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Odio gli indifferenti. Credo che vivere voglia dire 

essere partigiani. Chi vive veramente non può 

non essere cittadino e partigiano. L’indifferenza 

è abulia, è parassitismo, è vigliaccheria, non è 

vita. Perciò odio gli indifferenti. L’indifferenza è 

il peso morto della storia.  

L’indifferenza opera potentemente nella storia. 

Opera passivamente, ma opera. È la fatalità; è 

ciò su cui non si può contare; è ciò che sconvolge 

i programmi, che rovescia i piani meglio 

costruiti; è la materia bruta che strozza 

l’intelligenza. Ciò che succede, il male che si 

abbatte su tutti, avviene perché la massa degli 

uomini abdica alla sua volontà, lascia 

promulgare le leggi che solo la rivolta potrà 

abrogare, lascia salire al potere uomini che poi 

solo un ammutinamento potrà rovesciare. Tra 

l’assenteismo e l’indifferenza poche mani, non 

sorvegliate da alcun controllo, tessono la tela 

della vita collettiva, e la massa ignora, perché 

non se ne preoccupa; e allora sembra sia la 

fatalità a travolgere tutto e tutti, sembra che la 

storia non sia altro che un enorme fenomeno 

naturale, un’eruzione, un terremoto del quale 

rimangono vittime tutti, chi ha voluto e chi non 

ha voluto, chi sapeva e chi non sapeva, chi era 

stato attivo e chi indifferente. Alcuni 

piagnucolano pietosamente, altri bestemmiano 

oscenamente, ma nessuno o pochi si domandano: 

se avessi fatto anch’io il mio dovere, se avessi 

cercato di far valere la mia volontà, sarebbe 

successo ciò che è successo? Odio gli indifferenti 

anche per questo: perché mi dà fastidio il loro 

piagnisteo da eterni innocenti. Chiedo conto a 

ognuno di loro del come ha svolto il compito che 

la vita gli ha posto e gli pone quotidianamente, di 

ciò che ha fatto e specialmente di ciò che non ha 

fatto. E sento di poter essere inesorabile, di non 

dover sprecare la mia pietà, di non dover 

spartire con loro le mie lacrime. Sono partigiano, 

vivo, sento nelle coscienze della mia parte già 

pulsare l’attività della città future che la mia 

parte sta costruendo. E in essa la catena sociale 

non pesa su pochi, in essa ogni cosa che succede 

non è dovuta al caso, alla fatalità, ma è 

intelligente opera dei cittadini. Non c’è in essa 

nessuno che stia alla finestra a guardare mentre i 

pochi si sacrificano, si svenano. Vivo, sono 

partigiano. Perciò odio chi non parteggia, odio 

gli indifferenti. 

 

 

 

I hate the indifferent. I believe that living 

means taking sides. Those who really live 

cannot help being a citizen and a partisan. 

Indifference and apathy are parasitism, 

perversion, not life. That is why I hate the 

indifferent. The indifference is the 

deadweight of history. The indifference 

operates with great power on history. The 

indifference operates passively, but it 

operates. It is fate, that which cannot be 

counted on. It twists programs and ruins the 

best-conceived plans. It is the raw material 

that ruins intelligence. That what happens, 

the evil that weighs upon all, happens 

because the human mass abdicates to their 

will; allows laws to be promulgated that 

only the revolt could nullify, and leaves men 

that only a mutiny will be able to overthrow 

to achieve the power. The mass ignores 

because it is careless and then it seems like 

it is the product of fate that runs over 

everything and everyone: the one who 

consents as well as the one who dissents; the 

one who knew as well as the one who didn’t 

know; the active as well as the indifferent. 

Some whimper piously, others curse 

obscenely, but nobody, or very few ask 

themselves: If I had tried to impose my will, 

would this have happened? I also hate the 

indifferent because of that: because their 

whimpering of eternally innocent ones 

annoys me. I make each one liable: how they 

have tackled with the task that life has given 

and gives them every day, what have they 

done, and especially, what they have not 

done. And I feel I have the right to be 

inexorable and not squander my 

compassion, of not sharing my tears with 

them. I am a partisan, I am alive, I feel the 

pulse of the activity of the future city that 

those on my side are building is alive in 

their conscience. And in it, the social chain 

does not rest on a few; nothing of what 

happens in it is a matter of luck, nor the 

product of fate, but the intelligent work of 

the citizens. Nobody in it is looking from the 

window of the sacrifice and the drain of a 

few. Alive, I am a partisan. That is why I 

hate the ones that don’t take sides, I hate the 

indifferent. 

 

Antonio Gramsci, 11
th

 February 1917 
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1.  Introduction 

This thesis focuses on an innovative approach to deal with one of the biggest challenges for 

civil engineers, i.e. the seismic risk (R). 

The seismic risk can be formally defined as: 

 

R = H  V  E                           (1.1) 

 

where: 

 H is called hazard, that is the probability of exceedance of a given level of a selected 

strong ground motion parameter in a given time interval; 

 V is the vulnerability, that is the probability of exceeding a given damage level due to 

the occurrence of a given ground motion level; 

 E is the exposure, a qualitative and quantitative estimation of the elements at risk. 

In time, a certain number of techniques have been developed to tackle seismic risk out, with 

reference both to existing and new buildings.  

In principle, risk mitigation can be attempted using two different approaches: lowering the 

site-specific hazard, or reducing the vulnerability. The former option (lowering the hazard) 

corresponds to limiting the external action (i.e. the so called “demand”), the latter to 

increasing the “capacity” of the structure. Theoretically, the two approaches should be joined 

in order to obtain the best possible mitigation effect (Dolce, 2010). 

Indeed, in the geotechnical field, the first strategy is possible and currently pursued when 

facing those natural hazards, like slope instability, for which the probability of happening of a 

critical natural mechanism can be reduced by designing stabilization interventions, such as 

drainages, supporting structures, etc.. 

Dealing with seismic hazard, common sense suggests that there is nothing that the technical 

community can do to reduce it, and so it is widely accepted that the mitigation of seismic risk 

cannot be carried out without reducing the building vulnerability through structural 

reinforcement. Nowadays, for instance, it is common practice on new buildings to design 

seismic resistant structures or, marginally, to use specific structural elements to protect them 

from seismic shaking (seismic isolators) and to the damp the incoming energy (seismic 

dampers). For existing structures, the seismic resistance can be enhanced with specific 

structural strengthening interventions, whose effectiveness however is still a matter of 

concern. Sometimes, superficial grouting to strengthen the soil is carried out too (e.g. Lirer et 
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al., 2006), but its effectiveness in seismic isolation is difficult to assess (Lombardi et al., 2012, 

2013). Furthermore, for buildings of historical or architectonical relevance, which poses 

tighter constraints to seismic upgrading design (caused by the need to respect their formal and 

material integrity), structural strengthening cannot be considered satisfactory, the building 

possibly needing to be preserved as it is. As a consequence, the increase of structural capacity 

cannot be pursued for such cases. 

As it is formulated, seismic risk mitigation for existing buildings, especially if historically or 

artistically relevant, seems a problem which allows no completely satisfactory solution.  

This thesis presents an innovative research activity in progress at the University of Napoli 

Federico II (Italy), conceived to overcome this apparent lack of solution. The idea is to 

concentrate the seismic protection in the subsoil, far enough from the structure to be 

protected, using a suitable grout to attenuate site seismic amplification. Actually, the soil 

plays, when overpassed by a seismic wave, a relevant role in defining the characteristics of 

the ground surface motion (Kramer, 1996) and so our research is basically thought to 

investigate the way in which the site amplification can be varied by discrete modifications 

into the soil. 

In the following chapters, our original approach will be described in detail. 

1. In the first chapter, some literature examples of alternative systems based on passive 

seismic protection, i.e. systems that do not provide any form of energy to the structure 

to defend, will be shown, with short descriptions on their functionality and features. In 

the same chapter, the general purposes of seismic wave transmission trough soil layers 

will be described, with specific remarks on phenomena of reflection, refraction and 

diffraction (scattering). 

2. In the second chapter, some observations will be made on 1D propagation waves 

through a discontinuity at a certain position into an infinite bar; such observations are 

outstanding to recognise the whole phenomenon. In this chapter some examples will 

be reported of 1D propagation scheme, useful to understand some important features 

by propagating through certain treated and untreated soil columns both accelerograms 

and wavelets. In the second chapter, the propagation schemes will be extended to 2D 

analyses too, considering treatments with different geometrical features: soft caissons 

with a rectangular section or made by inclined injections into soil layers. 

3. In the third chapter, the static consequences of the proposed soil treatment will be 

described; some considerations will be made on the static interaction between the 
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maximum displacements compatible with the presence of a structure at the ground 

level with the use of this kind of mitigation system. 

4. In the fourth chapter, the involved laboratory activity will be described; some results 

on a polyurethanic foam and a super adsorbent polymer will be shown in order to 

individuate a material useful for the soft grout. 

5. In the fifth chapter, some synthetic considerations will be reported on the thesis 

activities and its developments, with a view on the obtained results and the future 

advances. 

 

1.1.  Historical examples.  

Recent earthquakes like those occurred in Haiti in 2010 (316000 fatalities) or in the Northern 

Sumatra in 2004 (227898 fatalities) or in the region of Wenchuan in 2008 (87587 fatalities) 

(United States Geological Survey’s Largest and Deadliest Earthquakes by Year 1990 - 2011 

USGS http://earthquake.usgs.gov/earthquakes/eqarchives/year/byyear.php) have reminded us 

of the cruel power of earthquakes, above all when these events happen in urban cities where 

fragile buildings and infrastructure prevail, with the consequence of inevitable severe 

devastation and high death tolls. This is remarkable in the case both of developing countries, 

where in the past decades an important urbanization has commonly occurred with the 

breakdown of the rural economy and the consequential migration of rural population to urban 

areas (Lovisolo, 2006), and in historical centres, where the seismic vulnerability is due to the 

absence of well-known anti-seismic strategies on the existing structures. 

Both recently and in the past, entire societies and their progress have been influenced by 

important crisis due to damages caused by earthquakes. Actually, historical researches and 

archaeological campaigns, have shown (Giovannardi, 2013; Naderzadeh, 2009) that ancient 

civilizations had well-known the necessity to construct structures able to resist to earthquakes.  

The intuition of our ancestors and the experimental observations of observed collapses make 

them sensitive to features to be useful in preventing great damages on buildings. Without any 

scientific knowledge on structural and geotechnical aspects, they understood that a feasible 

solution was possible regarding the composition of the structure, but also the foundation soil, 

with an astonishing first preliminary approach to the concepts of isolation and ductility. The 

buildings of many ancient civilizations, mostly those with important social features, have 

survived to several earthquakes because their builders understood the importance of 

http://earthquake.usgs.gov/earthquakes/eqarchives/year/byyear.php
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incorporating "elements" that had the function to mitigate the effects produced by 

earthquakes. 

In the ancient Crete (2000 to 1200 BC), for example, archaeologists have discovered 

symmetrical buildings with walls made of stone blocks connected by wooden elements with 

the aim to ensure the connection between the blocks and to provide plasticity to the whole 

structure, compensating, at the same time, the fragility of the stone. The buildings were also 

placed on a layer of sand and loose gravel, for levelling the irregularities of the ground surface 

and for filtering soil vibrations during the earthquakes. 

According to the archaeologist Carl Blegen, in the construction of the great walls of Troy 

(1500 BC), a layer of compacted ground was deliberately left under the foundations of the 

great wall between the ground and the rock foundation base, with similarities with the 

technique used, more than a thousand years later, in the three Doric temples of Paestum ( 273 

BC; see Figure 1.1.1a), whose foundations are separated from the underneath rock by a layer 

of sand. 

In the ancient Greece and Persia, builders commonly interposed, between the soil and the 

foundations of temples, some layers of material useful to allow the translation of the building 

with respect to the underneath layer during an earthquake. In some cases, a stratum of lead 

had been placed under the columns; in other cases, the walls foundations were put on layers of 

ceramic and clay, where the ceramic layer was used to protect clay from moisture and de-

hydration, maintaining over time the plastic properties and the high plasticity of the clay 

useful for damping the vibration of the ground during an earthquake. 

Another example of a pre-scientific seismic isolation system consists in placing between the 

foundation and the masonry structure a horizontal joint made of mortar and sand, to let the 

building slip. A similar method, with a foundation composed of several layers of smoothed 

rocks, has been discovered in the Mausoleum of Cyrus the Great in Pasargadae (Saiful Islam, 

2011), shown in Figure 1.1.1b, southeast Iran , built in 550 BC. Similar considerations can be 

made for the Parthenon, where metallic connections had been placed between the elements of 

the tall columns. 
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(a) 

 

(b) 

Figure 1.1.1 Temple of Cerere in Paestum (a) and mausoleum of Cyrus the Great in 

Pasargadae (b). 

 

There is a thought-provoking citation from Pliny the Elder in his “Naturalis Historia”, since it 

is the only classical source in which the use of a seismic device is explicitly mentioned in 

antiquity. 

Pliny the Elder has actually reported an example of a sort of isolation system for the Diana 

Temple of Ephesus (see Figures 1.1.2): 

 

“Graecae magnificentiae vera admiratio exstat templum Ephesiae Dianae CXX annis factum a 

tota Asia. In solo id palustri fecere, ne terrae motus sentiret aut hiatus timeret, rursus ne in 

lubrico atque instabili fundamenta tantae molis locarentur, calcatis ea substravere carbonicus, 

dein velleribus lanae.” 

 

“The temple of Diana at Ephesus, which still exists, is an example of the Greek grandiosity, 

which is worthy of the authentic wonder. Its construction has engaged all Asia for 120 years. 

It was built it in a marshy area, because it does not suffer earthquakes or fear cracks in the 

soil; on the other hand, because they did not want that the foundation of such an impressive 

building was posed on a soil deposit so slippery and unstable, a layer of fragments of coal and 

another of fleeces of wool was placed under it.” 
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Figures 1.1.2 Temple of Diana at Ephesus. 

 

The Buddhist temple in Sanjusangendo (Kyoto) (see Figures 1.1.4), founded in 1164, is 

another example of pre-scientific anti-seismic application. It holds 1001 gold-plated statues, 

and these statues, with the entire temple, have survived without excessive ruptures to 

incredibly strong earthquakes, like the earthquake of Hyogoken-Nambu (1995) when only 

some damages to four statues were observed. In this structure, a trellis of beams connects the 

wooden pillars and the spread footing is founded on a compacted soil made of alternated 

layers of sand and clay to guarantee respectively stiffness and damping. 

 

 

Figure 1.1.4 Buddhist temple in Sanjusangendo (Kyoto). 

 

In modern times, the first patent linked to a seismic isolation system was made in 1870 by 

Jules Touaillon (see Figure 1.1.5), with spherical roller bearings in special niches between the 

superstructure and foundation, facilitating the return to the initial position by the elliptical 

geometry of the housing system , but without any practical real application. 
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Figure 1.1.5 First idea in the field of seismic isolation (Jules Touaillon, 1870). 

 

Generally speaking, research in the field of seismic isolation has then continued by referring 

the methodology to structural elements, concentrating all modifications into the structures of 

either the over-structure or the foundation, without any variation of the undelaying soil. 

The first researcher that had rediscovered the idea to use soft ground layers as a cushion to 

tackle the effects of the earthquake was Frank Lloyd Wright, who applied this concept to the 

design of the Imperial Hotel in Tokyo. The site had rather unfavourable geological 

characteristics: a layer of 18 ÷ 20m of muddy silts below a compacted surface layer only 2.5m 

thick.  

The architect used the layer of silt as "a good cushion to relieve the terrible shocks", above 

which the building would behave "as a battleship floats on water" (Walker, 1982). Actually, 

the structure famously survived the Great Kantō earthquake of 1923 (7.9 on the Moment 

magnitude scale, MW), but one of the building's critical issue was indeed its foundation. 

Wright had intended the hotel to float on the site's alluvial mud; this was accomplished by 

making it shallow, with broad footings, supposing that a similar system should allow the 

building to float during an earthquake. However, the foundation was an inadequate support 

and did nothing to prevent the building from sinking into the mud to such a magnitude that it 

had to be demolished decades later. This example is indicative of a fact: it should be given a 
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great importance to the seismic adequacy without forgetting the relevance of the static 

performance. 

 

1.2.  Modern examples.  

In recent years, a number of techniques have been developed in time to deal with seismic 

hazard both with reference to existing or new buildings.  

As far as the latter are concerned, structural engineers, as previously reported, have nowadays 

developed refined technical elements to protect structures from seismic shaking (for example 

seismic isolators and dampers), able to dissipate most of the seismic energy, thus preserving 

the structure. Geotechnical engineers have also developed new analytical approaches to 

design shallow and deep foundations taking into account the kinematic and inertial effects of 

the seismic action (Gazetas, 1991), thus giving a relevant contribution to a safe and reliable 

design of seismic resistant structures. As a consequence, with reference to new structures, 

there certainly exist a number of reliable solutions, currently adopted in practice, to tackle 

seismic hazard.  

On the contrary, the seismic protection of existing buildings, which have not been designed 

following the latest refined dynamic or pseudo-static approaches, is still a matter of great 

concern for geotechnical and structural engineers. In countries like Italy, with a high seismic 

hazard and old or very old towns, with frequent cases in which most of the buildings in the 

centre of the towns are hundreds of years old, this is one of the most relevant problems for the 

protection of both population and cultural heritage (Costanzo et al., 2007). The recent tragedy 

of the city of L’Aquila (Abruzzo, Italy), whose historical centre almost completely collapsed 

after the MW 6.3 earthquake of 6.IV.2009, is paradigmatic in this sense. Such a key concern 

needs to be faced, especially in the case of strategic buildings, as for instance ancient 

monuments, historical buildings, hospitals, schools and so on.  

In some and rare cases, existing structures have been seismically isolated with passive 

structural systems installed underneath the buildings with a complex procedure of partial 

uplifts and setting of isolators and dampers (see for instance Martelli, 2009; Alterio, 2012). 

Examples of such complex procedures are: the Salt Lake City & County Building (USA), the 

San Francisco City Hall (USA), the Maritime Museum of Auckland (New Zealand), the 

Church of San Giovanni in Carife (Italy), the Los Angeles City Hall (see Figures 1.2.1). 
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(a) 

 

(b) (c) 

 

Figure 1.2.1 San Francisco City Hall, San Francisco, CA, USA (a); Church of San Giovanni 

in Carife (Italy) (b);Los AngelesCity Hall, CA, USA (c). 

 

These procedures are very expensive, and not always feasible, depending especially on the 

structural behaviour of the building. Furthermore, the installation, for instance, of seismic 

isolators in structures of artistic or historical relevance may alter their original configuration 

in a way which cannot be accepted in the light of the most recent rules of conservation and 

retrofitting, as stated for instance by the so called Venice Charter (1964), which is the 

reference document for the ICOMOS (International Council of Monuments and Sites) of 

UNESCO.  

 

1.3.  Idea and objectives .  

Generally speaking, earthquakes generate seismic waves that radiate away from the source 

and travel through the earth crust, eventually reaching the ground surface and producing 

shaking, possibly causing damage to existing structures. Such a damage results from the 

complex soil-foundation-structure interaction mechanisms due either to the transient ground 

motion, or, in peculiar conditions (loose saturated granular soils), caused by soil liquefaction. 

The shaking caused by the waves depends on some general characteristics of the earthquake 

(size and location, and therefore distance from the site to be protected) and on the 

characteristics of the site, in terms of subsoil conditions and morphology. Soil characteristics 
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play a relevant role in waves propagation, as soil deposits tend to act as “filters” to seismic 

waves: considering a complex signal, as it is always the case in nature, some frequencies may 

be attenuated passing through the soils, some may be amplified (Richart et al., 1970; Aki, 

1988; Kramer, 1996; Chavez-Garcia, 2011). Nowadays, analytical tools are available to 

accurately carry out local seismic amplification analyses taking into account the effects of soil 

stratigraphy and ground morphology (Lanzo et al., 2011; Evangelista et al., 2011). The idea 

supporting the proposed research activity is to control the subsoil filtering action by 

artificially modifying the mechanical and physical characteristics of a small part of the 

foundation subsoil underneath the building to be protected. The research is, therefore, aimed 

to find a completely new and unconventional way to protect, for instance, existing strategic 

constructions from earthquakes, respecting their integrity in the most possible meaning 

(structural, artistic, historical): seismic protection will be obtained by adopting a peculiar 

grouting technique to adequately modify the mechanical and physical properties of a limited 

volume of soil, far enough from the structure to be protected. In particular, the idea to be 

developed consists in introducing into the ground (displacing or permeating it, or both) a new 

grouting mixture able to completely modify the mechanical response of the treated soil to 

seismic excitation. The proposed unusual soil grouting should be injected in a small portion of 

the subsoil, at a suitable depth, not directly beneath the structure to be protected. The depth 

and thickness of grouting have to be optimized on the basis of the soil properties, the 

characteristics of the building to be protected, and the expected seismic action. 

As previously stated, such an approach is best suited for existing structures, since there are 

nowadays simpler and more practical alternatives to be implemented in the design of new 

structures. For existing structures, on the contrary, it is in principle the least invasive and 

likely the most effective, if properly conceived. 

The idea of a “screen barrier” in the ground has been already proposed in literature. For 

example, different vibration mitigation measures (for vibrations caused by vehicle and rail-

bound traffic generally complex and difficult to analyse) can be used near the source, in the 

soil layers or close to the buildings to be protected, remembering that the most efficient 

mitigation methods should be proposed at the design stage of a project. Some authors 

(Chouw, 1992; Kellezi, 2011) have proposed an approach that is thought to isolate building 

foundations from steady-state or transient soil vibrations by placing a stiff layer, such as an 

artificial bedrock, under the building’s foundation. Vibration at the soil surface depends on 

the soft layer thickness, its material properties and the frequency content of the dynamic 
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source; the aim is to artificially reduce the wave propagation in the top layer thanks to a 

virtual rigid base at an appropriate depth (see Figure 1.3.1), because if the excitation 

frequency is less than the lowest eigen-frequency of the layer, the waves spreading into the 

layer will be impeded, reducing foundation excitation and structural response (Kellezi, 2011). 

 

 

Figure 1.3.1 Screen barrier for superficial waves. 

 

The dynamic response of buildings can also be improved by installing wave lateral barriers 

like open, in-filled (walls) or gas cushion  trenches (Massarsc, 2004, 2005) close to the 

vibration source. The most efficient isolation barrier is an open trench in the ground; open or 

liquid-filled trenches are unfortunately difficult to use in practice, above all in built up areas, 

also because rain or percolating water can fill up the trench, reducing the impedance 

difference relatively to the ground significantly (Andersen and Augustesen, 2009); so light-

weight in-filled trenches are generally placed. When subjected to compressive stresses due to 

the lateral earth pressure after installation in the ground, however, these light-weight materials 

change their dynamic properties and loose much of their vibration isolation effect. As a matter 

of fact, in order to achieve vibration isolation from artificial vibrations, it is necessary to 

create an abrupt change of impedance in the ground; density as well as stiffness increase by 

increasing pressure and so a lateral trench should resist the high lateral earth pressure without 

changing its impedance. So gas cushions in-filled trenches are also used to create a flexible 

barrier to great depths, with a very low impedance (low density and low wave velocity). Such 

barriers are able to resist the later earth pressure, creating a flexible barrier with a vibration 

isolation capacity comparable to an open trench.  

As an alternative approach, nowadays soil grouting is sometimes used for earthquake hazard 

mitigation, but with little or no ability to truly mitigate seismic hazard. 

As a matter of fact, during the last years, an increasing number of researchers have been 

studying treated ground dynamic properties in order to understand and control the 

modifications introduced by various treatments to the mechanical and dynamical ground 
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properties (Saxena et al., 1987; Chepkoit and Aggour, 2000; Cai and Liang, 2003; Spencer, 

2010). However, these studies have an approach completely different from the one herein 

proposed, and usually study grouted soils which are stiffer and stronger than the original soil, 

while this will not be the goal of our research project, whose aim is to introduce a less stiff 

grouted layer.  

In some cases, engineering applications of conventional superficial grouting have been 

proposed in literature as a mean to mitigate seismic actions, but always considering cemented 

(and therefore improved) soils in the topmost part of the subsoil. Numerical one-dimensional 

site response analyses proved that stiffening the uppermost soil layers by grouting reduces the 

overall ground motion, but has little or no effect on the high-frequency content of the seismic 

motion transmitted to the surface, which can therefore still be potentially dangerous to stiff 

massive buildings to be protected (D’Onofrio et al., 1999). 

Two-dimensional FEM analyses have proved that the use of vertical stiff barriers of grouted 

soil may even amplify the seismic acceleration amplitudes due to the internal reflections of 

waves under the building foundations (Di Prisco and Serra, 1996). In other words, while static 

vertical and lateral ground displacements may be somehow reduced by the conventional 

shallow soil grouting techniques, these latter do not guarantee an appropriate mitigation of 

seismic inertial forces in the buildings.  

So, stiffening the uppermost soil by grouting certainly reduces seismically induced ground 

motion, but may have little or no effect on the energy transmitted to the structure to be 

protected, which can still be very high and therefore potentially dangerous. So, ground 

displacements may be somehow reduced by this conventional superficial soil grouting 

because of increasing soil stiffness, but this does not guarantee that the seismic hazard has 

been properly mitigated.  

The approach proposed in this research is similar to the ones previously exposed for lateral 

trenches used to preserve from superficial vibrations. In fact, the proposed solution tends to 

explore the possibility to create a full screen barrier for seismic risk mitigation. Since there 

are only very few references in literature on this topic (Kirtas, 2009), this research is 

innovative and, in case applicable, it would give rise to new activities both in the research and 

application fields. 

The isolation mechanism that this thesis will analyse takes advantage of few experiences 

reported in literature. One of those is the one, reported by Dietz and Woods (2006), who 

shows series of shaking table tests, made to evaluate the seismic response of a caisson 
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modelled at 1/30 scale, using a shear stack (that is a flexible-walled hollow box designed and 

built to enable geotechnical modelling in conjunction with the shaking table). 

The mitigation scheme studied by Dietz and Woods involved the construction of a soft 

caisson around and beneath an existing foundation , made by inserting a horizontal slip layer 

at a moderate depth (authors suggests around 10m) and also inserting soft trenches around the 

foundation (see Figure 1.3.2). The weak layer had a low value of the friction angle, thanks to 

the use of the roller bearings, which the experimental box sits on, whereas soft trenches (made 

with cylinders of neoprene) offered negligible shear stiffness. 

 

Figure 1.3.2 Scheme adopted by Wood (2006) for his isolation typology. 

 

The shaking table tests, performed by applying different accelerograms to the system, 

demonstrated that this isolation scheme,  installed within the ground underlying a vulnerable 

structure, can improve its seismic performance, but the inclusions are successful only when 

the frequency content of the input motion lies above the resonance frequency of the modified 

system. Thus, for maximising their benefit and widening their range of application, the 

stiffness and the friction angle of the whole treated mass should be minimised; this is an 

important, critical theoretical topic, because the frequency content of the expected earthquake 

motion is not previously known. 

There are several studies on base-isolating low-rise buildings by placing liners beneath the 

foundation slab, thanks to the slip coefficients that are function of axial load, number of 

cycles and velocity and that has been obtained with both standard and modified surfaces. 

Many authors have studied slip layer beneath a building slab foundation to provide base 

isolation. 

On the basis of shake table tests on sand deposit and analytical tests, Yegian and Kadakal 

(2004) proposed to place a smooth synthetic material beneath building foundations (see 
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Figure 1.3.3) in order to provide a slip layer by using a geo-textile placed over an ultra-high 

molecular weight polyethylene sheet. The concept was that the liner placed in a curved shape 

penetrating the soil profile would dissipate energy through slip displacement (Yegian, 2004), 

transmitting significantly reduced motions to the overlying isolated soil layer and any 

structure founded on it. This system is useful in decreasing both peak as well as spectral 

responses measured at the surface and in the central isolated mass than the motion below the 

isolating liner, but, as a consequence, slip displacements were recorded along the perimeter of 

the isolated soil layer. Because of the restoring force, effect of the gravitational weight of the 

isolated soil layer, the slip displacements are small in the central zone, but, near the edges of 

the isolated region, it’s necessary to study the effects on utilities and similar. 

 

 

Figure 1.3.3 Isolating scheme with smooth synthetic material beneath building foundation 

(Yegian and Kadakal, 2004). 

 

Doudomis et al (2002) proposed placing soil layers with low shearing resistance beneath 

buildings, to let building slip under the action of strong seismic motions (see Figure 1.3.4). 

According to the authors, the low shearing layer should be provided by suitable natural 

materials, such as granular products from rocks containing low friction materials (talc, 

chlorite, serpentine, etc.) with an adequate strength in compression or high plasticity clays 

(monmorillonitic clays and similar). The great disadvantages of this system are the doubtful 

constructability, and the design problems. The coefficient of friction of 0.2 proposed by the 

authors does not guarantee large force reductions. 

 

 

 

Figure 1.3.4 Scheme proposed by Doudomis et al (2002) with an artificial soil layer. 

Yegian H.et al. 

(2004)
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A similar approach has been made by Taskov et al. (2004). A liquid storage tank whose base 

has been isolated by the ALSC (which means: “Almost Lifted Structure Concept”) system has 

been modelled. In this system, the foundation of the structure is placed on a sliding plate 

positioned on a recess containing oil under pressure, which has the purpose of lowering 

the sliding resistance between the foundation and the ground. By using shacking table test, the 

modified structure is hit by a certain vibration; structure moves with no foundation shear 

resistance, because this resistance is quite totally decreased by the uplift oil pressure 

force. The movements are opposed by springs at the sides of the ALSC system, which have 

to break down the maximum displacements and refocus the foundation to its original 

position when oscillations end. Tests with this typology of system have been made on a 

reduced scale test of the model of St. Nicholas church (Tashkov et al., 2010) (see Figure 

1.3.5a). The system shows a very effective reduction of input energy transmission and keeps 

the structure out of resonance within a broad frequency range of the excitation force, deleting 

bending and shear forces in the main structure and relative story drifts; moreover, this system 

is not sensitive to vertical excitation component. ALSC system seems to be a good retrofit 

system, because it does not change the aesthetic appearance of the structure and it is limited to 

foundation intervention; it is also reversible, because, for coming back to the original 

condition, oil pressure can be set equal to zero (Figure 1.3.5 b).  

 

(a) 

 

(b) 

Figure 1.3.5 St. Nicholas church model to the scale of 1/3.5 tested on the seismic shaking 

table (a); ALSC instrumentation set up (b). 
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On the other hand, an alternative possibility should be to increase the damping of the 

foundation soil beneath the building to protect. In this sense, rubber soil mixtures (whose 

acronym is “RSM”) placed around the foundation of a building have been proposed (Tsang et 

al, 2007, 2011; see Figure 1.3.6) for adsorbing seismic energy and exerting a function similar 

to that of a cushion.  Rubber has important damping properties used for many years in 

structural isolating system. According to Tsang (2007), the soil layers surrounding foundation 

(considered having G=222MPa at a confining pressure of 345kPa; Vs  350m/s) can be 

replaced by a medium which is made up of soil mixed with a designed proportion of rubber 

and sand (G=7,5MPa at a confining pressure of 345kPa; Vs  90m/s), with both an important 

increase in damping and a decrease in shear stiffness. Using this system, the authors predict 

an average reduction of 4060% in horizontal accelerations, above all for wider buildings 

(low to medium rise buildings) with a remarkable increase in the foundamental structural 

period. The effectiveness of the proposed RSM system has been shown by a preliminary 

parametric study using three recorded earthquake ground motions. An important issue that has 

not been explored is the amount of induced vertical displacements, which could be relevant 

for a building placed at ground surface. 

 

 

Figure 1.3.6 RSM system around the foundation of a building (Tsang et al, 2007, 2011). 

 

However, the principal topic is not achieved, that is: “How is it possible to apply this method 

to an existing structure? How could the foundation system be easily modified in order to place 

such a system?” 

In order to answer these questions, the research activity to be carried out should be both 

theoretical and experimental and should consider the treatment at depth of a thin layer of soil.  

In this sense, Kirtas (2009) has studied, numerically and by using centrifuge equipment, the 

inclusion of different stiff and soft treatments into a soil deposit, considering the presence of a 

SDOF (Single Degree of Freedom) at ground surface simulating the case of structures with 
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surface foundations.  Actually, he has studied the insertion of horizontal layers beneath the 

foundation, vertical diaphragms next to the foundation and caissons, which are the 

combination of two vertical diaphragms and one horizontal layer to form an isolated soil-

structure area; any modification of the foundation soil properties may affect the structural 

response through soil-structure interaction mechanisms in a beneficial or a detrimental way, 

as reported by Wood (2006). Evaluation of foundation subsoil stiffening and stiff diaphragm 

intervention effects has revealed that the specific approaches are not efficient in reducing the 

seismic part of the structural response. On the contrary, the seismic acceleration for several 

soil-structure combinations could increase after the intervention compared to the initial 

system, although the adequacy of the methods in soil strength enhancement and excessive 

settlement reduction is not under question.  

In Kirtas (2009) several structural mass and height combinations are examined, since they 

both enhance soil-structure interaction phenomena leading to different dynamic response. 

Normalized values of structural mass and height are used according to the expressions: 

 

3B

m
m str

norm



                     (1.3.1) 

B

h
h str

norm 
                                 (1.3.2) 

 

where: 

 mstr is the superstructure mass; 

 hstr is the superstructure height; 

 ρ is the soil density; 

 B is the characteristic foundation dimension (half the foundation width for strip 

foundation type).  

Results are generally depicted in the frequency domain, introducing the term ‘‘response 

ratio’’. This is the ratio of the Fourier transform of the response time-histories in selected 

locations of the modified system to the corresponding response of the initial unmodified 

system. Thus, values of the response ratio below unity are indicative of the mitigation 

efficiency of the structural response in the examined frequencies, whereas for ratios exceeding 

unity it is possible that the intervention has a detrimental effect on the system’s seismic 

performance. 
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According to Kirtas (2009) incorporating a short-length soft horizontal layer in the foundation 

subsoil does not affect significantly the structural seismic response (see Figure 1.3.7, where 

Tstr is the SDOF natural period). 

 

Figure 1.3.7 Soft horizontal layer: acceleration time-histories (Tstr=0.2s; mnom=2). 

 

Construction of flexible vertical diaphragms next to the foundation could aim at isolating a 

soil mass underneath the foundation and the superstructure, in order to reduce the induced 

ground shaking and allow independent oscillation from the surrounding soil. 

Unlike the previously examined methods, the superstructure acceleration ratio in the case of 

the ‘‘soft diaphragms’’ presents a wide range of values below unity near the fundamental 

effective period of the structure, indicating an efficient mitigation of the seismic response (see 

Figures 1.3.8). 

 

  

(a) (b) 

Figure 1.3.8 Soft diaphragms: superstructure ratios for Tstr= 0.4s (a) and Tstr=0.6s (b). 
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The superstructure accelerations in the time-domain (see Figure 1.3.9) for the structure with 

Tstr=0.6s and two different excitations verify the mitigation efficiency of the intervention (the 

excitations are: EQ1with predominant period between 0.15s0.40s and EQ2 with a wide 

range of frequencies with an important frequency content for T=0.6s0.8s, a period range 

near to the structural effective period).  

 

  

(a) (b) 

Figure 1.3.9 Soft diaphragms: acceleration time-histories for excitations EQ1 (a) and EQ2 (b)  

(Tstr=0.6s). 

 

The increase of the dynamic response due to the presence of the proposed system during the 

EQ1 excitation is of minor importance since the structure is out of resonance with the seismic 

motion, which is obvious considering the low level of the superstructure acceleration 

developed in the initial system. On the other hand, applying the EQ2 input motion where 

resonance phenomena occur, the soft diaphragms induce a significant reduction of structural 

response. The efficiency of the intervention increases with increasing structural mass, as 

depicted in both the time and frequency domains. Because of the significant deformability of 

the implemented intervention compared to the initial foundation subsoil conditions, it is 

reasonable to expect an increase of the seismic displacements of the system. Yet, 

displacement ratios (see Figure 1.3.10a) indicate the possibility of either increased or reduced 

displacements, depending on the frequency content of the imposed seismic motion. For 

instance, in the case of EQ1 input motion of low predominant frequency, the displacement of 

the structure having Tstr=0.6s is only slightly increased (see Figure 1.3.10 b), confirming the 

displacement ratio predictions. 
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(a) (b) 

Figure 1.3.10 Soft diaphragms: superstructure displacement ratios (a) and corresponding 

time-histories for EQ1 (Tstr=0.6s). 

 

However, when this layer is combined with flexible diaphragms forming a soft caisson, a 

reduction of the soil-structure’s seismic loading levels could be achieved (see Figure 1.3.11). 

The dynamic characteristics and especially the fundamental period of this system seem to 

dominate the response, shifting it to higher periods, out of the frequency content range of 

common earthquakes. 

 

Figure 1.3.11 Some of the schemes adopted by Kirtas (2009). 

 

According to authors, significant alteration of the dynamic properties of the system shifts the 

SDOF response to higher period values, out of the frequency range of common earthquake 

records, resulting in beneficial effect of the implemented intervention (see Figures 1.3.12 a 

and b). The response ratios in Figure 1.3.12 c and d are plotted for periods up to 2.0s, 

highlighting the significant modification of the system’s dynamic properties. The existence of 

a wide range of ratio values below unity is evident near the fundamental period of the 
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oscillating systems with Tstr=0.2s and 0.6s, indicating a substantial reduction of the structural 

seismic response. These findings are also verified by the important reduction of the 

acceleration time-histories at the top of the structure in Figures 1.3.12 c and d. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 1.3.12 Soft caisson: superstructure ratios for Tstr=0.2s (a) and Tstr=0.6s (b); 

superstructure acceleration time-histories for Tstr=0.2s (c) and Tstr=0.6s (d) 

(Kirtas (2009). 
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However, according to Kirtas (2009), by considering such a system, increase of the soil 

deformations and structural displacements are expected and should be handled appropriately 

considering the specific nature of the implicated materials (see Figure 1.3.13). 

 

  

(a) (b) 

Figure 1.3.13 Soft caisson: base (a) and superstructure (b) displacements time-histories. 

 

Generally speaking, after a review of literature cases, as it is formulated as the product of 

hazard, vulnerability and exposure, the seismic risk mitigation above all for existing and 

historical buildings seems to be an unresolved problem which allows no completely 

satisfactory solution. 

It has been decided to continue in investigating in the direction of the previously reported 

works. Together with the seismic isolation method being investigated in this thesis, the 

aforementioned seismic isolation methods have been collectively named as “geotechnical 

seismic isolation systems” (whose acronym is “GSI”; Tsang, 2009).  

A GSI system can be defined as a seismic isolation system that involves the direct interaction 

with the natural soil and/or man-made reinforced soil materials, in contrast to the commonly 

well-known structural seismic isolation system, in which the flexible or sliding interface is 

positioned between a structure and its foundation. 

The GSI method proposed in this thesis could be explained by referring to the performance-

based design approach; the two key elements for a seismic safety assessment of a building 

(Figures 1.3.14) are the seismic demand and the capacity curve.  
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(a) 

 

(b) 

 

(c)  

Figure 1.3.14 Seismic safety assessment procedure (Lombardi et al. 2013). 

 

This latter is often referred to as a “pushover curve”, relating the base shear force Vb, to a 

reference horizontal displacement , for instance at the top of the building (see 

Figure 1.3.14 a). The seismic demand for the pseudo-static analysis of a rigid system can be 

typically defined in terms of a seismic coefficient (proportional to the design peak ground 

acceleration amax); for deformable systems, the most conventional way to express it is by 

using the spectral acceleration Sa(T), the spectral displacement Sd(T), or both 

(Figure1.3.14  b). For a structure with a given fundamental period, T, Sa(T) and Sd(T) can be 

viewed as proportional to the above defined shear force and displacement, respectively.   

Vb 
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As a consequence, they represent a convenient and synthetic way to analyse seismic demand. 

Sa(T) and Sd(T) depend on the regional seismic hazard, the seismic site response and the 

system ductility. The safety assessment can be therefore expressed by comparing demand and 

capacity, individuating a “performance point” at the intersection of the curves (Figures 1.3.14 

b and c). If such a performance point does not exist (i.e. the capacity is lower than the 

demand, and safety cannot be guaranteed) or it is too close to the limit capacity (i.e. the safety 

margins are not sufficient or do not respect Codes of Practice specifications), seismic risk 

mitigation interventions are necessary. In principle, this can be achieved by changing either 

the capacity curve or the seismic demand, with the final goal to have a performance point with 

higher safety margins. As previously mentioned, it is common practice to work on the 

capacity, i.e. on the pushover curve. For new structures, this can be done with base isolation 

techniques, reducing the fragility and increasing the ductility in the structural capacity, thus 

shifting the capacity curve to the right in the plot of Figure1.3.14b. This is certainly beneficial 

in terms of safety margins at the performance point, as the limit capacity can be assumed to be 

similar to that of the less ductile structure without isolation. An alternative is the 

reinforcement of the structure, obtained by increasing both the stiffness and the strength of the 

building (Figure 1.3.14b). In such a way, even though the capacity curve is shifted to the left 

in the plot of Figure1.3.14 b, safety margins may be increased. 

In the case of existing constructions and in special case for those having historical value, both 

this approaches may be incompatible with the need to preserve its original state (integrity). If 

neither the building ductility can be increased nor a base isolation system can be adopted, it 

would be desirable to change the seismic demand. Since seismic demand depends on seismic 

site response, the only way to change it consists of artificially modifying soil stratification.  

The modification can be obtained by grouting activities, and must be dimensioned in order to 

shrink the seismic demand curve (Figure1.3.14c), thus resulting into a performance point 

which, being constant the capacity curve of the building, has larger safety margins against 

structural failure. Grouting has therefore the function of artificially modifying the mechanism 

of propagation of the seismic waves in the uppermost part of the subsoil, in such a way to 

attenuate seismic effects at ground level. Since it may be impossible to reach this goal for any 

period T, soil treatment has to be tuned to be effective in the range of periods typical of the 

structures to be preserved. The basic idea of the research work described in this thesis, 

therefore, is to consider a grouted layer installed at a suitable depth with a suited shape, by 

injecting a material with a specific dynamic impedance  much lower than that of the 
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surrounding soil (=VS, where  is the material density and VS the velocity of shear waves), 

possibly being able to dissipate part of the incoming seismic energy too. As typical in soil 

dynamics, the ability of a soil to dissipate energy is usually calculated via the damping ratio 

D. Since, as previously said, dynamic impedance depends on material density as well, the 

grouted material may be conceived as having the lowest possible density too. By placing a 

thin layer with a low dynamic impedance, it is expected that most of the seismically induced 

effects will concentrate within the layer, and very little will be transmitted to the soil on top. 

Then, a strongly reduced seismic action will reach the building or the structure to be 

preserved and smaller or nil damage will occur. This kind of seismic isolation could be called 

“soil worsening” instead of soil improvement, as it is actually aimed to locally worsen the 

mechanical behaviour of the soil. 

The relevant - and not trivial - issues to be addressed in proposing the adoption of seismic 

isolation grouted layers are:  

 the depth and the geometrical configuration of the grouted layer.  

 the choice of the best suited grout to be injected. 

The grouted curtain should be deep enough to avoid measurable static settlements and to 

exclude a reduction of the foundation bearing capacity. This requirement can be guaranteed 

by grouting at depths high enough that no interaction must be expected with the structure to 

be protected; on the other hand, the grouting depth should be not so high to make the 

installation procedure not affordable or the attenuation of seismic energy not effective. 

Different geometrical schemes of the grouted curtain can be taken into account (see Figures 

1.3.15) in order to individuate the best solution in terms of cost-benefits balance between 

effectiveness and feasibility on site.  

 

Figure 1.3.15  Scheme with no grouted layer and possible geometrical configurations of the 

isolating grouted layer. 

Grouted soil

Grouted soil
Grouted soil
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The execution under an existing building of a horizontal continuous barrier may be extremely 

difficult, while sloping layers may be more easily realized with a number of closely placed 

injections, which can be done with inclined drilling and injection, multiple local injections or 

even with directional drilling and injection.  

 

1.4.  Waves in an infinite, homogeneous, isotropic,  elastic medium.  

In order to derive the equations of motion for an elastic medium the equilibrium of a small 

element is considered, as shown in Figure 1.4.1, where the variations in force of this element 

are reported (Richart, 1970). The stresses on each face are represented by sets of orthogonal 

vectors; the solid vectors act on the visible faces, the dotted ones on the hidden faces. 

 

Figure 1.4.1 Stress on small element of an infinite elastic medium. 

Neglecting body forces and applying Newton’s second law in the three directions, three 

equations of motion in terms of stresses are obtained: 
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where u, v and w are the displacements, respectively, in the x, y and z-directions. The right 

sides of the three equations can be expressed by using the Poisson ratio  and the Lamé’s 

constants  and G (also called shear stiffness modulus): 
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E is the Young Modulus, v is the volumetric deformation defined by v = x + y + z . 

It is needed the following relationships for strain and rotation in terms of displacements: 
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where x , y . z are the rotations around each axis. Combining the eq.s (1.4.2) and (1.4.3): 
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where d2
 is the Laplacian operator in Cartesian coordinates: 
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The equations of motions have two solutions: the former describes the propagation of a wave 

of volumetric deformation (irrotational wave); the latter describes the propagation of a wave 

of pure rotation (equivoluminal wave). The velocity of these waves can be written as: 
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in which: 
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where:  

 



G
VS                      (1.4.9) 

 

The induced volumetric deformation v, therefore, propagates at a velocity VP, whereas 

rotations propagate with velocity VS. An infinite elastic medium can thus sustain two kinds of 

waves with different velocities, representing different types of body motions. The two waves 

are generally named: 

1) dilatational waves (primary waves, P-waves, compression waves, irrotational waves), 

propagating with a velocity VP. They are transmitted in the form of volumetric strain 

(contractions and extensions) of the propagation medium and are characterized by particle 

motion in the direction of propagation of the waves themselves. It is also said that the wave is 

polarized longitudinally. In an incompressible medium (ν = 0.5), the P-wave velocity tends to 

infinity. 
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2) distortional waves (secondary waves, S-waves, shear waves, equi-voluminal waves),  

propagating with a velocity VS. S-waves are transmitted in the form of distortional 

deformations, i.e. without producing changes in volume, and are characterized by particle 

motion perpendicular to the direction of propagation of the wave. They can be conveniently 

separated into two components, to consider the energy partition when they touch an interface 

between two materials (Figure 1.4.2). It is possible to distinguish between transverse waves of 

type SV, if the vibrations are polarized in the vertical plane, and of type SH, if vibrations are 

confined in a horizontal plane (see Figures 1.4.2). A generic shear wave characterized by any 

one direction of vibration of the particles can be represented as the vector sum of two 

components SV and SH. 

 

Figure 1.4.2 Possible polarization of the shear waves: SV-wave and SH-wave. 

 

From eq.s (1.4.7) and (1.4.9) it can be observed that P-wave are always faster than S-wave; 

from this observation the names primary and secondary waves have been derived. The ratio 

between the two velocities is: 
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In an elastic half-space, it is possible to find a third solution for the equation of motion, which 

corresponds to a wave, called Rayleigh wave, whose motion in confined to a zone near the 

boundary of the half-space. A wave with these characteristics can be obtained starting from 

eq.s (1.4.1) imposing the appropriate boundary conditions, i.e. no stress at the surface, and, a 

plane wave travelling in the x-direction with particle displacements independent of the y-

direction, z=0 and zx=0 is considered. Displacements can be written by using two potential 

SV-wave SH-wave

Motion 

Propagation

Direction
Vertical Plane

Horizontal Plane
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functions  and , chosen such that the former is associated with dilatation and the latter 

with rotation of the medium. 
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Substituting into eq.s (1.4.4), it is obtained: 
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               (1.4.12) 

 

Expanding these equations and with the suitable boundary conditions, and assuming a 

sinusoidal wave travelling in the positive x-direction: 
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where F(z) and G(z) describe the variation in amplitude of the wave as a function of depth, 

and N is the wave number defined by: 
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Where Lw is the wavelength, it is obtained:  

 

2

2

2
2

2

2

2

2

2

2 2
221116 








































P

R

S

R

S

R

P

R

V

V

G

G

V

V

V

V

V

V 
                                             (1.4.15) 

 



 

 

33 

Eq. (1.4.15) is a cubic equation in 22

PR VV and real valued solutions could be found for given 

values of . From this solution, it is understood that 22

PR VV  is independent with respect to the 

frequency of the wave. Therefore, the velocity of a surface wave in a half-space in 

independent of the frequency and is non-dispersive. Curves of the ratio between VR and VS 

are shown in Figure 1.4.3. 

 

Figure 1.4.3 Variations of Rayleigh and body waves velocities with respect to the Poisson 

ratio,. 

 

The following curves (see Figure1.4.4) show the variation of the two components U(z) and 

W(z) with depth. Rayleigh wave amplitude rapidly decreases with depth; generally, it tends to 

10% of the surface value at a depth of 1.5 times the wavelength. 

 

 

Figure 1.4.4 Amplitude ratio with respect to the dimensionless depth for Rayleigh wave 

(Richart, 1970). 
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By combining the horizontal and the vertical components of particle motion (see Figure 

1.4.5), the path of the particle motion describes a retrograde ellipse; therefore, the Rayleigh 

wave can be considered as made of a vertical component and a transversal one with vertical 

polarization (SV). 

 

Figure 1.4.5 Paths described by a particle at different depths into the soil layer due to the 

propagation of a Rayleigh wave (Aki and Richart, 1980). 

 

In the case of a layered medium bounded by a free surface, the mathematical solution is more 

complex and other boundary conditions should be imposed, such as the continuity of 

displacements and forces at the interfaces between materials with different mechanical 

characteristics (Aki and Richards, 1980).  

The analytical solution indicates that, in this case, the Rayleigh waves show the phenomenon 

of dispersion, i.e. the speed also depends on the frequency. Since the law with which varies 

the phase velocity depends on the geometrical features of the layers near the surface and the 

elastic characteristics of the same layers, the dispersive properties of the Rayleigh waves are 

used in geophysical surveys (e.g. the test SASW) to determine the profile of the VS and 

damping in a soil deposit. 

In the case of a layered medium, the analytical developments also show the existence of 

another type of surface wave: the wave of Love. Due to the passage of this wave, the particles 

of the medium oscillate on a horizontal plane with a direction normal to that of the wave 

propagation (Figure 1.4.6). Love waves appear in the case of incidence of SH waves on a 

surface layer less rigid lying on a substrate and propagate due to multiple reflections of the 

transverse waves within the layer itself. In other words, Love waves consist of a package of 
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SH waves, which are entrapped for multiple reflections within the layer with the lower 

stiffness and propagate parallel to it. The Love wave amplitude varies sinusoidally with the 

depth in the surface layer, while decays exponentially in the underlying half-space. 

 

Figure 1.4.6 Direction of oscillation of particles due to the propagation of Love superficial 

wave; the grey arrow represents the direction of propagation of the waves. 

 

In the case of a homogeneous layer of depth H and shear velocity VS1 based on an 

homogeneous  half-space with VS2>VS1, the velocity of the Love VL wave satisfies the 

equation: 
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                          (1.4.16) 

 

where N=ω/VL is the wave number and ω is the angular frequency of the harmonic wave. This 

typology of wave is dispersive, because VL depends on the frequency. VL takes values in the 

range between VS1 of the upper layer and VS2 of the half-space. 

 

1.5.  Basic waves properties.  

It is of interest to recall some fundamental definitions, which will be used for waves, above all 

to describe their temporal and spatial evolution. In order to describe the spatial properties of a 

wave, it is useful making reference to the concepts of wavefront and seismic radius. The 

wavefront is the locus of the points energized by the same wave at a certain time. If the 

perturbation propagates in every direction of the elastic continuum with identical 

characteristic, a spherical wavefront will be defined. Huygens’ Principle provides a quick 

method to predict the propagation of a wavefront through, for example, a spherical wavefront 

that will remain spherical as the energy of the wave is carried away equally in all directions. 
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Such directions of energy flow, which are always perpendicular to the wavefront, are called 

seismic rays, which are the directions of propagation of the elastic perturbation.  

The simplest form of a wavefront is the plane wave, where the rays are parallel to one 

another. Considering the temporal evolution of a wave, a distinction between periodic and 

non-periodic waves can be made. A periodic motion is of the type such that the displacement-

time relationship repeats itself. Mathematically a wave u(t) could be defined periodic if there 

is a period T for which: 

 

u(t + T) = u(t)                               (1.5.1) 

 

Harmonic or sinusoidal motion is the simplest form of vibratory motion; for this typology of 

wave displacement, velocity and acceleration vary in a sinusoidal manner with time. A wave 

is non-periodical when it does not repeat identically after constant time increments. It could 

be due to impulsive shock (such as explosions) or transient-type actions (such as earthquake 

or traffic). To introduce the fundamental features of a wave, the solution of the one-

dimensional equation of motion can be considered, taking into account the propagation of a 

wave in the x-direction. The one-dimensional wave expression is a partial differential 

equation of the form (Kramer, 1996): 
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where V is the wave propagation velocity corresponding to the type of stress wave of interest. 

The solution of such an equation can be written in the form: 

 

     xtVgxtVftxu ,                                                             (1.5.3) 

 

where f and g can be arbitrary functions of (V∙t-x) and (V∙t+x) that satisfy equation  (1.5.1). 

The argument of f remains constant when x increases with time at velocity V, and the 

argument of g remains constant when x decreases with time. So the solution of the previous 

equation describes a displacement wave f(V∙t-x) travelling at velocity v in the positive x-

direction and another one g(V∙t-x) travelling at the same speed in the negative x-direction. It 
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implies that the shape of the waves do not change with position or time. If a rod is subjected 

to a steady–state harmonic stress: 

 

   tt   cos0                    (1.5.4) 

 

where 0 is the stress wave amplitude and   is the circular frequency of the applied loading, 

the solution can be expressed as: 

 

     xNtBxNtAtxu   coscos,                                                                  (1.5.5) 

 

where: 

 

V
N


                     (1.5.6) 

 

is the wave number, and A and B are the amplitudes of the two harmonic waves propagating 

in the positive and negative x-direction. Equation (1.5.5) indicates that the displacement 

varies harmonically with respect to both time and position (see Figures 1.5.1).  

The period of the applied loading T  is: 

 






21

f
T                                (1.5.7) 

 

It represents the time leg between two consecutive crests of the wave, whereas the analogue 

parameter in the space is the wavelength Lw: 
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and expresses the spatial distance between two maximum values of the harmonic perturbation. 

At a given frequency, the wavelength increases with increasing the wave propagation 

velocity, so with the stiffness of the material.  
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For an assigned stiffness, Lw increases with the period of the harmonic wave. 

  

(a) (b) 

Figure 1.5.1 Particle displacements as a function of time (a), and as a function of the position 

along the rod (b). 

 

Another important parameter is the phase angle  of a harmonic wave, which describes the 

amount of time by which the peaks (and zero points) are shifted from those of a pure sine 

function (see Figure 1.5.2). The displacement will be zero when ∙t+=0 or, consequently, 

when t=-/. In its simple form, simple harmonic motion can be expressed in terms of a 

displacement u(t), using the trigonometric expression: 

 

     tAtu sin                    (1.5.9) 

 

where A is the amplitude,  is the circular frequency describing the rate of oscillation in 

terms of radians per unit time. 

 
Figure 1.5.2  Influence of the phase angle on the position of sinusoid; a positive phase angle 

indicate that the motion leads the sine function; it lags the sine function if the 

phase angle is negative. 

 

Harmonic waves are extremely useful in seismology and earthquake engineering because 

every periodic signal could be expressed by using Fourier series, as a sum of a series of 

sinusoids of different amplitudes, frequencies and phase angles: 

 

N
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where A0 is the medium value of the signal, An and n are respectively amplitude and phase 

angle of the harmonic wave of frequency equal to fn= n f0. A plot of An versus nf0 is known 

as a Fourier amplitude spectrum; a plot of n versus fn gives a Fourier Phase Spectrum. 

 

1.6.  Elastic waves approaching discontinuity surfaces.  

The simplest discontinuity consists of a layer limited by a unique boundary that is the 

topographic surface. This boundary separates the layer where the propagation is mechanically 

possible (made of rock or soil) from air, unable to transmit waves. Generally speaking, waves 

propagate through a medium made of a certain number of discontinuities, which separate 

materials with different properties; when a wave intercepts a different layer, some 

modifications in amplitude and direction of wave, possible modal conversion phenomena and 

the generation of new typology of waves occur.  

When a body wave travelling in an elastic medium encounters an interface with another 

elastic medium, some of the incident wave energy will be reflected into the first medium and 

some energy will be transmitted into the second medium.  

Furthermore, there is another phenomenon called “mode conversion” for which the reflected 

waves and the transmitted ones generated at the interface could be either of the same type of 

the incident waves or of different typology. 

Using the elastic theory, Zoeppritz (1919) determined the nature of the reflected and 

transmitted waves and the distribution of energy between these waves (Richart, 1970). For an 

incident P-wave (P) (see Figure 1.6.1a) there will be four resultant waves: 

1) a reflected P-wave (P-P1) 

2) a reflected SV-wave (P-SV1) 

3) a refracted P-wave (P-P1) 

4) a refracted SV-wave (P-SV2) 

For an incident SV-wave (SV) (see Figure 1.6.1b) there will be four resultant waves too: 

1) a reflected SV-wave (SV-SV1) 

2) a reflected P-wave (SV-P1) 

3) a refracted SV-wave (SV-SV2) 

4) a refracted P-wave (SV-P2) 
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An incident SH-wave (SH) (see Figure 1.6.1c) produces only: 

1) a reflected SH-wave (SH-SH1) 

2) a refracted SH-wave (SH-SH2) 

 

(a) Incident P-Wave    (b) Incident SV-wave (c) Incident SH-wave 

Figure 1.6.1 Partition of the  elastic wave at the interface between two elastic media. 

 

The angle, at which a resultant wave leaves the interface, depends on the angle at which the 

incident wave approaches the interface and the ratio of wave velocities of the media. Exit 

angles for all waves can be found from Snell’s law: 
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Where the angles α, α2, β, β2 are measured from the normal to the interface and are defined in 

Figure 1.6.1, and VP1, VS1, VP2, VS2 are, respectively, the velocities of the P-wave and S-wave 

in the first medium and the velocities of P-wave and S-wave in the second one. The eq. (1.6.1) 

underlines that: 

1) the reflecting angle is identical to the incident one, both for S-wave and P-wave; 

2) the refracting angle is linked to the incident angle by the velocity of propagation of the 

waves into the two materials divided by interface.  

Actually, if the waves are travelling into a material and intercept a less stiff material, the 

refracted wave will be closer to the normal at interface, i.e. waves propagating toward the 

surface, throughout layers with decreasing stiffness, are refracted to a direction tending to the 

vertical. In the analyses performed in this thesis, waves are consequently propagated 

vertically to the surface, without considering any deviation in direction. 

At the interface, it is not observed only a variation in the propagation direction and modal 

conversion phenomena, but also a variation in the wave amplitude. The amplitude of the 
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reflected and refracted waves could be expressed as a function of the incident wave amplitude 

imposing the conditions of continuity of the displacements and tensions at interface.  

Zoeppritz (1919) expressed the distribution of energy among the resultant waves in terms of 

incident and resultant wave amplitudes (see Figures 1.6.2 and 1.6.3), using the notation 

reported in the following: 

A=amplitude of P-wave; 

B=amplitude of incident S-wave; 

C=amplitude of reflected P-wave; 

D=amplitude of reflected S-wave; 

E=amplitude of refracted P-wave; 

F=amplitude of refracted S-wave; 

ρ1=density of medium 1; 

ρ2=density of medium 2. 

 

  

  

Figure 1.6.2 Amplitude ratio with respect to the incident angle for P-wave (Richart, 1970). 
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Figure 1.6.3 Amplitude ratio with respect to he incident angle for SV-wave (Richart, 1970). 

 

When the interface is not plane, all the considerations previously reported are useful if the 

curvature radius is large enough with respect to the wavelength. When the curvatures are 

smaller, i.e. the characteristic lengths of the discontinuity surface are comparable with the 

incident wavelength, the wavefront is extremely modified by a diffraction phenomenon, a 

modification in the wave path due to the interception with an interface between two different 

materials, which differs from reflection and refraction phenomena (Sanchez-Sesma, 1987). 

In order to explain the diffraction phenomenon, it could be reminded the Huygens’ Principle 

which states that every point on a wave surface becomes in turn a source for a new 

disturbance, and so every point may be considered the source of a secondary wave; the 

successive wavefront is the tangential envelope of the secondary wavesfronts. 

If a scheme with a plane wavefront generated by a certain source, interacting with a semi-

infinite length rigid screen (see Figure 1.6.4), is considered, when  the direct wave interacts 

with the edge, as previously reported by the Huygens’ Principle, the points on the edge 

become vibration sources and generate spherical waves. The envelope of these spherical 

waves is a wave with a cylindrical front whose amplitude is function of the distance from the 
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edge, of the incident angle, of the angle formed by the normal to the screen and the 

propagation direction, and of the wavelength. In Figure 1.6.4 the amplitude of the wave for 

the different propagation direction is schematically represented by the length of the segments 

that describe the diffracted wavefront. 

The diffraction is also named scattering, term used principally to indicate all the modifies at 

which an incident wavefront may be submitted due to the presence of a discontinuity. 

 

Figure 1.6.4 Diffraction of a plane wave due to a semi-infinite rigid screen (Grant and West, 

1965). 

 

Generally speaking, when a wave approaches an interface, there is a change in the 

propagation direction, associated to the generation of typologies of waves which differ from 

the incident one. The amplitude of the generated waves can be expressed as a function of the 

incident wave one, imposing the appropriate continuity conditions on displacements and 

tensions. It has just reported an overview of how complex is the matter if a generic incident 

angle is considered. It becomes easier for a vertical incident wave, because there are not at all 

mode conversion phenomena. For instance, if a P-wave orthogonally touches a discontinuity 

surface, only compression stresses will be generated. In this case, if AI is the amplitude of the 

incident wave and AR and AT are respectively the reflected and refracted (transmitted) 

amplitude, the following two non- dimensional parameters can be defined as:  
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where α is the dynamic impedance ratio, defined as: 
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where ρ1 and V1 , as well as ρ2 and V2 are couples of values representing respectively the 

density and the velocity of the medium from which the waves come (1) and the density and 

the velocity of the medium the wave is coming to (2).  The two ratios previously reported are 

generally named respectively coefficients of reflexion and of transmission, and their variation 

depends on the dynamic impedance ratio α (Figure 1.6.5). If the waves travel from a stiffer 

medium to a softer one (α < 1) the transmitted wave amplitude increases with respect to the 

incident wave amplitude (ct > 1). Lowering the stiffness of the incoming media, the wave 

amplitude increases. If a wave touches a medium infinitely stiff with respect to the outcoming 

one (α tends to ∞ ) the reflection coefficient cr tends to -1, while the transmission coefficient 

tends to 0, actually the wave will be completely reflected into the outcoming medium. An 

example of alteration on the motion field due to a discontinuity is reported in Figure 1.6.5. 

 

(a) 

 

(b) 

 

(c) 

Figure 1.6.5   Reflection and transmission coefficients for a wave travelling from a medium 1 

to a medium 2,  approaching normally to an interface placed at 5km from the 

origin; the velocities are VS1=5000m/s VS2=1000 m/s and the media have equal 

densities (a); variations of cr and ct  with respect to α: displacements field at a 

certain time at which wave hasn’t approached interface yet (b); displacements 

field after 1.4 seconds, with the propagation of a reflected wave into medium 1 

and a transmitted wave into  medium 2 (c)  (Faccioli e Paolucci, 2005). 
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Generally speaking, the amplitudes of reflecting and refracted waves hardly depend on the 

incident angle and the impedance ratio between adjacent materials. 

 

1.7.  Phenomena of stress waves attenuation. 

In the previous paragraphs, only the propagation of waves in homogeneous linear elastic 

materials has been considered, where waves travel indefinitely without any change in 

amplitude; this is an unrealistic condition in real materials, in which it is well known that the 

amplitude attenuates with distance. This attenuation can be attributed to two causes: one 

depends on the properties of the materials through which the waves travel; the second 

involves the geometrical features of the problem. From the engineering point of view, the 

most significant waves for structural verification purposes are those associated with the 

horizontal propagation of S-waves, because the volumetric strains produced by P-waves are 

generally negligible compared to distorsional ones due to S-waves (Kramer, 1996). 

The mechanical behaviour of soils has been consequently studied substantially investigating 

the conditions due to cyclic simple shear, i.e. with reference to a cyclic shear increment (t)   

load, starting from the geostatic conditions ( σ'v0 , σ'h0 ). 

Laboratory tests have shown that soil stiffness and damping are influenced by the cyclic strain 

amplitude, the density and the mean principal effective stress for a coarse grained soil, the 

plasticity index and the overconsolidation ratio for fine grained soil, and the number of 

loading cycles (Kramer, 1996; Silvestri, 1991; Srbulov, 2008). A typical relationship between 

applied shear stress and induced shear strain exhibits a hysteretic loop (see Figures 1.7.1). 

  

(a) (b) 

Figure 1.7.1  A hysteretic loop in one cycle of soil shearing, within soil under symmetric 

cyclic loading (a) and for the case of a non-symmetrical cyclic loading (b). 
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The behaviour depicted in Figures 1.7.1 obviously stems from the fact that the soil has a non- 

linear, non-reversible (i.e. dissipative) and stress-dependent mechanical behaviour. The 

mechanical behaviour of the soil during a process of loading – unloading - reloading can be 

effectively represented by the parameters: 

 shear modulus G 

 damping ratio D. 

Due to the non-linear behaviour of the soil, these parameters vary with the level of shear 

deformation γ (G(γ), D(γ)). Three fields of behaviour are typically identified, respectively, 

related to:  small, medium and large deformations (Figures 1.7.2). 

 

 

 

Figure 1.7.2 Typical mechanical behaviour fields for a soil subjected to cyclic shear tests. 

 

The shear modulus G is a ratio between incremental shear stress and shear strain. Several 

different measurements of shear modulus are shown in Figures 1.7.1. When the increments 

are related to the origin (zero values), then the so-called secant modulus Gsecant is obtained. If 

the increments are related to the change in values from previous values then the tangent 

modulus Gtangent is obtained.  

The area of the hysteretic loop Aloop is a measure of the internal energy dissipation, which 

involves the transformation of energy or work into heat, by particles friction due to their 

movements. The damping ratio  is frequently used as a measure of the energy dissipation 

(e.g. Kramer, 1996): 
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where WD is the dissipated energy, WS is the maximum strain energy, i.e. the area of the 

triangle in Figure 1.7.1 bordered by the Gsecant line, the vertical at γc and the shear strain axis, 

and Aloop is the area of the hysteretic loop. Soil parameters Gsecant and  are often referred to as 

equivalent linear soil parameters.  

With the increase in shear stress and strain, slippage between grains causes a weakening of 

the soil structure, and a decrease of its shear strength and stiffness (Srbulov, 2008). This 

process results in rotation of the hysteretic loop towards the horizontal axis. The locus of 

points corresponding to the tips of hysteretic loops of various cyclic strain amplitudes is 

called a backbone (or skeleton) curve (e.g. Kramer, 1996). It should be noted that the 

backbone curve shown in Figure 1.7.2 is for one cycle of loading/unloading. A backbone 

curve for greater number of cycles may change if soil strength and stiffness change (decrease) 

with an increase in the number of cycles or with an excess pore water pressure increment. For 

elastic materials, the hysteretic loop and the backbone curve are straight and coincidental 

lines.  

At very small shear strains, hysteresis is negligible, and the behaviour of the soil is often 

considered as linear-elastic. For strains smaller than a linear threshold (l ) the G modulus too 

is almost constant (G0). This threshold takes values in the order of 0.0001% and 0.001%, in 

function of the granulometric and microstructural features of the soil, and is conventionally 

put in correspondence of a value of G equal to G(γ)=0.95G0 (Silvestri et al, 1992). 

The damping ratio , also called D (at low shear strain D0), has low value; D0 assumes values 

of almost 12% for sands and higher values for clays (2-4%) depending on the typology of 

clay. In this strain range, soil may be modelled according to a linear elastic constitutive 

criterion or viscous-elastic one. 

When the soil behaves as an isotropic linear elastic body, the shear modulus G0 is related to 

other quantities by: 

 

2

0 SVG                       (1.7.2) 

 

where ρ is soil unit density (kg/m
3
) and VS is the soil transversal wave velocity.  

For higher mobilized shear strains, the soil maintains a stable behaviour, independent from the 

loading history and, after various repetition of the same cyclic stress path of constant 

amplitude; soil tends to follow the same cycle stress-strain: the soil exhibits a medium 
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deformation behaviour. In this field, the soil can be modelled with an equivalent linear 

constitutive law by defining for each value of γ a pair of equivalent dynamic parameters G 

and D. 

Growing the amplitude of the tangential deformations, it is possible to identify a further 

deformation level (volumetric threshold γv ), exceeding γl of one or two orders of magnitude. 

When a soil exceeds this strain level, it is affected by irreversible deformations. Soil is in the 

field of high strains behaviour. At each cyclic cycle, non-negligible residual values of 

volumetric strain (if the solicitation occurs in drained conditions) or important values of 

neutral overpressure Δu (if the solicitation occurs in undrained conditions) are associated. 

The soil retains memory of previous stress and strain-paths showing a behaviour that evolves 

with the number of cycles N; such behaviour is generally named “cyclic degradation”, a term 

that reflects the structural changes of the soil skeleton. In this strain field, soil requires a 

constitutive law such as a hardening non-linear elasto-plastic model. 

Material damping adsorbs part of the elastic energy of a stress wave, so the specific energy, 

i.e. the elastic energy per unit volume, decreases as the wave travels through a material. This 

specific energy decreases by another mechanism and so with the distance. Even though 

energy is conserved, there is a reduction in amplitude due to spreading of the energy over a 

greater volume of material, with a mechanism called radiation damping or geometric damping 

or geometric attenuation. When energy is released from a fault below the ground surface, 

body waves travel away from the source in all directions (see Figure 1.7.3). If the rupture 

zone can be assumed as a point source, the wavefronts will be spherical and the geometric 

attenuation will cause the amplitude to decrease at a rate of 1/r. The attenuation is larger if the 

waves travel next to the surface rather than in the medium, where the rate of attenuation is 

proportional to 1/r
2
.  

 

Figure 1.7.3 Geometrical attenuation of body waves and Rayleigh waves. 
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Rayleigh waves, having a cylindrical wavefront, attenuate with a rate of 1/r
0.5

. Surface waves 

attenuate geometrically more slowly than body waves, and so this explain the greater 

proportion of surface wave motion relative to body wave motion that is commonly observed 

at large epicentral distances. If the attenuation due to the dissipative properties of the material 

is considered, in the case of an harmonic wavefront with angular frequency equal to , it will 

lead to:  
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where V is the wave velocity and Qf the quality factor, used in seismology to define the 

dissipative properties of a material: 
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where D is the damping ratio. The previous expression shows that the high frequency 

components attenuate much more rapidly with the distance, explaining why at large distances 

seismograms have low dominant frequencies.  

 

1.8.  Seismic site response  

The seismic motion generated by an earthquake at the free surface of a certain site (free-field 

condition) depends on different phenomena synthetizing in: source mechanism, wave 

propagation from the source to the site, and site effects. The first two phenomena define the 

input motion at the site, whereas the site effect cause modifies due to the interaction between 

the seismic waves and the site conditions i.e. the morphologic and the stratigraphic 

characteristics of the site and the physical and mechanical properties of the materials.  

The total amount of modifies of the input seismic motion in terms of amplitude, frequency 

content and duration is called “site effects”. 

The site effects result from a certain amount of physical phenomena like multiple reflexions, 

diffractions, focalization, resonance, etc, whose waves are subjected due to discontinuities or 

topographic irregularities. As a function of the different physical phenomena involved into the 

site effect, it is possible to distinguish between: 
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 stratigraphic effects (1D); 

 topographic and basin effects (2D). 

Practically, the site effects are valued with respect to a reference motion site. This motion 

could be that of a planar rock outcrop. The seismic motion, calculated by using numerical or 

experimental methods, is so faced to the motion on the bedrock (called rock outcropping 

motion).  

The seismic site response indicates the stratigraphic or one-dimensional (1D) effects, i.e. the 

changes occurred to a seismic motion propagating almost vertically through a soil deposit 

with a horizontal free surface level, characterized by a substantially horizontal stratification 

and negligible lateral variations. From a physical point of view, the hypothesis of horizontal 

stratification, free horizontal surface and vertical body waves propagation involve the absence 

of surface waves and the exclusion of phenomena of mode conversion. 

As reported by Rogriguez-Marek (2000), significant damage and loss of life has been directly 

related to the effect of local site conditions in various earthquakes, such as the Mexico City 

(1985), Loma Prieta (1989), Northridge (1994), and Kobe (1995) earthquakes (e.g. Seed et al. 

1987; Chang et al. 1996). The amplification of the ground motion due to the local site 

conditions plays an important part in increasing seismic damage; the correlation between site 

effects and building damage is dramatically illustrated in Figure 1.8.1 for the Caracas 

earthquake (1967). Larger amounts of damage had occurred when the natural periods of the 

buildings and the site were closely matched. These observations suggest that a correct 

quantification of site effects is necessary for a complete assessment of the seismic hazard.  

 

Figure 1.8.1 Relationship between structural damage intensity and soil depth in the Caracas 

earthquake of 1967; N=number of stories (from Seed and Alonso, 1974). 

 

Referring to a 1D analyses, when waves are propagated from the base to the upper part 

through a soil layer, at the ground level the whole amount of energy is retransmitted into the 

medium, because the atmosphere has zero dynamic impedance (see §1.6). Waves travel 

through the soil and, when they touch the base of the soil column, are partially reflected, and 
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partially transmitted into the base soil, according to the mutual impedance ratio. The amount 

of reflected energy is proportional to the impedance ratio: the higher the dynamic impedance 

of the base with respect to the soil layer, the higher the energy retransmitted into the soil. The 

total reflection at surface and the reflection at the base may cause a wave entrapment into the 

soil layer. The loss of energy by transmission to the base is named radiative damping. 

To sum up, the effects of site stratigraphy are mostly attributable to phenomena of: 

 "entrapment" of seismic waves, as a result of multiple reflections due to the 

impedance contrast between the soil constituting the deposit and the underlying 

bedrock; 

 resonance between incident and reflected seismic waves , depending on the condition 

of the subsurface stratigraphy, the physical-mechanical properties of the soils and the 

predominant frequency content of the seismic motion . 

A description of a seismic motion can be made either in the time domain or in the frequency 

domain. In the time domain , the most significantly parameters used to describe the features of 

a certain earthquake are the maximum value (called “peak”) of acceleration or velocity or 

displacement and the duration; in the frequency domain the most useful are the Fourier 

spectrum and the response spectrum in acceleration or velocity or displacement.  

The response spectrum represents the law of variation of the maximum amplitude in terms of 

acceleration, velocity or displacement of the motion produced by a signal (F(t)) applied at the 

base of a simple oscillator with a certain mass m, an elastic stiffness k and a damping c, 

described by the equation: 

 

 tFukucum                     (1.8.1) 

 

with a certain damping ratio   mkccc c  2// , and a natural period defined by: 

 

k

m
T  2                                           (1.8.2) 

 

Then, the variation of the seismic motion can be efficiently evaluated by comparing the 

parameters of the motion at the surface of the soil to those at the bedrock (site reference 

motion), in the time and frequency domain. In the former the most practical parameter is the 
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ratio between the maximum acceleration at the surface (amax,s) and the maximum one at the 

bedrock (amax,b), called amplification factor. This factor may be also less than unity when the 

site effects produce a deamplification of the motion amplitude passing into soil layer.   

The description of a seismic motion cannot be only limited to the variations in terms of 

maximum amplitude, because modifications in the frequency content of the signal are 

possible too. The soil works as a filter, increasing the amplitude of the motion on some 

frequencies, and reducing them for other ones. To evaluate the filter effect of the soil is so 

necessary take in account the frequency domain, by using the amplification function A(f). 

Any amplitude of the transferring function is the ratio between the amplitude of the Fourier 

spectrum of the motion at the surface and at the bedrock, considering a certain frequency. By 

varying the value of the frequencies, the different ratios define the profile of the transferring 

function. This methodology can be applied only in the case of linear elasticity for the soil. In 

this hypothesis, the amplification function is a property of the site and can be expressed as a 

function of the geometry and mechanical properties of the soil.  

The essential characteristics of the stratigraphic effect may be understood by referring to a 

simple mono-dimensional scheme made of an isotropic, linear elastic, homogenous soil, with 

a given thickness H, placed on a bedrock subjected to harmonic horizontal shear waves, 

which vertically propagate upwards in the overlying soil. The soil is supposed having a 

viscous-linear elastic behaviour, a density ρs, a shear wave velocity Vs,s and a damping ratio 

Ds; the corresponding bedrock parameters are named ρb, Vs,b and Db.  

If the incident shear waves are sinusoidal, the accelerations through the layer will be 

sinusoidal too (Kramer, 1996; Lanzo and Silvestri, 1999). If Db=0, the amplification factor, 

which depend on the harmonic input signal, the soil damping Ds and the seismic impedance 

between the bedrock and the soil α = (ρbVs,b)/(ρsVs,s), has a variation as reported in 

Figure 1.8.2: 

 

Figure 1.8.2 Typical 1D amplification function. 
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The motion is amplified at certain frequencies called natural vibration frequencies fn of the 

soil deposit, equal to: 
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The maximum value of A(f) is: 
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The peak values of the amplification function depend on the impedance ratio and damping 

ratio, and their maximum value is related to the fundamental frequency (i.e. for: n=1): 
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at a frequency equal to: 
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Amax,1 can be appreciated as a function of α, by varying the damping ratio Ds (see 

Figure  1.8.3). 

Cause the maximum value of the amplification ratio is related to the fundamental frequency 

(i.e. for: n=1), in the following chapters (especially in §2), the reported values of fn and Tn are 

implicitly referred to n=1.  
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Figure 1.8.3 Influence of the impedance ratio α and the damping ratio Ds on the maximum 

amplification related to the fundamental frequency, for a homogenous visco-

elastic layer placed on a deformable basement. 

 

Therefore, the amplitude peaks depend on n, α and Ds. The impedance ratio has an effect on 

A(f) which is similar to the effect due to the damping: a sort of effective damping ratio can be 

defined as: 
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2
srsef DDDD                   (1.8.7) 

 

where the first term (Ds) is the damping of the soil, the second one (Dr) depends on α, and 

represents the damping linked to the loss of energy for radiation. The expression of the 

amplitude peaks relative to the first fundamental frequency becomes: 
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In their simplicity, these expressions are useful, because, considering a certain layer as made 

of an equivalent homogeneous stratum, they give a first indication on the range of frequencies 

in which the natural frequencies belong to. Above all, they underline the most important 

geotechnical parameters governing the site amplification phenomena: shear wave velocity, 

geometric feature. Typically (Pagliaroli, 2006) the fundamental frequency may vary between 

0.2Hz (large depth layers, such as for the Los Angeles or Tokyo layers, or extremely soft soil 

layer such as for Mexico City soil deposits) and 10Hz (much thin layers and stiffer soils).  
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By increasing the intensity of the seismic input, the shear strains come across the linear 

behaviour, and the seismic site response is influenced by the soil non-linearity; generally 

speaking, increasing the non-linear effects, the fundamental frequency goes down, cause to 

the decrement in shear stiffness due to the shear strain increments. At the same time, the peak 

amplification goes down thanks to the increment in damping; therefore, the amplification 

function is not a property of the layer, but it depends on the amplitude and the frequency of 

the seismic motion too and the soil non-linear behaviour.  For lower strain amplitude, the peak 

acceleration at surface generally increases with respect to the bedrock motion; actually, for 

higher peak acceleration amplitudes on rock, it is observed a reverse response, with 

decreasing values along the soil layer (see Figures 1.8.4: Seed et al, 1976; Idriss, 1990). 

 

(a) 

 

(b) 

Figure 1.8.4 Maximum acceleration variation at surface with respect to the maximum 

acceleration at bedrock for various deposits (a) (Seed et al, 1976; Lanzo, 

1999) and soft cohesive soils (b) (Idriss, 1990). 

 

During a certain number of earthquakes in the last decades, the topography site effects have 

been also recorded (Silvestri, 1999). The topographic effects (due to, for instance, topographic 

reliefs and slopes) caused by simple irregularities could be estimated by referring to exact 

solutions provided for idealized problems, as a wedge-shaped medium subjected to SH-waves 
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(Sanchez-Sesma, 1990) or cliff-type topographies having different dynamic stabilities and 

experiencing different levels of seismic shaking (Jibson, 1987).  

The observations on the damages localization suggests that, in terms of  ground motion 

amplification, the shallow geometrical features have a larger influence on the upper part of an 

isolated topographic relief with respect to the base; the following meaningful remarks have 

been derived from experimental and theoretical studies (Geli et al., 1988;  Bard, 1994): 

 in the frequency domain, the topographic amplification is maximum in a frequency 

range corresponding to wavelengths comparable to the width of the topographic 

relief; 

 the topographic amplification on the crest of a topographic relief tends to increase by 

increasing the relief gradient, i.e. the so called “aspect ratio” H/L, where H is the 

height of the relief and the L is the half-length measured at the base; 

 the surface topography affects the amplitude and frequency content of ground motion 

also because of the diffraction of body and surface waves which leads to interference 

patterns between direct and diffracted waves, causing a complex displacement field, 

amplification and deamplification phenomena, and important differential 

displacements;  

 the topographic amplification is lower for incident P-waves with respect to S-waves 

and is related to the angles at which the waves approach the relief surface (Altieri, 

2012); 

 experimental amplification ratios (especially in the frequency domain) are generally 

greater than those theoretically expected, due to various factors such as the three-

dimensional effects, the influence of the adjacent topographic reliefs, the effects of 

the directivity of the source mechanism.  

In particular, Faccioli et al. (2002) have attributed the topographic amplification to two 

different classes of phenomena: the former is the focusing and defocusing of seismic waves, 

as shown by geometrical optical methods (Sanchez-Sesma 1990); the latter is the topographic 

relief resonance that occurs if the wavelength of the seismic action is comparable with the 

horizontal dimension of the topographic irregularity. The two phenomena have different 

effects: if the focusing and defocusing of seismic energy leads to an irregular distribution of 

damage, the resonance phenomenon involves an extended amplification that affects the entire 

topographic relief (Pagliaroli, 2006). 
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Bouckovalas and Papadimitriou (2004) have studied the seismic motion of a step-like slope 

(see Figure 1.8.5), having a linear visco-elastic behaviour and subjected to a harmonic SV 

wave that propagates vertically. Several factors (i.e. the slope inclination, the material 

damping, the number of stress cycles and H/Lw, H being the height of the relief and Lw the 

incident wavelength) have been varied, allowing for a number of meaningful remarks, which 

are briefly listed in the following: 

 the ground motion is generally amplified at the crest and deamplified at the base;  

 a purely horizontal action induces a significant vertical motion at the surface too: at 

the crest, the vertical accelerations can achieve the same order of magnitude of the 

horizontal acceleration in free-field conditions; 

 the effect of the slope topography is to alter (amplify or de-amplify) the peak 

horizontal seismic ground acceleration close to the crest; it also produces a parasitic 

vertical acceleration that has to be superimposed to that of the incoming seismic 

excitation; 

 the topographic effects fluctuate intensely with distance away from the slope, because 

of the multiple reflections of the waves SV on the surface of the slope, the propagation 

of Rayleigh waves generated at the crest and the possible interaction between these 

waves (reflected and diffracted) with the incident wave field; 

 the topographic effects are linked to the slope inclination and the ratio H/ Lw;  

 the soil hysteretic damping ratio  has a significant effect only on the distance from 

the crest of the slope at which the dynamic effects are negligible, while the number of 

significant cycles N has a relatively minor effect.   

 

Figure 1.8.5 Schematic illustration of incoming SV waves and induced Prefl, SVrefl and 

Rayleigh in the case of step-like slopes (i45°). 
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On the edges of the alluvial valleys, it is possible to observe significant amplification 

phenomena accompanied by increases in the duration of the seismic motion, much more 

larger than those predicted by one-dimensional propagation theories based on the vertical 

propagation of shear waves. In the case of the alluvial valleys or basins, other interaction 

phenomena due to the 2D or 3D effects, not taken into account by 1D analyses, can be 

observed, which are: 

 the occurrence of seismic waves focusing in areas close to the valley edges, due to the 

constructive interference between the incident and the diffracted wave fields (Pitarka 

et al, 1996); 

 when the seismic waves touches the non-horizontal rock interfaces at the sides of the 

valleys, the generation of surface waves with horizontal propagation direction occurs 

(Aki and Larner, 1970), and, for a large impedance ratio between the soil and the rock 

outcrop, these waves are entrapped in the inner part of the valley and are  subjected to 

multiple reflection phenomena; 

 2D resonance of the entire valley can occur (Capotorti et al, 1997). 

Generally speaking, the seismic response of a sedimentary valley is hardly related to its 

geometrical features. As far as this aspect in concerned, the so-called “aspect ratio”, defined 

as the ratio between the maximum depth H of the valley and its half-width L, plays a 

significant role. When the ratio H/L is lower (approximately <0.2), the valley can be defined 

“superficial”: in the frequency domain, the 2D and the 1D amplification phenomenon are 

similar each other. When the ratio H/L is higher, the valley can be defined as “deep”, and its 

dynamic response significantly differs from the 1D case, because of two-dimensional effects. 

 

1.9.  Synthetic parameters used to describe the results.  

In this thesis, the dynamic motion has been studied by referring to some of its more 

significant characteristics, i.e. the amplitude and the frequency content, and to a parameter of 

efficiency related to the spectral parameters.  

The amplitude has been generally referred to the peak values of acceleration, velocity and 

displacement with time.  

In order to describe the variation in the frequency content, amplification ratios and Fourier 

amplitude spectra are generally reported. The amplification ratio depends on the Fourier 

amplitude spectrum, because it is the ratio, at a certain frequency, between the Fourier 
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amplitude values calculated at the ground level  and at a given position into the soil deposit 

(usually, at the bedrock level).  

The fundamental and the mean periods are also considered to describe the frequency content 

of the signals.  

The fundamental or predominant period TP is the period that corresponds to the peak Fourier 

amplitude.  

The mean period Tm (Rathje et al., 1998) is the best-simplified parameter for describing the 

signal frequency content; it is defined as: 
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where Ai is the Fourier amplitude at a given frequency, and fi is the discrete Fourier transform 

frequency in the range 0.2520 Hz.  

The response spectra show the response in terms of maximum acceleration, velocity or 

displacement of a simple oscillator (named: “SDOF”, which meens “Single Degree Of 

Freedom”), by varying its period, and assuming a damping ratio equal to 5%.  

The dynamic motion modifications due to the introduction of a certain treatment deep into a 

soil deposit could be sharply identified by the Sd-Sa domain (see Figure 1.9.1). In such a 

representation of the SDOF response, a linear segment coming out from the origin of the axes 

represents a certain value of the simple oscillator period (see Figure 1.9.1). 

 

Figure 1.9.1 Example of Sd-Sa curve. 

 

T=constant
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A synthetic and meaningful parameter is the well-known spectral intensity SI, often called 

“Housner intensity” (Housner, 1952), which allows to quantify the free-field seismic 

response. SI is defined as: 
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where SV(,T) is the spectral velocity for a given structural damping ratio  (5% in this case) 

and (T1, T2) is a reference range of the structural period. The integral quantity SI, which has 

the dimensions of a displacement, is often adopted as a synthetic ground motion parameter 

able to capture the combined effect of amplitude and frequency content on seismic response 

and structural damage (e.g. Bilotta et al., 2011; Lanzo et al., 2011; Puglia et al., 2013).  

The integration extremes T1 and T2 originally proposed by Housner (1952) were respectively 

0.1s and 2.5s, in order to include most of the fundamental periods of civil structures. In this 

thesis, the integration interval was set to focus the attention on squat masonry structures. 

Consistently with the indications of National Technical Code (NTC, D.M. 14.I.2008), the 

natural period TB[s] of a masonry building of height HB[m] can be estimated through the 

simplified formula: 

 

4/305.0 BB HT                            (1.9.3) 

 

In this study, buildings with height HB=3m20m are considered of interest; for such HB 

values, eq. (1.9.3) yields a fundamental period TB in the range 0.1s0.5 s (corresponding to a 

range of frequencies 2Hz10Hz), thus assumed as integration extremes of the spectral 

intensity. 

The effectiveness of the proposed technique in attenuating the seismic inertial actions can be 

better inferred by introducing another synthetic parameter, i.e. the isolation efficiency 

parameter EI(T), inspired to a similar parameter proposed by d’Onofrio et al (1999).  

EI(T) is defined as: 
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in which Sa,OFF(T) and Sa,ON(T) are, for any given period T, the amplitudes of the surface 

acceleration response spectra of the deposit without and with the soft grouted layer, 

respectively. A perfect isolation will result into the full attenuation of the acceleration at 

ground surface (EI(T)=1), while negative values will correspond to an amplification of the 

effects induced by the intervention.  
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2.  Dynamic Analyses  

2.1.  Input motions  

2.1.1.  Natural signals  

The performed dynamic analyses have been carried out using real scaled accelerograms and 

Ricker wavelets. As far as the former are concerned, in Table 2.1.1 the main features of the 

selected accelerograms are reported. Accelerograms have been recorded on rock outcrops 

during various earthquake occurrences, and have been chosen in order to obtain a continuous 

range in terms of their features (Silvestri and Tropeano, 2008). Figures 2.1.1.1÷2.1.1.3 

illustrate their most important features, in terms of peak acceleration, main period, duration, 

time history and Fourier amplitude (see Figure 2.1.1.1 and Table 2.1.1.1). The duration of the 

seismic motion has been reported (see Table 2.1.1.1) in terms of significant duration, which is 

calculated as the time interval in which the percentage of the total Arias intensity registered is 

from 5% to 95% of the total amount. The Arias intensity (Ia) (Arias, 1970) has the dimension 

of a velocity and is defined as: 
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where a(t) is the accelerogram.  

 

Recording station earthquake year 

Peak 

acceleration 

(g) 

Mean 

period 

(s) 

Predominant 

period 

(s) 

Significant 

duration 

(s) 

Sortino Augusta 1990 0,115 0,464 0,080 8,950 

Nocera Umbra -

Biscontini 

Umbria Marche  

(aftershock) 
1998 0,101 0,111 0,1 3,13 

San Rocco Friuli (aftershock) 1976 0,090 0,293 0,1 5,73 

Sturno Campano Lucano 2 1980 0,078 0,438 0,22 14,12 

Torre del Greco Campano-Lucano 1 1980 0,063 0,589 0,66 30,32 

Bagnoli Irpino Campano-Lucano 1 1980 0,139 0,674 0,18 19,58 

Sturno Campano-Lucano 1 1980 0.358 0.872 0,2 15.48 

Table 2.1.1.1 Main features of the selected accelerograms. 
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Figure 2.1.1.1 Main features of the selected accelerograms. 
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Figure 2.1.1.2 Time histories of the real accelerograms. 
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Figure 2.1.1.3 Scaled Accelerograms Fourier amplitude (with a fixed maximum acceleration 

of 0,075g). 

 

2.1.2.  Risker Wavelets  

In both 1D and 2D analyses, synthetic seismograms, called Ricker wavelets (Ryan, 1994), 

have been used. These simplified seismograms consist of a zero-phase wavelet with a central 

peak and two smaller side lobes. The mathematical formula for a Ricker wavelet, in terms of 

horizontal displacements u(t) imposed to the base of the analysed system, is given by: 
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             (2.1.2.1) 

 

where m is the maximum value of displacement, f is the signal fundamental frequency and tc 

is the time instant at which the maximum signal value (uma ) is reached. Actually, both elastic 

and plastic analyses have been carried out, so the amplitude of the signal is a matter of 

interest. In eq. (2.2.2.1), tc is used to move forward or backward in time the signal.  

The derivative of the eq. (2.1.2.1) is the related velocity, as reported: 
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The corresponding acceleration is obtained as the derivative of eq. (2.1.2.2), as reported in the 

following:   
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In Figures 2.1.2.1, the normalized values of acceleration, displacement and velocity (a), and 

the amplitude Fourier spectrum (b) for a given Ricker wavelet with a peak frequency of 3Hz 

are reported. 
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(a) (b) 

Figure 2.1.2.1  Values of acceleration, velocity and displacement for the 3Hz Ricker wavelet 

normalized to the corresponding maximum values (a); Fourier amplitude of 

the 3Hz Ricker normalized wavelet (b). 

 

A Ricker wavelet is specified by using the parameter f. By means of this signal typology, the 

effects on a given model configuration of signals having an energy amount concentrated in a 

small frequency range can be analysed. Therefore, it is possible to better understand the link 

between the propagation of certain signals throughout a soil layer either with or without a 

particular treatment.  

 

2.2.  1D Analyses  

2.2.1.  Introduction to 1D Analyses  

This paragraph has been added in order to show some concepts on a simple application of 

mono-dimensional wave propagation (Kramer, 1996). Attention will be given to the principles 

used to understand more complicated cases starting from simple 1D scheme. It is considered a 

harmonic stress wave travelling along a constrained rod in the x-direction approaching an 

interface between two different materials (see Figure 2.1.1.1). 

The wave travelling toward the interface could be named “incident wave”; since it is moving 

through the first material (material 1), its wavelength will be Lw 1=2/kn1, where kn1 is the 

wave number of the first material. 

The stress induced by the wave may be described by the equation: 
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When the incident wave reaches the interface, a certain amount of its energy will be 

transmitted to the second material (transmitted wave), and another one will be reflected to the 

first material (reflected wave). These two waves are described by: 
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Figure 2.1.1.1  Reference geometric scheme: propagation of a sinusoidal wave at materials 

interface. 

 

Assuming the appropriate boundary conditions, in terms of displacements compatibility and 

continuity of stresses at the interface, the following values for the amplitudes of the wave can 

be derived: 
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where  is the dynamic impedance ratio: 
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where i is the density of the i
th

-material, VS,i is the shear wave velocity and i is called 

dynamic impedance. The impedance ratio has therefore a crucial role in distributing tensions 

and consequently deformations at the interface between two media.  
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In table 2.1.1.1, the transmission (r / i) and reflection (t  / i) coefficients of a sinusoidal 

wave approaching the interface between two different materials have been reported, varying 

the shear stiffness of the second one, using a similar density for the two strata. 

 

  
(kg/m

3
)

VS, 2  

(m/s) 


(kg/m
2
/s)

VS, 1  

(m/s) 


(kg/m
2
/s)

 r  / i t  / i

2040 

10 20400 

300 612000 

30 -0.935 0.065 

20 40800 15 -0.875 0.125 

30 61200 10 -0.818 0.182 

50 102000 6 -0.714 0.286 

100 204000 3 -0.5 0.5 

200 408000 1.5 -0.2 0.8 

300 612000 1 0 1 

500 1020000 0.6 0.25 1.25 

1000 2040000 0.3 0.538 1.538 

Table 2.1.1.1 Transmission coefficient values with respect to the incident wave energy. 

 

If the value of  is less than 1, i.e. for two materials having the same density, the second layer 

is softer than the first one, the reflected wave will have an amplitude smaller than the incident 

one and its sign will be reversed; on the contrary, if >1, the amplitude of the transmitted 

wave is greater than that of the incident wave, and the stress amplitude of the reflected wave 

is less than that of the incident wave, but of the same sign.  

Let’s now consider a slightly more complex 1D scheme (see Figure 2.1.1.2), with a rod made 

of a certain material (1) interrupted by two interfaces in order to create an inner zone of a 

different material (2). The waves have to propagate through two close interfaces.  

 

 

Figure 2.1.1.2 Scheme with two close interfaces. 
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The wave, travelling through the material 1, reaches the 1
st
 interface; depending on the 

dynamic impedance ratio, touching this 1
st
 interface a certain amount of energy is transmitted 

to the second layer and another part is reflected to the 1
st
 stratum. The reflected wave moves 

away from the considered domain, whereas the transmitted wave goes toward the second 

interface. At this one, the wave undergoes the same mechanism, with a reflected wave 

travelling back and a transmitted one. By using eq.s (2.1.1.4) and (2.1.1.5) and starting from a 

wave amplitude equal to 1, the values of i and t at the first incoming through the first 

(column 1) and second (column 2) interface, could be calculated varying the stiffness of the 

inner material, and assuming a constant value of VS for the remaining part of the rod. The 

values of t pertaining to the second iteration are indicative of the amount of energy 

transmitted to the third part. If there is no change in shear stiffness among the different parts, 

the whole energy is transmitted through the rod because of the inexistence of mechanical 

discontinuities; if the inner part has a different stiffness, a transmission/reflection mechanism 

will take place at every interface.  

All the coefficients are reported in Table 2.1.1.2: 

      
1 2 

  
(kg/m

3
)

VS, 2  

(m/s) 


(kg/m
2
/s)

VS, 1  

(m/s) 


(kg/m
2
/s)

 i r t i r t

2040 

10 20400 

300 612000 

30 

1 

-0.935 0.065 0.065 0.06 0.125 

20 40800 15 -0.875 0.125 0.125 0.109 0.234 

30 61200 10 -0.818 0.182 0.182 0.149 0.331 

50 102000 6 -0.714 0.286 0.286 0.204 0.49 

100 204000 3 -0.5 0.5 0.5 0.25 0.75 

200 408000 1.5 -0.2 0.8 0.8 0.16 0.96 

300 612000 1 0 1 1 0 1 

500 1020000 0.6 0.25 1.25 1.25 -0.313 0.938 

1000 2040000 0.3 0.538 1.538 1.538 -0.828 0.71 

2000 4080000 0.15 0.739 1.739 1.739 -1.285 0.454 

3000 6120000 0.1 0.818 1.818 1.818 -1.488 0.331 

4000 8160000 0.075 0.86 1.86 1.86 -1.601 0.26 

5000 10200000 0.06 0.887 1.887 1.887 -1.673 0.214 

10000 20400000 0.03 0.942 1.942 1.942 -1.829 0.113 

20000 40800000 0.015 0.97 1.97 1.97 -1.912 0.058 

50000 1.02E+08 0.006 0.988 1.988 1.988 -1.964 0.024 

100000 2.04E+08 0.003 0.994 1.994 1.994 -1.982 0.012 

Table 2.1.1.2 Values of the transmission coefficients expressed as a percent of the transmitted 

and reflected waves with respect to the incident energy. 

 



 

 

77 

In order to have a better understanding of the variations of t with VS of the inner part, in 

Figure 2.1.1.3 the results have been reported in terms of t with VS at the second interface. 

 

 

Figure 2.1.1.3 Values of the transmission coefficients t   at the second interface. 

 

To tackle off the energy passing through the second interface into the domain, it seems to be 

useful softening or stiffening the inner layer; it can be obtained a reduction of the order of the 

30 per cent either with an inner VS equal to 100 or 1000m/s. The former corresponds to the 

initial shear stiffness of an extremely soft soil whereas the latter is a rock like stiffness. On the 

stiffening side, in order to obtain larger decreases in the transmission coefficient, extremely 

high values of VS of the inner part should be considered. This solution is not realistic, because 

it would need an enormous increase of the stiffness of the central part of the rod. Table 2.1.1.3 

shows how difficult it is to provide such a high value of stiffness: the soil related to the inner 

part should be substituted with materials like concrete or brass to obtain great decreases of the 

original shear stiffness. 
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Inner layer Real Materials 

 
(kg/m

3
)

VS, 2 

(m/s) 

G 

(GPa) 



VS, 2 

(kg/m
2
/s)

Material 
G 

(GPa) 
min 

(kg/m
3
)

VS, min 

(m/s) 



VS 

(kg/m
2
/s)

2040 

10 0.000204 2.04E+04 
Concrete C20/25 

(DM2008; =0.3) 
15 2500 2412 6.03E+06 

20 0.000816 4.08E+04 Steel 85 7860 3289 2.58E+07 

30 0.001836 6.12E+04 Aluminium 25 2600 3101 8.06E+06 

50 0.0051 1.02E+05 Iron 80 7880 3186 2.51E+07 

100 0.0204 2.04E+05 Brass 30 8400 1890 1.59E+07 

200 0.0816 4.08E+05 Lead 5 11340 664 7.53E+06 

300 0.1836 6.12E+05 Platinum 60 21400 1674 3.58E+07 

500 0.51 1.02E+06 Copper 40 8890 2121 1.89E+07 

1000 2.04 2.04E+06 Tungsten 140 19250 2697 5.19E+07 

2000 8.16 4.08E+06 Glass 2532 2400 3227 7.75E+06 

3000 18.36 6.12E+06      

4000 32.64 8.16E+06      

5000 51 1.02E+07      

10000 204 2.04E+07      

20000 816 4.08E+07      

50000 5100 1.02E+08      

100000 20400 2.04E+08      

Table 2.1.1.3 Comparison among the stiffness of the inner part of the rod and other real 

materials. 

 

Of course, this analysis does not consider the contribution of the remaining part of energy 

confined inside the insulating layer, the time lag that occurs when the wave has crossed the 

central layer, the possible effort of energy from the outside and the presence of dissipative 

phenomena. Considering the energy entrapped in the middle layer (reflected between the two 

interfaces) and, then, considering, at every interface, the reflected wave to the inner part as the 

incident wave, it is expected that the continuous changes of sign and the continuous expulsion 

of energy from the control volume determines a decrease in the contribution of energy into the 

isolated area; these contribution should be subsequently summed to determine the resulting 

wave, taking into account the temporal gap of the different contributions (see Table 2.1.1.4).  

In Table 2.1.1.4, the transmission coefficients could be seen, in this sense, as single 

contributions to the wave amplitude, without considering the temporal gaps between two 

subsequent passages throughout a certain interface. 
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   1 2 3 

  
(kg/m

3
)

VS, 2  

(m/s) 

VS, 1  

(m/s) 
i r t i r t i r t 

2040 

10 

300 1 

-0.935 0.065 0.065 0.060 0.125 0.060 -0.056 0.004 

20 -0.875 0.125 0.125 0.109 0.234 0.109 -0.096 0.014 

30 -0.818 0.182 0.182 0.149 0.331 0.149 -0.122 0.027 

50 -0.714 0.286 0.286 0.204 0.490 0.204 -0.146 0.058 

100 -0.500 0.500 0.500 0.250 0.750 0.250 -0.125 0.125 

200 -0.200 0.800 0.800 0.160 0.960 0.160 -0.032 0.128 

300 0.000 1.000 1.000 0.000 1.000 0.000 0.000 0.000 

500 0.250 1.250 1.250 -0.313 0.938 -0.313 -0.078 -0.391 

1000 0.538 1.538 1.538 -0.828 0.710 -0.828 -0.446 -1.274 

2000 0.739 1.739 1.739 -1.285 0.454 -1.285 -0.950 -2.236 

3000 0.818 1.818 1.818 -1.488 0.331 -1.488 -1.217 -2.705 

4000 0.860 1.860 1.860 -1.601 0.260 -1.601 -1.377 -2.978 

5000 0.887 1.887 1.887 -1.673 0.214 -1.673 -1.484 -3.157 

10000 0.942 1.942 1.942 -1.829 0.113 -1.829 -1.722 -3.551 

20000 0.970 1.970 1.970 -1.912 0.058 -1.912 -1.856 -3.768 

50000 0.988 1.988 1.988 -1.964 0.024 -1.964 -1.941 -3.905 

100000 0.994 1.994 1.994 -1.982 0.012 -1.982 -1.970 -3.952 

 

   4 5 6 

  
(kg/m

3
)

VS, 2  

(m/s) 

VS, 1  

(m/s) 
i r t i r t i r t 

2040 

10 

300 

-0.056 -0.053 -0.109 -0.053 0.049 -0.003 0.049 0.046 0.096 

20 -0.096 -0.084 -0.179 -0.084 0.073 -0.010 0.073 0.064 0.137 

30 -0.122 -0.100 -0.221 -0.100 0.081 -0.018 0.081 0.067 0.148 

50 -0.146 -0.104 -0.250 -0.104 0.074 -0.030 0.074 0.053 0.127 

100 -0.125 -0.063 -0.188 -0.063 0.031 -0.031 0.031 0.016 0.047 

200 -0.032 -0.006 -0.038 -0.006 0.001 -0.005 0.001 0.000 0.002 

300 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

500 -0.078 0.020 -0.059 0.020 0.005 0.024 0.005 -0.001 0.004 

1000 -0.446 0.240 -0.206 0.240 0.129 0.370 0.129 -0.070 0.060 

2000 -0.950 0.702 -0.248 0.702 0.519 1.221 0.519 -0.384 0.135 

3000 -1.217 0.996 -0.221 0.996 0.815 1.811 0.815 -0.667 0.148 

4000 -1.377 1.185 -0.192 1.185 1.020 2.205 1.020 -0.878 0.142 

5000 -1.484 1.316 -0.168 1.316 1.167 2.483 1.167 -1.035 0.132 

10000 -1.722 1.622 -0.100 1.622 1.527 3.149 1.527 -1.438 0.089 

20000 -1.856 1.801 -0.055 1.801 1.748 3.548 1.748 -1.696 0.052 

50000 -1.941 1.918 -0.023 1.918 1.895 3.813 1.895 -1.872 0.023 

100000 -1.970 1.958 -0.012 1.958 1.947 3.905 1.947 -1.935 0.012 

 

Table 2.1.1.4 Transmission coefficients due to the propagation of a unitary amplitude wave 

through a rod divided by two interfaces. 
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2.2.2.  First 1D analyses on soil column 

2.2.2.1 Calculation codes 

In the following paragraphs, the reported 1D analyses have been carried out using either the 

SHAKE ’91 code implemented by EERA  or  the material model developed by Iwan (1967) 

and Mroz (1967) implemented by NERA. EERA and NERA are free softwares commonly 

used to define site response analyses. The hypothesis the codes are based on are  that shear 

waves propagate vertically in a one-dimensional layered system, where soil layers are 

supposed to be horizontally homogenous, horizontally unlimited, and subjected only to an 

horizontal excitation from bedrock.  

In EERA the soil stress-strain response is based on a Kelvin-Voigt model (see Figure 

2.2.2.1.1), where the shear stress  depends on the shear strain  and on its rate  as follows: 

 

          ̇                                    (2.2.2.1.1)

          

where G is shear modulus and ' the viscosity of the material. 

 

Figure 2.2.2.1.1 Schematic representation of stress-strain behaviour used in equivalent-linear 

constitutive model. 

     

In NERA the non-linear and dissipative soil behaviour is simulated through the kinematic 

hardening model proposed by Iwan (1967) and Mroz (1967), which yields a hysteretic 

response under cyclic loads. Therefore, it should be more consistent to the actual behaviour of 

geomaterials, which can undergo significant sliding deformation, as expected in the problem 

at issue. In addition, the code uses finite difference integration of the equations of motion in 

the time and space domains, which should overcome the convergence problems, which can be 

encountered with the linear equivalent approach adopted by EERA (Bardet et al., 2001).  

Iwan (1967) and Mroz (1967) proposed to model nonlinear stress-strain curves using a series 

of n mechanical elements, having different stiffness ki and sliding resistance Ri (see Figure 

2.2.2.1.2). Sliders have increasing resistance (i.e., R1< R2  < … < Rn) because, initially, 
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residual stresses in all sliders are equal to zero, but, during a monotonic loading, the i
th

-slider 

yields when the shear stress τ reaches the value Ri and, after having yielded, it retains a 

positive residual stress equal to Ri. 

 

Figure 2.2.2.1.2 Schematic representation of stress-strain model used by Iwan (1967) and 

Mroz (1967). 

 

Using these programmes, the static and kinematical components of one-dimensional site 

response analyses can be calcuated. Extensive information on EERA and NERA scientific and 

user features are reported into the EERA manual by Bardet et al. (2000) and NERA one by  

Bardet and Tobita (2001). 

 

2.2.2.2 1D analyses: propagation of scaled accelerograms  

A homogeneous subsoil constituted by a medium plasticity normally consolidated clay 

(IP=50), has been considered to a depth of 80m, at which the seismic input motion is applied 

(bedrock).  The strain-dependent shear modulus G and the damping ratio D of the natural soil 

have been assigned considering the typical case of a normally consolidated clay. The small 

strain modulus, G0, was set as linearly increasing with depth; being G0=Vs,s
2
, the profile of 

soil shear velocity Vs,s results defined by the power function plotted in Figure 2.2.2.2.1b, 

corresponding to a linear fundamental frequency of the layer equal to 1.20Hz (fn=1.20Hz), as 

confirmed by the peak amplitude corresponding to the lower resonance frequency shown in 

Figure 2.2.2.2.4a. The small strain damping D0 was set equal to 3% and constant with depth. 

Both normalized shear modulus G/G0 and damping ratio D were set as depending on shear 

strain amplitude γ according to Vucetic and Dobry curves (1991), modified to include D0 

values at small strains (see Figure 2.2.2.2.1c.). In the 1D numerical analyses, the most critical 

parameters will be the position of the soft layer (Hg) and its thickness (tg=0.5m) (see Figure 

2.2.2.2.1a). The soft layer density has been assumed equal to 1020kg/m
3
.  

Table 2.2.2.2.1 summarizes the main properties of the natural soil and of the bedrock.  
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Since Vs and G0 increase with depth for the natural soil, while for the soft layer their values 

are ruled by the effect of grouting, it must be expected that the deeper the layer the more 

effective the reduction in wave propagation towards the ground surface. 

  

material 
s 

(kN/m
3
) 

 
(kg/m

3
) 

VS 

(m/s) 

D0 

(%) 
Material behaviour 

Natural soil 20 2040 Hardin, 1978 3 Non linear 

Bedrock 20 2040 1000 0 linear 

Table 2.2.2.2.1 Main properties of the materials. 

 

 
 

 

(a) (b) (c) 

Figure 2.2.2.2.1  1D Geometrical scheme adopted (a); Natural soil properties: VS with depth z 

(b); G/G0() and D() decay curves (c).  

 

G0 has been calculated according to the following formulas: 

  

  
   (

  

  
)
 

   ( )       (Hardin, 1978)                   (2.2.2.2.1) 

 ( )  
(       ) 

   
   (Hardin and Black, 1968)                                  (2.2.2.2.2) 

 

The parameters used in the previous formulations are: 
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The values of these parameters depend on soil typology and decrease by increasing plastic 

index IP; the values have been chosen to simulate a soft soil with an outstanding site effect. 

According to the Euro-code and, also to the Italian Technical Code (NTC, 2008), this soil is 

classified as a D profile (according to Euro-code, VS30 = 167,8m/s leads to Deposits of loose-

to-medium cohesion-less soil with or without some soft cohesive layers, or of predominantly 

sot-to-firm cohesive soil; EC8, 2004). Input accelerograms applied to the bedrock (see 2.1.1) 

have been filtered to 25Hz and scaled to a maximum acceleration value of 0,075g (amax,b); in 

fact most of analyses consider a low value of acceleration to allow the use of equivalent non 

linear method according to EERA algorithm. The scheme of the analyses, performed by using 

the software EERA and whose results are reported in this paragraph, is shown in 

Table 2.2.2.2.1; in this table, Vs,g and Dg are respectively the shear wave velocity and the 

damping ratio of the soft layer. Since no stiffness decay curve is at the moment available for 

the treated soil, a linear elastic behaviour was considered for it; the hypothesis of null 

damping is conservative, as it overestimates the transmitted energy. 

 

Accelerograms  

(Recording station) 
Vs,g (m/s) Dg (%) 

Sturno 

10 0 

Nocera Umbra -Biscontini 

San Rocco 

Sturno 

Torre del Greco 

Bagnoli Irpino 

Sortino 10/20/30/40/50/100 0 

10 0/1/2/5/10/20/50 

Table 2.2.2.2.1 Analyses scheme. 

Figures from 2.2.2.2.2 to 2.2.2.2.5 report the results deriving by using different depths of 

intervention, varying the seismic action at the bedrock, for a soft layer with a shear velocity 

Vs,g of 10m/s and no damping. In Figure 2.2.2.2.2, the maximum accelerations amax recorded 

at ground surface are compared to the continuous lines, which represent the maximum 

accelerations without any treatment. The vertical profiles of peak acceleration show that the 

natural soil characteristics are such that, without soft layer, the signal is amplified and amax 

gets its largest value close to or at ground level, regardless of the seismic input motion. As 

expected, the vertical profiles of amax show an increasing amplification approaching ground 

surface. It is in fact well-known from literature analytical studies (Gazetas, 1982) that a 
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subsoil model with an increasing shear stiffness with depth undergoes large amplification in 

the upper, less stiff part of the soil column. If a soft layer is inserted, the acceleration strongly 

reduces above it, thus giving a first indication on its effectiveness in mitigating surface inertial 

actions; note that such a reduction in peak ground acceleration increases with the depth of the 

soft layer. 

 

Figure 2.2.2.2.2   Maximum accelerations at ground surface for different seismic signals and 

treatment depths; the continuous lines describe the results without 

treatment. 

 

Figures 2.2.2.2.3, report the maximum acceleration profiles with depth in absence of any 

treatment and considering a soft layer with a given treatment depth Hg, which has been varied 

from 5m to 25m. With respect to the condition of absence of any treatment (see Figure 

2.2.2.2.3a), the introduction of the soft layer tends to amplify the maximum accelerations just 

below the treatment depth. In particular, a concentration of the maximum dynamic effects is 

observed in the soft layer, but the maximum accelerations have been drastically reduced by 

the treatment in the zone from the ground surface to the soft layer depth Hg. Generally 

speaking, the deeper the layer the larger the filtering action. This behaviour has been 

confirmed by Figures 2.2.2.2.4, where the efficiency EI profiles are reported by varying the 

treatment depth. By increasing Hg, the efficiency related to the modifications of the signals 

calculated at ground surface is amplified, in terms of the efficiency amplitude EI. 

Furthermore, the simple oscillator period ranges in which the treatment leads to safer 

condition is enlarged by increasing Hg. For treatment depth higher than 5m, the simple 

oscillators with natural periods lower than 1s undergo decrements in their maximum spectral 

parameters.  

As reported in §1.6, the most important parameter in 1D wave propagation is the impedance 

ratio ; as shown in §2.2.1, when a wave approaches the soft layer, by increasing the value of 

, higher reflected wave and lower refracted wave amplitudes occur. If  is increased by 

0
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substituting deeper soil layers of higher dynamic impedance (for Hg=5m, =24; for Hg=25m, 

=54; see Figure 2.2.2.2.2) or decreasing the soft layer shear velocity (see Figure  2.2.2.2.8), 

lower dynamic effects are expected at ground surface. 

 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 2.2.2.2.3 Maximum acceleration profiles with depth, varying the seismic signals, in 

absence of any treatment (a) and considering a soft layer with a given 

treatment depth Hg, which has been assumed equal to 5m (b), 10m (c), 15m 

(d), 20m (e) and 25m (f). 
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(c) (d) 

 

 

 

 

 

(e)  

Figure 2.2.2.2.4  Efficiency EI profiles, by varying the seismic signals, in absence of any 

treatment (a) and considering a soft layer with a given treatment depth Hg, 

which has been assumed equal to 5m (b), 10m (c), 15m (d), 20m (e) and 

25m (f). 

 

Furthermore, if the soft layer is placed at a large depth (see Figure 2.2.2.2.5a), the field of 

refracted waves will travel through a longer soil column, where it will be reduced by soil 

damping properties. In a real situation, geometrical damping also decreases the signal 

amplitude, but, in the mono-dimensional case, its effects are not taken into account. When the 

signal arrives to touch the ground surface, it will be totally refracted and restart to travel 
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through the soil with ulterior values decreasing; so, when it returns at the disconnecting layer 

boundary, its amplitude is almost totally erased and eventually reflecting phenomena will take 

place for a signal with low energy.  

If the soft layer is placed at lower depth, there are minor beneficial effects due to the soil 

damping. The wave passed through the soft layer will be reflected by the surface, but its 

energy will remain entrapped in the shallowest soil layer. In fact, when this wave, after the 

reflection at ground surface, touches the upper side of the soft layer, it will be quite totally 

reflected. Consequently, the signal energy remains in the shallowest layer, with consequent 

increasing of kinematical effects at the ground surface.  

 

  

                          (a) (b) 

Figure 2.2.2.2.5  Simplified schemes describing the wave propagation through the soil column 

for deeper (a) and shallower (b) treatments. 

 

Another peculiar effect of the treatment is shown in Figures 2.2.2.2.6 and 2.2.2.2.7.  

Figures 2.2.2.2.6 report the amplification ratio profiles, by considering a soft layer with a 

treatment depth Hg, which varies from 5m to 25m. The reduction experimented in the signals 

amplitudes at ground surface is evident in the lower amplification ratio values with respect to 

the scheme without any treatment (see Figure 2.2.2.2.6a).  

With the exceptions of some frequencies for Hg=5m and 10m, the amplifications are reduced; 

peak frequencies can be observed both at higher frequencies (f >2Hz) and at lower ones. In 

particular, especially for deeper treatments (Hg>15m), the amplifications tend to be 

concentrated on a continuous frequency range (f < 1Hz). 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 2.2.2.2.6  Amplification ratio profiles, by varying the seismic signals, in absence of any 

treatment (a) and considering a soft layer with a given treatment depth Hg, 

which has been assumed equal to 5m (b), 10m (c), 15m (d), 20m (e) and 

25m (f). 

 

As far as this concentration of the amplification at lower frequencies is concerned, 

Figures  2.2.2.2.7 are indicative of the phenomenon. These figures report the effects at ground 

surface due to the propagation of the Torre del Greco scaled signal, in terms of maximum 

accelerations, Sd-Sa domain, and response spectra in terms of acceleration, velocity and 

displacement, by varying the treatment depth Hg from 0m to 25m. The reduction of the 

maximum acceleration amplitudes could be seen both in terms of amax with depth (se Figure 

2.2.2.2.7a) and in terms of spectral accelerations (see Figure 2.2.2.2.7 b and c) of the simple 

oscillator response. On the other hand, Figure 2.2.2.2.7d reports an increment in terms of 
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maximum displacements, but only for higher periods, depending on the treatment depth: 

T >1s for Hg ≤10m; T>2s for Hg 15m; the response of the column is shifted to higher 

periods. Figure 2.2.2.2.7b is indicative in this sense: shrinkage of the Sd-Sa domain is 

observed, which is higher by increasing the depth of the treatment, but also a rotation of the 

maximum responses in terms of accelerations and displacements to higher periods is clearly 

shown. It is confirmed that the introduction of a soft layer at a given depth into a soil column 

leads to a global system response that moves to higher periods. 

  

(a) (b) 

 
 

(c) (d) 

 

 

(e)  

Figure 2.2.2.2.7  Effects at ground surface of the Torre del Greco scaled accelerogram: 

maximum accelerations with depth (a), Sd-Sa domain (b), response 

spectra in terms of acceleration (c), velocity (d) and displacement (e), by 

varying the treatment depth Hg from 0m to 25m. 
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Figures 2.2.2.2.8 report the maximum acceleration profiles with depth considering a treatment  

depth Hg from 5m to 25m, and the acceleration spectra at ground surface, assuming the 

propagation of the Sortino accelerogram, and varying the shear velocity Vs,g of the soft layer. 

The shear velocity Vs,g of the soft layer has been varied between 10m/s and 100m/s, assuming 

a damping  equal to 0. By varying the shear wave velocity of the soft layer, the impedance 

ratio assumes the range of values reported in Table 2.2.2.2.1: 

 

Vs,g (m/s)  

100 25 

50 510 

40 613 

30 818 

20 1227 

10 2454 

Table 2.2.2.2.1 Impedance ratio related to the variation of shear wave velocity. 

 

As expected by the relative impedance ratio variation, by increasing the soft layer shear 

velocity, higher accelerations and spectral accelerations are observed at ground surface, as 

detected in terms of acceleration spectra too (see Figures 2.2.2.2.9). 

By assuming a constant value for Vs,g (20m/s), Figures 2.2.2.2.10 and 2.2.2.2.11 report the 

maximum acceleration profiles with depth and the acceleration spectra at ground surface, 

considering a treatment depth Hg from 5m to 25m, and the propagation of the Sortino 

accelerogram in these analyses the damping of the soft layer has been varied from 0 to 50%. 

The increment in damping determines beneficial effects for shallower treatment depth Hg, 

with reductions of the maximum accelerations at ground surface. Additionally, a major 

damping leads to the reduction of the dynamic effects in the soft layers, which are subjected 

to lower maximum accelerations.  
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(a) (b) (c) 

  

 

(d) (e) (f) 

Figure 2.2.2.2.8  Maximum acceleration profiles with depth for treatment  depths Hg equal to 

5m (a), 10m (b), 15m (c), 20m (d) and 25m (e), assuming the propagation of 

the Sortino scaled accelerogram, and varying the shear velocity of the soft 

layer; maximum acceleration at ground surface with Hg (f), where the black 

line corresponds to the absence of treatment, assuming the propagation of 

the Sortino accelerogram, and varying the shear velocity of the soft layer 

(f). 
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(a) (b) (c) 

  

 

 

 

 

 

 

(d) (e)  

Figure 2.2.2.2.9  Acceleration spectra considering a treatment depth Hg equal to 5m (a), 10m 

(b), 15m (c), 20m (d) and 25m (e), assuming the propagation of the Sortino 

scaled accelerogram, and varying the shear velocity of the soft layer. 
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(a) (b) (c) 

  

 

(d) (e) (f) 

Figure 2.2.2.2.10      Maximum acceleration profiles with depth considering treatment  depths 

Hg equal to 5m (a), 10m (b), 15m (c), 20m (d) and 25m (e) assuming the 

propagation of the Sortino accelerogram, and varying the damping of the 

soft layer; maximum acceleration at ground surface with Hg (f), where 

the black line corresponds to the absence of treatment, assuming the 

propagation of the Sortino accelerogram, and varying the damping of the 

soft layer (f). 
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(a) (b) (c) 

  

 

(d) (e)  

Figure 2.2.2.2.11 Acceleration spectra considering a treatment depth Hg equal to 5m (a), 10m 

(b), 15m (c), 20m (d) and 25m (e), assuming the propagation of the Sortino 

accelerogram, and varying the damping of the soft layer. 
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A set of Ricker wavelets has been applied at the bedrock. For all the signals, the peak 

acceleration (amax) has been kept constant and equal to 0.4g (see §2.1.2), which is the 

maximum reference acceleration amplitude expected in Italy for earthquakes with 475 years 

return period according to the national Seismic Hazard map (INGV, 2006). Five dominant 

frequencies (f=0.1, 1, 3, 5, 10Hz) are considered for the wavelet in order to highlight the 

effect of the frequency content of the input motion on the site response. Numerical predictions 

of 1D non-linear seismic response have been carried out using the code NERA. Table 

2.2.2.3.1 summarizes all the analyses carried out combining the variations of the depth Hg and 

velocity Vs,g of the soft layer with the input motions. The behaviour of the natural subsoil 

without the soft layer has been assumed as the reference case, and has been termed NR. 

Consistently, the cases with the soft layer has been named SR.  

 

Layering Case 
input 

motions 

Hg 

(m) 

Vs,g  

(m/s) 
 

f  

(Hz) 

Natural 

soil 
NR 

Ricker 

wavelet 
- - - 

0.1, 1, 3, 

5, 10 

With 

soft 

layer 

SR 
Ricker 

wavelet 

10 

20 
20 

0.059 

0.042 

0.1, 1, 3, 

5, 10 

Table 2.2.2.3.1 Summary of the 1D analyses. 

 

Some of the results of the numerical analyses are plotted in Figure 2.2.2.3.1 in terms of peak 

acceleration (amax) and peak horizontal displacement (umax) versus depth, as well as in terms 

of spectral accelerations Sa at the ground level. The figures refer to the case of a soft layer 

with Vs,g=20m/s and to the wavelet having dominant frequency f=3Hz, which is taken as a 

representative example of the site response.  

The acceleration profiles show that, due to the downward reflection caused by the soft grouted 

layer, the peak amplitude below it increases significantly, as observed in §2.2.2.2 too; 

however, this has no effect on seismic isolation at ground level.  
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(a) (b) 

 

 

(c)  

Figure 2.2.2.3.1   Numerical results: vertical profiles of peak acceleration amax (a), maximum 

displacements umax (b) and acceleration spectra Sa (c) for the Ricker 

(f=3Hz) signal. 

 

Figure 2.2.2.3.1b shows that the values of the maximum  horizontal displacements umax(z) are 

significantly increased by the concentration of the shear strain in the grouted layer: above it, 

horizontal displacements increase, assuming an almost constant value, i.e. the shallow 

untreated layer slides just like a rigid body. This maximum horizontal displacement umax at a 

certain depth has been calculated as the sum of the maximum displacements recorded at the 

different depths below, during the dynamic excitation duration; it is an approach intrinsically 

over-conservative, because maximum effects are generally out of phase. 

The same results are reported in Figure 2.2.2.3.1c in terms of spectral accelerations. The 

comparison confirms the effectiveness of grouting, highlighting that the reduction in Sa (T) is 

larger for the deeper than for the shallower treatment. For periods larger than 2 seconds, no 

significant difference can be observed with or without soft grouting.  

The effect of the frequency content of the input motion can be observed looking at Figure 

2.2.2.3.2, which summarizes all the results obtained with the Ricker wavelets for Vs,g equal to 
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all the investigated frequencies (see Figure 2.2.2.3.2a). The largest values of amax at ground 

level pertain in all cases to the critical value of f=1Hz, which is close to the fundamental 

frequency of the natural soil deposit (fn=1.20Hz).  

The grouted layer depth is almost ineffective for the lowest frequency (0.1Hz), while the 

values of amax at ground level for f3Hz are basically independent of it.  

As a result, it is confirmed that the lower the dynamic impedance ratio  the more effective 

the screening effect of the soft layer on the surface acceleration. Figure 2.2.2.3.2b reports the 

spectral intensity SI with respect to the predominant frequency of the different wavelets. For 

the lowest wavelet frequency, f=0.1Hz, SI is even increased by grouting; the reduction of SI is 

still relatively small, up to f=1Hz, for the layer at Hg=10Hz, while for Hg=20m the SI 

reduction is already of the order of 50% at f=1Hz. At larger frequencies, SI strongly reduces 

when the grouted layer is present.  

 

  

(a) (b) 

Figure 2.2.2.3.2 Peak acceleration amax (a) and spectral intensity SI (b) at the ground level 

with respect to the dominant input frequency for the Ricker wavelets. 

 

In terms of system effectiveness EI, Figure 2.2.2.3.3 summarizes some of the results obtained 

for the 3Hz wavelet, which leads to larger values of the efficiency EI, on the average equal to 

about 0.7 for the shallow treatment, while the deeper grouting proves to be more convenient 

only for periods between 0.1s and 0.5s.  

Figure 2.2.2.3.4 reports the Sd-Sa plot resulting for one of the grouting examples (Hg=20m and 

=0.042) compared to that of the natural soil. The extremely large reduction of the demand 

results, for a given capacity curve of a building, into a much lower intersection point, i.e. a 

better performance and a higher seismic safety. In the figure, different lines are plotted at 

constant values of the natural period T of the structure, highlighting that the reduction of the 

demand can be effective for squat to medium slender masonry buildings. 
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Figure 2.2.2.3.3 Isolation Effectiveness EI (T) for the Sturno (a) and for the Ricker signal 

having a dominant frequency f=3Hz (b). 

 

 

Figure 2.2.2.3.4   Spectral acceleration (Sa) versus the spectral displacement (Sd) for the case 

of Ricker wavelet (f=3Hz) and a depth of grouted layer Hg=20m. 

 

2.2.2.4 1D analyses: effects of the differences between a linear and a non-linear soil 

stiffeness decay behaviour on dynamic response 
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3
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60m, at the bottom of which a reference seismic motion with variable frequency content has 

been applied. To explore the effects of the possible variability of the reference input motion 

amplitude, two different hypotheses have been considered for the constitutive model of the 

clay:  
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 non-linear behaviour, with the shear modulus, G, and the damping ratio, D, depending 

on the shear strain level as shown in Figure 2.2.2.4.1b.  

A layer of soft material with thickness tg=1m is then placed at a depth Hg=20m (Figure 

2.2.2.4.1a). The same density as the soil and two extremely different shear wave velocities 

Vs,g are assumed for such layer, in order to simulate either a stiff (Vs,g=1000m/s) or a very soft 

grouting (Vs,g=20m/s). To evaluate the dependency of the results on the grouting stiffness 

only, in both cases the material is assumed as linear and the damping ratio set to zero. 

 
 

(a) (b) 

Figure 2.2.2.4.1 Subsoil model: layering (a), G()/G0 and D() curves for the natural clay (b). 
 

Table 2.2.2.4.1 summarizes the main properties of the natural soil, the bedrock and the 

grouted layer:  

material 
s 

(kN/m
3
) 

 
(kg/m

3
) 

VS 

(m/s) 

D0 

(%) 

Natural soil 20 2040 300 3 

Soft layer 20 2040 
1000 

0 
20 

Bedrock 20 2040 1000 0 

Table 2.2.2.4.1 Main properties of the materials. 

 

The numerical analyses of 1D seismic response have been carried out using the code EERA. 

Simplified input motions have been applied at the bedrock in terms of acceleration by means 

of the seismic Ricker wavelet model (see §2.1.2). Three different dominant frequencies (f=1, 

3, 5Hz) are considered, while the peak acceleration was kept constant and equal to 0.5g 

(Lombardi et al, 2013). The seismic response analyses carried out are summarized in Table 

2.2.2.4.2. The behaviour of the natural subsoil (without the grouted layer) is assumed as the 

reference case. The results of the two analyses are plotted in Figures 2.2.2.4.2 (S1, T 20 1) 
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 100 

and 2.2.2.4.3 (S3, T20 3) in terms of acceleration and displacement time histories at ground 

level.  

 

Layering Case f (Hz) Vsg (m/s) 

natural soil 

S1, S1* 1 

/ S3, S3* 3 

S5, S5* 5 

with soft layer 

T 1000 1 1 

1000 T 1000 3 3 

T 1000 5 5 

T 20 1, T 20 1* 1 

20 T 20 3, T 20 3* 3 

T 20 5, T 20 5* 5 

Table 2.2.2.4.2 Summary of the analyses (*Case with linear soil behaviour). 

 

As in the examples shown in the figures, in all cases the soft grouted layer increases the 

duration of the shaking but reducing, even strongly, the peak ground acceleration. On the 

contrary, the effect is not always the same in terms of maximum surface displacements:  in 

most cases, the introduction of the soft layer does not change significantly the peak value, 

with the exception of the analysis T 20 1 (see Figure 2.2.2.4.2), for which the dominant 

frequency of the Ricker wavelet (1Hz) is close to the natural frequency of the deposit 

(fn=1.25Hz). In this latter case, even though the peak acceleration is reduced, the peak 

displacement at ground level is seen to increase. 

Table 2.2.2.4.3 summarizes all the results in terms of peak acceleration and displacement at 

the ground level. The stiff grout layer has no influence on the seismic response: these analyses 

will not be therefore considered in the following.  

The numerical results are also plotted in Figure 2.2.2.4.4, in terms of peak acceleration, amax, 

and maximum displacement umax, in each layer. For each seismic input considered, the peak 

acceleration profile strongly decreases across the soft grouted layer, keeping reduced values 

up to ground surface. At the same time, the peak displacement increments are concentrated 

within the grouted layer. The effectiveness of the soft grouted layer and the role of soil non-

linearity in attenuating the seismic inertial actions can be better inferred by analysing the 

acceleration response spectra Sa. The spectral accelerations at surface resulting from the non-

linear and linear analyses are respectively plotted in Figures 2.2.2.4.5 a and b. For all the input 

motions, the soft layer significantly modifies the seismic response at surface, reducing the 

peak values of the spectral acceleration and modifying the corresponding periods. For the 



 101 

range of periods considered as significant in this work (0.1<T<0.5s; see §1.9), both Figures 

2.2.2.4.5 a and b indicate that the grouting intervention is effective in reducing the inertial 

forces on structures. 

 

(a) 

 

(b) 

Figure 2.2.2.4.2  Time histories of acceleration (a) and displacement (b) at the ground surface 

for natural and treated soil under a 1Hz input motion. 

 

 

(a) 

 

(b) 

Figure 2.2.2.4.3     Time histories of acceleration (a) and displacement (b) at the ground level  

for natural and treated soil under a 3Hz input motion. 
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Layering Case 

Peak 

acceleration 

amax (g) 

Peak 

displacement 

umax (m) 

Natural soil 

S1 0.724 0.230 

S1* 0.911 0.149 

S3 0.602 0.038 

S3* 0.692 0.039 

S5 0.547 0.013 

S5* 0.636 0.013 

With soft layer 

T 1000 1 0.719 0.228 

T 1000 3  0.602 0.038 

T 1000 5  0.551 0.013 

T 20 1 0.225 0.318 

T 20 1* 0.662 0.339 

T 20 3 0.177 0.031 

T 20 3* 0.097 0.026 

T 20 5 0.070 0.008 

T 20 5* 0.095 0.007 

Table 2.2.2.4.3 Summary of the numerical results (* case with linear soil behaviour). 

 

   

(a) (b) 

Figure 2.2.2.4.5 Vertical profiles of peak horizontal acceleration (a) and peak horizontal 

displacement relative to   the bedrock (b) computed without (S1, S3, S5) and 

with (T 20 1, T 20 3, T20 5) the grouted soft layer. 
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(a) 

 

(b) 

Figure 2.2.2.4.6     Acceleration response spectra at surface from non-linear (a) and linear (b) 

analyses without (S1*, S3*, S5*) and with (T 20 1*, T 20 3*, T20 5*) the 

soft grouted layer. 

 

In the case of non-linear analysis (2.2.2.4.6a) of untreated soil shaken by the 1Hz Ricker 

wavelet (S1), the maximum spectral amplification corresponds to the single degree of 

freedom oscillator with a natural period close to that of the soil deposit (i.e. double resonance 

mechanism). For such a case, the insertion of the grouted layer (T 20 1) induces a beneficial 

effect by reducing the maximum acceleration to less than 50%, but on the other hand it 

increases the corresponding dominant period to more than twice. In this peculiar case, the 

simple oscillator response with the grouted layer is worse than that of the untreated soil 

treatment in a range of periods corresponding to structures much slender than those 

considered in this study. Similar qualitative considerations can also be taken for the spectral 

accelerations predicted under the hypothesis of linear soil behaviour (Figure 2.2.2.4.6b). The 

quantitative differences are related to the stiffer response of the clay soil, which in these cases 

induces larger accelerations. For the cases S1* and T 20 1*, the crossing point of the spectra, 

individuating the onset of a worse response with the grouted layer, is shifted at a period equal 

to 1.5s, corresponding to a structure as high as 90m.  
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The above observations can be further synthesized in terms of spectral intensity SI, plotted in 

Figure 2.2.2.4.7 with respect to the input frequency, for all the analyses carried out with and 

without the soft grout layer. For every input dominant frequency adopted (1, 3, 5Hz), the soft 

grouted layer reduces the effects at ground level in the range of periods T typical for old squat 

masonry structures. It must be noted that, conversely with respect to what above observed for 

the spectral acceleration, larger values of SI (up to about 95cm for f=1Hz for the case without 

the grouted layer) are computed in the analyses in which a non-linear soil behaviour is 

considered. 

 

Figure 2.2.2.4.7 Spectral intensity SI values obtained at surface versus the dominant input 

frequency. 
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2.3.  Dynamic 2D analyses  

2.3.1.  Description of the numerical modelling  

2D dynamic analyses have been developed using the software FLAC7 (FLAC7 manual, 

2011), an explicit, finite difference program that performs a Lagrangian analysis, in order to 

solve the full equations of motion, using lumped grid-point masses derived from the real 

density of the selected mesh zones.  

The general calculation sequence embodied in FLAC7 is illustrated in Figure 2.3.1.1. The 

analyses calculation path is succeeding reported: 

1. the procedure first considers the equations of motion to derive new velocities and 

displacements from stresses and forces; 

2. strain rates are derived from velocities; 

3. new stresses are calculated from strain rates.  

It takes one time step for every cycle around the loop. Each box in Figure 2.3.1.1 updates all 

of its grid variables from known values that remain fixed while control is within the box. 

Generally speaking, if for instance a stress changes in a certain zone, it will influence its 

neighbouring ones with changes in velocities. Consequently, this approach seems to be 

unreasonable.  

 

Figure 2.3.1.1 Basic explicit calculation cycle. 

 

However, the software chooses a time step so small that information cannot physically pass 

from one element to another in that interval.  

All materials have a maximum speed at which information can propagate, that is the 

compressive wave velocity VP, which is expressed as:  
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

3/4GK
VP


                 (2.3.1.1) 

 

After several cycles of the loop, disturbances can propagate across several elements, just as 

they would propagate physically. Therefore, the calculation wave speed keeps ahead of the 

physical wave speed, so that the equations always operate on known values that are fixed for 

the duration of the calculation.  

The most important advantage of such an approach is that no iteration process is necessary 

when computing stresses from strains in an element, even if the constitutive law is wildly 

nonlinear. The greatest disadvantage of the explicit method seems to be the small time step 

td, which means that large numbers of steps must be taken. A general expression of td is: 
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where the min() function is taken over all grid points and structural degrees of freedom, and  

is a summation over all contributions to the grid point or structural degree-of-freedom. For 

each triangular subzone in which every rectangular element of the FLAC mesh is divided, k is 

the stiffness contribution from each of the three grid points of the subzone: 
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                                                           (2.3.1.3) 

 

where L
max

 is the maximum edge-length of the triangle, A is the area of the triangle and T is 

the out-of-plane dimension, equal to 1.0 for a plane-strain analysis. The stiffness and the mass 

contributions from all the zones surrounding each grid point are summed, giving a total 

stiffness term of k and a total mass term of m, respectively.  

The stiffness and the zone sizes can widely vary in a model, above all in the assumed models 

for dynamic analyses of soft caissons, where finely soft zones are connected to natural soil 

layers.  

The differences between the stiff and the small zones may control the time step chosen by 

FLAC7, due to the min() function and to the stiffness values. So few zones will then 
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determine the critical time step, although the best part of the model should be calculated with 

a meaningfully larger time step. In order to reduce the computation calculation time, a 

procedure known as dynamic multi-stepping have been used. In this procedure, the zones and 

the grid points are ordered into classes of similar maximum time steps and each class is then 

run at its time step. Information is after transferred between zones at the appropriate time.  

However, the performed analyses need large calculation time, because of the important 

differences in stiffness and mass among the different mesh elements.  

The mesh has been calibrated to obtain the smallest model dimension, without sensible 

variations on motion equation solutions, starting from previously literature considerations 

(Bouckovalas et al, 2006).  

In dynamic analyses, the input at the base of the bedrock has always been applied as a stress 

history, referring to given velocity histories. Consequently, shear wave signals (xy) have been 

propagated; actually, a velocity can be converted to a stress wave using the formula: 

 

 tvV bsxy  ,                                       (2.3.1.4) 

 

where: 

xy is the applied shear stress; 

   is the mass density; 

Vs,b is the shear wave velocity of the bedrock; 

v(t) is the input shear particle velocity. 

 

The modelling of geomechanics problems involves media that should be represented as 

unbounded; so numerical methods have been defined to describe a suitable discretization of a 

finite region of space with appropriate condition.  

Generally speaking, the dynamic analyses start from the in-situ conditions; so, to describe the 

initial tensional state of the modelled media, it is necessary a first static calculation stage. In 

this first stage, the horizontal displacements of the lateral boundaries at the base of the model 

have been inhibited. In dynamic analyses, however, such boundary conditions may cause a 

reflection of outward propagating waves back into the model and do not allow the necessary 

energy radiation. To minimize this problem, a larger model should be used. The material 

damping will so absorb the major part of the energy of the waves reflected from boundaries; 

however, this solution leads to a larger computational burden.  
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Therefore, at the base of the model, quiet boundaries have been placed. These boundaries, 

which use the viscous boundary theory developed in FLAC7 (Lysmer and Kuhlemeyer, 

1969), are made of independent dashpots in the normal and shear directions. The dashpots 

provide viscous normal and shear tractions. 

The boundary conditions at the sides of the models should represent the 1D free-field motion. 

In order to absorb the outward waves, the lateral vertical boundaries have been forced to free-

field motion, by a FLAC7 technique that involves a one-dimensional free-field calculation in 

parallel with the main-grid analysis. In Figure 2.3.1.2, a scheme of the model used for seismic 

analyses is reported. 

 

 

Figure 2.3.1.2 Model configuration for seismic analyses. 

 

The natural dynamic systems contain some degree of vibration energy damping (see §1.7); 

otherwise, the systems would oscillate indefinitely when subjected to dynamic forces.  

In order to simulate the loss of energy due to the material damping during oscillation, the 

analyses have been developed by using a Rayleigh damping (Kelly, 1999). This typology of 

damping is frequency-dependent, i.e. frequency-independent only on a restricted range of 

frequencies. 

The Rayleigh damping was originally used in the analysis of structures and elastic continua, 

to damp the natural oscillation modes of the system, to solve the motion equations; these 

equations can be expressed, in matrix form, as: 
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where the reported matrices are, respectively, the mass, the damping and the stiffness ones.  

)(ˆ tF  is the matrix of the force system applied to the model. This system can be diagonalized 

if: 

 

CMKuCKKMC ˆˆˆˆˆˆˆˆ 11                           (2.3.1.6) 

 

A typical example, in this sense, is used in performed analyses, because the damping matrix Ĉ

is written as proportional to the mass matrix M̂  and to the stiffness K̂  one, as reported: 

 

CMC ˆ'ˆ'ˆ                                     (2.3.1.7) 

 

where α’ is the mass-proportional damping constant and β’ is the stiffness-proportional 

damping constant (Hashash e Park, 2002). 

For a multiple degree-of-freedom system, the critical damping ratio ξi at each angular 

frequencyof the system ωi can be derived from (Bathe and Wilson, 1976): 
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where the critical damping ratio ξ is the portion of critical damping (c/cc) with respect to the 

mode with angular frequency ω. Assigned a value of critical damping and a control frequency 

f, the two constants can be calculated as: 
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                (2.3.1.9) 

 

FLAC7 has a mono-frequency approach, which considers only one control frequency; at this 

frequency, the system exhibits the assumed damping value .  On the other frequencies, the 

system is over-damped (Figure 2.3.1.3).  
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Figure 2.3.1.3   Damping ratio  as a function of angular frequency  in the mono-frequency 

approach. 

 

To tackle out this inconvenient, two equivalent values of damping and control frequency have 

been previously calculated. By modifying the mono-frequency approach, a damping similar to 

the chosen one can be imposed to a frequency range including the frequencies of interest i.e. 

the natural frequency of the untreated layer and the peak signal frequency.  

In a double frequency approach, two different angular frequencies 1 and 2 are defined; the 

constants previously described can be derived from: 
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               (2.3.1.10) 

 

In this approach, the value of  is obtained for two different frequencies. Between these two 

values, the system is slightly under-damped; outside it is over-damped (see Figure 2.3.1.4). 

 

Figure 2.3.1.4   Damping ratio  as a function of the angular frequency  in the double- 

frequency approach. 
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An equivalence between the mono and double frequency approaches can be obtained by the 

superposition of the curves of Figures 2.3.1.3 and 2.3.1.4. For a mono-frequency approach, an 

equivalent angular frequency and an equivalent damping ratio can be derived as: 
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             (2.3.1.11) 

 

Consequently, two modified values of frequency and damping ratio are used to consider a 

double frequency approach into the FLAC7 numerical solution, where only a one-control 

frequency approach is implemented.  

As far as the depth of the single element of the mesh is concerned, both the frequency content 

of the input wave and the wave-speed characteristics of the system may affect the numerical 

accuracy of the wave transmission, with numerical distortions of the propagating wave. 

In order to take into account such an effect, Kuhlemeyer and Lysmer (1973) indicate a spatial 

element size l. This spatial element should be smaller than, approximately, one-tenth to one-

eighth of the wavelength associated with the highest frequency component of the input wave: 

 

108
 wL

l                 (2.3.1.12) 

 

where Lw is the wavelength associated with the highest frequency component that contains 

appreciable energy. In the definition of the mesh used into dynamic analyses, these ranges of 

element size have been used to define the geometrical configurations. Similar dimension 

constraints, used to describe the soft grouts, correspond to very small mesh elements sizes, 

with important analyses time increments. 

Assuming the previously reported criteria, 2D dynamic analyses have been performed. 

Initially some preliminary schemes with vertical and horizontal soft layers have been studied.  

Then, some schemes with a more complex treatment system consisting of a “soft caisson” 

with a rectangular section or made of inclined injections have been analysed. 
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2.3.2.  Preliminary 2D analyses with vertical and horizontal diaphragms 

2.3.2.1 Generalities  

As already discussed in §1.2, trenches and screens are used to tackle out vibration isolation. 

Semblat and Pecker (2009) have presented different theoretical schemes where vibration 

isolation has been studied by trenches embedded in the soil crossed by harmonic plane waves. 

Actually, they have considered an infinite layer of constant thickness (i.e. a discontinuity 

simulating an infinite screen) inserted in an infinite homogeneous isotropic medium, crossed 

by a harmonic SV-wave with an angular frequency equal to . Soil and screen are 

characterized by physical and mechanical properties as shown in Figure 2.3.2.1.1. In this case, 

the SV-wave, i.e. polarized in the vertical plane, impacts the intrados of the diaphragm, 

generating at its extrados both SV-waves that P-waves, depending on the incident angle θ. 

 

Figure 2.3.2.1.1 Propagation of a plane SV-wave impacting on an infinite vertical layer. 

 

In Figure 2.3.2.1.1, ASV is the maximum amplitude of the incident SV-wave; RSV and RP are 

respectively the maximum amplitudes of the reflected SV and P-waves. TSV and TP are 

respectively the maximum amplitudes of the refracted SV and P-waves. The amplitudes of the 

waves generated at extrados depend on two transmission coefficients called VS e P, which 

depend, themselves, on the velocity ratio S i.e. the ratio between the S-wave propagation 

velocity of the screen and the S-wave of the surrounding medium, as reported: 
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             (2.3.2.1.1) 

 

As shown by the graphs in Figures 2.3.2.1.2, modal conversion occurs only for values of the 

angle of incidence (θ) greater than zero, as confirmed by analyses that have been developed 

and will be described in the following. The waves having an angle of incidence at the 

interface with the diaphragm equal to zero do not generate any P-wave. 

 

 

Figure 2.3.2.1.2 Transmission coefficients VS andP as functions of the incident angle for 

different velocity ratios S. 
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2.3.2.2 Infinite vertical layers 

In the case studied by Semblat and Pecker (2009), the attention is put on screens stiffer then 

the surrounding medium.  

In spite of this, the analyses reported in this chapter study the effects of softer screens on the 

wave propagation. All analyses consider a linear elastic behaviour for the involved materials, 

assuming a certain value of stiffness and damping ratio constant with tensional state and shear 

deformations (s=3%).  The first scheme that has been considered is similar to the Pecker and 

Semblat model; it consists of a soil medium with a density ρs of 2040kN/m
3
 and a shear 

velocity Vs,s equal to 300m/s.  

The mesh used for these analyses has a dimension of 120m in the x-axis and 60m in the y- 

direction. In Figures 2.3.2.2.1, the geometrical configuration and some indications on vertical 

denominations are reported. At the middle in the x-dimension a vertical screen is placed, 

whose thickness is taken constant and equal to 1m; its density  ρg is equal to 1020kN/m
3
. The 

choice of such a value for the density has been made to prevent numerical analyses problems 

using the software FLAC7 due to the necessity to obtain extremely low values of impedance. 

The choice of this value for density is due to different observations: the resolving time 

depends on the stiffness differences between close materials and the motion solution is hardly 

dependent on impedance ratio.  

By using a low-density value, larger shear velocities can be assumed with low impedances. 

Furthermore, the materials that have been tested exhibit very low density values. The material 

called SAP (see §4.2.2), which seems to be potentially suitable to be formed as a soft layer, 

has a unit weight close to 10kN/m
3
.  

A series of analyses without considering any sort of treatment has been previously performed 

for the soil, so defining a reference scheme. The signals, which are Ricker wavelets 

transmitted as SV waves, have been propagated starting from the base of the right side of the 

model (from the point called RSV to RBV; see Figure 2.3.2.2.1b). The left side of the model 

is thought as the part to protect from the dynamic input. 

In Figures 2.3.2.2.2,  the results in terms of the ratio between the maximum acceleration with 

(amax,g) and without screen (amax,s) are reported; these results refer to two different series of 

analyses where the Poisson Ratio  of materials is assumed equal to 0.3 both in soil and 

screen: in the former, assuming a certain value for the fundamental frequency of the Ricker 

wavelet propagated trough the layer, it is observed an important decrease in horizontal 

acceleration (see Figure 2.3.2.2.2 a); in the latter, considering a certain value of shear velocity 

for the vertical screen (Vs,s=20m/s), the fundamental frequency of the signal is varied.  
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At a frequency equal to 1Hz, the high values of acceleration are due to the closeness of the 

fundamental frequency of the signal to the natural frequency of the soil deposit without any 

treatment (assuming H=60m, fn=VS/(4H)=1.25Hz). 

In Figures 2.3.2.2.3, the maximum acceleration ratios amax,g / amax,s along the verticals 

pertaining to the sections called LV and RV (se Figure 2.3.2.2.1b) are reported. By varying 

the fundamental frequency of the signals, and assuming a shear wave velocity of the 

protecting screen equal to 20m/s, a great decrease in amax is observed.  A soft screen is so 

useful in reducing the maximum effects due to the propagation. 

 

(a) 

 

(b) 

Figure 2.3.2.2.1  Geometrical model for the vertical screen analyses: mesh used for analyses 

(a); geometrical dimensions and indications of the vertical axis (b). 
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(a) (b) 

Figure 2.3.2.2.2  Maximum accelerations at ground surface for f=1Hz by varying Vs,g (a); 

maximum acceleration at ground surface by varying the Ricker 

fundamental frequency and assuming Vs,g equal to 20m/s (b). 

 

  

(a) (b) 

Figure 2.3.2.2.3 Maximum acceleration ratios amax,g / amax,s along the verticals pertaining to 

the sections LV and RV. 

 

If attention is focused on the maximum displacement observed, it can be understood that a 

decrease in shear stiffness may cause an increase in horizontal displacements; in the following 

figures (Figures 2.3.2.2.4), the maximum x-displacements at ground surface by varying the 

stiffness of the screen (Figure 2.3.2.2.4 a) and along two verticals in the right and left side of 

the model (Figure 2.3.2.2.4 b) are reported assuming a screen Vs,g equal to 20m/s. In such 

figures, the worst possible case is assumed, by propagating a Ricker wavelet with a 

fundamental frequency equal to 1Hz. Only assuming a screen Vs,g equal to 10m/s (extremely 

low, difficult to obtain in real cases), it is observed a decrease in x-displacements in the right 

side of the model; if a larger Vs,g is assumed, values of umax,s/umax,g larger than 1 are observed 

along RV. 
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(a) (b) 

Figure 2.3.2.2.4 Maximum displacements at ground surface for f=1Hz, by varying Vs,g (a); 

maximum displacements along two different verticals (LV, RV), by varying 

the Ricker wavelet fundamental frequency and assuming Vs,g = 20m/s (b). 

 

Figures 2.3.2.2.5 illustrate the ratio amax,g/amax,s obtained by varying the Ricker fundamental 

frequency and assuming a screen  Vs,g equal to 27 m/s  i.e. the minimum value of shear wave 

velocity recorded in laboratory tests (see §4.2.2.6) As previously shown, by increasing the 

frequency of the signal, the acceleration ratio in the left side decreases. 

 

(a) 

  

(b) (c) 

Figure 2.3.2.2.5 Maximum accelerations for different Ricker wavelets by assuming Vs,g=27m/s 

at ground surface (a), along LV (b) and RV (c) (see Figure 2.3.2.2.1b). 
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The general increase in signal effect on the right side of the model is due to the reflection of 

energy caused by the installation of the screen, which is more important at larger frequencies. 

In the mechanism observed by this first typology of isolating scheme, it is observed that the 

shear deformability of the screen plays a fundamental role in signal propagation, as reported 

in literature studies.  When the frequency is similar to the natural frequency of the soil layer, a 

worst behaviour is detected; above all, low frequencies are harder to isolate, because the 

signal is so low that the deformation of the screen tends to be similar to the surrounding soil 

one. Physically the entire model moves together at lower frequencies. 

By assuming the mechanical and geometrical properties of the model previously considered 

(see Figures 2.3.2.2.1), the value of the Poisson ratio  of the soft screen has been varied, to 

study the effect of the volumetric stiffness in the system response. Precisely, two further 

values of screen volumetric stiffness K have been considered, as reported in Table 2.3.2.2.1:  

 

Scheme 
VS 

(m/s) 

G 

(Pa) 
 

K 

(Pa) 

K 20 4.079∙10
5
 0.300 8.838∙10

5
 

0.5K 20 4.079∙10
5
 0.147 4.419∙10

5
 

10K 20 4.079∙10
5
 0.477 88.38∙10

5
 

Table 2.3.2.2.1 Values of screen stiffness assumed for analyses. 

 

Observing Figures 2.3.2.2.6, it is clear that the value of the assumed Poisson ratio is 

fundamental in the wave propagation. The 10K schemes seem to be unhelpful in isolating 

wave propagation in comparison to the reference scheme (see Figures 2.3.2.2.6 d, e and f). 

The shear waves, impacting the diaphragm on the lateral side, generate a volumetric 

compression of the screen; if this compression is enabled by volumetric incompressibility, the 

wave is transmitted in the protected side without important reduction in amplitude, and 

without modal conversions.  

In Figures 2.3.2.2.7, the accelerograms calculated at a depth of 30m from the ground surface 

along the verticals called LSV, CSV and RSV (see Figures 2.3.2.2.1b) are reported by varying 

the volumetric stiffness of the screen. For the 10K scheme (see Figure 2.3.2.2.7b), only a 

small variation in amplitude of the wave takes place by passing through the screen; this 

behaviour confirms the inefficiency of a volumetric stiffer vertical layer in reducing the wave 

amplitude. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 2.3.2.2.6  Maximum acceleration at ground surface without any screen and by varying 

the volumetric stiffness K for a Ricker wavelet with a fundamental frequency 

of 0.5Hz (a), 1Hz (b) and 5Hz (c); maximum acceleration at ground surface 

with respect to the maximum accelerations of the K scheme, assumed as 

reference model (amax,g,K), for a Ricker wavelet with a fundamental 

frequency of 0.5Hz (d), 1Hz (e) and 5Hz (f). 
 

 

  

(a) (b) 

Figure 2.3.2.2.7   Accelerograms in the central part of the diaphragms by varying the volumetric 

stiffness of the screen, for K schemes (a) and 10K schemes (b). 
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2.3.2.3 Infinite horizontal layer 

A different scheme can be considered with a screen totally enclosed into the soil layer, 

assuming a shear stiffness equal to which assumed for the previous scheme (see Table 

2.3.2.2.1). In Figure  2.3.2.3.1, the scheme adopted for analyses is reported: 

 

Figure 2.3.2.3.1 Model adopted for the signal propagation through horizontal layer. 

 

In this scheme, always assuming the hypothesis of linear elasticity, it is assumed a different 

geometrical configuration, where the signal is previously propagated trough a stiffer layer, 

called bedrock (Vs,b=1000m/s; ρb=2040kg/m
3
; damping ratio Db=0). This typology of 

schematization will be used in the more complex schemes analysed (see §2.3.3 and 2.3.4). 

Ricker wavelets of different fundamental frequencies with a maximum amplitude of 0.5g are 

propagated from the base of the bedrock to the ground level, by varying the volumetric 

stiffness of an horizontal screen. This 1m thick screen is placed at a depth of 10m from the 

ground surface and assuming a Vs,g equal to 20m/s and 3 values of Poisson ratio, respectively 

equal to 0.147 (scheme 0.5K), 0.3 (scheme K) and 0.477 (scheme 10K); by varying Poisson 

ratios, it is not observed any sort of differences in terms both of maximum acceleration along 

the depth (see Figure 2.3.2.3.1a) and Fourier amplitude of the signals at ground surface (see 

Figure 2.3.2.3.1b), confirming what has been observed by Pecker (2009) in the propagation of 

sinusoidal waves into an infinite medium.  The K soft layer value is ineffective in wave 

propagation. 

The model with a horizontal layer simulates a 1D propagations scheme, which is, in a certain 

approximated way, similar to the Pecker scheme (see Figure 2.3.2.1.1). On the upper part of 

the soft layer, in fact, the transmitted wave will propagate through the soil above and impact 

the surface, being totally reflected; however, in the Pecker scheme, the transmitted wave will 

be propagated into a semi-infinite medium. 

The schemes previously examined suggest that the volumetric stiffness could be important 

also for more complicated treatments with more realistic geometric configurations. In the case 
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of horizontal layers, a larger volumetric stiffness could be more important on the static side of 

the problem, because it is expected a larger static displacements where the volumetric 

stiffness is lower. 

 

(a) 

 

(b) 

Figure 2.3.2.3.2  Maximum accelerations with depth (a) and Fourier amplitude of the signal 

at ground surface (b) by varying the volumetric stiffness of the horizontal 

screen. 
 

2.3.2.4 Finite length horizontal layer 

A geometrical configuration with a horizontal screen has been studied in order to understand 

if an isolated horizontal soft layer may be useful in reducing the effect of the propagation of a 

signal to ground level. Important geometrical properties in similar schemes are the depth of 

the treatment Hg and the horizontal length of the screen Lg, assuming a constant value for the 

screen thickness equal to 1m. Preliminary investigations (Kirtas, 2009) revealed that large 

intervention lengths, much longer than the width of the foundation of the structure to be 
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the structural response, leading to non-realistic mitigation solutions since the layer should 

expand below neighbouring buildings. An entirely different response would be expected if the 

soft layer is placed exactly below the foundation and not at the depth assumed during the 

current investigation, but this solution resembles more a seismic isolation approach, varying 

from the propagation wave filtering. This approach has also been studied, and is described in 

§2.3.3.3.  

The model assumed for the first analyses with a finite length horizontal layer is reported in 

Figure 2.3.2.4.1; the soil layer and the bedrock have an equal thickness (H=60m). The mesh is 

120m wide. In this first scheme, it has been assumed a length for the screen equal to 40m at a 

depth Hg of 10 or 20m. The screen has a shear velocity equal to 20m/s and a damping ratio 

equal to 0. The dynamic properties of the soil are reported in Figure 2.3.2.12; the analyses are 

made by assuming a linear elastic behaviour for the involved materials. 

 

Figure 2.3.2.4.1 Geometry and materials properties. 

 

By observing the results reported in Figures 2.3.2.4.2, it is clear that such a large soft 

horizontal layer can’t preserve the ground level from dynamic shaking caused by the 

propagation of Ricker wavelets with a  maximum acceleration amplitude at the base of the 

bedrock equal to 0.5g and fundamental frequencies equal to 1Hz, 3Hz and 5Hz. This 

treatment generally determines worst security conditions, because a decrease in maximum 

effect at ground surface is not granted. In Figure 2.3.2.4.2a the maximum horizontal 

acceleration with depth is reported by varying the fundamental frequency of the signal; in 

Figure 2.3.2.4.2b the maximum horizontal accelerations are reported with respect to one side 

of the mesh. Actually, one-half of the horizontal layer is placed into the soil from 40 m to 60 

m in the x-axis reported.  
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(a) 

 

(b) 

Figure 2.3.2.4.2  Maximum accelerations along the vertical (a) and at ground surface (b) by 

varying the fundamental frequency of the signal and the depth of the 

horizontal screen. 
 

By assuming a unique value of Hg equal to 20m (see Figure 2.3.2.4.3 a) and by varying the 

length of the horizontal screen, no important decrease in acceleration amplitude can be 

observed, unless the entire length of the mesh is involved (see Figure 2.3.2.4.3c). These 

analyses are partially simplified, because, extending the length of the screen close to the width 

of the mesh, boundary numerical effects play a role in the results. This is not the case if the 

screen is sufficiently far from the boundaries of the mesh or if a 1D propagation scheme is 

modelled by totally extending the screen in the horizontal direction. If the screen reproduces a 

1D wave propagation, it is observed, from all the scheme reported, a decrease in horizontal 

acceleration at ground surface, but the reproduction of a similar treatment in the engineering 

field is not a matter of interest, confirming the observations by Kirtas (2009). 

The efficiency of a similar scheme in reducing the dynamic effects at ground level depends on 

the ratio      . The lower the ratio        the higher the efficiency. 
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(a) 

 

(b) 

 

(c) 

Figure 2.3.2.4.3 Geometrical features of the model used for the progressive enlargement of 

the horizontal layer (a); maximum horizontal accelerations with depth (b) 

and at ground surface (c). 

 

2.3.2.5 Finite length double vertical layers 

Another possible scheme to isolate seismic signals may be the installation of vertical and soft 

diaphragms next to the foundation of the building to be protected, in order to aim at isolating 

a soil mass underneath the foundation and the superstructure, and reduce the induced ground 

shaking and allow independent oscillation from the surrounding soil (Kirtas, 2009). 
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The seismic response of the system is determined by the dynamic characteristics of the 

isolated soil mass. The most efficient isolated soil depth (Dd), after preliminary investigation 

of several configurations, was selected by Kirtas (2009) equal to Dd = 5Bd/3, where 2Bd is the 

distance between the two vertical soft layers which define the lateral boundaries of the 

isolated soil. The elastic modulus of the diaphragms material plays an important role on the 

seismic response, controlling the compliance of the vertical sides during oscillation.  

Figures 2.3.2.5.1 report one of the results from Kirtas (2009) which focuses his attention on a 

simple oscillator at ground surface simulating the presence of a structure with a rigid 

foundation. The superstructure acceleration ratio (i.e. the ratio of the Fourier transform of the 

response time-histories of the simple oscillator at ground surface in the modified system to the 

corresponding response of the initial unmodified system), in the case of the soft diaphragms, 

presents a wide range of values lower than unity near the fundamental effective period of the 

structure, indicating an efficient mitigation of the seismic response (Figures 2.3.2.5.1). The 

efficiency of the intervention increases by increasing the structural mass in both time and 

frequency domains. Because of the high flexibility of the implemented intervention compared 

to the initial foundation subsoil conditions, it is reasonable to expect an increase of the 

seismic displacements of the system; Kirtas (2009) indicates the possibility of either increased 

or reduced displacements, depending on the frequency content of the imposed seismic motion.  

 

  

(a) (b) 

Figure 2.3.2.5.1 Soft diaphragms: superstructure acceleration ratios for Tstr=0.4s (a) and 

Tstr=0.6s (b). 
 

Figures 2.3.2.5.2 show a scheme where attention is focused on defending the ground surface 

from shaking due to the propagation of Ricker wavelets with an initial amplitude of 0.5g. The 

area to be protected is 40m large; diaphragms are made of a soft material (Vs,g=20m/s; g=0.3; 

ρg=2040kg/m
3
) and are 20m long. Results shown in Figures 2.3.2.5.2 demonstrate that the 
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presence of two vertical soft layers could not be effective in any case, as reported in Kirtas 

(2009). 

 

 

(a) 

 

(b) 

 

(c) 

Figure 2.3.2.5.2 Geometrical configuration for the diaphragms model (a); maximum 

accelerations with depth (b) and at ground surface from the right side of 

the geometry to the symmetry axis at the middle of the mesh (c), by varying 

the frequency of the signal. 

 

The analyses reported in this and the other paragraphs seem to indicate that vertical 
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point of view, may be able to tackle out the energy transmitted to the ground surface by the 

propagation of a dynamic signal. Therefore, in the following paragraphs different schemes 

will be introduced, where an entire soil area underneath the structure to protect is enclosed by 

systems made of horizontal and vertical soft layers and inclined injections.  

2.3.3.  Soft Caisson: rectangular section 

The combination of the two lateral soft vertical diaphragms with a horizontal soft layer can 

form a complete seismic isolation configuration around the zone at ground surface to be 

protected. Figures 3.3.1 describe the geometrical configuration adopted for examining this 

typology of treatment scheme: the soft caisson is made of two vertical layers and a horizontal 

one embedded into soil to form a soft caisson. The soil layer and the bedrock on which soil is 

placed have the same size, in terms of thickness and width in the plane, and in the following 

reported analyses both cases with possible slippages at the boundary between soft layers and 

soil and case where analyses are exclusively linear elastic have been considered.  

Results are generally reported referring to: 

 a point at ground surface at the centre of the soft caisson (CP) (see Figure 2.3.3.1b) 

 a section called “central vertical” (see Figure 2.3.3.2) 

 a reference system whose axes are shown in Figure 2.3.3.2. 

In this chapter, observations are reported by taking in account different configurations of the 

soft caisson, considering: 

1. the effects of the variation of the dynamic impedance ratio by varying the shear wave 

velocity of the soft layers; 

2. the effects of the variation of the dynamic impedance ratio on the soft caisson 

performance; 

3. the effects of the variation of the soil deposit depth; 

4. the effects of the variation of the lateral soft layers length;  

5. the effects of the variation of a load on ground surface; 

6. the effects of the variation of the dimension of the soft caisson; 

7. the effects of the variation of the soft layers thickness;  

8. the effects of the variation of the soft layers damping ratio;  

9. the effects of the variation of the soft layers volumetric stiffness;  

10. the effects of the constitutive model on the efficiency of the isolating box. 

The following subparagraphs report the results, following the above reported order. In these 

sections, the thickness of the soft layers has been assumed equal to 1m, with the exception of 
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the 7
th

 subparagraph where the effects of the soft layer thickness is studied. In the performed 

analyses, the material behaviour is generally assumed as linear-elastic, with the exception of 

the 10
th

 subparagraph, where the failure condition effects are considered.  

  

(a) (b) 

Figure 2.3.3.1   Geometrical configuration and model for the 2D analyses on soft caisson: an 

example of mesh used for analyses (a); indications on the boundary 

conditions and on the position of the Control Point, CP (b). 

 

 

Figure 2.3.3.2 Indications on the reference system and the central vertical position. 

2.3.3.1 Effects of the variation of the dynamic impedance ratio by varying shear wave 

velocity of the soft layers 

The first scheme has been examined in order to understand the importance of the variation of 

the dynamic impedance ratio  on the propagation of waves. In these analyses, different 

Ricker wavelets with maximum amplitude of 0.5g and a fundamental frequency from 0.1Hz 

to 5 Hz have been propagated upward as shear waves SV, starting from the lower boundary of 

the bedrock to the ground surface. It has been assumed a model where (see Figure 2.3.3.1) 
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Hg=20m, Lg=40m, the width of the entire mesh, equal to the depth both H of the soil layer and 

the bedrock, is 120m, the shear wave velocity of the soil layer and of the bedrock is assumed 

respectively equal to Vs,s=300m/s and Vs,b=1000m/s, with a density ρs of 2040kg/m
3
.  

In this first kind of model configuration, the shear wave velocity of the layers composing the 

soft caisson has been varied from 10 to 20 and 30m/s, assuming a density ρg of 1020kg/m
3
. 

Consequently, the dynamic impedance ratio  assumes values 60, 30 and 20 (see Table 

2.3.3.1.1).  

Natural Soil Grouted System  

Vs,s  

(m/s) 

ρs 

 (kg/m
3
) 

Vs,g   

(m/s) 

ρg  

(kg/m
3
) 

α 

300 2040 

10 

1020 

60 

20 30 

30 20 

Table 2.3.3.1.1 Values of the dynamic impedance ratio. 

 

Figures 3.1.1.1 report the maximum horizontal accelerations amax (see Figure 2.3.1.1.1 a) and 

the values of spectral intensity SI (see Figure 2.3.1.1.1 b) in the control point by varying the 

fundamental frequency of the signal. In these figures, the black thicker line refers to the case 

of no treatment (only soil); so, it is the reference result, to which it is necessary to compare 

the other one to check if the soft caisson has a beneficial effect (reduction of amax and SI) or 

not. The finer lines results refer to the different soft caissons. An important reduction in signal 

effects is observed in CP when the frequency of the signal is larger than 2Hz; for such cases, 

all treatments are useful in reducing maximum accelerations and SI values. For lower 

frequencies, a worse response is observed, with the exception of the model with Vs,g=10m/s, 

for which treatment is beneficial also for f=1Hz. The propagation of the signal characterized 

by the lowest frequency (f=0.1Hz) does not seem to be influenced by the introduction of the 

grouts. This is probably due to the extreme slowness of the propagated wave; so the mesh has 

been deformed for all his extension with the same amplitude, without an important 

contribution on the deformability of the soft layers. 
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(a) 

 

(b) 

Figure 2.3.3.1.1 Maximum horizontal acceleration amax (a) and spectral intensity SI (b) by 

varying the fundamental frequency of the Ricker wavelets and assuming 

different values of the soft layers Vs,g.  

 

In Figure 2.3.3.1.2a, the amplification ratio is reported. In this case, this function quantifies 

the variation in Fourier amplitude from the ground level to the base of the soil layer. The 

ticker line indicates the amplification ratio in the natural soil; it is totally coherent with 

literature indications (Kramer, 1996), where the natural frequencies of a soil deposit with a 

certain shear stiffness, placed on a bedrock either deformable or indeformable, comes from 

the following expression: 

 

 





 ,...,1

4

12
n

H

Vn
f S

n                          (2.3.3.1) 

 

Consequently, the first natural frequency of the soil deposit is 1.25Hz. 

If the red line, showing results of Vs,g=20m/s, is considered, it is clear that the amplifications 

are expected in a range of frequencies close to 0.5Hz and 1Hz. Actually, looking at the results 

in terms of maximum acceleration and spectral intensity (see Figure 2.3.3.1.1), amplifications 

are clearly observed at the same frequencies, i.e. the deposit has resonance phenomena when a 

signal with such frequencies are propagated through layers. 
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Similar observations can be made also for Vs,g=10m/s or 30m/s; when resonance phenomena 

between the natural frequencies of the modified soil layer deposit and the signal occur, 

amplification is observed. 

In Figure 2.3.3.1.2a, the amplification ratio is reported as a synthetic parameter describing the 

effect variations between the ground surface and the deposit base; in Figures 2.3.3.1.2 from b 

to d, comparisons between the amplification ratios, by varying the soft layers shear wave 

velocity Vs,g, are reported, by referring the calculated function to different depths into soil.  

In fact, this function has been also calculated between the ground level in the control point 

and the upper side of the horizontal soft layer, A(0-19m). 

The two different methods to describe the variations in energy distribution of the signal define 

a similar behaviour of the system when subjected to a wave propagation.  

The function A(0-19) seems to be more effective in identifying the resonance frequencies (for 

Vs,g=20m/s, for instance, the resonance phenomenon is distinctly defined for slower signal 

frequencies; see Figure 2.3.3.1.2c).   

The soft caisson has the effect of reducing the natural frequencies of the soil included in it. 

Therefore, lower frequencies are amplified and larger ones reduced. Based on these first 

results, it is obvious that the soft caisson must be designed taking into account also the natural 

frequency of the structure to be protected. 

The observations on amplification ratios are totally confirmed by Figures 2.3.3.1.3 and 

2.3.3.1.4, in which the maximum accelerations and displacements along the vertical symmetry 

axis and at ground surface from the left boundary to the centre of the mesh are reported. As 

far as accelerations are concerned, the maximum observed values are consistent with the 

peaks of the amplification ratio (see Figure 2.3.3.1.2). Observing results in terms of 

acceleration at ground surface, when the soft caisson (see Figure 2.3.3.1.3 f - h) produces a 

reduction in the effects (see Figure 2.3.3.1.3e), a reduction inside the area to be protected 

(from 40m to 60m on the x-axis) is observed along with an increase in effects outside the 

isolating box. This is due to the reflecting effect of the waves impacting the lateral soft screen, 

which are reflected back. When this kind of mitigation system does not reduce the effects in 

the zone to be protected, on the contrary, no significant increase of the accelerations outside 

the caisson are observed. About displacements, it is not generally observed an increase in 

horizontal displacements with respect to the condition of absence of any treatment (see 

Figures 2.3.3.1.3 e-h and Figures 2.3.3.1.4 e-h). It is also interesting to observe that the 

beneficial screening effect in terms of acceleration, in the case where it takes place, does not 

necessarily correspond to an increase in displacements in the soil within the soft caisson. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.3.3.1.2   Amplification ratios by varying Vs,g between the ground surface and the 

deposit base (a); comparisons between the amplification ratios A(0-60m) 

and A(0-19m) by varying Vs,g (b, c, d). 
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This depends on both the fundamental frequency of the propagated signal and the shear 

stiffness of the soft layers, especially when the treatment works well. For the lowest value of 

Vs,g, actually, both accelerations and displacements are reduced within the soft caisson. 

In order to visually explain the amplitude and duration changes of a signal transmitted from 

the base of the deposit to the surface, in Figures 2.3.3.1.5, signals at different depths from the 

ground level, along the vertical at the centre of the mesh, are depicted, by propagating a 

Ricker wavelet through a model both without any treatment (a) and with a soft caisson having 

Vs,g=10m/s (b), for two different frequencies (1Hz, a and b; 3Hz, c and d). Signals are clearly 

and sharply modified in amplitude by impacting the softer layer. In the case of a Ricker 

fundamental frequency equal to 1Hz, it is observed an increase in the duration of the signal at 

ground surface (see Figure 2.3.3.1.5 b), amplified with respect to the reference condition (see 

Figure 2.3.3.1.5 a). 

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 2.3.3.1.3 Maximum horizontal accelerations with depth by varying the fundamental 

frequency of the Ricker wavelets in the case of no treatment (a) and for soft 

layers having Vs,g equal to 30m/s (b), 20m/s (c) and 30m/s (d); maximum 

horizontal displacements with depth by varying the fundamental frequency 

of the Ricker wavelets in the case of no treatment (e) and for soft layers 

having Vs,g equal to 30m/s (f), 20m/s (g) and 30m/s (h). 
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(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 2.3.3.1.4  Maximum horizontal accelerations at ground surface from the left boundary 

to the centre of the geometrical configuration by varying the fundamental 

frequency of the Ricker wavelets in the case of no treatment (a) and for soft 

layers having Vs,g equal to 30m/s (b), 20m/s (c) and 30m/s (d); maximum 

horizontal displacements at ground surface from the left boundary to the 

centre of the geometrical configuration by varying the fundamental 

frequency of the Ricker wavelets in the case of no treatment (e) and for soft 

layer having Vs,g equal to 30m/s (f), 20m/s (g) and 30m/s (h). 
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(a) (b) 

  

(c) (d) 

Figure 2.3.3.1.5 Signals at different depths along the central vertical of the model starting 

from free surface: by propagating a 1Hz Ricker wavelet through a model 

without (a) and with a soft caisson having Vs,g=10m/s (b); by propagating a 

3Hz Ricker wavelet through a model without (c) and with a soft caisson 

having Vs,g=10m/s (d). 

 

In Figures 3.3.1.6, the effects of the propagation of a 1Hz Ricker wavelet are reported in 

terms of the Fourier amplitude of the signals calculated at different depths along the central 

vertical axis of the model, for a soil deposit without and with a soft caisson having 

Vs,g=10m/s. The peaks of the signal over the soft layer decrease in amplitude and are shifted 

to lower frequencies. It is then confirmed that the maximum detrimental effects will be for 

structures to be protected having higher natural periods. This is confirmed by looking at 

Figures 3.3.1.6, in which acceleration spectra for signals at different depths for soil without 

and with soft layers (Vs,g =10m/s) are reported. With respect to the reference condition (see 

Figure 2.3.3.1.6c), the maximum acceleration of the simple oscillator is reduced by including 

the soft layers. The spectra also point out that the peaks are not only reduced, but also shifted 

towards higher periods. Again, the soft caisson seems better suited for squat buildings, having 

lower natural frequencies.  
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(a) (b) 

  

(c) (d) 

 

 

(e)  

Figure 2.3.3.1.6 Effects of the propagation of a 1Hz Ricker wavelet: Fourier amplitude for 

signals at different depths along the central vertical axis for soil without (a) 

and with a soft caisson having Vs,g=10m/s (b);  acceleration spectrum for 

signals at different depths for soil without (c) and with a soft caisson having 

Vs,g=10m/s (d); variation of the acceleration and of the displacement spectra 

in the control point due to a soft caisson having Vs,g=10m/s. 

 

Figure 2.3.3.1.6e reports the effects of the soft caisson in terms of Sd-Sa domain; a large 

reduction is clearly observed in terms of both spectral acceleration and displacement, with a 

rotation of the response domain to higher periods. This domain is shrunken for lower SDOF 

periods and lengthened for higher ones.  
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From this first example, it is clear that the isolating box is able to cut off energy from the 

system when it modifies the entire way in which signals are propagated, avoiding phenomena 

of resonance. For  soft layers with Vs,g equal both to 20m/s and 30m/s, a signal with a 

fundamental frequency of 1Hz, for example, determines a resonance phenomenon (see Figure 

2.3.3.1.2), whereas for Vs,g=10m/s this occurrence is avoided. It is possible to have a view of 

this topic by observing either Figure 2.3.3.1.7 or 2.3.3.1.8. In figures 2.3.3.1.7, signals at 

different position at ground level are reported. These signals have been calculated by 

propagating a 1Hz Ricker wavelet through a model with a soft caisson with Vs,g = 30m/s (b), 

Vs,g = 20m/s (b) and Vs,g = 10m/s (c). Differences in terms of effects of the soft layers on the 

signal approaching the boundary of the soft caisson are clearly observed. Only for the lower 

impedance ratio, a decrease in acceleration with time is observed. 

For Vs,g=30m/s and 20m/s, increases in the maximum amplitude of the signal and in the time 

duration are observed; these phenomena are probably due to the multiple reflection of the 

signal reflected from the surface on the lateral and the inferior boundaries of the caisson and 

are amplified by the important amount of energy transmitted to the ground level. In these 

cases, the soft caisson has a negative, amplifying effect.  

Similar oservations can be done by observing the efficiency curves too (see Figures 2.3.3.1.8); 

actually values of the efficiency E1 by varying the soft layers shear wave velocity are effective 

in showing the changes with respect to the variation of the period of the simple oscillator. For 

Vs,g=10m/s, with the exception of the signals having lower frequencies, E1 is higher than 0.5 

for all periods. Generally speaking, structures with a natural period lower than 0.2s take 

advantage of the soft caisson for all the geometrical and mechanical properties investigated in 

these first analyses. It is expected that other treatment geometrical configurations may have 

different effects. 
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(a) 

 

(b) 

 

(c) 

Figure 2.3.3.1.7 Signals at different position at ground level by propagating a 1Hz Ricker 

wavelet through a model with a soft caisson having Vs,g = 30m/s (b), Vs,g = 

20m/s (b) and Vs,g=10m/s (c). 

 

Figures 2.3.3.1.9 report the ratios between the values of the predominant periods, Tp,g and Tp,s, 

as well as the ratios between the mean periods, Tm,g and Tm,s. As usual in this thesis, the pedex 

“s” indicates the soil deposit with no treatment, and the pedex “g” indicates the case with 

treatment. Figure 2.3.3.1.9b clearly shows that, when grouts are able to positively modify the 

signal effects in the control point, the main period is shifted to higher values with respect to 

the previous ones. This seems to confirm 1D analyses.  

The shift towards higher periods, when the treatment seem to be helpful in reducing dynamic 

effects at ground surface, is evident also in Figure 3.3.1.10 c and d, where acceleration spectra 

for Vs,g equal to 20m/s and Vs,s=300m/s are reported and compared to the case of no 

treatment, for the case of a frequency of 5Hz. When the soft caisson is not effective, for 

instance for 1Hz, there is also no shift in periods (see Figures 2.3.3.1.10 a and b). 
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(a)  (b) 

 

 

 

(c)   

Figure 2.3.3.1.8 Values of the efficiency E1 by varying the soft layers velocity, equal, 

respectively, to 30m/s (a), 20m/s (b) and 10m/s (c). 

 

(a) 

 

(b) 

Figure 2.3.3.1.9 Values of the ratios in terms of predominant periods, Tp,g/Tp,s (a) and mean 

periods, Tm,g/Tm,s (b) in the control point. 
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(a) (b) 

  

(c) (d) 

Figure 2.3.3.1.10      Acceleration spectra at different depths along the central vertical axis in 

the case of no treatment and f=1Hz (a) or 5Hz (c), and in the case of soft 

caisson with Vs,g=20m/s and f=1Hz (b) or 5Hz (d). 

 

In the previous plots, the horizontal effects in terms of accelerations and displacements have 

been considered, but the proposed seismic mitigation system may induce further effects in the 

vertical direction, which are not present in a scheme where the deposit has not been treated. 

The interaction of the wavefront with the boundaries of the soft caisson could be significant in 

generating secondary wavefronts whose effects on ground surface, for instance, could be 

unexpected. The interference takes place because there is an extremely complex interaction 

among the waves coming from the boundaries of the soft layers, the base of the model and the 

inside of the soft caisson. These interactions are governed by the principle of superposition, 

i.e. when waves interact, the resulting wave function is the sum of the individual wave 

functions (Born and Wolf, 1959). In Figures 2.3.3.1.11 and 2.3.3.1.12, the effects at ground 

surface in terms of horizontal and vertical accelerations for a model in which the soft isolating 

box has a shear wave velocity of the layers equal to 20m/s are reported for different Ricker 

wavelets. The figures clearly show that the soft caisson has the negative effect of causing 

vertical accelerations at ground level, obviously not observed in the case with no treatment. 
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When the frequency is equal to 1Hz, which implies a resonance phenomenon in the deposit, 

the generation, inside the caisson, of vertical accelerations of the same order of magnitude of 

the horizontal ones is expected. Outside the box, vertical accelerations rapidly decrease (see 

Figure 2.3.3.1.11).    

   

(a) (b) (c) 

  

 

(d) (e)  

Figure 2.3.3.1.11 Accelerations for different positions (a - e), from the left boundary of the 

model, at ground surface, by propagating a Ricker wavelet with a 

fundamental frequency f = 1Hz, for a soft layer shear velocity Vs,g = 20m/s. 

 

When the propagated signal does not induce resonance of the whole system, such as for 

f=3Hz, significant values of vertical accelerations are relegated to the outside of the caisson 

(see Figure 2.3.3.1.12); in the inner part, accelerations in the two directions are extremely 

low, of the same order of magnitude. The system seems therefore to be able to isolate the 

interior part from effects in terms of accelerations both in the vertical and horizontal 

directions. It must be pointed out, however, that the soft barrier may increase the seismic 

effects immediately outside, and thus possible negative effects on buildings adjacent to the 

one to protect have to be considered. 
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(a) (b) (c) 

  

 

(d) (e)  

 

Figure 2.3.3.1.12 Accelerations for different positions (a - e) from the left boundary of the 

model at ground surface by propagating a Ricker wavelet with a 

fundamental frequency of 3Hz, for a soft layer shear velocity Vs,g= 20m/s. 

 

The vertical accelerations could be partially related to the calculation limits of the adopted 

model: when a dynamic simulation is performed with FLAC, a rotation of the model base 

may take place (Flac7 Manual, 2011).  

Generally speaking,  this rotation may happen when a dynamic loading is applied to the base 

of the model, when quiet boundaries or free-field conditions are imposed along the lateral 

boundaries.  

In the performed analyses, the previously reported conditions, which may determine model 

base rotation, are contemporary in the model. The wave transmission through the model can 

produce a variation in the distribution in stresses that becomes locked-in, above all if material 

failure occurs. Consequently, the reaction forces along the side boundaries, calculated when 

the free-field boundaries were assigned at the initial equilibrium state of the model, may no 

longer satisfy equilibrium for the redistributed stress state in the model and so the base of the 

model can then start to rotate. 

To prevent rotation, the depth of the model may be increased. This solution does not produce 

significant improvements to the quality of the numerical solutions, increasing, at the same 
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time, the calculation duration; low vertical acceleration values are then observed at the ground 

level of a soil deposit with no treatment subjected to a shear wave. These accelerations are 

then subjected to minor errors, which do not seem depend on the propagated signals (see 

Figures 2.3.3.1.13).   

 

(a) 

 

(b) 

 

(c) 

Figure 2.3.3.1.13 Accelerations and displacements at ground surface with time due to the 

propagation of Ricker wavelets with fundamental frequencies of 1Hz (a) 

and 5Hz (b). 
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impedance for treated layers. In Table 2.3.3.2.1 the values of natural periods and frequencies 

in the hypothesis of elastic behaviour for the soil deposit without treatment has been 

considered (see §2.3.3): 

 

ss

n
V

H
T

,

4 
                                                (2.3.3.2.1) 

 

H (m) Vs,s (m/s) Tn (s) fn (Hz) Vs,g (m/s)  

60 

200 1.2 0.83 

20 

20 

300 0.8 1.25 30 

500 0.48 2.08 50 

Table 2.3.3.2.1 Values of the natural periods and frequencies for the soil deposit without any 

treatment, and impedance ratios due to the introduction of the soft layers. 

 

Ax expected, the natural periods Tn decreases for increasing values of soil stiffness.  

If a soft caisson of Vs,g=20m/s is inserted into the soil deposit (i.e. =30), the effects in the 

control point will be calculated in terms of mean periods, spectral intensities and maximum 

accelerations (see Figure 2.3.3.2.1), amplification ratios (see Figures 2.3.3.2.2) and compared 

to the case of no treatment.  

First of all, the effects in terms of maximum accelerations and spectral intensities in the 

control point by considering the different impedance ratios are similar, with some little 

differences for the system responces for f=0.5Hz, 1Hz and 3Hz (see Figures 2.3.3.2.1).  

The system seems to be slightly influenced by the dynamic impedance ratio between the soil 

and the soft grout. In terms of accelerations and spectral intensities, the “Vs,s=500m/s 

Vs,g=20m/s” model, which is characterized by the higher impedance ratio value, is the best in 

reducing the effects in the control point for f  > 0.5Hz. Unexpectedly, even in this frequency 

range, the system behaviour does not seem to be influenced only by the variation of the 

impedance ratio, because the “Vs,s=200m/s Vs,g=20m/s” model, which is characterized by the 

lower impedance ratio value, is not the less effective in reducing the dynamic effects. This can 

be seen by a comparison between the effects in terms of accelerations or spectral intensities of 

the “Vs,s=200m/s Vs,g=20m/s” model and the “Vs,s=300m/s Vs,g=30m/s” one for f=1Hz and 

3Hz: the “Vs,s=300m/s Vs,g=30m/s” model is the most ineffective.   



 145 

 

(a) 

 

(b) 

 

(c) 

Figure 2.3.3.2.1 Values of Tm,g / Tm,s (a), SIg / SIs(b) and amax,g / amax,s(c) by varying the 

fundamental frequency of the Ricker wavelet and assuming Vs,g=20m/s and 

a soil deposit with Vs,s=300m/s. 

 

Figures 2.3.3.2.2 report the amplification ratios referred both to the base of the soil deposit ( 

A(0-60m) ) and to a depth equal to 19m ( A(0-19m) ), i.e. the upper side of the horizontal soft 

layer. For all the three analysed cases, the A(0-60m) profiles indicate that the introduction of 

different soft caissons with Vs,g=20m/s modifies the resonance frequency range, shifting the 

maximum response of the deposit close to f = 1Hz.  

The resonance frequency of the soft caisson can be shown in the A(0-19) trend (see Figures 

2.3.3.2.2). The A(0-19m) function plays a relevant role in propagating some frequencies to 

the ground level, because it considers the amplification phenomena due to the mechanical and 

geometrical properties of a given soft caisson, without taking directly into account the effects 
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of the lateral soft layers in filtering the signals. In fact, Figures 2.3.3.2.2 show different A(0-

19m) profiles for the three cases, due to the dissimilar soil and soft layer stiffnesses.   

 

 

(a) 

 

(b) 

 

(c) 

Figure 2.3.3.2.2 Amplification ratios A(0-60m) and A(0-19m) by assuming Vs,g=20m/s and 

Vs,s=300m/s (a), 200m/s (b) and 500m/s (c). 

 

 

If the response of the three studied systems (see Table 2.3.3.2.1) is not largely influenced by 

the impedance ratio and, at the same time, resonance frequencies close to 1Hz are observed, it 

is expected that the absolute shear wave velocity of the soft layers plays a relevant role on the 

soft caisson behaviour.   

Thereafter, a geometrical configuration similar to the one previously assumed (see Table 

2.3.3.2.1) has been considered. By referring to a geometrical scheme having Hg=20m, 

L=40m, H=60m, and assuming ρs=2040kg/m
3
, s=3%, ρg=1020kg/m

3
, some considerations on 
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the importance of the impedance ratio on the soft caisson behaviour can be made; in 

particular, three different schemes with the same impedance ratio (α=20) between soil and 

soft layers, have been analysed, as reported in Table 2.3.3.2.2. 

 

Scheme 
Vs,s 

(m/s) 

Tn 

(s) 

fn  

(Hz) 

Vs,g  

(m/s) 
α 

Vs,s=200m/s Vs,g=20m/s 200 1.2 0.83 20 

20 Vs,s=300m/s Vs,g=30m/s 300 0.8 1.25 30 

Vs,s=500m/s Vs,g=50m/s 500 0.48 2.08 50 

Table 2.3.3.2.2 Schemes adopted for analyses. 

 

The responses of the three schemes differ each others, as reported both in Figures 2.3.3.2.3 

and 2.3.3.2.4, where the maximum accelerations are shown for two different signals (f=1Hz 

and 5Hz). Table 2.3.3.2.3  reports the  spectral intensities in the control point for two different 

signals (f=1Hz and 5Hz) referred to the three schemes: it seems to show that, by assuming a 

certain constant impedance ratio, the response of the model is sensible to the differences 

between the dynamic impedances of the soils and the soft layers, in the sense that lower 

stiffness values correspond to lower SI values.  

The efficiency of the system improves by decreasing the stiffness both of the soil and the soft 

layers; as reported in Figure 2.3.3.2.5, the efficiency trends are similar among the different 

schemes, but lower stiffness values show higher efficiencies on larger structural periods.  

These effects depend on the interaction between the soil layers, the deposit and the propagated 

signals. Figures 2.3.3.2.3 report the amplification ratios for the three schemes. The aim is to 

identify some connection between a given value of the impedance ratio and the response of 

the deposit. However, as expected by looking at the previous results in terms of spectral 

intensities and accelerations (see Figure from 2.3.3.2.3 to 2.3.3.2.5), the less the stiffness 

values the more the maximum amplifications A(0-60m) on lower frequencies. Due to the 

different mechanical properties of the soils inside caisson, the amplification ratios between the 

ground level and the upper part of the horizontal soft layer A(0-19m) differ each others (see 

Figures  2.3.3.2.3).  Generally speaking,  it seems that both the shear wave velocity of the soft 

layers and the impedance ratio are relevant parameters in the propagation of the signal 

through the insulating box, but the former plays a more significant role. To mitigate the 

seismic risk, it is more convenient the injection of soft layers with very low shear wave 

velocity, also when the soil deposit has a high shear stiffness value. 
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(a) (b) (c) 

Figure 2.3.3.2.3 Maximum accelerations with depth along the central vertical axis for two 

different signals (f=1Hz and 5Hz). 

 

 

(a) 

 

(b) 

 

(c) 

Figure 2.3.3.2.4  Maximum accelerations at ground surface on the left side with respect to the 

central vertical axis for two different signals (f=1Hz and 5Hz). 

0

10

20

30

40

50

60

0 1 2 3 4

z 
(m

)

amax,g/amax,s

Vs,s=200m/s

Vs,g=20m/s

0

10

20

30

40

50

60

0 1 2 3 4

z 
(m

)

amax,g/amax,s

Vs,s=300m/s

Vs,g=30m/s

0

10

20

30

40

50

60

0 1 2 3 4

z 
(m

)

amax,g/amax,s

f=1Hz

f=5Hz

Vs,s=500m/s

Vs,g=50m/s

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

a m
ax

,g
/a

m
ax

,s

x (m)

Vs,s=200m/s

Vs,s=200m/s

Vs,g=20m/s

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

a m
ax

,g
/a

m
ax

,s

x (m)

Vs,s=300m/s

Vs,g=30m/s

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

a m
ax

,g
/a

m
ax

,s

x (m)

f=5Hz

f=1Hz

Vs,s=500m/s

Vs,g=50m/s



 149 

 

 SIg/SIs [0.1÷0.5] 

f (Hz) Vs,s=200m/s Vs,g=20m/s Vs,s=300m/s Vs,g=30m/s Vs,s=500m/s Vs,g=50m/s 

1 1.18 2.37 2.09 

5 0.12 0.15 0.65 

Table 2.3.3.2.3 Spectral intensities in the control point for two different signals (f=1Hz and 

5Hz). 

 

 

Figure 2.3.3.2.5 Efficiency EI in the control point for two different signals (f=1Hz and 5Hz). 

 

  

(a) (b) 

  

(c) (d) 

Figure 2.3.3.2.5 Amplifications ratios for the different schemes. 
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2.3.3.3 Effects of the variation of the soil deposit depth  

Having assumed constant values for the dynamic impedance of the isolating box, in this series 

of analyses the depth of the soil deposit H has been varied, and assumed equal to 60m, 40m 

and 80m. The schemes assume Vs,s=300m/s and Vs,g=20m/s (i.e. =30).  

In Table 2.3.3.3.1, the values of natural periods and frequencies, in the elastic field, for the 

soil deposit with no treatment are reported (see §2.3.3.1): 

  

H  

(m) 

Vs,s  

(m/s) 

Tn  

(s) 

fn  

(Hz) 

Vs,g  

(m/s) 
 

40 

300 

0.53 1.88 

20 20 60 0.8 1.25 

80 1.07 0.94 

Table 2.3.3.3.1 Values of the natural periods and frequencies for the soil deposit without any 

treatment. 

 

Figures 2.3.3.3.1 report the variations in response among the different schemes, which are 

justified by the amplification ratio profiles shown in Figures 2.3.3.3.2. For H equal to 80m, 

the natural frequency of the soil layer without treatment is close to 1Hz, which is close to one 

of the frequencies amplified by the insertion of the  isolating box (i.e. Vs,g=20m/s with the 

geometrical configuration depicted in §2.3.3.1), as reported in §2.3.3.2. Therefore, the 

response of the model is amplified for a Ricker wavelet having a fundamental frequency of 

1Hz. Figure 2.3.3.3.2b shows that, in the case of H=40m, the insertion of the soft caisson 

amplifies the response of the system for f=1Hz, as in the case of H=80m, but the maximum 

amplification is close to 0.3Hz. The first resonance frequency of the soil deposit with no 

treatment, for H=40m, is 1.88Hz (see Table 2.3.3.3.1); therefore, the treatment leads to a shift 

of the response of the soil deposit to higher periods. 

This observation can be extended to the case of H=60m and 80m, because the higher 

amplifications are focused on frequencies lower than the ones of resonance of the soil 

deposits (see Figures 2.3.3.3.2). 

The observations contained in this paragraph and in §2.3.3.2 suggest that the geometrical 

features and the mechanical properties of the soft caisson should be conceived referring to the 

specific requirements of the soil deposit which it is working on, in the sense that, by using this 

treatment system, it is possible to change the most amplified frequencies passing through the 

grouted layers. 



 151 

Therefore, the soft box can be designed to de-amplify the frequencies most critical for the 

building to be protected. 

 

(a) 

 

(b) 

 

(c) 

Figure 2.3.3.3.1  Variations of the mean period Tm,g(a), the spectral intensities SIg (b) and the 

maximum accelerations amax,g (c ), by varying the deposit depth H and the 

propagated signal. 
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(a) 

 

(b) 

Figure 2.3.3.3.2  Amplification ratios of the model configurations with Vs,s=300m/s and 

Vs,g=20m/s , by assuming deposit depths H equal respectevely to 60m (a), 

40m and 80m (b), by varying the fundamental frequencies of the 

propagated signals. 

 

2.3.3.4 Effects of the variation of the lateral soft layers length  

Other schemes have been tested by starting from the geometrical configuration adopted in 

§2.3.3.2, with an isolating box 20m depth and 40m long, with soft layers having Vs,g equal to 

20m/s, and changing the length of the lateral vertical soft layers. Two kinds of modifications 

of the reference geometrical configuration have been made: the former consists in gradually 

reducing the vertical layers length from ground level going downwards to the lower part of 

the diaphragms (schemes named S; see Figure 2.3.3.4.1 a); the latter consists in reducing 

length by cutting upwards, from the deepest part to ground level (schemes named S*; see 

Figure 2.3.3.4 b). Both schemes result into a soft caisson which is not continuous; the goal of 

these analyses it to see if the same isolating results can be obtained reducing grouting. 

In Figures 2.3.3.4.2, the values of the ratios amax,g/amax,s and SIg/SIs for the schemes S (a) are 

reported along the ones of the reference case (continuous soft caisson). The non-continuous 

schemes give rise to values of amax,g/amax,s and SIg/SIs close to 1 for most frequencies, thus 

indicating that they are not as effective as the closed caisson. Only the scheme S1* may help, 
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but only for the higher frequencies. To be really effective, therefore, the isolating box has to 

be closed (reference scheme). 

 

(a) 

 

(b) 

 

(f) 

 

(c) 

 

(h) 

 

(d) 

 

(h) 

 

(e)   

Figure 2.3.3.4.1  Reference scheme with Vs,s=300m/s and Vs,g=20m/s ( a); S1 (b); S2 (c); S3 

(d); S4 (e); S1* (f); S2* (g); S3* (h). 

 

Similar observations can be made also with reference to the amplification ratios reported in 

Figure 2.3.3.4.3 for the schemes S (a) and S* (b). Schemes S* tend to amplify both the 

frequencies amplified by the reference scheme and the ones amplified in absence of any 

treatment.  

In Figure 2.3.3.4.4, the Sa-Sd domains referred to the control point obtained by propagating a 

Ricker wavelet with a fundamental frequency of 5Hz, for different model configurations, are 

reported. S2 and S2* schemes show a shrinkage of the envelope essentially, because of a 

reduction of the maximum values of Sa, but no rotation towards larger periods. In other words, 

these incomplete schemes may have the only effect of slightly reducing the maximum 
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accelerations hitting the structure to be protected. The form of the domains shows that these 

schemes are able to reduce the effects only at higher periods. The reference scheme shows the 

best performance.  

 

 

(a) 

 

(b) 

Figure 2.3.3.4.2   Values of the ratios amax,g/amax,s and SIg/SIs for schemes S (a) and S*(b) with 

comparisons to the amplification ratio of the reference scheme with a closed 

isolating box. 
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(a) 

 

(b) 

Figure 2.3.3.4.3  Amplification ratios for the schemes S (a) and S* (b) with comparisons to the 

amplification ratio in the case of no treatment (black thick line) and in the 

reference scheme with a closed soft caisson. 

 

 

Figure 2.3.3.4.4 Sa-Sd domains in the control point by propagating a Ricker wavelet with a 

fundamental frequency of 5Hz, for different geometrical configurations. 

 

2.3.3.5 Effects of the variation of a load on ground surface 

The existence of a structure at ground level has not been considered in terms of dynamic 

interaction between the soil and the structure behaviour in this work, even though, it is 

expected to play a relevant role. By considering a given structure only as a supplementary 

weight, analyses have confirmed that such a weight does not play a relevant role. Tables from 

2.3.3.5.1 to 2.3.3.5.3 show these results in terms of maximum accelerations, spectral 
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intensities and predominant periods of the signals calculated in the control point of a scheme 

with Vs,s=300m/s, Vs,g=20m/s, H=60m, L=40m and Hg=20m, by applying a distributed load 

(qw equal to 0, 50kPa and 100kPa) on a length equal to 20m at ground surface, at the centre of 

the isolating box (see Figure 2.3.3.5.1). 

A distributed load at ground level does not play a relevant role because it does not constitute a 

participant mass to the motion of the system; however, the presence of a structure at ground 

level plays a noteworthy role, because of the mutual interaction with the soil (Venditozzi, 

2013). 

 

Figure 2.3.3.5.1 Geometrical configuration, with the indication on the position of the load 

distribution. 

 

f (hz) 
Soil qw=0kPa Vs,s=300m/s Vs,g=20m/s qw=0kPa 

amax (g) SI (cm) Tp (s) amax (g) SI (cm) Tp (s) amax,g / amax,s SImax,g / SImax,s 

0.1 0.508 9.791 3.480 0.521 10.050 3.480 1.026 1.026 

0.5 0.808 17.276 1.120 2.240 48.880 1.000 2.772 2.829 

1 0.900 28.040 0.680 1.590 36.620 0.900 1.767 1.306 

2 0.667 26.138 0.300 0.136 5.430 0.860 0.204 0.208 

3 0.628 17.569 0.220 0.058 5.670 0.280 0.092 0.323 

5 0.546 6.870 0.140 0.037 0.528 0.100 0.067 0.077 

Table 2.3.3.5.1 Effects in the control point for different signals and a distributed load qw equal 

to 0kPa.   

 

f (hz) 
Soil qw=50kPa Vs,s=300m/s Vs,g=20m/s qw=50kPa 

amax (g) SI (cm) Tp (s) amax (g) SI (cm) Tp (s) amax,g / amax,s SImax,g / SImax,s 

0.1 0.508 9.791 3.480 0.522 10.052 3.480 1.026 1.027 

0.5 0.808 17.276 1.120 2.244 48.879 1.000 2.776 2.829 

1 0.900 28.038 0.680 1.591 36.617 0.900 1.768 1.306 

2 0.667 26.139 0.645 0.136 5.670 0.860 0.204 0.217 

3 0.628 17.546 0.220 0.058 2.057 0.280 0.093 0.117 

5 0.550 6.89 0.140 0.037 0.528 0.100 0.066 0.077 

Table 2.3.3.5.1 Effects in the control point for different signals and a distributed load qw 

equal to 50kPa.   
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f (hz) 
Soil qw=100kPa Vs,s=300m/s Vs,g=20m/s qw=100kPa 

amax (g) SI (cm) Tp (s) amax (g) SI (cm) Tp (s) amax,g / amax,s SImax,g / SImax,s 

0.1 0.508 9.791 3.480 0.522 10.052 3.480 1.026 1.027 

0.5 0.808 17.276 1.120 2.244 48.879 1.000 2.776 2.829 

1 0.900 28.038 0.680 1.591 36.617 0.900 1.768 1.306 

2 0.667 26.139 0.300 0.136 5.670 0.860 0.204 0.217 

3 0.628 17.546 0.220 0.058 2.057 0.280 0.093 0.117 

5 0.549 6.898 0.120 0.036 0.528 0.100 0.066 0.077 

Table 2.3.3.5.1 Effects in the control point for different signals and a distributed load qw 

equal to 100kPa.   

2.3.3.6 Effects of the variation of the dimension of the soft caisson 

In order to check the influence of the dimensions of the isolating box, the analyses 

summarized in Table 2.3.3.6.1 have been carried out. In all of them, the soil deposit is 60m 

thick, its shear wave velocity Vs,s is of 300m/s with a damping ratio of 3%, and the shear 

wave velocity of the soft layers Vs,g is equal to 20m/s.  

 

Scheme 
Hg 

(m) 

Lg 

(m) 

Hg=0m L=40m 1 40 

Hg=10m L=40m 10 40 

Hg=20m L=40m 20 40 

Hg=10m L=30m 10 30 

Hg=20m L=30m 20 30 

Hg=10m L=20m 10 20 

Hg=20m L=20m 20 20 

Table 2.3.3.6.1 Different scheme configurations by varying Hg and Lg of the soft caisson. 

 

Also a scheme with Hg=1m (soft layer at ground surface), which is more similar to a building 

base isolation system, has been considered. However, since in this case the soft layer does not 

have the possibility to freely slide in the horizontal direction (because of the lateral soil 

constraint), it may be expected to be not as effective as a base isolator. The effect of soil 

lateral constraint is reported in Figures 2.3.3.6.1, where the variations in the response of the 

system in the control point in terms of predominant period, mean period, spectral intensity 

and maximum acceleration are reported, for different values of the soil caisson depth Hg, 

assuming a constant length Lg of the horizontal layer (Lg = 40m).  

The green line reported in Figures 2.3.3.6.1 shows the response of the system for Hg=1m; as 

previously anticipated, this case is not effective, as all the ratios in the Figures 2.3.3.6.1 keep 

a constant value of 1. The purple and dark red lines in Figure 2.3.3.6.1a represent the 
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variations in predominant periods in the signal calculated in the control point. The trend is 

similar, but larger values are observed for Hg=20m.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 2.3.3.6.1  Variations in the response of the system in the control point in terms of 

predominant period, mean period, spectral intensity and maximum 

acceleration for different Hg, assuming a constant Lg = 40m. 
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In order to explain these results, it is convenient to consider a simple analogical model (see 

Figure 2.3.3.6.2) in which the soil on the sides of the isolating box is replaced by an 

equivalent elastic spring with a stiffness k*, and the mass involved by the motion is m*. 

 

  

(a) (b) 

Figure 2.3.3.6.2 Schematization of the system (a) in an equivalent SDOF (b). 

 

Since such a system could be studied as a simple oscillator, its fundamental period is: 

 

*

*
2*

k

m
T                          (2.3.3.6.1)  

 

The period may increase by increasing the mass m* or decreasing the stiffness k*. In these 

cases, the periods seem to slightly increase by varying the depth of the soft caisson, with a 

significant effect of the mass m* variations in determining the response of the caisson. 

However, for f=0.1Hz and 5Hz no differences in terms of predominant periods are observed. 

As previously observed in the 1D analyses too (see §2.2.2.2), the treatment effectiveness 

increases increasing the depth Hg (see Figure 2.3.3.6.1 c and d). 

This can be appreciated by observing the amplification ratios of the system in the control 

point (see Figures 2.3.3.6.3) by varying the depth of the treatment Hg (0m (a), 10m (b) and 

20m (c)) for Lg = 40m. Amplification ratios are reported both in terms of differences in 

response between the ground level and the soil layer base and in terms of differences in 

response between the ground level and the upper side of the soft horizontal layer. 

Amplification ratios confirm results in terms of spectral intensities and maximum 

accelerations (see Figures 2.3.3.6.1 c and d); the scheme with Hg=10m tends to amplify the 

effects in correspondence of some frequencies more than the scheme with Hg=20m, especially 

for f=1Hz. By observing results in terms of efficiencies (see Figures 2.3.3.6.4), a wider range 

of periods in which the treatment is able in reducing dynamic effects is observed by 

increasing soft horizontal layer depth. Again, this result is consistent with 1D analyses results, 

and is due both to frequencies amplification distribution and material damping which is more 

impacting by considering a deeper soft caisson.  
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In Figure 2.3.3.6.5 the maximum accelerations at ground surface for Vs,g = 20m/s, and varying 

the different values of Lg are reported. Three different fundamental frequencies of the Ricker 

wavelet are shown; by varying the size of the soft caisson, the maximum accelerations inside 

assume different values.  

 

(a) 

 

(b) 

 

(c) 

Figure 2.3.3.6.3  Amplification ratios of the system in the control point by varying the depth of 

the treatment Hg (0m (a), 10m (b) and 20m (c)) for Lg = 40m. 

 

A comparison among different geometrical configurations by varying both the length and the 

depth of the soft caisson for different input wavelets is reported in Figures 2.3.3.6.6. 

Comparisons have been made in terms of predominant, mean periods, spectral intensities and 

maximum accelerations in the control point for different depths of the horizontal layer (10m 

or 20m).  By shrinking the soft caisson, it seems that the fundamental period increases on a 

larger range of signal frequencies. This is less evident with reference to the mean period. For 

Ricker fundamental frequencies larger than 0.5Hz, an enlargement of the soft caisson leads to 

0

10

20

30

40

50

60

70

0.01 0.1 1 10

A
m

p
li

fi
ca

ti
o

n
 R

at
io

f (Hz)

Vs,s=300m/s

A (0-60m)

Hg=0m

L=40mLg=40m

0

10

20

30

40

50

60

70

0.01 0.1 1 10

A
m

p
li

fi
ca

ti
o

n
 R

at
io

f (Hz)

Vs,s=300m/s

A (0-60m)

A (0-9m)

Hg=10m

L=40mLg=40m

0

10

20

30

40

50

60

70

0.01 0.1 1 10

A
m

p
li

fi
ca

ti
o

n
 R

at
io

f (Hz)

Vs,s=300m/s

A (0-60m)

A (0-19m)

Hg=20m

L=40mLg=40m



 161 

lower maximum accelerations and spectral intensities values (see Figures 2.3.3.6.6 from e to 

h). This may be explained by looking at amplification ratios (see Figures 2.3.3.6.7). 

 

(a) 

 

(b) 

 

(c) 

Figure 2.3.3.6.4  Efficiencies for different geometrical configurations of the isolating box, by 

assuming Vs,g=20m/s, Lg=40m and Hg=0m (a), 10m (b) and 20m (c). 

 

 

Figure 2.3.3.6.5 Maximum accelerations at ground surface, by assuming Vs,g=20m/s, and 

varying the length Lg of the soft caisson. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Figure 2.3.3.6.6 Effects, in the control point, in terms of predominant (a and b) and mean 

periods (c and d), spectral intensities (e and f) and maximum accelerations 

(g and h) for different depths of the horizontal layer (10 or 20m). 
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(a) (b) 

Figure 2.3.3.6.7 Amplification ratios for Hg equal to 10m (a) and 20m (b). 

 

2.3.3.7 Effects of the variations of the soft layers thickness  

In the analyses reported in the previous sections, a constant value of the thickness of the soft 

layers has been considered, equal to 1m. In order to understand if a larger thickness may 

determine important differences in response at ground surface, two other values have been 

taken into account, i.e. 2m and 3m, by considering a soil deposit of 60m, Vs,s=300m/s, and a 

soft caisson with Vs,g=20m/s, Lg=40m, Hg=20m.  

By assuming a larger thickness, effects are really impacting on system. In terms of 

fundamental and mean periods of the signal in the control point, by enlarging the thickness of 

the soft layers periods tend to decrease. This is clearly testified in terms of mean period (see 

Figure 2.3.3.7.1 b) whose value decreases by increasing soft layer thickness. 

Above all, increasing soft layer thickness is determinant in reducing spectral intensity and 

maximum acceleration values (see Figure 2.3.3.7.1 c and d) in correspondence to the 

frequencies of 0.5Hz and 1Hz, whose effects have not been cut down by inserting 1m thick 

layers. By increasing thickness, a reduction of the effects in the control point is possible, as 

also reported in Figures 2.3.3.7.2. 

Such figures describe the effects along the central vertical axis in terms of horizontal 

maximum accelerations and the effects at ground surface at the left side with respect to the 

symmetry vertical axes in terms of horizontal maximum accelerations. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.3.3.7.1  Effects, in the control point, in terms of predominant (a) and mean periods 

(b), spectral intensities (c) and maximum accelerations (d) for different 

thicknesses of the soft layers, assuming Vs,g=20m/s, Hg=20m, Lg=40m, 

Vs,s=300m/s. 
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(a) (b) 

  
(c) (d) 

 

Figure 2.3.3.7.2  Effects along the central vertical axis in terms of horizontal maximum 

accelerations by varying the thicknesses of the soft layers for a Ricker 

wavelet fundamental frequency of 1Hz (a) and 3Hz (b); effects at ground 

surface on the left side of the symmetry vertical axes, in terms of horizontal 

maximum accelerations by varying the thicknesses of the soft layers for a 

Ricker wavelet fundamental frequency of 1Hz (c) and 3Hz (d). 

 

Amplification ratios (see Figures 2.3.3.7.3a) confirm that by increasing the thickness of the 

treated layers lower frequencies are the most amplified ones, but the ratio amplitude in 

correspondence of the frequency of 1Hz drastically reduces; furthermore, the soft caisson 

tends to amplify higher frequencies (see Figures 2.3.3.7.3b). 

A similar effect can be seen by looking at efficiency EI (see Figures 2.3.3.7.4) for different 

thicknesses of the soft layers. By increasing the thickness, the system has EI larger than 0 for 

higher SDOF period ranges; in this sense, the increase of thickness of the soft layers seems to 

correspond to better safety conditions for a structure placed at ground surface. 

 

 

 

0

10

20

30

40

50

60

0 1 2 3 4

z 
(m

)

amax,g/amax,s

f=1Hz

0

10

20

30

40

50

60

0 1 2 3 4

z 
(m

)

amax,g/amax,s

thickness=1m

thickness=2m

thickness=3m

f=3Hz

0

0.5

1

1.5

2

0 10 20 30 40 50 60

a m
ax

,g
/a

m
ax

,s

x (m)

f=1Hz

0

0.5

1

1.5

2

0 10 20 30 40 50 60

a
m

a
x

,g
/a

m
a
x

,s

x (m)

thickness=1m

thickness=2m

thickness=3m

f=3Hz



 166 

   
(a) (b) 

Figure 2.3.3.7.3  Amplification ratios between the ground level and the base of the soil 

deposit (a) and between the ground level and the upper part of the layer 

(b) for different thicknesses of the soft layers. 

 

  

(a) (b) 

 

(c) 

Figure 2.3.3.7.4   Efficiencies for different thicknesses of the soft layers, equal respectively to 

1m (a), 2m (b) and 3m (c). 
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though the three values largely differ each other, they have no effect at all on the results. 

Spectral intensity values in the control point are reported in Table 2.3.3.8.1: only extremely 

low dissimilarities are seen.  This observation may be expressed by looking at Figure 2.3.3.8.1 

too, where the maximum accelerations along the central vertical axis are reported, considering 

different values of damping ratios for the case f=5Hz. By changing the damping ratio of the 

soft layers, only a tiny variation in the distribution of results is observed. This result is 

physically consistent, as the small thickness of the soft layer reduces the possibility to 

dissipate energy within it, regardless of this value of the damping ratio.   

 

SI (cm) 

f (Hz) 
No 

Treatment 

D0 

(g=0) 

D3 

(g=0.03) 

D10 

(g=0.1) 

0.1 9.791 10.050 10.052 10.052 

0.5 17.276 48.880 48.879 48.879 

1 28.040 36.620 36.617 36.617 

2 26.138 5.430 5.670 5.670 

3 17.569 5.670 2.057 2.057 

5 6.870 0.528 0.528 0.528 

Table 2.3.3.8.1 Values of SI in the control point due to the different values of damping ratio. 

 

Figure 2.3.3.8.1 Maximum accelerations along the central vertical axis for f=5Hz, by 

considering two different values of damping ratio. 
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2.3.3.9 Effects of the variation of the soft layers volumetric stiffness  

As done for simpler schemes, in these 2D analyses the variation in volumetric stiffness of the 

soft layers forming the isolating box (characterized by Vs,s=300m/s; H=60m; Vs,g=20m/s; 

Lg=40m; Hg=20m) has been considered. Four different typologies of analyses have been 

performed, by varying not only the volumetric stiffness K of all the soft layers, but also 

considering a different distribution of the parameter K across the thin treated layers.  

In this sense, a scheme named Kv (see Table 2.3.3.9.1) has been considered, where, assuming 

a given value of the shear stiffness G, the lateral soft layers keep a stiffness linked to a 

Possion ratio =0.3, and the horizontal one assumes a stiffness K derived by =0.147.  

This scheme is interesting because a higher volumetric stiffness of the horizontal soft layer 

may determine lower static settlements (see §3.1.4.2 ).  

 

   Horizontal soft layer Lateral soft layers 

Scheme 
Vs,g 

(m/s) 

G 

(Pa) 
 

K 

(Pa) 
G/K  

K 

(Pa) 
G/K 

K 20 4.079∙10
5
 0.300 8.838∙10

5
 0.46 0.300 8.838∙10

5
 0.46 

0.5K 20 4.079∙10
5
 0.147 4.419∙10

5
 0.92 0.147 4.419∙10

5
 0.92 

10K 20 4.079∙10
5
 0.477 88.38∙10

5
 0.05 0.477 88.38∙10

5
 0.05 

Kv 20 4.079∙10
5
 0.477 88.38∙10

5
 0.05 0.300 8.838∙10

5
 0.46 

Table 2.3.3.9.1 Schemes adopted to study the influence of the volumetric stiffness on the soft 

layers efficiency. 

 

In terms of periods (see Figures 2.3.3.9.1 a and b), two different behaviours are observed: on 

one hand the schemes 0.5K and K; on the other hand the scheme 10K.  Kv scheme is 

intermediate between the two conditions, with a mean period trend with no large variations 

and the fundamental period values, which are more closely linked to the signal frequencies.   

By observing Figures 2.3.3.9.1, a lower volumetric stiffness reduces the maximum 

accelerations and spectral intensities in the control point, with the exception of f=0.5Hz (see 

azure lines of Figures 2.3.3.9.1 c and d). The worst scheme seems to be the 10K one, which 

amplifies dynamic actions with the exception of f=0.5Hz. The Kv scheme is intermediate 

between these two conditions, but with a remarkable tendency to attenuate the effects of the 

signal propagations. In this sense, its results are more similar to K and 0.5K schemes. These 

behaviours are detected by observing the amplification ratio values for the different schemes 

(see Figures 2.3.3.9.1) both between the ground level and the base of the soil deposit A(0-

60m) (a) and between the ground level and the upper part of the horizontal soft layer A(0-

19m) (b).  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.3.3.9.1 Effects in the control point in terms of predominant (a) and mean periods (b), 

spectral intensities (c) and maximum accelerations (d) for K of the soft 

layers, for Vs,g=20m/s, Hg=20m, L=40m, Vs,s=300m/s. 
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(a) 

 

(b) 

Figure 2.3.3.9.1  Amplification ratio A(0-60m) (a )and A(0-19m)(b) by varying the volumetric 

stiffness K of the soft layers. 

 

In the time domain, the horizontal accelerations for different positions x from the left 

boundary of the model at ground surface by propagating a Ricker wavelet with a fundamental 

frequency of 2Hz (see Figures 2.3.3.9.10) show differences in the response of the system by 

varying the volumetric stiffness of the soft layer.  

By comparing the K scheme (see Figure 2.3.3.9.10 a), for example, with the 10K one (see 

Figure 2.3.3.9.10 b), differences are evident in amplitude variations and signal duration inside 

caisson and at its lateral boundary. 

In terms of vertical accelerations (see Figures 2.3.3.9.11), differences can be seen above all 

for signal durations, which are more sensible to the variation of scheme. 

By increasing the volumetric stiffness, the soft caisson is less effective, due especially to the 

low compressibility of the lateral soft layers (as detected from the behaviour of the Kv 

scheme,  similar to the K and 0.5K ones) which are subjected to compression because of 

vertical shear wave propagation. The higher the compressibility of the lateral layers the larger 

the decrease in horizontal dynamic actions in the soft caisson. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 2.3.3.9.10 Horizontal accelerations for different positions x at ground surface by 

propagating a Ricker wavelet with a fundamental frequency of 2Hz, for 

Vs,g= 20m/s and varying the volumetric stiffness K of the soft layers. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 2.3.3.9.11  Vertical accelerations for different positions x at ground surface by 

propagating a Ricker wavelet with a fundamental frequency of 5Hz (from 

a to d) and 2Hz (from e to h), for Vs,g = 20m/s and varying the volumetric 

stiffness K of the soft layers. 
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2.3.3.10 Effects of the constitutive model on the efficiency of the isolating box 

The analyses reported in the previous pages have all been carried out considering the natural 

and grouted soils as linearly elastic materials. As a consequence, the results obtained were not 

affected by the amplitude of the dynamic excitation, in the sense that such an amplitude 

affected the absolute values of accelerations and displacements, but not the mechanical 

behaviour of the soft caisson, i.e. its effectiveness. In the case of elastic behaviour, the 

amplification ratio functions depend only on the geometrical configurations and mechanical 

properties of the layers which signals have been propagated through. However, such elastic 

analyses may be representative of the true behaviour of the system only for small amplitude 

seismic excitations. If amplitudes get larger, the true elasto-plastic behaviour of soils plays a 

role, and therefore has to be considered. In this case, the model introduced to this aim is a 

linear elastic-perfectly plastic model, with a Mohr-Coulomb failure criterion. As usual, the 

elastic part of the behaviour needs two parameters to be defined (for instance E and , or G 

and K), while the plastic one needs three more parameters: two (the cohesion c’ and the shear 

strength angle ’) needed to define the position of the yield envelope (which coincides with 

the failure envelope in this case), and one (the dilatancy angle ) needed to define the flow 

rule, and therefore the direction of the plastic strain increment vector. The parameters adopted 

in the analyses described in this paragraph are reported in Tables 2.3.3.10.1 and 2.3.3.10.2.  

Two maximum amplitudes (0.05g and 0.5g) were then considered for every wavelet input 

frequency, in order to check the influence of the plastic behaviour of the natural and treated 

soil on the effectiveness of the soft caisson in filtering and reducing the dynamic effects in the 

protected soil mass and, specifically, in the considered control point CP. 

Scheme Model 

Maximum Ricker 

wavelet Amplitude 

(g) 

S 

Linear 

Elastic 

0.5 

E 0.5 

S* 0.05 

E* 0.05 

SP 

Elasto 

Plastic 

0.5 

SP* 0.05 

EP D5 0.5 

EP D15 0.5 

EP D5* 0.05 

EP D15* 0.05 

Table 2.3.3.10.1 Scheme of the performed analyses. 
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Material 
VS 

(m/s) 
 

G 

(MPa) 

K 

(MPa) 
’ 

(°) 

Soil 300 0.3 183.6 397.7 30 

Soft layer 20 0.3 0.407 0.884 5/15 

Table 2.3.3.10.2 Materials mechanical properties. 

 

The acronyms “E” and “S” (see Table 2.3.3.10.1) indicate analyses in which the materials 

have an elastic behaviour; EP and SP are elasto-plastic analyses; starred acronyms define the 

analyses in which signals have a maximum  amplitude equal to 0.05g. D15 and D5 indicate 

the analyses in which soft layers have been characterized with shear strength angles ’g equal 

to 15 and 5 degrees respectively. These values have been chosen on the basis of the results of 

the preliminary laboratory tests on some possible grouts to be used. 

Figures 2.3.3.10.1 report the effects in the control point in terms of predominant (a) and mean 

periods (b), spectral intensities (c) and maximum accelerations (d) for the different schemes 

considered. In terms of predominant period and mean period, the behaviour seems to be 

similar in the elastic and elasto-plastic analyses, with the exception of the case f=0.1Hz for 

which the signals in the control point after treatment show lower periods for the elasto-plastic 

analyses. 

In terms of accelerations, it is very interesting to notice that the more realistic elasto-plastic 

model leads to a better behaviour for the most critical frequencies (f ≤ 1). In particular, even 

though the signal is not largely reduced, at least it is not as amplified as in the linear elastic 

analyses.  

In this sense, the failure conditions act as a “safety valve” (Anastasopoulos, 2010). Also for 

starred analyses, the development of plastic points around the caisson reduces the maximum 

accelerations, because of the plasticization of the soft layers also in the case of ’g=15°. 

In Figure 2.3.3.10.2 the amplification ratios for soil (a), and schemes with soft caisson for 

f=1Hz (b and d) and f=5Hz (c and e) are reported. As expected, amplification ratios depend 

on the characteristics of the propagated signal. This observation is extremely clear by looking 

at the Figures 2.3.3.10.2 b and c where amplification ratio for f=1Hz and 5Hz are reported. 

The former amplifies the frequencies higher than 1Hz; vice versa the latter amplifies the 

frequencies lower than 1Hz, as also shown in Figures 2.3.3.10.2 d and e, where amplification 

ratios are considered between the ground level and the upper part of the horizontal soft layer. 
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Differences can be found for soil schemes too (Figure 2.3.3.10.2 a); generally speaking, 

starred schemes amplify frequencies which are not amplified by linear elastic schemes, but 

tend to energize the elastic resonance frequencies. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.3.3.10.1   Effects, in the control point, in terms of predominant (a) and mean periods 

(b), spectral intensities (c) and maximum accelerations (d by varying the 

shear resistance of the soft layers. 
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(a) 

  

(b) (c) 

  

(d) (e) 

Figure 2.3.3.10.2  Amplification ratios for the soil deposit (a), and for the soft caisson 

schemes, for f=1Hz (b and d) and f=5Hz (c and e). 

 

The positive effect of the elasto-plastic behaviour of materials is confirmed in terms of 

maximum horizontal both accelerations and displacements.  Figures 2.3.3.10.3 show the 

maximum effects along the central vertical by introducing the soft caisson, i.e. the maximum 

accelerations (a) and displacements (b) for f=1Hz and the maximum accelerations (a) and 

displacements (b) for f=5Hz.  
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the area of intersection between the vertical diaphragms of the soft caisson and the ground 

level (named “edges” in the following) in terms of displacements (see Figures 2.3.3.10.4d).  

At the ground level and for f=1Hz, the failures limit the horizontal displacements and 

acceleration to ratios close to 1.  

 

  

(a) (b) 

  

(c) (d) 

Figure 2.3.3.10.3 Maximum effects along the central vertical axis by introducing the soft 

caisson: maximum accelerations (a) and displacements (b) for f=1Hz; 

maximum accelerations (c) and displacements (d) for f=5Hz. 
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(a) (b) 

  

(c) (d) 

Figure 2.3.3.10.4 Maximum effects at ground surface at the left side of the central vertical by 

introducing the soft caisson: maximum accelerations (a) and displacements 

(b) for f=1Hz; maximum accelerations (a) and displacements (b) for f=5Hz. 
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Signals have been therefore filtered by using a 15Hz low-pass Butterworth filter (Butterworth, 

1930), a type of signal processing filter designed to have as flat a frequency response as 

possible in the range of frequencies that can pass through a filter without being attenuated. 

Figures from 2.3.3.10.6 to 2.3.3.10.9 report the accelerations and the displacements calculated 

in the control point for the schemes called S, EP D5 and EP D15 by varying the frequency of 

the signal propagated (1, 3 and 5Hz). When the oscillations end, residual displacements can 

be observed, especially for horizontal ones. By observing Figures 2.3.3.10.7, it is clear that 

residual displacements, after the introduction of the soft caisson, are of the same order of 

magnitude of the S schemes. The major displacements can be observed for f=1Hz in terms of 

vertical displacements too.  

The reported schemes may be subjected to numerical  errors because the trend of the residual 

displacements is not always constant, as reported in Figures 2.3.3.10.9, where graphs relative 

to f=1Hz for EP D5 (b) and EP D15 (c) show some discrepancies. Generally speaking, an 

increase in signal time duration from the starting of the dynamic action to the ending of 

oscillation may be observed when soft caisson induces resonant phenomena with the 

propagated signal (f=1Hz). Schemes called EP D5 seem to be more efficient in decreasing 

maximum accelerations and displacements with time with respect to EP D15 schemes. 

 

 

Figure 2.3.3.10.5 Efficiency parameter EI for different analyses schemes. 
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(a) 

 

(b) 

 

(c) 

Figure 2.3.3.10.6 Horizontal accelerograms calculated in the control point by varying the 

frequency of the signal propagated (f = 1, 3 and 5Hz), adopting an elasto-

plastic model for schemes S (a),  EP D5 (b) and EP D15 (c). 
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(a) 

 

(b) 

 

Figure 2.3.3.10.7 Horizontal displacements calculated in the control point by varying the 

frequency of the signal propagated (f =1, 3 and 5Hz), adopting an 

elasto-plastic model for schemes S (a),  EP D5 (b) and EP D15 (c). 
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(a) 

 

(b) 

 

(c) 

Figure 2.3.3.10.8  Vertical accelerations calculated in the control point by varying the 

frequency of the signal propagated (f = 1, 3 and 5Hz), adopting an 

elasto-plastic model for schemes S (a),  EP D5 (b) and EP D15 (c). 
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(a) 

 

(b) 

 

(c) 

Figure 2.3.3.10.9 Vertical displacements calculated in the control point by varying the 

frequency of the signal propagated (f = 1, 3 and 5Hz), adopting an elasto-

plastic model for schemes S (a),  EP D5 (b) and EP D15 (c). 
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one, probably due to the various reflection effects of the waves propagating from and to the 
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which is a condition far from resonance, for x=20m and 40m, the accelerations in the S and 

EP schemes are similar. For x=41m, accelerations are still lower than S one. Signals have 

oscillations around very low values and rapidly tend to zero. In terms of horizontal 

displacements, for x=20m and f=1Hz, EP schemes show larger residual displacements but 

maximum ones similar to the ones pertaining to the S scheme. For x=40m and 41m, EP 

schemes tend to increase displacements, whereas for x=50m and 60m dynamic actions are 

reduced. For f=5Hz residual displacements seem to be larger outside and on the edges of the 

soft caisson, but they drastically reduce inside. 

As far as the vertical (y) direction is concerned, for f=1Hz the EP schemes show higher values 

in terms of accelerations and displacements outside and on the sides of the caisson, with 

extremely high increments on the zone just around the boundary of the caisson. For x=50m, 

the effects are still higher and similar to the S scheme. For x=60m, vertical acceleration and 

vertical displacement amplitudes for the S and EP schemes are similar; EP schemes show a 

higher time duration for the signals. For f=5Hz, for x=20m and 40m EP schemes record 

slightly higher vertical acceleration and vertical displacement values, whereas for x=41m they 

show amplitudes similar to the condition of no treatment. For x=50, the signals have a similar 

amplitude, but EP schemes show higher time durations.  
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(a) (b) 

  

(c) (d) 

 

  (e)        

Figure 2.3.3.10.10  Horizontal accelerations in different points at ground level for f=1Hz, 

adopting an elasto-plastic model for schemes SP (a),  EP D5 (b) and EP 

D15 (c). 
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(a) (b) 

  

(c) (d) 

 

(e)        

Figure 2.3.3.10.11 Horizontal displacements calculated in different points at ground level for 

f=1Hz, adopting an elasto-plastic model for schemes SP (a),  EP D5 (b) 

and EP D15 (c). 
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(a) (b) 

  

(c) (d) 

 

(e)          

Figure 2.3.3.10.12 Vertical accelerations calculated in different points at ground level for 

f=1Hz, adopting an elasto-plastic model for schemes SP (a), EP D5 (b) 

and EP D15 (c). 
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(a) (b) 

  

(c) (d) 

 

(e)         

Figure 2.3.3.10.13  Vertical displacements calculated in different points at ground surface for 

f=1Hz, adopting an elasto-plastic model for schemes SP (a),  EP D5 (b) 

and EP D15 (c). 
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(a) (b) 

  

(c) (d) 

 

(e)         

Figure 2.3.3.10.14 Horizontal accelerations calculated in different points at ground surface fo 

f=5Hz, adopting an elasto-plastic model for schemes SP (a),  EP D5 (b) 

and EP D15 (c). 
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(a) (b) 

  

(c) (d) 

 

(e)        

Figure 2.3.3.10.15    Horizontal displacements calculated in different points at ground surface 

for f=5Hz, adopting an elasto-plastic model for schemes SP (a),  EP D5 

(b) and EP D15 (c). 
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(a) (b) 

  

(c) (d) 

 

(e)       

Figure 2.3.3.10.16  Vertical accelerations calculated in different points at ground surface for 

f=5Hz, adopting an elasto-plastic model for schemes SP (a),  EP D5 (b) 

and EP D15 (c). 
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(a) (b) 

  

(c) (d) 

 

(e)         

Figure 2.3.3.10.17  Vertical displacements calculated in different points at ground surface for 

f=5Hz, adopting an elasto-plastic model for schemes SP (a),  EP D5 (b) 

and EP D15 (c). 
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2.3.4.  Soft Caisson: inclined injections  

The second geometrical configuration taken into account is reported in Figures 2.3.4.1: two 

inclined injections are enclosed into the soil layer to form a V-shaped soft caisson. This 

scheme is certainly more feasible than the rectangular caisson from a technical point of view, 

and it is therefore of extreme practical interest. In all the analyses, the soft layers have been 

assumed with a constant value of thickness (1m). The analyses involve a large computational 

effort, because of the reduced dimensions of the mesh elements necessary to properly define 

the geometry (as reported, for example, in Figure 2.3.4.1a), with the constraints posed by the 

discretization rules (see §2.3.1). 

The indications provided by the analyses carried out on rectangular soft caissons have been 

considered to finalize the analyses. 

The parameters, which characterize this treatment scheme, are the maximum depth Hg and the 

inclination  (see Figure 2.3.4.1b). The analyses have been carried out to study the effects of: 

1. the variations of the treatment depth by assuming a given inclination; 

2. the variations of the geometrical configuration of the treatment in terms of depth and 

inclination; 

3. the variations of the soft layers volumetric stiffness;  

4. the constitutive model on the efficiency of the isolating box.  

The signal used for these dynamic analyses is the Ricker wavelet, with a constant amplitude 

equal to 0.5g and a fundamental frequency in the range 0.1Hz5Hz.  

The analyses have been performed by considering a linear-elastic behaviour for the materials, 

with the exception of the ones reported in §2.3.4.4. 

The results generally refer to the control point (CP) at ground level, to the central vertical 

section and to the ground surface (see Figure 2.3.4.2). The mesh assumed for the analyses has 

an x-total length equal to 200m and a height H of 60m (see Figure 2.3.4.1 b); soil and soft 

layers have been assumed with the characteristics reported in Table 2.3.4.1. 

 

Layer 
VS  ρ 

(m/s) (%) (kg/m
3
) 

Soil 300 3 2040 

Soft layer 20 0 1020 

Table 2.3.4.1 Parameters adopted for analyses. 
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(a) 

 

(b) 

Figure 2.3.4.1 Mesh  and  geometrical configuration for 2D analyses with inclined injections: 

example of mesh (a); indications on the boundary conditions and the control 

point CP at ground surface (b). 

 

 

Figure 2.3.4.2 Indications on the reference system and the central vertical position. 
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2.3.4.1 Effects of the variations of the treatment depth (for =45°)  

A model configuration with a soft layer inclination  equal to 45° and two different maximum 

treatment depths Hg, equal respectively to 10m and 20m, has been considered to check the 

effect of Hg.  

Figures 2.3.4.3 report the effects calculated in the control point, in terms of maximum 

accelerations, spectral intensities, predominant and mean periods by varying the fundamental 

frequencies of the propagated Ricker wavelet. The results clearly indicate that Hg plays a 

relevant role, and it is convenient to use the largest possible values. 

For Hg=20m, the effects are attenuated for f   1Hz, whereas for Hg=10m the attenuation is 

attained only f  3. A larger treatment depth is therefore more effective to tackle off the 

dynamic effects in the control point, like for the rectangular caisson.  

For  f   1Hz, the configurations tend to assure longer periods (see Figures 2.3.4.3 c and d), as 

clearly shown in terms of mean periods (see Figure 2.3.4.3 d), where, for Hg equal to 10m, the 

period variation trend is substantially linear with the signal frequency.  

In terms of amplitude ratio (see Figure 2.3.4.4), it is shown how the geometrical configuration 

with Hg=10m tends to amplify a frequency range larger than that with Hg=20m. The 

frequencies in the range f=1Hz3Hz are amplified, for Hg=10m, in terms of energy 

transmitted upward to the ground surface; in the same range, the scheme with Hg=20m shows 

a de-amplification. It is therefore noted that the geometrical configuration with Hg=20m is 

generally effective, with the exception of f=0.5Hz and 1Hz, whereas the scheme with Hg=10m 

leads to a decrement of the dynamic actions only for the highest frequencies. 

Figures 2.3.4.5 and 2.3.4.7 report the maximum accelerations, respectively along the central 

vertical and at the ground surface for the soil layer, for Hg equal to 20m or 10m, for different 

Ricker wavelets. As expected, the scheme with Hg=10m determines higher maximum 

acceleration values both along the central vertical and at ground surface. As previously 

reported in §2.3.3.1, the presence of soft layers does not directly involve an increment of the 

displacement values (see Figures 2.3.4.6 and 2.3.4.8): at lower fundamental signal periods, a 

decrease in displacements at ground surface is observed. The displacements are larger for 

Hg=10m, confirming the considerations on amplitude effects.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 2.3.4.3  Effects in the control point in terms of maximum accelerations (a), spectral 

intensities (b), predominant (c) and mean periods (d), assuming =45°, 

Vs,g=20m/s, Hg equal to 20m or 10m and Vs,s=300m/s and by varying the 

fundamental frequencies of the propagated Ricker wavelet. 
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(a) 

 

(b) 

Figure 2.3.4.4  Amplification ratio in the control point, assuming =45°, Vs,g=20m/s, Hg equal 

to 20m (a) or 10m (b) and Vs,s=300m/s and by varying the fundamental 

frequencies of the propagated Ricker wavelet. 

 

  
(a) (b) 

 

Figure 2.3.4.5  Maximum acceleration along the central vertical for Hg equal to 20m (a) or 

10m (b) with respect to the case of no treatment, by varying the fundamental 

frequencies of the propagated Ricker wavelet. 
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(a) (b) 

 

Figure 2.3.4.6 Maximum displacements along central vertical for Hg equal to 20m (a) or 10m 

(b) with respect to the case of no treatment, by varying the fundamental 

frequencies of the propagated Ricker wavelet. 
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Figure 2.3.4.7  Maximum acceleration and displacement at ground surface for Hg equal to 

20m (a and c) or 10m (b and d) with respect to the case of no treatment by 

varying the fundamental frequencies of the propagated Ricker wavelet. 
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In terms of efficiency, the two schemes consequently exhibit different behaviours: for 

Hg=10m, the system is ineffective in reducing the maximum spectral actions in the control 

point, with the eception of f=5Hz, where a positive efficiency is shown on a large range of the 

simple oscillator periods. For Hg=20m and for 1 < f  ≤ 5Hz, the efficiency EI constantly 

assumes positive values for periods lower than 0.3s. For f=5Hz the maximum spectral effects 

in the control point are definitely reduced, with EI variable in the range 0.40.9.  

With respect to the rectangular section (see §2.3.3), the effects at ground surface due to the 

inclined injections may be more variable with the considered position: since the thickness of 

the soil above the isolating layer varies between 0 and Hg, the response is more complex and 

differences in different points may be expected. 

Therefore, a variability of efficiency at different x-axes points must be expected.  

This is confirmed by Figure 2.3.4.9, which reports the values of efficiency EI and the domain 

Sd-Sa for different positions at ground surface, for f=5Hz and Hg=20m. The efficiency seems 

to be sensible to the position at ground surface (Figure 2.3.4.9a), with a variation which is 

higher close to the intersection between the inclined soft layers and the ground level (in the 

following named edges), i.e. x=85m. For the inner position, a constant behaviour is observed, 

above all for the periods for which the treatment is more effective. The domain Sd-Sa (see 

Figure 2.3.4.9b) confirms the observations on efficiency EI; in fact the domain for x=85m is 

the only one exhibiting important variations in accelerations and displacements, as confirmed 

by intersecting the segments related to given periods with the different curves. Similar 

observations may be done for amplification ratio variations at ground surface. Figure 2.3.4.10 

reports the amplification ratio between the ground surface and the bedrock, A(0-60m), for 

different positions at ground surface and for Hg=20m. The differences in the energy 

distribution with frequencies are limited and larger for higher periods of the signals. 

  
(a) (b) 

Figure 2.3.4.8 Efficiency parameter EI in the control point by varying the fundamental signal 

frequency and for Hg=20m (a) and 10m (b). 
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(a) (b) 

Figure 2.3.4.9 Efficiency parameter (a) and domain Sd -Sa (b) for different positions at ground 

surface for f=5Hz and Hg=20m. 

 

 

Figure 2.3.4.10  Amplification ratio, A(0-60m), for different positions at ground surface for 

Hg=20m. 
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Figure 2.3.4.11 Accelerations at ground surface without any treatment, for f=1Hz and 5Hz. 
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Figure 2.3.4.12 Accelerations, in different positions at ground surface, for f=1Hz and inclined 

injections. 
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Figure 2.3.4.13 Accelerations, in different positions at ground surface, for f=5Hz, and 

inclined injections. 
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accelerations, whereas, for f=1Hz, the behaviour changes completely, due to resonance 

problems. 
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(a) (b) 

  
(c) (d) 

Figure 2.3.4.14 Accelerations along the central vertical for f=1Hz without any treatment (a) 

and with inclined injections (b) and for f=5Hz without any treatment (c) and 

with inclined injections (d). 

 

In this sense, Figures 2.3.4.15 report the acceleration spectra at different depths from ground 

level, along the central vertical, by propagating a Ricker wavelet with f=5Hz both in the soil 

deposit without treatment and with inclined injections. By varying the depth z, large 

differences are observed. In the inner part of the soft caisson (i.e. z=10m and z=0m), a clear 

acceleration decrement is detected. 

  

 

(a) (b)  

   

Figure 2.3.4.15 Acceleration spectra along the central vertical by propagating a Ricker  

wavelet for f=5Hz without any treatment (a) and with inclined injections 

(b). 
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2.3.4.2 Effects of the variation of the treatment inclination and of the different depth  

Different geometrical configurations have been considered, by varying both the depth Hg and 

the inclination  of the soft layers (see Table 2.3.4.2.1).  

 

Hg 

(m) 
 

(°) 

10 
30 40 45 55 

20 

Table 2.3.4.2.1 Values of the parameters varied in the analyses. 

 

Figures 2.3.4.2.1 show the predominant and mean periods, the spectral intensities and the 

maximum accelerations with respect to the case of no treatment, with reference to the control 

point, for Hg=20m and 10m, different inclinations  (from 30° to 55°), for different 

fundamental frequencies of the transmitted signal. The most efficient geometrical 

configurations seem to be the deeper ones, as clearly shown in Figures 2.3.4.2.1, from i to h. 

Assuming a given inclination, the spectral intensities and the maximum accelerations are 

larger for Hg=10m. By considering a constant depth Hg, a dependence of such parameters 

from the inclination is also observed.  

Lower inclinations seem to provide lower dynamic effects in the control point (i.e. better 

efficiencies). Along with the previously reported observation on the major efficiency of the 

deeper treatment, larger and deeper soft caissons are therefore the most efficient ones.  

This is probably due both to the interaction of the dynamic wavefront propagating upwards 

with the soft layers, and to the material damping of the soil contained into the soft caisson. In 

fact, if the inclination in larger, the signal entrapped into the soft caisson is damped more by 

passing through a larger quantity of soil.  

As far as the periods variations of the signals calculated in the control points are concerned, 

with the exception of =30°, deeper treatments lead to larger values, especially for lower 

Ricker signal fundamental frequencies. This is probably due to the fact that, by reducing Hg, 

smaller volumes of soils are surrounded by the V-shaped caisson. Such smaller volumes have 

stiffer lateral constraints and thus a reduced capacity of modifying the fundamental period. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 2.3.4.2.1   Predominant period (a and b) and mean period (c and d), spectral intensity 

(e and f) and maximum acceleration with respect to the case of no 

treatment, in the control point, for Hg=20m and 10m and different 

inclinations  (from 30° to 55°). 
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In conclusion, among the analysed schemes, the most efficient geometrical configuration has 

an inclination of 30° and a depth Hg of 20m. This is also reported in Figures 2.3.4.2.2 and 

Figures 2.3.4.2.3, where the amplification ratios in the control point describe the way in which 

the signal energy is distributed on the different frequencies, for the different geometrical 

configurations. The treatment with an inclination of 30° and a maximum depth of 20m leads 

to the de-amplification of all the frequencies higher than 2Hz; other geometrical 

configurations tend to have higher amplification ratios for a number of frequencies, above all 

the ones larger than 1Hz, which are the most crtical ones for squat buildings. Figures 2.3.4.2.4 

and 2.3.4.2.5 confirm this behaviour, because the horizontal accelerations for  equal to 30° 

and Hg of 20m are the lowest.  

The efficience EI of the treatment is consequently higher for the treatment with  equal to30° 

and Hg of 20m (see Figures 2.3.4.2.6), with a larger range of periods of the simple oscillator 

whose dynamic safety conditions are improved by increasing the soft layers inclination. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 2.3.4.2.2 Amplification ratios A (0-60m) and A (0-19m), in the control point, for 

Hg=20m and different inclinations  (from 30° to 55°). 
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(a) (b) 

  
(c)  (d) 

  
(e) (f) 

Figure 2.3.4.2.3 Amplification ratios A (0-60m) and A (0-9m), in the control point, for 

Hg=10m and different inclinations  (from 30° to 55°). 
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(a) (b) 

  
(c) (d) 

Figure 2.3.4.2.4    Horizontal accelerations with depth along the central vertical for Hg equal 

to 20m (a and c)and 10m (b and d), different inclinations  (from 30° to 

55°) and f=1Hz (a and b) and 5Hz (c and d). 
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(a) (b) 

  
(c) (d) 

Figure 2.3.4.2.5   Horizontal accelerations at ground surface for Hg equal to 20m (a and c) 

and 10m (b and d), different inclinations  (from 30° to 55°) and f=1Hz (a 

and b) and 5Hz (c and d). 
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(a) (b) 

  
(c) (d) 

Figure 2.3.4.2.6   Efficiency in the control point for Hg equal to 20m (a and c)and 10m (b and 

d), different inclinations  (from 30° to 55°) and f=1Hz (a and b) and 5Hz (c 

and d). 
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   Soft layers 

Scheme 
Vs,g 

(m/s) 

G 

(Pa) 
 

K 

(Pa) 
G/K 

K 20 4.079∙10
5
 0.300 8.838∙10

5
 0.46 

0.5K 20 4.079∙10
5
 0.147 4.419∙10

5
 0.92 

10K 20 4.079∙10
5
 0.477 88.38∙10

5
 0.05 

Table 2.3.4.3.1 Schemes adopted for studying the influence of the variation of the volumetric 

stiffness of the soft layers 

 

Since in all analyses Vs,g has been kept constant, the ratio G/K varies.  

Three values of K have been chosen consistently with the constitutive limits imposed by the 

theory of elasticity  (0 <  < 0.5, being  the Poisson ratio). 

Figures 2.3.4.3.1 report the effects, calculated in the control point, in terms of maximum 

accelerations, spectral intensities, predominant and mean periods by varying the fundamental 

frequencies of the propagated Ricker wavelet.  

As observed in §2.3.3.9, by increasing the soft layer volumetric stiffness, the efficiency of the 

system decreases, in terms of both maximum acceleration and spectral intensity.  

The volumetric stiffness greatly affects the predominant and mean period values: by 

increasing K, the periods tend to be reduced on the whole range of frequencies (see Figures 

2.3.4.3.1 c and d).  

The worse efficiency of the system due to a higher volumetric stiffness can be observed in 

Figures 2.3.4.3.2 and 2.3.4.3.3 too. Figures 2.3.4.3.2 report the amplification ratios A(0-60m) 

and A(0-9m), in the control point; the A(0-60m), for the scheme 10K, indicates important 

increases in the frequency range from 0.1Hz to 10Hz, with the exception of f=1Hz. This trend 

explains the observed low efficiency. The results in terms of maximum acceleration along the 

central vertical and at ground surface due to the propagation of a Ricker wavelet with f=1Hz 

are reported in Figure 2.3.4.3.3a and 4a: the 10K scheme exhibits lower accelerations at 

ground surface with respect to the other ones.   

Generally speaking, by increasing the volumetric stiffness, the soft caisson is less effective, 

due especially to the low compressibility of the inclined soft layers (see §2.3.2.9), which are 

subjected to compression because of vertical shear wave propagation.  

The higher the compressibility of the lateral layers the larger the decrease in horizontal 

dynamic actions in the soft caisson. 
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(a) (b) 

   
(c) (d) 

Figure 2.3.4.3.1   Effects in the control point in terms of maximum accelerations (a), spectral 

intensities (b), predominant (c) and mean periods (d), by assuming 

Vs,g=20m/s, Hg=20m, =45° and Vs,s=300m/s. 

 

  

(a) (b) 

Figure 2.3.4.3.2 Amplification ratios A (0-60m) and A (0-9m), in the control point. 
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(a) (b) 

Figure 2.3.4.3.3    Maximum acceleration along the central vertical, by assuming Vs,g=20m/s, 

Hg=20m, =45°and Vs,s=300m/s, for f=1Hz (a) and 5Hz (b). 

 

  
(a) (b) 

Figure 2.3.4.3.4  Maximum acceleration at ground surface, by assuming Vs,g=20m/s, 

Hg=20m, =45°and Vs,s=300m/s, for f=1Hz (a) and 5Hz (b). 

 

2.3.4.4 Effects of the constitutive model on the efficiency of the isolating box 

A geometrical configuration with a soft layer inclination  equal to 45° and a treatment depth 

Hg of 20m has been assumed in this series of analyses (see Table 2.3.4.4.1). The soil deposit 

thickness H is equal to 60m, with a soil shear velocity Vs,s of 300m/s; the shear wave velocity 

of the soft layers is equal to 20m/s.  

In §2.3.3.10, discussing the efficiency of rectangular soft caissons, it has been pointed out that 

the choice of the constitutive model adopted in the analyses is of great relevance in terms of 

the isolating efficiency. In particular, it has been shown that, with a more realistic elasto-

plastic model, the efficiency of the isolating system tends to increase even for input signals 

having low predominant frequencies. In other words, if the signal has an amplitude large 

0

10

20

30

40

50

60

0 1 2 3 4 5

z 
(m

)

amax,g / amax,s

f=1Hz

0

10

20

30

40

50

60

0 1 2 3 4

z 
(m

)

amax,g / amax,s

10K

0.5K

K

f=5Hz

0

0.5

1

1.5

2

2.5

0 50 100

a m
ax

,g
/ 

a m
ax

,s

x (m)

f=1Hz

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50 100

a m
ax

,g
 / 

a m
ax

,s

x (m)

10K

0.5K

K

f=5Hz



 215 

enough to involve plastic deformations, local plasticization (which in the case of a simple 

elastic-perfectly plastic model coincides with local shear failure) helps in attenuating the 

seismic effects in the isolated soil volume. This is mostly due to the plasticization within the 

grouted layers and at their interface with the surrounding soil. It is therefore of great interest 

to see if the same conclusions hold also for the more realistic V-shaped soft caisson scheme. 

Therefore, an elasto-plastic behaviour has been assumed for the materials, whose mechanical 

characteristics are reported in Table 2.3.4.4.2. As previously reported, the values of the shear 

strength angles for the grouted layers have been assumed on the basis of the preliminary 

results obtained in laboratory. The amplitude of the Ricker wavelet applied to the bedrock 

base is, in this case, equal to 0.5g. 

 

Scheme Model 

Maximum Ricker 

wavelet Amplitude 

(g) 

S Linear 

Elastic 

0.5 
E 

SP 
Elastic 

Plastic 
EP D5 

EP D15 

Table 2.3.4.4.1 Scheme of the performed analyses. 

 

Material 
VS 

(m/s) 
 

G 

(MPa) 

K 

(MPa) 
’ 

(°) 

Soil 300 0.3 183.6 397.7 30 

Soft layer 20 0.3 0.407 0.884 5/15 

Table 2.3.4.4.2 Materials mechanical properties. 

 

The observations reported in §2.3.3.10 have been confirmed: the adoption of a more realistic 

model leads to a reduction in terms of the maximum accelerations and of the spectral 

intensities calculated in the control point (see Figures 2.3.4.4.1). Furthermore, the lower the 

shear strength angle the higher the reductions. In terms of mean and predominant periods, the 

introduction of the failure conditions does not have a relevant effect, as they are mostly 

controlled by the soil mass contained into the soft caisson and by the constraint effect of the 

surrounding soil. The higher system efficiency is shown in terms of amplification ratios too, 

as reported in Figures 2.3.4.4.2. In these figures, the amplification ratios for two different 
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frequencies, f=1Hz and 5Hz are shown. The A(0-60m) trends indicate lower maximum 

amplitudes with respect to the linear-elastic case, with the presence of peak values for lower 

frequencies. The elastic-plastic schemes EP-D5 and D15 show EI  values higher than the linear 

case E, as reported in Figures 2.3.4.4.3.  By decreasing shear strength angle of the soft layers, 

larger simple oscillator periods have been protected. In fact, for f=1Hz, in the linear case E, 

the system does not provide any increment in safety condition. For the same signal frequency, 

the EP-D15 scheme shows slight improvement in the response, in the range 0.05s0.8s and 

the EP-D5 scheme shows a sharp increment in EI values between 0.01s and 0.8s. Because of 

the propagation at the bedrock base of a dynamic signal with a maximum acceleration value 

of 0.5g, residual displacements are expected. Figures from 2.3.4.4.5 to 2.3.4.4.7 report the 

accelerations and the displacements at ground surface, both in the x and in y-directions, for 

the scheme without any treatment and for the configurations named EP-D15 and D5. Figure 

2.3.4.4.4 shows the positions in which the signals have been calculated. These signals have 

been filtered with a lowpass Butterworth filter, with an order of 4, and a control frequency of 

15Hz (see §2.3.3.10). The introduction of a soft caisson reduces the horizontal accelerations, 

with residual displacements that are of the same order of magnitude of the ones observed 

without any treatment. Inside the caisson, the amplitudes of the vertical accelerations and of 

the vertical displacements assume values similar to the ones calculated without treatment. 

Outside the isolated zone, the vertical accelerations have been amplified by the interaction of 

the wavefronts with the soft layers. 
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(a) (b) 

  
(c) (d) 

Figure 2.3.4.4.1     Effects in the control point in terms of maximum accelerations (a), spectral 

intensities (b), predominant (c) and mean periods (d), by assuming 

Vs,g=20m/s, Hg = 20m, =45°and Vs,s=300m/s and by varying the 

fundamental frequencies of the propagated Ricker wavelet. 
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(a) (b) 

  
(c) (d) 

 

Figure  2.3.4.4.2   Amplification ratios for two different frequencies, f=1Hz (a and c) and 5Hz 

(b and d). 

  
(a) (b) 

 

 (c) 

Figure  2.3.4.4.3  Efficiency EI for the linear-elastic E ( a) and for the elasto-plastic ED-D5 

(b) and EP- D15 (c) cases. 
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Figure 2.3.4.4.4 Indications on the geometrical configuration. 
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(c) (d) 

Figure 2.3.4.4.5 X and y accelerations and displacements at ground surface due to the 

propagation of two different Ricker wavelet with f=1Hz and 5Hz, through 

the soil layer. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 
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(i) (l) 

  
(m) (n) 

Figure 2.3.4.4.6 X and y accelerations and displacements at ground surface due to the 

propagation of a Ricker wavelet with 5Hz, for the EP-D15 (on the left side) 

and EP-D5 (on the right side) schemes. 
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(i) (l) 

  
(m) (n) 

Figure 2.3.4.4.7 X and y accelerations and displacements at ground surface due to the 

propagation of a Ricker wavelet with 1Hz, for the EP-D15 (on the left side) 

and EP-D5 (on the right side) schemes. 
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3.  Static analyses  

The introduction of a soft caisson into a soil deposit may determine static problems to the 

structures eventually placed at ground surface. Absolute vertical settlements at ground 

surface, differential settlements and angular distortions of the building foundations should be 

valued to avoid incompatible displacements and collapse mechanisms due to the injections of 

soft layers. In this chapter, some evaluations of these critical aspects are reported. 

 

3.1.  Characteristics of the software Plaxis2D 

Plaxis2D is a 2D finite element program used to perform deformation and stability analyses 

for various typologies of geotechnical applications (Plaxis2D Reference Manual). Plaxis2D is 

based on three different sub-programs, depending on the different stage of analysis, which 

are: 

1. Input 

2. Calculation 

3. Output. 

3.1.1.  1
s t

phase: input 

The model has to be large enough not to influence the results of the problem to be studied. 

Furthermore, it should include a representative discretization of the subsoil into distinct 

elements, of the construction stages and loadings. In these terms, Plaxis2D automatically 

generates a finite element mesh based on the composition of clusters and lines in the geometry 

model, where clusters are areas that are fully enclosed by lines and including homogeneous 

material properties.  

During the generation of the mesh, clusters are divided into 15-node triangular elements, 

allowing an accurate calculation of stresses and failure loads. A 15-node element consists of 

15 nodes (see Figure 3.1.1.1), where adjacent elements are connected through their common 

nodes. During a finite element calculation, the displacements are calculated at the nodes. In 

contrast with displacements, stresses and strains are calculated at individual Gaussian 

integration points (called stress points) rather than at the nodes. A 15-node triangular element 

contains 12 stress points as indicated in Figure 3.1.1.1b. 

After the draft of the geometry, the finite element model (mesh) can be generated by a fully 

automatic mesh generation procedure, in which the geometry is divided into triangular 

elements. The generation process is based on a robust triangulation principle, which results in 

an unstructured mesh, not formed by regular patterns of elements. 
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(a) (b) 

Figure 3.1.1.1 Nodes and stress points. 

 

As far as the mesh dimensions are concerned, a 200m wide and 60m depth calculation model 

has been assumed, locally varying the geometrical features of the zone where the different 

treatments (horizontal layers, soft caisson with a rectangular section, inclined injections) have 

been placed (see, for instance, Figure 3.1.1.2).  

 

 

Figure 3.1.1.2   A view of the mesh in the area close to the soft caisson with rectangular 

section. 

 

The mesh has been optimised by performing local refinements for tinier elements i.e. soft 

layers. The boundary conditions allow the vertical displacements of the lateral sides of the 

mesh, avoiding the horizontal ones. At the base, nil displacements are imposed.  

The dynamic analyses shown in the previous chapters (§2) have been performed without 

considering any load distributions at ground surface (with the exceptions reported in 

§2.3.3.5), because dead loads were not relevant in the analyses. The effect of the building 

would have been relevant in inertial terms, but this was not considered in this thesis. 

 On the contrary, the results of the static analyses are sensible to the presence of load 

distributions at ground surface; consequently, different configurations both with and without 

constant gravity load distributions between 0 and 100kPa and with different extensions Ls at 
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ground surface have been considered. For the sake of simplicity, the foundations are assumed 

infinitely deformable. In terms of differential settlements, this is a conservative assumption. 

3.1.2.  2
nd

phase: calculation 

Once the mesh has been generated, the initial conditions must be generated. They include the 

initial ground water condition, the initial geometry configuration and the initial effective 

stress state.  

In the performed analyses, groundwater conditions have not been taken into account. The 

analyses require the generation of initial effective stress by using the so-called “k0-

procedure”, which could be used for horizontally layered geometries with a horizontal ground 

surface (Plaxis2D Reference Manual). After the generation of the initial effective stress state, 

in some cases, a constant gravity load distribution of length Ls has been applied at ground 

surface. In these cases, the displacements, caused not only by the soil weight but also by the 

applied loads, have been set equal to zero, thus assuming the calculated stress state as the 

reference condition for the subsequent calculation phases.  

The simulation of the injections is modelled by replacing the soil clusters with the soft layers, 

with a consequent modification of the stress and strain states. The injections are simulated by 

replacing the layers all in a sudden. So doing, the possible effects of non-symmetric grouting 

procedures are not taken into account. 

Thefore, in the analyses the mechanical consequences due to the injections are due only to the 

replacement of the soil with softer layers; other consequences due to the installation 

techniques have not been simulated because of a totally lack of data or information on 

possible tested techniques for suitable soil softening procedures. This is an important, 

conservative assumption; as reported in §4.2.2.5, one of the tested materials shows an 

expansive behaviour when saturated, from the lowest vertical pressure to a vertical pressure of 

200kPa. If a similar behaviour had been used for numerical analyses, the volumetric 

expansion would have taken into account, with a beneficial effect on vertical displacements.   

3.1.3.  3
rd

 phase: output results  

Once the calculation has been completed, results can be evalueted using the Plaxis Output 

sub-program. The static effects may be determinant; in fact, the compatibility of the treatment 

should be granted in terms of differential and absolute displacements at ground level. The 

displacements affect aspects such as the accessibility to the buildings, the presence of 

underground utilities and, above all, the stability of the structures.  
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Information on allowable values of absolute and differential settlements have been already 

widely reported by various authors (see Table 3.1.3.1 and 3.1.3.2, and Figure 3.1.3.1).  

Usually the more restrictive criteria are considered if aesthetic and functional constraints 

prevail, for example in the case of valuable historical buildings.  

 

 

Figure 3.1.3.1 Geometrical parameters for defining the foundation settlements profile 

(Viggiani, 1999). 

 

Motion type Limitaton factor Allowable value 

Total settlements wmax  

(mm) 

Connection to utilities networks 150300 

Accessibility 

 
300600 

Possibility of differential settlements:  

masonry walls 2550 

frame structures 50100 

smokestacks, silos 75300 

Inclination /L 

Overturning stability  

Rotation of smokestacks and silos 

 

≤ 0.04 

Machineries operability:  

textile machines 0.003 

turbo-generators 0.0002 

overhead cranes 0.003 

Drainage of paved surfaces 0.010.02 

Relative rotation  

Multi-storeys masonry walls 0.00050.001 

Mono-storey masonry walls 0.0010.002 

Plasters injuries 0.001 

Reinforced concrete frames 0.00250.004 

Curtain walls of reinforced concrete frames 0.003 

Continuous steel frames 0.002 

Simple steel structures 0.005 

Table 3.1.3.1 Allowable values for settlements (Sowers, 1962). 
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Structure Damage typology Allowable values for relative rotation  

Frame structures and 

reinforced masonry 

walls 

To resistant 

structures 

Skempton and 

McDonald 

(1956) 

Meyerhof 

(1974) 

Polshin 

and Tokar 

(1957) 

Bierrum 

(1973) 

To curtain walls 
1/150 1/250 1/200 1/150 

1/300 1/500 1/500 1/500 

      

 

deflection ratio /L 

Meyerhof 

(1974) 

Polshin and 

Tokar 

(1957) 

Burland and Wroth 

(1974) 

masonry walls 

deformation with upward 

concavity 
0.410

-3
 

0.30.410
-3 

(Ll/H ≤ 3) 

0.410
-3 

(Ll/H =1) 

0.810
-3 

(Ll/H =5) 

deformation with 

downward concavity 
  

0.210
-3 

(Ll/H =1) 

0.410
-3 

(Ll/H =5) 

Table 3.1.3.2 Allowable values for relative rotation  and deflection ratio /L, where  is the 

inflection ratio of the structure as defined by Viggiani (1999). 

3.1.4.  Geometrical configurations  

Three geometrical configurations have been considered:  

1. schemes with a single horizontal soft layer; 

2. schemes with a soft caisson with a rectangular section; 

3. schemes with a soft caisson made of inclined injections. 

3.1.4.1 Single horizontal soft layer 

The Plaxis model assumed for analyses is shown in Figure 3.1.4.1.1a; the geometrical features 

and the displacements reference parameters are reported in Figure 3.1.4.1.1b.  

 

(a) 

 

(b) 

Figure 3.1.4.1.1   Plaxis model (a), geometrical indications for horizontal soft layers (b) with 

indications on wmax and w as reference parameters for settlements. 
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The length of the foundation, infinitely deformable, has been assumed equal to either 10m or 

20m. The horizontal injections have been studied by varying their depth and their length, as 

reported in Table 3.1.4.1.1, by assuming, above the foundation, a distributed gravity load of 

100kPa. 

Parameters 
Length Lg  

(m) 

Depth Hg 

(m) 

Thickness 

(m) 

Horizontal soft layer 10; 20; 40; 60 10; 20 1 

Table 3.1.4.1.1 Parameters assumed for horizontal soft layer analyses. 

 

Three different hypotheses on the mechanical behaviour of the materials, i.e. soil and grouted 

layers, have been considered.  

The first analyses were carried out with a linear elastic model for all the materials (see Table 

3.1.4.1.2). As expected, a linear-elastic material exhibits physically meaningless results in 

terms of settlements. In fact, as reported in Figure 3.1.4.1.2, the vertical displacements at 

ground surface by assuming a linear elastic model for materials, show a swelling behaviour, 

with displacements directed upwards (Rainieri, 2013). 

 

Material Behaviour 
s  

(kN/m
3
) 

VS  

(m/s) 

G  

(kN/m
2
) 

E  

(kN/m
2
) 

K 

(kN/m
2
) 

 

Soil Linear elastic 20 300 183561 477259 397715 0.3 

Soft layer Linear elastic 10 10 102 265 221 0.3 

Table 3.1.4.1.2 Characteristics of the material assumed for linear elastic analyses. 

 

Figure 3.1.4.1.2 Vertical displacements at ground surface for an elastic soft horizontal layer 

with Hg=10m or 20m. 

 

An analogous situation with upwards displacements due to gravity loads has occurred by 

assuming an elasto-plastic behaviour for the soil (with a Mohr –Coulomb failure criterion) 

and a linear elastic one for the grouted layers.  
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Neither the introduction of rigid plates to simulate a rigid foundation nor higher load 

amplitudes has led to physically acceptable results. The linear elastic model cannot be 

assumed for static simulations.  

By assuming a Mohr-Coulomb failure criterion for both soil and soft layers, whose properties 

are reported in Table 3.1.4.1.3, analyses have been developed by assuming a 10m or 20m 

wide deformable foundation and a surcharge of 100kPa. 

The foundation size and depth have been varied, as reported in Table 3.1.4.1.3: 

 

Material 
s  

(kN/m
3
) 

VS  

(m/s) 

G 

(MPa) 

E 

(MPa) 

K 

(MPa) 
 
(°) 

 
(°) 

 

Soil 20 300 184 477 398 30 0 0.3 

Soft layer 10 10 0.102 0.265 0.221 5 0 0.3 

Table 3.1.4.1.3 Characteristics of the material assumed for elastic-plastic analyses. 

 

The geometrical configuration has been varied by changing the length of the foundation Ls 

(10m or 20m), the depth Hg (10m or 20m) and the length Lg of the soft layer.  

The results have been reported in terms of maximum vertical displacement wmax, differential 

displacements w and maximum relative rotation , where this parameter has been assumed 

as: 

 

     
  
  

 ⁄
                 (3.1.4.2.1) 

 

It must be preliminary observed that the case of a single horizontal layer (only theoretical) 

leads to extremely large differential settlements in most of the analysed cases and to relevant 

absolute displacements as soon as the ratio Lg/Hg exceeds the value 1.5. 

The maximum vertical displacement wmax (see Figure 3.1.4.1.3 a), increases as the ratio 

between the length and the depth of the soft layer increases. As expected, the higher surcharge 

with the largest width of the foundation (i.e. Ls=20m) leads to larger vertical displacements. 

Deeper treatments result in lower differential settlements w (see Figure 3.2.1.1.3 b); the 

maximum relative rotation  increases as the width or the depth of the foundation decrease.  
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(a) 

 

(b) 

 

(c) 

Figure 3.1.4.1.3  Maximum displacements wmax (a), differential displacements w (b) and 

maximum relative rotation  (c) for different geometrical configurations of 

the horizontal soft layer. 
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3.1.4.2 Soft caisson: rectangular section 

With reference to a soft caisson with rectangular section (see Figures 3.1.4.2.1), in this 

paragraph, different geometrical and mechanical parameters have been considered, as 

reported in Table 3.1.4.2.1; furthermore, other analyses have been developed by varying the 

volumetric stiffness K, keeping G constant.   

 

Material 
s 

(kN/m
3
) 

’ 

(°) 
 
(°) 

VS 

(m/s) 

G 

(MPa) 

E 

(MPa) 

K 

(MPa) 

Ls 

(m) 

qw 

(kPa) 

Soil 20 30 0 100/300 20/184 53/477 44/398 

10/20 0/50/100 
Soft layer 10 5/10/15 0 

10 0.102 0.265 0.221 

30 0.918 2.386 1.989 

Table 3.1.4.2.1 Parameters varied in the static analyses. 

 

 

(a) 

 

(b) 

Figure 3.1.4.2.1  Plaxis model (a) and geometrical indications for soft caisson (b) with 

indications on wmax and w as reference parameters for settlements. 

 

Figures 3.1.4.2.2 report the results in terms of maximum vertical displacements wmax, 

differential displacements w and maximum relative rotations  assuming a surcharge qw of 

100kPa and for different values of the shear strength angle.  
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As expected, the higher surcharge with the largest width of the foundation (i.e. Ls=20m) leads 

to larger vertical displacements; furthermore, a smaller Ls value determines a reduction in the 

differential settlements and in the maximum relative rotation.  

For larger values of the shear strength angle of the grouted soil g’, lower vertical settlements 

wmax and larger differential displacements w are observed. This is probably due to the 

smaller shear displacements at the soil-soft layer interfaces, which imply a reduction of the 

vertical settlements of the soft caisson. Figures 3.1.4.2.3 report a magnified picture of the 

settlements profile, and the position of the plastic points at the interfaces, i.e. the positions at 

which the failure conditions are reached.   

The soil shear stiffness does not affect the maximum vertical displacements in a relevant way; 

in fact, the maximum vertical displacements and also the differential ones are significantly 

influenced by the soft layer shear stiffness. 

The stiffness and the shear resistance of the grouted layer are extremely relevant, and they 

cannot be too low to avoid excessive settlements: Figures 3.1.4.2.2 seem to indicate that the 

shear strength angle g’ should not be lower than 15  and the shear wave velocity Vs,g cannot 

be lower than 30m/s.     

Figure 3.1.4.2.4 reports the results of the static analyses developed by varying the surcharge 

(qw= 0, 50kPa and 100kPa) as a function of the shear strength angle of the soft layers g’, 

assuming the foundation length Ls equal to 20m, and the shear wave velocities of the soil Vs,s 

and of the soft layers Vs,g  equal, respectively, to 300m/s and 10m/s.  

A minor dependence of the maximum vertical displacements on qw is observed, because the 

higher the load the larger the maximum vertical displacements because the larger the load 

amplitude the larger the maximum vertical displacements, but with small differences; what is 

really relevant is confirmed to be the shear strength angle of the grouted soil. 
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(a) (b) 

  
(c) (d) 

  

(e)  (f) 

   
(g) (h) 

Figure 3.1.4.2.2  Static analyses results: wmax (a and b) and w (c and d) with g’; w (e and 

f) and  (g and h) with wmax. 
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(a) (b) 

Figure 3.1.4.2.3 Magnified picture of the settlements profile (a) and position of the plastic 

points at the interfaces between the soft layers and the soil (b). 

 

 

Figure 3.1.4.2.4 Maximum displacements wmax by varying the qw value.  

 

The maximum vertical displacements are largely influenced by the volumetric deformations 

taking place within the horizontal soft layer, and therefore by both the thickness and the 

volumetric stiffness of the grouted material. 

In fact, if a certain scheme configuration with g’=5 , Vs,g=10m/s, Vs,s=300m/s and q=100kPa 

is assumed, by increasing the thickness of the horizontal soft layer of the caisson from 1m to 

2m, a doubled maximum vertical displacement is observed (see Table 3.1.4.2.2). As expected, 

this suggests that the settlements are due principally to the volumetric deformation of the 

horizontal soft layer.  

Horizontal soft 

layer thickness 
wmax (m) 

2 0.93 

1 0.49 

Table 3.1.4.2.2 Results from static analyses by increasing the thickness of the horizontal soft 

layer. 
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On the other hand, the volumetric stiffness of the grouted soil is also significant in terms of 

displacements. With reference to the assumed soft caisson (see Figures 3.1.4.2.1) analyses 

have been developed by varying the volumetric stiffness K of the soft layers, as reported in 

Table 3.1.4.2.3.  

 

Material 
s 

(kN/m
3
) 

’ 

(°) 
 
(°) 

VS 

(m/s) 

G 

(MPa) 
 

E 

(MPa) 
K 

(MPa) 

Ls 

(m) 

qw 

(kPa) 

Soil 20 30 0 300 184 0.3 477 398 

20 100 
Soft layer 10 5 0 

10 0.102 

0.147 

0.3 

0.477 

0.234 

0.265 

0.305 

0.111 

0.221 

2.210 

30 0.918 

0.147 

0.3 

0.477 

2.105 

2.386 

2.744 

0.994 

1.989 

19.886 

Table 3.1.4.2.3 Characteristics on the static analyses involved by varying the K value. 

In Figures 3.1.4.2.5, the maximum displacements wmax, the differential displacements w and 

the relative rotation  by varying the volumetric stiffness of the soft layers K are reported. As 

expected, the maximum displacements decrease with increasing the volumetric stiffness of the 

grouted soil, because of the lower compressibility of the horizontal soft layer. 

By assuming a soft caisson with a rectangular section, potential damaging values for wmax are 

observed with reference to the lower shear strength angles and the lower volumetric stiffness 

ones (for ’g = 5° and Vs,g = 10m/s, wmax   50cm; see Figures 3.1.4.2.4).   

The geometrical configuration of the treatment seems to be important, because by enlarging 

the soft caisson, a higher weight will load the horizontal soft layer up.  

The differential displacements generally assume extremely low values, because the vertical 

displacements are regularly distributed along the soft caisson length. Consequently, the 

relative rotation  has generally a very low value, far from the ones that may produce 

structural damages or failures (see Table 3.1.3.2). 
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(a) 

 

(b) 

 

(c) 

Figure 3.1.4.2.5 Maximum displacements wmax, differential displacements w and relative 

rotation  by varying the volumetric stiffness of the soft layers K. 
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3.1.4.3 Soft caisson: inclined injections  

With reference to a soft caisson made of inclined injections (see Figures 3.1.4.3.1), the list of 

the carried out analyses is reported in Table 3.1.4.3.1. The maximum depth Hg of the 

treatment and the width of the foundations Ls are always equal to 20m.  

 

Scheme Material 
s 

(kN/m
3
) 

’ 

(°) 

VS 

(m/s) 

G 

(kPa) 
 

E 

(kPa) 

K 

(kPa) 

qw 

(kPa) 
 

(°) 

1 
Soil 20 30 300 184 0.3 477 398 

0 45 
Soft layer 10 5/10/15 10 0.102 0.3 0.265 0.221 

2 

Soil 20 30 
100 

300 

20 

184 
0.3 

53 

477 

44 

398 
100 45 

Soft layer 10 5/10/15 
10 

30 

0.102 

0.918 
0.3 

0.265 

2.386 

0.221 

1.989 

3 

Soil 20 30 
100 

300 

20 

184 
0.3 

53 

477 

44 

398 

100 45 
Soft layer 10 5 10 0.102 

0.147 

0.3 

0.477 

0.234 

0.265 

0.305 

111 

221 

2210 

Soft layer 10 5 30 0.918 

0.147 

0.3 

0.477 

2.105 

2.386 

2.744 

0.994 

1.989 

19.886 

4 
Soil 20 30 100 20 0.3 53 44 

50 
30/40 

45/55 Soft layer 10 5/10/15 10 0.102 0.3 0.265 221 

Table 3.1.4.3.1 Schemes of the performed analyses. 

 

 

(a) 

 

(b) 

Figure 3.1.4.3.1  Plaxis model (a) and geometrical indications for soft caisson (b) with 

indications on wmax and w as reference parameters for settlements. 
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As for the rectangular soft caisson, the soft layers highly affect the tensional and deformative 

state. Figures 3.1.4.3.2 report the vertical displacements calculated both along the vertical 

passing for the centre of the model and at ground surface adopting the Scheme 1 (see Table 

3.1.4.3.1). As observed for the rectangular section soft caisson, vertical displacements are 

concentred in the soft layer (see Figure 3.1.4.3.2a) and are essentially caused by the 

deformation of the soft layer (the value is in fact basically constant within the box). The 

vertical displacements are extremely sensitive to the value of the shear strength angle of the 

soft layers, increasing as it decreases. Again, these results indicate ’g=15° as a minimum 

value to avoid excessive settlements at ground level. 

  

(a) (b) 

Figure 3.1.4.3.2  Vertical displacements, due to the injection of soft inclined soft layers into a 

soil embankment, along the vertical section for the centre of the model 

assumed for analyses (a), and at ground surface (b). 

 

As for the soft caisson with rectangular section (§3.1.4.2), the Scheme 2 (see Table 3.1.4.3.1) 

has been assumed to identify the dependence of the maximum displacements and of the 

differential displacements on the value of the shear strength angle ’g. In Figures 3.1.4.3.3, 

the results of the static analyses are reported. The maximum vertical displacements wmax 

increase as the shear strength angle increases, being influenced by the stiffness of the soft 

layers as well.  The higher the stiffness of the soft layer the lower the maximum 

displacements. For the lower values of the soft layer stiffness, the maximum displacements 

are more sensitive to the shear strength angle.  

Differential displacements w and relative rotations  show a dependence on the shear 

strength angle similar to the one observed in terms of maximum displacements. As expected, 

they also depend a lot on the stiffness of the soft layer. The maximum relative rotations  
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always have very low values. Figure 3.1.4.3.3c summarizes in a neat way the combined effect 

of the shear strength angle and the stiffness of the soft layers, which results in an almost linear 

relation between wmax and . Likely, this relationship depends on the inclination of the layers.  

The soil displacement profile at ground surface is shown, for ’g equal to 5° and 15°, in 

Figures 3.1.4.3.4; the relevance of the shear strength angle and of the soft layer stiffness is 

evident. The soil stiffness does not play a significant role. 

 

(a) 

 

(b) 

  

(c) 

Figure 3.1.4.3.3  Maximum vertical displacement wmax (a) and differential displacements w 

(b) by varying the shear strength angle ’g; maximum relative rotation  (c) 

wersus the maximum vertical displacement wmax. 
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(a) 

 

(b)  

Figure 3.1.4.3.4 Vertical displacements at ground surface for ’g=5° (a) and ’g=15°. 

 

With reference to the Scheme 3 (see Table 3.1.4.3.1), the volumetric stiffness has been varied 

assuming a constant value of the shear stiffness. 

Figures 3.1.4.3.5 report the maximum displacements wmax, the differential displacements w 

and the relative rotation  by varying the volumetric stiffness K of the soft layers. These 

curves confirm the observations reported in §3.2.1.2 on soft caissons of rectangular section: 

the maximum vertical displacements at ground level increase as the ratio G/K increases. This 

effect is not so clear for differential settlements.  

The numerical analyses carried out varying the shear stiffness of the soft layers for a given 

value of their volumetric one have confirmed these conclusions. 
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(a) 

  

(b) 

  

(c) 

Figure 3.1.4.3.5 Maximum displacements wmax (a), differential displacements w (b) and 

relative rotation  (c) by varying the volumetric stiffness K of the soft layers. 

 

In particular, inclination angles of 30°, 40°, 45° and 55° have been assumed, adopting the 

Scheme 3 (see Table 3.1.4.3.1). 

By varying the inclination, a trend of the settlement has been observed, due to the differences 

among the vertical displacement distributions. Increasing the inclination from 30° to 55°, a 

concentration of displacement in the centre of the soft caisson can be observed. 
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The inclination of treatments clearly influences the displacements at the ground level, even 

though the shear strength angle and the treatment stiffness still seem to be the most relevant 

parameters, as stated in Figures 3.1.4.3.7. 

Figure 3.1.4.3.7a  suggests that, increasing the soft layer shear velocity from 10m/s to 20m/s, 

lower maximum and differential displacements are observed, with higher values for the larger 

treatment inclinations .    

Figures 3.1.4.3.8 summarize the results in terms of differential displacements versus wmax. 

Increasing the treatment depth, higher maximum displacements are observed due to the larger 

stresses caused by the weight of the soil contained in the soft caisson. 

  

  

(a) (b) 

Figure 3.1.4.3.6 Maximum displacements wmax (a) and differential displacements w (b) by 

varying the inclination  and the shear strength angle ’g from 5° to 15°. 
 

  

(a) (b) 

Figure 3.1.4.3.7 Maximum displacements wmax (a) and differential displacements w versus 

the maximum ones (b) by varying the shear strength angle ’g, the shear 

stiffness Vs,g of the soft layers and the inclination . 
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Figure 3.2.1.3.8 Differential displacements versus the maximum ones by varying the shear 

strength angle ’g, and the maximum depth Hg of the soft layers, by 

assuming an inclination =30°. 

 

3.1.5.  Effect of the treatment on the ultimate load value 

The introduction of the soft layers may cause a decrement of the ultimate load value. In 

Figure 3.1.5.1 the load-displacement curves related to a geometrical configuration made of 

injections with inclination  equal to 45°, whose characteristics have been described in Table 

3.1.5.1, are reported. The load-displacement curves have been calculated by imposing a rigid 

vertical displacement to the foundation.  

In order to calibrate the model, the numerical limit load with no treatment has been compared 

to the value obtained with Terzaghi’s formulation (Terzaghi, 1948) for shallow. For the 

assumed model with a shallow foundation placed at ground level, and for purely friction 

resistant materials, the Terzaghi formula leads to: 

 

ssTerzaghi LNLQ 







  2lim,

2

1
              (3.1.5.1) 

 

where N is a parameter linked to the shear strength angle (Viggiani, 1999).: 
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N is equal to 22.40; the ultimate load value derived with Terzaghi’s formulation is therefore: 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.1 0.2 0.3


w

 (
m

)

wmax (m)

Vs,g=10m/s

Hg=20m
Vs,g=10m/s

Hg=10m

q=50kPa

Vs,s=100m/s

Hg=20m

’g=5 

’g=10 

’g=15 
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.1 0.2 0.3


w
 (

m
)

wmax (m)

Vs,g=10m/s

Hg=20m
Vs,g=10m/s

Hg=10m

q=50kPa

Vs,s=100m/s

Hg=20m

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.1 0.2 0.3


w

 (
m

)

wmax (m)

Vs,g=10m/s

Hg=20m
Vs,g=10m/s

Hg=10m

q=50kPa

Vs,s=100m/s

Hg=20m

’g=5 

’g=10 

’g=15 
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.1 0.2 0.3


w

 (
m

)

wmax (m)

Vs,g=10m/s

Hg=20m
Vs,g=10m/s

Hg=10m

q=50kPa

Vs,s=100m/s

Hg=20m



 247 

Qlim,Terzaghi = 89600kN/m.  

 

Vs,s  

(m/s) 

Vs,g  

(m/s) 

Hg  

(m) 
  

(°) 

g’  

(°) 

Ls  

(m) 

300 10 20 45 5/10/15 20 

Table 3.1.5.1 Characteristics of the scheme considered for ultimate load curves. 

 

 
 

(a) (b) 

Figure 3.1.5.1 Ultimate load curves for different shear strength angle degrees’g: normalized 

(a) and absolute values (b). 

 

The insertion of layers with low stiffness and shear strength causes a significant reduction of 

the ultimate bearing capacity of the shallow foundation, which may be unacceptable for 

structure at ground level to protect.  

The reduction observed in Figures 3.1.5.1 depends on the value of the shear strength angle of 

the soft layers ’g: the ultimate load decreases as the shear strength angle decreases. In 

particular, it is observed a variation of the ultimate load value from Qs=82MN/m in the case 

of no treatment to 30MN/m for ’g=5°. Furthermore, by decreasing the ’g value from 15° to 

5°, the ultimate load value is halved.  

Moreover, the insertion of the soft layers causes a large increment of the vertical displacement 

observed when the ultimate condition occurs. In fact, the pre-existent value ws (i.e. with no 

treatment) can be compared to the values obtained for ’g  equal to 5°, 10° and 15° (i.e. w5, 

w10 and w15): the vertical displacements increases as the shear strength angle ’g  increases. 

For instance, the vertical displacement varies from 0.67m, in the case of no treatment, to 

1.73m for ’g =15°.  
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If the bearing capacities exhibited by the shallow foundation when the displacements are 

equal to ws are taken into account, it is noted that, by varying ’g, the ultimate load values are 

included in a restricted range between 28MN/m and 33MN/m. 

By assuming ws as reference displacement, the ultimate load is reduced from Qs=82MN/m to 

Q530MN/m: the numerical results pose a significant warning, especially because the soft 

caisson has been conceived with the aim to protect strategic buildings, whose integrity has to 

be necessarily preserved.  
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4.  Laboratory tests  

The basic idea is to obtain a mixture with mechanical characteristics able to ensure a low 

dynamic impedance. Several materials could, in principle, be suitable as soft worsening 

grouts; in this chapter, the results of some tests carried out on two different materials are 

reported, i.e. a polyurethane foam and a superabsorbent polymer (SAP). 

The polyurethane foams can be considered an interesting class of material; they are polymers 

that have a molecular backbone containing carbamate groups (-NHCO2). These groups, called 

urethane, are produced through a chemical reaction between a diisocyanate and a polyol. 

Developed in late 1930s, polyurethanes are some of the most versatile polymers; they are 

broadly used in the construction field and for the geotechnical industry (Naudts, 2003). They 

are used in building insulation, surface coatings, adhesives, solid plastics, and athletic apparel. 

The polyurethane rigid foams (PF) are of potential interest; the mechanical features of the PF 

are primarily derived by a highly cross-linked network structure in the polyurethane matrix. 

The polyurethane rigid foams are usually prepared by mixing diphenylmethane diisocyanate 

or its derivatives with a polyol blend which contains polyols, blowing agents, surfactants, 

catalysts, and other additives such as, flame retardants. Polymeric diphenylmethane 

diisocyanate is most commonly used to make polyurethane rigid foams, while a very broad 

range of polyols can be selected to achieve different properties.  

Another tested material is a superabsorbent polymer (SAP), i.e. a polymer that can absorb and 

retain extremely large amounts of a liquid with respect to its own mass. Water absorbing 

polymers, which are classified as hydrogels when cross-linked (Kabiri, 2003), absorb aqueous 

solutions through hydrogen bonding with water molecules. The ability of the SAP to absorb 

water is a factor of the ionic concentration of the aqueous solution. In deionized and distilled 

water, a SAP may absorb 500 times its weight (from 3060 times its own volume) and can 

become up to 99.9% liquid, but when put into a 0.9% saline solution, the absorbency drops to 

maybe 50 times its weight. The presence of valence cations in the solution will inhibit the 

ability of the polymer to bond with the water molecule. The total absorbency and swelling 

capacity are controlled by the type and degree of cross-linkers used to make the gel. Low 

density cross-linked SAP generally has a higher absorbent capacity and swells to a larger 

degree. This type of SAP also has a softer and more sticky gel formation. High cross-link 

density polymers exhibit lower absorbent capacity, but the gel strength is firmer and can 

maintain particle shape even under modest pressure. 
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4.1.  Laboratory activity on a polyurethane foam 

The Polyurethane foam used in the laboratory activity (Bostik-Construct PU-Universale; 

see:http://www.bostik.it/bostik/prodotti/sigillanti/1480/construct-pu-universale) is a self-

expanding polyurethane insulating foam generally used to fills joints and fissures. It expands 

up to 5060 times its original volume and it is essentially a hydrophobic material. 

The laboratory tests have tried to determine the density and the shear stiffness of this foam 

when injected to pressure higher than the atmospheric one. It is a matter of interest the 

capacity of the foam to expand at a given depth into a soil deposit, preserving its low dynamic 

impedance.  

A test equipment has been designed to inject the foam at given pressures, to define the volume 

variation and the density of the material, and to obtain a certain number of specimens (formed 

at high pressures). The specimens extracted by the density test equipment have been then 

tested in the Thor cell (D’Onofrio, 2006), to perform resonant column tests (RCT).  

Figure 4.1.1 shows the equipment scheme used to determine the density of the specimens.  

The foam is injected into a soft latex box placed into a cell with water at a given pressure. The 

volumetric expansion of the self-expanding polyurethane foam varies the water volume. A 

volume gauge linked to the cell assures accurate measurements of the variations of volume 

due to the foam injection.  The air eventually lying in the injection circuits is expelled by an 

air drainage placed at the final side of the equipment.  

 

 

Figure 4.1.1 Test equipment scheme. 

 

Figure 4.1.2a shows the variations of the mass density value ρ with the pressure p. Figure 

4.1.2b reports the results of the RCT in terms of decay curves of the shear stiffness G/G0 and 

Volume Tester

Foam InjectionAir Drainage

soft latex box

Pressure cell

Volume gauge

http://www.bostik.it/bostik/prodotti/sigillanti/1480/construct-pu-universale
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damping ratio D versus the shear strains . The density assumes extremely low values, which 

varies from 5kg/m
3
 to 50kg/m

3 
in the pressure range 0150kPa.  

The shear stiffness decay curves and the variations of the damping ratio have been measured 

on two specimens, formed at two different pressures of 0 and 150kPa. The isotropic pressures 

of the Thor cell during the tests have been assumed equal to the ones at which specimens have 

been formed.  The shear stiffness decay curves are well described by the Ramberg-Osgood 

relationships (Ramberg and Osgood, 1943), defined by the following equation: 

 

  (
  

 

  

   (
 

  
)
  

)

 

    

                                         (4.1.1) 

 

where the parameters Ca and Ra are assumed, respectively, equal to 2.6 and 2. 

 

 

(a) 

 

(b) 

Figure 4.1.2  Density measurements (a), decay curves G/G0 and variations of the damping 

ratio D (b) from RCT. 
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The values of the measured initial shear stiffness G0 are: 

 

G0 (p=0) = 2.4MPa 

G0 (p=150kPa) = 28MPa 

 

Considering the previous density values, in the range 0150kPa, the following values of the 

dynamic impedance at low shear strain have been calculated: 

 

=VS=340038000kN/(m
2
s) 

 

These values are extremely high with respect to the ones which result numerically effective 

(10003000kN/(m
2
s); see §2.3); as a consequence, the polyurethane foams cannot be 

considered suitable as soft layers. 

 

 

4.2.  Laboratory activity on a Super Absorbent Polymer (SAP)  

The SAP used in this research activity is a polyacrylic acid partial sodium salt (see: 

http://www.sigmaaldrich.com/catalog/product/aldrich/436364?lang=it&region=IT).  

The characteristics of the Super Absorbent Polymers depend on the chemical formulation, and 

could be useful in employing these materials as softening grouts, thanks to their low shear 

stiffness due to the extremely high content of water mixable with the polymers. In this regard, 

some different mixtures have been tested. In the following paragraphs, some results are 

reported in terms of the features of the mixtures and of the sand used for the mixtures. 

4.2.1.  Tests on Sand 

4.2.1.1 Grain size distribution 

A series of laboratory tests on a sand with a unit weight s equal to 28.3kN/m
3
 have been 

made, starting from the grain size distribution, whose results are reported in Table 4.2.1.1.1 

and Figure 4.2.1.1.1. 

The sand has an almost medium uniform granulometry (see Figure 4.2.1.1.1) as indicated by 

the coefficient of uniformity Cu calculated using the following equation: 

 

10

60

D

D
Cu                (4.2.1.1.1) 

http://www.sigmaaldrich.com/catalog/product/aldrich/436364?lang=it&region=IT
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where D60 is the grain diameter at 60% passing, and D10 is the grain diameter at 10% passing. 

This sand assumes Cu equal to 1.8; being less than 2, the sand is classified as uniform (Holtz 

and Kovacs, 1981). 

 

Diameter, 

d 

(mm) 

Retained 

quantity 

(gr) 

 Retained 

quantities 

(gr) 

Passed 

materials 

(gr) 

Passed 

materials, P 

(%) 

2 0 0 100 100 

1 0.07 0.07 99.93 99.93 

0.5 7.85 7.92 92.08 92.08 

0.3 58.7 66.62 33.38 33.38 

0.15 31.23 97.85 2.15 2.15 

0.075 1.07 98.92 1.08 1.08 

0.074 0.18 99.1 0.9 0.9 

Table 4.2.1.1.1 Sand grain size distribution. 

 

Figure 4.2.1.1.1 Sand grain size distribution. 

 

4.2.1.2 Oedometer test 

An oedometer test is a kind of geotechnical investigation performed in geotechnical 

engineering that measures the consolidation properties of the soil. Oedometer tests are 

performed by applying different loads to a soil specimen and measuring the deformation 

response by an automatic acquisition method (l.v.d.t.).  

The test has been made on a dry specimen with an initial void ratio e equal to 0.86.  

The oedometer test results have been examined taking into account two parameters, i.e. the 

volumetric deformation and the Oedometric modulus of the specimen, respectively defined 

as: 
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              (4.2.1.2.2) 

 

where H is the whole settlements at the end of a certain load increment, and H0 is the 

specimen height before the load step, ’v is the vertical load increment and  v is the 

consequent volumetric deformation. Table 4.2.1.2.1 and Figures 4.2.1.2.1 report the 

oedometer test results, from which a series of mechanical index could be derived: 

 the re-compression ratio RR in the v-log’v plane, which is the curve gradient in the 

re-compression path: 
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 the re-compression index crc in the e-log’v plane: 
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 the compression ratio CR in the v-log’v plane, which is the curve gradient in the 

compression path:  
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 the compression index cc in the e-log’v plane: 
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 the unloading ratio SR in the v-log’v plane, which is the curve gradient in the 

unloading path:  

48.0
log '







v

vSR



          (4.2.1.2.7) 

 

 the unloading index cs in the e-log’v plane: 
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e
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
            (4.2.1.2.8) 

Pressure 
Total 

Displacement 

Vertical 

deformation 
Eed 

e0 

=0.86 

(MPa) (mm) (%) (MPa) e 

0.0010 0.156 0.8 384 0.01 

0.0098 0.187 0.9 5.69 0.84 

0.0196 0.195 1.0 24.50 0.84 

0.0392 0.222 1.1 14.52 0.84 

0.0784 0.266 1.3 17.82 0.83 

0.1470 0.323 1.6 24.07 0.83 

0.2940 0.404 2.0 36.30 0.82 

0.5880 0.507 2.5 57.09 0.81 

1.1761 0.617 3.1 106.92 0.80 

2.4502 0.829 4.1 120.20 0.78 

4.9 1.177 5.9 140.81 0.75 

4.9 1.177 5.9 140.8 0.75 

1.1761 1.083 5.4 792 0.76 

0.2940 1.013 5.1 252 0.76 

0.0784 0.952 4.8 71 0.77 

0.0196 0.913 4.6 30 0.77 

Table 4.2.1.2.1 Oedometer test results on sand. 

  

(a) (b) 

Figures 4.2.1.2.1 Oedometer test on sand: vertical deformations (a) and void ratio (b) by 

varying the applied loads. 
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4.2.1.3 Direct shear test  

A direct shear tests has been performed on a sand specimen (see Figure 4.2.1.3.1) with a 

square base (60mm∙60mm) and 20mm thick. 

 

Figure 4.2.1.3.1 Direct shear test equipment. 

 

 

The direct shear test has been performed on a dry sand, with a relative velocity vr of 

0.0366mm/m, and an axial load equal to 50kPa. The test is made of two steps: 

 a consolidation phase, with a duration of a few minutes, in which the whole load is 

transferred to the solid skeleton;  

 a failure phase, where a vertical shear force is gradually increased, until reaching the 

failure condition. 

The soil specimen has been made up with the same initial void ratio of the oedometer test 

specimen (see §4.2.1.2). To obtain a certain void ratio, by referring to the unit weight s and to 

the shear box volume Vl, the soil mass to put into the shear test box has been calculated.  

The direct shear test results are shown in Figures 4.2.1.3.2, where the shear stress  and the 

vertical displacements sv versus the horizontal displacements sh are reported. 

In Figure 4.2.1.3.2a, the shear stress  increases until failure is reached. Its trend firstly shows 

a peak and, subsequently, a decrement to a constant value. Figure 4.2.1.3.2b shows a dilatant 

behaviour; the sand is still loose after the consolidation phase (the void ratio varies from 0.80 

to 0.78). The physical features of the direct shear test, which imposes a failure plane, should 

cause the dilatant behaviour. This is a reason for which the direct shear test overestimates the 

shear strength angle (Lancellotta, 2004). Considering the Mohr-Coulomb failure criterion, 

written as: 

 

'tan' '   nc              (4.2.1.3.4) 
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where c’ is the effective cohesion and ’n is the tension acting normally to the horizontal 

plane. Assuming c’=0, the shear strength angles ’ in the peak condition (’peak) and at 

constant volume (’cv) are equal respectively to ’peak=38° and ’cv =35°. 

 

(a) 

 

(b) 

Figure 4.2.1.3.2   Direct shear test on sand: shear stress  (a) and vertical displacements (b) 

by increasing the horizontal displacements. 

 

4.2.1.4 Triaxial test 

The triaxial test equipment (Figure 4.2.1.4.1a) is constituted by a cell within which is 

positioned a cylindrical specimen of height h = 76 mm and diameter d = 38 mm protected by 

a latex membrane. This membrane aids to transform the pressure of the liquid placed into the 

cell in total stress c on the specimen. This pressure produces an isotropic stress, and, in order 

to reach the failure conditions, an axial vertical stress ’a has to be applied. The test has been 

carried out on a specimen of loose sand (see Figure 4.2.1.4.1b) with the following features: 

Height: h = 95.5mm 

Effective diameter: deff = d – 2  s = 35.5mm 

Unit weight: s = 28.3kN/m
3
 

Weight: P = 147.63gr 

Volume: Vl = 94.48cm
3
 

Void ratio: e = 0.81 
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(a) (b) 

Figure 4.2.1.4.1 Triaxial test equipment (a) and sand specimen (b). 

 

Once the specimen is realized, the cell pressure ’c is gradually applied and simultaneously 

the negative pressure is decreased; in such a way that material does not suffer unloading and 

reloading effects. During this phase, it is possible to measure the specimen volume changes 

ΔVl. It has been recorded a ΔVl = 0.341cm
3
 which is considered to be distributed along the 

three directions. After this phase, the specimen has new sizes and a new void ratio: 

Final Volume: Vl,fin = 94.14cm3 

Final height:  hfin = 95.3mm 

Final diameter: dfin = 35.4mm 

Final void ratio: e = 0.80 

Once the cell pressure ’c  of 50kPa is reached, the specimen has been subjected to a short 

time phase of consolidation in which the load applied by the fluid to the specimen has been 

transferred as effective stresses to the soil skeleton. After that, a deviatoric load has been 

applied in drained condition. 

The equipmnet has automatically recorded the force F(t) applied at failure, the variation of the 

height Δh(t) and the volume ΔVl(t). From these measures, it was possible to carry out a series 

of profiles by applying the eq.s from (4.2.1.4.1) to (4.2.1.4.9): 

 

Volume variation with time of the piston coming into cell:  

Vl,pist (t) = hpist  Apist             (4.2.1.4.1) 
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Volume variation of the specimen with time:    

Vl,spec(t) = Vl(t) - Vl,pist(t)            (4.2.1.4.2) 

 

Volumetric deformation with time:     

v(t) = Vl,spec(t) / Vl,fin                                (4.2.1.4.3) 

 

Axial deformation with time:     

a(t) = h(t) / hfin                (4.2.1.4.4) 

 

Heigth of the specimen:       

hspec = hfin - h(t)             (4.2.1.4.5) 

 

Area of the specimen:       

Aspec = (Vl,fin - Vl,spec(t)) /hspec              (4.2.1.4.6) 

 

Effective axial stress with time:     

’a = F(t)  Aspec                (4.2.1.4.7) 

 

Deviatoric stress with time:   

q(t) = ’a(t)  Aspec                (4.2.1.4.8) 

 

Isotropic effective pression with time:   

p’(t) = ’c + q (t) / 3              (4.2.1.4.9) 

 

where Aspec is the area of the sand specimen; Apist and Vl,pist are respectively the area and the 

volume of the piston which slides inside the cell. Figures 4.2.1.4.2 show the results of the 

triaxial test. 
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(a) (b) 

 

 

(c)  

Figure 4.2.1.4.2 Results from the triaxial sand on sand. 

 

A dilatant, unstable behaviour of the tested sand is observed, as clarified by Figure 4.2.1.4.3 

in which a picture of the specimen at failure condition is reported. This dilatant behaviour is 

probably due to the low tensional isotropic state and slightly to the initial vacuum, which has 

been applied in phase of realization of the specimen. This vacuum has probably make the 

sand denser and, consequently, allowed a fragile failure. 

To obtain the failure envelope of the material, other triaxial tests at different isotropic stresses 

should be necessary. The shear strength angle has been obtained by referring to the modulus 

M (Lancellotta, 2004), as reported: 
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             (5.2.1.4.1) 

 

As expected, the shear strength angle at constant volume is equal to 27°, lower than the one 

derived by the direct shear test.  
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Figure 4.2.1.4.3 Failure phase of the sand specimen in a triaxial test. 

4.2.2.  Tests on Poly (acrylic acid) partial sodium salt (SAP)  

The SAP is a polymer that can physically be in the form of a powder, crystals or granules. 

The adopted SAP has granular particles with a diameter less than 1000 microns and a density 

equal to 0.69gr/ml at environmental temperature.  

SAP is able to absorb high amount of aqueous liquids; therefore, in the performed tests, SAP 

and distilled water have been mixed, with a ratio 99.4% by weight of distilled water and 0.6% 

of SAP. The resulting material has been named “Saturated SAP” (whose acronym is “Sat 

SAP”). The saturated SAP and the sand have been jointed together in order to make soft and 

spongy mixtures. Some mechanical tests have been carried out on these mixtures to analyse 

the variation of the mechanical characteristics with respect to the percentages by weight of 

saturated SAP. 

4.2.2.1 Grain size distribution 

The grain size distribution of a sample of SAP has been done by using sieves with diameters 

from 0.074mm to 1 mm (see Figure 4.2.2.1.1). 

For each sieve, the weight of retained weight P, the passed material weight and the 

percentages of passed weight have been measured (see Table 4.2.2.1.1). These percentages 

have been then plotted as a function of the diameter of the corresponding sieve (see Figure 

4.2.2.1.2). Also in this case it is possible to determine the uniformity coefficient Cu , equal to 

4, revealing the uniformity of the material. By overlaying the curves referring to the sand and 

to the SAP (Figure 4.2.2.1.3), it can be noted that both curves belong to the same 

granulometric zone. 
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Figure 4.2.2.1.1 Grain size distribution on SAP. 

 

d P P 
Passed 

weight 

Percentages  of 

passed weight 

(mm) (gr) (gr) (gr) (%) 

1 0 0 63,29 100,00 

0,5 28,29 28,29 35,00 55,30 

0,3 23,9 52,19 11,10 17,54 

0,15 9,7 61,89 1,40 2,21 

0,075 1,14 63,03 0,26 0,41 

0,074 0,26 63,29 0,00 0,00 

Table 4.2.2.1.1 SAP grain size distribution. 

 
Figure 4.2.2.1.2 SAP grain size distribution. 

 

Figure 4.2.2.1.3 Comparison between the grain size distributions of the two materials. 
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4.2.2.2 Water absorbing features  

Water absorbing tests have been carried out on SAP specimens, at atmospheric pressure, 

entering both distilled water and tap water, with the following results: 

 1 gr of SAP absorbs approximately 240gr of distilled water; 

 1 gr of SAP absorbs about 138gr of tap water. 

Then the mixture has been placed into an oven for 24 hours at 105°C to release all the water 

absorbed. By repeating the swelling tests, it is noted that the SAP loses part of its absorbing 

capacity. In fact:  

 1 g of dehydrated SAP absorbs about 180 grams of distilled water;  

 1 g of dehydrated SAP absorbs about 97 gr of tap water.  

 

  

(a) (b) 

Figure 4.2.2.2.1 Dry SAP (a) and Saturated SAP (b). 

4.2.2.3 Oedometer tests 

Three edometer tests have been performed on different mixtures by increasing their saturated 

SAP content. The mixtures characteristics are reported in Table 4.2.2.3.1. The mixture 

SAP0.33 has not a void ratio equal to the ones of SAP0.09 and SAP0.23 cause to the 

compaction of the material during the specimen preparation. 

An average unit weight value has been calculated between the unit weight of the sand (γSand) 

and the one of the saturated SAP (γSatSAP) , which has been considered equal to the water unit 

weight, (γSatSAP=10kN/m
3
): 

 

SatSAPSatSAPsandsandSAP  09.0                        (4.2.2.3.1) 

 

where sand is the percentage by weight of sand and SatSAP is the percentage by weight of 

saturated SAP. Figure 4.2.2.3.1 reports the  results of the tests on the SAP specimens; because 
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of the significant creep deformation undergone by the specimens, the deformations reported in 

Figure 4.2.2.3.1 correspond to the values recorded after 100s from the beginning of each 

loading step. Figure 4.2.2.3.1 reports a comparison among the different mixtures in terms of 

the vertical axial deformation εa with the applied load. 

 

Mixture SAP Sand 
 ̅    

(kN/m
3
) 

e0 

SAP0.09 9 91 26.7 0.8 

SAP0.23 23 77 24.1 0.8 

SAP0.33 33 67 22.61 0.46 

Table 4.2.2.3.1 SAP mixtures. 

 
Figure 4.2.2.3.1 Results of the oedometer tests on SAP specimens. 

 

The saturated SAP increases the compressibility of the natural soil, but, if the SAP amount is 

increased over the 20% with respect to the soil quantity, the compressibility does not 

significantly change. It is possible to define, from the curve e-log’v, the values of the re-

compression (crc), compression (cc) and unloading (cs) indices for each mixture. They are 

reported in Table 4.2.2.3.1: 

Material crc cc cs 

Sand 0.003 0.11 0.01 

SAP0.09 0.02 0.12 0.01 

SAP0.23 0.04 0.13 0.01 

SAP0.33 0.08 0.10 0.01 

Table 4.2.2.3.1 Values of the recompression index crc, the compression index cc and the 

unloading cs for the the sand and the SAP mixtures. 

 

Cause the specimens have been obtained by mixing the saturated SAP with sand, the 

oedometer tests are not influenced by possible swelling phenomena that could affect the 
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mixtures behaviour. On the contrary, in engineering practice, the idea is to inject the soil 

mixed with dry SAP at a certain depth into the soil deposit, so that groundwater may induce 

the injected material to swollen. On this aspect, some swelling tests, under constant loads, 

have been made (see §4.2.2.5). 

 

4.2.2.4 Direct shear tests  

On the three SAP-sand mixtures previously defined (see §4.2.2.4), some direct shear tests 

have been carried out, trying to preserve the same void ratios used for the oedometer tests. 

Consequently, the mixtures have the following void ratios: 

SAP0.09: e=0.80; 

SAP0.23: e=0.80; 

SAP0.33: e=0.46. 

Only one test has been carried out for each type of mixture, under an isotropic pressure of 

50kPa, in order to give a first valuation of the shear strength. The adopted displacement rate 

in the direct shear test is the same of the one for the test on sand (vr = 0.0366 mm/min). The 

results of the shear tests are reported in Figures 4.2.2.4.1, which show that, even for small 

percentages of saturated SAP, the mechanical behaviour of the mixture changes with respect 

to the sand; from Figure 4.2.2.4.1b, the behaviour of the sand, previously dilatant, becomes 

contracting. Furthermore, the higher the percentage by weight of Saturated SAP the higher the 

reduction of the mixture shear strength (see Figure 4.2.2.4.2). 

 
 

(a) (b) 

 

Figure 4.2.2.4.1 Results of direct shear tests, in terms of shear stress  (a) and vertical 

displacements (b). 
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Figure 4.2.2.4.2 Shear strength angle by varying the percentages by weight of the saturated 

SAP. 

 

In order to verify the shear resistance of specimens with higher SAP contents, some ring shear 

tests (Raviolo, 1993) have been performed on different mixtures subjected to a vertical load 

equal to 200kPa. These mixtures have the characteristics reported in Table 4.2.2.4.1. 

 

Mixture SAP Sand 
 ̅    

(kN/m
3
) 

SAP0.50 50 50 19.15 

SAP0.70 70 30 15.49 

SAP0.90 90 10 11.83 

Table 4.2.2.4.1 SAP mixtures. 

 

Figures 4.2.2.4.3 report the results of the ring shear tests, in terms of shear stress  (a) and 

vertical displacements (b). It can be observed that, by increasing the SAP content, extremely 

low values in terms of shear stress are shown. In particular, the mixture named SAP0.9 does 

not show an appreciable shear resistance (see Figure 4.2.2.4.3a).  

These observations are confirmed by looking at Figure 4.2.2.4.4, where the results from direct 

and ring shear tests are reported in terms of normalized shear stress / versus the horizontal 

displacements sh: by increasing the SAP content, the shear resistance decreases. 

Figure 4.2.2.4.5 reports the values of the shear strength angle at constant volume of the 

different mixtures: a rather linear variation is shown. 
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(a) 

 

(b) 

Figure 4.2.2.4.3 Results from ring shear tests, in terms of shear stress  (a) and vertical 

displacements sv (b) versus the horizontal displacements sh. 

 

 

 

 

 

Figure 4.2.2.4.4    Results from direct and ring shear tests, in terms of normalized shear stress 

/  versus the horizontal displacements sh. 
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Figure 4.2.2.4.5  Shear strength angle at constant volume of the mixtures by varying the 

percentages of the saturated SAP. 

 

4.2.2.5 Swelling tests  

Some tests have been carried out to analyse the capacity of the mixture to swell under given 

loads. Three tests under the axial loads of 50kPa, 100kPa and 200kPa have been performed on 

a mixture with the characteristics reported in Table 4.2.2.5.1. 

 

Mixture SAP Sand 
 ̅    

(kN/m
3
) 

SAP0.50 50 50 19.15 

Table 4.2.2.5.1 SAP mixtures. 

 

At the base of the specimen, a latex disk has been placed instead of a filter paper. To inject the 

quantity of water required for the SAP swelling, the oedometer cell has been isolated with 

silicon foam. To avoid the water evaporation, the oedometer cell has been then covered with a 

waterproof film (Figure 4.2.2.5.1). 

  
(a) (b) 

  

Figure 4.2.2.5.1 Swelling tests: some details of the test equipment: waterproof film (a) and 

latex disk at the base of the cell (b). 
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In the first phase of the swelling tests, a vertical load is applied to the specimens, and the 

subsequent settlements are recorded. After 10 minutes, distilled water has been added to allow 

swelling.  

The volumetric expansions (v), due to the load increments and to the saturation of the 

specimens, are reported in Table 4.2.2.5.1 and Figure 4.2.2.5.2, where the volumetric 

compression assumes, conventionally, the positive sign. 

 

Figure 4.2.2.5.2 Swelling tests by varying the load applied to the specimens. 

 

As expected, it can be observed that the initial settlements increase by increasing the load. 

Injecting water into the specimens, it is shown a volumetric expansion in the cases of load 

amplitudes lower than 200kPa.  

Vertical loads  

(kPa) 
v  

(%) 

50 -33 

100 +28 

200 +57 

Table 4.2.2.5.1 Volumetric expansions due to the swelling tests performed on SAP0.50 

specimens (the positive sign refers to the volumetric compression). 

 

4.2.2.6 S-wave velocity measurements  

A series of tests in a large triaxial cell has been made with the aim to measure, in a large 

specimen, the shear wave velocity Vs,g of the treated soil and, consequently, its shear modulus 

at small strain levels G0.  

The experimental activity was carried out in a stress-path triaxial apparatus (TX; Flora and 

Lirer, 2013; see Figure 4.2.2.6.1) designed to accommodate a large specimen (diameter 

d=20cm, height h=40cm). The apparatus is controlled via a PC and is equipped with: two 

pressure transducers to measure cell and pore pressures, an internal load cell to measure the 
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deviatoric stress, a volume gauge and two internal LVDTs to measure the specimen 

volumetric and axial strains. The TX cell is equipped with a special device conceived for 

dynamic measurements: on both the specimen pedestal and cap (Figure 4.2.2.6.2b), two 

electromagnetic systems can be excited, and two pistons hit two steel plates, placed to 

generate respectively shear (S) and compression waves (P) (Figure 4.2.2.6.2 b/c). To be sure 

that the signal would be easily read at the receiving end, the piston was designed to give a 

significant energy to the shear or compression plate. As a consequence, the input wave is 

more complex than the usual impulsive or sinusoidal ones. The input and output waveforms 

are automatically recorded by a digital oscilloscope (Figure 4.2.2.6.2a). Close to the exciting 

plates, a very sensitive tridimensional accelerometer is placed to detect the starting time (on 

the specimen end at which the waves are generated) and the arrival time (at the opposite end).  

 

Figure 4.2.6.1 Triaxial cell adopted in the experimental activity (Flora and Lirer, 2013 ). 
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(a) 

 

(b) 

 

(c) 

Figure 4.2.6.2   System for dynamic measurements (a) and wave generating system (b,c) 

(Flora and Lirer, 2013). 

 

A first test has been made on a sand specimen with void ratio equal to 0.65. The different 

isotropic stresses applied to the specimen and the average values of the shear wave velocities 

of the sand Vs,s are reported in Table 4.2.2.6.2.  

 

Sand 

p’ Vs,s 

(kPa) (m/s) 

20 228 

40 260 

60 277 

Table 4.2.2.6.1 Average Vs,s values of the sand. 
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A second test has been carried out on a specimen made of three different parts: the upper and 

the lower parts are made of sand; the central part is made of a layer of SAP0.33 (see Figure 

4.2.2.6.3). 

  

Figure 4.2.2.6.3 Dimensions and physical characteristics of the specimen with SAP0.33. 

 

Even in this case, some tests were carried out for each applied confining pressure, obtaining 

some average values of Vs,g (Table 4.2.2.6.2): 

 

SAP0.33 

p’ 

(kPa) 

Vs,g 

(m/s) 

20 132 

40 142 

60 216 

Table 4.2.2.6.2 Vs,g values for different confining pressures. 
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A third test has been conducted on a specimen where the inner part was made of SAP0.33 

(see Figure 4.2.2.6.4). 

 

 

Figure 4.2.2.6.4 Dimensions and physical characteristics of the specimen with SAP0.50. 

 

Some tests were conducted for each applied confining pressure, obtaining some average 

values of Vs,g (Table 4.2.2.6.3): 

SAP0.50 

p’ 

(kPa) 

Vs,g 

(m/s) 

20 58 

40 82 

60 176 

Table 4.2.2.6.3 Vs,g values for different confining pressures. 
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Another test has been made on a specimen with an inner part made totally of SAP (see Figure 

4.2.2.6.5). 

 

 
 

Figure 4.2.2.6.5 Dimensions and physical characteristics of the specimen with SAP. 

 

 

By placing a SAP stratum, it is observed that the shear wave velocity does not significantly 

depend on the confining pressure p’as reported in Table 4.2.2.6.4. 

 

SAP 

p’ 

(kPa) 

Vs,g 

(m/s) 

20 27 

40 26 

60 27 

Table 4.2.2.6.4 Vs,g value for different confining pressures. 

 

The Vs,g values versus the SAP percentages are reported in Figure 4.2.2.6.6: it is clear that Vs,g 

significantly decreases by increasing the SAP percentages.  

As expected, the higher the confining pressure the higher the values of Vs,g of the mixtures, 

with the exception of the layer made only of SAP, whose stiffness sem not to be affected by 

the confining pressure value.  
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Figure 4.2.2.6.6 Average values of Vs,g by varying the SAP percentages. 

 

Tests results indicate that the saturated SAP, having a density ρ close to 1000kg/m
3
 and a 

shear wave velocity Vs,g   30m/s, has a dynamic impedance similar to the ones suggested as 

effective in numerical analyses (see §2.3.3).  

Furthermore, the saturated SAP reveals a capacity of swelling under load, as observed in 

§4.2.2.5, which could be useful in reducing the settlements caused by its high compressibility 

when injected deep into a soil deposit to form a soft layer. Other tests will be carried out to 

improve the knowledge on the SAP mechanical behaviour, but this material seems to be 

potentially suitable as soft worsening grout.   

 

 

 

 

 

 

 

 

 

 

 

 

0

50

100

150

200

250

300

350

400

0 20 40 60

V
s 

(m
/s

)

p' (kPa)

sand

SAP0.33

SAP0.50

SAP



 277 

4.2.3.  References 

D’Onofrio A. (2006). Thor. Apparecchiatura di taglio torsionale ciclico e dinamico. Centro 

Regionale di Competenza AMRA, Manuali tecnici di strumentazione, pp.17. 

Flora A., Lirer S. (2013). Small strain shear modulus of undisturbed gravelly soils during 

undrained cyclic triaxial tests. Geotechnical and Geological Engineering, Vol. 31(4), 

pp.1107-1122. 

Holtz R., Kovacs W. (1981). An Introduction to Geotechnical Engineering. Prentice-Hall 

Inc., Upper Saddle River, New Jersey (USA). 

Kabiri K. (2003). Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker 

type and concentration on porosity and absorption rate. European Polymer Journal, 

Vol.39(7), pp.1341-1348. 

Lancellotta R. (2004). Geotecnica. Zanichelli, pp.544. 

Naudts A. (2003). Irreversible Changes in the Grouting Industry Caused by 

Polyurethane.Grouting: An overview of 30 years of polyurethane 

grouting.Geotechnical. Special Publication. 

Ramberg W., Osgood W. R. (1943). Description of stress-strain curves by three parameters. 

Technical Note n°902, National Advisory Commettee for Aeronautics, Washington D.C 

(USA). 

Raviolo L. (1993). Il laboratorio geotecnico: procedure di prova, elaborazione, acquisizione 

dati. Editrice Controls, Novara (Italy), pp.608. 

Zohuriaan-Mehr M.J., Omidian H., Doroudiani S., Kabiri K. (2010). Advances in non-

hygienic applications of superabsorbent hydrogel materials. Journal of Materials 

Science, Vol.45(21), pp.5711-5735. 

 

 

 
 

 

 

 

 

 

 

 

 

 

http://www.scopus.com.scopeesprx.elsevier.com/authid/detail.url?authorId=35181690600&eid=2-s2.0-79952463745
http://www.scopus.com.scopeesprx.elsevier.com/authid/detail.url?authorId=6603119829&eid=2-s2.0-79952463745
http://www.scopus.com.scopeesprx.elsevier.com/authid/detail.url?authorId=6602219436&eid=2-s2.0-79952463745


 278 

5.  Results and future perspectives  

This thesis reports the results of a comprehensive research program on an innovative ground 

treatment approach for the mitigation of the seismic risk of existing structures, especially with 

reference to squat (i.e. rigid) structures.  

1D and 2D dynamic and static numerical analyses have been performed in order to study the 

efficiency of different treatment schemes, whose geometrical and mechanical configurations 

have been varied with the aim to get an insight on their potentials and limits.  

Even though most of the work has focused on numerical simulations of the performance of 

some possible configurations of the soft caisson, some very preliminary laboratory tests have 

been carried out on sand mixed with two different industrial products. Their characteristics 

seemed, at least initially, well suited to the problem under study, because of their either low 

density or low shear stiffness. 

 

5.1.  Dynamic Analyses  

5.1.1.  1D analyses  

The 1D analyses have been carried out using either EERA or NERA, supposing the soil layers 

to be horizontally homogenous, horizontally unlimited, and subjected only to a horizontal 

excitation from the bedrock.  

As far as the 1D results are concerned, the insertion of a soft grouted layer at a given depth 

into the soil deposit is extremely effective in reducing the peak ground accelerations. The 

maximum acceleration strongly reduces above the soft layer, and such a reduction increases 

as the impedance ratio between the grouted and the soil layer increases.  

The proposed deep ground treatment has demonstrated to be effective for the attenuation of 

the spectral intensity in the range of periods pertaining to medium stiff constructions, 

including masonry buildings i.e. 0.10.5s.  

The insertion of the soft layer causes the shrinkage and rotation of the Sd-Sa domain: the 

higher the impedance ratio of the treatment to the surrounding soil the larger the shrinkage 

and the rotation of the maximum responses in terms of accelerations and displacements to 

higher periods. Therefore, the introduction of a soft layer at a given depth into a soil column 

leads to a global system response that moves to higher periods.  

In some cases, the insertion of a soft grouted layer may increase the spectral acceleration for 

large periods, which may be critical for slender structures such as, for instance, tall towers.  
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Most of the 1D analyses have been performed considering no damping in the grouted layer. 

Increasing it, the effects above the soft layer are reduced. However, the impedance ratio is by 

far the most relevant parameter. 

5.1.2.  2D analyses  

2D dynamic analyses have been used to study the effects of a soft caisson having a 

rectangular section or made of inclined injections on the dynamic response of a soil deposit 

subjected to the propagation of shear waves. 

The 2D dynamic analyses have been carried out using FLAC7. Different geometrical and 

mechanical configurations of the soft caisson have been considered. In the analyses, the 

materials have been assumed either linearly elastic or elasto-plastic. In such a way, the 

relevance of the choice of the constitutive model has been highlighted. Such a choice may be 

relevant for large amplitude seismic inputs. The interaction of the wavefront with the 

boundaries of the soft caisson may generate secondary wavefronts, whose effects on ground 

surface are difficult to foresee. The interaction between the soft layers and the dynamic 

signals is in the 2D analyses much more complex than the 1D wave propagation. The 2D 

analyses confirm the 1D observations, with significant differences based on the different 

signal propagation conditions and on the constraint effect due to the surrounding soil. 

In the elastic analyses, it is noted that, varying the geometrical and mechanical configurations 

of the soft caisson, the lower frequencies are amplified, and the higher ones are reduced. 

Observing, for instance, the results in terms of acceleration at ground surface (see §2.3.3.1), 

when the soft caisson produces a reduction in the dynamic effects for the soil within the 

caisson, an increase in the effects outside it is observed.  

This is due to the reflecting effect of the waves impacting on the lateral soft screen, which are 

reflected back. Consistently, when this kind of mitigation system does not reduce the effects 

in the zone to be protected, no significant increase of the accelerations outside the caisson are 

observed.  

The beneficial screening effect in terms of acceleration, in the case where it takes place, does 

not necessarily correspond to an increase in displacements in the soil within the soft caisson 

(see, for instance, Figures 2.3.3.1.3 e-h and Figures 2.3.3.1.4 e-h). This depends on both the 

fundamental frequency of the propagated signal and the shear stiffness of the soft layers, 

especially when the treatment is effective in mitigating seismic effects at ground level. For the 

lowest value of Vs,g, actually, both accelerations and displacements are reduced within the soft 

caisson.  
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In the effective cases, the dynamic signals are clearly and sharply modified in amplitude by 

impacting the soft layers. At ground surface, an increase in the duration of the signal can be 

also observed (see, for instance, Figure 2.3.3.1.5 a and b).  

The peaks of the signal over the soft layer decrease in amplitude and are shifted to lower 

frequencies; the response spectra also point out that the peaks of acceleration are not only 

reduced, but also shifted towards higher periods. The introduction of a soft caisson, then, 

modifies the resonance frequencies of the deposit in which it is inserted; if the signal 

fundamental frequency is close to a natural frequency of the modified deposit, resonance 

phenomena may occur. Since the soft caisson generally tends, when detrimental, to amplify 

the lower frequencies, it is confirmed that this system can be effective in reducing the 

maximum dynamic effects on squat structures, which have lower natural frequencies. It is 

then confirmed that the maximum detrimental effects, as observed in 1D analyses, will be for 

slender structures, which have higher natural periods. 

The proposed seismic mitigation system may induce further effects in the vertical direction. 

The soft caisson has the negative effect of causing vertical accelerations at ground level, 

obviously not observed in the case with no treatment, whose amplitude may be extremely 

detrimental inside the caisson. When a resonance phenomenon occurs, the generation inside 

the caisson of vertical accelerations of the same order of magnitude of the horizontal ones can 

be observed, whereas, outside the box, they rapidly decrease (see, for instance, Figure 

2.3.3.1.11). When the propagated signal does not induce resonance of the whole system, 

significant values of vertical accelerations are relegated outside the caisson (see, for instance, 

Figure 2.3.3.1.12); in such cases, in the inner part, the accelerations in the two directions are 

extremely low, of the same order of magnitude. The system seems therefore to be able to 

isolate the interior part from effects in terms of accelerations both in the vertical and 

horizontal directions. It must be pointed out, again, that the soft barrier may increase the 

seismic effects immediately outside the caisson, and thus possible negative effects on 

buildings adjacent to the one to protect have to be carefully evaluated. 

In §2.3.3.2,  it has been pointed out that the response of the system depends more on the 

absolute value of the shear wave velocity Vs,g (and therefore its shear stiffness G) of the 

grouted layers than on the impedance ratio, and this is somehow an unexpected and certainly 

original result. In particular, it seems that both the shear wave velocity of the soft layers and 

the impedance ratio are relevant parameters in the propagation of the signal through the 

insulating box, but the former plays a more significant role. To mitigate the seismic risk, it is 
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therefore more convenient the injection of soft layers with a very low shear wave velocity, 

whatever the shear stiffness of the surrounding soil. 

Different geometrical configurations have been studied both for the rectangular section (see 

§2.3.3.6 and §2.3.3.7) and for the inclined injections (see §2.3.4.1 and 2.3.4.2). The 

geometrical parameters of the soft caisson with a rectangular section are the maximum depth 

Hg, the width Lg and the thickness of the layers. An enlargement of the soft caisson leads to 

lower maximum accelerations and spectral intensities values (see for instance Figures 

2.3.3.6.6 and 2.3.4.2.1). In terms of spectral intensities and maximum accelerations (see 

Figures 2.3.3.6.1 c and d), the more shallow schemes tend to amplify the effects in 

correspondence of some frequencies more than the deeper schemes. This result is consistent 

with 1D analyses results. This behaviour is due both to frequencies amplification distribution, 

to material damping (which is more impacting by considering a deeper or larger soft caisson) 

and to the coupled effects of the soil mass contained into the soft caisson with the constraint 

effects of the surrounding soil. 

Furthermore, increasing the thickness of the soft layers, the system has larger efficiencies EI 

for higher SDOF period ranges; in this sense, the increase of thickness seems to correspond to 

a better response of the system under dynamic excitation. 

In this work, schemes not fully continuous have also been analysed, to check if such scheme 

may have similar dynamic effects but lower impact on the static behaviour of the structure to 

protect. The results have shown that open caissons are never effective, and the waves 

penetrate through the discontinuities wherever they are. 

By changing the damping ratio of the soft layers (see §2.3.3.8), only a tiny variation in the 

distribution of results is observed (see for instance Figure 2.3.3.8.1). This is physically 

consistent, as the small thickness of the soft layer (assumed equal to 1m) reduces the 

possibility to dissipate energy within it, regardless of the value of the damping ratio.   

For the sake of simplicity, the existence of a structure at ground level has not been considered 

in terms of dynamic interaction between the soil and structure behaviour in this work, even 

though it is expected to play a relevant role. This is certainly a limit of the research at this 

stage, and it should be faced in the next future. By considering the existence of a structure at 

ground level only as a supplementary dead weight, analyses have confirmed that such a 

weight does not play a relevant role (see §2.3.3.5) on the dynamic response of the system. As 

will be recalled in the following, the effect of dead weight is on the contrary relevant for the 

static response of the system.  
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By increasing the volumetric stiffness of the grouted layers, the soft caisson is less effective 

(see §2.3.3.9 and §2.3.4.3), due especially to the low compressibility of the lateral soft layers 

which undergo lateral deformation because of vertical shear wave propagation outside the 

caisson. The higher the compressibility of the lateral layers the larger the decrease in 

horizontal dynamic actions in the soft caisson. 

In the elasto-plastic analyses, two maximum amplitudes (0.05g and 0.5g) of the signals have 

been considered, in order to check the influence of the plastic behaviour of the natural and 

treated soil on the effectiveness of the reference soft caisson in filtering and reducing the 

dynamic effects in the protected soil mass. Two values of the shear strength angle ’g have 

been assumed (5° and 15°). The attainment of plasticization at the interface between the soft 

layers and the soil, as well as within the soft layers, act as a “safety valve” (Anastasopoulos, 

2010). In terms of accelerations, it is very interesting to note that the more realistic elasto-

plastic model leads to a more efficient behaviour of the isolating caisson for the most critical 

frequencies. In particular, for such frequencies, even though the signal is not largely reduced, 

at least it is not as amplified as in the linear elastic analyses. This result is encouraging 

because, also in resonance conditions, the proposed treatment has not detrimental effects. 

Moreover, the residual displacements due to the introduction of the soft caisson show 

amplitudes similar to the condition of no treatment.  

 

5.2.  Static analyses  

As far as static analyses are concerned (see §3), vertical displacements have been calculated 

taking into account only some schemes for the caisson. Some geometrical and mechanical 

parameters have been varied, i.e. the length Lg or the inclination , the depth Hg, the shear and 

the volumetric stiffness and the shear resistance of the soft layers. At ground level, a gravity 

load distribution has been also considered, whose amplitude qw and length Ls have been 

varied.  

It is noted that, as largely expected, the vertical displacements are increased by assuming a 

larger value of the distributed load q; furthermore, a smaller load length Ls value determines a 

reduction in the differential settlements w and in the maximum relative rotation .  

By increasing the shear strength angle g’, lower vertical settlements wmax are calculated. On 

the other hand, soil shear stiffness does not affect the maximum vertical displacements, which 

are largely influenced by the volumetric deformations taking place within the horizontal soft 

layer, and therefore by both the thickness and the volumetric stiffness of the grouted material. 
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The differential displacements w and the relative rotations  are significantly influenced by 

the soft layer stiffness and the shear resistance too.  

Moreover, the introduction of soft layers causes a significant reduction of the ultimate bearing 

capacity of the shallow foundation (see §3.1.5), which may be unacceptable for structure at 

ground level to protect. The reduction depends on the value of the shear strength angle of the 

soft layers: the ultimate load decreases as the shear strength angle decreases. Furthermore, the 

insertion of the soft layers causes a large increment of the vertical displacement when the 

ultimate condition occurs.  

In the static analyses reported in this thesis (see §3.1.4), maximum vertical displacement wmax 

as large as 50cm can be observed (see Figures 3.1.4.2.2 and 3.1.4.3.3). These extremely high 

values are incompatible with usual structures at ground level. Anyway, these values have been 

calculated by considering the worst conditions of soft layers having the lowest stiffness and, 

contemporary, the lowest shear resistance, for an infinitely deformable foundation. Moreover, 

the static analyses have taken into account the deformability and the resistance of the soft 

grout, without considering its possible expanding capacity after injection. A last, general 

comment has to be done on the static effects of the soft caisson: the insertion of layers with 

low stiffness and shear strength angle causes displacements, distortions and a reduction of the 

ultimate limit load that seem to be most times unacceptable.  

The results have been obtained in very conservative hypothesis, but this is not sufficient to 

overlook the warning posed by the numerical results, specially because the soft caisson 

analysed in this thesis has been conceived as a means to protect strategic buildings, often very 

sensitive from a structural point of view. 

 

5.3.  Laboratory activity  

Two materials have been tested, in order to look for a potentially suitable soft grout.  

The first material is a self-expanding polyurethane insulating foam, essentially a hydrophobic 

material, resistant to water, chemicals and moisture (see §4.1). Laboratory tests have been 

carried out to quantify its density and its shear stiffness when injected to pressures higher than 

the atmospheric one. The foam has shown a capacity to expand under large confining 

pressures keeping a very low density. Some resonant column tests have been performed to 

quantify the shear stiffness at low shear strains as well. Tests results indicate that the 

polyurethane foam cannot be considered a suitable material for soft layers, because even 

though it shows a low density even under high pressures, it is rather stiff, having therefore a 
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dynamic impedance (=Vs=340038000kN/(m
2
s)) which is much larger than the one 

needed on the base of the results of the numerical analyses (10003000 kN/(m
2
s); see §2.3). 

The second tested material is a super absorbent polymer (SAP), which is a hydrophilic 

network being able to absorb and retain huge amounts of water or aqueous solutions (see 

§4.2.2). The SAP used in this research activity is a polyacrylic acid partial sodium salt. The 

SAP, previously saturated with distilled or tap water has been mixed with sand, obtaining 

specimens characterized by different SAP percentages by weight. These specimens have been 

subjected to a few traditional laboratory tests (direct shear tests, ring tests, oedometer tests, 

triaxial tests).  Even though the extremely low shear stiffness of this jelly material caused a 

number of difficulties in laboratory activities, starting from the preparation of the specimens, 

some results could be obtained: increasing the SAP quantities, a significant reduction of both 

the shear and the volumetric stiffness has been observed, and dynamic impedances similar to 

the ones suggested by the numerical analyses could be obtained.  

Furthermore, the SAP reveals a capacity of swelling under load when saturated. This is an 

interesting result, because a potential volumetric expansion of the material, when injected 

deep into a soil deposit to form a soft layer, could reduce the settlements caused by its low 

volumetric stiffness. 

 

5.4.  Final Considerations 

It has been observed that high values of the shear and volumetric stiffness of the grouted soil 

are detrimental for the dynamic efficiency of the treatment, but lead to lower vertical 

displacements. For the soft caisson with a rectangular section, this problem can be partially 

overcame by using a stiffer horizontal layer and very soft lateral sides (see §2.3.3.9). In terms 

of shear resistance of the soft layers, lower shear strength angles lead to higher efficiencies, 

but, on the other hand, to larger settlements. The best solution should be certainly conceived 

to find a smart intersection between the two requirements, which will be a function of the 

specific structural issue.  

This new approach to the seismic risk mitigation appears a potentially valid alternative to 

other more conventional and invasive solutions, such as the structural reinforcement and the 

base isolation, and can result suited for the historical constructions for which integrity has to 

be preserved.  

Based on these first results, it is obvious that the soft caisson must be designed taking into 

account also the natural frequency of the structure to be protected, considering the dynamic 
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coupling of the input motion with the subsoil and the building response, whose dynamic 

interaction with the foundation soil has not been taken into account in this thesis.  

Since the effectiveness of the grouting depends on the mechanical properties of the grouted 

layer, a much more detailed laboratory testing program is needed to characterize the 

behaviour of the material to be used. As previously discussed, at the moment SAP seems a 

good solution, but a joint research work has been recently undertaken with chemical engineers 

to check possible alternatives. 

The research presented in this thesis has pointed out that the intriguing idea of a soft caisson 

may be feasible. Much more needs to be done to reach the engineering design level. The hope 

of the writer is to have given at least a little contribution to the aim of the final solution of the 

engineering problem. 
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List of Symbols  

 

a = acceleration 

ay = vertical acceleration 

amax = maximum horizontal acceleration 

amax,g = maximum horizontal acceleration at ground level for a given treatment 

amax,s = maximum horizontal acceleration at ground level in the case of no treatment 

a(t) = accelerogram 

Aloop = area of the hysteretic loop 

Ai = Fourier amplitude 

AI = amplitude of the incident wave 

Apist = area of the piston  

Aspec = area of the specimen 

AR = amplitude of  the reflected wave 

AT = amplitude of  the refracted (transmitted) wave 

A = area of the triangular subzone of the FLAC7 mesh  

A() = amplification ratio 

B = characteristic dimension of the foundation 

c = viscous-damping coefficient 

c’ = cohesion 

cc = compression index 

cr = coefficients of reflexion and of  

crc = re-compression index  

cs = unloading index 

ct = coefficients of transmission 

Ĉ  = damping matrix 

Ca = Ramberg-Osgood parameter 

Cu = coefficient of uniformity 

CR = compression ratio 

d = diameter 

deff = effective diameter of the specimen 

dfin = final diameter of the specimen 

D = damping ratio 

Def = effective damping ratio 

Di = damping ratio of the i
th

-material 

Dr = radiative damping ratio 

D10 = grain diameter at 10% passing 

D60 = grain diameter at 60% passing 

e = void ratio  

e0 = initial void ratio 

E = Young modulus 

E = exposure 

Eed = oedometric modulus 
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EI(T) = efficiency parameter 

f = frequency 

f  = frequency of the applied loading 

fn = natural frequency 

F = force amplitude 

)(ˆ tF  = force matrix  

G = shear stiffness modulus 

G0 = initial shear stiffness modulus  

Gsecant = secant shear modulus  

Gtangent = tangent shear modulus 

h = height of a specimen  

hfin = final height of a specimen  

hnorm = normalized value of the structural height 

hstr = superstructure height 

H = depth  

H = hazard 

HB = masonry building height 

Hg = maximum treatment depth 

H0 = specimen height before the load step in an oedometric test 

Ia = Arias intensity 

IP = plastic index 

k = elastic stiffness 

k* = equivalent stiffness  

kni = wave number in the i-material. 

K = volumetric stiffness modulus 

K̂  = stiffness matrix 

L = length 

L
max

 = maximum edge-length of the triangular subzone of the FLAC7 mesh  

Lg = maximum treatment length 

Ls = foundation width 

Lw = wavelength 

m = mass  

m* = equivalent elastic spring 

mstr = superstructure mass 

M = ratio between the deviatoric stress and the effective isotropic stress 

p = pressure 

P = weight 

q = deviatoric stress 

qw = surcharge 

Q = surcharge for unit length  

Qf = quality factor 

Qlim,Terzaghi = ultimate load for a shallow foundation as reported by the Terzaghi’s formula 

Qs = numerical ultimate load in the case of no treatment 
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Q5 = numerical ultimate load in the case of ’g =5° 

Q10 = numerical ultimate load in the case of ’g =10° 

Q15 = numerical ultimate load in the case of ’g =15° 

m = Hardin constant 

mnorm = normalized values of structural mass  

M̂  = mass matrix 

MW = moment magnitude 

N = wave number 

N = Terzaghi’s capacity factort 

P = P-wave 

r = radius 

R = seismic risk 

Ra = Ramberg-Osgood parameter 

RR = re-compression ratio 

sh = horizontal displacements 

sv = vertical displacements 

S = S-wave 

SI = spectral intensity 

Sa(T) = spectral acceleration 

Sd(T) = spectral displacement 

Sv(T) = spectral velocity 

SR = unloading ratio  

t = time 

tg = grouted soil thickness 

T = period  

T* = equivalent fundamental period 

T  = period of the applied loading 

T = out-of-plane dimension in FLAC7 analyses 

TB = masonry building natural period (NTC, D.M. 14.I.2008) 

Tm = mean period 

Tm,g = mean period for a given treatment 

Tm,s = mean period in the case on no treatment 

Tp = predominant period 

Tp,g = predominant period for a given treatment  

Tp,s = predominant period in the case on no treatment 

Tstr = structural (SDOF) natural period 

u = displacements in the x-directions 

umax = horizontal maximum displacement 

vr = relative velocity of the direct shear test equipment 

V = wave velocity  

V = vulnerability 

Vb = base shear force 

Vl = volume  
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Vl,fin = final volume 

VL = Love wave velocity 

VP = compression wave velocity 

VR = Rayleigh wave velocity 

VS = shear wave velocity 

VS30 = equivalent velocity according to EC8 

VS,i = shear wave velocity of the i
th

-material 

Vs,g = shear wave velocity of the soil 

Vs,s = shear wave velocity of the grouted soil 

S = Hardin constant 

SV = shear wave confined in the vertical plane 

SH = shear wave confined in a horizontal plane 

v = displacement in the y-directions 

w = displacement in the z-directions 

wmax = maximum vertical displacement 

ws = 
vertical displacement when the ultimate load condition occurs, in the case of 

no treatment 

w5 = 
vertical displacement when the ultimate load condition occurs, in the case of 

’g =5° 

w10 = 
vertical displacement when the ultimate load condition occurs, in the case of 

’g =10 

w15 = 
vertical displacement owhen the ultimate load condition occurs, in the case of 

’g =15° 

WD = dissipated energy in a hysteretic loop 

WS = maximum strain energy in a hysteretic loop 

α = impedance ratio 

α’ = the mass-proportional damping damping constant 

sand = weight percentage of sand  

SatSAP = weight percentage of saturated SAP 

 = relative rotation 

β’ = stiffness-proportional damping constant 

 = Shear strain 

c = maximum shear strain in a hysteretic loop 

s = unit weight  

l = linear threshold 

γv = volumetric threshold 

SAP  = average unit weight of saturated SAP-sand mixtures 

γSand = unit weight of the sand 

γSatSAP = unit weight of saturated SAP 

P = transmission coefficient 

VS = transmission coefficient 

 = reference displacement 

e  = void ratio increment 
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Δh = height variation 

H = whole settlements at the end of a certain load increment in an oedometric test 

l = spatial element size  

td = FLAC7 explicit method time step 

Vl = volume variation  

Vl,spec (t) = volume variation of the specimen 

Vl,pist (t) = volume change with time of the piston coming into cell 

w = differential displacements 

v = volumetric deformation increment 

’v = vertical load increment  

/L = deflection ratio 

i = linear strain in the i-direction 

v = volumetric deformation 

 = dynamic impedance 

’ = viscosity 

 = Inclination of the inclined soft layers 

 = Lamé’s constants 

 = dynamic impedance  

i = dynamic impedance of the i
th

-material 

 = Poisson ratio 

 = phase angle 

’ = shear strenght angle 

’peak = shear strenght angle in the peak condition 

’cv = shear strenght angle at constant volume 

’g = shear strength angle of the grouted soil 

’s = shear strength angle of the soil 

 = potential function 

ξ = damping ratio 

s = soil damping 

g = grouted soil damping 

P = equivalent damping ratio 

ρ = mass density 

i = mass density of the i
th

-material 

 = normal stress  

’ = effective normal stress  

’a = effective axial vertical stress in a triaxial test 

c = cell pressure in a triaxial test 

i = stress amplitude of the i
th

-wave 

σ'v0 = vertical geostatic normal stress   

σ'h0 = horizontal geostatic normal stress   

 = shear stress 
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S = velocity ratio 

 = dilatancy 

 = potential function 

ω = angular frequency 

P = equivalent angular frequency 

x = rotation around the x-directions 

y = rotation around the y-directions 

z = rotation around the z-directions 

  = circular frequency of the applied loading 

   

   

Notes about subscripts: 

 

   is the Laplacian operator 

x, y and z refer to Cartesian coordinates 

i, j, k represent general coordinate directions 
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