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Introduction

V ideo-related applications have increased dramatically in recent years.
Application fields, such as medicine, space exploration, surveillance,

authentication, HDTV, and automated industry inspection, require capturing,
storing and processing continuous streams of video data. Different process
techniques (video enhancement, segmentation, object detection, or video com-
pression, as examples) are involved in these applications.

The implementation of such techniques on a general purpose computer is
generally simple but it is not time-efficient due to the significant number of op-
erations required by the processing algorithms that depends on the algorithm
complexity and the video resolution. The actual trend, driven by the consumer
electronics market, is towards lightweight and high performance portable sys-
tems capable of processing high definition (HD) video sequences in real-time.
Such demand is mainly targeted through the extensive use of integrated digital
electronic systems.

Very high performances can be obtained by using full custom ASIC imple-
mentations. However, the complexity and the cost associated with the ASIC
design is very high. Moreover, ASIC implementations are not reconfigurable
and require a long design time. For these reasons, Field Programmable Gate
Array (FPGA) devices are always more frequently being chosen as target tech-
nology for the hardware acceleration.

FPGA are reprogrammable, and are available in a wide range of perfor-
mance. They allow to implement low cost dedicate architectures and pro-
vide fast time to market. Finally, rapid prototyping of complex algorithms,
along with debugging and verification simplifications, are easily achievable
with FPGA devices.

In this dissertation several hardware architectures for real-time video pro-
cessing of high definition video sequences, that overcome the state of the art
in terms of performances, are proposed.

The implemented architectures are listed in the following.

3



4 Introduction

Background identification circuit
A background identification system identifies moving objects in video se-

quences. Several background identification algorithms have been proposed in
the years. Among all, the Gaussian Mixture Model is able to provide good
performance in presence of illumination changes and multimodal background.
For these reasons, the Gaussian Mixture Model has been introduced in the
OpenCV, an open source library for computer vision. The OpenCV version of
the Gaussian Mixture Model allows a fast identification also in the first phase
of the video processing.

Main drawback of the algorithm is the high computational complexity so
that a hardware implementation is required for real-time processing of HD
video sequences.

A new formulation of the algorithm equations, along with the implemen-
tation of ROM approximation techniques and truncated multipliers, leaded to
an optimized hardware implementation able to process 1080p video sequences
in real time.

The circuit has been implemented both on Field Programmable Gate Ar-
ray (FPGA) devices and by using a standard cells library in UMC-90nm tech-
nology and has been experimentally validated by implementing two running
on-line video systems.

When implemented on Virtex6 (xc6vlx195t) FPGA the circuit is able to
process 57 HD fps (fps, frames per second) by using the 1% of the Slice of the
target device.

Finally, two ASIC implementations have been proposed. The circuits have
been optimized in order to allow the processing of 60 fps with reduced silicon
area utilization or with low power dissipation.

The background identification algorithms and the results of the research
activity are presented in the Chapters 1 and 2.

Denoising circuit for binary images
The output video of a background identification circuit is composed by

binary images in which each pixel is equal to ’0’ if it belongs to the background
or ’1’ otherwise (or vice versa). Some pixels could be wrongly classified and
some holes could appear in the objects or close objects could be connected.

In order to enhance the binary images, a denoising circuit, based on mor-
phological operators, can be implemented.

The mathematical morphology consists of a set of powerful tools for geo-
metrical image analysis, image, and video compression, error correction, noise
suppression, and video segmentation.



Introduction 5

The circuit has been implemented for processing HD video sequences with
reduced area utilization and memory requirements, and without introducing
latency in the processing of consecutive frames.

Implemented on Virtex6 (xc6vlx195t) FPGA, the circuit runs at
405.68 MHz (the processing capability is equal to 195 HD fps) by using
133/31200 Slices. In association with the background identification circuit
previously described, the circuit is able to process 57 HD fps by using 434 of
the 31200 Slices of the target FPGA.

The results are shown in Chapter 3.

Spatio-temporal average filter for denoising of fluoroscopic images
Fluoroscopy is a technique massively adopted in clinical environments for

image-guided surgery and therapy.
During the fluoroscopy, the dosage of X-ray is low. This generates the

well-known quantum noise, which can be modelled as a signal-dependent
Poisson distributed noise source.

Several techniques have been proposed to filter such quantum noise. In
recent years, a spatio-temporal conditioned average filter has been proposed in
the scientific literature. This filter is capable of filtering images while still pre-
serving edges and moving objects and favourably compares with more com-
plex filtering techniques such as BDM, BM3Dc, K-SVD. Furthermore, the
proposed filter is optimally suited for a hardware implementation. The algo-
rithms for the denoising of fluoroscopic images are described in Chapter 4.

The research activity has been oriented to the hardware implementation of
the proposed spatio-temporal conditioned average filter and results, to the best
of our knowledge, in the first circuit able to process fluoroscopic images in
real time. The circuit has been designed aiming to the reduction of the arith-
metic circuital units requested to average the pixels. Furthermore, the filter-
ing requires the adoption of an external memory and, thus, several addressing
schemes, each of them involving different trade-off between hardware com-
plexity and maximum working frequency, have been considered and the ad-
dressing scheme that optimizes this trade-off has been implemented.

The circuit, implemented on Spartan6 FPGA, is able to process 58 fps with
resolution equal to 1024×1024.

Chapter 5 shows the results of the hardware implementation.

It is worth noting that, although the implemented algorithms find applica-
tion in different contexts, all the described architectures are able to process HD
video sequences in real-time.
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The circuits are designed by using Hardware Description Languages
(HDL) and the target technologies for the implementation are mainly Xilinx
and Altera FPGA devices. Area utilization, maximum working frequency, and
power dissipation have been also computed and analyzed for all the described
architectures and several experiments have been carried out to test the circuits
behavior.

The comparison with previously proposed works shows that the circuits
performance overcome the state-of-the-art architectures, highlighting the ef-
fectiveness of the proposed solutions.

Dissertation outline
The dissertation is organized as follows:

• Chapter 1 summarizes the background identification algorithms pro-
posed to date;

• Chapter 2 describes the hardware implementation of the OpenCV ver-
sion of the Gaussian Mixture Model algorithm;

• Chapter 3 deals with the denoising circuit for binary images;

• Chapter 4 is focused on the state-of-the-art techniques used for filtering
fluoroscopic images;

• Chapter 5 describes the hardware implementation of the spatio-
temporal average filter to perform the real-time processing of fluoro-
scopic video sequences.

Publications
Background identification circuit

• M. Genovese, E. Napoli, N. Petra, ”Hardware Performance Versus
Video Quality Trade-Off for Gaussian Mixture Model Based Back-
ground Identification Systems,” ICDIP., Athens, Greece, 2014 (accepted
for publication);

• M. Genovese, E. Napoli, ”ASIC and FPGA Implementation of the Gaus-
sian Mixture Model Algorithm for Real-Time Segmentation of High
Definition video,” IEEE Trans. on Very Large Scale Integration (VLSI)
Systems, vol.PP, no.99, 2013;
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• M. Genovese, E. Napoli, D. De Caro, N. Petra, and A. G. M. Strollo,
FPGA Implementation of Gaussian Mixture Model Algorithm for 47 fps
Segmentation of 1080p Video, Journal of Electrical and Computer En-
gineering, vol. 2013, 2013;

• M. Genovese, E. Napoli, Processor core for real time background iden-
tification of HD video based on OpenCV Gaussian mixture model algo-
rithm, in Proc. SPIE 8764, VLSI Circuits and Systems VI, Grenoble,
France, May 2013;

• M. Genovese and E. Napoli, FPGA implementation of OpenCV compat-
ible background identification circuit, in Proc. of the 3rd International
Symposium on Computational Modeling of Objects Represented in Im-
ages: Fundamentals, Methods and Applications (CompIMAGE 12), pp.
7580, Rome, Italy, Sept.2012;

• M. Genovese, E. Napoli, ”An FPGA-based Real-time Background Iden-
tification Circuit for 1080p Video,” Signal Image Technology and Inter-
net Based Systems (SITIS), 2012 Eighth International Conference on ,
pp.330,335, 25-29 Nov. 2012;

• M. Genovese, E. Napoli, N. Petra, ”OpenCV compatible real time
processor for background foreground identification,” Microelectronics
(ICM), 2010 International Conference on , pp. 467-470, Cairo, Egypt,
Dec. 2010.

Denoising circuit for binary images

• M. Genovese, N. Petra, D. De Caro, E. Napoli, A. G. M. Strollo, ”FPGA
architecture for real time video segmentation and denoising”, GE, Ma-
rina di Carrara, 2012;

• M. Genovese, and E. Napoli, ”FPGA-based architecture for real time
segmentation and denoising of HD video,” Jour. of Real-Time Image
Processing, pp.1-13, 2011.

Spatio-temporal average filter for denoising of fluoroscopic images

• M. Genovese, D. Decaro, E. Napoli, N. Petra, P. Bifulco, M. Romano,
M. Cesarelli, A. G. M. Strollo, ”Hardware implementation of a spatio-
temporal average filter for real-time denoising of fluoroscopic images”,
VLSI, the Integration Journal. (submitted for publication )





Chapter 1

Motion detection

Several computer vision applications including video surveillance, tracking,
gesture recognition, etc., require to identify events of interest in video se-
quences. These events correspond often to the motion of objects (foreground)
that have to be separated from the static parts of the scene (background).

When a large amount of data has to be processed the foreground can not
be identified manually but a system able to automatically segment the scene is
needed.

Several algorithms have been developed during the years. They are based
on the frame difference, [1]-[4], on the comparison with a background model
[5]-[17], or on the estimation of the optical flow [18]-[22].

The algorithms based on the difference between consecutive frames, are
often fast and simple to implement but the result of the identification depends
on the speed of the moving objects. Moreover, they are not robust with respect
to illumination changes of the environment. This last problem is also present in
optical flow based algorithms that, on the other hand, allow the identification of
moving objects with different speed and provide information on the direction
of the motion.

The algorithms based on the background model are often able to provide
good performances in presence of illumination changes. However, they present
an high computational complexity since the update of the background model is
required. The Gaussian Mixture Model (GMM) algorithm, [16],[17], belongs
to this last category. It provides good performances in presence of both illumi-
nation changes and multimodal background (characterized by objects showing
repetitive motions, e.g. a lake surface or flickering lights).

Due to its good performances the GMM has been selected as background

9



10 Motion detection

detection algorithm in the OpenCV (Open Source Computer Vision) library,
[23], developed by Intel to provide a common base of computer vision instru-
ments able to extract relevant details from the images and to process them in
automatic way. The OpenCV library is becoming a widely used standard. The
importance of the OpenCV library is demonstrated by the fact that many com-
panies working on electronic systems for computer vision, are now studying
or implementing the OpenCV algorithms in order to provide systems that can
be easily transferred to new applications.

The OpenCV version of the GMM modifies the original algorithm pro-
posed in [16],[17] by allowing a faster initialization phase of the background
model.

This Chapter describes the main background/foreground identification
methods (Section1.1) with the focus on the background subtraction algorithms
and details the OpenCV version of the Gaussian Mixture Model (Section1.2).

1.1 Background identification algorithms

1.1.1 Frame difference

A simple way to detect the foreground is observing the difference of the pixels
belonging to two or more consecutive frames [1]-[4]. By setting a threshold
value, a pixel is identified as foreground if the difference is higher than the
threshold value or background otherwise.

These algorithms are often very simple and suit well for the hardware im-
plementation because both the computational complexity and the memory re-
quirements are rather low. However, their simplicity comes at the cost of the
segmentation quality. In general, bigger regions are detected as foreground
area than the actual moving part. The threshold is generally a fixed value. Set-
ting a global threshold value is problematic since the segmentation is sensitive
to light intensity. When the threshold value is big, there is less noise in the
result but some objects could be not well identified. On the contrary, if the
threshold value is low, the noise increases. In addition, the identification de-
pends on the speed of the moving objects and the illumination changes of the
environment.

1.1.2 Optical flow

Optical flow is a commonly used method to identify and track the moving
objects by estimating velocity distributions in a video sequence.
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Many gradient-based methods such as the HornSchunck method [18] and
LucasKanade method [19] have been developed to estimate the optical flow
by calculating the brightness gradients of images [20], [21]. The accuracy of
these methods decreases when the speed of the moving objects is high or when
there is a large displacement between consecutive frames, [22].

Moreover, the optical flow method is based on the assumption of constant
lightness across frames. That is true, if the illumination condition does not
have drastic change or the frame rate is high.

1.1.3 Background subtraction

An accurate identification of the moving objects can be obtained by creating a
reference model of the background and by comparing the frames of the video
sequence with this model, [5]-[17].

The scene could be subjected to changes due to lighting variations or static
objects that become dynamics or vice versa. The background model has to
be updated to correctly model the changes of the scene. This entails that the
background subtraction algorithms are often computationally expensive.

Figure 1.1 shows an conceptual overview of a background subtraction sys-
tem.

Figure 1.1: Conceptual overview of a background identification system.

The ”Background identification” unit is responsible for segmenting the
current frame of the video sequence provided by a camera, into foreground
and background regions. The identification is carried out by exploiting the
model of the scene produced by the ”Background modeling” unit. The output
is usually a video sequence composed by binary images in which the fore-
ground pixels are white and the pixels belonging to the background are black
(or viceversa).
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The literature reports various contributions for the segmentation of the
foreground pixels with background subtraction algorithms, [5]-[17].

Reference [7] builds a background model starting with the assumption that,
if a pixel is stationary for a prefixed number of consecutive frames, the proba-
bility that it belongs to the Bg is high and, therefore, the pixel can be included
in the background model.

Median filters, traditionally used in the spatial image filtering process, are
also used to model background pixels with reduced noise deviation by filtering
pixel values in the time domain, [8]-[10]. The median filtering process is car-
ried out over a large number of previous frames [8]. This number grows if the
objects move slowly. The frames needed for the filtering operation have to be
stored while resulting in a high computational complexity and a large memory
usage.

The median filter doesn’t take into account how a background pixel value
could drift from its mean value. To be able to estimate the current background
more accurately, linear predictive filters are developed for background model-
ing, [11]-[14].

The authors of [11] use an one-step Wiener filter to predict a background
value starting from its N previous values. Wiener filters are expensive in com-
putation and memory requirement. N frame buffers are needed to store the N
previous frames. Background pixel prediction and coefficients updating are
also very costly since a set of linear functions are needed to obtain the value.

An alternative approach for linear prediction is to use a Kalman filter. Ba-
sic Kalman filter theory can be found in many literatures, [12]- [14]. Kalman
filters are widely used for many background subtraction applications. They
predict the current background pixel value with a recursive compute, starting
from the previous estimate and the new input data.

Reference [15] proposes a model in which the fluctuations in a pixel value
are modelled with a Gaussian distribution. This allows a pixel by pixel rep-
resentation of the background with larger variance for pixels that experience
wide change of lighting.

Predictive methods discussed before work well with background scenes
with slow lighting changes but fails to deal with multi-modal background in
which the pixel intensity oscillates between two o more values. In order to
correctly model multi-modal backgrounds Stauffer-Grimson [16],[17] devel-
oped an algorithm based on a mixture of Gassian distribution. The algorithm
of [16],[17], known as Gaussian Mixture Model, is detailed in Section 1.2.
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1.2 Gaussian Mixture Model

The Gaussian Mixture Model (GMM) algorithm has been proposed by Stauf-
fer and Grimson, [16],[17] with the target of efficiently dealing with lighting
changes and multimodal background. A multimodal background is charac-
terized by objects showing repetitive motion, e.g. waves, moving leaves or
flickering lights. When a pixel lies in a region where a repetitive motion oc-
curs, its brightness oscillates between two or more values. This results in false
foreground detection in most algorithms.

The GMM algorithm models the intensity distribution of each pixel in a
frame by using a statistical model composed by a mixture of K Gaussian dis-
tributions. Each Gaussian distribution is represented with three parameters:
the mean µp,k,t, the variance σ2p,k,t, and a weight wp,k,t. The weight repre-
sents the probability that the current observation of the pixel belonging to the
distribution.

Gaussian parameters differ for each Gaussian of each pixel and change for
every frame of the video sequence. They are therefore defined by three indexes
(p,k,t), where ’p’ is the index for the pixel, ’k’ is the index for the Gaussian
distribution, and ’t’ is for the frame. In the following the pixel index is omitted
since the same operations are repeated for every pixel.

Due to the good performances, the GMM algorithm has been selected as
the background detection algorithm in the OpenCV [23], Open source Com-
puter Vision software library originally developed by Intel, that provides a
large number of programming functions mainly aimed at real-time computer
vision. OpenCV was designed for computational efficiency and with a strong
focus on real-time applications. It has more than 47 thousand people of user
community and estimated number of downloads exceeding 7 million.

The GMM algorithm proposed in the OpenCV library is an optimized ver-
sion of the algorithm of [16],[17].

A detailed description of the OpenCV GMM algorithm is given in the fol-
lowing. The differences with respect to the algorithm of [16],[17] are indicated
in the text.

1.2.1 OpenCV algorithm

Parameter update

When a frame is acquired, for each pixel, the K Gaussian distributions are
sorted in decreasing order of a parameter named Fitness (Fk,t):
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Fk,t = wk,t/σk,t. (1.1)

The incoming pixel (pixel) is checked against the K Gaussian distributions
in order to verify a match condition defined as:

Mk,t = 1 if | (pixel − µk,t) |< λ ∗ σk,t (1.2)

where λ is a threshold whose value is chosen equal to 2.5 in [16]. This
threshold can be changed to adapt the algorithm to different kinds of scene.
For example, shaded regions do not generally exhibit as much noise as objects
in lighted regions. So different threshold values could be chosen. Equation
(1.2) establishes if the pixel can be considered part of the background. A
pixel can verify (1.2) for more than one Gaussian. The Gaussian that matches
with the pixel (Mk,t = 1) and has the highest Fk,t value is considered as the
matched distribution and its parameters are updated as follows:

µk,t+1 = µk,t + αk,t · (pixel − µk,t),
σ2k,t+1 = σ2k,t + αk,t · [(pixel − µk,t)2 − σ2k,t], (1.3)

wk,t+1 = wk,t − αw · wk,t + αw,

matchsumk,t+1 = matchsumk,t + 1

For the unmatched Gaussian distributions, mean and variance are un-
changed and the weights are updated as:

wk,t+1 = wk,t − αw · wk,t. (1.4)

The matchsum parameter (matchsumk,t) of (1.3) is a counter introduced
in the OpenCV algorithm. The parameter αw is the learning rate for the weight
while αk,t is the learning rate for mean and variance. αw, and αk,t define the
time constant which determine the speed at which the distributions parameters
change.

αk,t is derived from αw as:

αk,t = αw/wk,t. (1.5)

Equation (1.5) is employed in the OpenCV algorithm. The equation differs
from what is proposed in [16],[17] where it is calculated, being η the Gaussian
probability density function, as:
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αk,t = αw · η(pixel, µk,t, σk,t). (1.6)

Equation (1.5) and the introduction of the matchsum parameters allow
to obtain an improved initial learning phase with respect to the algorithm of
[16],[17], in which this phase is very slow, [24],[25].

Figure 1.2 shows a comparison between the learning phase of the conven-
tional GMM and the learning phase of the OpenCV algorithm. Figure 1.2(a)
shows a video sequence extracted from the Wallflower database of [26]. Fig-
ure 1.2(b) and Fig. 1.2(c) show the output obtained with the proposed OpenCV
GMM algorithm and with the algorithm of [16],[17], respectively. Using the
OpenCV GMM, the background is almost disappeared at the 2nd frame and it
is well identified at the 56th frame. On the contrary, the conventional GMM
results in a wrong identification at the 2nd frame because all pixels of the scene
are classified as foreground and some foreground pixels are still visible to the
56th frame.

If none of the K distributions match the current pixel value, the least proba-
ble distribution (the distribution with the lowest fitness factor) is replaced with
a Gaussian with the current value as its mean value, an initially high variance,
and low weight:

µk,t+1 = pixel matchsumk,t+1 = 1,

σ2k,t+1 = vinit wk,t+1 = 1/msumtot, (1.7)

where vinit is a fixed initialization value and msumtot is the sum of the
values of the matchsum of the K-1 Gaussians with highest Fitness. The weights
of the K-1 Gaussians with highest Fitness are decremented as in 1.4 while their
means and variances are unchanged.

Background identification

Ordering the Gaussian distributions in decreasing order of the Fitness value is
equivalent to order them with the most likely background distributions on the
top and the less probable background distributions towards the bottom. Then
the background identification is performed by using the following algorithm:

B = arg min
b

(Σb
k=1wk,t > T ). (1.8)
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Figure 1.2: Comparison of the learning phase for the initial back-
ground model between the conventional GMM and the OpenCV al-
gorithm. (a): original frames; (b): output of the OpenCV version of
the GMM algorithm; (c): output of the conventional GMM algorithm.

Equation (1.7) adds in succession the weights of the first b Gaussian dis-
tributions, in Fitness order, until their sum is greater than T, a fixed threshold
belonging to the [0,1] interval.

The set of the Gaussian distributions that verify (1.6) represents the back-
ground and a pixel that matches one of these Gaussians is classified as a back-
ground pixel. The algorithm entails that the pixel values that do not fit the
background distributions are considered foreground.



Chapter 2

Hardware implementation of
the OpenCV GMM

The Gaussian Mixture Model (GMM) algorithm described in Chapter 1, allows
good performances in presence of both illumination changes and multimodal
background.

Main drawback of the algorithm is the high computational complexity. In
order to generate the updated background model, the GMM algorithm pro-
cesses the video streams by computing a great number of parameters for each
pixel of each frame. This entails a computational burden that grows with the
frame size and result unfeasible for real time software implementation. As ex-
ample, in [16] only a frame rates of 11-13 frame per second (fps) is obtained for
a frame size equal to 160×120 on an SGI O2 workstation. The authors of [31]
conducted a test on a software implementation running on an AMD4400+ pro-
cessor and observed a frame rate of 4-6 fps for video sequences with 352×288
resolution.

Real time video applications with large frame size require dedicated hard-
ware architectures. Hardware processors have been proposed in [27]-[32]. Pa-
pers [27],[28] present GPU implementations based on the GMM algorithm.
Despite the fact that the approach described in [28] reaches 30 fps for HD
(High Definition) videos, being a GPU implementation is an impediment for
embedded systems and low power constraints.

Papers [29]-[32] propose FPGA implementations that are more suited to
embedded and low power systems.

Reference [29] proposes a circuit able to process video sequences with
frame size 1024×1024 at 38 fps when implemented on VirtexII FPGA plat-

17
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form. Processing capability of [29] is, therefore, 39.8 Mega pixels per second
(Mps).

In [30] the design of an automated digital surveillance system running in
real-time on an embedded platform is presented. The segmentation unit of the
circuit proposed in [30] is able to run at 83 MHz on VirtexII xc2pro30.

In [31], the research group of [30], improves the memory throughput with
respect to [30] employing a memory reduction scheme. However, the resulting
processing capability of the overall system is reduced with respect to [30] and
only reaches 7.68 Mps.

The hardware implementations of [29]-[32] are not OpenCV compatible.
This Chapter shows the hardware implementation of a background identifica-
tion circuit based on the OpenCV GMM algorithm.

In order to obtain a hardware implementation able to process HD (frame
size 1920×1080) video sequences in real-time, several optimization tech-
niques have been implemented.

Using a procedure based on the computation of the Peak Signal to Noise
Ratio (PSNR), it has been determined the representation of the Gaussian pa-
rameters that allows the best trade-off between hardware complexity and video
quality (Section 2.1). Moreover, the equations of the OpenCV GMM have been
modified in order to obtain a new formulation of the algorithm that allows an
optimized hardware implementation (Section 2.2).

Experimental validations show the effectiveness of such new algorithm for-
mulation (Section 2.3).

The circuit has been also implemented by using a UMC-90nm standard
cell library (Section 2.4) that allows a frame rate equal to 180 fps. Exploiting
the very high working frequency, the ASIC implementation has been modified
in order to obtain two architectures with a different trade-off between area
utilization and power dissipation.

Finally, truncated binary multipliers and ROM compression techniques
have been implemented to further improve the circuit performances (Sec-
tion 2.5). Implemented on Virtex6-vlx195t, without pipeline registers, the cir-
cuit is able to process 57 frames per second (fps) by using 301 of the 31200
Slices of the target FPGA.

The circuits have been described in VHDL and are able to process gray
scale videos. When color videos need to be processed, the circuits, can be fed
with the luminance channel of the YCrCb color space.

The GMM algorithm has been implemented by using three Gaussian distri-
butions for each pixel. This number determines a trade-off between hardware



2.1. BANDWIDTH REDUCTION 19

complexity and accuracy of the background model. Section 2.6 shows that a
good trade-off can be obtained by implementing the GMM with three Gaussian
distributions.

2.1 Bandwidth reduction

The OpenCV version of the GMM algorithm associates four parameters (µk,t,
σ2k,t,wk,t,matchsumk,t) to each Gaussian distribution that models a pixel. As
a consequence, if the algorithm is implemented by using three Gaussian distri-
butions per pixel, the processing of each pixel requires 12 parameters and the
pixel luminance.

The software algorithm proposed in the OpenCV libraries represents the
Gaussians parameters as double precision (64 bit) floating point numbers. Un-
fortunately, a hardware implementation using 64 bit floating point signals is
not feasible. First of all the required circuitry for the calculation of double
precision signals is too large and slow for the effective hardware implementa-
tion. Moreover, since as the value of the Gaussian parameters has to be stored
for each pixel of a frame, an external memory is needed. An high number of
bit per pixel entails an high bandwidth towards the memory that could affect
the performances of the circuit. As an example, if the memory throughput is
128 bit, 6 or 7 clock cycles are needed to load the parameters for each pixel.
The same number of clock cycles is required to store the updated parameters.
The target of processing 41.5 Mps implies that the clock frequency towards
the memory is around 550 MHz with a required bandwidth of 8.6 GBs. Such
bandwidth is not feasible for a low power lightweight electronic system.

In order to reduce the logic and the bandwidth, it is necessary to reduce the
number of bits that represents the pixel statistic.

The examination of the GMM algorithm reveals that the signals have a lim-
ited dynamics. Mean, variance, and weight range are in [0,255], [0,127], and
[0,1], respectively. When dealing with limited dynamics signals, using a fixed
point representation instead of a floating point one provides improved perfor-
mances while reducing hardware complexity and the bandwidth towards the
memory. This requires that the number of bits of the fixed point representation
is based on both the range of the signals and the required accuracy.

In the following a specific procedure to determine the signal representation
is presented. The proposed procedure guarantees a good trade-off between
accuracy and hardware performances.
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2.1.1 Word length optimization algorithm

For a fair evaluation of the performances of the circuit, five test bench videos
have been selected and processed varying the number of bits that represents
the Gaussian parameters. The effect of the word length reduction on the back-
ground identification has been evaluated calculating the Peak Signal to Noise
Ratio (PSNR) for each frame of the test bench videos followed by the calcula-
tion of the average PSNR (AvPSNR), considered as the accuracy performance
value for the processed video streams.

The PSNR is calculated as:

PSNR = 20 log10
max(I)√
MSE

(2.1)

MSE =
1

M ·N

M∑
i=1

N∑
j=1

(I(i, j)− Iref(i, j))2 (2.2)

where max(I) is the maximum intensity value of a pixel in the processed im-
age (I) (equal to 1 for a one bit image). Iref is the reference image. Both I and
Iref have size equal to M×N (320×240). I(i,j) and Iref(i,j) represent the values
of the pixel luminance. For a binary image, the difference between I(i,j) and
Iref(i,j) is ‘1’ if the pixel has been differently classified in I and Iref ; ‘0’ other-
wise. Eq.(2.2) is the ratio between the number of pixels differently classified in
I with respect to Iref and the number of pixels in a frame. For each video, Iref
has been calculated using the double precision floating point OpenCV GMM
algorithm.

The word length optimization has been carried out in two phases.
In the first phase the number of bits has been simultaneously reduced for

all Gaussians parameters. Table 2.1 reports, for the five test bench videos, the
AvPSNR values and the corresponding number of differently classified pixels
(background instead of foreground or vice versa) obtained representing mean,
variance, weight and matchsum of each Gaussian distribution as a fixed point
number on 52, 23, 18, 14, 12, 11, 10, 9, and 8 bits and comparing the processed
binary images with the reference images.

The results of Table 2.1 are summarized in Fig. 2.1 that shows the percent-
age of correctly identified bits (averaged on the five test bench videos) as a
function of the word length of the input signals.

Table 2.1 and Fig. 2.1 show that the 52 and 23 bit cases present the same
AvPSNR value that corresponds to less than 20 differently classified pixels be-
tween the reference images and the considered images. On the other hand, the
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Table 2.1: AvPSNR values varying the word lengths of mean, variance,
weight, and matchsum signals. The table refers to the first phase of the algo-
rithm for the optimization of the word lengths in which the same number of
bits is used for every Gaussian parameter.

Video AvPSNR (average value for 300 frames)

sequence 52 bit 23 bit 18 bit 14 bit 12 bit 11 bit 10 bit 9 bit 8 bit

Video 1 46.22 44.85 34.31 19.54 18.25 17.09 14.95 8.06 0.96

Video 2 44.81 43.46 34.32 18.13 16.99 15.69 14.84 7.80 0.83

Video 3 37.45 36.97 30.17 15.79 13.81 12.12 10.73 6.18 1.41

Video 4 37.96 37.82 32.36 18.49 16.37 14.94 13.11 7.54 0.82

Video 5 39.33 38.37 30.73 15.25 13.78 12.71 10.02 6.19 1.24

Average number of differently

Video classified pixels per frame (frame size 320x200)

sequence 52 bit 23 bit 18 bit 14 bit 12 bit 11 bit 10 bit 9 bit 8 bit

Video 1 2 3 28 854 1149 1501 2457 12005 61569

Video 2 3 3 28 1181 1535 2072 2519 12746 63440

Video 3 14 15 74 2025 3194 4714 6492 18508 55509

Video 4 12 13 45 1087 1772 2462 3753 13532 63586

Video 5 9 10 65 2293 3216 4115 7645 18466 57725

AvPSNR value is not acceptable when the signals are represented on 9 bits or
8 bits. Fig.2.1 shows that, in this case, a dramatic drop in the image quality
occurs and more than 15% or 70% of the pixels are erroneously identified.
The AvPSNR has a reasonable value when 10 bits or 11 bits are used for each
signal. Since, for the applications of the GMM algorithm, the reliability is im-
portant and the 10 bit case is too close to the point in which the AvPSNR drops
dramatically, we chose the 11 bits case as the output of this first optimization
phase. Note also that using 11 bits for each signal allows, on average, to cor-
rectly identify 94% of the pixels. This can be seen averaging the number of
differently classified pixels in the 11 bit column of Table 2.1 (obtaining 2973
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pixel) and considering that a frame contains 64000 pixels.
In the second phase of the optimization, the word length of one signal be-

tween variance, mean, weight, and matchsum has been further reduced in order
to obtain a more efficient circuit that still provides acceptable AvPSRN values.
Each time a word length reduction has been attempted, it has been considered
feasible if the calculated AvPSNR values are higher than the AvPSNR values
obtained representing all the parameters with 10 bits (shown in Table 2.1) that
is defined as the lowest performance threshold for the identification circuit.

The word length reduction has been firstly carried out on the signals for
which the reduction of the number of bits provides the highest reduction of
resource utilization. Analyzing the GMM equations reported in the Chapter 1,
it has been determined that the variance is the parameter whose impact on
resource utilization is the highest. After the variance, the signal that more
heavily impacts circuit complexity is the mean, followed by the weight and the
matchsum signal.

The AvPSNR values obtained for the second phase of the optimization of
the word length of the signals are shown in Table 2.2.

Column A of Table 2.2 refers to the variance signal represented on 10 bits
and shows that the resulting AvPSRN values are lower than the performance
threshold (defined as the AvPSNR value of the 10 bit case of Table 2.1). As
consequence, it is not possible to reduce to 10 bits the word length of the
variance.

Column B and C refer to the reduction of the word length of the mean
signal. The AvPSNR values are acceptable when the variance is represented
with 11 bits and the mean with 10 bits (column B). When the mean is brought
to 9 bits (column C), the AvPSRN values are too low. Consequently, the word
length of the mean has been fixed to 10 bits.

Column D and E refer to the reduction of the word length of the weight
signal. Keeping the variance on 11 bits and the mean on 10 bits, it has been
found that is possible to reduce the word length for the weight to 8 bits without
excessive deterioration of the AvPSNR values (column D). When the word
length of the weight is reduced to 7 bits (column E), the AvPSNR value is very
close to the performance threshold and in one case (Video 2) is lower than it.
The optimal word length for the weight has therefore been fixed to 8 bits.

Column F of Table 2.2 shows that good AvPSNR values (unchanged with
respect to column D) and reduced logic utilization are obtained allocating 4
bits to the matchsum signal. A further reduction of the number of bits for
matchsum would provide little reduction in circuit complexity and has not been
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Figure 2.1: Percentage of correctly identified pixels for each frame
as a function of the word length of the input signals. The reference
frames come from the double precision floating point OpenCV GMM
algorithm. The points are the results averaged on the five test bench
video of Table 2.1.
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Table 2.2: AvPSNR values for the second phase of the word length op-
timization algorithm. The number of bits for variance, mean, weight, and
matchsum are reduced one by one starting from 11 bits that is the result of
the first phase of the optimization procedure. A: variance represented with 10
bits; B: mean represented with 10 bits; C: mean represented with 9 bits; D:
mean and weight represented with 10 bits and 8 bits, respectively; E: mean
represented with 10 bits and weight with 7 bits; F: mean, weight, and match-
sum represented with 10, 8 and 4 bits, respectively. The values that are below
the performance threshold are shown in bold. They make the accuracy not
acceptable.

AvPSNR (average value for 300 frames)

Reduction of the wordlength of the

variance (σ2) mean (µ) weight (w) matchsum

A B C D E F

σ2 10bit σ2 11bit σ2 11bit σ2 11bit σ2 11bit σ2 11bit

µ 10bit µ 9bit µ 10bit µ 10bit µ 10bit

Video w 8bit w 7bit w 8bit

sequence matchsum 4bit

Video 1 14.90 17.09 14.13 16.44 16.35 16.44

Video 2 14.70 15.69 14.43 15.05 14.78 15.05

Video 3 10.70 12.06 11.27 11.53 11.41 11.53

Video 4 12.49 14.87 12.53 14.06 13.25 14.06

Video 5 10.12 12.71 9.06 11.46 10.53 11.46

Average number of differently

Video classified pixels per frame (320×200)

sequence A B C D E F

Video 1 2485 1501 2967 1743 1780 1743

Video 2 2602 2072 2769 2401 2555 2401

Video 3 6537 4779 5733 5400 5551 5400

Video 4 4329 2502 4289 3016 3634 3016

Video 5 7471 4115 9536 5487 6798 5487
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Table 2.3: Word lengths and representations for the Gaussian parameters
and the pixel luminance value.

Signal Representation ] bit for each ] bit for three

signal Gaussians

pixel U7,0 8 8

wk,t U−1,8 8 24

µk,t U7,2 10 30

σ2
k,t U13,−3 11 33

matchsumk,t U3,0 4 12

addressed.
The resulting representations used for the Gaussian parameters are shown

in Table 2.3 and are given with Um,n notation. Um,n indicates an unsigned
fixed point number where 2m is the weight of the MSB and 2−n is the weight
of the LSB. The last column of Table 2.2 allows to determine the quality of
the processed videos when using the word lengths reported in Table 2.3. It
can be seen that the percentage of differently classified pixels for the five test
bench videos is 2.7%, 3.7%, 8.4%, 4.7%, and 8.6%. The analysis shows that
the proposed fixed point representations provide little impact on the quality of
the processed videos.

With the representations of Table 2.3, 107 bits of data are needed for each
pixel, resulting in a required memory bandwidth for HD real time video pro-
cessing of 0.99 GBs that can be compared with the results of [30] and [29].
The segmentation architecture proposed in [30], while processing 25 fps with
resolution 640×480, requires a bandwidth toward the memory of 4.3 Gbit/s
that can be reduced to 0.82 Gbit/s using a data compression technique. The
GMM implementation for FPGA devices of [29], particularly oriented to the
reduction of the bandwidth towards the memory, needs 170 MBs of bandwidth
when processing 7.68 Mps. As a consequence, the architectures of [30] and
[29], when processing 20 HD frames per second, require 0.60 GBs and 0.90
GBs of memory bandwidth, respectively. The bandwidths obtained in [30] and
[29] are 39% and 9% lower than the bandwidth obtained with the representa-
tions reported in Table 2.3. This is however obtained, as will show in Section
2.1.2, to the expense of processing capabilities and with a large increase of
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logic utilization.
The proposed analysis has been conducted by using an αw (learning rate)

value of 2−6 that is appropriate for most applications. Since, in principle,
the number of bits of the signals is also a function of αw, as smaller learning
rates increase the required precision, a similar analysis has been conducted for
a learning rate equal to 2−9. Note that learning rates values lower than 2−9

cause a very slow adaptation of the background model that becomes unable
to describe suddenly changes of the background, [30]. The result of the opti-
mization showed no significant changes in this worst case condition. The only
difference is the word length of the weight that cannot be reduced below 10
bits. This has a minimal impact on circuit complexity and memory bandwidth.

The OpenCV version of the GMM algorithm described in Section 1.2.1
has been implemented on FPGA devices by using the representations re-
ported in Table 2.3. The circuit is indicated in the Chapter as FgBg (Fore-
ground/Background) BW (Bandwidth) optimized circuit and its implementa-
tion is described in the following.

2.1.2 FgBg BW optimized circuit- FPGA implementation

Figure 2.2 shows the block diagram of the FgBg BW optimized circuit. The
input data are the 8 bit luminance of the input pixel (Pixel), and the statisti-
cal model of the pixel for the given frame (µk,t, σ2k,t, wk,t, matchsumk,t).
The output data are the updated statistical model (µk,t+1, σ2k,t+1, wk,t+1,
matchsumk,t+1) and the Fg/Bg tag that indicates if the Pixel belongs to the
background (logic value ’0’) or to the foreground (logic value ’1’).

The FgBg BW optimized circuit implements the GMM algorithm by us-
ing three Gaussian distributions for each pixel (k=[1,2,3]). As explained in
[16], the number of Gaussian distributions per pixel depends on a trade-off be-
tween hardware complexity and accuracy of the background model. Section2.6
shows this trade-off while validating the choice of using three Gaussian distri-
butions per pixel.

Target devices for the proposed implementation are FPGA devices, a tech-
nology largely used and of great interest for the considered applications. The
proposed HW design is described in VHDL code and parameterized with re-
spect to the word lengths of the input signals allowing a straightforward mod-
ification of the representation of the signals.

The FgBg BW optimized circuit process gray scale videos. When color
videos need to be processed, the circuit, can be fed with the luminance channel
of the YCrCb color space.
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A detailed explanation of the working principle of the circuit of Fig. 2.2 is
given in the following.

Fitness: Computes the Fitness factors for the three Gaussian distributions.
It is composed, as shown in Fig. 2.3, by three identical units that implement
(1.1). Equation (1.1) requires both a binary inversion and a square root oper-
ation. Nonlinear operations such as inversion and square root require a large
and slow hardware, [33]. A common technique to reduce the logic for the non
linear computations is the implementation of ROM circuits that directly store
the results of the non linear operations. The ”Fitness” unit is implemented
with a ROM, in which the precalculated inverse of the square root of the vari-
ance input are stored, and a multiplier, that multiplies the ROM output by the
weight of the Gaussian. This implementation technique allows to compute the
inverse of the square root in one clock cycle with a small hardware. Since
the variance and the inverse of the standard deviation are on 11 and 8 bits, re-
spectively, ROM size is 211×8 bits. As an example, when implemented on a
Virtex5 xc5vlx50 FPGA, if the ROM is implemented by using LUT as memory
elements, the Fitness unit requires 216 LUTs and 1 DSP block.

Figure 2.3: Detailed view and block diagram for ”Fitness”, ”Match”,
and ”Control Logic” circuital blocks shown in Fig. 2.2.

Match: Verifies the match condition for the three Gaussian distributions
and is composed, as shown in Fig. 2.3, by three identical units (one for each
Gaussian). Each unit implements:
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Mk,t = 1 if(pixel − µk,t)2 < λ2 · σ2k,t, (2.3)

that is the square of (1.2). Equation (1.2) requires the standard deviation
as input while (2.3) requires the variance as input. Since the input data for the
circuit include the variance, using (1.2) would require the calculation of the
standard deviation with a square root circuit. Using (2.3) is therefore simpler.

The resulting circuit employs a subtractor, a squarer, a multiplier and a
comparator.

As an example, when implemented on Virtex5-vlx50 FPGA with the rep-
resentations of Table 2.3, its logic utilization is 90 LUTs and 6 DSP blocks.

Control Logic: Sorts the Gaussian distributions in decreasing Fitness or-
der and establishes which Gaussian has to be updated as in (1.3), (1.4), and
(1.7).

Fig. 2.3 shows a detailed view of the circuit. The Fitness values are com-
pared using three comparators whose binary outputs (b1, b2, b3) are used by
the circuit to establish the order of the Gaussians. The circuital unit is therefore
implemented by using only three comparators and few logic gates.

The output signals G1, G2 and G3 represent the first, second and third
Gaussian in Fitness order while NM (No-Match) and GU (Gaussian Update)
establish which Gaussian must be updated. If NM is ’0’ the Gaussian selected
by GU is updated as in (1.3) while the weights of the remaining Gaussians are
updated as in (1.4). If ”NM” is ’1’ the Gaussians are updated as in (1.7).

Learning Rate: computes the learning rate αk,t as in (1.5) to update mean
and variance of the Gaussians. The proposed implementation uses a represen-
tation of αk,t that simplifies the circuits that compute (1.3) and (1.4). In fact,
the calculation of (1.3) and (1.4), as shown in Fig. 2.4, implies the use of mul-
tipliers. In the proposed implementation the αw and αk,t values are quantized
as power of two (αw = 2ew and αk,t = 2ekt), allowing the replacement of the
multipliers with shifters (dashed lines in Fig. 2.4). The ew value is hardwired
while the ekt values that better approximate (1.5) as a function of wk,t are
stored in a ROM. The resulting ”Learning Rate” block is composed of a single
ROM that uses 11 LUT of a Virtex5-vlx50 FPGA.

The quantization of the learning rates introduces a further approximation
on the GMM algorithm. Fig. 2.5 shows a selection of frames taken from a test
bench video (Fig. 2.5(a)) and processed with the hardware implementations
that uses the multipliers (Fig. 2.5(b)) or the shifters (Fig. 2.5(c)). The frames
size is 272×176 pixels and 300 frames have been processed. The AvPSNR
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Figure 2.4: Proposed implementation of the updating equations for
(a) the weight, (b) the mean, (c) the variance signals. The multipliers
drawn with dotted lines are replaced by shifters. Circuits (a), (b), and
(c) correspond, respectively, to the ”Weight”, ”Mean” and ”Variance”
blocks shown in Fig .2.2.

value, calculated considering as reference the output of the FgBg BW opti-
mized circuit implemented with the multipliers, is equal to 24.11. This means
that the two video sequences differ, on average, in 186 pixels per frame (0.4%
of differently classified pixels). The test demonstrates that the proposed use of
shifters instead of multipliers is feasible for the considered application.

Parameter Update: A detailed scheme of the unit is shown in Fig. 2.6.
If the match condition is verified, ”Weight”, ”Mean”, and ”Variance” blocks
update the parameters according to equation (1.3) using the circuits shown in
Fig. 2.4 where the multipliers have been replaced by shifters. The ”Mean”
block, for a Virtex5-vlx50 implementation, occupies 53 LUTs. The ”Weight”
block uses 14 LUTs. The ”Variance” block is implemented by using 69 LUTs
and 1 DSP block.

If no Gaussians match the pixel, the ”No match” block updates the mean,
the variance and the weight of the Gaussian with smallest Fitness value accord-
ing to (1.7).

The ”Matchsum” block is the circuit that updates the matchsum signal ac-
cording to (1.3) and (1.7). As explained in Section 1.2.1, the matchsum sig-
nal is a counter, associated to every Gaussian, and introduced in the OpenCV
GMM algorithm. The matchsum signal counts the number of times that a given
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Figure 2.5: Background masks obtained processing the frames
showed in (a) with the hardware implementations that use the binary
multipliers (b), and the shifters (c).
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Gaussian is matched according to (1.2). The introduction of the matchsum en-
tails the synthesis of three counters that are not on the critical path. The only
drawback is an increase of circuit area and of power dissipation.

Figure 2.6: Block diagram of the ”Parameter update” and ”Output
Selection” units shown in Fig. 2.2.

Output Selection: establishes the values of the updated parameters de-
pending on whether the match condition is verified or not.

Background Identification: Verifies the background identification condi-
tion shown in (1.8) determining, also as a function of the NM and GU signals,
if the input pixel belongs to the background or not. Logic occupation for Vir-
tex5 implementation is 47 LUTs

Results and performances

The FgBg BW optimized circuit described in Section 2.1.2 has been synthe-
sized and implemented on Virtex6, Virtex5, and Spartan6 Xilinx FPGA. More-
over, in order to compare the circuit with previous works, the circuit has been
also implemented on VirtexII, VirtexII Pro, VirtexE Xilinx FPGA devices.

The synthesis for VirtexII Pro is conducted using Synplify while XST has
been used for Virtex6, Virtex5, Spartan3, VirtexII and VirtexE synthesis. Fit-
ting and Place and Route have been carried out using ISE for Xilinx FPGA
devices.

Circuit simulations uses ISim (Xilinx) that also provide the ”vcd” files for
the accurate determination of the power dissipation.

Power dissipation is, afterword, computed using by XPower. Only the
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dynamic power dissipation, without including the power dissipation due to the
I/O pads is reported.

The analyses have been conducted including input and output registers that
synchronize the circuit and provide timing performances that are not dependent
on the I/O pads.

Table 2.1.2 shows the performances of the FgBg BW optimized circuit as
a function of the target FPGA and of the number of pipeline levels on Virtex6
(xc6vlx195t), Virtex5 (xc5vlx50), and Spartan6 (xc6slx100) Xilinx FPGA.

The input and output registers are not counted has pipeline levels. When
the number of pipeline levels is not indicated or is indicated as zero only the
input and output registers are included into the circuit. When the number of
pipeline levels is indicated as one, a further level of registers has been inserted
into the circuit, breaking the maximum combinatorial delay and improving the
maximum working frequency. In this case the optimal placement of the regis-
ters has been obtained with an iterative procedure that mixes hand placement
of registers and exploiting the retiming feature of the XST synthesizer.

The placing and the number of pipeline registers has been optimized using
the retiming feature of Synplify and XST synthesizers.

FgBg BW optimized circuit implementations on Virtex6 and Virtex5
FPGA, without pipeline levels, are able to run at 59.20 MHz and 57.22 MHz,
respectively. As a consequence, the two implementations allow the processing
of 28 fps and 27 fps, respectively. When implemented on Spartan6 FPGA with-
out exploiting the pipelining, the FgBg BW optimized circuit is able to process
17 fps (maximum working frequency equal to 35.95 MHz). The maximum
working frequency (and, as a consequence, the frame rate) can be improved by
implementing the circuit with some pipeline levels. Of course, the pipelining
technique entails an increase of the utilization of sequential elements. How-
ever, Table 2.1.2 shows that this doesn’t entail a consequent increase of the
Slice’s utilization on the FPGA because this depends how the synthesizer can
compact the design using an higher or a lower number of resources in a Slice.

With reference to the dynamic power dissipation can be observed that us-
ing more recent FPGA devices (that use a more advanced silicon technology)
provides lower power dissipation. This is expected since scaled silicon tech-
nologies provide both higher working frequency and lower power dissipation.
Moreover, an interesting result regarding the power dissipation is that, for the
considered circuits, the introduction of pipeline levels provides a reduction of
the power dissipation. This is due to the reduction of the glitch related power
dissipation that is more significant than the power dissipation increase due to
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the presence of the flip flops. This reduction is higher for the first stage of
pipeline levels and decreases when further pipeline levels are introduced in the
circuit. For the Spartan6 implementation, for example, the power dissipation
decreases of the 70% for the implementation with one level of pipeline with
respect to the combinatorial implementation of the circuit but only a reduction
of the 0.01% is obtained by introducing a further level of registers.

Comparison with previous art

In order to compare the circuit with previous art, the FgBg BW optimized
circuit has also been implemented on VirtexII, VirtexII Pro and VirtexE. The
results are shown in Table 2.5.

Papers [29]-[32], propose different FPGA implementations of the GMM
algorithm that can be compared with the FgBg BW optimized circuit even if
they provide no information regarding pipeline levels or power dissipation of
the systems, and do not comply with the OpenCV algorithm.

In [30] the design of a digital surveillance system running in real-time
on an embedded platform is presented. The circuit proposed in [30] is able
to process 25 fps with frame size 320x240 and hence reaches 1.9 Mps. The
segmentation circuit proposed in [30] runs at 83 MHz on VirtexII xc2pro30
using 3397 of the 27932 available LUT and 13 of the 136 available BRAM.
The proposed circuit with two levels of pipeline is faster than [30] and present a
lower logic occupation (1832 LUT). Moreover, no BRAMs are used. However,
the circuit of [30], using a memory compression technique, has a memory
bandwidth that is 39% lower than the proposed circuit.

In [29], the research group of [30], proposes a circuit with improved pro-
cessing capabilities that processes 1024x1024 images at 38 fps on VirtexII
xc2v1000 FPGA. Processing capability of [29] is 39.8 Mps. Not many details
regarding the performances but the speed are reported in [29]. In particular no
information is provided regarding programmable logic occupation, the num-
ber of pipeline levels, and the power dissipation. The processing speed of [29]
does not allow the real time processing of HD video. Table 2.5 shows that the
circuit, without pipeline levels, overcome the processing speed of [29].

Reference [31] proposes an implementation on VirtexII xc2pro30 oriented
to the reduction of the bandwidth towards the memory. The circuit employs a
memory reduction scheme. The circuit of [31] has a memory throughput that
is 9% lower than the proposed circuits. Table 2.5 shows that [31] is not able to
process real time HD video and has a programmable logic occupation that is
more than seven times larger than the proposed circuit.
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In [32] a GMM based classifier based on distributed arithmetic is devel-
oped. The implementation is carried out on Xilinx XCV2000E FPGA. The
maximum working frequency of the circuit is 27 MHz. It is able to process
27 Mps. When compared with the proposed circuit with two levels of pipeline,
the circuit proposed in [32] occupies 5.4% more slices (1456 vs. 1381) while
being 35% slower (HD frame rate of 13 fps vs. 20 fps). No information is pro-
vided in [28] regarding the power dissipation, the number of pipeline levels,
and the bandwidth towards the memory.

2.2 Hardware oriented GMM algorithm

The GMM algorithm equations detailed in Section 1.2.1 require the implemen-
tation of non linear functions. Dedicated circuits for the non linear operations
would be too complex for the realization of a fast and energy efficient circuit.

A common technique to reduce the logic for the non linear computations
is the implementation of ROM circuits that directly store the results of the non
linear operations. Taking into account that the input data of the circuit are
represented on a limited number of bits, the FgBg BW optimized circuit de-
scribed in Section 2.1.2 uses, for example, three look-up tables implemented
with ROM in order to compute the Fk,t factors for the three Gaussian distribu-
tions (equation (1.1)), one look-up table is used to compute the learning rate
αk,t for the matched distribution (equation (1.4)) and a further look-up table is
used to obtain the inverse of the msumtot signal (equation (1.7)).

In order to reduce the logic occupation, a new order parameter for the
Gaussian distributions can be introduced. This parameter, indicated in the fol-
lowing as IFk,t, is defined as the square of the inverse of the Fk,t factor:

IFk,t =

(
1

Fk,t

)2

. (2.4)

With simple manipulations, taking into account (1.1) and (1.5), IFk,t can
be written as:

IFk,t =

(
σk,t
wk,t

)2

=

(
σk,t
wk,t

·
αk,t
αk,t

)2

= σ2k,t ·
(
αk,t
αw

)2

. (2.5)

Equation (2.5) shows that the IFk,t factor can be computed as a function
of the learning rate αk,t.

Moreover if the learning rates αw and αk,t are quantized as power of two
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αw = 2ew αk,t = 2ekt. (2.6)

the IFk,t factor can be computed as:

IFk,t = σ2k,t · 22(ekt−ew), (2.7)

and the multiplication between 22(ekt−ew) and σ2k,t can be performed using
a shifter instead of a binary multiplier.

It is worth noting that ordering the Gaussian distributions as a function of
IFk,t is equivalent, as shown in (2.8), to ordering versus the Fk,t value.

F1,t > F2,t > F3,t <=>

F−11,t < F−12,t < F−13,t <=> (2.8)

F−21,t = IF1,t < F−22,t = IF2,t < F−23,t = IF3,t.

Implementing equations (1.5) and (2.7) require only a ROM and a shifter
and, as an example, if implemented on Virtex5-vlx50 FPGA, require the usage
of 80 (of 7200) Slices. This result can be compared with the implementation of
the equations (1.5) and (1.1) (the technique used to implement the FgBg BW
optimized circuit described in Section 2.1.2) that, on the same FPGA, requires
123 Slices and 3 DSP. This demonstrates that the new formulation of the GMM
algorithm equations is effective in reducing circuit complexity.

The circuit that implements the equations previously described is indicated
in the following as FgBg HW (Hardware) oriented circuit. Its FPGA imple-
mentation is described in the next Subsection. It is worth nothing that the rep-
resentations used for the Gaussian parameters are those reported in Table 2.3.
As a consequence the bandwidth toward the memory is the same of the FgBg
BW optimized circuit.

2.2.1 FgBg HW oriented circuit- FPGA implementation

Fig. 2.7 shows the schematic of the FgBg HW oriented circuit.
With respect to the FgBg BW optimized circuit the ”Fitness” unit is re-

placed with the ”IFitness” for the computation of equation (2.7) starting from
the learning rate. It is worth nothing that the FgBg BW optimized circuit of
Fig. 2.2 computes the learning rate (equation (1.5)) only for the matched dis-
tribution. The new formulation of the algorithm equations requires the com-
putation of (1.5) for all the three Gaussian distributions. As a consequence,
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Figure 2.8: Comparison between the background masks obtained by
using the GMM equations described in Section1.2.1 and the formula-
tion proposed in Section 2.2 (uses (1.5) and (2.5)). (a): input video
frames; (b): background masks obtained by using the formulation de-
scribed in Section 2.2; (c): background masks obtained by using the
equations of Section 1.2.1. The background masks in (b) and (c) are
nearly identical showing that the proposed formulation does not affect
the quality of the processed videos.

the ”Learning rate” unit of Fig. 2.7 is implemented three times (one for each
Gaussian).

The performances of the FgBg HW oriented circuit and the comparison
with the performances of the FgBg BW optimized circuit are reported in the
following.

Results and Performances

The proposed FgBg HW oriented circuit is synthesized and implemented on
Virtex6 (xc6vlx195t), Virtex5 (xc5vlx50), and Spartan6 (xc6slx100) Xilinx
FPGA.

The synthesis and the Place&Route have been carried out by using ISE.
ISim has been used to perform the circuit simulations.
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The performances analysis has been conducted including input and output
registers that synchronize the circuit and provide timing performances that are
not dependent on the I/O pads.

Table 2.6 shows the performance of the FgBg HW oriented circuit and
compares them with the performance of the FgBg BW optimized circuit.

The circuit of Fig. 2.7, implemented on Virtex6, Virtex5, and Spartan6
FPGA without pipeline levels, is able to process 41 fps, 38 fps, and 28 fps
respectively. With respect to the FgBg BW optimized circuit, the processing
capability is improved of the 46%, 41%, 65% when FgBg HW oriented is
implemented on Virtex6, Virtex5, and Spartan6 FPGA, respectively.

Power dissipation and resource utilization are reduced for all the imple-
mentations. The decrease of the are utilization is not always evident because,
even if the number of DSP is reduced from 7 to 3 for all the implementations,
the number of Slices is very close both for FgBg HW oriented and for FgBg
BW optimized implementations. In order to better highlight this reduction,
both circuits have been implemented on Virtex6 without using DSP slices. Ta-
ble 2.7 shows that the Slice utilization is reduced of the 24% for the FgBg HW
oriented circuit with respect to the FgBg BW optimized circuit.

Table 2.7: Performances of the FgBg HW oriented and FgBg BW
optimized circuits implemented on Virtex6 FPGA without using DSP.
These implementations allow a fair comparison of the logic resource
utilization for the two circuits.

Target Pipeline Circuit LUT Flip-Flop Slice DSP

device levels

Virtex6 0 FgBg BW optimized 1815/124800 0/249600 570/31200 0/288

xc6vlx195t FgBg HW oriented 1432/124800 0/249600 431/31200 0/288

In order to verify that the proposed formulation of the GMM equations
does not affect the quality of the processed video, the resulting frames obtained
by using the new formulation have been compared with frames obtained with
the algorithm of Section 1.2.1. The results are in Fig. 2.8 and show that the
resulting videos are nearly identical and actually differ for few pixels (the aver-
age MSE value calculated on the video sequence of Fig. 2.8 is equal to 0.007;
the 99.3% of the pixels is correctly classified).
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2.3 Experimental validation

The FgBg HW oriented of Fig. 2.7 has been experimental validate by imple-
menting it on two different platforms. The first one is equipped with low cost
Altera Cyclone II FPGA while the second one is equipped with Virtex4 FPGA.
In both cases the circuits work smoothly and correctly identify the background.

On-line running video system with Cyclone II FPGA

The background identification circuit described in Section 2.5 has been imple-
mented on the Cyclone II EP2C35 FPGA of the DE2 Altera board.

In a first phase the maximum working frequency obtained through the Tim-
ing Analysis software has been experimentally verified. Random input data
have been fed to the circuit by using proper LFSR (Linear Feedback Shift
Register) circuits implemented on the same FPGA. The output data have been
verified by using a logic state analyzer. The experiments verified that, has
reported by the Timing Analysis software, the Cyclone II implementation cor-
rectly works with 35 MHz clock frequency.

In the second phase, the circuit has been integrated in an on-line running
video system composed by 5Mp digital camera (D5M camera produced by
Terasic), Altera DE2 board, and VGA monitor. The RGB channels coming
from the sensor are converted to 8 bit grayscale and fed to the circuit. The
experiment demonstrated that the proposed circuit is able to work in an on-line
running video system even if a memory bandwidth limitation allows to process
only low resolution (320×240) images at 5 fps.

On-line running video system with Virtex4 FPGA

The FgBg HW oriented circuit has been also implemented on a platform
equipped with a Virtex4 VFX12 FPGA that bridges between camera, mon-
itor and SDRAM memory. The platform is equipped with faster RAM and
larger FPGA device than previously described platform and allows the design
of a system with improved performances.

The color CMOS image sensor captures the video sequence and gives the
pixels values in a Bayer pattern format. Video format is 720p (1280×720). A
CMOS interface elaborates the CMOS sensor output values and, after a RAW
to YCrCb transformation gives the luminance pixel value to the Bg identifica-
tion circuit.
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Figure 2.9: (a): the camera frames a clock. The picture shows the
color video when the background identification circuit is not active.
(b) - (c): once the background identification circuit is activated, the
only visible object is the moving second hand of the clock. (d): when
the illumination changes the whole clock appears on the screen for few
instants. (e)-(f): the hand appearing on the scene is identified when it
moves and fades when it becomes static.

For each pixel the parameters of the three corresponding Gaussian distri-
butions are stored in off-chip memory (a 100 MHz SDRAM with a 64 bit data
bus) while the output video sequences are displayed on the monitor.

Fig. 2.9 shows some frames that demonstrate the functionality of the sys-
tem. The above described system is able to process 20 fps in the 720p color
format.

2.4 ASIC implementation

When a large scale implementation or more advanced performances are re-
quired, an ASIC implementation of the circuit is needed. To the best of our
knowledge, the literature does not report the description of ASIC implemen-
tations of the GMM algorithm able to identify moving objects in a video se-
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quence. It is therefore very important to know the performances of the al-
gorithm when an ASIC implementation is carried out. As a consequence, the
FgBg HW oriented architecture of Fig. 2.7 has also been implemented by using
the UMC-90nm standard cell CMOS technology.

The ASIC implementation has been carried out by using Cadence En-
counter RTL Compiler. The design has been simulated with NCSim and the
Toggle Count File (.tcf) has been generated in order to obtain an accurate es-
timation of the power dissipation. Similarly to the FPGA implementation, the
analysis have been conducted including input and output registers that syn-
chronize the circuits.

The circuit of Fig. 2.7, when implemented using the UMC-90nm tech-
nology, runs at 374.5 MHz allowing a processing capability of 180 HD
fps. Silicon area occupation and energy consumption are 28847 µm2 and
33.2 pJ/pixel, respectively.

The obtained frame rate is much higher than what is needed in the majority
of the applications. Currently, a HD progressive scan format operating at 50
or 60 fps is being evaluated as a future standard for moving picture acquisition
in live broadcast applications [34]. It is therefore possible to take advantage
of the higher speed provided by the standard cell technology to save power or
silicon area occupation.

The ASIC implementation is hence proposed in two versions. The first
version, named in the paper ”power aware” ASIC implementation, minimizes
the power dissipation while the second one, named in the paper ”silicon aware”
ASIC implementation, minimizes the area occupation.

Table 2.8 shows the performance of the ASIC implementation of the circuit
of Fig. 2.7 and of the proposed power aware and silicon aware ASIC imple-
mentations.

The power aware ASIC implementation uses the constant voltage scaling
technique to reduce power dissipation. To this purpose, a ring oscillator has
been designed and simulated at transistor level with decreasing supply voltage
starting from the standard supply voltage of 1.0V. The simulation shows that
the circuit of Fig. 2.7, implemented in UMC-90nm with a supply voltage of
0.56V, runs at 125.0 MHz. The obtained power aware circuit processes one
pixel per clock cycle and, running at 125.0 MHz, is able to process 60 HD fps.

Table 2.8 shows that, with respect to the straightforward ASIC implemen-
tation of the circuit of Fig. 2.11, the resulting power aware ASIC implementa-
tion reduces the energy dissipation per pixel (15.3 pJ/pixel) without modifying
the silicon area occupation (the constant voltage scaling technique reduces the
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Table 2.8: Performance of the UMC-90nm ASIC implementation of
the circuit of Fig. 2.7, the power aware, and the silicon aware ASIC
implementations.

Implementation Frequency Voltage Cell Area Energy per pixel fps

(MHz) (V) (µm2) (pJ/pixel) (1920×)

Circuit of Fig. 2.7 374.5 1.00 28847 33.2 180

Power aware 125.0 0.56 28847 15.3 60

Silicon aware 374.5 1.00 21847 49.4 60

power consumption without changing the circuit).
The silicon aware ASIC implementation uses the standard supply voltage

of 1.0V and modifies the circuit of Fig. 2.7 in order to process 60 fps while
reducing silicon area occupation. Some circuital units of Fig. 2.7 have been
modified in order to process one pixel in three clock cycles. The modified
units are: Match, Learning Rate, Weight, and IFitness. Table 2.9 reports the
area breakdown of the ASIC implementation of the circuit of Fig. 2.7 and of
the silicon aware circuit, showing that the area occupied by the blocks that
have been shrunk is more than 50% of the total area.

Table 2.9 shows also the introduction of various registers in the silicon
aware circuit. The registers store the partial results of the updating equations
during the first and the second clock cycle of the three clock cycles needed to
process one pixel (two clock cycles are needed to process the parameters of the
first and second Gaussian while a further clock cycle processes the parameters
of the third Gaussian and provides the output data of the circuit). The silicon
aware circuit also includes an internal enable signal that freezes the circuital
units that, during the first two clock cycles, are not ready to produce useful
results. The effect of the enable signal is a reduction of power dissipation.

With the above described modifications, the area utilization of the sili-
con aware ASIC implementation, including the synchronization registers, is
reduced by 24% (21847 µm2 versus 28847 µm2).

The energy consumption of the proposed silicon aware ASIC implementa-
tion is 49.4 pJ/pixel (Table 2.8). The increase in energy consumption of the
silicon aware circuit with respect to the ASIC implementation of the circuit of
Fig. 2.7 is mainly due to the additional registers that store the partial results of
the updating equations.
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Table 2.8 shows no comparisons with others works since, to the best of our
knowledge, in the literature there are no ASIC implementations of the GMM
algorithm able to identify moving objects in a video sequence.

2.5 Optimized architecture

The performances of the FgBg HW oriented circuit can be further improved
by:

• replacing some full-width binary multipliers with truncated binary mul-
tipliers, [35]-[38];

• approximating non linear functions with piecewise linear functions,
[39]-[43];

FgBg HW oriented and FgBg BW optimized circuits implement the match
condition by using equation (2.3). This allows to avoid the implementation
of a circuit for the computation of the square root of the variance signal but
entails the implementation of a multiplier (for the left side of the equation).
It is possible to obtain an improved implementation of the match condition
by using equation (1.2) and by implementing the square root function with a
piecewise linear approximation technique. This technique has been previously
proposed as an effective method to reduce hardware complexity, [44]-[45].

The range of variation of σ2k,t, [8:16376], is divided, as shown in Fig. 2.10,
into four non uniform intervals, I1, · · · , I4. In each interval, a linear function
yi approximates σk,t as:

yi = qi −mi · σ2k,t σ2k,t ∈ Ii (2.9)

with i=1,...,4 and qi, mi>0. In order to simplify the hardware, the mi

coefficients are quantized as powers of two and the multiplication between mi

and σ2k,t is performed by using a shifter resulting in lower area utilization and
higher working frequency.

A similar approach can be used also to implement the inverse function
needed to update the weight when no Gaussians match the pixel (see equation
(1.7)). Both FgBg HW oriented and FgBg BW optimized circuit uses a ROM-
based approach to implement the required function.

In the proposed optimized implementation, named in the following FgBg
optimized circuit and whose block diagram is shown in Fig. 2.11, the ROM
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Figure 2.10: Piecewise linear polynomial approximation of the square
root of the σ2k,t signal.

is eliminated by using a piecewise linear approximation technique similar to
those used for the calculation of the σk,t signals. The msumtot signal range
[1:63] is divided in four non uniform intervals Ji and in each interval, a func-
tion zi approximates 1/msumtot as:

zi = λi − ηi ·msumtot msumtot ∈ Ji (2.10)

with i=1,...,4, λi, ηi>0, and ηi quantized as power of two so that the mul-
tiplication between ηi and msumtot is performed using a shifter.

A truncated multiplier has been instead used to implement the left-hand of
the variance update equation of (1.3).

Truncated binary multipliers, for which the optimality in terms of mean
square error is analytically demonstrated, have been proposed in [33]-[38].
Truncated multipliers have been used with good results in a variety of appli-
cations, [44]-[45]. A full-width digital n × n bits multiplier computes the 2n
bits output as a weighted sum of partial products. A truncated multiplier is an
n× n multiplier with an m < 2n bits output.

In the FgBg optimized circuit the inputs of the multipliers are represented
on 12 bits. The output of a 12×12 full-width multiplier is hence on 24 bits.
In order to reduce HW complexity and improve circuit speed, the circuit im-
plements a truncated binary multiplier, based on the architecture proposed in
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[38], in which the output is directly produced on 15 bits (9 less-significant
bits are discarded with an almost 40% reduction of the required HW for the
multiplier).

2.5.1 FgBg optimized circuit - FPGA implementation

The FgBg optimized circuit has been implemented on Virtex6, Virtex5, and
Spartan6 FPGA. The performances are shown in Table 2.7.

The utilization of truncated multipliers, and the implementation of ROM
approximation techniques, could worsen the accuracy of the processed video
streams. Figure 2.12 shows a selection of frames with resolution 320×240
extracted from two video sequences. The original frames of Figure 2.12(a)
and Figure 2.12(d) have been processed by using the FgBg optimized imple-
mentation (Figure 2.12(b) and Figure 2.12(e)) or by using the FgBg HW ori-
entede circuit that uses full-width multipliers and no ROM compression tech-
niques (Figure 2.12(c) and Figure 2.12(f)). The background masks of Fig-
ure 2.12(b),(e) and Figure 2.12(c),(f) differ in few pixels (in both the video
sequences less than the 1% of the total number of the pixels is differently clas-
sified by the two circuits). This demonstrates that the proposed implementation
provides negligible effect on the quality of the processed video streams.

2.6 Hardware resources versus video quality

The GMM algorithm models the statistic of each pixel of the video sequence
with a mixture of K Gaussian distributions. The number of Gaussians per
pixel determines the accuracy of the background model but influences also the
computational complexity of the algorithm and the performances of the HW
implementation. The accuracy of the model and the computational complexity
grow with K while the circuit performances are worsened. As a matter of fact
power dissipation, logic resource occupation, and the required bandwidth to
the memory are increased while circuit speed decreases.

Stauffer and Grimson, in [16], suggest a model that employs from three
to five Gaussians. The FgBg BW optimized, FgBg HW oriented, and FgBg
optimized circuits implement the Gaussian Mixture Model algorithm by using
three Gaussian distributions for each pixel (k=[1,2,3]). The choice of three
Gaussians provides good quality of the processed images while limiting circuit
complexity and memory requirements.

In order to verify that implementing the algorithm by using three Gaussians
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Figure 2.12: Comparison between the background masks obtained
with the FgBg optimized circuit and with the FgBg HW oriented im-
plementation. (a),(d): unprocessed video frames; (b),(e): output of
the FgBg optimized circuit; (c),(f): output of the FgBg HW oriented
circuit.
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Figure 2.13: Examples of video sequences processed with the pro-
posed circuits: (a),(d) original frames; (b),(e) frames obtained with the
GMM HW implementation that uses three Gaussian distributions per
pixel; (c),(f) frames obtained with the GMM HW implementation that
uses five Gaussian distributions per pixel

per pixel allows a good trade-off between hardware complexity a video qual-
ity, the FgBg optimized circuit has been implemented on Virtex6 (xc6vlx195t)
Xilinx FPGA by using three and five Gaussians per pixel. The synthesis have
been carried out by using XST and fitting and Place&Route have been carried
out by using ISE. ModelSim PE has been used to perform the circuits simula-
tions.

The performances of the proposed circuits are in Table 2.11 while Fig. 2.13
compares the outputs of the two circuits.

The circuit that uses three Gaussians per pixel is able to process 38 HD
frames per second (fps) by using less than the 3% of FPGA resources. When
five Gaussians distributions are used the maximum working frequency is de-
creased by 13% (the maximum frame rate for 1080p video is 34 fps). The logic
resource utilization is increased by 79%. With reference to the bandwidth to-
wards the memory, being the Gaussian data the biggest load on data bandwidth,
the circuit that uses five Gaussians increases the bandwidth by 66%.

Figure 2.13 reports some frames of a video sequence processed with the
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Table 2.11: Performances of the FgBg optimized circuit implemented
on Virtex6 (xc6vlx195t) FPGA by using three and five Gaussian dis-
tributions per pixel.

Gaussians LUT Slice DSP Frequency fps Bandwidth
per pixel (MHz) (1920×1080) Gbit/s

3 1094/124800 346/31200 0/640 119.16 57 0.40
5 2070/124800 700/31200 0/640 90.33 43 0.65

circuit that use three Gaussians (Fig. 2.13(b)) and with the circuit that use five
Gaussians per pixel (Fig. 2.13(c)). People called to provide a subjective assess-
ment of video quality refer of a similar video quality and a reduced difference
between the binary images obtained with the two circuits. A more accurate
comparison between the frames can be obtained by computing the Peak Sig-
nal to Noise Ratio (PSNR) defined as in equation (2.1), where, for each video,
Iref, that in this case is considered as the ground truth, has been calculated us-
ing a software implementation of the OpenCV GMM algorithm using double
precision floating point numbers.

The second video sequence (Fig. 2.13(a)) has resolution and lenght equal
to 120×160 pixels and 800 frames. The PSNR values are 31.4 and 31.7 when
three or five Gaussians per pixel are used. The percentage of pixel differently
classified is 0.05%.

The analysis of the video quality and of the HW performances shows that
the circuit that uses three Gaussian distributions per pixel, provides a substan-
tial improvement of circuit performances while not showing significant varia-
tions in the identification accuracy. The preliminary results shown here suggest
that an accurate evaluation of the precision of the circuit and of the equation is
more effective than the increase of the number of Gaussians when the quality
of the processed video is the target.





Chapter 3

Denoising

The background identification algorithms described in the Chapter 1 process
video sequences in order to detect objects supposedly belonging to the fore-
ground. The input data of these algorithms is a grayscale or RGB video se-
quence. The output is a video sequence composed by binary images in which
a pixel is represented with one bit whose value is equal to ‘0’ if the pixel
is classified as background or ‘1’ if the pixel is classified as foreground (or
viceversa).

The binary mask provided by the segmentation circuit is usually noisy with
foreground objects that are often split into several parts. In order to remove
the noise and enhance the appearance of the binary images, the identification
is usually followed, as shown in Fig. 3.1, by a denoising phase that can be
performed by using the operators of the mathematical morphology, [48].

The mathematical morphology, [49], [50], is derived from the set theory
and provides powerful tools for geometrical image analysis, image and video
compression, error correction, noise suppression and video segmentation.

Morphology operators can be employed to process binary, gray-scale and
color images, [51]-[52].

The architectures that implement morphological operators can be divided
into two large classes: systolic arrays, [53], [54] and pipelined systems, [55].

This Chapter proposes a denoising circuit belonging to the second class
and based on morphological operators.

The circuit processes the images pixel by pixel: it acquires the input and
produces the output in raster scan order. Then, each pixel is processed by us-
ing the morphological operators. The output value depends on the pixel to be
processed and the pixels in a neighborhood. A delay-line based architecture

57
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Figure 3.1: Schematic view of a system that performs background
identification and denoising of video sequences. The input video is
processed by the background identification unit that produces a video
sequence composed of binary images. The output video sequence is
usually noisy and is processed by the denoising unit.

correctly aligns the pixels in order to process them. Its hardware implementa-
tion has been designed in order to minimize the hardware resources utilization.
Moreover, a particular choice for the processing of the boundary pixels has al-
lowed to obtain a stall-free hardware architecture (the circuit processes one
pixel in each clock cycle) able to process also the boundary pixels.

The overall system that performs both the identification phase and the
denoising, when implemented on Virtex6-vlx195t FPGA, is able to process
57 fps by using the 1.4% of the logic resources of the FPGA.

This Chapter is organized as follows. In Section 3.1 the morphological
operators are described while Section 3.2 details the proposed hardware im-
plementation and its performance.

3.1 Morphology

Mathematical morphology is a set of mathematical operators, based on the
set-theory, used to manipulate the shape or analyze the structure of connected
clusters of pixels [49], [50]. The common usage includes edge detection, noise
removal, image reconstruction, and image segmentation. The operators were
originally developed for the analysis of binary images but they have been ex-
tended and applied to gray scale, [51], [56], and color images, [52].

Erosion and dilation are the two most basic operators. They take as input
the image (I) to be eroded or dilated and a structuring element (SE) that deter-
mines the effect of the operators on I. The SE can be viewed as a small binary
image, represented as a set of pixels on a grid, assuming the values 1 if the
pixel belongs to SE and 0 otherwise (Fig. 3.2).

An origin of the SE must be identified. When a morphological operation
is carried out, the SE is superimposed on I so that its origin coincides with
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Figure 3.2: Examples of SE. The origin (crossed element) is in the
center of the SE.

the input pixel. The origin of the SE is shifted on I, the points within SE
are compared with the underlying image and a decision is taken based on the
comparison.

The effect of erosion on I is to erode the boundaries of foreground regions.
Thus the area of the foreground regions decreases and holes within the fore-
ground objects become larger. To compute the erosion, the origin of SE is
superimposed on each pixel in I. If, for every pixel in SE, any of the corre-
sponding pixels in I belongs to the background, the input pixel is also set to
the background value, otherwise it remains unchanged.

The effect of the dilation on I is to enlarge the boundaries of foreground ob-
jects. Thus the area of foreground regions grows while the holes within those
objects become smaller. To compute the dilation, the origin of SE is superim-
posed on each pixel in I. If at least one pixel in SE coincides with a foreground
pixel in the image underneath, the input pixel is set to the foreground value,
otherwise it remains unchanged.

Fig. 3.3 illustrates the effect of the erosion (Fig. 3.3(c)) and of the dila-
tion (Fig. 3.3(d)) on a binary image (Fig. 3.3(a)) with a cross shaped 3×3 SE
(Fig. 3.3(b)). In Fig. 3.3 the foreground regions are represented with white pix-
els (binary value 1), while black pixels (binary value 0) denote the background.
The effect of the erosion on a single foreground pixel surrounded by the back-
ground pixels, is the removal of the foreground pixel. In Fig. 3.3(c) one row
and one column are removed from each side of the square of Fig. 3.3(a). The
effect of the dilation on a single foreground pixel surrounded by the back-
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Figure 3.3: (a) Original foreground mask; (b) structuring element with
a cross shape in which the origin element is at the center of the cross;
(c) eroded mask; (d) dilated mask. Crossed pixels in (c) are the eroded
pixels. Crossed pixels in (d) are the dilated pixels.

ground pixels, is the transformation of the foreground pixel in a cross equal to
the SE. In Fig. 3.3(d) one row and one column are added on each side of the
square of Fig. 3.3(a).

It is worth highlighting that erosion and dilation are dual operators and
eroding foreground pixels is equivalent to dilating the background pixels. Di-
lation and erosion operators are indicated with the ⊕ and 	, respectively.
The combination of dilation and erosion forms other morphological operations
such as the opening, denoted with ◦, and the closing, denoted with •:

I ◦ SE = (I 	 SE)⊕ SE
I • SE = (I ⊕ SE)	 SE (3.1)

The basic effect of an opening is somewhat like erosion in that it tends to
remove some of the foreground pixels from the edges of regions of foreground
pixels. However it is less destructive than erosion in general. The effect of
the operator is to preserve foreground regions that have a similar shape to this
structuring element, or that can completely contain the structuring element,
while eliminating all other regions of foreground pixels.

Closing is similar in some ways to dilation in that it tends to enlarge the
boundaries of foreground regions in an image. Its effect is to preserve back-
ground regions that have a similar shape to this structuring element, or that can
completely contain the structuring element, while eliminating all other regions
of background pixels.
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Figure 3.4: Circuit that implements the denoising unit of Fig. 3.1 by
using the morphological operators.

Table 3.1: Operators performed by the denoising unit of Fig.3.4 as a
function of the signals SEL1 and SEL2.

SEL1 SEL2 Operation In1
0 0 Erosion Not(Fg/Bg)
1 0 Dilation Fg/Bg
0 1 Opening Not(Fg/Bg)
1 1 Closing Fg/Bg

3.2 FPGA implementation of morphological operators

The denoising unit of Fig. 3.1 has been designed in order to implement erosion,
dilation, opening and closing operations. An expanded view of this unit is
shown in Fig. 3.4.

The noisy binary images obtained with the identification circuit are pro-
cessed by the denoising unit pixel by pixel. As a consequence, the input signal
of the circuit are the Fg/Bg tag (see Fig. 2.7), the SE and two control signals
(SEL1 and SEL2). The output is the background mask. SEL1 and SEL2 are
two binary signals that establish the operation to be performed according to
Table 3.1. Opening and closing can be derived by erosion and dilation as in
(3.1). Moreover, the erosion and dilation operations are one the dual of the
other. It is therefore possible to obtain the erosion of the image I by using
the dilation operator if the input image I and the result of the dilation are in-
verted. As a consequence all the considered morphological operators can be
implemented using only the dilation operator.
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Figure 3.5: Example of delay lines used to perform morphological
operations. In (a) the Input image is shifted into three buffers (SE size
3×3) whose width depends on the image size (6x9). When the buffers
are full (b), the first pixel is discarded.
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Figure 3.6: Delay lines implementation with a 3×3 SE.

I 	 SE = (I ′ ⊕ SE)′

I ◦ SE = (I ′ ⊕ SE)′ ⊕ SE (3.2)

I • SE = ((I ⊕ SE)′ ⊕ SE)′

The circuital unit that implements the operator dilation is indicate as ”Dila-
tion” in the block diagram of Fig.3.4. The figure shows that the Dilation unit is
duplicated. This allows to implement closing and opening operations without
storing the intermediate results.

Depending on the SEL1 value, Fg/Bg tag or its binary inversion are sent as
input to the Dilation unit (Table 3.1). The Fg/Bg tag is a binary value: ‘0’ if
the pixel has been classified as background; ‘1’ otherwise.

The Dilation unit is based on a delay line architecture. The input binary
values Fg/Bg are stored in some buffers as shown in Fig. 3.5. If SE size is
equal to m×n, m buffers are employed. The length of the buffers depends on
the image size. If the I size is i×j, 1 buffer n bit long and m-1 buffers j bit long,
are needed. When all the shift registers are full (Fig. 3.5(b)), as an incoming
pixel is shifted in, the oldest pixel is shifted out.

The delay lines have been designed in order to minimize the hardware re-
sources utilization. The pixels covered by the SE are stored using flip flops
while the other pixels are stored in FIFOs (Fig. 3.6). The FIFO can be imple-
mented by using sequential elements or LUT. Table 3.2 shows the resources
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Table 3.2: Performances of Denoising unit implemented on Virtex5
FPGA. Frame size 1920×1080. The FIFO are implemented by using
Flip Flop or LUT.

Circuit FIFO implementation Frequency (MHz) Slice Register Slice LUT Slice
Dilation Flip Flop 374.25 1.946 227 542
Dilation LUT 432.71 30 173 51

Denoising unit Flip Flop 263.37 3898 494 1078
Denoising unit LUT 341.53 56 361 106

utilization and the maximum working frequency of the Dilation unit and of
the overall denoising circuit when flip-flop or LUT are used to implement the
FIFO. It is worth noting that the number of Slices used by implementing the
FIFO with LUT is very lower than the number needed to implement the FIFO
as shift-registers. As a consequence the FIFO has been implemented by using
the LUT.

The dilation is performed on the pixels stored in the flip flops using the
logic shown in Fig. 3.6.

When designing a morphological hardware unit, an obstacle is to process
the boundary pixels of the frames. The implementation of the morphological
operators at the boundary of a frame is different from those in the interior of
the image, Fig. 3.7(a). Usually, two solutions are adopted. The first one is to
add extra control logic to avoid the boundary pixel processing. The second one
is the padding technique, Fig. 3.7(b) that increases the frame size. Additional
pixel are inserted outside the boundary of I. Since they should not affect the
result of the operations, the padding area is filled with ‘1’ for the erosion and
‘0’ for the dilation. Padding increments the output delay and, more impor-
tant, fragments the dataflow. In this paper a technique that combines the two
methods is adopted. It allows the processing of the boundary pixels without
stopping the dataflow. In the proposed technique a control logic is activated
when a boundary pixel has to be processed and fixes some nodes, originally
connected to the output of registers, at logic value ‘0’. The required logic con-
sist in two counters and some comparators to identify the boundary pixel. This
entails an increase of circuit area but does not increase the output delay that
can be very high when HD videos are processed. The same counters are used
to synchronize the two Dilation units when opening and closing are performed.

It is worth noting that the SE is an input for the proposed circuit. This
allows to change its shape of up to 3×3 pixels in size.
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Figure 3.7: (a) Boundary problem. SE stretches outside the image
borders. (b) Frame padding necessary for an SE whose size is m×n.

3.3 Results and performances

The proposed circuit has been implemented on Virtex6 and Virtex5 Xilinx
FPGA. The synthesis has been conducted by using XST. Circuit simulations
use ModelSim XE. The simulation tools also generate the ‘vcd’ files necessary
for the accurate determination of the power dissipation. Power dissipation has
then been computed using XPower Analyzer software.

The analyses have been conducted including input and output registers that
synchronize the circuit and provide timing performances that are not depen-
dent on the I/O pads. The circuit has been tested using artificial videos, com-
puter animated videos with simple backgrounds and through video sequences
taken from real surveillance cameras. The circuit performs optimally and run
smoothly without showing reliability problems.

Table 3.3 shows the performances of the proposed circuit as a function of
the target FPGA.

As shown in Table 3.3, the circuit that performs both the identification
and the denoising, when implemented on Virtex6 and Virtex5 FPGA, without
pipeline, has a maximum working frequency of 119.16 MHz and 91.03 MHz,
respectively. The maximum working frequency is imposed in both cases by
the FgBg circuit. The overall system uses the 1.4% and the 5.7% of the Slices
on Virtex6 and Virtex5, respectively. In both cases only a low number of Slices
is used from the denoising unit (the 31% on Virtex6, and the 26% on Virtex5).

In order to test the correct behaviour of the system, several video sequences
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Table 3.3: Performances of the identification and the denoising cir-
cuits implemented on Virtex6 (xc6vlx195t) and Virtex5 (xc5vlx50)
FPGA. The identification phase is carried out by using the FgBg opti-
mized circuit described in the Chapter 2. The denoising is performed
by using the circuit of Fig. 3.4. The table shows a breakdown of the
logic resources of the two circuital units.

FPGA Circuital unit Pipeline LUT Flip-Flop Slice DSP Frequency

levels (MHz)

Virtex6-vlx195t

FgBg 0 1094/124800 0/249600 301/31200 0/640 119.16

Denoising 0 216/124800 58/249600 133/31200 0/640 405.68

FgBg+Denoising 0 1310/124800 58/249600 434/31200 0/640 119.16

Virtex5-vlx50

FgBg 0 844/28800 0/28800 301/7200 0/48 91.03

Denoising 0 361/28800 56/28800 106/7200 0/48 341.53

FgBg+Denoising 0 1205/28800 56/28800 407/7200 0/48 91.03

have been processed. Fig. 3.8 shows an example of frames on which Erosion,
Dilation, Opening and Closing operations have been performed.

The frames of Fig. 3.8(a) are the output of the FgBg optimized circuit de-
scribed in Chapther 2. Figure 3.8(b) shows the effect of the erosion. It removes
the noise but also some pixels belonging to the moving objects. The dilation
(Fig. 3.8(c)) can be used to obtain more compact objects. It can be used, for ex-
ample, in order to obtain the blobs in detection and tracking applications, [57].
However, the dilation highlights the noise. Opening and closing (Fig. 3.8(d)
and Fig. 3.8(e), respectively) allow, in this case, to obtain better results both
for the filtering (Fig. 3.8(d)) and for the blob creation (Fig. 3.8(e)).
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Figure 3.8: Results of (b) erosion, (c) dilation, (d) opening, (e) closing
on the frames shown in (a) that are the output of the identification circuit of

Fig. 2.7.





Chapter 4

X-ray fluoroscopy: noise
modeling and denoising

Fluoroscopy is a widely used technique in clinical environment for image-
guided surgery and therapy.

Real-time X-ray screening of patients allows to support specific surgical
procedures, such as angiography, angioplasty, pacemaker and defibrillator im-
plantation, orthopedic surgery, etc ([58], [59]), by tracking in real-time surgical
instruments, catheters, and wire guides inside patient’s body.

The fluoroscopy also helps as diagnostic tool in investigations of the gas-
trointestinal tract, blood vessels, assessment of joint, [60], implanted prosthe-
sis [61] and [62].

The duration of the fluoroscopy application obviously depends on the clin-
ical requirements of the specific procedure but, in general, the X-ray exposure
may be protracted for a long time. To keep patient’s radiation dose acceptably
low, the number of X-ray photons is strongly reduced and image intensifiers or
flat panel detectors have to be used to amplify radiations and form the fluoro-
scopic image, Fig. 4.1.

The limited availability of photons per pixel generates the so called quan-
tum noise. Quantum noise is by far the most dominant noise in fluoroscopic
images whereas other noise sources (e.g. thermal noise, video-system noise,
quantization error, ecc) can be generally neglected, [63]-[66]. The recent pro-
gresses in flat panel technology [67],[68] have improved sensitivity, resolution,
and system lag with respect to image intensifiers. However, the limitation of
the quantum noise still remains, because it is inherent to the image formation
process and not to the specific sensor. Because of the relatively high amount of
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Figure 4.1: Scheme of a fluoroscopic system. The X-ray tube gen-
erates the radiation needed to obtain the image of the body structure.
The radiation is amplified by using an image intensifier. The obtained
images are displayed on a monitor.

noise, fluoroscopic image restoration is essential to recover poor constrained
details and to improve image quality and in turn the visual perception of the
doctors during the operation.

Quantum noise is a signal dependent Poisson distributed noise source [69]-
[77], its strength varies over the image depending on the local grey-level inten-
sity.

Different denoising methods have been proposed to filter Poisson noise
such as total variation regularization and/or wavelets [78]-[85] and patch-based
sparse priors such [86] or the remarkable BM3D [87] algorithm. Unfortu-
nately, these denoising methods are computationally complex and therefore
hardly suited for real-time processing of fluoroscopic images (sequence of
large images at a frame rate of 30 fps or more). Commercial fluoroscopic
devices usually only involve simple temporal and/or spatial average filtering
[69],[70], which nevertheless generates motion blur and smears edges. More
advanced algorithms include object or motion detection [88]-[90].

Very recent techniques aim to stabilize the Poisson’s noise variance (e.g.
via the Anscombe transformation), then filter the noise as additive, white and
Gaussian and finally antitransform the filtered image [91]-[93]. These methods
do not allow an easy real-time implementation, too.
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Recently, a simple (suitable for a real-time implementation) and efficient
filter technique [94], [95] was proposed for quantum noise suppression in fluo-
roscopic image sequences. The algorithm of [94], [95] considers a preliminary
estimate of the relationship between the pixel gray-level and the correspon-
dent standard deviation of the noise at that luminance, relatively to the actual
fluoroscopy device setup.

It is worth noting that if the variance is large enough, as largely verified in
actual fluoroscopic application, the Poisson distribution can be locally approx-
imated by a Gaussian distribution N(0,σ2), with its variance σ2 proportional to
the local luminance. By holding this information, noise suppression can be ex-
clusively performed by averaging the only local data that have high probability
to be included in the noise statistics (luminance-dependent Gaussian model).
Taking into account the local intensity of the noise can be regarded as a sort of
equalization or stabilization of noise variance.

The filter operates both in the space and in the time, preserving edges and
motion. Despite its simplicity, the algorithm offers performance comparable to
those of much more complex algorithms (e.g. BM3D) in terms of peak-signal-
to-noise ratio (PSNR), signal-to-noise ratio (SNR), mean square error (MSE),
structural similarity index (SSIM) [95].

It is important to underline that usually fluoroscopic devices apply a non-
linear transformation of the image gray levels [94] in order to compensate the
exponential attenuation of X-rays (e.g white compression, gamma correction).
These transformations, generally determine an expansion of contrast for darker
pixels and a compression for those brigther. This results in a modification of
the noise statistic.

Section 4.1 describes the fluoroscopic noise model while the main fluoro-
scopic filtering techniques are described in Section 4.2

4.1 Fluoroscopic noise modeling

Fluoroscopy is commonly used during clinical applications to support many
surgical interventions and a variety of diagnostic procedures. In order to avoid
risks for the patient health, X-ray intensity has to be kept acceptably low dur-
ing the clinical applications. At low exposure levels, the number N of photons
emerging from a patient under a fluoroscopy system and detected at the posi-
tion r = [x, y]T can be described by a Poisson distribution, with probability
mass function given by:
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Figure 4.2: Relationship between luminance and variance noise for
a fluoroscopic sequence obtained with a step phantom. The solid red
line represents the estimated linear mean-variance characteristic.

PN (N(r)) =
λ(r)N(r)e−λ(r)

N(r)!
(4.1)

where λ >> 1 is the expected number of photons in an interval of time that
depends on the fluoroscope frame rate. The mean and variance of the Poisson
distribution are equal to:

E[N(r)] = var[N(r)] = λ(r) (4.2)

Generally, pixel intensity (I) is linearly dependent on the number of detected
photons:

I(r) = gdṄ(r) (4.3)

where gd is a positive constant representing the detector gain that depends
on the characteristics of the fluoroscope. As a result, the pixel intensity can
be modeled as Poisson-distributed. Reference [71] shows that for λ > 10,
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the Poisson distribution can be locally approximated with an additive Gaus-
sian noise with zero-mean and signal-dependent variance. Therefore, pixel
intensity can be locally decomposed as the summation of the expected pixel
intensity (pix) plus a zero-mean signal-dependent noise component:

I(r) = pix(r) +G(r) (4.4)

where G is:

G ∼ N(0, σ2G(pix)) (4.5)

As a consequence, the mean of the image intensity I results equal to

E[I(r)] = pix(r) = gdE[N(r)] (4.6)

and the variance is equal to

var[I(r)] = var[G(r)] = g2dvar[N(r)] = g2dE[N(r)] = gdE[I(r)] (4.7)

As a consequence, the variance noise linearly depends on the expected
pixel intensity and is strongly signal-dependent.

Figure 4.2 shows the noise variance as a function of the pixel intensity
(gray-level) for a video sequence obtained with the fluoroscopy of a step phan-
tom. The video sequence is composed of about 100 frames with resolution
1024×1024.

4.2 Denoising methods for fluoroscopic images

In order to improve the quality of fluoroscopic images, several denoising algo-
rithms for Poisson noise have been developed during the years, [95].

The denoising is generally carried out by averaging the pixel values both
in time and space. Linear filters usually assume noise to be additive, white and
Gaussian (AWGN) and the noise is supposed not to be signal-dependent. These
filters are usually very fast and allow the real-time processing of fluoroscopic
video sequences. However, they exhibit the undesirable effect of degrading
edges and tiny structures that make them not suitable for applications in which
a good trade-off between noise reduction and signal preservation is required
(e.g. image segmentation, object recognition or image registration).
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In order to overcome the limitations of the average filters, more complex
digital processing methods and denoising strategies have been proposed, [94]-
[93].

Reference [95] analyzes and compares several denoising methods in terms
of video quality and computational time. In particular the following algorithms
have been considered:

• The spatio-temporal average filter proposed in [94], and designed for
signal-dependent noise. It performs the average of the only neighbour-
ing pixels that differ less than a selected threshold from the gray level of
the central pixel of the filter mask. The threshold is set to two times the
estimated standard deviation of the noise associated with the local gray
level. This intrinsically permits to preserve the edges with a luminance
gradient greater than the local noise intensity.

• The adaptive variational denoising proposed in [80]. This method is able
to perform the denoising by preserving fine scale features.

• The BM3D, [87]. It performs an image collaborative denoising strat-
egy based on an enhanced sparse representation in transform domain
obtained by grouping similar image regions (e.g. blocks) into 3-D data
arrays.

• A denoising algorithm for signal-dependent clipped noisy observations
(BM3Dc), [87]. The approach involves a BM3D filter designed for
AWGN and derives specific homomorphic transformations to adapt the
estimated noise variance to the actual signal-dependent noise model,
to compensate the bias due to the clipped distribution in the variance-
stabilized domain and to compensate the estimation bias between the
denoised clipped variables and the non-clipped true variables.

• Wavelet-domain denoising algorithms, [79]-[85]. A framework for sta-
tistical signal processing based on wavelet-domain hidden Markov mod-
els that concisely models the statistical dependencies and non-Gaussian
statistics encountered in real signals was assumed . The method involves
an efficient expectation maximization algorithm for fitting the HMM to
observational signal data. This approach can be very useful for recon-
structing images affected by non-Gaussian noise.

• The K-SVD [86], an image denoising algorithm for AWGN based on
sparse and redundant representations over trained dictionaries.
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Reference [95] shows that collaborative denoising strategy (BM3D,
BM3Dc) provide the most effective image denoising. In particular, BM3Dc
filter presents the highest PSNR and SNR values being also the fastest algo-
rithms.

However, the majority of these denoising methods is hardly suited for hard-
ware implementations.

The filter proposed in [94], despite its simplicity, offers performance com-
parable to those of much more complex algorithms (e.g. BM3D) in terms of
peak-signal-to-noise ratio (PSNR), signal-to-noise ratio (SNR), mean square
error (MSE), structural similarity index (SSIM) and is feasible for an hard-
ware implementation that allows real-time processing of fluoroscopic images.

Next chapter shows hardware implementation of the algorithm proposed
in the [94] whose description is given in the following paragraph.

4.3 Spatio-temporal average filter

The spatio-temporal average filter proposed and tested in software in [94], if
compared to others available in literature, filters the fluoroscopic images while
preserving edges and motion and results feasible for an FPGA-based imple-
mentation that allows to process fluoroscopic video sequences in real-time.

In order to perform a better noise reduction, the implemented filter operates
both in the space and in the time. For each pixel of each new acquired frame,
the filter performs a conditioned average of the pixel luminance values in a
spatial surrounding of the current pixel (Pixcur in the following) and between
the corresponding pixels in K-1 previously acquired frames.

The filtering operation is therefore performed on a (2X+1)(2Y+1)K spatio-
temporal window centered, as shown in Fig. 4.3 , in Pixcur. The spatio-
temporal window is indicated as Pixwin in the following. Each pixel of
Pixwin (indicated as Pixref in the following) is compared with Pixcur. The
Pixref whose luminance value differs from Pixcur more than a luminance
dependent threshold (T(Pixcur) in the following) are excluded from the com-
putation of the average value. The equation for the average luminance value
(Pixout) is:
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Pixout(m,n,K) =

K∑
k=1

m+X∑
x=m−X

n+X∑
y=n−X

Pix(x, y, k)

K∑
k=1

m+X∑
x=m−X

n+X∑
y=n−X

C(x, y, k)

k = 1, ...,K m = 1, ...,M n = 1, ..., N (4.8)

x = m−X, ...,m+X y = n− Y, ..., n+ Y

where:

Pix(x, y, k) = Pixref (x, y, k)

if |Pixref (x, y, k)− Pixcur(m,n,K)| ≤ T (Pixcur)

0otherwise (4.9)

C(x, y, k) = Pixref (x, y, k)

if |Pixref (x, y, k)− Pixcur(m,n,K)| ≤ T (Pixcur)

0otherwise (4.10)

In (4.8),(4.9),(4.10) it is assumed that the K frames have size equal to
M×N, k is the index for the frame, x,y, and m,n indicate the position of the pix-
els in the frame k. The threshold T(Pixcur) was assumed to be a multiple (e.g.
the double) of the standard deviation value of the Poisson noise which depends
on the Pixcur luminance value. It is worth noting that the particular choice of
the filter allows to immediately display a newly arrived pixel in the image inde-
pendently on the number of considered frames in the spatio-temporal average
filter.

The filter operation is based on the knowledge of the relationship between
the variance of noise and the luminance of the pixel. The condition:

|Pixref (x, y, k)− Pixcur(m,n,K)| 6 T (Pixcur) (4.11)

allows to exclude by the average calculation the pixels having a luminance
value that most likely does not belong to the local statistical distribution of
noise. Over time this means that most likely there was a motion and another
object has entered or left the area. In space, the same event indicates that the
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Figure 4.3: Example of filtering operation. The current frame (frame
K) is filtered by using K-1 previously acquired frames. The frame
size is M×N. The filtering is performed by using a window with size
(2X+1)(2Y+1)K.

pixels lie on an edge between two objects. Therefore, the condition (4.11)
allows to remove the noise while preserving objects edges even for moving
objects, [94].

Due to the nature of the Poisson noise the relationship between pixel lu-
minance and local noise variance is linear (at the sensor level) with a slope
depending on detector gain. Hence, the relationship between luminance and
noise standard deviation (SD) is non-linear: it follows a square-root law or
a more complex equation when white compression or gamma correction are
applied, [94].

The actual noise statistic can be either estimated at the beginning of a ses-
sion of X-ray fluoroscopy, or pre characterized as a function of the X-ray tube
parameters. In both cases, the relationship between noise standard deviation
and image gray-level (luminance) can be estimated by recording few images
of a static scene and making their differences (difference of two Poissons dis-
tributions gives rise to a Skellam distribution [96]- [97]). Finally, by fitting
analytical derived model (see ref. [94] for practical examples) with the actual
data, the relationship can be estimated. In particular, for a given fluoroscopic
device the luminance- noise SD relationship can be parameterized with respect
to all possible settings of the device (e.g. KVp, mA, pulsed mode).





Chapter 5

Real-time denoising of
fluoroscopic images

Fluoroscopic devices use X-rays to obtain real-time moving images of patients
and support many surgical interventions and a variety of diagnostic procedures.
In order to avoid risks for the patient health, X-ray intensity has to be kept ac-
ceptably low during the clinical applications. This implies that fluoroscopic
images are corrupted by large quantum noise (Poisson-distributed). Real-time
noise reduction can offer a better visual perception to doctors and makes pos-
sible further reductions of the radiation dose.

In order to remove the Poisson noise, several algorithms have been pro-
posed (Chapter 4). Among these, the algorithm proposed in [94] allows good
performances in terms of PSNR, SNR, MSE, and SSIM while preserving edges
and moving objects. The filter incorporates information on the dependence of
the standard deviation of the noise on the local brightness of the image and
performs a conditioned average operation. Moreover, the filter is suited for
an hardware implementation that allows real-time processing of fluoroscopic
video sequences.

This Chapter describes the hardware implementation of the algorithm pro-
posed in [94].

The proposed circuit is implemented on FPGA (Field Programmable Gate
Array) devices allowing the real time elaboration of video streams composed
by frames with 1024×1024 pixels and uses an external DDR2 (Double Data
Rate 2) memory for the storage and the reuse of the fluoroscopic frames needed
by the filter.

When implemented on StratixIV-GX230 FPGA the circuit is able to pro-
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Figure 5.1: Conceptual overview of the proposed circuit for the fluo-
roscopic images filtering. The Frame synchronizer unit synchronizes
the input pixel Pixin with the pixels belonging to K-1 frames previ-
ously acquired and stored in the External memory. The pixel luminance
values of the whole spatio-temporal window (Pixwin in Fig.4.3) are
processed from the Spatio temporal filter that provides as output the
average value Pixout. Two SRAMs are also implemented to store the
relationship between noise standard deviation and pixel luminance and
to allow the real-time modification of this relation.

cess up to 58 fps (frames per second) while using 24% of the logic resources
of the FPGA.

5.1 Hardware implementation

Figure 5.1 shows a conceptual overview of the proposed circuit. The circuit is
able to process the fluoroscopic images in real time.

The images acquired from the fluoroscope are transmitted to the filtering
circuit pixel by pixel. The luminance value of the input pixel Pixin is syn-
chronized by the ’Frame synchronizer’ unit with the luminance values of the
pixels belonging to K-1 frames previously acquired and stored in the ’External
memory’. The pixel luminance values of the whole spatio-temporal window
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(Pixwin in Fig. 1) feed the ’Spatio temporal filter’ that provides as output the
average value ’Pixout’ computed as described in the Chapter 4.

The threshold value T(Pixcur) needed to the filtering operation is obtained
by using a SRAM (Threshold SRAM unit of Fig. 5.1) that stores the relation-
ship between noise SD and the pixel luminance. Figure 5.1 shows that two
’Threshold SRAMs’ are implemented on the FPGA. This ensures that, as ex-
plained in Section 5.1.3, this relationship can be changed in real time, without
suspending the processing of the current image.

The ’Frame synchronizer’, the ’Spatio-temporal filter’, and the ’Threshold
SRAMs’ are designed and implemented on a FPGA based system composed
by a StratixIV (EP4SGX230KF40C2) Altera FPGA and an external DDR2
SDRAM memory with 1GB of storage capacity (DDR2 800 1GB).

A detailed explanation of the hardware implementation of the three cir-
cuital units is given in Section 5.1.1, Section 5.1.2, and Section 5.1.3, respec-
tively. While most design considerations are conducted for the general case in
terms of size of the frame (M×N), and size of the filtering window (X,Y,K)
(see Fig.4.3), when the sake of clarity requires it, the actual numbers used for
the implementation (M=N=1024, X=Y=3, K=5) are used in the text and in the
figures.

5.1.1 Frame synchronizer

In order to correctly filter the input fluoroscopic images, the implemented filter
needs K-1 previously acquired frames. The most common fluoroscopic images
are composed by 1024×1024 pixels. As a consequence, also for low K values,
a significant amount of memory is needed to store the frames. As an example,
for K=5 and with the pixel luminance values represented on 8 bits, 32Mb of
memory are required. Such amount of memory is generally unavailable in
FPGA devices. As an example, the StratixIV-GX230 FPGA can store up to
14 Mb of data. As a consequence, the electronic system that has been designed
relies on the use of an external memory that stores the K-1 previously acquired
frames.

As shown in Fig. 5.1, the ’Frame synchronizer’ is composed by two sub-
units: ’frame manager’ and ’buffering unit’. A more detailed block dia-
gram of the Frame synchronizer is given in Fig.5.2. The ’frame manager’
receives, in streaming fashion, the pixels of the frame that is being filtered and,
fetches from the DDR2 memory the additional K-1 streams of the K-1 previ-
ous frames. The data, synchronized with the input stream are then provided
to the ’buffering unit’. If, as in the implemented circuit, K=5 and the pixels
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Figure 5.2: Detail of the Frame synchronizer of Fig. 5.1. Frame man-
ager and buffering unit are synchronous with clk and clkpix, respec-
tively. The two different clock domains are synchronized by using
three asynchronous FIFO.

are represented on 8 bits, the ’frame manager’ provides 40 bits (5 pixels) to
the ’buffering unit’ at every cycle of the clkpix signal. Starting from these K
streams, the ’buffering unit’ is in charge of providing to the Spatio temporal
filter the pixels belonging to the spatio-temporal window Pixwin of Fig. 4.3.

The ’frame manager’ and the ’buffering unit’ of Fig. 5.2 are synchronous
with two different clock signals that run at two different working frequencies.
The ’frame manager’ is synchronized by the clk signal (with a frequency of
200 MHz in this case), derived from DDR2 clock signal clkmem. The clock
pixel signal (clkpix), which synchronizes the input stream, is used as clock
signal for the buffering unit and the following ’Spatio-temporal filter’. Asyn-
chronous FIFOs, sized to avoid overflow conditions, are used to interface the
two different clock domains.

Frame manager

The ’frame manager’ unit of Fig.5.2 manages, the flow of data going to and
from the external memory by generating the read and write requests and by
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Figure 5.3: Example of DDR2 addressing schemes that entail a differ-
ent trade-off between maximum frame rate and hardware complexity.
Read operations are executed to read an equal number of pixel for each
frame. The read operations are followed by a write operation to store
in the memory the pixels of the new input frame. In the figure, the
numbers near read/write indicate the order in which the operations are
executed.

determining the memory addresses in which the data must be stored.
The external memory that we will consider is a generic SDRAM

widespread in systems and rapid prototyping boards. SDRAM read and write
operations are synchronous with a clock signal and are burst oriented: the
access starts at a selected memory location and continues for a burst length.
Typical burst length values are 2, 4 or 8 memory locations. Write operations
can be executed by enabling the data masking: input data are masked so that
only some byte of the burst are written.

The memory locations are organized in banks, rows and columns. When
a read or write request is issued, a row of a memory bank is activated and the
data are read or written in consecutive columns of the active row.

The execution of read/write operations requires several clock cycles. The
number of clock cycles also depends on the sequence of the read/write op-
erations and on the memory location addresses in which these operations are
executed. As an example, on a DDR2 800 the execution of a read operation
followed by a write operation requires 14 clock cycles at 400 MHz (corre-
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sponding to a delay of 35 ns) when read and write operations are carried out
on the same row of the same memory bank. This delay increases when the data
are stored on different memory banks or on different rows of the same memory
bank. As an example, 20 clock cycles are needed when data are stored on the
same row of different memory banks.

The sequence with which read/write operations are executed depends on
the implemented memory addressing scheme and on the required application.
The chosen addressing scheme, largely determines the average time required
from the memory operations with an impact on overall circuit performances.

In the proposed circuit, the Spatio-temporal filter of Fig.5.2 processes the
input frame and K-1 previously acquired frames. The read/write operations
must guarantee that the pixels of the K-1 previously acquired frames are read
from the external memory and the pixels of the new input frame are stored in
the memory. Figure 5.3 shows three possible memory addressing schemes that
correspond to three different sequences of read/write operations. The figure
assumes 64 bit memory locations, burst length equal to 4 (256 bit can be writ-
ten/read in a single operation), and K equal to 5 (4 frames are stored in the
memory).

When the data are stored as in Fig. 5.3(a), if the pixels are represented on 8
bit, a single read operation allows to read 8 pixels for each one of the 4 stored
frames. A write operation is needed to overwrite 8 pixels of the oldest frame.
The write operation is masked in order to overwrite one only memory location.
The scheme of Fig. 5.3(b) allows to read, with a single read operation, 16 pixels
from two frames. Two consecutive read operations are then needed to fetch the
data from the four stored frames. A single write operation, masked as in the
previous case, is executed to store the 16 new input pixels.

Finally, when the data are stored as shown in Fig. 5.3(c) four consecutive
burst read operations are required to fetch 32 pixels from each frame and a
single, not masked, write operation is executed to store 32 pixels of the new
input frame.

The maximum number of processed frame per second (frame rate) can be
obtained calculating the the number of read write bursts that are needed to
store the new frame in the memory (being this time equal to the time needed
to fetch and store the required K frames in the memory). The parameters that
determine the frame rate are:

• bit per burst the number of bit read in each burst (see Fig. 5.3). In the
considered application a memory location contains 64 bits and a burst
reads 4 consecutive memory locations. As a consequence bit per burst
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Table 5.1: AvPSNR values varying the word lengths of mean, variance,
weight, and matchsum signals. The table refers to the first phase of the algo-
rithm for the optimization of the word lengths in which the same number of
bits is used for every Gaussian parameter.

K frame Nread Nwrite Noverhead fps
per burst read/write overhead refresh precharge activate tot

5
4

2 2 10
0.22 0.03 0.05 10.30 213.4

2 0.25 0.03 0.05 10.33 373.5
1 0.32 0.04 0.06 10.42 597.9

9
8

2 2 10

0.22 0.03 0.05 10.30 106.7
4 0.25 0.03 0.05 10.33 186.8
2 0.32 0.04 0.06 10.42 298.9
1 0.44 0.06 0.08 10.58 427.2

17
16

2 2 10

0.22 0.03 0.05 10.30 53.4
8 0.25 0.03 0.05 10.33 93.4
4 0.32 0.04 0.06 10.42 149.5
2 0.44 0.06 0.08 10.58 213.6
1 0.69 0.09 0.11 10.89 271.9

17
32

2 2 10

0.22 0.03 0.05 10.30 26.7
16 0.25 0.03 0.05 10.33 46.7
8 0.32 0.04 0.06 10.42 74.73
4 0.44 0.06 0.08 10.58 106.8
2 0.69 0.09 0.11 10.89 136.0
1 1.19 0.15 0.17 11.51 157.5

is equal to 256.

• bit per pixel is 8 bit in the considered application.

• frame size equal to 1024×1024 that is 1Mpx in the considered applica-
tion.

• frame per burst the number of frames that are interested by every burst
operation. In Fig. 5.3(a), frame per burst is equal to 4, in Fig. 5.3(b) it is
2, while in Fig. 5.3(c) is 1.

• average cycle time- is the average time needed to complete a read write
cycle. In Fig. 5.3(a) a read write cycle is composed by one read burst
and one write burst. In Fig. 5.3(b) a read write cycle is composed by
two read bursts and one write burst. In Fig. 5.3(c) a read write cycle is
composed by four read bursts and one write burst.

The number of processed frames per second is then:

fps =
bit per burst/(frame per burst · bit per pixel)

(frame size) · (average cycle time)
(5.1)
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Where the term bit per burst/(frame per burstbit per pixel) takes into ac-
count the fact that, as an example, if the addressing scheme of Fig. 5.3(a) is
used, only 8 pixels of the frame are written during the write burst while, with
the addressing scheme of Fig. 5.3(c), 32 pixels are written during the write
burst.

The average cycle time is the average time needed to complete a read write
cycle for the considered addressing scheme. It can be expressed in terms
of number of clock cycles of the memory clock signal, indicated in (5.1) as
Tclkmem.

The average cycle time can be further divided into three components:
Noverhead, the average number of clock cycles needed to precharge, and ac-
tivate rows and banks, to refresh the memory locations, and also includes the
fixed overhead for read and write operations; Nread, the number of additional
clock cycles for each read operation in a cycle; Nwrite, the number of addi-
tional clock cycles for each write operation in a cycle. The average cycle time
(avg cycle time) can be written as

avg cycle time = [Nread

(
K − 1

frame per burst

)
+Nwrite+

+Noverhead]Tclk mem (5.2)

Noverhead , Nread , and Nwrite change with the type of external memory,
with the number of read/write operations in a cycle, and with the order in which
these operations are executed.

The parameter Noverhead is minimized by reducing the number of bank
and row changes. For this purpose the physical addressing scheme shown in
Fig. 5.4 can be employed. Equation (5.2) can be rewritten as:

fps =
bit per burst/bit per pixel

(frame size)
·

· 1
[(K−1)Nread+(frame per burst)(Noverhead+Nwrite)]Tclk mem

(5.3)

In the proposed circuit a DDR2 800 1GB is used with maximum working
frequency of 400MHz (Tclkmem=2.5ns).

Table 5.1 shows the maximum frame rate (fps column) as a function of
K, frame per burst, Nread, Nwrite, and Noverhead. The parameters Nread,
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Nwrite, and Noverhead have been obtained from the DDR2 SDRAM specifi-
cation [24]. Table 5.1 shows that Noverhead (column tot in Table 5.1) is about
10Tclkmem for any value of K and frame per burst. As a consequence, the
maximum frame rate variations are mainly due to the frame per burst parame-
ter. Low values of frame per burst provide the highest frame rate towards the
memory.

The frame per burst parameter is also important for the determination of
the complexity of the circuit. As a matter of fact a reduced number of frames
addressed in each burst increases the number of pixels fetched from the mem-
ory in a single read write cycle. These pixels have to be locally stored in the
FPGA device so that the decreasing of frame per burst determines an increase
of the hardware resources utilization. Therefore, there is a trade off between
the frame rate towards the memory and the hardware complexity. For a given
K value the hardware complexity is minimum when the number of frame per
burst is equal to K-1.

In this work a K value equal to 5 has been chosen. In this case all the
analyzed addressing schemes allow frame rate values higher than the frame
rate required for real-time applications. The choice of the addressing scheme
can be solely based on the hardware complexity of the resulting circuit that is
minimum when the addressing scheme of Fig. 5.3(a) is implemented (number
of frames per burst equal to 4).

Buffering unit

The buffering unit of Fig. 5.2 receives the K pixel streams of the K frames from
the ’frame manager’ and provides to the filter the set of pixels belonging to the
Pixwin of Fig. 4.3. The buffering unit is composed by K data-buffers, each in
charge of managing the pixel of a single frame. Figure 5.5 shows an example
of data buffer. It works as a delay line that stores 2Y+1 rows of the image
(Fig.5.5(a)). When the buffer is filled, the first pixel is discarded. The pixels
in the highlighted region of size (2X+1)x(2Y+1) are involved in the filtering
operation.

When implemented by using only flip-flops (FF), the architecture shown
in Fig. 5.5 would consume too many logic resources. In fact, it would need
K·N(2Y+1) flip-flops (286720 FF in the proposed architecture). In order to
reduce the number of used FF, the hardware implementation of the data buffers
uses a number of RAM components yet available in the FPGA device (both
BRAM, Block RAM components, and MLAB, Memory Logic Array Blocks,
are used) that store the section of the data buffer that does not contain the
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Figure 5.4: Physical addressing scheme which minimizes the average
cycle time of (5.2). The maximum delay in read/write operations is
reached when the row address changes. Therefore, the data are stored
in corresponding rows of different banks.

Pixwin data. In this way only K·(2X+1)·(2Y+1) FF are needed (245 FF in the
proposed architecture). In particular, as shown in Fig. 5.5(b), the pixels in the
region highlighted with the thick solid line are stored by using flip-flops while
the other pixels are stored in FIFO (Firt In First Out circuits) implemented
with BRAMs and MLABs. The pixels stored in the flip flops are used by the
Spatio-temporal filter of Fig. 4.3 to perform the filtering operation.

5.1.2 Filter implementation

The Spatio-temporal filter of Fig. 5.1, whose block diagram is shown in
Fig. 5.6, receives as inputs the Pixref values needed to perform the filter-
ing operation on the K consecutively acquired frames. As explained in the
Chapter 4 the filtering algorithm computes the conditional average value of
the Pixref that satisfy (4.11). The hardware implementation of (4.11) requires
3(2X+1)(2Y+1)K adders. In order to simplify the hardware implementation,
the condition (4.11) has been rewritten as:

Pixcur (m,n)−T (Pixcur) ≤ Pixrefk (x, y) ≤ Pixcur (m,n)+T (Pixcur)
(5.4)
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Figure 5.5: Example of data buffer used to perform the image filtering.
(a) The Input image is shifted into a (2Y+1)×N buffer (with Y= 2).
The width of the data buffer depends on the image size (M×N) while
the height depends on the filter mask size. When the buffer is full the
first pixel is discarded. (b) Hardware implementation of the data buffer.
The data in the window highlighted with the thick solid line are stored
in flip flop (ff) while, in order to reduce the ff utilization, the other data
are stored in FIFO implemented by using both BRAM and MLAB.
The pixels in the window of size (2X+1)×(2Y+1) are processed by the
Spatio-temporal filter.
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Figure 5.6: (a) Block diagram of the Spatio-temporal filter of Fig. 5.1.
(b) Detailed view of the comparison unit that implements equation
(5.4).
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Equation (5.4), exploits the fact that Pixcur is fixed during the filtering
of a certain Pixwin and hence Pixcur - T(Pixcur) can be calculated only
once. In this way equation (5.4) is implemented by using 2(2X+1)(2Y+1)K+2
adders. If the filter mask has size 7×7 (X=Y=3), K=5, and the pixels are
represented on 8 bit, the condition (5.4) entails the implementation of 492
adders on 8 bit versus the 735 adders on 8 bit needed to implement (4.11) (the
hardware utilization is reduced by the 33%). Equations (4.8), (4.9), (4.10) are
implemented by the comparison unit of Fig. 5.6(a) whose expanded view is
given in Fig. 5.6(b). The outputs of the comparison units feed two adders, a
circuit that calculates the inverse of the input signal (1/x), and a multiplier, as
shown in Fig. 5.6(a). These circuital units calculate the Pixout value following
(4.8). The implementation of a circuit that calculates the inverse of the input
(1/x) is, in general, a challenging task. In this case, however, since the input of
the circuit is on 8 bits, the unit (1/x) can be implemented by using a look up
table realized with a ROM that contains 256 memory locations each one on 18
bits (see Fig. 5.6(a)) for a total of 4608 bit.

5.1.3 Threshold SRAMs

The threshold value T(Pixcur) depends on the noise model and is a function
of the Pixcur luminance value. The relationship between the noise variance
and the luminance value of Pixcur could change with the fluoroscopy device
setup and, in principle, also while the circuit is working. In the proposed im-
plementation, in order to obtain the maximum possible flexibility, the relation
between the noise SD and the luminance value is stored in a SRAM internal to
the FPGA. Since the pixel luminance values are represented by using 8 bits the
SRAM only contains 256 memory locations. This allows to easily compute
the threshold value T(Pixcur) by using a look up table realized with a small
SRAM. In this way, in the proposed implementation, the reliance of the noise
variance on the luminance value can be defined by the user, allowing to elab-
orate images acquired with different fluoroscopic equipments and in different
operating conditions.

In order to address the case in which the fluoroscope operating conditions
change during the surgery two ’Threshold SRAMs’ units are implemented as
shown in Fig. 5.1. The first one stores the threshold values used for the current
filtering operation while the second one is used to store the updated threshold
values in real time. This implementation allows to change the filter parameters
without suspending the processing of the current image.
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5.2 Results and performances

The circuit described in Section 5.1 has been designed and implemented
on FPGA. In the proposed work the target device is the StratixIV
EP4SGX230KF40C2 Altera FPGA.

The synthesis and place and route of the circuit have been conducted by
using the Quartus II Altera tool. Behavioral and gate level simulations have
been carried out with ModelSim PE.

The software implementation, [94], of the implemented algorithm repre-
sents the pixel luminance values by using 16 bit per pixel and by normalizing
the gray levels to the range 0(black)-1(white). Since the images are noisy the
precision with which the pixels are represented can be reduced without de-
grade the filtered images. The reduction of the signal word length allows to
reduce the hardware resources utilization. In the proposed work the pixels are
represented on 8 bit.

In order to evaluate the quality of the filtered images and verify that the
reduction of the pixel word length does not affect the filtering result, the Peak
Signal to Noise Ratio (PSNR) has been calculated on several video sequences.

The PSNR is defined as:

PSNR = 10 log10

(
max(Pixel luminance value)2

MSE

)
(5.5)

MSE =
1

M ·N

M∑
m=1

N∑
n=1

(Pixout(m,n)− Pixnf (m,n))2

(5.6)

Where max(Pixel luminance value) is the maximum pixel intensity and
Pixnf is the luminance value of the noise-free image used as reference to esti-
mate the PSNR value.

In the proposed work the PSNR values are calculated on sequences of flu-
oroscopic static images. For each video sequence, the reference image is ob-
tained by averaging over time all the fluoroscopic images (the hypothesis of
ergodicity was assumed).

Figure 5.7(a) shows an image extracted from a fluoroscopic video sequence
composed by 70 frames with resolution 1024x1024. The zoomed view of a re-
gion composed by 120×160 pixels is shown in Fig. 5.7(b). Fig. 5.7(c) shows
the result, for the same region, of the spatio temporal filtering operation, pro-
cessed in software, obtained quantizing the pixel values on 16 bit. On the other
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Figure 5.7: (a) Example of fluoroscopic image extracted from a video
sequence with frame size 1024×1024. (b) image detail with size
120×160 processed with: (c),(d) software implementations of the
spatio-temporal filter in which pixel luminance values are quantized
with 16 and 8 bit, respectively; (e) proposed circuit in which pixels are
represented on 8 bit.
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Figure 5.8: (a) original fluoroscopic image showing electric leads of
a pacemaker during device implantation. (b) expanded view of the
250x200 image section highlighted in a. (c) 250x200 image region in
which the Poisson noise has been removed by using the proposed cir-
cuit. (d) 250x200 image region in which the noise has been removed
by using an average filter. (e) gray-level profile along the horizontal
segment (shown in (a)) before (blue line) and after applying the imple-
mented noise suppression filter (red line) and the average filter (green
line).
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hand, in Fig. 5.7(d) the image has been filtered quantizing the pixel values on
8bit. Fig. 5.7(e) is obtained by processing the image of Fig. 5.7(b) with the
proposed circuit. The average PSNR value (obtained by calculating (5.5) for
each frame of the video sequence and by averaging over the 70 frames) is
equal to 38.99, 38.63, and 38.35 dB by using 16 bit per pixel, 8 bit per pixel
and with the hardware implementation, respectively. Therefore, the reduction
of the word length to 8 bit has determined a decrease of the PSNR of 0.36 dB
while the hardware implementation has determined a further reduction of the
0.28 dB.

Figure 5.8(a) shows a further example of fluoroscopic image. The high-
lighted region of the image of Fig. 5.8(a), whose expanded view is given
in Fig. 5.8(b), is filtered with the proposed circuit (Fig. 5.8(c)) and with an
avarage filter that performs the mean of the pixels in Pixwin without consid-
ering the noise statistic. Fig. 5.8(e) shows a profile of the gray levels along a
horizontal image segment (white line in Fig. 5.8(a)) in the 250×200 image sec-
tion of figures 5.8(b), 5.8(c), 5.8(d). The blue line of Fig. 5.8(e) represents the
gray levels of the pixels in the noisy image. It is worth noting that the output
of the proposed circuit (red line) provides a good noise suppression while pre-
serving the edges that are excessively smoothed by applying the avarage filter
(green line). Table 5.2 shows the performances and the logic resource occupa-
tion for the proposed circuit implemented on StratixIV EP4SGX230KF40C2.
A breakdown of the the logic resource occupation of the main circuital units
of the proposed circuit is also reported in Table 5.2.

The maximum working frequency of the proposed circuit is 61.0 MHz and
is limited by the ’Spatio-temporal filter’. As a consequence the maximum
frame rate is equal to 58 fps if the frame size is 1024×1024.

Modern fluoroscopic devices require to process 1024×1024 grey-scale im-
ages with a frame rate up to 30 frame per seconds. As a consequence, the
proposed circuit is able to filter the images in real time.

The circuit uses the 24% of the logic resources of the FPGA (composed
by 91200 ALM, Adaptive Logic Module) and the 9% of the BRAM. Only two
DSP (Digital Signal Processing) slices are used to implement the multiplier of
Fig.5.6(a) while the usage of flip flop is equal to the 12% of the total number
of flip flops in the target FPGA.
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Conclusion

This dissertation has presented the hardware implementation of digital circuits
for real-time processing of High-Definition (HD) video sequences.

Chapter 1 illustrates an overview of state-of-the-art background identifica-
tion algorithms typically implemented to identify moving objects in video se-
quences. These algorithms (named, background subtraction algorithms), based
on the creation of a background model, perform a fast background identifica-
tion while correctly modeling scene variations. However, the main drawback
of such approaches is a high computational complexity that involves their hard-
ware implementation for real-time processing of HD video sequences.

Among the proposed background subtraction algorithms, Gaussian Model
Mixture (GMM) provides good performances in different lighting conditions
and in presence of multimodal background. GMM version realized in OpenCV
performs a fast background modelling also in the first phase of the identifica-
tion process. Due to its good performances, OpenCV GMM has been cho-
sen for hardware implementation in the present dissertation. GMM equations
adopted in the OpenCV version have been also reported in Chapter 1.

Chapter 2 describes the hardware implementation of OpenCV GMM. The
algorithm has been realized both on FPGA devices and by using a standard
cells library in UMC-90nm technology. The main contributions of this work
can be summarized as follow:

• the representation providing the best trade-off between circuit complex-
ity and identification accuracy has been determined for each input pa-
rameter;

• an innovative, hardware-oriented, formulation of the GMM equations,
capable of guaranteeing hardware saving and speed improvement with-
out affecting the GMM algorithm results, has been used;

97
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• non-linear functions have been implemented by using piecewise linear
approximations;

• shifters and truncated multipliers have been used to implement full-
width multipliers;

• a depth analysis of the performance when the circuit is implemented
on several FPGA devices and varying the number of pipeline levels is
provided;

• the experimental demonstration of the proposed FPGA circuit in running
on-line video systems;

• The circuit ASIC standard cell implementation in two versions (capable
of optimizing power or silicon area occupation, respectively), in order
to provide a performance reference for ASIC designers currently not
available in literature.

As a result of the above mentioned contributions, the circuit, when imple-
mented on Virtex6 (xc6vlx195t) FPGA, is able to process 57 HD fps by only
using the 1% of the target device Slices.

Furthermore, the two ASIC implementations have been optimized in or-
der to process 60 fps either with a reduced silicon area utilization (equal to
21847 µm2) or with a low-energy consumption (15.3 pJ/pixel).

In Chapter 3, a denoising circuit specifically addressed for binary images
has been described and implemented. The circuit is based on morphological
operators and has been adopted as second stage in a background identification
circuit. The identification phase is carried out by using the circuit described in
Chapeter 2.

The denoising circuit can be configured to implement the four basic op-
erators of mathematical morphology (erosion, dilation, opening, and closing)
by using a structuring element with variable shape up to a 3×3 square. Ad-
ditionally, a particular choice for boundary pixels guarantees the processing
of consecutive frames without introducing latency. The circuit implementa-
tion is based on delay lines which correctly synchronize the input pixels. Such
delay lines have been designed in order to minimize the use of the hardware
resources on FPGA.

Implemented on Virtex6 (xc6vlx195t) FPGA, the circuit allows a process-
ing capability equal to 195 HD fps by using 133/31200 Slices.
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Chapter 4 deals with the algorithms for denoising of fluoroscopic images,
mainly affected from quantum noise (typically modeled as a Poisson distribu-
tion). In particular, a spatio-temporal conditioned average filter (able to filter
fluoroscopic images while preserving edges and moving objects) has been de-
scribed in Chapter 4. The filter is optimally suited for hardware implementa-
tion.

The FPGA implementation of the spatio-temporal conditioned average fil-
ter has been described in Chapter 5.

The circuit has been designed aiming to the reduction of the arithmetic cir-
cuital units requested to average the pixels. Furthermore, the filtering requires
the adoption of an external memory and, consequently, several addressing
schemes, each of them involving different trade-off between hardware com-
plexity and maximum working frequency. All these addressing schemes have
been analysed and the one which optimizes the desired trade-off has been fi-
nally chosen for employment.

When implemented on Spartan6 FPGA, it is able to process 58 fps (frame
resolution equal to 1024×1024).

The proposed implementation represents, to the best of authors knowledge,
the first circuit able to process fluoroscopic images in real time.
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