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La scienza è fatta di dati,  

come una casa di pietre.  
Ma un ammasso di dati non è scienza  

più di quanto un mucchio di pietre sia una casa. 
 

(Henri Poincaré, La scienza e l'ipotesi, 1902) 
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Riassunto 

Il 7-deidrocolesterolo (7-DHC), il precursore biosintetico del 

colesterolo, è una molecola che si modifica facilmente producendo 

composti ossidati. Prove in vitro hanno dimostrato che l'instabilità del 7-

DHC in soluzione e nei liposomi è dovuta alla sua suscettibilità alla 

perossidazione. Inoltre, il 7-DHC è convertito nella vitamina D3 mediante 

la sintesi foto-indotta che avviene nella pelle. Il 7-DHC che è presente a 

concentrazioni relativamente elevate nella pelle, è esposto all’attacco dei 

radicali esogeni e dall’ossigeno. Recentemente è stato riportato che i 

composti ossidati del 7-DHC possono esercitare effetti deleteri sulla 

funzionalità e sulla vitalità cellulare.  

Le radiazioni ultraviolette rappresentano la causa principale dei tumori 

della pelle ed il melanoma ne è la forma più grave. La diagnosi tardiva del 

melanoma è particolarmente infausta in quanto tale neoplasia nello stadio 

avanzato è refrattario alle terapie.  

In questo studio abbiamo valutato l'effetto del 7-DHC “come tale” (non 

modificato) su linee cellulari di melanoma ed a tale scopo è stata posta 

molta attenzione a minimizzare le modifiche del 7-DHC. Abbiamo quindi 

valutato la stabilità del 7-DHC nella sospensione del veicolo utilizzata per 

il trasferimento del 7-DHC dal mezzo di coltura all’interno delle cellule. 

Inoltre, abbiamo determinato i livelli intracellulari del 7-DHC e dei suoi 

composti derivati  dopo diversi tempi di trattamento. 

Lo studio di stabilità nel tempo non ha mostrato variazioni significative 

dei livelli del 7-DHC nella sospensione conservata per 90 giorni a 4 °C. 

Abbiamo osservato che da 12 a 72 ore di trattamento l’82-86% di 7-DHC 

entrava nelle cellule ed i livelli dei composti derivati dal 7-DHC non 

erano significativi. Allo stesso tempo, la produzione di ROS aumentava in 

modo significativo già dopo 2 ore. Dopo 24 ore e fino a 72 ore, le cellule 

di melanoma trattate con 7-DHC hanno mostrato una riduzione della 

crescita e della vitalità cellulare. L'effetto citotossico del 7-DHC era 

associato ad aumento dei livelli di Bax, diminuzione del rapporto Bcl-

2/Bax, riduzione del potenziale di membrana mitocondriale, aumento dei 

livelli del fattore che induce apoptosi (AIF), a nessuna variazione 

dell’attività della caspasi-3 così come all’assenza della forma inattiva di 

PARP-1. Tali risultati contribuiscono a spiegare il meccanismo attraverso 

il quale il 7-DHC esercita il suo effetto citotossico.  

Nel complesso i risultati ottenuti nel corso di questo lavoro indicano che 

il 7-DHC esercita un effetto citotossico su linee cellulari di melanoma, 

probabilmente attraverso un processo pro-apoptotico caspasi indipendente 

e allargano le conoscenze sulle prospettive terapeutiche del cancro. 
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Summary 

The 7-dehydrocholesterol (7-DHC), the precursor of cholesterol 

biosynthesis, is highly reactive and easily modifiable to produce 7-DHC 

oxidative compounds. Evidences in vitro demonstrated that the instability 

of 7-DHC in solution and in liposomes is due to its susceptibility to 

peroxidation. In addition, 7-DHC is also converted in vitamin D3 by 

photo-induced synthesis which occurs in the skin. 7-DHC is present at 

relatively high concentrations in skin where it is exposed to exogenous 

radical sources and oxygen. Recently, it has been reported that 7-DHC 

oxidative compounds can have deleterious effects on cellular 

functionality and viability.  

Ultraviolet radiation is the main cause of skin cancers, and melanoma is 

the most serious form of tumor. Today, there is no therapy for advanced-

stage melanoma and its metastasis due to their high resistance to various 

anticancer therapies.  

In this study, we evaluated the effect on melanoma cell lines of 7-DHC as 

such, and for this aim much care to minimize 7-DHC modifications was 

used. Therefore, we evaluated the 7-DHC stability in the vehicle 

suspension used to transfer this compound from the culture medium into 

the cells. We also measured the intracellular levels of 7-DHC and its 

oxidative compounds after different treatment times. 

The stability study showed no significant changes of 7-DHC levels from 

baseline values in the suspension up to 90 days of storage at 4 °C. 

We found that from 12 to 72 hours of treatment 82-86% of 7-DHC 

entered the cells, and the levels of 7-DHC-derived compounds were not 

significant. Simultaneously, ROS production was significantly increased 

already after 2 hours. After 24 hours and up to 72 hours, 7-DHC treated 

melanoma cells showed a reduction of cell growth and viability. The 

cytotoxic effect of 7-DHC was associated with the increase of Bax levels, 

the decrease of Bcl-2/Bax ratio, the reduction of mitochondrial membrane 

potential, the increase of apoptosis inducing factor (AIF) levels, the 

unchanged caspase-3 activity, and uncleavage of PARP-1. These findings 

could explain the mechanism through which 7-DHC exerts its cytotoxic 

effect.  

The results of this study show that the 7-DHC has a potential pro-

apoptotic on melanoma cell lines, shed light on the possible mechanisms 

through which this molecule exerts its cytotoxic effects and, at same time, 

may give new insights in the therapeutic perspective of cancer. 

 



 

V 
 

Index 

   Pag. 
 

1. Introduction 1 

 1.1    7-Dehydrocholesterol and its oxidative compounds 1 

 1.2    Effects of 7-DHC and its derivative compounds 2 

 1.3    Scientific hypothesis and aim of the work 3 

 

2. Materials and Methods 4 

 2.1    Materials 4 

 2.2    Preparation of 7-DHC-enriched media 5 

 2.3    Cell culture 5 

 2.4    MTT assay 5 

 2.5    LDH Assay 6 

 2.6    Evaluation of Apoptosis 6 

 2.7    Measurements of caspase-3 activity 7 

 2.8    Detection of intracellular ROS content 7 

 2.9    Measurement of intracellular glutathione content 7 

 2.10  Evaluation of mitochondrial membrane potential 8 

 2.11  Total cell lysates and subcellular fractionation 8 

              for Western blot analysis 

 2.12  Immunofluorescence and confocal microscopy 9 

 2.13  Free sterol and sterol-derived compound analysis 10 

 2.14  Gas chromatography (GC-FID and GC-MS) 10 

 2.15  Liquid chromatography tandem mass spectrometry 11 

               (LC-MS/MS) 

 2.16  Statistical analysis 12 



 

VI 
 

3. Results 13 

 3.1    Study on 7-DHC stability 13 

 3.2    Sterol levels in culture media and melanoma cells 14 

 3.3    Cytotoxic effect of 7-DHC in melanoma cell lines 18 

 3.4    Effect of 7-DHC on the intracellular ROS and 22 

                glutathione levels 

 3.5    Effect of NAC and apocynin on apoptosis 24 

                induced by 7-DHC 

 3.6    Effect of 7-DHC on mitochondrial 25 

        membrane potential 

 3.7    Effect of 7-DHC on levels and subcellular localization    26 

                of some proteins involved in the apoptotic process        

 

4. Discussion and Conclusions 29 

 

5. References 34 

 

   

 

 

 

 

 



 

VII 
 

List of Tables  

 

     Pag. 

 
Table 1.   Cholesterol levels in 7-DHC-treated 14 

                 and untreated cells and media 

Table 2.   Total amounts and percentages of 7-DHC 15 

                 in treated cells and media 

Table 3.   Levels of sterol-derived compounds in 16 

                 7-DHC-treated cells and media analyzed 

                 by GC-FID and GC-MS 

Table 4.   Levels of sterol-derived compounds in 17 

                 7-DHC-treated cells and media analyzed 

                 by LC-MS/MS 

Table 5.   LDH activity in untreated and 7-DHC-treated 19 

                 A2058 culture media 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

VIII 
 

List of Figures 

 

Pag. 
 

Figure 1.   Time-course of 7-DHC level 13 

                   in the NaUDC/7-DHC suspension 

Figure 2.   Effect of 7-DHC on cell viability of 18 

                   A2058 melanoma cells 

Figure 3.   Effect of 7-DHC on cell viability of 19 

                   SAN melanoma cells 

Figure 4.   Pro-apoptotic effect of 7-DHC on 20 

                   A2058 melanoma cells 

Figure 5.   Pro-apoptotic effect of 7-DHC on 21 

                   SAN melanoma cells 

Figure 6.   Effect of 7-DHC on PARP-1 protein levels 22 

                   in nuclear and cytosolic fractions 

Figure 7.   Effect of 7-DHC on the intracellular ROS 23 

                   and glutathione levels 

Figure 8.   Effect of NAC and apocynin on 24 

                   7-DHC induced apoptosis 

Figure 9.   Mitochondrial membrane depolarization 25 

                   induced by 7-DHC 

Figure 10. Effect of 7-DHC on Bcl-2 and 26 

                   Bax intracellular protein levels 

Figure 11. Effect of 7-DHC on AIF 27 

                   intracellular protein levels 

Figure 12. Effect of 7-DHC on AIF 28 

                   subcellular localization 



Introduction 

1 
 

1. Introduction 
 

1.1 7-Dehydrocholesterol and its oxidative compounds 

The 7-dehydrocholesterol (7-DHC) is the direct precursor of 

cholesterol and contains an unsaturated B ring with two double bonds in 

position 5 and 7, which is reduced by delta7-sterol reductase to produce 

cholesterol [1,2]. Inherited defects in this enzyme reduce or abolish the 

transformation of 7-DHC to cholesterol with accumulation of 7-DHC and 

its isomer 8-dehydrocholesterol (8-DHC), in blood and tissues, well 

described in the Smith Lemli Opitz syndrome (SLOS; MIM 270400). 

Patients affected by this disorder have multiple morphogenic and 

congenital anomalies including internal organ, skeletal and/or skin 

abnormalities [3]. Clinical severity correlates negatively with the 

cholesterol concentration, and positively with the 7-DHC concentration 

and the sum of dehydrocholesterols (DHC) [4]. 

In a previous study we described our experience in laboratory diagnosis 

of SLOS and other defects of cholesterol biosynthesis analyzing the sterol 

profiles in plasma and erythrocyte membranes by gas chromatography 

paired to mass spectrometry (GC-MS). In particular, we measured 

cholesterol and its precursors, such as 7-DHC, desmosterol, 8-DHC, 

lathosterol, and exogenous sterols, such as campesterol, stigmasterol, and 

sitosterol. Furthermore, in order to ascertain the stability of the DHC, we 

evaluated storage effects on cholesterol and DHC concentrations in 

plasma and erythrocyte membranes from SLOS and unaffected subjects. 

We observed that the oxidation rate of DHC in erythrocyte membranes 

was at least 2-fold higher than that in plasma [5]. From our experience 

and according to others, DHC in plasma are relatively stable, but 

substantial autoxidation would be expected for DHC in plasma and whole 

blood adsorbed onto filter paper and exposed to air for long periods of 

time [6,7]. Based on these results, we have recently developed a 

procedure to stabilize DHC in dried spot of blood from patients with 

SLOS using a filter-paper treated with butylated hydroxytoluene as 

antioxidant [8,9]. 

Autoxidation of lipids, such as polyunsaturated fatty acids (PUFAs) and 

sterols, has attracted research attention over the last few decades due to its 

involvement in the patho-physiology of common diseases. Lipids are 

extremely prone to react with molecular oxygen and cholesterol free 

radical oxidation has been studied in great detail because some of its 

peroxide products have potent biological activities [10,11]. 

Experimental evidences in vitro demonstrated that the instability of 7-
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DHC in solution and in liposomes is due to its susceptibility to 

peroxidation, which is at least 10-fold more reactive than arachidonic 

acid, and at least 200-fold more reactive than cholesterol [12]. Recently, 

over a dozen oxysterols were isolated and characterized from free radical 

chain oxidation of 7-DHC [13]. 

In addition, 7-DHC is also known as pro-vitamin D, the precursor of 

vitamin D3 (cholecalciferol). The photochemical isomerization of 7-DHC 

after absorption of UV-B photons to the pre-vitamin D3 intermediate, 

followed by its slow isomerization to three main products including 

vitamin D3, tachysterol, and lumisterol (L3), represents the most 

fundamental reactions in the photobiology of the skin [14]. Increasing 

evidences indicate that the UV-B-mediated cutaneous photosynthesis of 

1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active form of vitamin D, 

represents an evolutionary highly conserved endocrine system that 

protects the skin against environmental hazards, including UV [15-19]. 

Human skin is a fundamental body organ involved in the internal 

homeostasis by separating the external from the internal environments, 

and through its immune and neuroendocrine activities [20]. The skin is an 

organ frequently exposed to sunlight and it is well known that ultraviolet 

radiation is the main cause of skin cell damage that ultimately leads to 

skin cancer. Indeed, the melanocytes, pigment-producing cells in the skin, 

can transform into melanoma cells, the most serious form of skin cancer. 

When detected early, melanoma is considered curable, but when detected 

at later stages it is one of the most lethal malignancies. Surgery is 

standard treatment for localized melanoma; unfortunately, there is no 

standard therapy for advanced-stage melanoma. Metastatic melanoma 

disseminates widely and it frequently involves sites that are not 

commonly affected in other cancers, such as the gastrointestinal tract and 

skin. Systemic therapies are known to be ineffective, because of the high 

resistance of melanoma cells to various anticancer therapies [21]. 

 

 

1.2 Effects of 7-DHC and its derivative compounds  

7-DHC is present at relatively high concentrations in skin where it 

is exposed to exogenous radical sources and oxygen. The intracellular 

levels of 7-DHC could have deleterious effects on cellular functionality, 

either through altering the composition of the membranes or causing an 

intracellular redox imbalance. In addition, 7-DHC oxidative derivatives, 

oxysterols, can affect the cellular viability inducing cytotoxicity [22], the 

immune response [23], and influencing the regulation of cholesterol 

homeostasis [24,25]. However, the study of the effects on cancer cells, 
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stimulated by the addition of 7-DHC alone to culture medium is rarely 

reported in the literature.  

In keratinocytes, when cholesterol is partially replaced by 7-DHC, a rapid 

increase of intracellular ROS levels has been observed [26]. Since 7-DHC 

is not a chromophore, at present, it is not clear how the 7-DHC causes the 

redox state alterations responsible of UV-A skin photosensibility.  

In the membranes cholesterol can be displaced by 7-DHC and 

contributing to affect lipid raft architecture. In fact, it has been suggested 

that the alteration of signaling pathways, triggered by the modification in 

the lipid raft composition in a keratinocyte model, is associated to an 

increase of UV-A-induced ROS formation [15]. Therefore, the high levels 

of 7-DHC can provoke cellular changes through a two-step mechanism: i) 

displacing the cholesterol, 7-DHC alters the composition of cellular 

membranes, ii) the high reactivity of 7-DHC makes this molecule easily 

modifiable producing several 7-DHC-derived compounds. Recently, in 

normal cells and in a SLOS cell model it was observed that 7-DHC-

derived oxysterols altered the expression of molecules involved in the 

intracellular signaling, lipid biosynthesis, and vesicular transport [27,28]. 

 

 

1.3 Scientific hypothesis and aim of the work 

In this study we have hypothesized that the evaluation of cytotoxic 

potential of 7-DHC could be of interest in a neoplastic context.  

We have treated melanoma cell lines with 7-DHC at concentrations likely 

to that detected in plasma of SLOS patients with a mild phenotype.  

In order to understand the direct effects of 7-DHC, we evaluated the 7-

DHC stability in the vehicle suspension used to transfer the 7-DHC from 

the culture medium into the cells. 

We have studied the cytotoxic effect of 7-DHC on melanoma cells, 

evaluating its pro-apoptotic potential, and the molecular processes that 

regulate the cell death up to 3 days of treatment. 

We have measured the intracellular levels of 7-DHC and its oxidized 

derivatives after different treatment times. 
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2. Materials and Methods  
 

2.1 Materials 

The analytical solvents of HPLC grade, including methanol, 

dichloromethane, n-hexane, ethanol, and pyridine were purchased from 

Carlo Erba Reagenti (Milano, Italy). Ursodeoxycholic acid, sterol 

standards, oxysterols, butylated hydroxytoluene (BHT), and N,O-

bis(trimethylsilyl)trifluoroacetamide (BSTFA) were purchased from 

Sigma–Aldrich Ltd. (St. Louis, MO, USA). Sodium ursodeoxycholate 

(NaUDC) was prepared by neutralizing ursodeoxycholic acid dissolved in 

95% ethanol with a stoichiometric amount of aqueous sodium hydroxide 

solution [29], the solution was dried under nitrogen, and dissolved in 

methanol to provide a solution of 12.4 g/L. BHT was dissolved in ethanol 

to provide a stock solution of 60 g/L. Stock solutions of sterol standards 

were prepared in chloroform/methanol (2:1, v/v) to provide solutions of 

0.4 g/L for 5-cholestane (internal standard), 1 g/L for cholesterol, and 

3.85 g/L for 7-DHC. Stock solutions of oxysterols (cholesterol 5β,6β-

epoxide, 25-hydroxy-cholesterol, and 7-keto-cholesterol) were prepared 

in methanol to provide solutions of 1 g/L. All solutions were stored at -20 

°C. Dulbecco’s modified eagle’s medium (DMEM), Roswell Park 

Memorial Institute (RPMI) 1640 medium, fetal bovine serum (FBS), L-

glutamine, penicillin G, streptomycin, trypsin were purchased from Lonza 

(Milano, Italy). Annexin V-FITC was purchased from BD Pharmigen 

(Milano, Italy). Propidium iodide (PI), dichlorofluorescein diacetate 

(DCFH-DA), Rhodamine 123 (R123), apocynin, N-acetyl-L-cysteine 

(NAC) were purchased from Sigma-Aldrich Ltd. A protease inhibitor 

cocktail was obtained from Roche Diagnostics S.p.A. (Monza, Italy). 

Caspase-3 fluorometric assay kit was purchased from BioVision 

(Milpitas, CA, USA), and EnzyChrome GSH/GSSG assay kit was 

purchased from BioAssay Systems (Hayward, CA, USA). Rabbit 

monoclonal antibody against AIF was from Abcam (Cambridge, UK); 

rabbit monoclonal antibody against GAPDH was obtained from Cell 

Signalling (Boston, MA, USA); mouse monoclonal antibody against Bcl-

2, rabbit polyclonal antibody against Bax, goat polyclonal antibody 

against -actin, rabbit polyclonal antibody against poly(ADP-ribose) 

polymerase 1 (PARP-1), and each secondary antibody conjugated to 

horseradish peroxidase were obtained from Santa Cruz Biotechnology 

(Heidelberg, Germany). All other chemicals were of analytical grade and 

were purchased from Sigma-Aldrich Ltd. 
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2.2 Preparation of 7-DHC-enriched media 

Two suspensions containing 12.4 g/L NaUDC enriched with 3.85 

g/L 7-DHC and NaUDC alone (vehicle) were prepared by a modified 

dispersion method [30,31]. Briefly, 2 mL of NaUDC alone or a mix of 2 

mL of 7-DHC and 2 mL of NaUDC were dried under nitrogen and 

dissolved with 2 mL of phosphate buffer (50 mM, pH 7.4). The 

suspensions were sterilized by autoclaving (121 °C for 20 min), and then 

mixed vigorously on a vortex, incubated at 65 °C for 15 min and 

sonicated for 20 min (three times). These suspensions were diluted 1:10 

with FBS and, after incubation at 37° C for 1.5 hours alternating with 

vortex agitation, the 7-DHC-enriched FBS and the 7-DHC-free FBS were 

diluted ten fold with medium to obtain final concentrations of 38.5 g/mL 

for 7-DHC and 124 µg/mL for NaUDC (7-DHC-enriched medium) and of 

124 µg/mL for NaUDC alone (7-DHC-free medium), respectively. To 

obtain a medium containing 19.2 µg/mL 7-DHC and 124 µg/mL NaUDC, 

the FBS containing 7-DHC at 385 g/mL was diluted (1:1) with 7-DHC-

free FBS. The solutions of 7-DHC-enriched medium and of 7-DHC-free 

medium were incubated at 4° C over-night before use. 

 

 

2.3 Cell culture 

The human melanoma cell line A2058, kindly provided from 

CEINGE (Naples, Italy) and SAN [32] were derived from lymphonodal 

metastasis. A2058 and SAN  melanoma cells were grown in DMEM or 

RPMI, respectively, supplemented with 10% FBS, 2 mM L-glutamine, 

100 IU/mL penicillin G and 100 µg/mL streptomycin in humidified 

incubator at 37 °C under 5% CO2 atmosphere. They were split and seeded 

in plates (75 cm
2
) every three days and used for assays during exponential 

phase of growth. Cell treatments were always carried after 24 hours from 

plating. A2058 or SAN cells were treated with culture media containing 

19.2 g/mL or 38.5 g/mL of 7-DHC and 124 g/mL of NaUDC, and 

with 7-DHC-free media as controls for 12, 24, 48, and 72 hours. 

 

 

2.4 MTT assay 

The 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl-tetrazolium 

bromide (MTT) assay was used to detect cell proliferation. Cells were 

plated in 96-well at 2 x 10
4
 cells/well and after one day-plating, 7-DHC 

was added to the cultures. At the end of each incubation time, MTT assay 

was performed according to the manufacturer’s protocol. The absorbance 
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was measured at a wavelength of 570 nm with the ELISA plate reader 

(BioRad, Milano, Italy). 

 

 

2.5 LDH Assay  

A2058 cells were plated in 6-well at 1 x 10
5
 cells/well and after one 

day-plating, 7-DHC was added to the cultures and cells were incubated 

for different times. At the end of each incubation, cytotoxicity was 

quantitatively assessed by measurements of lactate dehydrogenase (LDH) 

activity released in the extracellular fluid from damaged or destroyed 

cells [33]. Briefly, different aliquots of cell incubation media were added 

to a 1-mL reaction mixture containing 0.1M Tris-HCl, pH 7.5, 125 μM 

NADH, and incubated for 15 min at 30 °C. The reaction started with the 

addition of 600 μM sodium pyruvate and was followed by the decrease in 

absorbance at 340 nm. The results were normalized to 100% death caused 

by cell sonication. 

 

 

2.6 Evaluation of Apoptosis  
Annexin V-FITC was used to evaluate apoptosis during 7-DHC 

treatment. Briefly, cells were seeded into 6-well plate (2 x 10
5
 cells/well) 

and treated with 7-DHC for 24 hours. After treatment, cells were washed 

twice with PBS, and harvested with a cell scraper. 1 x 10
5
 cells were 

resuspended in 100 L of 1 x binding buffer (10 mM Hepes pH 7.5, 140 

mM NaCl, 2.5 mM CaCl2) containing 5 L of Annexin V-FITC and 10 

L of 50 g/mL PI and incubated for 15 min at room temperature in the 

dark, and analyzed by flow cytometry. Apoptosis was further evaluated 

by determining the number of nuclei with a hypodiploid content of DNA 

using PI staining. Briefly, 7-DHC-treated cells were seeded into 96-well 

plates (2 x 10
4
 cells/well); at the end of each treatment, cell suspensions 

were centrifuged and pellets were re-suspended in a hypotonic lysis 

solution containing 50 μg/mL propidium iodide. After incubation at 4 °C 

for 30 min, cells were analyzed by flow cytometry to evaluate the 

presence of nuclei with a DNA content lower than the diploid [34]. The 

effect of 7-DHC on apoptosis was also evaluated in the presence of NAC 

as antioxidant or apocynin as inhibitor of NADPH oxidase. In particular, 

the cells were pre-incubated for 1 hour with NAC (10 mM) or 45 min 

with apocynin (0.5 mM). After, the media were withdrawn and cells were 

treated with 7-DHC. 
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2.7 Measurements of caspase-3 activity 

To evaluate caspase-3 activation during 7-DHC treatment, the 

enzymatic activity was measured by using caspase-3 fluorometric assay 

kit according to the manufacturer’s protocol. Briefly, cells were seeded 

into 75 cm
2
 plates (1 x 10

6
 cells/plate) and treated with 38.5 µg/mL 7-

DHC. At the end of incubation cells were collected, washed with PBS, 

and finally lysed at 4 °C using cell lysis buffer. Cell lysates (150 µg of 

proteins) were incubated with 50 µM DEVD-AFC substrate at 37 °C for 2 

hours, to detect caspase-3 activity. The measurements were realized with 

a Cary Eclipse fluorescence spectrophotometer (Varian). Excitation and 

emission wavelengths were 400 nm and 505 nm, respectively; both 

excitation and emission slits were set at 10 nm. 

 

 

2.8 Detection of intracellular ROS content 

The intracellular ROS level was detected using the oxidation-

sensitive fluorescence probe DCFH-DA. Briefly, A2058 cells were 

seeded into 6-well plate (1 x 10
5
 cells/well) and treated with 7-DHC for 

different times. DCFH-DA was added in the dark at 10 μM final 

concentration 30 min before the end of each incubation; then cells were 

collected, washed in 10 mM sodium phosphate, pH 7.2 buffer containing 

150 mM NaCl (PBS), and finally resuspended in 500 μL of PBS for the 

fluorimetric analysis. The measurement of the ROS levels was realized 

with a Cary Eclipse fluorescence spectrophotometer (Varian). Excitation 

and emission wavelengths were 485 nm and 530 nm, respectively; both 

excitation and emission slits were set at 10 nm. The effect of 7-DHC on 

ROS production was also evaluated pre-treating the cells with NAC (10 

mM) or apocynin (0.5 mM) for 1 hour or 45 min, respectively. After, the 

media were withdrawn and cells were treated with 7-DHC. 

 

 

2.9 Measurement of intracellular glutathione content 

Intracellular glutathione content was measured using the 

EnzyChrome GSH/GSSG assay kit. Briefly, 2 x 10
6
 cells were treated 

with 7-DHC (38.5 μg/mL) and after the incubation time they were 

sonicated and homogenized in phosphate buffer 50 mM and 1 mM 

EDTA. The suspension was centrifuged at 4° C for 15 min at 10,000 g, 

and the supernatant was deproteinized with 5% meta-phosphoric acid, 

centrifuged at 14,000 rpm for 5 min, and GSH and GSSG contents were 

measured following manufacturer’s protocol. 
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2.10 Evaluation of mitochondrial membrane potential 

Mitochondrial membrane potential was evaluated by measuring the 

incorporation of the fluorescent probe R123. Briefly, cells were seeded 

into 6-well plate (1 x 10
5
 cells/well), incubated at 37 °C for 1 hour in the 

presence of 5 µM R123, washed twice with PBS and placed in medium 

containing 7-DHC. After different times of treatment, the medium was 

withdrawn and collected cells were washed twice with PBS. After 

detachment with trypsin, cells were harvested in PBS and centrifuged at 4 

°C for 10 min. Following aspiration of supernatant, the cellular pellet was 

resuspended in 500 µL of PBS. The fluorescence of cell-associated R123 

was measured in the above-mentioned fluorescence spectrophotometer, 

using excitation and emission wavelengths of 490 nm and 520 nm, 

respectively; both excitation and emission slits were set at 10 nm. The 

fluorescence intensities were normalized versus the cell number. 

 

 

2.11 Total cell lysates and subcellular fractionation for Western blot 

analysis 

A2058 cells were plated at a density of 1 x 10
5
 cells/well in 6-well 

plates, treated and untreated cells were then harvested, washed with PBS, 

and lysed in ice-cold modified RIPA buffer (50mM Tris-HCl, pH 7.4, 

150mM NaCl, 1% Nonidet P-40, 0.25% sodium deoxycolate, 1mM 

Na3VO4, and 1mM NaF), supplemented with protease inhibitors and 

incubated for 30 min on ice. The supernatant obtained after centrifugation 

at 12,000 g for 30 min at 4 °C constituted the total protein extract. Protein 

concentration was determined by the method of Bradford [35], using BSA 

as calibrator. 

To obtain cytosolic and mithocondrial fractionation, cells were plated at a 

density of 2 x 10
6
 cells/plate (143 cm

2
). After the treatment, the cells were 

harvested, washed in PBS and then re-suspended in buffer M (5 mM 

Hepes, pH 7.4, 250 mM mannitol, 0.5 mM EGTA, 0.1% BSA), 

supplemented with protease inhibitors, and homogenized. The 

homogenate was centrifuged at 800 g for 10 min at 4 °C and the 

supernatant was then centrifuged at 12,000 g for 30 min at 4 °C. The 

resulting supernatant represented the cytosolic fraction, whereas the pellet 

constituting the mitochondrial fraction was resuspended in RIPA buffer.  

To obtain nuclear and cytosolic extracts, cells plated at a density of 2 x 

10
6
 cells/plate (143 cm

2
) were harvested and washed with PBS. Cells 

were resuspended with lysis buffer (10 mM Tris HCl, pH 7.5, 2 mM 

MgCl2, 3 mM CaCl2, 0.3 M sucrose), supplemented with 1 mM DTT and 

protease inhibitors, and homogenized. The homogenate was centrifuged 
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at 10,000 g for 20 min at 4 °C and the supernatant (cytosolic fraction) 

transferred in a clean tube. Then, the nuclei pellet was resuspended in 

extraction buffer (20 mM HEPES, pH 7.9, 1.5 mM MgCl2, 0.42 M NaCl, 

0.2 mM EDTA, 25% (v/v) glycerol), supplemented with 1 mM DTT and 

protease inhibitors, shaken gently for 30 min at 4 °C and centrifuged at 

20,000 g for 5 min at 4 °C. The resulting supernatant represented the 

nuclear fraction. Equal amounts of total, cytosolic, mitochondrial, and 

nuclear protein extract were used for Western blot analysis. Briefly, 

protein samples were dissolved in SDS/reducing loading buffer, run on a 

12% SDS-PAGE, then transferred to Immobilon P membrane (Millipore, 

Vimodrone MI, Italy). The filter was incubated with the specific primary 

antibody at 4 °C overnight and with the horseradish peroxidase-linked 

secondary antibody at room temperature for 1 hour. Membranes were 

then analyzed by an enhanced chemiluminescence reaction, using Super 

SignalWest Pico kit (Pierce - Thermo Scientific, Rockford, IL USA) 

according to the manufacturer’s instructions; signals were visualized by 

autoradiography. 

 

 

2.12 Immunofluorescence and confocal microscopy 

Cells were plated on coverslips at a density of 0.3 x 10
6
 cells/well in 

6-well plates. At the end of the treatment for 24h, cells were incubated 

with 90 nM MitoTracker Red (Invitrogen) at 37 °C for 1 hour and then 

washed three times with ice-cold PBS. The cells were fixed with 4% 

paraformaldehyde, permeabilized with 0.1% Triton X-100 and blocked in 

donkey serum (Millipore) diluted 1:10 in PBS, for 60 min at room 

temperature. Coverslips were incubated for 1 hour at 37 °C with a 

primary rabbit polyclonal antibody against AIF, diluted 1:50 in PBS, and 

subsequently incubated for 1 hour at 37 °C with a FITC donkey anti-

rabbit secondary antibody (Jackson ImmunoResearch Europe Ltd.), 

diluted 1:100 in PBS. At the end, nuclei were labelled with 4',6-

diamidino-2-phenylindole (DAPI) for 15 min at room temperature. Slide 

mounting was done in Vectashield (Burlingame, CA, USA). Fluorescent-

labeled cells were viewed with a confocal laser scanner microscope (Zeiss 

LSM 700, Jena, Germany) and the objective used was EC Plan-neofluar 

40X/1.30 oil. The laser line was set at 488 nm for the FITC-conjugated 

antibody, at 555 nm for MitoTracker Red and 405 nm for DAPI. Images 

were acquired simultaneously in the green, red and blue channels, and as 

z-stack. Pictures were processed using ImageJ software (NIH, USA) to 

reconstruct x-axis projection using stack images. 
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2.13 Free sterol and sterol-derived compound analysis 

Cells were plated at a density of 1 x 10
6
 cells/plate (75 cm

2
). 

Control cells, 7-DHC-treated cells (38.5 μg/mL), and respective culture 

media, were harvested protecting them from direct light. The cells were 

washed with PBS to eliminate traces of medium. To avoid sterol 

oxidation, BHT was suddenly added to cell and medium samples to 

provide a final concentration of 3 g/L. The cells were disrupted with 

mechanical techniques (freezing-defrosting, sonicating), and 

homogenized using a mini-potter on ice; the protein concentration in cell 

homogenates was determined by the method of Bradford [35].  

7-DHC and cholesterol analysis was performed using 20 μL of vehicle 

suspension or 200 μL of medium or 100 μL of cell homogenate samples 

mixed with 25 μL of internal standard, 1 mL of ethanol containing 3 g/L 

BHT, and 1 mL of distilled water; the solution was extracted with hexane 

(3 x 2 mL). The upper organic phases were pooled and evaporated under 

a gentle stream of nitrogen. The dry residue was reconstituted with 50 L 

of dichloromethane, and 1 L of the resulting solution was injected into 

the GC-FID.  

The extraction of oxidized sterol compounds, after hydrolysis, was 

performed according to Pulfer and Murphy procedure [36]. One-hundred 

μL of medium or cell homogenate samples were mixed with 25 μL of IS 

and hydrolyzed for 60 min at 80 °C in 2 mL of 1N KOH in 90% methanol 

containing 3 g/L BHT. After the hydrolysis, the sample was diluted with 

2 mL of distilled water, and extracted with dichloromethane (3 mL 

followed by 2 mL two times). The lower phases were pooled and 

evaporated under a gentle stream of nitrogen. The dry residue was 

derivatized by the addition of 30 L pyridine and 70 L BSTFA followed 

by a heating at 80 °C for 30 min. The derivatized sample was dried under 

nitrogen stream and the residue was dissolved with 50 L 

dichloromethane; 1 L of the solution was injected into the GC-FID and 

GC-MS. 

 

 

2.14 Gas chromatography (GC-FID and GC-MS) 

Free sterol analysis was performed as previously described [9]. 

Briefly, a gas chromatograph equipped with a flame ionization detector 

(GC-FID, HP-5890, Agilent Laboratories, CA, USA) equipped with a 

SAC-5 capillary column (30 m length, 0.25 mm I.D., 0.25 m film 

thickness; Supelco, Germany), was used to separate the sterols using 

nitrogen as carrier gas. The linear velocity of carrier gas was 45 cm/s. 
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Injector and detector temperatures were fixed at 300 °C, and the oven 

temperature at 290 °C for a total run time of 30 min. Sterol concentrations 

were obtained by interpolating the peak area ratios (analyte/IS) on the 

calibration curves. The sterol-derived compounds were analyzed by GC-

FID (HP-5890) and by GC-MS controlled by a work station using 

MassLab 3.4 as software (Fisons, model GC 8000/MD800). 

Chromatography conditions of GC-MS apparatus were as above 

described and using helium carrier gas. Qualitative analysis was 

performed by GC-MS scanning the mass range from m/z 50 to 600 

comparing compound mass spectra with those reported into mass spectra 

libraries (Wiley and National Institute of Standards and Technology). 

Quantitative analysis was performed using GC-FID, compound 

identification was obtained by the relative retention time (Rf=Rt 

analite/Rt IS). Oxidized sterol compound concentrations were calculated 

from the ratio of peak area compared to calibration curves of oxysterols 

(cholesterol 5β,6β-epoxide, 25-hydroxy-cholesterol, and 7-keto-

cholesterol). 

 

 

2.15 Liquid chromatography tandem mass spectrometry (LC-MS/MS) 

The oxidized sterol compounds were also analyzed by LC-MS/MS 

using a slight modification of the method of Pulfer and Murphy [36]. 

Briefly, the dried extracts were dissolved in 200 l ethanol, then 5 l 

were injected onto a reverse phase column (Zorbax Eclipse® Plus C18, 

3.5 m, 150 x 2.1 mm; Agilent Technologies, Cernusco, Italia) at a flow 

rate of 0.3 mL/min. Solvent A was methanol/water/acetonitrile (v/v/v, 

60:20:20) with 4 mM ammonium acetate; solvent B was methanol with 4 

mM ammonium acetate. The gradient ran from 90 to 100% solvent B in 

10 min and stayed at 100% solvent B for 10 min. Multiple reaction 

monitoring analysis was carried out on a Quattro-Micro mass 

spectrometer (Waters Corporation, Milford, USA). The mass 

spectrometer operated in positive ion mode by atmospheric pressure 

chemical ionization probe (APCI). The cone voltage was set at 25 V, the 

collision energy at 20 eV and the gas cell Pirani gauge at 2.2 x 10-3 mbar 

using argon as the collision gas. Source temperature, desolvation gas flow 

rate, desolvation gas temperature, cone gas flow rate and gas nebulizer 

pressure were set at 120 °C, 350 L/h, 350 °C, 50 L/h and 80 psi, 

respectively, while the corona discharge was set at 2 mA. Multiple 

reaction monitoring (MRM) transitions were m/z 385 > 367 for 7-DHC, 

25-hydroxy-cholesterol, and 5β,6β-epoxide, m/z 399 > 381 for 3β,5-
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dihydroxycholest-7-en-6-one (DHCEO) and 7-keto-dehydro-cholesterol 

(7-keto-DHC), and m/z 401 > 383 for 25-hydroxy-7-DHC and 7-keto-

cholesterol. The dwell time for each transition was 100 ms. Quantitative 

analysis was carried out using calibration curves of 25-hydroxy-

cholesterol for 25-hydroxy-7-DHC, and of 7-keto-cholesterol for DHCEO 

and 7-keto-DHC. 

 

 

2.16 Statistical analysis 

Data are reported as average, standard deviation, and standard error. 

The statistical significance of differences among groups was evaluated 

using the ANOVA, with the Bonferroni correction as post-hoc test, or the 

Student’s t-test where appropriate. The significance was accepted at the 

level of p < 0.05. 
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3. Results 
 

3.1 Study on 7-DHC stability 

In order to evaluate the 7-DHC stability, we monitored the 7-DHC 

concentration in the suspension of NaUDC/7-DHC used to prepare 7-

DHC-enriched media. The suspension was stored at 4°C up to three 

months. The average concentration of 7-DHC suddenly after the 

preparation of the suspension was 3.97 ± 0.01 g/L. As shown in figure 1, 

no significant changes from baseline values were observed in the 7-DHC 

levels in the suspension up to 90 days of storage at 4 °C. 

 

 

   
 

Fig. 1 Time-course of 7-DHC level in the NaUDC/7-DHC suspension   

7-DHC concentrations were determined by GC-FID method and were expressed 

as percentage of average baseline values (3.97 g/L). Data from quadruplicate 

experiments are reported as mean ± SE.  
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3.2 Sterol levels in culture media and melanoma cells 

It is known that handling of 7-DHC in culture media may lead to its 

disruption/conversion into derivative compounds [12]. Therefore, in order 

to assess the correlation between the levels of 7-DHC and its effects on 

melanoma cells, we monitored by GC-FID the levels of cholesterol and 7-

DHC in culture media and cells of experiments carried out in this work. 

The quantitative analysis of free sterols was made at baseline and during 

the time-course of stimulation. The levels of cholesterol in the culture 

media from 7-DHC-treated melanoma cells were almost unchanged 

during the first 12 hours, then the levels decreased progressively up to 

67% after 72 hours (Table 1).  

 

 

 
Table 1.  Cholesterol levels in 7-DHC-treated and untreated cells and media 

The micromoles of cholesterol can be obtained dividing the values by the molecular weight of 

386.6 Da. * Statistical significance. 

 

 

 

A similar behavior was essentially observed in media from untreated 

cells. On the other hand, cholesterol levels in untreated or treated 

melanoma cells were stable during the whole incubation time, 

independently of some differences observed in the basal levels of this 

sterol measured between untreated and treated cells. However, these 

variations were significant only at the incubation times of 12 and 24 hours 

(Table 1). Concerning the levels of 7-DHC, the corresponding values 

measured in media and cells are shown in Table 2.  
 

 

 

 basal 12h 24h 48h 72h 

CHOL in cells µg/mg of proteins (SE) 

Treated 24.2 (2.4) 35.0 (1.8) 34.2 (1.9) 29.7 (2.7) 37.4 (4.7) 

Untreated 24.2 (2.4) 28.0 (1.2) 24.2 (1.7) 25.7 (0.1) 26.4 (5.2) 

*p  0.03 0.01 0.34 0.22 

CHOL in media µg/mL (SE) 

Treated 8.2 (0.4) 8.0 (0.1) 7.2 (0.5) 5.9 (0.6) 5.5 (0.8) 

Untreated 8.0 (0.1) 8.2 (0.2) 8.5 (0.3) 5.2 (0.7) 5.4 (1.4) 

*p 0.76 0.44 0.12 0.49 0.96 
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Table 2. Total amounts and percentages of 7-DHC in treated cells and media 

a: Total micrograms (standard error) of 7-DHC in media and cells as averages/well.  

: 7-DHC gap as: (7-DHC basal in media) - (7-DHC in media + 7-DHC in cells).  

The micromoles of 7-DHC can be calculated dividing the values by 384.6 Da (molecular weight). 

 

 

 

The comparison of these data suggests that 7-DHC moved from media to 

cells and that, after 12 hours of treatment, a great percentage of this sterol 

(82%) already entered the cell; the influx reached 86% after 72 hours.  

However, as reported in Table 2, a gap of 7-DHC was observed between 

total amount at basal state in the culture media and the sum of 7-DHC 

found in media and treated cells at different incubation times. This gap 

ranged between 4.1% and 6.9% during the whole incubation time. These 

results could indicate the presence of other sterol compounds, which were 

determined both by GC-MS and LC-MS/MS. At basal state the medium 

enriched with 7-DHC contained 5.67 g/well of cholesta-4,6,8(14)-trien-

3ol, 5.44 g/well of cholesta-5,7,9(11)-trien-3ol, and 1.80 g/well of 

cholesta-5,8,24-trien-3ol. During the time-course of treatment these 

compounds entered rapidly the cells reaching on average a percentage of 

44%, 72%, and 83%, respectively. In addition, a new metabolite was 

found into the cells. This compound, identified as 25-hydroxy-7-DHC, 

was undetectable in media and its quantity ranged between 2.90 and 5.26 

μg/well (Table 3). As reported in Table 4, the analysis performed by LC-

MS/MS confirmed this result, and showed that the medium enriched with 

7-DHC, at basal state, contained on average 3.06 g/well of 7-keto-

cholesterol, 0.68 g/well of DHCEO, and 0.11 g/well of 7-keto-DHC. 

After 72 hours of treatment with 7-DHC, the cells contained these 

compounds in part as influx from the medium and in part as metabolites 

produced from cholesterol and 7-DHC. Since the amount of each 

compound in the medium was on average always less than 1 g/mL (8 

mL/well), this concentration was not considered toxic for cell growth.

 basal 12h 24h 48h 72h 

7-DHC   µg (SE)
a
   

Media 272.4 (20.2) 37.8 (0.9) 36.0 (4.2) 17.2 (7.4) 18.9 (9.0) 

Cells - 223.3 (2.0) 224.8 (6.2) 230.3 (15.1) 234.7 (14.5) 

   Average %   

Media 100 13.9 13.2 6.3 6.9 

Cells - 82.0 82.5 84.6 86.2 

 - 4.1 5.4 6.4 6.9 



 

 
 

 

 

 
 

Table 3.  Levels of sterol-derived compounds in 7-DHC-treated cells and media analyzed by GC-FID and GC-MS 

 
a: Total micrograms (standard error) of each sterol-derived compound in media and cells as average/well (n=3). The micromoles of compounds can be 

obtained dividing the values by the following molecular weights (Da): 382.6 for Cholesta-4,6,8(14)-trien-3-ol, Cholesta-5,7,9(11)-trien-3-ol, and Cholesta-

5,7,24-trien-3-ol; and 400.6 for 25-hydroxy-7-DHC. 

 

 

 

 Cholesta-4,6,8(14)-trien-3-ol Cholesta-5,7,9(11)-trien-3-ol Cholesta-5,7,24-trien-3-ol 25-hydroxy-7-DHC 

    µg (SE)
a
     

Incubation 

times 
Media Cells Media Cells Media Cells Media Cells 

basal 5.67 (0.51) - 5.44 (0.24) - 1.80 (0.08) - - - 

12 hours 1.76 (0.37) 2.31 (0.25) 1.75 (0.51) 3.15 (0.13) - 1.16 (0.04) - 5.26 (0.11) 

24 hours 2.10 (0.27) 2.48 (0.27) 1.86 (0.20) 3.57 (0.01) - 1.34 (0.09) - 2.90 (0.03) 

48 hours 1.10 (0.08) 2.39 (0.25) 2.34 (0.16) 3.08 (0.19) - 1.45 (0.03) - 4.40 (1.00) 

72 hours 0.77 (0.02) 2.49 (0.21) 1.58 (0.02) 3.91 (0.14) - 1.49 (0.26) - 4.86 (1.13) 

16 



 

 
 

 

 
 

 

 

 

Table 4.  Levels of sterol-derived compounds in 7-DHC-treated cells and media analyzed by LC-MS/MS 

 

a = Total micrograms (standard error) of each sterol-derived compound in cells and media as average/well (n=3). The micromoles of compounds can be 

obtained dividing the values by the following molecular weights (Da): 400.6 for 25-hydroxy-7-DHC and 7-keto-cholesterol, 416.6 for DHCEO, and 398.6 

for 7-keto-DHC. 

 

 

 

 25-hydroxy-7-DHC 7-keto-cholesterol DHCEO 7-keto-DHC 

Incubation times µg (SE)
a
 

7-DHC-Treated Media Cells Media Cells Media Cells Media Cells 

basal - - 3.06 (0.28) 0.13 (0.01) 0.68 (0.03) - 0.11 (0.01) - 

72 hours - 4.42 (0.99) 0.90 (0.08) 0.48 (0.04) 0.56 (0.04) 0.76 (0.02) 0.16 (0.01) 0.04 (0.01) 

Untreated         

basal - - 4.89 (0.44) 0.13 (0.01) - - - - 

72 hours - - 4.65 (0.39) 0.16 (0.01) - - - - 

17 
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3.3 Cytotoxic effect of 7-DHC in melanoma cell lines 

To investigate if the treatment of A2058 melanoma cells with 7-

DHC affects cell viability, a MTT assay was performed. To this aim, 

melanoma cells were incubated for 24 and 48 hours with two different 

concentrations of 7-DHC (19.2 or 38.5 µg/mL) or with the vehicle alone. 

The spectrophotometric analysis showed a decrease of cell proliferation 

after 24 hours only in the presence of 38.5 µg/mL 7-DHC, whereas after 

48 hours of incubation with 7-DHC, a dose-dependent decrease of cell 

growth was observed (Fig. 2). 

 

 
Fig. 2 Effect of 7-DHC on cell viability of A2058 melanoma cells 
A2058 cells were incubated for 24 and 48 hours with vehicle alone 

(white bars), 19.2 µg/mL (grey bars) or 38.5 g/mL (black bars) 7-

DHC. Cell viability was evaluated by MTT assay and was reported 

as arbitrary units (a.u.). Data from triplicate experiments are 

reported as mean ± SD. *p < 0.05 and **p < 0.01 compared to 

untreated cells.  

 

 

 

These results suggest that the treatment of A2058 cells with 7-DHC could 

exert a cytotoxic effect on this melanoma cell line. In addition, the 

cytotoxic effect of 7-DHC has been also confirmed on SAN melanoma 

cells and the results were comparable to that obtained on A2058 cell line 

(Fig. 3). 
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                         Fig. 3 Effect of 7-DHC on cell viability of SAN melanoma cells 

SAN cells were incubated for 24 and 48 hours with vehicle alone 

(white bars), 19.2 µg/mL (grey bars) or 38.5 µg/mL (black bars) 7-

DHC. Cell viability was evaluated by MTT assay and was reported as 

arbitrary units (a.u.). Data from triplicate experiments are reported as 

mean ± SD. *p < 0.05 and *p < 0.01 compared to untreated cells. 

 

 

We have evaluated if the reduction of cell proliferation induced by the 7-

DHC treatment of A2058 cells could be indicative of a cell death process. 

It is known that LDH activity significantly increases in culture media of 

cells undergoing a necrosis. Therefore, we have assayed the LDH activity 

in culture media from A2058 cells incubated up to 48 hours with 38.5 

µg/mL of 7-DHC. However, the results showed a not significant release 

of LDH from A2058 cells treated with 7-DHC compared to untreated 

cells (Table 5).  

 
 

Table 5.  LDH activity in untreated and 7-DHC-treated A2058 culture media 

Differences among groups were not statistically significant (ANOVA).   

 Untreated 7-DHC-treated  

  19.2 mg/mL 38.5 mg/mL 

Incubation times IU/L (SE) 

24 hours 78 (1.5) 76 (2.0) 75 (2.8) 

48 hours 93 (0.3) 95 (2.0) 98 (1.2) 
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Then, we analyzed the exposure of phosphatidylserine moieties on cell 

membranes, identified by Annexin V binding, after cell treatment with 7-

DHC. As shown in Fig. 4a the treatment of A2058 cells with 19.2 or 38.5 

µg/mL 7-DHC for 24 hours induced a significant increase of the 

percentage of early apoptotic cells (Annexin+/PI−), whereas the increase 

of percentage of late apoptotic cells (Annexin+/PI+) was low even if 

significant after treatment with 19.2 µg/mL 7-DHC. 

 
 

 
 

Fig. 4 Pro-apoptotic effect of 7-DHC on A2058 melanoma cells 

a) A2058 cells were incubated for 24 hours with vehicle alone (white bars), 19.2 µg/mL (grey bars) 

or 38.5 g/mL (black bars). Annexin V-FITC binding and the propidium iodide incorporation were 

evaluated cytofluorimetrically. Annexin V-positive/PI negative cells (AV+/PI-) and Annexin V-

positive/PI positive cells (AV+/PI+) represent early and late apoptotic cells, respectively. The data 

were expressed as percentage. b) A2058 cells were incubated for 48 and 72 hours with vehicle 

alone (white bars), 19.2 µg/mL (grey bars) or 38.5 g/mL (black bars) 7-DHC. PI staining and 

cytofluorimetric analysis were used to evaluate the number of nuclei with a hypodiploid content of 

DNA and the data were expressed as percentage. Data from triplicate experiments are reported as 

mean ± SD. *p < 0.05 and **p < 0.01 compared to untreated cells. 

 

 

 

Furthermore, flow cytometric analysis of PI incorporation on A2058 

cells, incubated with 19.2 or 38.5 µg/mL 7-DHC for different times, 

showed that the number of nuclei with sub-diploid DNA content started 

to increase after 48 hours of treatment compared to untreated cells, and 

after 72 hours a dose-dependent effect was evident (Fig. 4b). The same 

effect was observed on SAN melanoma cells after 48 hours of treatment 

with 38.5 µg/mL of 7-DHC (Fig. 5). 

  

 

b 
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Fig. 5 Pro-apoptotic effect of 7-DHC on SAN melanoma cells 

SAN cells were incubated for 48 hours with vehicle alone (white bars) 

or 38.5 g/mL (black bars) 7-DHC. PI staining and cytofluorimetric 

analysis were used to evaluate the number of nuclei with a 

hypodiploid content of DNA and the data were expressed as 

percentage. Data from triplicate experiments are reported as mean ± 

SD. **p < 0.01 compared to untreated cells. 

 

 

 

 

These data are indicative that the effect of 7-DHC may be mainly due to 

an apoptotic process.  

As activation of caspase is one of the widely recognized features of 

apoptosis [37], the enzymatic activity of caspase-3 was measured after 7-

DHC treatment. However, A2058 cells, incubated with 19.2 or 38.5 

µg/mL 7-DHC for different times, didn’t show any significant variation 

of caspase-3 activity. 

Furthermore, since caspase-3 mediates the cleavage of PARP-1, we 

evaluated the inactivation of PARP-1 analyzing in nuclear and cytosolic 

fractions both 116 kDa and 89 kDa forms, which represent the uncleaved 

and cleaved form of PARP-1, respectively. Western blot analysis showed 

the presence of PARP-1 as intact protein in nuclear fraction (116 kDa), 

while PARP-1 cleaved fragment (89 kDa) was not detected in both 

nuclear and cytosolic extracts (Fig. 6). Hence, these data are indicative 

that the 7-DHC affects the viability of the A2058 likely in a caspase-

independent manner. 
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Fig. 6 Effect of 7-DHC on PARP-1 protein levels in nuclear and 

cytosolic fractions  

A2058 cells were incubated for 24 hours with vehicle alone or 38.5 g/mL 

7-DHC. a) Nuclear and cytosolic protein extracts were used to perform 

PARP-1 Western blot analysis. Histone H3 and -tubulin were utilized to 

evaluate the loading and purity of nuclear and cytosolic protein fractions, 

respectively. b) Densitometric analysis of PARP-1 protein levels in nuclear 

fraction. Data from triplicate experiments are reported as mean ± SD. 

 

 
3.4 Effect of 7-DHC on the intracellular ROS and glutathione levels 

Structure of 7-DHC is very similar to that of cholesterol, but 7-

DHC is a molecule more reactive because of the presence in its structure 

of a conjugated double bound. Hence, high 7-DHC intracellular levels can 

affect the cellular physiology and in particular the intracellular redox 

state. In fact, 7-DHC may contribute to this process by replacing 

cholesterol in cell compartments and then altering signal transduction 

processes in lipid rafts generating oxidized 7-DHC derivatives [38].  

To this aim, the intracellular ROS level was measured in A2058 cells 

treated with 7-DHC. In particular, the cells were incubated with 38.5 

µg/mL of 7-DHC, and ROS production was detected at different times 

through the use of the fluorescent probe DCFH-DA (Fig. 7a). An 

increment of fluorescence intensity was clearly evident already after 2 

hours of incubation; this increase remained up to 8 hours of 7-DHC 

treatment. Furthermore, ROS production induced by 7-DHC was also 

evaluated on cells pre-treated with NAC (10 mM) as antioxidant or 

apocynin (0.5 mM) as NADPH oxidase inhibitor. After 2 hours of 

treatment with 7-DHC, the pre-treatment with NAC or apocynin 

antagonized the 7-DHC effect and the ROS levels were unchanged 

respect to basal state (Fig. 7b).  
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          Fig. 7 Effect of 7-DHC on the intracellular ROS and glutathione levels 
A2058 cells were incubated for the indicated time periods with vehicle alone (white 

bars) or 38.5 g/mL 7-DHC (black bars). The fluorescent probe DCFH-DA was used 

to detect the intracellular ROS levels. Fluorescence intensity was reported as arbitrary 

units (a.u.) (panel a). A2058 cells were pre-incubated with the free radical scavenger, 

NAC (10 mM), or apocynin (0.5 mM), a NADPH oxidase inhibitor. The intracellular 

ROS level was evaluated after 2 hours of 7-DHC treatment by using the fluorescent 

probe DCFH-DA. ROS production was expressed as percentage of control (panel b). 

The intracellular GSH level and the GSH/GSSG ratio were evaluated after 2 hours of 

7-DHC treatment. The data were expressed as percentage of control (panel c).  Data 

from triplicate experiments are reported as mean ± SD. *p < 0.05 and **p < 0.01 

compared to untreated cells. 
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These results suggest that 7-DHC alters the intracellular redox state and, 

in particular, the increase of ROS levels is mediated by NADPH oxidase.  

In addition, to further evaluate the alteration of redox state by 7-DHC we 

measured the intracellular levels of GSH and GSH/GSSG ratio.  

The results reported in Fig. 7c show that both GSH level and GSH/GSSG 

ratio were statistically reduced after 2 hours of 7-DHC treatment.  

 

 

3.5 Effect of NAC and apocynin on apoptosis induced by 7-DHC 

The alteration of redox state of melanoma cells induced by 7-DHC 

may represent an early event that can contribute to affect the cell viability. 

Therefore, we investigated if the apoptotic effect of 7-DHC is 

antagonized by NAC (10 mM) or apocynin (0.5 mM) pre-treatment. As 

reported in Fig. 8, the pro-apoptotic effect on A2058 cells treated for 72 

hours with 38.5 µg/mL 7-DHC was partially but significantly reduced by 

both NAC and apocynin pre-treatment, even though the percentage of 

apoptosis observed in NAC and apocynin pre-treated cells was still and 

significantly higher compared to untreated control cells.  

 

 

 
 

Fig. 8 Effect of NAC and apocynin on 7-DHC induced apoptosis  

The apoptotic effect of 7-DHC was evaluated on A2058 cells pre-incubated 

with NAC (10 mM) or apocynin (0.5 mM) before the treatment with vehicle 

alone or with 38.5 g/mL 7-DHC for 72 hours. Apoptosis was revealed by 

cytofluorimetric analysis and was expressed as percentage. Data from 

triplicate experiments are reported as mean ± SD. *p < 0.05 and **p < 0.01 

compared to untreated cells. 
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3.6 Effect of 7-DHC on mitochondrial membrane potential 

The mitochondria respiratory chain is the major source of cellular 

ROS; at the same time, mitochondria are also the main targets of ROS 

detrimental effects. Indeed, the increase of intracellular ROS levels 

represents one among the critical events that alter the mitochondrial 

membrane potential, thus contributing to trigger mitochondria 

dysfunction. Therefore, the effect of 7-DHC treatment on mitochondrial 

membrane potential of A2058 cells was evaluated by measuring the 

incorporation of the fluorescent probe R123. This compound crosses the 

mitochondrial membrane and accumulates into the matrix only when the 

trans-membrane potential is preserved; therefore, in case of a loss of the 

membrane potential, the R123 fluorescence undergoes a significant 

reduction [39]. Data reported in Fig. 9 indicated that the reduction of 

R123 mitochondrial incorporation in 7-DHC-treated cells was statistically 

significant compared to untreated cells. In fact, a decrease of 

mitochondrial membrane potential was detected in A2058 cells incubated 

for 24 and 48 hours with 38.5 µg/mL 7-DHC. 

 

 

Fig. 9 Mitochondrial membrane depolarization induced by 7-DHC 

A2058 cells were incubated for 24 and 48 hours with vehicle alone 

(white bars) or 38.5 g/mL 7-DHC (black bars). The fluorescent probe 

R123 was used to evaluate the mitochondrial membrane potential. 

Fluorescence intensity was reported as arbitrary units (a.u.). Data from 

triplicate experiments are reported as mean ± SD. *p < 0.05 compared to 

untreated cells. 
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3.7 Effect of 7-DHC on levels and subcellular localization of some 

proteins involved in the apoptotic process  

To obtain further insights on the molecular mechanisms activated 

by 7-DHC during cellular treatment, we have analyzed the levels of some 

proteins that regulate the apoptotic process. Proteins of Bcl-2 family play 

a key role in the intrinsic apoptotic process [40,41]; therefore, we have 

evaluated the protein levels of Bcl-2 and Bax, as well as the ratio Bcl-

2/Bax, because Bcl-2 and Bax are considered typical anti-apoptotic and 

pro-apoptotic factors, respectively. As shown in Fig. 10a,b,c, the levels of 

Bcl-2 in total protein extract were unchanged in A2058 cells treated for 

24 hours with 38.5 µg/mL 7-DHC, whereas the increased levels of Bax 

and the reduction of Bcl-2/Bax ratio were statistically significant in 

treated cells compared to untreated cells. In particular, as shown in Fig. 

10d, in subcellular fractions of A2058 treated cells with 38.5 µg/mL 7-

DHC for 24 hours, both cytosolic and mitochondrial levels of Bax were 

increased compared to untreated cells. 

        
Fig. 10 Effect of 7-DHC on Bcl-2 and Bax intracellular protein levels 

A2058 cells were incubated for 24 hours with vehicle alone or 38.5 g/mL 7-DHC. a) 

Total proteins extracts were used to perform Western blot experiments. -actin and 

GAPDH were utilized as loading control for Bcl-2 and Bax protein levels evaluation, 

respectively. b) Densitometric analysis of Bcl-2 and Bax protein levels. c) 

Determination of Bcl-2/Bax ratio.d) Bax protein levels in cytosolic and mitochondrial 

fractions. Mitochondrial marker COX-IV and the cytosolic marker β-actin were used 

to verify the purity of fractions as well as loading controls. Data from triplicate 

experiments are reported as mean ± SD. **p < 0.01 compared to untreated cells. 
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As 7-DHC treatment on A2058 cells did not have any effect on caspase-3 

activation, we have analyzed the protein levels of AIF, a main mediator of 

caspase-independent cell death [42]. A2058 cells incubated with 38.5 

µg/mL 7-DHC for 24 hours showed a statistically significant increase of 

AIF protein levels (Fig. 11). Furthermore, to verify the subcellular 

localization of AIF we performed immunofluorescence experiments by 

confocal microscopy. As showed in fig 12, AIF immunostaining is more 

evident in treated A2058 cells (panels d,e,f) compared to control cells 

(panels a,b,c). Furthermore, as better showed in 3D image of treated cells 

(panel e) and untreated cells (panel b), immunofluorescence analysis 

detected a nuclear AIF immunoreactivity only in the treated cells. These 

results support the hypothesis that cell death induced by 7-DHC may be 

mainly due to an apoptotic process caspase-independent. 

 

 

 
 

Fig. 11 Effect of 7-DHC on AIF intracellular protein levels 

A2058 cells were incubated for 24 hours with vehicle alone or 

38.5 g/mL 7-DHC. a) Western blot analysis of AIF levels 

was performed on total protein extracts; GAPDH was used as 

loading control for protein levels evaluation. b) Densitometric 

analysis of AIF protein levels. Data from three independent 

experiments are reported as mean ± SD. *p < 0.05 compared 

to untreated cells. 
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Fig. 12 Effect of 7-DHC on AIF subcellular localization  

A2058 cells were treated for 24 hours with vehicle alone (a, b, c) or 38.5 g/mL 7-DHC (d, 

e, f). Nuclei staining (blue fluorescence) was performed with 4', 6-diamidino-2-

phenylindole (DAPI); mitochondria were stained with MitoTracker Red (red fluorescence); 

AIF immunostaining (green fluorescence) was performed using a monoclonal anti-AIF 

antibody, followed by FITC-conjugated antibody. The signals are showed as a merge (a and 

d), the cells in the inset are represented as x-axis volume projection (b and e), and as 

splitted channels (c and f). The shown results are representative of three independent 

immunofluorescence experiments. 
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4. Discussion and Conclusions 
 

The skin plays a pivotal role to maintain the body homeostasis and 

contributes also to immune and neuroendocrine activities [20]. The 

exposure of skin to solar radiations (e.g. UV-A and -B) causes skin 

damage including oxidative stress, DNA damage, inflammation, 

melanoma, and non-melanoma skin cancer. The results presented here 

show that the 7-DHC, a lipophilic compound, affects the growth of 

A2058 melanoma cells in vitro at concentrations ranging from 19.2 to 

38.5 g/mL. The 7-DHC, or pro-vitamin D, is naturally present at 

physiological levels in the skin and, under UV exposure, it serves as the 

precursor for active metabolites that influence the formation and 

maintenance of barrier function and other activities such as anti-

microbial, anti-senescence, and photoprotective of skin. In this work 

A2058 melanoma cells were treated with 7-DHC, in dark conditions, to 

assess its direct effect on vitality of this cancerous cell line.  

In fact, the most of published work have tested the derivative products of 

7-DHC induced by UV in cell models to assess the effects in 

keratinocyte, in which 7-DHC enhances UV-induced oxidative stress 

leading to inflammation producing more ROS, and cell death by a ROS 

and caspase-3 dependent apoptotic mechanism [10,26]. On the other 

hand, in keratinocytes, UV-B irradiation induces non-enzymatic 

isomerization of 7-DHC converting biologically inactive vitamin D3 to 

the hormone calcitriol (1,25-dihydroxyvitamin D3) and to other vitamin 

D analogs. These compounds have antiproliferative and pro-

differentiative effects on epidermal keratinocytes and have become potent 

therapeutic agents for the treatment of proliferative skin disorders [43] 

and malignant melanoma [44]. Instead, studies in which the 7-DHC has 

been directly used to evaluate its effects in cancer cells are lacking. 

In this work we addressed the cellular mechanisms for responses, in vitro, 

of melanoma cells to 7-DHC to elucidate its cytotoxic and pro-apoptotic 

effects. We chose A2058 cells, a highly metastatic human amelanotic cell 

line, to examine the cytotoxicity of this lipophilic metabolite of 

cholesterol and vitamin D biosynthesis. 7-DHC levels used to stimulate 

melanoma cells mimicked those found in the blood of SLOS patients with 

low/mild increase of 7-DHC levels and 7-DHC/cholesterol ratio. It is 

known that 7-DHC is prone to oxidation and has a high oxidizing power 

[18,19]; therefore, in order to understand its direct effects and to reduce 

the formation of oxidized compounds we prepared a suspension using the 

NaUDC as vehicle to transfer the 7-DHC from the culture medium into 
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the cells. In fact, the suspension of NaUDC/7-DHC showed a higher 

stability of the compound during the storage at 4 °C up to three months 

(Fig. 1), even if its preparation was more laborious than other procedures. 

We evaluated the cytotoxic potential of 7-DHC on A2058 melanoma cell 

line, as well as on SAN cell line, by monitoring the cell proliferating rate 

through the MTT assay. The data from these experiments indicated a 

decrease of cell proliferation after 24 hours in the presence of 38.5 µg/mL 

7-DHC and after 48 hours of incubation with 7-DHC a dose-dependent 

decrease of cell viability was observed (Fig. 2,3). These results suggest 

that the treatment of cells with 7-DHC reduces the viability of these 

melanoma cell lines.  

During the monitoring of lipids extracted from treated melanoma cells 

and culture media, we found that more than 82% of 7-DHC entered the 

cells already after 12 hours; this high percentage of 7-DHC persisted even 

after 72 hours, reaching the value of 86%. On the other hand, the amount 

of 7-DHC transformed into other derivative compounds ranged from 4 to 

7%. To note that a small proportion of 7-DHC could be lost during the 

various steps of the procedure either for the contact with the glass and 

with the plastic of the containers used in the experiments. In addition, 

care was taken during the manipulation of cell cultures to reduce the 

effects of light radiations on 7-DHC. Nevertheless, we have measured the 

levels of the compounds derived from cholesterol and 7-DHC, and we 

found that at basal state the culture medium enriched with 7-DHC (38.5 

g/mL) already contained mainly three sterol derivatives (cholesta-

4,6,8(14)-trien-3ol, cholesta-5,7,9(11)-trien-3ol, cholesta-5,8,24-trien-3ol) 

whose sum was on average accounted for 13 g/well (less than 2 g/mL). 

These compounds have been already described in the literature as 

derivatives of non-enzymatic transformation of 7-DHC. As described for 

7-DHC, also these derivative compounds entered rapidly the cells. In 

addition, from GC-FID and GC-MS analyses of A2058 melanoma cell 

extracts we found a new metabolite, undetectable in media, identified as 

25-hydroxy-7-DHC; this result was also confirmed by LC-MS/MS (Tab. 

3, and Tab. 4). Moreover, at basal state, the medium enriched with 7-

DHC (38.5 μg/mL) contained small amounts of 7-keto-cholesterol, 7-

keto-DHC, and DHCEO, even though their total amount was less than 1 

g/mL (Tab. 4). However, the concentration of these compounds, found 

in 7-DHC treated cells, is likely too low to be considered toxic for cell 

growth [28]. Therefore, it is possible to hypothesize that 7-DHC as such, 

and not its oxidized derivatives, is responsible for the reduced cell 

proliferation observed during the treatment of melanoma cells. Hence, it 
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was interesting to investigate if the reduction of the cell proliferation of 

A2058 cells measured during 7-DHC treatment was indicative of a cell 

death process. The LDH activity assayed in the culture media of A2058 

cells incubated up to 48 hours with 38.5 µg/mL of 7-DHC indicated a not 

significant release of this enzyme from cells, thus excluding a necrotic 

process induced by 7-DHC (Tab. 5). On the other hand, the effect of 7-

DHC on A2058 cells treated for 24 hours showed an early apoptotic event 

detected by an increment of Annexin+/PI− cells, as well as, a late 

apoptotic event was revealed by an increase of PI cell incorporation after 

48 hours, which became more evident after 72 hours of treatment (Fig. 

4a,b). The apoptotic effect was also observed on SAN cells treated for 48 

hours with 38.5 µg/mL of 7-DHC (Fig. 5). It is worth to note that during 

caspase dependent apoptosis PARP-1 is cleaved by caspase-3 [37]. The 

results obtained in A2058 7-DHC treated cells didn’t show significant 

variation of caspase-3 activity as well as the cleavage of PARP-1 (Fig. 6). 

Hence, these results suggest that 7-DHC affects the viability of A2058 

melanoma cell lines via an apoptotic process, which may occurs in a 

caspase-independent manner.  

Our study indicates that 7-DHC entered rapidly A2058 cells (more than 

80% after 12 hours of treatment). This influx may contribute to alter the 

steady state of cholesterol in the membranes of cell compartments, 

impairing the lipid rafts, and may contribute to trigger the production of 

ROS affecting the cellular redox state. The 7-DHC may also alter the 

permeability of mitochondrial membrane and, not least, may generate 

oxidized sterol derivatives [38,45]. Hence, to analyze the molecular 

mechanisms through which the 7-DHC exerts its cytotoxic effect in 

A2058 melanoma cells, we have measured the intracellular levels of 

ROS, GSH, and the GSH/GSSG ratio during 7-DHC treatment. The ROS 

production increases significantly as early as after 2 hours of incubation, 

and the increase is still significant up to 8 hours of treatment (Fig. 7a). In 

addition, 7-DHC treatment of melanoma cells impairs the intracellular 

redox state as demonstrated by the reduction of GSH levels and 

GSH/GSSG ratio after 2 hours of treatment (Fig. 7c). If melanoma cells 

were pre-treated with NAC as antioxidant or apocynin as inhibitor of 

NADPH oxidase, ROS production induced by 7-DHC was inhibited (Fig. 

7b). Therefore, the modulation of ROS and GSH levels by 7-DHC 

treatment represents an early event that may affect cell viability. In fact, 

in A2058 cells pre-treated with NAC or apocynin, the apoptotic effect of 

7-DHC was significantly reduced (Fig. 8). Therefore, the alteration of 

intracellular redox state observed during 7-DHC treatment could 

represent an event that contributes to modulate the cytotoxic effect of 7-
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DHC on melanoma cells. Since this reduction is significant but 

incomplete, we believe that further investigations should be addressed to 

search other mechanisms involved in the cytotoxic effect of 7-DHC. 

The mitochondria play a key role in activating apoptosis in mammalian 

cells. Mitochondrial respiratory chain is the primary source of cellular 

ROS, therefore, the mitochondria are the main targets of ROS detrimental 

effects. In particular, the major ROS target inside mitochondria is 

undoubtedly the permeability transition pore (PTP). In response to some 

pro-apoptotic stimuli the PTP assumes a high conductance that results in 

the dissipation of mitochondrial membrane potential (MMP), an event 

that triggers the mitochondria dysfunctions [39]. The reduction of 

mitochondrial membrane potential observed in our experiments (Fig. 9) 

represents a clear signal of an involvement of mitochondria in the 

apoptotic process during 7-DHC treatment.  

Bcl-2 family proteins regulate cell death along the mitochondrial 

apoptosis pathway [40], playing a pivotal role in the control of MMP 

[46]. In particular, Bax and Bak act on mitochondria permeability, mostly 

at the mitochondrial outer membrane, by permeabilizing the vesicles that 

are composed of lipids [47]. Conversely, Bcl-2 and others anti-apoptotic 

Bcl-2 family members prevent the mitochondrial outer membrane 

permeabilization, by sequestering some pro-apoptotic proteins Bcl-2 like 

[47]. Hence, we analyzed the protein levels of the anti-apoptotic Bcl-2, 

pro-apoptotic Bax, Bcl-2/Bax ratio, as well as the cellular localization of 

Bax. The reduction of Bcl-2/Bax ratio, detected in A2058 melanoma cells 

treated with 7-DHC, resulted from an unchanged Bcl-2 levels and an 

increase of Bax levels detected both in cytosolic and mitochondrial 

fractions (Fig. 10). These data prompt us to speculate that 7-DHC, 

affecting both Bax levels and its mitochondrial translocation, alters the 

fine balance between pro-apoptotic and anti-apoptotic factors thus 

predisposing melanoma cells to cell death.  

It is to note that the alteration of mitochondrial membrane potential can 

make the outer mitochondrial membrane more permeable. This causes the 

release of mitochondrial factors that mediate the cell death process in a 

caspase-dependent and/or -independent manner [47]. A significant 

increase of AIF, a main mediator of caspase-independent cell death [42], 

was found in A2058 cells incubated with 38.5 µg/mL 7-DHC for 24 hours 

(Fig. 11), as well as its nuclear translocation was detected by confocal 

analysis (Fig. 12). Hence, the rise of AIF protein level and its nuclear 

translocation, together with the absence of an increase of caspase-3 

activity and PARP-1 cleavage, suggest that the cytotoxic effects of 7-

DHC may be mainly due to a caspase-independent apoptotic process. 
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Therefore, if we take into account that a mix of oxysterol derivatives, 

coming from cholesterol and 7-DHC, were found, but their levels were 

very low, we suggest that the cytotoxic effect should be due mainly to the 

7-DHC alone. However, much of the cytotoxicity attributable to 

oxysterols is due to their ability to induce apoptosis, even if there is no 

universal mechanism responsible for oxysterol-induced apoptosis.  

Our results on the effects of 7-DHC on the melanoma cell lines could be 

explained by assuming that loading more sterols in cell membranes and/or 

changing the ratio between other-sterols/cholesterol generated a stress 

that induced the production of ROS, an event that alters the mitochondrial 

functionality. As also reported in this study, the increase of pro-apoptotic 

Bax protein affects the mitochondrial permeabilization, interacting with 

voltage-dependent anion channel/adenine nucleotide transporter, and 

provokes a release of some molecules, such as cytochrome c, apoptosis-

inducing factor (AIF), endonuclease G, smac/DIABLO, that activate both 

caspase-dependent and -independent cell death pathways [48]. Other 

studies have documented oxysterol impacts on the balance of cellular Bax 

vs Bcl-2/Bcl-xL levels [45,49], but no such effect was seen in 7β-OHC-

treated Caco-2 cells [50], suggesting an involvement of a Bax/Bcl-2 

independent apoptotic process. These debated observations illustrate well 

the variability in the pathways of cell death induced by different 

sterols/oxysterols employed in different model systems. 

In conclusion, in this study we have treated melanoma cells directly with 

7-DHC in dark conditions. Furthermore, thanks to the use of an accurate 

and effective method to transfer the 7-DHC into the cells we have 

minimized the non-enzymatic oxidation of compound. Hence, this is the 

first report in which the biological effects found in melanoma cells are 

mainly attributable to 7-DHC as such. However, we believe that further 

studies are needed to better clarify how and where the 7-DHC acts into 

the cells to provoke the effects observed in this study. 
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