series in Eq. (4.29) itself. In this manner, a powerful approximation function is 
provided without particular complications. Therefore the analytical form of a 
generic signal x(t) can always be determined as follows: 

 












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n

1k k

k
n,k

n

1k k

k
n,kH

)tt(

))tt(cos(1
bi

)tt(

))tt(sin(
b)t(ix)t(x       4.35 

 

with bk,n that are the same in any sum. 

The adoption of such a procedure allows to reduce rather significantly the 
Gibb‘s effects in Hilbert transform. This can result very useful when the 
analytical expression of the investigated signal HT is known, in a perspective to 
fit the mentioned expression to the numerical values provided by the Hilber-
Boche (HB) approximation. Let consider for instance the signal in the Eq. 4.36: 

 

)t25.02sin(e)t(x t1.0                                 4.36 

 

Although this signal is synthetic, its characteristic parameters are chosen to 
replicate an actual electromechanical oscillation. Actually the value of damping 

coefficient =-0.1 s-1 and the frequency f=0.25 Hz match quite exactly those of 
the ENTSO-e CESA North-South inter-area oscillation. As can be appreciated 
by the Fig. 4.1, the end effects at the observation window extremities are 
importantly suppressed through the employment of the HB approach.  
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Fig. 4.1 – Hilbert transform of the synthetic signal in (4.36): comparison between the standard routine of 
Matlab® and the Boche approximation. 

 

 

4.3 An improved non linear least squares method for 
estimating the damping levels of electromechanical 
oscillations 

 

In this Section a new estimation algorithm is proposed for estimating the 
damping of electromechanical oscillations in power systems. The method is 
based upon a generalization of the classical nonlinear least squares approach 
which employs further information concerning the finite Hilbert transform of 
the power signals. A semi-analytic procedure is tailored with the aim to get an 
expression of the Cauchy principal value integral to suitably include in the 
objective function of the least squares minimization. The methodology is found 
to be very accurate in damping estimation as well as resilient against a critical 
effect of the wide area communication networks, namely dropout packets. This 
is partially due to the inherent regularization action of the Hilbert transform in 
correspondence of the data lack. 
The proposed procedure for estimating the characteristic parameters of 
electromechanical oscillations is organized into two steps. The first one consists 
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in decomposing the original power systems signals into elemental components 
according to the theorem presented in the Section 4.1.1. This separator block, as 
already said, ensures the mono-component trait of each decomposed elemental 
component. The basic assumption in the non linear least squares procedures 
that will be presented in the sequel is to adopt an exponential damped sinusoid 
model, hereafter standard fitting model, for each elemental component furnished 
by the previous separator block: 
 
  

)t(ωsineA(t) x ii
tσ

i
d
i

i               4.37 

 
 

with Ai the instantaneous component amplitude, i the component damping 

coefficient in (s-1), i the component angular frequency in (rad/s) and at last i 
the component phase in (rad). 

The second one consists in applying, on each of the previous elemental signals, 
a non linear least squares optimization considering an objective function that 
includes information related to the component Cauchy principal value integral. 
The latter relationship is derived through the semi-analytic procedure that 
follows. The main difference with respect to the classical NLS procedure 
presented in the Section 3.5, the VARPRO, relies in the development of a 
specific objective function able to offer better accuracy and consistency to the 
whole estimation procedure. The new objective function includes information 
about the Cauchy principal value integral of the elemental component xi(d)(t). In 
detail, the novel objective function, LHi, has so been designed: 

 

 



h

1j

2

j
d
ij

d
i )]t(x[CPVI)]t(x[H)( iii β,αLH             4.38                 

 

where: 

- H[.] is a local Hilbert transform operator specifically implemented according 
to the Boche approach, in order to reduce the Gibb‘s effect, then enhancing the 
estimation procedure accuracy; 
- CPVI is the Cauchy principal value integral of the standard fitting model 
containing the problem unknowns. 
 
CPVI expression, defined in the Eq. (4.38), can be numerically computed 
through the tailored semi-analytic procedure. Rigorously speaking, CPVI is 
defined as:  
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It can be determined, as demonstrated later, by evaluating the Cauchy principal 
value integral of the following oscillatory function: 
 

  
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


b
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t

t

i d
t

e
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where the function f() = e is surely analytic in a sufficiently large region of 
the complex plane containing [ta, tb]. Such an integral, although shows 
difficulties in the solution related to the Cauchy type singularity and to the 
intrinsic oscillatory nature, exists since f satisfies Holder‘s condition [85].  

By denoting the complex plane regions  and ‘ in the following manner: 
 

    )z(0   ,t)z(   tCz ba              4.41  

 

    )zarg(0   ,rt-z'              4.42 

 

where  is a large number and r is small enough such that ' . 

 
Fig. 4.2 – Path of integration for I (f;t) 
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According to the theorem in [86], the integral in the Eq. (4.40) can be evaluated 
as: 
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The theorem proof is reported in the Appendix B. Indeed, the two integrals in 
the equation above can be evaluated by employing the Gauss-Laguerre 
quadrature rule. More specifically, by respectively denoting with xk and wk, the 
nodes and the weights of the n-point Gauss-Laguerre quadrature rule, C.P.V. 
integral in Eq. (4.43) can be approximated by the following relationship. 
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In the numerical simulations, a 5-point Gauss-Laguerre quadrature rule has 
been used whose associated xk and wk values are listed in Table 1 [87]. 
 
  

TAB.  4.1 - NODES AND WEIGHTS FOR GAUSS - LAGUERRE  

5 POINTS QUADRATURE RULE 

Gauss-Laguerre quadrature rule with 5 points  

xk nodes wk weights 

x1=0.26356 w1=0.521756 

x2=1.4134 w2=0.398667 

x3=3.59643 w3 =0.0759424 

x4=7.08581 w4=0.00361176 

x5=12.6408 w5=0.00002337 

 
 
The analytical expression (4.44) allows to evaluate in a simple way the Cauchy 
principal value integral in (4.39), since: 
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As consequence of that: 
 

           
 









h

1j

2

jω2ijω1ij
d
i

h

1j

2

j
d
ij

d
i )t(f;IC)t(f;IC

π

1
)(tyH)(tyCPVI)(tyH)( iii β,αLH  

              4.47 
It is easy to argue that also in this case the problem structure is suitable to be 

addressed through VARPRO algorithm, by decoupling the estimates of αi and iβ

To demonstrate the effectiveness of the present algorithms the following 
synthetic bi-modal signal is here considered 

 

)tsin(e20)t6.1sin(e8)t(y t3.0t1.0              4.48 

 

Such a test signal is particularly critical for M-EMD due to its inability to 
effectively separate the signal components. Conversely, the proposed 
preliminary separation theorem allows to reproduce without difficulties both 
the closely-spaced frequency components having mono-component trait. For 
sake of brevity, the Lp periodogram output, depicting the signal spectrum is not 
reported since, in this case, a simple FFT is sufficient to identify the spectrum 
peaks and hence the bisecting frequency ωb required by the decomposition 
procedure. In particular, Fig. 4.3 depicts the single components and the 
decomposed elemental ones according to the decomposition procedure both 
with respect to standard Hilbert routine of Matlab® and to the one based on 
Boche method.  
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Fig. 4.3 – Time domain decomposition of the signal in (4.48) according to the proposed decomposition 

theorem: standard HT routine of Matlab® vs adopted one based on Boche method. 

 
As it can be appreciated, the HT calculated with the Boche method permits to 
significantly reduce the Gibb‘s phenomena at the signal ends ensuring higher 
performance in the estimation process with respect to an ordinary use of the 
hilbert command of Matlab®. Each elemental component is fed to the standard 
VARPRO and to the improved NLS algorithm, assessing the damping 
estimation accuracy with respect to different rate of data packets loss, 
appreciable in Figures 4.4a, 4.4b and 4.4c. A deep discussion about the data 
packet dropouts issue and its modelling will be performed in the next Chapter, 
for now suppose to have the three following situations.  
 

0 2 4 6 8 10 12 14 16 18 20
-10

-5

0

5

10

E
le

m
e

n
ta

l 
c
o

m
p

o
n

e
n

t

Time [ s ]

 

 

Original component Elemental component HB Elemental component Std

0 2 4 6 8 10 12 14 16 18 20
-20

-10

0

10

20

E
le

m
e

n
ta

l 
c
o

m
p

o
n

e
n

t

Time [ s ]

 

 

Original component Elemental component HB Elemental component Std



Real Time tracking of electromechanical oscillations in ENTSO-e Continental European 

Synchronous Area 

March  2014 

 

 Page 106 

 

Fig. 4.4 – Data packet dropouts: a) Rate 1, b) Rate 2, c) Rate 3. 

 
As can be noted by the achieved numerical results in Table 4.2, the improved 
NLS algorithm generally offers better performance with respect to the standard 
one. If a data packet dropout occurs, whatever would be its entity, the 
improved NLS approach ensures a much more consistent behaviour. The case 
of signal correctly transmitted is a singular one in the sense that, as 
demonstrated in our recently submitted paper being evaluation [88], in the 
situation of real measured signals the proposed NLS is ever better than the 
standard one (also in the case of signal correctly transmitted). The experimental 
findings are here not reported for sake of brevity since the example above is 
only devoted to validate the tailored algorithm. More specifically, the higher  
the loss rate, the more resilient is the improved NLS approach performing. 
Therefore the adoption of an objective function which minimizes the residual 
between the local HT performed through Hilbert-Boche method and the CPV 
integral expression obtained from the developed semi-analytic procedure seems 
more appropriate.  
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TAB.  4.2 – DAMPING ESTIMATION OUTCOMES: VARPRO vs IMPROVED NLS. 

 
Signal correctly 

transmitted 

Data packet 

dropouts rate 1 

Data packet 

dropouts rate 2 

Data packet 

dropouts rate 2 

  )t(xd
1

  )t(xd
2

  )t(xd
1

  )t(xd
2

  )t(xd
1

  )t(xd
2

  )t(xd
1

  )t(xd
2

 

Classical 0.0974 0.2914 0.1131 0.4451 0.1213 0.4459 0.1270 0.4450 

Improved 0.0967 0.2745 0.1111 0.3498 0.1192 0.3488 0.1248 0.3484 

 
 
Furthermore the preliminary components separation, performed according to 
the presented decomposition theorem HT-based, represents a great advantage 
with respect to the same phenomenon due to the intrinsic regularization action 
of the HT, as it can be noted in Fig. 4.5. 
 
 

 

Fig. 4.5 – HT regularization action with respect to the data packet dropouts 
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Chapter 5 

 

Experimental Findings 
 

 

In this Chapter a wide collection of experimental findings obtained from the in-
field employment of the estimation algorithms included in the Chapter 3 and 
Chapter 4 is reported. The case studies refer to synthetic signals, near real life 
signals acquired by simulation on IEEE test networks and at last actual 
measured signals in ENTSO-e CESA by the Italian WAMS. A performance 
comparison among the different estimation techniques, in essentially tracking 
frequency and damping of the actual or simulated electromechanical 
oscillations, is performed. In this sense, keeping in mind the lack of a rigorous 
definition of optimality, the algorithms accuracy is assessed by measuring how 
far the provided estimates are from the ones of the modal analysis, in the case 
of IEEE test benches, or from the average value recorded in literature about real 
systems (when known), in the case of real measurements from interconnected 
European system. An adequate discussion about the achieved numerical 
findings is provided aimed at furnishing a reasonable interpretation. The effects 
of some wide area communication networks, such as noise and data packet 
dropouts, is also evaluated to measure the inherent robustness of each 
considered algorithms.    

 

 

5.1 A synthetic signal   

 

The signal under investigation is of particular interest due to the fact that the 
standard HHT and the M-EMD fail in extracting mono-component elemental 
signals as already said in the Section 4.3. Let consider hence a damped version 
of the signal employed in [76] : 

 

)tsin(e20)t6.1sin(e8)t(x t3.0t1.0                 5.1 
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The signal, depicted in Fig. 5.1 related to an observation window of 20 s, is fed 
to all the estimation algorithms after a simple mean removal. There is no need 
for any particular digital filtering operation.  

  

 

Fig. 5.1 – Synthetic signal 

 

Before to analyze the outcomes provided by the estimation algorithms, we 
believe necessary to test the decomposition capability of the HHT refinements 
presented in the Chapter 3, specifically HHT with standard masking technique, 
M-EMD, and EMD with Fourier-Based Masking Technique, R-EMD, with 
respect to the HT-based one described in the Chapter 4. Actually, in this simple 
case, the standard EMD is not able to furnish the real frequency and damping 
coefficient for each component: the first two IMF are characterized by a 

frequency f1 = 0.6636 Hz and f2 = 0.2592 Hz and a damping coefficient 1 = -

0.1305 s-1 and 2 = -0.1259 s-1. The IMF extracted by the M-EMD instead are 
plotted in Fig. 5.2. Due to the mode mixing in the first IMF, as confirmed in Fig. 
5.3, although the estimate is improved with respect to the ordinary EMD in 
terms of frequency (f1 = 0.8298 Hz f2 = 0.4171 Hz) the modes damping values 

are fairly underestimated (1 = -0.0340 s-1 and 1 = -0.0519 s-1). 
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Fig. 5.2 – IMF from M-EMD: synthetic signal. 

 

The M-EMD inability to separate components with closely spaced frequency 
components is so pointed out. The drawbacks above can be overcome through 
the adoption of the R-EMD. In fact, in this manner also the damping coefficient 

estimations are enhanced (1 = -0.0791 s-1 and 1 = -0.1776 s-1) and the mode 
mixing issue is mitigated. Without any doubt the potentiality of the R-EMD is 
partially conditioned by the damping effect, since an undamped version of the 
signal in (5.1) would show a much more effective action, as confirmed in 
reference [76]. The decomposition procedure, and hence the subsequent 
oscillations parameters estimation, can be enhanced by adopting the estimation 
algorithm described in the Chapter 4, hereafter Lauria-Pisani method (LPM). 
The estimation algorithm application requires the preliminary determination of 
the bisecting frequency (or angular velocity) via Lp periodogram. The latter, for 
p =1.5, is illustrated in Fig. 5.4 together with the ordinary Fourier spectrum of 
the signal in (5.1).  
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Fig. 5.3 – First IMF Fourier  spectrum in the case of M-EMD and R-EMD application.   

 

Fig. 5.4 – FFT and Lp periodogram : synthetic signal.  
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The bisecting frequency determined by averaging the peaks of the Lp 

periodogram is fb = 0.6509 Hz (b = 4.0897 rad/s). Once computed the bisecting 
frequency the two components can be extracted according to the decomposition 
theorem presented in the Chapter 4. The result of this operation is shown in Fig. 
5.5.  

 

Fig. 5.5 – Time domain decomposition of the un-damped synthetic signal: comparison between standard 
Hilbert Transform and Hilbert Boche approximation. 

 

As shown in Fig. 5.5 the approximation is really satisfactory and furthermore 
the employment of the Hilbert-Boche method for computing the HT 
significantly reduces the Gibb‘s effect. At this point the performance 
comparison of all the estimation algorithms can be accomplished. The 
numerical outcomes obtained are listed in Tab. 5.1. First of all, in this case study 
a superiority of the SVD based covariance-based methods, which are Tufts-
Kumaresan method, TKM, and Hankel Singular Value Decomposition – 
VARiable PROjection method, VARPRO, with respect to the ones HT-Based, 
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Extended Complex Kalman Filter (HSVD assisted) are not reported for reasons 
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the signal in (5.1) the other ones do not. This is essentially due to the philosophy 
behind the techniques: in this case the attempt  to extract details about the 
single component involves a loss of accuracy in its parameters estimation. 

 

TAB. 5.1 – ESTIMATION ALGORITHMS OUTCOMES – SYNTHETIC SIGNAL 

TKM HSVD-VARPRO ECKF R-EMD LPM 

 [s-1] f  [Hz]  [s-1] f  [Hz]  [s-1] f  [Hz]  [s-1] f  [Hz]  [s-1] f  [Hz] 

- 0.1000 0.8000 - 0.1000 0.8000 - - - 0.0764 0.8307 - 0.1001 0.8181 

- 0.3000 0.5000 - 0.3000 0.5000 - - - 0.2196 0.4702 - 0.3000 0.4946 

 

In particular, although synthetic, the considered signal is very critical also for 
the ECKF and the motivations are to be found in the frequency components 
proximity. This estimation algorithm in fact detects the presence of two modes 
with similar characteristics. Being the estimations not consistent in this sense, 
were not reported in Tab. 5.1.  

 

Fig. 5.6 – Estimation accuracy bar graph : synthetic signal.  
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Actually, once frozen the observation window duration and changing the 
damping coefficients associated to the first frequency component in f1 = 2.3 Hz, 

the filter output is the following one: f1 = 2.2850 Hz  1 = -0.0956 s-1 and f2 = 

0.329 Hz  2 = -0.2934 s-1. Undoubtedly the fact that one components decays 
more quickly than the other one implies that a reduction of the observation 
window duration can offer better results. This is a trick that should be keep 
clear in mind as further drawback of the ECKF in addition to its inherent 
weakness in the parameters estimation of high damped electromechanical 
oscillations. It has been verified in conclusion that this behaviour exclusively 
depends on the issue outlined above and not on the damping values or on the 
difference in the components amplitude.  

      
 

 

5.1.1 Incidence of WAMS communication network effects 

 

WAMS communication networks, responsible for data exchange among 
measurement systems, control centers and controllable devices, assume a 
critical role in a complex system devoted to an on-line DSA. This is due to the 
fact that, as recognized in the accredited literature, e.g. in [89], some network 
effects could jeopardize the proper operating of the supervisory and control 
systems. A supervisory system robust design implies an appropriate taken into 
account of these effects in order to avoid potential misoperations that can lead 
the electrical power system in unsafe conditions. More specifically, the main 
WAMS communication network effects to pay careful attention are noise, 
network-induced delays, data packet dropouts and data packet disordering. It 
appears rather clear that the WAMS‘s working signals are intrinsically affected 
by noise due to the power system, i.e. by small load variations, and to the 
measurement process. Network induced delay, or as often called latency, is 
strictly related to the WAMS‘s structure: it can vary from tens to several 
hundred milliseconds, depending on routines of signal transmission, 
transmission protocols, communication load and communication channel [90]. 
In addition, the possibility that data may be lost while in transit through the 
transmission network should not be excluded. Apart from the uncertainties and 
noise in communication channels, the main causes are ascribable to 
transmission errors in physical links, to buffer overflows caused by congestion 
and so on. Latency is sometimes intimately linked to this issue. Actually, in 
reference [18]  the authors argue that long transmission delays sometimes result 
in packet reordering which corresponds to a packet dropout if the receiver 
discards outdated arrivals. Although most network protocols are equipped 
with transmission-retry mechanisms, they can only retransmit after a limited 
time. If this time expires, the packets will be dropped. These considerations 
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confirm that data packet dropouts issue effectively represents a potential threat 
for the correct operating of the estimation algorithms. The last but not least 
WAMS communication network effect worthy of considering is the data packet 
disordering. This issue describes the actual condition in which data packets sent 
earlier than others may arrive at the destination later. It is caused by the 
redundancy of communication paths available in real context. The framework 
just described makes appropriate the investigations performed in the next 
Sections.  
 

 

 

 

5.1.1.1 Noise incidence 

 

High levels of noise could seriously affect the performance of some estimation 
algorithms. For this reason a deep analysis devoted to analyze their response 
with respect to different levels of signal to noise ratio must be performed. In 
particular the results here reported refer to an addiction of white Gaussian 
noise to the signal in (5.1) through several SNR values expressed in dB.  

 

 
 

TAB. 5.2 – ESTIMATION ALGORITHMS OUTCOMES WITH RESPECT TO THE NOISE 
– SYNTHETIC SIGNAL 

SNR TKM HSVD-VARPRO R-EMD LPM 

[dB]  [s-1] f  [Hz]  [s-1] f  [Hz]  [s-1] f  [Hz]  [s-1] f  [Hz] 

120 

- 0.1000 0.8000 - 0.1000 0.8000 - 0.0782 0.8503 - 0.1001 0.8181 

- 0.3000 0.5000 - 0.3000 0.5000 - 0.1772 0.5600 - 0.3000 0.4946 

80 

- 0.1000 0.8000 - 0.1000 0.8000 - 0.0782 0.8503 - 0.1001 0.8181 

- 0.3000 0.5000 - 0.3000 0.5000 - 0.1772 0.5600 - 0.3000 0.4946 

40 

- 0.1001 0.8000 - 0.1000 0.8000 - 0.0774 0.8508 - 0.1001 0.8181 

- 0.3002 0.5001 - 0.3001 0.5001 - 0.1767 0.5601 - 0.3001 0.4946 
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20 

- 0.1042 0.8001 - 0.0999 0.8001 - 0.0651 0.8720 - 0.1011 0.8180 

- 0.3026 0.5008 - 0.2999 0.5008 - 0.1736 0.5613 - 0.3012 0.4950 

10 

- 0.1247 0.8051 - 0.1007 0.8051 - - - 0.1011 0.8180 

- 0.3446 0.5002 - 0.3033 0.5002 - 0.1591 0.5591 - 0.3012 0.4950 

 

Tab. 5.2 collects the achieved algorithms outcomes for several noise levels. As 
can be derived from these values, HSVD-VARPRO and LPM are almost 
insensible to the noise levels. Hence, the least squares algorithm is able to 
recognize the inherent signal modal content even if strong noise is 
superimposed to the observed signal. As far as the LPM method, this strength 
arises from the joint robustness of the Lp periodogram to the noise and of the 
damping computation practice described in the related Section. Actually as can 
be appreciated in Fig. 5.7 and Fig. 5.8, the regression line of the decaying 
amplitude for each decomposed elemental component remains unchanged both 
in the case of noiseless signal and in the case of SNR = 10 dB. 

ig. 5.7 – Damping computation via LPM : noiseless signal. 
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The influence of the TKM to the noise has been already ascertained by its 
developers establishing a simple concept: the SVD-based covariance methods 
are generally affected by noise. The perturbations introduced by the noise in the 
vector of the backward prediction coefficients B(z) can be only partially 
mitigated, hence roughly speaking the higher the noise the worse the estimate. 
In the Section that follows TKM behaviour will be characterized in the case of 
data packet dropouts.  

 

Fig. 5.8 – Damping computation via LPM: synthetic signal, SNR = 10 dB. 

 

R-EMD seems to suffer from the presence of noise in the case of SNR = 10 dB. In 
this case an enlargement of the observation window is useless and however an 
extra-production of fictitious IMF occurs. In any case, in relation to what was 
found, an adequate digital filtering could be suggested before to fed the 
sampled signals to any adopted mode meter.     
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5.1.1.2 Data packet dropouts incidence 

 

Due to the technological complexity of the WAMS communication network 
sometimes the acquired signals could not be intact but instead a loss of inherent 
carried information could occur. For this reason a further analysis devoted to 
analyze the response of the estimation algorithms with respect to different rate 
of data loss must be performed. Data packet dropouts modelling can be faced 
by adopting either stochastic or deterministic criteria. It appears clear, however, 
that a probabilistic phenomenon description is more appropriate than a 
deterministic one. Although there exists more detailed stochastic models, based 
for instance on finite-state Markov chains or on Poisson processes, in this thesis 
a Bernoulli data packet dropouts model has been adopted for characterizing 
such a recorded issue in WAMS communication networks.   

Therefore, let us consider of having k samples to send through a communication 
network, one can introduce a stochastical variable Θk which assumes value 1 if 
the sample arrives to the destination (receiver) and the value 0 otherwise [91], 
[92]. 

 

Nk [0,1], )1Pr(p ; ]1,0[ kk              5.2 

 

The values of Θk are independent and identically distributed (i.i.d.) according to 
a Bernoulli process characterized by a probability p of having no data loss and 
hence q=1-p of having it. Tab. 5.3 lists the results of the estimation algorithms in 
the case of four different values of p. The effects of this alteration on the original 
signal are illustrated in Fig. 5.9 whereas to permit to appreciate them a signal 
scale modification has been performed.  
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Fig. 5.9 – Change of the p-value in the Bernoulli process :effect on the synthetic signal.  

 

TAB. 5.3 – ESTIMATION ALGORITHMS OUTCOMES WITH RESPECT TO THE DATA PACKET 
DROPOUTS – SYNTHETIC SIGNAL 

p TKM HSVD-VARPRO R-EMD LPM 

  [s-1] f  [Hz]  [s-1] f  [Hz]  [s-1] f  [Hz]  [s-1] f  [Hz] 

1 

- 0.1000 0.8000 - 0.1000 0.8000 - 0.0764 0.8307 - 0.1001 0.8181 

- 0.3000 0.5000 - 0.3000 0.5000 - 0.2196 0.4702 - 0.3000 0.4946 

0.95 

- 0.4790 0.8353 - 0.1052 0.8350 - 0.0804 0.7369 - 0.1031 0.8179 

- 0.6082 0.5237 - 0.3054 0.5240 - 0.1032 0.4450 - 0.2821 0.4940 

0.9 

- 0.7226 0.8591 - 0.1051 0.8590 - 0.0843 0.8162 - 0.1059 0.8185 

- 0.6841 0.5334 - 0.3216 0.5335 - 0.0957 0.4898 - 0.2792 0.4940 
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0.85 

- 1.0449 0.8556 - 0.1056 0.8552 - 0.0310 0.9367 - 0.1065 0.8160 

- 0.8257 0.5706 - 0.2929 0.5710 - 0.0840 0.4898 - 0.2685 0.4931 

 

As can be noted, the results of the TKM generalize the experimental evidence 
that the method‘s authors observed solely with respect to the presence of noise 
in the tested signals: also the packet dropouts implies a significant distortion in 
the signal subspace, making worse the oscillations parameters estimation. With 
my supervisors, in reference [93], we shows that the data packet dropouts 
implies a perturbation in the singular value decomposition. In particular with a 
reduction of the probability p, the value of the greater singular values 
(associated to the dominant modes in the analyzed signal) decrease while the 
value of the lower singular value (associated to the noise) increase. This means 
that the subspace of the signal and the subspace of the noise tend to overlap 
more and more when the number of data packets loss increases. In any case this 
effect influences much more the damping coefficient estimation than the 
frequency one. The robustness of the VARPRO is evident also with respect to 
this WAMS communication network effect. High data loss rates influence in a 
non-decisive manner the signal parameters estimation. In a certain sense 
HSVD-VARPRO preserves as the good of the TKM, exactly the frequency 
estimation accomplished with the same computing approach, improving the 
damping estimation via a non-linear least squares method resulted really 
successful. R-EMD confirms that an alteration of the signal in terms of data 
packet dropouts implies an overproduction of IMF with a consequent general 
estimation accuracy reduction. On the other hand LPM method shows a good 
resilience also with respect to the data packet dropouts thanks again to the joint 
robustness of the Lp periodogram to the data packet dropouts and of the 
damping computation practice via the developed regression technique. Similar 
graphs to the ones in Fig. 5.7 and 5.8 are obtained in this case, not reported for 
sake of brevity.  

In conclusion, the achieved experimental findings demonstrate that with 
respect to the considered WAMS communication network effects LPM and 
HSVD are much more resilient with respect to the TKM and R-EMD. The ECKF 
behaviour has not be evaluated since already with an intact signal provides 
non-consistent estimations. The reasons which lead us to construct this sort of 
performance ranking are here synthesized: 
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 LPM responds well to the different synthetic signals, polluted or not, 
provided in input thanks to the inherent robustness offered by the 
combination of the Lp periodogram and the tailored damping 
estimation procedure. Either the periodogram or the linear regression 
techniques is weakly affected by the noise and data packet dropouts 
presence in the fed signals; 

 HSVD-VARPRO takes as the good characterizes the TKM in all the 
investigated cases, exactly the frequency estimation, employing a 
resilient techniques to calculate the damping coefficient which is the 
particular non linear least squares algorithm VARPRO. The latter is not 
perturbed either by high noise levels nor by substantial loss of data; 

 TKM is able to face with the investigated communication network 
issues by increasing the Hankel matrix size. Nonetheless, while the 
perturbations in the backward prediction vector induced by the noise 
are quite limited, the ones associated to the data packets dropouts yield 
damping coefficient estimations sometimes really different from the 
actual ones. This is due to the overlap of the signal and noise subspaces 
which makes hard the correct estimation of the modal parameters; 

 R-EMD suffers from the employment of the FFT for constructing the 
masking signals. When the signal is damped, the Fourier peaks can 
slightly differ from the actual ones e this can make the masking 
ineffective. Besides the noise and data packet dropouts could produce 
an increase of the IMF number with frequency and damping coefficient 
coherent with the ordinary ones so making hard their exclusion from 
the targeted ones.          
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5.2 Kundur’s two area test system 

 

The Kundur‘s two area four machine test system is the most classical IEEE test 
bench for investigating the electromechanical small signal stability of 
interconnected power systems. In spite of its small size, such a system is able to 
replicate in detail what actually happens in a real interconnected power system. 
As illustrated in Fig. 5.10 the system consists of two fully symmetrical areas 
linked together by two 230 kV lines of 220 km length. Each area is equipped 
with two almost identical synchronous machines. The load, modelled as a 
constant impedance, is shared by the two areas in such a way that area 1 is 
exporting 413 MW to the area 2. The mentioned active power transfer, is about 
three times the single line surge impedance loading thus confirming an 
operating condition somewhat stressed, even in steady-state. All the 
information  needed for the simulation, exactly bus data, line data, machine 
data prime mover and exciter system data are reported in [94], [95].  

 

 

Fig. 5.10 – Kundur’s  two area test system 

 

To identify the system electromechanical dynamic the modal analysis has been 
performed by using Power System Toolbox [96]. By computing the eigenvalues 



Real Time tracking of electromechanical oscillations in ENTSO-e Continental European 

Synchronous Area 

March  2014 

 

 Page 123 

of the state matrix A three chief electromechanical modes can be detected that 

are listed in Tab. 5.4 in terms of characteristic frequency and damping ratio . 

 

TAB. 5.4 – MODAL ANALYSIS MAIN OUTCOMES - TWO AREA TEST SYSTEM 

Modes number Eigenvalue λ Damping Ratio ζ Frequency f [Hz] 

1 0.1046 + i4.0407 - 2.59 0.6431 

2 - 0.5648 + i7.0453 8.00 1.1213 

3 - 0.5850 + i7.2954 7.99 1.1611 

  

As can be noted the first electromechanical mode, Mode 1, is an unstable inter-
area mode between the two area, as confirmed by the negative value of 
damping ratio. Mode 2 and Mode 3 respectively represent a local mode 
between G1 and G2 and a local mode between G3 and G4. A pictorial 
representation of the dynamic matrix eigenvalues in the frequency-damping 
ratio plane is shown in Fig. 5.11. 

     

Fig. 5.11– Eigenvalues disposal: two area test system. 
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To test the ability of an estimation algorithm in calculating the characteristic 
parameters of the mentioned electromechanical oscillations there is the need to 
acquire signals related to the power system operating. This has been 
accomplished by performing a dynamic simulation of the system open-loop 
response (PSS action is excluded) to a 5% magnitude pulse, applied for 12 cycles 
at the voltage reference of M1. The instability phenomenon onset can be easiliy 
captured in all the system variables which show undamped oscillations. At this 
stage, for sake of brevity, we will focus only on the Mode 1 estimation which 
can be easily monitored by acquiring the active power transfer between the two 
areas.  Fig. 5.12 illustrates the active power transmitted from the area 1 to the 
area 2 during the simulation.     

 
Fig. 5.12 – Active power between the areas : two area test system. 
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TAB. 5.5 – ESTIMATION ALGORITHMS OUTCOMES - TWO AREA TEST SYSTEM 

TKM HSVD-VARPRO ECKF HHT LPM 

 [s-1] f  [Hz]  [s-1] f  [Hz]  [s-1] f  [Hz]  [s-1] f  [Hz]  [s-1] f  [Hz] 

0.0654 0.6426 0.1106 0.6425 0.0858 0.6563 0.1016 0.6573 0.1103 0.6398 

 

As can be noted from the obtained numerical outcomes all the considered 
algorithms appear aligned both in frequency and damping estimation. ECKF 
and HHT seem to overestimate the inter-area oscillation frequency. In terms of 
damping estimation instead, the above estimation algorithms together with the 
LPM provide estimations closer to the actual ones. It appears clear that the 
presented results are related to a certain algorithms tuning.  

 

Fig. 5.13 – Estimation accuracy bar graph : two area test system. 
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in order to ensure higher accuracy in damping estimation the Hankel matrix 
size in TKM algorithm is iteratively increased from L=10 (value assigned in the 
previous simulation) to L=55 (value at which the estimated damping coefficient 

is equal to  = 0.1046 s-1). Obviously this implies an increase of the algorithm 
computational burden although, even in this case, the criterion for 
distinguishing the actual inter-area mode from the fictitious ones yielded by the 
Hankel matrix size increase is successful.   

 

 

Fig. 5.14 – Estimated damping coefficient vs Hankel matrix size L : Tufts Kumaresan algorithm. 
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Fig. 5.15 – Signal reconstruction : Hankel Singular Value Decomposition – VARiable PROjection. 
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Fig. 5.16 – Time-varying frequency and damping coefficient: Extended Complex Kalman Filter. 

Fig. 5.16 points out what just stated by depicting the filter output; a convenient 
interval on which average the parameters could be the one from 2 to 18, s so 
reducing the instability effects at the window‘s ends and hence enhancing the 
ECKF estimation accuracy. This operation is an expedients which can be 
categorized among the algorithms tuning mentioned above. As far as the HHT 
is concerned, the Empirical Mode Decomposition is able to extract the dominant 
component as first IMF. The remaining ones, jointly depicted with the latter and 
the residue in Fig. 5.17 are spurious component caused by the decomposition 
procedure to neglect realistically due to the lower characteristic energy and not 
meaningful values of the characteristic parameters. 

 

Fig. 5.17 – Empirical Mode Decomposition output: two area test system. 
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LPM application requires the preliminary Lp  periodogram performing whose 
portrait for p = 1.5 is shown in Figure 5.18 together with the ordinary 
periodogram. In this case, since there is only one component at frequency f1 = 

0.6423 Hz, the unique bisecting frequency b can be computed by imaging 
another periodogram peak located anywhere (e.g. f2 = 1 Hz). In this manner the 

bisecting frequency will be b=  (f1+f2).   

 

 

Fig. 5.18 – Lp Periodogram vs FFT : two area test system. 
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representation of this calculation method is reported in Fig. 5.19 with reference 
to the Kundur‘s inter-area mode.      

  

 

Fig. 5.19 – Damping coefficient estimation through linear regression procedure : two area test system. 
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5.3 IEEE 9 bus test system  

 

The present case study refers to a basic version of the IEEE 9 bus-3 machines 
test system which represents a portion of the Western System Coordinating 
Council (WSCC) 3-Machines 9-Bus system.  

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.20 – IEEE 9 bus test system  

 

The test network consists out of three generators modelled by a sub-transient 
generator model powering three concentrated load at the buses 5, 6 and 8. More 
specifically, while load B and C are modelled as conventional constant 
impedance, load A is assumed to be a controllable one, 50/50 constant power-
constant impedance. Detailed data for simulation can be found in [97]. Small 
signal stability analysis has been performed on the test network providing the 
outcomes, in terms of chief eigenvalues of the system dynamic matrix and in 
terms of corresponding damping coefficients and frequencies, reported in the 
Tab. 5.6.  
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TAB. 5.6 – MODAL ANALYSIS MAIN OUTCOMES – IEEE 9 BUS TEST SYSTEM 

Mode number Eigenvalue λ Damping Ratio ζ Frequency f [Hz] 

1 -0.3216+i8.6088 3.7 1.3698 

2 -0.9394+j13.0548 7.2 2.0777 

 
The nature of electromechanical modes is evident if one considers the network 
structure: it deals with local oscillations among the machines as furthermore 
demonstrated by the frequency values reported in the Table above. Rigorously 
speaking, the nature of each mode should be evaluated by analyzing the 
corresponding eigenvectors. Figures 5.21a and 5.21b confirm as already said 
through a pictorial representation of the eigenvectors associated to the rotor 
angle terms. As it can be noted, Mode 1 represents a local oscillation between 
the machine 1 against the set of machines 2 and 3, whereas Mode 2 refers to a 
local oscillation of the set of machines 1 and 2 against the machine 3 (an angle of 
almost 180 degrees exists between the mentioned clusters for both the modes). 

 

 

Fig. 5.21–Compass plot of the eigenvectors associated to the rotor angle terms : a) Mode #1 - b) Mode #2.   
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Therefore, the outcomes provided by the small signal stability analysis, 
constitute an unambiguous reference for sake of comparison with the results 
obtained by the investigated methods. In order to do this, a time domain 
simulation has been performed on the test network with the aim of sampling 
the interest signals. The simulation allowed to collect several signals candidate 
to be used for the modal content estimation. More specifically, at the time 
instant t=0 a 0.01 p.u. load reduction of the controllable Load A has been 
applied. Fig. 5.22 depicts the time behaviour of the relative angular velocity 
between the generator 1 and 3 acquired during the simulation.  

 

          

Fig. 5.22 – Relative angular speed between the generators 1 and 3 :  IEEE 9 bus test system.  
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TAB. 5.7 – ESTIMATION ALGORITHMS OUTCOMES – IEEE 9 BUS TEST SYSTEM 

TKM HSVD-VARPRO ECKF R-EMD LPM 

 [s-1] f  [Hz]  [s-1] f  [Hz]  [s-1] f  [Hz]  [s-1] f  [Hz]  [s-1] f  [Hz] 

- 0.3398 1.3713 - 0.3312 1.3712 - 0.3038 1.3013 - 0.2389 1.325 - 0.3227 1.377 

- 1.0084 2.0991 - 0.6776 1.0080 - 0.9555 1.9986 - - - 0.8929 2.072 

 

 

Fig. 5.23 – Estimation accuracy bar graph : IEEE 9 bus test system. 
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Mode 2 with the initial tuning that involves a fitting with two sinusoids. By 
increasing the exponential damped sinusoids in the fitting function, the method 
estimation accuracy increases, as direct property of the Fourier transform. 
Essentially, the further fictitious sinusoidal components model the residue 
between the actual signal modal content and the fitting model. These 
components are hence characterized by frequency values external to the typical 
frequency range of the electromechanical oscillations (0.1-2 Hz) and sometimes 
damping levels meaningless. Fig. 5.25 illustrates the improvements in 
estimation accuracy with the increase of the number of damped sinusoids.       

 

 

 Fig. 5.24 – Fourier spectrum of the relative angular speed between the generators 1 and 3: IEEE 9 bus 
test system.  
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Fig. 5.25 – Estimated damping coefficient vs Exponential damped sinusoids number : Extended Complex 
Kalman Filter (Mode 2). 
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Fig. 5.26 – Lp periodogram of the relative angular speed between the generators 3 and 1: IEEE 9 bus test 

system. 

 

Fig. 5.27– Damping coefficient estimation through linear regression procedure : IEEE 9 bus test system.
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5.4 IEEE 68 bus test system  

 

To further investigate the effectiveness of the considered estimation techniques, 
a more complex and realistic power system, the 16-machine 68-bus test system, 
is here considered. This benchmark represents a reduced order model of the 
New England and New York interconnected system. All the information about 
the electrical system such as network data, generators modelling and their 
equipments typology (excitation systems, speed governors, power system 
stabilisers etc.), load modelling can be found in [98], [12].   

 

 

 

Fig. 5.28 –IEEE 68 bus test system 

 

Modal analysis performed on the test network shows the presence of four inter-
area mode whose fundamental characteristics are listed in the Table 5.8.  
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TAB. 5.8 – MODAL ANALYSIS MAIN OUTCOMES – IEEE 68 BUS TEST SYSTEM 

Modes number Eigenvalue λ Damping Ratio ζ Frequency f [Hz] 

1 -0.3310+2.3494 13.95 0.3739 

2 -0.2926+j3.2786 8.89 0.5218 

3 -0.5402+j4.1037 13.05 0.6531 

4 -0.4303+j4.9864 8.60 0.7936 

 

To excite the inherent inter-area oscillations network a three-phase fault has 
been applied on the tie line connecting the buses 46-49 at time instant t=0.1 s 
which is subsequently cleared by the line protections in accordance with the 
ordinary fault clearing and reclosing times. The electrical service is hence 
restored. Different wide-area signal candidates for tracking the four inter-area 
modes have been selected and tested. Fig. 5.29 reports the time behaviour of the 
relative angular velocity between the generator 7 and 13 acquired over the 
dynamic simulation.  

 

 

Fig. 5.29 –  Relative angular speed between the generators 7 and 13: IEEE 68 bus test system. 
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The numerical outcomes yielded by the investigated estimation algorithms are 
listed in Tab. 5.9. A proper digital filtering of the signal is needed in this case 
with respect to the previous ones analyzed in order to focus on the frequency 
interval of interest, which is very tight.  By looking at the bar graph in Fig. 5.30 
TKM is able to track all the inherent oscillatory modes estimating with 
sufficient accuracy both the frequencies and the damping coefficients. The 
Mode 4 damping coefficient estimation deviates from the actual one in a more 
sensible manner with respect to the others due to the filtering action. This value 
tends to increase towards the real one by shifting the high pass frequency of the 
band-pass filter. Unfortunately this operation implies an accuracy loss on the 
estimation of the other modes.   

 

TAB. 5.9 – ESTIMATION ALGORITHMS OUTCOMES – IEEE 68 BUS TEST SYSTEM 

TK HSVD-VARPRO ECKF R-EMD LPM 

 [s-1] f  [Hz]  [s-1] f  [Hz]  [s-1] f  [Hz]  [s-1] f  [Hz]  [s-1] f  [Hz] 

- 0.3443 0.3510 - 0.4025 0.3510 - 0.3460 0.3516 - 0.1830 0.3375 - 0.3423 0.3820 

- 0.3986 0.5760 - 0.3880 0.5755 - 0.4157 0.5698 - - - 0.2830 0.5173 

- 0.4453 0.6785 - 0.5083 0.6788 - 0.5514 0.6507 - 0.2717 0.6484 - 0.5498 0.6552 

- 0.1735 0.7959 - 0.2989 0.7960 - 0.4565 0.7885 - 0.1959 0.8128 - 0.3423 0.7825 

 

 

The performance of the HSVD-VARPRO and of the ECKF are essentially 
ensured by the proper tuning of the HSVD which has been able to provide in 
both the cases a good starting point for the iterative procedures. Without this 
tuning operation the effectiveness of the mentioned estimation algorithms 
could be threatened. Due to the presence of four frequency components in 
about the same octave the HHT was replaced with the R-EMD like in the 
previous case study.  The Fourier spectrum of the observed processed signal is 
depicted in Fig. 5.31. 

  



Real Time tracking of electromechanical oscillations in ENTSO-e Continental European 

Synchronous Area 

March  2014 

 

 Page 141 

 

 Fig. 5.30 – Estimation accuracy bar graph : IEEE 68 bus test system. 
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damping coefficient, computed from the regression line procedure applied to 
each elemental component decaying amplitude, are the closer to the one 
provided by the modal analysis.  
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Fig. 5.31 –  FFT of the relative angular speed between the generators 7 and 13: : IEEE 68 bus test system. 

 
Fig. 5.32 –  Lp periodogram of the relative angular speed between the generators 7 and 13 : IEEE 68 bus 

test system. 
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5.5 Real electromechanical oscillations in ENTSO-e 
interconnected network system grid 

 

ENTSO-e Continental European Synchronous Area is a large interconnected 
electrical system which spans from Portugal to the West, Denmark to the North, 
Italy in the South and Greece in the East. The inherent oscillatory modes are 
both local and inter-area. With the Turkish power grid connection to the 
ENTSO-e CESA system, from September 2010, three major inter-area modes can 
be identified [99]: 

 

 The East-West mode appeared following the Turkey connection, 
characterized under normal conditions by the major energy. It involves 
coherent movement of generators in Portugal and Spain against those in 
Turkey. This mode exhibits a typical frequency of 0.13-0.15 Hz and a 

time-domain damping td, calculated as the ratio of two successive peaks 
in a recorded oscillation, in the interval 45-70%.  

 The Former East-West mode engages coherent movement of generators 
in Portugal and Spain against those in Greece. The typical frequency falls 

in the interval 0.17-0.2 Hz while the time-domain damping td around 40-
50%. Such a mode is clearly observable through frequency 
measurements from Greece and Portugal.  

 The North-South mode involves coherent movement of generators 
located in the south of Italy against the ones installed in the north of 
Germany and Denmark. The typical frequency falls in the interval      

0.23-0.27 Hz whereas the recorded time-domain damping td is around 
30% on average. Good measurement signals to track this mode are 
frequency and voltage angle measurements from southern Italy or 
Denmark, or active power flow measurements on the cross-border lines 
between Italy and Switzerland.  

 

Therefore the analytical studies of engineers and researchers about the dynamic 
behaviour of this massive electrical power system are supported by several 
distributed measurement resources located in the whole ENTSO-e CESA. 
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Fig. 5.33 –  ENTSO-e CESA inter-area modes 

 

 

5.5.1 A sudden inter-area oscillation recorded in the 
Continental Europe on 19th February 2011 

 

On February 19th 2011 (a Saturday) at the 08:00:00 UTC (Coordinated Universal 
Time) inter-area oscillations within the Continental Europe power system 
occurred. The highest impact of these 0.25 Hz oscillations was observed in the 
middle-south part of the system with amplitudes of +/- 100 mHz in southern 
Italy and related power oscillations on several north-south corridor lines of up 
to +/- 150 MW and with resulting voltage oscillation on the 400 kV system of 
+/- 5 kV respectively. Fig. 5.34 depicts the frequency oscillations recorded at 
Brindisi along a time window of about five minutes. Indeed the total duration 
of the oscillations was around 15 minutes: the complete time-behaviour is 
illustrated together with the frequency oscillations recorded at Mettlen in 
Switzerland and at Kassoe in Denmark in [100]. Therefore, along the North-



Real Time tracking of electromechanical oscillations in ENTSO-e Continental European 

Synchronous Area 

March  2014 

 

 Page 145 

South axis the highest amplitude was recorded in the southern Italy, almost no 
oscillation was observed near the ―nodal line‖ in Switzerland and at last much 
lower amplitude opposite oscillation was seen in Denmark.     

 

 

Fig. 5.34 – Frequency recorded at Brindisi (Italy) on February 19th 2011 

 

All the estimation algorithms considered in this thesis detect the presence of 
one oscillatory mode which is exactly the ENTSO-e CESA North-South mode. 
The range in which frequency and damping coefficient fall has been reported in 
Section 5.5: for sake of uniformity with the previous case studies the time 
domain damping was converted in term of damping ratio getting a value of 

about  5-6 %. We prefer to continue the performance comparison by using the 
latter index instead than the damping coefficient as previously done. Actually a 
further conversion would furnish an approximated value due to the truncations 

and however one considers that td is an average value hence does not make 
sense to search for an advanced precision. The experimental findings provided 
by the algorithms on fifteen windows of 20 s are listed in Table 5.10.  

Hence, some practical considerations about the behaviour of the considered 
algorithms with respect to an actual electromechanical oscillation can be 
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extracted. Firstly, all the algorithms are able to properly identify a mode 
frequency falling within the mentioned range in almost all the analyzed 
observation windows related to the ringdown portion of the signal (after 
08:00:30 UTC). As far as the ambient portion of the signal instead (before 
08:00:30 UTC), HHT and TKM seem to do not correctly hang up the frequency 
value before the onset of the sudden frequency amplitude variation. It is 
conceivable that this is due to the transition from an operating regime to 
another and hence to a data typology (ambient type) to another one (ringdown). 
By looking at the damping ratio estimate one can note that ECKF output in the 
first time windows deviates from those ones of the other algorithms. Such a 
response is not due to a transient behaviour of the algorithm but instead to the 
fact that the portion of the data analyzed in the observation windows is 
ambient: ECKF, as already said, is specifically developed for light damped 
ringdown oscillations. On the basis of how just said we can state that this 
response was predictable. The next case study will further confirm that this 
kind of algorithm response implies a high variability in the filter state variables 
and hence in the provided estimations. All the remaining algorithms provide a 
damping ratio estimate consistent with each other from the fourth window 
onwards. Apart from the ECKF, the onset of the instability phenomenon is 
promptly well detected by all the considered estimation algorithms. This means 
that in this case almost all the studied algorithms would have been able to early 
detect the instability phenomenon and subsequently to permit to adopt all the 
necessary countermeasures.    

Summarizing, the frequency oscillations recorded on February 19th 2011 
pointed out that the Turkey connection has changed the mode displacement in 
ENTSO-e CESA. According to Terna investigations in fact in some 
measurement places there was a superposition of the East-West mode and 
North-South mode. Characteristic frequency and damping varied from a 
minimum low value to a maximum high value due to different composition of 
oscillations. Dispersed Generation (DG) such as wind or solar plants didn‘t play 
a negative role but however subtracted ―stabilized inertia‖ from conventional 
groups equipped with PSS. The Italian power system currently plays the role 
covered in the past by other border areas like Spain, Portugal or exactly Turkey 
after the synchronization in the Central-East Europe: this means that it is more 
sensitive to  the new oscillatory modes. For this reason,  immediately  after the 
event described, Terna has reinforced the PSS in Italy recommending to its 
ENTSO-e partners similar analysis in the rest of Continental Europe power 
system.   
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TAB. 5.10 – ESTIMATION ALGORITHMS OUTCOMES – ENTSO-e CESA NORTH SOUTH 
MODE a) 

TKM HSVD-VARPRO ECKF HHT LPM 

 f  [Hz]  f  [Hz]  f  [Hz]  f  [Hz]  f  [Hz] 

9.9075 0.4606 4.7454 0.4610 80.2002 0.1528 0.5352 0.3812 0.1734 0.2542 

2.3844 0.2142 -11.9469 0.2140 41.1812 0.1506 -8.0654 0.2405 - 10.4320 0.2446 

4.7409 0.2339 0.4091 0.2340 10.4845 0.2351 1.4100 0.2434 - 0.1745 0.2498 

-0.9577 0.2456 -3.2189 0.2456 -1.3812 0.2385 -2.9873 0.2499 - 3.0667 0.2530 

-1.5565 0.2455 -2.0009 0.2455 -2.5632 0.2466 -2.5592 0.2495 - 1.5745 0.2495 

-1.0406 0.2414 -1.3620 0.2410 -3.6521 0.2432 -1.4242 0.2470 - 1.1624 0.2538 

-1.1735 0.2452 -1.3516 0.2455 -1.8934 0.2457 -1.3147 0.2481 - 1.4354 0.2534 

-0.3964 0.2459 -0.6552 0.2459 -1.7999 0.2457 -0.4552 0.2488 - 0.9787 0.2533 

-0.2839 0.2466 -0.3124 0.2461 0.2549 0.2464 -0.2309 0.2494 - 0.0765 0.2538 

-0.1779 0.2465 -0.1052 0.2464 0.4682 0.2465 -0.1407 0.2484 - 0.2344 0.2546 

-0.0899 0.2469 -0.1370 0.2468 -0.1296 0.2482 -0.2457 0.2480 - 0.0109 0.2542 

0.0029 0.2482 0.1169 0.2483 0.6678 0.2478 0.0826 0.2483 - 0.1912 0.2541 

0.2398 0.2476 0.1744 0.2477 0.2276 0.2478 0.1777 0.2481 - 0.1411 0.2550 

0.3907 0.2488 0.2322 0.2489 0.4495 0.2494 0.4211 0.2490 - 0.1012 0.2545 

0.1768 0.2475 0.2563 0.2475 0.9954 0.2474 0.4526 0.2483 - 0.1015 0.2546 
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5.5.2 North-South inter-area mode excited by a fault 
occurrence in Italy 

 

The current case study takes in consideration actual voltage magnitude 
measurements recorded at a primary substation placed in the South of Italy, in 
Palermo, and stored in the Italian WAMS database. A grid disturbance on the 
400 kV system on January 18th 2008 at the 17:05:20 UTC resulted in the voltage 
magnitude variation illustrated in Fig. 5.35. The physical location of the 
measurement point makes again observable the same North-South inter-area 
mode, now excited by a local fault occurrence. 

 

Fig. 5.35 –Voltage magnitude recorded at Palermo (Italy) on January 18th 2008 

 

Since a substantial part of the signal is of ambient type this permits to complete 
the previous performance analysis with respect to the same inter-area 
oscillation. 

 

 

17:05:52 17:06:44 17:07:37 17:08:29 17:09:21
394

396

398

400

402

404

406

408

410

412

Time

V
o

lt
a

g
e

 M
a

g
n

it
u

d
e

 [
 k

V
 ]



Real Time tracking of electromechanical oscillations in ENTSO-e Continental European 

Synchronous Area 

March  2014 

 

 Page 149 

TAB. 5.11 – ESTIMATION ALGORITHMS OUTCOMES – ENTSO-e CESA NORTH SOUTH 
MODE b) 

TKM HSVD-VARPRO ECKF HHT LPM 

 f  [Hz]  f  [Hz]  f  [Hz]  f  [Hz]  f  [Hz] 

- 5.9122 0.2480 - 6.0501 0.2480 - 4.5545 0.1450 - 8.1340 0.2501 - 5.3310 0.2495 

- 4.3491 0.2510 - 4.5119 0.2510 - 7.8605 0.1384 - 4.9698 0.2580 - 4.1587 0.2540 

1.3888 0.2516 0.6838 0.2516 2.0562 0.2353 0.8136 0.2509 0.8990 0.2490 

2.8193 0.2506 2.8734 0.2506 6.7984 0.2385 3.7743 0.2477 2.8523 0.2492 

3.1057 0.2494 3.0249 0.2494 5.7984 0.2466 3.3447 0.2473 2.8745 0.2501 

3.0841 0.2502 3.1556 0.2502 7.6796 0.2432 4.5467 0.2471 3.1312 0.2490 

- 0.1032 0.2534 - 0.6808 0.2534 - 3.5871 0.2457 - 0.7764 0.2534 - 0.3166 0.2398 

1.8238 0.2488 2.0895 0.2488 6.3703 0.2457 2.4031 0.2483 2.1973 0.2480 

0.1685 0.2478 - 0.2117 0.2478 - 1.5478 0.2464 0.1637 0.2485 - 0.1590 0.2504 

4.7487 0.2542 10.4660 0.2542 24.2812 0.2465 3.9270 0.2777 7.7202 0.2589 

- 2.8609 0.2532 - 3.6330 0.2532 - 10.4350 0.2482 - 4.4979 0.2563 - 3.9453 0.2488 

1.0190 0.2471 1.1820 0.2471 3.8086 0.2478 1.1331 0.2488 1.6255 0.2488 

- 0.9936 0.2464 - 1.0841 0.2464 - 2.2789 0.2478 - 1.2624 0.2490 - 0.6798 0.2474 

0.5877 0.2513 0.8824 0.2513 2.4411 0.2494 1.1566 0.2499 1.1744 0.2495 

2.7330 0.2441 3.4900 0.2441 8.7544 0.2474 5.7590 0.2476 4.6673 0.2399 

 

Similarly to the previous case study, the mode frequency estimation is not a 
particular concern for all the employed algorithms as it can be argued by the 
Table 5.11 As far as the damping ratio estimation is concerned, the ECKF 
behaviour slightly deviates from the response of the other algorithms along all 
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the observation windows. Besides, due to the same reasons exposed in the 
previous Section the algorithm output in terms of frequency is outside the 
ordinary frequency interval of the North-South mode. On the contrary the 
remaining algorithms outcomes follow the same trend along the entire signal 
duration resulting very close to each other, in some particular observation 
windows even almost coincidental. Since when the voltage magnitude 
oscillation vanishes, negative damping ratio estimates are provided by all the 
algorithms, in order to implement possible automatic countermeasures 
avoiding false alarms, such as generators‘ re-dispatching, tie line flows 
adjustments, load reductions, network topology changes etc, proper triggering 
criteria has to be defined. One proposal could be so conceptualized:  (i) set  a 
damping ratio threshold alarm value ξth and a maximum violation time tmax, (ii) 
if the damping ratio estimated by one or more algorithms falls below this value, 
ξ<ξth , put the system in alarm condition initiate a time counter tc, (iii) restrict 
properly the observation window and repeat the estimation process with the 
current signal portion, (iv) if the current estimated damping ratio is over the 
threshold value, ξ>ξth, remove the system by the alarm condition else repeat 
iteratively the estimation process until tc=tmax then implement the most 
adequate countermeasures. Roughly speaking, such a philosophy is to perform 
a network action if the damping ratio estimates persistently violate the 
condition ξ<ξth  for a certain time tmax.     

 

 

 

5.5.3 Sardinia local oscillations 

 

The last case study is particularly interesting since concerns a non-linear and 
non-stationary multi components waveforms recorded on August, 13th 2007 
(01:40:00 UTC) at Cagliari and Fiumesanto in Sardinia island (Italy). Four chief 
local electromechanical oscillations among the generators installed on the island 
network can be identified from the measurements in Fig. 5.37. Till now, the 
characteristic mode frequencies are well known, f1=0.12 Hz, f2=0.64 Hz, f3=1.33 
Hz, f4=1,40 Hz, as for it lacks an adequate characterization of the characteristic 
damping levels.  
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Fig. 5.36 – Waveforms recorded at Cagliari and Fiumesanto (Italy) on August 13th 2007 
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The signal Fourier spectrum in Fig. 5.37, estimating the stationary equivalents 
of the four time-varying frequency components allows to make two basic 
statements: 1) frequency component f2 is not well identifiable due to the low 
inherent mode energy 2) the two highest frequency components f3 and f4 falls 
within the same octave. The second aforementioned point is a particular 
concern for the EMD in HHT that fails in extracting mono-component IMF. To 
solve the mode mixing issue in the decomposition procedure, HHT algorithm 
has been replaced with the R-EMD that seems to overcome the EMD inability to 
guarantee the mono-component trait of each IMF. R-EMD decomposing 
capability has been compared with the one of the signal decomposition theorem 
HT based in LPM.  

 

 

Fig. 5.37 – FFT vs Lp Periodogram on a 20 s time-window: voltage magnitude at Cagliari. 

 

Table 5.12 collects the numerical outcomes obtained in this case study. The most 
important result achieved by the numerical simulations is the fact that the R-
EMD fails in properly separating the local modes. Actually, as can be noted it 
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correctly identify in each observation window all the inherent power system 
modes as shown in Fig. 5.38 for instance in one of the considered time window.  

The two highest peaks of frequencies are superimposed making ineffective the 
R-EMD improvements in this specific case. Besides the heuristic parameters 
proposed by the developers are specifically derived for inter-area oscillation, 
this suggest the need for a revision in the case of local oscillations. In any case, 
no particular improvements were found by considering the alternative 
refinement, A-EMD. Conversely, the Lp periodogram (e.g. p = 1.5) in LPM is able 
to well-capture all the inherent Sardinia island local modes separating quite 
sharply the modal content from the noise, especially in the middle part of the 
Fig. 5.37, as can be appreciated. Even more important is its ability to distinguish 
the two peaks at higher frequency falling in the same octave. These properties 
are preserved along the entire signal duration. Moreover the signal 
decomposition theorem based on HT of the LPM allows the waveform 
decomposition in elemental components whose frequencies match satisfactorily 
the ones provided by the Lp periodogram. In terms of frequency estimation, 
ECKF furnishes nearby outcomes to the ones of LPM. Unfortunately, apart the 
damping ratio estimates of the first mode the others provided by the FKE are 
realistically implausible; this is due to the highly variability in the filter state 
variables and hence in the damping calculation with respect to this particular 
test signal. To estimate the actual electromechanical modes damping ratio is not 
an easy task, and however it is not possible to provide a general measure at this 
stage. In any case, as can be noted, three algorithms on five furnish damping 
ratio estimates in a narrow band close to the zero value for all the modes, two of 
them are the R-EMD and the LPM. Therefore, one can reasonably imagine that 
the actual value of damping ratio falls within this tight band.  
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TAB. 5.12 – ESTIMATION ALGORITHMS OUTCOMES – SARDINIA LOCAL OSCILLATIONS, 
MODE 1 

TKM HSVD-VARPRO ECKF R-EMD LPM 

 f  [Hz]  f  [Hz]  f  [Hz]  f  [Hz]  f  [Hz] 

- 0.2215 1.4111 0.4601 1.4010 0.6799 1.3987 -1.0605 1.1922 -0.5363 1.4105 

5.2044 1.4645 23.9500 1.4304 -0.7363 1.4007 0.0889 1.2021 -0.4152 1.3997 

5.0632 1.5658 24.1719 1.5421 -1.3812 1.4004 -0.6778 1.2005 -0.2499 1.4002 

10.48 1.5131 20.3712 1.5022 0.4774 1.4010 0.9756 1.1995 0.7675 1.4008 

0.8711 1.4706 23.9211 1.4780 2.1803 1.4003 0.0832 1.1784 0.3283 1.4001 

2.5965 1.4631 5.2785 1.4594 0.1832 1.3995 -0.4679 1.1952 -0.1169 1.4010 

1.6207 1.4635 -1.8099 1.4688 -0.4091 1.4007 -0.1027 1.2133 0.0991 1.4008 

3.4273 1.4538 0.2094 1.4532 2.0555 1.3899 -1.0243 1.1995 -0.3565 1.4006 

4.3522 1.5353 18.8005 1.5633 0.3692 1.4012 -0.2172 1.1396 - 0.3543 1.4005 

1.7949 0.2815 22.3143 0.8574 -1.9343 1.4015 -0.3705 1.2128 -0.5975 1.4007 

11.4716 1.5661 23.9243 1.5493 4.5977 1.3685 -0.1965 1.2009 - 0.2190 1.4004 

7.5055 1.4657 -13.8628 1.4576 4.6156 1.3996 -0.3555 1.2063 0.1688 1.4083 

10.3221 1.5449 24.7265 1.5693 1.7244 1.2990 -0.0336 1.1705 0.2384 1.4012 

4.1112 1.4421 5.4735 1.4567 35.1005 1.3556 3.9205 1.1178 1.7005 1.3899 

0.5662 1.4502 9.4603 1.45 23.6011 1.3245 -0.8455 0.70 -0.41 1.3998 
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TAB. 5.13 – ESTIMATION ALGORITHMS OUTCOMES – SARDINIA LOCAL OSCILLATIONS, 
MODE 2 

TKM HSVD-VARPRO ECKF R-EMD LPM 

 f  [Hz]  f  [Hz]  f  [Hz]  f  [Hz]  f  [Hz] 

4.0911 1.1404 32.3101 1.1032 7.8045 1.3227 0.0552 1.1223 0.4712 1.3402 

0.6876 1.3893 32.5705 1.3776 16.3031 1.2883 0.1462 1.1858 0.1883 1.3021 

-0.2445 1.3945 2.5677 1.4001 8.5955 1.3301 -0.5643 1.1453 - 0.0395 1.3302 

0.6872 1.4090 7.5638 1.4001 12.9073 1.2993 1.1722 0.9723 0.0174 1.3305 

0.5598 1.3455 3.0554 1.3425 10.9032 1.3705 0.4873 1.1747 - 0.4259 1.3502 

0.5567 1.3751 6.6828 1.3723 26.8018 1.2386 -0.4236 1.1822 0.2115 1.3111 

-0.1987 1.3760 -5.2952 1.3832 19.4041 1.3005 -3.1642 0.9241 - 2.4051 1.3220 

0.4040 1.3654 8.2354 1.3765 35.2088 1.3013 -0.4218 1.1411 - 0.8143 1.3102 

21.4703 0.2679 3.4785 0.8555 12.8047 1.2084 -1.8992 1.1263 3.0023 1.3066 

-3.5064 1.4709 5.4777 1.4702 14.4012 1.2944 -0.3065 1.1653 -0.2142 1.3094 

-0.0998 1.3985 12.108 1.3923 -2.4862 1.3903 -0.6122 1.1652 0.9512 1.3403 

-0.2440 1.3643 1.8937 1.3834 -2.5263 1.3702 -0.6295 1.1843 - 0.5312 1.3411 

45.9411 0.2410 2.7444 0.7684 -1.7554 1.3273 -0.3423 1.1532 - 1.0023 1.3110 

20.5006 1.0258 2.5232 1.0500 18.8011 1.3255 5.7722 1.2488 2.0036 1.3404 

4.8969 1.0110 4.6263 1.005 25.3001 1.2532 2.6206 1.2994 - 0.0523 1.3303 
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TAB. 5.14 – ESTIMATION ALGORITHMS OUTCOMES – SARDINIA LOCAL OSCILLATIONS, 
MODE 3 

TKM HSVD-VARPRO ECKF R-EMD LPM 

 f  [Hz]  f  [Hz]  f  [Hz]  f  [Hz]  f  [Hz] 

24.2374 0.2998 49.2822 0.3367 20.4012 0.6128 -5.2422 0.4388 0.4712 0.7002 

6.0363 0.8403 6.2315 0.8224 30.8523 0.5755 0.9351 0.4286 0.1812 0.6166 

38.9834 0.5788 6.1253 0.5066 18.7044 0.6352 2.3121 0.7103 -0.0321 0.6502 

12.1343 0.8804 5.5053 0.9081 36.5221 0.6024 0.5662 0.4195 0.0124 0.6404 

8.1927 0.7732 2.1978 0.80 25.9044 0.6135 0.6033 0.5758 -0.4282 0.6111 

5.9656 0.7423 0.0783 0.7027 34.6121 0.5762 -0.5261 0.5657 0.2113 0.6503 

5.3523 0.8084 -2.7446 0.8052 29.0042 0.6228 -1.9873 0.5569 -2.4012 0.6800 

6.9772 0.8543 1.6625 0.8541 32.7241 0.5687 0.7614 0.5495 -0.8141 0.6801 

0.8953 0.8402 0.8973 0.8043 33.5041 0.6544 2.2333 0.4888 3.0011 0.6600 

-1.9534 0.8763 2.2573 0.8567 29.2394 0.6223 -0.2014 0.5168 -0.2123 0.5994 

46.7638 0.8464 0.8968 0.8288 38.0034 0.6586 2.0714 0.4859 0.9551 0.6167 

12.2561 0.7554 -1.4385 0.7642 33.8021 0.5917 -1.3456 0.5075 -0.5312 0.6402 

-0.2964 0.7222 -0.1834 0.7464 32.8464 0.6455 -4.8625 0.5058 -1.0024 0.7001 

1.6741 0.7232 1.9278 0.7444 42.4323 0.4923 6.7172 0.5488 2.0142 0.6099 

24.4403 0.6826 4.8966 0.7025 37.8170 0.4934 2.6852 0.5489 -0.0521 0.6217 
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TAB. 5.15 – ESTIMATION ALGORITHMS OUTCOMES – SARDINIA LOCAL OSCILLATIONS, 
MODE 4 

TKM HSVD-VARPRO ECKF R-EMD LPM 

 f  [Hz]  f  [Hz]  f  [Hz]  f  [Hz]  f  [Hz] 

5.0013 0.0503 -0.4202 0.0899 -3.4503 0.1287 27.6701 0.0695 - 1.3241 0.1401 

33.6901 0.1704 -0.3603 0.1723 43.5082 0.0963 11.4203 0.1802 4.4702 0.0899 

7.2523 0.5123 -0.2722 0.4822 46.3002 0.1145 -0.3389 0.4423 1.0703 0.0992 

20.9501 0.2432 1.3903 0.2661 48.5032 0.1294 -1.5521 0.1749 0.0889 0.1089 

32.8020 0.2321 0.7583 0.2314 31.9015 0.0959 0.7824 0.3244 -2.8904 0.0997 

16.1702 0.2212 -0.3232 0.2224 28.9064 0.1394 1.9463 0.2924 10.0842 0.1211 

11.9900 0.1443 -0.0331 0.2442 4.9335 0.1235 -8.1484 0.1099 -4.5803 0.1210 

13.7503 0.1543 -0.6462 0.1827 -1.5125 0.1364 0.9953 0.1522 1.7242 0.1431 

3.4801 0.2541 -0.3323 0.2657 46.1067 0.1274 -1.9553 0.2203 - 1.8112 0.0996 

9.3325 0.3456 -0.7964 0.3048 46.5031 0.0993 0.0992 0.2230 - 1.9911 0.0899 

11.3053 0.3634 -0.2632 0.3286 41.8046 0.1295 3.6142 0.1932 - 0.0992 0.0897 

27.2934 0.2304 0.0625 0.2554 40.9036 0.0994 -4.2512 0.1831 -8.2510 0.1088 

3.1184 0.2645 1.2353 0.2834 41.9074 0.1047 -3.9142 0.2401 -5.6803 0.1203 

9.7801 0.2855 1.2322 0.2646 18.0023 0.1364 1.1624 0.0509 4.6901 0.1306 

0.0084 0.0853 1.3439 0.1069 23.6011 0.1284 2.7645 0.0909 13.0234 0.1241 

 

 

 

 



Real Time tracking of electromechanical oscillations in ENTSO-e Continental European 

Synchronous Area 

March  2014 

 

 Page 158 

Chapter 6 

 

Concluding remarks and  

future works 

 

 

 

The present thesis addressed the issue of estimating in real time 
electromechanical oscillations in power systems through the use of enabling 
technologies such as WAMS and advanced estimation methodologies. The 
onset of electromechanical oscillations in modern power systems is quite 
common, especially at European level, because of the reasons well-described in 
the prolegomeni. Hence, by following the UCTE recommendations, the 
performed work try to furnish a valid help to the TSO in improving the 
measure of proximity to critical conditions, enhancing at the same time the 
possibility of very fast reactions. This support consisted in the definition of one 
estimation algorithm demonstrated to be (i) high accurate to augment the TSO‘s 
situational awareness against critical and not critical electromechanical 
oscillations phenomena, (ii) characterized by reduced computational burden 
and flexible enough to be implemented in TSO‘s simulation platforms WAMS 
interfaced, (iii) high robust against all the potential situations encountered in 
the ordinary operation. Such an algorithm, whose name coined in this thesis 
takes the last name of its developers, briefly LPM, is the product of an in-depth 
literature analysis and field tests. More specifically, in the early stages of the 
research activities we focused on the most popular algorithms employed in the 
accredited scientific literature by coding and implementing them in the Italian 
TSO environment simulation WAMS interfaced. The field response allowed to 
identify the strengths to preserve and drawbacks to overcome. In this sense to 
capture the non-linearity and non-stationarity trait of the electromechanical 
oscillations and for exploiting some remarkable properties not satisfied from 
other mathematical operators our attention is moved towards Hilbert transform 
based methodologies. The first improvement to the most recent Hilbert Huang 
refinements was to replace the EMD, characterized by several heuristic 
assumptions, with an analytical signal decomposition theorem based upon the 
Bedrosian identity. Each provided elemental component has the important 
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feature to be mono-frequency so solving the mode mixing issue in the EMD and 
hence avoiding wrongful understanding of the power systems dynamic 
evolution. The second one is to adopt a preliminary non-linear spectral 
analyzer, the Lp periodogram, instead than the standard FFT in order to identify 
the mode frequency values. As confirmed from the experimental findings, the 
Lp periodogram, is found to be very resilient against noise, data packet 
dropouts and to the proximity of the frequency components. FFT instead, 
estimating the stationary equivalents of potential non-stationary frequency 
components could lose details about the lower energy components, making 
ineffective the improvements proposed by Laila et al. with the R-EMD. 
Furthermore all the algorithms considered in this work were tested against 
some critical wide area communication network effects, exactly noise and data 
packet dropouts. The response of the developed algorithm, thanks to the 
characteristics of the Lp periodogram and to the damping calculation method 
proposed, is also successful in these situations. Thanks to the Terna support the 
application domain for the analyzed estimation methodologies was the ENTSO-
e CESA: some recent actual inter-area and local oscillations recorded in this 
large interconnected system have undergone to evaluation. A general triggering 
criterion was also defined in order to implement potential automatic system 
actions avoiding false alarms such as generators‘ re-dispatch, tie line flows 
adjustment, load reduction, network topology change.  

The encouraging experimental results achieved led the Italian TSO to 
investigate a properly integration of this algorithm with an automatic closed-
loop control in the next future.  

Furthermore, since some of the considered algorithms provide often outcomes 
consistent with the ones of the LPM our idea is to equip the EMS with the more 
accurate and robust algorithms (e.g. TKM) defining smart criteria for merging 
the obtained information. A promising paradigm selected in this sense is the 
multi mode data fusion which is a process of combining or amalgamating 
information from multiple data sources and mathematical models. Real time 
tracking of electromechanical oscillations may benefit from the ability of the 
data fusion paradigm to combine information derived from multiple estimation 
algorithms implemented in the EMS.  

At last, an interesting further research line will be directed towards the 
investigation about the effect of the pervasive introduction of DG (especially 
wind and solar plants) in the ENTSO-e CESA on the frequency and damping 
ratio of its inter-area modes. The reasons of potential changes are essentially 
due to the fact that such a type of generators do not contribute (except in very 
few cases of over-frequency transient) to the frequency regulation having 
however a reductive action on the ENTSO-e CESA global inertia which is 
directly linked to the parameters to estimate (exactly frequency and damping 
ratio).   
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APPENDIX A – BEDROSIAN THEOREM PROOF 

 

E. Bedrosian was the first to take care the validity of the following relationship 
under the Hilbert Transform: 

 

)]x(g[H)x(f)]x(g)x(f[H               A.1 

 

where f(x) and g(x) are generally complex-valued functions of the variable x in 
L2, and H[∙] the Hilbert Transform operator of the function in the square 
brackets defined as: 

 

 dy
yx

)y(g
.V.P

1
)]x(g[H

R

 
              A.2 

 

with P.V. the Cauchy principal value of the integral.  

Although there exist several manners to proof the theorem, the authors prefer 
to retrace the rationale made by its developer to get it. Let us initiate with 
writing Fourier transform of the product f(x)g(x) as follows: 

 


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
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)]x(g)x(f[H x)ts(i

2
               A.3 

 

Eq. (A.3) can be rewritten by using the basic result that ikxikx e)ksgn(i]e[H  : 
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

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)2(

1
)]x(g)x(f[H x)ts(i

2
         A.4 

 

Now, since globally sgn(s+t) is equal to the sgn(t) over the integration regions 
where the integrand F(s)G(t) is non-vanishing the previous Eq. becomes: 
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



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2
   A.5 

As can be noted the term which multiplies f(x) in the Eq. A.5 is exactly the 
Hilbert Transform of the g(x) function: 

 


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



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1
dt]e[H)t(G

2

1
)]x(g[H itxitx          A.6 

 

Hence QED: 

 

)]x(g[H)x(f)]x(g)x(f[H   

 

That is the Hilbert transform of the product of a low-pass signal f(x) and a high-
pass signal g(x) with non-overlapping spectra is given by the product of the 
low-pass signal and the Hilbert transform of the high-pass signal.  
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APPENDIX B –  THEOREM PROOF ON CAUCHY 
PRINCIPAL VALUE INTEGRAL OF OSCILLATORY 
FUNCTIONS  

 
Statement 
 

If f is an analytic function in the half-strip of the complex plane, ba t)z(t   

and 0)z(   and if there exist two constants M and 0 such that for  00   
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The following relationship holds true: 
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Proof 
 
According to the Cauchy Residue Theorem, being the integrand function of the 

complex variable z, 
zt

)z(f
e zi



 analytic in the region  except ‘, by taking all the 

contours in counterclockwise direction as showed in Fig. B.1, one has: 
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Let us evaluate the first integral in a specific way: 
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and similarly  
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By keeping in mind that: 
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In correspondence of the half circle contour Γ5, containing the singularity z=t, 
one can make the position z-t = rejθ, with 0 , so that: 
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At this point, by recalling the C.P.V. integral definition and exploiting the Eq. 
B.3, it is immediate to derive relationship B.2. 
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Fig. B.1 – Path of integration for I (f;t) 
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