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ABSTRACT 

 

Activating mutations in the PI3K/AKT pathway are present in majority of breast cancer. The 

gain of function mutation E17K of AKT1, was found in 8% of breast cancers, especially 

ductal carcinomas, but several studies performed so far have failed to define the real role of 

this mutation in the breast tissue trnsformation. To investigate the role of the AKT1
E17K 

in 

breast tumorigenesis, we explored the phenotype of a new mouse model which express the 

mutant transgene in mammary epithelium. The expression of AKT1
E17K

 enhances the activity 

of the kinase and the phosphorilation status of downstream substrates, such as FOXO1 and 

GSK3α/β. In addition, transgenic mice showed an increased cellularity 8-10 times higher than 

control mice breast tissues. Moreover 70% of transgenic mice expressing the mutant form of 

AKT1 develop ductal carcinomas from medium to high grade. We have identified also the 

contribution of AKT1
E17K

 in the generation and maintenance of putative breast cancer stem 

cells. Finally, using a pharmacological study, we were able to slow down tumor formation by 

inhibiting downstream effect of AKT1 pathway. All together these data have allowed us to 

demonstrate that AKT1
E17K

 is itself capable to induct the onset of ductal carcinoma in 

transgenic mice. 
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RIASSUNTO 

Mutazioni attivanti nel pathway PI3K/AKT sono stati trovati nella maggior parte dei 

carcinomi mammari. La mutazione E17K nel gene AKT1, che ne determina un guadagno di 

funzione è stata trovata nell’8% dei casi di cancro al seno, specialmente in carcinomi duttali, 

ma i diversi studi condotti finora non sono riusciti a definire il vero ruolo di questa mutazione 

nel processo di trasformazione tumorale del tessuto mammario. Per studiare il ruolo di 

AKT1
E17K

 nella tumorigenesi mammaria, abbiamo esplorato il fenotipo di un nuovo modello 

murino che esprime il transgene in maniera specifica nell’ epitelio mammario. L’espressione 

di AKT1
E17K

 aumenta l’attività della chinasi e dunque il grado di fosforilazione di substrati a 

valle, come FOXO1 e GSK3α/β.inoltre i topi transgenici mostrano una cellularità tissutale 8-

10 volte superiore a quella dei topi di controllo. Il 70% dei topi transgenici che esprimono la 

forma mutante di AKT1  sviluppano carcinoma duttale ad alto e medio grado. Abbiamo anche 

identificato il contributo di  AKT1
E17K

 nella generazione e mantenimento delle putative cellule 

tumorali staminali mammarie. Infine, medinate uno studio farmacologico siamo riusciti a 

ritardare la formazione dei tumori inibendo il pathway a valle di AKT1. Tutti questi dati ci 

hanno consentito di dimostrare che AKT1
E17K

 è di per sé capace di indurre l’insorgenza di 

carcinoma mammario duttale in topi transgenici. 
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INTRODUCTION 

BREAST CANCER 

EPIDEMIOLOGY 

Breast cancer is the third most frequent cancer in the world (after lung and gastric cancer) and 

most common female malignancy. It is the fifth cause of death from cancer overall (after lung, 

stomach, colorectal and liver cancers) and leading cause of cancer death among females, 

accounting for 23% of the total cancer cases and 14% of the cancer deaths. [1][2] The areas of 

high risk are represented by the populations of North America, Europe and Australia, where 

6% of women develop invasive breast cancer before age 75. The risk of breast cancer is low in 

the less developed regions of sub-Saharan Africa and Southern and Eastern Asia, including 

Japan, where the probability of developing breast cancer by age 75 is one third respect to rich 

countries. [3] In 2013, in USA, 232.340 new cases of invasive breast cancer have been 

diagnosed among women, as well as 64.640 additional cases of in situ breast cancer. In 2013, 

have been estimated approximately 39.620 women deaths from breast cancer and 2.240 men 

have been diagnosed with breast  cancer and 410 men are dead from the disease. (figure 1). [4] 

 

 

 

Figure 1: estimated new female in situ and invasive breast cancer cases and death by age, US, 2013. [4] 
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HISTOLOGICAL CLASSIFICATION 

Breast cancer originates from the epithelial cells of the glandular tree and may give rise to 

different histotypes. The most common are the lobular and ductal carcinomas, of which there 

are in situ and invasive forms. 

 

IN SITU BREAST CANCER 

- Ductal carcinoma in situ (DCIS) is the most common type of in situ breast cancer, 

accounting for about 83% of in situ cases diagnosed during 2006-2010. DCIS may or may not 

progress to invasive cancer; in fact, it consists of cancerous cells that proliferate within the 

lumens of the breast duct with no invasion. It grows so slowly that even without treatment 

does not affect the women health. [5][6] Clinical studies suggest, however, that about one-

third, and possibly more, of DCIS cases will progress to invasive cancer if left untreated. [5]  

- Lobular carcinoma in situ (LCIS, also known as lobular neoplasia) is not a true cancer or 

precancer, but an indicator of increased risk for developing invasive cancer. It is represented 

by the presence of unusual cells in the lobules of the breast. LCIS is much less common than 

DCIS, accounting for about 12% of female in situ breast cancers diagnosed during 2006-2010. 

[7]  

- Other in situ breast cancers have characteristics of both ductal and lobular carcinomas or 

have unknown origins.[4] 

 

INVASIVE BREAST CANCER 

Invasive breast carcinoma is a group of malignant epithelial tumors characterized by invasion 

of adjacent tissues and a marked tendency to metastasize to distant sites. Invasive breast 

http://en.wikipedia.org/wiki/Lobule
http://en.wikipedia.org/wiki/Breast


 9 

carcinomas exhibit a wide range of morphological phenotypes and specific histopathological 

types have particular prognostic or clinical characteristics. [3] 

INVASIVE DUCTAL CARCINOMA 

Invasive ductal carcinoma (IDC) is the most common histologic type of invasive breast 

cancer and comprises 70% to 80% of breast cancer cases. Invasive ductal carcinoma starts 

in a milk duct of the breast, breaks through the wall of the duct, and grows into the breast 

fatty tissue. It is able to spread to other parts of the body through the lymphatic system and 

bloodstream. About 8 of 10 invasive breast cancers are infiltrating ductal carcinomas. It 

can occur in different histological subtypes: tubular, medullary, mucinous, papillary and 

cribiform. [8] 

INVASIVE LOBULAR CARCINOMA 

Invasive lobular carcinoma (ILC), is the second most common type of breast accounting 

about 8-14% of all invasive breast cancers are invasive lobular carcinomas. [9][10]  It 

begins in the milk-producing lobules and spreads to the surrounding breast tissues, lymph 

nodes and possibly to other areas of the body. There are different subtypes of invasive 

lobular carcinoma (ILC) that are based on specific morphological properties: solid, 

alveolar, tubuloalveolar, pleomorphic, signet ring cell. [8] 

 

GENETICS OF BREAST CANCER  

Breast cancer is a heterogeneous disease caused by progressive accumulation of genetic 

aberrations, including point mutations, chromosomal amplifications, deletions, 

rearrangements, translocations, and duplications.[11] Germline mutations account for only 

about 10% of all breast cancers, while the vast majority of breast cancers occurs 

sporadically and is attributed to somatic genetic alterations. In familiar forms, breast 
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cancer susceptibility genes can be categorized into three classes according to their 

frequency and level of risk that they confer:  

- rare high-penetrance genes, in particular BRCA1 and BRCA2, which encode large 

proteins with multiple functions which act as classic tumor suppressor genes that maintain 

genomic stability by facilitating double-strand DNA repair through homologous 

recombination. [12]. When loss of heterozygosis (LOH) occurs via loss, mutation or 

silencing of the wild type BRCA1 and BRCA2 allele, the resultant defective DNA repair 

system leads to rapid acquisition of additional mutations, particularly during DNA 

replication. [13]. BRCA1 and BRCA2 mutations account for approximately half of all 

dominantly inherited hereditary breast cancers. These mutations confer a relative risk of 

breast cancer 10 to 30 times higher that of women in the general population, resulting in a 

nearly 85% lifetime risk of breast cancer development. [14]. Other high-penetrance genes 

are TP53, PTEN, STK11/LKB1, and CDH1. These high-penetrance genes confer an eight-

ten fold increase in risk of breast cancer as compared to non- carriers, but they collectively 

account for less than 1% of cases of breast cancer. Like BRCA1 and BRCA2, these genes 

are inherited in an autosomal dominant manner and function as tumor suppressors. [15]. 

- rare intermediate-penetrance genes. Four genes that confer an elevated but moderate risk of 

developing breast cancer have been identified, namely CHEK2, ATM, BRIP1, and PALB2, 

involved in signal transduction and DNA repair. Each of these genes confers approximately a 

two-three fold relative risk of breast cancer.[13]. 

- common low-penetrance genes and loci, include approximately ten different alleles and loci 

in 15% to 40% of women with breast cancer. [14] Despite their frequency, the relative risk of 

breast cancer conferred by any one of these genetic variants alone is minimal, less than 1.5 

fold.[16] Nevertheless, these alleles and loci may become clinically relevant in interaction 
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with other high-, moderate-, and low-risk genes; these additive or multiplicative relationships 

could account for a measurable fraction of population risk.  

For example, association studies of FGFR2 and MAP3K1 within BRCA families showed that 

these single nucleotide polymorphisms (SNPs) conferres an increased risk in the presence of 

BRCA2 mutations. Recent studies suggest that microRNA (miRNA) SNPs may also contribute 

to breast cancer susceptibility, and miRNAs appear to regulate many tumor suppressor genes 

and oncogenes via degradation of target mRNAs or repression of their translation. [13] 

The vast majority of breast cancers are sporadic, caused by accumulation of several somatic 

genetic alterations. Recent data suggest that a typical individual breast cancer harbors 

anywhere from 50 to 80 different somatic mutations. [11] Many of these mutations occur as a 

result of erroneous DNA replication; others may occur through exposure to exogenous and 

endogenous mutagens. [13] Among gene amplifications, the most frequent in breast cancer 

regard HER-2/Neu, growth receptor that activates the Ras-MEK and PI3K pathway, amplified 

in about 13% of the breast cancer. Cyclin D1, amplified in about 10-12% of the breast cancers, 

WIP1 (13%) and GASC1, amplified in about 5-10% of total breast cancers and in the 20-25% 

of the basal breast cancer. [17] 

Inactivation of gene functions by deletion or other mechanisms commonly occurs in PTEN 

and p53 in HER2/neu positive breast cancers, triple negative breast cancers, and BRCA-

associated breast and ovarian cancers. PI3K amplifications and activating mutations are 

common in breast cancers and several genes such as AKT and STAT3 are often expressed at 

high activities but without detectable amplifications of those genes. [18] Epigenetic 

alterations, such as methylation of cytosine residues in CpG dinucleotides, can bring about 

gene inactivation, for example p16 gene in breast cancers.  [17] A substantial number of these 

somatic mutations sort out among a much smaller number of biological  groups and cell 
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signaling pathways that are known to be pathogenetic in breast cancer, thereby vastly reducing 

the complexity of the genomic landscape. Examples of such pathways include interferon 

signaling, cell cycle checkpoint, BRCA1/2- related DNA repair, p53, transforming growth 

factor-β (TGF-β) signaling, Notch, epidermal growth factor receptor (EGFR), FGF, ERBB2, 

RAS, and PI3K-AKT. [13] 

 

MOLECULAR CLASSIFICATION 

The accumulation of different mutations has significant effects on the expression of important 

tissue-specific genes. Distinct molecular subtypes of breast cancer have been identified using 

biological markers, including the presence or absence of estrogen receptors (ER+/ ER-), 

progesterone receptors (PR+/PR-), and human epidermal growth factor receptor 2 

(HER2+/HER2-). [4][13] 

We can distinguish four different types of breast cancer: luminal A, luminal B, Basal-like and 

HER2 enriched. (figure 2) 

Luminal A tumors have high expression of ER and ER-regulated genes, low expression of the 

HER2 cluster and proliferation-associated genes. Luminal B tumors tend to be highly 

proliferative, express mutant form of TP53, show lower expression of ER and ER-regulated 

genes and can be HER2+ or HER2-. [19][20] Basal-like breast cancer are referred to as “triple 

negative” because they are ER-, PR-, and HER2-. The basal- like subtype is characterized by 

low expression of the luminal genes, low expression of the HER2 gene cluster, high 

expression of the proliferation cluster, and high expression of a unique cluster of genes called 

the basal cluster (cytokeratins 5, 6, 14,17, c-Kit; Vimentin; P-Cadherin). Several risk factors 

for developing basal-like tumors have been identified, among which the most interesting being 

the link between the basal-like subtype and BRCA1 mutation carriers. [19] 
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The HER2-enriched subtype is relatively infrequent (10% of all breast cancers). This subtype 

shows elevated expression of HER2 and many other genes that reside near HER2 in the 

genome (GRB7) and do not express hormone receptors (ER- and PR-). [4] [19]  

 

Figure 2: Classification algorithm for molecular subtyping. [20] 

 

BREAST CANCER METASTASIS 

Metastatic breast cancer is defined by tumor spread beyond the breast, chest wall, and regional 

lymph nodes. Tumor dissemination can occur through blood and lymphatic vessels and via 

direct extension through the chest wall. The most common sites for breast cancer metastasis 

include the bone, lung, liver, lymph nodes, chest wall, and brain. [13]  (figure 3) 

 

 

Figure 3:Most common metastasis sites of breast cancer at autopsy. Primary breast cancer cells metastasize through the blood vessels to 

various distant organs, preferentially, to the lung, liver and bones. Patients frequently develop metastases at multiple sites. [21] 
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An increased likelihood of visceral metastases and a particularly poor prognosis are associated 

with the lack of estrogen receptor (ER) and progesterone receptor (PR) expression in breast 

cancer while triple-negative breast cancer is accompanied by distant, hematogenous metastasis 

that usually occur in the first five years after the initial diagnosis and are associated with 

relatively short relapse-free and overall survival times. [22]  

Hormone receptor–positive tumors are more likely to spread to bone as the initial site of 

metastasis; hormone receptor–negative and/or HER2-positive tumors are more likely to recur 

initially in viscera. [13][22] Lobular (as opposed to ductal) cancers are more often associated 

with serosal metastases to the pleura and abdomen.[13] Anyway, bone is the most commonly 

observed site for distant metastasis, around 70% of patients have lesions at bone and is the 

location of 30–40% of first tumor recurrence. [22] [23] Has been recently suggested that a 

cellular subpopulation with stem cell (SC)-like features, known as cancer SCs (CSCs), is 

critical for tumor generation and maintenance, and responsible for breast cancer metastasis. 

Indeed, it is conceivable that several of the traits ascribed to CSCs may provide them with the 

potential to occupy and prosper at distant sites. [24] 
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BREAST CANCER STEM CELLS 

Cancer stem cells (CSCs) are tumor cells with enhanced capacity for tumor generation. CSCs 

possess several fundamental attributes similar to normal adult stem cells. They are capable of 

dividing asymmetrically to produce one stem cell, characterized by self-renewal, and one 

progenitor cell, which allows to produce phenotypically diverse cancer cells that constitute 

tumors. [25] In breast cancer has been isolated a small population of tumorigenic cells with 

stem cell (SC)-like features, capable of regenerating the phenotypic heterogeneity of the 

original tumor when injected subcutaneously into NOD/SCID mice. [26][27] These breast 

cancer stem cells (BCSCs) are characterized by the cell-surface markers ESA
+
/CD44

+
/CD24

-

/low
 ,  devoid of the expression of the lineage markers CD2, CD3, CD10, CD 16, CD18, CD31, 

CD64, and CD140b (Lin
−
) and bear high ALDH1 activity. [25][26][28] Putative breast CSCs 

have also been isolated from patient samples after in vitro propagation and from breast cancer 

cell lines, through their ability to proliferate in suspension as non adherent spheres 

(mammospheres). Because the capacity to form mammospheres is increased in early 

progenitor/stem cells, this system has been widely used as an indirect measurement of the 

number of cells with self-renewal capability. [29] The origin of breast CSCs is controversial. 

Current experimental evidence supports two different, but not exclusive, theories (figure 4).  

Figure 1. Or igin of the breast cancer  stem cells (BCSCs)

BCSCs may arise from normal mammary stem cells (A) or from non-stem tumor cells that

have gained the ability for self-renewal (B) by epithelial to mesenchymal transition (EMT)

and oncogenic transformation. Both of these hypotheses consider that the phenotypic

characteristics of BCSCs are caused by genetic alterations and/or EMT. As result, BCSCs

display alterations in signaling pathways controlling the cell cycle, differentiation, and

survival (C).

Velasco-Velázquez et al. Page 10
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Figure 4. Origin of the breast cancer stem cells (BCSCs). BCSCs may arise from normal mammary stem cells (A) or from non-

stem tumor cells that have gained the ability for self-renewal (B) by epithelial to mesenchymal transition (EMT) and oncogenic 
transformation. Both of these hypotheses consider that the phenotypic characteristics of BCSCs are caused by genetic alterations 
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and/or EMT. As result, BCSCs display alterations in signaling pathways controlling the cell cycle, differentiation, and survival 
(C). [25] 

 

One theory proposes that CSCs resulted from the deregulation of normal stem cell self-

renewal and differentiation pathways, resulting in cancer cells with both self-renewal and 

differentiation capabilities. A second theory suggests that BCSCs develop from epithelial-

mesenchymal transition (EMT). Cells that have undergone EMT are susceptible to 

transformation and have many characteristics and behaviors similar to those of normal and 

neoplastic stem cells. [25]  

BCSCs are characterized from the deregulation of different pathways implicated in the 

regulation of BCSCs self-renewal and differentiation. [30] A number of signaling pathways 

have been found to play a role in mammary stem cell self-renewal, including Wnt, Notch, and 

Hedgehog. In addition, the PTEN (phosphatase and tensin homolog deleted on chromosome 

10) tumor suppressor gene, one of the most frequently mutated genes in human malignancies, 

has also been suggested to play a role in stem cell self-renewal. In particular, in vitro and in 

vivo evidence revealed the importance of PTEN/PI3-K/Akt/Wnt/β-catenin pathway in BCSCs 

biology, in fact have been demostrated that active AKT phosphorylates GSK3β and thereby 

the Wnt pathway. [25][31] BCSCs have a great importance for the clinic and therapy, several 

studies have demonstrated that these cells are responsible for resistance to chemo- and 

radiotherapy, (es. for overexpression of Notch-1) and metastatic dissemination of tumors (es. 

for overexpression of genes that promote cell motility, invasion). The chemio- and radio- 

resistance is not a universal characteristic of BCSCs, in fact, BCSC population within a triple 

(estrogen receptor (ER), progesterone receptor (PR) and HER-2) negative cell line can be 

depleted by radiotherapy and several drugs tested clinically have shown activity against 

BCSCs. [32] 
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RISK FACTORS FOR BREAST CANCER  

Multiple factors are associated with an increased risk of developing breast cancer, including 

increasing age, exposure to female reproductive hormones (both endogenous and exogenous) 

and reproductive history, dietary and lifestyle factors, environmental factors and familial 

factors and inherited predisposition. The majority of these factors convey a small to moderate 

increase in risk for any individual woman. [13] 

- increasing age: The age-specific incidence of breast cancer increases steeply with age 

until menopause. After menopause, when ovarian synthesis of estrogens and 

progesterone ceases and ovarian androgen production gradually diminishes, although 

the incidence continues to increase, the rate of increase decreases to approximately 

one-sixth of that seen in the premenopausal period. The dramatic slowing of the rate of 

increase in the age-specific incidence curve suggests that ovarian activity plays a major 

role in the etiology of breast cancer. [3] 

- Exposure to female reproductive hormones and reproductive history: The development 

of breast cancer in many women appears to be related to female reproductive 

hormones. Early age at menarche (before age 12), nulliparity or late age at first full-

term pregnancy (> 30 years), and late age at menopause (after age 55) increase the risk 

of developing breast cancer. Age at menarche and the establishment of regular 

ovulatory cycles are strongly linked to breast cancer risk. Earlier age at menarche is 

associated with an increased risk of breast cancer; there appears to be a 20% decrease 

in breast cancer risk for each year that menarche is delayed. Furthermore, most studies 

suggest that breastfeeding for a year or more slightly reduces a woman’s risk of breast 

cancer. As regards the exposure to exogenous hormones, two major type of hormonal 

compounds have been evaluated in relation to breast cancer: oral contraceptives and 
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menopausal replacement therapy. The evidence suggests a small increase in the 

relative risk associated with the use of combined oral contraceptives and 

postmenopausal hormone replacement therapy (HRT). [3][4] 

- dietary and lifestyle factors: Observational studies suggested that high-caloric diets rich 

in animal fat and proteins were associated with higher rates of breast cancer , 

combined with consumption of alcohol, a lack of physical exercise, overweight and 

obesity (in particular for postmenopausal breast cancer). [3][4][13] 

- environmental factors: only limited data are available on specific exposures in relation to 

breast cancer. Long-term follow-up of women exposed to the Hiroshima or Nagasaki 

nuclear explosions indicates an increased risk of breast cancer, in particular for women 

exposed around puberty. Similarly, exposure as a result of treatment and surveillance 

of tuberculosis is associated with risk. Other environmental factors, including exposure 

to electromagnetic fields and organochlorine pesticides, have been suggested to 

increase breast cancer risk. [3][13] 

- familial factors and inherited predisposition: Women (as well as men) with a family 

history of breast cancer, especially in a first-degree relative (mother, sister, daughter, 

father, or brother), are at increased risk of developing breast cancer; this risk is higher 

if more than one first-degree relative developed breast cancer. Compared to women 

without a family history, risk of breast cancer is 1.8 times higher for women with one 

first-degree female relative who has been diagnosed, nearly 3 times higher for women 

with two relatives, and nearly 4 times higher for women with three or more relatives. 

Risk is further increased when the affected relative was diagnosed at a young age. It is 

important to note that the majority of women with one or more affected first-degree 

relatives will never develop breast cancer and that most women who develop breast 
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cancer do not have a family history of the disease. It is estimated that 5% to 10% of 

breast cancer cases results from inherited mutations, including those in the breast 

cancer susceptibility genes BRCA1 and BRCA2 .[4][13] Other inherited conditions 

associated with smaller increased breast cancer risk include Li-Fraumeni and Cowden 

syndromes and a number of more common genetic mutations [4] 

 

THE PROTEIN SERINE / THREONINE KINASE B (PKB / AKT) IN BREAST CANCER 

AKT, a downstream effector of phosphatidylinositol-3 kinase (PI3K), is one of the most 

frequently hyperactivated protein kinase in human cancer .[33] It is a serine/threonine protein 

kinase and its hyperactivation is associated with resistance to apoptosis, increased cell growth, 

cell proliferation and cell energy metabolism. In mammalian cells AKT comprises three 

highly homologous members (>80% protein sequence identity) termed AKT1/PKBα, 

AKT2/PKBβ and AKT3/PKBγ, encoded by three different genes located on chromosomes 

14q32, 19q13 and 1q43. AKT kinases share the same structural organization, containing an N-

terminal pleckstrin homology (PH) domain, a central catalytic domain and a C-terminal 

regulatory domain that contains the hydrofobic motif (HM). (Figure 5) 

 

Figure 5: Akt domains and comparison of Akt isoforms (% of homology). Chromosome location of each Akt 

isoform in human and phosphorylation sites in Akt1. [35] 
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The PH domain of AKT can bind specifically to D3- phosphorylated phosphoinositides with 

high affinity and mediates AKT activation. [34][35] Analysis of mice lacking either individual 

AKT isoforms or various combinations of AKT isoforms has indicated that the AKT1 isoform 

has a dominant role in embryonic development, fetal growth, and fetal survival, whereas 

AKT2 and AKT3 have non-redundant functions in glucose homeostasis and postnatal brain 

development, respectively. [35] Also the expression of AKT1, AKT2 and AKT3 apparently 

contribute to the different roles of AKT isoforms. AKT1 and AKT2 are widely expressed 

while tissue distribution of AKT3 seems to be more restricted, being primarily expressed in 

brain and testis. [34] 

AKT is activated through receptor tyrosine kinase pathways, through a multi-step PI3K 

dependent process, that involves membrane binding and phosphorilation. Upon activation, 

PI3K produces increased levels of PIP3 (phosphatidylinositol- 3,4,5-trisphosphate) from PIP2 

(phosphatidylinositol-3,4-trisphosphate) which contribute to recruit AKT and PDK1 

(phosphoinositide-dependent kinase 1) to the inner plasma membrane through the pleckstrin 

homology (PH) domain. The interaction of the AKT PH domain with 3’- phosphoinositides is 

thought to impose conformational changes in AKT, exposing its two main phosphorylation 

sites at the kinase domain (T308 for AKT1) and the HM of the C- terminal (S473 for AKT1). 

The direct homodimerization of the two PH domains between AKT and PDK1 might also 

mediate protein proximity and subsequently phosphorylate Thr-308 in AKT, which stabilizes 

the activation loop in an active conformation and renders Ser473 phosphorylation by the 

rapamycin-insensitive mTORC2, resulting in full activation of AKT kinase. [34][35][36]  

Conversely, this activation cascade can be blocked by cellular inhibitors including the 

phosphatase and tensin homolog (PTEN) and INPP4B which directly antagonize PI3K 

function via dephosphorylating PIP3, thereby abrogating PIP3-mediated activation of 
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downstream signaling events such as PDK1 and AKT. However, in vitro engineered AKT 

kinase can override this regulatory mechanism and maintain it in a “supercharged” stage. This 

can be done by insertion of myristoylated (Myr) tag at its N-terminus which results in AKT 

anchoring in plasma membrane and constitutive AKT activation independently of PI3K 

activity. [36] 

Upon activation, AKT leaves the plasma membrane and phosphorylates a number (≈ 9000 

[33]) of substrates both in the cytoplasm and in the nucleus, which mediate AKT-dependent 

regulation of cell growth and survival, mitogenesis, migration, glucose metabolism and protein 

translation. [34] 

Among those substrates are: regulators of cell survival or cell death, such as Bad, caspase-9, 

ASK1, apoptosis signal-regulating kinase 1 (ASK1), forkhead box O transcription factors 

(FoxOs), Bim1, FasL, inhibitor of nuclear factor-κB kinase (IKK-NFκB), and p53; regulators 

of cell cycle progression; such as p21, p27, cyclin D1, and glycogen synthase kinase-3 (GSK-

3α and β); regulators of protein synthesis or cell growth, such as tuberous sclerosis complexes 

1 and 2 (TSC1/2), mTOR, elongation-initiation factor 4E binding protein-1 (4E-BP1), and 

S6K; regulators of angiogenesis, such as mTOR and hypoxia-inducible factor-1 (HIF-1); and 

regulators of cell metabolism, such as glucose transporter 1 (Glut1), GSK3, and a Ras 

homologue enriched in brain (RheB). [34][35] (figure 6) 
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Figure 6: Akt signaling pathway. [37] 

 

 

Mutations in AKT genes are rarely found in human cancers. Activation of AKT acts as a 

survival/proliferative signal; however, activation of AKT alone is generally insufficient to 

induce cancer unless combined with a transforming lesion in a second pathway. For example, 

overexpression of constitutively active human AKT1 in the mouse prostate induces 

precancerous intraepithelial lesions. However, these lesions do not progress even after 78 

months. Overexpression of AKT1 alone in mouse mammary epithelium causes defective 

mammary gland involution, but when expressed with a mutant polyoma virus middle T 

antigen unable to signal through PI3K, the combination produces a marked increase in 

mammary neoplasia. Hyperactivation of AKT signaling occurs in a wide variety of human 

precancerous and cancerous lesions.[37] (figure 7) 
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Figure 7: Alteration in the PI3K/PTEN/AKT pathway in human precancerous lesions. [38] 
 

 

Overexpression and/or activation of AKT in tumor cells causes resistance to traditional 

chemotherapeutics and molecularly targeted drugs, including trastuzumab, gefitinib, retinoic 

acid, and tamoxifen. [38] 

All three AKT isoforms have been associated with tumorigenesis. Overexpression of AKT2 

transforms NIH3T3 fibroblasts and increases the invasive and/or metastatic capacity of human 

cancer cells in vitro and in vivo. [38] Ablation of AKT2 in either HER-2/NEU or polyoma 

middle T transgenic mice decreases metastatic spread. [39] AKT3 activity and expression are 

up-regulated in estrogen receptor-negative breast carcinomas and androgen-insensitive 

prostate cancer cell lines. [40] Selective knockdown of AKT3, but not of other isoforms, 

inhibits melanoma development driven by PTEN loss. In transgenic mice, constitutively active 

AKT1 induces precancerous prostatic lesions and accelerates oncogene-dependent mammary 

tumor formation. [38]  

Deletion of AKT1 reverses the survival phenotype in PTEN null cells and abrogates its growth 

advantage. Similarly, inactivation of AKT by dominant negative mutants inhibits the survival 

advantage provided by activated class I PI3K. Disruption of AKT1 inhibits ErbB2-induced 
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mammary tumorigenesis. AKT1 deficiency delays tumor growth and reduces metastasis. 

AKT1 null mammary epithelial tumor cells have also reduced proliferative capability with 

reduced cyclin D1 and increased p27. These data  suggest that AKT1 plays an important role 

in mammary tumorigenesis. [41]  

The oncogenic activation of AKT1 can be induced by several means, most commonly 

occurring either due to the compromise in its membrane-targeting by PH domain, or due to the 

pathological conformational changes occurring in the mutant structure. Genetic mutations in 

the PH domain alter AKT1 localization and sensitivity to the PtdIns bringing serious 

consequences for its activity.[42] 

A dominant hotspot mutation at nucleotide 49 (G>A) of the gene encoding AKT1 results in 

the substitution of a lysine for glutamic acid at the amino acid 17 (Akt1-E17K). [34][42][43] 

In the apo conformation, Glu 17 occupies the phosphoinositide-binding pocket and forms a 

network of hydrogen bonds. The Lys 17 substitution results in a shift in the surface charge 

around the pocket from negative with Glu 17 to effectively neutral in the mutant. [42][43] The 

AKT1
E17K

 mutation alters the electrostatic interactions of the pocket, activates AKT1 in a 

PI3K-independent manner, increasing level of AKT1 phosphorylation on Thr 308 and Ser 473 

as compared to wild-type. [42][44] AKT1
E17K

 kinase activity was shown to be approximately 

four fold higher than that of AKT1 wild type, suggesting that the mutation alters AKT1 

regulation and hence it enhances cellular activity. [42][43] Furthermore, it has also been 

proposed that the mutation induces large affinity increase for PI(4,5)P2 which is essential to 

the constitutive plasma membrane targeting of the mutant PH domain and thus to the 

oncogenic nature of the full-length AKT1
E17K

 protein. [42] Moreover, it was also suggested 

that the E17K PH domain mutation causes structural changes in the PH domain, which further 

hinders its interaction with AKT1/2 inhibitor VIII. [43] All these observations strongly 
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suggest that the damaging conformational changes in mutant PH domain might cause such 

pathological outcomes. Functionally, the AKT1
E17K

 mutation stimulates AKT signaling, 

induces cellular transformation and produces leukaemia in mice. [44][45] The AKT1
E17K

 

mutation was found in 5 out of 61 (8.2%) breast cancers, 3 out of 51 (5.9%) colorectal 

cancers, 1 out of 50 (2.0%) ovarian cancers [43] and 3 out 105 (2.9%) lung cancer. [46]  

 

GENETICALLY ENGINEERED MOUSE MODELS OF PI3K/AKT SIGNALING IN 

BREAST CANCER 

The role of PI3K/AKT pathway mutations in human breast cancer can be studied using 

genetically engineered mouse models (GEMMs), developed to mimic human genetics of 

breast cancer, with special attention to the role of PI3K/AKT signaling in oncogenesis, 

response and resistance to therapy and metastatic capability. (figure 8) The gene of interest 

(GOI) can be inserted into the host genome in a construct containing a tissue-specific promoter 

to achieve tissue specific expression, such us acidic protein (WAP), beta-lactoglobuli (BLG) 

and mouse mammary tumor virus (MMTV) LTR promoters that are more or less selectively 

active in the mammary epithelial cells. [47] 

 

Figure 8: GEMMs of PI3K-driven breast cancer. [47] 
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Several GEMMs with tissue-specific mutation of PIK3CA, which encodes the 

phosphoinositide-3-kinase (PI3K) catalytic subunit p110α have been published. Several 

groups have shown that expression of the H1047R PIK3CA mutant in luminal mammary 

epithelium results in the formation of mammary tumors of several phenotypes, in particular 

adenosquamous carcinoma or adenomyoepithelioma phenotype. Genetic interaction between 

PIK3CA
H1047R

 and p53 loss-of-function mutations in R26-PIK3CA
H1047R

;p53
loxP/+

;MMTV-Cre 

mice leads to the reduction of survival of double-mutant animals, which developed lymphoma 

and mammary tumors with rapid kinetics. R26-PIK3CA
H1047R

;
p53loxP/+

;MMTV-Cre mammary 

tumors were mostly adenosquamous carcinoma or spindle cell/EMT indicating that double-

mutant mice develop a distinct spectrum of mammary tumors. [47][48] 

In Pten heterozygous knockout (Pten
+/-

) the loss of PTEN expression is associated with basal-

like tumors. [49] Deletion of the Pten gene in mammary epithelium in conditional Pten gene 

knock-out mice, generated by flanking exon 5, which encodes the phosphatase domain of 

PTEN, with LoxP sequences, causes increased cell proliferation, hyper-branched ductal 

structure, precocious development, delayed involution and severely impaired apoptosis. 

PTEN-deficient mammary epithelium also displays remarkable neoplastic changes. [50] 

To examine the role of AKT1 in the etiology of mammary tumorigenesis, transgenic mice 

were generated that express human AKT1 under the control of the mouse mammary tumor 

virus (MMTV) LTR. Ackler et al. have demonstrated for the first time that AKT1 expression 

during lactation results in a pronounced delay in involution, associated with hyperplasia and 

marked expression of cyclin D1. [51] 

Addition of a myristoylation signal to the murine AKT1 gene, which results in AKT1 

anchoring in plasma membrane and constitutive AKT1 activation independently of PI3K 
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activity, increases the incidence of benign lesions, delay in mammary involution and 

susceptibility to epithelial mammary tumor (ER-positive adenocarcinomas or adenosquamous 

tumors) formation induced by the carcinogen 9,10-dimethyl-1,2 benzanthracene (DMBA). 

[52] 

Finally, in double myrAKT;p53(R172H) mice p53 inactivation by R172H point mutation 

combined with myrAKT transgenic expression significantly increases the percentage and size 

of mammary carcinoma, but was not sufficient to promote full penetrance of the tumorigenic 

phenotype. [41] 
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PROJECT'S AIM 

Data from the literature have shown a significant involvement of the PI3K/Akt pathway in the 

onset of breast cancer. The role of AKT1 is controversial, the kinase seems to have a minor 

role, and limited to the ductal breast carcinoma. The purpose of this research project is to 

identify the oncogenic role of AKT1
E17K

 in the mammary tumorigenesis by generating a 

mouse model that expresses AKT1
E17K

 specifically in the breast, with particular attention to 

the effect on cell proliferation and breast cancer stem cells (BCSCs) maintenance. 

Furthermore this project comprises a pharmacological study in order to identify AKT1 as a 

putative target in breast cancer therapy.  
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MATERIALS AND METHODS 

 

RESTRICTION DIGEST OF PLASMID DNA 

Digestion of plasmid DNA was performed using different NEB enzymes. It is preferable to 

digest 0.2-1.5 µg DNA with a 2-fold to 10-fold excess of enzyme in a total volume of 20 µl. In 

the case of double digestion use the most compatible buffer with all the enzymes and it is 

important that the total volume of enzymes add to reaction is not more than 1/10 of the total 

reaction volume. A  

typical restriction enzyme digestion protocol is below: 

- In a 1.5mL tube combine the following: 

 DNA 

 Restriction Enzyme(s) 

 10X Buffer 

 10X BSA (if recommended by manufacturer) 

 dH2O up to total volume (20 µl) 

- Mix gently and spin down briefly 

- Incubate at the optimal reaction temperature (usually 37°C) for 2 hours 

The samples were run in an 1% agarose gel electrophoresis with ethidium bromide, using the 

non-digested plasmid as negative control. 

 

PURIFYING DNA FROM AGAROSE GEL 

Gel purification allows to isolate and purify DNA fragments based on size. The procedure 

starts with standard agarose gel electrophoresis, which separates DNA by their length in base 

pairs. Following electrophoresis, cut DNA bands out of the agarose gel and purify the DNA 
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samples. In our case, for this purpose, we used the QIAGEN QIAquick Gel Extraction Kit, 

using the standard protocol provided by the manufacturer. 

 

DNA LIGATION 

The final step in the construction of a recombinant plasmid is connecting the insert DNA 

(gene or fragment of interest) into a compatibly digested vector backbone. This is 

accomplished by covalently connecting the sugar backbone of the two DNA fragments. This 

reaction, called ligation, is performed by the T4 DNA ligase enzyme. The DNA ligase 

catalyzes the formation of covalent phosphodiester linkages, which permanently join the 

nucleotides together. This experiment was carried out using NEB T4 DNA Ligase (M0202). 

Before setting up the ligation reaction itself, it is important to determine the amount of cut 

insert and vector to use for the ligation reaction. The volume of vector DNA and insert DNA 

used in the ligation will vary depending on the size of each and their concentration. However, 

for most standard cloning (where the insert is smaller than the vector) a 3 insert : 1 vector ratio 

will work just fine.  

To calculate the volume of the insert for the ligation reaction must use the following formula: 

X ng of insert = (3) (bp insert) (50 ng linearized plasmid-) ÷ (size of plasmid in bp) 

- Set up the typical ligation reaction as follows: 

 10X T4 DNA ligase buffer 

 vector DNA 

 insert DNA 

 dH2O up to total volume (20 µl) 

- Gently mix the reaction by pipetting 

- Incubate at 16°C overnight 
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- Chill on ice and transform 1-5 μl of the reaction into 50 μl competent cells. 

 

TRANSFORMATION OF ELECTROCOMPETENT BACTERIAL CELLS 

The electrical transformation refers ingestion of foreign DNA in competent bacterical cells, 

that are able to take exogenous DNA, through the creation of pores in the bacterial cell walls 

using an electrical pulse.  

The transformation protocol requires several steps: 

- Thaw competent cells on ice for defrosting and mix 1 to 5μl of DNA (usually 10pg to 

100ng) into 50μL of competent cells;  

- Add cell/DNA mixture to the electroporation cuvette;  

- Place cuvette in electroporator and shock cells at 2500 V;  

- Remove cuvette from the chamber and immediately add SOC (SOB + glucose 2M). This 

step should be done as quickly as possible to prevent cells from dying off;  

- Transfer SOC-cell mixture to an eppendorf tube and incubate tube in 37°C shaker for at 

least 1 hr to permit expression of antibiotic resistance gene;  

- Centrifuge at 4500 rpm, discard the supernatant and resuspend the bacterial pellet in 100 

μl of LB;  

- Plate transformation onto prewarmed LB-agar plate supplemented with appropriate 

antibiotic and Incubate overnight at 37°C.  

 

RECOVERING PLASMID DNA FROM BACTERIAL CULTURE (MINIPREP) 

After liquid bacteric culture, at 37°C for overnight in a shacking incubator, bacterial cells were 

pelleted by centrifugation at 5000 rpm for 10 minutes. Afterwards, the QIAprep Spin 

Miniprep kit by QIAGEN was used to extract plasmid DNA as manufacturer’s 
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recommendations and resuspended in 30 µl of H2O milliQ. 

 

SITE DIRECTED MUTAGENESIS 

In vitro site-directed mutagenesis has been used to insert the specific mutation in the gene of 

interest. This experiment was performed using stratagene QuikChange Lightning Site-Directed 

Mutagenesis Kit, following the protocol provided and specific oligonucleotides specially 

designed, whose sequences are shown below:   

Mut hAKT1 Fow TGCACAAACGAGGGAAGTACATCAAGACCTG 

Mut hAKT1 Rev CAGGTCTTGATGTACTTCCCTCGTTTGTGCA 

 

 

SOUTHERN BLOT 

- digest 30μg of genomic DNA overnight with desired enzyme; 

- prepare a 0,7% agarose gel with EtBr 0,25μg7μl; 

- load samples with Sounthern Dye; 

- run overnight at 20-50V; 

- take a picture using a ruler; 

- cut marker and wasteful agarose gel; 

- place gel in a bowl with DEPURNATION BUFFER (0,2 N HCl) for the time necessary 

to make the color of the BBF turn from blue to yellow; 

- wash with H2O (2 x 2 min); 

- cut BBF and measure the gel;  

- wash with TRANSFER BUFFER 1 (0,4 NaOH-1 M NaCl) (2 x 15 min); 

- cut a nitrocellulose membrane (Hybond N+) of same dimension of gel, 3MM paper and 

blotting paper; 
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- set up transfer apparatus:elettroforetic apparatus, glass, 3 MM paper; 

- up side down agarose gel and place on nylon membrane, blotting paper and weight; 

- transfer overnight in TRANSFER BUFFER 2 (10X SSC- NaOH 0,1 M); 

- disassemble the blot and mark with a pencil well location on membrane; 

- wash 15 min with NEUTRALIZATION BUFFER (0,5 M Tris-Hcl pH 7,5); 

- dry membrane with 3MM paper; 

- pre-hybridize using dig easy hyb granules roche kit cat. No. 11796895001, for 30 min at 

55°C; 

- hybridize overnight in agitation at 55°C with labeled and denatured probe; 

- wash with WASH BUFFER 1 (2X SSC-0,1% SDS) (2 x 5 min) RT in agitation; 

- wash with WASH BUFFER 2 (0,5X SSC-0,1% SDS) (2 x 15 min) at 65°C in agitation; 

- blocking 30 min  with BLOCKING SOLUTION  (Blocking Reagent Roche Kit Cat. No. 

11096176001 in 1X Maleic Acid 1:10); 

- hybridize 30 min with anti-digoxigenin antibody alkaline phosphatase conjugated; 

- wash with WASH BUFFER (1X Maleic Acid-TRITON) (2 x 15 min); 

- equilibrate with DETECTION BUFFER (0,1 M Tris-HCl-0,1 M NaCl pH 7,5); 

- detect hybridization by chemioluminescence witn CDP-Star kit Roche; 

Previous probe labeling require PCR reaction with PCR DIG Probe Synthesis Kit 

Roche Cat. No. 11636090910, and digoxigenin-conjugated dideoxynucleotides (Dig-

ddUTP) and probe denaturation is carried out at 100°C for 5 minutes. 

 

ISOLATION OF GENOMIC DNA FROM MOUSE TAILS 

- Cut tail pieces (5mm); 

- Add 750 μl lysis buffer (0,05M Tris pH8.0, 1M EDTA, 0,1M NaCl, 1% SDS) and 
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Proteinase K (0,5 mg/ml); 

- Incubate at 60°C overnight; 

- Shake the samples at 1000 rpm at room temperature for 10 minutes; 

- Add 250 μl of 6M NaCl and shake the samples at 1000 rpm at room temperature for 10 

minutes; 

- Centrifuge at 4° C for 10 minutes at full speed; 

- Recover the liquid phase and add dropwise 500 μl of isopropanol; 

- Precipitate DNA by inverting the tube; 

- Spin down DNA at 4° C for 10 minutes at full speed and remove supernatant;  

- Wash pellet with 1 ml of cold 70% ethanol;  

- Spin down genomic DNA at 4° C for 5 minutes at full speed and remove supernatant; 

- Allow DNA to dry for 1-2 minutes; 

- Resuspend DNA in 100-200 μl depending on size of pellet; 

- Place tube at 55°C for 1 hour to facilitate dissolution of DNA. 

 

PCR AMPLIFICATION FOR GENOTYPING 

To determine the genotype of the transgenic mice, we used a PCR protocol with 3 

oligonucleotides.  

The reaction mixture contains: 

- 100 ng DNA;  

- 10X TAQ buffer ;  

- DMSO 2%;  

- dNTP 0,3 mM;  

- TAQ 0,2 U/μl ;  
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- primer mE17K 5’ Arm Fow (SIGMA-ALDRICH) 0,5 μM;  

- primer mE17K Rev New (SIGMA-ALDRICH) 1 μM;  

- primer mE17K 3’ Arm Rev (SIGMA-ALDRICH) 0,4 μM.  

The sequences of the oligonucleotides used are following listed: 

 

                                         5'-3' SEQUENCE  

mE17K 5'ARM Fow AACTGCAGACTTGTGGGATAC 

mE17K 3'ARM Rev ATATTAGTCCACCTCACTCCT 

mE17K 3'ARM Rev New GCCAACCCTCCTTCACAATA 

 

and the amplification program was carried out as below: 

 

 

 

 

 

 

 

 

 

 

FIXATION AND PARAFFIN EMBEDDING OF TISSUE 

- Collect the tissue into a tube containing cold 1X PBS; 

- wash in 1X PBS; 

- Fix the tissue in 10% formalin overnight and proceed with the successive steps: 

 

SOLUTION TIME 

saline solution 1X 3x1h 

saline solution/EtOH 95% 1x30’ +1h 

 

TEMPERATURE TIME 

 1) 95°C 5 min 

 2) 95°C 30 sec 

35 cycles 3) 60°C 30 sec 

4) 72°C 1min 30 sec 

5) 72°C  7 min 

 6) 4°C Forever 
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EtOH 70% 1h 

EtOH 70% o/n 

EtOH 85% 2x1h 

EtOH 95% 2x1h 

EtOH 100% 1h 

EtOH 100% o/n 

Xilene 3x1h 

Xilene/paraffin 2x1h 

Paraffin I 2x30’ 

Paraffin II 50’ 

Paraffin III 1h 

 

Perform paraffin steps at about 60° C and transfer tissue to a mould with paraffin to submerge 

the tissue. Cool at room temperature and store at 4° C. Cut sections (5 µm), mount them on 

coated slides and dry overnight at 37˚ C for subsequent experiments.  

 

HEMATOXYLIN AND EOSIN STAINING PROTOCOL 

- Deparaffinize in Xylene I and II for 10 minutes; 

- Rehydrate: 

- EtOH 100% (5 minutes) 

- EtOH 100% (2 minutes) 

- EtOH 95% (2 minutes) 

- EtOH 95% (2 minutes) 

- EtOH 70% (2 minutes) 

- Rinse in distilled water for 5 minutes; 

- Stain in hematoxylin Harris for 30 seconds;  

- Decolorize in running tap water for 10 minutes;  
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- EtOH 70% for 3 minutes;  

- EtOH 95% for 10 minutes; 

- Counterstain in alcoholic Eosin for 30 seconds;  

- Dehydrate 

- EtOH 95 % (5 minutes) 

- EtOH 100% (10 minutes) 

- Clear in Xylene I and II for10 minutes;  

- Mount with Eukitt BIO-OPTICA. 

RNA EXTRACTION 

To extract RNA from mammary tissue we lysate samples using QIAGEN Tissuelyser for 2 

min at 30 Hz by adding 1 ml of  TRIzol Reagent (Invitrogen) and following the standard 

protocol provided by the manufacturer. The RNA concentration was determined using the 

NanoDrop spectrophotometer.  

 

RT-PCR  

The reverse transcription reaction is performed using Quantitect Reverse Transcription Kit 

(Qiagen). The protocol used requires the following steps: 

- Mix 1 μg of total RNA with gDNA Wipeout Buffer 7X in a final volume of 14 μl; 

- Incubate at 42° C for 2 minutes; 

- Add 1 μl di Quantiscript Reverse Trascriptase, 4 μl di Quantiscript RT Buffer 5X and  

1 μl RT Primer Mix; 

- Incubate at 42°C for 30 minutes and inactivate reaction at 95°C for 3 minutes; 
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REAL-TIME PCR  

The cDNA obtained from the previous reaction of reverse transcription was diluited and used 

to perform a Real-Time quantitative PCR using Sybr Green PCR Master mix (Applied 

Biosystems) to evaluate AKT1 expression levels.  

The reaction mixture contains: 

- 20ng cDNA 

- 0,2 μM primers 

- 2X Sybr Green PCR Master mix 

- MilliQ H2O to 20 μl 

The reaction program is performed using Applied Biosystem 7900 Real-Time PCR System 

and SDS Enterprise Database software and consists of the following steps: 

 

 

TEMPERATURE TIME  

1) 50°C 2 min  

2) 95°C 10 min  

3) 95°C 15 sec 40 cycles 

4) 60°C 1min  

  

The primers sequence used are represented below: 

 

5'-3' SEQUENCE 

GAPDH Fow CCGGGTTCCTATAAATACGGACTGC 

GAPDH Rev CGGCCAAATCCGTTCACACCG 

AKT1 Fow CACACCACCTGACCAAGATG 

AKT1 Rev AATCAAGGGTCCCCAAACTC 
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TOTAL PROTEIN EXTRACTION 

The mammary tissue protein extraction is performed using a specific lysis buffer that allows to 

extract the proteins from the  lipid component typical of the breast tissue. Tissue fragments 

were lysed using QIAGEN Tissuelyser for 2 min at 30 Hz by adding a volume of lysis buffer 

such as to cover the tissue. 

The lysis buffer is consists of the following components: 

- Urea 7 M; 

- Thiourea 2 M;  

- CHAPS 2%;  

- DTT 50mM;  

- Protease inhibitor SIGMAFAST
™

 1X;  

- NaF 1 mM;  

- PMSF 1mM;  

- Na3VO4 1mM;  

- Okadaic Acid 15 nM; 

After breaking up with Tissuelyser and short spin to remove tissue debris, the samples were 

incubated on ice for 30 minutes and then centrifuged in a refrigerated centrifuge at 4ºC for 30 

minutes at 13200 rpm. The supernatant was recovered to a microcentrifuge tube and protein 

concentration was determined by a standard Bradford Assay (BioRad) in a Beckman DU 530 

spectrophotometer. 
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WESTERN BLOT 

This technique was used to analyze the protein levels in different samples. 

Polyacrylamide gels were prepared at 10% acrylamide concentrations, according to the 

molecular weight of the proteins in study. After complete polymerization of the gel, it is 

transferred to a electrophoresis tank that was filled with a running buffer containing 25 mM of 

TRIS, 250 mM of Glicine (pH 8.3) and 0.1% of SDS. 50 µg of protein were dispensed in the 

wells, and the gels were run at 100 V. When the proteins were separated between them, the 

run was stopped and fractionated proteins were transferred from the gel to a nitrocellulose 

membrane by Trans-Blot Turbo Transfer System (BIORAD). 

After transferring, the membranes were colored with 1X Red Ponceau (ATX Ponceau S Red 

staining solution, FLUKA) for 1 minute at room temperature to validate the transferring 

homogeneity and quality. Next, the membranes were washed in TTBS (1X TBS and 0,1% 

Tween) and were pre-hybridized for 45 minutes in a solution of TTBS containing 5% Nonfat 

dried milk (AppliChem) to block the non-specific hybridization sites of the primary antibody. 

Subsequently 3 washes of 5 minutes each were made before incubating with the primary 

antibodies diluted in red solution (1X TBS, 3% BSA, 0.02% NaAzide, 100 mg Phenol Red), 

overnight at 4ºC, with agitation. 

The next day, the primary antibody was recovered and the membranes were washed for 5 

minutes, 3 times with TTBS. After that, the membranes were incubated with the respective 

secondary antibody (rabbit or mouse), diluted at 1:2500 in a solution of TTBS with 5% of 

nonfat dried milk, for 1 hour, followed by 3 washes of 5 minutes each with TTBS. Next the 

membranes were incubated for 1 minute with an amplified chemiluminescence kit, ECL 

(Amersham Inc.), which allows the operator to see the chemiluminescence on High 
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performance chemiluminescence film (Amersham Inc.) due to the reaction between the 

substrate present on ECL and the peroxidase covalently bound to the secondary antibody.  

The primary antibodies used in this thesis were the following: 

- Anti-P-AKT (Ser473) antibody (rabbit), 1:1000 (Cell Signaling 

TECHNOLOGY
®

, #4058); 

- Anti-AKT1 antibody (rabbit), 1:1000 (Cell Signaling TECHNOLOGY
®
, 

#2938); 

- Anti-P-FoxO1 (Ser256) antibody (rabbit), 1:1000 (Cell Signaling 

TECHNOLOGY
®

, #9461); 

- Anti-FoxO1 antibody (rabbit), 1:500 (Cell Signaling TECHNOLOGY®, 

#2880); 

- Anti-P-GSK3α/3β antibody (rabbit), 1:1000 (Cell Signaling TECHNOLOGY
®
, 

#9331); 

- Anti-GSK3α antibody (rabbit), 1:1000 (Cell Signaling TECHNOLOGY
®
, 

#9338); 

- Anti-GSK3β antibody (rabbit), 1:1000 (Cell Signaling TECHNOLOGY
®
, 

#9315); 

- Anti-β-Actin antibody (mouse), 1:10000 (Sigma-Aldrich, A2228) 

  

IHC-PARAFFIN PROTOCOL (IHC-P)  

Before proceeding with the staining protocol, the slides must be deparaffinized and 

rehydrated. Incomplete removal of paraffin can cause poor staining of the section.  

Proceed as follows: 

- incubate slides at 60 overnight. 
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- Deparaffinize in Xylene I and II for 10 minutes. 

- Rehydrate: 

 EtOH 100% (5 minutes) 

 EtOH 100% (2 minutes) 

 EtOH 95% (2 minutes) 

 EtOH 95% (2 minutes) 

 EtOH 70% (2 minutes) 

 PBS 5 minutes  

 PBS+Tween20 5 minutes 

 PBS 5 minutes 

 

- Perform antigen retrieval to unmask the antigenic epitope, using the citrate buffer  

Epitope Retrieval 1X pH=6 Novocastra Leica and incubate slides, immersed in this 

buffer, in the microwave at 900 WATT for 5 minutes and 300 WATT for 5 minutes, 3 

times; 

- Cool at 4° C for 30 minutes; 

- Air dry the slides and wrap with pap pen; 

- Wash in TTBS for 5 minutes, 2 times; 

- Incubate sections in 3% hydrogen peroxide in methanol, for blocking of endogenous 

peroxidase, for 15 minutes; 

- Wash in TTBS for 5 minutes, 2 times; 

- Incubate slides with the primary antibody diluted in Bond Primary Antibody Diluent 

(Leica AR9352), overnight in humidifying chamber; 

- Wash in TTBS for 5 minutes, 2 times. 
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Continue using the kit Novocastra Novolink Polymer Detection Systems (RE7140-K) as 

follows: 

- Novocastra Post Primary Block (RE7111) for 30 minutes; 

- Wash in TTBS for 5 minutes, 2 times; 

- Novolink Polymer (RE7112) for 30 minutes; 

- Wash in TTBS for 5 minutes, 2 times; 

- Develop peroxidase activity with DAB working solution (Ratio 1:20 DAB Chromogen 

RE7105/DAB Substrate Buffer RE7106) maximum for 5 minutes; 

- Rinse slides in water;       

- Counterstain with Hematoxylin RE7107 for 10 minutes;      

- Rinse slides in water for 5 minutes;     

- Dehydrate (EtOH 70%, 80%, 90%, 100%, each from 5 minutes);  

- Clear (xylene 10 minutes, 2 times);  

- Mount sections with Eukitt BIO-OPTICA. 

 

ISOLATION OF VIABLE EPITHELIAL CELLS FROM MURINE  MAMMARY TISSUE 

AND MAMMOSPHERE CULTURES 

- mechanically dissociate mammary tissues into small pieces using a surgical blade and 

placed in a digestion medium (DMEM/F12) supplemented with 200 U/ml collagenase 

(Sigma) and 100 U/ml hyaluronidase (Sigma) for about 5h at 37° C; 

- filtering the cell suspensions through 100, 70, 40 and 20 µm meshes; 

- Centrifuge at 1200 rpm for 5 minutes; 

- Wash the pellet with PBS and centrifuge at 1200 rpm for 5 minutes; 
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Resuspend the pellet in 1-5ml of RBC buffer (NH4Cl 155mM; KHCO3 o NaHCO3 

10mM; EDTA 0,1mM) to eliminate the possible presence of red blood cells; 

- Incubate at RT for 5 minutes; 

- Centrifuge at 1200 rpm for 10 minutes; 

- Wash the pellet with PBS and centrifuge at 1200 rpm for 5 minutes; 

- Count the cells preparing a 1:1 of the cell suspension using a 0,4% Trypan Blue solution. 

Non-viable cells will be blue, viable cells will be unstained.  

Resulting cells were plated onto Corning®Ultra-Low Attachment Surface plates at a density of 

400,000 viable cell/ml (to obtain primary mammospheres) in a serum-free mammary epithelial basal 

medium (MEBM, LONZA), supplemented with 5 µg/ml insulin (Sigma), 0.5 µg/ml hydrocortisone 

(Sigma), B27 (Invitrogen), 20 ng/ml EGF and bFGF (PEPROTECH), and 4 µg/ml heparin (Sigma).  

Mammospheres were collected after 14 days and dissociated with trypsin, to obtain single 

cells derived from mammospheres. For serial passage experiments, 5,000 cells from 

disaggregated primary-mammospheres were plated in 24 multiwell plates and, after 14 days, 

disaggregated and re-plated at the same density. 

 

EVEROLIMUS TREATMENT 

Everolimus (Afinitor®, Novartis), inhibitor of mammalian target of rapamycin (mTOR), was 

dissolved in 12,5% DMSO at a concentration of 1,25 mg/ml (5mg/kg). Virgin 

Akt1
E17K/E17K

;MMTV-Cre female mice, 20-week-old, were treated with two weekly doses of 

EVEROLIMUS, for 8 weeks, via oral gavage. Oral gavage consisted of inserting a curved 

blunt tipped needle attached to a 1 ml syringe into the mid-throat of a firmly grasped mouse 

and injecting 100 μl of a EVEROLIMUS solution. The control group of virgin 

Akt1
E17K/E17K

;MMTV-Cre female mice was treated with 12,5% DMSO. The mice were 

maintained in the absence of males and were checked by palpation for mammary tumor 

http://en.wikipedia.org/wiki/Mammalian_target_of_rapamycin
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formation. Mice were sacrificed by CO2 inhalation at the end of the period established for the 

experiment and mammary tissue was explanted. 
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RESULTS 

GENERATION OF A Cre-INDUCIBLE  AKT1
E17K 

 MAMMARY MOUSE MODEL 

To investigate the contribution of AKT1
E17K

 mutation in mammary tumorigenesis, we 

generated  a mouse model that, through a Cre/Lox system, expresses the mutated form of 

AKT1 specifically in mammary gland tissue, in time and tissue specific manner. The gene 

targeting strategy allowed us to insert the transgene into the mouse Rosa26 locus, 

preferentially selected for the knock-in strategies as it has a high recombination frequency and 

allows the ubiquitous expression of the inserted gene both in embryonic development and in 

adult mice. The pRosa26 plasmid, containing 5 ' and 3’ homology arms for the specific locus, 

has been suitably modified by adding the following elements: 

- splice acceptor site; 

- Neomycin resistance expression cassette, flanked by two Frt sites;  

- triple SV40 polyadenylation sequence, LoxP- flanked, that prevents the transcription of 

the locus until the elimination of the sequence by the Cre recombinase;  

- β-globin intron and SV40 polyA. 

The human Akt1 cDNA (hAkt1) was inserted into the pBLUScript-KS vector and G>A 

nucleotide substitution was introduced by site-specific mutagenesis. The hAkt1E17K cDNA 

was then inserted into the pRosa26 shuttle vector generating the final construct 

pRosa26hAkt1E17K. The obtained plasmid was linearized and electroporated into mouse 

embryonic stem cells R1/129/Sv. G418-resistant clones were isolated, expanded and screened 

by PCR and Southern Blot. Targeted clones were transiently transfected with Flp recombinase, 

to eliminate the NeoR and allow the expression of the gene. (Figure 9) 
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Figure 9: gene targeting strategy for pRosa26hAkt1E17K construct. A: insertion of the cDNA of interest into the vector 

pBLUScript-KS, B: hAkt1E17K insertion of the cDNA into the Rosa26 locus, C: final recombination of the construct with the 

genomic locus of the murine Rosa26, D: representation of the genomic locus Rosa26 with the insert of interest; E: excision of 

the neomycin resistance cassette by Flp. 

 

The recombined clones were microinjected into C57BL/6 blastocysts for the generation of 

chimeric mice which were crossed with C57BL/6 mice. The presence of the transgene has 

been evaluated by PCR on DNA extracted from tail biopsies. (Figure 10) 

 

 

Figure 10: Genotyping PCR for Rosa26hAKT1E17K/+  mice. The presence of the transgene is represented by the band 

of 1300bp. 
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To activate the expression of AKT1
E17K

 mutant allele in mammary glands, we bred this mouse 

with an MMTV-Cre line (B6129-Tg(MMTV-cre)1Mam/J, #003551; Jackson Laboratory), that 

expresses P1 Cre recombinase under the control of the MMTV-LTR promoter. This mating 

allows high levels of recombination in the virgin and lactating mammary gland. In double 

transgenic mice the deletion of STOP cassette, flanked by two loxP sites, occurs almost 

exclusively at the level of the breast. The occurrence of deletion was verified by PCR on DNA 

extracted from breast biopsies, the mice that have this deletion show a 350-bp PCR product, 

compared to wild-type mice. (Figure 11)  

 

Figure 11: PCR screening to assess the successful deletion of the STOP cassette 

 

CHARACTERIZATION OF AKT1
E17K

 EXPRESSION IN MAMMARY TISSUE 

In order to characterize the generated mouse model for the effective expression of the 

transgene and the activity of AKT1 in Rosa26hAKT1
E17K

;MMTV-Cre mice, we performed a 

Real-Time PCR in which we analyzed the expression of specific transcript, on RNA extracted 

from breast biopsies from Rosa26hAKT1
E17K/E17K

;MMTV-Cre (n=5), 
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Rosa26hAKT1
E17K/+

;MMTV-Cre (n=5) mice. In figure 12 we reported the results of the 

AKT1
E17K

 mRNA quantification in the different mice groups. We observed an increased 

expression of 1.5 times in homozygous respect to the heterozygous transgenic mice. (Figure 

12) 

 

Figure 12: Relative expression of transegene in the different genotype groups of mice 

 

This result was confirmed by analyzing the protein level of AKT1 and, in particular, its 

activation by phosphorylation of residue Ser473, compared to control mice. (Figure 13) 

 

Figure 13: Western blot analysis of protein extracts derived from mammary gland tissue of Rosa26hAKT1E17K;MMTV-Cre 

mice and Rosa26AKT1+/+;MMTV-Cre  mice (T =transgenic mice mammary tissue , C =control mice mammary tissue) 
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The Western Blot analysis shows that in breast tissue derived from transgenic mice AKT1 is 

more expressed compared to control mice and we observed also an elevated accumulation of 

phospho-AKT1
Ser473

. In order to evaluate the effect of AKT1
E17K

 on epithelial breast cells 

proliferation we performed a trypan blue viability assay on single cells suspension derived 

from transgenic and control mice. We observed that the presence of AKT1
E17K

 causes a 5 fold 

increased tissue cellularity in heterozygous transgenic mice compared to control mice while in 

homozygous transgenic mice the cellularity of breast tissue is almost 10 fold increased 

compared to control mice. (Figure 14) 

 

Figure 14: Analysis of mammary gland tissue cellularity derived from the different genotype groups of mice 

 

AKT1
E17K

 EXPRESSION IS ONCOGENIC IN MAMMARY TISSUE 

To asses the potential role of AKT1 as oncogene in mammary epithelium, we examined the 

consequences of AKT1
E17K

 expression in mammary gland in Rosa26hAKT1
E17K

;MMTV-Cre 

mice. First of all, we evaluated the possible appearance of tumors in 

Rosa26hAKT1
E17K

;MMTV-Cre virgin females compared to Rosa26AKT1
+/+

;MMTV-Cre, for 



 51 

a period of 15 months. At the end point (15 months), we observed that 70% (15/21) of 

Rosa26hAKT1
E17K

;MMTV-Cre mice developed mammary tumors, single or multiple, 

indicating a high incidence of cancer that is strictly dependent on the presence of the 

transgene. This data has been correlated with a survival analysis, which allowed us to monitor 

temporally the occurrence of tumors. The mice are monitored by fat pad palpation and were 

sacrificed when the tumors have achieved certain sizes. The data obtained have allowed us to 

perform a statistical analysis of survival, through a Kaplan-Meier curve. The data show a 

reduction in the overall survival of mice expressing the mutation AKT1
E17K

, with a peak of 

mortality between 10 and 12 months. (Figure 15) 

 

Figure 15: Survival curve of Rosa26hAKT1E17K;MMTV-Cre and Rosa26AKT1+/+;MMTV-Cre mice, computed using the 

Kaplan-Meier method. 

 

Tumors harvested from mice, that may affect both thoracic that inguino-abdominal mammary 

glands,  and the counterpart of healthy breast tissue, if present, were histologically 

characterized. The tissue biopsies were fixed in formalin, paraffin embedded and subjected to 

hematoxylin/eosin staining. Histological analysis of tumor sections of 

Rosa26hAKT1
E17K

;MMTV-Cre mice shows the presence of ductal carcinomas from medium 

to high grade. Furthermore, transgenic mice that do not have a visible tumor show an 

alteration of mammary epithelium which goes from hyperplastic lesion to dysplasia. The 

figure (Figure 16) shows representative images of mammary tumors derived from 
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Rosa26hAKT1
E17K

;MMTV-Cre mice compared with the mammary epithelium of 

Rosa26AKT1
+/+

;MMTV-Cre control mice, which present the typical morphology of breast 

tissue, consists of a lipidic reticulum with glandular units composed by a lumen surrounded by 

a single cell layer.  

 

 

Figure 16: hematoxylin-eosing staining of representative normal (up) and tumoral (down) breast tissue  

 

Analysis of the tumors from Rosa26hAKT1
E17K

;MMTV-Cre mice allowed us to confirm 

literature data that report the presence of the mutated form AKT1
E17K

 especially in human 

ductal breast carcinomas. 

To test the PI3K pathway activation, lysate from representative tumors of 

Rosa26hAKT1
E17K

;MMTV-Cre mice were analyzed for phosphorilation status of AKT1 and 

its downstream effectors, such as FOXO1 and GSK3α/β and cyclin D1. Total protein extract 

from tumors were compared with those derived from healthy counterparts and breast tissue of 
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control mice. In the proteins derived from tumors is observed an increased phosphorylation of 

AKT1 than control tissues. In all tumors analyzed we observed elevated levels of phospho-

FOXO1
Ser256

 and phospho-GSK3α/β
Ser21/9

 and high levels of cyclin D1. (Figure 17)  

 

 

 

Figure 17: Western blot of AKT1 and downstream effects in tumor derived from Rosa26hAKT1E17K; MMTV-Cre mice 

compared to healthy counterparts and normal breast tissue from control mice. 

 

The elevated level of AKT1 phosphorylation was confirmed by immunohistochemistry on 

paraffin embedded sections of breast cancer from Rosa26hAKT1
E17K

;MMTV-Cre mice 

compared with their healthy counterparts. This histological analysis showed that tumors from 

transgenic mice were characterized by hyperactivation of AKT1. (Figure 18)  
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Figure 18: anti p-AKTSer473 and AKT1 staining of paraffin embedded sections of breast cancer from 

Rosa26hAKT1E17K;MMTV-Cre mice compared with their healthy counterparts. 

 

 

AKT1
E17K

 CONTRIBUTION IN THE GENERATION AND MAINTEINANCE OF 

PUTATIVE BREAST CANCER STEM CELLS 

In tumors has been identified a subpopulation of cells, called cancer stem cells (CSCs) with 

stem cell characteristics, probably responsible for the formation and maintenance of the tumor, 

metastases and chemoresistance. This cell subpopulation has also been identified in breast 

cancer (breast cancer stem cells, BCSCs) and several studies have demonstrated the 

implication of PI3K/AKT pathway in BCSCs biology. [29][31] Putative BCSCs can be 

identified through their ability to proliferate as spheroid structures in non-adherent conditions. 

To analyze the AKT1
E17K

 role in BCSCs we performed a mammosphere formation assay. 

Homogeneous cell suspension derived from non cancerous mammary tissue of 

Rosa26hAKT1
E17K/E17K

;MMTV-Cre, Rosa26hAKT1
E17K/+

;MMTV-Cre and 

40X 40X 

40X 40X 

AKT1 

 

P-AKT
Ser473 
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Rosa26AKT1
+/+

;MMTV-Cre mice were seeded in non-adherent condition, serum-free medium 

supplemented with B27, EGF and FGF. After about 10 days the single cell suspension 

generated floating colonies called "mammospheres". (Figure 19) 

 

Figure 19: representative images of mammospheres derived from Rosa26AKT1+/+;MMTV-Cre,(a) 

Rosa26hAKT1E17K/+;MMTV-Cre(b) and Rosa26hAKT1E17K/E17K;MMTV-Cre mice(c).  
 

We observed that cells derived from Rosa26hAKT1
E17K/+

;MMTV-Cre and 

Rosa26hAKT1
E17K/E17K

;MMTV-Cre mice generated a number of mammospheres 2.5 and 8 

fold increased, respectively, compared to Rosa26AKT1
+/+

;MMTV-Cre mice. Size analysis of 

the mammospheres revealed that the spheroids derived from Rosa26hAKT1
E17K/+

;MMTV-Cre 

and Rosa26hAKT1
E17K/E17K

;MMTV-Cre mice showed a diameter of 1.5 and 2 folds increased, 

respectively, compared to spheroid generated by single cells from Rosa26AKT1
+/+

;MMTV-

Cre mice (Figure 20) 

 

b a c 
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Figure 20:cumulative number and size measurement of mammospheres derived from the different mice groups.  

 

To test the self-renewal capability of the mammosphere-forming cells during generations, the 

primary mammospheres were dissociated into single cells and  replated in the same conditions. 

Mammospheres derived from Rosa26AKT1
+/+

;MMTV-Cre mice were regenerated for only 

four generations, while those derived from Rosa26hAKT1
E17K/E17K

;MMTV Cre are capable to 

regenerate the spherois until eight generations. (Figure 21) 

 

Figure 21: graphic representation of capability to regenerate spheroids of putative BCSCs from Rosa26AKT1+/+;MMTV-Cre 

and Rosa26hAKT1E17K/E17K;MMTV Cre mice. 

 

AKT1
E17K

 IS A PUTATIVE TARGET IN BREAST CANCER THERAPY 

We performed a pharmacological study to identify a therapeutic strategy in order to target 

PI3K/AKT pathway for breast cancer treatment. Recently has been developed a new drug, 

Everolimus, for the treatment of advanced stage ER+, HER2- mammary carcinomas. The 

Everolimus is a selective inibitor of mTOR (mammalian target of rapamycin),  a serine-

threonine kinase, whose activity is upregulated in several cancers. The activation of the mTOR 

complex-1 (mTORC1) is downstream of AKT signaling. Everolimus binds the intracellular 

protein FKBP-12, forming a complex that inhibits mTORC1. Four-five months-old 

Rosa26hAKT1
E17K/E17K

;MMTV-Cre mice (n=8) are treated with Everolimus (5mg/kg, 
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gavage), for 8 weeks (2 doses in week), as control we treated a group of mice (n=9) with the 

vehicle. At the end of treatment, the breast tissue of both groups was collected and subjected 

to histological analysis. We observed that 66.7% (6/9) of the control mice developed tumors 

and 11,1% (1/9) severe dysplasia, while only 37.8% (3/8) of treated mice with Everolimus 

showed medium-grade dysplasia.  
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DISCUSSION 

 Breast cancer is the most common female malignancy and the leading cause of cancer death 

in women. It is caused by the combination of genetic and environmental factors. Specific 

inherited mutations in BRCA1 and BRCA2 increase the risk of breast cancers. Together, 

BRCA1 and BRCA2 mutations account for about 20-25% of hereditary breast cancers and 

about 5-10% of all breast cancers. [54][55] In the onset of sporadic breast cancer are involved 

gene alterations in oncogenes and tumor suppressors genes. Among these, the 

phosphoinositide-3 kinase (PI3K) pathway has been identified to have an important role. The 

importance of this pathway in tumorigenesis is represented by the high frequency of  his 

activativation in cancer, as illustrated in Figure 7. In the figure are showed the tumors in which 

this pathway is upregulated by mutations. In addition some of the components have an 

intrinsic inhibitory effect, such as phosphatase and tensin homologue deleted on chromosome 

ten (PTEN). [56] In particular in breast cancer mutations in the components of the PI3K/AKT  

pathway occur in the 25% of the cases. The majority of mutations are in PIK3CA, encoding 

the catalytic p110α subunit, and are nonrandomly localized in three “hot spots,” resulting in 

single amino acid substitutions: E545K and E542K in the helical domain (exon 9) and 

H1047R in the kinase domain (exon 20). These mutations increase enzymatic function, 

enhance downstream signaling elements, including AKT, and promote oncogenic 

transformation. [18] 

In hormone receptor–positive tumors, these mutations occur in >30% of cases. Also, in 

HER2+ disease, mutations are evident in about one quarter of tumors. Meanwhile, it seems 

that mutations in triple-negative breast cancer may be less frequent. [3] More recently a single 

hotspot mutation, G49A:E17K, in the pleckstrin homology domain of AKT1 was described, 

predominantly in human breast tumors. [43] The reported frequency of this mutation has 
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ranged from 1.8%–8%. [18] [43][44][45] Importantly, mutant AKT1 is able to activate PI3K 

signaling pathway and to transform rodent fibroblasts and bone marrow cells . [43] Most 

studies have found PTEN, PIK3CA, and AKT1 mutations to be mutually exclusive in 

individual tumors [43][44][49], suggesting that mutational activation of the PI3K/AKT 

pathway by any one of the components are biologically equivalent.  

Until now the role of AKT1 in mammary tumorigenesis represents a  secondary event. In vivo 

studies have shown that its hyperactivated form, myrAKT1, which results in AKT anchoring 

to the plasma membrane and constitutive activation, delay the mammary involution and 

increases the incidence of benign lesions. In addition myristoylation signal increases the 

susceptibility to epithelial mammary tumor formation after induction by the carcinogen 9,10-

dimethyl-1,2 benzanthracene (DMBA). [52] Somewhat surprisingly, published data 

demonstrated that overexpression of AKT1 is able to transform cells in vitro[43], but the 

knock-in of mutant AKT1
E17K

 in MCF10A cells failed to recapitulate this capacity. [53] These 

findings are similar to what  was observed with knock in of mutant KRAS and may reflect 

differences between knock in and transgenic overexpression as well as differences between 

cell types in their susceptibility to transformation. However, were not made in vivo studies to 

analyze the effect of mutant form of AKT1 in mammary tumorigenesis. For this reason the 

aim of this study is the evaluation of the role of AKT1
E17K

 in the mammary tumorigenesis in a 

mouse model that expressed AKT1
E17K

 specifically in mammary gland tissue. These mice are 

derived by crossing Rosa26AKT1
E17K

 transgenic mice with an MMTV-Cre mouse line. The 

resulting mice, Rosa26hAKT1
E17K

;MMTV-Cre, drive the expression of AKT1
E17K

 almost 

exclusively in the mammary tissue.  

The data from this study showed that the transgene was expressed primarily in the mammary 

gland. This is consistent with the findings that increase in MMTV-LTR transcriptional activity 
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is through mammary development and during pregnancy. [57] The hAKT1
E17K

 specific 

transcript was expressed in mammary gland of trangenic mice compared to the control 

littermates. In addition, the analysis of the expression of AKT1
E17K

 in breast tissue derived 

from transgenic mice demonstrates that the transgene expression is increased from 

heterozygous to homozygous mice. These results are confirmed by the analisys of downstream 

pathway activation status, phosphorylation of AKT1 is higher than that wild-type control 

mice.  

The activation of AKT1 by overexpression or myristoylation signal has been shown to delay 

mammary gland involution and induce hyperplasia [51]. This process accelerates mammary 

tumorigenesis in MMTV-c-ErbB2 mice [58] but overexpressing or activated AKT1 in 

mammary gland alone is not able to induce dysplasia and neoplasia [59][60]. Activation of 

AKT1 induces oncogenic transformation upon exposure to carcinogens [52]. Surprisingly, in 

our model, we demonstrated that transgenic mice with active AKT1 led to a significant higher 

incidence of mammary carcinoma without exposure to the carcinogen insults. In particular 

tumor incidence was of about 70%, starting from four months of age, with a peak of mortality 

between 10 and 12 months. The histological analysis conducted on the explanted mammary 

tumor masses revealed that the tumors are ductal carcinomas from medium to high grade, 

confirming the literature data from breast cancer patients showing the presence of the mutant 

AKT1
E17K

 in ductal and lobular carcinomas. [43] The tumor tissues from transgenic mice had 

increased phosphorylated AKT1 at Ser473 and the tumors derived from 

Rosa26hAKT1
E17K

;MMTV-Cre mice showed hyperactivation of the PI3K/Akt pathway.  

Increased pAKT
Ser473

 was associated with strong phosphorilation levels of downstream 

substrates as FOXO1 and GSK3α/β. Moreover tumor tissues from transgenic mice 

overexpress cyclin D1. Cyclin D1 plays role in tumor cell proliferation, migration and was 
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inversely correlated with tumor size in human breast cancer [61] Overexpression of cyclin D1 

has been reported between 40% and 90% of cases of invasive breast cancer, while gene 

amplification is seen in about 5–20% of tumors [35]. Increase in protein level of cyclin D1 

was apparent in hyperplasia and further increased with malignancy. [62][63] Cyclin D1 has 

also been shown as an essential oncogenic intermediary for Neu pathway inducing mammary 

carcinoma in transgenic mice. [64][65]. In our model, we observed that cyclin D1 expression 

was higher in Rosa26hAKT1
E17K

;MMTV-Cre mice driven mammary carcinoma, compared to 

control mice. The histological analysis revealed also the presence of preneoplastic lesions, 

from hyperplasia to dysplasia. These results, associated with the activation of AKT pathway, 

correlates the presence of mutant AKT1 to the cell proliferation, in vivo. Mammary gland 

derived from 8-12 weeks Rosa26hAKT1
E17K

;MMTV-Cre mice showed increased cellularity, 

ten fold increased compared to mammary tissue derived from control littermates.  

It has been recently suggested that a cellular subpopulation with stem cell (SC)-like features, 

known as Cancer Stem Cells (CSCs), is critical for tumor generation and maintenance, and 

responsible for breast cancer metastasis. [24] In vitro and in vivo evidences revealed the 

importance of PTEN/PI3K/Akt/Wnt/β-catenin pathway in breast cancer stem cells (BCSCs) 

biology. Increased AKT Ser473 phosphorylation in suspension culture of putative breast 

cancer stem cells (mammospheres) as compared with monolayer cultures, determines 

increased levels of GSK3-β phosphorylation and β -catenin activation. β-catenin has been 

demonstrated to play an important role in the development of mammary stem cells in mouse 

models, suggesting that this pathway may also be active in human mammary stem/progenitor 

cells in mammospheres. [31] To assess the role of AKT1
E17K

 in the context of BCSCs, we 

exploited his ability to regulates the growth of cells suspension, derived from 

Rosa26hAKT1
E17K

;MMTV-Cre an control mammary gland tissue, in spheroid conditions. 
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Performing a mammospheres assay we observed that cells derived from 

Rosa26hAKT1
E17K

;MMTV-Cre mice generates increased number of mammospheres 

compared to those derived from control mice. Furthermore the mammospheres derived from 

transgenic mice showed a diameter two fold increased compared to the wild-type mice. The 

self-renewal assay revealed that cells derived from  Rosa26hAKT1
E17K

;MMTV-Cre mice are 

capable to renew until 8 generations the spheroid culture. The obtained data allow us to 

identify an important role of AKT1
E17K

 in mammary tumorigenesis and in the maintenance of 

the tumor through its involvement in the biology of the BCSCs. We therefore conducted a 

pharmacological study in which we evaluated the antitumor activity of the drug Everolimus on 

tumor induction and / or progression of breast cancer in Rosa26hAKT1
E17K/E17K

;MMTV-Cre 

mice. This drug has recently been developed for the treatment of breast cancers in advanced 

phase, positive estrogen receptor and HER2 negative. Everolimus is a selective inhibitor of 

mTOR (mammalian target of rapamycin) a serine-threonine kinase whose activity is known to 

be upregulated in several human cancers. The activation of this complex is downstream of 

AKT, which can act in a direct manner on mTOR, through phosphorylation at the residue 

Ser2448, and in indirectly, by inactivating phosphorylation at residue Thr246 of PRAS40, a 

inhibitory component of the mTORC1 complex and at the level of 5 residues (S939, S981, 

S1130, S1132 and T1462) of TSC2, which together with TSC1 constitutes a complex that 

inhibits mTOR via RHEB protein. [35] Treatment with this drug has allowed to inhibit, or at 

least slow down, the complete transformation of breast tissue in  Rosa26hAKT1
E17K

;MMTV-

Cre mice.   

In summary this project led us to these results: i) the generation of a new mouse model for 

breast cancer, AKT1-dependent; ii) the analysis of the mouse models revealed that the 

activation of AKT1 in mammary tissue increases the risk of development of mammary tumors  
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iii) the involvement of AKT1
E17K

 in the generation and maintenance of BCSCs; iiii) 

Rosa26hAKT1
E17K

;MMTV-Cre transgenic mouse is a valuable resource for understanding the 

mechanisms of breast cancer target therapy. 

Future experiments will be needed for the molecular characterization of mammary tumors 

induced by AKT1
E17K

. We will also confirm the stemness of mammospheres derived cells, 

testing their positivity to stem marker (such us Sox2, Oct4, Nanog), their symmetric and 

asymmetric division and their in vivo tumorigenic capability.  
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