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Chapter 1 

Introduction 

1.1 Background and Motivations 

In the last years, the expanding range of new technologies in the field of traffic 

management and control called for accurate modeling of traffic flows in order to 

evaluate their potential impact on society and environmental decision-making. 

The inner complexity of these applications sought for detailed stochastic traffic 

simulation tools which could enable their analysis, design and evaluation. In this view, 

microscopic traffic flow simulation models are increasingly used as cost-effective tools 

to support these tasks. 

They are invaluable in offering a “common ground” for evaluating policies and 

examining, with a level of objectivity, the inevitable compromises required in practice. 

For instance, they are widely applied in the evaluation of new traffic control schemes 

(e.g. actuated/coordinated control, ramp metering, lane management, speed control, 

prioritarization, route clearance), to predict commuters’ behavior in presence of 

advanced travelers information systems (e.g. variable message signs, route and parking 

guidance), or to assess travel demand management policy (e.g. congestion charge zones, 

eco-pricing, tolling system, mobility credits). 
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Furthermore, results of traffic simulation studies are frequently at the basis of investment 

decisions of private operators in transport-related markets and, thus, cover a crucial role 

in supporting the credibility of such proposals. 

The enabling potential of micro-simulation software made it very popular among 

practitioners and triggered for advanced solutions to customize applications in an 

increasing range of contexts. 

However, despite their importance, the use of these tools is far from being trivial. 

Indeed, the “goodness” of a simulation study does not depend only on the expertise of 

the analyst/modeler but (mostly) on the “correct” use of such models which, conversely, 

can be challenging even for specialists (Brackstone et al., 2012). 

This could be due to a number of reasons. 

Among the others, model “indeterminacy” or “equifinality” can be singled out (Young et 

al., 1996; Beven and Freer, 2001). Such (apparent) paradox refers to the case in which 

different models (based on different assumptions and resulting in different mathematical 

structures) provide results that are all compatible with the same set of traffic 

observations.  

The impossibility to conceive “absolute” or “unique” models mainly stems from the way 

traffic flow models are derived, which is “quasi-” law-driven in the sense that physical 

principles (e.g. conservation equation) are mixed with reasonable assumptions, made by 

the modeler, on the way traffic entities may behave (e.g. safety-distance car-following 

model assumptions).  

For such models, it has been suggested that they cannot be validated or verified, but only 

empirically confirmed by the non-contradiction between observation and prediction 

(Oreskes et al., 1994). Indeed, traffic flow models are formulated/calibrated against a 

limited variability of data, i.e. depicting only a small portion of the wide range of 

possible traffic phenomena. This often leads to models that are over-parameterized, as to 

depict also the non-observed traffic phenomena. However, this may be one of the causes 

for model unreliability, as suggested by the words of Hornberger and Spear (1981): “[..] 

most simulation models will be complex, with many parameters, state-variables and non 

linear relations. Under the best circumstances, such models have many degrees of 
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freedom and, with judicious fiddling, can be made to produce virtually any desired 

behaviour, often with both plausible structure and parameter values.”  

Apart from modeling uncertainties, unreliability may depends also on different sources 

of “uncertainty”, such as the parametric and the non-parametric model inputs. Indeed, 

the quality in the characterization of the input uncertainties has the same impact on 

model results as the credibility of modeling assumptions.  

In the field of traffic simulation, modeling input uncertainties is usually referred as 

model “calibration”, and “basically consists in identifying the parameters values that 

make the model outputs as close as possible to the reality” (Punzo, 2014). The need for 

model calibration is implicit in the nature of traffic flow simulation models. In fact, such 

models are derived following an approach which is half way between a purely deductive 

and a purely inductive one (Papageorgiou, 1999), where “[…] one first develops (via 

physical reasoning and/or adequate idealizations and/or physical analogies) a basic 

mathematical modeling structure and then one fits this specific structure (its 

parameters) to real data”.  

Calibration is therefore viewed as a complementary step to model development, being 

expected to cover both the uncertainty in the modeling assumptions/formulations and the 

uncertainty in the inputs (Punzo, 2014). 

Unfortunately, adequate paradigms for model calibration and validation against suitable 

observed data, are far from being established in the field of traffic simulation. Indeed, at 

present, no standardized methods exist, with most of the efforts and resources having 

been focused on model (and software) development. The importance of the subject is 

emphasized by the fact that a EU COST Action (MULTITUDE, 2014) was entirely 

dedicated to it. The Action proposal was driven by the concern that, although modeling 

is now widespread, we are unsure how much we can trust our results and conclusions. 

Such issues force into question the trustworthiness of the results, and indeed how well 

we are using them (MULTITUDE, 2014). Indeed, models encompassing a 

disproportionate amount of uncertainty turn out to have no practical utility for the 

transport analyst, as credibility of results is inevitably undermined. 

Despite the importance of uncertainty management in scientific modeling, it is a very 

under investigated issue in the field of traffic flow simulation modeling. Indeed, there is 

no systematic approach in the literature encompassing the subject with an holistic 
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methodological framework. As a matter of fact, in the field research uncertainties were 

managed only indirectly, by (customarily) incorporating them within the parametric 

inputs and resolved by model parameter calibration. 

Common symptoms of neglecting the management of uncertainty in traffic flow 

simulation modeling may be the (un)repeatability of experiments, the (un)reliability of 

predictions, and the vulnerability to instrumental or otherwise unethical use of models. 

Above all, this turns out in the lack of effectiveness, credibility, and transparency of 

simulation results (Punzo, 2014). 

Therefore, the intent of this dissertation thesis is to provide a methodological 

contribution in the management of different sources of uncertainty in traffic flow 

simulation modeling. In the remaining of this Chapter we narrowed down the scope of 

the research presented (Section 1.2). Subsequently, we summarized the research 

approach (Section 1.3), and listed the main contributions to the state-of-the-art (Section 

1.4). The final part of this introduction then briefly outlined which subjects are covered 

in each chapter of the thesis (Section 1.5). 

1.2 Research Objective and Scope 

The main objective of this dissertation thesis is to propose and apply a methodological 

framework for the management of uncertainty in traffic flow simulation modeling. 

It is worth noting that, in this thesis, we focused on microscopic traffic flow simulation 

models only, and specifically on driver behavioral models (car-following and lane-

changing models). 

However, the methodological approach here proposed is absolute general and 

applications to other contexts (e.g. public transportation models, pedestrian simulation 

models, etc.), might be possible with reasonable easiness. 
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1.3 Research Approach 

The methodological approach adopted in this thesis is based on an ensemble of 

techniques established in the industrial practice and increasingly applied in many 

modeling fields, including environmental, climate and financial ones, as well as, in 

system reliability and risk analysis. These techniques were recently combined in an 

holistic methodological framework for quantitative uncertainty assessment (de 

Rocquigny et al., 2008). A schematic representation of such framework is drawn in 

Figure 1.1. 

 

Figure 1.1: Common Conceptual Framework for Uncertainty Management. 

In the following, a brief review of the four key steps is provided, indicating for each 

stage the methodological choices adopted in this thesis. 

1.3.1. Problem Specification 

This step consists in the specification of the model, the definition of the input and output 

variables, and the identification of the quantity of interest for measuring the uncertainty 

in the outputs.  

In particular, the model may be viewed as a numerical function linking inputs (uncertain 

or fixed variables) to outputs (upon which decision criteria are established). Formally, it 

is sufficient for the model to link the output variables (y) to a number of continuous or 

Model Inputs Model Model Outputs

Feedback process

Step C: Uncertainty Propagation

Step D: Sensitivity Analysis

Step A: Problem Specification

Step B:
Modeling

Input 
Uncertainty Quantification of

Output 
Uncertainty

Measure of Uncertainty
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discrete inputs through an analytical function: y = f (x, u), where some inputs (x) are 

uncertain – subject to randomness, lack of knowledge, errors or any other sources of 

uncertainty – while other inputs (u) are fixed – considered to be known.  

Regarding the uncertain model inputs, also referred as factors, the vector x, made of k-

components, could gather formally all sources of uncertainty, whatever their nature or 

type (parametric, model uncertainties, etc.). Some components of x may be continuous, 

while others could be discrete or branching variables. It could even formally include 

situations where there is a spatial field of uncertain inputs or even uncertain functions.  

Some model inputs may be considered as fixed in a specific analysis framework. This is 

the case for a number of reasons, including the fact that i) some model inputs represent 

variables under full control; ii) uncertainties affecting some model inputs are considered 

to be negligible or of secondary importance with respect to the output variables of 

interest; and iii) for some model inputs, the decision process will conventionally fix the 

values despite uncertainties. 

The methodological framework aims to quantify and (possibly) reduce output 

uncertainty, with regards to a well-defined quantity of interest. Possible measures of the 

output uncertainty can be the percentages of error or variability of model output(s) (e.g. 

variance, coefficient of variation); the expected value of model output(s); the confidence 

intervals of model output(s); quantiles of model output(s); the probabilities of exceeding 

a threshold or failure frequency; the ranges or simply the maximal value of model 

output(s).  

On this basis, the measure of uncertainty is defined as the more complete mathematical 

distribution function comprehensively representing the output uncertainty (de Rocquigny 

et al., 2008), i.e. the probability density function of the model output. 

As the objective of this research is not focusing on modeling itself, we concentrated on 

well-known driver behavioral models, widely adopted in the field literature and usually 

integrated in common micro-simulation packages, such as the Gipps’ model (Gipps, 

1981) and the Intelligent Driver Model (Treiber, 1999) for car-following, and the 

MOBIL model (Kesting, 2007) for lane-changing. Further, only driver behavioral model 

parameters where considered uncertain, being the other input sources (e.g. OD flows, 

path choice model parameters, etc.) considered as fixed. More details on this choice are 

provided in Chapter 2.  
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1.3.2. Uncertainty Modeling 

This step consists in the quantification of the uncertainty sources in the inputs.  

To this aim, several approaches may be possible, according to different uncertainty 

settings (de Rocquigny et al., 2008). However, in the common practice, it seems 

straightforward to consider input factors as stochastic variables1

In some cases, when one or more components of the uncertain inputs are known to 

follow given distribution models, a standard probabilistic approach can be configured. In 

this setting, the uncertain input factors are distributed as random variables according to 

given probability density functions (pdf) , or more generally, as a random vector with a 

joint pdf (in case of correlation). The other model inputs are generally fixed at 

conventional deterministic values (within the vector u), so that this setting can in fact be 

considered a “mixed deterministic – probabilistic” setting. This means generally that no 

explicit separation has been made between natures of uncertainty; whatever their 

natures, all sources of uncertainty pertaining to vector x are randomized together. 

. On this basis, different 

probabilistic settings are proposed in the literature.  

In some other cases, when the distribution model itself is unknown (or its parameters), 

more complex settings can be adopted (2-level probabilistic settings). As in the previous 

setting, the uncertain model inputs are also considered as random variables (level-1 pdfs) 

to represent the uncertainty attached to them. But in addition, the parameters of their 

pdfs are considered sufficiently uncertain to be modeled within a probabilistic setting 

(level-2 pdfs) as well. Apart from the non-parametric methods, the stochastic variable is 

often modeled with a parametric approach. This means that the shape of the pdf is 

chosen among a list of existing distribution models (e.g. a Gaussian, Weibull or extreme 

value distribution, etc.), in which few parameters can be fine tuned to achieve a 

satisfactory description of the uncertainty sources. In a level-2 setting, an uncertainty 

model on distribution parameters also has to be determined, being it deterministic, 

probabilistic or non-probabilistic. 

                                                   
1 From a theoretical point of view, a deterministic setting could also be identified. In this context, 

a set of values (otherwise the variable would be casted into a fixed one) must be chosen to define the range 

of variation for each of the uncertainty sources represented by the uncertain model inputs x. Although such 

approach could be used in screening uncertainty assessment, the methodological framework adopted in 

this work requires the use of probabilistic settings (and more detailed uncertainty models). 
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In this work, a standard probabilistic setting was adopted, which turned out into the 

estimation of the empirical joint probability density function (pdf) of driver behavioral 

model parameters. 

1.3.3. Uncertainty Propagation 

This step is necessary to map the uncertainty in the inputs into the uncertainty measures 

in the outputs. In a probabilistic setting, this implies estimating the pdf of y = f (x, u), 

knowing the pdf of x, being given the values of u, and the numerical model f (·). 

According to the quantity of interest and the system model characteristics, the 

propagation may be a more or less difficult numerical step involving a wide variety of 

methods dependent on the adopted uncertainty setting. In a probabilistic setting, several 

different sampling schemes have been proposed in the literature, ranging from One-At-

Time (OAT) random/stratified sampling to a wide ramification of factorial designs (full 

factorial design, two-level fractional factorial design, s-level fractional factorial design 

with h-strata Latin Hypercube scheme), multivariate stratified sampling and Monte 

Carlo Sampling. For a review of these approaches, please refer to Saltelli et al. (2008). 

In this work, we relied on the Monte Carlo Sampling (MCS) framework, as it provides 

considerable benefits in terms of scalability. Indeed as many values as necessary can be 

generated, and if more parameters or more simulations are desired, it is a simple matter 

to generate more rather.  

Further, MCS simulation can be also used for meta-modeling, that consists in building a 

mathematical function, which is cheaper from the point of view of computation time, 

and which approximates the behaviour of the model over the domain of variation of its 

inputs, starting from a set of selected model simulations in the uncertain input space, 

according to a specific sampling scheme (also called Design Of Experiment). Many 

meta-model families may be considered, such as: polynomials, generalized linear models 

(GLM), splines, interpolating radial functions, kriging, local polynomial kernel 

estimation, support vector machines, stochastic response surface methods using 

polynomial chaos expansions, partial least squares, neural networks, regression trees, 

etc. (McCullagh et al., 1989; Wahba, 1990; Ghanem and Spanos, 1991; Antoniadis et al., 

1992; Fan and Gijbels, 1996; Vapnik, 1998; Chilès and Delfiner, 1999; Breiman, 2001; 

Hastie et al., 2001; Santner et al., 2003; Smola and Scholkopf, 2004; Fang et al., 2006). 
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For the sake of linearity, applications of meta-modeling techniques to microscopic traffic 

flow simulation modelling are not reported in this dissertation thesis. The interested 

reader could refer to Ciuffo et al. (2013). 

In this thesis, a quasi-random Monte Carlo simulation framework based on the use of 

low-discrepancy sequences was adopted. Indeed, as shown in the literature, quasi-

random low-discrepancy sequences overcome the limitations of traditional pseudo-

random samples that tend to have clusters and gaps affecting the reliability of statistical 

analyses results (where a cluster occurs, function values in that vicinity are 

overemphasized in statistical analysis; conversely, where a gap arises, function values 

within that gap are not sampled for statistical analysis; for more details, the reader could 

refer to Saltelli et al., 2008). 

In the literature two types of quasi-random low-discrepancy sequences are suggested: 

the Halton sequence (Halton, 1964; Niederreiter and Harald, 1992; Kuipers and 

Niederreiter, 2005) and the Sobol’ sequences (Sobol, 1967; Sobol and Levitan, 1976), 

also called LPτ sequences or (t, s) sequences in base 2. See Bratley and Fox (1988) for a  

review. 

In this work, we made use of the Sobol’ sequences (Sobol et al., 1992), as fully 

integrated within the numerical computation scheme for variance-based global 

sensitivity analyses. 

1.3.4. Sensitivity Analysis 

It represents the feedback process of the uncertainty management cycle, and aims at 

understanding “how uncertainties in the model outputs can be apportioned to different 

sources of uncertainties in the model inputs” (Saltelli et al., 2004). In other words, “the 

objective of the sensitivity analysis is to instruct the modeler with regards to the relative 

importance of the uncertain inputs in determining the variable of interest” (Saltelli et al., 

2008). 

It generally involves some statistical treatment of the input/output relationship drawn 

within the Uncertainty Propagation step. Compact measures of the degree of importance 

of the uncertain factors x in affecting the model output variability are the so-called 

sensitivity indices. A wide variety of approaches can be adopted to compute these 
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measures, including: graphical methods (e.g. scatter plots, bars, tornado graphs, radar 

charts, box-and-whisker plots, cobweb plots; for details, see Wegman, 1990; Cooke and 

Noortwijk, in Saltelli et al., 2000; Saltelli et al., 2008), differential methods (e.g. sigma-

normalized derivatives; for details, see Saltelli et al., 2008), screening techniques (e.g. 

Elementary Effects method; for a review, see Morris, 1991; Saltelli et al., 2008; for an 

enhanced formulation, see Campolongo et al., 2007, 2011), regression-based techniques 

(e.g. Pearson, Spearman, Standard Regression Coefficient, Partial Correlation 

Coefficient, Rank Correlation Coefficient, Standardized Rank Regression Coefficient, 

Partial Rank Correlation Coefficient; for a review, see McKay, 1997; Saltelli et al. 

2008), non-parametric statistics (e.g. Smirnov test, Kruskal-Wallis test; for a review see 

Law and Kelton, 2000), variance-based decomposition (e.g. ANOVA, reviewed in Law 

and Kelton, 2000, and Box et al., 2005; Fourier Amplitude Sensitivity Test, reviewed in 

Cukier et al., 1978, Granger Morgan and Henrion, 1990, Saltelli and Bolado, 1998, 

Saltelli et al., 1999, Isukapalli, 1999, Frey and Patil, 2002; Correlation ratios, reviewed 

in de Rocquigny et al., 2008).  

Among the others, techniques based on the Sobol decomposition of variance are widely 

accepted as the most versatile and effective among the various available techniques for 

sensitivity analysis of model output, tovercoming the limitations of the methods listed 

above (for a discussion, please refer to de Rocquigny et al., 2008). In particular, they 

allow for i) a global analysis, model-independent, not conditioned to any base-point in 

the input space; ii) the estimation of both first-order and interaction effects among 

model inputs, with relatively cheap computational cost and weak dependency on the 

number of model inputs k for the estimation of first order effects, while inevitably 

expensive and strictly k-dependent for total effect indices; and iii) the calculation of 

synthetic measures (the so-called sensitivity indices) to quantify the importance ranking 

of the uncertain model inputs. 

For the above reasons, in this work we applied techniques based on the Sobol’ 

decomposition of variance, in order to perform global sensitivity analyses of driver 

behavioral models. 
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1.4 Contributions to the State-of-the-Art 

The main contributions to the State-of-the-Art offered in this dissertation thesis are listed 

below: 

1. A methodological framework for the management of uncertainty in microscopic 

traffic flow simulation modeling (Chapter 2); 

2. A robust methodology for “disaggregate” calibration of car-following and lane-

changing models (Chapter 3); 

3. A general procedure for handling measurement errors in vehicle trajectory data 

(Chapter 4); 

4. A general methodology to simplify microscopic traffic flow simulation models 

based on global sensitivity analysis of model outputs (Chapter 5); 

5. Investigation of the relation between “disaggregate” modeling and “aggregate” 

microscopic traffic flow simulation (Chapter 6). 

1.5 Thesis Outline 

A detailed overview of the structure of the main body of the thesis is here outlined. 

Chapter 2 presents an introduction to uncertainty management in microscopic traffic 

flow simulation modeling. In particular, a review of the possible different sources of 

uncertainty in traffic simulation models is presented. Then, the methodological 

framework for managing parametric and non-parametric uncertainties is proposed. The 

Chapter ends with an outline of the contributions to the management cycle that are 

provided in the remaining chapters of the thesis.  

Chapter 3 and 4 focus on the problem of indirect estimation of driver behavioral model 

parameters (Uncertainty Modeling), evaluating the impacts of the calibration procedure 

(Chapter 3) and of the measurement errors (Chapter 4) on the quality of calibration 

results. 

Chapter 5 deals with the propagation of the input uncertainty into the modeling errors 

and present the results of a global sensitivity analysis of model outputs in order to 

understand the rank of importance of model parameters, with the aim to simplify models 
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without sensibly affecting their performances in the reproduction of observed traffic 

phenomena. 

Chapter 6 presents the investigation of the relationship between “disaggregate” modeling 

and “aggregate” simulation. In particular, we evaluated the impact of measurement 

errors, model simplifications and parameters’ correlation on “aggregate” microscopic 

traffic flow simulation performances. 

Chapter 7 provides the main conclusions of this dissertation thesis and outlines 

directions for future research.  

The mathematical review of the variance-based techniques for global sensitivity analysis 

of a simulation model is presented in Appendix A. Appendix B is dedicated to the 

analysis of the Gipps car-following model (Gipps, 1981) and to the presentation of an 

enhanced model formulation which generalizes the “free-flow” model equation. 

Appendix C deals with the problem of car-following model estimation against time-

correlated measurements, proposing the adoption of a new class of goodness of fit 

functions derived in the frequency domain. Appendix D presents a general framework 

for the calibration of not-stochastic lane-changing models. 
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Chapter 2 

Uncertainty in Traffic Flow Simulation Models 

2.1 Introduction 

Traffic is a stochastic highly dynamic non-linear phenomenon, resulting from the actions 

and interactions of large numbers of travelers, along with various exogenous events 

(Antoniou et al., 2014). Indeed, drivers perform several decision choices along their path 

from origin to destination. Initially, they select the departure time and choose among 

different route strategies to reach the destination. Then, en-route, they may adjust their 

path as they experiment congestion or delays over the network. 

Moreover, drivers’ choices may vary in time and across individuals. Different driving 

behaviors produce vehicles’ interactions and are responsible for the decay of network 

performances (emergence of shockwaves, flow breakdown, capacity drop and so on).  

As human beings are involved, traffic systems – as, more in general, transportation 

systems – are extremely complex, and with an intrinsic source of aleatory.  

Traffic flow simulation models aims to reproduce the aleatory of traffic over road 

networks by stochastically modeling, (more or less) explicitly, both strategic (departing 

time, route choice) and tactical (actions aimed to directly control the vehicle in the 

traffic stream, subject to a number of environmental constraints, such as road rules, 

traffic lights, surrounding traffic, etc.) decision layers. 
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They are invaluable in offering a “common ground” for evaluating policies and 

examining, with a level of objectivity, the inevitable compromises required in practice. 

For instance, they are widely applied in the evaluation of new traffic control schemes 

(e.g. actuated/coordinated control, ramp metering, lane management, speed control, 

prioritarization, route clearance), to predict commuters’ behavior in presence of 

advanced travelers information systems (e.g. variable message signs, route and parking 

guidance), or to assess travel demand management policy (e.g. congestion charge zones, 

eco-pricing, tolling system, mobility credits). 

However, a large amount of uncertainty is encoded in such models and propagates in the 

simulation results. If not properly assessed and (possibly) reduced, models would 

encompass a disproportionate amount of uncertainty, and turn out to have no practical 

utility for the transport analyst, as credibility of results is inevitably undermined. 

For example, ignoring the stochastic nature of a microscopic traffic flow simulation 

experiment, by performing a one-shot simulation, would not allow to capture the 

reliability of a management strategy (e.g. a ramp metering algorithm, a dynamic speed 

control policy, a congestion charge system), or, more in general, of a urban traffic plan, 

with regards to the variability of model inputs (e.g. demand levels, route choice model 

and driver behavioral model parameters). Further, in the assessment of different 

project/plan alternatives, an option that performed the best in a one-shot simulation 

experiment (deterministic approach), could be easily turn out to be the worst in a 

probabilistic assessment when propagating the variability (uncertainty) of model inputs 

into the simulation model. Therefore, as suggested in Antoniou et al. (2014), “using such 

an instance for decision making could jeopardize the validity of the results and lead to 

bad planning”. 

However, despite its relevance, uncertainty management is a strongly under investigated 

issue in traffic flow simulation modeling, and its implications on model applicability, 

robustness and credibility are frequently neglected by both practitioners and researchers. 

As a matter of fact, the topic was traditionally relegated to marginal sections of 

transportation systems analysis books (Sinha and Labi; 2007; Cascetta, 2009; Willumsen 

and Ortuzar, 2011). Also in existing international guidelines (DMRB, 2013; HA, 2007; 

TfL, 2010; FHWA, 2004; VTRC, 2006; AUSTROADS, 2006; AUSTROADS, 2010; 
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TAC, 2008; JSTE, 2011), there is either a total lack of coverage of the subject, or, when 

definitions are proposed, they are largely misleading. For more details, see Section 5.2. 

Further, no commercial simulation software allow for a quantitative assessment of 

uncertainty in simulation results and they are not design to let the user perform it. As a 

consequence, most of practitioners neglect this issue and are unaware of the terrible 

implications on simulation results for project assessment (Brackstone et al., 2012).  

On the other hand, researchers have (more or less) deliberately paid less attention to the 

problem over the years, as more focused on modeling itself, that is to enhance models by 

changing their structure or adding more parameters as to reproduce specific observed or 

desirable phenomena/behaviors. However, the above research lines, in absence of 

corroborated procedures for model application in presence of uncertainty (including 

calibration and validation), would probably contribute to model indeterminacy (as 

clarified in Section 2.2). 

Investigating uncertainty in traffic flow simulation models was the core objective of the 

EU COST Action (MULTITUDE, 2014). It was driven by the concern that, although 

modeling is now widespread, we are unsure how much we can trust our results and 

conclusions. Such issues force into question the trustworthiness of the results, and 

indeed how well we are using them (MULTITUDE, 2014). 

For the above reason, the objective of this dissertation thesis is to provide a common 

methodological framework for the analysis of traffic flow simulation models in presence 

of uncertainty, that covers the steps of the quantitative uncertainty assessment cycle 

proposed in de Rocquigny et al. (2008). 

It is worth noting that the accent will be on microscopic traffic flow simulation models 

only, and specifically on driver behavioral models (e.g. car-following and lane-changing 

models), although generalization to other traffic flow models, or even to more general 

transportation systems models (e.g. public transportation models, pedestrian simulation 

models), might be possible with reasonable easiness. 

The remaining of this Chapter is organized as follows. Section 2.2 describes the concept 

of “uncertainty entailment” in scientific modeling. In Section 2.3, a literature review of 

the applications of uncertainty analysis in traffic flow simulation modeling is provided. 

In Section 2.4 we provided a discussion of the literature to highlight the motivation for 
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the work. In Section 2.5 the proposed framework for the analysis of microscopic traffic 

flow simulation models is described. Section 2.6 presents the outline of the study steps 

that will be carried out in the following chapters. A brief summary ends the Chapter. 

2.2 Uncertainty Entailment in Scientific Modeling 

A view of modeling that may help to illustrate the concept of “uncertainty entailment” is 

offered in Figure 2.1 (taken from the work of biologist Robert Rosen, 1991). 

  

Figure 2.1: Modeling framework (Rosen, 1991). 

In Rosen’s diagram, the natural system, depicted on the left-hand side, obeys rules that 

we have the ambition to uncover. To this end we craft a set of structures in a model 

(depicted on the right-hand side of the figure). For example, a hypothesized set of rules 

for commuters’ travel choices in a urban transportation system are casted into a random 

utility choice model. While people may keep choosing different travel options day by 

day, following the forces of its own systemic causality (which we aim to understand), 

our model can be solved using the rules of mathematical calculus. The intuition of 

Rosen, as brilliantly explained by Saltelli et al. (2008), was that “while the world obeys 

rules, and the model has ‘rules’ as well, whether formal or mathematical, no ‘rule’ 

whatsoever can dictate how one should map the hypothesized rules in the world onto the 

rules in the model. In other words, while the world and the model are each internally 

‘entailed’, nothing entails the world with the model.” 

In the case of traffic flow simulation models, the (desired) capability to describe the 

system evolution under unobserved circumstances, on one hand, and the (un)availability 
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of enough information to formulate “absolute” models, translates into the fact that 

“different modelers can generate different nonequivalent descriptions of it, that is, 

models whose outputs are compatible with the same set of observations but whose 

structures are not reconcilable with one another” (Saltelli et al., 2008).  

In the literature, it has been coined a word for this paradox: equifinality – meaning that 

different models can lead to the same end (Beven and Binley, 1992; Beven, 1993, 2001). 

Others refer to the phenomenon as model indeterminacy (Oreskes et al., 1994). 

As pointed out by Saltelli et al. (2008), along with the process of system encoding, a set 

of sources of uncertainty are intrinsically generated. Among the others, they include the 

classical categories of: “aleatory phenomena”, “lack of data or knowledge”, 

“variability”, “measurement errors”, etc. These may affect the model in various ways, 

through uncertain values for model inputs, model errors or even uncertain (or 

incomplete) structures of the model itself. 

2.3 Applications in Traffic Flow Simulation Modeling 

Despite of the underlined importance of uncertainty management in scientific modeling, 

in the field of traffic flow simulation modeling it is a very under investigated issue and, 

as a consequence, not properly handled by existing guidelines. 

From the beginning, it is worth noting that the roles of uncertainty modeling, uncertainty 

quantification and sensitivity analysis are largely misinterpreted in many applications 

related to the traffic flow simulation literature.  

A common source of misinterpretation is due to confounding stability analysis of model 

parameter estimates with sensitivity analysis of model outputs. This is the case, for 

example, of the application of generalized autoregressive conditional heteroscedasticity 

(GARCH) time series models for representing the dynamics of traffic flow volatility in 

Kamarianakis et al. (2005), where “sensitivity” of objective function in  the neighbor of 

the optimal parameter estimates is investigated. Similarly, Ossen and Hoogendoorn 

(2009), in assessing the reliability of car-following model parameter estimates against 

vehicle trajectory data in different traffic conditions, provided  measures of “sensitivity” 

of calibration objective function to small parameter changes. Likewise, Hoogendoorn 

and Hoogendoorn (2010a) performed the “sensitivity” analysis of car-following model 
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parameter estimations by local perturbation of the MLE log-likelihood at estimated base 

values. In such cases, stability analysis was performed in place of sensitivity analysis. 

Confusion may also arise from the dualisms between uncertainty and sensitivity analysis, 

which are very frequently thought as synonymous. However, this is not the case. Such 

misunderstanding is frequent in the existing guidelines for traffic flow simulation 

modeling, such as the “Guidelines for Applying Traffic Microsimulation Modeling 

Software” of the California Department of Transportation (FHWA, 2004), the Austroads 

Research Report  AP-R286/06 (AUSTROADS, 2006), and the Traffic Modelling 

Guidelines (TfL, 2010). 

For instance, the FHWA guidelines (2004) state that “… a sensitivity analysis is a 

targeted assessment of the reliability of the microsimulation results, given the 

uncertainty in the input or assumptions. The analyst identifies certain input or 

assumptions about which there is some uncertainty and varies them to see what their 

impact might be on the microsimulation results”. However, such “sensitivity analysis” 

was actually a propagation of uncertainty aiming at uncertainty quantification. Indeed, 

what is mostly missing there is the loopback process associated to the sensitivity 

analysis which serves for the identification of how uncertainty in model outputs can be 

apportioned among the different sources of uncertainty in the inputs. 

Also the majority of the studies reviewed in the literature fall into such misconception. 

In many studies, uncertainty analysis aimed at the prediction, through (analytical or 

numerical) calculus of partial derivatives, of the changes in a system output to any small 

and local variation in the input base values. For example, in the field of traffic demand 

assignment, this approach was adopted for the analysis of the equilibrium network flows 

in Tobin and Friesz (1988) and further extended by Yan and Lam (1996) to predict 

changes in equilibrium link flow pattern, queuing delay, and system objective function 

in response to any small variation in toll charges. On the same research topic, the 

approach was implemented by Leurent (1998) to perform the analysis of the dual criteria 

traffic assignment model, and by Tam and Lam (1999). Lam and Zhou (2000) designed 

a solution algorithm, based on the derivative information, for some bi-level 

transportation optimization problems in which the traffic equilibrium problem was taken 

as the lower-level problem. Yang (1998) performed a sensitivity analysis of the queuing 

equilibrium network flow, to derive the explicit expressions of the derivatives of 
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equilibrium link flows and equilibrium queuing times with respect to traffic control 

parameters, in order to understand the stability of the equilibrium solutions to any local 

combination of changes of traffic control parameters. Later, the same approach was 

adopted by Chen et al. (2002) to estimate the sensitivity of the network equilibrium 

flows to the change of arc capacities. Same approach can be found also in Clark and 

Watling (2000), where an approximation to changes in the equilibrium solution of a 

probit-based SUE was deduced by the perturbation of its input parameters (specifically 

origin/destination flows and link cost-flow function parameters). 

However, though a derivative-based approach has the attraction of being very efficient 

in computer time, it is unwarranted when the model input is uncertain and when the 

model is of unknown linearity. Indeed, this approach is “illicit and unjustified unless the 

model under analysis is proved to be linear” (Saltelli et al., 2006). In other words, 

derivatives are only informative at the base point where they are computed and do not 

provide an exploration of the rest of the space of the input factors. To overcome these 

limitations, sigma-normalized derivatives were introduced. For more details, please refer 

to Saltelli et al., 2008. 

In the context of traffic simulation, sigma-normalized derivatives have been effectively 

used by Ji and Prevedouros (2005a), together with regression-based techniques and the 

Fourier Amplitude Sensitivity Test, with the purpose of benchmarking different 

techniques on the delay model proposed in the HCM (2000). On this topic, the same 

authors performed also similar studies in order i) to address the problem of uncertainty 

analysis in presence of correlation among model inputs (Ji and Prevedouros, 2005b), ii) 

to evaluate the impact of the a priori knowledge of model input probability distribution 

on results of uncertainty quantification (Ji and Prevedouros, 2006), and iii) to compare 

several other techniques (Ji and Prevedouros, 2007). 

However, apart from these sporadic works, the most common setting used in the 

literature is the One-At-Time (OAT) uncertainty quantification. However, this approach 

has a major drawback: as inputs never vary simultaneously, the method completely hides 

the interaction effects of the parameters on the output, and thus provides unbiased results 

only for purely additive models. 

In the field of microscopic traffic flow simulation, OAT applications can be found since 

2000s.  
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For example, Bloomberg and Dale (2000) investigated the effect of travel demand 

variability on travel times by using the VISSIM and CORSIM micro-simulation 

software in a Monte Carlo-based simulation framework with a factorial design. Similar 

design for OAT uncertainty was applied by Lownes and Machemel (2006) and Mathew 

and Radhakrishnan (2010) on the VISSIM model, in order to select the model 

parameters in terms of their effects on some model outputs, such as simulated capacity.  

Bartin et al. (2006) and Li and Zhang (2009) focused instead on the PARAMICS model, 

drawing inference on the variability of the average network travel times as to the 

variation, in a 2k factorial design (Bartin et al., 2006) and in a 2k-p fractional factorial 

design (Li and Zhang, 2009), of a subset of model parameters, selected based on 

modeler’s experience. Similar approach was adopted in Bonsall et al. (2005) on the 

DRACULA microscopic traffic flow simulation model, where the sensitivity of model 

predictions, and perhaps policy decisions, to the value of some of the key parameters 

was studies. 

Pel et al. (2010) performed an uncertainty quantification of the network accumulation 

from the macroscopic evacuation traffic simulation model EVAQ, in which input factors 

related to trip generation and departure rate, route choice, road capacities, and maximum 

speeds were systematically varied in a Monte Carlo-based simulation. 

Focusing on car-following models, Kesting and Treiber (2008) applied a Monte Carlo 

approach to get additional insight on the sensitivity of calibrated parameter values for 

two car-following models. However, such approach has more affinities with the stability 

analysis described at the beginning of this section, rather than with a model sensitivity 

analysis. 

An OAT approach was applied also in Patel et al. (2003), for the assessment of 

uncertainty in input data for the CAL3QHC roadway emission model, and select the 

most sensitive parameters with regards to the model simulated carbon monoxide 

concentrations. Attempts in this research direction can be recently found also in Song et 

al. (2012), where a local variation of eight parameter of traffic simulation model was 

performed as to determine their effects on simulated vehicle-specific power 

distributions. 
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Moreover, applications of OAT uncertainty analysis were not strictly limited to traffic 

flow simulation modeling, but can be found also in the wider context of transportation 

systems analysis.  

In travel time prediction and reliability, the approach was adopted by Hellinga (2001) 

and Sun et al. (2007) to investigate the impact of several key parameters on loop/video-

based and AVI-base identification algorithms for vehicle travel time estimation.  

In the field of Intelligent Transportation Systems (ITS), such analysis was performed by 

Lawe et al. (2009) to assess the stability of the TRANSIMS model results (traffic 

volumes and average speeds) to changes in the random seed number and in the pre-timed 

signals of actuated controllers. Similarly, Peng and Beimborn (2001) and Sadek and 

Baah (2003) applied a OAT uncertainty propagation to assess the variability, though 

called sensitivity therein, of cost-effectiveness of an ITS deployment system with 

regards to the choice of different values for some of the model’s parameters. Riemann et 

al. (2012) evaluated the variability in performances of certain cooperative systems 

within micro-simulation scenarios. 

In pedestrian simulation and modeling, Wan and Rouphail (2004) performed an OAT 

analysis of pedestrian delay on a (customarily) selection of control parameters, including 

the vehicle demand, splitter island holding spaces, pedestrian crosswalk width, and 

pedestrian walking speed. 

In transportation planning, Melkote and Daskin (2001) explored the tradeoff between 

investment and operating costs in network location problem for public and private 

facilities, though an OAT analysis of key model inputs. Rodier and Johnston (2002) 

analyzed plausible errors in projected trends for population, employment, fuel price, and 

income, as to the variability of the travel demand and emissions models. Schuster et al. 

(2005) evaluated the cost-effectiveness of a commuter-based car-sharing model, in 

Monte Carlo-based simulation where economic decision variables were varied one-at-

time.  

In transit planning, Fu and Liu (2003) applied sensitivity analysis to identify the 

conditions under which the proposed operating strategy for dynamic scheduling of 

transit operations were more advantageous. Chien et al. (2001) performed an OAT 

analysis for the estimation of cost-effectiveness of different bus systems, while Mesbah 

et al. (2010) applied it for the assessment of transit policy for lane priority. 
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As clarified earlier, applications based on an OAT variation of the uncertain input 

factors are likely to produce biased results. On the contrary, experimental designs that 

allow varying all the inputs simultaneously are needed to explore the whole input space 

and to account for the interactions of the various inputs (like e.g. demand, parameters 

and the network). Conversely, very computationally expensive design (multi-level 

factorial designs) are needed to allow for the estimation of second and higher-order 

interaction effects among model inputs on the variable of interest. 

Traditionally, factorial designed ANOVA was adopted for the purpose. However, very 

few application of these method could be found in the field literature. A two-step 

analysis was adopted in Beegala et al. (2005) for the assessment of ramp control 

strategies in freeway management: a first screening OAT analysis was followed by an 

ANOVA with three level factorial design with the purpose of model parameters 

prioritarization. In Ciuffo et al. (2007) and in Punzo and Ciuffo (2009) second order 

interactions effects among model parameters were investigated for the AIMSUN model. 

2.4 Towards a New Approach 

What emerges from the review of the literature given in Section 2.3 is that uncertainty 

quantification and sensitivity analysis have covered only marginal roles in traffic flow 

simulation studies, and, more in general, in transportation systems analyses. Indeed, the 

main focus of the analyses was on model description and application, while a (frequently 

misleading) sensitivity analysis was performed, at last, to show how small and local 

variation in model inputs affected the reliability of results. 

Such traditional approaches tangle with the need for model credibility and robustness. 

Indeed, as brilliantly explained by Ni et al. (2004), “to successfully apply a simulation 

model, the correctness or credibility of the model is crucial, and some testing processes 

have to be resorted to in order to ensure the quality of the model through model 

validation, a critical testing process that compares the model output with real-world 

system behaviour”. 

However, quality and robustness of results mainly depend on two components: i) the 

credibility of the model, and ii) its correct use. 
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With regards to the first point, Papageorgiou (1998) observed that available traffic flow 

models are derived following an approach which is half way between a purely deductive 

approach and a purely inductive one. Such an approach neither consists in deriving 

models from invariable basic principles – like in Newtonian physics and related 

mechanical models (purely deductive) – nor in fitting a generic mathematical structure to 

observed data (purely inductive). Rather, “one first develops (via physical reasoning 

and/or adequate idealizations and/or physical analogies) a basic mathematical 

modeling structure and then one fits this specific structure (its parameters) to real data” 

(Papageorgiou, 1998). In fact, at the basis of traffic flow modeling, there could be 

physical principles (e.g. conservation equation), common-sense assumptions (e.g. safety-

distance car-following model), or (mostly) a mix of both types. However, for the 

purpose of model applicability, they are generally limited only to those system behaviors 

that we attempt to reproduce or, in other cases, even self-tailored on the application case-

study. Further, in some cases, common-sense assumptions may be contested, as not 

general enough to depict the range of phenomena which we attempt to reproduce. For 

example, at the basis of most popular car-following models, such as the Gipps’ model 

(1981), the OVM model (Bando et al., 1995), the Intelligent Driver Model (Treiber et 

al., 2000), there are hypothesis regarding the dependence of driving response from the 

leader stimulus in the current lane, but there could be situations in which the response 

may either depend also on other surrounding vehicles (e.g. the anticipation and 

relaxation behaviors of the vehicle in response to an imminent lane-changing; Ahn et al., 

2013), or depend on exogenous factors not modeled at all (e.g. rubbernecking behavior 

at work zones).  

As a consequence, different (type of) assumptions, often equally reasonable, have led to 

alternative model formulations which compete concerning their ability of describing and 

interpreting traffic phenomena. Model indeterminacy or equifinality are two terms 

applied to define such a condition – common to many disciplines – that results in having 

more than one model compatible with the same set of data or evidence. The implicit 

understanding behind such concepts is that the models being used are approximations of 

reality and that their outputs are necessarily uncertain, not only because of the lack of 

knowledge in the inputs, but also due the modeling process itself (Antoniou et al., 2014). 
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The above considerations substantiated the second point related to the correct use of 

such models to avoid (potential) vulnerability to instrumental or otherwise unethical 

scopes. 

Indeed, traffic flow simulation models are often over-parameterized. According to 

Hornberger and Spear (1981), “most simulation models will be complex, with many 

parameters, state-variables and non-linear relations. Under the best circumstances, 

such models have many degrees of freedom and, with judicious fiddling, can be made to 

produce virtually any desired behaviour, often with both plausible structure and 

parameter values.” 

This poses serious questions on the reliability of the results of a simulation study as well 

as on the transparency of the study itself (i.e. (un)-repeatability of experiments). In fact, 

it is reasonable to claim that results of a study are mostly driven by the way in which 

model inputs (parameters and OD flows) are estimated. However, their estimation is a 

complex non-linear problem, with a very large number of unknowns, and it is hard to 

find a solution that is reliable and robust. 

As Ge and Menendez pointed out (2012), “commercial traffic simulators usually contain 

a huge number of parameters to cover various kinds of simulators (e.g. vehicles, public 

transport, pedestrians). As an example, VISSIM  has 192 parameters …, and this figure 

will most likely continue to grow with new updates”. This raised questions on the 

practical affordability of software calibration, which, de facto, is limited only to a 

(customarily) selected subset of parameters. Also, it generally happens that just a subset 

of the input parameters drives the overall variability of the outputs: in most of the cases, 

complex high-dimensional models present a strong asymmetry in the way the inputs 

influence their outputs. Therefore, the identification of these inputs is crucial to simplify 

the problem and to make it tractable and affordable as well. 

The above considerations clarified that the uncertainty management in traffic flow 

simulation modeling is not a complementary topic, but rather strictly connected with the 

issues of modeling, calibration, application and validation. 

Indeed, Bayarri et al. (2004) recognized that uncertainty modeling and quantification 

should be part of an integrated procedure for calibration and validation of traffic 

simulation models. However, the formalization of the idea was not provided therein. On 
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the other hand, the emergence of new techniques in many research fields (e.g. 

environmental modeling, system reliability and risk analysis) that allow for model 

simplification, development and validation, could open new research perspectives also in 

the field of traffic flow simulation modeling. 

Therefore, in the following section, we present an integrated framework for the analysis 

of microscopic traffic flow simulation models in presence of uncertainty. 

2.5 Proposed Framework for Uncertainty Management in 

Microscopic Traffic Flow Simulation Models 

Based on the conceptual framework provided in de Rocquigny et al. (2008), in this 

section we discussed the issues related to its specification to the context of microscopic 

traffic flow simulation models. 

The section is organized as follows. A general, goal-oriented, overview of microscopic 

traffic flow simulation models is given in Section 2.5.1, while Section 2.5.2 discusses 

the different sources of uncertainty generally entailed in the modeling process. Then, 

Section 2.5.3 describes the proposed framework for handling uncertainty in model 

simulation and the principles for its implementation (Section 2.5.4). 

2.5.1 Microscopic traffic flow simulation model 

Traffic flow simulation models may be distinguished  with regards to several factors, 

ranging from the level of representation of time (static, dynamic) and space (discrete, 

continuous), to the flow structure (continuous fluid, individual vehicles) and the level of 

representation of traveler responses (e.g. driving behavior, aggregate link performance 

functions, pre-trip and en-route path choices, departure time choices, etc.). 

In the present work, we will focus on microscopic traffic flow simulation models only. 

These models can be ascribed to the class of driven multi-particle models, where the 

flow representation is vehicle-based (Treiber and Kesting, 2013). They describe the 

reaction of each single driver to the surrounding traffic (e.g. acceleration and braking 

responses, lane-changing, merging) and traffic control systems (e.g. tolling systems, 

control plans at signalized intersections, dynamic speed limits, ramp-metering). 
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Dynamic state variables are vehicles’ (longitudinal and lateral) position, speed and 

acceleration at each simulation step. Traditionally, each driving behavior is modeled 

separately from the other (e.g. car-following, lane-changing), while efforts towards joint 

modeling were just recently produced in the literature. 

In order to reproduce the stochastic nature of traffic, in terms, for instance, of population 

variability of driving behaviors, path choices/en-route adjustments, departure time 

intervals, and so on, microscopic traffic flow simulation models use random variables 

and sample from random distributions to represent decisions made by the agents 

simulated in the models (e.g. route or lane choice decisions). Therefore, model 

parameters are inputted as random variables, following  a (generally Gaussian) 

distribution model of given parameters. The drawback of this approach is that multiple 

simulation runs are needed to obtain reliable results.  

These models are largely used in many applications where heterogeneity of traffic, 

driving behaviors and interactions play important roles, including the assessment of 

Intelligent Transportation Systems such as Advanced Driver Assistant Systems (e.g. 

Adaptive Cruise Control, Infrastructure- and Vehicle-to-vehicle communication 

systems), the assessment of control and management strategy (e.g. variable speed limits, 

ramp-metering, freeway lane management, integrated corridor management) and so on. 

From the beginning, it is worth noting that the focus of this dissertation thesis is on 

driver behavioral models only, and specifically on car-following and lane-changing 

models. 

However, in commercial simulation packages (e.g. AIMSUN (2012), VISSIM (2011), 

PARAMICS (2003)), driver behavioral models are only “components” (together with, 

for instance, the demand model, the route choice model, the assignment algorithm and 

the traffic control models) of the simulation software. 

For the sake of clarity, in this dissertation thesis, we will refer to the “components”, i.e. 

driver behavioral models, as “disaggregate” models, while to the micro-simulation 

software as the “aggregate” model. 

It is clear that (model and parameter) sources of uncertainty are present in each 

“component” of the simulation software, as well as in their mutual interactions (e.g. in 

the assignment, between the route choice model and the driver behavioral models). The 
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common sources of uncertainty entailed in traffic flow simulation models are reviewed 

in the following section. Thereafter, the proposed framework for uncertainty 

management is presented. 

2.5.2 Sources of uncertainty 

To understand how uncertainty enters traffic modeling is useful to make some reasoning 

on the sources and the nature of uncertainty in traffic systems/models. 

The trajectories of vehicles, which fully depict the evolution of traffic over a road 

network, are the outcome of a number of human choices and actions. For the sake of 

simplicity, it is generally acknowledged that a number of decisions/choices like the time 

to depart or the route to follow belongs to a driver “strategic” decision level, while a 

“tactical” level comprehends decisions and actions aimed to directly control the vehicle 

in the traffic stream, subject to a number of environmental constraints (e.g. road rules, 

traffic lights, surrounding traffic) and according to the driver strategic plans and 

motivations.  

Traffic simulation aims to reproduce traffic over road networks by more or less 

explicitly modeling these strategic and tactical decision layers. 

It is straightforward that this composite modeling process involves a number of 

uncertainty sources of different nature, often mixed in a complex way. Part of this 

uncertainty can be directly imputed to the (in)adequacy of the models to the reality, 

while another part depends on the (uncertain) model inputs. In the literature, it is 

generally referred to the former as model uncertainty, while to the latter as parameter 

uncertainty (see, for example, de Rocquigny et al., 2008). 

Uncertainty due to the inadequacy of models, i.e. model uncertainty, arises from a 

number of sources like the modeling basic assumptions, the structural equations, the 

level of discretization, the numerical resolution method, and so on. Such uncertainty can 

be reduced by “improving” the model concerning one or more of these aspects. As the 

cost of reducing such uncertainties often results in the increase of computational time, 

the choice of the most appropriate modeling framework depends on the specific 

application (e.g. on-line vs. off-line simulation) and stems from a tradeoff between 

model adequacy and computing time. 
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As regards to parameter uncertainty, instead, we must distinguish between those inputs 

which are observable and those which are not. Such distinction is crucial as it affects the 

possibility, or the cost, of reducing the uncertainty they are responsible for: 

• As observable, we intend those model inputs which have a measurable equivalent 

in the reality. Thus they can be directly estimated and used to fed the models. In a 

microscopic traffic flow simulation model, examples are: the network 

characteristics, the traffic lights timing, the traffic composition, the distribution of 

vehicles size, etc. 

• Unobservable inputs are those which either are hardly measurable1, like the OD 

demand, or have not an actual equivalent in the reality. Concerning the latter case, 

the most of traffic model parameters, for example, either do just not have a 

physical interpretation, i.e. they are simply model constants, or they are 

deliberately considered uncertain by the modeler. In facts, as traffic models are 

necessarily only coarse representations of the real system, considering modeling 

parameters as uncertain inputs is commonly taken to cover both the epistemic 

uncertainty regarding the un-modeled details of the phenomena and the aleatory 

uncertainty not predicted by the average models2

Although direct measurement of observable inputs could seem the most straightforward 

approach to model their uncertainties, it is not necessary the case. In facts, as models are 

only proxy of the real system, to consider modeling parameters as uncertain inputs is 

commonly taken to cover both the epistemic uncertainty regarding the un-modeled 

details of the phenomena, and the aleatory uncertainty not predicted by the average 

models. In this view, although some model inputs could be physically measured, their 

role in the model might not be guaranteed to be equal to that in the real system. In other 

words, the inadequacy of the model to reality inherently make some model parameters 

 (e.g. the variability in time of 

driver’s behaviour). Such parameters can be therefore only indirectly estimated by 

means of inverse analysis (see Section 5.4.3) 

                                                   
1 In this context, the immeasurability is intended from practical rather than theoretical point of 

view. Indeed, some quantities may not be measurable because of operational or economic constraints. 
2 Epistemic, or reducible uncertainty, refers to types of uncertainty which can be directly reduced 

by an increase in available data. Aleatory, or irreducible uncertainty, refers to events which remain 

unpredictable whatever the amount of data available. 
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lose their physical meaning. For this reason they should be deliberately considered 

uncertain by the modeler, and therefore only indirectly estimated by means of inverse 

analysis (i.e. model calibration). 

Table 2.1 aims to give some examples of uncertainty sources in traffic modeling, 

classified according to their nature. The distinction is made on the practical notion of 

reducibility rather than on theoretical distinctions, like epistemic vs. aleatory (see, for 

instance, Granger Morgan and Henrion, 1990; Patè-Cornell, 1996; Saltelli et al., 2008). 

It is worth noting that the table gives general indications but, depending on the model 

and the application context, a source might be classified in different ways. A typical 

example is whether or not including the model uncertainty together with the uncertainty 

in parametric inputs. 

 

Table 2.1: Examples of uncertainty sources in traffic modeling and their nature 

 UNCERTAINTY NATURE 

UNCERTAINTY SOURCE 
Mostly  

reducible 
Mostly 

irreducible  
Mixed  

natures 

Model  Time and space 
discretization 

Model time-invariance 
Basic modeling  assumptions 
(e.g. assignment algorithm, 

model structures) 

Observable inputs 

Road characteristics and 
functions; traffic control 

states; traffic 
composition; point to 
point demand (e.g. on 
freeway network), etc.   

 
Vehicle sizes, free-flow 

speeds, etc., and variability in 
population/space 

Unobservable 

inputs 

Hardly    
measurable 

Stationary OD matrices 
Individual departing 

time 
Time-varying OD matrices  

Unphysical 
parameters 

Aggregate model 
constants  

Disaggregate model 
constants 

Uncertain 
parameters 

Fundamental diagram       
parameters (jam density, 
etc.), cost coefficients, 

etc. 

Intra-driver variability 
of  parameters 

Reaction times; maximum 
acceleration/decelerations; 
desired speeds, etc.; and 
variability in population 

(pdfs modeling) 
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2.5.3 Proposed approach 

Figure 2.2. presents the specification of the conceptual framework for quantitative 

uncertainty assessment to microscopic traffic flow simulation models. The framework 

relies on the following steps: 

• Step 1: Problem Specification (PS) 

• Step 2: Uncertainty Modeling (UM) 

• Step 3A: Uncertainty Propagation (UP); 

• Step 3B: Uncertainty Quantification (UQ); 

• Step 4: Sensitivity Analysis (SA). 

 

 

Figure 2.2: Conceptual Framework for Uncertainty Management in Microscopic Traffic Flow 

Simulation. 

Regarding the Problem Specification, in this work we made some assumptions. 
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First of all, as the objective of the study is not focused on modeling itself, we focused on 

well-known driver behavioral models, widely adopted in the literature and usually 

integrated in common simulation packages, such as the Gipps’ model (Gipps, 1981) and 

the Intelligent Driver Model (Treiber, 1999) for car-following, and the MOBIL model 

(Kesting, 2007) for lane-changing.  

Further, as already clarified in the previous sections, for the study purposes we 

considered as uncertain only the driver behavioral model parameters, and assumed the 

other model inputs, such as OD flows, departure time instants, route choice model 

parameters, etc., as fixed, according to the definitions given in Chapter 1. 

Moving to step 2, the objective of Uncertainty Modeling would be that of first sketch out 

the different sources of model and parameter uncertainty and then, if the case, provide a 

probabilistic modeling representation.  

It is worth noting that in the proposed framework both the model and parametric 

uncertainties could be modeled. Indeed, in case of model uncertainties, such as time and 

space discretization levels, the assignment algorithm, etc., we could consider the 

different modeling assumptions (e.g. different simulation time intervals, different 

assignment algorithm) as discrete categorical random variables uniformly distributed as 

to cover all the possibility that we have in coding a model. However, such approach 

would be feasible only when the computation time for a single model run is minimal. 

Further, things are complicated by the fact that commercial packages usually do not 

allow such deep level of user customization through APIs. 

Therefore, whatever the complexity of a mathematical model, it is still a simplified 

representation of the real traffic phenomenon. Thus, it is common practice to consider 

the model uncertainty alongside the parametric inputs. The estimation of the uncertain 

model parameters against real observed outputs thus allows covering at once the 

uncertainty in the system/phenomenon and the inaccuracies of the model, as well as the 

errors in the data. To give an example, estimating the probability distribution function of 

the parameters of a car-following model is needed both to account for the variability of 

driving behaviour within the population (i.e. inter-driver variability), to compensate the 

modeling errors such as the (un)variability in time of driving behaviors (i.e. intra-driver 

variability), but also to cover the neglected uncertainty in those model inputs considered 

as fixed by the modeler (e.g. the OD flows). 
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However, the estimation of all model parameters of a micro-simulation software (i.e. 

driver behavioral model parameters, OD flows, route choice model parameters, etc.) 

may result in an unaffordable task. Figure 2.3 presented a “black-box” approach to the 

estimation problem in a simulation-based framework. Two main issues arise from the 

proposed setting: 

• computation feasibility, and 

• uncertainty entailed in the problem setup. 

 

 

Figure 2.3: Black-box approach for the joint estimation of all parameters of a commercial 

microscopic traffic flow simulation software. 

First of all, the most contingent drawback regards the computation effort related to the 

problem at hand, which becomes unaffordable with the increase in the number of 

parameters to be estimated, and the simulation time for a single model run. Indeed, as 

traffic simulation models are stochastic, multiple model runs are needed each time the 

objective function has to be calculated. However, if the cost of a simulation run is not 
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negligible (i.e. greater than few seconds, e.g. 1-2 seconds), the optimization algorithm 

might not reach convergence in a reasonable amount of time. 

Secondly, the quality and robustness of the estimated parameters could be sensibly 

affected by the assumptions made on the problem setup, including, for example, the 

number of model runs chosen by the modeler to account for model stochasticity, the 

hypothesis on the distribution of model parameters (e.g. distribution model type, 

correlation structures, bounds, for both driver behavioral model parameters and OD 

flows), the correctness of the optimization problem specification (e.g. choice of the 

optimization algorithm, measure of performance, goodness of fit function). In addition, 

apart from the problem setup, several other factors may affect the quality of the solution, 

such as errors in the observed data or the way in which observed variability is handled 

and compared with model stochasticity. 

Moving to step 3, the propagation of input uncertainties through the simulation model 

(Uncertainty Propagation) allows for the ex-post estimation of the empirical distribution 

of model outputs (Uncertainty Quantification). This step is actually preparatory for the 

sub-sequent Sensitivity Analysis. 

Indeed, in Figure 2.2, Sensitivity Analysis (step 4) plays a key role, as it serves to a 

number of useful purposes, depending on the application setting. The importance 

ranking of the inputs with regards to their influence on the output uncertainty is the most 

common function of sensitivity analysis (factor prioritization setting). Sensitivity 

analysis can also be applied to identify which input parameters really need to be 

calibrated (factor fixing setting) and which are the observations that are really sensitive 

to the inputs and therefore useful for the estimation. Reducing the number of parameters 

to calibrate may contribute in reducing the complexity of the estimation problem 

presented in Figure 2.3, while the definition of the most appropriate observations is 

crucial to guide in the allocation of resources for the collection of new data. Sensitivity 

analysis may be useful also to identify the elements of the modeling process (inputs, 

assumptions, etc.) or the regions of the inputs which are most responsible for model 

realizations in an acceptable region or, at the contrary, which cause the exceeding of 

specific thresholds (i/o mapping setting). A review of the possible settings for Sensitivity 

Analysis is offered in Saltelli et al. (2008). 
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However, as the both the results of Uncertainty Quantification and Sensitivity Analysis 

critically depends on the level of exploration of model input uncertainties (through 

Uncertainty Propagation), computation feasibility issues may also arise at these steps, 

undermining the presented framework as the computing time for each simulation run 

increases. 

To solve these drawbacks, it is common practice in the literature to focus on 

“disaggregate” models (the “components”), rather than on the “aggregate” model (the 

micro-simulation software). Such approach is generally adopted to study specific 

properties of the “disaggregate” model (e.g. linear stability of car-following models), to 

verify its modeling assumptions (e.g. quasi-stationary generation profile for demand 

models), to calibrate model parameters, and to perform model benchmarking. 

However, in the literature, there is no significant contribution in understanding which are 

the impacts of the results of analyses conducted at the “disaggregate” level on the 

performances of the “aggregate” microscopic traffic flow simulation model. 

Therefore, in the following section, we first specialized the methodological framework 

presented in Figure 2.2 to the “disaggregate” analysis of driver behavioral models. 

Successively, we assessed the impact of analyses results (e.g. model simplifications, 

model calibration) at the “aggregate” level. 

2.5.4 From traffic flow models to sub-models and vice versa 

As clarified in the previous section, focusing on a sub-model would generally allow to 

reduce the complexity of the methodological framework for uncertainty modeling (i.e. 

indirect model estimation), as well as to study more accurately some of its properties.  

For instance, the analysis of car-following models have been largely undertaken in the 

literature for several different scopes, ranging from the studies of the population 

variability of driving behaviors (e.g. Kim and Mahmassani, 2011) and its implication on 

linear stability properties (e.g. Wilson, 2008; Ward and Wilson, 2011) to more modeling 

issues such as the multi-anticipative behaviors (e.g. Hoogendoorn at al., 2006). 

However, the underlining hypothesis in these studies is that the inputs uncertainties of 

the “aggregate” simulation model can be decomposed into its sub-models’ uncertain 

inputs. 
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When focusing on the “disaggregate” models, the UM issue mainly deal with the 

following factors: 

• the scarceness, incompleteness or inconsistency of data as to the model 

complexity; 

• the data measurement errors; 

• the computational complexity of the estimation process; 

• its (proper) set up as to the nature of the specific problem, and 

• the asymmetry in the importance of uncertain inputs. 

The scarceness, incompleteness or inconsistency of data with respect to the complexity 

of a model may lead either to ill-posed inverse problems – such as the case of the static 

OD matrix estimation problem (Marzano et al. 2009) – or to biased or not robust 

estimates of the parameters’ pdf. The latter effect also arises in presence of measurement 

errors (Ossen and Hoogendoorn, 2008a). In addition, a high number of parameters can 

make computationally unfeasible the analysis. For example, in case of least-square 

“black-box” calibration of model parameters, the computational complexity is 

exponential in the number of parameters, making the search for a global optimum 

generally unfeasible even for a relatively small number of parameters (Ciuffo et al., 

2008). 

Further, the quality of the solution found, i.e. the chance of finding a global optimum or 

at least a stable solution, could be then affected by the problem setup, including the 

choices of the algorithm, the measure of performance and the goodness of fit function. In 

addition most of the models present a pronounced asymmetry in the influence of the 

parametric inputs on the model outputs, with a small subset of parameters accounting for 

most of the output uncertainty and the others playing little or no role. The calibration of 

model parameters with scarce influence on the outputs (i.e. flat objective functions) is a 

hard challenge for any optimization algorithm. 

Finally, once investigated these issues on sub-models (e.g. car-following and lane-

changing models), one could question about how scalable are the findings when applied 

for “aggregate” microscopic traffic flow simulation. For instance, what is the impact of 

measurement errors on the estimated model parameters when used for an “aggregate” 

micro-simulation study? Or what is the impact of adopting different correlation 
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structures among sub-model parameters on “aggregate” micro-simulation results? Or 

what is the effect of model simplification on the performances of the “aggregate” micro-

simulation model? 

In the following section, a review of the study steps undertook to accomplish the 

analyses at both the “disaggregate” and “aggregate” levels will be presented. 

2.6 From Theory To Practice: Outline of Study Steps 

Following the previous discussion, we first focused on the management of uncertainty at 

the “disaggregate” level. Therefore, we applied the framework to the analysis of car-

following and lane-changing models, separately, facing the issues of uncertainty 

modeling (step 2), propagation, quantification and sensitivity analysis (step 3 + step 4). 

Figure 2.4 specialized the framework to the analysis of car-following models. Same 

considerations hold also for lane-changing models. 

 

 

Figure 2.4: General framework adopted in this thesis for the uncertainty management in the 

analysis of car-following models. 

For the study purpose, we used data from the NGSIM I80 project (2005), which provides 

a complete set of all the individual vehicle trajectories in a 500 meters x 15 minutes 
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space-time domain on an extra-urban road. This allowed us to conduct a two-stage 

analysis: 

i. First, we performed an uncertainty assessment of driver behavioral models, using 

individual vehicle trajectory data to accomplish for uncertainty modeling, 

quantification and sensitivity analysis, as illustrated in Figure 2.4. 

ii. Secondly, we evaluated the performances of the “aggregate” microscopic traffic 

flow model simulation, in a trace-driven environment3

In the following, a summary of the topics investigated on driver behavioral models is 

first presented. They relate to the uncertainty modeling (Section 2.6.1), and to the 

uncertainty propagation and sensitivity analysis (Section 2.6.2). Successively, a 

summary of the analysis conducted on the “aggregate” microscopic traffic flow 

simulation model is reported (Section 2.6.3). 

, as conditioned to the 

estimated driver behavioral model parameters and model simplifications. 

2.6.1 Uncertainty Modeling 

As pointed out in the previous sections, the objective of this step is the definition of the 

joint pdf of car-following and lane-changing model parameters, via model calibration. 

Figure 2.5 presents the general approach for the estimation of car-following model 

parameters of a given vehicle i in the traffic stream. A similar scheme could be adopted 

for lane-changing model parameter calibration. 

In the figure, inputs of the “black-box” optimization process are: 

• the optimization problem specification 

• the measured vehicle trajectories; 

Therefore, on one hand, we analyzed and quantified the uncertainty entailed in the 

calibration process itself, with reference to the methodological choices concerning the 

                                                   
3 In a trace-driven simulation, both the simulated and the real systems have exactly the same 

inputs. Indeed, in the microscopic traffic flow  simulation, each individual vehicle enters (if possible) the 

simulation at the same instant and in the same lane as in the observed trajectory data. More details are 

provided in Chapter 6. 
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optimization algorithm, the measure of performance and the  goodness of fit function. 

This analysis is described in Chapter 3. 

On the other hand, we studied the impact of measurement errors in trajectory data on the 

results of model calibrations, as to investigate whether measurement errors propagate in 

the estimation results. This analysis is described in Chapter 4. 

 

 

Figure 2.5: Black-box optimization for the calibration of car-following model parameters of 

each individual vehicle. 
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performances. This analysis is described in Chapter 5. 
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2.6.3 Impacts on Aggregate Microscopic Traffic Flow Simulation 

Based on the results from the analysis of “disaggregate” models, we investigated which 

are the impacts of different uncertainty models and model simplifications on the 

simulation performances of the “aggregate” model. 

Therefore, we performed a trace-driven simulation to compare aggregate measured data 

with simulated ones. As to comprehend the impact on simulation performances, in 

Chapter 6, we conducted different experiments to investigate the following topics: 

• Impact of measurement errors on “aggregate” simulation results; 

• Impact of parameter correlation on “aggregate” simulation results; 

• Impact of model simplifications on “aggregate” simulation results. 

2.7 Summary 

Despite of the underlined importance of uncertainty management in scientific modeling, 

in the field traffic flow simulation modeling it is a very under investigated issue. Further, 

its implications on model applicability, credibility, and robustness, are frequently 

neglected by both practitioners and researchers. 

A literature review of field applications revealed that the roles of uncertainty modeling, 

quantification and sensitivity analysis are largely misinterpreted, and these analyses 

usually cover only a marginal role in traffic flow simulation studies.  

However, neglecting uncertainty in traffic flow simulation models contribute to the 

issues of model indeterminacy, equifinality and over-parameterization. 

Therefore, in this Chapter, we presented the problem of uncertainty management in the 

analysis of microscopic traffic flow simulation models, specifically focusing on driver 

behavioral models. To this aim, we adopted the general framework proposed in de 

Rocquigny et al. (2008), and specialized it to handle the steps of Uncertainty Modeling, 

Propagation, Quantification and Sensitivity Analysis in traffic flow simulation modeling. 

We pointed out at the (possible) computational and modeling drawbacks of applying 

such framework for the analysis of a micro-simulation software. Therefore,  we provided 
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a distinction between the micro-simulation software – referred as “aggregate” simulation 

model – and its model components – referred as “disaggregate” models or sub-models. 

On this basis, we substantiate the lack of appropriate literature on the relationship 

between the results of analyses on “disaggregate” models and the performances of the 

“aggregate” simulation model. 

The Chapter ends with an outline of the applications carried out in the remaining of the 

thesis.  

In Chapter 3 and 4 we focused on the problem of indirect estimation of driver behavioral 

model parameters (Uncertainty Modeling). In particular, we evaluated the impacts of the 

calibration problem specification (Chapter 3) and of the measurement errors in vehicle 

trajectory data (Chapter 4) on the quality and robustness of parameter estimates. 

In Chapter 5, we focused on Uncertainty Propagation and Sensitivity Analysis, 

presenting the results of a global sensitivity analysis of driver behavioral models in a 

factor fixing setting. 

Finally, in Chapter 6 we investigated the relationship between “disaggregate” 

modeling/analysis and “aggregate” performances of the micro-simulation software. 
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Chapter 3 

Uncertainty in the Procedure for Calibration of 
Microscopic Traffic Flow Simulation Models1

3.1 Introduction 

 

In the field of traffic simulation – provided the structural inadequacy of models – it is 

common practice to include model uncertainty alongside the uncertainty in parametric 

inputs. Considering model parameters as uncertain inputs to calibrate against real data, 

indeed, is usually taken also to cover the epistemic uncertainty regarding the un-modeled 

details of the phenomena and the aleatory not predicted by the models (de Rocquigny et 

al., 2008; Punzo et al., 2014b). In microscopic traffic flow models, for instance, indirect 

estimation of the probability density function of model parameters, is needed not only to 

account for the heterogeneity within the driver population – the so called inter-driver 

variability (Ossen et al., 2006; Kim and Mahmassani, 2011) – but also for compensating 

the model errors and the system aleatory, like the time variability of driving behaviors 

(i.e. intra-driver variability; Kesting and Treiber, 2008). 

As clarified in Chapter 2, the compensation of the modeling errors and of the system 

irreducible uncertainty is the basic theoretical motivation for the indirect estimation of 

model parameters in traffic simulation. Conversely, it generally advises against the 

direct estimation of the observable parameters, namely, of those parameters which have 
                                                   
1 Regarding the contents of this Chapter, the reader can refer also to Punzo et al. (2012). 
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a physical equivalent in the reality and can be directly measured, like for example the 

reaction time or the maximum acceleration in car-following models (this point has been 

controversial for long time, with many scientific works supporting to some extent the 

direct estimation of parameters, e.g. in Gipps (1981): “the parameters in the model 

should correspond to obvious characteristics of drivers and vehicles so that most can be 

assigned values without resorting to elaborate calibration procedure”). 

In this Chapter, we focused on the calibration of “disaggregate” driver behavioral 

models, and specifically on car-following models. 

The calibration of car-following models based on real trajectory data has been widely 

applied as the basis for different type of studies ranging from the investigation and 

benchmarking of models (e.g. Wilson, 2001; Newell, 2002; Treiber et al., 2008) to the 

study of driving characteristics and model features like multi-anticipation (e.g. 

Hoogendoorn et al., 2006), driver heterogeneity (e.g. Ossen and Hoogendoorn, 2007, 

2011) and the correlation structure of model parameters (e.g. Kim and Mahmassani, 

2011) (for a review of previous calibration studies: Brackstone and McDonald, 1999). 

In spite of the large number of studies attempting to deepen the properties of the 

models/phenomena through the results of calibrations, very few of them attempted also 

to analyze and quantify the uncertainty entailed in the calibration process itself, and its 

impacts on the accuracy and reliability of results. For example, Brockfeld et al. (2004) 

recognized that many optimization algorithms get stuck in local minima and suggested 

to start the algorithms (at least five times) from different starting points, as also indicated 

in Ossen et al. (2006). Punzo and Simonelli (2005) pointed at the effect on calibration 

results of using different measure of performances in the objective function, namely 

speed, inter-vehicle spacing and headway, providing numerical comparisons and a 

conceptual justification of the advantage of using spacing. Kesting and Treiber (2008) 

confirmed the justification by Punzo and Simonelli (2005) for preferring inter-vehicle 

spacing and compared the effect on results of using different goodness of fit functions in 

the objective, like relative error, absolute error and mixed error. Finally, Ossen and 

Hoogendoorn (2008a, 2009a) asserted the preeminent role of experiments with synthetic 

data to investigate calibration issues, and, in such a framework, showed that 

measurement errors can yield a considerable bias in the estimation results. They also 

raised the crucial issue that parameters minimizing the objective function do not 
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necessarily best capture car-following dynamics and, as a general conclusion, they stated 

that “calibration based on real trajectory data turns out to be far from trivial”. 

Therefore, despite these specific investigations, so far there is not a thorough 

understanding of the mutual effect of the specific issues raised as well as of the whole 

problem of car-following model calibration (against vehicle trajectory data), in light of 

the traffic flow theory. 

If, on the one hand, the complexity of the calibration problem stems mainly from: i) the 

scarceness, incompleteness or inconsistency of data as to the model complexity, ii) the 

measurement errors in the data, iii) the computational complexity of the analysis, and iv) 

the asymmetry in the importance of uncertain parametric inputs, on the other hand, the 

true possibility to success in a calibration effort depends on the setup of the calibration 

problem as partially highlighted in the previous literature. We mostly refer to the 

methodological choices concerning: 

• the optimization algorithm, 

• the measure of performance (MoP),  

• the goodness of fit function (GOF). 

In the following, we refer to the choices of the optimization algorithm, the MoP and the 

GOF function as the optimization problem specification. 

In this view, the Chapter focuses on the main findings of a vast exploratory study aimed 

at investigating and quantifying the uncertainty entailed in the calibration process 

(Ciuffo et al., 2012a). According to a full-factorial design, all the combinations of 

algorithms, measure of performances and goodness of fit functions applied so far in the 

field literature were tested. Each test was performed several times from different starting 

points in order to unveil the impact of the initial setting on the calibration results. The 

methodological approach followed in this Chapter is based on experiments with 

synthetic data, i.e. data generated by the model itself, as this is the only way to ascertain 

if and how “good” parameters are identified by the calibration procedure (as also pointed 

out in Ossen and Hoogendoorn, 2009a). Given the objectives, the Gipps’ car-following 

model was chosen because of the relatively high number of parameters (necessary for 

the study purpose), the presence of a delay in the formulation and for the acknowledged 

understanding of its properties (Gipps, 1981; Wilson, 2001; Punzo and Tripodi, 2007). 
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The Chapter is organized as follows. Firstly, Section 3.2 presented a state-of-the-art in 

microscopic traffic flow model parameters calibrations, jointly with a review of the 

principles and methodologies commonly adopted in the literature for car-following 

model calibration. Then, the basic idea beyond the verification procedure is introduced 

in Section 3.3. Section 3.4 presents the formulation of the Gipps’ car-following model, 

and of the specialized calibration problem. Section 3.5 is dedicated to the data 

description. Section 3.6 describes the experimental design, while the analysis of 

calibration results is presented in Section 3.7. The work ends with conclusions and 

recommendations for future research. 

3.2 State-Of-The-Art in Car-Following Model Calibration 

In this section, a literature review of the studies on the calibration of car-following 

models is presented in Section 3.2.1, followed by a background on the principles and 

methodologies adopted for car-following model parameters estimation (Section 3.2.2). 

3.2.1 Review of the studies on car-following model calibration 

As soon as microscopic traffic flow models started to be used to simulate complex 

contexts, to support the design of new traffic facilities or to evaluate the effect of 

alternative traffic operations, weaknesses of models in representing the real world 

became clear. One of the major reasons for these was identified in the inadequacy of 

their sub-models, including car-following ones. 

First car-following models were developed after the pioneering study performed by a 

group of researchers of the General Motors (GHR model by Gazis et al., 1961; and 

successive model derivations), between the mid-1950s and the 1970s, and after the 

contributions of some other investigators in the beginning of the 1980s (Gipps’ model by 

Gipps, 1981; LWR model by Leutzbach and Wiedemann, 1986). These models were 

developed through a straightforward deductive approach, based on simple assumptions. 

Later, in the 1990s, researchers started to focus on the study of the theoretical properties 

of such models, and this lead to the development of new theories (for example, the 

Optimal Velocity Model by Bando et al., 1995; the Asymmetric Full Velocity Different 

Model by Helbing and Tilch, 1998; the Intelligent Driver Model by Treiber et al., 2000; 
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the Newell’s model by Newell, 2002; the Kerner’s Stochastic Three Phases Traffic 

model by Kerner et al., 2007). 

In contrast with the increasing efforts in model development, empirical verification of 

the assumptions and model calibration have encountered serious difficulties across the 

years,  due to the accuracy and quality of collected data. Different data sources were 

used to run calibration experiments: data from loop detectors, section measurements 

(such as individual travel times), and trajectory data. However, major technological 

issues arouse in the collection of microscopic data related to the vehicle motion and, also 

for this reason, previous findings from calibration studies have often been contradictory. 

First experiments were based on small-scale observations of flow data which provided 

information only at an aggregate level (1-min or 5-min averages of flows and speeds) 

and at a limited number of cross sections, where dual loop detectors were located. Little 

was known about differences in car-following behavior between individual driver–

vehicle combinations, also because of the lack of detailed microscopic traffic data (for a 

comprehensive review of previous studies, see the work by Brackstone and McDonald, 

1999). 

More recently, Brockfeld et al. (2003) performed car-following model calibrations by 

using individual travel times between several observers along a one-lane rural road, 

given as boundary conditions the flow into this road and the flow out of it. The task was 

to predict individual travel times and to estimate the best matching set of parameters for 

each of the tested models, by using nonlinear optimization techniques. The models with 

better performances were the ones with the smallest number of parameters. However, the 

average error rate of the estimates was not reliable at all, with fluctuation between 2.5% 

and 25% among different parts of the dataset. Therefore, from the very first, it was clear 

how complex was the calibration procedure on this kind of models, when attempting to 

obtain reliable estimates of model parameters. 

Soon after, the same authors compared the models by calibrating and validating them 

with data from dual loop detectors on a multilane freeway (Brockfeld at al., 2005). To 

simplify this task, the models were tested by a single-lane simulation in the place of a 

multilane freeway simulation. The results show that, although lane-changing maneuvers 

were completely left out of the simulation, low calibration errors of 14% to 16% could 

have been obtained. However, the reliability of such estimates was unknown. 
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Starting from the early 2000s, advancements in digital technology have opened up wide 

new horizons for the research in this field. Technological innovation in microscopic 

data-collection methods (such as Differential GPS, and so on) have caused a 

considerable increase in the number of studies using trajectory data for calibrating car-

following models. These studies were important, first, because they provided the 

opportunity to assess the performances of existing car-following models at the 

microscopic level, that is, the accuracy of the models in predicting the behavior of an 

individual driver. Second, the outcomes of these studies could be used to obtain new 

empirical insights into car-following behaviors, such as the heterogeneity of traffic 

flows, the degree of multi-anticipation behavior, or the effect of model errors and system 

aleatory, like the inter-driver variability of driving behaviors. 

In this view, several projects were initiated with a primary focus on microscopic 

modeling, and thus, high-quality traffic and trajectory data were collected in order to 

support the research. Hereafter, trajectory data has become the most extensively used 

data source in car-following calibration studies. 

First studies with trajectory data aimed at the benchmarking of car-following models, in 

order to evaluate the variation in the performances of different models and their ability 

to catch traffic dynamics. Ranjitkar et al. (2004) performed the calibration of several car-

following models against trajectory data collected via real-time kinematic Global 

Positioning Systems equipped on cars moving on a test track in Japan. Then, they set up 

a methodology to evaluate and compare model performances, testing various driving 

conditions by means of different levels of disturbance of the leader vehicle’s speed. 

Brockfeld et al. (2004), instead, attempted to calibrate ten different models using the 

same trajectory dataset, and showed that the error measurements on time-headways were 

as low as in a previous study (Brockfeld et al., 2003), ranging from 17% to 22%. 

However, they found out that no models perform better than the others, but those with 

high-number of parameters were prone to model overfitting, that is the adaptation of the 

model to a particular situation which limited the capability to extend results to other 

situations. Evidence on model overfitting was provided also in Punzo and Simonelli 

(2005). They analyzed the behavior of four car-following models that differed greatly in 

both approach and complexity. Calibration was performed against a set of trajectory data 

acquired through kinematic differential Global Positioning System instruments installed 

on four vehicles driving under real traffic conditions on both urban and extra-urban 
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roads. Model calibrations showed results similar to those obtained in other studies that 

used test track data (Ranjitkar et al., 2004; Brockfeld et al., 2004). Instead, cross 

validation using different trajectories by the same drivers resulted in higher deviations 

compared with those from previous studies (with peaks in cross validations between 

urban and extra-urban experiments), confirming the scarce robustness of models and the 

need for empirical investigation of the variability in time of driving behaviors (intra-

driver variability). 

These studies indirectly questioned also the capability of the models in reproducing 

inter-driver variability of driving behaviors, and this topic became soon after the 

objective of several other research works. Ossen and Hoogendoorn (2005) estimated the 

parameters of different specifications of the well-known GHR car-following rule for 

individual drivers, using vehicle trajectory data extracted from high-resolution digital 

images collected at a high frequency from a helicopter. They found out that considerable 

differences between the car-following behaviors of individual drivers could be 

identified, which lead to stress the idea of inadequacy of models in reproducing 

heterogeneity. On this basis, the same authors performed, in simulation, a cross-

comparison analysis of car-following models regarding their average performances and 

their specific performances for each individual driver (Ossen et al., 2006). The prime 

objective of this cross-comparison was to study the inter-driver differences. Average 

model performances revealed that the simplest models are generally not able to capture 

the dynamics of car-following behavior correctly, whereas individual estimates showed 

that the performances of more elaborate models differ between drivers. As a conclusion, 

they showed that inter-driver differences cannot be caught by different parameter 

settings by themselves, and more complex models are needed. Same evidence was 

provided by Hoogendoorn et al. (2006) where the multi-anticipative car-following 

behavior (i.e., driver behavior that includes responses to multiple vehicles ahead) was 

studied. Two well-known models incorporating multivehicle stimuli (Bexelius, 1968; 

Lenz et al., 1999) were calibrated against the trajectory data discussed in Ossen and 

Hoogendoorn (2005). The study investigated the nature of multi-leader stimuli, giving 

insights into the number of vehicles ahead to which drivers react and the kind of stimuli 

to which drivers respond. Large inter-driver variability in multi-leader driving behavior 

was found, and, thus, different models were needed to describe driver heterogeneity 

correctly. For interested readers, an extended study that gives insights into the level of 
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heterogeneity in car-following can be found in Ossen and Hoogendoorn (2011). 

Following this research line, Kim and Mahmassani (2011) studied the expected 

correlation among car-following model parameters. They focused on the investigation of 

the impact of neglecting parameter correlations on the resulting movement and 

properties of a simulated heterogeneous vehicle traffic stream. Results suggested that the 

use of parametric distribution with known correlation structures could reduce the errors 

due to ignoring correlation; however, the effect also varied depending on model 

specification. 

Ultimately, indirect estimation of model parameters was considered not only to account 

for the heterogeneity within the driver population, but also for compensating the model 

errors and the system aleatory, like the time variability of driving behaviors. On this 

topic, Kesting and Treiber (2008) showed that intra-driver variability rather than inter-

driver variability accounts for a large part of the calibration errors. 

3.2.2 Review of principles and methodologies for parameters calibration 

In Table 3.1, a collection of studies dealing with calibration efforts is presented. Various 

approaches have been used to solve the calibration problem, by combining different 

estimation methods, measures of performance, goodness of fit functions and optimization 

algorithms. A review of the possible combination of the previous elements is provided in 

the following. 
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Table 3.1: Review of the most used settings for car-following model parameters calibration. 

 GOODNESS OF FIT FUNCTION / ESTIMATOR 

ESTIMATION 

METHOD 

MEASURE OF 

PERFORMANCE 
Error measures 

GEH 

statistics 

Theil’s Inequality 

Coefficient 
Likelihood function 

Least Squares 

(LS) 

Time-headway 
Brockfeld et al. (2004) 
Punzo and Simonelli 

(2005) 
 Punzo and 

Simonelli (2005)  

Inter-vehicle 

spacing 

Ranjitkar et al. (2004) 
Punzo and Simonelli 

(2005) 
Kesting and Treiber 

(2008) 
Punzo et al. (2012) 

Punzo et 
al. 

(2012) 

Punzo and 
Simonelli (2005) 

Ossen and 
Hoogendoorn 

(2008a) 
Punzo et al. (2012) 

 

Speed 

Ranjitkar et al. (2004) 
Punzo and Simonelli 

(2005) 
Punzo et al. (2012) 

Punzo et 
al. 

(2012) 

Punzo and 
Simonelli (2005) 

Ossen and 
Hoogendoorn 

(2008a) 
Ciuffo et al. (2012a) 
Punzo et al. (2012) 

 

Speed and     

inter-vehicle 

spacing 
Punzo et al. (2012)  

Ossen et al. (2006) 
Ossen and 

Hoogendoorn 
(2008a, 2009) 

Kim and 
Mahmassani (2011) 
Punzo et al. (2012) 

 

Acceleration Ossen and 
Hoogendoorn (2005)    

Maximum 

Likelihood 

Estimation 

(MLE) 

Speed - - - 

Hoogendoorn et al. 
(2006) 

Hoogendoorn and 
Hoogendoorn (2010a)  

Hoogendoorn and 
Hoogendoorn (2010b) 

Acceleration    
Ahmed (1999) 

Toledo et al. (2009) 

Bayesian Speed - - - van Hinsbergen et al. 
(2009) 
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Estimation methods 

Above all, three main estimation techniques have been used so far in the literature: 

• Least Squares (LS) method; 

• Maximum Likelihood Estimation (MLE) method; 

• Bayesian method. 

 

The Least Squares method is definitely the most widely applied technique in car-

following calibration studies. A review of this approach can be found in Punzo and 

Simonelli (2005), as well as in Ossen and Hoogendoorn (2005, 2008b). Basically, the 

problem formulation is presented in Eq. 3.1: 

),Y(P)f(YP simobs

DP

*

∈
= minarg        (3.1) 

where: 

- P  is the vector of the model parameters ip , with i = 1, ..., m; 

- D  is the domain of feasibility of the model parameters, eventually constrained by 

the upper and lower bounds and by the linear and non-linear constraints; 

- )f( ⋅  is a scalar valued non-linear function which measures the distance between 

observed and simulated following driver’s behaviour; 

- obsY  and simY(P)  are, respectively, the observed and simulated outputs; 

The domain of feasibility of model parameters is defined by the parameters’ bounds and 

potentially by other (linear and non-linear) constraints: 

mi       UBpLB iii ,...,1=≤≤         (3.2) 

1,...nj            b ? Pg jj =)(         (3.3) 

where: 

-  LBi and iUB are, respectively, the lower and upper bounds of the parameter ip ; 

- )(⋅jg  is a scalar valued linear or non-linear function of the vector of model 

parameters P , that evaluates the left hand side of the j-th constraint; 
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- jb  is a constant value equal to the right hand side of the j-th constraint; 

- ?  is one the following relational operators: “ ≤ ”, “ ≥ ” or “ = ”; 

According to this framework, the most applied estimators in the literature were error 

measures. Among the others, absolute errors, square errors, percentage errors and mixed 

errors were the most used. On the other hand, also the Theil’s Inequality coefficients and 

the GEH statistics were recently applied in some other calibration studies (for a 

comprehensive review, see Table 3.1). 

 

The Maximum Likelihood Estimation has been widely applied in car-following model 

calibration. Ahmed (1999) presented the formulation of the unconditional distribution of 

the accelerations that constituted the likelihood function formulation for the follower 

driver. Hoogendoorn and Ossen (2005), Hoogendoorn et al. (2006) and Hoogendoorn 

and Hoogendoorn (2010a, 2010b) reformulate the likelihood to estimate the parameters 

of a generalized form of car-following models, while Toledo et al. (2009) applied the 

method for the estimation of the parameters of the extended non linear GM model, 

shown in Ahmed (1999). 

In a discretized form, car-following models can be expressed as follows: 

𝑣𝑖𝑠𝑖𝑚(𝑡𝑘+1) = 𝕗[𝑇, 𝑦𝑖(𝑡𝑘), 𝑦𝑖(𝑡𝑘 − 𝜏)|𝛉] 

here 𝑣𝑖𝑠𝑖𝑚 is the simulated speed of driver i,  𝛉  denotes the set of parameters describing 

the car-following behavior, while 𝑇 denotes the time step used for discretization. The 

vector 𝑦𝑖(𝑡𝑘) denotes the state that is relevant for driver i at time instant 𝑡𝑘. 

The following relation between the speed data and the predicted speed is assumed: 

𝑣𝑖𝑜𝑏𝑠(𝑡𝑘+1) = 𝕗[𝑇, 𝑦𝑖(𝑡𝑘), 𝑦𝑖(𝑡𝑘 − 𝜏)|𝛉] + 𝜖(𝑡𝑘) = 𝑣𝑖𝑠𝑖𝑚(𝑡𝑘+1) + 𝜖(𝑡𝑘) 

The error term 𝜖(𝑡𝑘) is introduced to reflect errors in the modeling, similar to the error 

term used in multivariate linear regression. The error terms are generally serially 

correlated, which is described later in this section. For now, assume that the error term is 

a zero mean normally distributed variable with standard deviation σ. 
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Assuming that the difference between the prediction and the observation follows a 

normal distribution with mean 0 and standard deviation σ, the likelihood of a single 

prediction can be thus determined as follows: 

1
√2𝜋𝜎2

𝑒𝑥𝑝 �−
𝜖(𝑡𝑘)2

2𝜎2
� 

Because it has been assumed that the errors are uncorrelated, the probability of a set of 

observations k = 1, . . . , n can be determined, with the likelihood of the sample as a 

result: 

𝐿(Θ, 𝜎) = �
1

√2𝜋𝜎2
𝑒𝑥𝑝 �−

𝜖(𝑡𝑘)2

2𝜎2
�

𝑛

𝑘=1

 

Applying a log-transformation, it results: 

𝐿�(Θ, 𝜎) = −
𝑛
2
𝑙𝑛(2𝜋𝜎2) −

1
2𝜎2

�𝜖(𝑡𝑘)2
𝑛

𝑘=1

 

Maximum-likelihood estimation involves finding the parameters that maximize the log 

likelihood. A necessary condition for the optimum allows the determination of the 

standard deviation: 

𝜕𝐿�
𝜕𝜎2

= 0  ⇒ 𝜎� =
1
𝑛
�𝜖(𝑡𝑘)2
𝑛

𝑘=1

 

That is, the maximum-likelihood estimate for the variance of the error is given by the 

mean standard error of the predictions and the observations. For the remaining 

parameters, the maximum-likelihood estimates can be determined by numerical 

optimization: 

𝛉 = arg max 𝐿�(Θ, 𝜎) 

with: 

𝐿�(Θ, 𝜎�) = −
𝑛
2
�𝑙𝑛 �

2𝜋
𝑛
�𝜖(𝑡𝑘)2
𝑛

𝑘=1

� + 1� 
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This expression shows that maximization of the log-likelihood is equivalent to 

minimization of the prediction error (mean squared error).  

However, subsequent error terms in trajectory data are not independent, showing the 

existence of serial correlation or autocorrelation. A review of the approach to deal with 

serial correlation can be found in Hoogendoorn and Hoogendoorn (2010a, 2010b).  

 

The Bayesian approach is a generalization of the Likelihood Ratio Test (LRT) 

introduced in Hoogendoorn et al. (2006). To test whether one model performs better 

than another model, the likelihood ratio test is performed. To this end, the zero-

acceleration model is used as a reference model: 

𝑣𝑖𝑜𝑏𝑠(𝑡𝑘+1) = 𝑣𝑖𝑠𝑖𝑚(𝑡𝑘) + 𝜖(𝑡𝑘) 

For this model, one can determine the (null) log-likelihood: 

𝐿�0 = −
𝑛
2
�𝑙𝑛 �

2𝜋
𝑛
�𝜖(𝑡𝑘)2
𝑛

𝑘=1

� + 1� 

The LRT involves testing the statistic: 

2[𝐿�(Θ, 𝜎�) − 𝐿�0] 

which follows a χ2 distribution with degrees of freedom equal to the number of model 

parameters to calibrate. The LRT is passed with (1-α) confidence if: 

2[𝐿�(Θ, 𝜎�) − 𝐿�0] > 𝜒2(1 − 𝛼, 𝑑) 

The likelihood-ratio test can also be used to cross-compare the performance of two 

different car-following models. In this case, d denotes the difference in the number of 

parameters of the complex model and the simple model. The test accounts for the 

number of parameters (via the degrees of freedom d) and thereby makes it possible to 

fairly compare simple and complex models. 

In the Bayesian method, prior probabilities are transformed into posterior probabilities 

for each parameter in the car-following model, for which Bayes’ rule is used. The exact 

formulation of this method for calibration and model selection is presented in van 

Hinsbergen et al. (2009). 



54 Chapter 3 

 

Measures Of Performance 

In the case of calibration of car-following models the measures of performances should 

capture the dynamics of the phenomenon as it develops (Punzo et al., 2005). To this aim, 

the MoPs most used in the literature so far were the following: 

- Time series of the follower’s speeds (V); 

- Time series of the inter-vehicle spacing between leader and follower (S). 

However, in some other cases (see Table 3.1), also the time-headway or the acceleration 

have been adopted. 

Goodness Of Fit functions 

Most widely used error measures were the Root Mean Square Errors and the Mean 

Absolute Error, defined in the following: 

 

- Root Mean Square Error RMSE (Punzo et al., 2005; Ciuffo et al., 2008; Ciuffo and 

Punzo, 2010; Punzo et al., 2011a): 

( )∑
=

−=
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- Mean Absolute Error MAE (Ma and Abdlulhai, 2002; Kim et al., 2005; Ciuffo and 

Punzo, 2010; Punzo et al., 2011a): 
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In other studies, instead, different statistics have been adopted, such as the GEH 

statistics, and the Theils’ Inequality Coefficient: 

  



Chapter 3 55 

 

- GEH Statistics with a threshold value equal to 1 (Ma et al., 2007; Ciuffo and 

Punzo, 2010; Punzo et al., 2011a): 
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- Theil’s Inequality Coefficient U (Punzo et al., 2005; Brockfeld et al., 2004; 

Brockfeld et al., 2005; Ossen et al., 2008a; Ossen et al., 2009; Kim and 

Mahmassani, 2011, Ma and Abdlulhai, 2002; Ciuffo and Punzo, 2010; Punzo et 

al., 2011a): 
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Optimization Algorithms 

Given the problem specifications reported in Table 3.1, three main optimization 

algorithms have been used in the field of car-following model calibration to find the 

model parameter estimates, and are reviewed in the following. 

• Downhill Simplex; 

• Genetic Algorithm; 

• OptQuest Multistart. 
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The Nelder–Mead method or Downhill Simplex method was proposed by John Nelder 

and Roger Mead (Nelder et al., 1965). The Nelder–Mead technique is a gradient-free 

optimization method, widely used in many car-following model calibration studies since 

2004 (Brockfeld et al., 2004; Brockfeld et al., 2005; Ossen et al., 2006; Ossen et al., 

2008a; Ossen et al., 2009; Kim and Mahmassani, 2011; Punzo et al., 2012). 

It is a common unconstrained nonlinear optimization technique, and relies on a well-

defined numerical method for twice differentiable problems. However, the Nelder–Mead 

technique is only a heuristic, since it can converge to non-stationary points (Powell, 

1973; Lagarias et al., 1998; McKinnon, 1999). As the algorithm does not allowed the 

setting neither of parameters bounds nor of constraints, most car-following calibration 

studies have added a penalty value to the objective function value to account for the 

possibility that parameter values are not defined in the domain of feasibility, or violate 

any constraints (see the problem specification in the Least Squares method). 

 

Genetic algorithms are widely used algorithms for the calibration of microscopic traffic 

simulation models. The reason is quite straightforward since no information on the 

objective function is required for their application, and thus they are suitable for “black-

box” optimization. For the calibration of microscopic traffic flow simulation models, 

they have been applied several times (see, for example, Ma and Abdlulhai, 2002; Schultz 

and Rilett, 2004; Kim et al., 2005; Ma et al., 2007). With regards to car-following 

models, see Ranjitkar et al., 2004; Kesting and Treiber, 2008; Punzo et al., 2012. 

Even though the genetic algorithm is suitable for solving constrained non-linear 

optimization problem, only the parameter bounds were set to design the problem, since it 

was recognized that non-linear constraints heavily slowed down the optimization. 

Indeed, the genetic algorithm uses the Augmented Lagrangian Genetic Algorithm 

(ALGA) to solve nonlinear problems. With this approach, bounds and linear constraints 

are handled separately from nonlinear constraints. Thus, a sub-problem is formulated by 

combining the fitness function and nonlinear constraint function using the Lagrangian 

and the penalty parameters. A sequence of such optimization problems are 

approximately minimized using the genetic algorithm such that the linear constraints and 

bounds are satisfied. As a result, the algorithm minimizes a sequence of the sub-

problem, which is an approximation of the original problem, resulting in an increase of 

the number of function evaluations needed to solve it (Goldberg, 1989; Conn et al., 
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1991, 1997). Thus, to limit the computing time, it is often applied a penalty function, to 

simulate violations of any non-linear constraints.  

Since it is not a global optimizer, the genetic algorithm could face difficulties in finding 

a stationary global solution. However, the genetic algorithm can sometimes overcome 

this deficiency with the right settings. Indeed, with a large population size, the genetic 

algorithm searches the solution space more thoroughly, thereby reducing the chance that 

the algorithm will return a local minimum (Powell, 1973). Concurrently, a large 

population size also causes the algorithm to run more slowly. 

 

The OptQuest/Multistart heuristic (Ugray et al., 2005) is an optimization algorithm for 

solving both constrained and unconstrained global optimization problems. It has been 

recently used for the calibration of car-following models in Punzo and Simonelli (2005) 

and in Punzo et al. (2012). 

Basically, the algorithm employs a Scatter Search meta-heuristic (Glover, 1998) to 

provide starting points for a Generalized Reduced Gradient NLP solver (Smith et al., 

1992; Drud, 1994). In this way it tends to combine the seeking behavior of a gradient-

based local NLP solvers with the global optimization abilities of a Scatter Search. In 

practice, the Scatter Search performs a preliminary exploration in the parameters’ 

domain in order to locate different starting points for a local gradient-based descent 

(which converges to the “nearest” local solution). Adopting a high number of maximum 

local search allowed, the probability to find the global solution of the optimization 

problem could increase. The major shortcoming with this approach is in the high number 

of objective functions evaluations (which increases with the numbers of parameters to be 

calibrated) required to converge towards a (possible) global solution. 

3.3 Proposed Verification Framework 

As emerges from the analysis of the literature, the inner source of uncertainty of any 

optimization procedure derives from the problem specification itself and, thus, relies on 

several factors, among which, at least, the following: i) the choice of the model 

parameters to calibrate, ii) the choice of a Measure of Performance (MoP) to describe 

the status of the system, iii) the choice of the Goodness Of Fit (GOF) function used to 
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evaluate the overall performance of the simulation model in the objective function, and 

iv) the choice of the optimization algorithm to solve the problem.  

Since each choice produces different results for the same optimization problem, a 

methodology to verify the goodness of the adopted specification is crucial for evaluating 

the reliability of the estimation results. 

The proposed verification framework is presented in Figure 3.1. 

 

Figure 3.1: General Framework for the verification of the optimization problem specification. 

The basic idea is that whenever one knew the values of the parameters which turned into 

the global minimum, the overall problem specification should first guarantee that such 

global optimal solution can be found and, then, that the algorithm is actually able to find 

it. The only way to asses this, is using synthetic data, that are generated from the model 

itself by fixing the parameters to a set of “known” (or “true”) values. Then the 

calibration aims at rediscovering the “known” values. If not succeeding in that, the 

problem specification needs to be changed. 
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It is worth noting that the proposed verification framework is absolute general and can 

be apply also to different estimation problem, such as in the case of lane-changing model 

calibration or OD matrix estimation/correction. 

3.4 Application to the Gipps’ Car-Following Model 

The verification approach presented in the previous section is here applied to the 

estimation of the parameters of the Gipps’ car-following model (Gipps, 1981). The 

section is organized as follows. Section 3.4.1. reviewed the original formulation of the 

model from the literature, while Section 3.4.2 is dedicated to the description of the 

simulation setup. Finally, Section 3.4.3 illustrates the specification of the optimization 

problem for the model at hand. 

3.4.1 The model 

The Gipps’ model (1981) is a safety-based model. It provides different transfer functions 

according to the two following driving regimes: the free-flow regime (Eq. 3.9) and the 

proper car-following regime (Eq. 3.10). A simple switching rule between the two (Eq. 

3.11) drives the simulation through the motion equation (Eq. 3.12). For further details, 

please refer to Gipps (1981), Wilson (2001), Punzo and Tripodi (2007), Ciuffo et al. 

(2012b). For a review refer to Appendix B. 
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where: 

- ( )tvn  and ( )tvn 1−  are, respectively, the follower’s and leader’s speed at time t [m/s]; 

- Max
na  is the follower’s maximum acceleration rate [m/s2]; 

- τ  is “the apparent reaction time, a constant for all vehicles” (Gipps, 1981) [s]; 

- Max
nV  is the follower’s maximum desired speed, that is “the speed at which the 

driver of vehicle n wishes to travel” (Gipps, 1981) [m/s]; 

- nb  is “the most severe braking that the driver of vehicle n (i.e. the follower) wishes 

to undertake” (Gipps, 1981) [m/s2]; 

- 2τθ =  is an additional “comfort” time lag that allows the follower not to brake 

always at his or her maximum desired rate [s]; 

- ( )txn  and ( )txn 1−  are, respectively, the follower’s and leader’s position at time t, 

measured at the front bumper [m];  

- SafetyLS nn += −− 11  is the effective size of the leader’s vehicle, that is “the physical 

length plus a margin into which the following vehicle is not willing to intrude, 

even when at rest” (Gipps, 1981) [m]; 

- 1−nL  is the physical length of the leader’s vehicle of the leader [m]; 

- Safety  is the safety margin “into which the following vehicle is not willing to 

intrude, even at rest” (Gipps, 1981) [m]; 

- 
∧

−1nb is the follower’s estimate of the leader’s maximum deceleration rate [m/s2]; 

Please note that the deceleration rates, nb  and 
∧

−1nb , are intended as absolute values. 

The Gipps’ car-following model has been largely applied in the literature since its first 

appearance, and it is also at the basis of some commercial simulation packages (e.g. 

AIMSUN, 2012). A review of alternative model versions proposed in the literature so far 

can be found in Appendix B. 

3.4.2 Integration scheme 

The Gipps’ car-following model is a delayed differential equation (being τ  the delay). 

In his original paper (Gipps, 1981), Gipps found the solution of Eq. 3.4 by adopting an 

integration step just equal to the delay. 
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The original integration scheme is presented in Figure 3.2. At the instant t, the model 

calculates the follower’s speed for the instant t+τ. The reaction time τ is assumed to be a 

multiple of the data resolution (i.e. 0.1 s) and, thus, it is treated as a discrete variable. 

The follower’s speed function between the instants t and t+ τ is assumed linear. Finally, 

a forward Euler method on acceleration (i.e. a trapezoidal integration scheme on speed, 

see Figure 3.2) is adopted for calculations. 

 

 

Figure 3.2: The original integration scheme for the Gipps’ car-following model. 

Please note that in the literature several other approaches for numerical integration of the 

original Gipps’ car-following model have been proposed. For a review, please refer to 

Appendix B. 

3.4.3 Optimization problem setup 

As reviewed in the literature, the calibration of car-following model parameters based on 

vehicle trajectory data, consists of a “black-box” constrained non-linear optimization 

problem, where one looks for the best values of the model parameters that minimize a 

measure of the distance between the observed and the (model) simulated follower 

driver’s behaviour. 

Independently from the estimation method adopted, a general problem formulation can 

be found in Eqs. 3.1 – 3.3 (see Section 3.2.2), and here resumed for clarity: 
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where: 

- P  is the vector of the model parameters ip , with i = 1, ..., m; 

- D  is the domain of feasibility of the model parameters, eventually constrained by 

the upper and lower bounds and by the linear and non-linear constraints; 

- )f( ⋅  is a scalar valued non-linear function which measures the distance between 

observed and simulated following driver’s behaviour; 

- obsY  and simY(P)  are, respectively, the observed and simulated outputs; 

-  LBi and iUB are, respectively, the lower and upper bounds of the parameter ip ; 

- )(⋅jg  is a scalar valued linear or non-linear function of the vector of model 

parameters P , that evaluates the left hand side of the j-th constraint; 

- jb  is a constant value equal to the right hand side of the j-th constraint; 

- ?  is one the following relational operators: “ ≤ ”, “ ≥ ” or “ = ”; 

It is worth noting that in the literature there can be also found approaches based on a 

Maximum Likelihood Estimation (MLE; for details, see Section 3.2.1). However, in the 

case of models based on time-chained equations, an analytical close-form Likelihood 

formulation does not exist (Law and Kelton, 2000). As a consequence, the MLE problem 

becomes a maximization of the (model) simulated Likelihood function that is a 

maximization problem equivalent to that of Eq. 3.1. 

With regards to the setup of the calibration problem, specification of Eq. 3.2 (i.e. 

parameters’ bounds) and Eq. 3.3 (non-linear constraints) are reported in the following.  
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Parameter upper and lower bounds 

The following Gipps’ car-following model parameters were calibrated: τ , nV , na , 

Safety , nb  and 
∧

−1nb . The upper and lower bounds of the parameters were fixed at the 

values reported in Table 3.2. 

Table 3.2: Parameters’ upper and lower bounds. 

Parameters Lower bound Upper bound 

τ  [s] 0.1 3.0 

Max
nV  [m/s] 10 40 

Max
na  [m/s2] 0.1 8 

Safety  [m] 0.1 10 

nb  [m/s2] 0.1 8 

∧

−1nb  [m/s2] 0.1 8 

 

As described in Section 3.3, the verification framework here adopted is based on the use 

of synthetic data to estimate model parameters. Indeed,  in this case, we expected that 

the response surface of the model would have been very steep in the neighborhood of the 

well-defined global optimum point (i.e. the “known” values of the parameters). 

Therefore, in such a case, if the combination of optimization algorithm, Measure of 

Performance (MoP) and Goodness of Fit function (GOF) was effective in finding the 

unique global minimum, the width of the range of variability of the parameters values 

should not influence the finding procedure. 

Non-linear constraints 

In order to preserve the simulation from crashing (i.e. not to obtain, at a certain time 

step, imaginary follower’s speed values, given by negative values under the square root 

in Eq. 3.10), the feasible domain of the parameters was further constrained.  In 

particular, the following two non-linear constraints were applied:  
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The first one (Eq. 3.13) relates to the initial state of the simulation (i.e. at t=0) and 

preserves from the generation of a set of parameters that make the model loosing the 

existence of a solution. The second constraint (Eq. 3.14), instead, assures that the speed-

distance function at equilibrium is single valued, as demonstrated by Wilson (2001). In 

facts, Wilson conjectured that such constraint preserves the model from the global loss 

of existence of the solution and, in this work, such conjecture has been extensively 

verified in simulation. For more details, please refer to Appendix B. 

3.5 Data Description 

According to the objective of the work, the data used for this study were synthetic. It 

means that the follower trajectory has been generated through the simulation, by fixing 

the model parameters to a set of “known” values. The values of the parameters that were 

used to generate the synthetic follower trajectory were the following: τ = 1.0 s, Max
nV = 

30 m/s, Max
na = 2 m/s2, Safety = 2 m, nb = 2 m/s2, 

∧

−1nb = 2 m/s2. These values were chosen 

accordingly to common values used in the literature to simulate the drivers’ behavior in 

urban environment. However, resuming the aim of the study, we point out that the 

proposed verification approach should be independent from the values of the model 

parameters used to generate the synthetic data (being them in the feasibility domain of 

parameter values). 

The leader’s trajectory, used to feed the Gipps’ car-following model, was taken, instead, 

from one of the experiments carried out on a two-lane rural highway, in the area 

surrounding Naples (Italy). Data were acquired through instrumented vehicles, equipped 

with kinematic differential GPS receivers that recorded the position of the vehicle at 0.1 
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second interval. Differential GPS data were further processed by means of the procedure 

described in Punzo et al. (2005) based on a non-stationary Kalman filter. More details on 

the data can be found instead in Punzo and Simonelli (2005). The complete set of 

trajectory data is available on the MULTITUDE website (2014) for the forum members. 

For the current study, the leader’s trajectory is taken from the experiment 30B (Punzo 

and Simonelli, 2005) carried out on a two-lane extra-urban highway.  

The leader’s and the (synthetic) follower’s speed profiles are shown in Figure 3.3(a), 

while the spacing profile is presented in Figure 3.3(b). 

 

 

Figure 3.3: Leader’s and (synthetic) follower’s speed (a) and spacing (b) profiles. 

3.6 Design Of Experiment 

In this section, the design of the calibration experiments is presented. 

Each calibration experiment was defined as an optimization problem according to Eq. 

3.1, given the functional form of the objective function and the optimization algorithm to 

be used. The former defines the mathematical properties of the objective function and, 

thus, the shape of the response surface. Both affect the possibility to solve the 

optimization problem. 

To the best of our knowledge, in the literature there is not a consolidate approach for the 

specification of the optimization problem, that is to define the combination of 

Algorithm/MoP/GOF function. Further, the lack of evidence about the capability of each 
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problem specification in finding the global minimum, even when synthetic data are used, 

led us to test all the combinations of Algorithm/MoP/GOF function most used so far in 

the literature (as reviewed in Section 3.2.2), in order to verify the performances of the 

calibration procedure and evaluate the uncertainty there entailed. 

3.6.1 Tested algorithms 

As reviewed in Section 3.2.2, the most used algorithms in the calibration of microscopic 

traffic flow models are the following: 

• Downhill Simplex; 

• Genetic Algorithm; 

• OptQuest Multistart. 

Since none of the cited algorithms is considered to be a global optimization tool, each 

calibration experiment (i.e. a problem with a defined combination of 

Algorithm/MOP/GOF) was repeated 64 times, by using different starting points (in the 

case of gradient-based algorithms) or different random seeds (in the case of search-based 

algorithms). This approach allowed us to perform an analysis of local minima, in order 

to evaluate the power of the heuristic towards the capability of finding the (existing) 

global solution. 

The different starting conditions were sampled using the Sobol’ LPτ low-discrepancy 

quasi-random sequence, coded in MATLAB (Sobol et al., 1992), which is often used to 

explore the parameters’ domain when conducting global sensitivity analyses. 

In the following, a description of the adopted algorithm configurations is reported. 

Downhill Simplex 

With regards to the Downhill Simplex, we used the algorithm code embedded in 

MatlabR2009b (MATLAB, 2009). Since the algorithm does not allowed the setting 

neither of parameters bounds nor of constrained, we applied the following penalty 

function:  



 ∉

=
elsewhere     ueObjFuncVal

D  x if               
ueObjFuncVal

000,100
     (3.15) 
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where: 

- ueObjFuncVal  is the value of the objective function related to the calibration 

experiment; 

- x  is the set of parameters value chosen by the algorithm at each functional 

evaluations; 

- D  is the domain of feasibility of the parameters, constrained by the upper and 

lower bounds and by the non-linear constraints (see Section 3.4.3); 

Stringent termination criteria were set in order to try avoiding to get stuck in local 

minima. Here are the defined stopping rules: 

- Maximum number of function evaluations allowed is 100,000; 

- Maximum number of iterations allowed (i.e. the maximum number of non-

stationary points that can be found) is 100,000; 

- Termination tolerance on the function value is 1e-30; 

- Termination tolerance on the parameters values is 1e-30. 

Genetic Algorithm 

Though the genetic algorithm allows for a non-linear constrained optimization, we 

applied the penalty function described in Eq. 3.15 (with the domain of feasibility D  

defined by the non-linear constraints only) to limit the computing time (for details, see 

Section 3.2.2). 

As for the downhill simplex, stringent termination criteria were set in order to try 

avoiding to get stuck in local minima. Here are the defined stopping rules: 

- Maximum number of generations (i.e. the maximum number of iterations allowed) 

is 100,000; 

- Maximum number of stalling generations (i.e. with no improvements in the 

objective function) is 1,000; 

- Cumulative change in the fitness function value over the maximum number of 

stalling generations is less than 1e-6. 

Since it is not a global optimizer, the genetic algorithm could face difficulties in finding 

a stationary global solution. However, the genetic algorithm can sometimes overcome 

this deficiency with the right settings, such as increase in the population size (for details 
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see Section 3.2.2), but at the expensive of higher computational burden. Thus, a 

compromise was found, and the number of individuals in each generation was set equal 

to 20. 

OptQuest Multistart 

In the present work, we have used the OptQuest algorithm implemented in Lindo API 

2.0 (LINDO, 2003). 

As for the genetic algorithm, to improve the capability of the algorithm in finding the 

“known” global solution, a compromise was needed in the choice of the maximum 

allowed number of local searches. Indeed, a high number of maximum local searches 

increase the probability to find the global solution, but at the cost of increasing the 

number of model evaluations needed to reach convergence. To this aim, the maximum 

number of local searches was set to 20. 

3.6.2 Tested measures of performance 

Accordingly to the review of the literature, in this study we adopted both the speed and 

the inter-vehicle spacing as possible MoPs in the optimization problem specification. 

3.6.3 Tested goodness of fit functions 

It has been previously recognized (Ciuffo and Punzo, 2010) that the joint choice of the 

MoP and the functional structure of the objective function strongly influences the 

results. Indeed, the shape of the response surface associated to the specific optimization 

problem can vary considerably once we adopt different configuration of MoPs and 

GOFs. Thus, according to the basic idea of the experimental design, we tested a large 

number of objective functions in a setting with synthetic data, in order to understand 

their influence on the possibility to find the global solution. 

In this view, the selection was made on the basis of the possible options reviewed in 

Section 3.2.2: 

- Root Mean Square Error (RMSE); 

- Mean Absolute Error (MAE); 
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- GEH Statistics with a threshold value equal to 1; 

- Theil’s Inequality Coefficient (U); 

For details on the analytical formulations of the cited GOFs, please refer to Section 

3.2.2. 

3.6.4 Summary of the experiments 

According to the presented setting, each calibration experiment was defined as an 

optimization problem given the solving heuristics and the response surface, which is 

univocally defined by the choice of the measure of performance and the functional form 

of the objective function.  

Combining the 3 tested optimization algorithms (Downhill Simplex, Genetic Algorithm, 

OptQuest Multistart) and the 9 different response surfaces (RMSE(V), RMSE(S), 

MAE(V), MAE(S), GEH1(V), GEH1(S), U(V), U(S) and U(V)+U(S)), it resulted into 

27 experiments. Moreover, each calibration experiment was solved 64 times (i.e. 64 

replications – here indicated as calibration attempts), in order to investigate the stability 

of the solution, thus resulting in a total number of 1728 calibration attempts. 

3.7 Analysis of Calibration Results 

In this section, the analysis of the results of the calibration experiments on synthetic data 

is presented. 

Firstly, we were interested in assessing the ability of each problem setting 

(Algorithm/GOF function/MoP)  in finding the “known” global solution. For a single 

calibration attempt, this can be measured in terms of the distance between the optimal 

solution found by the heuristic and the “known” global solution. 

However, results from a single calibration attempt are not really informative on the 

uncertainty in the specific calibration process. In facts, calibration attempts differing in 

the starting point of the optimum search often provide different results. For this reason, 

multiple calibration attempts starting from different initial points were needed. This is 

even more the case of real trajectory data which often give flat and waved response 
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surfaces, with no “well-defined” global minimum but multiple local minima, each one 

potentially very far from the others. 

The section is organized as follows. In Section 3.7.1, we first introduced four indicators 

that allowed us to compare the performances of the different calibration setting. Then, 

we evaluated them on the results of the calibration experiments. In Section 3.7.2, a novel 

representation of the map of the solutions found by the optimizer is presented. Finally, in 

Section 3.7.3 this graphic method is applied to explore the existence and the nature of 

local minima. 

3.7.1 Proposed performance indicators 

To evaluate performances of a specific problem setting we proposed and applied the 

following four indicators: 

• The “Frequency of the original parameters”, which measures the number of times, 

out of the 64 attempts of a calibration experiment, in which the optimization 

algorithm was able to rediscover the original parameters (i.e. the values which 

generated the synthetic global optimum) with an error on the single parameter of 

±5%. This indicator reveals the ability of the specific calibration setting to find a 

solution in the close neighbourhood of the known global solution that is to 

rediscover the original parameters. 

• The “Frequency of the best score” which measures the number of attempts in 

which the optimization algorithm attained its best score i.e. the lowest score of the 

objective function over the 64 attempts of a calibration experiment. Such solution, 

of course, is the best one provided by the specific calibration setting but does not 

necessarily coincide with the known global minimum. Therefore, the indicator 

measures the robustness of the specific calibration setting as to the variation of the 

starting point of the search (but not the ability to rediscover the global minimum). 

• The “Optimization Performance Indicator” (OPI) given by Eq. 3.15b, evaluated at 

the best minimizer over the 64 calibration attempts, and labelled as OPI* (see Eq. 

3.15a). Such indicator provides a measure of the accuracy of the best solution of a 

calibration experiment in terms of both the parameters values, and the score of the 
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objective function. It is a normalized indicator which therefore allows also 

different GOF functions and MoPs to be compared (e.g. RMSE(V) vs. GEH(S)). 
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with: 

- ijp
, , equal to the value of the j-th parameter resulting from the i-th 

calibration attempt, with j=1,…, m and i=1,…, 64. 

- Globaljp , , the value of the j-th parameter at the known global optimum; 

- jLB and jUB , respectively, the upper and lower bounds for parameter j; 

- ialgGOF , , the score of the specific objective function at the i-th attempt, for 

the alg-th algorithm, with alg=1,…3 (the nine GOFs are listed in Section 

3.6.4). 

 

The OPI measures the Euclidean distance between the values of the parameters 

resulting from a calibration attempt and those corresponding to the known global 

optimum (each term under the square root is normalized over the corresponding 

interval). In order to penalize a parameter set “near” to the optimal one which 

gives, however, a high score of the objective function, such distance is 

exponentially weighted with the score of the objective function found in that 

calibration attempt (normalized against the best value found among all the 

experiments which share the same GOF function and the same MoP). 

In facts, the philosophy behind the OPI is that, in such type of investigation, one is 

mainly interested in understanding whether the problem setting allows the true 

parameters values to be rediscovered, rather than to see if the algorithm is able to 

achieve low scores of the objective function. Low values of the objective function 
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indeed can be sometimes obtained also with parameter values really distant from 

the optimal ones (when dealing with actual data this can be the symptom of model 

overfitting).  

• The Total OPI, which gives a synthetic measure of the performance of a whole 

calibration setting, combining the information on the dispersion in the space of the 

cloud of the solutions found with the corresponding scores of the objective 

function. It is therefore a global indicator which measures the robustness of the 

calibration setting as to the variation of the initial search point, in terms of the 

accuracy of the solution found. It is given by Eq. 3.16: 

( ){ }∑
=

=
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1
,

i
ialgGOFOPIOPI Total       (3.16) 

3.7.2 Results from the performance indicators 

The results are presented in Table 3.3. 

The following considerations can be made: 

1. The analytical formulation of the GEH Statistics, even with a strict threshold 

value set at 1 (in the place of 5, which is considered to be a good match between 

the observed and the model simulated outputs; Ma et al., 2007), does not allow 

any algorithm to ever find the global solution, that is to rediscover the original 

value of the parameters used to generate the synthetic data. All the algorithms 

converge (more or less frequently) to different points which share a zero value of 

the objective function, but which differ from the known global minimizer. This is 

told by the high values of the “frequency of the best score” and by the null 

percentages in the  “frequency of the original parameters”. This is also confirmed 

by the OPI scores which are multi valued (as each one of the 64 solutions returns 

a zero value of the objective function but different parameters values) and by the 

Total OPI that is higher than in other settings, especially in the case of the most 

performing algorithm. 
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Table 3.3: Analysis of the performances of each calibration procedure. 

ALGORITHM GOF/MoP 

Frequency of the 

original parameters        

± 5% error (%) 

Frequency of 

the best score  

 (%) 

OPI*  Total OPI 

Downhill 

Simplex  

with penalty 

function 

RMSE(V) 0 2 9.01E-02 42.21 

RMSE(S) 0 2 5.54E-01 51.16 

MAE(V) 0 2 3.18E-01 49.62 

MAE(S) 0 2 3.57E-01 52.00 

GEH1(V) 0 14 More than one value 57.29 

GEH1(S) 0 6 More than one value 55.38 

U(V) 0 2 1.73E-01 41.55 

U(S) 0 2 4.99E-01 52.23 

U(V)+U(S) 0 2 3.63E-01 49.07 

Genetic 

Algorithm  

with penalty 

function 

RMSE(V) 94 2 1.41E-04 1.56 

RMSE(S) 25 2 1.95E-03 14.57 

MAE(V) 95 9 1.41E-05 0.96 

MAE(S) 17 2 3.55E-05 16.47 

GEH1(V) 0 100 More than one value 35.87 

GEH1(S) 0 73 More than one value 40.60 

U(V) 98 25 1.38E-04 0.91 

U(S) 30 3 2.59E-04 13.13 

U(V)+U(S) 41 2 1.05E-03 10.23 

OptQuest 

Multistart 

RMSE(V) 75 75 2.56E-05 5.62 

RMSE(S) 34 34 9.92E-04 17.36 

MAE(V) 58 58 5.66E-05 11.80 

MAE(S) 44 2 1.38E-03 16.44 

GEH1(V) 0 100 More than one value 33.87 

GEH1(S) 0 61 More than one value 31.37 

U(V) 58 58 2.56E-05 9.07 

U(S) 25 25 9.92E-04 19.59 

U(V)+U(S) 23 23 5.11E-04 18.82 
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2. The Downhill Simplex algorithm is never able to find the global solution in any 

of the problem settings. Further, the algorithm is not even robust as to the starting 

conditions, since it converges in almost all the replications to different optimal 

solutions while the best score of the algorithm is obtained only twice (except in 

the case of the GEH for the reasons above). This is because the algorithm gets 

always stuck in local minima. It also gave the highest values of the Total OPI 

among all the algorithms. 

3. Both the Genetic algorithm and the OptQuest Multistart are able to rediscover the 

“true” values of the parameters with high frequency. The Genetic Algorithm 

resulted in the lowest values for the OPI and the Total OPI indicators, among all 

the tested settings (with the exception of the GEH case), though the stochastic 

nature of the heuristic mostly influenced the repeatability of the best score. On 

the other hand, the OptQuest Multistart showed a strong independence from the 

initial condition, converging repeatedly to the same global solution with the 

highest frequency. 

3.7.3 Proposed graphical inspection method 

We adopted a graphical representation of the map of the solutions of each different 

calibration experiment. The so-called Cobweb plots were used for this purpose (e.g. see 

Figure 3.4). Basically, they are line charts that display information as a series of data 

points (vertexes) connected by straight line segments. Unlike the time series, the 

horizontal axis is made of different categories and the vertexes of the plotted line are the 

values associated to each category. Since the range of values associated to different 

categories (for example, to the model parameters) can be wide and different, a 

normalization of those values is required, limiting the range of variability between 0 and 

1 for each category.  

The Cobweb plots were constructed as follows. The categories were: 

- The number of evaluations of the objective function when the stopping conditions 

were reached (Nr_of_Iter); 

- The value of the specific function adopted to compare the solutions of the different 

calibration experiments (Validation_Score). The chosen validation function was 
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the sum of the Theil’s Inequality coefficients related to speed and spacing 

(U(V)+U(S)), and its value was computed for each calibration attempt; 

- The optimal value of the objective function resulting from the current calibration 

attempt (Obj_Funct); 

- The values of the calibrated model parameters (Tau=τ , Max_Vel= nV , Max_Acc=

na , Safe_Dist= Safety , Est_Dec=
∧

−1nb , Max_Dec= nb ); 

In order to compare the results of all the calibration experiments with the same 

optimization algorithm the Validation_Score was used. Therefore, the values of this 

category were normalized between the minimum and the maximum Validation_Score 

among all the calibrations attempts made with a specific optimizer. Further, to give 

visual information of the best overall solutions (i.e. those associated to the minimum 

Validation_Score, as defined before) among all these calibrations, a colour bar was 

added. 

Regarding the number of evaluations of the objective function, they were normalized 

between 1 and the maximum number among all the calibrations with a specific optimizer 

(i.e. 64x9 calibrations). 

Conversely, the optimal value of the objective function, resulting from a single 

replication of the same calibration experiment, was normalized between 0 and the 

maximum value among the results of all the 64 replications with a specific GOF and 

optimization algorithm. Moreover, in the Cobweb plot, the bold line is associated to the 

results of the replication where the objective function was the minimum. 

Concerning the optimal values of the parameters resulting from each replication (i.e. 

independently from the optimization algorithm and the objective function), they were 

normalized between the lower and upper bounds of the parameters. 

It is worth noting that, according to the normalization methodology used, when the 

algorithm finds the “known” global solution of the optimization problem, both the 

validation score and the objective function value are equal to 0. 
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3.7.4 Results from the graphical inspection method 

In the following, the Cobweb plots concerning some of the calibration experiments 

performed are presented. For a complete report, please refer to Ciuffo et al. (2012a). 

First, the results of the calibration experiments using the GEH statistics with a threshold 

value of 1 are presented (Figure 3.4). Then, we showed the results of the calibrations 

with the different algorithms to compare their attitude towards globality (Figures 3.5 – 

3.7). Finally, we reported on some minor findings on the use of the different objective 

functions in the calibration procedure (Figures 3.8 and 3.9). 

Insights into the GEH statistics: the threshold value 

Without loss of generality, in Figure 3.4 we showed the Cobweb plots concerning the 64 

calibration attempts using the OptQuest Multistart algorithm. In facts, similar results 

were obtained with the other optimization algorithms (Ciuffo et al., 2012a). Figure 3.4(a) 

relates to the calibration on speeds, while (b) on spacing. Moreover, we drew the speed 

profiles of the leader (blue line), of the (synthetic) follower (red line) and, for each of the 

resulting set of calibrated parameters (i.e. 64 sets of parameters), of the (model) 

simulated follower (green lines). In addition, we drew the real (black line) and the 

simulated (green lines) spacing profiles. 

From the figure, we can see that in none of the 64 attempts the algorithm was able to 

find the global minimum. Indeed, even if the algorithm is able to find the zero of the 

objective function, the validation scores are not equal to zero (which would mean that 

the global minimum has been found), and they are also very variable. The explanation of 

these outcomes relies on the functional form of the objective function, which requires 

the setting of a correct threshold value. 

Specifically, we may recall here the analytical formulation reviewed in Section 3.2.2: 
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Figure 3.4: Cobweb plots, together with speed and spacing profiles, related to the calibration 
experiment using the OptQuest Multistart optimization algorithm and the GEH Statistics with a 
threshold value of 1. 

(a) OptQuest Multistart - GOF: GEH1(V)

(b) OptQuest Multistart - GOF: GEH1(S)
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It is worth noting that it slightly differs from the common formulation that can be found 

in the literature, when it is used for calibration purposes. In Ma et al. (2007), for 

example, the objective function is the sum of the GEH statistics (GEHi(Y)) computed for 

each pair of observed and simulated outputs. However, such a formulation does not 

preserve the initial idea beyond the GEH statistics. Indeed, it was adopted to compare 

sets of traffic volumes (one observed, while the other simulated) and a good match 

between them was considered acceptable when the GEH value was less than 5 in the 

85% of the observations. Thus, the formulation presented in Eq. 3.6 reflects this concept, 

that is to minimize the number of observations where the GEH statistics was above the 

threshold. 

According to this, when we compare the real and the (model) simulated outputs, 

respectively obs
iY  and sim

iY , at each simulation step (i.e. step i, with i = 1,…, N, given the 

number of observations N), the GEH statistics does not take into account the actual 

measure of distance between the observed and the simulated outputs ( )(YGEHi ), but 

only its being above or beneath a fixed threshold value ( iδ ).Thus, it implies that the 

uniqueness of the global solution of the optimization problem cannot be preserved. 

Thus, the main challenge is to set the optimal value for the threshold. 

In facts, if one knew the actual level of approximation of the model to the reality, the 

threshold value could be set appropriately. Unfortunately, it is data dependent. In the 

context of synthetic data, for example, the model is able to reproduce exactly the 

“known” reality and, thus, a threshold value of 0 (i.e. iδ  equals to 1 only if obs
i

sim
i YY = ) 

would guarantee that, whenever the objective function is zero, the unique global 

minimizer has been found. On the contrary, moving to real data, the effective capability 

of the model in reproducing the world is unknown and, thus, setting a threshold value of 

0 would not allow the algorithm to find the zero of the objective function. 
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Comparison among the algorithms 

Figures 3.5 – 3.7 show the Cobweb plots, together with speed and spacing profiles, 

related to the calibration experiments with the Downhill Simplex, the Genetic Algorithm 

and the OptQuest Multistart, when the RMSE was used as GOF function. We adopted 

this GOF function to compare the algorithms since, in our findings, it was the one that 

performed the best with all the heuristics (see Table 3.3), but the following 

considerations can be extended also to other GOF functions (Ciuffo et al., 2012a). 

Comparing the three algorithms, it emerges that the Downhill Simplex is highly affected 

by the initial starting points, as the algorithm stopped in different points of local minima 

(see Figure 3.5).  

Further, the setting of a penalty function, in the place of the parameter bounds and of the 

non-linear constraints, influences the algorithm even in finding the local solution. 

Indeed, in 5 out of 64 replications (both when calibrating on speed or on spacing), it 

stopped at the penalty value itself without actually performing optimization at all (see 

the blue lines in the Cobweb plots of Figure 3.5). In terms of simulation, it means that 

the resulting optimal set of parameters does not preserve the consistency of the speed-

headway function and produces a model crash. 

Regarding the Genetic Algorithm and the OptQuest Multistart, they are both able to 

rediscover the “true” value of the parameters, at least once. Moreover, even when they 

get stuck in local minima, they always find the “known” values of the most sensitive 

parameters (see e.g. Est_Dec and Max_Dec in Figures 3 and 4), where “sensitive” is 

intended in the framework of a global sensitivity analysis (for details, see Chapter 5). 

Further, the two algorithms confirmed the conjecture, proposed in Punzo and Simonelli 

(2005), that calibrating the model against the spacing between the leader and the 

follower gives acceptable results also in terms of the vehicle speed, while the opposite is 

not equally true (see Figures 3.6 and 3.7). 
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Figure 3.5: Cobweb plots, together with speed and spacing profiles, related to the calibration 

experiment using Downhill Simplex algorithm and the RMSE as the GOF function. 

Downhill Simplex(a)

Downhill Simplex(b)
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Figure 3.6: Cobweb plots, together with speed and spacing profiles, related to the calibration 

experiment using the Genetic Algorithm for the optimization and the RMSE as the GOF 

function. 
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Figure 3.7: Cobweb plots, together with speed and spacing profiles, related to the calibration 

experiment using the OptQuest Multistart algorithm and the RMSE as the GOF function. 

OptQuest Multistart(a)

OptQuest Multistart(b)
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Minor findings on the GOF functions 

In Figure 3.8, the Cobweb plots related to the calibration experiments where the sum of 

Theil’s Inequality coefficients was used as GOF function. The plots refers to the 

calibrations with the Downhill Simplex and the OptQuest Multistart. In both the cases, it 

appears that the use of a combined function that takes into account both speed and 

spacing is not effective as those that perform optimization separately on speed or on 

spacing (Figures 3.6 and 3.7; see also Table 3.3). 

Finally, Figure 3.9 shows the results of the calibration experiments when the MAE was 

used as the GOF function (for further details, please refer to Ciuffo et al., 2012a). It was 

found that this objective function (both when calibrating on speed or on spacing) is by 

far the least efficient in the optimization process, since it requires a very high number of 

objective function evaluations, while the improvement in finding the global minimizer is 

negligible. 
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Figure 3.8: Cobweb plots, together with speed and spacing profiles, related to the calibration 

experiments using the Downhill Simplex (a) and the OptQuest Multistart (b). The GOF function 

is the sum of the Theil’s Inequality coefficients. 

Downhill SimplexDownhill Simplex - GOF: U(V)+U(S)(a)

OptQuest Multistart - GOF: U(V)+U(S)(b)
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Figure 3.9: Cobweb plots, together with speed and spacing profiles, related to the calibration 

experiment using the OptQuest Multistart algorithm and the MAE as the GOF function.  
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3.8 Summary 

In the field of car-following models and, more in general, of traffic simulation, there is a 

lack of general and established methods to verify a calibration procedure and quantify 

the entailed uncertainty. As a result, the suitability of a particular calibration setting – 

here intended as the combination of the optimisation algorithm, the goodness of fit 

function and the measure of performance – as well as the reliability of the corresponding 

results, are unknown. As the calibration is deemed necessary to fruitfully apply these 

models, because acknowledged as the only way to deal with the inaccuracy of models 

and the uncertainty in the system, quantitative methods to assess any calibration setting 

are claimed to be necessary before one can apply any calibration method. 

In this Chapter, a general methodology was proposed and applied to the calibration of 

the Gipps’ car-following model. The methodology was based on the use of synthetic 

trajectory data, as this is the only way to ascertain the ability of a calibration setting to 

discover the global optimum. Compact indicators were proposed to evaluate the 

capability of a calibration setting to find the “known” global solution, in terms of both 

the accuracy and the robustness as to the variation of the starting conditions of the 

optimization algorithm. Then, a novel graphic inspection method, based on the so-called 

Cobweb plots, was used to explore the existence and the nature of the local minima 

found by the algorithms, as well as to give insights into the measures of performance and 

goodness of fit functions used in the calibration experiments. 

Such methodology has been applied to all the calibration settings used so far in the 

literature to calibrate car-following models. Though any comparison involving 

optimization algorithms can never be fair or definitive as it always depends on the 

particular algorithm setting adopted, the present analysis allowed us to emphasize some 

specific relevant behavior. In particular, the main outcomes of the study were the 

following: 

• GOF functions based on the GEH statistics are highly affected by the setting of the 

threshold value. When used in calibration, a wrong setting of this value lead to the 

loss of uniqueness of the global solution, even in the case of optimization 

problems on synthetic data, where the global minimizer is unique and well-

defined. 
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• The Downhill Simplex has not been able to rediscover the true set of the 

parameters’ values in none of the experiments performed. Further, the heuristics 

was very sensible to the initial starting condition, providing very different sets of 

optimal parameters depending on the starting point. 

• Both the Genetic Algorithm and the OptQuest Multistart were able to find the 

“known” global minimizer, at least once on 64 replications of the same calibration 

experiment. Moreover, they were able to rediscover the true value of the most 

sensible parameters in almost all the replications. 

• These two algorithms confirmed the conjecture, proposed in Punzo and Simonelli 

(2005), that calibrating the model against the spacing between the leader and the 

follower gives acceptable results also in terms of the vehicle speed, while the 

opposite is not equally true. 

• The use of mixed GOF functions that combine both the MoPs (speed and spacing), 

such as the sum of Theil’s Inequality coefficients, performed worse than when 

calibrating separately on speed or on spacing. Further, the use of absolute 

measures of the distance between observed and (model) simulated outputs, such as 

the MAE, entails very low efficiency in the optimization, as they require a high 

number of evaluations of the objective functions to satisfy the same stopping rules 

adopted with the other GOF functions. Moreover, the improvements in finding the 

global minimizer are negligible. 

As a general conclusion the present study confirmed the complexity of the problem of 

calibrating car-following models against real trajectory data. As a matter of facts, none 

of the tested settings gave completely satisfactory results, and future research shall 

necessary aim at finding more robust settings. 

Therefore, in the light of the previous findings, the following research lines can be 

drawn for future investigations: 

1. to limit the calibration process to the most sensitive parameters, via e.g. sensitivity 

analysis of model outputs, in order to reduce both the number of dimensions of the 

input space and the flatness of the response surface. This would drastically 

decrease the computational complexity of the optimization problem. 
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2. to seek for “global” GOFs which were able to capture the inner structure/driving 

behaviour/driving style contained in the trajectory data, as expressed/interpreted 

by the specific model in use. This is also in the course of the recent studies 

performed by Chiabaut et al. (2010). Local GOF indeed are sensitive to errors in 

the data, and especially least square ones tend to compensate errors over the whole 

length of the trajectory. 

3. to appropriately bound the space of the admissible inputs in order to preserve the 

well established macroscopic characteristics of the traffic flow. 

The first two points are discussed in Chapter 5 and in Appendix C, respectively. 

Previous points would contribute at the end to address the problem of model overfitting 

– mostly relevant for car-following models given their manifest inadequacy – and to 

increase the transferability of calibration results. A contribution on this topic is given in 

Chapter 6. 
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Chapter 4 

Uncertainty in Vehicle Trajectory Data and 
Impacts on Model Estimation1

4.1 Introduction 

 

Availability of all the vehicle trajectories in a traffic stream is the Holy Grail of traffic 

flow theory. Since the publication on the internet of the first and unique publicly 

available database of vehicle trajectories, i.e. the datasets from the FHWA’s Next 

Generation SIMulation Program (NGSIM, 2014), plenty of researchers have made use of 

such data to interpret traffic phenomena, support theories, benchmark, calibrate and 

validate traffic flow models (see e.g. Chiabaut et al., 2010; Kim and Mahmassani, 2011; 

Koutsopoulos and Farah, 2012; Laval and Leclercq, 2008, 2010; and so on). 

Within the field research community, however, an increasing concern is taking off about 

the accuracy of such data and its potential impact on the results of studies applying them. 

Recently, Punzo et al. (2011b) proposed a method to inspect the accuracy of trajectory 

data and applied it to all the datasets of the NGSIM Program. They focused, in 

particular, on quantifying the internal consistency of data – that is the consistency 

among space travelled, speeds and accelerations – and the platoon consistency which 

refers to the physical consistency of the inter-vehicle spacing as resulting from the 
                                                   
1 Regarding the contents of this Chapter, the reader can refer also to Montanino and Punzo 

(2013). 
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individual trajectories of a pair of leader-follower vehicles. Study results supported 

previous concerns of the scientific community, showing low degree of accuracy for both 

the criteria. In reason of the big errors and inconsistencies in the NGSIM speeds and 

accelerations2, therefore, Punzo et al. suggested not to use such quantities but to estimate 

them directly from the space travelled3

Despite of the problem relevance, however, relatively few studies exist on the subject of 

vehicle trajectory data correction (for a review and classification of techniques see 

Punzo et al., 2011b). In addition, it is argued herein that none of the techniques proposed 

and applied so far in the literature is suitable to reconstruct effectively vehicle 

trajectories from the NGSIM data. This is because none of such techniques is able to 

treat effectively those extremely biased values, often present in such data, to which we 

referred to as “outliers”. They limited to smoothing out the noise, indeed, by removing 

the high-frequency and, in part, the medium-frequency disturbances from the data. This 

is explained hereafter where the mechanism at the basis of the errors in the NGSIM data 

is clarified together with the limits of currently available techniques. 

 after an appropriate filtering of such data in light 

of the two consistency criteria proposed. 

In addition, very few studies attempted to quantify the impact of measurement errors on 

model estimation. To the best of our knowledge, the only contribution on this topic was 

given by Ossen and Hoogendoorn (2008a, 2009). In their studies, the authors evaluated 

the reliability of estimated car-following model parameters in presence of measurement 

errors in trajectory data, concluding that measurement errors can have a large influence 

on estimation results in terms of both median differences among estimates and 

robustness of estimate.  

However, in these studies, position errors were synthetic, i.e. not obtained from data 

collection but added ex-post, and with white noise structures (independent and 

identically normal distributed random variables with zero mean). Conversely, real 

trajectory data present much more complex error structures, often with time-correlation 

properties, and locally distributed only in certain time-windows with peaks where 

observations are massively biased. 

                                                   
2 Values in the NGSIM dataset fields “Velocity” and “Acceleration”. 
3 Values in the NGSIM dataset field “LocalY”. 
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Therefore, in this Chapter, the evaluation of the impact of real measurement errors (in 

vehicle trajectory data) on model parameter estimation results is provided. 

To this aim, the availability of trajectory data with real measurement errors is crucial for 

the study purpose, as the reproducibility of reliable synthetic error structures is 

controversial. Therefore, in this study we relied on the NGSIM vehicle trajectory data 

whose low degree of accuracy in terms of several criteria is widely recognized in the 

transportation community. 

Therefore, in the first part of the Chapter, a multi-step procedure for reconstructing 

vehicles’ trajectories is presented. The proposed methodology aimed at eliminating the 

main inconsistencies and noise from raw measurements while preserving i) the actual 

driving dynamics (vehicle stoppages, shifting gears, etc.), ii) the internal consistency of 

trajectories (i.e. the consistency among space travelled, speed and acceleration) and iii) 

the platoon consistency (i.e. the actual inter-vehicle spacing). 

In the second part of the Chapter, provided both raw and reconstructed  trajectory data, 

we evaluated the impact of real measurement errors on estimation of car-following and 

lane-changing model parameters. 

In this work, the reconstruction procedure has been applied to the NGSIM dataset from 

the northbound traffic on I80 in Emeryville, California (NGSIM, 2005), recorded from 

4:00 p.m. to 4:15 p.m. on April 13, 2005 – in the following referred as I80-1. It is 

worthwhile mentioning, however, that the proposed technique is absolute general and 

could be used to filter trajectories from any other dataset. 

The Chapter is organized as follows. Section 4.2 describes the mechanism at the basis of 

the errors in the NGSIM data and the limits of currently applied smoothing/averaging 

techniques. The proposed methodology is presented in Section 4.3, together with the 

discussion of the results from each step of the sequential reconstruction and a 

comparison with low-pass filtering techniques. Then, Section 4.4 discusses the 

peculiarities of the NGSIM trajectory data and the requirements for robust filtering. 

Results from the application to the NGSIM I80-1 dataset are illustrated in Section 4.5, in 

terms of both individual vehicle trajectories and acceleration distributions. Successively, 

Section 4.6 presents the comparison of the results of car-following model parameter 

calibration against raw and reconstructed data. Finally, the work ends with conclusions 

and recommendations for future research. 
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4.2 Error Generation in Trajectory Data 

In this section we investigate the mechanism at the basis of the errors in the NGSIM data 

which is necessary to understand i) which are the most appropriate data to start the 

reconstruction with (i.e. spaces, speeds, accelerations) ii) why the usual techniques fail 

or, conversely, iii) which are the desirable features of a reconstruction method.  

4.2.1 Errors in video-processed data 

Figure 4.1 depicts a general situation which may arise after measuring positions of a 

vehicle at discrete times: measured positions (black full points) apparently follow an 

irregular path (zigzag), which is actually due to the measurement errors. 

 

 

Figure 4.1: Insight in the nature of errors in the NGSIM data. Though the total space travelled 

measured between instants 1 and 3, (ŝ12 + ŝ23), coincides with the true one (s12 + s23), i.e. there is 

no bias in the cumulative space travelled, the error in the position of point 2 implies an error in 

the space travelled in the two intervals 1-2 and 2-3, which is amplified in the corresponding 

speeds and accelerations. 

Punzo et al. (2011b), show that such scattering of points around the actual unknown path 

implies a bias between the actual space travelled and the one calculated from such 

measurements, howsoever one reconstructs a path among these points. To eliminate such 
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bias, however, it is possible to project the points over the road/lane alignment. In all the 

cases where it is acceptable to confuse the actual vehicle path with its projection on the 

lane alignment, as is the case of “pure” car-following studies indeed, the projection of 

the coordinates on the lane alignment is therefore the basic way to eliminate such bias in 

the space travelled (Punzo et al., 2011b). This is actually the way in which the values of 

NGSIM’s “LocalY” (i.e. the longitudinal coordinate of the front centre of the vehicle 

with respect to the entry edge of the section in the direction of travel; NGSIM, 2005) 

have been derived: they are the projections over the lane alignment of the coordinates of 

the measured points (the ones recorded in the datasets as “GlobalX” and “GlobalY”). 

The truthfulness of such process has been verified numerically in this work. 

Unfortunately, the projection on the lane alignment eliminates the bias in the space 

travelled, but not the noise on the same measure. In facts, it’s easy to verify that the 

projected points 𝑃�𝑖  (the gray squares in Figure 4.1) are often positioned differently from 

the projections Pi of the “true” points (the black empty circles in the same figure). For 

example, the projection 𝑃�2 happens to be nearer to 𝑃�1 and farther from 𝑃�3 than the actual 

point P2 is, respectively, from P1 and P3. Though the total space travelled measured 

between the instants 1 and 3, (ŝ 12 + ŝ23) coincides with the true one (s12 + s23) (i.e. there is 

no bias in the cumulative space travelled), the error in the position of point 2 implies an 

error in the spaces travelled in the two intervals. Given the high frequency of the 

measurements, i.e. 10 Hz., and the amplification occurring in the differentiation process, 

even errors of few centimeters in space produce significant errors in the speed and even 

more in the acceleration. 

This strong effect is shown in Figure 4.2 with regards to a trajectory sample from the 

NGSIM I80-1 dataset. In Figure 4.2(a), the cumulative space travelled by the vehicles, 

as stored in the NGSIM “LocalY” field, is reported, while speeds in Figure 4.2(b) are 

calculated as the ratio between the distance travelled in 0.1 seconds (from the “LocalY”) 

and the same interval. Alike, accelerations in Figure 4.2(c) are calculated as the variation 

of such mean speeds between two consecutive time intervals. 
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Figure 4.2: Cumulative space (a), Speed (b) and Acceleration (c) profiles of vehicle 1882 from 

dataset I80-1. Values from “Local Y” field are reported in (a). Speeds (b) are calculated from 

“LocalYs”, as travelled distance in 0.1 seconds interval divided by the same interval. Alike, 

accelerations (c) are calculated from Speeds, as their variation in a 0.1 seconds interval.  
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The errors in the space travelled that appear locally in the trajectory (see the arrows in 

Figure 4.2(a)), produce the totally unreliable acceleration/deceleration rates shown in the 

bottom figure which reach peaks of almost 400 m/s2. Apart from such unrealistic spikes, 

Figures 4.2(b-c) show a significant random disturbance affecting the measurements 

especially during speed transitions (e.g. shifting gears, sudden brakes/accelerations, etc.) 

which give rise to accelerations up to 40 m/s2. Both these errors are extremely frequent 

in the NGSIM datasets and make such data unusable, without an appropriate treatment, 

for any study on traffic flow theory. 

For the sake of simplicity in the following we define as outliers the measurement errors 

in the “LocalYs” that produce the greatest bias in the accelerations, and as noise the 

residual errors. 

4.2.2 Desirable features for robust trajectory data filtering 

Apart from the data in the LocalY field there are two other measurements available in 

the NGSIM datasets which point to the question of which is the most appropriate 

measure to start the trajectory reconstruction with. These other measures are the 

“Vehicle velocity” and the “Vehicle acceleration” which represent the vehicle 

instantaneous speed and acceleration, respectively. Such quantities, which have been 

estimated by the “LocalYs” with local regression techniques (see Punzo et al., 2011b, for 

a discussion) and successively further corrected, apparently resolve (only) the highest 

errors just highlighted for the “LocalY” (i.e. the outliers). However, in Punzo et al. 

(2011b) it is shown how this was obtained with non optimal practices like, e.g. simply 

cutting accelerations above/below a specific threshold or reversing the sign of negative 

speeds, which actually left unvaried the unrealistic and noisy patterns of such variables. 

Moreover, this also yielded speed and acceleration profiles macroscopically inconsistent 

with the space travelled (i.e. with the LocalY data) (see, again, Punzo et al., 2011b). 

Therefore, especially considering that the original (highly noisy) pattern of speeds and 

accelerations has been so sharply corrupted,  it does not really make sense to filter such 

data, but it is necessary to concentrate only on the reconstruction of the “LocalY” data. 

This means trying to reconstruct physically consistent mean speeds and accelerations 

from the LocalYs and, whenever needed, to calculate instantaneous values from these. 
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The examples of Figure 4.1 and 4.2 on the error nature in the “LocalY” data allow us to 

put forward also a second major consideration: the so-called outliers cannot be easily 

treated at the same time of the residual errors (i.e. the noise) and with the same 

techniques. 

Indeed, the filtering techniques currently applied in the field literature are based on 

smoothing or averaging (like low-pass filters and moving average filters, based on 

Gaussian or symmetric exponential kernels, as in Hamdar and Mahmassani, 2008, and 

Thiemann et al., 2008, respectively). Independently from the variable to which they are 

applied (coordinates, spaces, speeds, accelerations), they essentially remove the noise 

from the data. Inevitably, the design of the response of such filters is the result of a 

compromise between the need of eliminating the noise, even at low frequencies (low 

cut-off frequency) and that of preserving the actual driving kinematics (high cut-off 

frequency). This means that the elimination of the highest peaks, if possible, is paid at 

the cost of smoothing too much the real speed and acceleration profiles. The following 

example clarifies the issue. 

A low-pass filter (i.e. a Butterworth filter; Buttherworth, 1930), has been applied to the 

speed  profile in Figure 4.2(b), and the resulting filtered profile is shown in Figure 

4.3.Two cut-off frequencies (0.75 Hz and 0.25 Hz, respectively) were used to show the 

different results obtainable. When allowing a frequency response of 0.75 Hz in the pass-

band that reduces the error noise at most still preserving the driving dynamics in the 

original data (i.e. vehicle stoppages, shifting gears during accelerations/decelerations, 

etc.), the so-called outliers are barely smoothed out (see the green line at around seconds 

10, 40 and 50 in Figure 4.3(a)). In turn, if the cut-off frequency is set in order to obtain 

only accelerations in the range of physical values (i.e. to 0.25 Hz) very smoothed speed 

profile is obtained (see the red line in Figure 4.3(a)), but still the outliers are not 

completely removed (see, for example, the unrealistic behavior around second 40 in 

Figure 4.3(a)). 
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Figure 4.3: Speed (a) and Acceleration (b) profiles when Speeds are filtered with a Butterworth 

filter (L-pass) of order 1 and cut-off frequency of 0.75 Hz (green line) and 0.25 Hz (red line), 

and with the procedure here proposed (black line). 
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In order to solve this problem it is claimed that the highest errors (the so-called outliers) 

need to be fixed before filtering out the residual noise. 

Moreover, traditional filtering techniques may alter the total space travelled by a vehicle 

– the so called internal consistency of the trajectory (for details, see Punzo et al., 2011b). 

Indeed, whatever filter is applied to speeds, it would inevitably modify the space 

travelled by the vehicle in each time interval, thus corrupting the total space travelled. 

In addition, when individually filtering vehicle trajectories, also with internal 

consistency requirement properly taken into account, problems related to inter-vehicle 

spacing with leader and follower vehicles still may arise. 

Therefore, in order to solve both these problems, in this work we proposed a multi-step 

filtering procedure to reconstruct vehicle trajectories by fixing the outliers, reducing the 

residual noise in the data, and preserving the internal and the platoon consistency 

requirements. 

4.3 Multistep Vehicle Trajectory Reconstruction 

In this section, the sequential multi-step procedure for vehicle trajectory reconstruction 

is presented. According to the requirements for robust trajectory data filtering, 

introduced in Section 4.2.2, the filtering procedure has the main goal of removing the 

unphysical values of accelerations, while preserving i) the driving dynamics, especially 

in acceleration and deceleration phases (e.g. . vehicle stoppages, shifting gears, etc.), ii) 

the total space travelled, i.e. the internal consistency of the trajectory, and iii) the inter-

vehicle spacing between successive vehicles, i.e. the platoon consistency of the entire 

dataset. 

With this aim, the filter operates on individual vehicle’s positions (“LocalY”, as 

suggested in Punzo et al., 2011b), modifying locally the vehicle position in time. 

As the quality of each trajectory (e.g. the type of errors or the frequency component) 

may vary sensibly in a large dataset, different filter’s parameters should be appropriately 

set. However, as we needed to apply the same procedure to sequentially filter all 

trajectories in the dataset, we needed to design a common filter whose parameters do not 

vary across individual trajectories. 
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Therefore, the procedure is organized in the following 4 steps, which require to 

sequentially: 

1. remove the outliers (Section 4.3.1); 

2. cut-off the high and medium frequency responses in the speed profile (Section 

4.3.2); 

3. remove the residual unphysical acceleration values, preserving the internal and 

platoon consistency requirements (Section 4.3.3); 

4. cut-off the high and medium frequency responses eventually generated from the 

previous step (Section 4.3.4). 

It is worth noting that the procedure is absolute general, and can be applied to whatever 

vehicle’s trajectory dataset. 

In the following, the description of each step is accompanied by figures showing the 

sequential gain reached during reconstruction, for a sample trajectory. 

4.3.1 Step 1: Removing the outliers 

This stage aims at removing the errors in the “LocalYs” measurements that give rise to 

the unreliable values of acceleration shown in Figure 4.2(c). This can be done by 

filtering locally the trajectory when the observed (absolute) accelerations exceed a 

certain threshold. Such threshold should be set appropriately high in order to capture 

only the big measurement errors (i.e. the outliers) and not the random disturbances that 

affect the observations. In this light, a threshold value of 30 m/s2 was appropriate for the 

scope.  

To achieve the objective, a filtering technique is needed to interpolate between the 

sequences of non-outliers that can be found respectively before and after consecutive big 

measurement errors. In this light, we applied a natural cubic spline interpolation using 

ten reference points (i.e. one second of observations) both before and after the outliers. 

Figure 4.4 shows the speed (a) and acceleration (b) profiles before (the blue line – raw 

data) and after (the green line) this step. The arrows in Figure 4.4(a) indicate the outliers 

detected with a threshold value of 30 m/s2. As a result, the local cubic spline 

interpolation on the “LocalYs” completely removed the four outliers. 
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Figure 4.4: Speed (a) and Acceleration (b) profiles after step 1 (Spl.) of reconstruction. The 

resulting profiles (green line) differ from the original NGSIM data only in the time windows in 

which the spline interpolation was applied to remove the outliers (see the arrows). 

  

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50

Time [s]

S
pe

ed
 [k

ph
]

Speed Profile after step 1 of Reconstruction

 

 
NGSIM Data
Spl.

0 10 20 30 40 50 60
-20

-15

-10

-5

0

5

10

15

20

Time [s]

A
cc

el
er

at
io

n 
[m

/s
2 ]

Accleration Profile after step 1 of Reconstruction

 

 
NGSIM Data
Spl.

4 

3 
2 

1 

b) 

a) 



Chapter 4 101 

 

To better appreciate the impact of removing the outliers, we invite the reader to skip to 

Figure 4.12 in Section 4.6.2, which shows the representation of the acceleration profile 

in the frequency domain. The analysis was limited to frequencies up to 5 Hz, according 

to the Nyquist–Shannon sampling theorem (Shannon, 1949). Comparing the original 

data (the blue line) with the results from the current step (the green line), we may see 

how removing outliers is equivalent to strongly attenuate (i.e. reduce the amplitude of) 

the signal, that is decreasing the peak amplitude of the oscillations in the acceleration 

profile. 

However, this step does not guarantee that resulting accelerations fall in a range of 

physical values, since any constraint is applied to the interpolating curve, except for the 

passing condition at the reference points. Evidence on it can be found in Figure 4.4(b) 

focusing on the resulting values of the accelerations after the elimination of outliers 2 

and 4. 

4.3.2 Step 2: Cutting-off high and medium frequency responses in the 

speed profile 

The objective of the current step is to remove the noise (i.e. the random error 

component) from the signal. This can be done by linear smoothing the signal with low-

pass or moving average filters.  

In contrast with the applications of the low-pass filter in Figure 4.3(a), at this stage the 

input signal has less frequency content at medium and high frequency (see the green line 

in Figure 4.12) and, thus, a higher cut-off frequency can be set to preserve the driving 

dynamics more accurately. Figure 4.5 presents the results in terms of speed (a) and 

acceleration (b) profiles. 

The contribution of smoothing out the noise can be appreciated in Figure 4.5(b), where 

the maximum accelerations/decelerations are further lowered. In turn, the speed profile 

(Figure 4.5(a)) shows clear speed transitions (e.g. shifting gears) without disturbances, 

and does not suffer from loosing information at frequencies higher than the pass-band. 

Despite of that, resulting accelerations might still be on the borderline of acceptable 

values (see the peaks indicated with the arrows in Figure 4.5(b)). However, if on one 

hand the identification of the maximal physical acceleration values could be rather 
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subjective, it ultimately depends on the type of vehicle and on the speed regimes at 

which the vehicle is moving. On the other hand, it is widely recognized that 

accelerations and decelerations exceeding 5m/s2 and 6 m/s2, respectively, are above 

common values for ordinary conditions (Marczak and Buisson, 2012; Thiemann et al., 

2008).  

 

 
 

 
Figure 4.5: Speed (a) and Acceleration (b) profiles after step 2 (L-pass) of reconstruction. The 

low-pass filter here used is a first-order Butterworth filter with cut-off frequency of 1 Hz. 
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4.3.3 Step 3: Removing residual unphysical acceleration values, 

preserving trajectory consistency requirements 

The objective of the current step is to remove the residual peaks – in the following 

referred as outsiders – in the acceleration profile that exceed defined thresholds 

(eventually variable with speed levels), preserving the internal consistency of the 

trajectory (i.e. without modifying the total space travelled) and the platoon consistency 

(i.e. not generating negative inter-vehicle spacing values). 

A possible way of doing it is by modifying the position of the outsider (i.e. the vehicle’s 

position at time t) so that the resulting accelerations fulfil the thresholds. Recovering the 

example in Figure 4.1, it means re-positioning the measured point 2, so that the new 

mean speeds V12
* and V23

* produce compatible values for the acceleration. In this study, 

3m/s2 and 5 m/s2 were adopted as maximum valid values for accelerations and 

decelerations, respectively. 

To reach this goal aim, the basic idea is to locally modify the position of the outsider 

assuring i) that the resulting accelerations/decelerations fall in the bounds of acceptable 

values, and ii) that no negative inter-vehicle spacing with the actual vehicle in front is 

produced. 

In the following subparagraphs, the necessary pre-processing to take into account the 

platoon consistency requirement is first described, followed by the description of the 

filtering method. 

Leader-Follower Dependency Tree 

As the platoon consistency aims at preserving positive inter-vehicle spacing between 

successive vehicles in a whole platoon, it is clear that the filtering procedure have to be 

applied sequentially to all individual trajectories in the platoon. Indeed, when locally 

fixing vehicle positions in a certain time window, the position of the vehicle in front 

(needed to calculate the inter-vehicle spacing) can be used only if the trajectory of that 

vehicle have been previously filtered. Things are further complicated by the presence of 

lane-changes in real traffic, as a couple of leader/follower vehicles may switch their 

positions (e.g. by overtaking each other), thus creating a circular dependency. To clarify, 

a simple example from the I80-1 dataset is presented in Figure 4.6, where only two 

vehicles are involved.  
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Figure 4.6: Example of a sequence of vehicles that invert their positions (leader/follower) due to 

lane-changing. Colors represent the lane IDs, while the vehicle IDs is indicated by arrows 

The example depicts how vehicle 3108, who was initially following vehicle 3095 in lane 

4, passes its leader (vehicle 3095) through a lane-change to lane 3. In this situation, in 

order to filter the entire vehicle 3108’s trajectory, we needed the filtered trajectory of 

vehicle 3095 (between frames 8600 and 8970) to apply the inter-vehicle spacing 

constraint in the procedure. However, to filter vehicle 3095’s trajectory, we needed 

vehicle 3108’s one (from frame 9030 to the end). This generates the so-called circular 

dependency between leaders and followers, due to lane-changing. It is worth noting that 

the example shown here is a simplification case with only two involved vehicles, while 

there exist situations with up to 60 involved vehicles. A complex example is shown in 

Figure 4.7. 



Chapter 4 105 

 

 

Figure 4.7: Example of a complex circular dependency. 

Therefore, in order to apply the platoon consistency constraint in the filtering method, 

the complete tree of all the dependencies among each vehicle and its leaders was 

needed4

                                                   
4 In the filtering procedure here proposed, for each vehicle the inter-vehicle spacing is evaluated 

from its current leader. Indeed, the vehicles with no leaders are first filtered and the procedure continues 

scanning the platoon upstream. The same procedure could be applied considering the inter-vehicle spacing 

evaluated in terms of distance from the follower. In this case the scanning direction would be downstream.  

. To create it, we designed an algorithm that tags each vehicle in a specific level, 

if all its leaders belong to upper levels. Therefore, vehicles with no leaders (i.e. the first 

tracked vehicles) were tagged in level 1. Vehicles with leaders tagged in level 1 were 

tagged in level 2, while those with leaders tagged in levels 1 or 2, were tagged in level 3, 

and so on. Defined as k the last completed level, if there are no more vehicles that can be 

tagged in level k+1 (because not all their leaders have already been tagged in levels up 

to k), a circular leader-follower dependency is encountered. Indeed, among the 

remaining vehicles, there would exist at least one subset of vehicles where each of them 

has some leaders already tagged (in levels up to k) while others not tagged yet, but 

belonging to the subset. In this case, the vehicles belonging to that subset (i.e. the 

vehicles involved in the circular dependency) can be tagged in level k+1, with a 

different label to distinguish them from regular tags. By tagging the vehicles involved in 

the circular dependency, other vehicles (i.e. those whose leaders were involved in the 
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circular dependency) can be successively tagged and the algorithm proceed until there 

are no more vehicles to tag. 

Filtering method 

As it is clear from the example in Figure 4.1, changing the longitudinal position of the 

vehicle at time t modifies the distance travelled by the vehicle both between t-1 and t, 

and between t and t+1. Thus, fixing the vehicle’s acceleration between t-1 and t would 

change also the acceleration between t and t+1, possibly producing a new outsider. This 

chaining process ends when the acceleration of the vehicle between t+k-1 and t+k falls 

in the range of the acceptable values. Therefore, given an outsider at time t, the first step 

consists in finding the instant t+k at which the vehicle turns to have an acceleration 

compatible with the (modified) position at t+k-1. The detecting algorithm is based on the 

hypothesis of linear variation of the mean speeds in the interval [t; t+k]. It is worth 

noting that such hypothesis does not imply that the reconstructing vehicle’s trajectory in 

that interval would be linear (which is only a special case). 

Taking for granted the vehicle’s positions at times t-1 and t+k (i.e. the related 

accelerations are acceptable), hypothesis on the curve that reproduces the vehicle’s 

trajectory between t and t+k-1are needed. This is not an easy task, since the trajectory is 

always a very flat signal and the impact of the interpolation curve in terms of speed 

dynamics cannot be directly appreciated. Therefore, instead of operating on the 

“LocalYs”, the filter operated on the mean speeds (as defined in Section 4.2), and the 

reconstruction curve was a 5-th degree polynomial interpolation. 

A constrained interpolation is needed to preserve the internal consistency of the 

trajectory (i.e. changing mean speeds of the outsiders must not modify the original space 

travelled), plus additional boundary conditions on the derivatives, and on the number of 

sign inversions of the jerk in 1-sec time window. 

In addition, to accomplish to the platoon consistency requirement, an additional 

constraint on the inter-vehicle spacing was needed, i.e. the local reconstruction of the 

vehicle’s trajectory in the time window [t; t+k] must not give rise to negative inter-

vehicle spacings with the actual vehicle in front, which was possible if individually 

filtering each vehicle’s trajectory. 
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However, to correctly take into account this constraint, the trajectory of the vehicle in 

front should have been already filtered. Therefore, the procedure needed to be applied 

sequentially to the entire dataset following the leader-follower dependency tree 

introduced earlier. Indeed, vehicles’ trajectories were sequentially filtered starting from 

those tagged in level 1 of the dependency tree (i.e. vehicles with no leaders), and 

proceeding accordingly to the levels in the tree. Once there were two or more vehicles 

involved in a circular dependency (see, for example, Figure 4.6), they were repeatedly 

filtered in sequence until a threshold value for the inter-vehicle spacing is no more 

activated. 

One could argue that, given the methodology described in the current step, the 

preliminary removal of the outliers in step 1 was unnecessary. However, since the 

threshold values for the identification of the outsiders are sensibly lower than those for 

the outliers, in step 3 the detection of the outliers at time t was still possible, while the 

identification of the next good point would lead to an excessively wide reconstruction 

time window [t; t+k], changing too much data in each individual trajectory. Therefore, 

we decided to split the detection of outliers and outsiders in two phases, in order to have 

variable threshold values for the identification and reconstruction. 

Further, as pointed out in the previous sections, the quality of each trajectory (e.g. the 

type of errors or the frequency component) may vary sensibly in a large dataset and thus, 

the algorithm parameters should need fine tuning for each specific vehicle’s trajectory. 

However, this is not feasible in case of large-data application (as this one). On the other 

hand, we noted that the performances with constant filter parameters sensibly varied 

with the amount of medium-high frequency components in the mean speed profile. For 

this reason, we required a linear smoothing of the mean speed profile in step 2 to make 

its spectral density function more uniform among all the vehicles with regards to the 

medium-high frequency content. 

Results from step 3 are presented in Figure 4.8, in terms of speeds (a) and accelerations 

(b). From the figure, the effect on the outsiders is clear in terms of resulting 

accelerations (Figure 4.8(b)). The peaks indicated by the arrows in Figure 4.5 

disappeared as a consequence of a (better) positioning of the point in space. In turn, the 

replaced speed profile has a more regular shape. 
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Figure 4.8: Speed (a) and Acceleration (b) profiles after step 3 (Poly) of reconstruction. At this 

stage, it was used a 5-th degree polynomial interpolation constrained on the space travelled, plus 

additional boundary conditions and constraints. 
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4.3.4 Step 4: Cut-off the high and medium frequency responses 

eventually generated from the previous step 

The objective of the current step is to remove the high and medium frequency responses 

(eventually) generated in the previous step. Operatively, we noticed that the boundary 

conditions on derivatives applied in the constrained interpolation at step 3 needed a 

slight relaxation in order to let the algorithm perform faster. As a consequence, the 

repositioning of the outsiders could (eventually) generate some discontinuities in the 

speed profile (i.e. angles). Therefore, to smooth-out this sudden irregularities, we re-

applied the low-pass filter used at step 2. 

Results from the conclusive step, are shown in Figure 4.9. 

 

 

 
Figure 4.9: Speed (a) and Acceleration (b) profiles after step 4 (L-pass) of reconstruction. The 

low-pass filter used here was designed as in Section 4.3.2. 
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4.4 Peculiarities of NGSIM data 

As shown in the recent literature, the quality of the NGSIM video-processed data is 

undermined by a large amount of measurement errors. Punzo et al. (2011b) discussed on 

the necessity to inspect the quality of trajectory data with regards to the structure of the 

error in point measurements and its propagation on the space travelled, and presented a 

method to assess trajectory data accuracy, based on jerks’ analysis, consistency analysis 

and spectral analysis. The resulting considerations suggested to carefully handle values 

in “Velocity” and “Acceleration” fields of NGSIM datasets and, whenever possible, to 

directly estimate speeds and accelerations from an appropriately filtered “LocalY”. 

The analysis revealed the existence of two main types of errors: 

• errors on vehicles’ positions giving rise to negative inter-vehicle spacing between 

successive vehicles; 

• errors on vehicles’ positions giving rise to unphysical acceleration values (derived 

from “LocalY”). 

Based on the results depicted in Punzo et al. (2011b), in this study we conducted a 

deeper investigation to identify and quantify all the sources of errors included in the 

data, focusing on the NGSIM I80-1 dataset. As a result, a complete summary of error 

types was defined, including and further specifying the findings in Punzo et al. (2011b): 

1. Errors due to motorcycle mis-identification; 

2. Errors due to vehicle’s lane ID mis-identification; 

3. Errors due to lane-changing; 

4. Errors due to merging; 

5. Errors due to illegal overtaking; 

6. Errors due to large platoon mis-tracking; 

7. Errors due to individual vehicles’ mis-tracking; 

8. Errors due to vehicle IDs switching; 
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It is worth noting that the biggest errors on the individual vehicles’ acceleration values, 

i.e. the so-called outliers, are the results of vehicles’ mis-tracking, as pointed out in 

Section 4.2.1. 

Based on these observations, the original dataset (raw data) presented error types that 

could not be treated appropriately with the trajectory reconstruction procedure here 

proposed. Indeed, in the procedure described in Section 4.3, the occurrence of negative 

inter-vehicle spacing is not a trigger for the reconstruction at step 3, while it is only a 

constraint on the local reconstruction of the mean speed profile (derived from 

“LocalY”). 

Therefore, a pre-processing stage was needed to treat above error types in order to obtain 

a consistent dataset in terms of total space travelled and inter-vehicle spacing. The 

methodology here applied aims at identifying (and fixing) errors that give rise to inter-

vehicle spacing conflicts, which can be the results of misidentification of motorcycles 

overtaking other vehicles (error type 1), inaccurate tracking of a lane-changing (error 

types 3 and 8), the lane-based modeling assumption underneath the tracking algorithm 

and video-processing (error types 2, 4 and 5), large platoon (error type 6) or individual 

vehicle (error type 7) mis-tracking. 

In order to do that, the identification of vehicles involved in these situations was done by 

cross-checking the list of all the conflicts occurred in the dataset with the list of all the 

lane-changes that happened in the monitoring period. Indeed, given a conflict between 

two vehicles at time t, if at least an influential lane-changing (i.e. a lane-changing 

performed by one of the vehicles involved in the conflict) happened in a 10 seconds time 

windows centered on t, that conflict had greater probability to have been caused by error 

types 3, 4 or 5. In this case, the error cause was detected by the algorithm (with a success 

rate of 100% of the cases after cross-checking with original video) and the involved 

vehicles were fixed accordingly (e.g. the instant of lane-changing was anticipated or 

delayed by less than 1 seconds in order to avoid the conflict, or the presence of a vehicle 

in the emergency lane was identified with a different lane id). On the other hand, if no 

influential lane-changing happened, that conflict had greater probability to have been 

caused by error types 1, 2, 6, 7 and 8. Video analysis allowed to correctly identify the 

cause of the error, and operate the adequate fixing. For example, for error type 1, the 

vehicle class was modified accordingly (e.g. Figure 4.10(a)), as well as for error type 2 
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with regards to the lane id. For error types 6 and 7, the video analysis allowed the 

identification of the time windows when the mis-tracking happened, and the mis-tracked 

vehicle’s trajectory was reconstructed based on a Newell car-following model behavior 

(2002) with respect to the correctly tracked leader vehicle (e.g. Figure 4.10(b)). Finally, 

for error type 8, the correct pieces of vehicle trajectory data were re-assigned to the 

correct vehicles that were involved in the vehicle ID’s switching (e.g. Figure 4.10(c)). 

It is worth noting that error types 6 and 7 related to the mis-tracking could also happened 

without generating a conflict. In these cases, there was no possibility to detect the 

presence of these errors through a data analysis. However, we noted that long vehicles’ 

mis-tracking were characterized by a constant mean speed profile in data. Cross-

checking this information with the visual inspection of the videos, we were able to fix, 

with the same Newell-based procedure described above, most of the long platoon and 

individual mis-tracking errors entailed in the data. 

From the above analysis, we noted that the amount of errors that happened in vehicle’s 

tracking at the beginning (the road segment monitored by camera 1) and at the end (the 

road segment monitored by camera 7) of the section was considerably higher than in the 

road segments monitored by the remaining camera. As a consequence, we decided to 

avoid pre-processing a large amount of data, and removed these data from the dataset. 
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Figure 4.10: Examples of different types of errors entailed in NGSIM I80-1 dataset. (a) showed 

a spacing conflict arising from mis-identification of the vehicle 12 of type “motorcycle” with 

two vehicles (17 and 25) of type “car”; (b) showed a Newell-based trajectory reconstruction in a 

mis-tracking time window; (c) showed a vehicle IDs switching error where two vehicles switch 

their IDs in a transition window and their tracked positions are mixed up from a give instant in 

time. 
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4.5 Application to the NGSIM I80-1 dataset 

The procedure described in Section 4.3 was applied to all the vehicles’ trajectories of the 

NGSIM I80-1 dataset. Reconstructed NGSIM I80-1 dataset is publicly available on the 

MULTITUDE website (2014). 

The complete picture of the traffic dynamics in the monitored period is depicted in 

Figure 4.11, by means of the space-time evolution of the space mean speeds (calculated 

with raw data). The figure clearly shows the upstream propagation of three waves, 

accompanied by intense congestion. 

In the following, results from vehicles’ trajectories reconstruction are presented in terms 

of the impacts on i) individual vehicle trajectories, and on ii) the entire dataset. 

 

 

Figure 4.11: Time-Space speed contour plot based on Edie’s space mean speeds (Edie, 1974).  

4.5.1 Individual vehicle trajectory analysis 

The overall effect from the application of the complete procedure can be appreciated in 

Figure 4.12, where the resulting speed (a) and acceleration (b) profiles are plotted 

against the NGSIM data. Figure 4.12(a) shows how the outliers completely disappeared 
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(step 1), and the driving dynamics are clearer (step 2) and unbiased (step 3) especially at 

the speed transitions. 

In terms of accelerations, Figure 4.12(b), though impressive, does not clearly explain the 

implication of reducing the bias in the measurements. In turn, if we look at the frequency 

spectrum of the accelerations presented in Figure 4.13, we may see i) the amount of bias 

enclosed in the original data (blue line), which covers the entire frequency range of the 

signal, and ii) the result from the complete procedure (black line). The characteristics of 

the frequency spectrum after reconstruction, are comparable with the results from the 

literature where the whole frequency response of the signal is in the range of frequency 

up to 2Hz (i.e. human/vehicle responses are unlikely to have a frequency exceeding this 

value; Punzo et al., 2011b). 
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Figure 4.12: Comparison of the Speed (a) and Acceleration (b) profiles after reconstruction, 

against NGSIM data. 
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Figure 4.13: Frequency spectrum of accelerations (as defined in Section 4.2) during 

reconstruction. 

4.5.2  Dataset analysis 

In this section, the impact of the proposed reconstruction method on the quality of the 

entire NGSIM I80-1 dataset is evaluated. It is worth noting that, as stated in Section 4.3, 

the filtering procedure could have performed better if parameters of the algorithm were 

appropriately calibrated for each individual trajectory. However, given the size of the 

dataset and the limited time available, we needed to equalize the characteristics of the 

input signal to let the algorithm work faster and with fewer (and lowered) residual peaks 

in the resulting acceleration profile. 

Dataset analysis was performed through the following investigations: 

a. analysis of acceleration distributions; 

b. analysis of maximum speed distributions; 

c. analysis of minimum spacing distributions; 

d. analysis of distribution of residuals on “LocalY”; 

e. analysis of macroscopic traffic flow characteristics.  
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Figure 4.14 presents the comparison of the acceleration (as defined in Section 4.2) 

distributions before and after vehicles’ trajectories reconstruction. 

The distribution of the raw NGSIM data (blue bars) confirmed the findings of Punzo et 

al. (2011b) regarding the incredibly high percentage of outliers and noise in the data (i.e. 

see, for example, the unphysical absolute acceleration values exceeding 10 m/s2). The 

result of the proposed technique is that of completely removing this bias (no frequency 

of extreme acceleration values; see the absence of black bars).  

 

 

Figure 4.14: Comparison of distributions of accelerations (as defined in Section 4.2) between 

raw (blue bars) and reconstructed (black bars) data. 

Also with regards to the spectral analysis of the accelerations (see Figure 4.15), the 

magnification of the high-frequency components of the signal is self-evident in the raw 

data, while, after reconstruction, frequencies are brought back in a range of feasible 

values (up to 2Hz; for details, see Punzo et al., 2011). It is worth noting that in the 

spectral analysis conducted here, the accelerations for all individual vehicles were 

aggregated in a single signal, which explains the differences (in the shape and in the 

frequency scale) with results shown in Figure 4.13. 

Figure 4.16 presents the comparison of the maximum speed (as defined in Section 4.2) 

distributions per each vehicle, before and after vehicles’ reconstruction.  
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The distributions of the raw NGSIM data (blue bars) confirmed the presence of a high 

percentage of vehicles (about 4%) with maximum speed greater than 30 m/s2 (i.e. the so-

called outliers, with peaks also greater than 50 m/s, as shown in Figure 4.2). After 

reconstruction, instead, this percentage lowered down to zero. 

 

 

Figure 4.15: Comparison of frequency spectra of accelerations (as defined in Section 4.2) 

between raw (blue bars) and reconstructed (black bars) data. 

 

Figure 4.16: Comparison of distributions of maximum speeds (as defined in Section 4.2) of each 

individual vehicle, between raw (blue bars) and reconstructed (black bars) data. 
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In order to appreciate the impact of the proposed reconstruction technique on the platoon 

consistency, Figure 4.17 shows the comparison between raw and reconstructed 

distributions of the minimum inter-vehicle spacing per each vehicle (with respect to the 

vehicle in front). 

In the raw NGSIM data, a high percentage of vehicles (about 7% of the entire I80-1 

dataset) present a negative minimum inter-vehicle spacing from the vehicle in front. 

After reconstruction, instead, platoon consistency was re-established. 

 

 

Figure 4.17: Comparison of distributions of minimum inter-vehicle spacings (calculated with 

respect to the leader) of each individual vehicle, between raw (blue bars) and reconstructed 

(black bars) data. 
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Figure 4.18: Distribution of residuals on “LocalY”, calculated as the difference between raw 

and reconstructed vehicles’ positions each 0.1 seconds (blue bars). Red bars represent the 

estimated normal residuals based on observed ones. 

 

Figure 4.19: Normal Probability Plot of the empirical residuals on “LocalY”. 
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However, despite the large amount of measurement errors in raw individual vehicle 

trajectory data, the impacts on macroscopic traffic flow characteristics is very limited. 

Indeed, Figure 4.20 shows the comparison between the space-time contour plots of the 

Edie’s space mean speed (Edie, 1974) calculated on raw (a) and reconstructed (b) data, 

respectively. It is worth noting that Figure 4.20(a) corresponds exactly to Figure 4.11, 

and it is here reported again to allow for visual comparison with reconstructed data. 

 

 

Figure 4.20: Comparison of space-time Edie’s space mean speed contour plots calculated with 

raw (a) and reconstructed (b) data. 
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4.6 Impacts on Estimated Distributions of Microscopic 

Traffic Flow Model Parameters 

In this section, the impacts of measurement errors in vehicle trajectory data on model 

parameters estimated distributions is investigated. 

Given these objective, both car-following and lane-changing model parameters were 

estimated for each individual vehicle in the NGSIM I80-1 dataset against raw and 

reconstructed trajectories. 

The selected models considered herein were the Intelligent Driver Model (IDM) by 

Treiber et al. (2000) for car-following, and the MOBIL model by Kesting et al. (2007) 

for lane-changing. A review of model formulations can be found in Chapter 5, for the 

IDM model, and in Appendix D, for the MOBIL model. 

Car-following model parameter estimation was performed in accordance with the results 

from Chapter 3 on robust criteria for the specification of the optimization problem. 

Therefore, in this study, the adopted Measure of Performances (MoPs) were the speed 

and the inter-vehicle spacing, the Goodness Of Fit (GOF) function was the Root Mean 

Square Error (RMSE), and the optimization algorithm used to find the parameter values 

that minimize distance between the simulated and the measured MoP was the OptQuest 

Multistart (LINDO, 2003). 

Conversely, criteria for parameter estimation for the lane-changing model can be found 

in Appendix D. 

It is worth noting that the setup of the estimation problem (e.g. choice of parameter 

boundaries, convergence threshold of the optimization algorithm, etc.) was the same in 

both the experiments with raw and reconstructed data. 

In the following sections, the impacts on the IDM (Section 4.6.1) and MOBIL (Section 

4.6.2) estimated model parameter distributions are reported. Finally, Section 4.6.3 

reports on the evaluation of the impacts of measurement errors on the estimated joint 

correlation structures among both car-following and lane-changing model parameters. 
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4.6.1 Car-Following model parameters distributions 

The six IDM model parameters (alpha, T , Max
fV , Max

fa , fb , 0S∆ )  were estimated for each 

individual vehicle in the NGSIM I80-1 dataset (excluding those of type “motorcycle”), 

against both raw and reconstructed trajectory data.  

We adopted the following parameter bounds in the estimation: alpha ∈[0.1, 20],           

T ∈[0.1, 5], Max
fV ∈[15.6, 40.0], Max

fa ∈[0.1, 15], fb ∈[0.1, 15], 0S∆ ∈[0.1, 10]. 

Figures 4.21 and 4.22 present the comparison of IDM model parameters distributions 

estimated against raw and reconstructed data. Figure 4.21 refers to the estimation on 

speed, while Figure 4.22 on spacing. In the figures, we indicated T with minTimeHead, 

Vf
Max with maxV, af

Max with maxAcc, bf with normDec and, ΔS0 with s0. 

From the figures, it can be seen that the impact of the measurement errors on parameter 

estimation is very limited. Indeed, two-sample Kolgomorov-Smirnov tests revealed that 

estimated parameter distributions against raw and reconstructed data were not 

significantly different at the level of significance of 5%. Further, also model parameters 

correlation structures do not change between estimates against raw and reconstructed 

data, as shown in Figure 4.23 and 4.24. 

These results are not in line with the findings of Ossen and Hoogendoorn (2008a, 2009) 

where calibration experiments were performed using synthetic data with normally 

distributed error structures added ex-post. A possible explanation of such difference 

could be the considerably different empirical distribution model of the error, as shown in 

Figure 4.18, with respect to the synthetic one adopted in Ossen and Hoogendoorn 

(2008a, 2009). 

To confirm this guess, we adopted the reconstructed data (leader and follower 

trajectories) as the “ground truth” to compare the simulation errors, and performed two 

simulation experiments for each individual vehicle, in one using parameters estimated 

against raw data, while in the other those estimated against reconstructed data. Figure 

4.25 shows the distribution of simulation errors on both speed (a) and inter-vehicle 

spacing (b). It is worth noting that, in the legend, the labels “raw” and “reconstructed” 

refer to the parameters dataset adopted in the simulation. 
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Simulation results confirmed that measurement errors slightly affected the results of 

parameter estimation, producing an average increase in the error between the simulated 

and the observed (i.e. reconstructed) follower trajectory of about 8%.  

According to these findings, we may conclude that the car-following model operates like 

a filter. This behavior can be observed by plotting raw (a) and reconstructed (b) follower 

trajectories together with the simulated ones. Figure 4.26 refers to the simulation using 

model parameters estimated on speed, while Figure 4.27 to those estimated on spacing. 
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Figure 4.21: Comparison of distributions of IDM model parameters estimated using the RMSE 

on speed. Blue bars refer to the estimation against raw trajectory data, while cyan ones against 

reconstructed data. 
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Figure 4.22: Comparison of distributions of IDM model parameters estimated using the RMSE 

on inter-vehicle spacing. Yellow bars refer to the estimation against raw trajectory data, while  

orange ones against reconstructed data. 
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Figure 4.23: Comparison of correlation structures among IDM model parameters estimated on 

speed against raw (a) and reconstructed (b) data. 
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Figure 4.24: Comparison of correlation structures among IDM model parameters estimated on 

spacing against raw (a) and reconstructed (b) data. 
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Figure 4.25: Comparison of distributions of simulation errors (with respect to reconstructed 

follower vehicle trajectories). Label “raw” refers to simulations with parameters calibrated 

against raw data, while label “reconstructed” refer simulations with parameters calibrated 

against reconstructed data. (a) refers to the calibration on speed, while (b) on inter-vehicle 

spacing. 
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Figure 4.26: Comparison of simulated follower trajectories with parameter estimated on speed 

against raw (a) and reconstructed (b) data. 
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Figure 4.27: Comparison of simulated follower trajectories with parameter estimated on spacing 

against raw (a) and reconstructed (b) data. 
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4.6.2 Lane-Changing model parameters distributions 

The three MOBIL model parameters (pf, thresholda∆ , Safeb )  were estimated for each 

individual vehicle in the NGSIM I80-1 dataset (excluding those of type “motorcycle”), 

against both raw and reconstructed trajectory data. 

As clarified in Appendix D, the benefit of a lane-change choice for a vehicle i at time t 

depends on the accelerations of the vehicle i and of its follower vehicles in the current 

and target lanes. Therefore, the estimation of MOBIL model parameters for each 

individual vehicle is conditioned i) to the choice of the acceleration model to simulate 

car-following behavior, and ii) to the adopted value of the car-following model 

parameters. 

Therefore, in this study, to simulate lane-changing choices of vehicle i, we adopted the 

estimated IDM model parameters for vehicle i and its followers in the current and target 

lanes. Consequently, MOBIL model parameter estimated distributions were conditioned 

to the results of IDM model parameters estimation presented in Section 4.6.1. More 

details on the criteria adopted for the estimation of lane–changing model parameters can 

be found in Appendix D. 

Figures 4.28 and 4.29 reported on the comparison of MOBIL model parameters 

distributions estimated against raw and reconstructed data. Figure 4.28 refers to model 

parameters distributions conditioned to the IDM model parameters estimated on speed, 

while Figure 4.29 conditioned to IDM calibration on spacing. In the figures, we 

indicated pf with p, ΔaThreshold with minThresholdLC, and bSafe with estSafeFollDec. 

From the figures, as in the case of car-following model calibration, the impact of the 

measurement errors on MOBIL parameter estimation is very limited. Indeed, two-

sample Kolgomorov-Smirnov tests revealed that estimated parameter distributions 

against raw and reconstructed data were not significantly different at the level of 

significance of 5%. Further, also model parameter correlation structures did not change 

between estimates against raw and reconstructed data, as shown in Figure 4.30 and 4.31. 

 

  



134 Chapter 4 

 

 

 

 
Figure 4.28: Comparison of distributions of MOBIL model parameters estimates conditioned to 

IDM model parameters calibrated on speed. Blue bars refer to the estimation against raw 

trajectory data, while cyan ones against reconstructed data. 
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Figure 4.29: Comparison of distributions of MOBIL model parameters estimates conditioned to 

IDM model parameters calibrated on inter-vehicle spacing. Yellow bars refer to the estimation 

against raw trajectory data, while orange ones against reconstructed data. 
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Figure 4.30: Comparison of correlation structures among MOBIL model parameters estimated 

against raw (a) and reconstructed (b) data. Related IDM model parameters were estimated on 

speed. 
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Figure 4.31: Comparison of correlation structures among MOBIL model parameters estimated 

against raw (a) and reconstructed (b) data. Related IDM model parameters were estimated on 

spacing. 
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4.6.3 Correlation structures among car-following and lane-changing 

model parameters 

Finally, in this section the joint correlation structures among microscopic traffic flow 

model parameters (car-following and lane-changing models) estimated against raw and 

reconstructed data are presented. Figure 4.32 shows the results from IDM model 

estimation on speed (and, thus, related MOBIL parameters calibration) against raw (a) 

and reconstructed data, while Figure 4.33 refers to estimation on speed. 

 

 

Figure 4.32: Comparison of correlation structures among IDM and MOBIL model parameters 

estimated against raw (a) and reconstructed (b) data. IDM model parameters were estimated on 

speed. 
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Figure 4.33: Comparison of correlation structures among IDM and MOBIL model parameters 

estimated against raw (a) and reconstructed (b) data. IDM model parameters were estimated on 

spacing. 

From the figures, it is clear that the impact of measurement errors in trajectory data on 
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4.7 Summary 

In the literature of traffic flow theory, many studies made use of trajectory data to 

perform experimental analysis and/or support theoretical findings. To this end, data from 

the NGSIM program are a precious resource, as they depict the traffic behavior of the 

whole stream over an entire time-space domain. The free availability to the entire traffic 

community, that gives the opportunity to anyone to reproduce the results or to 

compare/validate models calibrated against the same data, coupled with the vast amount 

of gathered data, made this open-source database the most extensively used by 

researchers. 

Despite of the undoubted importance, they were proved to be massively affected by 

measurement errors in the spatial coordinates of the vehicle, further amplified in the 

differentiation process when calculating speeds and accelerations. If not properly 

accounted for, these errors would make NGSIM data not usable for any study on traffic 

flow theory. 

In addition, very few studies attempted to quantify the impact of measurement errors on 

model estimation. 

In the first part of this Chapter, a multi-step procedure for reconstructing vehicles’ 

trajectories is presented. The proposed methodology aimed at eliminating the main 

inconsistencies and noise from raw measurements while preserving i) the actual driving 

dynamics (vehicle stoppages, shifting gears, etc.), ii) the internal consistency of 

trajectories (i.e. the consistency among space travelled, speed and acceleration) and iii) 

the platoon consistency (i.e. the actual inter-vehicle spacing). 

A comparison between raw and reconstructed trajectory data is presented. Results from 

the application to the entire NGSIM I80-1 dataset confirmed, on one hand, the 

inconsistency of raw data, and, on the other  hand, the restored consistency in the 

reconstructed data in terms of accelerations’ distribution and frequency spectrum, 

speeds’ distribution and inter-vehicle spacings’ distribution.  

In the second part of the work, provided both raw and reconstructed  trajectory data, we 

evaluated the impact of real measurement errors on the results of the estimation of car-

following and lane-changing model parameters. Results showed that the model operates 

like a “filter”,  and the impact of the measurement errors on parameter estimation (and 
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on their correlation structures) is very limited. These findings are not in line with the 

results of Ossen and Hoogendoorn (2008a, 2009) where calibration experiments were 

performed using synthetic data with normally distributed error structures added ex-post. 

A possible explanation of such difference could be due to the substantially different 

distribution model of the error structure, which is, instead, derived here empirically by 

comparing raw and reconstructed data. 

Based on these findings, in Chapter 6 we will show if and how measurement errors 

affect the simulation performances of the “aggregate” microscopic traffic flow model. 
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Chapter 5 

Uncertainty Quantification and Sensitivity 
Analysis of Microscopic Traffic Flow Simulation 
Models1

5.1 Introduction 

 

As pointed out in Chapter 2, model calibration is usually undertook to reduce, in one 

shot, the impact of both model and parameter uncertainties, by incorporating them 

alongside the parametric inputs. In this view, all the commercial software for traffic 

simulation allow parameters values to be customized by the users in order “to fit” the 

traffic model to the system at hand. 

However, the increasingly high number of parameters in the software, the exponential 

computational complexity of “black-box” optimization, and the unavailability of 

dedicated tools in such software, make the automated search for optimal parameter 

values impracticable for most of the practitioners. 

Further elements that hinder calibration are i) the improper set up of the calibration 

problem (for details on this topic, see Chapter 3), ii) the quality of measured data (for 

details on this topic, see Chapter 4), and iii) the asymmetry in the importance of model 

parameters. 

                                                   
1 Regarding the contents of this Chapter, the reader can refer also to Punzo et al. (2014a). 
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The last issue, in particular, represents both an obstacle to the calibration and a way for 

its solution. In fact, often, (law-driven over-parameterized) models present a pronounced 

asymmetry of the parametric inputs in influencing the outputs, with a small subset of 

parameters accounting for most of the output uncertainty and the others playing little or 

no role. The inclusion in calibration of such non-influential parameters makes the model 

response surface flat and the solution search for any optimization algorithm arduous. 

Therefore, calibration would result much easier if the non-influential parameters of a 

model could be identified and left out of the calibration itself. Reducing the number of 

parameters to calibrate would alleviate the computational burden (the CPU time is 

exponential in the number of parameters) and solve the issue of flat response surfaces 

(Punzo and Ciuffo, 2011). 

These considerations call for methodologies that allow identifying unambiguously the 

non-influential parameters, and are able to quantify the cost paid – in terms of the model 

ability to describe reality – of fixing those parameters to arbitrary values. Such 

methodologies belong to the area of sensitivity analysis, generally intended as “the study 

of how the uncertainty in the output of a mathematical model or system can be 

apportioned to different sources of uncertainty in its inputs” (Saltelli et al., 2004).  

Factor fixing setting, in particular, is the name generally given to the specific setting in 

which the analysis is framed to answer the question of which parameter can be fixed at 

whatever value without affecting the output uncertainty. For details on other possible 

settings, please refer to Saltelli et al. (2004). 

The main objective of this study, therefore, is to verify for a well-known microscopic 

traffic flow simulation model, whether it is possible to reduce the number of parameters 

to calibrate without sensibly affecting the capacity of the model to reproduce the true 

output variance. To this aim, variance-based sensitivity analysis is applied, in a factor 

fixing setting, to the Intelligent Driver Model (IDM, Treiber et al., 2000). 

Since results of a sensitivity analysis are conditioned to the values of the fixed inputs, 

one could argue that the ranking of importance of car-following model parameters is 

specific to the selected leader/follower vehicle trajectory, which is respectively used for 

model simulation and estimation error calculation. 
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Therefore, in the present analysis, we considered also the input trajectories as uncertain, 

and the investigation has been extended by including all the reconstructed trajectories of 

the NGSIM I80-1 dataset, as detailed in Chapter 4. 

Recalling results from Chapter 4, traffic conditions are moderately congested and the 

trajectories comprehend a wide range of dynamics including stops. 

Besides the robustness of the analysis as regards to the factor fixing setting, the inclusion 

of more than two thousand input trajectories allowed us to investigate the model against 

a significant variety of driver behaviors. To the best of our knowledge this is the first 

time that such a comprehensive analysis is carried out on a traffic flow model. In 

addition, though applied to the IDM in this study, the methodology is absolutely general. 

The Chapter is organized as follows. In Section 5.1, a review of variance-based 

techniques for global sensitivity analysis is presented, followed by the description of the 

IDM model. In Section 5.2., the methodology applied throughout the work is described, 

while the results of the application are presented in Section 5.3. Brief conclusions end 

the Chapter. 

5.2 Background 

In this section, a review of variance-based techniques for global sensitivity analysis in 

factor fixing setting is presented in Section 5.2.1., followed by a synthetic review of the 

IDM car-following model in Section 5.2.2. 

5.2.1 Variance-based sensitivity analysis in factor fixing setting 

The sensitivity analysis technique applied in this work belongs to the family of the so-

called variance-based techniques, which were first employed by Cukier et al. (1973), 

then generalized by Sobol’ (1993, 2007) with a Monte Carlo-based implementation of 

the concept, and finally enhanced by Saltelli et al. (2010) for computation efficiency. For 

a detailed explanation on the topic the reader can refer to Saltelli et al. (2010), and to 

Appendix A.  

Those methods were proved to overcome most of the limitations of other common 

adopted approaches, such as One-At-Time (OAT) analysis, differential methods and 
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regression/correlation analysis. On this topic, the reader may refer to Saltelli et al. 

(2008). 

In the following a synthetic description of the method is provided, while implementation 

details and further information are reported in Appendix A. 

The basic idea of the method derives from the well-known variance decomposition 

formula (Mood et al., 1974). Given a model ( )kX,...,X,XfY 21= , where [ ]k,iX i 1  ∈∀  are 

the input stochastic variables, i.e. the uncertain factors, and Y the output stochastic 

variable, the variance of the output can be decomposed as follows: 

( ) ( )( ) ( )( )iXXiXX X|YVEX|YEVYV
~ii~ii

+=    (5.1) 

where Xi is the i-th factor and i~X denotes the vector of all factors but Xi . The first 

component ( )( )iXX X|YEV
~ii

 is the variance-based first-order effect. The meaning of the 

inner expectation operator is that the mean of Y is taken over all possible values of i~X  

while keeping Xi fixed, the outer variance being taken over all possible values of Xi. 

From a visual perspective, if we plot the values of the output Y against the values of the 

i-th input factor (i.e. in a scatter plot), and then we cut the plane into thin vertical slices, 

it is possible to calculate the mean value of the output Y in each slice, that is ( )iX X|YE
~i

. 

Therefore, the first-order effect is the variation over the slices of the expected value of Y 

within each slice. The associated sensitivity measure, called “first order sensitivity 

index”, is equal to the first-order effect normalized over the total (or unconditional) 

variance: 

( )( )
( )YV

X|YEV
S iXX

i
~ii=      (5.2) 

It can be interpreted as the portion of the output variance which is due to the variation of 

the input factor Xi.  In fact, it measures the first-order (additive) effect of the i-th factor 

on the model output. Therefore, the first-order effect captures only the “stand-alone” 

effect of the input factor on the model output. However, for non-additive models, the 

input factor Xi contributes to the output variance also in its interaction with the other 

input factors. In other words, the joint variation of Xi with all (or some of) the input 

factors may influence the variation of the output. This influence is called higher-order 

effect related to Xi. The sum of the first-order and higher-order effects for all the input 
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factors explains all the output variance. Therefore, when the terms are normalized over 

the unconditional variance such summation is equal to 1: 
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1
1 1 11 1 11 11

=++++ ∑∑ ∑∑∑ ∑∑∑∑
=

≠
=

≠
==

≠
=

≠
==

≠
==

k

i

k

ij
j

k

,...im
m

m,...,j,i

k

i

k

ij
j

k

j,il
l

l,j,i

k

i

k

ij
j

j,i

k

i
i S......SSS   (5.3) 

where ∑
=

k

i
iS

1

is the contribution of all the first-order effects, while ∑
=

−
k

i
iS

1

1 is the 

contribution of all the interaction effects across all the input factors. It is worth noting 

that in case of additive models there are no interaction effects and 1
1

=∑
=

k

i
iS , while in case 

of non-additive models it results: 1
1

<∑
=

k

i
iS . 

According to this decomposition, the number of higher order effects to calculate would 

be very high (i.e. 2k-1-k with k the number of factors). Therefore, to quantify the total 

effect of a factor, the so-called “total sensitivity index” is introduced: 

 
( )( )
( )

( )( )
( )YV

X|YEV
YV

X|YVE
ST

iXXiXX
i

i~ii~i
~~

1−==    (5.4) 

That is the sum of the first-order effect of Xi and of all the higher-order effects that 

involve Xi.  As higher-order effects are computed more times, i.e. in the ST of each factor 

involved in the interaction (e.g. Si,j= Sj,i is included in both STi and STj) it results: 

1
1

≥∑
=

k

i
iST , where the equality holds only for perfectly additive models (for which            

Si = STi, ∀ i = 1,.., k.) 

From a computational point of view, the calculation of the indices can be performed 

within a Monte Carlo Sampling (MCS) framework, where different sampling strategies 

can be adopted (see Section 5.3).  

Following the above considerations, it is clear that the total sensitivity index is the 

appropriate measure in a factor fixing setting, where the question to be answered is: 

“which are the factors that can be fixed at whatever value without affecting the output 

uncertainty?”. Indeed, STi = 0 is a necessary and sufficient condition for Xi to be non-

influential. 
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PROOF. If  STi = 0 for factor Xi ( )( ) 0~ =iXX X|YVE
i~i

, then . As the variance can only be 

positive, the above relation implies that ( )i
*

iX xX|YV
i

~~ =  is identically zero for any value 

of  i
*x ~ . That is there is no point in the hyperspace of X  where Xi

5.2.2 The Intelligent Driver Model (IDM) 

 has an effect. 

The car-following model analyzed in this work is the Intelligent Driver Model (IDM), 

which belongs to the class of social force models (Treiber et al., 2000). The social force 

concept states that the driving behaviour is driven by a sum of social forces, including 

both the force that pushes the vehicle to reach the driver’s desired speed, and the 

interaction force that compels the vehicle to keep a suitable distance from the leading 

vehicle (Wang et al., 2010). For further details on the model, please refer to Treiber et al. 

(2006). The model formulation is the reported in Eq. 5.1: 
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 (5.5) 

where: 

- ( )tv f
 [m/s] and ( )ta f  [m/s2

- 

] are, respectively, the follower’s speed  and acceleration   

at time t; 

Max
fV   [m/s] is the follower’s maximum desired speed (default value: 33.3); 

- Max
fa  [m/s2

0S∆

] is the follower’s maximum acceleration at rest when the distance from 

his/her leader is much bigger than the distance (default value: 0.73); 

- fb  [m/s2

- 

] is a sort of deceleration rate between normal and emergency conditions 

(Treiber et al., 2000) (default value: 1.67); 

( )tvl  [m/s] is the leader’s speed at time t; 
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- )(ts∆ [m] is the rear end-front bumper distance between the follower and his/her 

leader, calculated as follows: ( ) ( ) ( )txtLtxts fll −−=∆ )( , where ( )txl  and ( )tx f  

[m], are the positions at time t of the leader’s and the follower’s front bumpers, 

respectively, and )t(Ll [m]  is the physical length of the leader’s vehicle at time t. 

It is worth noting that it is time-dependent as the leader vehicle can change over 

time; 

- )(* tS∆  [m] is the rear end-front follower’s desired distance from the leader; 

- 0S∆  is the rear end-front follower’s desired distance from the leader at stop [m] 

(default value: 2); 

- 1S∆  [m] is a non-zero parameter necessary for features requiring an inflection 

point in the equilibrium flow-density (Treiber et al., 2000): in this study, we fixed 

its value to zero; 

- T  [s] is the minimum time headway between leader and follower (default value: 

1.6); 

- alpha is an additional model parameter (default value: 4). 

Default values reported in parenthesis are those suggested in Treiber et al. (2000). 

It is worth noting that the max(…) operator in Eq. 5.5 is necessary to avoid that the 

follower’s desired distance from the leader becomes lower than 0S∆ , for negative speed 

differences (i.e. )()( tvtv lf < ). 

5.3 Methodology 

In this section, the methodology developed in the present study is described. Section 

5.3.1 presents the procedure for uncertainty quantification and sensitivity analysis in a 

Monte Carlo framework, while Section 5.3.2 details the implementation of the adopted 

factor fixing setting. Finally, Section 5.3.3 recalls the framework for car-following 

model parameters estimation. 
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5.3.1 Uncertainty Quantification and Sensitivity Analysis in Monte Carlo 

framework 

In Figure 5.1, the Monte Carlo framework adopted in this work for the calculation of the 

sensitivity indexes is outlined. 

 

 

Figure 5.1: Flowchart of the Monte Carlo framework for the calculation of sensitivity indexes. 

Once the model inputs are drawn by means of a sampling scheme, the traffic model is 

evaluated and the distance between the measured and the simulated trajectory is 

calculated in terms of the Root Mean Square error of the instantaneous speed, i.e. 

RMSE(v), or inter-vehicle spacing, i.e. RMSE(s). The process is iterated until the 

number of evaluations is sufficient for the calculated indexes to be stable (for details, see 

Appendix A). 
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Carlo sampling, as approximated formulas for the indices calculation are available only 

for such sampling strategy. In particular, the formula by Saltelli et al. in (2010) for the 

computation of first order indices, and that by Jansen (1999) for the computation of the 

total order indices were applied in this work. For details, see Appendix A. 

The peculiarity of the framework depicted in Figure 5.1 with respect to previous works 

(Punzo and Ciuffo, 2011) is that, not only the model parameters, but also the input 

trajectories were chosen as uncertain factors of the analysis. That is, not only parameter 

values, but also the leader’s and follower’s trajectories are sampled at each iteration. 

In fact, it was conjectured that the variance of the model error explained by model 

parameters was not independent by the input trajectories, but could sensibly vary with it. 

If such hypothesis was verified the analysis would also return precious indications on the 

behavior of the model when facing with different kinematic inputs. 

Therefore, the identification number of each of the 2035 leader/follower couples of 

vehicle trajectories from the NGSIM I80-1 dataset was set as an additional factor with 

the name of PairID. Conversely, the six parameters of the IDM were assumed uniformly 

distributed over the following intervals: alpha ∈[0.5, 10], T ∈[0.1, 3], Max
fV ∈[15.6, 

29.0], Max
fa ∈[0.5, 10], fb ∈[0.5, 10], 0S∆ ∈[0.1, 5].  

The assumption of uniform distribution being customary in absence of a priori 

information on the parameter probability density functions. Indeed, such hypothesis 

could  have an impact on the analysis results but it was not investigated in this study.  

On the other hand, as the amplitude of intervals affects the analysis results – too tight 

intervals fictitiously limit the model error variance whereas too large ones, including 

unrealistic parameter values, increase it unlikely – the interval limits were set in a trial-

and-error manner by leaving out of the intervals the parameter values returning unlikely 

high variance of the outputs, from the visual observation of the scatter-plots. For this 

reason also non-physical values were kept (e.g. acceleration up to 10 m/s2

As a “measure of uncertainty” to base the sensitivity analysis on, the RMSE between the 

measured and the simulated trajectory was chosen (i.e. the higher the influence of a 

parameter, the higher the error in reproducing the observed trajectory). Such statistic was 

calculated both on the speed and on the spacing. 

). 

A total number of 217 model evaluations was necessary in order to have clearly stable 
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sensitivity indices. 

5.3.2 Factor Fixing setting 

In Section 5.2.1 it was shown that an appropriate measure for such a setting is the “total 

sensitivity index”, STi. In fact, STi = 0 is a necessary and sufficient condition for the 

factor Xi

In practical applications, however, a threshold on ST

 to be non-influential (for details, see Section 5.2.1). 

i

The study conjecture is therefore that parameters of the IDM model with a total 

sensitivity index lower than 2%, i.e. explaining less than the 2% of the output 

unconditional variance, could be fixed at any value without affecting (“too much”) the 

uncertainty in the model outputs. 

 higher than zero is generally set, 

under which the parameter is considered non-influential. The choice of the threshold 

value depends on the approximation accepted by the analyst for the study at hand. In this 

work a value of 2% was considered as an acceptable threshold. 

5.3.3 Calibrations of “full” and “reduced” models 

Once the non-influential parameters were identified, a reduced model version was 

obtained by fixing such parameters at arbitrary values; in particular, those suggested in 

Treiber et al. (2000), and reported in Section 5.2.2, were adopted here.  

Both the reduced model and the full model versions were calibrated against all the 

trajectories in the reconstructed NGSIM I80-1 dataset. Then, in order to verify the study 

conjecture, the performances resulting from the two series of calibrations were 

compared, both in terms of the goodness of fit values of the calibrated model and of the 

computational effort required. 

IDM model parameters were calibrated for each individual vehicle (excluding those of 

type “motorcycle”) following the approach reported in Chapter 3. Calibrations 

experiments were run both on speed and on spacing, in order to analyze the effect of 

using different measures of performance (MoPs) on the estimation. The goodness of fit 

functions (GoF) were the RMSE(v) and the RMSE(s), while the optimization algorithm 

was the OptQuest Multistart (for details, see Chapter 3). Upper and lower bounds for full 
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model parameters calibration were set to the following values: : alpha ∈[0.1, 20], T ∈

[0.1, 5], Max
fV ∈[15.6, 40.0], Max

fa ∈[0.1, 15], fb ∈[0.1, 15], 0S∆ ∈[0.1, 10]. The calibration 

of the reduced model was performed using the same bounds above, though only for the 

influential parameters (the others being fixed). For a discussion on the robustness of the 

adopted calibration procedure, please, refer to Chapter 6. 

5.4 Results 

In this section, results from the application of variance-based global sensitivity analysis 

techniques are first presented (Section 5.4.1). Successively, Section 5.4.2 presents the 

comparison of full and reduced model calibration results. 

5.4.1 Uncertainty Quantification and Sensitivity Analysis 

Figure 5.2. presents the uncertainty quantification of the model outputs, from the Monte 

Carlo-based simulation framework adopted (Figure 5.1). 

 

 

Figure 5.2: Distribution of simulation errors from the Monte Carlo-based simulation. (a) refers 

to RMSE on speed, while (b) on inter-vehicle spacing. 

Though nicely positive-skewed, these distribution of the uncertainty in the simulation 

errors do not provide any additional information on the degree of importance of model 

parameters with regards to the error variance. 
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Conversely, the scatter plots of the two measures of uncertainty against each input factor 

are suitable for the scope, for a preliminary screening investigation (Figure 5.3). Figure 

5.3(a) relates to the RMSE(v), while Figure 5.3(b) to the RMSE(s). In the figure, we 

indicated T with minTimeHead, Vf
Max with maxV, af

Max with maxAcc, bf  with normDec 

and, ΔS0

 

 with s0. 

 

Figure 5.3: Scatter plots of the model output against input factors. (a)  refers to the RMSE(v), 

(b) to the RMSE(s). 

The visual inspection of the scatter plots is an important operation, complementary to the 

results of the sensitivity analysis. In general, scatter plots can be used to investigate 

(mainly qualitatively) the behavior of a model. 

Following the physical interpretation given in Section 5.2.1, the variability of the output 

in the space of each input factor gives graphical information of the first-order effect of 

the input factor. In other words, the existence of a clear “shape” or “pattern” in the 

points (i.e. a not uniform distribution of Y-points over the factor Xi

From the visual inspections of scatter plots in Figure 5.3 a clear pattern in the variance 

of the RMSE can be appreciated only for the PairID. This shows that the input 

leader/follower trajectories are an influential factor. Concerning the other factors instead, 

the scatter plots are not meaningful as the high number of points per plot could hide 

) identifies an 

important factor, while a uniform cloud is a symptom (though not a proof) of a non-

influential one. 

a) b) 
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possible patterns. In this case the influence of a factor can be thoroughly evaluated only 

by means of the sensitivity indices (Figure 5.6 and Table 5.1, presented later). 

Coming back to the scatter plots of the PairID, for any given value of the PairID, that is 

for any given trajectory, each Y-point represents the RMSE of the model for a specific 

parameter combination. We can therefore think of the variance of the RMSE, conditional 

on the trajectory, as a measure of the “risk” of not calibrating the model. The higher the 

RMSE variance, the higher the chance that the model yields high RMSE for non-optimal 

parameter combinations. On the other hand, a more in-depth analysis of the lower 

boundary reveals that also the minimum error (the one that corresponds to “best” 

parameter combination), sensibly varies with the input trajectory (see Figure 5.3). In 

other words, the model is not able to reproduce all the observed follower trajectories 

with the same degree of fidelity. 

The reason why model performances vary so much with the leader trajectory could 

depend on many causes. For instance, the un-modeled details of the phenomenon could 

be significant for some drivers and not for others. The different length of the trajectory 

could also explain such variability. 

The last guess, in particular, was tested in Figure 5.4, where the trajectories are ordered 

by their duration and not by their PairID (points were also coloured according to the 

duration intervals reported in the legend). The result confirms the guess surprisingly. On 

the one hand, in both the plots, the RMSE variance – the average height of each colored 

vertical stripe – decreases as duration increases. Thus, the “risk” of not calibrating the 

model is lower for longer (in time) trajectories where, the longer exposition to car-

following dynamics prevents, even an uncalibrated model, to yield very high errors. On 

the other hand, looking at the lower boundary of the RMSE on the spacing (zoomed in 

Figure 5.5), the minimum error value increases as the trajectory duration increases. 

Therefore, calibration is expected to provide higher errors on longer trajectories. The 

reason why such condition holds apparently for spacing but not for speed (Figure 5.4 vs. 

5.5) can be explained by observing that the spacing is an integral measure so that errors 

are not compensated rapidly and tend to cumulate. 

 

  



156 Chapter 5 

 

  

Figure 5.4: Scatter plots of the RMSE against the PairID. (a) refers to the RMSE(v), (b) to the 

RMSE(s). The PairID values were ordered by duration of the trajectory on the color scale. 

 

Figure 5.5: Zoom on the lower boundary of the scatter plots reported in Figure 5.4. (a) refers to 

the RMSE(v), (b) to the RMSE(s). 

Moving to the analysis of the sensitivity indices, Figure 5.6 reports the values of the first 

order and total sensitivity indices (jointly with their 90% confidence intervals) of all the 

input factors, related to both the RMSE(v) and the RMSE(s). The numerical values are 

reported, instead, in Table 5.1. 

  

a) b) 

a) b) 
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Figure 5.6: First order and Total Sensitivity Indices of input factors with respect to (a) the 

RMSE(v) and (b) the RMSE(s). 

Table 5.1: First order and Total Sensitivity Indices of input factors. 

 

The variance of the output variables is explained by the PairID (“stand-alone” and in 

combination with the model parameters). Comparing the value of the variance explained 

by the PairID (63.75 or 42.88) with those of all the other factors,  it comes out clearly 

that the model performances are very low if the model is not calibrated against the single 
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TABLE I 
FIRST-ORDER AND TOTAL SENSITIVITY INDICES 

RMSE(V) 

Parameter First-Order (S) 
[%] 

Total (ST) 
[%] 

PairID 63.75 96.19 

alpha 0.13 4.67 

minTimeHead 2.87 18.27 

maxV 0.18 14.87 

maxAcc 0.16 4.71 

normDec 0.24 0.84 

s0 0.03 0.63 

RMSE(S) 

Parameter First-Order (S) 
[%] 

Total (ST) 
[%] 

PairID 42.88 89.09 

alpha 1.11 8.35 

minTimeHead 6.01 35.23 

maxV 0.58 16.32 

maxAcc 0.40 6.15 

normDec 0.12 0.55 

s0 0.17 1.85 

 

a) b) 
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trajectory (this does not want to be a critique to the IDM, as it holds for all the car-

following models). In other words, if the validity of a car-following model is judged 

through the capacity of reproducing a trajectory, individual calibration on that trajectory 

is necessary.  

Regarding the model parameters, the first-order effects of all the parameters explained 

less than the 10% of the total variance, meaning that their effect on the output variable is 

due to their mutual interactions: in this case, the total sensitivity indices are a measure of 

the higher-order effects. 

According to a factor fixing setting, the total sensitivity measures define the rank of 

influence of model parameters. In this view, the minimum time headway with its 

interaction effects explained 18% and 35% of the total output variance of the RMSE(v) 

and the RMSE(s), respectively, followed by the maximum desired speed with 14% and 

16%. The remaining portion of error variance is finally explained by alpha (5% and 9%) 

and maxAcc (5% and 6%). The interaction effects of the remaining model parameters 

(normDec and s0), instead, explained about 2% of the output variance. This means that 

fixing them to any value it is expected to reduce the capability of the model to explain 

about the 2% of the error variance This was deemed to be an acceptable threshold for the 

parameters to be considered not influential in calibration. 

Following the above considerations, in the second part of the work, we tested the impact 

on the calibration performances of fixing the two not influential parameters to values 

commonly used in the literature. 

By full model estimation we indicated the calibration experiment where all the 6 IDM 

parameters were estimated, and by reduced model estimation the calibration experiment 

where the minimum time headway ( T ), the maximum desired speed ( Max
fV ), the 

maximum acceleration ( Max
fa ) and alpha,  i.e. the most sensitive parameters, were 

estimated. 
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5.4.2 Model parameters’ estimation 

Figures 5.7 and 5.8 present the comparison of estimated empirical distributions of model 

parameters between full and reduced models. Plots relate to the distribution only of those 

parameters that were calibrated for both the full and reduced model, i. e. alpha, T, Vf
Max 

and af
Max

 

. Figure 5.7 relates to the estimation on speed, while Figure 5.8 on spacing. 

 

Figure 5.7: Empirical distributions of estimated model parameters for the full (tagged as “6par”) 

and reduced (tagged as “4par”) models. Model estimation was performed using the speed as 

measure of performance. 
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Figure 5.8: Empirical distributions of estimated model parameters for the full (tagged as “6par”) 

and reduced (tagged as “4par”) models. Model estimation was performed using the inter-vehicle 

spacing as measure of performance. 

From the figures, it can be appreciated that differences in estimated model parameter 

distributions are relevant only for the minimum time headway of the IDM model, which 

turned out to be the most influential model parameter in the sensitivity analysis (see 

Figure 5.6).  

In order to compare estimation performances between the two models, Figure 5.9 shows 

the distributions of the minimum error achieved in the full model (tagged as “6par”) and 

reduced model (tagged as “4par”) calibrations against the entire NGSIM I80-1 dataset. 

Figure 5.9(a) refers to the calibration on speed (the GoF function was the RMSE(v)), 

while Figure 5.9(b) to the calibration on spacing (the GoF function was the RMSE(s)). 
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Figure 5.9: Empirical distributions of the optimal value of the GOF function after the calibration 

of model parameters against (a) the RMSE(v) and (b) the RMSE(s), for all the vehicles in the 

NGSIM I80-1 dataset. In (a), the blue bars refer to the full model calibration (i.e. all 6 IDM 

parameters were estimated) while the pink ones refer to the reduced model calibration (i.e. 

where T, Vf
Max, af

Max

In the case of calibration on speed (see Figure 5.9(a)), fixing non-influential model 

parameters produced very little effects on the capability of the model to reproduce the 

follower trajectory, as compared to the full model. Indeed, the mean value of the 

RMSE(v) shifted from 0.68 m/s, in the full model, to 0.75 m/s, in the reduced one, with 

an average increase of 10%. Also the increase in the standard deviations was minimal 

(from 0.20 m/s to 0.23 m/s). 

 and alpha are estimated). In (b), the yellow bars refer to the full model 

calibration while the magenta ones to the reduced model calibration. 

Though distributions are statistically different at the level of confidence of 5%, we can 
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assert that, from a practical point of view, the reduced model performed mostly the same 

as the full model when estimated on speed. 

In the case of calibration on spacing (see Figure 5.9(b)), results are somewhat different. 

The average increase in RMSE(s) was about 30%. This is due to the fact that the sum of 

the total order effects on spacing of the two last parameters is higher than that on speed, 

and that this increase (apparently negligible) has non-linear effects on the calibration 

results. Unlike usual sensitivity analysis, indeed, in this case we are not looking at the 

variance of the (reduced) model results but, at the variance of the calibration results (of 

the reduced model), which is a strict subset of the first one. That would explain such non 

linear effect. However, it is worth noting that, in absolute value, such effect corresponds 

to an average additional error of 50 cm, which is not relevant in practical applications. 

In addition, in both the cases, computational improvement is evident as the number of 

iterations in calibration halves for the reduced model to 10,000, on average. 

Indeed, the same analyses was repeated on a further reduced model where only the most 

two influential parameters, according to Table 5.1, were estimated, i.e. the minimum 

time headway (T) and the maximum desired speed (Vf
Max

Also in this case, the empirical distribution of the estimated minimum time headway 

presents differences between the case of full and reduced model calibrations, confirming 

the importance ranking highlighted by the sensitivity analysis (see Figure 5.10). 

). Estimated model parameter 

distributions are reported in Figure 5.10, while estimation errors are presented in Figure 

5.11. In the figures, (a) refers to the estimation results on speed, while (b) on spacing. 

On the other hand, when comparing fitting performances (Figure 5.11), ignoring the 

contributions of af
Max and alpha on the estimation error variance produced an average 

variation of the RMSE(v) of about 32%, though with a tremendous benefit in terms of 

computational effort with an average decrease of about 90% in the number of model 

evaluations needed. On the other hand, when calibrating on spacing, though the 

improvement in computational performances is evident (-88%), the average minimum 

estimation error was more than doubled. This confirmed the fact that neglecting even a 

small part of the uncertainty in the model inputs (i.e. by fixing af
Max

   

 and alpha) may 

have an impact on calibration results. 



Chapter 5 163 

 

 

 

Figure 5.10: Empirical distributions of estimated model parameters for the full (tagged as 

“6par”) and reduced (tagged as “2par”) models. (a) refers to model estimation on speed, while 

(b) on spacing. 
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Figure 5.11: Empirical distributions of the optimal value of the GOF function after the 

calibration of model parameters against (a) the RMSE(v) and (b) the RMSE(s), for all the 

vehicles in the NGSIM I80-1 dataset. In (a), the blue bars refer to the full model calibration (i.e. 

all 6 IDM parameters were estimated) while the red ones refer to the reduced model calibration 

(i.e. only T  and Vf
Max

  

 were estimated). In (b), the yellow bars refer to the full model calibration 

while the green ones to the reduced model calibration. 
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5.4.3 Calibration on speed vs. spacing 

The experimental design  applied in this work allowed us to empirically study the impact 

of the adopted Measure of Performance (MoP) on the parameter estimation results. 

Indeed, as detailed in Chapter 3, most of the studies in the field research adopted, as 

MoP, either the speed profile of the measured follower vehicle, or the time-series of the 

inter-vehicle spacing between the measured leader and follower trajectories.  

However, at the best of our knowledge, there is a gap in the research literature on this 

topic, as the choice of the MoP is not supported by any scientific proof or empirical 

evidence on which is the one that should be adopted for a robust specification of the 

model estimation problem.  

On this basis, in this section we attempted to investigate this issue by providing 

empirical evidence on the differences of the two measures in the estimation 

performances. 

Recalling the experimental design for the estimation of the full model (though similar 

considerations hold also on the reduced model calibration), we estimated the IDM model 

parameters of each individual vehicle from the reconstructed NGSIM I80-1 dataset 

adopting, in one case, the RMSE(v), and, in the other, the RMSE(s). 

Therefore, we could evaluate cross-performances on spacing and speed, respectively, at 

the optimal values of model parameters, i.e. we evaluated the error on spacing using the 

model parameters estimated on speed, and vice versa.  

Results are presented in Figure 5.12. In Figure 5.12(a), each dot corresponds to the 

calibration of model parameters of an individual vehicle from the reconstructed NGSIM 

I80-1 dataset. The coordinates of each blue dot are the estimation error on speed (x-axis) 

and the cross-simulation error on spacing with estimated model parameters (on speed; y-

axis). Conversely, the coordinates of each yellow dot are the estimation error on spacing 

(y-axis) and the cross-simulation error on speed with estimated model parameters (on 

spacing; x-axis). Figure 5.12(a) allowed for qualitative investigation on the variance of 

the estimation and cross-simulation errors. However, errors on speed and on spacing 

could not be compared quantitatively. Therefore, in Figure 5.12(b), we normalized the 

error values on the x- and y-axis with respect to the maximum estimation error achieved 

when calibrating on speed and on spacing, respectively. 
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Figure 5.12: Comparison of model calibration performances on speed and on spacing. Each dot 

corresponds to the calibration of model parameters of an individual vehicle from the NGSIM   

I80-1 reconstructed dataset. In (a), the coordinates of each blue dot are the estimation error on 

speed (x-axis) and the simulation error on spacing with estimated model parameters (y-axis). 

Conversely, the coordinates of each yellow dot are the estimation error on spacing (y-axis) and 

the simulation error on speed with estimated model parameters (x-axis). In (b), values are 

normalized over the maximum estimation error on speed (x-axis) and on spacing (y-axis), 

a) 

b) 
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It is worth noting that, in the normalized plot (Figure 5.12(b)), the estimation errors on 

speed (RMSE(v) of the blue points) are bounded in the range of variation [0, 1]; the 

same holds for the estimation errors on spacing (RMSE(s) of the yellow points). On the 

other hand, instead, the cross-simulation errors (i.e. simulation error on spacing with 

parameters estimated on speed, and vice versa) can be greater than the related maximum 

estimation error (e.g. the normalized RMSE(s) of the blue points can be greater than 1). 

From the figure, we can appreciate the following: 

• the estimation error variance (the width of the scatter of normalized points over the 

measure of performance used in the estimation) in the case of calibration on speed 

(variation of normalized RMSE(v) of blue points equal to 0.07) is comparable with 

that resulting from calibration on spacing (variation of normalized RMSE(s) of 

yellow points equal to 0.10); 

• the cross-simulation error variance (the width of the scatter of normalized points 

over the measure of performance used in simulation for cross-comparison) is much 

lower in the case of calibration on spacing (variation of normalized RMSE(s) of 

blue points equal to 0.09, with 95th percentiles equal to 0.43) than the one resulting 

from calibration on speed (variation of normalized RMSE(s) of yellow points 

equal to 0.25, with 95th percentiles equal to 0.77). 

Apart from the (estimation and cross-simulation) error variances, these plots do not 

provide a quantitative performance evaluation of the two estimation settings. In other 

words, we need a common base to evaluate the two settings. Therefore, recalling the 

methodology adopted in Chapter 6 to compare different optimization settings, we used 

the sum of the Theil’s Inequality Coefficients on speed and on spacing as a validation 

score of the model fitting. 

Results are presented in Figure 5.13, where the distribution of the validation score from 

model simulation with parameters estimated against speed (blue bars) is compared with 

the distribution of the validation score from model simulation with parameters estimated 

against spacing (yellow bars). The figure confirmed previous findings, as calibration on 

spacing allowed to achieve “better” validation scores (i.e. lower values of the validation 

measure) than model estimations on speed (40% average reduction of the validation 

measure from 0.14, on speed, to 0.10, on spacing).  
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Figure 5.13: Empirical distributions of the optimal value of the Validation Score (i.e. sum of  

Theil’s Inequality Coefficients on speed and spacing) after the calibration of model parameters 

against (a) the RMSE(v) and (b) the RMSE(s), for all the vehicles in the NGSIM I80-1 dataset. 

5.5 Summary 

In microscopic traffic simulation, the characterization of the uncertainty in the 

parametric inputs is referred as “calibration” and  basically consists in identifying the 

parameters values that make the model output as close as possible to the reality. 

Calibration is therefore the acknowledged way to cope with the approximation of traffic 

simulation models, and is expected to cover both the uncertainty in the modeling 

assumptions/formulations and the uncertainty in the inputs. 

However, automated calibration of microscopic traffic flow model parameters is arduous 

for a number of reasons. These include the difficulty to define a proper setting for the 

calibration problem, the computational complexity of any “black-box” optimization – 

that is exponential in the number of parameters – and the asymmetry of the parametric 

inputs in influencing the outputs. 

A possible remedy to the problem complexity is to reduce the number of parameters to 

calibrate. As fixing a model parameter at a constant value means reducing fictitiously the 

output variance, this operation is generally arbitrary. However, a model sensitivity 
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analysis in a so-called “factor fixing” setting, can help on this. It allows identifying the 

parametric inputs that can be fixed at any value without affecting the output variance: a 

necessary and sufficient condition for this is that the parameter has a total sensitivity 

index equal to zero. In practical applications, however, a threshold value higher than 

zero is adopted: it is upon the analyst to verify whether the threshold chosen is consistent 

with the approximation requested/expected. 

In this study, a global sensitivity analysis of the Intelligent Driver Model has been 

performed in a factor fixing setting. Main scope of the investigation was to verify which 

parameters have to be considered uncertain and therefore calibrated, in order to 

characterize correctly the uncertainty in the inputs. 

To this aim an original framework has been designed for the analysis. As previous 

literature highlighted a significant dependency of car-following model performances on 

the input trajectory, and results of a sensitivity analysis are conditional on the inputs that 

remain fixed, the input trajectory was considered uncertain and sampled from the 

NGSIM I80-1dataset, as reconstructed in Chapter 4. The analysis was carried out 

considering both the errors on the speed and those on the spacing. 

Results showed that the input trajectory is the most influential factor both in terms of 

first-order effect and in interactions with the model parameters. The variance of the 

model error conditional on the input trajectory – a function of the parameter combination 

sampled – has been therefore suggested as a measure of the “risk” of choosing a non-

optimal model parameter combination: the higher the variance, the higher the risk of 

incurring in big modeling errors. It has also been shown, graphically, that such a 

variance is a decreasing function of the trajectory duration. This is an empirical evidence 

that car-following models should be calibrated on ‘long’ trajectories. 

Basing on the results of the sensitivity analysis a reduced model has been tested. This 

model has four uncertain parameters instead of six, as the “desired distance at stop” and 

the “deceleration parameter” has been fixed at default values being non-influential. In 

fact, the variance explained by the ensemble of the two parameters is about 2%. Once 

calibrated on speed, the reduced model has almost equivalent performances to the full 

model. An increase in the error of the 30% is recorded instead when the model is 

calibrated against spacing. This result was not expected given the very low output 

variance explained by the two parameters in the full model (2%), but could be the effect 
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of the integral nature of the measure “spacing”. If focusing on absolute values of the 

error, however, the 30% correspond to an average increase of 47 centimeters that is 

negligible in practical applications. 

A reduced model with only two parameters has been also tested. Again, the error 

increase is limited for calibrations made on speed, while it is significant for those made 

on spacing. This is in line with the previous literature (Punzo and Simonelli, 2005) and 

suggests again that the calibration made on spacing is more challenging than that on 

speed. 

In conclusion, the methodology allowed us to simplify the Intelligent Driver Model 

without sensibly affecting model performances. This has a dramatic effect on model 

calibration as, reducing the number of model parameters by one/third, the calibration 

time approximately halved. 

Ultimately, the analysis allowed us to quantify the dependency of the model 

performances – as measured by the output variance – on the input trajectory and, in 

particular, on its duration. 
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Chapter 6 

From Driver Behavioral Models to “Aggregate” 
Micro-Simulation 

6.1 Introduction 

In the previous Chapters, we applied the four-steps uncertainty management framework 

to car-following and lane-changing models, separately, in order to understand the impact 

of the different sources of parametric and non-parametric uncertainty on model 

performances. 

However, in these studies, we have deliberately ignored the fact that, when using 

microscopic traffic flow simulation software,  driver behavioral models (such as car-

following and lane-changing models) are only “components” which continuously 

interact with each other, and with other “components” (e.g. route choice model). 

Indeed, as pointed out in Chapter 2, focusing on “disaggregate” models would generally 

allow the analyst to reduce the (mostly computational) complexity of the uncertainty 

management framework, as well as to study more accurately some model properties. 

However, one could question which is the impact of the findings related to 

“disaggregate” models (e.g. model calibration, model simplifications)  on the 

performances of the micro- simulation software.  
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For the sake of simplicity, in the following, we would refer to the micro-simulation 

software as the “aggregate” simulation model, while to the driver behavioral models 

(and more in general to all the “components”) as the “disaggregate” models or sub-

models. It is worth noting that the attributes “aggregate” and “disaggregate” do not 

imply any relationship with the level of detail of the simulation (which is, indeed, 

microscopic) or with the level of aggregation of traffic measurements. 

Therefore, in this Chapter we undertook the following studies to evaluate different 

impacts on simulation performances of the “aggregate” model. In particular: 

• Analysis of the impact of “disaggregate” model calibration in presence of 

measurement errors; 

• Analysis of the impact of “disaggregate” model simplifications; 

• Analysis of the impact of “disaggregate” model parameters correlation; 

For the scope of the analysis, two elements of the design of the experiment are crucial to 

allow for robust and reliable evaluation. 

First of all, a complete set of all individual vehicle trajectories from a traffic stream are 

needed as a common basis to i) perform the “disaggregate” model parameters 

calibration, and ii) evaluate the simulation performances of the “aggregate” model, by 

space-time aggregation of trajectory data. 

Secondly, as to be fair in comparison with measured data, we needed to perform an 

“aggregate” micro-simulation where all the external inputs (e.g. vehicle generation) as 

well the initial state of the simulation, were taken directly from the measured data. 

Indeed, if we ignored this, when looking at simulation performances of the “aggregate” 

model, we would not be able to distinguish the portion of uncertainty apportioned to the 

model itself from that depending on the external inputs used to feed the model with. 

The Chapter is organized as follows. The methodological framework applied herein to 

compare measured and simulated performances of the “aggregate” model is depicted in 

Section 6.2. Section 6.3 is dedicated to the Design of Experiment, with regards to both 

the description of the case-study, and the design of the “aggregate” microscopic traffic 

flow simulation model. Then, Sections 6.4 – 6.6 detail the analysis of the impact listed 

above. Brief summary of the main findings ends the Chapter. 
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6.2 Methodological Framework 

The objective of this work is the evaluation of the performances of the “aggregate” 

micro-simulation software in reproducing measured quantities, under a variety of 

modeling assumptions with regards to its sub-models (e.g. different estimated parameter 

distributions and correlation structures, model simplifications). 

To this aim, in order to design a fair comparison between measured and simulated 

performances, we needed to eliminate the portion of uncertainty in model inputs which 

is not in the objective of the analysis. For example, the input OD flows or the uncertainty 

in the vehicle generation model (e.g. probabilistic model and parameters) may have a 

great impact on the results of the “aggregate” micro-simulation. However, in the present 

study we would like to isolate the impact of only the uncertainty in driver behavioral 

models.  

To reach this goal, a trace-driven simulation was needed to evaluate “aggregate” model 

performances. Indeed, in a trace-driven simulation, the observed values (also called 

“trace” in computer science applications) of all the fixed inputs (as defined in Chapter 1) 

is used to run the simulation. Therefore, the initial state of the simulation was loaded 

according to the actual measured state (lane, position, speed, and acceleration) of the 

vehicles on the freeway stretch under analysis. Further, during simulation, vehicles 

attempted to enter the stretch at the same time instant, and in the same state, as in 

measured data. 

Consequently, the complete set of all individual vehicle trajectories in a time-space 

domain are needed to accomplish with the requirements of a trace-driven simulation. 

6.3 Design Of Experiment 

This section is devoted to i) the description of the freeway scenario used in this work to 

conduct the simulation study and ii) the description of the “aggregate” microscopic 

traffic flow simulation model applied herein. 
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6.3.1 NGSIM I80 case study 

The scenario adopted in this study is the northbound stretch of the I80 freeway in 

Emeryville, California (NGSIM, 2005). The study area is represented in Figure 6.1 

(NGSIM, 2005).  

 
Figure 6.1: NGSIM I80 study area with camera coverage for individual vehicle trajectory 

tracking. 
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 225 m 

 275 m 

 45 m 
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The section is approximately 500 m. length and has an HOV lane (lane 1) and 5 regular 

lanes (from lane 2 to 6). An on-ramp merges in the section approximately at 

approximately 225 m. from the upstream bound. The on-ramp lane (lane 7) is not 

physically separated from the most right section lane, while the road markings identify 

the lane limits for about 45 m after the initial merge. Downstream from the on-ramp, 

lane 6 has a greater width for about 50 m. This geometric precaution is due to safety 

reason, in order to allow slower vehicles coming from the on-ramp to “forced” merge in 

lane 6 by the occupation of that lane, side by side with vehicles from the upstream. 

Ultimately, an off-ramp is located downstream of the study area. 

For the study purpose, we used the complete set of all individual vehicle trajectory data 

recorded from 4:00 p.m. to 4:15 p.m. on April 13, 2005 – in the following referred as 

I80-1 – were used to i) estimate driver behavioral model parameters and ii) evaluate 

“aggregate” model performances. Provided the large amount of measurement errors in 

the original data, data used herein were reconstructed as detailed in Chapter 4. Further, 

as pointed out in Chapter 4, data acquired by camera 1 and camera 7, were substantially 

corrupted by a large amount of measurement errors (and indeed not reconstructed). 

Therefore, in the present simulation study, traffic flow in these areas was not simulated. 

Figure 6.2 depicts the NGSIM I80 simulation area and its peculiarities. 

The complete picture of the traffic dynamics in the monitored period is depicted in 

Figure 6.3, by means of the space-time evolution of the Edie’s mean speeds (Edie, 

1974). The figure clearly shows the upstream propagation of three waves, accompanied 

by intense congestion. 

In order to reproduce downstream traffic dynamics, we designed a “buffer zone” in the 

last 50 meters of the simulation area, where vehicles moved accordingly to the measured 

positions (instead of being actually simulated). Indeed, for each vehicle, a transition to 

the measured speed levels was set up based on vehicles’ maximum acceleration and 

deceleration parameter values of the car-following model, in order to preserve 

consistency on accelerations and decelerations. 

Finally, in order to compare measured and simulated performances, three virtual 

detectors were located in the simulation area, located, respectively, 50 meters 

downstream of the simulation entrance, 25 meters downstream of the merging zone, and 

at the end of the simulation area, i.e. 50 meters before the buffer zone (where boundary 

conditions are applied). 
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Figure 6.2: NGSIM I80 study area and the simulation area. The graphical representation is not 

in scale. Distances are in meters. In the study area, lane 1 is reserved to high occupancy vehicles. 

As trajectory data extracted from camera 1 and 7 were not considered in the vehicle trajectory 

reconstruction procedure (see Chapter 4 for details), traffic flow in these areas was not 

simulated. As a consequence, the simulation area was reduced to 450 meters. In the last 50 

meters of the simulation area, boundary conditions were applied to preserve the propagation of 

traffic conditions from downstream (see Section 6.2). Three virtual detectors were located on the 

main road: D1 located 50 meters after vehicles entered the simulation, D2 located 25 meters 

after the on-ramp, and D3 located 50 meters before the buffer zone. 

Figure 6.3: Space-Time evolution of space mean speeds in the NGSIM I80-1 dataset. 
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6.3.2 “Aggregate” Microscopic Traffic Flow Simulation Model 

The peculiarities of the trace-driven simulation, the requirements of imposing 

downstream boundary conditions, and the need to fully customized the choice of the 

driver behavioral models used to simulate car-following, lane-changing and merging 

dynamics among vehicles, advised against the use of commercial microsimulation 

software for the study purpose. 

Therefore, in order to accomplish the features listed above, an “aggregate” microscopic 

traffic flow simulation model was designed expressly for the study purpose, and coded 

in MATLAB (2009).  

The selected car-following and lane-changing models were, respectively, the Intelligent 

Driver Model (IDM) by Treiber et al. (2000) and the MOBIL model by Kesting et al. 

(2007). The merging behaviour of vehicles from the on-ramp was simulated as a 

mandatory lane-changing with the MOBIL model, by (locally) setting the politeness 

factor and the acceleration threshold parameter values equal to zero (for a discussion, see 

Treiber and Kesting, 2013). For more details on models’ formulation and the estimation 

framework adopted for parameter calibration against individual vehicle trajectory data, 

please refer to Chapter 3, for the IDM model, and to Appendix D, for the MOBIL model. 

With regards to the upstream boundary condition, vehicles were generated according to 

the measured state (time instant, lane, position, speed, acceleration), and entered the 

simulation only if no physical constraint (e.g. presence of a vehicle in the target position 

in the target lane) was violated; otherwise, they were assigned to a virtual queue. 

With regards to the simulation of the HOV lane (lane 1), it was necessary to introduce a 

lane-changing rule that emulated the actual existing traffic regulation, i.e. only vehicles 

with more than three occupants are allowed to travel in the HOV lane. Therefore, in 

simulation, we prevented vehicles to perform lane-changing maneuvers from lane 2 to 

the HOV lane. 
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6.3.3 Summary of experiments 

According to the study objectives, the following topic were investigated: 

• Analysis of the impact of “disaggregate” model calibration in presence of 

measurement errors, on “aggregate” simulation model performances (Section 6.4); 

• Analysis of the impact of “disaggregate” model simplifications, on “aggregate” 

simulation model performances (Section 6.5); 

• Analysis of the impact of “disaggregate” model parameters correlation, on 

“aggregate” simulation model performances (Section 6.6); 

In the following sections, a detail description of each analysis is followed by the 

discussion of the main findings. 
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6.4 Impacts of Measurement Errors in Parameter 

Estimation 

Based on the findings discussed in Chapter 4, the objective of this study is to understand 

the impact on “aggregate” simulation model performances of running a simulation with 

driver behavioral model parameters estimated against individual vehicle trajectory data 

in presence of measurement errors. 

The methodology applied here is discussed in Section 6.4.1, while main findings are 

summarized in Section 6.4.2. 

6.4.1 Methodology 

The methodology applied in this analysis is described in Figure 6.4. 

Based on the results presented in Chapter 4, we carried out two simulation experiments, 

by assigning each vehicle entering the simulation with its set of car-following and lane-

changing model parameters, estimated against raw (the left-hand side of Figure 6.4) and 

reconstructed (the right-hand side of Figure 6.4) vehicle trajectory data. 

It is worth noting that, the inter-vehicle spacing was adopted as measure of performance 

in car-following model calibration. For details, please refer to Chapter 5. 

On the other hand, individual vehicle trajectory data were aggregated over time and 

space in order to obtain aggregate measures to compare simulation results with. It is 

worth noting that, as discussed in Chapter 4, the impact of measurement errors in vehicle 

trajectory data on aggregate measures (such as time mean speeds, space mean speeds, 

section density, travel times) is negligible. This allowed us to use the same measured 

output to compare simulation results from the experiments with both raw and 

reconstructed data. 



180 Chapter 6 

 

 

Figure 6.4: Conceptual framework to evaluate the impact of measurement errors in vehicle trajectory 

data on aggregate traffic flow model simulation. Car-following and lane-changing model parameters are 

disaggregate estimated against both raw and reconstructed trajectory data. Successively, traffic flow is 

simulated using the overall microscopic simulator, where each vehicle is assigned with its estimated model 

parameters. Finally, aggregate simulation results based on parameters estimated against both raw and 

reconstructed data, are compared with aggregated measurements over time and space. 

6.4.2 Results 

The comparison between measured and simulation results is conducted with respect to 

the following outputs: 

• time-space speed contour plots (Figure 6.5); 

• time-series of section density (Figure 6.6); 

• distribution of travel times (Figure 6.7); 

• distribution of the number of lane-changes (Figure 6.8). 

Results are shown in Figures 6.5 – 6.8.  
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Figure 6.5 presents the space-time contour plots of the Edie’s space mean speeds (Edie, 

1974) related the measured data (a), and to the simulated one in case of simulation 

experiment with model parameter estimated against raw (b) and reconstructed (c) data.  

Figure 6.6 shows the comparison between time evolution of the measured (black line) 

and simulated section density in case of simulation experiment with model parameter 

estimated against raw (red line) and reconstructed (blue line) data.  

Finally, Figures 6.7 and 6.8 present the comparison of the empirical distributions of 

section travel times (Figure 6.7) and number of lane changes (Figure 6.8) between 

measured and simulated data. 

From a visual inspection of the time-space speed contour plots (Figure 6.5), we may 

observe that both the two simulation experiments (Figure 6.5(b-c)) were not able to 

reproduce the complete back-propagation of the three shock-waves present in the 

measured data (Figure 6.5(a)). 

Further, though model parameters distribution (and correlation structures) were 

practically identical between estimation against raw and reconstructed data, it appeared 

that, at the “aggregate” level, the simulation experiment with model parameters 

estimated against raw trajectory data (Figure 6.5(b)) overestimates traffic congestion 

within the section more than in the case with parameters estimated against reconstructed 

data (Figure 6.5(c)). 

It is worth mentioning here that in both the trace-driven simulation experiments, intense 

congestion occurred at vehicle entrance, from a given instant in time. Indeed, as clarified 

in Section 6.3, though vehicle entered the simulation according to measured data, their 

simulated behavior depended on the actual interaction with the surrounding (simulated) 

vehicles, whose positions in the section might be substantially different from the 

measured states. Therefore, the back-propagation of the simulated shockwaves up to the 

section entrance, if not dissipated as in the real measurements, may produce a great 

impact on simulation results, preventing vehicles from entering (i.e. due to the boundary 

constraint at entrance; for details, see Section 6.3). For example, this can be clearly 

observed in Figure 6.5(a-b) around instant 500 s. 

Based on this considerations, such observed phenomena in simulation – in the following 

referred as entrance congestion – is purely the result of performing a trace-driven 
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simulation. However, since the objective of this study is to assess the model capability to 

reproduce measured data, including traffic states at section entrance, the occurrence of 

the entrance congestion should be read as a failure of the model. 

On the other hand, the increase of section congestion, can be seen also in Figure 6.6 in 

terms of section density, where, in the simulation experiment with parameters estimated 

against raw data, higher densities (about 300 veh/km) are reached during the back-

propagation of the first shock-wave (in the time interval between 400 and 500s), 

compared to the simulation with parameters estimated against reconstructed data (which 

are closer to the measure data). 

In terms of travel time distributions (Figure 6.7), we may see that both the models are 

able to reproduce average congested regimes, i.e. the peak in the measured data around 

50 seconds. However, the higher speed levels in the HOV lane (which corresponds to the 

peak in the travel times around 20 seconds) are completely missed in the simulation 

experiments, which, conversely, as already pointed out, overestimate congestion (i.e. 

right tail of the distribution). 

Finally, with respect to the distribution of the number of lane-changes, Figure 6.8 reveals 

that the simulation model largely overestimates the number of lane-changing maneuvers, 

although lane-changing model parameters were individually estimated against measured 

data. 
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Figure 6.5: Space-Time contour plots of Edie’s space mean speeds. (a) refer to measured data, 

while (b) and (c) to simulated data with parameters estimated against raw and reconstructed 

data, respectively. 
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Figure 6.6: Time-series of the section density related to measured (black line) and simulated 

data, in case of simulation experiments with parameters estimated against raw (red line) and 

reconstructed (blue line) data. 

 

Figure 6.7: Empirical distribution of section travel times for measured (grey bars) and simulated 

data, in case of simulation experiments with parameters estimated against raw (red bars) and 

reconstructed (blue bars) data. 
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Figure 6.8: Empirical distribution of the number of lane-changes for measured (grey bars) and 

simulated data, in case of simulation experiments with parameters estimated against raw (red 

bars) and reconstructed (blue bars) data. 
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6.5 Impacts of Model Simplification Assumptions 

According to the results of car-following model sensitivity analysis performed in 

Chapter 5, in this section we addressed the question regarding the impact of model 

simplifications on the ability to reproduce aggregate traffic flows. 

On this basis, the methodology here applied is discussed in Section 6.5.1, while main 

findings are summarized in Section 6.5.2. 

6.5.1 Methodology 

The methodology applied in this analysis is described in Figure 6.9. 

Similarly to the methodological approach depicted in Section 6.5, we based our 

investigation on the results of car-following model sensitivity analysis presented in 

Chapter 5. Therefore, we made use of the car-following model parameters estimated in 

case of the full model calibration experiment (i.e. all six IDM model parameters were 

calibrated) and of the reduced model calibration experiment (i.e. only two IDM model 

parameters were calibrated: the minimum time headway and the maximum desired 

speed). Lane-changing model parameter calibration was performed based on the full and 

reduced car-following model parameter estimations (the dependency of lane-changing 

model parameter estimation from car-following model estimation is detailed in 

Appendix D). 

Successively, we carried out two simulation experiments, where each vehicle entering 

the simulation was assigned with its set of car-following and lane-changing model 

parameters, estimated in case of full (the left-hand side of Figure 6.9) and reduced (the 

right-hand side of Figure 6.9) car-following model calibrations. 

It is worth noting that, as in the previous analysis, the inter-vehicle spacing was adopted 

as measure of performance in car-following model parameter calibration. For details, 

please refer to Chapter 5. 

On the other hand, individual vehicle trajectory data were aggregated over time and 

space in order to obtain aggregate measures to compare simulation results with. This 

allowed us to evaluate the impact of model simplification assumption of the “aggregate” 

model performances, by comparing simulated outputs with measured ones. 
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Figure 6.9: Conceptual framework to evaluate the impact of car-following model simplifications on 

aggregate traffic flow model simulation. Full (6 pars) and reduced (2 pars; minimum time headway and 

maximum desired speed) car-following and lane-changing model parameters are disaggregate estimated 

against reconstructed trajectory data. Successively, traffic flow is simulated using the overall microscopic 

simulator, where each vehicle is assigned with its estimated model parameters. Finally, aggregate 

simulation results with full and reduced model parameters estimations are compared with aggregated 

measurements over time and space. 

6.5.2 Results 

The comparison between measured and simulation results is conducted with respect to 

the following outputs: 

• time-space speed contour plots (Figure 6.10); 

• time-series of section density (Figure 6.11); 

• distribution of travel times (Figure 6.12); 

• distribution of the number of lane-changes (Figure 6.13). 
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Results are shown in Figures 6.10 – 6.13.  

Figure 6.10 presents the space-time contour plots of the Edie’s space mean speeds (Edie, 

1974) related the measured data (a), and to the simulated one in case of simulation 

experiment with model parameter estimated in case of full (b) and reduced (c) car-

following model.  

Figure 6.11 shows the comparison between time evolution of the measured (black line) 

and simulated section density in case of simulation experiment with full (magenta line) 

and reduced (cyan line) car-following model parameter estimations.  

Finally, Figures 6.12 and 6.13 present the comparison of the empirical distributions of 

section travel times (Figure 6.12) and number of lane changes (Figure 6.13) between 

measured and simulated data. It is worth noting that, as calibrations were performed 

against reconstructed data, measured and simulated (full model) outputs in Figure 6.10 – 

6.13 coincides with those in Figures 6.5 – 6.8. 

The comparison of the simulated speed contour plots with the measured one (Figure 

6.10) shows that the simulation results of the experiment with estimated parameters from 

the reduced car-following model calibration reproduced more accurately the shockwaves 

present in the measured data, in terms of both propagation and wave speed. Further, also 

the overall level of congestion is lower than in case of the experiment with estimated 

parameters from the full car-following model calibration, and closer to the 

measurements, as can be appreciated from the time-series of the simulated section 

densities in Figure 6.11. 

It is worth noting that in both the experiments emerged the so-called entrance 

congestion, highlighting a failure in the model to reproduce measured entrance 

conditions. For the interpretation of this phenomena, please refer to Section 6.4.2. 

In terms of travel time distributions (Figure 6.12), the higher speed levels in the HOV 

lane (i.e. around 20 seconds in the measured travel time distribution; see the grey bars) is 

“better” captured by the reduced model simulation, while the full model simulation 

results are closer in reproducing the measured distribution in the range of travel times 

between 40 seconds and 60 seconds. On the other hand, as pointed out above, the 

reduced model does not show the high congestion levels as in case of the full model (see 

the magenta bars in the left tale of the travel time distribution). 



Chapter 6 189 

 

 

Figure 6.10: Space-Time contour plots of Edie’s space mean speeds. (a) refer to measured data, 

while (b) and (c) to simulated data with parameters estimated in case of full and reduced model 

calibrations. 
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Figure 6.11: Time-series of the section density related to measured (black line) and simulated 

data, in case of simulation experiments with parameters estimated from full (magenta line) and 

reduced (cyan line) model calibration experiments. 

 

Figure 6.12: Empirical distribution of section travel times for measured (grey bars) and 

simulated data, in case of simulation experiments with parameters estimated from full (magenta 

bars) and reduced (cyan bars) model calibration experiments. 
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Figure 6.13: Empirical distribution of the number of lane-changes for measured (grey bars) and 

simulated data, in case of simulation experiments with parameters estimated from full (magenta 

bars) and reduced (cyan bars) model calibration experiments. 

Finally, a quite surprising results emerges from the comparison of the distribution of the 

number of lane changes per lane (Figure 6.13). From the figure, it appears that the lane-

changing model parameters estimated conditionally to the reduced car-following model 

(i.e. where only two parameters were calibrated) allowed the “aggregate” model to 

reproduce measured lane-changes distribution much better that in case of the estimation 

conditioned to the full car-following model calibration. 

Therefore, interesting conclusions can be drawn from the presented results.  Indeed, the 

comparison between the simulation results highlights that the reduced car-following 

model is likely to outperform the full car-following model at the “aggregate” level. This 

finding is quite surprising, as the reduced model had a greater estimation error, 

compared to the full model, at the “disaggregate” level (i.e. car-following model 

calibration against individual trajectory data). Although not a proof, this finding may be 

a symptom of model overfitting in the full model estimation against individual vehicle 

trajectory data, which, conversely, can be interpreted as a consequence of over-

parameterization. 
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6.6 Impacts of Parameter Correlation 

In this section, the inner objective is the evaluation of the impact of different driver 

behavioral model parameter correlation structures on “aggregate” model performances. 

Indeed, at the best of our knowledge, almost all commercial simulation packages (e.g. 

AIMSUN, 2012; VISSIM, 2011; PARAMICS, 2003), made the underlying assumption 

of uncorrelated normal distributed model parameters. However, as shown in Chapter 4, 

empirical distributions of driver behavioral model parameters (i.e. distribution of 

estimated model parameters) are far from being normal and present a clear correlation 

structure. 

Indeed, based on the findings discussed in Chapter 4, simulation experiments were 

carried out assuming the following different distribution models for model parameters: 

• Vehicle-specific estimated parameters, where each vehicle is assigned with its set 

of estimated (car-following and lane-changing) model parameters; 

• Sampling of model parameters from the joint empirical distribution of estimated 

model parameters (i.e. preserving the correlation structure); 

• Sampling of model parameters from the marginal empirical distributions of each 

estimated model parameters (i.e. considering model parameters uncorrelated); 

• Sampling of model parameters from marginal normal distributions of each 

estimated model parameters (i.e. neglecting estimated model distributions and 

considering model parameters uncorrelated); 

The methodology here applied is discussed in Section 6.6.1, while main findings are 

summarized in Section 6.6.2. 

6.6.1 Methodology 

The methodology applied in this analysis is described in Figure 6.14. 

Similarly to the methodological approach depicted in the previous sections, we based 

our investigation on the estimation results of car-following and lane-changing model 

parameter distribution (against reconstructed data) presented in Chapter 4. 
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Figure 6.14: Conceptual framework to evaluate the impact of different assumptions on parameter 

correlation structures on aggregate traffic flow model simulation. Based on the estimated model 

parameters (and correlation structures) against reconstructed data for each individual vehicle trajectory in 

the dataset, four different aggregate simulation experiments are performed: i) each vehicle is assigned with 

its set of model estimated parameters, ii) the set of model parameters is sampled from the joint empirical 

distribution, i.e. preserving correlation structures, iii) each model parameters is sampled from its marginal 

empirical distribution, i.e. neglecting parameter correlation, and iv) each model parameters is sampled 

from a marginal normal distribution (estimated on empirical sample). Aggregate simulation results from 

the four experiments are compared with aggregated measurements over time and space. 
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calibration on the inter-vehicle spacing (and related lane-changing model calibration) 

were applied herein. For details on this choice, please refer to Chapter 5. 
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Given the design of the experiment, the simulation with vehicle-specific estimated 

parameters (the blue box in Figure 6.14) is exactly the same as the one performed in 

Section 6.4 (tagged there as “simulation with parameters estimated on reconstructed 

data”) and in Section 6.5 (tagged there as “simulation with parameters estimated from 

full model calibration”). In this experiment, each vehicle entering the simulation was 

assigned with its set of estimated model parameters. Therefore, the simulation 

experiment is deterministic as no source of variability due to parameter sampling is 

introduced. 

Then, provided estimated model parameter distributions, we designed the remaining 

simulation experiments by sampling model parameters according to different sampling 

schemes. It is worth noting that, due to parameters’ sampling, the following simulation 

experiments were stochastic. Therefore, in order to account for such source of variability 

in model parametric inputs, we ran each simulation experiment 10 times (at fixed 

random seed), and adopting the same 10 different random sequences for all the 

simulation experiments. 

Further, in order to compare simulation outputs from these stochastic experiments with 

both the deterministic (i.e. vehicle-specific parameters assignment) simulation outputs 

and with measurements, we required a unique criteria to indentify the “representative” 

replication of a stochastic simulation experiment.  

In the literature, the definition of “representative” replication for a stochastic simulation 

experiment is still an open research topic and not conclusive indications were available. 

Indeed, from a practical point of view, one could perform a deterministic evaluation of 

model performances (considering the best replication or the median one) or even a 

probabilistic assessment, thus presenting results in terms of distributions and confidence 

intervals on time-series. Further, as several simulation outputs are available (e.g. 

quantities at detectors, section measurements, and so on), the choice of the measure of 

performance (MoP) at the “aggregate” level could have a great impact on analysis 

results. Finally, the uncertainty in the choice of the goodness of fit (GOF) function added 

increase the complexity of the analysis. 

However, since our intention was comparative and not exploratory, we decided to adopt 

a selection criteria common to all stochastic experiments, neglecting the degree of 

influence that the adopted MoP and GOF function could have on the results. Indeed, for 
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the study purpose, we adopted the sum of the Root Mean Square Errors (RMSE) 

between the simulated and measured time-series of the time mean speed at all detectors. 

Different aggregation interval were tested (30, 60 and 120 seconds) and the replication 

was selected based on the minimum value of the GOF function. 

On this basis, we performed different simulation experiments, sampling model 

parameter according to the following schemes: 

• Sampling from the joint empirical distribution of estimated model parameters (red 

box in Figure 6.14): in this case, a set of estimated (car-following and lane-

changing) model parameters was sampled and assigned to the vehicle entering the 

simulation, thus preserving the inner correlation structure among estimated model 

parameters; 

• Sampling from the marginal empirical distributions of each estimated model 

parameters (cyan box in Figure 6.14): in this case, each model parameter was 

independently sampled from its estimated distribution and assigned to the vehicle 

entering the simulation, thus assuming uncorrelated model parameters; 

• Sampling from marginal normal distributions fitted on the empirical distributions 

of each model parameters (green box in Figure 6.14): in this case, both the 

empirical distribution model and the estimated parameter correlation structure is 

neglected. 

On this basis, simulation results from the four experiments were compared with the 

measured outputs resulting from time-space aggregation of the (reconstructed) 

individual vehicle trajectory from the NGSIM I80-1 dataset. 
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6.6.2 Results 

The comparison between measured and simulation results is conducted with respect to 

the following measures of performances: 

• time-space speed contour plots (Figure 6.15); 

• time-series of section density (Figure 6.16); 

• distribution of travel times (Figure 6.17); 

• distribution of the number of lane-changes (Figure 6.18). 

Results are shown in Figures 6.15 – 6.18.  

Figure 6.15 presents the space-time contour plots of the Edie’s space mean speeds (Edie, 

1974) related the measured data (a), and to the simulated one in case of simulation 

experiment with vehicle-specific assigned parameters (b), parameters sampled from joint 

empirical (c), marginal empirical (d) and marginal normal (e) distributions. 

Figure 6.16 shows the comparison between time evolution of the measured and 

simulated section density in case of the four simulation experiments, while Figures 6.17 

and 6.18 present the comparison of the empirical distributions of section travel times 

(Figure 6.17) and number of lane changes (Figure 6.18). 

Results presented in Figures 6.15 – 6.18 highlighted important research outcomes. 

The visual inspection of the speed contour plots (Figure 6.15) clearly highlights that the 

simulation experiment with parameters sampled from marginal normal distributions 

(Figure 6.15(e)) reproduce observed traffic phenomena quite accurately. Indeed, the 

back-propagation of the three shockwaves present in the measured data is correctly 

reproduced, though with less intensity (see the absence of red zones, indicating speed 

levels lower than 10 kph, as compared to Figure 6.15(a)). Further, also the overall level 

of congestion in simulated outputs is much closer to the observed one. Finally, no sign 

of entrance congestion (for details, please refer to Section 6.4.2) is present in the 

simulated outputs. 

Similar trends, and even with more emphasis, can be appreciated in the time-series of the 

section density (Figure 6.16), where the simulated values in case of normal parameters 

sampling (the green profile) practically matches the observed density (the black profile) 

almost everywhere. 
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Figure 6.15: Space-Time contour plots of Edie’s space mean speeds. (a) refer to measured data, 

(b) to the simulated data from the experiment with vehicle-specific estimated parameters, (c) to 

the simulated data from the experiment with parameters sampled from joint empirical 

distribution, (d) to the simulated data from the experiment with parameters sampled from 

marginal empirical distributions, and (e) to the simulated data from the experiment with 

parameters sampled from normal marginal distributions.  
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Figure 6.16: Time-series of the section density related to measured (black line) and simulated 

data, in case of simulation experiments with vehicle-specific estimated parameters (blue line), 

and with parameters sampled from joint empirical (red line), marginal empirical (cyan line) and 

marginal normal (green line) distributions. 

 

Figure 6.17: Empirical distribution of section travel times for measured (grey bars) and 

simulated data, in case of simulation experiments with vehicle-specific estimated parameters 

(blue bars), and with parameters sampled from joint empirical (red bars), marginal empirical 

(cyan bars) and marginal normal (green bars) distributions. 
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Figure 6.18: Empirical distribution of the number of lane-changes for measured (grey bars) and 

simulated data, in case of simulation experiments with vehicle-specific estimated parameters 

(blue bars), and with parameters sampled from joint empirical (red bars), marginal empirical 

(cyan bars) and marginal normal (green bars) distributions. 

In terms of travel times distribution (Figure 6.17), simulated outputs from this 

experiment (green bars) outperformed the others and are able to match even the higher 

speed levels in the HOV lane (the peak in the frequency of lower travel times, around 20 

seconds) which, instead, is not captured in the other simulation experiments. 

Similar results can be also appreciated on the distribution of the number of lane-changes 

per lane (Figure 6.18). 

The findings described above are quite surprising and strongly unforeseen. Indeed, the 

analysis performed in Chapter 4 at the “disaggregate” level showed that the estimated 

distributions of model parameters were far from being normal, and with a clear 

correlation structure. Therefore, we expected to appreciate even more this difference at 

the “aggregate” level. However, results shown in Figure 6.15 – 6.18 did not confirm our 

guess.  

From a general point of view, more than the results, this preliminary analysis pointed out 

an important lack in the field research on the study of microscopic traffic flow 
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between the findings at the level of model components (sub-models) and their impact on 

aggregate traffic flow simulation. 

What emerges from the analysis is that the sum of components may be less than the 

aggregate model, meaning that the results of analysis at the disaggregate level (sub-

models) may not capture important aspects of aggregate traffic. 

Therefore, though “disaggregate” analysis deemed to have a great importance for 

modeling, there might be no relationship between the results at the “disaggregate” levels 

with those at the “aggregate” one. Indeed, preliminary findings shown in this section 

suggest that the study of sub-models could not be undertaken as a mean to infer on 

“aggregate” model performances. 

6.7 Summary 

In the previous Chapters, we applied the four-steps uncertainty management framework 

to car-following and lane-changing models, separately, in order to understand the impact 

of the different sources of parametric and non-parametric uncertainty on model 

performances. 

However, one could question about the impact of this findings at the level of the 

“aggregate” traffic flow simulation model. 

Therefore, in this Chapter we investigated the impacts on “aggregate” simulation model 

performances of the results from previous studies on sub-models. In particular, we 

focused on the following three topics: 

• Analysis of the impact of “disaggregate” model calibration in presence of 

measurement errors; 

• Analysis of the impact of “disaggregate” model simplifications; 

• Analysis of the impact of “disaggregate” model parameters correlation; 

For the scope, a trace-driven “aggregate” microscopic traffic flow simulation model was 

designed in order to evaluate model performances with respect to the measured data 

from the (reconstructed) NGSIM I80-1 dataset. 

Main findings are summarized in the following. 
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Similarly to the findings on sub-models, measurement errors in individual vehicle 

trajectory data play a little role on “aggregate” simulation model performances, and 

timidly suggest that the simulation outputs from the experiment with parameters 

estimated in presence of measurement errors present higher level of congestion. 

Moving to the analysis of the impact of model simplifications, the comparative study 

suggest that the reduced car-following model (i.e. where only most influential model 

parameters were estimated) is likely to outperform the full one at the “aggregate” level. 

This finding is quite surprising, as the reduced model had a greater estimation error, 

compared to the full model, at the “disaggregate” level (i.e. car-following model 

calibration against individual trajectory data). Although not a proof, this finding may be 

a symptom of model overfitting in the full model estimation against individual vehicle 

trajectory data, which, conversely, can be interpreted as a consequence of over-

parameterization. 

Finally, results from the analysis of the impact of parameter correlation structures on 

“aggregate” simulation model performances suggested that the “disaggregate” 

calibration of sub-models may not capture important aspects that, in turn, can be 

revealed only when focusing directly on the “aggregate” model. Indeed, though 

“disaggregate” analysis deemed to have a great importance for modeling itself (e.g. 

understanding model behavior), there might be no relationship between the results at the 

“disaggregate” levels and those at the “aggregate” one. Indeed, results suggest that the 

study of sub-models could not be undertaken as a mean to infer on “aggregate” model 

performances. 
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Chapter 7 

Conclusions 

7.1. Summary 

In this dissertation thesis, we proposed and specified a common methodological 

framework for quantitative management of uncertainty in microscopic traffic flow 

simulation modeling.  

The approach followed in this study (Chapter 1) builds up on techniques, initially 

established in the industrial practice, that are increasingly applied in many modeling 

fields including environmental, climate and financial ones, as well as, in system 

reliability and risk analysis. 

In Chapter 2, we presented the specialization of the conceptual framework for 

quantitative uncertainty assessment to the study of microscopic traffic flow simulation 

models. In particular we showed that different sources of uncertainty may invest 

microscopic traffic flow simulation modeling at multiple levels. On this basis, we 

investigated how parametric and non-parametric sources of uncertainty affect model 

performances in reproducing measured vehicle trajectory data. It is worth noting that the 

focus of this study is on driver behavioral models only, and, specifically, on well-known 

car-following and lane-changing models proposed in the literature. In the following, a 

summary of each chapter related to the steps of the uncertainty management cycle is 

presented. 
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In Chapter 3 we explored the impact of the uncertainty in the calibration procedure on 

the results of car-following model parameter calibration. The model investigated in this 

Chapter was the well-known Gipps car-following model (Gipps, 1981). We proposed a 

methodological framework to verify the suitability of a calibration setting – here 

intended as the combination of the optimization algorithm, the goodness of fit function 

and the measure of performance – in finding the global solution of a “black-box” 

optimization problem. The methodology was based on the use of synthetic vehicle 

trajectory data, as this is the only way to ascertain the ability of a calibration setting to 

discover the global optimum. Compact indicators were proposed to evaluate the 

capability of a calibration setting to find the “known” global solution, in terms of both 

the accuracy and robustness. Then, a novel graphic inspection method, based on the so 

called Cobweb plots, was used to explore the existence and the nature of the local 

minima found by the algorithms, as well as to give insights into the measures of 

performance and the goodness of fit functions used in the calibration experiments. 

In Chapter 4, we focused on measurement errors in vehicle trajectory data, and evaluated 

their impact on the results of driver behavioral model parameter calibration. To this aim, 

we used vehicle trajectory data from the NGSIM I80 dataset, whose low degree of 

accuracy in terms of several criteria is widely recognized in the transportation 

community. Therefore, we first proposed a multi-step procedure for vehicle trajectory 

reconstruction. The methodology aimed at eliminating the main inconsistencies and 

noise from raw measurements while preserving i) the actual driving dynamics (vehicle 

stoppages, shifting gears, etc.), ii) the internal consistency of trajectories (i.e. the 

consistency among space travelled, speed and acceleration) and iii) the platoon 

consistency (i.e. the actual inter-vehicle spacing). Successively, provided both raw and 

reconstructed  vehicle trajectory data, we evaluated the impact of (real) measurement 

errors on results of car-following and lane-changing model parameter calibration. In 

particular, calibration results showed that the model operates like a “filter”,  and the 

impact of the measurement errors on parameter estimation (and on their correlation 

structures) is very limited. These findings are not in line with the results of Ossen and 

Hoogendoorn (2008a, 2009) where calibration experiments were performed using 

synthetic data with normally distributed error structures added ex-post. A possible 

explanation of such difference could be due to the considerably different structure of the 

error ,which was empirically obtained here by comparing raw and reconstructed data. 
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In Chapter 5, we focused on the asymmetry in the importance of driver behavioral model 

parameters in influencing the variability of model performances. Therefore, we proposed 

a methodological framework to verify whether it is possible to reduce the number of 

parameters to calibrate without sensibly affecting the capacity of the model to reproduce 

the true output variance. To this aim, variance-based sensitivity analysis is applied, in a 

factor fixing setting, to the Intelligent Driver Model (IDM, Treiber et al., 2000). Since 

results of a sensitivity analysis are conditioned to the values of the fixed inputs, one 

could argue that ranking of importance of car-following model parameters is specific to 

the selected leader/follower vehicle trajectory, which is respectively used for model 

simulation and estimation error calculation. Therefore, in the proposed framework we 

considered also the input trajectories as uncertain, and the investigation has been 

extended by including all the trajectories of the NGSIM I80-1 dataset, as reconstructed 

in Chapter 4. Besides the robustness of the analysis with regards to the factor fixing 

setting, the inclusion of more than two thousands input trajectories allowed us to 

investigate the model against a significant variety of driver behaviors. Results showed 

that the input trajectory is the most influential factor both in terms of first-order effect 

and in interactions with the model parameters. The variance of the model error 

conditional on the input trajectory – a function of the parameter combination sampled – 

has been therefore suggested as a measure of the “risk” of choosing a non-optimal model 

parameter combination: the higher the variance, the higher the risk of incurring in big 

modeling errors. It has also been shown, graphically, that such a variance is a decreasing 

function of the trajectory duration. This is an empirical evidence that car-following 

models should be calibrated on “long” trajectories. Based on the outlined sensitivity 

ranking of model parameters, we proposed two alternative model simplifications by 

fixing the non-influential parameters to common values adopted in the literature, and 

assessed their performances in comparison with the original model formulation where all 

parameters were considered uncertain. Comparison results confirmed that performances 

of the reduced model are very close to the full model ones, with an average increase of 

about 6% in the estimation error on speeds, and 30% on spacing. On the other hand, 

model simplifications turned into a remarkable benefit in the computational effort 

required for model calibration, reducing of about 50% the number of model evaluations 

needed for convergence of the optimization algorithm. 
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Finally, in Chapter 6, we explored the relationship between “disaggregate” model 

calibration and simulation performances of a micro-simulation software. Indeed, in 

micro-simulation software, driver behavioral models strongly interacts with each other 

in order to emulate traffic flows. However, there is no explicit relationship between the 

results of analyses carried out on each model component separately – here indicated as 

“disaggregate” models or sub-models – and the performances of micro-simulation 

software – here indicated with “aggregate” model. Therefore, we investigated the impact 

of different sources of uncertainties in “disaggregate” modeling on “aggregate” 

simulation performances.  

In particular, based on the results of Chapter 4, we evaluated the impact of measurement 

errors in vehicle trajectory data on “aggregate” performances. Results showed that, 

similarly to the findings on sub-models, measurement errors in individual trajectory data 

play a little role on “aggregate” simulation performances.  

Further, based again on the results of Chapter 4, we investigated the impact of model 

parameter correlation structures on “aggregate” simulation performances. Interestingly, 

results suggested that the analysis of sub-models may not capture important aspects that 

can be revealed only when focusing directly on the “aggregate” model. Indeed, though 

“disaggregate” analysis deemed to have a great importance for modeling itself (e.g. 

understanding model behavior), correlation structures estimated at the “disaggregate” 

levels may have a great impact on “aggregate” performances, and there might be no 

relationship between the results at the “disaggregate” levels with those achievable at the 

“aggregate” one.  

Based on results of Chapter 5, we explored the impact of disaggregate model 

simplifications on the simulation performances of the aggregate model. Results suggest 

that the reduced model (i.e. where only most influential model parameters were 

estimated) is likely to outperform the full model at the “aggregate” level. This finding is 

quite surprising, as the reduced model had a greater estimation error, compared to the 

full model, at the “disaggregate” level (i.e. car-following model calibration against 

individual trajectory data). Although not a proof, this finding may be a symptom of 

model overfitting in the full model estimation against individual vehicle trajectory data, 

which, conversely, can be interpreted as a consequence of over-parameterization. 
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7.2 Contributions 

In this section we summarized the main contributions of the dissertation thesis to the 

state-of-the-art in the field of microscopic traffic flow simulation modeling. The 

following list is provided by research topic, and thus multiple contributions on the same 

subject were aggregated. 

• We presented and applied a methodological framework for the management of both 

parametric and non-parametric sources of uncertainty in microscopic traffic flow 

simulation models. Specifically, we focused on driver behavioral models only, i.e. 

car-following and lane-changing models. The methodological approach followed in 

this thesis is based on an ensemble of techniques established in the industrial 

practice and increasingly applied in many modeling fields including environmental, 

climate and financial ones, as well as, in system reliability and risk analysis. The 

framework relies on the following four steps: i) problem specification, ii) 

uncertainty modeling, iii) uncertainty propagation and iv) sensitivity analysis.  

• We quantified the uncertainty entailed in the calibration procedure, and its impacts 

on the accuracy and reliability of results. For the scope, we proposed a general 

framework to verify the goodness of a calibration setting, based on the use of 

synthetic data. The robustness of the calibration setting was then quantified through 

a set of synthetic indicators and the use of graphical methods, such as the Cobweb 

plots. The methodology was apply to evaluate the correctness and robustness of 

most of the calibration settings specified in the literature – i.e. different combination 

of the choice of the measure of performance, the goodness of fit  function and the 

optimization algorithm. 

• We proposed a robust methodology for the “disaggregate” calibration of car-

following and lane-changing models against individual vehicle trajectory data. With 

regards to the calibration of car-following models, the novelty of the approach 

consists in considering a goodness of fit function evaluated in the frequency 

domain, that allow a robust comparison between observed and simulated time-series 

of the measure of performance. With regards to the calibration of non-stochastic 

lane-changing models, the approach relies on the innovative concept of “scenario” 

which allows to test the model capability of reproducing observed lane-changing 

choices preserving correlation among input variables. 
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• We explored the impact of measurement errors in vehicle trajectory data on results 

of car-following and lane-changing model calibrations. For the scope, we proposed 

a general procedure for vehicle trajectory reconstruction, aimed at eliminating the 

main inconsistencies and noise from raw measurements while preserving i) the 

actual driving dynamics (vehicle stoppages, shifting gears, etc.), ii) the internal 

consistency of trajectories (i.e. the consistency among space travelled, speed and 

acceleration) and iii) the platoon consistency (i.e. the actual inter-vehicle spacing). 

The procedure was applied to the NGSIM I80-1 dataset and successfully restored 

data consistency. Reconstructed data are publicly available for downloading on the 

MULTITUDE website (MULTITUDE, 2014).  

• We proposed a robust methodology to simplify models based on the identification 

of the parameters of microscopic traffic flow simulation models that have greater 

influence on the variability of model output. To this aim, variance-based techniques 

for global sensitivity analysis are formulated in a factor fixing setting. Among the 

main contributions are: i) a novel formulation for the factor fixing setting, where the 

“model performance”, instead of the “model output”, is adopted as quantity of 

interest (i.e. a measure of the distance between simulation and reality); ii) a robust 

design of the Monte Carlo framework for the sensitivity analysis that also includes, 

as an analysis factor, the main non-parametric input of car-following models that is 

the leader’s trajectory; iii) a set of general criteria for “data assimilation” in car-

following models, i.e. to set the parameter bounds for the model sensitivity analysis 

and calibration. 

• We developed a microscopic traffic flow simulation tool to perform a trace-driven 

simulation studies. This allowed us to evaluate the impact of measurement errors in 

vehicle trajectory data, of correlation structure among estimated model parameters, 

and of different model simplifications, on the performances of the “aggregate” 

simulation model. 

• We reviewed the existing literature formulation of the Gipps car-following model 

(Gipps, 1981), and proposed an enhanced model version in order to generalize the 

“acceleration component” of the model. 
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7.3 Final Considerations 

We divided this section into five parts. The first part contains general considerations that 

summarize the most relevant findings from all chapters. The remaining four parts pertain 

to the findings of Chapter 3 (uncertainty in the estimation procedure), Chapter 4 

(uncertainty in vehicle trajectory data), Chapter 5 (sensitivity analysis of driver 

behavioral models), and Chapter 6 (impacts on “aggregate” simulation performances). 

7.3.1 General considerations 

• A methodological framework for the quantitative management of the different 

sources of uncertainty entailed in traffic flow simulation models is deemed to be 

necessary to enhance credibility of such models and the reliability of their 

predictions. 

• Global Sensitivity Analysis can support model development at different levels. In 

particular, it can be adopted to guide i) model simplifications, based on the 

identification of the importance ranking of parametric inputs, ii) model verification, 

to ascertain whether the model is overly dependent on fragile 

assumptions/structures, and iii) parameter identification, based on the recognition of 

critical regions in the space of parameters that lead to undesirable model behaviors 

(e.g. unrealistic stop-and-go wave speed).  

• There is a non-trivial relationship between results of the analyses performed on 

driver behavioral models – here referred as “disaggregate” level of investigation – 

and the results of a traffic micro-simulation – here referred as “aggregate” level of 

investigation – where different sub-models (e.g. car-following and lane-changing 

models) constantly interact with each other as to emulate traffic flows. This reflects 

in the fact that the adoption of model parameters estimated by “disaggregate” 

calibration does not necessarily imply “optimal” simulation performances at the 

“aggregate” level. 
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7.3.2 Uncertainty in model calibration procedure 

• The compensation of the modeling errors and of the system irreducible uncertainty 

is the basic theoretical motivation for the indirect estimation of model parameters in 

traffic simulation. Conversely, it generally advises against the direct estimation of 

the observable parameters, namely, of those parameters which have a physical 

equivalent in the reality and can be directly measured, like for example the reaction 

time or the maximum acceleration in car-following models. 

• In car-following model calibration, the choice of the measure of performances, 

goodness of fit function and optimization algorithm have a great impact on the 

quality of the solution, i.e. the estimated model parameters. This confirmed the 

complexity of the problem of calibrating car-following models against real 

trajectory data. More specific conclusions follow: 

o GOF functions based on the GEH statistics are highly affected by the setting of 

the threshold value. When used in calibration, a wrong setting of this value lead 

to the loss of uniqueness of the global solution, even in the case of optimization 

problems on synthetic data, where the global minimizer is unique and well-

defined. 

o The Downhill Simplex proved to be not suitable for model calibration. Further, 

the heuristics was very sensible to the initial starting condition, providing very 

different sets of optimal parameters depending on the starting point. 

o The Genetic Algorithm and the OptQuest Multistart robustly and repeatedly 

found the global solution in a synthetic experiment, and therefore are very 

likely to be adopted in calibration studies. 

o Calibrating the model against the spacing between the leader and the follower 

gives acceptable results also in terms of the vehicle speed, while the opposite is 

not equally true. 

o The use of mixed GOF functions that combine both the MoPs (speed and 

spacing), such as the sum of Theil’s Inequality coefficients, performed worse 

than other functions evaluated on speed or on spacing. Further, the use of 

absolute measures of the distance between observed and (model) simulated 

outputs, such as the MAE, entails very low efficiency in the optimization, as 



Chapter 7 211 

 

they require a high number of evaluations of the objective functions to satisfy 

the same stopping rules adopted with the other GOF functions. Moreover, the 

improvements in finding the global minimizer are negligible. 

7.3.3 Uncertainty in vehicle trajectory data 

• Vehicle trajectory data from the NGSIM Program (2005) are affected by a large 

amount of measurement errors, which limit their applicability for any studies in the 

traffic flow theory. In particular, two types of measurement errors can be 

recognized: the measurement errors in the “LocalYs” that produce the greatest bias 

in the accelerations – here called outliers – and the residual errors (noise). These 

errors considerably alter both internal and platoon consistency of vehicle trajectory 

data. 

• The impact of measurement errors in vehicle trajectory data on results of 

“disaggregate” calibration of car-following and lane-changing model parameters is 

very limited. In facts, results showed that the model operates like a “filter”. These 

findings are not in line with the results of Ossen and Hoogendoorn (2008a, 2009) 

where calibration experiments were performed using synthetic data with 

uncorrelated Gaussian error structures added ex-post. A possible explanation of 

such difference could be due to the substantially different distribution model of the 

real error structure, which is here obtained empirically by comparing raw and 

reconstructed data. 

7.3.4 Global Sensitivity Analysis of driver behavioral models 

• Results of the global sensitivity analysis carried out on car-following models 

showed that the leader’s trajectory is considerably more important than the 

parameters in affecting the variability of model performances. Results also unveiled 

that such variability is a function of the trajectory duration. In particular, as long as 

duration increases – and so does the exposition to car-following dynamics – the 

variability of model performances over the parameters’ space diminishes. This 

confirms that in order to encompass heterogeneity of driver behaviours, model 
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parameters need to be calibrated, and that long trajectories are required for robust 

estimation. 

• A strong asymmetry in the sensitivity of model parameters translated into a very 

small number of parameters accounting for most of the variability of model output 

and, consequently, influencing model performances. In the case of the Intelligent 

Driver Model (IDM; Treiber, 2000), among the six model parameters, the 

“minimum time headway” explained most of the variance of the error measure, 

followed by “alpha”, “maximum acceleration” and “maximum speed”. Further, the 

importance ranking of IDM parameters was the same when using speed or spacing 

as measure of performance, though the magnitude of parameter sensitivity resulted 

different between the two. 

• Performances of the simplified models based on the importance ranking, i.e. by 

fixing non-influential parameters to common values adopted in the literature, are 

very similar to those of the original model version, where all parameters were 

considered uncertain. On the other hand, model simplifications turned into a 

remarkable benefit in the computational effort required for model calibration. 

7.3.5 Impacts on aggregate simulation performances 

• Measurement errors in individual vehicle trajectory data play a little role on 

aggregate simulation performances, and timidly suggest that the simulation outputs 

from the experiment with parameters estimated in presence of measurement errors 

present higher level of congestion. 

• Results from the analysis of the impact of parameter correlation structures on 

aggregate simulation performances suggested that the “disaggregate” calibration of 

driver behavioral models may not capture important aspects that, in turn, can be 

revealed only when focusing directly on the “aggregate” simulation model. More 

specifically, correlation structure among model parameters substantially influence 

“aggregate” simulation performances. Further, “disaggregate” calibration of model 

parameters does not necessarily imply “best” simulation performances of the 

“aggregate” model. 
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• Moving to the analysis of the impact of model simplifications on “aggregate” 

performances, the comparative study suggest that the reduced model (i.e. where 

only most influential model parameters were estimated) is likely to outperform the 

full model at the “aggregate” level. This finding is quite surprising, as the reduced 

model had a greater estimation error, compared to the full one, at the “disaggregate” 

level. Although not a proof, this finding may be a symptom of model overfitting in 

the full model estimation, which, conversely, can be interpreted as a consequence of 

over-parameterization. 

7.4 Future research 

Future research is crucial to exploit the full potential of microscopic traffic flow 

simulation models in traffic forecasting. In particular, the following research lines may 

be addressed: 

• To investigate the relationship between the variability of real-world observations 

(day-to-day variability of supply/demand) and the stochasticity predicted by the 

model. 

• To perform uncertainty management of microscopic traffic flow simulation software 

where both the demand and supply are considered uncertain, whereas current 

simulation practice does consider only variability in the supply. 

• To seek for “global” Goodness of Fit (GOF) functions able to capture the inner 

structure/driving behaviour/driving style contained in the trajectory data, as 

expressed/interpreted by the specific model in use. This is also in the course of the 

recent studies performed by Chiabaut et al. (2010). Local GOF indeed are sensitive 

to errors in the data, and especially least square ones tend to compensate errors over 

the whole length of the trajectory; 

• To develop methodologies to appropriately bound the space of the admissible inputs 

in order to preserve the well established macroscopic characteristics of the traffic 

flow (e.g. maximum stop-and-go wave speed at population level). This can be 

envisaged by performing Regionalized Sensitivity Analysis of model outputs 

following a Monte Carlo Filtering approach (e.g. Young et al., 1978; Hornberger 

and Spear, 1981; Spear et al., 1994; Young et al. 1996; Young 1999). 
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Appendix A 

Global Sensitivity Analysis Techniques Based on 
Sobol’ Decomposition of Variance 

A.1 Introduction 

Variance-based methods have assessed themselves as versatile and effective among the 

various available techniques for sensitivity analysis of model output. 

Variance based methods have a long history in sensitivity analysis. They start with a 

Fourier implementation in the seventies (Cukier et al., 1973), and have a milestone in the 

work of Sobol’ (1993). The total sensitivity indices have been introduced by Homma 

and Saltelli (1996), although the concept was proposed in Jansen et al. (1994). For 

reviews, see Helton et al. (2006), Saltelli et al. (2008). 

The Appendix is organized as follows. Section A.2 presents the mathematical 

formulation based on the Sobol’ decomposition of variance. Possible settings for 

numerical calculation of the sensitivity indices are provided in Section A.3, while some 

remarks on the application of these techniques are reported in Section A.4. 

A.2 Mathematical Formulation 

Given a model of the form Y = f (X1, X2, . . . Xk), with Y a scalar, a variance based first-

order effect for a generic factor Xi can be written as (see notations in Table A.1): 
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Table A.1: Notations. 

N Sample size 

k Number of factors 

Xi Generic factor 

xj,i Generic value for factor Xi taken from row j of Xi 

Y Generic scalar model output equal to Y = f (X1, X2, . . . , Xk) 

X N ×k matrix of input factors 

A, B N ×k sample matrices of input factors 

X ~ i N ×(k −1) matrix of all factors but Xi 

A(i)
B Matrix, where column i comes from matrix B and all other 

k −1 columns come from matrix A 

 B(i)
A Matrix, where column i comes from matrix A and all other 

k −1 columns come from matrix B 

 NT Total cost of a sensitivity analysis in terms of model evaluations 

VXi (·), EXi (·) Variance or mean of argument (·) taken over Xi 

VX~i (·), EX~i (·) Variance or mean of argument (·) taken over all factors but Xi 

  

( )( )i~iX X|YEV
i X          (A.1) 

where Xi is the i-th factor and X~i denotes the matrix of all factors but Xi. The meaning of 

the inner expectation operator is that the mean of Y is taken over all possible values of 

X~i while keeping Xi fixed. The outer variance is taken over all possible values of Xi. The 

associated sensitivity measure (first order sensitivity coefficient) is written as: 

( )( )
( )YV

X|YEV
S i~iX

i
i X=         (A.2) 

Due to the known identity (Mood et al., 1974): 

( ) ( )( ) ( )( )i~iXi~iX X|YVEX|YEVYV
ii XX +=       (A.3) 

Si is a normalized index, as ( )( )i~iX X|YEV
i X  varies between zero and ( )YV . 

( )( )i~iX X|YEV
i X  measures the first-order (e.g. additive) effect of Xi on the model output, 

while ( )( )i~iX X|YVE
i X  is customarily called the residual. 
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Another popular variance-based measure is the total effect index (Homma and Saltelli, 

1996; Saltelli and Tarantola, 2002): 

( )( )
( )

( )( )
( )YV

|YEV
YV

|YVE
ST iX~iiX~i

i
ii ~X~X XX

−== 1      (A.4) 

STi measures the total effect, i.e. first- and higher-order effects (interactions) of factor Xi. 

One way to visualize this is by considering that ( )( )iX~i |YEV
i ~X X  is the first-order effect 

of X~i, so that ( ) ( )( )iX~i |YEVYV
i ~X X−  must give the contribution of all terms in the 

variance decomposition which do include Xi. 

The decomposition equations describing the variance-based framework is given in the 

following. These apply to a square integrable function Y = f (X1, X2, . . . Xk) defined over 

Ω, the k-dimensional unit hypercube: 

{ }k,...,xxX i 1 ;10 =≤≤=Ω          (A.5) 

We further suppose that the factors are uniformly distributed in [0, 1]. The steps of a 

variance-based framework are as follows: 

• Functional decomposition scheme: 

∑∑∑
= >=

++++=
k

i
k,...,,

k

ij
j,i

k

i
i z...zzzz

1
21

1
0        (A.6) 

where zi = zi(Xi), zi,j = zi,j(Xi , Xj) and so on for a total of 2k terms, including z0. Each term 

is square integrable over Ω. Eq. (A.6) is known as Hoeffding decomposition. See Archer 

et al. (1997), Rabitz et al. (1997) for reviews, and Efron and Stein (1981), Sacks et al. 

(1989), Sobol’ (1993) for useful reading. The unicity condition for Eq. (A.6) is granted 

by Sobol’ (1993): 

( ) 0 
1

0
2121

=∫ WSS iiiii,...,i,i dxx,...,x,xz        (A.7) 

where 1 ≤ i1 < i2 < … < iS ≤ k and iW ∈ {i1, i2, . . . , is}. The functions zi1,i2,...,is are 

obtained from: 

z0 = E(Y), zi = EX~i (Y | Xi) − E(Y), zi,j = EX~ij (Y | Xi, Xj) – zi – zj – E(Y)   (A.8) 

and similarly for higher-orders. 
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• Relation between functions zi1,i2,...,is and partial variances in Eq. A.9 (Sobol’, 

1993): 

( )[ ] ( )[ ]i~iXiii XYEVXzVV
i X==  

( )[ ] ( )[ ] ( )[ ] ( )[ ]j~jXi~iXjij,~iX,Xjij,ij,i XYEVXYEVX,XYEVX,XzVV
jiji XXX −−==  

and so on for higher-order terms. All terms are linked by: 

( ) ∑∑∑
= >=

+++=
k

i
k,...,,

k
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k

i
i V...VVYV
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1
       (A.10) 

Dividing both sides of the equation by V(Y), we obtain: 

1
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k,...,,
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ij
j,i

k

i
i S...SS        (A.11) 

Relations for the second and higher-order terms in Eq. (A.9) as well as formula Eq. 

(A.10) hold if the factors are independent, which is the setting adopted throughout the 

present work1

Note that given the assumption of independence of input factors we may avoid to 

explicitly include the probability distribution function pi of factor Xi in the integrals for 

the estimates of functions in Eq. (A.8). This implies that notation

. 

( )∫ iii dxxz  can be used 

in place of the more verbose ( ) ( )∫ iiii dxxpxz   as the factors pdf may be embedded in the 

function zi(xi). Without loss of generality all factors can be conceived as defined in Ω 

and the mapping from Ω to the actual distribution of Xi is intended to be part of the 

definition of z. 

 

                                                   
1 Independency assumption implies that model parameters are uncorrelated. This is a very strong 

hypothesis, as parameters of microscopic traffic flow simulation models were shown to show a certain 

degree of correlation among each other (for details, please refer to Chapter 4). However, an enhanced 

methodological framework to deal with dependent or correlated input factors is currently under 

investigation by the field research (see Jacques et al., 2006; Mara and Tarantola, 2011; Kucherenko et al., 

2012). Notwithstanding, we applied such established framework throughout the study, being conscious of 

its limitation. 
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Indices Si, STi can also be interpreted in terms of expected reduction of variance. This 

interpretation also holds when the input factors are not independent (Saltelli and 

Tarantola, 2002): 

- ( )( )i~iX X|YEV
i X  is the expected reduction in variance that would be obtained if Xi 

could be fixed. 

- ( )( )iX~i |YVE
i ~X X  is the expected variance that would be left if all factors but Xi 

could be fixed. This holds since ( )( )iX~i |YEV
i ~X X  is the expected reduction in 

variance that would be obtained if all factors but Xi could be fixed. 

For this reason, Jansen (1999) calls ( )( )i~iX X|YEV
i X  and ( )( )iX~i |YVE

i ~X X  top and 

bottom marginal variances, respectively. For additive models the two terms coincide, as 

STi may be simply viewed as Si plus all (null) interaction terms including factor Xi. 

A.3 Numerical Calculation Settings 

We discuss here existing estimators to compute in a single set of simulations both sets of 

indices Si and STi. A more exhaustive review on topic can be found in Saltelli el al. 

(2008). 

By “simulation” we mean here the computation of an individual value for Y 

corresponding to a sampled set of k factors X1, X2, . . . , Xk. 

We imagine to have two independent sampling matrices A and B, with aj,i and bj,i as 

generic elements. The index i runs from 1 to k, the number of factors, while the index j 

runs from 1 to N, the number of simulations. We now introduce matrix A(i)
B (B(i)

A) 

where all columns are from A (B) except the i-th column which is from B (A). Si can be 

computed from either the couple of matrices A, B(i)
A or B, A(i)

B, e.g.: 

( )( ) ( ) ( )[ ] 2
0

1

1 fff
N

X|YEV
N

j
jji~iXi
−⋅= ∑

=

(i)
AX BA      (A.12) 

where (B)j denotes the j-th row of matrix B (Sobol’, 1993). 

The computation of STi proceeds from definition Eq. (A.4), where ( )( )iX~i |YEV
i ~X X  is 

obtained from Homma and Saltelli (1996): 
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( )( ) ( ) ( )[ ] 2
0

1

1 fff
N

|YEV
N

j
jj~i~i~i −⋅= ∑

=

(i)
BXX AAX      (A.13) 

Eqs. (A.12) and (A.13) were derived following the approach outlined in Ishigami and 

Homma (1996) and Saltelli (2002). A review is found in Saltelli et al. (2010). 

According to Eqs. (A.12) and (A.13) all that is needed to compute both sets of Si and STi 

for the k factors is the triplet of matrices A, B, B(i)
A , or alternatively (equivalently) A, B, 

A(i)
B. As shown in Saltelli et al. (2010), the latter setting is proved to perform better 

when the adopted sampling scheme to build the matrices A, B is based on the Sobol’ 

quasi-random sequences (Sobol’, 1992). For the above reason, this setting was adopted 

in the present work. 

2N simulations are needed for computing Y corresponding to matrices A, B while kN 

simulations are needed to compute Y from matrices A(i)
B for all factors. As a result the 

cost of the analysis is N · (k + 2) with N a sufficiently large number to guarantee 

numerical stability for calculated indices. 

As shown in Saltelli et al. (2010), the estimator for Si has been improved by Saltelli 

(2002) and Sobol’ et al. (2007), who proposed: 

( )( ) ( ) ( ) ( ) ( )[ ]∑
=

−⋅−=
N

j
jjji~iX fff

N
YVX|YEV

i
1

1 (i)
BX AAA     (A.14) 

Finally, in Saltelli et al. (2010), the authors suggested a further improvement which uses 

the triplet A, B, A(i)
B, instead of the original formulation which uses A, B, B(i)

A, as for 

the performance benefit related to the use of Sobol’ quasi-random sequences. 

A numerical improvement of estimator for STi has been proposed in Sobol’ (2007): 

( )( ) ( ) ( )[ ] 2
0

1

1 fff
N

|YEV
N

j
jj~i~i~i −⋅= ∑

=

(i)
BXX AAX       (A.15) 

An alternative formulation of the estimator for STi has been proposed by Jansen (1999), 

which improves the computational convergence of the calculation. Jansen’s formula 

proceeds via ( )( )iX~i |YVE
i ~X X  rather than via ( )( )iX~i |YEV

i ~X X : 

( )( ) ( ) ( )[ ]∑
=

⋅=
N

j
jjiX~i ff

N
|YVE

i
1

2

2
1 (i)

B~X AAX       (A.16) 
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Based on the best-practices for the calculation of sensitivity indices reported in Saltelli et 

al. (2010), in the present study we applied Eq. (A.14) for the calculation of Si, and Eq. 

(A.16) for the calculation of STi. 

For a discussion on the available computation schemes for the design of the triplet A, B, 

A(i)
B, please refer to Saltelli et al. (2010). 

A.4 Caveats 

Variance-based methods are powerful in quantifying the relative importance of input 

factors or groups. The main drawback of variance-based methods is the cost of the 

analysis, which, in the case of computationally intensive models, may become 

prohibitive even when using the approach described above. 

In the framework reviewed in this Appendix, N · (k + 2) model runs for a full set of Si 

and STi require the adoptions of at least N = 1000. 

In terms of computational time, thousands or tens of thousands of model executions can 

be either trivial or unfeasible, depending on the model at hand. A viable alternative for 

computationally expensive models is the adoption of a screening technique, such as the 

Elementary Effect test which is a good proxy for the total sensitivity indices. 

A double step framework could be set up in case of expensive and high-parameterized 

models, where the Elementary Effect test can be used to reduce the number of factors, 

and a successive variance-based analysis can be run only on the reduced set of factors. 
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Appendix B 

Gipps’ Car-Following Model: An Enhanced 
Version 

B.1 Introduction 

The contents of this Appendix are reported in Ciuffo et al. (2012b). 

In 1981, in the vol. 15B of the Transportation Research Part B journal, an article by P.G. 

Gipps appeared with the title “A behavioural car-following model for computer 

simulation” (Gipps, 1981). This paper was bound to have a considerable impact in the 

traffic flow theory and practice, and the model described therein to be widely known as 

the Gipps’ car-following model. 

Car-following models try to explicitly reproduce the complex dynamics governing the 

actions of the driver/vehicle system, while following another vehicle. Dozens of car-

following models have been presented hitherto and several new ones are continuously 

proposed (the reader can refer to various sources presenting a clustered review of the 

topic, such as in Brackstone and McDonald, 1999; Helbing, 2001; Cao and Yang, 2009), 

based on different assumptions regarding the driving strategy adopted by a vehicle to 

adapt its speed to the presence of an immediate vehicle downstream in the same lane. 

Car-following models have two main applications: i) modeling the “aggregate” traffic 

propagation and evolution, and ii) modeling the microscopic behaviour of the vehicle 
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during a “follow-the-leader” activity. In the first case, car-following models are usually 

included within a broader modeling framework of micro-simulation software, as 

depicted in Chapter 2. In the second case, car-following models are mainly used in the 

design of on-board devices to assist drivers keeping safe and comfortable driving 

conditions (e.g. intelligent speed adaptation systems, collision avoidance systems, etc.). 

One reason for a high number of car-following models proposed could be motivated by 

their overall incapability to reproduce both traffic propagation and driving interactions 

without relying upon the over-fitting produced by their parameters, with some of them 

usually unnecessary and/or without a clear physical interpretation (this certainly poses 

serious concerns about their capability to reproduce unpredictable conditions). As a 

result, most of the applications using car-following models usually adopt the less recent 

“classical” models. The Gipps’ car-following model is one of them. 

Reasons for the fascination of the Gipps’ model primarily resides in the clear physical 

context adopted in its derivation: a driver adapts its speed in order to i) smoothly reach 

the desired speed or ii) safely proceed behind its leader. In addition, Wilson (2001) 

demonstrated that, similarly to other “reductionist models” like that of Bando et al. 

(1995), the Gipps’ model may allow a uniform traffic flow to lose stability for certain 

ranges of its parameters. Stability loss is an important feature as it allows for typical 

traffic mechanisms to be reproduced (such as flow breakdown and spontaneous traffic 

jam formation). 

However, as noticed in Ranjitkar et al. (2005) and Spyropoulou (2007), some properties 

of the Gipps’ model have been hidden by the positions assumed by Gipps himself and, 

thus, the scope of the model might even be enlarged.  

For all these reasons, in this Appendix we aim to summarize the main features of the 

Gipps’ car-following model as they have been derived in different studies and 

applications. Furthermore, we presented some analyses on the “acceleration component” 

of the Gipps’ model, providing insights on the effect that the relaxation of three 

parameters, usually considered as fixed, may have on the model performances. 

The Appendix is organized as follows. In Section B.2, the standard Gipps’ car-following 

model is presented. In Section B.3, a literature review of the analyses carried out on the 

model is provided, together with a description of the main innovative features they were 

able to introduce. Finally, in Section B.4, we presented our analysis on the acceleration 
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component of the model, proposing an enhanced model formulations which allows for 

more realistic representation of the speed-acceleration function. 

B.2 Original Formulation 

The Gipps’ car-following model is the most commonly used model pertaining to the 

class of “safety distance” or “collision avoidance” models. Models of this class aim to 

specify a safe following distance, and to adapt the driver’s behaviour in order to always 

keep it. The basic idea behind the model is that each driver plans his or her speed for the 

following instant (i.e. after a delay τ) such that he/she can safely stop even in the event 

of the leading vehicle suddenly braking. In case the driver has no vehicles in front, 

instead, speed planned for time (t + τ) is obtained from an inequality equation, derived 

experimentally, that combines two conditions: i) that the speed never exceeds the 

driver’s desired speed, and ii) that acceleration decreases with increasing speed untill it 

becomes null when the desired speed has been reached. 

According to the Gipps’ model, then, the speed attained by a vehicle at a given time 

instant (t+τ) (in which the delay τ is the “apparent” driver’s reaction time; Gipps, 1981), 

is given by: 

( ) ( ) ( ){ }{ }τ+τ+=τ+ tv,tvmin,Maxtv n,bn,an 0       (B.1) 

with: 
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where: 

- ( )tvn  and ( )tvn 1−  are, respectively, the follower’s and leader’s speed at time t [m/s]; 

- Max
na  is the follower’s maximum acceleration rate [m/s2]; 

- τ  is “the apparent reaction time, a constant for all vehicles” (Gipps, 1981) [s]; 
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- Max
nV  is the follower’s maximum desired speed, that is “the speed at which the 

driver of vehicle n wishes to travel” (Gipps, 1981) [m/s]; 

- nb  is “the most severe braking that the driver of vehicle n (i.e. the follower) wishes 

to undertake” (Gipps, 1981) [m/s2]; 

- 2τθ =  is an additional “comfort” time lag that allows the follower not to brake 

always at his or her maximum desired rate [s]; 

- ( )txn  and ( )txn 1−  are, respectively, the follower’s and leader’s position at time t, 

measured at the front bumper [m];  

- SafetyLS nn += −− 11  is the effective size of the leader’s vehicle, that is “the physical 

length plus a margin into which the following vehicle is not willing to intrude, 

even when at rest” (Gipps, 1981) [m]; 

- 1−nL  is the physical length of the leader’s vehicle of the leader [m]; 

- Safety  is the safety margin “into which the following vehicle is not willing to 

intrude, even at rest” (Gipps, 1981) [m]; 

- 
∧

−1nb is the follower’s estimate of the leader’s maximum deceleration rate [m/s2]; 

Please note that the deceleration rates, nb  and 
∧

−1nb , are intended as absolute values. 

In practice, the driver chooses the minimum speed between two possible alternatives, 

where the first ( n,av ) accounts for the driver’s willingness to reach his desired speed, 

while the second ( n,bv ) aims to preserve a safe distance behind the leader. 

It is worth mentioning that in the model derivation, Gipps considered also an additional 

term, θ (an additional “comfort” delay in the braking component of the model), added in 

the analytical derivation of the model to allow the follower not to brake always at his or 

her maximum desired rate. Gipps then assumed for θ to be equal to τ/2. In fact, Gipps 

proved that in the case θ = τ/2 and 1−> nn b̂b  (i.e. “the willingness of the preceding driver 

to brake hard had not been underestimated”; Gipps, 1981), a vehicle travelling at a safe 

speed would be able to maintain a safe speed and distance indefinitely. Indeed, the 

relative magnitude of braking rates is the cornerstone for model stability. As shown 

successively by Wilson (2001), 1−> nn b̂b  is a sufficient condition for the linear stability 

of the model. 
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B.3 Analyses and Applications 

As already pointed out, the Gipps’ car-following model is one of the most widely used 

models in both research applications and practice. In particular, it represents the building 

block for different micro-simulation software, such as AIMSUN (2012) and DRACULA 

(2007). 

The objective of this section is to summarize the way the Gipps model is implemented in 

the different software or research applications, in order to understand potential benefits 

derived from the experiences carried out in their development. 

B.3.1 Equilibrium solutions for uniform flow 

The work of Wilson (2001) represents the most complete analysis of the Gipps’ model. 

He found equilibrium solutions of the model under the hypothesis of uniform flows, in 

the form of steady-state. 

In such conditions, all vehicles travel at the same speed (veq) and thus their spacing (heq) 

is constant and time-independent. The relationship which arises between speed and 

spacing in steady-state is the so-called speed-headway function veq=V(heq

Steady-state solutions allowed the author to derive a monotonically increasing speed- 

headway function for the general case of 

). 
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Since vehicles will drive more slowly (for safety reasons) as the spacing decreases, V is 

expected to be an increasing function. Following the mathematical derivations, the 

speed-headway function is the root of the following quadratic equation in veq: 

( ) ( ) 0221 1
2

1

=−⋅⋅+⋅θ+τ⋅⋅−⋅













− −∧

−

neqneqneq

n

n Shbvbv
b

b     (B.5) 
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Graphically, it results in the parabolic curve shown in Figure B.1 (taken from Wilson, 

2001). 

 

Figure B.1: Sketch of the speed-headway function under uniform flow condition (taken from 

Wilson, 2001). 

Figure B.1 shows that the speed-headway function could be multi-valued at some points, 

for specific sets of parameters. Since it is widely accepted in traffic engineering 

community that this function should be a single-valued non-decreasing function, a 

constraint needs to be set. 

The rightmost point of the parabolic curve (see Figure 3) is obtained at: 

n
n

*

bb

V 11

1

−

θ+τ
=

∧

−

         (B.6) 

Hence problems occur if: 
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Thus, the speed-headway function, obtained in uniform conditions, is well-defined if: 
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θτ          (B.8) 

It is worth noting that condition in Eq. (B.8) is valid under the assumption of uniform 

flows, which can be never reached in real traffic conditions. Nevertheless, if we assume 

that the follower’s speed and the headway at each simulation step are representative of a 

(possible) steady-state solution in uniform flow, the non-linear constraint in Eq. (B.8) 

still holds. Moreover, such constraint does not prevent the model parameters from 

generating a global instable car-following regime, in uniform flow. Indeed, the relation 

which must hold at the onset of linear instability is the following (for details, please refer 

to Wilson, 2001): 
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Since Max
neq Vv ≤ , the region of the instable parameters, for a well defined speed-

headway function, can be derived from the following inequalities: 
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This identifies the range of useful parameter values, where a uniform flow is unstable 

(i.e. there is at least one unstable value), while preserving a single-value speed-headway 

function. 

According to Wilson, this should be the condition for the Gipps’ model to reproduce 

typical traffic mechanisms, such as flow breakdown and spontaneous traffic jam 

formation. 

Following the work of Wilson, the derivation of the headway-speed function (dual of the 

speed-headway provided by Wilson, 2001) allowed Punzo and Tripodi (2007) to derive 
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the macroscopic traffic flow models (i.e. the fundamental diagram) corresponding to the 

Gipps’ microscopic equation, including an explicit formula for the flow at capacity. 

They extended the stationary models to the case of multi-class flows, also providing a 

framework for their calibration, that is for the calibration of the Gipps’ microscopic 

parameters against average speeds and counts at detectors. This procedure was also 

applied in Ciuffo et al. (2008) where the authors showed the potential benefits of using 

the calibrated parameters of the stationary speed-flow relationship as starting point for 

the calibration of the AIMSUN traffic micro-simulation software. 

B.3.2 AIMSUN implementation 

In AIMSUN (2012), the original Gipps’ model is coupled with different control 

strategies. The different versions actually refer to different strategy for the selection of 

1−nb̂  (since it is not considered as an additional parameter). Differently from reality, the 

simulation environment knows the maximum deceleration rate parameter of each vehicle 

(as it relates to the deceleration parameter of the leader vehicle in the simulation).  

For this reason, in the first version of the model, the condition 11 −− = nn bb̂  is assumed. 

However, this condition does not prevent the model to crash (i.e. follower vehicle 

intrudes leader car). 

This is the case also for the second version of the model, where it is assumed that 

2
1

1
−

−
+

= nn
n

bbb̂ .  

The third version of the model is, instead, more in line with the original Gipps’ 

formulation, where the parameter ϑ (the “sensitivity factor”) is introduced in order to 

generalize the value of 1−nb̂ : nn bb̂ ⋅ϑ=−1  

More interestingly, this model version also introduces a minimum headway the follower 

wishes to undertake. This additional parameter introduces the following control strategy: 

( )[ ] ( ) ( )[ ] ( )( ) {

( ) ( )[ ] ( )

}
τ+
−−τ+

=τ+

⋅τ+<τ⋅τ++−−τ+

−−
−

−−−

n

nnn
n

nnnnnn

THmin
txStxtv

THmintvtvtxStxif

11
1

111

                     

      

  (B.11) 



Appendix B 251 

 

where minTHn

Alternatively to this approach, in order to preserve the original model formulation and 

resulting dynamics, it would be wise having a relationship among the model parameters 

such as that presented in Eq. (B.10), based on the linear stability analysis of the model. 

Similar relationships for a general car-following model formulation are proposed in 

Ward and Wilson (2011). 

 is the new parameter representing the minimum time headway to be kept 

between the follower and the leader. Though interesting, this solution modifies the 

dynamics described by the Gipps’ model. 

B.3.3 Numerical integration schemes 

The model presented in Eqs (B.1 – B.3) is a delayed differential equation (being τ the 

delay). In the Gipps’ original paper (Gipps, 1981), solution of Eq. (B.1) is made simple 

by adopting an integration step just equal to the delay τ. A forward Euler method on 

acceleration (i.e. a trapezoidal integration scheme on speed) is there adopted for 

calculations. The same approach is usually applied in the common practice. In the 

following we will refer to this integration scheme as “classic integration scheme”. 

In AIMSUN (2012), instead, a different approach is adopted. The integration step dt is a 

sub-multiple of the delay τ (up to a minimum of 0.1s) and the Gipps’ model is applied at 

each simulation step. The space travelled by the vehicle is calculated considering the 

speed constant over the integration step. This method allows for a more accurate solution 

of the system of differential equations than the approach adopted by Gipps. At the same 

time, however, it alters the model dynamics, producing different simulation results. In 

the following we will refer to this integration scheme as “continuous integration 

scheme”. 

Besides the loss of real solution in the Gipps’ model due to wrong parameters 

combinations, we need to ensure real solutions for the model at the beginning of the 

simulation. In fact, especially in the case of calibrating the model against real trajectory 

data, the first simulation steps are usually driven by the real boundary conditions (initial 

speed, initial spacing, etc.), rather than by the model and its parameters. For this reason, 

the domain of the parameters has to be further constrained, by means of the following 

non-linear condition:  
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Eq. (B.12) relates to the initial state of the simulation (i.e. at t=0), and prevents the 

following vehicle to intrude the effective size of the leader at the first simulation step. 

B.4 The Acceleration Component 

The acceleration component of the Gipps car-following model tries to resemble the 

behaviour of a driver when the headway with the vehicle ahead is sufficiently large. As 

pointed out in Gipps (1981), it was empirically derived.  

However, for the sake of generality, it can be rewritten as follows: 
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in which α, β and γ are the parameters that, in the original formulation (Gipps, 1981), as 

well as in the field literature, are assumed equal to 2.5, 0.025 and 0.5, respectively.  

However, from a modeling point of view, they are model parameters (like the reaction 

time), and therefore their impact on the speed-acceleration relationship should be 

properly investigated, also to understand if their indirect estimation is necessary to 

improve model performances. 

The original values proposed in Gipps (1981) allow for Max
na  to have the physical 

meaning of the maximum acceleration attained by the vehicle. However, according to 

the original parameter values, this maximum acceleration rate is not attained in 

correspondence of 0=nv  but for Max
nn V.v ⋅≅ 320 , as shown in Figure B.2. 
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Figure B.2: Normalized speed-acceleration function resulting from the adoption of the original 

parameter valued for α, β, and γ. 

The speed-acceleration profile defined by the Gipps’ model is quite different from real 

speed-acceleration profiles, due, in particular, to the presence of shifting gears (see the 

blue lines Figure B.3).  

 

Figure B.3: Speed-acceleration function from real trajectory measurements (each blue line 

relates to a single trajectory measurement) and from the model (green line). A (possible) desired 

trend is represented by the red line. 
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Therefore, it is claimed in this work that some improvements can be achieved by 

calibrating α, β, and γ parameters (in particular because the maximum acceleration 

seems to arise for 0=nv  in real driving). 

On this basis, we can rewrite Eq. (B.13) as follows: 

( ) ( ) ( )tkatvtv Max
nnn,a ⋅τ⋅+=τ+         (B.14) 

with: 
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Therefore, to keep Max
na  with its physical meaning of maximum vehicle acceleration, we 

need to impose the following condition: 
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Let assume: 
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We can thus rewrite the condition in Eq. (B.16) in the following form: 

10: =





 =

dx
dyxy          (B.18) 

With few algebraic manipulations we obtain: 

γ+
β−γ

=⇒=
1

0 x
dx
dy          (B.19) 

Eq. (B.19) implies that the relationship among α, β, and γ satisfying condition in Eq. 

(B.16) is the following: 

1
1
1

1

=







γ+
β+

⋅γ⋅α
+γ

γ          (B.20)  

Different combinations of values for α, β, and γ satisfying Eq. (B.20) are reported in 

Figure B.4. 
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Figure B.4: Speed-acceleration function with α, β, and γ parameters satisfying Eq. (B.20). 

However, as can be foreseen from the figure, following the proposed approach we 

cannot assure that the maximum of the speed-acceleration function would occur for 

positive value of the normalized speed, that is when γ ≥ β.  

Further, by definition, Eq. (B.20) does not allow to have speed-acceleration functions 

attaining a maximum value greater than 1 for negative values of the normalized speed, 

still preserving that, in the domain [0,1] it holds:  
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Indeed, speed-acceleration profiles derived from this condition are probably the 

preferred ones. 

Therefore, imposing that: 

( ) ( )( ) 11 0 =+β⋅−⋅α =
γ

xxx         (B.22) 

It results: 

1=β⋅α γ           (B.23) 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

( )
Max

n

n

V
tv

( )
Max
n

n

a
ta



256 Appendix B 

 

Therefore, the following two conditions fully characterize the speed-acceleration 

function, giving rise to the profiles reported in Figure B.5: 
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Figure B.5: Full characterization of the speed-acceleration function according to conditions in 

Eq. (B.24). Blue curves relate to Eq. (B.24a), while red ones to Eq. (B.24b). 

On this basis, the acceleration component of the Gipps model can be formulated as: 
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In order to reduce the total number of parameters, we also studied the effect of 

considering α = 1. In this case, Eq. (B.24) expresses the relationship between β and γ: 
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Resulting speed-acceleration plots in case of α = 1 are plotted in Figure B.6. 

 
Figure B.6: Full characterization of the speed-acceleration function in case of α = 1, based on 

Eq. (B.26). 

As shown in Figure B.6, convexity types present in Eq. (B.24) are preserved also in Eq. 

(B.26), when fixing α = 1. 
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Appendix C 

Goodness Of Fit Functions in the Frequency 
Domain 

C.1 Introduction 

The contents of this Chapter are reported in Montanino et al. (2012). 

When dealing with car-following models, various settings have been specified across the 

years to solve the problem of indirect estimation of model parameters against vehicle 

trajectory data. An exhaustive literature review on this topic is given in Chapter 3. 

All that said, few efforts have been devoted so far in order to understand the influence of 

the calibration setting (combination of optimization algorithm, Measure of Performance 

and Goodness Of Fit function) on the results, despite its expected relevance. This topic 

was also investigated in Chapter 3. The study, while confirming the complexity of the 

estimation problem, also showed that none of the tested settings gave completely 

satisfactory results.  

A possible explanation may be found in the fact that the commonly used GOFs are not 

able to capture the dynamics of the traffic measurements, i.e. the correlation structure of 

the time-series data which calibration is performed against. 

Indeed, this may be a consequence of the integral nature of such GOFs (for example, the 

error measures), that simply cumulate the residuals between observed and simulated 
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outputs, but are not able to capture the time correlation in the trajectory data. To clarify 

this point, we may draw, for instance, two trajectories that have completely different 

patterns but the same score in the goodness of fit function (e.g. a first trajectory 

oscillating around the measured trajectory and a second one that, instead, is simply a 

translation of the measured one). What usually happens, therefore, is that only a limited 

portion of trajectory data presenting high residuals from the measured trajectory – 

because reflecting measurement errors or depicting non-normative behaviors that models 

are unable to capture – drives the whole parameters estimation (i.e. the estimation of 

parameters that affect the simulation of the whole trajectory). This local compensation 

effect can yield parameters values which, though minimizing the residuals, provide 

trajectories that do not reflect the actual driving pattern or, at least, that are not the “best” 

obtainable with that model. 

In this study, therefore, a time-series approach is adopted to solve such troubles, which 

basically means defining a goodness of fit function to be evaluated in the frequency 

domain rather than in the time domain. This is argued to provide estimates of parameters 

values which can better capture the driving pattern (we could say the “driving style”) 

because exploiting the information on the autocovariance in the time series data. In such 

a way, therefore, the estimation would also not been driven by the local “irregularities” 

in the data. 

The Appendix is organized as follows. Section C.2 will briefly introduce the 

methodology adopted in this study to evaluate model performances in the frequency 

domain. Section C.3, instead, mirrors at the description of the application, presenting the 

case study (model and data), the design of experiment, and the results of model 

calibration using the proposed GOF in the frequency domain. 

C.2 Methodology 

According to the findings presented in Chapter 3, in the field of car-following model 

calibration, the use of error measures, as well as statistical GOF functions, may lead to 

ill-posed problems. This mainly depends by the integral nature of the traditional 

objective functions which locally cumulate the errors, but are unaware of the 

consecutiveness (dynamics) of the observations. 
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On the other hand, observed time series is a realization of a stochastic process, giving 

rise to a random signal. From this point of view, spectral analysis is a well suited 

statistical tool commonly employed in the physical sciences to study the time-dependent 

nature of physical processes. As observations are generally autocorrelated (i.e. time-wise 

correlated), an investigator cannot apply the statistical tools commonly used for studying 

independent observations. Spectral analysis, however, can be used to study the salient 

properties of such processes and to present them in an easily interpretable fashion for 

descriptive and comparative purposes. 

In the hypothesis of wide-sense stationary stochastic process (i.e. mean and variance are 

constant over all time indexes and the covariance between two arbitrary time indexes n 

and m depends only on the difference (n – m) and not on the values of n and m 

themselves), mathematical models known as covariance stationary stochastic processes 

are useful representations of autocorrelated time series. The covariance between two 

observations xn and xn+k of a stationary stochastic process is defined as: 

 ( ) ( )[ ]µµ −⋅−== ++ knnknn xxExxkr ),cov()(       (C.1) 

The quantity r(k) is defined for all integer values of k, and it is called the autocovariance 

function of X. It measures the covariance between pairs at a distance or lag k, for all 

different values of k. Therefore, it is a function of lag k. 

The autocovariance function represents all there is to know about a normally distributed 

stochastic process because together with the mean, it completely specifies the joint 

probability distribution function of the data. Other properties may be interesting, but 

they are limited to the single realization of the stochastic signal or process at hand. If the 

process is approximately normally distributed, the autocovariance function will describe 

most of the information that can be gathered about the process. Only if the distribution is 

far from being normal, it might become interesting to study higher order moments or 

other characteristics of the process. 

Like the covariance between two variables, the autocovariance function r(k) also can be 

normalized to give the autocorrelation function (ACF) ρ(k): 

 2
)()(

X

krk
σ

ρ =            (C.2) 
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The value for the autocorrelation at lag 0 is 1. This also follows from the definition of 

stationarity where the correlation should be only a function of the time lag between two 

observations; the lags -k and k are equal in that respect. Thus, the autocorrelation 

function is symmetrical about the origin (lag 0) where it attains its maximum value (i.e. 

1). An example of the ACF plot is presented in Figure C.1(a), for a couple of 

leader/follower vehicles. 

It can be shown that the Fourier transform of the autocovariance function r(k) is the 

spectral density function (spectrum) of the signal h(ω) and, as a consequence, the 

Fourier transform of ρ(k) equals to the normalized spectrum φ(ω). Therefore, the 

analysis of the correlogram (i.e. plot of the ACF as function of the lag k) is the 

analogous of the spectral analysis in the frequency domain. The idea beyond the work is 

to use the ACF of the time-series to compare the performances of the simulation model 

in reproducing the autocorrelated observed signal. In the literature, absolute accuracy 

measures compute the absolute value of the differences between spectra, through the so-

called Integrated Mean Square Error (IMSE) measure: 

( ) ( )[ ] [ ]∑∫
∞

−∞=

π

π−

ρ−ρ=ωωφ−ωφ
π

=
k

simobssimobs )k()k(dIMSE 2

2
1     (C.3) 

The estimation of the autocovariance function requires some care because a true 

autocovariance function should be positive-semidefinite. That is a prerequisite for a 

positive Fourier transform at all frequencies. Because that Fourier transform should 

represent the power spectral density, it is necessary that it is not negative for any 

frequency. Nevertheless, the estimator that has been mostly used in computation is based 

on the definition of the covariance between two stochastic variables, applied to each lag 

individually. By taking the average covariance between the two stochastic variables xn 

and xn+k for different values of index n, an estimate for r(k) is found. This estimator is 

often called the “sample autocovariance” or the “lagged product autocovariance”. 

Combining all individual estimates for different values of k gives the estimated 

autocovariance function. 
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Figure C.1: ACF (a) and PACF (b) plots of the speed profiles of the leader and follower 

vehicles, from the experiment 30B used in this study (see Section C.3.3 for data description). 

The two horizontal black lines represent the upper and lower bounds of the confidence interval 

with level of significance of 95%. 

Figure C.1(a) shows the autocorrelation function plots related to the speed time-series of 

a couple of leader (blue line) and follower (red line) vehicles. In this case the X vector in 

Eq. (C.1) is made by the i=1,…,N observation of the speed data, representing the time-

series. For data description, please, refer to Section C.3.3. The two horizontal black lines 

represent the upper and lower bounds of the confidence interval with level of 

significance of 95%. If the ACF values oscillated entirely within this range from a given 

lag value k*, the confidence interval would tell us that such oscillation is not 

significantly different from being zero, and therefore, observations with lags greater than 

k* could be considered uncorrelated. However, we can see that uncorrelation among 

successive observations is never reached. This is due to the approximation in the 

calculation procedure of the total autocorrelation (Broersen, 2006). A more accurate 

estimation of the autocovariance function can be expressed through the partial 

autocorrelation function (PACF). Indeed, the PACF plot presented  in Figure C.1(b) 

shows that the autocorrelation completely vanishes for lags greater than about 4 seconds 

(data was acquired at 10 Hz; please, refer to Section C.3.3 for details), though we can 

observe a clear autocorrelation only for lags smaller than 1 second. 

However, a more accurate estimation of the autocovariance function through the PACF 

is performed at the expense of much longer computation time. For this reason, in this 
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study, we adopted the ACF, rather than the PACF, as a proxy of the autocovariance 

function to evaluate the IMSE.  

It is worth noting that the study objective is to highlight the need of a specific analysis of 

the autocorrelation properties of time-series in order to effectively compare simulation 

results with observations. Therefore, this primary attempt is not to be intended 

conclusive, as different (more reliable) error measures in the frequency domain (i.e. 

directly obtainable from the analysis of the power density spectrum) might be used (see, 

for example, the cepstrum measure in Broersen, 2006). Further, the application of the 

Fourier analysis is strictly conditioned to the hypothesis of wide-sense stationary 

processes. In this exploratory study, this assumption has been taken for granted, though 

we are aware that traditional observations of traffic measurements are far from being 

covariance stationary because of their relative shortness. Further, the ACF unequivocally 

represents the complete information enclosed in the time series only in normally 

distributed stochastic process, as it was assumed herein. 

Therefore, the analysis of non-linear and non-stationary time-series will be the objective 

of future research. 

C.3 Case Study 

In the following paragraphs, the IDM car-following model (Treiber et al., 2000) is 

reviewed from the literature. Then, motivations and procedure to generate synthetic data 

are described. Finally, the optimization problem is set up together with the design of the 

experiments. 
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C.3.1 The model 

The Intelligent Driver Model (IDM) belongs to the class of social force models (Treiber 

et al., 2000). In this section we will recall the model formulation from the literature, 

while a more exhaustive review can be found in Chapter 5, where the model was 

introduced: 
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   (C.4) 

where: 

- ( )tv f  and ( )ta f  are, respectively, the follower’s speed and acceleration at time t; 

- Max
fV  is the follower’s maximum desired speed; 

- Max
fa  corresponds to the acceleration applied by the follower at a start when the 

distance from his/her leader is much bigger than the distance 0s∆ ; it also 

corresponds to the deceleration of a vehicle which is travelling at its desired speed 

and whose distance from the leader approximates the desired distance; 

- fb  is a sort of deceleration rate between normal and emergency conditions 

(Treiber et al., 2000); 

- ( )tvl  is the leader’s speed at time t; 

- lL  is the physical length of the leader’s vehicle; 

- )(ts∆  is the difference between leader’s and follower’s positions at time t, taken 

from the front bumper; 

- )(* tS∆  is the rear end-front follower’s desired distance from the leader; 

- 0S∆  is the rear end-front follower’s desired distance from the leader at stop; 

- 1S∆  is a non-zero parameter necessary for features requiring an inflection point in 

the equilibrium flow-density (Treiber et al., 2000); 
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- T  is the minimum time headway between leader and follower; 

- alpha is a model parameter. 

It is worth noting that the max(…) operator in equation 4 is necessary in order to avoid 

that the follower’s desired distance from the leader becomes lower than 0S∆ , for 

negative speed differences (i.e. )()( tvtv lf < ). 

C.3.2 Data description 

According to verification methodology presented in Chapter 3, preliminary to any 

performance comparison among different optimization problem specifications (i.e. a 

combination of MoP, GOF function and optimization algorithm), one should first verify 

that each “testing” specification is able to find the global optimum solution, i.e. the value 

of model parameters that correspond to the global minimum of the objective function. 

In this view, when calibrating the model parameters against real data, the global 

minimizer (i.e. the set of optimal parameter values) is unknown (for more details, please, 

refer to Chapter 3). On the other hand, in the case of synthetic data, i.e. generated from 

the model itself by fixing the model parameters to a set of known (or “true”) values, the 

global minimum of the optimization problem is known. Therefore, if the calibration 

procedure fails in “rediscovering” it, it is useless to perform any comparison based upon 

real data. 

Regarding the choice of the real leader’s trajectory to feed the IDM car-following model, 

we felt comfortable to assess, based on recent findings, that car-following models are 

more likely to better reproduce short vehicles trajectories rather than long ones. Indeed, 

as a matter of fact, short trajectory data are more likely to contain less information on the 

variability of the driver’s behavior over time – the so-called intra-driver variability – 

and, thus, they are more likely to be better reproduced by a single set of model 

parameters that is kept fixed across time, independently from the GOF function adopted 

in the calibration experiment. On the other hand, vehicles’ trajectories that last longer 

have a higher probability to contain information related to a time-varying driving 

behavior of the driver, making driving dynamics more complex. In this case, the 

calibration experiment is more challenging, as we look for a single set of parameters 

able to reproduce, at the best, (possibly) different driving behaviors over time. 
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Further, since the aim of the study is to test the performance of a frequency domain-

based GOF function against traditional error-based measures in the time domain, we 

thought that the use of long trajectories was even more challenging, as the hypothesis of 

wide-sense stationary process may be more unrealistic. 

As a consequence, a significant test bed should be designed using a long trajectory with 

variable driving dynamics (for instance, a mix of long accelerations, heavy brakes and 

pure car-following). 

Therefore, based on the above requirements, the leader’s trajectory was taken from the 

experiment 30B, described in Punzo and Simonelli (2005), carried out on a two-lane 

rural highway in the area surrounding Naples. Vehicles trajectories are about 5-min long 

and present a range traffic dynamics (long acceleration, sudden brakes and stops). 

Trajectory data was acquired through instrumented vehicles, equipped with kinematic 

differential GPS receivers that recorded the position of the vehicle at 0.1 second interval. 

Differential GPS data were further processed by means of the procedure described in 

Punzo et al. (2005), based on a non-stationary Kalman filter. More details on the data 

can be found instead in Punzo and Simonelli (2005). 

In this study, the values of the parameters that were used to generate the synthetic 

follower trajectory were the following: alpha = 4, T = 0.5 s, Vf
Max = 22 m/s, af

Max = 4.5 

m/s2, bf = 4 m/s2, ΔS0 = 1 m, ΔS1 = 0.  

Figure C.2 shows the (real) leader’s and the (synthetic) follower’s speed profiles 

(respectively, the blue and the red lines). 

These values are consistent with the parameter bounds set in Punzo and Ciuffo (2011) 

where the global sensitivity analysis was performed to draw inference on the sensitivity 

of model factors with respects to the system output. 
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Figure C.2: Leader’s (blue line) and (synthetic) follower’s (red line) speed profiles. 

C.3.3 Design of Experiment 

To compare the performances of the GOF approach based on the ACF against traditional 

settings, we adopted the RMSE as the comparative error measure, according to the 

findings of Chapter 3, where we showed that such function allows the algorithm to 

rediscover the “known” values of the parameters with a probability of almost 100%, 

though at the expense of high computational efforts (i.e. large number of iterations to 

converge). The MoP here adopted is the speed. 

The optimization algorithm used in the study is the OptQuest Multistart (LINDO, 2003) 

implemented in MATLAB (2009), where it combines the seeking behaviour of a 

gradient based local NLP (Non Linear Programming) solvers with the global 

optimization abilities of a Scatter Search. For more details, please refer to Chapter 3. 

Since the starting point of the optimization procedure can strongly influence the 

capability of finding the global minimum (especially in the case of ill-posed problems), 

the robustness of the new setting has been compared with traditional ones, repeating 

each calibration experiment 64 times by using different starting conditions sampled from 
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the Sobol’ LPτ low-discrepancy quasi-random sequence coded in MATLAB language 

(Sobol’ et al., 1992). 

C.4 Calibration Results 

In this section, the analysis of the results of the calibration experiments on synthetic data 

is presented. 

Firstly, we were interested in assessing the ability of each problem setting 

(Algorithm/GOF function/MoP)  in finding the “known” global solution. For a single 

calibration attempt, this can be measured either in terms of the distance between the 

optimal solution found by the heuristic and the known global minimum or, by the score 

of the objective function after the calibration (having in mind that in a synthetic 

experiment the score of the global minimum is zero). 

However, results from a single calibration attempt are not really informative on the 

uncertainty in the specific calibration process. In facts, calibration attempts differing in 

the starting point of the optimum search often provide different results (for details, see 

Chapter 3). For this reason, multiple calibration attempts starting from different initial 

points are needed. This is even more so in the case of real trajectory data which often 

give flat and waved response surfaces, with no “well-defined” global minimum but 

multiple local minima, each one potentially very far from the others. 

Therefore, to evaluate performances of a specific problem setting we proposed and 

applied the two indicators presented in Chapter 3: 

- The “Frequency of the original parameters”, which measures the number of times, 

out of the 64 attempts of a calibration experiment, in which the optimization 

algorithm was able to rediscover the original parameters (i.e. the values which 

generated the synthetic global optimum) with an error on the single parameter of 

±5%. This indicator reveals the ability of the specific calibration setting to find a 

solution in the close neighborhood of the known global solution, that is to 

rediscover the original parameters. 

- The “Frequency of the best score” which measures the number of attempts in 

which the optimization algorithm attained its best score i.e. the lowest score of the 

objective function over the 64 attempts of a calibration experiment. Such solution, 
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of course, is the best provided by the specific calibration setting but does not 

necessarily coincide with the known global minimum. Therefore, the indicator 

measures the robustness of the specific calibration setting as to the variation of the 

starting point of the search (but not the ability to rediscover the global minimum). 

The results are presented in Table C.1. In addition, the average number of iterations 

needed to reach convergence was approximately the same in the two cases (about 

30’000 for the RMSE and about 29’000 for the IMSE) with a standard deviation of 

about 10’000 in both the settings. 

Table C.1: Comparison of the results of the calibration of the IDM model parameters against 

synthetic speed time-series using the RMSE and the IMSE. 

ALGORITHM GOF/MoP 

Frequency of 
the original 
parameters        
± 5% error 

(%) 

Frequency 
of the best 

score 
(%) 

Average 
number of 
iteration to 
converge 

STD of the 
number of 
iteration to 
converge 

OptQuest 
Multistart 

RMSE(V) 100 100 30’611 9’203 

IMSE(V) 100 100 29’814 12’550 

 

Apparently, the evidence here presented does not show any beneficial effect from the 

use of the spectral analysis with respect to traditional error measures. However, this step 

has to be considered only as a verification of the setting in the ability to find the global 

minimum. The main improvement indeed was not expected to be seen in the 

experiments with synthetic data (as, in this case, the optimization problem is well posed 

and a well-defined global minimum does exist) but in those with real data, where the 

commonly used error measures usually suffer from the problems described in the 

introduction. From an optimization point of view, this means an ill-posed optimization 

problem characterized by several local minima and wide flat regions in the response 

function against the parameters’ domain. 

To prove this conjecture, we performed the same calibration experiments using the real 

leader trajectory data from experiment 30B to feed the IDM model. Since the two GOF 

functions were not homogeneous among each other, a validation function was needed to 

cross-compare the calibration results. To this aim, the sum of Theil’s inequality 

coefficients on speed and spacing was adopted, accordingly to the methodology 
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presented in Chapter 3. It is also worth noting that such validation is not fair with the 

proposed GOF as it is in the time domain. 

The results are presented in Table C.2. 

Table C.2: Comparison of the results of the calibration of the IDM model parameters against 

real speed time-series using the RMSE and the IMSE. 

ALGORITHM GOF/MoP 
Frequency of 
the best score 

(%) 

Validation 
Score 

Average 
number of 
iteration to 
converge 

STD of the 
number of 
iteration to 
converge 

OptQuest 
Multistart 

RMSE(V) 100 0.20 36’653 5’055 

IMSE(V) 100 0.11 38’080 232 

 

With both the measures of goodness of fit, the algorithm always gets the same solution 

(which is therefore expected to represent the actual global minimum of the two 

optimization problems) even considering always different starting points. However: 

• the two solutions found in the two experiments are different in terms of 

parameters’ values. 

• the solution found using the new GOF in the frequency domain resulted in a 

significantly lower value of the validation score.  

• looking at the average number of iterations, values are almost the same, but the 

deviation from these average values are much greater when the RMSE is applied 

instead of the IMSE.  

These results seem confirming that the proposed GOF better specifies the optimization 

problem as it results i) more robust to the choice of the starting point in the optimization, 

and ii) computationally less expensive. 
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Appendix D 

Framework for the Calibration of Not-Stochastic 
Lane-Changing Model 

D.1 Introduction 

In the literature, different types of lane-changing models have been proposed across the 

years. According to a very basic classification, that is quite accepted in the field 

research, we may distinguish between rule-based and discrete choice-based lane-

changing models.  

Rule-based models – such as, for example, those proposed by Gipps (1986), Yang and 

Koutsopoulos (1996), Yang et al. (2000), Kesting et al. (2007), and so on – simulate 

driver’s choice to change or not-change lane as a binary choice dependent on the 

resulting interactions that a possible lane-change would produce on the surrounding 

vehicles in the traffic stream (e.g. variation of the deceleration rate of the follower 

vehicle in the target lane). Provided their nature, these models are not stochastic, and 

therefore they will be indicated here as “not-stochastic” lane-changing models. Further, 

given the easiness in the interpretation of model parameters when used by practitioners, 

these models are frequently adopted in commercial micro-simulation software (e.g. 

AIMSUN(2012), VISSIM(2011), PARAMICS (2003)). 

Conversely, discrete choice-based models – for instance, those proposed by Ahmed 

(1999), Toledo (2003), Choudhury (2007) – predict driver’s behavior through random 
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utility models (RUM), where the probability of lane-changing depends on both driver’s 

perception/latent attributes and the surrounding traffic conditions (e.g. available gap). 

Unlike the second class of models, whose estimation problem was rather consolidated in 

the framework of RUM and deeply investigated in the last years, the calibration of rule-

based lane-changing models is a very under-researched issue. 

However, the indirect estimation of rule-based lane-changing model parameters is 

deemed to be very important for the use of commercial simulation packages and, at the 

best of our knowledge, no methodological framework to handle this problem was 

provided in the field literature. 

Therefore, the objective of this study is to propose a preliminary methodological 

approach to rule-based lane-changing model calibration, being aware that further 

investigation and research on this topic is warmly needed to establish a reliable 

framework. 

For this purpose, the test model adopted here in the MOBIL lane-changing model 

(Kesting et al., 2007) reviewed in Section D.2. The proposed methodology, applied to 

the test model, instead, is briefly summarized in Section D.3.  

D.2 MOBIL Lane-Changing Model 

The MOBIL lane-changing model (Kesting et al., 2007) takes into account the 

anticipated advantages and disadvantages of a prospective lane change in terms of 

single-lane accelerations. Compared with the explicit lane-changing model, the 

formulation in terms of accelerations of a longitudinal model has several advantages. 

Among the others, the use of the acceleration function of the car-following model as the 

“potential benefit” function for lane-changing choices allows for a compact formulation 

with a small number of additional parameters, while ensuring consistency and 

integration with car-following model. For a more detailed discussion, please refer to 

Kesting et al. (2007). 

Given symmetric lane-changing rules (Kesting et al., 2007), the probability of a vehicle i 

to change lane from the current lane to a target one is formulated in Eq. (D.1): 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )
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where: 

- ( )tpi is the probability that vehicle i would change lane to the target lane at time t; 

- ( )1tai + , ( )1tan +  and ( )1tac +  are, respectively, the acceleration of the vehicle i 

in the current lane, and of its follower vehicles n (in the target lane) and c (in the 

current lane) at time t+1, assuming that vehicle i did not change lane at time t; 

- ( )1ta~i + , ( )1ta~n +  and ( )1ta~c +  are, respectively, the acceleration of the vehicle i 

in the target lane, and of its follower vehicles c (in the current lane) and n (in the 

target lane) at time t+1, assuming that vehicle i did change lane at time t; 

- pf is the politeness factor, defined in the range [0, 1], that takes into account how 

much the vehicle i takes into account the disadvantage (acceleration losses) caused 

to the follower vehicles n (in the target lane) and c (in the initial lane); 

- thresholda∆ is a parameter that “prevents lane changes if the overall advantage is only 

marginal compared with a keep lane directive” (Kesting et al., 2007); 

- Safeb is the maximum safe deceleration rate that “prevents accidents as long as its 

value is not greater than the maximum possible deceleration of the underlying 

longitudinal model” (Kesting et al., 2007). 

For further details on the theoretical hypothesis at the basis of model formulation, and 

for a review of the application contexts, please refer to Treiber and Kesting (2013). 

As the “potential benefit” of a lane-change choice for a vehicle i at time t depends on the 

single-lane accelerations of the vehicle i and of its follower vehicles in the current 

(vehicle c) and target (vehicle n) lanes, the acceleration functions for each of the 

involved vehicles needed to be preliminary estimated. This is the reason why MOBIL 

model parameters estimation could be performed only after the calibration of the 

acceleration model which is used to simulate longitudinal interaction among vehicles. 

In the present work, we applied the IDM model parameters estimated for each individual 

vehicle. 
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D.3 MOBIL Model Calibration 

As we wanted to disaggregate estimate MOBIL parameters for each vehicle i, at each 

time t we calculated the accelerations of vehicles i, n and c in Eq. (D.1) at time t+1 

simulating the IDM model with the measured input vehicle positions at time t, i.e. we 

did not use simulated accelerations to update vehicle positions.  

Indeed, we wanted to reduce as much as possible the fact the MOBIL estimation results 

were conditioned to the calibrated values for the IDM model parameters. 

That said, the estimation of model parameters for each individual vehicle in the traffic 

stream aimed at reproducing the observed time evolution of driver choices, being either 

of changing lane or not. 

On this basis, the proposed estimation framework is based on the following key 

considerations: 

i. the measured number of lane-changes performed by a driver is much smaller than 

the number of times in which the driver choose not to change lane; 

ii. provided the nature of the measured choice (which is actually binary) and its 

rarity, the capability of the model to reproduce the exact time instant at which the 

vehicle changes lane should not be considered as the measure of performance in 

the estimation; 

Therefore, the proposed methodology is based on the concept of scenario. 

For each vehicle i, we divided the observed trajectory in a succession of scenarios, 

where each scenario is defined as the time interval in which vehicle i’s leaders and 

followers in the current and target lanes (both on the right-hand side and on the left-hand 

side, for symmetric lane-changing rules; for the MOBIL model, vehicles n and c) did not 

change.  

Indeed, the set of measured states (positions, speeds, accelerations) of the interacting 

vehicles in a scenario (such as vehicle i, n, c, in the MOBIL model) can be considered as 

a single observation of a panel data in discrete-choice model estimations. 

Therefore, in the proposed framework, for a given set of MOBIL parameters, each 

scenario has a positive realization if the model predicted the observed behavior of 

vehicle i, that could be either a lane-change or not; otherwise, it is a negative realization.  



Appendix D 277 

 

On this basis, the objective function used in the estimation process is the number of 

positive scenarios which occurred for a given set of lane-changing model parameters, 

and the optimization algorithm aims at maximizing its value. 
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