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Introduction

A radar system is an electromagnetic (e.m.) device that transmits
and receives radiations, and whose main purpose is the detection of pos-
sible targets within the illuminated scene. Once the surveilled area has
been probed with a suitable signal, the radar elaborates the resulting
signal, which is a superposition of several contributions from different
objects. Specifically, the received signal is made up of both echoes from
object of tactical importance (namely, the targets), as well as unwanted
contributions due to land, sea, vegetation (called clutter), thermal noise
and intentional disturbance signals (namely, jammers). For a typical
radar system, the power of the useful component is a small percentage
of the overall disturbance power (clutter, jamming and noise); conse-
quently, the detection problem is quite difficult. To detect the target
embedded in interference, a powerful solution is the Space-Time Adap-
tive Processing (STAP) [1], [2]. STAP refers to a processor that si-
multaneously combines the signals received on multiple elements of an
antenna array (the spatial domain) and from multiple pulse repetition
periods (the temporal domain) of a Coherent Processing Interval (CPI),
[2]. This processing is of paramount importance because, even if a target,
that is located at a specific angle and with a specific Doppler frequency,
cannot be distinguished from the interference component in the direc-
tion domain, may be clearly identified in the Doppler domain and/or
viceversa, [1]. In Fig. 1, a pictorial representation of the interference
environment that justify this last sentence is reported. The figure shows
the presence of noise jamming that is localized in angle and distributed
over all Doppler frequencies, whereas the clutter echo from a single cell
has a Doppler frequency that depends on its aspect with respect to the
radar. Finally, a point-like target is present in the scene with a specific
Doppler frequency and a specific angle. A space-time adaptive processor
may be seen as a two-dimensional filter that represents combined receive
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2 Introduction

beamforming and target Doppler filtering [2].

Figure 1: Example of a typical angle-Doppler interference scenario that justifies the
use of a STAP.

There are various aspects which can be considered, when dealing
with radar processing, designing radar waveforms and/or radar filters.
When it comes to the capability of the radar to properly detect a target
in the illuminated scene, as well as its capability to distinguish among
the useful and the interference components within the received signal,
the Signal to Interference plus Noise Ratio (SINR) is one of the most
commonly used figure of merit. Consider now a radar comprised of
an array of M antenna elements, transmitting a coherent train of L
pulses, the processor that maximizes the output SINR is the coherent,
linear, transversal filter [3] depicted in Fig. 2. Such a filter is com-

Figure 2: Optimum receiver.

pletely described by N = LM complex weights (w1, w2, . . . , wN ), i.e.
by the complex N -dimensional weight vector w, that depends both on
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the interference statistics as well as on the target signal model. Thus,
denoting by

r = p+ n (1)

the N -dimensional vector associated to the received signal of the cell
under test, where p is the steering vector of the useful signal (assumed
known) and n is the zero mean vector associated to the disturbance
components, the optimum filter output is given by the inner product
between the weight vector and the useful signal

s = w†r. (2)

Moreover, denoting by E[nn†] = Σ the disturbance covariance matrix,
the SINR at the output of the above mentioned filter is

SINRout =
E[|w†p|2]

E[(w†n)(w†n)†]
=

∣∣w†p∣∣2
w†Σw

=

∣∣∣∣(Σ1/2w
)† (

Σ−1/2p
)∣∣∣∣2(

Σ1/2w
)† (

Σ1/2w
)

≤

(
Σ1/2w

)† (
Σ1/2w

)(
Σ−1/2p

)† (
Σ−1/2p

)
(
Σ1/2w

)† (
Σ1/2w

)
= p†Σp.

(3)

where the inequality in (3) is a consequence of the Schwarz inequality.
The latter quantity attains its maximum when the equality holds, i.e.
when the two terms in the product at the numerator are proportional,
Σ1/2w = Σ−1/2p. Consequently, the optimum receiver is

w = Σ−1p. (4)

This filter can be seen as a whitening filter (w.f.) followed by a
matched filter (m.f.)

w = Σ−1p =

w.f.︷ ︸︸ ︷(
Σ−1/2

) m.f.︷ ︸︸ ︷(
Σ−1/2p

)
, (5)
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consequently, the filter is tuned to the Doppler of the target (in a time
processing) or to the angle of arrival (in a space processing) or to both
of them in a space-time processing. Moreover, it properly exploits the
information about the interference statistics (through the disturbance
covariance matrix) in order to reduce the interference effects.

As shown in equation (4), the optimum filter to be applied on the
received signal requires the exact knowledge of the true disturbance co-
variance matrix. However, in real radar systems this requirement cannot
be satisfied and an estimate of the covariance matrix must be introduced,
leading to the so-called adaptive radars [4], [5], [6]. Notice also that, ac-
curate estimation of the disturbance covariance matrix is of paramount
importance not only for adaptive receive weight vector computation [7],
but also for several advanced radar signal processing algorithms, such
as secondary data selection [8] and robust steering vector estimation [9].

Conventional adaptive radar receivers [4], [5], [6], are often based on
the assumption that the environment remains stationary and homoge-
neous during the adaptation process. Precisely, they exploit an estimate
of the disturbance covariance matrix resorting to a secondary data set
collected from range gates spatially close to the one under test and shar-
ing the same spectral properties [10], [11]. A classic estimate is the sam-
ple covariance matrix, which is the Maximum Likelihood (ML) estimator
based on K independent and identically distributed (iid) N -dimensional
zero-mean complex circular Gaussian vectors. The existence of the ML
solution fails when the matrix dimension is greater than the sample
support (N > K), whereas the sample covariance matrix achieves good
performance when K ≥ 2N [4]. This homogeneity represents an im-
portant limitation since in real environments the number of data in
which the clutter is homogeneous (often referred to as sample support)
is very limited. Poor training data selection, in such adaptive detectors,
can result in a remarkable degradation of the adaptive radar perfor-
mance especially in regions which include varying ground surfaces such
as coastal regions connecting land and sea, where the strength of the
clutter may exhibit strong fluctuations. Some discussions of real-world
effects and their impacts on the performance of Doppler processors and
STAP detectors can be found respectively in [12] and [13]. A possible
strategy to circumvent the lack of a sufficient number of homogeneous
secondary data (required for achieving a satisfactory performance) is to
exploit some a-priori information about the scene illuminated by the
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radar, namely to perform a knowledge-based processing. Actually there
are two fundamental ways to exploit the available a-priori knowledge
([14], [15], and references therein). The former is the indirect approach
and uses knowledge sources to select the secondary data for the covari-
ance estimation process [14], [15], [16]. The latter is the direct method
and relies on the use of the a-priori knowledge directly in the receiver
design process [14], [15], [17], [18], [19]. In both cases, it is of interest to
devise procedures which exploit jointly the a-priori knowledge available
about the operating environment and the training data in order to con-
fer upon the estimator a robust adaptive behavior. The final goal is to
obtain a reliable estimate of the covariance matrix, which must be well
conditioned, since the computation of the weight vector, used in adaptive
radar processing, involves the inverse of the estimated covariance.

As already claimed, in real scenarios the homogeneity assumptions
could not hold, because secondary data may be contaminated by clutter
discretes, outliers, and/or power variations. Consequently, a statistical
characterization of the whole environment can be very difficult to obtain,
and estimators, whose design do not rely on the multivariate probability
distribution of the data, are of interest. Signal processing algorithms de-
rived from geometric considerations on the space of the parameters to be
estimated, and which do not account for the statistical characterization
of the data, are available in the open literature. For instance, the least
square estimator is the most natural choice [20, Ch. 8, p. 219]. In [21],
an extension of the ordered statistic approach, to define a new STAP
technique, based on the Riemannian p-mean computation of Toeplitz-
Block-Toeplitz space-time covariance matrix is presented. Moreover, in
[22], an algorithm for radar target detection is introduced, based on the
Riemannian p-mean of covariance matrices computed in a neighborhood
of the considered cell. For a detailed overview of this research activ-
ity see also [23] and references therein. Finally, the geometric approach
is used also in other signal processing contexts; for instance in [24], the
barycenter of a set of diffusion tensors is used in diffusion tensor imaging
applications.

The adaptive receivers previously described refer to point-like tar-
gets, namely to targets that are contained within a single range cell.
However, it is necessary also to account for radar receivers that operate
in presence of targets extended in range. In fact, detection of distributed
targets has gathered extensive attention among radar community during
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the last three decades. This is motivated by the fact that when using
High Resolution Radars (HRR’s), targets can be resolved into a num-
ber of scattering centers appearing into different range cells [25, 26, 27].
Furthermore, in many practical scenarios, wherein a low/medium reso-
lution radar is employed, the point-target model may fail: for instance,
when a coastal radar is faced with detection of a large ship or when
an air defense radar is detecting a cluster of point-targets flying at the
same velocity in close spatial proximity. In Fig. 3, an example of a data
collection from a target extended in range is given.

Figure 3: Data collection of a target extended in range.

Many papers have addressed detection and imaging with HRR’s
[28, 29, 30]. In particular, radar detection of distributed targets in
white Gaussian noise of known spectral level has been considered in
[31]. Therein, it is shown that properly designed HRR’s allow for a sig-
nificant enhancement of the detection performance, because increasing
the range resolution of the radar reduces the amount of energy per cell
backscattered by distributed clutter, and resolved scatterers introduce
less fluctuation than an unresolved point-target.

CFAR (Constant False Alarm Rate) detection of distributed tar-
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gets in Gaussian noise with unknown covariance matrix, based upon
the Generalized Likelihood Ratio Test (GLRT) criterion, is addressed
in [32, 33, 34, 35, 36, 37] and [38] assuming several (often different)
models for the useful target echo. The disturbance returns from dif-
ferent range cells are modelled as independent, identically distributed,
Gaussian vectors with unknown covariance matrix; moreover, a set of
secondary data, free of useful signal components, is exploited to estimate
the spectral properties of the disturbance. Some adaptive schemes for
detecting extended targets, assuming the availability of a wide enough,
although unknown, portion of secondary data free of the useful signal,
are proposed in [39] and [40]. A Modified GLRT (MGLRT) which does
not resort to secondary data is developed in [41]; it does not share the
CFAR property but can be made bounded CFAR, thus being a viable
technique to adaptively detect range-spread targets embedded in highly
non-stationary environment. The modified GLRT approach is also ap-
plied in [42] to develop an adaptive algorithm with orthogonal rejection
capabilities. A GLRT for the adaptive detection of Doppler-shifted,
range-distributed targets embedded in noise with unknown, but struc-
tured, covariance matrix has been studied in [43]. Such a detector has
been shown to be bounded CFAR via simulation. A heuristic, although
effective, strategy for detecting range-spread targets in white Gaussian
noise, using multiple consecutive high-resolution range profiles collected
by a HHR, is proposed [44]. A generalized parametric Rao test is devel-
oped in [45] modeling the disturbance as a multi-channel auto-regressive
process. By doing so the authors extend to distributed targets the in-
teresting parametric approach developed in [46] for a point-like target.

All the above considerations highly justify the interest of the research
herein conducted, whose main aim is to define new covariance matrix
estimation techniques, based on both statistical argumentations and geo-
metric considerations, exploiting advanced mathematics as for instance
the convex optimization theory. These new estimates are utilized to
define new adaptive radar receivers and to design new secondary data
selection schemes, respectively. Moreover, applications to the problem
of detecting extended targets have been considered, enforcing several
structures to the disturbance covariance matrix to estimate.

The present thesis has been organized as follows:

• In Chapter 1, the problem of estimating the disturbance covariance
matrix for radar signal processing applications, in the presence of
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a limited number of training data, is addressed. In particular, the
ML estimator of the covariance matrix is determined starting from
a set of secondary data, assuming a special covariance structure
(i.e. the sum of a positive semi-definite matrix plus a term pro-
portional to the identity), and a condition number upper-bound
constraint. The formulated constrained optimization problem falls
within the class of MAXDET problems and an efficient procedure
for its solution in closed form is developed. Remarkably, the com-
putational complexity of the algorithm is of the same order as the
eigenvalue decomposition of the sample covariance matrix.

• In Chapter 2, the problem of covariance matrix estimation for
radar signal processing applications is assessed in the presence of
heterogeneous secondary data. In particular, two classes of esti-
mators, which do not require any knowledge about the probability
distribution of the sample support and exploit the characteristics
of the positive definite matrix space, are proposed and analyzed.
Any estimator of each class is associated with a suitable distance
in the considered space and is defined respectively as the geomet-
ric barycenter and the median matrix of some basic covariance
matrix estimates obtained from the available secondary data set.
Then, the new devised estimators are applied to the problem of
secondary data selection.

• In Chapter 3, the problem of detecting an extended target em-
bedded in homogeneous Gaussian interference with unknown but
structured covariance matrix is addressed. The possible target
echo, from each range bin under test, is modeled as a determinis-
tic signal with an unknown scaling factor accounting for the target
response. At the design level, some a-priori knowledge about the
operating environment are exploited, enforcing the inverse inter-
ference plus noise covariance matrix to belong to a set described
via unitary invariant continuous functions. Hence, the constrained
ML estimates of the unknown parameters are derived, under both
the H0 and H1 hypotheses, and the GLRT for the considered de-
cision problem is designed.

Finally, some conclusions and hints for possible future research tracks
are given.



Chapter 1

Structured Covariance
Matrix Estimation with a
Condition Number
Constraint

In this chapter, the ML covariance matrix estimator which exploits
the adaptivity provided by the training data, a special covariance struc-
ture, and a condition number upper-bound constraint (whose value can
be obtained from some a-priori information, can be estimated from the
available samples, or can be set according to numerical stability argu-
ments) is devised. Specifically, the covariance matrix is modeled as the
sum of two matrices, an unknown positive semi-definite matrix, describ-
ing colored interference and clutter, and a (partially known) matrix pro-
portional to the identity one, accounting for the white disturbance term.
Additionally, the estimated matrix has to comply with an upper bound
on its condition number. Notice that, the ML covariance estimation
with the only structural constraint has been considered in [47], while
the ML estimation of a covariance matrix with only a condition number
upper bound constraint and without any assumptions on its structure
has been studied in [48]. Hence, the novelty of this work is to jointly
account for both a structural and a condition number constraint at the
design level. The core of this work is to show that the proposed con-
strained structured ML estimation problem can be formulated in terms
of a MAXDET optimization problem [49], [11], and to design a proce-

9
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dure for provide its analytically solution in closed form. Notice that,
the proposed algorithm requires the computation of the eigenvalue de-
composition of the sample covariance matrix and the solution of a scalar
convex optimization problem, whose complexity is linear with respect to
the number of sample eigenvalues greater than one.

At the analysis stage, the performance of the new estimator is as-
sessed in terms of achievable SINR versus the number of available sam-
ples, both for a spatial and a Doppler processing. The results highlight
that interesting SINR improvements, with respect to the estimators [47]
and [48] can be achieved.

Thus, the present chapter is organized as follows. In Section 1.1, the
system model is described and the main issues arising in a limited sample
support covariance estimation problem are presented. In Section 1.2, the
constrained structured ML estimation problem is formulated, showing
that it is equivalent to a MAXDET convex optimization problem, and
the procedure for its closed form solution is derived. In Section 1.3, the
performance of the proposed ML estimate is assessed.

1.1 Problem Formulation

In this section, the problem of ML estimating the positive definite
covariance matrix Σ is formulated. Specifically, it is considered the
availability of K secondary data r1, . . . , rK , modeled as N -dimensional
independent zero-mean complex circular Gaussian vectors1, which shares
the same covariance matrix

E
[
rir
†
i

]
= Σ, i = 1, . . . ,K.

To this end, it is necessary to specify the joint probability density func-
tion (pdf) of r1, . . . , rK , i.e.

f(r1, . . . , rK |Σ) =
1

πNK [det(Σ)]K
exp

[
−tr

(
KΣ−1S1

)]
, (1.1)

1The proposed framework assumes Gaussian disturbance. However, there are
situations, such as sea clutter at low grazing angles, where the Gaussian assumption
can be no longer met and the compound-Gaussian model proves very effective to
model the radar returns. In this context, alternative covariance matrix estimation
strategies such as those in [50] and [10] can be conceived.
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where S1 = 1
K

∑K
i=1 rir

†
i is the sample covariance matrix. Notice that,

owing to the invariance principle [20, Theorem 7.2, p. 176], the ML
estimate of Σ (Σ̂ in the following) can be obtained from the ML estimate
of X = Σ−1 through a matrix inversion. In particular, without any
structure and constraints on the covariance matrix, i.e. without any
a-priori knowledge, the ML estimate of X is an optimal solution to the
optimization problem

X̂ = arg min
X�0

[
tr (S1X) + log det

(
X−1

)]
. (1.2)

If K ≥ N , (1.2) admits a well known closed form solution X̂ = S−1
1 ,

namely the inverse of the sample covariance matrix; otherwise, the min-
imizer does not exist. This estimate is usually exploited in many adap-
tive radar receivers [5, 6, 51, and references therein] and, in particular,
for the adaptive implementation of the optimum Doppler, spatial, and
STAP processors [2, 4]. The expected SINR loss, relative to the ideal
known covariance case, is kept within 3 dB if the sample support K
is greater than 2N . Unfortunately, in practical radar scenarios, such
an assumption is not always verified [13]. More specifically, the size of
the training set is often limited, because large swaths of homogeneous
clutter/interference necessary for estimating Σ may not be available.
Moreover, the presence of the target within the secondary data could
reduce the degree of their homogeneity. In addition, the analysis of
several adaptive algorithms, mostly derived assuming homogeneity of
the secondary data, has shown that non-homogeneities magnify the loss
between the adaptive implementation and optimum conditions [52, 53].

To reduce the sample support requirement, several solutions have
been proposed in open literature:

1. to exploit structural information about Σ, as for instance persym-
metry [54], Toeplitz property [55], [56], [57], circulant structure
[58], multichannel autoregressive models [59], [60], special struc-
tures imposed by the sensor and the environment [47], physical
constraints [61];

2. to resort to Bayesian covariance matrix estimators [62, 63, 64, 65,
66];

3. to use knowledge-based covariance models [67, 68];
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4. to consider shrinkage estimation methods [69, 70, 19, 48].

The idea followed here is to devise a covariance matrix estimator which
exploits both the adaptivity provided by the training data (even if very
limited) and some a-priori structural information. Namely, a covariance
matrix estimator which accounts for a special covariance structure and
a condition number upper-bound constraint is designed. Regarding the
structure, the covariance matrix Σ is modeled as the sum of an unknown
positive semidefinite matrix, describing colored interference and clutter
contributes, and a matrix proportional to the identity, accounting for
the white disturbance term. Furthermore, as to the condition number
constraint, its upper bound value can be obtained (see Subsection 1.2.1)
from some a-priori information available at the radar platform about
the electromagnetic environment, in an adaptive fashion resorting to
the samples ri, i = 1, . . . ,K, or enforcing a specific value in order to
control the numerical stability. In fact, signal processors work with fi-
nite precision arithmetic and it is extremely important to account for
the numerical stability of algorithms exploiting the estimated covariance
matrix, or its inverse (for instance, adaptive receive weight vector com-
putation [7], robust steering vector estimation [9], robust beamforming
[71], Direction of Arrival (DOA) estimation, Autoregressive (AR) coef-
ficient estimation [72]). Indeed, the effect of the estimated covariance
roundoff error is controlled by the covariance condition number, in the
sense that stable algorithms can be obtained if the estimated matrix is
well conditioned with respect to the machine precision [73], [7]. Thus,
through the proposed estimator, the idea is to exploit not only the struc-
tural information on the covariance matrix, but also to force an upper
bound to the condition number compliant with the desired digital sta-
bility.

1.2 Derivation of the Constrained Structured
Estimator

Starting from the secondary data r1, . . . , rK , the problem of find-
ing the ML estimate of the matrix Σ is considered under the following
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constraints
Σ = σ2

nI +R,
R � 0,
σ2
n ≥ σ2,
λmax(Σ)
λmin(Σ)

≤ Kmax,

whereR accounts for colored interference and clutter, whereas σ2
n for the

power of the white disturbance term; the parameters σ2 > 0 and Kmax

are respectively the lower bound on the white disturbance power and
the upper bound on the condition number. Otherwise stated, the con-
strained structured covariance matrix estimator is an optimal solution
to the optimization problem

P



min
Σ,R,σ2

n

tr
(
S1Σ

−1
)
− log det

(
Σ−1

)
s.t.

λmax(Σ)
λmin(Σ)

≤ Kmax

σ2
nI +R = Σ
R � 0
σ2
n ≥ σ2

, (1.3)

where Σ � 0, R � 0, and σ2
n ∈ R+ are the optimization variables.

In problem P, given in (1.3), it is assumed that Kmax > 1; in fact,
for Kmax < 1 the problem is infeasible, while for Kmax = 1 the ML
estimate is trivially given by Σ = max

(
σ2, tr (S1) /N

)
I. Problem P is

a non-convex optimization problem since the objective function is a non-
convex function of Σ. However, problem P admits an optimal solution
since the following proposition holds true

Proposition 1.2.1. To find an optimal solution to P, it is sufficient to
solve P1

P1


min
X ,u

tr (SX)− log det (X)

s.t. uI �X � uKmaxI
X � I
0 < u ≤ 1

, (1.4)

where S = S1/σ
2. Precisely, given an optimal solution (X?, u?) to the

solvable problem2 P1,(
σ2X?−1, σ2X?−1 − σ2I, σ2

)
2By “Solvable”, it is meant that the problem is feasible, bounded below, and the

optimal value is attained, see [74].
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is an optimal solution to P.

Proof. See Appendix A.

Problem P1 is a convex optimization problem, since the objective
function is a convex function and the constraints are Linear Matrix In-
equalities (LMIs). Precisely, it is a MAXDET problem, see [49]. Then,
P1 can be efficiently solved numerically by interior-point methods. No-
tice that the objective function of problem P1 is a strictly convex func-
tion, [75, Theorem 7.6.7, p. 466], in terms of the variable X. This
implies that the minimizer X? of P1 is unique.
The core of this work relies on the design of a procedure for the closed
form solution of P1, and hence of P. To this end, denote by

S = V diag (d)V †

the eigenvalue decomposition of S, where V is the unitary matrix con-
taining the eigenvectors, and d ∈ RN is the vector of the corresponding
eigenvalues arranged in decreasing order, i.e. d1 ≥ d2 ≥ . . . ≥ dN ≥ 0.
The following result concerning problem P1 holds true

Lemma 1.2.2. For any fixed ū ∈]0, 1], the optimal solution X?(ū) to
problem

P1(ū)


min
X

tr (SX)− log det (X)

s.t. ūI �X � ūKmaxI
X � I

, (1.5)

is given by
X?(ū) = V diag (λ?(ū))V †, (1.6)

where λ?(ū) = [λ?1(ū), . . . , λ?N (ū)], with

λ?i (ū) = min

(
min (Kmaxū, 1),max

(
ū,

1

di

))
, i = 1, . . . , N. (1.7)

Proof. See Appendix B.

Let us now define the vector function

λ?(u) =

[
min

(
min (Kmaxu, 1),max

(
u,

1

d1

))
, . . . ,

min

(
min (Kmaxu, 1),max

(
u,

1

dN

))]
,

(1.8)



1.2 Derivation of the Constrained Structured Estimator 15

which assigns to any u ∈]0, 1] the vector of the optimal eigenvalues to
problem P1(u) given in (1.5).

Theorem 1.2.3. Let u? be an optimal solution to the following opti-
mization problem

P2

{
min
u

∑N
i=1Gi(u)

s.t. 0 < u ≤ 1
, (1.9)

where, for any i = 1, . . . , N , Gi(u) = diλ
?
i (u)− log λ?i (u), namely

Gi(u) =

{
− logKmax − log u+Kmaxdiu if 0 < u ≤ 1

Kmax
di if 1

Kmax
≤ u ≤ 1

(1.10)

if di ≤ 1, and

Gi(u) =


− logKmax − log u+Kmaxdiu if 0 < u ≤ 1

Kmaxdi
log di + 1 if 1

Kmaxdi
≤ u ≤ 1

di
− log u+ diu if 1

di
≤ u ≤ 1

(1.11)
if di > 1. Then, an optimal solution to P1 is

(X?, u?) =
(
V diag (λ?)V †, u?

)
, (1.12)

where λ? = [λ?1, . . . , λ
?
N ] = λ?(u?), with the vector function λ?(u) defined

in (1.8).

Proof. See Appendix C.

Notice that the formulation of Theorem 1.2.3 holds even when di = 0,
interpreting 1

di
= +∞. Therefore, resorting to Theorem 1.2.3, problem

P1 reduces, essentially, to the univariate minimization problem P2. Let
us, now, study the properties of the optimization problem P2, precisely
of its objective function

G(u) =

N∑
i=1

Gi(u), (1.13)

with Gi(u) defined in (1.10) or in (1.11), depending on the value of the
corresponding di. Firstly, the function G(u) is a continuous function
over the interval u ∈]0, 1], since it is the sum of continuous functions.
Secondly, although the constraint u ∈]0, 1] of problem P2 defines an open
set, P2 is solvable as proved in the following theorem



16
Chapter 1 Structured Covariance Matrix Estimation with a

Condition Number Constraint

Theorem 1.2.4. Let d1 ≥ d2 ≥ . . . ≥ dN the eigenvalues of S. The
optimal value v(P2) is attainable and

• if d1 ≤ 1, an optimal solution to P2 is u? = 1
Kmax

;

• if 1 < d1 ≤ Kmax, an optimal solution to P2 is u? = 1
d1

;

• if d1 > Kmax, an optimal solution to P2 complies with u? ∈[
1
d1
, 1
Kmax

]
.

Proof. See Appendix D.

From theorem 1.2.4, to completely solve P2, it is needed to analyze
the case d1 > Kmax. Hence, it has to be proven

Lemma 1.2.5. Let d1 > Kmax. The function G(u) has a continuous

derivative over the interval u ∈
]
0, 1

Kmax

]
. Moreover, G(u) is a univari-

ate convex function in the interval u ∈
]
0, 1

Kmax

]
.

Proof. See Appendix E.

Let us further investigate the characteristics of the univariate convex
function G(u) when d1 > Kmax; the goal is to exploit its structure in
order to develop an explicit procedure to solve P2. To this end, let
us define some auxiliary quantities. Denote by N̄ , the number of di’s
greater than 1, i.e. di > 1, i = 1, . . . , N̄ . The vector v

v = [d1, d2, . . . , dN̄ , 1], (1.14)

contains the eigenvalues greater than 1, and its last entry is equal to
1; also, v = [v1, v2, . . . , vN̄ , vN̄+1] contains its entries in non-increasing
order. Thus, the following theorem is proved

Theorem 1.2.6. Assuming d1 > Kmax, an optimal solution u? to P2

is given by

1) u? = 1
d1

, if dG(u)
du

∣∣∣
u= 1

d1

= 0;

2) u? = 1
Kmax

, if dG(u)
du

∣∣∣
u= 1

Kmax

≤ 0;
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3) if 1) and 2) are not satisfied, u? is the optimal point (with proba-
bility one3) if and only if

u? =
N + α− β + 1∑α

i=1 di +
∑N

i=βKmaxdi
(1.15)

with α ∈ {1, 2, . . . , N̄ , N̄ + 1} the largest index such that 1
vα
< u?,

and β ∈ {1, 2, . . . , N̄ , N̄+1} the smallest index such that 1
vβKmax

>

u?.

Proof. See Appendix F.

From Theorem 1.2.6, if conditions 1) and 2) are not satisfied, the
search for the optimal solution u? of P2, requires finding the integers α
and β such that

uα,β =
N + α− β + 1∑α

i=1 di +
∑N

i=βKmaxdi
, (1.16)

1

vα
< uα,β ≤

1

vα+1
, and

1

Kmaxvβ−1
≤ uα,β <

1

Kmaxvβ
. (1.17)

An efficient procedure to find the optimal point u?, exploiting conditions
(1.16) and (1.17), based on the idea in [48], is now described. The trick
is to check iteratively the satisfaction of the conditions (1.16) and (1.17),
once efficiently fixed the values of α and β. To this end, notice that, if
the intersection of intervals (1.17) is empty, uα,β cannot be an optimal
value. Otherwise, the intersection is one of the following subintervals]

1
vα
, 1
Kmaxvβ

[
,
]

1
vα
, 1
vα+1

]
,
[

1
Kmaxvβ−1

, 1
Kmaxvβ

[
,
[

1
Kmaxvβ−1

, 1
vα+1

]
, and the

optimal value needs to belong to that intersection. The procedure is
composed by the following steps

1. Set α = 1, β = 2 and increase β until 1
vα
> 1

Kmaxvβ
.

2. Compute uα,β. If uα,β belongs to the current intersection, let u? =
uα,β and exit. Otherwise go to step 3).

3. if 1
vα+1

> 1
Kmaxvβ

increase β and go to step 2). Otherwise increase

α and go to step 2).

3It is assumed that vi 6= vj and vi 6= Kmaxvj for any i 6= j with 1 ≤ i, j ≤
N̄ + 1, which hold with probability one since the probability density function of
[d1, d2, . . . , dmax {K,N}] is an absolute continuous function.
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The above technique is capable to grant an optimal solution to problem
P2 with a linear computational complexity, with respect to the number
of sample covariance matrix eigenvalues greater than 1, i.e. N in the
worst case.
In Fig. 1.1, a schematic representation of the procedure for the com-
putation of Σ̂ is given. Notice that Σ̂ is a shrinkage estimator4 which
regularizes the sample covariance matrix explicitly accounting for a con-
dition number constraint and leading to a well-conditioned structured
estimator.

Figure 1.1: Schematic representation of the estimation procedure.

1.2.1 Selection of the Parameters Kmax and σ2

In this section, the selection of the parameters Kmax and σ2 in (1.3)
is addressed. The focus is on radar applications, wherein the main dis-
turbance contributions are due to thermal noise, jammers, and clutter
[7, 2]. Thus, σ2, which corresponds to an a-priori known lower bound
on the power of the white disturbance term, can be evaluated character-
izing the power level related to the isolated operation of the receiver’s
components. Moreover, as to the computation of the parameter Kmax,
there are three main approaches that can be considered: the knowledge-
based, the numerical-stability oriented, and the adaptive method. In

4A shrinkage covariance estimator Σ̂ is a matrix shar-
ing the same eigenvectors as the sample covariance matrix
S = V diag(d)V † � 0, but transforming its eigenvalues, i.e.

Σ̂=V diag ([g1(d1, d2, . . . , dN ), g2(d1, d2, . . . , dN ), . . . , gN (d1, d2, . . . , dN )])V † � 0.
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the following subsections, all of them are discussed in detail.

Knowledge-Based Selection of Kmax

A knowledge-based selection of Kmax resorts to a-priori information
available at the radar platform about the electromagnetic environment.
Precisely, exploiting Electronic Support Measures (ESM), a rough pre-
diction of the jammer attributes can be obtained (such as their location,
bandwidth, and power). Furthermore, as to the clutter contribution,
it can be predicted through the interaction between a digital terrain
map, such as the National Land Cover Data (NLCD), and Radar Cross
Section (RCS) clutter models, see [76], [16], [77, Ch. 15, 16]. Starting
from this information and some a-priori knowledge on the power of the
white disturbance term, a rough estimate of the condition number of the
covariance matrix can be performed.

Numerical-Stability Oriented Selection of Kmax

An important task, in digital processing design, is the numerical sta-
bility of the outputs from the implemented algorithms, with respect to
the accuracy of the input data. Thus, it is extremely relevant to guaran-
tee a stable computation with respect to the roundoff errors corrupting
the estimated covariance matrix Σ̂. It is worth pointing out that there
is a fundamental tradeoff between the number of bits available in the
computer to accomplish matrix inversion and the allowable eigenvalue
spread (ruled by the condition number) of the input covariance [78, pp.
312-313], [7, p. 132]. In this context, a suitable choice of Kmax allows
for a control on the algorithm stability. For instance, the adaptive re-
ceive weight vector w is given by the solution of the following linear

system Σ̂
σ2w = p, where p is the steering vector. Consequently, due to a

perturbation E of the matrix Σ̂
σ2 , [7], the computed weight vector is the

solution to

(
Σ̂
σ2 +E

)
wp = p, where |E (h, k) | ≤ ε′ with ε′ the machine

precision. Thus, from [79], the sensitivity of the weight vector to the

machine precision is upper bounded5 by
||w−wp||
||w|| ≤ ε′NKmax, i.e. it

can be controlled through an appropriate selection of Kmax.

5A similar result holds true even if p is perturbed.
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Adaptive Selection of Kmax

In this subsection, an adaptive estimator of Kmax, based on the
K secondary data r1, . . . , rK , is presented. The trainer principle, ex-
ploited by the predictor, is to extract information starting from the
diagonal blocks of S; each block is the sample covariance matrix of the
corresponding sub-vector extracted by r1

σ , . . . ,
rK
σ . Indeed, due to the

available sample support K, the estimation of the sub-covariance ma-
trix from sub-vectors extracted by r1

σ , . . . ,
rK
σ might be performed more

reliably than the estimation of the entire covariance matrix. Moreover,
given the stationarity property (ensured by the use of either a uniform
linear array or a regularly spaced pulse train) of the random vectors
ri
σ , i = 1, . . . ,K, the information provided by different diagonal blocks

of S of the same size can be combined to produce an estimate.
As to the dimension of the sub-blocks, which are meaningfully to an-

alyze, its value is related to the dimension of the subspace in which the
disturbance concentrates most of its power and depends on the specific
radar application. Namely, for a spatial processing, through the analysis
of sub-matrices of dimension smaller than or equal to the number J of
jammers, it is difficult to acquire reliable information about the condi-

tion number of the matrix Σ
σ2 , since all the directions are almost surely

completely affected by the interference power. Consequently, the knowl-
edge of J is assumed, whose value can be obtained adaptively resorting
to the ESM of the radar platform, and start to analyze sub-blocks of di-
mension greater than or equal to J + 1. It is also assumed that J < N ,
which is a reasonable assumption in the radar context.

In a Doppler processing, instead, the size of the sub-block to be pro-
cessed can be evaluated through an analysis of the estimated power dis-
tribution in the disturbance signal space, for instance, as the number of
eigenvalues of S which corresponds to the 98% of the whole disturbance
power associated to non-zero sample eigenvalues. As to the notation
adopted to describe the computation of Kmax, with SLi is indicated the
i−th sub-matrix of dimension L extracted by S, namely

SLi (h, k) = S(i+ h, i+ k), (h, k) ∈ {1, . . . , L}2.

Based on the aforementioned guidelines, the proposed predictor K
(∗)
max

is now described.

• K ≤ max(J, 1),
K(∗)

max = max(1, d(1)), (1.18)
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i.e. it is equal to its ML estimate.

• max(J, 1) < K < 2N ,

K(∗)
max =

λ�max

(
S̄

(c)
)

λ�min

(
S̄

(c)
) , where S̄

(c)
=

1

N − c+ 1

N−c+1∑
i=1

S
(c)
i , (1.19)

with λ�min(·) = max(1, λmin(·)), λ�max(·) = max(1, λmax(·)) and c =

max (min (dK/2e, dN/2e) , J + 1).

• K ≥ 2N

K(∗)
max = α

λ�max

(
S̄

(c)
)

λ�min

(
S̄

(c)
) + (1− α)

λ�max (S)

λ�min (S)
, (1.20)

where S̄
(c)

= 1
N−c+1

∑N−c+1
i=1 S

(c)
i , c = max (dN/2e, J + 1), α =

(−1/(2N))(K − 4N)u(−K + 4N), and u the Heaviside step function.

An important remark is now given: when Kmax ≥ K?
max = λ�max(S)

λ�min(S)
,

then the FML estimate [47], is attainable for problem P, given in (1.3),
and the proposed constrained structured estimator coincides with the
FML one. The last condition holds true for K ≥ 4N .

1.3 Performance Analysis

In this section, numerical results on the performance of the proposed
constrained structured ML estimate, in terms of normalized average
SINR, are presented. The following two scenarios are considered:

• spatial processing in the presence of jamming and white interfer-
ence;

• Doppler processing in the presence of bimodal clutter plus white
noise.

1.3.1 Spatial Processing in the Presence of Jamming and
White Interference

The considered radar system is equipped with a uniform linear array
of N = 20 elements, with a spacing between the antennas equal to
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d = λ0/2, where λ0 is the radar operating wavelength, that points in
the boresight direction. The overall disturbance is composed of jammers
and white interference. Hence, a structured covariance [47] is assumed,
that can be expressed as Σ = R + σ2

aI, where σ2
a is the actual power

level of the white disturbance term, whereas R is the covariance matrix
associated to J (narrowband or wideband) jammers, defined by

R (n,m) =

J∑
i=1

σ2
i sinc [0.5Bf (n−m)φi] e

j(n−m)φi (n,m) ∈ {1, . . . , N}

(1.21)
where Bf = B/f0 is the fractional bandwidth, B is the instantaneous
bandwidth of the desired signal (coinciding with the jammer’s band-
width), σ2

i is the power associated with the i-th jammer, and φi is the
jammer phase angle with respect to the antenna phase center. Precisely,
φ = 2πd(sin θ)/λ0, where θ is the angle off-boresight of the jammer.
To assess the performance of the proposed estimator, the normalized
average SINR6 is considered as figure of merit, which is defined as

SINRav =
1

MC

MC∑
i=1

|w†ip|2(
w†iΣwi

)
SINRopt

(1.24)

where SINRopt is the optimal value of the SINR given by SINRopt =
p†Σ−1p, achieved by the optimal weight vector Σ−1p, corresponding

6The statistical expectation of the normalized SINR is computed resorting to the
arithmetic mean of a number MC of Monte Carlo trials. As to the Monte Carlo
simulation, a bound on the variance of the normalized average SINR is

var(SINRav) = E[(SINRav − E[SINRav])2] = var

[∑MC
i=1 SINRi

MC

]

=
1

(MC)2

MC∑
i=1

var(SINRi) =
1

MC
var(SINRi) ≤

1

MC
,

(1.22)

where SINRi is the SINR of the i-th Monte Carlo trial. The last inequality stems
from the fact that SINR is less than 1. Then, the standard deviation of the estimation
error is upper bounded by √

var(SINRav) ≤ 1√
MC

. (1.23)

Thus, using equation (1.23), the number of Monte Carlo trials can be set in order to
guarantee the required accuracy.
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to the steering vector p = (1, 1, . . . , 1)T . The adaptive estimate of the

weight vector is wi = Σ̂
−1

i p, where Σ̂i is the data-dependent estimate
of Σ at the i-th trial. Finally, MC is the number of Monte Carlo trials7,
used to estimate SINRav.

In the following analysis, the focus is on 3 different scenarios. The
first accounts for only 1 jammer, whose power is σ2

1 = 30 dB, whereas its
phase is φ1 = 20 deg. The second includes J = 3 jammers. They share
the same power σ2

i = 30 dB, i = (1, 2, 3), and phases φ1 = 20 deg, φ2 =
40 deg, and φ3 = 60 deg (i.e. they are concerning to 3 different angles
of arrival). In these two situations, it is considered first the narrowband
(Bf = 0) and then the wideband (Bf = 0.3) environment. Finally, in the
third simulation, it has been accounted for J = 3 jammers, with different
powers, σ2

1 = 10 dB, σ2
2 = 20 dB, and σ2

3 = 30 dB, phases, φ1 = 20 deg,
φ2 = 40 deg, and φ3 = 60 deg, and fractional bandwidths, Bf1 = 0.2,
Bf2 = 0, Bf3 = 0.3. For all these cases, the considered simulation setting
assumes three different values for the actual power level of the white
interference, σ2

a = 0, 5, and 10 dB, respectively, whereas the nominal
lower bound to the aforementioned power level is σ2 = 0 dB.

As to Kmax, both the a-priori knowledge of the true condition num-

ber, i.e. Kmax = λmax(Σ)/λmin(Σ), and the predictor K
(∗)
max, proposed

in Subsection 1.2.1, have been considered.

In Fig. 1.2, the normalized average SINR is plotted versus the num-
ber of independent snapshots (secondary data), for the proposed algo-
rithm, the one with only a condition number constraint [48], and the
FML [47]. The sub-plots refer to the different cases analyzed in the
first scenario. Moreover, Fig. 1.3 refers to the second scenario, whereas
Fig. 1.4 refers to the last. The curves highlight that the constrained
structured estimator can achieve, for the considered values of the pa-
rameters, an higher (or comparable) normalized average SINR than the
FML algorithm (green dashed curve) and the technique proposed in [48]
(orange curve), both with the true condition number (blue curve with
dots) and the proposed predictor (red curve with crosses). Specifically,
the curves show that in the presence of a perfect knowledge of the white
disturbance power, i.e. if the parameter σ2

a = 0 dB, the performance
coincides with that of the FML, whereas a SINR gain is present with
respect to the estimation technique of [48] (see Tables 1.4-1.6). On the
contrary, if σ2

a > 0 dB, an interesting SINR gain is present with respect

7In the numerical results, it has been considered MC = 500.
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to the FML (as shown in Tables 1.1-1.3)8. In particular, the proposed
estimator with the proposed predictor of Kmax exhibits a SINR gain of
1.8 dB with respect to the FML, in the presence of 3 wideband jammers
and with 10 dB power level of the white interference. Furthermore, the
proposed estimator exhibits a SINR gain of 0.9 dB with respect to the
algorithm of [48], in the presence of 3 narrowband jammers and with 0
dB power level of the white interference. Notice that, for comparison
purpose, the PSMI (Pseudo Sample Matrix Inverse) is also considered in
the simulations of Figs. 1.2, 1.3, and 1.4 (black dotted line with circles).
In particular, the PSMI [4] computes the inverse of the sample covari-
ance matrix when the condition K ≥ N holds true; conversely, it utilizes
the pseudo inverse of the sample matrix when K < N . As expected, the
curves show a severe performance degradation of the PSMI with respect
to all the other analyzed algorithms; however, it can be seen that as
N increases (in particular for K >> N) the performance of the PSMI
tends to reach those of the other algorithms herein considered.

Table 1.1: Maximum SINR gain (in dB) of the proposed estimator, both with the
true condition number and its proposed predictor, with respect to the FML. The
values refer to the simulations of Fig. 1.2.

case 1.2a 1.2b 1.2c 1.2d 1.2e 1.2f

true Kmax 0 0 0 0 1.7 1.6

K
(∗)
max 0 0 0.3 0.3 2 1.9

In Fig. 1.5, the effect of Kmax on the jammer cancellation and its
connection with the required processor wordlength, [7], is shown for some
values of K, assuming a power level of the white disturbance σ2

a = 0 dB,
and the presence of 1 narrowband jammer with power σ2

1 = 30 dB and
a phase angle φ = 25 deg (100 Monte Carlo independent trials have
been considered). Therein, the average Output Response Ratio (ORR)
is plotted, i.e. the average ratio between the squared modulus of the

8Notice that, if dN ≥ 1, then the proposed estimator coincides with the es-
timator which accounts only for a condition number constraint. Moreover, since
σ2
a + λmin (R) = λmin (E [S]) ≥ E [λmin (S)] = E [dmin], where the upper bound be-

comes tighter and tighter as K increases, it is expected that the probability that the
minimum eigenvalue is less than 1 increases as long as σ2

a + λmin (R) is close to 1.
This explains the results obtained in the simulations, i.e. a SINR gain is obtained in
the presence of narrowband jammers and σ2

a = 1, when the smallest eigenvalue of the
true covariance matrix is equal to 1.
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Table 1.2: Maximum SINR gain (in dB) of the proposed estimator, both with the
true condition number and its proposed predictor, with respect to the FML. The
values refer to the simulations of Fig. 1.3.

case 1.3a 1.3b 1.3c 1.3d 1.3e 1.3f

true Kmax 0 0 0.4 0.4 2 1.9

K
(∗)
max 0 0 0.4 0.4 2.1 1.9

Table 1.3: Maximum SINR gain (in dB) of the proposed estimator, both with the
true condition number and its proposed predictor, with respect to the FML. The
values refer to the simulations of Fig. 1.4.

case 1.4a 1.4b 1.4c

true Kmax 0 0.1 1.6

K
(∗)
max 0 0.3 1.8

Table 1.4: Maximum SINR gain (in dB) of the proposed estimator, with the true
condition number, with respect to the estimator with only a condition number con-
straint. The values refer to the simulations of Fig. 1.2.

case 1.2a 1.2b 1.2c 1.2d 1.2e 1.2f

true Kmax 0.8 0.6 1 0.9 0.1 0.1

Table 1.5: Maximum SINR gain (in dB) of the proposed estimator, with the true
condition number, with respect to the estimator with only a condition number con-
straint. The values refer to the simulations of Fig. 1.3.

case 1.3a 1.3b 1.3c 1.3d 1.3e 1.3f

true Kmax 0.9 0.5 0.3 0.1 0 0

Table 1.6: Maximum SINR gain (in dB) of the proposed estimator, with the true
condition number, with respect to the estimator with only a condition number con-
straint. The values refer to the simulations of Fig. 1.4.

case 1.4a 1.4b 1.4c

true Kmax 0.6 0.7 0

output response in the jamming direction and that along the useful
signal one

ORR = E
[
|w†p(φ)|2/|w†p|2

]
, (1.25)
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where p(φ) = [1, exp(jφ), exp(2jφ), . . . , exp((N − 1)jφ)]T is the steering

vector in the direction φ and w = Σ̂
−1
p. Evidently, the smaller the

available number of bit nb = dlog2Kmaxe [7, equation 4.102a p. 156],
the worse the cancellation capabilities of the processor. This can be
explained observing that the dynamic range of the eigenvalues in the
estimated covariance matrix decreases as Kmax decreases. As a conse-
quence, the processor tends to treat all the directions in the same way
or, equivalently, it has less degrees of freedom to set the depth of the null
along the interference direction. Another implication of the eigenvalues
dynamic range reduction (ruled by Kmax) is a stabilization of the pro-
cessor angular response. Otherwise stated, the statistical realizations of
output angular pattern exhibit less and less fluctuations as Kmax de-
creases. This is an important feature in practical applications because
with a quite stable pattern, the disturbance is not very sensible to the
modulation resulting from the spatial adaptivity; hence, it could be also
cancelled with standard techniques like Moving Target Indicator (MTI)
or extensions.

1.3.2 Doppler Processing in the Presence of Bimodal Clut-
ter plus White Noise

The bimodal clutter model accounts for the presence of statistically
independent ground and sea clutters in addition to the white noise.
Assuming a Gaussian shaped PSD [80] for both the interfering sources,
the (i, k)-th element of the overall normalized disturbance covariance
matrix is given by

Σ(i, k) = CNRSρ
(i−k)2

S exp [−j2π(i− k)fS ] + CNRGρ
(i−k)2

G

+ σ2
aδi,k,

(1.26)

where CNRS and CNRG denote respectively the Clutter to Noise power
Ratio for the sea and the ground clutter, ρS and ρG are respectively
the one-lag correlation coefficients for the sea and the ground clutter,
fS is the normalized Doppler frequency of the sea clutter, and δi,k is
the Kronecker delta function. The performance assessments for the
case of Doppler processing refer to 3 different cases, where the actual
power level of the white interference σ2

a assumes, respectively, the val-
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ues 0, 5, 10 dB9. The considered temporal steering vector is given by
p = [1, exp(j2πfd), . . . , exp(j2π(N − 1)fd)]

T , with fd = 0.15. Other
simulations parameters are specified in the captions of Figs. 1.6 and
1.7.

In Fig. 1.6, the normalized average SINR is plotted versus the num-
ber of independent snapshots, for both the proposed algorithm, the one
with only a condition number constraint, and the FML. The curves
highlight that the constrained structured estimator can achieve, for the
considered values of the parameters, an higher (or comparable) normal-
ized average SINR than the FML algorithm (green dashed curve) and
the technique of [48] (orange curve), both with the true condition num-
ber (blue curve with dots) and the proposed predictor (red curve with
crosses). The curves, also, show that the SINR gain varies with the pa-
rameter σ2

a, as shown in Tables 1.7-1.10. Indeed, the proposed estimator
with the proposed predictor of Kmax achieves a SINR gain of 2.24 dB
with respect to the FML, in the scenario with σ2

a = 10 dB, CNRS = 10
dB, and CNRG = 30 dB. Moreover, the constrained structured estima-
tor exhibits a SINR gain of 1.26 dB with respect to the algorithm of
[48], in the scenario with σ2

a = 0 dB, CNRS = 10 dB, and CNRG = 30
dB.

Finally, in Fig. 1.7 the performance of the proposed estimator in
a mixture of Gaussian ground clutter plus a compound-Gaussian sea
clutter with a fully correlated Gamma texture among the training data
(shape parameter 0.5 and a mean value 1) are analyzed. The result
shows that the proposed estimator still outperforms the counterparts,
namely it exhibits a certain robustness with respect to a departure from
the nominal Gaussian model.

Table 1.7: Maximum SINR gain (in dB) of the proposed estimator, both with the
true condition number and its proposed predictor, with respect to the FML. The
values refer to the simulations of Fig. 1.6.

case 1.6a 1.6c 1.6e 1.6b 1.6d 1.6f

true Kmax 0 0.6 2 0 0.4 2

K
(∗)
max 0 0.8 2.2 0 0.2 1.5

9Two different cases have been considered. The former (σ2
a = 0 dB) is an ideal

case, in which the power level of white interference (due to jammers and white inter-
ference) is perfectly known; while, in the latter more realistic case (σ2

a 6= 0 dB), the
power level of the white term is not perfectly known.
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Table 1.8: Maximum SINR gain (in dB) of the proposed estimator, both with the
true condition number and its proposed predictor, with respect to the FML. The
values refer to the simulations of Fig. 1.7.

case 1.7a 1.7c 1.7e 1.7b 1.7d 1.7f

true Kmax 0 0.5 1.9 0 0.4 2

K
(∗)
max 0 0.8 2.2 0 0.2 1.5

Table 1.9: Maximum SINR gain (in dB) of the proposed estimator, with the true
condition number, with respect to the estimator with only a condition number con-
straint. The values refer to the simulations of Fig. 1.6.

case 1.6a 1.6c 1.6e 1.6b 1.6d 1.6f

true Kmax 1.3 0.5 0 1.2 0.6 0

Table 1.10: Maximum SINR gain (in dB) of the proposed estimator, with the
true condition number, with respect to the estimator with only a condition number
constraint. The values refer to the simulations of Fig. 1.7.

case 1.7a 1.7c 1.7e 1.7b 1.7d 1.7f

true Kmax 1.2 0.5 0 1.2 0.6 0
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Figure 1.2: Spatial processing. SINRav versus the number of independent snapshots
(the blue curve with dots refers to the constrained structured estimator with the true
condition number, the red curve with crosses to the constrained structured estimator
with the proposed predictor of the condition number, the orange curve to the esti-
mator with only a condition number constraint, the green dashed curve to the FML
algorithm, whereas the black dotted line with circles to the PSMI). The analyzed
environment includes 1 jammer with power σ2 = 30 dB and phase angle φ = 20 deg.
Narrowband scenario (Bf = 0) (on the left). Wideband scenario (Bf = 0.3) (on the
right). Three values of σ2

a are considered.
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Figure 1.3: Spatial processing. SINRav versus the number of independent snap-
shots (the blue curve with dots refers to the constrained structured estimator with
the true condition number, the red curve with crosses to the constrained structured
estimator with the proposed predictor of the condition number, the orange curve to
the estimator with only a condition number constraint, the green dashed curve to
the FML algorithm, whereas the black dotted line with circles to the PSMI). The
analyzed environment includes 3 jammers with power σ2 = 30 dB and phase angles
(φ1, φ2, φ3) = (20, 40, 60) deg. Narrowband scenario (Bf = 0) (on the left). Wide-
band scenario (Bf = 0.3) (on the right). Three values of σ2

a are considered.



1.3 Performance Analysis 31

0 5 10 15 20 25 30
−15

−10

−5

0

σ
a

2
 = 0 dB

number of independent snapshots, K

n
o

rm
a

li
z
e

d
 a

v
e

ra
g

e
 S

IN
R

(a)

0 5 10 15 20 25 30
−15

−10

−5

0

σ
a

2
 = 5 dB

number of independent snapshots, K

n
o

rm
a

liz
e

d
 a

v
e

ra
g

e
 S

IN
R

(b)

0 5 10 15 20 25 30
−15

−10

−5

0

σ
a

2
 = 10 dB

number of independent snapshots, K

n
o

rm
a

liz
e

d
 a

v
e

ra
g

e
 S

IN
R

(c)

Figure 1.4: Spatial processing. SINRav versus the number of independent snapshots
(the blue curve with dots refers to the constrained structured estimator with the true
condition number, the red curve with crosses to the constrained structured estimator
with the proposed predictor of the condition number, the orange curve to the esti-
mator with only a condition number constraint, the green dashed curve to the FML
algorithm, whereas the black dotted line with circles to the PSMI). The analyzed
environment includes 3 jammers with powers (σ2

1 , σ
2
2 , σ

2
3) = (10, 20, 30) dB, phase

angles (φ1, φ2, φ3) = (20, 40, 60) deg and fractional bandwidth Bf = (0.2, 0, 0.3),
respectively. Three values of σ2

a are considered.
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Figure 1.5: Spatial processing. Average ORR (expressed in dB) versus
dlog2(Kmax)e, which is the minimum required wordlength. The analyzed environ-
ment includes 1 narrowband jammer with power σ2

1 = 30 dB and phase angle φ = 25
deg. The analysis has been conducted for different values of the sample support (i.e.
K = N/2, K = N , K = 2N , and K = 3N).
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Figure 1.6: Doppler processing. SINRav versus the number of independent snap-
shots (the blue curve with dots refers to the constrained structured estimator with
the true condition number, the red curve with crosses to the constrained structured
estimator with the proposed predictor of the condition number, the orange curve to
the estimator with only a condition number constraint, whereas the green dashed
curve to the FML algorithm). The analyzed environment parameters are ρS = 0.6
dB, ρG = 0.99, fS = 0.2, and CNRS = 10 dB and CNRG = 30 dB for the curves on
the left, and CNRS = 5 dB and CNRG = 10 dB for the curves on the right. Three
values of σ2

a are considered.
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Figure 1.7: Doppler processing. SINRav versus the number of snapshots (the blue
curve with dots refers to the constrained structured estimator with the true condition
number, the red curve with crosses to the constrained structured estimator with the
proposed predictor of the condition number, the orange curve to the estimator with
only a condition number constraint, whereas the green dashed curve to the FML
algorithm). The analyzed environment parameters are ρS = 0.6 dB, ρG = 0.99,
fS = 0.2, and CNRS = 10 dB and CNRG = 30 dB for the curves on the left, and
CNRS = 5 dB and CNRG = 10 dB for the curves on the right. Gamma texture shape
parameter 0.5 and mean value 1. Three values of σ2

a are considered.



Chapter 2

Geometric Approaches to
Covariance Estimation for
Secondary Data Selection

In this chapter, two classes of covariance matrix estimators which
does not depend on the probability distribution function of the sample
support are proposed and analyzed. Precisely, any estimator of these
two classes is associated to a suitable distance in the considered space
and is defined, respectively, as the median matrix [23] or the geomet-
ric barycenter [81] of a set of covariance matrices, obtained from the
available secondary data set. As to the considered distances, the focus
is on Euclidean, Log-Euclidean, Root-Euclidean, and Power-Euclidean
distances [82]. Furthermore, the basic covariance matrix estimates (used
in the matrix median and geometric barycenter calculations) are com-
puted exploiting some a-priori information about the covariance matrix
structure [83]. Based on the new devised estimators, training data selec-
tors, whose aim is to discard secondary data containing outliers, are pro-
posed. The selection is based on the Generalized Inner Product (GIP)
[8] exploiting the median matrices or the geometric barycenters in place
of the classic sample covariance matrix.

At the analysis level, the performance of the new selection schemes
are assessed, in terms of probability of correct outliers excision, compar-
ing the systems exploiting the geometric barycenters with those exploit-
ing the median matrices. The results show that data selectors exploiting
geometric medians can outperform those based on geometric barycen-
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for Secondary Data Selection

ters but the former require a computational complexity higher than the
latter.

The chapter is organized as follows. In Section 2.1, the system model
is described and the two families of estimators are presented; the for-
mer are obtained as the solution of a convex optimization problem (i.e.
the median matrices) and the latter are obtained in a closed form. In
Section 2.2, training data selectors are presented, whereas in Section 2.3
performance analysis are provided.

2.1 Problem Formulation and Covariance Ma-
trix Estimators

This section formalizes the problem of estimating the positive definite
covariance matrix Σ, of K secondary data r1, . . . , rK , modeled as N -
dimensional circularly symmetric zero-mean vectors, with an arbitrary
joint statistical distribution, and sharing the same covariance matrix

E
[
rir
†
i

]
= Σ, i = 1, . . . ,K, (2.1)

assumed positive definite.

When the statistical characterization of the secondary data is not
known, classic approaches, such as the ML or the Minimum Mean Square
Error (MMSE) estimations, cannot be applied, and different families of
covariance matrix estimators must be introduced.

The framework proposed in this chapter relies on the use of suitable
types of distances in the positive definite matrix space, namely on the
cone of the positive definite matrices as illustrated in Fig. 2.1. Otherwise

Figure 2.1: Cone of positive definite matrices.
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stated, two classes of estimators are defined, based respectively on the
geometric barycenter and the generalized median matrix of a set of basic
covariance matrix estimates, obtained from the available secondary data
set. Specifically, denoting by Si, i = 1, . . . ,K, the set of basic covariance
matrix estimates and given a distance

d(·, ·) : A � 0,B � 0→ [0,+∞),

the corresponding geometric barycenter-based estimator is defined as

Σ̂ = arg min
Σ�0

{
K∑
i=1

wid
2(Si,Σ)

}
, (2.2)

whereas the median-based estimator is

Σ̂M = arg min
Σ�0

{
K∑
i=1

wid(Si,Σ)

}
. (2.3)

Notice that, the coefficients wi (with wi > 0 and
∑K

i=1wi = 1) allow
to weight the secondary data, in order to account for their reliability,
for instance their degree of homogeneity or temporal acquisition. The
weights, wi, can be also chosen on the basis of the similarity between the
secondary data terrain and that of the cell under test (exploiting, for in-
stance, the so-called National Land Cover Data, NLCD [76]). Of course,
without any source of a-priori knowledge, it is reasonable to set equal
weights and Σ̂M ends up coincident with the median matrix induced by
the metric d(·, ·) of the set of matrices Si, i = 1, . . . ,K. Moreover, when
wi = 1/K, i = 1, . . . ,K, and the matrices Si are assumed i.i.d. random
positive definite matrix, then

Σ̂ = arg min
Σ

1

K

{
K∑
i=1

d2(Si,Σ)

}
,

is an empirical (sample) Fréchet mean [84], [85], where a Fréchet mean
of an N ×N random covariance matrix S is given by [84], [85]

Ω̂ = arg min
Ω

E
[
d2(S,Ω)

]
. (2.4)

The idea of using the generalized median matrix in (2.3) stems from
the well known robustness of the conventional median value with respect
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to the presence of outliers in the data. To better explain this concept,
it can be recalled that the median value of a real random variable X is
defined as

x̄ = arg min
m

E [|X −m|] , with m ∈ R. (2.5)

It is well known that, for a continuous random variable, x̄ is such that

Pr ({X ≤ x̄}) =
1

2
(2.6)

namely, the conventional median corresponds to the 50% percentile of
the distribution of x. Let us now observe that for an empirical distribu-
tion defined by a set of real observations xi, i = 1, . . . , N0, the empirical
median value is given by

x̄e = arg min
m

1

N0

N0∑
i=1

|xi −m|, with m ∈ R. (2.7)

Thus, denoting by x(i), i = 1, . . . , N0 the ordered observations in increas-
ing order, it is easy to show that x̄e = x(dN2 e)

. Consequently, replacing

an observation xi > x̄ with another (possibly much higher) y > x̄, the
new empirical median value does not change. In other words, there is a
robustness of the median with respect to the presence of outliers. There-
fore, leveraging on the above consideration and exploiting the concept
of median matrix, which is a generalization of classic median definition,
it is possible to devise robust covariance matrix estimators.

As to the set of basic covariance matrix estimates, it is assumed that
each Si is a function of the single secondary datum ri, namely Si =
Si(ri), i = 1, . . . ,K. In particular, a possible choice could be the rank-

one sample matrix related to the vector ri, namely Si = rir
†
i . However,

this is not acceptable since the aforementioned definition of distance
requires that the considered matrices are positive definite; hence a-priori
information has to be exploited to come up with positive definiteness.
Toward this goal, the knowledge of a lower bound to the spectral density
of the white noise is assumed (set, without loss of generality, to 0 dB),
and the covariance matrix which minimizes the Euclidean distance (also

called Frobenius distance) from rir
†
i is associated to each vector of the

sample support, under the constraint Si � I. The following theorem,
provides the explicit expression of the aforementioned minimizer.
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Theorem 2.1.1. Let ri be the i-th N -dimensional secondary datum, the
matrix Si which minimizes the Frobenius distance from rir

†
i under the

constraint Si � I, i.e. the optimal solution to the optimization problem

P

{
min
Si

||rir†i − Si||2

s.t. Si � I
, (2.8)

is given by
Si = U iΛiU

†
i , (2.9)

where

Λi = diag ([λi, 1, . . . , 1]) with λi = max
(
1, ||ri||2

)
, (2.10)

and U i is a unitary matrix of the eigenvectors of rir
†
i with the first

eigenvector corresponding to the eigenvalue ||ri||2.

Proof. See Appendix G.
Notice that, the eigenvalue decomposition is not necessary to com-

pute (2.8) as

Si = rir
†
i max

([
1− 1

||ri||2

]
, 0

)
+ I. (2.11)

As shown in [83], the matrix Si in (2.9) also minimizes the distance

induced by the spectral norm from the matrix rir
†
i under the constraint

Si � I. As to the considered distances, the focus is on the Euclidean,
Log-Euclidean, Root-Euclidean, and Power-Euclidean distances. Thus,
four covariance matrix estimators for each class are obtained, which are
presented in the next subsection.

2.1.1 Covariance Matrix Estimators based on Geometric
Barycenters and Median Matrices

In this subsection, the considered distances are described, and the
corresponding estimators are derived. Specifically, let A � 0 and B �
0, the considered four distances and the corresponding estimators are
formally defined as:

• Euclidean distance,

dE(A,B) =
√

tr {(A−B)(A−B)†},
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the corresponding barycenter estimator is

Σ̂E = arg min
Σ

{
K∑
i=1

wid
2
E(Si,Σ)

}
,

whereas the corresponding median estimator is

Σ̂M,E = arg min
Σ�0

{
K∑
i=1

widE(Si,Σ)

}
.

• Log-Euclidean distance,

dL(A,B) =
√

tr {(logA− logB)(logA− logB)†},

the corresponding barycenter estimator is

Σ̂L = arg min
Σ

{
K∑
i=1

wid
2
L(Si,Σ)

}
,

whereas the corresponding median estimator is

Σ̂M,L = arg min
Σ�0

{
K∑
i=1

widL(Si,Σ)

}
.

• Root-Euclidean distance,

dH(A,B) =

√
tr

{(
A1/2 −B1/2

)(
A1/2 −B1/2

)†}
,

and the corresponding barycenter estimator is

Σ̂H = arg min
Σ

{
K∑
i=1

wid
2
H(Si,Σ)

}
,

whereas the corresponding median estimator is

Σ̂M,H = arg min
Σ�0

{
K∑
i=1

widH(Si,Σ)

}
.
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• Power-Euclidean distance,

dA(A,B) =
√

tr {(Aα −Bα)(Aα −Bα)†},

and the corresponding barycenter estimator is

Σ̂A = arg min
Σ

{
K∑
i=1

wid
2
A(Si,Σ)

}
,

whereas the corresponding median estimator is

Σ̂M,A = arg min
Σ�0

{
K∑
i=1

widA(Si,Σ)

}
.

Let us now focus on the structure of the barycenter-based estimators;
the following theorem allows to obtain the closed form expression of Σ̂E ,
Σ̂L, Σ̂H , and Σ̂A.

Theorem 2.1.2. Given the set of matrices Ai ∈ CN×N , i = 1, . . . ,K,

and the set of weights wi, i = 1, . . . ,K, with wi > 0 and

K∑
i=1

wi = 1, the

solution to the optimization problem

Â = arg min
A

{
K∑
i=1

wi||Ai −A||2
}
, (2.12)

is unique, and can be written as

Â =

K∑
i=1

wiAi. (2.13)

Proof. See Appendix H.

Let us now specialize Theorem 2.1.2 to Ai = Si, where Si � 0 is
the i-th covariance matrix estimate, and A = Σ. Thus, the proposed
Euclidean estimator is given by

Σ̂E =

K∑
i=1

wiSi, (2.14)
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namely, it is the weighted mean of the covariance matrix estimates, Si.
For real numbers and wi = 1/K, i = 1, . . . ,K, this estimator becomes
the arithmetic mean.

Similarly, defining Ai = logSi and A = log Σ, the Log-Euclidean
estimator can be expressed as

Σ̂L = exp

{
K∑
i=1

wi logSi

}
, (2.15)

Notice that, for positive real numbers and wi = 1/K, i = 1, . . . ,K, Σ̂L

represents a generalization of the geometric mean1 of the matrices Si.

The Root-Euclidean estimator is obtained by substitutingAi = S
1/2
i

and A = ∆H = Σ1/2:

Σ̂H = ∆̂H∆̂
†
H where ∆̂H =

K∑
i=1

wiS
1/2
i . (2.16)

Finally, the Power-Euclidean estimator follows, taking Ai = Sαi and
A = ∆A = Σα, i.e.

Σ̂A = (∆̂A)1/α where ∆̂A =
K∑
i=1

wiS
α
i . (2.17)

The coefficient α usually lies in the set (0, 1], and it is obvious that for
α = 1/2, the Power-Euclidean becomes the Root-Euclidean estimator,
and for α = 1 it becomes the Euclidean one.

It can be explicitly observed that the estimators (2.16) and (2.17))
extend to the positive definite matrix space the mean power definition
of a set of positive real numbers. Indeed, for positive numbers xi and

wi = 1/K, i = 1, . . . ,K, they reduce to
(

1
K

∑K
i=1 x

α
i

)1/α
, α ∈ (0, 1].

Let us now focus on the computation of the median-based estimators;
the following theorems allow to obtain Σ̂M,E , Σ̂M,L, Σ̂M,H , and Σ̂M,A

from the solution of a convex optimization problem.

1Given K positive numbers (x1, x2, . . . , xK), the geometric mean, x̄ =
K
√
x1 · x2 · . . . · xK , minimizes the sum of the squared hyperbolic distances to the

given positive numbers xi:

x̄ = arg min
x>0

{
K∑
i=1

| log x− log xi|2
}
.
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Theorem 2.1.3. Given the set of matrices Ai ∈ HN , i = 1, . . . ,K, and

the set of weights wi, i = 1, . . . ,K, with wi > 0 and

K∑
i=1

wi = 1, the

matrix

Â = arg min
A∈HN

{
K∑
i=1

wi||Ai −A||

}
, (2.18)

can be computed as the optimal solution to the convex optimization
Semidefinite Programming (SDP) problem

P1


min

t1,...,tK ,A

K∑
i=1

witi

s.t.

(
ti (vec(A)− vec(Ai))

†

(vec(A)− vec(Ai)) tiI

)
� 0

A ∈ HN

.

i = 1, . . . ,K

(2.19)

Proof. See Appendix I.

Notice that, the computational complexity connected with the solu-
tion of the optimization problem P1 is O(N3.5 log(1/η)), where η is a
prescribed accuracy (see [74]).

The following proposition provides an interesting property of the
median matrix in (2.18).

Proposition 2.1.4. If Ai � 0, i = 1, . . . ,K, then Â in (2.18) is positive
semidefinite. Moreover, if Ai � 0, i = 1, . . . ,K, then Â in (2.18) is
positive definite. Additionally, if the matrices Ai ∈ HN are not aligned,
i.e. there are no Q0 ∈ HN and Q1 ∈ HN such that

Ai = tiQ1 +Q0, ti ∈ R, i = 1, . . . ,K, (2.20)

the median matrix is unique.

Proof. See Appendix J.

Let us now specialize Theorem 2.1.3 to Ai = Si, where Si � I is
the i-th covariance matrix estimate, and A = Σ. Thus, the proposed
Euclidean median estimator Σ̂M,E is obtained by the optimal solution
to (2.18).
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Similarly, defining Ai = logSi � 0 and A = log Σ, and denoting
by Â the corresponding optimal solution to (2.18), the Log-Euclidean
median estimator is

Σ̂M,L = exp
{
Â
}
, (2.21)

Now, definingAi = S
1/2
i � I and denoting by Â the optimal solution

to (2.18), the Root-Euclidean median estimator is

Σ̂M,H = ÂÂ
†
. (2.22)

Moreover, the Power-Euclidean median estimator follows takingAi =
Sαi � I and defining

Σ̂M,A = (Â)1/α (2.23)

where Â is the corresponding optimal solution to (2.18). The coeffi-
cient α lies in the set (0, 1], and it is evident that for α = 1/2, the
Power-Euclidean degenerates into the Root-Euclidean median estimator
whereas, for α = 1, the Power-Euclidean becomes the Euclidean median
estimator. Notice that, (·)α acts as a compressor on the eigenvalues
and it is an infinite of order α. Moreover, the logarithm is an infinite
of order lower than α, for each value of α > 0. Hence, as α → 0, the
Power-Euclidean selector tends to behave as the Log-Euclidean one.

Processing interpretation. First of all, the matrices Si, i = 1, . . . ,K,
are transformed through the specific function (identity, log, power, root)
defining the corresponding barycenter or median (Fig. 2.2). Then, the
weighted average or the median of the transformed Si, i = 1, . . . ,K, is
computed, solving the SDP problem (2.19) in the latter case. Finally,
the inverse transformation of the barycenter or median specific function
is applied to the average matrix or to the median matrix, respectively,
computed at the previous step.

As a consequence, the matrices Si, i = 1, . . . ,K, are first processed
into an ad-hoc domain and then, through the inverse transformation,
the covariance estimate is re-mapped into the original positive definite
matrix space. The benefits obtainable resorting to this processing chain
could be explained observing that the log, power, and square-root trans-
formations act as compressors of the eigenvalues and hence they try to
de-emphasize the effect of outliers.
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Figure 2.2: A pictorial illustration about the generalized geometric barycen-
ter/median computation procedure.

2.2 Secondary Data Selection Design

In the present section, a secondary data selection scheme exploit-
ing the proposed barycenter and median-based covariance matrix esti-
mators is introduced. The aim of the data selector is to choose the
most homogeneous secondary data, discarding vectors containing possi-
ble outliers. This screening is of paramount importance, since adaptive
receivers achieve satisfactory performances when the available secondary
data share the same spectral properties. In Fig. 2.3, the block-scheme
of the proposed class of training data selectors is shown.

The selector screens among the K training data excising the K0

vectors with the highest GIP [8], [86], [87] computed using one of the
new devised covariance matrix estimators (described in Subsection 2.1.1)
in place of the classic sample covariance matrix. Precisely, denoting
by Ω = {1, 2, . . . ,K} the set of the secondary data indices and by
Ω0 = {i1, i2, . . . , iK−K0} ⊆ Ω the subset, of cardinality K −K0, of the
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Figure 2.3: Pictorial representation of the training data selector scheme.

selected training data indices, the proposed screening procedure based
on the estimator Σ̂d, where d accounts for the considered distance, can
be summarized as follows:

• compute the covariance matrix estimate Σ̂d exploiting the sec-
ondary data r1, r2, . . . , rK ;

• ∀ i ∈ Ω construct the quadratic form (GIP)

βdi = r†i Σ̂
−1

d ri i = 1, . . . ,K, (2.24)

and sort βdi s in decreasing order;

• The set Ω0 of the selected K −K0 indices, is obtained censoring
from Ω the indices corresponding to the K0 highest values βdi .

Notice that βdi measures the energy of the vector Σ̂
− 1

2
d ri. Thus, the

screening procedure excises the K0 data having the highest energy in
the “quasi-whitened-space”, where the whitening operation is tied up to
the specific covariance matrix estimate. Notice also that, the procedure
here illustrated is the same for the medians, substituting Σ̂M,d in place

of Σ̂d.
Whenever the secondary data have been selected, the sample covari-

ance matrix

Σ̂SM =
1

K −K0

∑
j∈Ω0

rjr
†
j (2.25)
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can be computed from the filtered data, and it can be used in adaptive
detectors like AMF, [6], or Kelly, [5].

As to the selection of K0, heuristic rules, based on the available
a-priori information, can be considered. Some guidelines are now pre-
sented. Exploiting digital terrain maps, such as the National Land Cover
Data [76], the illuminated environment can be classified in terms of its
homogeneity. Precisely, through the NLCD interrogation, the environ-
ment illuminated by the radar can be classified as urban, open sea,
desert, and consequently it can be associated to each classified envi-
ronment a suitable number of secondary data to be discarded, i.e. K0.
For instance, if the analyzed environment is classified as high intensity
residential urban area, an high value of K0 can be considered, due to
outliers corresponding to cars, or street lamps. On the contrary, if the
environment is classified as open sea, K0 can be set to a lower value.
Furthermore, a cognitive approach can be followed. Precisely, resort-
ing to previous acquired observations (data scans), a prediction of the
number of discrete outliers, present in the scene, can be obtained.

In the following section, the capabilities of the data selectors based on
barycenters and on median matrices to excise training data containing
outliers are analyzed. For comparison purpose, also the selector which
exploits the classical sample covariance matrix is considered

Σ̂S =
1

K

K∑
i=1

rir
†
i , (2.26)

to compute the GIP. The covariance matrix estimates are obtained con-
sidering equal weights wi = 1

K , i = 1, . . . ,K, namely no a-priori infor-
mation is assumed. Moreover, the parameter α of the Power-Euclidean
distance based estimators (2.17) and (2.23) is set to 0.8.

2.3 Analysis of the Selection Properties

To evaluate the performance of the proposed training data selectors,
the probability of correct selection of the secondary data, Pselection (de-
fined as the probability that all the selected data do not contain any
outliers), is considered as figure of merit.

A Doppler processing is considered and the covariance matrix of the
disturbance is modeled as the sum of two contributions, i.e. a colored
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matrix accounting for the clutter and an identity matrix accounting for
the white thermal noise

Σ = Σ0 + I. (2.27)

Assuming a Gaussian shaped clutter PSD [80], the covariance matrix
term due to the clutter is modeled as

Σ0(i, k) = σ2
cρ
|i−k|ej2πfdc (i−k), i, k = 1, . . . , N, (2.28)

where ρ is the one-lag correlation coefficient, σ2
c is the Clutter to Noise

power Ratio (CNR) and fdc is the clutter normalized Doppler frequency.
The considered simulation setting is ρ = 0.95, σ2

c = 20 dB, and fdc =
0.05. With reference to the secondary data to be processed, the availabil-
ity of K = 24 training vectors is assumed. In four vectors of the training
set some outliers are injected, whose temporal steering signatures are

pi = αi[1, e
j2πfdo,i , . . . , e

j2π(N−1)fdo,i ]T , i = 1, . . . , 4, (2.29)

where fdo,i is the normalized Doppler frequency of the i-th outlier, and
|αi|2 accounts for the outlier power. In the following, the average power
of the outliers is denoted by

|α|2av =
1

4

4∑
i=1

|αi|2. (2.30)

Due to the lack of a closed form expression for Pselection, the per-
formance analysis is conducted resorting to Monte Carlo simulation,
evaluating the number of times that a correct selection occurs over the
total number of trials MC, set to 500.

In Fig. 2.4, for each considered data selector, Pselection is plotted
versus the average power of the outliers |α|2av, for N = 8, K = 24,
fdo,1 = 0.10, fdo,2 = 0.20, fdo,3 = 0.18, fdo,4 = 0.22, and |α1|2 =
|α2|2 = |α3|2 = |α4|2, i.e. equal power outliers. As to the number
of training data to be excised, four situations are considered, namely
K0 = 4, 5, 6, 7, whose results are respectively shown in the subplots
(a), (b), (c) and (d) of the figure. The curves highlight that the Log-
Euclidean barycenter-based estimator outperforms the other barycenters
and the Log-Euclidean median-based estimator outperforms the other
medians; it can be justified observing that the log function is the best
compressor among the considered estimators, namely it should achieve
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the best effect of outliers de-emphasization. Moreover, increasing K0,
higher values of Pselection are achieved, and all the estimators tend to
approach the same performance. Obviously, K0 trades-off the homo-
geneity of the selected data with the actual amount of secondary data
to be used for the subsequent adaptation process. Moreover, the figure
shows that, given a specific distance, the selector based on the median
matrix generally achieve a higher probability of correct outliers excision
than that ensured by the geometric barycenter. This behavior highlights
the expected robustness of the median with respect to the presence of
outliers. For instance, comparing the Euclidean median and the Eu-
clidean barycenter, in correspondence of |α|2av = 25 dB and K0 = 4, the
former ensures a Pselection higher than 0.9, whereas the latter a Pselection
almost equal to 0.8. Moreover, the conducted analysis shows that the
Log-Euclidean median-based and the Log-Euclidean barycenter-based
estimators achieve almost the same selection performance. This result
can be justified by the outliers de-emphasization property of the log
transformation. Nevertheless, it is worth pointing out that the better
performance of the selectors based on the geometric medians is paid
with an increased computational complexity. This is due to the fact
that, while matrix barycenters can be evaluated through simple ana-
lytic expressions, the computation of median matrices involves the so-
lution of an SDP problem. As to the classic sample covariance matrix
based screener, it experiences a performance degradation with respect
to both geometric barycenters-based and geometric medians-based se-
lectors; this behaviour is not surprising and was actually expected being
the sample covariance matrix the ML estimator under the assumption
of homogeneity for the training data.

In Fig. 2.5, Pselection is plotted versus |α|2av assuming non equal
power outliers. Precisely, the same simulation setup of Fig. 2.4 is con-
sidered, with the only difference that |α2|2 = 2

3 |α1|2, |α3|2 = |α1|2,
and |α4|2 = 3

2 |α1|2. Interestingly, the Log-Euclidean median estimator
still achieves the best performance (which is almost the same as that
of the corresponding barycenter-based estimator), whereas the Root-
Euclidean median estimator still achieves an effective rejection of the
outliers. Moreover, Fig. 2.5 highlights a degradation in the selection
performance of the other estimators. The present analysis also confirms
the fact that, for each considered distance, the estimator based on the
geometric median reaches a higher Pselection than the one based on ge-
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Figure 2.4: Pselection versus |α|2av. The curves refer to 4 outliers with |α1|2 = |α2|2 =
|α3|2 = |α4|2, whereas K0 = (4, 5, 6, 7) respectively for subplots (a), (b), (c) and (d).

The dashed curves refer to the geometric medians, i.e. Σ̂M,E (5-marked curve),

Σ̂M,L (◦-marked curve), Σ̂M,H (no marked curve), Σ̂M,A (+-marked curve). The

continuous curves refer to the geometric barycenters, i.e. Euclidean Σ̂E (5-marked

curve), Log-Euclidean Σ̂L (◦-marked curve), Root-Euclidean Σ̂H (no marked curve),

Power-Euclidean Σ̂A (+-marked curve). Finally, the dotted curve refers to Σ̂S (∗-
marked curve).

ometric barycenter. Also in this case the Log-Euclidean median-based
estimator and the Log-Euclidean barycenter estimator present almost
the same selection performance.

Finally, in Fig. 2.6, under the same simulation setup of Fig. 2.5,
the outliers configuration |α1|2 = |α2|2 and |α3|2 = |α4|2 = |α1|2/10 is
analyzed. The best performances are still ensured by the Log-Euclidean
estimators (again, the Log-Euclidean median-based and Log-Euclidean
barycenter-based estimators present comparable performances). All the
other estimators exhibit a severe selection performance degradation.
Also in this figure it is clear that, the performances achieved by the
estimators based on geometric medians are generally better than those
achieved by the corresponding estimators based on geometric barycen-
ters. For instance, for |α|2av = 25 dB and K0 = 4, the Root-Euclidean
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Figure 2.5: Pselection versus |α|2av. The curves refer to 4 outliers with |α2|2 = 2
3
|α1|2,

|α3|2 = |α1|2, and |α4|2 = 3
2
|α1|2, whereas K0 = (4, 5, 6, 7) respectively for subplots

(a), (b), (c) and (d). The dashed curves refer to the geometric medians, i.e. Σ̂M,E (5-

marked curve), Σ̂M,L (◦-marked curve), Σ̂M,H (no marked curve), Σ̂M,A (+-marked

curve). The continuous curves refer to the geometric barycenters, i.e. Σ̂E (5-marked

curve), Σ̂L (◦-marked curve), Σ̂H (no marked curve), Σ̂A (+-marked curve). Finally,

the dotted curve refers to Σ̂S (∗-marked curve).

median has a Pselection of about 0.7, whereas the Root-Euclidean barycen-
ter presents a Pselection of about 0.2.

To further analyze the selection properties of the barycenter and
median-based estimators, the focus is on another outlier scenario [87],
[88]. Specifically, given K complex Gaussian zero-mean secondary data,
it is assumed that K − 4 vectors share the covariance matrix Σ, given
in (2.27), whereas 4 are characterized by a perturbed covariance matrix,
defined as

Σo,i = Σ + pip
†
i (2.31)

where pi is the steering vector of the i-th outlier, defined in (2.29).

In Fig. 2.7, for each considered data selector, Pselection is plotted
versus the average power of the outliers |α|2av, for N = 8, K = 24,
fdo,i = 0.15, for i = 1, . . . , 4, and |α1|2 = |α2|2 = |α3|2 = |α4|2. As to
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Figure 2.6: Pselection versus |α|2av. The curves refer to 4 outliers with |α1|2 = |α2|2
and |α3|2 = |α4|2 = |α1|2/10, whereas K0 = (4, 5, 6, 7) respectively for subplots (a),

(b), (c) and (d). The dashed curves refer to the geometric medians, i.e. Σ̂M,E (5-

marked curve), Σ̂M,L (◦-marked curve), Σ̂M,H (no marked curve), Σ̂M,A (+-marked

curve). The continuous curves refer to the geometric barycenters, i.e. Σ̂E (5-marked

curve), Σ̂L (◦-marked curve), Σ̂H (no marked curve), Σ̂A (+-marked curve). Finally,

the dotted curve refers to Σ̂S (∗-marked curve).

the number of training data to be excised, it is considered K0 = 6. The
curves confirm that the Log-Euclidean median-based estimator outper-
forms the others. Additionally, given a specific distance, the selectors
exploiting the median matrices generally achieve an higher probability
of correct outliers excision than those exploiting geometric barycenters.
The Log-Euclidean median-based selector exhibits a performance gain of
the order of 1 dB with respect to the Log-Euclidean barycenter screener,
which has a robust behaviour with respect to presence of outliers. Fi-
nally, the selector based on the classical sample covariance matrix is
characterized by the worst selection capabilities.

In Fig. 2.8, for each considered data selector, Pselection is plotted
versus the average power of the outliers |α|2av, for N = 8, K = 24,
fdo,1 = fdo,1 = 0.15, fdo,3 = 0.1 and fdo,4 = 0.2, and |α1|2 = |α2|2 =
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Figure 2.7: Pselection versus |α|2av. The curves refer to 4 outliers with fdo,i = 0.15,
for i = 1, . . . , 4, and |α1|2 = |α2|2 = |α3|2 = |α4|2, whereas K0 = 6. The dashed

curves refer to the geometric medians, i.e. Σ̂M,E (5-marked curve), Σ̂M,L (◦-marked

curve), Σ̂M,H (no marked curve), Σ̂M,A (+-marked curve). The continuous curves

refer to the geometric barycenters, i.e. Σ̂E (5-marked curve), Σ̂L (◦-marked curve),

Σ̂H (no marked curve), Σ̂A (+-marked curve). Finally, the dotted curve refers to Σ̂S

(∗-marked curve).

|α3|2 = |α4|2. As to the number of training data to be excised, it is
still considered K0 = 6. The curves attest the trend observed in the
previous analyzed cases, even if the barycenters show an increment in
their selection performance with respect to the scenario considered in
Fig. 2.7.

In Fig. 2.9, for each considered data selector, Pselection is plotted
versus the average power of the outliers |α|2av, for N = 8, K = 24,
K0 = 6, fdo,1 = 0.1, fdo,2 = 0.2, fdo,3 = 0.3 and fdo,4 = 0.4, and
|α1|2 = |α2|2 = |α3|2 = |α4|2. The plots highlight that, even if the curves
tend to approach the same performance, the Log-Euclidean median-
based estimator still outperforms the counterparts.

Summarizing, the obtained results show that the median-based es-
timators generally outperform the barycenter-based estimators, at the



54
Chapter 2 Geometric Approaches to Covariance Estimation

for Secondary Data Selection

10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

|α|
2

av

P
s
e

le
c
ti
o

n

Figure 2.8: Pselection versus |α|2av. The curves refer to 4 outliers with fdo,1 = 0.1,
fdo,2 = 0.2, fdo,3 = 0.3 and fdo,4 = 0.4, and |α1|2 = |α2|2 = |α3|2 = |α4|2, whereas

K0 = 6. The dashed curves refer to the geometric medians, i.e. Σ̂M,E (5-marked

curve), Σ̂M,L (◦-marked curve), Σ̂M,H (no marked curve), Σ̂M,A (+-marked curve).

The continuous curves refer to the geometric barycenters, i.e. Σ̂E (5-marked curve),

Σ̂L (◦-marked curve), Σ̂H (no marked curve), Σ̂A (+-marked curve). Finally, the

dotted curve refers Σ̂S (∗-marked curve).

price of a higher computational burden.
However, the results also suggest, from a practical point of view, the use
of the Log-Euclidean barycenter-based estimator, since it achieves al-
most the same selection capabilities of the Log-Euclidean median-based
estimator, while strongly reducing the computational effort.
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Figure 2.9: Pselection versus |α|2av. The curves refer to 4 outliers with fdo,1 = 0.1,
fdo,2 = 0.2, fdo,3 = 0.3 and fdo,4 = 0.4, and |α1|2 = |α2|2 = |α3|2 = |α4|2, whereas

K0 = 6. The dashed curves refer to the geometric medians, i.e. Σ̂M,E (5-marked

curve), Σ̂M,L (◦-marked curve), Σ̂M,H (no marked curve), Σ̂M,A (+-marked curve).

The continuous curves refer to the geometric barycenters, i.e. Σ̂E (5-marked curve),

Σ̂L (◦-marked curve), Σ̂H (no marked curve), Σ̂A (+-marked curve). Finally, the

dotted curve refers to Σ̂S (∗-marked curve).





Chapter 3

Radar Distributed Targets
Detection in Homogeneous
Interference with
Covariance Matrix Unitary
Constraints

In this chapter, the problem of detecting an extended target (or dis-
tributed target), embedded in Gaussian noise with unknown but struc-
tured covariance matrix, is addressed. It is supposed that the data are
collected byN channels (temporal, spatial, or spatial-temporal) and that
the possible target is sought within K range cells. The target echo from
each range bin is modeled as a deterministic signal times a deterministic
but unknown scaling factor which accounts for the target response and
may possibly vary from cell to cell. Moreover, it isn’t supposed the avail-
ability of any secondary data set, free of signal components; whereas,
some a-priori knowledge about the operating environment are exploited
to enforce the covariance matrix to belong to a suitable uncertainty
set. Specifically, it is considered that a properly transformed inverse
disturbance covariance matrix belongs to a nonempty and bounded set
described through unitary invariant continuous functions, namely con-
tinuous functions depending only on the eigenvalues of their matrix argu-
ment. Hence, the constrained ML estimates of the unknown parameters
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(the target range responses and the covariance matrix) are derived and
the GLRT detector for the hypothesis test under consideration is de-
signed. The devised constrained ML estimators involve the eigenvalue
decomposition of both the transformed sample covariance matrix as well
as its modified version computed from the data projected in the null
space of the transformed useful signal. Additionally, two optimization
problems have to be solved. Many covariance matrix uncertainty sets
of practical interest (compliant with the proposed model) lead to con-
vex optimization problems, that can be solved in the worst case with a
polynomial complexity in the number of channels. This is, for instance,
the case of the structural constraint in [47], the condition number upper
bound constraint in [48] and Chapter 1, and similarity constraints like
that in [11]. Moreover, there are also situations where the optimization
problems to be solved are non-convex but their optimal solutions can
be still efficiently obtained; an example of such a case arises for the
constraint set introduced in [89].

At the analysis stage, the performance of the devised class of GLRT-
based detectors is assessed, for some interference scenarios arising in
angle and Doppler processing applications. Specifically, for each ana-
lyzed situation, the Detection Probability (PD) of the GLRT decision
rule, devised exploiting a specific a-priori knowledge which suitably con-
strains the interference plus noise covariance matrix, is evaluated. The
results highlight that the proper use of the a-priori information can lead
to a detection performance quite close to the optimum receiver, which
supposes the perfect knowledge of the interference plus noise covariance
matrix. Additionally, as expected, they also confirm the intuition that
the better the covariance matrix uncertainty set characterization, the
better the PD.

The chapter is organized as follows. In Section 3.1, the problem is
formulated and both the target and disturbance model are introduced;
furthermore, the constrained ML estimates of the unknown parameters
are devised and the GLRT is designed. In Section 3.2, some practi-
cal examples of covariance matrix uncertainty sets compliant with the
proposed model are given and ad-hoc solution algorithms to compute
efficiently the corresponding ML estimates are presented. In Section
3.3, the performances of the proposed class of GLRT-based detectors
are assessed for some covariance matrix uncertainty sets.



3.1 Problem Formulation & System Design 59

3.1 Problem Formulation & System Design

In this section, the problem of detecting the presence of a target
distributed across K range cells, ri, i = 1, . . . ,K is dealt, considering a
radar that collects data from N channels. This problem can be formu-
lated as the following binary hypothesis test{

H0 : ri = ni i = 1, . . . ,K
H1 : ri = ni + αip i = 1, . . . ,K

, (3.1)

where p ∈ CN denotes the known unitary norm steering vector and αi’s,
i = 1, . . . ,K, are (unknown) deterministic complex parameters account-
ing for both target reflectivity and channel propagation effects. As to
the disturbance random vectors, it is assumed that ni’s, i = 1, . . . ,K,
are independent, complex, zero-mean, circular Gaussian vectors sharing
the same unknown covariance matrix Σ, namely

E[rir
†
i ] = Σ � 0, i = 1, . . . ,K.

Resorting to a matrix representation, the hypothesis test (3.1) can
be equivalently written in a more compact form as{

H0 : R = N
H1 : R = N + pα†

, (3.2)

where R = [r1, . . . , rK ] ∈ CN,K , N = [n1, . . . ,nK ] ∈ CN,K , and α =
[α1, . . . , αK ]† ∈ CK .

According to the Neyman-Pearson criterion, the optimum solution to
the above hypothesis testing problem is the Likelihood Ratio Test (LRT).
However, for the case under consideration, this procedure does not lead
to a Uniformly Most Powerful (UMP) test and the resulting detector
requires the knowledge of the parameters α and Σ, which reasonably
are assumed to be unknown.

A possible way to cope with the aforementioned a-priori uncertainty
is to resort to adaptive design procedures where the unknown parame-
ters appearing in nominal decision statistics are replaced by their ML
estimates. The most well known example of such a design framework is
the GLRT which is tantamount to substituting the unknown parameters,
appearing in the LRT, with their ML estimates under each hypothesis
[90].
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Subsequent developments require specifying the complex multivari-
ate pdf of the observable matrix R under both the hypotheses. Previous
assumptions imply that

fR(R|X, H0) =
[det (X)]K

πNK
exp

(
−tr

{
XRR†

})
, (3.3)

and

fR(R|X, H1) =
[det (X)]K

πNK
·

exp

(
−tr

{
X
(
R− pα†

)(
R− pα†

)†})
,

(3.4)

where X = Σ−1 � 0 denotes the inverse covariance matrix of the inter-
ference plus noise. Notice that, since it is not assumed the availability
of secondary data free of useful signal, the likelihood function is un-
bounded under the hypothesis H1, [41], namely the ML estimates of the
unknown parameters do not exist. In order to overcome this drawback,
in the following, a constrained ML estimation is considered; precisely, it
is assumed that X belongs to the uncertainty set Ω defined as

Ω = {X � 0 : fi(AXA) ≤ 0, i = 1, . . . ,M} , (3.5)

whereA � 0 and each function fi(B), i = 1, . . .M , applied on a positive
definite matrix B, is a unitary invariant continuous function, i.e. it is
a continuous function depending only on the eigenvalues of B. This
is equivalent to exploiting some a-priori knowledge about the operating
environment in order to enforce the covariance matrix to belong to a
suitable uncertainty set. In Section 3.2, some practical examples of
uncertainty sets compliant with the general model (3.5) are described.

From the above considerations, it is clear that the key ingredient to
devise the GLRT decision rule, is the capability to compute the con-
strained ML estimates of the unknown parameters under both the hy-
potheses. This is the goal of the next subsection.

3.1.1 ML Estimates of the Unknown Parameters Under
H0 and H1

The constrained ML estimates of the unknown parameters, under
the hypotheses H0 and H1, are, respectively, optimal solutions to the
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optimization problems PH0 and PH1 , defined as

PHk


min
α,X

tr
{
X 1

K

(
R− pα†

) (
R− pα†

)†}− log det (X)

s.t. fi(AXA) ≤ 0, i = 1, . . . ,M
X � 0
α ∈ ΘHk

,

k = 0, 1,

(3.6)

where ΘH0 = {0} and ΘH1 = CK .
Let us focus on PH0 , denote by S0 = 1

KRR
† the sample covariance

matrix of the received data, and introduce the eigenvalue decomposition
of A−1S0A

−1

A−1S0A
−1 = V 0diag (d0)V †0, (3.7)

where V 0 is a unitary matrix containing the eigenvectors of A−1S0A
−1,

and d0 = λ(A−1S0A
−1) ∈ RN , with d0N ≥ 0. The following proposi-

tion gives an optimal solution to PH0 :

Proposition 3.1.1. Let the constraint set Ω in (3.5) be nonempty and
bounded. An optimal solution X̂H0 to PH0 is given by

X̂H0 = A−1V 0diag (λ?0)V †0A
−1, (3.8)

where λ?0 is an optimal solution to the optimization problem

P(d0)


min
λ

d†0λ−
N∑
i=1

log λi

s.t. fi(λ) ≤ 0, i = 1, . . . ,M
λi > 0, i = 1, . . . , N

, (3.9)

with fi(λ) = fi(diag (λ)). Additionally, if the functions fi(λ), i =
1, . . . ,M are convex, the optimal solution to P(d0) is unique.

Proof. See Appendix K.

Notice that the ML estimate of X under H0, given by (3.8), defines
a generalized shrinkage covariance matrix estimator; indeed, when the
matrix A is proportional to the identity matrix then X̂H0 is exactly a
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shrinkage estimator [48], otherwise it is obtained properly transforming
a shrinkage estimator of a pre-processed sample covariance matrix.

Let us now consider the optimization problem PH1 ; let us denote by

p1 =
A−1p

‖A−1p‖
, (3.10)

the transformed useful signal,

S1 =
1

K

(
I − p1p

†
1

)
A−1RR†A−1

(
I − p1p

†
1

)
, (3.11)

the sample covariance matrix of the transformed observations projected
in the null space of p1, and introduce the eigenvalue decomposition of
S1

S1 = V 1diag (d1)V †1

where V 1 is a unitary matrix containing the eigenvectors of S1, and
d1 = λ(S1) ∈ RN , with d1N = 0. The following proposition gives an
optimal solution to PH1 :

Proposition 3.1.2. Let the constraint set Ω in (3.5) be nonempty and

bounded. An optimal solution
(
X̂H1 , α̂H1

)
to PH1 is given by

α̂H1 =
R†A−1p1

‖A−1p‖
=
R†X̂H1p

p†X̂H1p
, (3.12)

X̂H1 = A−1V 1diag (λ?1)V †1A
−1, (3.13)

where λ?1 is an optimal solution to the optimization problem

P(d1)


min
λ

d†1λ−
N∑
i=1

log λi

s.t. fi(λ) ≤ 0, i = 1, . . . ,M
λi > 0, i = 1, . . . , N

, (3.14)

with fi(λ) = fi(diag (λ)). Additionally, if the functions fi(λ), i =
1, . . . ,M , are convex, the optimal solution to P(d1) is unique.

Proof. See Appendix L.
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Let us observe that the role of the transformed sample covariance
matrix A−1S0A

−1 in the ML estimate of X under H0 (given in (3.8))

is now played by
(
I − p1p

†
1

)
A−1S0A

−1
(
I − p1p

†
1

)
. This means that

X̂H1 gives up exploiting the information provided by the observed data
along the direction of the useful signal p1, since this direction could be
contaminated by the useful target presence.

As to the computational complexity of the devised estimators, it
involves the eigenvalue decomposition of both the transformed sample
covariance matrix A−1S0A

−1 as well as its modified version S1 based
on the data projected in the null space of the transformed useful sig-
nal. Additionally, optimal solutions to the optimization problems P(d0)
and P(d1) have to be evaluated. If the functions fi(λ), i = 1, . . . ,M ,
are convex, both P(d0) and P(d1) admit a unique solution which can
be computed in the worst case with a polynomial complexity in the
number of channels N . As it will be shown in Section 3.2, many co-
variance matrix uncertainty sets of practical interest can be recast in
terms of convex functions fi(λ), i = 1, . . . ,M , for which ad-hoc solution
algorithms can be devised. Finally, there are also situations where the
inverse covariance matrix uncertainty set is non-convex, and the asso-
ciated functions fi(λ), i = 1, . . . ,M are non-convex. However, often
computationally efficient algorithms to solve the associated eigenvalue
optimization problems still exist (see for instance Subsection 3.2). In
Fig. 3.1 a block diagram of the whole ML estimation process is shown.
Therein, the block “regularization process” accounts for the constrained
ML estimation of the covariance eigenvalues, namely the solution to
problems P(d0) and P(d1).

Figure 3.1: Block scheme of the ML estimation process.

Based on the derived ML estimates (Proposition 3.1.1 and Proposi-
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tion 3.1.2) in the following subsection the GLRT detector is designed,
for problem (3.2).

3.1.2 GLRT Based Detector

The GLRT detector for the hypothesis test (3.2) replaces the un-
known parameters in the LRT with their ML estimates, namely it is the
following decision rule

max
α,X ∈ Ω

[det (X)]K exp

(
−tr

{
X
(
R− pα†

)(
R− pα†

)†})
max
X ∈ Ω

[det (X)]K exp
(
−tr

{
XRR†

}) H1
>
<
H0

η,

(3.15)

where η is the detection threshold. Based on Proposition 3.1.1 and
Proposition 3.1.2, X̂H0 shares the same eigenvectors as RR† and X̂H1

shares the same eigenvectors as (R − pα̂†H1
)(R − pα̂†H1

)†; as a conse-
quence, the GLRT in (3.15) can be recast as

N∑
i=1

{
log

(
λ?1i
λ?0i

)
+ d0iλ

?
0i − d1iλ

?
1i

} H1
>
<
H0

η, (3.16)

where λ?0 and λ?1 are respectively optimal solutions to P(d0) and P(d1),
while η is a suitable modification of the original threshold in (3.15).

3.2 Uncertainty Sets Defined Through Unitary
Invariant Functions

In this section, some practical examples of covariance matrix uncer-
tainty sets compliant with the general model (3.5) are given. Addition-
ally, ad-hoc solution algorithms, with low computational complexity, for
the optimization problem P(d), with di ≥ 0, i = 1, . . . , N , are presented.
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Structured Covariance Matrix with a Lower Bound on the
White Disturbance Power Level

The constraint set 
Σ = σ2

nI +Re

Re � 0
σ2
n ≥ σ2

, (3.17)

where Re accounts for colored interference and clutter, σ2
n is the power

of the white disturbance term, and σ2 > 0 is a lower bound on the white
disturbance power, is studied in [47], [83]. Moreover, the corresponding
constrained GLRT detector is derived in [43].

It is not difficult to show that the set (3.17), can be equivalently
recast as {

λi(X) ≤ 1
σ2 , i = 1, . . . , N

X � 0
. (3.18)

Since each function λi(X) is unitary invariant and continuous [75, Ap-
pendix D], it is possible to resort to Proposition 3.1.1 and Proposition
3.1.2 to obtain the required constrained ML estimates. Furthermore,
the optimal solution to problem P(d), associated with the constraint
set (3.18), is given by [47]

λ?i = min

(
1

di
,

1

σ2

)
, i = 1, . . . , N. (3.19)

Structured Covariance Matrix with a Condition Number Con-
straint

The constraint set 
Σ = σ2

nI +Re

Re � 0
σ2
n ≥ σ2

λ1(Σ)
λN(Σ)

≤ Kmax

, (3.20)

where Re, σ
2
n, and σ2 are defined as in (3.17), whereas Kmax is an upper

bound to the condition number, is considered in Chapter 1. Therein, it
is shown that the constraint set (3.20) can be equivalently expressed as

λi(X) ≤ 1
σ2 , i = 1, . . . , N

λ1 (X)−KmaxλN (X) ≤ 0
X � 0

. (3.21)
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Since each function λi(X) is unitary invariant and continuous, the pro-
posed theoretical framework can be applied to obtain the required con-
strained ML estimates. Additionally, the optimal solution to the corre-
sponding problem P(d) is given by

λ?i = min

(
min

(
Kmaxu

?,
1

σ2

)
,max

(
u?,

1

di

))
, i = 1, . . . , N,

where u? is the optimal solution to the optimization problem, min
u

N∑
i=1

Gi(u)

s.t. 0 < u ≤ 1

, (3.22)

with Gi(u) = diλ
?
i (u)− log λ?i (u), i = 1, . . . , N . As shown in Chapter 1,

u? can be obtained with a linear complexity. Notice that, the covariance
matrix uncertainty set accounting only for a condition number upper
bound [48] can be obtained from (3.20) setting σ2 = 0.

Structured Covariance Matrix with a Disturbance Power Con-
straint

The constraint set 
Σ = σ2

nI +Re

Re � 0
σ2
n ≥ σ2

tr {Σ} ≤ P

, (3.23)

is a suitable model to account both for a structured covariance matrix
(Re, σ

2
n, and σ2 are defined as in (3.17)) and an upper bound on the

whole disturbance power1. It could be important to highlight that a
prediction of the parameter P can be obtained in a cognitive way jointly
exploiting clutter maps, digital terrain maps (for instance the NLCD
[76]), and ESM system.

It is not difficult to show that the constraint set (3.23) is equivalent
to 

N∑
i=1

1

λi(X)
≤ P

λi(X) ≤ 1
σ2 , i = 1, . . . , N

X � 0

. (3.24)

1Notice that, the set (3.23) is nonempty if and only if σ2N ≤ P .
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Since each function λi(X) is unitary invariant and continuous, Propo-
sition 3.1.1 and Proposition 3.1.2 can be exploited to compute the re-
quired constrained ML estimates. Besides, observing that the constraint
set (3.24) can be recast as

N∑
i=1

ai ≤ P

s.t.

(
ai 1
1 λi(X)

)
� 0, i = 1, . . . , N

ai > 0, i = 1, . . . , N
λi(X) ≤ 1

σ2 , i = 1, . . . , N
X � 0

, (3.25)

the corresponding problem P(d) falls in the class of MAXDET convex
optimization problems [91], which can be efficiently solved in polynomial
time using interior point methods.

Structured Covariance Matrix with a Rank Constraint

The constraint set 
Σ = σ2

nI +Re

Re � 0
Rank (Re) ≤ r

, (3.26)

where Re and σ2
n are defined as in (3.17), whereas r is the maximum

rank allowed to the matrix Re, is considered in [89]. The set in (3.26)
can be recast as

λi(X) = 1
σ2
n
, i = 1, . . . , N − r

λi(X) ≤ 1
σ2
n
, i = N − r + 1, . . . , N

X � 0

. (3.27)

Since the functions λi(X) are unitary invariant and continuous,
the proposed framework can be exploited to evaluate the required con-
strained ML estimates. In this case P(d) is a non-convex optimization
problem. However, it can be efficiently solved rearranging the elements
of the vector d in increasing order, obtaining

λ?i =

{ 1
σ2
n

i = 1, . . . , N − r
min

(
1
di
, 1
σ2
n

)
i = N − r + 1, . . . , N

. (3.28)
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Similarity Constraint with a Knowledge-Based Prior Covari-
ance Estimate

To account for some a-priori knowledge on the radar interference
scenario, a suitable constraint set is given by{

‖Σ
1
2
0XΣ

1
2
0 − I‖2 ≤ ε

X � 0
, (3.29)

where Σ0 is a knowledge-based prior covariance estimate, assumed pos-
itive definite, and ε > 0 is the parameter ruling the degree of similarity.
Otherwise stated, ε allows to control the confidence level (reliability)
associated to the prior covariance matrix estimate Σ0. As to the prior
model Σ0, it can be derived from some physical scattering models of the
terrain and/or of the environment [11]. Additionally, recently proposed
knowledge-based covariance models, [92], [68], could be exploited. Now,

introducing the matrixA = Σ
1
2
0 , the uncertainty set (3.29) can be recast,

in terms of the transformed inverse covariance matrix X1 = AXA, as{
‖X1 − I‖2 ≤ ε
X1 � 0

. (3.30)

It is not difficult to show that (3.31) can be equivalently expressed
as 

λ1(X1) ≤ 1 + ε
λN (X1) ≥ 1− ε
X1 � 0

. (3.31)

Hence, exploiting the unitary invariance and continuity of the func-
tions λ1(X1) and λN (X1), the results of Proposition 3.1.1 and Propo-
sition 3.1.2 can be utilized to compute the required constrained ML
estimates. Finally, the optimal solution to problem P(d), associated
with the constraint set (3.31), is given by

λ?i = min

(
1 + ε,max

(
1− ε, 1

di

))
, i = 1, . . . , N.

3.3 Performance Analysis

In this section, the performance analysis of the devised GLRT is
dealt, focusing on some covariance matrix uncertainty sets described
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in Subsection 3.1.2. Specifically, for a specific covariance model, the
performance of the synthesized GLRT detector is assessed in terms of
PD for a given Probability of False Alarm (PFA) level. To this end, the
detection threshold is set resorting to Monte Carlo simulations based
on 100/PFA independent trials. Moreover, to limit the computational
effort, the nominal PFA is fixed to 10−4.

3.3.1 Spatial Processing in the Presence of Jamming and
White Interference

A radar system equipped with a uniform linear array antenna of
N = 20 elements is considered, with a spacing between them equal to one
half the radar operating wavelength, λ0, whose main beam points in the
boresight direction. The overall jammer plus thermal noise covariance
matrix is Σ = RJ +σ2

aI, where σ2
a denotes the actual power level of the

white disturbance term, whereas RJ is the covariance matrix associated
to J jammers, [41], [43], [47], [7],

RJ (n,m) =
1

N

J∑
i=1

σ2
i sinc

[
1

2
Bf (n−m)φi

]
ej(n−m)φi , (3.32)

with Bf = B/f0 the fractional bandwidth, B the instantaneous band-
width of the desired signal (coinciding with the jammer’s bandwidth),
σ2
i the power of the i-th jammer, and φi the jammer phase angle with

respect to the antenna phase center (namely, φ = 2πd(sin θ)/λ0, and θ
the angle off-boresight of the jammer).

The SINR is defined as

SINR =
K∑
i=1

|αi|2p†Σ−1p, (3.33)

where p = (1/
√
N)[1, 1, . . . , 1]T is the target steering vector. The actual

target2 is composed of Ns = 2 equal power dominant scatterers, i.e.
|α1| = |α2| and αi = 0, i = 3, . . . ,K.

2It is worth noting that the proposed detector does not suffer for the so called
“collapsing loss”, i.e. its detection performance depends on α only through ‖α‖. In
fact, the decision statistic (3.16) depends on received data ri, i = 1, . . . ,K, only via
the sample correlation matrix RR†, whose pdf functionally depends on α only via
‖α‖. Specifically, under H1, RR† is distributed as a Noncentral Wishart random
matrix with non central parameter pα† and matrix parameter Σ [93, equation 67].
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With reference to the interfering scenario, the presence of 3 narrow-
band jammers (i.e. Bf = 0 for each jammer), with powers σ2

i = 30
dB, i = 1, . . . , 3, and phase angles φ1 = 20◦, φ2 = 40◦, and φ3 = 60◦,
is assumed. Moreover, the knowledge of a lower bound on the white
disturbance term is considered, namely it is set σ2

0 = 0 dB (see Table
3.1).

Table 3.1: Angular Processing. Simulation parameters.

Ns J σ2
i [dB] φi σ2

0 [dB] N

2 3 30 [20, 40, 60] 0 20

As to the covariance matrix uncertainty model, the constraint sets
described in Subsections 3.2 and 3.2 are considered. For comparison
purposes, in these simulations, the MGLRT detector3 has been also
considered [41], defined as

N∏
i=1

λi

[
1

K
RR†

]
N−1∏
i=1

λi

[
1

K

(
I − pp†

||p||2

)
RR†

(
I − pp†

||p||2

)] H1
>
<
H0

ηM , (3.34)

where ηM is the detection threshold. Notice that, the MGLRT is not
defined when the number of data K is less than the number of channels
N . Finally, as benchmark, the optimal receiver is considered, which
supposes the perfect covariance matrix knowledge, i.e.

K∑
i=1

|r†iΣ
−1p|2

p†Σ−1p

H1
>
<
H0

η0. (3.35)

where η0 denotes the detection threshold.

Structured Covariance Matrix with a Condition Number Con-
straint

In Fig. 3.2, the PD is plotted versus SINR for the GLRT detector
compliant with the constraint set of Subsection 3.2. The subplots (a)

3The MGLRT is derived resorting to the method of sieves, namely restricting the
parameter space (Σ,α) to a subspace such that the ML estimate of the parameters
exists and is unique; see [41] for more details.
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and (b) are obtained setting Kmax equal to the condition number of the
disturbance covariance matrix Σ. Conversely, the subplots (c) and (d)
are related to a different value of the parameter Kmax, i.e. it is equal
to twice the condition number of Σ. To further investigate the behav-
ior of the considered GLRT-based detector, two different situations are
presented: the former refers to σ2

a = 0 dB, namely there is no mismatch
between the actual white noise power level and its known lower bound
(subplots (a) and (c)); the latter considers σ2

a = 10 dB (subplots (b)
and (d)). By doing so, it is possible to study the effect of a possible
mismatch between the nominal value σ2

0 and the actual value σ2
a on

the performance of the synthesized receiver. Finally, both K = 10 and
K = 30 are considered.

The curves highlight that the new GLRT outperforms the MGLRT,
when they exploit the same number of data, i.e. K = 30. This behavior
can be justified observing that the MGLRT does not suppose any a-
priori structure for the interference covariance. Additionally, increasing
K the optimal detector experiences a performance degradation; this
is not surprising since the integrated amount of noise is an increasing
function of K whereas the useful energy does not change. As to the
GLRT detector, it is not possible to predict the impact of K on its
performance. In fact, K has a double effect: from one side it increases
the amount of integrated noise; on the other side it allows for a better
covariance matrix estimation. For the analyzed scenarios, it can be
observed that the GLRT synthesized for K = 30 outperforms the GLRT
devised for K = 10, when the SINR is high enough. Thus, it could
be argued that the estimation accuracy improvement, due to the larger
number of available cells, dominates the deleterious effect due to the
increased amount of integrated noise. Finally, studying PD versus the
Kmax value, it can be observed that the better the covariance uncertainty
characterization, the better the detection performance.

Structured Covariance Matrix with a Rank Constraint

In Fig. 3.3, PD is plotted versus SINR for the GLRT detector com-
pliant with the constraint set introduced in Subsection 3.2, in correspon-
dence of the operating environment described in Table 3.1. Subplot (a)
is obtained setting the parameter r equal to the rank of the covariance
matrix RJ in equation (3.32). Subplot (b), refers to a parameter r equal
to twice the rank of the covariance matrix RJ . Again, both K = 10 and
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(a) σ2
a = 0 dB.
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(b) σ2
a = 10 dB.
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(c) σ2
a = 0 dB.
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(d) σ2
a = 10 dB.

Figure 3.2: PD versus SINR for the optimum receiver (dashed curves), MGLRT
(dot-dashed curves), and the proposed GLRT based on a structured covariance matrix
with a condition number constraint (solid curves). 2-marked curves refer to K = 30,
whereas ◦-marked curves refer to K = 10. Subplots (a) and (c) refer to a matched
scenario, i.e. σ2

a = 0 dB, whereas subplots (b) and (d) refer to a mismatched scenario,
i.e. σ2

a = 10 dB. Finally, subplots (a) and (b) assume Kmax = λmax(Σ)/λmin(Σ),
whereas subplots (c) and (d) assume Kmax = 2λmax(Σ)/λmin(Σ).

K = 30 are considered.

As in Fig. 3.2, the curves highlight that the proposed GLRT detector
outperforms the MGLRT. This is a confirmation that a correct use of
the a-priori information can produce performance improvements with
respect to the unstructured case (MGLRT). Again, the available number
of cells trades off the covariance estimation accuracy with the overall
integrated noise. For the analyzed scenario, the GLRT devised for K =
10 achieves a better detection performance than the one devised for
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(a) r = 3
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(b) r = 6

Figure 3.3: PD versus SINR for the optimum receiver (dashed curves), MGLRT
(dot-dashed curves), and the proposed GLRT based on a structured covariance matrix
with a rank constraint (solid curves). 2-marked curves refer to K = 30, whereas ◦-
marked curves refer to K = 10. Finally, subplot (a) assumes r = 3, whereas subplot
(b) assumes r = 6.

K = 30. However, this improvement decreases as the rank constraint
parameter changes from r = 3 to r = 6.

Finally, comparing the curves of subplots (a) and (b), it can be seen
how a more accurate covariance model can lead to better performance
levels.

3.3.2 Doppler Processing in the Presence of Bimodal Clut-
ter Plus White Noise

In this section, a monostatic radar system equipped with an antenna
transmitting a coherent burst of N pulses is considered. The focus is on
a bimodal clutter model which accounts for the presence of statistically
independent ground and sea clutters as well as white noise. Moreover,
a Gaussian shaped Power Spectral Density (PSD) [80] for both the in-
terfering sources is assumed; consequently, the (i, k)-th element of the
overall disturbance covariance matrix is modeled as, [80], [87],

Σ(i, k) = CNRSρ
(i−k)2

S exp [−j2π(i− k)fS ] + CNRGρ
(i−k)2

G + δi,k ,
(3.36)

where CNRS and CNRG denote respectively the Clutter to Noise power
Ratio for the sea and the ground clutter, whereas ρS and ρG are respec-
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tively the one-lag correlation coefficient for the sea and the ground clut-
ter. Finally, fS is the normalized Doppler frequency of the sea clutter,
and δi,k is the Kronecker delta function. In Table 3.2, all the parameters
considered in the simulation setup are summarized.

Table 3.2: Doppler processing. Simulation parameters.

Σ0 Σ (case 1) Σ (case 2)

CNRS [dB] 10 10 10

CNRG [dB] 30 30 30

ρS 0.5 0.5 + U [−0.05, 0.05] 0.5 + U [−0.1, 0.1]

ρG 0.99 0.99 0.99

fS 0.2 0.2 + U [−0.025, 0.025] 0.2 + U [−0.05, 0.05]

N 20 20 20

As to the knowledge-based covariance matrix Σ0, it is assumed that
it is described by model (3.36) with the parameter values reported in
Table 3.2. The actual covariance matrix Σ still complies with model
(3.36) but the values of some parameters are changed randomly, from
a simulation run to another, as specified in the last two lines4 of Table
3.2. By doing so, mismatches among the a-priori covariance model Σ0

and the actual covariance matrix Σ we accounted for. Case 1 refers to
a more reliable a-priori model than case 2.

The considered target is composed of Ns = 2 equal power dominant
scatterers, i.e. |α1| = |α2| and αi = 0, i = 3, . . . ,K, sharing a temporal
steering vector given by

p =
1√
N

[1, exp(j2πfd), . . . , exp(j2π(N − 1)fd)]
T ,

where fd is the normalized Doppler frequency, set equal to 0.15 in
the simulations. Furthermore, the following definition for the SINR is
adopted

SINR =

K∑
i=1

|αi|2p†Σ−1
0 p. (3.37)

In Fig. 3.4, PD is plotted versus SINR for the GLRT detector com-
pliant with the similarity constraint of Subsection 3.2. Subplots (a) and

4x ∼ U(a, b) denotes a uniformly distributed random variable within the interval
[a, b].
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(b) refer to case 1 described in Table 3.2, whereas subplots (c) and (d)
refer to case 2 of Table 3.2. The subplots on the left account for ε = 0.1,
while the subplots on right assume ε = 1.
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(a) ε = 0.1.
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(b) ε = 1.
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(c) ε = 0.1.
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(d) ε = 1.

Figure 3.4: PD versus SINR for the optimum receiver (dashed curves), MGLRT
(dot-dashed curves), and the proposed GLRT based on a similarity constraint (solid
curves). 2-marked curves refer to K = 30, whereas ◦-marked curves refer to K = 10.
Subplots (a) and (c) assume ε = 0.1, whereas subplots (b) and (d) assume ε = 1.
Finally, subplots (a) and (b) refer to the case 1 of Table 3.2, whereas subplots (c) and
(d) refer to the case 2 of Table 3.2.

As in Fig. 3.2 and Fig. 3.3, the curves show that the proposed
GLRT outperforms the MGLRT. Otherwise stated, the results confirm
the intuition that a proper exploitation of the a-priori information can
lead to performance improvements. An interesting remark on the GLRT
performance concerns the degradation experienced increasing the num-
ber of integrated cells. It can be claimed that, owing to the quite reli-
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able a-priori model Σ0, even a small number of observations allows for
an accurate covariance estimation; thereby, the noise integration effect
dominates the performance behavior as K increases. Inspection of the
curves also highlights that the detectors synthesized for ε = 0.1 out-
perform those devised for ε = 1, which is a further confirmation of the
a-priori covariance model Σ0 reliability. Finally, comparing the curves
of subplots (a) and (c), it can be seen how a more accurate covariance
model can reduce the performance gap with respect to the one of the
optimum detector. In fact, subplot (a) refers to a scenario with a much
smaller clutter covariance unpredictability than in subplot (c).



Conclusions

In this thesis, the problem of covariance matrix estimation for radar
signal processing applications has been addressed. In particular, both a
statistical and a geometric approach have been followed, a robust adap-
tive radar receiver and a secondary data selection scheme have been
respectively proposed. Moreover, the problem of detecting extended
targets has been considered, enforcing structural constraints on the es-
timator of the disturbance covariance matrix.

Precisely, in Chapter 1, the focus has been on ML covariance ma-
trix estimation. At the design stage, the covariance matrix Σ has been
modeled as the sum of an unknown positive semi-definite matrix (de-
scribing the colored covariance of the jamming signals and clutter) and a
(partially known) matrix proportional to the identity (accounting for the
white interference). Moreover, an upper bound on the condition number
of the estimator has been also enforced. The problem has been formu-
lated in terms of a convex MAXDET optimization problem, solvable
efficiently through interior point methods. Remarkably, an algorithm
to find a closed form solution to the aforementioned problem has been
developed. It requires the computation of the sample covariance matrix
eigenvalue decomposition and the solution of a scalar convex optimiza-
tion problem, whose complexity is linear with respect to the number
of sample eigenvalues greater than one. As a consequence, the overall
complexity of the proposed estimator is dominated by the computational
effort connected with the sample covariance matrix eigenvalue decompo-
sition. At the analysis stage, the performance of the proposed estimator
has been evaluated in terms of normalized average SINR behavior. The
results have highlighted the capabilities of the new technique to provide,
under some circumstances, an higher normalized average SINR than the
FML [47], which only accounts for the information about the structure
of the covariance matrix. The new method can also outperform the al-
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gorithm of [48] which does not impose any special covariance structure,
enforcing only a condition number constraint.

In Chapter 2, two new classes of covariance matrix estimators, in-
dependent of the statistical characterization of the secondary data and
exploiting the properties of the positive definite matrix space, have been
devised. Precisely, each estimator has been designed so as to be the ge-
ometric barycenter or the geometric median, with respect to a suitable
distance in the considered space, of a set of covariance matrix estimates.
Exploiting the devised estimators, a training data selection scheme has
been considered, which resorts to the GIP computed from the proposed
covariance matrix estimators, in order to select the most homogeneous
secondary data. At the analysis stage, the performance of each devised
barycenter or median-based estimator has been assessed, evaluating the
selection capabilities of the corresponding data selector. The obtained
results have highlighted that the Log-Euclidean median-based estimator
outperforms all the others, in terms of Pselection. Furthermore, con-
sidering a specific distance, the corresponding median-based estimator
generally achieves a higher Pselection than the corresponding barycenter-
based one. As a consequence, the analysis has shown the presence of a
trade-off between the computational burden and the selection capabil-
ity. Indeed, the median-based estimators are characterized by an high
computational burden, due the lack of a closed form expression, whereas
the barycenter-based estimators can be evaluated with simple analytic
expressions. Finally, Pselection analysis has highlighted that the Log-
Euclidean median-based and the Log-Euclidean barycenter-based esti-
mators share almost the same performance. Consequently, accounting
for both the computational effort and selection properties, a reason-
able choice, from a practical point of view, is to use the Log-Euclidean
barycenter-based estimator for data selection applications.

In Chapter 3, the problem of detecting targets extended across a
number of adjacent range cells, embedded in Gaussian interference with
an unknown but structured covariance matrix, has been considered. The
possible target echo from each range bin has been modeled as a deter-
ministic signal, with an unknown scaling factor accounting for the target
response. At the design stage, some a-priori knowledge about the operat-
ing environment has been exploited to suitable constraint the covariance
matrix. Specifically, it has been assumed that a properly transformed
inverse disturbance covariance matrix belongs to a set described via
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unitary invariant continuous functions. Hence, the constrained ML es-
timates of the unknown parameters have been derived and the GLRT
for the hypothesis test under consideration has been designed. The
proposed architecture involves the eigenvalue decomposition of both a
properly transformed sample covariance matrix as well as its modified
version based on the data projected in the null space of the transformed
useful signal. Additionally, it requires the solution of two optimization
problems, which often can be solved with a polynomial computational
complexity with respect to the number of channels. At the analysis
stage, the performance of the devised GLRT has been assessed, focusing
on some covariance matrix uncertainty sets of practical relevance. The
results have shown that the proper use of the a-priori information can
lead to a detection performance quite close to the optimum receiver,
which supposes the perfect knowledge of the interference plus noise co-
variance matrix. Finally, the developed analysis have confirmed the
intuition that the better the covariance matrix uncertainty set charac-
terization, the better the detection performance.

Concluding, if there is the availability of homogeneous data, even if
limited, the approach proposed in Chapter 1 represents the best choice
to consider. However, if there is some a-priori knowledge about the
presence of a limited number of outliers in the data or it is not possible
to find a statistical characterization of the training data, the techniques
proposed in Chapter 2 have to be considered. Finally, if there is a great
amount of outliers in the secondary data or the echo due to the target
can no longer be considered as contained only in the cell under test, the
best solution to be applied is the one studied in Chapter 3.

Possible future research tracks might concern the analysis of all the
algorithms proposed in this thesis on real radar data. Moreover, as to
the covariance matrix estimator proposed in Chapter 1, the possibility
to exploit other condition number predictors could be taken into ac-
count. It might also be of interest to consider a minimum mean square
error shrinkage design approach, as in [69], accounting for both a struc-
tural constraint and condition number constraint. Last but not least,
it might be challenging to design techniques jointly estimating both the
structured covariance matrix and the array manifold. As to the geomet-
ric barycenters and median matrices given in Chapter 2, it is possible
to consider the use of suitable distances which explicitly try to account
for other environment heterogeneities (for instance clutter power varia-
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tions). However, the design of selection schemes jointly exploiting statis-
tical and geometrical properties represents definitely an issue of special
interest. Finally, as to the detection of extended targets, future research
tracks might concern the inspection of other structural covariance con-
straints compliant with the considered model proposed in Chapter 3.



Appendix A

Proof of Proposition 1.2.1

Proof. Let
(
Σ̄, R̄, σ̄2

n

)
be a feasible point for problem P.

Since
(
Σ̄, R̄+ (σ̄2

n − σ2)I, σ2
)
, is a feasible point for problem P, which

achieves the same objective value as
(
Σ̄, R̄, σ̄2

n

)
, it follows that P is

equivalent to problem P ′

P ′



min
Σ,R

tr
(
S1Σ

−1
)
− log det

(
Σ−1

)
s.t.

λmax(Σ)
λmin(Σ)

≤ Kmax

σ2I +R = Σ
R � 0

. (A.1)

Thus, without loss of generality, it is possible to focus on P ′. Since the
constraint set {

σ2I +R = Σ
R � 0

,

can be expressed as {
Σ � σ2I
R = Σ− σ2I

,

letting X =
(

Σ
σ2

)−1
, P ′ can be equivalently recast as

P ′′


min
X

tr (SX)− log det (X)

s.t.
λmax(X)
λmin(X)

≤ Kmax

0 ≺X � I

, (A.2)
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where S = S1
σ2 . Now, the constraint set

λmax(X)
λmin(X)

≤ Kmax

0 ≺X � I
,

is equivalent to 
uI �X � uKmaxI
X � I
0 < u ≤ 1

,

and problem P ′′ becomes

P1


min
X ,u

tr (SX)− log det (X)

s.t. uI �X � uKmaxI
X � I
0 < u ≤ 1

, (A.3)

Since

tr (SX)− log det (X) ≥ −
N∑
i=1

log(λi) ≥ − log(λmin (X)),

where the first inequality stems from tr (SX) ≥ 0 and the last inequality
is due to λi ≤ 1, i = 1, . . . , N , (λi, i = 1, . . . , N , are the eigenvalues of
X), whenX tends to a rank deficient matrix the objective function tends
to +∞. This means that there exists ε > 0 such that P1 is equivalent to

P ′1


min
X ,u

tr (SX)− log det (X)

s.t. uI �X � uKmaxI
εI �X � I
ε ≤ u ≤ 1

. (A.4)

Notice that the objective function of problem P ′1 is a continuous func-
tion, and the constraint set defines a compact set. Hence, from the
Weierstrass Theorem, there exists a feasible point (X?, u?) for P ′1 such

that v(P ′1) = tr
(
SX?−1

)
− log det

(
X?−1

)
. Thus, resorting to the

previous equivalence, both P1 and P are solvable and an optimal solu-
tion to P is given by(

σ2X?−1, σ2X?−1 − σ2I, σ2
)
.



Appendix B

Proof of Lemma 1.2.2

Proof. ∀ū ∈]0, 1], let us consider the sub-problem P1(ū) given in (1.5),
obtained from P1 fixing u = ū. Before proceeding further, the following
lemma, whose proof can be found in [75, Theorem 7.4.10, p. 433], are
given:

Lemma B.0.1. Let A � 0 and B � 0. Let λ1(A) ≥ . . . ≥ λN (A)
and λ1(B) ≥ . . . ≥ λN (B) the eigenvalues of, respectively, A and B
in decreasing order. Then, there exists a permutation π of the integers
1, 2, . . . , N such that

tr (AB) =

N∑
i=1

λi(A)λπ(i)(B). (B.1)

Let us now consider1 a feasible point X̄ for problem P1(ū) and define
X̃ = V diag

(
λπ(X̄)

)
V †, with λπ(X̄) the vector of the permutated

eigenvalues of X̄ satisfying the relation

tr
(
SX̄

)
=

N∑
i=1

λi(S)λπ(i)(X̄).

Since the LMI’s

ūI �X � ūKmaxI and X � I,
1Without loss of generality, the focus is on the set of matrices compliant with

Lemma B.0.1 [75] since for an arbitrary pair of matrices A1 � 0 and A2 � 0, the
lower bound tr (A1A2) ≥

∑N
i=1 λi(A1)λN−i(A2) is achieved inside the considered

set, through a unitary transformation on A2.
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do not involve the eigenvectors of X, but only the eigenvalues, X̃ is also
a feasible point for P1(ū). Moreover,

tr
(
SX̄

)
− log det

(
X̄
)

=
N∑
i=1

λi(S)λπ(i)(X̄)− log det
(
diag

(
λπ(X̄)

))
= tr

(
V diag (d)V †V diag

(
λπ(X̄)

)
V †
)

− log det
(
V diag

(
λπ(X̄)

)
V †
)

= tr
(
SX̃

)
− log det

(
X̃
)
. (B.2)

Consequently, for any feasible matrix X̄ of problem P1(ū) there exists
a matrix X̃ = V diag(λπ(X̄))V †, which is feasible and achieves the
same objective value of X̄. Hence, the optimal matrix X? is given by
X? = V diag (λ?(ū))V †, with λ? = λ?(ū) the optimal solution to the
following optimization problem:

P̄1(ū)


min
λ

∑N
i=1 (λidi − log λi)

s.t. ū ≤ λi ≤ ūKmax, i = 1, . . . , N
λi ≤ 1

. (B.3)

where λ = [λ1, λ2, . . . , λN ] ∈ RN . For any fixed ū, the objective function
and the constraint functions of P̄1(ū) are separable functions of the
variables λi, i = 1, . . . , N . This implies that the optimum point to
problem P̄1(ū) is obtained solving the N scalar optimization problems:

P̄ i1(ū)


min
λi

λidi − log λi

s.t. ū ≤ λi ≤ ūKmax

λi ≤ 1

, (B.4)

where i = 1, . . . , N . Now, to solve each P̄ i1(ū), the following constrained
optimization problem has to be studied

P̃1

{
min
x

xy − log x

s.t. 0 < a ≤ x ≤ b
, (B.5)

where the variables x, y, a, b, for each P̄ i1(ū), play the role of2

x = λi, y = di, a = ū, b = min (Kmaxū, 1). (B.6)

2Let us observe that the pair of constraints ū ≤ λi ≤ ūKmax and λi ≤ 1 is
equivalent to ū ≤ λi ≤ min (ūKmax, 1).
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Since the function xy − log x, with y > 0, is monotonically decreasing
for 0 < x ≤ 1

y , and monotonically increasing for x ≥ 1
y , the minimizer is

given by

x = min

(
b,max

(
a,

1

y

))
. (B.7)

Thus, using (B.7) and (B.6), the minimizer of P̄ i1(ū) is given by3

λ?i (ū) = min

(
min (Kmaxū, 1),max

(
ū,

1

di

))
. (B.8)

3If di = 0, then λ?i (ū) = min (Kmaxū, 1).
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Appendix C

Proof of Theorem 1.2.3

Proof. Let X?(ū) be the optimal solution of P1(ū), given in (1.5), for
any fixed u = ū. From [94], (X?, u?) = (X?(u?), u?), with u? an optimal
solution to the optimization problem

P ′2

{
min
u

tr (SX?(u))− log det (X?(u))

s.t. 0 < u ≤ 1
, (C.1)

is an optimal solution to P1. Using Lemma 1.2.2, P ′2 can be reformulated
as

P2

{
min
u

∑N
i=1 (λ?i (u)di − log λ?i (u))

s.t. 0 < u ≤ 1
, (C.2)

where λ?i (u), i = 1, . . . , N, are the entries of the vector function λ?(u)
defined in (1.8). Thus, using

λ?i (u) = min

(
min (Kmaxu, 1),max

(
u,

1

di

))
i = 1, . . . , N,

u? can be obtained as an optimal solution to

P2

{
min
u

∑N
i=1Gi(u)

s.t. 0 < u ≤ 1
, (C.3)

with, for any i = 1, . . . , N , Gi(u) = diλ
?
i (u)− log λ?i (u), i.e.

Gi(u) =

{
− logKmax − log u+Kmaxdiu if u ≤ 1

Kmax
di if 1

Kmax
≤ u ≤ 1
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if di ≤ 1, and

Gi(u) =


− logKmax − log u+Kmaxdiu if 0 < u ≤ 1

Kmaxdi
log di + 1 if 1

Kmaxdi
≤ u ≤ 1

di
− log u+ diu if 1

di
≤ u ≤ 1

if di > 1.



Appendix D

Proof of Theorem 1.2.4

Proof. Let us assume that d1 ≤ 1; thus, for all i = 1, . . . , N , di ≤ 1
and Gi(u) is given by (1.10). Thus, for any i = 1, . . . , N , Gi(u) is a
strictly decreasing function for u ∈]0, 1

Kmax
] and a constant function for

1
Kmax

≤ u ≤ 1. Hence, a minimizer for P2 is given by u? = 1
Kmax

.
Let us consider the case 1 < d1 ≤ Kmax. Let I = {i : di > 1} be the
set of indexes such that the corresponding eigenvalues are greater than
1. Since, for any i ∈ I, Gi(u) is an increasing function in the interval

1
Kmaxdi

≤ u ≤ 1 ∑
i∈I

Gi(u)

is an increasing function in 1
Kmax

≤ u ≤ 1
(

1
Kmaxdi

≤ 1
Kmax

< 1
)

. More-

over, since for di ≤ 1, Gi(u) = di in the interval 1
Kmax

≤ u ≤ 1, it follows

that G(u) is an increasing function for 1
Kmax

≤ u ≤ 1.
Note that, since for all i ∈ I, Gi(u) is a decreasing function in the interval
0 < u ≤ 1

di ∑
i∈I

Gi(u)

is a decreasing function in the interval 0 < u ≤ 1
d1

(
0 < 1

d1
≤ 1

di
< 1
)

.

Furthermore, since Gi(u) is a decreasing function if di ≤ 1, it follows
that G(u) is a decreasing function in the interval 0 < u ≤ 1

d1
. Thus,

since 1
Kmax

≤ 1
d1

, it follows that there exists a minimizer for P2 which is

given by u? = 1
d1

.
Finally, in the case d1 > Kmax, using the previous considerations, it
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results that G(u) is a decreasing function in the interval u ∈
]
0, 1

d1

]
and

an increasing function in the interval
[

1
Kmax

, 1
]
; then, if the minimum

exists, it has to belong to u ∈
[

1
d1
, 1
Kmax

]
. Since G(u) is a continuous

function, and
[

1
d1
, 1
Kmax

]
a compact set, Weierstrass Theorem ensures

that u? ∈
[

1
d1
, 1
Kmax

]
.



Appendix E

Proof of Lemma 1.2.5

Proof. Let us consider the case di > 1; evaluating the derivative ofGi(u),
the following result is obtained

dGi(u)

du
=


− 1
u +Kmaxdi if 0 < u < 1

Kmaxdi
0 if 1

Kmaxdi
< u < 1

di
− 1
u + di if 1

di
< u < 1

. (E.1)

Let us observe that in each subinterval u ∈
]
0, 1

Kmaxdi

[
, u ∈

]
1

Kmaxdi
, 1
di

[
,

and u ∈
]

1
di
, 1
[
, dGi(u)

du is a continuous function. Moreover, in correspon-

dence of the points u1 = 1
Kmaxdi

and u2 = 1
di

the right derivative is equal
to the left derivative. Then, the whole derivative function is a contin-
uous function in the interval u ∈]0, 1]. Let us now consider the case

di ≤ 1; in this case, the derivative of Gi(u) in the interval u ∈
]
0, 1

Kmax

]
is given by

dGi(u)

du
= −1

u
+Kmaxdi if u ≤ 1

Kmax
. (E.2)

Thus, dGi(u)
du is a continuous function on the interval u ∈

]
0, 1

Kmax

]
. Con-

sequently, dG(u)
du is a continuous function on the interval u ∈

]
0, 1

Kmax

]
.

As to the convexity of G(u), in the interval u ∈
]
0, 1

Kmax

]
, let us recall

that the sum of convex functions is a convex function [94]. Hence, it is
sufficient to study the convexity of each term Gi(u), i = 1, . . . , N . If
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di ≤ 1, since d2Gi(u)

du2 > 0, u ∈]0, 1
Kmax

], from [94], Gi(u) is a convex func-
tion. Moreover, in the case di > 1, recalling that a derivable function is
convex if and only if its derivative is an increasing function, [95, The-

orem 6, p.144], since dGi(u)
du is an increasing function over the interval

]0, 1
Kmax

], Gi(u) is a convex function.



Appendix F

Proof of Theorem 1.2.6

Proof. 1) From Lemma 1.2.5, G(u) is a convex and derivable function

on
[

1
d1
, 1
Kmax

]
. This means that dG(u)

du

(
u ∈

[
1
d1
, 1
Kmax

])
, is an

increasing function. Since by hypothesis dG(u)
du

∣∣∣
u= 1

d1

= 0, it follows

that
dG(u)

du
≥ 0, u ∈

[
1

d1
,

1

Kmax

]
,

i.e. G(u) is an increasing function. Thus, a minimum to prob-

lem P2 is achieved in u? = 1
d1

. Notice that if dG(u)
du

∣∣∣
u= 1

d1

> 0,

u? 6= 1
d1

and the optimal solution to problem P2 is unique. In fact,

in the interval u ∈
]
0, 1

d1

]
G(u) is strictly decreasing, in the inter-

val u ∈
]

1
Kmax

, 1
]
G(u) is strictly increasing. Finally, there does

not exists any interval I ⊆
]

1
d1
, 1
Kmax

]
such that d2G(u)

du2 = 0 ∀u ∈ I.

2) Let us, now, assume that

dG(u)

du

∣∣∣
u= 1

d1

< 0 and
dG(u)

du

∣∣∣
u= 1

Kmax

≤ 0. (F.1)

Again, since by Lemma 1.2.5, G(u) is a convex and derivable func-

tion on
[

1
d1
, 1
Kmax

]
, dG(u)

du , u ∈
[

1
d1
, 1
Kmax

]
, is an increasing func-
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tion. Consequently, from (F.1),

dG(u)

du
≤ 0, u ∈

[
1

d1
,

1

Kmax

]
and G(u) is a decreasing function in

[
1
d1
, 1
Kmax

]
. Then, its optimal

value on the interval
[

1
d1
, 1
Kmax

]
is attained at u? = 1

Kmax
.

3) Let us, finally, consider the case

dG(u)

du

∣∣∣
u= 1

d1

< 0 and
dG(u)

du

∣∣∣
u= 1

Kmax

> 0.

Thus the optimal point has to be an interior point of [ 1
d1
, 1
Kmax

].
Since from lemma 1.2.5, G(u) is a convex and differentiable func-
tion, u? is the optimal point if and only if, [94],

dG(u)

du
= 0
∣∣∣
u=u?

. (F.2)

Let us now characterize the necessary and sufficient condition
(F.2). Let u? the optimal point. Assume that vi 6= vj and
vi 6= Kmaxvj for any i 6= j with 1 ≤ i, j ≤ N̄ + 1, which hold
with probability 1. Let α ∈ {1, 2, . . . , N̄ , N̄ + 1} be the largest in-
dex such that 1

vα
< u? (α ≥ 1 since u? > 1

v1
and α ≤ N̄ since u? <

1
Kmax

< 1
vN̄+1

), and let β ∈ {1, 2, . . . , N̄ , N̄ + 1} the smallest index

such that 1
vβKmax

> u? (β ≤ N̄ + 1 since u? < 1
Kmax

= 1
KmaxvN̄+1

and β ≥ 2 since 1
Kmaxv1

< 1
v1
< u?). Furthermore, α < β since

assuming β ≤ α then 1
Kmaxvβ

≤ 1
Kmaxvα

< 1
vα
< u?, which can not

comply with 1
Kmaxvβ

> u?.

Thus, there exists a neighborhood Bu? of u?, contained in the in-

terval
]

1
vα
, 1
Kmaxvβ

[
, such that G(u) can be expressed as

G(u) =
α∑
i=1

(− log u+ diu) +

β−1∑
i=α+1

(log di + 1)

+
N∑
i=β

(− logKmax − log u+Kmaxdiu) , (F.3)



Appendix 95

∀u ∈ Bu? . Performing the derivative of (F.3) with respect to u
and imposing the optimality condition (F.2), the minimizer u? is
then given by

u? =
N + α− β + 1∑α

i=1 di +
∑N

i=βKmaxdi
. (F.4)

Conversely, let ū be a point such that

ū =
N + ᾱ− β̄ + 1∑ᾱ

i=1 di +
∑N

i=β̄Kmaxdi
, (F.5)

with ᾱ ∈ {1, 2, . . . , N̄ , N̄ + 1} the largest index such that 1
vᾱ
< ū,

and β̄ ∈ {1, 2, . . . , N̄ , N̄+1} the smallest index such that 1
vβ̄Kmax

>
ū.
This means that there exists a neighborhood Bū of ū, contained

in the interval
]

1
vᾱ
, 1
Kmaxvβ̄

[
such that ∀u ∈ Bū, G(u) is given by

G(u) =
ᾱ∑
i=1

(− log u+ diu) +

β̄−1∑
i=ᾱ+1

(log di + 1)

+
N∑
i=β̄

(− logKmax − log u+Kmaxdiu) . (F.6)

Now, performing the derivative of (F.6), condition (F.5) means
that

dG(u)

du

∣∣∣
u=ū

= 0,

i.e. ū = u?.
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Appendix G

Proof of Theorem 2.1.1

Proof. Since the squared Euclidian norm || · ||2 defines a strictly convex
function in the set of complex matricesB ∈ CN×N , there exists a unique
optimal solution to problem P. Furthermore, problem P is equivalent
to

P ′
 min

Sk
−2tr

{
Skrkr

†
k

}
+ tr

{
S2
k

}
s.t. Sk � I

. (G.1)

Hence, the following lemma, whose proof can be found in [75, The-
orem 7.4.10, p. 433], is given:

Lemma G.0.2. Let A � 0 and B � 0. Let λ1(A) ≥ . . . ≥ λN (A) and
λ1(B) ≥ . . . ≥ λN (B) be the eigenvalues of A and B, respectively, in
decreasing order. There exists a permutation π of the integers 1, 2, . . . , N
such that

tr (AB) =
N∑
i=1

λi(A)λπ(i)(B). (G.2)

Since tr
{
S2
k

}
does not depend on the eigenvectors of Sk, exploiting

Lemma G.0.2, the optimal solution to problem P ′ is Ukdiag(λ)U †k,

where Uk is a unitary matrix of the eigenvectors of rkr
†
k with the first

eigenvector corresponding to the eigenvalue ||rk||2, and the vector λ =
[λ1, λ2, . . . , λK ] is the optimal solution to problem

P ′′
{

min
λ

−2||rk||2λ1 +
∑K

i=1 λ
2
i

s.t. λi ≥ 1, i = 1, . . .K
. (G.3)
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Consequently,
λi = 1, i = 2, . . . ,K,

and λ1 is the optimal solution to

P ′′1

{
min
λ1

−2||rk||2λ1 + λ2
1

s.t. λ1 ≥ 1
. (G.4)

Hence, it follows that

λ1 = max
(
1, ||rk||2

)
, (G.5)

and
λ = [max

(
1, ||rk||2

)
, 1, . . . , 1] (G.6)



Appendix H

Proof of Theorem 2.1.2

Proof. Since
∑K

i=1wi||Ai − A||2 → +∞ when ||A|| → +∞ and the
squared Euclidian norm || · ||2 defines a strictly convex function in the
set of complex matrices B ∈ CN×N , the matrix

Â = arg min
A

{
K∑
i=1

wi||Ai −A||2
}

(H.1)

is unique. Furthermore, it is possible to observe that

Â = arg min
A

{
K∑
i=1

witr
(

(Ai −A)(Ai −A)†
)}

=

= arg min
A

K∑
i=1

wi

{
tr
(
AiA

†
i

)
+ tr

(
AA†

)
− 2Re

{
tr
(
AiA

†
)}}

=

= arg min
A

{
K∑
i=1

witr
(
AiA

†
i

)
+

K∑
i=1

witr
(
AA†

)
−2Re

{
tr

(
K∑
i=1

wiAiA
†

)}}
=

= arg min
A

{
tr
(
AA†

)
− 2Re

{
tr
(
AA†

)}}
,

(H.2)
where A =

∑K
i=1wiAi. Notice that

Re
{

tr
(
AA†

)}
≤
∣∣∣tr (AA†)∣∣∣ ≤ ||A||||A||, (H.3)

99



100 Appendix

where the second inequality stems from the Schwartz inequality. Since
both the inequalities in (H.3) become equalities if and only if A = αA
with α > 0, Â = α̂A with α̂ given by

α̂ = arg min
α>0

{
α2tr

(
A A

†
)
− 2αtr

(
A A

†
)}

= 1. (H.4)

Thus, Â = A =
∑K

i=1wiAi.



Appendix I

Proof of Theorem 2.1.3

Proof. Problem (2.18) is equivalent to
min

t1,...,tK ,A

∑K
i=1witi

s.t.
√

tr {(Ai −A)(Ai −A)†} ≤ ti i = 1, . . . ,K
A ∈ HN

. (I.1)

Let us now observe that ∀i ∈ {1, . . . ,K}√
tr {(Ai −A)(Ai −A)†} ≤ ti (I.2)

is equivalent to
tr {(Ai −A)(Ai −A)†} ≤ t2i (I.3)

which can be recast in(
ti (vec(A)− vec(Ai))

†

(vec(A)− vec(Ai)) tiI

)
� 0. (I.4)

As a consequence, problem (I.1) is equivalent to the convex opti-
mization SDP problem

min
t1,...,tK ,A

∑K
i=1witi

s.t.

(
ti (vec(A)− vec(Ai))

†

(vec(A)− vec(Ai)) tiI

)
� 0

A ∈ HN

.

i = 1, . . . ,K

(I.5)
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Appendix J

Proof of Proposition 2.1.4

Proof. 1. Positive semidefinite nature of the median

• Let us assume that Ai � 0, i = 1, . . . ,K, and let us sup-
pose that A = Udiag(λ)U † (where λ = [λ1, λ2, . . . , λN ] is
the vector containing its eigenvalues and U is the unitary
matrix of the corresponding eigenvectors) has some negative
eigenvalues, then

‖Ai −A‖ = ‖Ai − diag(λ)‖

=

√√√√tr (A
2
i ) +

N∑
i=1

λ2
i − 2

N∑
l=1

Ai(l, l)λl

≥

√√√√tr (A
2
i ) +

N∑
i=1

λ2
i − 2

N∑
l=1

Ai(l, l)|λl|

= ‖Ai − |diag(λ)|‖ = ‖Ai − |A|‖

(J.1)

where Ai = U †AiU and it has been exploited the fact that
Ai(l, l) ≥ 0, ∀i ∈ {1, . . . ,K} and ∀l ∈ {1, . . . , N}.

• Let now assume that Ai � 0, i = 1, . . . ,K, and suppose that
A has some zero eigenvalues λl, l = N − H, . . . , N ; hence,
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there is

‖Ai −A‖ ≥

√√√√tr (A
2
i ) +

N∑
i=1

λ2
i +H

[
min
i,l

(Ai(l, l))2

]
− · · ·

· · · − 2

N−H∑
l=1

Ai(l, l)λl − · · ·

· · · − 2
N∑

l−H+1

Ai(l, l)

[
min
i,l

(Ai(l, l))

]
= ‖Ai −AE‖ i = 1, . . . ,K

(J.2)
where AE is obtained from A setting its zero eigenvalues to
the value min

i,l
(Ai(l, l)) > 0.

2. Uniqueness of the solution As shown in [96], if the distribution
of a random vector is not concentrated on a line then the median
is unique. As a consequence, in this case, it is sufficient to assume
that the matrices Ai ∈ HN , i = 1, . . . ,K, are not aligned (as
specified in (2.20)) to ensure the existence and uniqueness of the
median matrix.



Appendix K

Proof of Proposition 3.1.1

Proof. Performing the change of variable Y = AXA, problem PH0

becomes equivalent to

P ′0


min
Y

tr
{
S0A

−1Y A−1
}
− log det (Y )

s.t. fi(Y ) ≤ 0, i = 1, . . . ,M
Y � 0

. (K.1)

Indeed, given an optimal solution Y ? to P ′0, then A−1Y ?A−1 is an
optimal solution to PH0 , and viceversa, given an optimal solution X?

to PH0 , then AX?A is an optimal solution to P ′0. Let us show that the
problem P ′0 is solvable1, namely the ML estimate is well defined. Since
Ω is a bounded set, the quantity

C = sup
Y ∈Ω

tr {Y } ,

is a bounded positive real number. Furthermore, there is

tr
{
A−1S0A

−1Y
}
− log det (Y ) ≥ − log(λN (Y ))− (N − 1) log(C),

(K.2)
where the inequality stems from tr

{
A−1S0A

−1Y
}
≥ 0 and λi(Y ) ≤ C,

i = 1, . . . , N . As a result, when Y tends to a rank deficient matrix the
objective function tends to +∞. This means that there exists ε > 0

1By “solvable”, it is meant that the problem is feasible and bounded, and the
optimal value is attained, see [74, p. 13].
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such that P ′0 is equivalent to

P ′′0


min
Y

tr
{
A−1S0A

−1Y
}
− log det (Y )

s.t. fi(Y ) ≤ 0, i = 1, . . . ,M
Y � εI

. (K.3)

Notice that the objective function of problem P ′′0 is a continuous function
and the constraint set defines a compact set. Indeed, the constraint set
is bounded (it is a subset of Ω) and closed (the intersection of closed
sets). Hence, Weierstrass Theorem ensures the existence of a feasible
point Y ? for P ′0 such that v(P ′0) = tr

{
A−1S0A

−1Y ?
}
− log det (Y ?).

Before proceeding further with the study of problem P ′0, the following
lemma, whose proof can be found in [75, Theorem 7.4.10, p. 433], is
given:

Lemma K.0.3. Let B1 � 0 and B2 � 0. There exists a permutation
π of the integers 1, 2, . . . , N such that

tr {B1B2} =

N∑
i=1

λi(B1)λπ(i)(B2). (K.4)

Let us now consider a feasible point Ȳ = V̄ diag
(
λ(Ȳ )

)
V̄
†

for
problem P ′0, where V̄ is a unitary matrix containing the eigenvectors of

Ȳ , and define Ỹ = V 0diag
(
λπ(Ȳ )

)
V †0, with λπ(Ȳ ) the vector of the

permutated eigenvalues of Ȳ satisfying the relation

tr
{
A−1S0A

−1Ȳ
}

=
N∑
i=1

λi(A
−1S0A

−1)λπ(i)(Ȳ ).

Since by assumption fi(Y ), i = 1, . . . ,M , are unitary invariant func-
tions,

fi(Ỹ ) = fi(V̄ V
†
0Ỹ V 0V̄

†
) = fi(Ȳ ) ≤ 0, i = 1, . . . ,M,
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namely Ỹ is a feasible point for P ′0. Moreover,

tr
{
A−1S0A

−1Ȳ
}
− log det

(
Ȳ
)

=

=

N∑
i=1

λi(A
−1S0A

−1)λπ(i)(Ȳ )− log det
(
diag

(
λπ(Ȳ )

))
= tr

{
V 0diag (d0)V †0V 0diag

(
λπ(Ȳ )

)
V †0

}
− log det

(
V 0diag

(
λπ(Ȳ )

)
V †0

)
= tr

{
A−1S0A

−1Ỹ
}
− log det

(
Ỹ
)
.

(K.5)

Consequently, for any feasible matrix Ȳ to problem P ′0, there exists

a matrix Ỹ = V 0diag(λπ(Ȳ ))V †0, which is feasible and achieves the
same objective value as Ȳ . Hence, an optimal solution Y ? to problem
P ′0 exhibits the structure Y ? = V 0diag (λ?)V †0, with λ? an optimal
solution to the optimization problem P(d0). Since the objective function
of problem P(d0) is strictly convex, the assumption that the functions
fi(λ) i = 1, . . . ,M , are convex ensures the uniqueness of the solution.
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Proof of Proposition 3.1.2

Performing the change of variables Y = AXA, β = α‖A−1p‖,
problem PH1 becomes equivalent to

P ′1


min
β,Y

tr
{

1
K

(
R1 − p1β

†) (R1 − p1β
†)† Y }− log det (Y )

s.t. fi(Y ) ≤ 0, i = 1, . . . ,M
Y � 0

,

(L.1)
where R1 = A−1R. In fact, given an optimal solution (Y ?,β?) to P ′0,

then

(
A−1Y ?A−1,

β?

‖A−1p‖

)
is an optimal solution to PH0 , and vicev-

ersa, given an optimal solution (X?,α?) to PH0 , then (AX?A,α?‖A−1p‖)
is an optimal solution to P ′0. Notice that, using the same arguments as
in the proof of Proposition 3.1.1, for any β̄, it can be shown that P ′1
admits an optimal solution

Ȳ ¯β = U ¯βdiag
(
λ ¯β

)
U †¯β

, (L.2)

where U ¯β is a unitary matrix containing the eigenvectors of

S ¯β =
1

K

(
R1 − p1β̄

†
)(
R1 − p1β̄

†
)†

= U ¯βdiag
(
d ¯β

)
U †¯β

(L.3)

corresponding to the eigenvalues d ¯β = λ(S ¯β). Furthermore, a ML

estimate of the eigenvalues λ ¯β is an optimal solution to the optimization
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problem

P ′′1


min
λ

d†¯β
λ−

N∑
i=1

log λi

s.t. fi(λ) ≤ 0, i = 1, . . . ,M
λi > 0, i = 1, . . . , N

. (L.4)

As for Proposition 3.1.1, since the objective function of problem P ′′1 is
strictly convex, the assumption that the functions fi(λ) i = 1, . . . ,M,
are convex guarantees the uniqueness of the solution.

It is now proved that the objective function value achieved by
(
Y β1

,β1

)
,

with β1 = R†1p1 and Y β1
the corresponding ML inverse covariance

matrix estimate, is lower than or equal to the objective function value

achieved by
(
Ȳ ¯β, β̄

)
, where β̄ is an arbitrary complex vector and Ȳ ¯β is

the ML inverse covariance matrix estimate sharing the structure (L.2)1.
To this end, let us consider the following feasible solution to problem P ′1(

Ȳ β1
,β1

)
where

Ȳ β1
= Uβ1

diag
(
λ ¯β

)
U †
β1

,

with Uβ1
a unitary matrix containing along its columns the eigenvectors

of

Sβ1
=

1

K

(
R1 − p1β

†
1

)(
R1 − p1β

†
1

)†
= Uβ1

diag
(
dβ1

)
U †
β1

,

corresponding to the eigenvalues dβ1
= λ(Sβ1

). Now, observing that

R1 − p1β
†
1 = R1 − p1p

†
1R1 =

(
I − p1p

†
1

)
R1,

1Notice that, for a fixed β̄, there could exist some optimal inverse covariance ma-
trices, in the ML sense; however all these solutions share the same optimal likelihood
value.
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, it follows that

Sβ1
=

1

K

(
R1 − p1β

†
1

)(
R1 − p1β

†
1

)†
=

1

K

(
I − p1p

†
1

)
R1R

†
1

(
I − p1p

†
1

)†
=

1

K

(
I − p1p

†
1

) (
R1 − p1β̄

) (
R1 − p1β̄

)† (
I − p1p

†
1

)†
=
(
I − p1p

†
1

)
S ¯β

(
I − p1p

†
1

)†
,

(L.5)

with S ¯β given in (L.3). Since

λ

((
I − p1p

†
1

)
S ¯β

(
I − p1p

†
1

)†)
= λ

(
S

1/2
¯β

(
I − p1p

†
1

)
S

1/2
¯β

)
(L.6)

and

S
1/2
¯β

(
I − p1p

†
1

)
S

1/2
¯β
� S ¯β, (L.7)

from [74, Theorem A.7.4], it follows that

λi(S ¯β) ≥ λi(Sβ1
), i = 1, . . . , N. (L.8)

As a consequence, it follows that

tr
{
Ȳ β1

Sβ1

}
− log det

(
Ȳ β1

)
=

N∑
i=1

λ ¯β i
λi(Sβ1

)− log det
(
Ȳ β1

)
≤

N∑
i=1

λ ¯β i
λi(S ¯β)− log det

(
Ȳ β1

)
= tr

{
Ȳ ¯βS ¯β

}
− log det

(
Ȳ ¯β

)
,

(L.9)

having exploited the inequalities λi(S ¯β) ≥ λi(Sβ1
), i = 1, . . . , N , and

having used (L.2) and (L.3) (the eigenvectors of Y ¯β are those of S ¯β).

Thus, for any β̄,
(
Ȳ β1

,β1

)
achieves an objective function lower than or

equal to the one achieved by
(
Ȳ ¯β, β̄

)
. Finally, since the pair

(
Y β1

,β1

)
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is not worse than the pair
(
Ȳ β1

,β1

)
, in the ML sense, it can be written

α̂H1 =
R†A−1p1

‖A−1p‖
(L.10)

and

X̂H1 = A−1V 1diag (λ?1)V †1A
−1, (L.11)

where λ?1 is an optimal solution to the optimization problem P(d1).
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