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Notation 
 

 

Symbol Unit  Description 
 
Av  [m2]  vehicle master section 

A0  [m2]  nominal tyre/road contact area 

Aeff  [m2]  effective tyre/road contact area 

C    thermal model grid position coefficient 

Cα  [N/rad] cornering stiffness 

Cγ  [N/rad] camber stiffness 

Cx  [N/m]  braking stiffness 

CG    centre of gravity 

CR    thermal model partition coefficient 

Cx  [-]  drag aerodynamic coefficient 

Cz  [-]  downforce aerodynamic coefficient 

DOF    degree of freedom 

E'   [Pa]  rubber storage modulus  

E''   [Pa]  rubber loss modulus  

E   [Pa]  rubber complex dynamic modulus  

E∞  [Pa]  glassy region dynamic modulus 

E0  [Pa]  rubbery region modulus  

F  [N]  force 

FP  [W/m2] friction power 

G    MF (magic formula) combined function 

Gr  [-]  Grashof number 

H  [W/(m2 K)] heat transfer coefficient 

Jz  [kg m2] vehicle moment of inertia about z axis 

Iw  [kg m2] wheel moment of inertia about rotation axis 

K    Kuznetsov adhesion parameter 

KΦ  [N/rad] axle roll stiffness 

L  [m]  characteristic length of the heat exchange surface 

La  [m]  contact patch length 

M  [Nm]  moment 

ML  [kg]  vehicle liquids mass (full tanks) 

Mw  [kg]  total wheel mass 

N  [m]  contact half length  

NEC    number of tread elements in contact with road 

Nu  [-]  Nusselt number 

Pr  [-]  Prandtl nuber 

R0  [m]  tyre unloaded radius 

Ra  [m]  roughness index 

Rc  [m]  CG trajectory curvature radius 

Rr  [m]  tyre rolling radius 

Rs  [m]  curvature radius of asperity apex 

SEL    strain energy loss 

T  [K]  temperature 

T∞   [K]  air temperature at an infinite distance 
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Tg  [K]  glassy transition temperature 

U  [m/s]  vehicle CG longitudinal velocity 

V  [m/s]  vehicle CG lateral velocity 

V  [m/s]  sliding velocity 

Vx  [m/s]  wheel longitudinal speed 

Vy  [m/s]  wheel lateral speed 

Vi  [m3]  i-th node thermal model elementary volume 

VEL  [m/s]  measured longitudinal speed 

VL  [m/s]  measured lateral speed 

VTOT  [m3]  total tread volume in contact with an asperity  

W  [N]  axle static load 

W  [m]  tread width 

WDISS  [W]  dissipated power  

ax  [m/s2]  longitudinal acceleration 

ay  [m/s2]  lateral acceleration 

a  [m]  front wheelbase 

ack%  [-]  real/geometric maximum available ackermann angle 

b  [m]  rear wheelbase 

cTEMP  [rad]  MF temperature shifting parameter 

cv  [J/(kg K)] specific heat at constant volume 

cp  [J/(kg K)] specific heat at constant pressure 

d  [m]  roll centre height  

h  [m]  vehicle CG height 

hEXH  [W/(m2 K)]] convective heat transfer coefficient with exhaust gas 

hforc  [W/(m2 K)] external air forced convection coefficient 

hair  [W/(m2 K)] natural convection coefficient 

kair  [W/(m K)] air thermal conductivity  

l  [m]  wheelbase 

m  [kg]  mass 

m2   [-]  track rms slope 

n  [-]  viscoelastic dissipation parameter  

p  [Pa]  pressure 

q  [J/(m3)] heat generated per unit of volume 

r  [rad/s] yaw rate 

slipxT  [%]  slip ratio in traction 

slipxB  [%]  slip ratio in braking 

slipx  [%]  generic slip ratio 

t  [s]  time 

tF  [m]  front track 

tR  [m]  rear track 

tp  [m]  pneumatic trail 

tan(δ)  [-]  tangent of the angle between storage and loss modulus 

vc  [m/s]  critical velocity  

vx  [m/s]  longitudinal sliding speed 

vy  [m/s]  lateral sliding speed 

xc    shifted MF ortho-slip variable 

xs    shifted MF slip variable 

α  [rad]  slip angle 
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α(T)  [K]  WLF temperature shift 

αAIR  [m2/s]  air thermal diffusivity 

αROAD  [m2/s]  road thermal diffusivity 

β  [rad]  vehicle sideslip angle 

γ  [rad]  camber angle 

δ  [rad]  nominal steering angle 

ɛ  [-]  strain 

ζ  [rad]  effective wheel steering angle 

λ  [m]  roughness wavelength 

λx  [rad]  sensor installation angle in xz plane 

λy  [rad]  sensor installation angle in yz plane 

λT  [-]  MF temperature scaling factor 

µ  [-]  friction coefficient or friction function 

µair  [kg/(m s)] air dynamic viscosity 

ν  [m2/s]  air kinematic viscosity 

νp   [-]  Poisson's ratio  

ω  [rad/s] stress angular frequency  

Ω  [rad]  angular speed 

ρ  [kg/m3] density 

σ   [Pa]  stress  

τ  [Pa]  shear stress 

τs  [-]  nominal steering ratio 

τs,0  [Pa]  interfacial shear strength  

χ  [rad]  toe angle 

ψ  [rad]  yaw angle 

 

 

Indices 
 
0  undeformed, static or nominal value 

F  front 

R  rear 

air  air 

r  road 

x  in x direction 

y  in y direction 

z  in z direction 
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Introduction 
 

 

 The most powerful engine, the most sophisticate aerodynamic devices, the most 

complex control systems won't be never able to improve vehicle performances if the 

forces exchanged with the road won't be maximized by a proper employment and 

knowledge of tyres. 

 The vehicle interface with the soil is constituted by the sum of small surfaces, 

wide about as one of our palms, in which tyre/road interaction forces are exchanged. It 

results then clear how the optimization of tyre behaviour could represent a key-factor in 

the definition of the best setup of the whole vehicle [1][2]: from a handling point of view, 

suspensions main role is to make the tyre work in order to improve contact patch 

exploitation in the widest motion conditions range [3][4]; aerodynamic appendices and 

active wings are developed with the aim to increase the loads acting at tyre/ground 

interface, and consequently, braking and traction longitudinal forces and lateral 

roadholding [5]; safety and stability control devices usually modulate the activation of 

the braking system in order to act on tyre dynamics, obtaining reductions in stopping 

distance, optimizing handling and driveability performances and increasing the driver's 

response effectiveness to unexpected changes in motion conditions [6][7]. 

 The fundamental role that in the last years tyres have played in motorsport and 

in automotive industry and the growing need to reproduce with a high level of detail the 

phenomena concerning with vehicle dynamics have given a strong impulse to the 

research in the field of vehicle systems analysis and modelling [8][9][10][11].  

 The activities described in the present PhD thesis concern with the study and the 

investigation of tyre/road interaction phenomena, with particular interest to their 

modelling in real-time simulation environments. They have been developed thanks to 

the precious support of the skilled and stimulating academic environment of Industrial 

Engineering Department of the University of Naples Federico II and of companies 

(Ferrari GT and Bridgestone Europe), motorsport teams (Ferrari GES and HT Mirage) 

and research institutes (LaMCoS) that can be doubtless considered as the excellence in 

everything concerns with automotive research, development, production and 

performance seeking fields. 

 Nowadays everyone playing a role in automotive sector is looking for the optimal 

solution to model and understand tyres behaviour both in experimental and simulation 

environments. The studies carried out and the developed tools allow to follow a new 

approach in tyre characterization and vehicle simulation procedures, enabling the 

complete reproduction of the dynamic response of a tyre and of its frictional and 

thermodynamic behaviour simply by means of specific track sessions and of few 

laboratory measurements, representing the bridge between a robust and widespread 

approach, like Pacejka's one [12], and a totally physical modelling, that satisfies 

predictive requests and the need of a deeper knowledge about complex phenomena. 

 After some brief notes about the basics of tyre characteristics and dynamics, the 

single developed models and procedures will be presented, highlighting their features, 

describing the path followed for the realization and discussing results and possible 

applications fields; the final product is composed by the following four tools, that can 

cooperate constituting a multitude of solutions, reported in the final chapter: 
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� TRICK (Tyre/Road Interaction Characterization & Knowledge):  
basically composed by a vehicle model able to process experimental signals 

acquired from vehicle CAN bus and from sideslip angle estimation additional 

instrumentation, providing a sort of "virtual telemetry", based on the acquired 

signals time history and containing force and slip estimations useful to provide 

tyre interaction characteristics. 

� TRIP-ID (Tyre/Road Interaction Parameters Identification): 
provides an innovative procedure to identify the Pacejka coefficients starting 

from the experimental tests carried out measuring global vehicle data during 

outdoor track sessions. The procedure collects and processes the data provided 

by TRICK, allowing to eliminate the outlier points, to discriminate among the 

different tyre wear and thermal phenomena, taking into account the combined 

slip condition and the effects of vertical load and camber angle on the global grip. 

� TRT (Thermo Racing Tyre): 
an analytical-physical thermal tyre model developed with the aim to predict the 

temperature with a high degree of accuracy, able to simulate the high-frequency 

thermal dynamics characterizing high performance systems. The model is able to 

estimate the temperature distribution even of the deepest tyre layers, usually not 

easily measurable on-line, to predict the effects that fast temperature variations 

induce in visco-elastic materials behaviour, and to take into account the 

dissipative phenomena related to the tyre deformations. 

� GrETA (Grip Estimation for Tyre Analyses): 
a tyre/road friction physical model, developed to respond to the needs of 

motorsport racing teams and tyre manufacturing companies, able to provide an 

effective calculation of the power dissipated by road asperities indented in tyre 

tread and taking into account the phenomena involved with adhesive friction, 

expressed by means of an original formulation whose parameters are identified 

thanks to dedicated experimental tests. 
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1. The tyre 
 
 
1.1 Description and General Considerations 
 The tyre is an under pressure, inextensible and deformable casing, made of 

composite material of polymeric matrix (vulcanized rubber and additives such as carbon 

black and silica) with reinforcement plies of steel or synthetic fibres [1][13][14]. 

 It has the shape of a solid of revolution (toroidal ring) with the function to bear 

statically and dynamically a given load, to transmit to the ground the longitudinal and 

lateral forces necessary to motion, to ensure the directionality of the vehicle enabling 

the steering and the insertion of it in the driver's desired trajectory, to perform both 

traction and braking force by means of adherence with the road surface, improve 

passenger comfort contributing to the vehicle suspension. 

 Currently, the most common tyre in automotive industry is the tubeless type, 

lacking of inner tube. The inner side of the tyre is constituted by a special rubber 

coating, highly airtight, called liner. The parts constituting a tubeless tyre are the 

followings (Fig. 1.1) [15]: 

 

 
Fig. 1.1 - Tyre structure. 

 

- Tread: consists of a rubber compound, commonly styrene-butadiene (SBR) copolymers 

[16], whose surface is crossed by a "pattern" able to ensure a good grip in both wet and 

dry conditions, as well as good characteristics of silent running. The pattern is composed 

by a particular arrangement of full (ribs) and void (grooves) volumes; the latter are 

designed to channel the water out and away ensuring a "dry" contact between rubber 

and soil. 

- Shoulder: is the area including the tread lateral extreme edge and the beginning of the 

sidewall. A tyre needs to offer good heat dispersal and for this the shoulder section plays 

a crucial role. 

- Sidewall: is the area between the shoulder and the bead bundle. It consists of a thin 

rubber layer, intended to protect the carcass plies against side impacts, such as the 

sidewalks edges. The sidewall helps to make tyre rigid and improves the ride quality; 

generally speaking, a high sidewall tyre is more comfortable than a low one as it is more 

flexible and hence able to better absorb the road unevennesses. 
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- Bead: tyre / rim coupling element; the core of a tyre’s bead is made up of several 

individually rubber-coated steel wires formed into a hoop, that is then provided with a 

rubber apex. Bead function is to ensure that the tyre sits firmly on the rim, in order to 

prevent relative rotations. This coupling is particularly critical, considering that all the 

actions exchanged between tyre and road are transmitted to the vehicle via the bear / 

rim contact surface that has a very limited extension and therefore is subjected to high 

stress levels. 

- Inner liner: is a thin, specially formulated compound placed on the inner surface of 

tubeless tyres to improve air retention by lowering permeation outwards through the 

tyre. 

- Belt plies: restrict expansion of carcass plies, stabilizing the tread area and providing 

impact resistance. Varying the belt width and angles affects vehicle ride and handling 

characteristics. Alternate belt constructions with materials other than steel is also often 

utilized. 

- Carcass (or body plies): constitutes the resistant structure, mainly acting in normal 

interaction, composed of one or more layers of plies placed under the tread (or under 

belt plies in radial tyres). Every single ply is composed by a series of mutually parallel 

cords of very durable and at the same time flexible material, surrounded by the 

vulcanized rubber compound. 

 Each carcass ply extends from bead to bead, wrapping and transferring on them 

the stresses generated by inflation pressure and interaction forces. Body plies 

arrangement (Fig. 1.2) gives the name to the structure of the tyre: nowadays the most 

commonly employed structure is the radial one, in which the carcass is composed of one 

or more plies disposed through the meridian planes of the toroid. The radial carcass is 

made more stable by the belt annular reinforcing structure which runs below the tread. 

The belt plies have very small inclination angles, between 5° and 10° and absorb the 

shear stresses which arise in working conditions. 

 

 
Fig. 1.2 - Radial (left) and diagonal or bias (right) tyre structure. 

 

 The other type of structure, still used in some applications for trucks, trailers and 

farm implements, is called diagonal or bias because the plies cross on the carcass being 

disposed according to proper inclinations respect to equatorial plane called "crown 

angles". Note that in these tyres there are not belt plies; therefore it is quite simple to 

recognize a radial tyre, being the sidewall plies fewer than the tread ones, for the 

presence in the latter of the belt reinforcements. 
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 The advantages of radial are mainly due to the fact that the tread is independent 

from the carcass; consequently, the tangential stresses (absorbed by the belt plies) are 

decoupled from normal ones (absorbed by radial carcass plies), while in bias tyres all 

stresses decompose according to the crown angles. Furthermore the radial arrangement 

reduces fatigue and wear: being the sidewall thinner, the material is less subjected to 

hysteresis, occurring for shear between plies and generating heat to be dissipated.  

 Radial tyres are characterized by better grip, more stability and a higher braking 

efficiency, acting as safer than conventional ones; they also allow greater energetic 

saving (increased durability and fuel economy) and a greater level of comfort (more 

shock absorption) [1][2]. 

 

1.2 Historical Notes 
 In 1844 Goodyear invented the vulcanization process of natural rubber which 

consisted in manufacturing it in an environment saturated with sulphur under certain 

conditions of temperature and pressure. This technological step was essential for the 

subsequent evolution of the tyre, considering that natural rubber exhibits low yield 

strength and strongly varies its resistance with temperature. The vulcanization, through 

the sulphur bonds in the polymer chains, allows to natural rubber to increase its 

strength and its attitude to resist to deformation.  

 In 1846, Thomson patented an "air wheel": the first prototype of tyre. He had the 

idea to employ an air chamber in the wheels in order to both reduce the effort of the 

horses (the work was reduced by 40%) and to cushion noise and harshness. Despite the 

innovation, Thomson was not understood and his idea had no developments. 

 Only in 1888, Dunlop, in an attempt to build a tricycle for his son, began to study 

the wheels. He verified experimentally that between a solid rubber wheel and an hollow 

one filled with air, the latter bounced more; it was a proof of the excellent elastic 

behaviour of what would have become the first industrial manufactured tyre. Solid 

rubber is significantly visco-elastic, retrieving original shape after deformations with 

strong delay; moreover, being more insulating, cannot easily dissipate the heat 

generated by hysteresis, degrading consequently very quickly. On the contrary, the air 

contained in the hollow rubber accelerates the recovery after the deformation and the 

degradation is lower because the amount of rubber is reduced. 

 The huge commercial success of the Dunlop tyres was due to a cyclist who first 

used them and repeatedly won against his rivals who yet adopted solid rubber wheels. 

 The tyres were originally nailed to the rim; only after time the bead / rim 

coupling system was developed. Over the years the constructive structure has changed, 

bringing to the disappear of the inner tubes (which can still be found today for bicycles) 

and to the progressive diffusion of the radial plies arrangement. Even the colour has 

changed; initially the tyres were white because natural rubber is white, then the carbon 

black was added to composition to enhance performance under wear and fatigue and to 

prevent the action of ultraviolet rays. Finally, to further improve the mechanical 

properties, the silica and many other materials have been recently added, leading to 

very complex tyres, constituted by dozens of different compounds. 

 In the last few years, tyremakers have given a new shape to tyres, developing air-

less prototypes. Michelin announced the Tweel in 2005 and presented it recently, while 

Bridgestone has shown his "Air Free Concept Tyre" at Tokyo Motor Show 2013. The 

prototypes don’t use a traditional wheel hub assembly: a solid inner hub surrounded by 

polyurethane spokes arrayed in a pattern of wedges mounts to the axle. A shear band is 
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stretched across the spokes, forming the outer edge of the tyre (the part that comes in 

contact with the road). The tension of the shear band on the spokes and the strength of 

the spokes themselves replace the air pressure of a traditional tyre. The tread is then 

attached to the shear band [17]. It must still be understood if airless tyres will be able to 

substitute common pneumatic tyres, but they could represent an interesting solution for 

the advantages that they can offer as concerns punctures and damage resistance. 

 

1.3 Sidewall Markings 
 Automobile tyres are described by an alphanumeric tyre code, which is generally 

moulded into the sidewall (Fig. 1.3). This code specifies the dimensions of the tyre and 

some of its key limitations, such as load-bearing ability and maximum speed. Sometimes 

the inner sidewall contains information not included on the outer sidewall, and vice 

versa. 

 The code has grown in complexity over the years, as is evident from the mix of 

metric and imperial units, and ad-hoc extensions to lettering and numbering schemes. 

New automotive tyres frequently have ratings for traction, tread wear and temperature 

resistance (collectively known as The Uniform Tyre Quality Grade (UTQG) ratings). 

 Most tyres sizes are given using the ISO Metric sizing system. However, 

some pickup trucks and SUVs use the Light Truck Numeric or Light Truck High Flotation 

system. 

 The ISO Metric tyre code consists of a string of letters and numbers, as follows: 

 

 
Fig. 1.3 - Tyre sidewall markings. 

 

� An optional letter (or letters) indicating the intended use or vehicle class: 

- P: Passenger Car 

- LT: Light Truck 

- ST: Special Trailer 

- T: Temporary (restricted usage for "Space-Saver" spare wheels) 

Use of the letter P indicates that the tyre is engineered to TRA standards and 

absence of a letter indicates that the tyre is engineered to ETRTO standards. In 

practice, the standards of the two organizations have evolved together and are fairly 

interchangeable, but not fully since the Load Index will be different for the same size 

tyre.  
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� 3 digit number: the "nominal section width" of the tyre in millimetres; the widest 

point from both outer edges (sidewall to sidewall). The tyre surface in contact with 

the road usually has smaller width. 

� /: slash character for numbers separation. 

� 2 or 3 digit number: the "aspect ratio" of the sidewall height as a percentage of the 

total width of the tyre. If the information is omitted, it is assumed to be 82% (if 

written, it should be like xxx/82). If the number is larger than 200, then this is the 

diameter of the entire tyre in millimetres. 

� An optional letter indicating construction of the tyre carcass: 

- B: bias belt 

- D: diagonal 

- R: radial 

if omitted, then it is a cross ply tyre. 

� 1 or 2 digit number: diameter in inches of the rim that the tyres are designed to fit. 

 

 
Fig. 1.4 - Tyre size graphic explanation. 

 

� 2 or 3 digit number: load index [18]; some light truck tyres are approved for "dual 

use", that is they can be run in pairs next to each other. If so, separate load indices 

will be specified for single and dual usage. Tyres without this designation for dual 

usage are unsafe to use as such. 

� 1 or 2 digit/letter combo: speed rating [18]. 

� Additional marks: the most common are the followings: 

- M+S or M&S: mud and snow; a tyre that meets the Rubber Manufacturers 

Association (RMA) and Rubber Association of Canada (RAC) all-season tyre 

definition. These are all-weather tyres, with self-cleaning tread and above-

average traction in muddy or very light snowy conditions, and at low ambient 

temperatures. Spike tyres have an additional letter, "E" (M+SE). 

- M+T or M&T: mud and terrain; designed to perform in mud or on other terrain 

that requires additional traction such as on rocks, in deeper snow, and in loose 

gravel. 

- SFI or Inner: Side Facing Inwards; inside of asymmetric tyres. 

- SFO or Outer: Side Facing Outwards; outside of asymmetric tyres. 

- TWI: Tread Wear Indicator; a device, such as a triangle, located where the tread 

meets the sidewall. It indicates the location of the raised wear bars in between 

the tyre tread channels. 
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- LL: Light Load; tyres for light usage and loads. 

- SL: Standard Load; tyre for normal usage and loads. 

- XL: eXtra Load; a tyre that allows a higher inflation pressure than a Standard 

Load tyre, which increases the tyre's maximum load. 

- RF: Reinforced - for Euro metric tyres - the term means the same thing as 'Extra 

Load'. 

- Arrows: some tread designs are "directional", and designed to perform better 

when driven in a specific direction (clockwise or counter-clockwise). Such tyres 

have an arrow showing which way the tyre should rotate when the vehicle is 

moving forwards. It is important not to put a "clockwise" tyre on the left hand 

side of the car or a "counter-clockwise" tyre on the right side. 

� DOT code: all tyres for use in the USA have the DOT code, as required by 

the Department of Transportation (DOT). It specifies the company, factory, mould, 

batch, and date of production (two digits for week of the year plus two digits for 

year). JATMA, the Japanese Automotive Tyre Manufacturers Association 

recommends that all tyres be inspected at five years and that all the ones 

manufactured more than ten years before be replaced.  

 

1.4 Mechanics of Tyres 
1.4.1 Topology Notes 
 Tyres are generally required to fulfil the following functions: 

� to support the weight of the vehicle; 

� to cushion the vehicle over surface irregularities; 

� to provide sufficient traction for driving and braking; 

� to provide adequate steering control and direction stability. 

 The study of the mechanics of tyres therefore is of fundamental importance to the 

understanding of the performance and characteristics of ground vehicles. To describe 

the behaviour of a tyre and the forces and moments acting on it, it is necessary to define 

an axis system that serves as a reference for the definition of various parameters. One of 

the commonly used axis systems recommended by the ISO8855 standard and shown in 

Fig. 1.5 [19]. The origin of the axis system is the centre of tyre contact (CTC), x axis is the 

intersection of the wheel plane and the ground plane with a positive direction forward, z 

axis is perpendicular to the ground plane with a positive direction upward and y axis is 

in the ground plane, and its direction is chosen to make the axis system orthogonal and 

right hand. There are three forces and three moments acting on the tyre from the 

ground: tractive force (or longitudinal force) Fx is the component in the x direction of the 

resultant force exerted on the tyre by the road, lateral force Fy is the component in the y 

direction, and normal force Fz is the component in the z direction. "Overturning 

moment" Mx is the moment about the x axis exerted on the tyre by the road, "rolling 

resistance" moment My is the moment about the y axis, and "aligning torque" Mz is the 

moment about the z axis. 

 With this axis system, many performance parameters of the tyre can be 

conveniently defined; for instance, the longitudinal shift of the centre of normal pressure 

is determined by the ratio of the rolling resistance moment to the normal load, the 

lateral shift of the centre of normal pressure is defined by the ratio of the overturning 

moment to the normal load and the integration of longitudinal shear stresses over the 

entire contact patch represents the tractive or braking force.  
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 There are two important angles associated with a rolling tyre: "slip angle" and 

"camber angle": slip angle α is the angle from the x axis to the velocity vector of the 

centre of tyre contact, about the z axis; camber angle γ is the angle formed between the 

xz plane and the wheel plane. Lateral interaction forces at the tyre/ground interface are 

a function of both the slip angle and the camber angle. 

 In the following, brief notes about lateral and longitudinal tyre dynamics will be 

provided; for more detailed analyses the consultation of the wide available bibliography 

is suggested [8][9][10][12]. 

 

 
Fig. 1.5 - ISO wheel reference system. 

 

1.4.2 Lateral Interaction 
 When a tyre is not subject to any force perpendicular to the wheel plane, it will 

move along this last; if a side force Fs is applied to a wheel, a lateral force will be 

developed at the contact patch, and the tyre will move along a path at an angle equal to 

the slip angle α with the wheel plane, mainly due to the lateral elasticity of the tyre, as 

shown in Fig. 1.6.  

 The lateral force developed at the tyre/ground contact patch is usually called 

cornering force Fyα when the camber angle of the wheel is zero; the relationship 

between the cornering force and the slip angle is of fundamental importance to the 

directional control and stability of road vehicles. When the tyre is moving at a uniform 

speed, the side force Fs applied at the wheel centre and the cornering force Fyα 

developed in the ground plane are usually not collinear: at small slip angles, the 

cornering force in the ground plane is normally behind the applied side force, giving rise 

to a torque which tends to align the wheel plane with the direction of motion. This 

torque is called the "aligning" or "self-aligning torque", and it is one of the restoring 

moments which help the steered tyre return to the original position after performing a 

curving manoeuvre. The distance tp between the side force and the cornering force is 

called the "pneumatic trail", and the product of the cornering force and the pneumatic 

trail determines the self-aligning torque. 
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Fig. 1.6 - Tyre cornering behaviour and definition of slip angle α. 

 

 The relationships between the slip angle and the cornering force of various types 

of tyre  under a variety of working conditions have been investigated extensively. 

Typical plots of the cornering force as a function of the slip angle show that for slip 

angles below a certain value the cornering force is approximately proportional to the 

slip angle. Beyond that, the cornering force increases at a lower rate with an increase of 

the slip angle, and it reaches a maximum value where the tyre begins sliding laterally. 

For passenger car tyres, the maximum cornering force may occur at 

a slip angle about three times higher than for racing car tyres (characterized by 

definitely higher values of lateral stiffness). 

 A number of factors affect the cornering behaviour of tyres, as for example the 

normal load: it can be seen that for a given slip angle, the cornering force generally 

increases with an increase of the normal load. However, the relationship between the 

cornering force and the normal load is nonlinear (Fig. 1.7); it means that the transfer of 

load from the inside to the outside tyre during a turning manoeuvre will reduce the total 

cornering force that a pair of tyres can perform, making so possible to act on the 

under/oversteering behaviour of the whole vehicle modifying the value of the roll 

stiffness, able to manage the load transfers [8][20]. 

 

 
Fig. 1.7 - Effect of normal load on the cornering characteristics of a tyre. 
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 To provide a measure for comparing the cornering behaviour of different tyres, a 

parameter called "cornering stiffness" Cα is used. It is a very important parameter in 

determining the linear range behaviour of vehicles, the area in which most driving is 

done and is defined as the derivative of the cornering force Fyα with respect to slip angle 

α evaluated at zero slip angle: 
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α
α

=

∂
=
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 The cornering stiffness generally increases with load, but the rate of increase 

declines as load increases. The peak of the lateral force curve occurs at higher and 

higher slip angles as the normal force increases. However, if a pseudo coefficient of 

friction is computed by dividing the peak value of Fy at each load by the load itself, one 

discovers that the frictional capability of the tyre declines with increasing load. Thus, 

high performance vehicles on a dry road will exhibit their maximum cornering ability 

using large tyres operating at relatively light loads. Inflation pressure usually has a 

moderate effect on the cornering properties of a tyre, but in general, cornering stiffness 

increases with an increase of the inflation pressure. 

 
1.4.3 Camber Thrust 
 Camber causes a lateral force usually referred to as "camber thrust" Fyγ, and the 

development of this thrust may be explained in the following way: a free-rolling tyre 

with a camber 

angle would revolve about point O, as shown in figure 1.8; however, the cambered tyre 

in a vehicle is constrained to move in a straight line, developing therefore a lateral force 

in the direction of the camber in the ground plane. It has been shown that the camber 

thrust is approximately one fifth the value of the cornering force obtained from an 

equivalent slip angle for a bias-ply tyre and somewhat less for a radial-ply tyre.  

 

 
Fig. 1.8 - Behaviour of a cambered tyre. 
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 To provide a measure for comparing the camber characteristics of different tyres, 

a parameter called "camber stiffness" is often used; it is defined as the derivative of the 

camber thrust with respect to the camber angle evaluated at zero camber angle: 

 

0

yF
C

γ
γ

γ
γ

=

∂
=

∂
 (1.2) 

 

 Similarly to the cornering stiffness, normal load and inflation pressure have an 

influence on the camber stiffness. It has been calculated that for truck tyres, the value of 

the camber stiffness is approximately one tenth to one fifth of that of the cornering 

stiffness under similar operating conditions. 

 The total lateral force of a cambered tyre operating at a certain slip angle is the 

sum of the cornering force Fyα and the camber thrust Fyγ: 

 

y y yF F Fα γ= ±  (1.3) 

 

 If the cornering force and the camber thrust are in the same direction, the 

positive sign should be used in the above equation. For small slip and camber angles, the 

relationship between the cornering force and the slip angle and the one between the 

camber thrust and the camber angle are essentially linear; the total lateral force of a 

cambered tyre at a slip angle can, therefore, be determined by: 

 

yF C Cα γα γ= ±  (1.4) 

 

 As discussed previously, the lateral forces due to slip angle and camber angle 

produce a torque, but the component due to slip angle, however, is usually much greater 

and mainly responsible of the aligning torque acting on tyres in ordinary driving 

conditions.  
 

1.4.4 Longitudinal Interaction 
 When a driving torque is applied to a tyre, a tractive force is developed at the 

tyre/ground contact patch, as shown in Fig. 1.9. At the same time, the tyre tread zone in 

front of and within the contact patch is subjected to compression and a shear 

deformation of the sidewall is also developed. 

As tread elements are compressed before entering the contact region, the distance that 

the tyre travels when subject to a driving torque will be less than that in free rolling. 

This phenomenon is usually referred to as longitudinal slip.  
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Fig. 1.9 - Behaviour of a tyre under the action of a driving torque. 

 

 Tyre longitudinal slip, when a driving torque is applied, is usually defined by: 
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where Vx is the longitudinal linear speed of the tyre centre, Ω is the tyre angular speed 

and Rr is the rolling radius of the free-rolling tyre. When a driving torque is applied, RrΩ 

is greater than Vx and a positive value for slipxT results; if a tyre is rotating at a certain 

angular speed but the linear speed of its centre is zero, then in accordance with equation 

1.5, the longitudinal slip will be 100%. This is often observed on an icy surface, where 

the driven tyres are spinning at high angular speeds, while the vehicle does not move 

forward. 

 As the tractive force developed by a tyre is proportional to the applied wheel 

torque under steady-state conditions, slip is a function of tractive effort. Generally 

speaking, at first the wheel torque and tractive force increase linearly with slip because, 

initially, slip is mainly due to elastic deformation of the tread. A further increase of 

wheel torque and tractive force results in part of the tread sliding on the ground, that 

explains why the relationship between the tractive force and the slip is notoriously 

nonlinear.  

 Based on available experimental data, the maximum tractive force of a tyre on 

hard surfaces is usually reached somewhere between 15 and 20% slip. Any further 

increase of slip beyond that results in an unstable condition, with the tractive effort 

falling rapidly from the peak value to the pure sliding value.  
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Fig. 1.10 - Behaviour of a tyre under the action of a braking torque. 

 

 When a braking torque is applied to the tyre, a stretching of the tread elements 

occurs prior to entering the contact area, as shown in figure 1.10, in contrast with the 

compression effect described for a driven tyre. The distance that the tyre travels when a 

braking torque is applied, therefore, will be greater than that in free rolling and slipxB is 

the index usually employed to quantify the skid of the tyre: 
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− Ω
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 For a locked wheel, the angular speed is zero, whereas the linear speed of the tyre 

centre is not zero; under this condition, the skid is denoted 100%. 

 Both in traction and in braking manoeuvres the contact patch can be split in two 

different parts: a first one, considered in adherence, in which tangential force is 

proportional to tread deformation along x direction; a second one, where sliding 

between tread and ground takes place, linked to normal pressure distribution and 

dynamic friction coefficient. If no sliding takes place on the contact patch, the 

relationship between the longitudinal force and the slip can be considered as linear: 

 

x x xF C slip=  (1.7) 

 

in which slipx is equal to slipxT in traction phases and to slipxB in braking ones and Cx is 

tyre longitudinal stiffness, often called "braking stiffness", even in traction phases: 
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1.4.5 Interaction between Tangential Forces 
 In the discussion about the cornering behaviour of tyres, the effect of the 

longitudinal force has not been considered. However, quite often both the side force and 

the longitudinal force are present, such as braking in a turn. In general, tractive (or 

braking) effort will reduce the cornering force that can be generated for a given slip 

angle; the cornering force decreases gradually with an increase of the tractive or braking 

effort. At low values of tractive (or braking) effort, the decrease in the cornering force is 

mainly caused by the reduction of the cornering stiffness of the tyre. A further increase 

of the tractive (or braking) force results in a pronounced decrease of the cornering force 

for a given slip angle. This is due to the mobilization of the available local adhesion by 

the tractive (or braking) effort, which reduces the amount of adhesion available in the 

lateral direction. 

 It is interesting to point out that if an envelope around each family of curves of 

figure 1.11 is drawn, a curve approximately semi-elliptical in shape may be obtained. 

This enveloping curve is often referred to as the friction ellipse. 

 

 
Fig. 1.11 - Effect of longitudinal force on the cornering characteristics of tyres. 

 

 The friction ellipse concept is based on the assumption that the tyre may slide on 

the ground in any direction if the resultant of the longitudinal force (either tractive or 

braking) and lateral (cornering) force reaches the maximum value defined by the 

coefficient of friction and by the normal load on the tyre. However, the longitudinal and 

lateral force components may not exceed their respective maximum values Fxmax and 

Fymax, as shown in Fig. 1.12. Fxmax and Fymax can be identified from measured tyre data 

and constitute respectively the major and minor axis of the friction ellipse. 

 

 
Fig. 1.12 - The friction ellipse concept relating  

the maximum available cornering force to a given longitudinal force. 
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2. TRICK tool - Tyre/Road Interaction Characterization & 
Knowledge  
 
 
2.1 Introduction 
 The themes discussed in the previous chapter highlight how the development of a 

procedure able to estimate tyre forces and slip indices during outdoor test sessions can 

represent a crucial task for many actors playing a role in automotive industry, such as 

vehicle manufacturers, vehicle dynamics engineers and tyre production companies. 

 The main aims for which such kind of tool can be employed are: 

- tyre characterization without test bench availability: complete and detailed studies of 

tyres in a wide range of working conditions are commonly carried out by means of 

complex, bulky and expensive test benches; the proposed procedure allows to employ 

the vehicle as a moving lab, easily applying experimental and processing techniques. 

- real thermal and frictional tyre characterization: tyre test rigs bring unavoidably to 

adoption of expedients useful to analyse tyres under controlled conditions, but that 

sometimes result to be quite far from reality; an example can be the employment of 

sliding flat belts, able to keep the tyre in rolling, but very different from real road as 

concerns roughness characteristics, stiffness and thermal conductivity. The possibility to 

test tyres under real working conditions allows to take into account the real effect of 

frictional and thermal phenomena, usually neglected or misestimated. 

- tyre testing session results analysis: testing departments often employ the opinion of 

specialized drivers as unique tyre performance evaluation instrument; this essential 

subjective phase could be supported by a pure objective tool, able to provide an 

immediate comparison among the different tested tyres. 

- race and test performances analysis: tyres directly influence the vehicle performances; 

consequently, a detailed analysis of the tangential interaction characteristics and of the 

effects that tyres generate on the whole vehicle behaviour can provide useful 

suggestions about the direction in which the performance improvement strategies 

should move. 

- tyre models parameters identification: with the availability of a wide data set, 

eventually acquired by means of dedicated track sessions, it is possible to predict the 

behaviour of tyres in all its possible working configurations; it allows to identify physical 

[21][22][23] and empirical [12][24] tyre models parameters, tuning their output in 

order to fit the experimental ones. 

 The tool described in the following paragraphs, developed by the Mechanics and 

Energetics group of Industrial Engineering Department of University of Naples Federico 

II in collaboration with Ferrari S.p.A1. GT department, has been named TRICK: 

Tyre/Road Interaction Characterization & Knowledge. It is basically composed by a 

vehicle model able to process experimental signals acquired from vehicle CAN bus and 

from sideslip angle estimation additional instrumentation (DATRON2) providing a sort 

                                                 
1 For industrial confidentiality agreements, plots, diagrams and data will be provided as normalized 

respect to maximum reported value. 
2 Also commercialized as Correvit, it is a Non-Contact Optical Sensor designed for direct, slip-free 

measurement of longitudinal and transversal vehicle dynamics (http://www.corrsys-datron.com/). An 

example of application is provided in [25]. 
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of "virtual telemetry", based on the acquired signals time history and stored in a 

MATLAB matrix variable "DATA" structured as follows: 

 

nr. Channel U.O.M. Description 
1 Time [s] time 

2 Distance [m] run distance from the start of acquisition  

3 Speed [km/h] vehicle absolute speed 

4 WheelSpeed_LF [rpm] left front wheel angular speed 

5 WheelSpeed_RF [rpm] right front wheel angular speed 

6 WheelSpeed_LR [rpm] left rear wheel angular speed 

7 WheelSpeed_RR [rpm] right rear wheel angular speed 

8 LongSlidingSpeed_LF [m/s] left front wheel longitudinal sliding speed 

9 LatSlidingSpeed_LF [m/s] left front wheel lateral sliding speed 

10 LongSlidingSpeed_RF [m/s] right front wheel longitudinal sliding speed 

11 LatSlidingSpeed_RF [m/s] right front wheel lateral sliding speed 

12 LongSlidingSpeed_LR [m/s] left rear wheel longitudinal sliding speed 

13 LatSlidingSpeed_LR [m/s] left rear wheel lateral sliding speed 

14 LongSlidingSpeed_RR [m/s] right rear wheel longitudinal sliding speed 

15 LatSlidingSpeed_RR [m/s] right rear wheel lateral sliding speed 

16 RollingRadiusF [m] front tyre effective rolling radius 

17 RollingRadiusR [m] rear tyre effective rolling radius 

18 Fz_LF [N] left front tyre vertical force 

19 Fx_LF [N] left front tyre longitudinal force 

20 Fy_LF [N] left front tyre lateral force 

21 Fz_RF [N] right front tyre vertical force 

22 Fx_RF [N] right front tyre longitudinal force 

23 Fy_RF  [N] right front tyre lateral force 

24 Fz_LR  [N] left rear tyre vertical force 

25 Fx_LR [N] left rear tyre longitudinal force 

26 Fy_LR [N] left rear tyre lateral force 

27 Fz_RR [N] right rear tyre vertical force 

28 Fx_RR [N] right rear tyre longitudinal force 

29 Fy_RR [N] right rear tyre lateral force 

30 Camber_LF [deg] left front wheel camber angle 

31 Camber_RF [deg] right front wheel camber angle 

32 Camber_LR [deg] left rear wheel camber angle 

33 Camber_RR [deg] right rear wheel camber angle 

34 SurfTemp_LF  [Celsius] left front tyre measured surface temperature 

35 SurfTemp_RF [Celsius] right front tyre measured surface temperature 

36 SurfTemp_LR [Celsius] left rear tyre measured surface temperature 

37 SurfTemp_RR [Celsius] right rear tyre measured surface temperature 

38 Delta [deg] driver steering angle 

39 Ay [g] vehicle lateral acceleration 

40 LongSlip_FL [%] left front tyre slip ratio 

41 LongSlip_FR [%] right front tyre slip ratio 
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42 LongSlip_RL [%] left rear tyre slip ratio 

43 LongSlip_RR [%] right rear tyre slip ratio 

44 SlipAngle_FL [deg] left front tyre slip angle 

45 SlipAngle_FR [deg] right front tyre slip angle 

46 SlipAngle_RL [deg] left rear tyre slip angle 

47 SlipAngle_RR [deg] right rear tyre slip angle 

48 RollRes_LF [N] left front tyre rolling resistance force 

49 RollRes_RF [N] right front tyre rolling resistance force 

50 RollRes_LR [N] left rear tyre rolling resistance force 

51 RollRes_RR [N] right rear tyre rolling resistance force 

52 Ax [g] vehicle longitudinal acceleration 

53 Yaw Rate [deg/s] vehicle yaw rate 

54 Beta [deg] vehicle sideslip angle 

55 U [m/s] vehicle longitudinal velocity 

56 V [m/s] vehicle lateral velocity 
Table 2.1 - Structure of the "virtual telemetry" DATA matrix. 

 
2.2 Vehicle model 
2.2.1 Basic hypotheses and reference system 
 The vehicle has been modelled using an 8 degree of freedom (DOF) quadricycle 

model. In particular: 

- 3 DOF refer to in plane vehicle body motions (longitudinal, lateral and jaw motions) 

- 4 DOF to wheel rotations 

- 1 DOF to the steering angle 

 Moreover, suspensions and steering system kinematics and compliances have 

been modelled by means of lookup tables based on multibody simulation data, allowing 

to take into account roll angle, front and rear wheels toe and camber variations as a 

function of vehicle longitudinal and lateral accelerations. 

 A wide and detailed description of vehicle characteristics, such as drag (Cx) and 

downforce (Cz) aerodynamic coefficients, tyres rolling resistance parameters and 

ackermann steering coefficients, gives the possibility to model dynamic effects 

commonly neglected because of their intrinsic complexity, but essential in an interaction 

characterization activity. 

 To describe the vehicle motions two coordinate systems have been introduced: 

one earth-fixed (X' ; Y'), the other (x ; y) integral to the vehicle as shown in Fig. 2.1. With 

reference to the same figure, v is the centre of gravity (CG) absolute velocity referred to 

the earth-fixed axis system and U (longitudinal velocity) and V (lateral velocity) are its 

components in the vehicle axis system; r is the yaw rate evaluated in the earth fixed 

system, β is the vehicle sideslip angle, Fxi and Fyi are respectively longitudinal and 

lateral components of the tyre-road interaction forces. The front and rear wheel tracks 

are indicated with tF and tR, while the distances from front and rear axle to the centre of 

gravity are represented by a and b, respectively. The steer angle of the front tyres is 

denoted by δ, while the rear tyres are supposed non-steering. 

 



 

 

 As concerns tyre/road tangential forces, they are considered as acting from the 

tyres on the ground. Vertical loads, for reasons of coherence with ISO reference system

[19], employed in Pacejka tyre models

road, minor than 0. Camber and toe angles are considered in ISO reference system.

 

2.2.2 Input channels 
 TRICK tool, by means of a specifically developed GUI (graphical user interface), 

loads and processes input channels exported from the acquiring system (DEWESOFT) as 

MATLAB variables (files *.mat), properly named as follows (Fig. 2.2):

 

 Channels contents are:

- Data1_BETA: vehicle sideslip Angle 

- Data1_LWS_Angle: driver's steering angle 

- Data1_LatAcceleration: vehicle lateral acceleration 

- Data1_LongAcceleration: vehicle longitudinal acceleration 

                                                 
3 Controller Area Network bus, a 

communicate with each other within a vehicle without a

2. TRICK tool - Tyre/Road Interaction Characterization & Knowledge

Fig. 2.1 - Coordinate systems. 

As concerns tyre/road tangential forces, they are considered as acting from the 

cal loads, for reasons of coherence with ISO reference system

, employed in Pacejka tyre models, are in ordinary conditions of tyre in contact with 

road, minor than 0. Camber and toe angles are considered in ISO reference system.

TRICK tool, by means of a specifically developed GUI (graphical user interface), 

loads and processes input channels exported from the acquiring system (DEWESOFT) as 

MATLAB variables (files *.mat), properly named as follows (Fig. 2.2): 

 
Fig. 2.2 - TRICK Input Channels. 

 

Channels contents are: 

Data1_BETA: vehicle sideslip Angle - Datron output [rad] 

Data1_LWS_Angle: driver's steering angle - CAN bus3 output [rad] 

Data1_LatAcceleration: vehicle lateral acceleration - CAN bus output [m/s^2]

Data1_LongAcceleration: vehicle longitudinal acceleration - CAN bus output [m/s^2]

 
 vehicle bus standard designed to allow microcontrollers

communicate with each other within a vehicle without a host computer. 
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As concerns tyre/road tangential forces, they are considered as acting from the 

cal loads, for reasons of coherence with ISO reference system 

are in ordinary conditions of tyre in contact with 

road, minor than 0. Camber and toe angles are considered in ISO reference system. 

TRICK tool, by means of a specifically developed GUI (graphical user interface), 

loads and processes input channels exported from the acquiring system (DEWESOFT) as 

CAN bus output [m/s^2] 

CAN bus output [m/s^2] 

microcontrollers and devices to 
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- Data1_Time: [s] 

- Data1_VEL: vehicle longitudinal velocity - Datron output [m/s] 

- Data1_VL: vehicle lateral velocity - Datron output [m/s] 

- Data1_VRD_LH4___Wheel_Speed_Left: rear left wheel speed - CAN bus output [m/s] 

- Data1_VRD_LV5___Wheel_Speed_Left: front left wheel speed - CAN bus output [m/s] 

- Data1_VRD_RH___Wheel_Speed_Righ: rear right wheel speed - CAN bus output [m/s] 

- Data1_VRD_RV___Wheel_Speed_Righ: front right wheel speed - CAN bus output [m/s] 

- Data1_YawRate: CAN bus output [rad/s] 

 Notice that wheel speeds are expressed in [m/s] because their CAN signal is equal 

to angular speed, measured by phonic wheel, multiplied by effective rolling radius, 

manually set in vehicle control unit during its initialization. 

 Even if the tool has been developed enabling reference system variations and 

offsets corrections, input channels would be preferably acquired and processed 

according with reference system shown in figure 2.3; measured accelerations refer to 

inertial ones, wheel speeds are positive for rotations able to make the vehicle move with 

positive longitudinal velocity. 

 

 
Fig. 2.3 - TRICK input channels reference system. 

 

 

2.2.3 Input parameters 
 A reliable vehicle description is essential for a correct TRICK employment; in 

table 2.2 the necessary parameters and characterization data are reported: 

 

Vehicle Data 
Variable 

Name U.O.M. 
Front Tyre Sidewall Markings    

Rear Tyre Sidewall Markings    

Front Tyre Unloaded Radius R0F [m] 

                                                 
4 From german, Hinterachse: rear axle. 

5 From german, Vorderachse: front axle. 
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Rear Tyre Unloaded Radius R0R [m] 

Front Tyre Effective Rolling Radius RrF [m] 

Rear Tyre Effective Rolling Radius RrR [m] 

Dry Vehicle Mass m [kg] 

Liquids Mass - Full Tanks ML [kg] 

Front Wheel + Tyre Mass MwF [kg] 

Rear Wheel + Tyre Mass MwR [kg] 

Vehicle Moment of Inertia about z-axis Jz [kg m2] 

Front Wheel Moment of Inertia about rotation axis IwF [kg m2] 

Rear Wheel Moment of Inertia about rotation axis IwR [kg m2] 

Wheelbase l [m] 

Front Wheelbase a [m] 

Rear Wheelbase b [m] 

Front Track tF [m] 

Rear Track tR [m] 

Centre of Gravity Height h [m] 

Front Axle Roll Stiffness KΦF [N/rad ] 

Rear Axle Roll Stiffness KΦR [N/rad] 

Nominal Steering Ratio τs [-] 

Vehicle Master Section  Av [m2] 

Cx Cx [-] 

Cz Front CzF [-] 

Cz Rear CzR [-] 

Roll Centre Height (at Centre of Gravity abscissa) d [m] 

Static Camber Angle Front γ0F [rad] 

Static Camber Angle Rear γ0R [rad] 

Static Toe Angle Front χ0F [rad] 

Static Toe Angle Rear χ0R [rad] 

Real / Geometric maximum available Ackermann Angle ack% [-]  

Datron distances from CG (x, y, z) bx, by, bz [m, m, m] 

     

Rolling Resistance Curves    

     

Elasto-Kinematic Suspensions Characterization    

     

Axle Compliances Characterization    
Table 2.2 - Vehicle characterization necessary data. 

 

 As concerns last three points, data can be provided by means of numeric charts, 

obtained from Multibody simulations or dedicated test sessions, reporting the following 

signals: 

� for Rolling Resistance Curves (Fig. 2.4): 

  - Wheel Vertical Load 

  - Vehicle Speed 

  - Rolling Resistance Force 

� for Elasto-Kinematic Suspensions Characterization (Fig. 2.5 and 2.6): 
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 - Lateral Acceleration 

 - Wheels Camber Angle 

 - Wheels Toe Angle 

� for Axle Compliances Characterization (Fig. 2.7): 

 - Axle Lateral Force 

 - Steering Angle Variation 

  

 
Fig. 2.4 - Rolling resistance curves at three different vertical loads (FzA < FzB < FzC). 

 

 
Fig. 2.5 - Camber angle at increasing lateral acceleration - ISO reference system. 

 

 
Fig. 2.6 - Toe angle at increasing lateral acceleration -  ISO reference system. 
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Fig. 2.7 - Steering angle variation 

 

2.2.4 Test Procedure 
 Data useful to identify tyre interactions have to be acquired during dedicated 

track test sessions; the aim of the test routine reported in table 2.3 is to investigate tyre 

behaviour in the widest possible working conditions range. In particular, it is important 

to focus on manoeuvres that highlight the different tyre road interactions: 

� pure longitudinal:  

 - global sliding start on straight road 

 - wheel blocking brake manoeuvre on straight road 

� pure lateral:  

 - curves performed at null longitudinal forces (different from power-off 

 manoeuvres; traction must be present and able to contrast rolling 

 resistances, making the tyre work in pure rolling conditions). Performing 

 this kind of manoeuvre at as high as possible slip angles provides very 

 useful indications about the shape of the lateral interaction characteristic 

 and about the non-linear behaviour of the whole tyre. 

� combined longitudinal and lateral:  

 - track laps, run at different speeds and driving styles; in particular, it is 

 important to remember that the main goal is to keep tyre at high exertion 

 levels, adopting a driving style characterized by high sliding and sideslip 

 angle  values (electronic controls deactivation could help an expert driver 

 to reach tyre limits and to explore a wider working range, experiencing the 

 phases of incipient instability, in which tyre exhibits a strongly non-linear 

 behaviour). 

 In order to analyse performances degradation caused by wear, tyres should start 

the test in brand-new conditions; DATRON employment, because of its optical working 

principle, is limited to dry tracks; a substitutive solution can be provided by sideslip 

angle estimation observers [26] or virtual sensors [27], but their full reliability still 

remains to be evaluated. 

 

Manoeuvre Description Aim 
3 seconds standing vehicle offset postprocessing correction 

3 seconds in straight road at 50Km/h 

3 seconds in straight road at 100Km/h 
offset postprocessing correction 
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global sliding start on straight road pure longitudinal 

slow driving tyres cooling 

global sliding start on straight road pure longitudinal 

slow driving tyres cooling 

wheel blocking brake manoeuvre on straight road 

from 100km/h 
pure longitudinal 

slow driving tyres cooling 

wheel blocking brake manoeuvre on straight road 

from 100km/h 
pure longitudinal 

slow driving tyres cooling 

2 laps - curves in pure rolling 
pure lateral - low tyre 

temperature 

2 laps - medium speed tyres heating 

2 laps - high speed 
optimal grip temperature - 

overheating 

slow driving tyres cooling 

2 laps - low speed linear tyre behaviour  

2 laps - curves in pure rolling 
pure lateral - low tyre 

temperature 

2 laps - medium speed tyres heating 

2 laps - high speed 
optimal grip temperature - 

overheating 

slow driving tyres cooling 

2 laps - high lateral 
maximum lateral exertion -  

nonlinear tyre behaviour  

2 laps - high speed wear effects  
Table 2.3 - Tyre tests track procedure. 

 

 Observing test procedure, it is possible to notice how it has been defined in order 

to collect data at different tyre temperature and wear conditions. In chapter 6 analyses 

of this kind of data (Fig. 2.35) and models tuning and validation results obtained with 

them will be shown and discussed. 

 

2.2.5 Input processing, diagnostics and signal correction 
 Acquired data, because of measurement noise, electromagnetic disturbances and 

high frequency vibrations, often contain information not directly linked with the 

phenomena involved in vehicle dynamics field. For this reason, a preliminary essential 

operation is a filtering of the channels that have to be processed. A Butterworth filter, 

employed in MATLAB command "filtfilt" [28], has been chosen; it has been designed in 

order to be a third order, 5 Hz low-pass filter, with a Nyquist normalizing frequency 

depending on sample rate, commonly equal to 50 or 100 Hz. 

 As an example, for a lateral acceleration signal the comparison between pre and 

post filtering data is the following (Fig. 2.8): 
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Fig. 2.8 - Effect of filtering on lateral acceleration acquired signal. 

 

 Vehicle onboard instrumentation is unavoidably installed with misalignments 

between its own reference system and the vehicle one; for this reason it is possible that, 

for example, if the tri-axial accelerometer is not exactly localized in the vehicle centre of 

gravity or its principal axes are not perfectly parallel to the vehicle ones, a certain 

amount of gravitational acceleration could be measured as longitudinal or lateral 

acceleration, making the following operations affected by miscalculations. Detecting 

such kind of error sources is fundamental to have a robust and reliable starting dataset. 

 

 
Fig. 2.9 - Longitudinal and lateral acceleration acquired signals.  

Initial offsets are clearly noticeable. 

 

 The starting 0.84 s of the accelerations time-history shown in figure 2.9 refer to 

vehicle null velocity conditions; it is possible to notice that during this phase, 

accelerations mean values ax0 and ay0 are different from zero and this could be caused by 

a not proper sensor installation. 
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Fig. 2.10 - Accelerometer inclination angles in xz and yz planes. 

 

 Accelerometer inclination angles (Fig. 2.10), λx in xz plane and λy in yz plane, can 

be estimated as follows: 

 

1 0sin x
x

a

g
λ −  

=  
 

 

(2.1) 
01sin

y

y

a

g
λ −  

=  
 

 

 

consequently, in the hypothesis of horizontal road, the accelerations measured values 

can be corrected taking into account of the installation inclination angles: 
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 To ensure offsets correction data availability, the first step of the test procedure 

consists in 3 seconds at standing vehicle. Further signal corrections are possible by 

means of data collected during this step: wheel rotation speeds are supposed to be null 

at standing vehicle; otherwise, they can be nullified manually subtracting offset values. 

 Second test procedure step consists in 3 seconds in straight road; this kind of test 

allows to detect the presence of further offsets in steering, yaw rate and DATRON 

sensors. During straight motion, steering angle and yaw rate must be equal to zero; 

otherwise, they also can be nullified subtracting offset values. As concerns DATRON 

measurements, they can be affected by error if instrument axes are not parallel to 

vehicle ones; defining λD DATRON inclination angle in xy plane, it can be estimated, 

referring to figure 2.11, by means of longitudinal VEL0 and lateral VL0 velocity 

measured mean values in straight stationary manoeuvres: 

 

1 0
tan

0
D

VL

VEL
λ −  

=  
 

 (2.3) 

 

It allows to correct DATRON measurements as follows: 
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( ) ( )
( ) ( )

cos sin 1_

sin cos 1_

D D

D D

VEL Data VEL

VL Data VL

λ λ

λ λ

    
=     −      

(2.4) 

 

 
Fig. 2.11 - DATRON inclination angle in xy plane. 

 

 Sensors output can be affected not only by errors that can be treated as constant 

signal offsets, due to incorrect installation, but also by an eventual progressive 

measurement degradation to consider as a signal gain that has to be estimated ad 

corrected. As concerns yaw rate, an effective method to solve the problem can base on 

the fact that at the end of each track lap, yaw angle in the absolute system (X'; Y') must 

be equal to ±2π (depending from track drive direction), in the realistic hypothesis that 

the vehicle crosses the end lap line in U >> V conditions. 

 

 
Fig. 2.12 - Yaw angle before and after lap correction. 
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 Isolating a lap, it is possible, integrating yaw rate signal, to rebuilt yaw angle 

time-history; last yaw angle value ψEND, that should be equal to ±2π, gives information 

about yaw rate signal time deviation that has to be corrected6. Corrective factor Kr can 

be estimated as: 

 

( )
2

END
r ENDK sign

ψ
ψ

π
=  (2.5) 

 

and by means of it, yaw rate signal to employ in the procedure becomes (Fig. 2.12): 

 

1_YawRate

r

Data
r

K
ψ= =�  (2.6) 

 

 As noticeable from figure 2.11, DATRON is not mounted in the neighbourhood of 

centre of gravity; it is commonly installed in proximity of an axle by means of a rigid 

removable structure, that makes it move integral with vehicle. In order to employ 

DATRON to know vehicle speed it is necessary to elaborate its measurements taking into 

account of distances from centre of gravity and of yaw rate effect. Once made yaw rate 

signal more reliable, rigid body kinematics equations allow to determine CG velocity in 

the following way: 

 

yU VEL rb= +  
(2.7) 

xV VL rb= +  

 

in which bx and by are the DATRON coordinates in the vehicle coordinates system. It is 

important that during vehicle instrumentation these coordinates are carefully 

measured, because a wrong vehicle CG velocity calculation can easily cause sideslip 

angle and tyres slip angles misestimation. 

 Once determined CG velocity components, it is possible to depurate also 

longitudinal and lateral acceleration signals from their time deviation (gain correction 

already operated on yaw rate signal), and in some way, from road inclination effects, 

basing on information deducted by DATRON measurements.  

 As concerns longitudinal acceleration, it is possible to compare the measured 

value with the derivative of CG longitudinal velocity (Fig 2.13); multiple linear 

regression ("regress" MATLAB command [29]) between the two signals allows to 

identify the gain value, to employ as correcting factor, that optimises the 

correspondence (Fig. 2.14).  

 

                                                 
6 The described yaw rate correction method can be applied only in case the track does not have crossing 

points (bridges or underpasses, like in Fiorano or Suzuka tracks), because in such cases ψEND is equal to 

zero. 
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Fig. 2.13 - Comparison between longitudinal acceleration measured by accelerometer  

and DATRON longitudinal speed derivative. 

 

 
Fig. 2.14 - Result of the correction procedure operated by means of the regression between longitudinal 

acceleration measured by accelerometer and DATRON longitudinal speed derivative. 

 

 In analogous way, it is possible to "scale" lateral acceleration measured signal, on 

the basis of equation: 

 

ya Ur V= + �  (2.8) 

 

 In this case it is firstly very important to provide a clean lateral velocity signal, 

that, as a rough DATRON output, is heavily affected by noise and vibrations. Figure 2.15a 

shows the difference between V signal processed with a too light filter and the same 

signal obtained after proper filtering design. The consequences of the derivative 

operation are shown in Fig 2.15b, that highlights how an incorrect data filtering can 

cause a dramatic lost of useful information, making the following procedure useless. The 

comparison between the quantities linked by equation (2.8) is reported in figure 2.16; it 

appears clear that, although the main part of lateral acceleration is constituted by the 
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product between yaw rate and longitudinal velocity, lateral velocity derivative provides 

a fundamental contribution in lateral transients phases (for example, between 73 and 76 

seconds). 

 Linear regression between the signals shown in figure 2.17 leads to the results 

reported in figure 2.18; because of the good accordance between the compared signals, 

the regression line angular coefficient is already very close to 1 (error is lower than 2%), 

making the correction less evident than in figure 2.14. 

 

 
Fig. 2.15a - Comparison between filtered and non-filtered lateral speed signal. 

Fig. 2.15b - Comparison between the derivative of filtered  

and non-filtered lateral speed signal. 
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Fig. 2.16 - Decomposition of lateral acceleration signal in its different components. 

 

 
Fig. 2.17 - Comparison between lateral acceleration measured by accelerometer  

and DATRON lateral speed derivative. 

 

 
Fig. 2.18 - Result of the correction procedure operated by means of the regression between lateral 

acceleration measured by accelerometer and DATRON lateral speed derivative. 



Farroni F. - Development of a Grip and Thermodynamics Sensitive Tyre/Road Interaction Forces Characterization 

Procedure Employed in High-Performance Vehicles Simulation 

PhD Thesis - 2014 - Mechanical System Engineering - Università degli Studi di Napoli Federico II 

 

 

44 

 

 

 The measured accelerations comparison with velocity derivatives and the 

regression method allow to bypass the common road inclination and roll angle 

estimation procedures7-8, that allow to depurate accelerations from their gravitational 

component. 

 

2.2.6 Model equations 
2.2.6.1 Vertical Forces 
 In motion conditions characterized by null steering angle and constant vehicle 

speed (d(U+V)/dt=0), vertical loads acting on axles are the so called "static loads" WF 

and WR, that, in absence of significant aerodynamic interactions, only depend on centre 

of gravity position: 
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 Longitudinal load transfers are linked to longitudinal acceleration signal (ax) and, 

for longitudinal equilibrium equations [8], they are: 
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 Lateral load transfers are linked with lateral acceleration signal (ay) and, for 

lateral equilibrium equations [8], are: 
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 Vertical aerodynamic interactions (air density ρ = 1.2 kg/m3) can be expressed 

as: 

 

21

2
F v Faerodown A U Czρ=  (2.12) 

                                                 

7 Longitudinal road inclination is commonly calculated as 
1sin

x

dU
a

dt

g

−

 
− 

 
 
 

. 

8 Road banking can be calculated as the difference between measured roll angle (available if the vehicle is 

equipped with a gyroscope) and vehicle roll-rate times lateral acceleration. 
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R v Raerodown A U Czρ=  

 

 Wheel vertical loads result equal to: 
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2.2.6.2 Lateral Forces 
 In a vehicle integral reference system, axle lateral forces, respecting vehicle 

lateral dynamic equilibrium, can be calculated after a yaw rate derivative operation 

(dr/dt) resolving the following equations system: 
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 Basing on the experimental results obtained in the track testing sessions, it is 

possible to hypothesize that in a quite wide range of working conditions the distribution 

of axle lateral forces on the two sides can be considered proportional to the same axle 

vertical forces distribution: 
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2.2.6.3 Longitudinal Forces 
 Under the same hypotheses it is possible to consider vehicle longitudinal dynamic 

equilibrium to estimate longitudinal interaction forces. Differently from lateral forces 
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calculation, wheels inertial effects, aerodynamic drag and tyre rolling resistances 

contributions must be considered. 

 For the well known aerodynamics equations, drag resistance force is expressed 

by: 

 

21

2
aerodrag AU Cxρ=  (2.16) 

 

 Rolling resistance forces "rollres", already considered as acting at ground level, 

can be determined as a function of vertical load and wheel speed by means of vehicle 

characterization data previously listed (figure 2.4). 

 Defining i and j indices as respectively referred to axle (front or rear) and to side 

(left or right), wheel rotation inertial resistant contribution, reported on the ground, is: 
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 For a rear wheel drive vehicle and hypothesizing again the distribution of 

tangential forces proportional to the vertical forces distribution, Fx forces can be 

estimated as follows: 

 

- for deceleration manoeuvres (measured ax > 0) 
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- for acceleration manoeuvres (measured ax < 0) 

 

LF WIR LFFx F LF rollres= +  (2.19) 

RF WIR RFF x F RF rollres= +  
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 It is interesting to notice how the different contributions act differently in 

dependence of the kind of interaction considered: 

- drag is a resistant force for vehicle motion in traction manoeuvres, so it has to be 

contrasted by rear driving wheels; during braking, drag gives an advantageous 

contribution to the speed reduction, so the braking tyres have to perform longitudinal 

forces lower in modulus than the ones that they would have performed in absence of 

drag. 

- wheel rotation inertial resistant contribution is always positive but its sign is intrinsic 

in the performed manoeuvre. 

- front tyres rolling resistances, being not contrasted by front tyres (not driving), 

become external causes of resistance for rear tyres, that in traction manoeuvres have to 

overcome also them. 

 Summarizing, longitudinal tyres interactions can be considered as the sum of the 

forces regarding the tyres, and consequently, as rolling resistances plus the external 

efforts that tyres have to face in order to perform the driver's requests. 

 

2.2.6.4 Tangential Forces in wheel reference system 
 By means of a proper rotation matrix, it is possible to move the estimated 

tangential forces from vehicle integral reference system to a wheel integral one: 
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 (2.20) 

 

 It is useful because slip ratio and slip angle are expressed in such coordinates 

system, and to plot forces as a function of them, all the variables need to be expressed 

according with an unique reference. Angle ζ has to be considered as the steering angle of 

the (i-th, j-th) wheel and in the following paragraphs it will be explained how it can be 

determined taking into account suspension and steering structure and compliances. 

 

2.2.6.5 Wheel Steering Angles 
 Supposing a front wheel steering vehicle, nominal steering angle is equal to: 

 

1_ _

s

Data LWS Angle
δ

τ
=  (2.21) 

 

 Adding Ackermann effect [8][10], by means of the following equations, the 

kinematic steering can be modelled (rear axle is still supposed non-steering) as: 
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in which Rc is CG trajectory curvature radius: 

 

tan( )
c

l
R

δ
=  (2.23) 

 

 Toe angle, thanks to static toe value (expressed in ISO reference system - 

regardless of the choice of coordinate systems, inward steer is positive) and to toe 

variation (Δχ) data (Fig. 2.6), can be evaluated for each corner as a function of lateral 

acceleration as: 
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 (2.24) 

 

 Additional steering angles χC due to axle compliances (Fig. 2.7), whose effect is 

closely connected to self-alignment moment (lateral forces acting on the axle make the 

front wheels steer in opposition to driver steering request), have been modelled by 

means of a two-parameters function: 
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 (2.25) 

 

 Accounting for all the cited contributions to steering, supposing a right curving 

manoeuvre (external LEFT wheel - internal RIGHT wheel), effective steering angles are: 
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2.2.6.6 Wheel Absolute Velocities and Slip Indices 
 Rigid body kinematics equations already employed for CG velocity calculation [8] 

can be used to determine wheels absolute velocity components (in vehicle-integral 

reference system), considered at wheel hub: 

 

2

2

2

2

F
ABS LF

ABS LF

F
ABS RF

ABS RF

R
ABS LR

ABS LR

R
ABS RR

ABS RR

t
Vx U r

Vy V ra

t
Vx U r

Vy V ra

t
Vx U r

Vy V rb

t
Vx U r

Vy V rb

−

−

−

−

−

−

−

−


= −


 = +


= +


 = +


= −


 = −


= +


 = −

 (2.27) 

 

 In order to calculate slip ratio and slip angle for each tyre, it is necessary to 

express the wheel velocity in the wheel-integral reference system: 
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 (2.28) 

 

 Once calculated wheels angular speed in the following way: 
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slip ratio, variable in a range [-∞, 1] (-∞ for global sliding traction manoeuvres, 1 for full 

blocking braking manoeuvres), is: 
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=  (2.30) 
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while slip angle is calculated as: 

 

1tan
ij

ij

ij

Vy

Vx
α −

 
= −   

 
 (2.31) 

 

2.3 Forces estimation validation 
 With the aim to test and validate the developed tool a specific experimental 

session on a high performance  rear wheel drive vehicle has been planned, whose results 

will be analysed and discussed in the paragraph. As already said, for industrial 

confidentiality agreements, plots, diagrams and data will be provided as normalized. 

 An immediate comparison, able to test the procedure reliability, can be offered by 

interaction forces measurements by dynamometric wheels instrumentation. Such kind 

of device provides forces values strongly influenced by the mass of the measurement 

instruments, that can be easily taken into account, and by road irregularities. 

 Figure 2.19 shows, in the first plot, the comparison between the sum of the 

measured tyre vertical forces and of the estimated ones; in the second plot, vehicle 

speed is reported. Dynamometric wheels output appears very noisy, mainly because of 

road unevenness, but the dependence from vehicle speed is clearly highlighted (tested 

vehicle has a strong aerodynamic-oriented design). TRICK vertical forces estimation 

results coherent with measured data, being the downforce modelled thanks to the 

introduction of the Cz parameters. 

 The comparisons between estimated and measured axle forces are reported in 

the following figures (Fig. 2.20), highlighting again that provided estimations are in good 

agreement with test results.  

 

 
Fig. 2.19 - Comparison of sum of measured and calculated tyre vertical forces  

with measured vehicle speed profile. 
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Fig. 2.20a - Comparison between measured and calculated front axle forces. 

Fig. 2.20b - Comparison between measured and calculated rear axle forces. 

 

 As concerns the forces acting on each single corner, figures 2.21 report the trends 

relative to left side tyres, about which the following considerations can be done: 

- Measured vertical forces, as already said, are affected by fluctuations mainly due to 

road irregularities, that model cannot obviously reproduce. 

- Longitudinal front measurements show, after braking phases, low negative force 

values, meaning traction wheel states (unexpected in a rear wheel drive vehicle). This 

could be due to non-optimal wheel angular acceleration calculations, whose causes have 

to be better investigated. 

- Lateral forces are in some cases lightly overestimated, because of the proportional 

trend between vertical and lateral forces, that leads to neglect contact patch, and 

consequently tangential forces, saturation effects. Despite that, the estimation can be 

considered satisfying (RMS error < 5%). 

- The forces global trends are in good agreement with the expected ones.  
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Fig. 2.21a - Comparison between measured and calculated front tyre interaction forces. 

Fig. 2.21b - Comparison between measured and calculated rear tyre interaction forces. 

 

2.4 Tangential Tyre/Road Interaction Characteristics - Results Analysis 
2.4.1 General Notes 
 The main output of the TRICK procedure is the plot of the pure and combined 

tyre/road tangential interaction characteristics. The defined standard plot set is 

composed by: 

 

- PLOT A: Fx/Fz vs slip ratio - pure interaction9 - front tyre (Fig. 2.25a) 

- PLOT B: Fy/Fz vs slip angle - pure interaction10 - front tyre (Fig. 2.26a) 

- PLOT C: Fx/Fz vs slip ratio - pure interaction - rear tyre (Fig. 2.27a) 

- PLOT D: Fy/Fz vs slip angle - pure interaction - rear tyre (Fig. 2.28a) 

                                                 
9 Pure longitudinal interaction points have been selected considering the working conditions 

characterized by slip angle lower than 0.1deg (0.0017 rad).  
10 Pure lateral interaction points have been selected considering the working conditions characterized by 

slip ratio lower than 0.001 (0.1%). 
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- PLOT E: Fx vs slip ratio - pure interaction - front tyre (Fig. 2.25b) 

- PLOT F: Fy vs slip angle - pure interaction - front tyre (Fig. 2.26b) 

- PLOT G: Fx vs slip ratio - pure interaction - rear tyre (Fig. 2.27b) 

- PLOT H: Fy vs slip angle - pure interaction - rear tyre (Fig. 2.28b) 

- PLOT I: Fx/Fz vs slip ratio - combined interaction - front tyre (Fig. 2.29) 

- PLOT J: Fy/Fz vs slip angle - combined interaction - front tyre (Fig. 2.30) 

- PLOT K: Fx/Fz vs slip ratio - combined interaction - rear tyre (Fig. 2.31) 

- PLOT L: Fy/Fz vs slip angle - combined interaction - rear tyre (Fig. 2.32) 

- PLOT M: Fy/Fz vs Fx/Fz - isoslipratio tyre adherence ellipse - front tyre (Fig. 2.33a) 

- PLOT N: Fy/Fz vs Fx/Fz - isoslipangle tyre adherence ellipse - front tyre (Fig. 2.33b) 

- PLOT O: Fy/Fz vs Fx/Fz - isoslipratio tyre adherence ellipse - rear tyre (Fig. 2.34a) 

- PLOT P: Fy/Fz vs Fx/Fz - isoslipangle tyre adherence ellipse - rear tyre (Fig. 2.34b) 

in the following subparagraphs the plots will be shown and discussed, for a rear wheel 

drive sport vehicle.  

 Plot settings, adjustable by means of a dedicated panel, have been arranged in 

order to provide pure interaction data points coloured from blue to red for increasing 

vertical load (Fig. 2.22), according with the following Fz ranges: 

[-750, -2250[ [-2250, -3750[ [-3750, -5250[ [-5250, -6750[ [-6750, -8250] N 

 

  
Fig. 2.22 - Plot panel settings and load colours legend. 

 

 Combined interaction and adherence ellipses data points have been plotted 

coloured from red to blue for increasing "antagonist" slip index (slip angle for 

longitudinal combined, slip ratio for lateral combined - Fig. 2.23), according with the 

following ranges: 

FOR LONGITUDINAL COMBINED INTERACTION: 

slip angle = [0, 2.5[ [2.5, 5[ [5, 7.5[ [7.5, +∞[ deg 

FOR LATERAL COMBINED INTERACTION: 

slip ratio = [0, 2.5[ [2.5, 5[ [5, 7.5[ [7.5, +∞[ % 

 

 
Fig. 2.23 - Slip angle and slip ratio colours legend. 
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 Common track lap acquisitions do not contain a sufficient number of working 

points able to characterize pure interaction; for this reason, some of the manoeuvres 

described in the test procedure paragraph have been planned with the aim to collect as 

many as possible usually missing pure data. Figure 2.24 shows for a rear tyre, at purely 

qualitative aim, the differences between normal (top plots) and specifically performed 

(bottom plots) track laps, for longitudinal (left plots - different x-scales) and lateral 

(right plots) interactions. 

 Longitudinal plots demonstrate that global sliding starting manoeuvres, properly 

performed, are able to completely describe the shape of the traction half of the 

interaction curve, highlighting the expected peak and the following decreasing trend (in 

the circular frame). As concerns the braking half, despite the dedicated manoeuvres, the 

shape is not fully sketched because of ABS intervention (points cloud in the square 

frame), that for an optimal tyre characterization should be off. 

 Lateral specific tests enable the investigation of the nonlinear tyre working zone, 

providing fundamental information about lateral roadholding at the limit and allowing 

to describe the shape of the interaction curve at high slip angles (in the hexagons). This 

trend is the main factor able to transmit to the driver the feelings that allow to control 

the vehicle as close as possible to the threshold between lateral stability and instability, 

and, if properly modelled, can be the crucial step to achieve a satisfying driving 

simulation experience. 

  

    
Fig. 2.24a - Comparison between common (top plot) and specifically performed laps 

 (table 2.3 - bottom plot) longitudinal interaction tyre curve. x-axis scales are different. 

In the square, a braking points cloud, due to ABS. In the oval, a well sketched trend of the traction zone.  

Fig. 2.24b - Comparison between common (top plot) and specifically performed laps 

 (table 2.3 - bottom plot) lateral interaction tyre curve. x-axis scales are different. 

In the hexagons, zones of limit lateral roadholding, absent in the top plot.  
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2.4.2 PLOT A & PLOT E: pure longitudinal interaction - front tyre 
 Coherently with the expected front tyre longitudinal interactions, for a rear wheel 

drive vehicle, the plots highlight the presence of points characterizing only braking or 

free rolling conditions (slip ratio > 0). The forces sign inversion, in this and in the 

following figures, is due to the negative sign of vertical loads in the adopted reference 

system. 

 Acquired data and estimated forces allow a good understanding of the curve 

shape, making maximum grip value identification possible. Load effect is not clearly 

deductible because of the probably excessive width of each load range. 

 

 
Fig. 2.25a - Plot A. 

Fig. 2.25b - Plot E. 

 

2.4.3 PLOT B & PLOT F: pure lateral interaction - front tyre 
 Being front axle in null longitudinal force conditions (neglecting rolling resistance 

contribution) during all vehicle traction phases, lateral pure interaction results easy to 

be characterized. The big amount of available points allows to have a clear overview of 

the main variables effect on tyre behaviour. Grip vs vertical load decreasing, cornering 

stiffness vs vertical load increasing and global shape trend can be deeply analysed, 

obtaining useful information for tyre knowledge and model parameters identification. 

 

 
Fig. 2.26a - Plot B. 

Fig. 2.26b - Plot F. 
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2.4.4 PLOT C & PLOT G: pure longitudinal interaction - rear tyre 
 Interaction characteristic curve is well sketched for rear tyres, even if it seems 

that maximum possible longitudinal grip in traction phases has not been fully exploited 

by driver. The thickness of the points cloud could be due to slip ratio misestimations 

connected with the fact that tyre radius variation as a function of wheel vertical load has 

been neglected. 

 

 
Fig. 2.27a - Plot C. 

Fig. 2.27b - Plot G. 

 

2.4.5 PLOT D & PLOT H: pure lateral interaction - rear tyre 
 Being rear tyre the driving one, lateral pure curves, if compared with front tyre 

ones, are constituted by a lower number of points. Despite that, it is possible to clearly 

notice higher grip and cornering stiffness for rear tyres (rear tyre width is 20% higher 

than front one) and to evaluate the influence of load on tyre behaviour. 

 

 
Fig. 2.28a - Plot D. 

Fig. 2.28b - Plot H. 
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2.4.6 PLOT I: combined longitudinal interaction - front tyre 
 Slip angle increasing acts on combined longitudinal interaction, as expected, 

causing a force decrease. Not enough can be said about the variation of slip ratio value 

corresponding to force maximum at different slip angles. The curves are again too thick, 

because of slip ratio probable misestimation.   

 

 
Fig. 2.29 - Plot I. 

 
2.4.7 PLOT J: combined lateral interaction - front tyre 
 As for pure interaction, front lateral curves are very useful to deduct essential 

information about tyre dynamics. By means of the great number of useful points it is 

possible to have a clear idea of curves trend, of force maximum value localization and of 

slip ratio effect, that in the examined case causes a sharp decrease of lateral force and 

cornering stiffness. 

 

 
Fig. 2.30 - Plot J. 

 

2.4.8 PLOT K: combined longitudinal interaction - rear tyre 
 In analogous way to pure case, longitudinal rear interaction estimation is affected 

by quite high uncertainty level, mainly due to slip ratio difficult calculation. Moreover, 
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braking grip values result to be higher than expected because during manoeuvres 

characterized by high load transfers, an eventual tyre vertical force underestimation 

causes a grip overestimation. Information about slip angle effect are satisfying, making 

traction force decrease estimation possible. 

 

 
Fig. 2.31 - Plot K. 

 

2.4.9 PLOT L: combined lateral interaction - rear tyre 
 Also rear combined lateral interaction, as front one, allows a good 

comprehension of the effect that slip ratio increase has on lateral axle stiffness and 

roadholding. Differently from front case, curves trend after maximum grip point is less 

easy to determine, because driving the tyres in such working points means to exceed 

rear axle limit roadholding, leading the whole vehicle to instability conditions. 

 

 
Fig. 2.32 - Plot L. 
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2.4.10 PLOT M & PLOT N: adherence ellipse - front tyre 
 One of the most common and intuitive instruments to evaluate tyre performances 

is the so called "adherence ellipse", obtained plotting tyre lateral grip as a function of 

longitudinal one. The characteristic elliptic shape (or half-elliptic, for not driving 

wheels) in which points are arranged in this kind of diagram gives it its name. 

 The points have been coloured in different ways, depending from slip ratio (Fig. 

2.33a) or from slip angle (2.33b). These plots will offer direct comparison between the 

result of tyre models parameters identification procedure and experimentally acquired 

data. 

 

 
Fig. 2.33a - Plot M. 

Fig. 2.33b - Plot N. 

 

2.4.11 PLOT O & PLOT P: adherence ellipse - rear tyre 
 Rear adherence ellipses give a direct feedback as concerns tyres maximum 

exploitable grip, observable in pure longitudinal (horizontal axis of the ellipse) and pure 

lateral (vertical axis of the ellipse) conditions. The unexpected appendices of points 

external to ellipse, related to lateral braking manoeuvres, are due to longitudinal 

braking grip over   already discussed in 2.4.9. 

 

 
Fig. 2.34a - Plot O. 

Fig. 2.34b - Plot P. 
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2.4.12 Further Results 
 Temperature measurements and thermal model outputs (chapter 4) can be 

usefully employed to study tyre friction / temperature mutual influences. The following 

figure (Fig. 2.35) gives experimental confirmation of the expected theoretical 

phenomena: high temperature (red points - estimated tyre bulk temperature > 55 °C) 

acts increasing grip and reducing cornering stiffness respect to values observed at low 

temperature (blue points). These results can be employed to tune tyre grip and thermal 

models and, coupled with rubber visco-elastic characterizations and  with thermal 

conductivity identification, to configure a vehicle setup able to optimise tyre 

performances (chapter 6). 

 

 
Fig. 2.35 - Temperature effect on tyre lateral interaction characteristic. Red points, relative to hot 

conditions (tyre bulk temperature > 55 °C), describe a curve characterized by higher grip and lower 

cornering stiffness respect to the cold one, in good agreement with expected results. 
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3. Trip-ID Tool - Tyre/Road Interaction Parameters 
IDentification 
 
 
3.1 Introduction 
 One of the most diffused tyre/road interaction models, widely employed in 

simulation applications, is the Pacejka's Magic Formula (MF) [12][30]. It is a semi-

empirical interpolation model able to fit full scale test data, characterized by a large 

number of coefficients, often called micro-parameters, grouped basing on physical 

considerations in order to create specific functions, called macro-parameters. 

 MF model coefficients provided by tyre manufacturers are generally not fully 

representative of the behaviour of tyres in contact with road. This is due to the testing 

conditions employed to identify model coefficients; tests are usually performed on a 

specific rolling bench or on a flat-trac11, that keep the tyre in contact with a steel or an 

abrasive paper covered belt. 

 The impossibility to test the tyres under real working conditions causes 

unavoidable approximation errors, mainly due to differences in thermal exchanges and 

wear phenomena between tyre/belt and real tyre/road contact. Therefore it is 

commonly necessary to modify the MF coefficients in order to improve the bench data 

correlation and to be able to validate vehicle models with data coming from 

experimental tests. 

 The aim of the developed tool, called TRIP-ID (Tyre/Road Interaction Parameters 

IDentification), is to provide an innovative procedure to identify the Pacejka coefficients 

basing on the experimental tests carried out measuring global vehicle data during 

outdoor track sessions. The procedure collects and processes the data provided by 

TRICK tool (chapter 2), allowing to eliminate the outlier points, to discriminate wear and 

thermal phenomena, taking into account the combined slip condition and the effects of 

vertical load and camber angle on the global grip.  

 The innovative approach proposed can be useful to reproduce in real time 

simulation applications the feedback that high performances tyres give to sport vehicle 

drivers, whose interest and skills are focused on keeping them in the optimal thermal 

range. The coupling of a properly modified MF model with a thermal and with a friction 

model can provide a reliable simulation and analysis instrument for drivers, carmakers 

and tyre producers. 

 

3.2 Similarity Curve and Combined Effect function 

 The Pacejka Magic Formula formulation is analogous both for pure longitudinal 

and lateral interaction and can be simply described using the following expression: 

 

0 sin{ arctan[ ( arctan )]}s s s v

s s h

F D C Bx E Bx Bx S

x X S

= − − +

= +
 

(3.1) 

for which the adjective "pure" is used to indicate that the sliding velocity lies exclusively 

in the yz ISO plane [19] (in the case of pure side slip) or in the xz ISO plane (in the case 

                                                 
11 Tyre testing system, commercialised by MTS Systems Corporation. It applies forces and motions to a tyre 

running on a continuous flat belt. 
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of pure longitudinal slip). In case of longitudinal interaction the variable Xs is the 

longitudinal slip ratio, while in case of lateral interaction it is the lateral; the output is 

the tangential force in pure interaction conditions. Sub-functions B, C, D, E, Sv, Sh, called 

macro-parameters, are polynomial or exponential functions variable with the vertical 

load Fz and the camber angle γ, consequently able to make the model sensitive to these 

effects. Macro-parameters can be linked with physical quantities, assuming a graphical 

meaning in the forces plots (Fig. 3.1): B is linked to the braking stiffness, C represents 

the shape of the function, D the peak value, E fixes the maximum position and Sh, Sv are 

the shifts from the Cartesian axes centre.  

 

 
Fig. 3.1 - Magic Formula macro-parameters graphical meaning. 

 

 Equation (3.1) is not fully representative of the possible tangential interactions, 

because conditions in which the sliding velocity has simultaneously components in yz 

and xz plane can occur (combined tangential interactions). In this case the pure forces 

can be converted in the combined ones by multiplying the G combined function [12]: 

 

( )( ){ }     –  –   

[   [   – (   –  (  ))]]

c c c c c c c c

c c hc c c hc c hc

cos C arctan B x E B x arctan B x
G

cos C arctan B S E B S arctan B S

 
 =

 

(3.2) 

 Sub-functions Bc, Cc, Ec, Shc contain the combined interaction micro-coefficients 

and depend on camber angle and vertical load variations. xc variable, renamed in the 

following "ortho-slip", is lateral slip for longitudinal combined forces expression and slip 

ratio for lateral ones.  

 The Pacejka micro-coefficients identification cannot be developed as a simple 

function-fitting procedure, because it would not ensure a proper response of the 

formula in all the operating conditions. Unlike brush models, magic formula expression 

and parameters do not have direct physical meaning, not being obtained from an 

analytical closed form solution; in some way, a physical meaning can be found, linking 

the effects that parameters variations induce in the curves shape in analogous way to 

some physical variable experimentally known effects. 
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 A first important step forward would be the possibility to recognize if the 

numerical values of the micro coefficients calculated by a regression algorithm are 

plausible or not. The new approach focuses mainly on the idea to find out a physical 

meaning for the coefficients and for the sub-functions of the equation and to 

consequently impose constraints to them in the identification algorithm. 

 In the first step some sub-functions are extracted from the model so that the 

complex structure of explicit Pacejka’s formulation (where macro-coefficients do not 

appear) can be resumed as: 

 

( ) ( ) 0, , , , , , *[ ( , , )* * ( , , )  * ( , , )]s c z s c z s z z s z z v s zF x x F G x x F µ x F F f x F F S x Fγ γ γ γ γ= +
 (3.3) 

 Dividing by Fz: 

 

( ) ( ) 0, , , , , , *[ ( , , )* ( , , )  ( , , )]s c z s c z s z s z v s zf x x F G x x F µ x F f x F S x Fγ γ γ γ γ= +
 (3.4) 

and assuming the quantity: 

 

( ) ( ) ( ) ( )0, , [ , , * , ,  , , ]µ s z s z s z v s zf x F µ x F f x F S x Fγ γ γ γ= +
 (3.5) 

the equation becomes: 

 

( ) ( ) ( ), , , , , , * , ,s c z s c z µ s zf x x F G x x F f x Fγ γ γ=
 (3.6) 

in which 

- F is the generic tangential interaction (longitudinal or lateral) [N] 

- µ is the grip function [-], equal to D macro-parameter 

- f0 is the pure interaction normalized shape function [-]  

- fµ is the normalized pure interaction [-] 

- f is the "similarity curve" [-] 

 It is possible to identify in the previous sub-functions a particular physical 

meaning:  

- f, the so called "Similarity Curve", contains the pure interaction shape (inside f0) and 

the information about tyre maximum grip (inside D), braking and cornering stiffness 

(BCD), etc, that are in turn expressed as a function of Fz and γ. 

- G multiplies the pure interaction to take into account the combined effect of interaction 

reducing the available adherence in the considered interaction direction, as discussed in 

chapter 1. It can be also called "Combined Effect" function and depends on asphalt 

roughness, grip anisotropy distribution and on the tyre stiffness components. 

 The clear distinction of Combined Effect and Similarity Curve functions is 

important for the development of the identification procedure, because it allows to 

separate in dedicated object functions the coefficients with different physical meaning in 

order to drive the identification towards a rational distinction of the different physical 

phenomena. 
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3.3 Classification and processing
3.3.1 Input analysis 
 The 56 channels matrix DATA provided by TRICK tool (chapter 2) works as an 

input for the identification procedure. The big amount of available data needs to be 

classified with the aim to separate the effects linked with the different events that 

occurred during the acquired track session, making to the single coefficient possible to 

vary inside a limited range, assuming the numerical value that enables the optimal 

reproduction of the effects to which they are destined inside Pacejka's formulation.

 In the following figures

shown in non-dimensional plots for industrial confidentiality agreements; the 

experimental session has been carried out employing a high performance rear wheel 

drive sport vehicle. The front axle has been p

are, for a rear wheel drive vehicle, more often in pure lateral interaction conditions than 

the rear axle ones; it allows to plot more clearly the experimental i

highlighting their variations 

 It can be observed that the similarity curves for 

conditions of lateral interaction have

characteristic curve (Fig. 3.2)

grip and the thickness of the points cloud is due to load, camber, temperature and wear 

effects that cannot be split and separately analyzed if the whole session points are 

plotted together. 
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Classification and processing of experimental data 

The 56 channels matrix DATA provided by TRICK tool (chapter 2) works as an 

input for the identification procedure. The big amount of available data needs to be 

classified with the aim to separate the effects linked with the different events that 

uring the acquired track session, making to the single coefficient possible to 

vary inside a limited range, assuming the numerical value that enables the optimal 

reproduction of the effects to which they are destined inside Pacejka's formulation.

figures the grip vs slip angle for the front lateral interaction are 

dimensional plots for industrial confidentiality agreements; the 

experimental session has been carried out employing a high performance rear wheel 

drive sport vehicle. The front axle has been preferred for the discussion because its tyres 

are, for a rear wheel drive vehicle, more often in pure lateral interaction conditions than 

the rear axle ones; it allows to plot more clearly the experimental i

highlighting their variations at the different tyre working conditions. 

that the similarity curves for front tyre points 

lateral interaction have a shape very similar to the expected theoretical 

characteristic curve (Fig. 3.2). The peak value of the similarity curves

he thickness of the points cloud is due to load, camber, temperature and wear 

effects that cannot be split and separately analyzed if the whole session points are 

Fig. 3.2 - Front tyre lateral experimental points. 

The procedure has been designed in order to be able to arrange the experimental 

points basing on the type of effect that has to be investigated and whose reproduction 

the coefficients identification must be driven to. As an example, focusing on thermal 

effect thanks to a specific test session and to a double experimental/predictive 

procedure better explained in chapter 6, it is possible to highlight the variations induced 

by temperature in the points cloud shape (Fig. 3.3); each differently coloured  family of 

point can be then employed to study further effects like camber and load. 
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The 56 channels matrix DATA provided by TRICK tool (chapter 2) works as an 

input for the identification procedure. The big amount of available data needs to be 

classified with the aim to separate the effects linked with the different events that 

uring the acquired track session, making to the single coefficient possible to 

vary inside a limited range, assuming the numerical value that enables the optimal 

reproduction of the effects to which they are destined inside Pacejka's formulation. 

slip angle for the front lateral interaction are 

dimensional plots for industrial confidentiality agreements; the 

experimental session has been carried out employing a high performance rear wheel 

referred for the discussion because its tyres 

are, for a rear wheel drive vehicle, more often in pure lateral interaction conditions than 

the rear axle ones; it allows to plot more clearly the experimental interaction curves, 

front tyre points measured in 

similar to the expected theoretical 

curves is the available 

he thickness of the points cloud is due to load, camber, temperature and wear 

effects that cannot be split and separately analyzed if the whole session points are 
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points basing on the type of effect that has to be investigated and whose reproduction 

an example, focusing on thermal 

effect thanks to a specific test session and to a double experimental/predictive 

procedure better explained in chapter 6, it is possible to highlight the variations induced 

); each differently coloured  family of 

point can be then employed to study further effects like camber and load.  
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 This kind of graph allows to easily identify outliers: all the points outside the 

expected s-shaped cloud can be discarded by means of specific algorithms [29], 

eliminating possible sources of misidentifications. 

 

 
Fig 3.3 - Temperature effect analysis for rear sport tyre. 

 

 Observing the experimental similarity curve for the rear lateral case (Fig. 3.4), the 

shape of the points cloud does not appear well outlined as for the front case (Fig. 3.2), 

because of the effect of the combined interaction. Being rear axle characterized by 

traction and braking phases, rear tyres are often interested by both longitudinal and 

lateral slip at the same time. The vertical thickness of the points cloud is due to the 

decrease of available grip in lateral direction when a part of it is employed in the 

longitudinal direction for traction or braking and to the effect of tread temperature and 

wear on tyre grip. 
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Fig. 3.4 - Rear tyre lateral experimental points. 

 

 A more detailed analysis can help to understand more clearly how the adherence 

can be split between lateral and longitudinal direction and consequently to estimate the 

decreasing trend of the bell-shaped G function. In figure 3.5 the points cloud relative to 

longitudinal interaction for a rear tyre is reported; the similarity graph shows a 

decreasing grip trend at slip angle increase, further confirmation of grip splitting theory 

along x and y directions. These data have been acquired during a normal race session; 

such kind of event is commonly sufficient to provide all possible conditions of combined 

slip useful to identify this effect.    
 

 
Fig. 3.5 - Experimental verification of combined effect on longitudinal interaction curve. 
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3.3.2 Identification Procedure - Pure Interaction 
 The first step of the procedure is the selection of the pure interaction conditions 

(working points characterized by longitudinal or lateral slip ≈ 0, indicated by blue points 

in figure 3.5) that allow to identify fµ function coefficients. To this aim, DATA matrix 

points (chapter 2) have to be screened sample by sample in order to select the ones 

characterized by slip values contained inside a user-defined range. To wider ranges will 

obviously correspond a larger number of "pure points" but a less accurate identification; 

the optimal trade-off is an interesting theme further discussed in the following. 

 In a second phase, the coefficients of the combined effect function G will be 

identified in order to make the latter able to fit the remaining acquired nonzero-slip 

points scaling the fµ function already identified. 

 The regression algorithm, based on a constrained nonlinear optimization 

procedure [31][32], calculates the pure micro-coefficients Xpmc vector that minimizes the 

FOBJp function, defined as the norm of an error vector ERRp, whose length is equal to the 

number of time samples constituting the starting dataset (DATA matrix): 

 

( )[ ] [ , ( ), (t), ( ) ] [F (t)]

norm[ ]

pmc s z DATA

OBJp

ERRp f X x t F t

F ERRp

µ γ= −

=
 (3.7) 

 In equation (3.7), t is time and FDATA is the vector employed for fitting, containing 

the temporal sequence of the measured (ore, more correctly, estimated by means of 

TRICK) interaction force values. 

 In simpler words, pure interaction identification procedure acts feeding Pacejka 

pure formulation with real acquired input values and comparing the consequent 

calculated output force with the "real" force value estimated under the same working 

conditions, looking for the micro-coefficients set able to minimize the difference 

between the two forces. 

  

 
Fig. 3.6 - Effect of "mean function" on an inhomogeneous data set. 

 

 Having a large number of acquired points available, it is usually unavoidable that 

their distribution can be inhomogeneous; it could represent a problem for the 

identification procedure because the zones characterized by a higher number of points 

would have a greater weight and error vector norm minimization would be affected by 

it. For this reason a "mean function" has been adopted, consisting in: 
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- selection of points characterized by similar values (i.e. included in consecutive ranges 

of user-defined extension) of vertical load and camber angle (in figure 3.6a points 

belonging to a single range are reported); 

- arrangement of the points of each range in sub-ranges based on slip ratio (or slip angle, 

for lateral interaction); 

- calculation of the mean value of the points belonging to each sub-range (Fig. 3.6b). 

 In this way the FDATA value that will be considered for each point will be the one 

provided by the "mean function"; points belonging to the same sub-range will be 

moreover considered only one time, providing an iso-weight tyre interaction 

characteristic, that will be identified by the algorithm (Fig. 3.6c). 

 Being the procedure based on a function minimization of "constrained" type, a 

great attention must be paid to the starting value of the parameters and on the extension 

of the range inside which they can vary. The minimization iterative algorithm commonly 

stops when a relative minimum for the objective function is found; in order to increase 

the possibility that the minimum found is also an absolute one, that means the optimal 

possible solution, it is firstly necessary that optimal values belong to the variation 

ranges, and that the starting set is already close enough to the optimal one. 

 The analysis of Pacejka formulation allows to define proper parameters variation 

ranges according to physical considerations; starting from the original Magic Formula in 

pure case (Eq. (3.1)), it is possible to analyze μ function, aimed to model friction 

coefficient variations, that can be obtained from the D macro-parameter as μ = D/Fz: 

 
2

1 2 3

0

0

( )(1 (sin ) )i i i i

z z

z

pD pD dfz pD

F F
dfz

F

µ γ= + ⋅ − ⋅

−
=

 (3.8) 

in which index i is x for longitudinal interaction and y for lateral one and Fz0 is a 

reference vertical load [12]. Neglecting camber effect, it is noticeable that the 

formulation describes a strongly nonlinear phenomenon like friction between 

viscoelastic materials and rough surfaces by means of a linear function; trying to give a 

general overview to the grip trend as a function of vertical load (see chapter 5 for 

further details), it can be said that, in particular for sport tyres, it is commonly 

decreasing because of the saturation effect that concerns with less than proportional 

contact area increase respect to vertical load [33]. It is moreover interesting to observe 

that: 

 

for 0z zF F=   →  1i ipDµ =  (3.9) 

 The previous considerations allow to set starting points and ranges of grip 

parameters in order to drive their identification following a physical approach; pDi1, 

equal to available limit grip at reference vertical load, can be determined by means of 

specific experimental tests or analyzing acquired data, providing robust and easy 

starting value and variation range definition. pDi2, even if not able to describe nonlinear 

functionalities, can be hypothesized negative for the discussed reasons, reducing 

sensitively its variation range. 

 For what concerns braking and cornering stiffness, they are described by macro-

parameter K, that, differently from grip function, introduces the nonlinear effect: 
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1 2 i3( ) exp(pK dfz)i i i i z i iK BC D F pK pK dfz= = + ⋅ ⋅ ⋅  (3.10) 

 It is well known in literature [1][2] and experimentally observable [34] that tyre 

stiffness increases with vertical load; for this reason a constraint can be applied to 

micro-parameter pKi2: 

 

2 0ipK ≥  (3.11) 

and in analogous way to equation (3.9), parameter pKi1 can be determined considering 

that: 

 

for 0z zF F=   →  1

0

i
i

z

K
pK

F
=  (3.12) 

 Other hypotheses about physical constraints can be made analyzing available 

data for every specific case, in particular about shape coefficients (Ci macro-parameter); 

in the proposed case-study greater attention has been paid to grip and stiffness, that can 

be considered the causes of the main effects observable in tyre dynamics in average 

working conditions. Secondary effects can be modelled making the procedure work also 

without too strict constraints, leaving the variation ranges equal to the ones proposed 

by Pacejka himself. 

 

3.3.3 Identification Procedure - Combined Interaction 
 Once identified fµ function parameters, it is possible to step forward to combined 

effect processing. G identification objective function is structured as follows: 

 

( )[ ] [ ( , ( ), (t), (t), ( )) ( ), (t), ( ) ] [ (t)]

norm[ ]

cmc s c z s z DATA

OBJc

ERRc G X x t x F t f x t F t F

F ERRc

µγ γ= ⋅ −

=
 (3.13) 

 The developed regression algorithm works with the aim to minimize FOBJc acting 

similarly to the pure interaction case, varying the values of the elements of the combined 

effect micro-coefficients vector Xcmc. For longitudinal case, fµ function and FDATA values 

will be relative to longitudinal interactions; lateral case will employ lateral interactions 

data. 

 Also in this case a "mean function" has been adopted, different from the previous 

one for a preliminary selection criteria that allows to arrange points inside ortho-slip 

ranges, providing the results highlighted in figure 3.5 by different colours. 

 Points selected for G function identification show a friction and generalized 

stiffness trend (Fig. 3.7 and 3.8) in good agreement with the expected theoretical ones 

(Fig. 3.9). 
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Fig. 3.7 - Comparison between identified curves and experimental points for combined longitudinal 

interaction at increasing slip angle (expressed in degrees in the boxes).

Fig. 3.8 - Comparison between identified curves and experimental points for combined lateral interaction 

at increasing slip ratio (expressed in nondimensional form in the boxes).

Fig. 3.9 - Theoretical trend of G function as a function of slip and ortho

3.4 Results Analysis 
3.4.1 Pure Interaction 
 In the following plots the results of pure interaction coefficients identification are 

presented and discussed; the lines are Pacejka

been compared with the experimental points obtained by TRICK procedure shown in 

paragraph 2.4 (plots E-H).  
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Comparison between identified curves and experimental points for combined longitudinal 

interaction at increasing slip angle (expressed in degrees in the boxes).

 

parison between identified curves and experimental points for combined lateral interaction 

at increasing slip ratio (expressed in nondimensional form in the boxes).

 

 
Theoretical trend of G function as a function of slip and ortho

 

In the following plots the results of pure interaction coefficients identification are 

presented and discussed; the lines are Pacejka Magic Formula output and they have 

been compared with the experimental points obtained by TRICK procedure shown in 
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Comparison between identified curves and experimental points for combined longitudinal 

interaction at increasing slip angle (expressed in degrees in the boxes). 

 
parison between identified curves and experimental points for combined lateral interaction 

at increasing slip ratio (expressed in nondimensional form in the boxes). 

 
Theoretical trend of G function as a function of slip and ortho-slip. 

In the following plots the results of pure interaction coefficients identification are 

Magic Formula output and they have 

been compared with the experimental points obtained by TRICK procedure shown in 
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Fig. 3.10 - Plot E F G H - Comparison between identified pure interaction curves  

and respective experimental points. 

 

 In figure 3.10 to different colours correspond different load levels, reported in 

paragraph 2.4; a Pacejka parameters set provided by the tyre-maker has been employed 

as starting point and in figure 3.11 the iterative evolution that pure identification 

process has had from it can be observed in a time-based plot. The discontinuities are due 

to the selection of the pure conditions, that cuts away many points from the time history. 

 

 
Fig. 3.11 - Evolution of the iterative procedure from the starting set to the final identified one. 
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3.4.2 Combined Interaction 
 From the pure interaction set shown in paragraph 3.4.1 and from the starting set 

provided by the tyre-maker, combined interaction function has been identified; the 

results of the procedure are reported in the following. Vertical loads acting on the tyres 

are equal to static ones, about 3500N at front and 4500N at rear.; slip and ortho-slip 

increasing step has been defined in 2.4.1. 

 Please note that, as already said, plots have been reported in non-dimensional 

form because of industrial confidentiality agreement. 

 

 

 
Fig. 3.12 - Plot I J K L - Comparison between identified combined interaction curves  

and respective experimental points. 

 

 As noticed in 2.4, combined longitudinal results are affected by error because of 

slip ratio misestimations. Their identification has been possible adding further 

constraints, consisting in null horizontal and vertical shifts. The employment of a proper 

starting set and a reliable pure interaction set identification has allowed to obtain good 

results, in particular for what concerns nonlinear zones characterized by a small or no 

number of points useful for identification. 
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Fig. 3.13 - Plot N P - Comparison between identified iso-α ellipses  

and respective experimental points. 

 

 

 Adherence ellipses have been reported in figure 3.13 with different colours to 

make the comparison clearer. It can be noticed that iso-slip angle lines follow the 

profiles sketched by the points of the same colour, reproducing the expected 

phenomena, like the decreasing lateral force trend from the braking to the traction zone 

[1][12]. 

 
3.5 Further Developments 
3.5.1 An Alternative Identification Strategy - Pure Points Increasing 
 As stated in chapter 2, a complete tyre characterization (and its consequential 

parameters identification) is possible only if a satisfying number of points, 

representative of a working conditions range as wide as possible, is available. 

 In case of data acquired during not specific test sessions such requirement is not 

often respected, bringing to lack of fundamental information; a typical case is 

represented by too few points relative to pure interaction conditions, that result to be 

quite rare in usual driving manoeuvres (longitudinal pure conditions are characteristic 

of tyre states employing null slip angles, while lateral pure interaction is performed at 

null slip ratio, that represents a very particular and hardly reproducible condition 

during track sessions if not expressly requested). 

 An alternative method to increase the number of pure points useful for the 

identification procedure consists in the employment of the combined function: the 

coefficients of G function are commonly provided by tyre-makers together with the full 

Pacejka parameters set; their evaluation is in general less sensitive to road roughness 

and temperature variations, making it more robust than the pure function fµ. For this 

reason, following a "reverse" procedure it is possible, knowing the combined 

experimental force values FDATA in each acquired instant t and the combined Pacejka G 

function value under the same input conditions (xs(t), xc(t), Fz(t), γ(t)), to obtain 

"virtual" pure experimental points FDATA-P, that can be employed to identify pure 

interaction parameters. 

  

( ) ( ) ( )
1

( ), (t), ( ) ( ), (t), (t), ( ) *
DATA P s z s c z DATA

F x t F t G x t x F t F tγ γ
−

− =
 

(3.14) 
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 In figure 3.14 the result of the described method on the pure rear longitudinal 

interaction characteristic is reported; it is possible to notice that the number of points, 

rather unsatisfying at the beginning, is 

distinguish braking and traction phases and to have a larger amount of available points 

able to feed a consistent identification procedure.

 

Fig. 3.14 - Results of the procedure developed to increase the number 

 

3.5.2 Temperature / Wear effects modelling in Pacejka formulation
 Tyre/road friction coefficient is highly influenced by working temperature (it will 

be deeply discussed in the following chapter), showing a dependence 

described by a bell-shaped curve. In racing and sport tyres, such trend is particularly 

evident and depending on the employed tread compound the curves are characterized 

by different peak and respective temperature values.

 In general, sport tyres

low working range compounds (LWR), often called "soft", offer their optimal 

performances at lower temperatures than high working range ones (HWR), commonly 

defined "hard" (Fig. 3.15) and, maximizing h

thanks to their lower dynamic modulus (see chapter 5), are able to reach higher friction 

level. 

 

Fig. 3.15 

 LWR (soft) and HWR (hard) compounds.

 

 In the Pacejka formulation the grip dependence with temperature is not taken 

into account, but data analysis and driver fe

µ µ 
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In figure 3.14 the result of the described method on the pure rear longitudinal 

interaction characteristic is reported; it is possible to notice that the number of points, 

rather unsatisfying at the beginning, is definitely increased, allowing to clearly 

distinguish braking and traction phases and to have a larger amount of available points 

able to feed a consistent identification procedure. 

Results of the procedure developed to increase the number 

of pure interaction points. 

3.5.2 Temperature / Wear effects modelling in Pacejka formulation
Tyre/road friction coefficient is highly influenced by working temperature (it will 

be deeply discussed in the following chapter), showing a dependence 

shaped curve. In racing and sport tyres, such trend is particularly 

evident and depending on the employed tread compound the curves are characterized 

by different peak and respective temperature values. 

In general, sport tyres are characterized by an optimal thermal working range: 

low working range compounds (LWR), often called "soft", offer their optimal 

performances at lower temperatures than high working range ones (HWR), commonly 

defined "hard" (Fig. 3.15) and, maximizing hysteretic and adhesive grip components 

thanks to their lower dynamic modulus (see chapter 5), are able to reach higher friction 

Fig. 3.15 - Theoretical friction vs temperature trend for 

LWR (soft) and HWR (hard) compounds. 

In the Pacejka formulation the grip dependence with temperature is not taken 

into account, but data analysis and driver feelings strongly highlight how fundamental 

T T0 
T 
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In figure 3.14 the result of the described method on the pure rear longitudinal 

interaction characteristic is reported; it is possible to notice that the number of points, 

definitely increased, allowing to clearly 

distinguish braking and traction phases and to have a larger amount of available points 

 
Results of the procedure developed to increase the number  

3.5.2 Temperature / Wear effects modelling in Pacejka formulation 
Tyre/road friction coefficient is highly influenced by working temperature (it will 

be deeply discussed in the following chapter), showing a dependence commonly 

shaped curve. In racing and sport tyres, such trend is particularly 

evident and depending on the employed tread compound the curves are characterized 

are characterized by an optimal thermal working range: 

low working range compounds (LWR), often called "soft", offer their optimal 

performances at lower temperatures than high working range ones (HWR), commonly 

ysteretic and adhesive grip components 

thanks to their lower dynamic modulus (see chapter 5), are able to reach higher friction 

 

In the Pacejka formulation the grip dependence with temperature is not taken 

elings strongly highlight how fundamental 
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such functionality is. Thermal effects are clearly noticeable observing the shape of the 

similarity curve at different temperatures (Fig. 3.3) and can be summarized with a 

stiffness decrease at increasing temperature and with a grip maximization inside its 

optimal thermal range. 

 The possibility to include the temperature effect inside Pacejka formulation could 

represent a key feature in order to model in driving simulations and in vehicle dynamics 

analyses an effect that results absolutely not negligible; a method studied to achieve the 

result consists in the employment of a specific scaling factor inside G function, 

generating a variation in the analytic structure the less invasive as possible. 

 Considering the longitudinal formulation (but the procedure can be applied for 

the lateral one exactly in the same way), indicating slip ratio with slipx and slip angle 

with α and imposing micro-parameter rHx1 (and consequently SHxα) equal to zero: 

 

( )( ){ }cos arctan   –   – arctan  x x x x x xG C B E B Bα α α α αα α α =    
(3.15) 

in which Bxα is equal to the classical Pacejka macro-parameter multiplied by the 

additional scaling factor λT: 

 

1 2 xcos(arctan( ))x Bx Bx x TB r r slipα αλ λ=  (3.16) 

 rHx1 is imposed equal to zero with the aim to prevent the hill function from 

translating vertically, with the consequence to ensure that the peak value is unitary. The 

scaling factor λT is structured as follows, having unitary maximum value and decreasing 

linearly when the difference (T-T0) increases: 

 

0

0

T T1
α

α T
T TEMP

cλ
 −

= +  
 

 (3.17) 

in which T is actual tyre temperature, T0 is optimal one, determined experimentally or 

by means of a grip model (chapter 5) and cTEMP is a parameter that needs to be identified 

together with T0 and that is linked with the width of the bell curve that describes grip 

performance decreasing.  

 Being introduced inside combined interaction formulation, temperature 

dependence works similarly to ortho-slip, making the scaling bell shaped curve translate 

along slip axis as shown in figure 3.16. 
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Fig. 3.16 - Scheme of the temperature effect modelled inside Pacejka formulation  

with the proposed method. 

 

 A detailed picture of the peak zone with reference to temperature is provided in 

figure 3.17; it is possible to notice that function maximum possible value is one and that, 

tuning properly the function parameters, the experimental or modelled link between 

grip and temperature can be reproduced, with the consequence that the resulting 

Pacejka model is able to take into account the desired phenomena. Further details about 

the possibilities that the described procedure opens will be discussed in detail in 

chapter 6, together with the analysis techniques derived from the developed models 

cooperation. 

 

 
Fig. 3.17 - Peak of the G vs Temperature bell shaped curve. 
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4. TRT - Thermo Racing Tyre 
 

 

4.1 Introduction 
 In automobile racing world, where reaching the limit is the standard and the time 

advantage in an extremely short time period is a determining factor for the outcome, 

predicting in advance the behaviour of the vehicle system in different conditions is a 

pressing need. Moreover, new regulations limits to the track test sessions made the 

"virtual experimentation" fundamental in the development of new solutions. 

 Through the wheels, the vehicle exchanges forces with the track [12][21] which 

depend on the structure of the tyres [35] and on their adherence, strongly influenced by 

temperature [36][37]. Theoretical and experimental studies, aimed to predict 

temperature distribution in steady state pure rolling conditions, useful to evaluate its 

effects on energetic dissipation phenomena, are quite diffused in literature [38][39]. 

Less widespread are analyses conducted in transient conditions involving tyre 

temperature effects on vehicle dynamics. A thermal tyre model for racing vehicles, in 

addition to predict the temperature with a high degree of accuracy, must be able to 

simulate the high-frequency dynamics characterizing this kind of systems. Furthermore, 

the model has to be able to estimate the temperature distribution even of the deepest 

tyre layers, usually not easily measurable on-line; it must predict the effects that fast 

temperature variations induce in visco-elastic materials behaviour, and it must take into 

account the dissipative phenomena related to the tyre deformations. 

 With the aim to understand the above phenomena and to evaluate the influence 

of the physical variables on the thermal behaviour of the tyre, an analytical-physical 

model has been developed and called Thermo Racing Tyre (TRT). 

 At present time there are not physical models available in literature able to 

describe the thermal behaviour of the tyres in a sufficiently detailed way to meet the 

needs of a racing company. The TRT model may be considered as an evolution of the 

ThermoTyre model [40] that allows to determine in a simplified way the surface 

temperature of such system, neglecting the heat produced by cyclic deformations and 

not considering the structure of the different layers. 

 The above mentioned limitations of ThermoTyre have been removed in the 

implementation of TRT, that results in an accurate physical model useful for the thermal 

analysis of the tyre and characterized by predictive attitudes since it is based on physical 

parameters known from literature or measurable by specific tests [41]. 

 

4.2 Tyre modelling and base hypotheses 
 The tyre is considered as unrolled in the circumferential direction (and then 

parallelepiped-shaped), lacking of sidewalls and grooves (so the tyre is modelled as 

slick), discretized by means of a grid, whose nodes represent the points in which the 

temperature will be determined instant by instant (Fig. 4.1). 
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 The parallelepiped is constituted by

will be hereinafter indicated as

layer), and inner liner (inner surface).

 The number of nodes

where numx represents the number of

nodes along the y direction

Nodes enumeration has been

road, proceeding transversely

longitudinal direction and 4 elements

results discretized in 180 elements (but clearly the discretization can be modified).

 The chosen Cartesian reference system

oriented in the circumferential direction

in the direction of its width, and finally 

positive direction is defined in all the three cases

nodes. Along the radial direction

identified: the first one (thickness = 

correspondent to the tread; the second one (

 Tread is mainly constituted by visco

carcass includes also reinforcements.

 Each one of them is

accounting for the material composition:

• density ρ 

• Specific heat c 

• Thermal conductivity K

and for the last two quantities

temperature. 

 To the generic i-th node

 

Development of a Grip and Thermodynamics Sensitive Tyre/Road Interaction Forces Characterization 

Performance Vehicles Simulation 

Mechanical System Engineering - Università degli Studi di Napoli Federico II

Fig. 4.1 – Discretization of the tyre. 

 

is constituted by three layers in the radial direction

indicated as surface (outer surface of the tyre), bulk 

inner surface). 

of nodes of the grid is given by the product �numx
represents the number of nodes along the x direction, numy

along the y direction and numz is the number of nodes along

has been carried out starting from the first layer in contact

transversely. Each layer is subdivided in 15 elements

4 elements in the transversal direction, so

ements (but clearly the discretization can be modified).

Cartesian reference system has its origin in the 

in the circumferential direction of the tyre enrolled in a plane

, and finally z-axis is oriented in the thickness direction

is defined in all the three cases by the increasing numbering

Along the radial direction, i.e. along z, two zones of homogeneous material are

thickness = ∆��	), localized between surface and bulk

the second one (thickness = ∆�
) to the tyre carcass.

Tread is mainly constituted by visco-elastic vulcanized polymers and fillers, while 

includes also reinforcements. 

Each one of them is characterized by the following physical parameters, 

accounting for the material composition: 

K 

two quantities it has been taken into account their variability

node a parallelepiped volume was associated, equal to

�� 
 ∆� ∙ ∆� ∙ ∆��,�  
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in the radial direction z, which 

), bulk (intermediate 

numx ∙ numy ∙ numz� 
numy the number of 

nodes along the z direction. 

in contact with the 

Each layer is subdivided in 15 elements in the 

in the transversal direction, so the entire tyre 

ements (but clearly the discretization can be modified). 

the node 1; x-axis is 

plane, y-axis is oriented 

in the thickness direction; the 

increasing numbering of the 

homogeneous material are 

surface and bulk nodes, 

the tyre carcass.  

elastic vulcanized polymers and fillers, while 

physical parameters, 

their variability with 

associated, equal to 

(4.1) 
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in which Δx and Δy are respectively the dimensions along the directions x and y, while 

the quantity ∆Z�,� represents the dimension along the z-direction of the i-th layer 

defined so that once multiplied the obtained volume Vi by the density, the mass results 

equal to the expected one for each single element. 

 Each node will then have a mass mi expressed as follows: 

 �� 
 � ∙ �� ∙ � (4.2) 

where the C coefficient depends on the position in the grid. Indeed, from figure 4.1 it is 

easy to notice that the volumes associated to the external nodes (e.g. node 1) are 

characterized to be parallelepiped-shaped, having sides in the direction y and z 

respectively equal to ∆Y 2⁄  and to ∆Z�,� 2⁄ . Therefore, in this case, the coefficient C will 

be equal to 1/4. With the aim to characterize the coefficients C for each kind of node, the 

following list is proposed: 

• C = 1/4 for a node of the first layer, external in the transversal direction 

• C = 1/2 for a node of the first layer, internal in the transversal direction 

• C = 1/2 for a node of the bulk layer, external in the transversal direction 

• C = 1 for a node of the bulk layer, internal in the transversal direction 

• C = 1/4 for a node of the inner liner, external in the transversal direction 

• C = 1/2 for a node of the inner liner, internal in the transversal direction 

With the aim of modelling heat flows and tyre layers temperatures, the following 

assumptions have been adopted: 

• Road is isotropic and homogeneous in all its characteristics, without irregularities, 

schematized as a geometric plane, whose surface temperature is known and equal to Ts 

• It is assumed that the contact area is rectangular in shape, characterized by width 

W equal to the width of the tread, and length La depending on the radial stiffness of the 

tyre and on the normal load. The assumption of rectangular shape of the contact area is 

realistic in the case of sport tyres, characterized by high width values. 

• Camber angle is assumed equal to zero 

• During rolling it is assumed that the tyre keeps the deformed configuration, and 

consequently contact patch extension, reached under the application of the static load.  

• The tyre is also assumed motionless, in a Lagrangian approach, with variable 

boundary conditions 

• The radiation heat transfer mechanism is neglected. 

 
4.3 Thermodynamic model 
 The developed thermodynamic tyre model is based on the use of the diffusion 

equation of Fourier applied to a three-dimensional domain. 

 The complexity of the phenomena under study and the degree of accuracy 

required have made that it becomes necessary to take into account the dependence of 

the thermodynamic quantities and in particular of the thermal conductivity on the 

temperature. 

 Furthermore, the non-homogeneity of the tyre has made it necessary to consider 

the variation of the above parameters also along the thickness. 

 Therefore, the Fourier equation takes the following formulation [42]: 
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 Writing the balance equations for each generic node needs the modelling of heat 

generation and of heat exchanges with the external environment. 

 For the tyre system, the heat is generated in two different ways: for friction 

phenomena arising at the interface with the asphalt and because of stress - deformation 

cycles to which the entire mass is subjected during the exercise. 

 

4.4 Friction power 
 The first heat generation mechanism is connected with the thermal power 

produced at tyre-road interface because of interaction; in particular, it is due to the 

tangential stresses that, in the sliding zone of the contact patch [1], do work dissipated 

in heat. This power is called “friction power” and will be indicated in the following with 

FP. In the balance equations writing, FP can be associated directly to the nodes involved 

in the contact with the ground. 

 Since the lack in local variables availability, FP is calculated as referred to global 

values of force and sliding velocity, assumed to be equal in the whole contact patch: 

 

-. 
 -/ ∙ 0/ + -1 ∙ 012    34 �
5 6 
(4.4) 

  A part of this thermal power is transferred to the tyre and the remaining 

to the asphalt. This is taken into account by means of a partition coefficient CR. 

 To determine the partition coefficient, the following expression can be used [43]: 

 

�7 
 +8+9 ∙ :;9;8  

(4.5) 

in which thermal diffusivity α can be expressed as α 
 =
ρ∙>? . 

 Considering the following road properties: 

 

+9 
 0.55 C 4� ∙ DE 
(4.6) 

�9 
 2200 CDF�GE 
(4.7) 

&'9 
 920 C IDF ∙ DE 
(4.8) 

and the properties of the SBR (Styrene and Butadiene mixture used for the production of 

passenger tyres), available in literature [44][45], the resulting calculated value of CR is 

about 0.55, which means that the 55% of the generated power is directed to the tyre. 
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 Since the model takes into account the variability of the thermal conductivity of 

rubber with the temperature, also the CR coefficient will be a function of the calculated 

temperature; this results in a variation between 0.5 and 0.8. 

 Since Fx and Fy are global forces between tyre and road, and not known the 

contribution of each node to these interaction forces, heat generated by means of 

friction power mechanism transferred to the tyre has been equally distributed to all the 

nodes in contact with the ground. The model allows not uniform local heat distributions 

as soon as local stresses and velocities distributions are known. 

 

4.5 Strain Energy Loss (SEL)  
4.5.1 Introduction 
 The energy dissipated by the tyre as a result of cyclic deformations is called 

Strain Energy Loss (SEL). This dissipation is due to a superposition of several 

phenomena: intra-plies friction, friction inside plies, nonlinear visco-elastic behaviour of 

all rubbery components. 

 The cyclic deformations to which the system is subject occur with a frequency 

corresponding to the tyre rotational speed. During the rolling, in fact, portions of tyre, 

entering continuously in the contact area, are submitted to deformations which cause 

energy loss and then heat dissipation. 

 In the model the amount of heat generated by deformation (SEL) is estimated 

through experimental tests carried out deforming cyclically the tyre in three directions 

(radial, longitudinal and lateral) [34]. These tests are conducted on a proper test bench 

and a test plan, based on the range of interaction forces and frequencies at which tyre is 

usually stressed, has been developed. 

 

4.5.2 The Test Bench 
The tyre test rig is essentially composed by: 

 • A system for applying the vertical load to the tyre consisting of: 

- A manually actuated hydraulic press (Fig. 4.2 (1)); 

- A fixed frame integral with the press fixed structure (Fig. 4.2 (2)); 

- A vertically mobile frame (Fig. 4.2 (3)) in contact with a press actuator on which a 

universal quick flange (Fig. 1 (4)) to lock the wheel is mounted; 

- A system with manually variable weights (Fig. 4.2 (5)) to balance the weights of the 

mobile frame and the wheel so that the tyre has no initial vertical load; 

- Two linear guide rails (Fig. 4.2 (6)) placed along the vertical direction between the 

fixed and the mobile frame; 

 • A system to apply the tangential load to the tyre, consisting of: 

- A linear actuator (Fig. 4.2 (7)) whose fixed part is integral with the press fixed frame; 

- A plate (Fig. 4.2 (8) and Fig. 4.4), on which the tyre is vertically loaded, which can be 

moved horizontally and is directly connected to the linear actuator; 

- A fixed plate (Fig. 4.2 (9) and Fig. 4.4) integral with the press fixed frame; 

- Two linear guide rails (Fig. 4.2 (10) and Fig. 4.4) placed along the tangential 

direction between the fixed and the mobile plate. 

 The test rig is also equipped with the following measurement instruments: 

 • A strain gauge load cell (Fig. 4.2 (11)) to measure the vertical load applied by 

the press; 

 • A draw-wire sensor (Fig. 4.2 (12)) to evaluate tyre deformation along the 

vertical direction; 
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 • A quartz force sensor (Fig. 4.2 (13) and Fig. 4.4

applied by the linear actuator;

 • A position transducer with restoring spring (Fig. 4.2 (14) and Fig. 4.4) to 

evaluate tyre deformation along the horizontal direction.

 

  

 The horizontal linear 

by an electric motor coupled to a gearbox with a transmission ratio equal to 20, into the 

alternative rectilinear motion of the mobile plate (Fig. 4.2 (8)). The actuator includes an 

innovative rotary crank mechanism in which the crank consists of a double eccentric as 

shown in figure 4.3. 

 The drive mechanism consists of three elements: a disc eccentrically fixed on the 

transmission shaft placed inside a second disc (collar) which is also eccentric

a connecting rod, linked to the collar by a rolling bearing, which moves the plate by 

means of a bar. 

 

 The offline relative rotation of the two eccentric elements provides the change of 

the crank radius, thus allowing the drive system to achieve different values of the 

movable plate stroke and different values of tyre strain amplitude; this operation should 

be done before starting each test campaign. The range of plate stroke can vary from 0 to 

40 mm since each of the eccentric parts has an eccentricity of 10 mm.
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• A quartz force sensor (Fig. 4.2 (13) and Fig. 4.4) to measure the horizontal load 

applied by the linear actuator; 

• A position transducer with restoring spring (Fig. 4.2 (14) and Fig. 4.4) to 

evaluate tyre deformation along the horizontal direction. 

 
Fig. 4.2 - The test rig. 

The horizontal linear actuator (Fig. 4.2 (7)) converts the rotary motion, imposed 

by an electric motor coupled to a gearbox with a transmission ratio equal to 20, into the 

alternative rectilinear motion of the mobile plate (Fig. 4.2 (8)). The actuator includes an 

ary crank mechanism in which the crank consists of a double eccentric as 

The drive mechanism consists of three elements: a disc eccentrically fixed on the 

transmission shaft placed inside a second disc (collar) which is also eccentric

a connecting rod, linked to the collar by a rolling bearing, which moves the plate by 

 
Fig. 4.3 - Crank-rod drive mechanism. 

 

The offline relative rotation of the two eccentric elements provides the change of 

radius, thus allowing the drive system to achieve different values of the 

movable plate stroke and different values of tyre strain amplitude; this operation should 

be done before starting each test campaign. The range of plate stroke can vary from 0 to 

mm since each of the eccentric parts has an eccentricity of 10 mm. 
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) to measure the horizontal load 

• A position transducer with restoring spring (Fig. 4.2 (14) and Fig. 4.4) to 

actuator (Fig. 4.2 (7)) converts the rotary motion, imposed 

by an electric motor coupled to a gearbox with a transmission ratio equal to 20, into the 

alternative rectilinear motion of the mobile plate (Fig. 4.2 (8)). The actuator includes an 

ary crank mechanism in which the crank consists of a double eccentric as 

The drive mechanism consists of three elements: a disc eccentrically fixed on the 

transmission shaft placed inside a second disc (collar) which is also eccentric, and finally 

a connecting rod, linked to the collar by a rolling bearing, which moves the plate by 

 

The offline relative rotation of the two eccentric elements provides the change of 

radius, thus allowing the drive system to achieve different values of the 

movable plate stroke and different values of tyre strain amplitude; this operation should 

be done before starting each test campaign. The range of plate stroke can vary from 0 to 

 



4. TRT - Thermo Racing Tyre 

83 

 

 
Fig. 4.4 - Test rig detail – (1) Frame; (2) Mobile plate; (3) Linear guide rail;  

(4) Longitudinal position transducer; (5) Load Cell. 

 

 The driving rod is fixed to the connecting rod on one side by flanges and bolts, the 

other side is articulated to the plate through a universal joint. The eccentric inner disc 

has been fixed on the transmission shaft through a self-centring friction device (sit-lock). 

 Alternative fixing systems of the universal quick flange on the vertically mobile 

frame, suitably inclined, allow to conduct tests with nonzero camber and/or toe angles. 

 

4.5.3 Tests Procedure 
 Opportune tests carried on the described test rig allow to determine the 

following mechanical characteristics of an automotive pneumatic tyre: the normal 

interaction characteristic, the radial stiffness, the total stiffness, the longitudinal and 

lateral hysteretic cycles and the consequent strain energy loss. 

 In particular, to this aim, two different test procedures have been developed: 

radial and horizontal tests. To execute these tests the tyre has been locked to the 

universal quick flange. 

• Radial test 

 This kind of test consists in a quasi-static tyre radial compression; it is realized 

manually actuating the press while the horizontal movable plate is kept stopped, and it 

is conducted with different values of the inflation pressure. During this kind of test the 

vertical load and the corresponding strain are acquired, and consequently it is possible 

to determine the normal interaction characteristic and the radial stiffness. 

• Horizontal test 

 To perform this kind of test, first of all, it is necessary to move the plate to one of 

the ends of its stroke. Then the tyre is positioned so that, for longitudinal tests, its 

midplane, orthogonal to its axis, contains the crank-rod mechanism axis; for lateral tests 

tyre axis must be in the same vertical plane that contains the crank-rod mechanism axis. 

Subsequently a prescribed vertical load is applied, greater than the one necessary to 

avoid tyre sliding. After this the linear actuator is activated with fixed values of its 

motion amplitude and frequency. 

 So all the available stroke is used to strain the tyre along a unique direction 

(unilateral test), as occurs usually during its working in pure tangential interaction 

conditions. 

 The linear actuator imposes the stroke and hence the tyre strain in the contact 

patch. 
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 This kind of test can be conducted, for a fixed tyre, varying the inflation pressure, 

the vertical load, the stroke magnitude, the linear actuator motion frequency. At the end 

of this test it is possible to determine the total stiffness, the longitudinal and lateral 

hysteretic cycles. 

 

4.5.4 Normal Interaction Characteristic and Radial Stiffness 
 The radial tests, as said, allow to determine the normal interaction characteristic 

and the radial stiffness of a tyre. The first one is obtained measuring the vertical load 

applied to the tyre and its deformation along the same direction and representing the 

first as function of the second, while the radial stiffness is the discrete derivative of the 

normal interaction curve as a function of the vertical strain. This measure can be 

repeated varying the tyre radial direction unlocking the tyre, after having rotated it of a 

fixed angle, and locking it again to the universal quick flange (the radial stiffness should 

be the same along each radial direction considering the tyre axial symmetry). It is 

possible to see how the considered quantities vary with the inflation pressure. In figure 

4.5 different normal interaction characteristics, obtained varying the inflation pressure, 

together with the relative mean values of the radial stiffness, for a Firestone 195/65 R 

15 91T Tubeless pneumatic tyre, are reported. 
 

 
Fig. 4.5 - Normal interaction characteristic and radial stiffness. 

 

 As expected the tyre becomes more stiff in radial direction increasing the 

inflation pressure. Oscillations in the curves are due to the fact that vertical load is 

manually applied acting on the press; after each load increase, the tyre exhibits an 

elastic release, that causes the visible oscillations. 

 

4.5.5 Hysteresis Cycles and Total Stiffness 
 The horizontal tests allow to determine the tyre total stiffness and its hysteretic 

cycles. The total stiffness is the one involved in the tangential test due to the vertical 

load and the horizontal tyre strain. It is called “total” because it includes both a radial, an 

axial and a torsional contribution.  

 The tyre hysteresis cycles come out plotting the horizontal load as a function of 

the horizontal strain.  

 A test campaign has been conducted, on a predetermined tyre, varying the 

amplitude and the frequency of the linear actuator motion, the vertical load, the tyre 

inflation pressure and the toe angle. In particular the values adopted for the above 
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parameters are reported in table 4.1: 

 

Amplitude of the linear 

actuator motion [mm] 
9 - 18 

Frequency of the linear 

actuator motion [Hz] 
1 - 3 - 5 

Vertical load [N] 5500 - 6000 

Tyre inflating  

pressure [kPa] 
160 - 200 

Toe angle [°] 0 - 5 
Table 4.1 - Test Parameters. 

 

 All the possible combinations have been tested and for each of them at least 5 

cycles have been acquired. 

 The measured cycles showed irregularities due to backlash in the test rig, so, 

during the elaboration process the force-displacement diagrams have been 

“reconstructed” by means of a moving average based procedure in order to reduce these 

irregularities. 

 In figure 4.6 a measured hysteretic cycle is reported together with the 

correspondent reconstructed one.  

 Figure 4.7a, 4.7b and 4.8 show some results about the influence of actuator 

stroke, motion frequency and vertical load on hysteretic cycles shape and position. In all 

showed hysteresis cycles diagrams tyre inflation pressure is equal to 200 kPa and toe 

angle is equal to 0°. 

 

 
Fig. 4.6 - Measured and reconstructed hysteretic cycles - longitudinal test. 
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Fig. 4.7a - Longitudinal hysteresis cycles: Linear actuator stroke influence 

Vertical load: 5500 N, Motion frequency: 3 Hz. 

Fig. 4.7b - Longitudinal hysteresis cycles: Motion frequency influence 

Vertical load: 5500 N, Actuator stroke: 18 mm. 

 

 
Fig. 4.8 - Longitudinal hysteresis cycles: Vertical load influence 

Motion frequency: 1 Hz; Actuator stroke: 18 mm. 

 

 
Fig. 4.9 - Toe angle influence on total stiffness 

Motion frequency: 1 Hz; Actuator stroke: 18 mm. 

 

 As expected increasing the linear actuator stroke the energy loss (hysteresis 

cycles area) rapidly increases (Fig. 4.7a), while linear actuator motion frequency seems 

not influent on position and extension of cycles (Fig. 4.7b). As concerns the vertical load 

(Fig. 4.8) and toe angle (Fig. 4.9) they seem directly influent mainly on total stiffness 

(increasing the two parameters, increases this stiffness).  
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Fig. 4.10 – Normalized lateral hysteresis cycle for a front sport tyre. 

 

 For each testing parameters combination, the acquired and measured area of the 

hysteresis cycle is representative of the energy dissipated in the deformation cycle (Fig. 

4.10). Estimated energies do not exactly coincide with the ones dissipated in the actual 

operative conditions, as the deformation mechanism is different; it is however possible 

to identify a correlation between them on the basis of coefficients estimated from real 

data telemetry. 

 Interpolating all the results obtained by means of the test plan, a specific analytic 

function has been identified; it expresses the SEL as a function of the parameters 

(amplitude of the interaction force components and applying frequency) on which it 

depends. 

 

4.6 Heat transfers modelling 
 As regards the heat exchange between the tyre and the external environment, it 

can be classified as follows: 

• Heat exchange with the road (called “cooling to the ground”) 

• Heat exchange with the outside air 

• Heat exchange with the inflating gas 

 As said, the radiation mechanism of heat exchange is neglected. The same has to 

be said about the convective heat exchange with the external air along the surface of the 

sidewalls because the air flow is directed almost tangentially to them; for this reason the 

value of convective heat exchange coefficient is small. Moreover, being the rubber 

characterized by very low thermal conductivity, belt thermal dynamics do not influence 

significantly sidewall dynamics and vice versa  

The phenomenon of thermal exchange with the asphalt has been modelled through 

Newton's formula [46], schematizing the whole phenomenon by means of an 

appropriate coefficient of heat exchange. The term for such exchanges, for the generic i-

th node will be equal to: 

 JK ∙ (!9 − !�) ∙ ∆M ∙ ∆N (4.9) 
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 The heat exchange with the outside air is described by the mechanism of forced 

convection, when there is relative motion between the car and the air, and by natural 

convection, when such motion is absent. 

 The determination of the convection coefficient h, both forced and natural, is 

based on the classical approach of the dimensionless analysis [35]. 

 Considering the tyre invested by the air similarly to a cylinder invested 

transversely from an air flux, the forced convection coefficient is provided by the 

following formulation [42][47]: 

 

ℎPQ9K 
 +R�9S ∙ T0.0239 ∙ V�R�9 ∙ SW XY.ZY[\ 
(4.10) 

in which, Kair is evaluated at an average temperature between the effective air one and 

outer tyre surface one. Vair is considered to be coincident with the forward speed of the 

vehicle (air speed is supposed to be zero); the values of hforc calculated with the above 

approach are close to those obtained by means of CFD simulations [48]. 

 The natural convection coefficient hair, also obtained by the dimensionless 

analysis, can be expressed as: 

 

ℎR�9 
 ]^ ∙ +R�9S  
(4.11) 

in which, for this case:  

 ]^ 
 0.53 ∙ _`Y.
[ ∙ .`Y.
[ (4.12) 

 The last heat exchange, the convection with the inflating gas, can be expressed my 

means of a mechanism of natural convection, as the indoor air is considered stationary 

with respect to the tyre during rolling. In this case, by modelling the system as a 

horizontal cylinder coaxial with the inflating gas contained in a cavity, the heat exchange 

coefficient is: 

 

ℎ�a8 
 +R�9b9 ∙ c0.40 ∙ *F ∙ ef ∙ bG ∙ (! − !∞)W
 ,Y.
Y ∙ ghR�9 ∙ &i+ jY.
Yk (4.13) 

with δr equal to the difference between effective rolling radius and rim radius. 

 

 

 

 

 

 

 

 

 

 

 



4. TRT - Thermo Racing Tyre 

89 

 

4.7 Contact area calculation 
 The size and the shape of the contact area are function of the vertical load acting 

on each wheel, of the inflation pressure and of camber and toe angles. 

 In the T.R.T. model the contact area is assumed to be rectangular in shape, as 

already said, with constant width Wa, equal to the tread width, and length La, variable 

with the above mentioned parameters, except the toe angle. 

 The extension of the patch depends on the number of nodes in contact with the 

road and it is calculated as: 

 2Y 
 ]l� ∙ ∆� ∙ ∆� (4.14) 

NEC is given by (NECx)∙(NECy). 

 NECx is the number of nodes in contact along x minus one, calculated as explained 

in the following and NECy is the number of nodes in contact with the road along y minus 

one, identified by the ratio between the width Wa of the tread and the lateral dimension 

Δy of the single element. 

 The area is indicated with A0 to emphasize that it is not variable during the 

simulation after having been calculated in pre-processing. The real number of nodes in 

contact is calculated from the effective area of contact Aeff, which is obtained by means of 

diagrams as the ones showed in figures 3 and 4, taking into account actual vertical load 

and inflating pressure: 

 

]l�mnn 
 2oPP4R ∙ ∆� ∙ ]l�� 
(4.15) 

in which for the amount 
pqrrst∙∆u , representing the number of nodes in contact with the 

road in the x direction minus one, it is considered the nearest integer. 

 The effective area of contact has been obtained on the basis of the results 

provided by FEM simulations (Fig. 4.11 and 4.1212) and pressure sensitive sheets 

(described in paragraph 6.3), both for front and for rear tyre. The used tyre FE model 

was validated on measured static contact patch and on measured static and dynamic 

tyre profiles [49]. 

 Below are shown the extensions of the effective contact area as a function of the 

vertical load and of the camber angle for a value of the inflation pressure equal to the 

one employed in usual working conditions. 

 Effective contact area values have been adimensionalized respect to a reference 

value for confidentiality reasons. 

 

                                                 
12 In figures 4.11 and 4.12 camber values A, B, C, vertical load values FzA, FzB, FzC and inflating pressure 

values A, B, C are inside typical working ranges of the considered tyres. Their relative order is specified in 

figure captions and they are not explicited for confidentiality reasons. 
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Fig. 4.11a - Contact area as a function of the vertical load for different camber angles - front tyre  

(Camber C > Camber B > Camber A). 

Fig. 4.11b - Contact area as a function of the camber angle for different vertical loads - front tyre  

(FzA, FzB=2FzA, FzC=3FzA). 

Fig. 4.11c -  Contact area as a function of the vertical load for different camber angles - rear tyre  

(Camber C > Camber B > Camber A). 

Fig. 4.11d - Contact area as a function of the camber angle for different vertical loads - rear tyre  

(FzA, FzB=2FzA, FzC=3FzA). 

 

 In the figures below it is possible to observe the influence of inflating pressure 

variations on the contact area. 

 

 
Fig. 4.12a - Contact area as a function of the vertical load for different values of the inflation pressure - 

front tyre (Press. C > Press. B > Press. A). 

Fig. 4.12b - Contact area as a function of the vertical load for different values of the inflation pressure - 

rear tyre (Press. C > Press. B > Press. A). 

 

 The obtained analytical expressions have been optimized around the average 

value of camber angle assumed by each axle in typical working conditions and they are 

of the type: 

 2oPP 
 vn�-w , x, y�)z ∙ F`{{0m n|&"{` (4.16) 

 In which groove factor is a coefficient taking into account the presence or not of 

grooves on the tread and represents the ratio between the effective area of a grooved 

tyre and a of slick one with the same nominal dimensions. By definition, then, this 

coefficient assumes unitary value in the case of a slick tyre. 
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 Then, considering that in steady state conditions the variations of the inflation 

pressure are small and that camber angle does not have a great influence on the size of 

the contact area, for simplicity, these dependencies have been neglected. As a result, it is 

possible to consider an expression, optimized on internal pressure typical values at 

medium values of speed and camber, of the type: 

 2oPP 
 vn�-w�z ∙ F`{{0m n|&"{` (4.17) 

 As said, in order to avoid excessive computational loads, the number of nodes in 

contact has been considered constant during a simulation. So for its determination the 

average normal load acting on the single wheel has been considered. This average 

normal load is determined considering the dynamic behaviour of the car, taking into 

account longitudinal and lateral load transfers and aerodynamics downforce. Therefore, 

it results: 

 

]l�/ 
 2oPP}n~-w,R'o9R�o�� ∙ F`{{0m n|&"{`4R ∙ ∆�  
(4.18) 

 To take into account the variation of the contact area extension as a function of 

the normal instantaneous load in the model, the values of the coefficients characterizing 

the heat exchanges, depending on the variations of the size of the area (in particular Hc, 

for what concerns the conductive exchange with the asphalt and hforc for the remaining 

area of the surface) have to be scaled, having decided not to act directly on NECx and 

NECy. 

 Since heat exchanges are expressed by relations of the type: 

 �$ 
 ℎ ∙ ∆! ∙ 2 (4.19) 

the effect of the contact patch variations can be transferred to the heat transfer 

coefficients by means of factors which are proportional to the ratio between the 

extension of the effective area with respect to the static one. 

 The equations of heat exchange become, therefore, the following: 

 �$ 
 �� ∙ JK ∙ (!9 − !) ∙ 2Y (4.20) 

�$ 
 �
 ∙ ℎPQ9K ∙ (!∞ − !) ∙ 2KQa' (4.21) 

where: 

 

�� 
 2oPP2Y  
(4.22) 

�
 
 1 + �1 − +�� ∙ 2Y2KQa'  
(4.23) 

2KQa' 
 28Q8 − 2Y (4.24) 
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4.8 The constitutive equations  
 On the basis of the previous considerations it is possible to write the power 

balance equations, based on heat transfers, for each elementary mass associated to each 

node. These equations are different for each node, depending on its position in the grid. 

 The conductivity between the surface and the bulk layers is indicated with k1, 

while with k2 is indicated the conductivity associated to the exchange between the bulk 

and the inner liner layers. 

An image depicting the control volume associated with the node 2 (surface layer) is 

reported below. The image shows the thermal powers exchanged in all directions 

respectively for the two cases: road contact (Fig. 4.13) and contact with the external air 

(Fig. 4.14). 

 

 
Fig. 4.13 - Control volume associated with the node 2, assumed in contact with the road. 

 

 
Fig. 4.14 - Control volume associated with the node 2, assumed in contact with the external air. 
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 As an example, the only heat balance equation for node 2 along the x direction is 

reported, recalling that, for the performed discretization, the nodes adjacent to 2 are 6 

and 58: 

 +�∆M ∙ (!� − !
) ∙ ∆N ∙ ∆��2 − +�∆M ∙ (!
 − ![Z) ∙ ∆N ∙ ∆��2 = �
 ∙ &'� ∙ ∆!
∆"  
(4.25) 

  Substituting the expression of the mass (4.2) (reminding that in this case C 

= 1/2) leads to the equation:  

 ∆!
∆" = 1� ∙ &'� ∙ C +�∆M
 ∙ !� − 2 ∙ +�∆M
 ∙ !
 + +�∆M
 ∙ ![ZE 
(4.26) 

Taking into account the exchanges along all directions and all the possible heat 

generations, the equation of node 2 can be written (see Appendix): 

• in the case of contact with the road: 

 ∆!
∆" = 1� ∙ &'� ∙ T 2 ∙ �$���∆M ∙ ∆N ∙ ∆�� + *− 2 ∙ +�∆M
 − 2 ∙ +�∆N
 − 2 ∙ +�∆��
 − 2 ∙ JK∆�� , ∙ !
 + +�∆N
 ∙ !�
+ +�∆N
 ∙ !G + +�∆M
 ∙ !� + +�∆M
 ∙ ![Z + 2 ∙ +�∆��
 ∙ !�
 + 2 ∙ -.∆�� + 2 ∙ JK∆��
∙ !9\ 

(4.27) 

• in the case of contact with external air: 

 ∆!
∆" = 1� ∙ &'� ∙ T 2 ∙ �$���∆M ∙ ∆N ∙ ∆�� + *− 2 ∙ +�∆M
 − 2 ∙ +�∆N
 − 2 ∙ +�∆��
 − 2 ∙ ℎPQ9K∆�� , ∙ !
 + +�∆N

∙ !� + +�∆N
 ∙ !G + +�∆M
 ∙ !� + +�∆M
 ∙ ![Z + 2 ∙ +�∆��
 ∙ !�
 + 2 ∙ ℎPQ9K∆�� ∙ !R�9\ 

having denoted by �$��� the power dissipated by cyclic deformation. 

(4.28) 

 Note the presence, in the equation (4.27), of the generative term identified by FP 

and of the term identifying the cooling with the road (characterized by the presence of 

the Hc coefficient). On the other hand, in the equation (4.28) it is possible to notice the 

absence of the generative term and the presence of the term identifying the exchange 

with the outside air (characterized by the presence of the hforc coefficient). 

 In the model the tyre has been considered motionless and the boundary 

conditions rotating around it to take into account the fact that elements belonging to the 

surface layer will be affected alternatively by the boundary conditions corresponding to 

the contact with the road and to the forced convective exchange with the external air. 

 The equations showed for node 2 are valid for all the nodes belonging to the 

surface layer, localized internally in lateral direction. 
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 For a node still belonging to the surface layer, but external in lateral direction (C 

= 1/4), for example node 1, the equations are (see Appendix): 

• in the case of contact with the road: 

 ∆!�∆" = 1� ∙ &'� ∙ T 4 ∙ �$���∆M ∙ ∆N ∙ ∆�� + *− 2 ∙ +�∆M
 − 2 ∙ +�∆N
 − 2 ∙ +�∆��
 − 2 ∙ JK∆�� , ∙ !� + 2 ∙ +�∆N

∙ !
 + +�∆M
 ∙ ![ + +�∆M
 ∙ ![� + 2 ∙ +�∆��
 ∙ !�� + 2 ∙ -.∆�� + 2 ∙ JK∆�� ∙ !9\ 

(4.29) 

• in the case of contact with external air:  

 ∆!�∆" = 1� ∙ &'� ∙ T 4 ∙ �$���∆M ∙ ∆N ∙ ∆�� + *− 2 ∙ +�∆M
 − 2 ∙ +�∆N
 − 2 ∙ +�∆��
 − 2 ∙ ℎPQ9w∆�� , ∙ !� + 2 ∙ +�∆N

∙ !
 + +�∆M
 ∙ ![ + +�∆M
 ∙ ![� + 2 ∙ +�∆��
 ∙ !�� + 2 ∙ ℎPQ9K∆�� ∙ !R�9\ 

(4.30) 

 The equation relating to the bulk layer, for an internal node in the lateral 

direction (C = 1), e.g. node 62, is (see Appendix): 

 ∆!�
∆" = 1� ∙ &'
 ∙ � �$���∆M ∙ ∆N ∙ g∆��2 + ∆�
2 j + �− 2 ∙ +
∆M
 − 2 ∙ +
∆N
 − +
∆�
 ∙ g∆��2 + ∆�
2 j
− +�∆�� ∙ g∆��2 + ∆�
2 j� ∙ !�
 + +
∆N
 ∙ !�� + +
∆N
 ∙ !�G + +
∆M
 ∙ !��

+ +
∆M
 ∙ !��Z + +
∆�
 ∙ g∆��2 + ∆�
2 j ∙ !�

 + +�∆�� ∙ g∆��2 + ∆�
2 j ∙ !
� 

(4.31) 

 

 Similarly, relatively to a bulk external node in the transverse direction, (C = 1/2), 

it results (see Appendix): 

 ∆!��∆" = 1� ∙ &'
 ∙ � 2 ∙ �$���∆M ∙ ∆N ∙ g∆��2 + ∆�
2 j + �− 2 ∙ +
∆M
 − 2 ∙ +
∆N
 − +
∆�
 ∙ g∆��2 + ∆�
2 j
− +�∆�� ∙ g∆��2 + ∆�
2 j� ∙ !�� + 2 ∙ +
∆N
 ∙ !�
 + +
∆M
 ∙ !�[ + +
∆M
 ∙ !���

+ +
∆�
 ∙ g∆��2 + ∆�
2 j ∙ !�
� + +�∆�� ∙ g∆��2 + ∆�
2 j ∙ !�� 

(4.32) 
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 As concerns the innermost layer, the inner liner, the equation of exchange for an 

internal node in the transverse direction (C = 1/2), eg 122, is (see Appendix): 

 ∆!�

∆" = 1� ∙ &'
 ∙ T 2 ∙ �$���∆M ∙ ∆N ∙ ∆�
 + *− 2 ∙ +
∆M
 − 2 ∙ +
∆N
 − 2 ∙ +
∆�

 − 2 ∙ ℎ�a8∆�
 , ∙ !�


+ +
∆N
 ∙ !�
� + +
∆N
 ∙ !�
G + +
∆M
 ∙ !�
� + +
∆M
 ∙ !�[Z + 2 ∙ +
∆�

 ∙ !�

+ 2 ∙ ℎ�a8∆�
 ∙ !R�9_�a8\ 

(4.33) 

 

 Finally, for an external node in the transverse direction belonging to the Inner 

liner (C = 1/4), it is (see Appendix): 

 ∆!�
�∆" = 1� ∙ &'
 ∙ T 4 ∙ �$���∆M ∙ ∆N ∙ ∆�
 + *− 2 ∙ +
∆M
 − 2 ∙ +
∆N
 − 2 ∙ +
∆�

 − 2 ∙ ℎ�a8∆�
 , ∙ !�
�
+ 2 ∙ +
∆N
 ∙ !�

 + +
∆M
 ∙ !�
[ + +
∆M
 ∙ !�[� + 2 ∙ +
∆�

 ∙ !�� + 2 ∙ ℎ�a8∆�

∙ !R�9_�a8\ 

(4.34) 

 

 In conclusion, the matrix equation at the basis of the model is: 

 

�
��
��
��
��
��
 !� "  !
 "  !G " ……  !a " �

��
��
��
��
��

=

�
���
���
� ���
 … … … � a�

���
���
�

+ 1� ∙ &'

�
��
��
��
�

|�� ⋯ |�a |
�    … |
a… … … …| a�  

 
… … … …| aa�

��
��
��
�

∙

�
��
��
��
� !� !
 … … … ! a�

��
��
��
�

 (4.35) 

 

in which aij is the generic coefficient, relative to the energy balance equation of the node 

i, that multiplies the j-th node temperature, while bi is the generic coefficient not 

multiplying nodes temperatures. 

 To properly operate in order to provide the tyre temperature distribution, the 

model requires the following input data: normal, longitudinal and lateral interaction 

tyre-road forces, longitudinal and lateral slip speeds, forward speed at the wheel centre, 
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air and road temperature. The structural characteristics and thermal properties of the 

tyre and the thermal conductivity of the track are also required. 

 Some of these data result from the measures of telemetry available for different 

circuits and are preliminary analyzed in order to check their reliability; others, such as 

in particular the ones related to structural and thermal characteristics of the tyre, are 

estimated on the basis of measurements and tests conducted on the tyres [41].  

At the end of the model development, sensitivity analyses have been performed; it 

resulted that employed instruments, characterized by high accuracy, are able to 

guarantee low uncertainty levels that do not affect the goodness of model results. 

In addition to surface, bulk and inner liner temperature distributions, the model also 

provides the thermal flows affecting the tyre, such as the flow due to the external air 

cooling, the one due to the cooling with the road, the one with the inflation air as well as 

the flows due to friction, hysteresis and exchanges between the different layers. 

 

4.9 Results and discussion 
 The model needs an initial tuning phase to be carried out only once for each 

season, because of changes in car setup and tyres construction, aimed to the 

identification of the values of some scaling factors. This is done on the basis of the 

results obtained during pre-season testing, which commonly take place early in the year 

before the season starts. This phase also allows the direct experimental check  of tyre 

thermal parameters. 

 Once developed through this operation it can be used in a predictive manner, 

known all inputs, with reference to the various operating conditions of the different 

circuits. The results obtained are in good agreement with the telemetry data. 

 This is clearly shown in the following figures which illustrate a comparison 

between the temperatures provided by the telemetry (measured my means of infrared 

sensors, pointing the middle line of the tyre) during a race and the results provided by 

the model in simulation. The signals show a certain periodicity because they refer to 

race laps. 

 Figure 4.15 in particular shows a comparison between the temperature of surface 

measured and simulated for all the four wheels. As can be seen the agreement between 

the model and telemetry is excellent. 

 With regard to the front wheels, the fragmentary telemetry data is due to the fact 

that when the steering angle exceeds a certain threshold, the temperature measurement 

is not trusted because the sensor detects temperature values corresponding to different 

zones of the tyre. Substantially when the steering wheel is over a certain value the 

reliability of the temperature signal is lost. 
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Fig. 4.15 - Comparison between measured and simulated surface temperatures 

 both for rear and front tyres. 

 

 In the next figure, 4.16, the temperatures of the inner liner measured and those 

calculated with the model are reported. Also in this case, for all four wheels the 

agreement is excellent. In the figure are also reported bulk temperatures estimated by 

means of model simulations. For bulk temperatures no data are available from 

telemetry. 

 Proper time ranges have been selected to highlight thermal dynamics 

characteristic of each layer; in particular, as concerns bulk and inner liner (Fig. 4.16), 

temperature decreasing trend is due to a vehicle slowdown before a pit stop. 
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Fig. 4.16 - Bulk simulated temperature and comparison between measured and simulated inner liner 

temperatures both for rear and front tyres. 

 

 Finally in figure 4.17, with reference to a different circuit, the comparisons 

between the measured temperatures and those supplied by the model for all four 

wheels of the vehicle are reported. 
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Fig. 4.17 - Another example of bulk and inner liner simulated temperature and comparison between 

measured and simulated surface temperatures both for rear and front tyres. 

 

 Even in this case, despite the fragmentary telemetry data of the front tyres 

surface temperature, the agreement between the telemetry data and those evaluated 

with the model is good. 

 

4.10 Further developments and implementations 
4.10.1 TRT blown exhaust gas 
4.10.1.1 Model Variations 
 One of the major technical innovations in recent Formula 1 seasons has been the 

introduction of special exhaust systems, called "Exhaust Blown Diffusers", which, 

employing the kinetic energy of such gases, are able to act on aerodynamic downforce 

increasing ground effect. Maximizing the vertical load acting on the wheel, in fact, it is 

possible to get a consequent improvement in terms of forces exchanged with the road. 

 The thermal contribution coming from the exhaust gases, depending on the 

aerodynamic solutions used, is directed to the rear of the car, eventually investing 

different areas of the tyres (Fig. 4.18). The ways in which the different solution can be 

adopted need to be studied in detail; if improperly canalized, heat flows risk to damage 

the tyre because of too high thermal stress levels; on the other hand, an appropriate 

strategy to employ the thermal additional source may represent a key factor for the 

management of the tyres in terms of optimization of the grip/temperature relationship. 
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Fig. 4.18 

 Starting from these considerations, it is evident the importance that a study able 

to take into account the extremely severe thermal conditions due to localized hot gas 

flows could have for racing teams. The 

enabling the possibility to introduce an external localized thermal source. Being the 

followed approach of Lagrangian type, the tyre is considered as motionless and the 

boundary conditions move, varying by means of specific permutation matrices.

 The "road contact" matrix is constituted by a numx·numy number of elements, 

characterized to be equal to 1 if relative to tyre surface points in contact with road and 

equal to 0 elsewhere. "Exhaust gases" matrix has

equal to 1 are the ones that are considered to be invested by gas flow (Fig. 4.19).

 

Fig. 4.19 - Surface layer mesh; in red, the nodes interested by exhaust gas flow.
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. 4.18 - Rear tyre heated by exhaust gas flow. 

 

Starting from these considerations, it is evident the importance that a study able 

to take into account the extremely severe thermal conditions due to localized hot gas 

flows could have for racing teams. The phenomena have been modelled inside the TRT 

ling the possibility to introduce an external localized thermal source. Being the 

agrangian type, the tyre is considered as motionless and the 

boundary conditions move, varying by means of specific permutation matrices.

tact" matrix is constituted by a numx·numy number of elements, 

characterized to be equal to 1 if relative to tyre surface points in contact with road and 

equal to 0 elsewhere. "Exhaust gases" matrix has the same dimensions, but elements 

ones that are considered to be invested by gas flow (Fig. 4.19).

Surface layer mesh; in red, the nodes interested by exhaust gas flow.
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Starting from these considerations, it is evident the importance that a study able 

to take into account the extremely severe thermal conditions due to localized hot gas 

phenomena have been modelled inside the TRT 

ling the possibility to introduce an external localized thermal source. Being the 

agrangian type, the tyre is considered as motionless and the 

boundary conditions move, varying by means of specific permutation matrices. 

tact" matrix is constituted by a numx·numy number of elements, 

characterized to be equal to 1 if relative to tyre surface points in contact with road and 

the same dimensions, but elements 

ones that are considered to be invested by gas flow (Fig. 4.19). 

 
Surface layer mesh; in red, the nodes interested by exhaust gas flow. 
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 Heating due to external sources acting on the surface layer is modelled again 

thanks to Newton's equation: 

 

( )EXH GAS ih T T X Y− ∆ ∆
 (4.36) 

in which hEXH is the convective heat transfer coefficient, TGAS is gas unidirectional flow 

temperature, considered constant and Ti is i-th surface element temperature. 

 Referring to node 2, hypothesizing it interested by gas flow, balance equation 

(4.28) becomes: 

 ∆!
∆" = 1� ∙ &'� ∙ T 2 ∙ �$���∆M ∙ ∆N ∙ ∆�� + *− 2 ∙ +�∆M
 − 2 ∙ +�∆N
 − 2 ∙ +�∆��
 − 2 ∙ ℎ���∆�� , ∙ !
 + +�∆N
 ∙ !� + +�∆N
 ∙ !G
+ +�∆M
 ∙ !� + +�∆M
 ∙ ![Z + 2 ∙ +�∆��
 ∙ !�
 + 2 ∙ ℎ���∆�� ∙ !%��\ (4.37) 

 
4.10.1.2 Simulation Results 
 T.R.T. model with the addition of the exhaust gases effect has been employed in 

order to obtain a quantitative analysis, although approximate, of the effect in terms of 

average temperatures of the hot flow on a portion of the tyre. 

 Simulations have been performed employing telemetry input related to 

measurements obtained during a race on a track characterized by not particularly 

stressing environmental conditions. Some simplifying assumptions have been taken, 

according to the instructions provided by the vehicle maker: 

- Convective heat transfer coefficient hEXH is constant and equal to 200 W/(m2K), equal 

to about twice the average value of the exchange coefficient with the air 

- Temperature of the exhaust gas is uniform and constant during the simulation; basing 

on available data, a value of 300 °C has been chosen 

- Tyre surface affected by the gas flow has been considered equal to about 23% of the 

total including 5 knots in the longitudinal direction and 3 in the side 

- The heating induced by the impact of exhaust gases on the sidewall has been neglected 

 The results highlighted that the thermal variations induced by hot flows are 

absolutely not negligible; the difference in terms of mean layers temperature between 

the normal case and the exhaust gas one reaches several tens of degrees (Fig. 4.20) 
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Fig 4.20 - left rear wheel TRT simulation output: comparison between normal thermal vehicle setup  

(blue = surface mean temperature, magenta = bulk mean temperature) and exhaust gas solution (black = 

surface mean temperature, green = bulk mean temperature). 

 

 The results, even if the analysis has been carried out with a first approximation 

method, fully highlight the effect of the added external heat source. As a partial 

conclusion for the discussed analysis, the tyre surface area interested by the flow should 

be reduced, because the thermal stress reached under the tested conditions would 

unavoidably bring the tyre to a too fast degradation and to average temperatures not 

able to maximize the grip. 

 In order to perform a more detailed analysis, a better estimation of heat exchange 

coefficient, of flow temperature expressed as a function of the distance from exhaust 

pipe tip, of the extension of the tyre area invested by gases and of the thermal exchanges 

with sidewalls should be provided.  

 Further developments of the described TRT version could be adapted to 

motorcycle tyres thermal dynamics, in which contact patch width is not the whole tread 

one, but is a portion of it and moves as a function of camber angle [50]. 

 
4.10.2 TRT Multi-Rib version 
4.10.2.1 Model Variations 
 One of the main limits of the T.R.T. model is definitely due to the fact to be based 

on global quantities (in particular, the forces that are given as input to the model are the 

ones that the tyre globally exchanges with the road) that are not able to describe the 

inhomogeneous distribution of local variables inside the contact patch (for example, 

stresses and deformations due to camber thrust). 
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Fig. 4.21 - Tyre surface subdivided in five ribs. 

 

 In order to model actual phenomena, the model has been properly modified, 

making it compatible with inputs of a local type. Specifically tyre has been subdivided in 

ribs (Fig. 4.21), each one interested by a different friction power. In this way 

temperature gradients are generated in the y direction, between consecutive ribs 

operating under different conditions. 

 Ribs expedient allows to model effects linked with common tyre configurations, 

like nonzero camber angles or under/over inflation. At present, the model includes five 

ribs and consequently six knots in the lateral direction; it means that this version of TRT 

must be associated to a contact model, able to provide different local forces and sliding 

velocities, useful for each rib friction power calculation. At this aim, tests have been 

performed employing models discussed in [21] and [51]. 

 Each rib is characterized by its specific CR, because each conductivity and 

thermal diffusivity depend on rib temperature. A node completely belonging to a single 

rib (as node 1) is characterized by FP value calculated on the base of forces and 

velocities assigned to the rib by the contact model; physical quantities relative to nodes 

localized between two consecutive ribs (as node 2) have been considered as the mean 

value of the ones assigned to the ribs. 

 

4.10.2.2 Simulation Results 
 Three different tests have been carried out: 

- Decreasing FP along tread lateral direction (camber simulation, Fig. 4.22 and 4.23) 

- Central rib (rib 3) interested by a three times higher FP than other ribs (over inflation 

test, Fig. 4.25 and 4.26) 

- Lateral ribs (rib 1 and 5) interested by a three times higher FP than other ribs (under 

inflation test, Fig. 4.27 and 4.28) 

 The first test reproduces a situation obtainable performing laps with a wheels 

setup characterized by constant camber angles. It is a specific setup, surely not common 

in usual conditions, in which camber angle varies during the vehicle motion. Figures 

4.22 and 4.23 show overheating in the side interested by higher pressure, due to the 

presence of nonzero camber angle values. 
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Fig. 4.22 - Results of test1: decreasing FP along tread lateral direction. 

 

 
Fig. 4.23 - Results of test1: ribs temperature. 

 

 Test2 has been designed with the aim to reproduce phenomena concerning with 

tyre over inflation, that commonly generates high contact pressure distribution (and 

consequently higher tangential stresses) in the central zone of the tread (Fig. 4.24). 

 

 
4.24 - Effects of tyre inflation on tread shape and wear. 
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 A three times higher friction power has been assigned to the central rib (rib 3); 

this value is quantitatively excessive, but has been employed in order to highlight the 

qualitative effect of the overheating. The perfectly symmetric nature of the problem 

brings the symmetric ribs (2 and 4, 1 and 5) to the same thermal equilibrium conditions 

(as showed in figure 4.26). 

 

 
Fig. 4.24 - Results of test2: overheated central rib. 

 

 
Fig. 4.25 - Results of test2: ribs temperature. 

 

 Test3 has been designed with the aim to reproduce phenomena concerning with 

tyre under inflation, that commonly generates high contact pressure distribution (and 

consequently higher tangential stresses) in the lateral zone of the tread (Fig. 4.24). 

 In analogous way to test2, a three times higher friction power has been assigned 

to the lateral ribs (ribs 1 and 5); this value is quantitatively excessive, but has been 
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employed in order to highlight the qualitative effect of the overheating. The perfectly 

symmetric nature of the problem brings the symmetric ribs (2 and 4, 1 and 5) to the 

same thermal equilibrium conditions (as showed in figure 4.28). 

 

 
Fig. 4.26 - Results of test3: overheated lateral ribs. 

 

 
Fig. 4.27 - Results of test3: ribs temperature. 

 

4.11 Final Considerations 
 TRT model discussed in this chapter is an indispensable instrument to optimize 

vehicle performances since tyre surface temperatures as well as bulk ones have great 

influence on the tyre-track interaction. The interaction forces reach their maximum 

values only within a narrow temperature range, while decay significantly outside of it. 

The ability to predict the temperature distribution on the surface, and also inside the 

tyre in the different operating situations makes possible to ensure the optimum 

temperature to maximize the forces exchanged with the track. 
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 Moreover, having the model the possibility to run in real time, it is suitable for 

applications on a driving simulator where it is necessary to reproduce the real operating 

conditions including the tyre temperatures. 

 The physical nature of the model, based on analytic equations containing known 

or measurable physical parameters, in addition to give to the model predictive attitudes, 

also allows an analysis of the influence of different parameters including the 

constructive characteristics and chemical-physical properties of the rubber. This is 

extremely useful in the design phase of the tyres, but also for the thermal/frictional 

analyses that will be discussed in the following chapters. 

  The knowledge of heat flows and hence their balance is another important 

instrument for the identification of optimum operating conditions in order to maximize 

tyre performances. 

 
4.12 Appendix 
As an example, heat balance equation for node 2 along the x direction is reported, 

recalling that, for the performed discretization, the nodes adjacent to 2 are 6 and 58: 

 +�∆M ∙ (!� − !
) ∙ ∆N ∙ ∆��2 − +�∆M ∙ (!
 − ![Z) ∙ ∆N ∙ ∆��2 = �
 ∙ &'� ∙ ∆!
∆"  
(4.25) 

 

 Substituting the expression of the mass (4.2) (reminding that in this case C = 1/2) 

leads to the equation:  

 ∆!
∆" = 1� ∙ &'� ∙ C +�∆M
 ∙ !� − 2 ∙ +�∆M
 ∙ !
 + +�∆M
 ∙ ![ZE 
(4.26) 

 

 Taking into account the exchanges along all directions and all the possible heat 

generations, the equation of node 2 can be written: 

• in the case of contact with the road: 

 

�$��� + +�∆M ∙ (!� − !
) ∙ ∆N ∙ ∆��2 − +�∆M ∙ (!
 − ![Z) ∙ ∆N ∙ ∆��2 + +�∆N ∙ (!� − !
)
∙ ∆M ∙ ���2 − +�∆N ∙ (!
 − !G) ∙ ∆M ∙ ���2 + +�∆�� ∙ (!�
 − !
) ∙ ∆M ∙ �N
+ �7 ∙ -/ ∙ 0/ + -1 ∙ 012 ∙ ∆M ∙ ∆N + JK ∙ (!9 − !
) ∙ ∆M ∙ ∆N
= �
 ∙ &'� ∙ ∆!
∆"  

(4.26A) 

 

• in the case of contact with external air: 
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�$��� + +�∆M ∙ (!� − !
) ∙ ∆N ∙ ∆��2 − +�∆M ∙ (!
 − ![Z) ∙ ∆N ∙ ∆��2 + +�∆N ∙ (!� − !
)
∙ ∆M ∙ ���2 − +�∆N ∙ (!
 − !G) ∙ ∆M ∙ ���2 + +�∆�� ∙ (!�
 − !
) ∙ ∆M ∙ �N
+ ℎPQ9K ∙ (!R�9 − !
) ∙ ∆M ∙ ∆N = �
 ∙ &'� ∙ ∆!
∆"  

(4.26B) 

 

having denoted by �$��� the power dissipated by cyclic deformation. 

 Once developed, the two expressions lead respectively to: 

• in the case of contact with the road: 

 ∆!
∆" = 1� ∙ &'� ∙ T 2 ∙ �$���∆M ∙ ∆N ∙ ∆�� + *− 2 ∙ +�∆M
 − 2 ∙ +�∆N
 − 2 ∙ +�∆��
 − 2 ∙ JK∆�� , ∙ !
 + +�∆N
 ∙ !�
+ +�∆N
 ∙ !G + +�∆M
 ∙ !� + +�∆M
 ∙ ![Z + 2 ∙ +�∆��
 ∙ !�
 + 2 ∙ -.∆�� + 2 ∙ JK∆��
∙ !9\ 

(4.27) 

 

• in the case of contact with external air: 

 ∆!
∆" = 1� ∙ &'� ∙ T 2 ∙ �$���∆M ∙ ∆N ∙ ∆�� + *− 2 ∙ +�∆M
 − 2 ∙ +�∆N
 − 2 ∙ +�∆��
 − 2 ∙ ℎPQ9K∆�� , ∙ !
 + +�∆N

∙ !� + +�∆N
 ∙ !G + +�∆M
 ∙ !� + +�∆M
 ∙ ![Z + 2 ∙ +�∆��
 ∙ !�
 + 2 ∙ ℎPQ9K∆�� ∙ !R�9\ 

(4.28) 

 

 The equations showed for node 2 are valid for all the nodes belonging to the 

surface layer, localized internally in lateral direction. 

 For a node still belonging to the surface layer, but external in lateral direction (C 

= 1/4), for example node 1, the complete equations are: 

• in the case of contact with the road: 

 

�$��� + +�∆M ∙ (![ − !�) ∙ ∆N2 ∙ ∆��2 − +�∆M ∙ (!� − ![�) ∙ ∆N2 ∙ ∆��2 + +�∆N ∙ (!
 − !�)
∙ ∆M ∙ ���2 + +�∆�� ∙ (!�� − !�) ∙ ∆M ∙ ∆N2 + �7 ∙ -/ ∙ 0/ + -1 ∙ 012 ∙ ∆M
∙ ∆N2 + JK ∙ (!9 − !�) ∙ ∆M ∙ ∆N2 = �� ∙ &'� ∙ ∆!�∆"  

(4.28A) 

 

• in the case of contact with external air: 
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�$��� + +�∆M ∙ (![ − !�) ∙ ∆N2 ∙ ∆��2 − +�∆M ∙ (!� − ![�) ∙ ∆N2 ∙ ∆��2 + +�∆N ∙ (!
 − !�)
∙ ∆M ∙ ���2 + +�∆�� ∙ (!�� − !�) ∙ ∆M ∙ ∆N2 + ℎPQ9K ∙ (!R�9 − !�) ∙ ∆M
∙ ∆N2 = �� ∙ &'� ∙ ∆!�∆"  

(4.28B) 

 

leading, respectively, to: 

• for the first case: 

 ∆!�∆" = 1� ∙ &'� ∙ T 4 ∙ �$���∆M ∙ ∆N ∙ ∆�� + *− 2 ∙ +�∆M
 − 2 ∙ +�∆N
 − 2 ∙ +�∆��
 − 2 ∙ JK∆�� , ∙ !� + 2 ∙ +�∆N

∙ !
 + +�∆M
 ∙ ![ + +�∆M
 ∙ ![� + 2 ∙ +�∆��
 ∙ !�� + 2 ∙ -.∆�� + 2 ∙ JK∆�� ∙ !9\ 

(4.29) 

 

• for the second case: 

 ∆!�∆" = 1� ∙ &'� ∙ T 4 ∙ �$���∆M ∙ ∆N ∙ ∆�� + *− 2 ∙ +�∆M
 − 2 ∙ +�∆N
 − 2 ∙ +�∆��
 − 2 ∙ ℎPQ9w∆�� , ∙ !� + 2 ∙ +�∆N

∙ !
 + +�∆M
 ∙ ![ + +�∆M
 ∙ ![� + 2 ∙ +�∆��
 ∙ !�� + 2 ∙ ℎPQ9K∆�� ∙ !R�9\ 

(4.30) 

 

 The equation relating to the bulk layer, for an internal node in the lateral 

direction (C = 1), e.g. node 62, is: 

 

�$��� + +
∆M ∙ (!�� − !�
) ∙ ∆N ∙ V∆��2 + ∆�
2 X − +
∆M ∙ (!�
 − !��Z) ∙ ∆N
∙ V∆��2 + ∆�
2 X + +
∆N ∙ (!�� − !�
) ∙ ∆M ∙ V���2 + ∆�
2 X − +
∆N∙ (!�
 − !�G) ∙ ∆M ∙ V���2 + ∆�
2 X + +
∆�
 ∙ (!�

 − !�
) ∙ ∆M ∙ �N
− +�∆�� ∙ (!�
 − !
) ∙ ∆M ∙ �N = ��
 ∙ &'
 ∙ ∆!�
∆"  

(4.30A) 

 

 Such expression, suitably developed, leads to: 
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∆!�
∆" = 1� ∙ &'
 ∙ � �$���∆M ∙ ∆N ∙ g∆��2 + ∆�
2 j + �− 2 ∙ +
∆M
 − 2 ∙ +
∆N
 − +
∆�
 ∙ g∆��2 + ∆�
2 j
− +�∆�� ∙ g∆��2 + ∆�
2 j� ∙ !�
 + +
∆N
 ∙ !�� + +
∆N
 ∙ !�G + +
∆M
 ∙ !��

+ +
∆M
 ∙ !��Z + +
∆�
 ∙ g∆��2 + ∆�
2 j ∙ !�

 + +�∆�� ∙ g∆��2 + ∆�
2 j ∙ !
� 

(4.31) 

 

 Similarly, relatively to a bulk external node in the transverse direction, (C = 1/2), 

it results: 

 

�$��� + +
∆M ∙ (!�[ − !��) ∙ ∆N2 ∙ V∆��2 + ∆�
2 X − +
∆M ∙ (!�� − !���) ∙ ∆N2∙ V∆��2 + ∆�
2 X + +
∆N ∙ (!�
 − !��) ∙ ∆M ∙ V���2 + ∆�
2 X + +
∆�
∙ (!�
� − !��) ∙ ∆M ∙ ∆N2 − +�∆�� ∙ (!�� − !�) ∙ ∆M ∙ ∆N2
= ��� ∙ &'
 ∙ ∆!��∆"  

(4.31A) 

 

that becomes: 

 ∆!��∆" = 1� ∙ &'
 ∙ � 2 ∙ �$���∆M ∙ ∆N ∙ g∆��2 + ∆�
2 j + �− 2 ∙ +
∆M
 − 2 ∙ +
∆N
 − +
∆�
 ∙ g∆��2 + ∆�
2 j
− +�∆�� ∙ g∆��2 + ∆�
2 j� ∙ !�� + 2 ∙ +
∆N
 ∙ !�
 + +
∆M
 ∙ !�[ + +
∆M
 ∙ !���

+ +
∆�
 ∙ g∆��2 + ∆�
2 j ∙ !�
� + +�∆�� ∙ g∆��2 + ∆�
2 j ∙ !�� 

(4.32) 

 

 As concerns the innermost layer, the inner liner, the equation of exchange for an 

internal node in the transverse direction (C = 1/2), eg 122, is: 
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�$��� + +
∆M ∙ (!�
� − !�

) ∙ ∆N ∙ ∆�
2 − +
∆M ∙ (!�

 − !�[Z) ∙ ∆N ∙ ∆�
2 + +
∆N∙ (!�
� − !�

) ∙ ∆M ∙ ��
2 − +
∆N ∙ (!�

 − !�
G) ∙ ∆M ∙ ��
2 + +
∆�
∙ (!�
 − !�

) ∙ ∆M ∙ �N + ℎ�a8 ∙ ~!R�9_�a8 − !�

� ∙ ∆M ∙ ∆N
= ��

 ∙ &'
 ∙ ∆!�

∆"  

(4.32A) 

 

that simplified returns: 

 ∆!�

∆" = 1� ∙ &'
 ∙ T 2 ∙ �$���∆M ∙ ∆N ∙ ∆�
 + *− 2 ∙ +
∆M
 − 2 ∙ +
∆N
 − 2 ∙ +
∆�

 − 2 ∙ ℎ�a8∆�
 , ∙ !�


+ +
∆N
 ∙ !�
� + +
∆N
 ∙ !�
G + +
∆M
 ∙ !�
� + +
∆M
 ∙ !�[Z + 2 ∙ +
∆�

 ∙ !�

+ 2 ∙ ℎ�a8∆�
 ∙ !R�9_�a8\ 

(4.33) 

 

 Finally, for an external node in the transverse direction belonging to the Inner 

liner (C = 1/4), it is: 

 

�$��� + +
∆M ∙ (!�
[ − !�
�) ∙ ∆N2 ∙ ∆�
2 − +
∆M ∙ (!�
� − !�[�) ∙ ∆N2 ∙ ∆�
2 + +
∆N∙ (!�

 − !�
�) ∙ ∆M ∙ ��
2 + +
∆�
 ∙ (!�� − !�
�) ∙ ∆M ∙ ∆N2 + ℎ�a8
∙ ~!R�9_�a8 − !�
�� ∙ ∆M ∙ ∆N2 = ��
� ∙ &'
 ∙ ∆!�
�∆"  

(4.33A) 

 

which, simplified, provides: 

 ∆!�
�∆" = 1� ∙ &'
 ∙ T 4 ∙ �$���∆M ∙ ∆N ∙ ∆�
 + *− 2 ∙ +
∆M
 − 2 ∙ +
∆N
 − 2 ∙ +
∆�

 − 2 ∙ ℎ�a8∆�
 , ∙ !�
�
+ 2 ∙ +
∆N
 ∙ !�

 + +
∆M
 ∙ !�
[ + +
∆M
 ∙ !�[� + 2 ∙ +
∆�

 ∙ !�� + 2 ∙ ℎ�a8∆�

∙ !R�9_�a8\ 

(4.34) 
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5. GrETA - Grip Estimation for Tyre Analyses 
 
 

5.1 Introduction 
Rubber frictional behaviour in tyre/road interaction is one of the main topics in a 

wide range of research fields. Knowledge about phenomena concerning with adherence 

is a key factor in the development of braking/traction and stability control systems 

adopted in automotive industry [52], such as in the study of innovative tyre structures 

and compounds, able to minimize braking distances, to preserve vehicle stability in 

panic situations and to guarantee optimal roadholding on wet/icy surfaces [53]. 

Moreover, the continuous drivers’ seeking of the optimal grip for each different 

driving condition, makes the development of a physical grip model an essential 

instrument for a top-ranking racing team, in particular thanks to the definitely lower 

resources needed by simulations than by experimental tests carried out in order to 

acquire information about tyres behaviour. Rubber/asphalt friction, in fact, is influenced 

by a great number of variables and parameters, often hard to be controlled and 

measured [54]; macro and micro roughness of the bodies in contact, pressure arising at 

their interface, materials stiffness characteristics and their frequency and temperature 

dependence, relative motion direction and speed are only a small number of the factors 

that take part in a phenomenon involving contact mechanics, thermodynamics, 

polymers chemistry and, from a wider point of view, vehicle dynamics. 

Since the ancient times, friction force has been investigated, often with the aim to 

reduce and avoid it, because of its tendency to contrast the motion and of the 

consequential phenomena considered as undesirable like heat production, power 

dissipation and wear. 

In the automotive and in particular in the race field, the possibility to maximize the 

grip, driving in the same environmental conditions of the competitors, can represent a 

key factor to configure an optimal setup of the vehicle, designed in order to obtain the 

best performances under the expected loads and wheel angles, to choose the most 

suitable compound for each road and weather condition and to plan a proper driving 

strategy, able to make the tyre work under the desired conditions, predicted by means of 

a physical model.  

The first attempt to formalize the relationship between the friction force and the 

main variables on which it is depending, after the studies about wheel invention carried 

out by Temistio (390 – 320 b.C.), dates back at the times of Leonardo da Vinci, who 

proposed in his unpublished handbooks a linear relationship between the contact force 

and the vertical load; after the experimental activity of G. Amontons [55], C. A. Coulomb 

theorized that for metals friction force was independent from contact area and directly 

proportional to the applied normal load by means of a coefficient [56], expressing for 

the first time the well known law: 

 

     

  

Friction forcebetweentwo metal surfaces

Applied normal load
µ =  

(5.1) 

 

Dependence on sliding velocity was not taken into account, but a first distinction 

between static and dynamic friction coefficient was proposed and analyzed. Bowden and 

Tabor [57][58] and Rabinowicz [59] introduced the theme of adhesion in polymers 
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contact, investigating the frictional behaviour of rubber and highlighting its strong 

dependence from loads, temperature and relative speed. 

A generalized friction model was proposed by H. W. Kummer [60] during his 

activity in the field of tyre/road interaction; his model (Fig. 5.1) considered for the first 

time the resistant force as composed by three components: adhesion, deforming 

hysteresis and wear. 

 

 
Fig. 5.1 - Kummer's model for rubber friction mechanisms. 

 

In dry conditions, tyres friction forces take the following form: 

 

   T ADH Hb CF F F F= + +  

 

(5.2) 

where: FT is the total frictional resistance developed between a sliding tyre and road, 

FADH is the frictional contribution due to Van der Waals’ adhesion bonds between the 

two surfaces, FHb is the frictional contribution from bulk deformation hysteresis in the 

rubber, and FC is the cohesion contribution linked with rubber wear. 

Kummer postulated that FADH and FHb are not independent because adhesion is 

able to increase the extension of the contact area and consequently the zone in which 

the hysteretic deformations occur. The third contribution to the resistant forces is 

achieved because of the removal of rubber material by road asperities, but the 

contribution to friction due to this phenomenon is estimated around 2% on rough 

surfaces [33]. 

Thanks to Kummer and Savkoor's work [61], Moore [62] hypothesized that the 

different components were predominant on different scales: the macro-roughness 

affects the deformations related to hysteresis and the micro-roughness affects the 

intermolecular bonds characterizing adhesion. For this reason, the two aspects may 

conceptually be split and treated applying a sort of superposition principle (Fig. 5.2). 
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Fig. 5.1 - Influence of the roughness scales 

 on the different friction mechanisms. 

 

In more recent years, the cited theories concerning with friction modelling have 

been confirmed by further developments in the fields of tyre / road hysteretic and 

adhesive interaction analysis [63][64][65], of contact mechanics between rubber and 

rough surfaces [66][67] and of local heat transfer in frictional phenomena [68][69]. 

Typical methods to find out tyre grip are based on observers and identification 

procedures [70][71][72]. 

In this chapter, a tyre/road friction physical model, named Gr.E.T.A. (Grip 

Estimation for Tyre Analyses) Model, will be presented. The model, developed in 

collaboration with a motorsport racing team and a tyre manufacturing company, bases 

on the previous considerations, providing an effective calculation of the power 

dissipated by road asperities indented in tyre tread and taking into account the 

phenomena involved with adhesive friction, expressed by means of an original 

formulation (synthesizing some adherence models available in literature) whose 

parameters are identified thanks to dedicated experimental tests. 

 
5.2 Model Definition And Basic Hypotheses 

In order to model the complex interactions between tyre and asphalt at a 

microscopic level, it has been necessary to focus initially on the behaviour of an 

elementary volume of rubber in sliding contact with a limited portion of road. 

 

 Range Size 
Wavelength Ra 

Mega- 50 – 500 mm 0.1 – 50 mm 

Macro- 0.5 – 50 mm 0.1 – 20 mm 

Micro- 0 – 0.5 mm 1 – 500 µm 
Tab. 5.1 – Road texture scales dimensions [73]. 

 

Modelling asphalt, as commonly found in literature [74], as the sum of sinusoidal 

waves distributed in the space characterizing the different roughness scales (Tab. 5.1), 

tread elementary volume has been defined as a square-based parallelepiped. Its height is 

equal to tyre tread thickness and the base side to road macro-roughness wavelength 

λMACRO (Fig. 5.3).  

 



 

Fig. 5.2 - Elementary tread volume and coordinates system.

 

Wavelength parameters are connected with amplitude parameters [

common to characterize surfaces topograp

vertical characteristics of the surface will be described by macro and micro scale 

parameters. 

The arithmetic average height parameter (R

average, is the most used roughness paramete

as the average absolute deviation of the roughness irregularities from the mean line 

over one sampling length. This parameter is easy to define, easy to measure and gives a 

good general description of height var

numerical implementation of the arithmetic average height parameter are, respectively:

 

Wavelengths λ and roughness indices R

estimated analysing data acquired experimentally by laser scan on different dry tracks 

and to reproduce the best-fitting sinusoidal waves corresponding to macro and micro 

profiles (Fig. 5.4).  

 

Fig. 5.3 - Road acquired profile and analysis of a 2D section of it.
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Elementary tread volume and coordinates system. 

Wavelength parameters are connected with amplitude parameters [

common to characterize surfaces topography; as a consequence, also the amplitude 

vertical characteristics of the surface will be described by macro and micro scale 

The arithmetic average height parameter (Ra), also known as the centre line 

average, is the most used roughness parameter for general quality control. It is defined 

as the average absolute deviation of the roughness irregularities from the mean line 

over one sampling length. This parameter is easy to define, easy to measure and gives a 

good general description of height variations. The mathematical definition and the 

numerical implementation of the arithmetic average height parameter are, respectively:

( )
0

1
L

aR y x dx
L

= ∫  

1

1 n

a i

i

R y
n =

= ∑  

Wavelengths λ and roughness indices Ra characterizing soil profile have been 

estimated analysing data acquired experimentally by laser scan on different dry tracks 

fitting sinusoidal waves corresponding to macro and micro 

Road acquired profile and analysis of a 2D section of it.
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Wavelength parameters are connected with amplitude parameters [75], the most 

hy; as a consequence, also the amplitude 

vertical characteristics of the surface will be described by macro and micro scale 

), also known as the centre line 

r for general quality control. It is defined 

as the average absolute deviation of the roughness irregularities from the mean line 

over one sampling length. This parameter is easy to define, easy to measure and gives a 

iations. The mathematical definition and the 

numerical implementation of the arithmetic average height parameter are, respectively: 

(5.3) 

(5.4) 

characterizing soil profile have been 

estimated analysing data acquired experimentally by laser scan on different dry tracks 

fitting sinusoidal waves corresponding to macro and micro 

 
Road acquired profile and analysis of a 2D section of it. 
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The chosen Cartesian reference system, as shown in figure 5.3, has its origin in the 

centre of the upper parallelepiped face; x-axis is in the tread surface plane, oriented in 

the sliding direction of the indenter, z-axis is oriented in the direction of tread width, 

and y-axis is oriented in order to obtain a right handed coordinates system. 

Tread rubber and road are considered as isotropic and homogeneous materials; 

moreover, road is modelled as perfectly rigid.  

 

5.3 Material Characterization  
Rubber employed in tyre treads is a hyperelastic, soft and virtually incompressible 

material (Poisson's ratio νp = 0.5), but it can usually be stretched more than 500%. Its 

molecular structure consists of long, linear flexible molecules interlinked into a 3D 

network. Chemical crosslinks are usually made by sulphur linkages coming out after a 

technological process, known as vulcanization [13]. The rubbery state of a polymer is 

determined by the so-called glassy transition temperature Tg. When the working 

temperature is above Tg, the polymer shows a rubbery behaviour. Otherwise, it is a 

glassy one [76]. 

The analysis of the response to deformation for a visco-elastic solid can be conveniently 

conducted referring to sinusoidal loads.  

When an elastomeric material is subjected to an harmonic deformation 

 

( )0

1 1 sin tε ε ω=  

 

(5.5) 

where ε1
0 is the amplitude of the applied deformation and ω is the angular frequency, 

the induced stress σ1 is harmonic too 

 

( )0

1 1 sin tσ σ ω= + ∆  

 

(5.6) 

with the same frequency but out of phase respect to deformation. The stress σ1 can be 

expressed as the sum of two contributions, one in phase with the imposed deformation 

and a second in quadrature phase 

 

( ) ( )( )0

1 1 E sin t E cos tσ ε ω ω′′+′=  

 

(5.7) 

where E', said storage modulus, is the elastic modulus part relative to the in phase 

response of the material and E'', called loss modulus, represents the elastic modulus of 

the part in quadrature phase. A very common index used to describe the dissipative 

attitudes of a compound is the loss angle tangent, defined as 

  

( )tan δ   E'' / E'=  

 

(5.8) 

The stiffness parameter adopted for visco-elastic materials in place of Young’s modulus 

is the complex dynamic modulus 

 
2 2' ''E E E= +  

 

(5.9) 
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 E' and E'' values and tan(δ) are strongly dependent on the temperature and on the 

frequency at which the rubber is stressed, as schematically represented in figure 5.5. 

 

 
Fig. 5.4 - E' and tan(δ) relationship with  

frequency and temperature variations. 

 

As regards the influence of temperature, the typical behaviour of polymers is 

characterized by a dynamic modulus decrement with increasing temperature, while the 

phase angle increases until it reaches a maximum before decreasing again. 

Experimental tests have been initially carried out on common passenger tyre 

rubbers with the aim to acquire data useful to properly model the behaviour of SBR 

copolymers constituting tread: rubber specimens, properly cut and prepared, have been 

dynamically tested following DMA procedures [77][78][79] in a three point bending 

proof, in order to acquire storage modulus and tan(δ) data. Tests have been carried out 

at fixed frequency and displacement (1 Hz, 1%), making temperature increase at 1 °C 

per minute from -50 °C up to 100 °C. 

The results of the E’ characterization are shown in figure 5.6; as expected for the 

weakly crosslinked polymers employed in the tyres manufacturing, it has been possible 

to identify three areas: glassy region (low temperature, high storage modulus), 

transition region and rubbery region (high temperatures, low storage modulus). Figure 

5.7 highlights, despite some irregularities, the expected tan(δ) trend, with an absolute 

maximum localized in the thermal transition zone. 
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Fig. 5.6a - Passenger tyre E’ thermal characterization data - Frequency = 1 Hz 

Fig. 5.6b - Detail of the [0 – 100] °C zone. 

 

 
Fig. 5.7 - Passenger tyre tan(δ) thermal characterization data - Frequency = 1 Hz. 

 

For common passenger tyres, glass transition temperature is often below 0 °C, so 

that usual working conditions are localized in the rubbery zone in order to provide 

optimal frictional performances. Sport and high-performance tyres, characterized by the 

employment of different rubber compounds and fillers, exhibit lower values of the 

dynamic modulus, that make the tread manifesting softer and highly wearable, a more 

hysteretic attitude and a definitely higher Tg and consequentially a higher thermal 

optimal working range. 

When both the frequency and the temperature vary, it is possible to make use of 

the property whereby an appropriate shift operation is capable of combining the effect 

of them: the main element on which the temperature - frequency equivalence principle 

is based is that the values of the complex modulus components at any reference 

frequency and temperature (f1, T1) are identical to the ones observable at any other 

frequency f2 at a properly shifted value of temperature α(T1): 

 

( ) ( )1 1 2 1, ,E f T E f Tα =    

 

(5.10) 

 The most widely relationship used to describe the equivalence principle is the 

Williams-Landel-Ferry (WLF) transform [80]. For passenger tyre rubber it can be 

employed in a simplified way in order to determine the unknown equivalent 

temperature T* = α(T1): 
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in which a common ΔT value, identifiable by means of DMA tests at different 

frequencies, is about 8 °C. 

The physical meaning of the law is that rubber stressed at high frequency behaves 

like if the stress is applied at lower frequency but at the same time, at a colder working 

temperature. High frequency acts reducing the time between two consecutive stresses, 

not allowing the complete relax of the rubber, in the same way as a low working 

temperature would do. 

A further behaviour of visco-elastic materials that has to be taken into account in 

contact mechanics with rigid indenters is the increasing trend that compression force 

shows respect to displacement in the first phase of indentation. Stressing a cylindrical 

specimen in a mono-axial compression test has allowed to investigate this effect, 

attributed to rubber dynamic modulus increasing and to contact area shape 

modifications, both responsible of the decrease of friction with contact pressure. 

 In figure 5.8, the global dynamic modulus E, adimensionalized respect to its value 

at a compression rate of 0.01, is plotted as a function of the compression rate itself, 

expressed as 

 
*

0

0

t t

t
ε

−
=  

 

(5.12) 

in which t0 and t* are, respectively, the initial thickness and the actual thickness of the 

specimen during the test.  

 

 
Fig. 5.8 - Passenger tyre tread hardening phenomenon  

observed by means of mono-axial compression test. 

 

The experimental results highline that also for indentation levels largely smaller 

than the ones able to induce the typical hardening phenomenon [81] due to the 

compacting of the polymeric chains, the penetration of an asphalt asperity in a rubber 

layer has an influence in this last's characteristics, modifying the interaction between 

the two bodies; hypothesizing the penetration of an asperity 1 mm high in a 10 mm tyre 

tread, it is possible to observe a dynamic modulus value about 8.5 times higher than in 

unloaded conditions. 
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5.4 Adhesion  
5.4.1 Pin on Disk Tests 
5.4.1.1 Introduction 

An experimental campaign has been planned and carried out with the aim to 

clarify the dependence of friction, and in particular of its adhesive component, on the 

main physical factors involved in the phenomenon. 

In fact, especially in the automotive field, the estimation of the adherence 

between tyre and road is often performed by means of empirical calculations in which it 

is roughly distinguished among dry, wet or ice covered roads. More sophisticated 

theoretical models which take into account simultaneously road and rubber 

characteristics and operating conditions (load, temperature, sliding speed, ...) are hardly 

employable because of their complexity related, mainly, to the difficulty to measure with 

sufficient precision, the values of the microscopic and molecular variables involved in 

the model. 

Therefore, it has been chosen to start from the development of a broad campaign 

of experimental tests aimed to characterize the local behaviour of a single piece of 

rubber. In such proofs different compounds, different countersurface profiles 

(characterized by various micro-roughness values) and different operating conditions 

have been adopted. In a second phase a critical analysis of the results has been carried 

out, with the aim to highlight trends and to identify the physical parameters that most 

influence the value of the local friction coefficient of the single rubber piece. 

The goal of the experimental activity is the creation of a wide dataset, able to 

make the parameters identification of an analytical adhesive friction model possible. In 

what follows the test apparatus will be described, showing the main causes of 

uncertainty in the results provided by it and the experimentation results will be 

discussed, highlighting their dependence on the main characteristics of the rubber and 

of the road as well as on the operating conditions. 

 

5.4.1.2 Pin on Disk Experimental Test Bench 
Thanks to a tribological testing machine, friction relations with some typical 

parameters such as vertical load, sliding velocity and temperature have been 

investigated both in dry and in wet conditions. 

The rotating disk of the tribometer has been covered with three different 

surfaces: glass, marble and 3M anti-slip tape; rubber specimens have been extracted 

from three slick slabs of different compounds, used for passenger automotive pneumatic 

tyres. 

 



 

 

Experiments were performed using a pin on di

tester is widely employed to measure friction and sliding wear properties of dry or 

lubricated surfaces of a variety of bulk materials and coatings. The elements of the 

machine are: 

- an electric motor, driven by an inve

- a metal rotating disk, moved by the motor through a belt;

- a set of disks of different materials that can be fixed to the rotating disk;

- an arm on which a rubber specimen is housed; 

- a load cell, interposed between the specimen and the arm, 

force measurement; 

- an incremental encoder, installed on the disk axis in order to measure its angular 

position and velocity; 

- an optical pyrometer pointed on the disk surface in proximity of the contact exit edge, 

that provides an estimation of the temperature at the interface;

- a thermocouple located in the neighbourhood of the specimen, used to measure 

ambient temperature. 

 The arm is vertically approached to the rotating disk surface and through the 

application of calibrated weights, the normal force between specimen and disk can be 

varied. The rubber pins are cylinders of 14 mm diameter. The path they describe on the 

rotating disk is a 140 mm radius circumference.

 In the experimental campaign, mainly aimed to investigate t

micro hysteretic contributions to friction, the used disk materials are: glass (R

µm), marble (Ra = 0.1 µm) and 3M tape (R

between rubber and different surfaces. Tests were performe

conditions. 

 As previously introduced, adhesion contribution to friction is directly connected 

with the actual extension of the contact surface. So, in order to highlight the adhesive 

friction contribution glass surface has been adopt

order to evaluate the micro
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Figure 5.9 - The Pin on Disk tribometer. 
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with the actual extension of the contact surface. So, in order to highlight the adhesive 

friction contribution glass surface has been adopted, while 3M tape has been chosen in 
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slightly wavy surface [82], offers the possibility to investigate the cross effect of both 

contributions. 

 

5.4.1.2 Results Analysis And Discussion
 The results provided by the performed tests are affected by some degree of 

scattering, so a great attention should be posed in their interpretation. Scattering is 

mainly due to: 

- local temperature: although temperature in the specimen neigh

continuously monitored during the test, actual temperature in the contact zone can’t be 

measured. 

- wear: life of a specimen exhibits three characteristic stages. A new specimen presents a 

very smooth and hard surface providing low friction val

second stage the specimen surface is soft and “sticky”, friction is higher, so this phase 

can be considered as the “useful life” of the specimen. In a third stage, the specimen 

surface either becomes hard again, or tends t

very low values and the specimen must be replaced.

- extension of the contact patch

specimen surface, altering contact patch extension. To monitor this 

several cases during the tests, the specimens have been marked with ink, so to be able to 

print their contact patch on graph paper. Under different known loads the specimens 

show, as expected, an increasing contact area with increasing load,

to saturation. In particular, under a 5

equal to 70 mm2 (pressure = 0.71

area, equal to 154 mm2. Under a 10

(pressure = 1 bar), that is the 65% of the available nominal area and, concerning with 

the 50 N load, real area is equal to 140

nominal one. During dynamical tests, even under the 

area, local pressure and friction can vary dramatically (Fig. 5.10): in general the greater 

the pressure the lower the friction [

 

Fig. 5.10 - Specimen contact conditions during a test on marble.
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second stage the specimen surface is soft and “sticky”, friction is higher, so this phase 
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surface either becomes hard again, or tends to break up; in both cases friction falls to 

very low values and the specimen must be replaced. 
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specimen surface, altering contact patch extension. To monitor this 

several cases during the tests, the specimens have been marked with ink, so to be able to 
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to saturation. In particular, under a 5 N load the contact area has been estimated to be 

(pressure = 0.71 bar), employing the 45.5% of the available nominal 
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N load, real area is equal to 140 mm2 (pressure = 3.5 bar), that is the 91% of the 
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the pressure the lower the friction [33]. 
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- track conditions: clean or rubbery; in dependence of the track state friction may vary 

because of Ra variations; in particular, glass surface increases its micro-roughness from 

a starting value minor than 0.03 µm to a value of about 0.6 µm; as concerns marble, its 

micro-roughness moves from an initial 0.1 µm up to about 1 µm; paper roughness 

changes with an opposite tendency, showing a passivation phenomenon due to the 

filling of the valleys produced by rubber debris. Moreover, it has to be considered that 

rubber over rubber contact is different from the rubber over clean partner surface also 

for what concerns the intermolecular bonds formation. 

- asset of the disk: due to unavoidable set up errors, the plane in which the contact takes 

place is not perfectly horizontal so causing little, one per revolution, vertical oscillations 

of the arm. The resulting inertia force makes the vertical load on the specimen not 

constant, causing oscillations also in the tangential force time history (Fig. 5.11). After 

compensation, the typical amplitude of such vertical oscillation is lower than 0.05 mm 

(which leads to a vertical force oscillation amplitude lower than 5 N). 

- water film thickness: during wet tests water film thickness can vary because of the 

difficulty to assure a constant fluid feed and for centrifugation effect occurring at high 

rotation speeds. 

 For the above reasons, the following comparisons refer to test conditions in 

which the causes of scattering are reasonably constant. Comparisons cannot be made 

among results relative to different test conditions.  

 Experiments have been conducted at constant speed, following a methodology 

named "step testing". The disk speed was regulated in order to realize in the contact 

zone the desired sliding velocity in the range 0.1 - 2 m/s. Once the disk steady state 

speed was reached, the loaded arm was slowly approached to the disk and the tangential 

force time history was recorded (Fig. 5.11). The kinetic friction coefficient was evaluated 

as the mean value of the ratio between tangential and vertical force in the time history 

steady state region. For each load and speed condition, tests were repeated several 

times in order to verify their repeatability. It is possible to notice that oscillations in 

acquired data (Fig. 5.11) can be linked with disk angular speed; step test, being 

performed at constant speed, shows results affected by constant frequency fluctuations. 

Such effects, noticeable also in the following discussed results, are correlated to the disk 

not perfectly flat surface and to the scattering causes previously listed. 

 

 
Fig. 5.11 - Step test on dry glass (vertical load Fz = 50 N, relative speed Vs = 1.0 m/s). 

  

 During both the tests, especially in dry conditions, a temperature raising of about 

4°C has been often observed in correspondence of the exit edge of the contact zone. Of 
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course in the contact zone the actual temperature will be increased of more than the 

value observed in the exit edge. 

 Since the measured temperature is only an index of the contact temperature and 

not the actual one, in all the tests performed the temperature has been monitored in 

order to verify its substantial constant value during the proof of the same kind. 

 The tests have been carried out employing three different rubber compounds, C1, 

C2 and C3, provided by a pneumatic tyres manufacturing company, interfaced with the 

three cited different materials: glass, marble and 3M tape. Preliminarily all compounds 

have been characterized by means of the cited Dynamic Mechanical Analysis (DMA) and 

Differential Scanning Calorimetry tests, carried out at 1 Hz frequency (Fig. 5.12a and 

5.12b). Glass and marble have been scanned by means of a profilometer, while 3M 

surface has been analysed by means of a laser scan. 

 

.  
Fig. 5.12a - Storage modulus for compounds C1, C2 and C3. 

Fig. 5.12b - tan (δ) for compounds C1, C2 and C3. 

 

 
Fig. 5.13 - Friction coefficient vs load for the three compounds on dry glass (Vs = 1 m/s). 
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 In figure 5.13 it is reported the friction coefficient on dry glass as a function of the 

applied vertical load for the three different compounds (C1, C2 and C3). 

 From the above diagrams it is possible to notice how friction coefficient in dry 

conditions always decreases as load increases. This tendency could been explained 

taking into account that the contact pressure increases with load because the real 

contact area saturates and, as already stated, friction depends on contact pressure in an 

inverse way. 

 

 
Fig. 5.14 - Friction coefficient vs load for compound C1  

in dry and wet conditions (Vs = 1 m/s). 

 

 
Fig. 5.15: Friction coefficient vs sliding velocity (step tests)  

for C1 compound on the three surfaces in dry and wet conditions (Fz = 20 N). 
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 The friction coefficient between compound C1 and the three different surfaces 

(glass, marble and 3M tape) both in dry and in wet conditions is shown in figure 5.14 as 

a function of the applied load and in figure 5.15 as a function of the sliding velocity only 

for compound C1. As concerns wet contact, figure 5.14 and 5.15 allow to highlight the 

dissimilar covering of the micro-asperities operated by water on the different surfaces. 

While in dry conditions glass maximizes available contact area, in wet conditions it 

results easily covered by the water film, carrying consequently adhesion coefficient to a 

deep decrease. In wet conditions, when the load grows, the marble is almost constantly  

able to break the water film, thanks to its wavy profile. This explains the higher values of 

marble wet friction coefficient shown in figure 5.14 and 5.15 respect to glass ones. 

Increasing sliding velocity the specimens seem to float over water film and marble 

asperities lose their film-braking characteristics. The 3M tape, thanks to its high values 

of roughness, provides a clearer evidence of the cited film-braking phenomenon; as a 

consequence friction coefficients on this surface approach values near to the dry ones. 

 Moreover it is possible to see how friction coefficient in wet conditions always 

decreases as relative speed increases. Also this tendency was expected, in fact, as speed 

increases a boundary lubrication mechanism takes place.  

 In dry conditions the expected trend should be characterized by a peak at low 

speeds, followed by a marked decreasing tendency, but this is not always noticeable; it 

could be explained considering that, during a dry test, local contact temperature is non 

constant causing more scattered results than in wet conditions (almost isothermal 

because of the cooling effect assured by the water). 

 It is moreover possible to see how marble and glass, in wet conditions and at very 

low speed, show high values of the friction coefficient. At low speeds, in fact, no 

boundary lubrication mechanism takes place and the applied load is able to squeeze out 

the water interposed between rubber and micro rough surfaces allowing an almost dry 

contact of specimen on the countersurfaces. In dry conditions compound C1 exhibits a 

friction coefficient higher on marble than on glass; it is probably due to the fact that the 

loss of adhesion that marble wavy profile induces respect to the smoother glass surface 

is minor than the gain in micro-hysteresis generated by the cited wavy profile. 

 Figure 5.16 allows to examine the effects of rubber visco-elastic properties on 

friction. In particular, figure 5.16 shows a comparison between the compounds C1 and 

C3 in terms of step tests results concerning friction variation as a function of sliding 

speed on glass both in dry and in wet conditions.  

 In this figure it is possible to notice that dry friction coefficient for the pair C3-

glass is always higher than the one for the pair C1-glass. The same happens for the low 

speed wet  friction coefficient. At higher speed, in wet conditions, C1 and C3 compounds 

exhibit friction coefficients practically coincident.  

 This behaviour of the compounds in dry conditions could be explained 

considering that glass is a smooth surface on which the adhesion contribution is 

predominant, so in this case, as said, rubber storage modulus plays a key role. Figure 

5.17 shows storage modulus curves of both compounds in the temperature range [-20, 

20] °C. Applying WLF on glass surface, for which asperities wavelength is large enough 

to  be considered into the metre order of magnitude, allows to consider the WLF output 

equivalent temperature close to ambient one. At common tyres working temperatures, 

compound C1 shows higher E' value, that identifies this compound as harder than C3 

one. It explains the lower attitude of compound C1 to maximize contact area and, finally, 

the global lower value of friction coefficient. At low speed, it is possible to highlight how 
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compound C3 shows a wet friction coefficient on glass higher than the one of compound 

C1 in dry conditions. 

 

 
Figure 5.16 - Friction coefficient vs sliding velocity (step tests) for the three compounds  

on glass in dry and wet conditions (Fz = 20 N). 

 

 
Figure 5.17 - Storage Modulus E’ for compounds C1 and C3. 
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Figure  5.18 - Friction coefficient vs sliding velocity (step tests)  

for C1 and C3 compounds on 3M tape in dry and wet conditions (Fz = 20 N). 

 

 
Figure 5.19 - Tan(δ) curves for compounds C1 and C3. 
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Figure 5.20 

for C1 and C3 compounds on marble in dry and wet conditions (F

 Figure 5.18 shows step tests results in terms of friction variation as a function of 

sliding speed on 3M tape both in dry and

compounds C1 and C3. 

 It is possible to notice an intersection between the two curves: in dry conditions, 

at sliding speeds lower than the one corresponding to the intersection, compound C1 

shows a friction coefficient higher than C3; after the intersection, the compounds invert 

their reciprocal friction attitude. This behaviour is in good agreement with the tan(δ) 

curves trends showed in figure 5.19; calculating from equation (5.11) WLF output 

temperature variation over 3M surface for a sliding speed of 1m/s:

 

8 *  log ( / )) 8 * ( log (1 / 0.00005)) 34.410(T Vs C∆ = = ≈ °

  

 Roughly speaking, starting from an average working temperature estimated in 

about 35 °C (i.e. measured ambient temperature = 25 °C + estimated temperature 

increase in the contact zone and in dry condition = 10 °C), the final output temperature 

will be close to 0 °C, and then in the neighbourhood of the thermal range in which the 

trends show the crossing. 

 As regards marble behaviour (Fig. 5.20), characterized by a slightly 

surface, the contemporary superposition of adhesion and hysteresis mixes viscoelastic 

effects, increasing the difference between the compounds at high Vs, at which compound 

C1 results low-performing both from E' and from tan(δ) point of view. Low mar

micro-roughness, finally, is not as able as 3M paper to break water film, but produces 

wet friction results better than the ones generated by almost totally flat glass surface.
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Friction coefficient vs sliding velocity (step tests)  

 = 20 N). 

Figure 5.18 shows step tests results in terms of friction variation as a function of 

in wet conditions, comparing the two 

It is possible to notice an intersection between the two curves: in dry conditions, 

at sliding speeds lower than the one corresponding to the intersection, compound C1 

higher than C3; after the intersection, the compounds invert 

their reciprocal friction attitude. This behaviour is in good agreement with the tan(δ) 

curves trends showed in figure 5.19; calculating from equation (5.11) WLF output 

 (5.13) 

Roughly speaking, starting from an average working temperature estimated in 

about 35 °C (i.e. measured ambient temperature = 25 °C + estimated temperature 

contact zone and in dry condition = 10 °C), the final output temperature 

will be close to 0 °C, and then in the neighbourhood of the thermal range in which the 

As regards marble behaviour (Fig. 5.20), characterized by a slightly rough 

surface, the contemporary superposition of adhesion and hysteresis mixes viscoelastic 

effects, increasing the difference between the compounds at high Vs, at which compound 

performing both from E' and from tan(δ) point of view. Low marble 

roughness, finally, is not as able as 3M paper to break water film, but produces 

wet friction results better than the ones generated by almost totally flat glass surface. 



Farroni F. - Development of a Grip and Thermodynamics Sensitive Tyre/Road Interaction Forces Characterization 

Procedure Employed in High-Performance Vehicles Simulation 

PhD Thesis - 2014 - Mechanical System Engineering - Università degli Studi di Napoli Federico II 

 

 

130 

 

5.4.2 Adhesion Model 
Adhesive friction, regarded as being the primary contributor when a rubber block 

slides over a smooth unlubricated surface, is usually pictured as being due to molecular 

bonds between the rubber chains and the molecules of the track.  

For this reason a satisfying modelling of such friction mechanism cannot exclude 

the knowledge of the complex phenomena concerning chemistry of polymers and 

molecular physics. With the aim to reproduce the functionalities between adhesive 

friction and the main variables influencing it (i.e. sliding velocity Vs, contact pressure p 

and temperature T), a model which takes into account both the approach of Le Gal and 

Klüppel [83] and the one of Momozono and Nakamura [84] has been adopted:  
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in which, from Le Gal’s model, 
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(5.15) 

 

 

and, from Momozono’s model, the ratio of the real actual contact area Ac to the apparent 

contact area A0 is approximated by 
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A A E Em mπ π
= =  

(5.16) 

 

Thanks to the experimental campaign illustrated in the previous paragraphs, 

performed using a pin on disk machine and discussed also in [36][37], it has been 

possible to identify the parameters of Le Gal’s model most difficult to define, i.e. the 

interfacial shear strength τs,0, the critical velocity vc and the viscoelastic dissipation 

parameter n. 

The adhesion variations with sliding velocity are explicit in the model, while the 

thermal effect is modelled by means of the variation induced by temperature in rubber 

dynamic modulus E. Glassy region modulus E∞ and rubbery region modulus E0 have 

been identified by means of the visco-elastic characterization tests;  m2 is the second 

profile moment of the probability distribution function of the track (equivalent to the 

rms slope), has been computed elaborating road data in accordance with the ASME 

B46.1. 

It is relevant to highlight that frequency effect acting on rubber for sliding 

phenomenon in the field of adhesive friction estimation is taken into account 

considering the only micro roughness profile, as a consequence of the superposition 

principle previously described. Adhesion expression is actually able to model frictional 

interactions arising at micro-roughness level; identified parameters values take into 



5. GrETA - Grip Estimation for Tyre Analyses 

131 

 

account of micro-hysteretic effects and indentation phenomena highlighted in the above 

cited experimental tests. 

 

5.5 Hysteresis Model 
The modelling of the hysteresis starts from the expression of the power dissipated 

by a rubber block that slides with speed Vs under a vertical load FZ over a generic macro-

rough surface. Because of the complexity of the real track surface, each elementary 

volume of the deformed compound block is subjected to a local stress/strain field 

(variable with the time) resulting in a dissipated power, due to the visco-elastic 

behaviour of the polymers. 

In general, considering the volume VTOT of the elementary tread element, it is 

possible to express the dissipated power Wdiss at time t as: 
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in which w (x, y, z, t) represents the dissipated power in each point of the deformed 

elementary volume at time t. 

Hypothesizing the Vs constant in the sliding over a single asperity, each 

stress/strain cycle can be considered as performed in a period equal to 
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 The average value of dissipated power must be thus evaluated over such this time 

period: 

 

( ) ( )
0

0 0

1
, , , , ,  

T

w x y z w x y z t dt
T

= ∫  

 

(5.19) 

In the same time period, considering Vs and FN as constant, the global power 

dissipated in the elementary volume,  can be expressed as: 

 

0diss T s N s sW F V F V pA Vµ µ= = =  

 

(5.20) 

in which p represents the average contact pressure in the nominal elementary area A0, 

equal to (λMACRO)2. In this way, the balance between global and local dissipated powers 

is: 
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(5.21) 

 For [85], it can be written: 
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allowing to formulate the final hysteretic friction expression:

 

In order to estimate this friction coefficient, knowing polymer characteristics, road 

wavelength and input variables, it is necessary to provide the stress σ

the discretized elementary tread volume, and, in particular, of the stress components 

along x, y and z directions. Although many authors have proposed formulations able to 

estimate stress distributions and contact area extension [

approach did not result able to satisfy the real

computational loads that the applications for which the model has been developed need. 

Thanks to the studies of Y. A. Kuznetsov [

state induced in a rubber elastic body by a periodic sinusoidal perfectly rigid indenter in 

sliding contact with it. 

Once determined the radius of curvature R

apex 

 

it is possible to estimate by means of Kuznetsov formula, the half

area (Fig. 5.21) as a function of the radius R

nominal area A0, of the rubber dynamic modulus E calculated takin

working conditions acting on the examined elementary volume and of the macro 

asperity wavelength: 

 

N =

Fig. 5.

sinusoidal asperity apex and tyre tread
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formulate the final hysteretic friction expression: 
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In order to estimate this friction coefficient, knowing polymer characteristics, road 

wavelength and input variables, it is necessary to provide the stress σ

the discretized elementary tread volume, and, in particular, of the stress components 

along x, y and z directions. Although many authors have proposed formulations able to 

estimate stress distributions and contact area extension [86][87], a multi

approach did not result able to satisfy the real-time requirements and the low 

computational loads that the applications for which the model has been developed need. 

Thanks to the studies of Y. A. Kuznetsov [88][89][90], it is possible to calculate the stress 

state induced in a rubber elastic body by a periodic sinusoidal perfectly rigid indenter in 

Once determined the radius of curvature Rs of the road sinusoidal indenter at the 
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it is possible to estimate by means of Kuznetsov formula, the half-length N of the contact 

) as a function of the radius Rs, of the average contact pressure p in the 
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working conditions acting on the examined elementary volume and of the macro 
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Fig. 5.21 - Detail of the contact between  

sinusoidal asperity apex and tyre tread. 
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(5.23) 

In order to estimate this friction coefficient, knowing polymer characteristics, road 

wavelength and input variables, it is necessary to provide the stress σ1
2 in each point of 

the discretized elementary tread volume, and, in particular, of the stress components 

along x, y and z directions. Although many authors have proposed formulations able to 

a multi-dimensional 

time requirements and the low 

computational loads that the applications for which the model has been developed need. 

to calculate the stress 

state induced in a rubber elastic body by a periodic sinusoidal perfectly rigid indenter in 

of the road sinusoidal indenter at the 

(5.24) 

length N of the contact 

, of the average contact pressure p in the 

g into account of the 

working conditions acting on the examined elementary volume and of the macro 

(5.25) 



 

Kuznetsov's method for planar stress calculation can be used to determine the 

three-dimensional field star

yz (without sliding velocity) shown in figure 5.

apex. The model does not need the direction of the sliding velocity on each asperity as an 

input because the orientation of the elementary volume adapts automatically to it, 

considering x axis parallel to V

the sliding velocity and it is taken into account by means of the frequency effect that it 

has on rubber for WLF law and on adhesion for the functionality discussed in the 

respective submodel.  

 

Fig. 5.22a - σ1x distribution in the x

 

Fig. 5.23a - σ1y distribution in the y

 

The strong relationship between adhesive and hysteretic friction is taken into 

account by means of the Kuznetsov's parameter K, that is supposed to be equal to the 

adhesive friction coefficient. In figure 5.

shown: the increase of the adhesive component causes a progressive asymmetrisation of 

the stress field in the direction of the sliding. 

Applying Kuznetsov equations in the plane x

components σ1x and σ1z generated

compressive tangential stress localized before the indenter and the traction state behind 

this last, due to the presence of the adhesive contribution.  Because of the self

orientation of the elementary

velocity components are absent: it means that applying Kuznetsov’s equations in this 
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method for planar stress calculation can be used to determine the 

dimensional field starting from the vertical planes xz  (with sliding velocity) and 

yz (without sliding velocity) shown in figure 5.22 and 5.23, localized under asperity 

model does not need the direction of the sliding velocity on each asperity as an 

input because the orientation of the elementary volume adapts automatically to it, 

considering x axis parallel to Vs. In this way the only cinematic input is the modulus of 

e sliding velocity and it is taken into account by means of the frequency effect that it 

has on rubber for WLF law and on adhesion for the functionality discussed in the 

distribution in the xz plane, localized as shown in figure 5.

under a pressure of 125 KPa. 

distribution in the yz plane, localized as shown in figure 5.

under a pressure of 125 KPa. 

The strong relationship between adhesive and hysteretic friction is taken into 

account by means of the Kuznetsov's parameter K, that is supposed to be equal to the 

adhesive friction coefficient. In figure 5.24 the effect of adhesion on the stress profile i

shown: the increase of the adhesive component causes a progressive asymmetrisation of 

the stress field in the direction of the sliding.  

netsov equations in the plane xz, it is possible to calculate the stress 

generated by the sliding indenter, noticing in figure 5.

compressive tangential stress localized before the indenter and the traction state behind 

this last, due to the presence of the adhesive contribution.  Because of the self

orientation of the elementary volume, it is possible to state that in the plane y

velocity components are absent: it means that applying Kuznetsov’s equations in this 
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method for planar stress calculation can be used to determine the 

z  (with sliding velocity) and 

, localized under asperity 

model does not need the direction of the sliding velocity on each asperity as an 

input because the orientation of the elementary volume adapts automatically to it, 

. In this way the only cinematic input is the modulus of 

e sliding velocity and it is taken into account by means of the frequency effect that it 

has on rubber for WLF law and on adhesion for the functionality discussed in the 

 
shown in figure 5.22b,  

 
z plane, localized as shown in figure 5.23b,  

The strong relationship between adhesive and hysteretic friction is taken into 

account by means of the Kuznetsov's parameter K, that is supposed to be equal to the 

the effect of adhesion on the stress profile is 

shown: the increase of the adhesive component causes a progressive asymmetrisation of 

z, it is possible to calculate the stress 

by the sliding indenter, noticing in figure 5.22a the 

compressive tangential stress localized before the indenter and the traction state behind 

this last, due to the presence of the adhesive contribution.  Because of the self-

le to state that in the plane yz sliding 

velocity components are absent: it means that applying Kuznetsov’s equations in this 
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plane, imposing K equal to zero, the perfectly symmetric tangential stress so obtained 

can be considered as an estimation of the stress component σ1y. 
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Fig. 5.24 - σ1z in the xz plane for adhesion coefficient (Kuznetsov's parameter K) equal to 0, 0.5 and 1 

under a pressure of 125 KPa and a sliding velocity of 1 m/s directed from left to right. 

 

With the aim to extend the bi-dimensional results  to the whole three-dimensional 

elementary volume (Fig. 5.25), the planar components have been scaled, reducing stress 

entity at increasing distance from asperity apex, by means of a quadratic function 

identified on the basis of proper tests carried out with a commercial FEM solver (Fig. 

5.26). The tests, characterized by high computational loads, confirmed the goodness of 

the stress fields calculated much more easily with Kuznetsov's equations, that, once 

implemented, represent an optimal solution for the needs of a real time physical model.  

 

 
Fig. 5.25a - σ1x stress in the xz plane for K=1 under a pressure of 

125 KPa and a sliding velocity of 1 m/s directed from left to right. 

Fig. 5.25b - Extension of σ1x to the whole 3D elementary volume. 

 

 
Fig. 5.26 - σ1z stress resulted from FEM simulations along y direction compared with the quadratic 

function chosen to extend the planar stress field in the 3D tread volume. 
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 Information coming from finite elements analysis allowed, moreover, to neglect 

the stress components τxy, τ

about one order of magnitude lower than the one relative to components σ. Finally, 

indentation tests confirmed the contact zone extension provided by Kuznetsov by means 

of the parameter N. 

The knowledge of the described stress components allows to calculate the 

numerical integral extended to the elementary tread volume of equation 5.23. At 

aim, the volume has been discretized in 200 nodes along x and y and 50 along z; this 

number represents an optimal trade off between the stability of the results and the 

computation performances. 

Further developments will regard the possibility to expr

hysteretic dissipations, taking into account the indentation phenomena involving micro

roughness, replicating the same procedure employed for the macro

 

5.6 Results And Validation
The connection of the presented grip mod

[21][51] - able to provide for each steptime the contact pressure and the sliding velocity 

at which each tread element interacts with the corresponding asperity 

thermal model [chapter 4] -

supposed to be uniform in the neighbourhood of the contact ar

asperity - gives the possibility to estimate friction arising at tyre/road interface as the 

sum of the adhesive contribution (equatio

(5.23)). 

 As shown in figures 5.27

response to input variations; in particular, in figure 5.

for a passenger GT tyre, whose 

different Vs and p over a road profile, employed also for the analyses discussed in the 

following, described by macro and micro sinusoids having λ

0.8 mm, λMiCRO = λMACRO/100 and R

conception introduced by Persson [

 

Fig. 5.27 - 3D plot reporting friction coefficient for a passenger GT tyre as a function of sliding velocity V

and contact pressure p, at a tread average 
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Information coming from finite elements analysis allowed, moreover, to neglect 

, τxz and τyz, because their contribution to power dissipation is 

about one order of magnitude lower than the one relative to components σ. Finally, 

entation tests confirmed the contact zone extension provided by Kuznetsov by means 

The knowledge of the described stress components allows to calculate the 

numerical integral extended to the elementary tread volume of equation 5.23. At 

aim, the volume has been discretized in 200 nodes along x and y and 50 along z; this 

number represents an optimal trade off between the stability of the results and the 

 

Further developments will regard the possibility to express explicitly the micro

hysteretic dissipations, taking into account the indentation phenomena involving micro

roughness, replicating the same procedure employed for the macro-roughness.

5.6 Results And Validation 

The connection of the presented grip model with both an interaction model 

able to provide for each steptime the contact pressure and the sliding velocity 

at which each tread element interacts with the corresponding asperity 

- whose output is tread temperature in the same steptime, 

supposed to be uniform in the neighbourhood of the contact area with a single road 

gives the possibility to estimate friction arising at tyre/road interface as the 

sum of the adhesive contribution (equation (5.14)) and of the hysteretic one (equation 

As shown in figures 5.27, 5.28 and 5.29, the model is able to give a coherent 

response to input variations; in particular, in figure 5.27 is reported a 3D plot obtained 

for a passenger GT tyre, whose compound has been fully characterized, sliding at 

over a road profile, employed also for the analyses discussed in the 

following, described by macro and micro sinusoids having λMACRO = 9.9 mm, R

/100 and Ra MiCRO = Ra MACRO/100, chosen basing on a similarity 

conception introduced by Persson [53]. 

 
3D plot reporting friction coefficient for a passenger GT tyre as a function of sliding velocity V

and contact pressure p, at a tread average temperature of 25 °C.
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Information coming from finite elements analysis allowed, moreover, to neglect 

, because their contribution to power dissipation is 

about one order of magnitude lower than the one relative to components σ. Finally, 

entation tests confirmed the contact zone extension provided by Kuznetsov by means 

The knowledge of the described stress components allows to calculate the 

numerical integral extended to the elementary tread volume of equation 5.23. At this 

aim, the volume has been discretized in 200 nodes along x and y and 50 along z; this 

number represents an optimal trade off between the stability of the results and the 

ess explicitly the micro-

hysteretic dissipations, taking into account the indentation phenomena involving micro-

roughness. 

el with both an interaction model 

able to provide for each steptime the contact pressure and the sliding velocity 

at which each tread element interacts with the corresponding asperity - and with a 

tread temperature in the same steptime, 

ea with a single road 

gives the possibility to estimate friction arising at tyre/road interface as the 

n (5.14)) and of the hysteretic one (equation 

, the model is able to give a coherent 

is reported a 3D plot obtained 

compound has been fully characterized, sliding at 

over a road profile, employed also for the analyses discussed in the 

= 9.9 mm, Ra MACRO = 

/100, chosen basing on a similarity 

3D plot reporting friction coefficient for a passenger GT tyre as a function of sliding velocity Vs  

°C. 
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 Figures 5.28a and 5.28b highlight friction dependence on temperature and on 

rubber Storage Modulus. As expected for polymers, SBR is highly sensitive to working 

temperature, confirming that the selection of the proper thermal range in which the 

compound will work is the main key factor for the grip performances maximization. A 

variation of 30°C has a drastic effect on friction of such kind of tyres; different tyre 

models, characterized by different design and compounds might have an optimal 

working range centred on other temperatures: lower, for common passenger tyres, in 

order to ensure safety in the widest range of weather conditions, or higher, for racing 

tyres operating under high tangential loads and able to reach high levels of friction and 

wear. For what concerns the effect of a variation of the storage modulus, the response of 

the model reproduces the expected physical behaviour, describing the decrease of the 

frictional attitude of the tyre consequently to an increase in E' value, that generates a 

lower indentation level and a less adhesive interaction. 

 

 
Fig. 5.28a - Passenger GT tyre friction coefficient as a function of sliding velocity Vs for different tread 

Temperatures, under a pressure of 300 kPa. 

Fig. 5.28b - Influence of Storage Modulus at 25 °C and 300 kPa. 

 

 Figure 5.29 allows an analysis of the effect that a variation in road roughness has 

on friction and in particular on its two components; as noticeable in the plot and as 

expectable from the analytical modelling, a decrease in Ra index (triangle marker) is 

responsible of an increase of the adhesion (no-line curves), due to the fact that a 

smoother micro profile allows an optimization of the available contact area, in which a 

greater number of intermolecular bonds can be created. On the other side, roughness 

decrease is responsible for a lower indentation degree, for a consequential lower 

dissipated power and finally for a decrease of the hysteretic friction component. The 

differences in rubber structure make a compound more or less capable to maximize 

adhesion rather than hysteresis; the analyzed tyre, for its structure and compound, has 

shown a high dependence of adhesion from roughness, with the final result that global 

friction manifested an increasing trend with decreasing roughness. A different tyre, 

characterized by different E' and E'' moduli, could have shown opposite tendencies due 

to a major indentation attitude. 
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Fig. 5.29 - Passenger GT tyre friction components as a function of sliding velocity Vs  

for different roughness indices, at 25 °C and under a pressure of 300 kPa. 

 

 An experimental activity has provided a comparisons between model simulations 

results and friction tests carried out with the described pin on disk tribometer (Fig. 5.9).  

 In the experimental campaign, aimed to investigate hysteretic contribution to 

friction, the disk has been covered with 3M anti-slip tape (Ra = 27 µm) and its surface 

has been kept wet during the contact by means of a thin water film. 

 The role played by water is to avoid the adhesive interaction between rubber and 

3M tape, depurating global friction from this contribution. In this way road asperities, 

able to break the water film, reach the specimens surface and indent it, isolating the 

pure hysteretic contribution. 

 

 
Figure 5.30a - Passenger tyre E’ thermal characterization data - Frequency 1 Hz. 

Figure 5.30b - Detail in the tyre thermal working range. 

 



 

Figure 5.31 - Passenger tyre tan(δ) thermal characterization data 

 

 The specimens employed in the tests have been extracted from two slabs made 

of two different compounds (C1 and C2) and characterized by means of DMA 

procedures, obtaining E' (Fig. 5.30

temperature. Hysteresis model outputs have been compared with the experimental 

points highlighting a good correspondence for both compounds; in figure 5.

results of the validation campaign are shown.
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Passenger tyre tan(δ) thermal characterization data - Frequency 1

The specimens employed in the tests have been extracted from two slabs made 

of two different compounds (C1 and C2) and characterized by means of DMA 

cedures, obtaining E' (Fig. 5.30) and tan(δ) (Fig. 5.31) curves as a function of 

temperature. Hysteresis model outputs have been compared with the experimental 

highlighting a good correspondence for both compounds; in figure 5.

results of the validation campaign are shown. 
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Frequency 1 Hz. 

The specimens employed in the tests have been extracted from two slabs made up 

of two different compounds (C1 and C2) and characterized by means of DMA 

) curves as a function of 

temperature. Hysteresis model outputs have been compared with the experimental 

highlighting a good correspondence for both compounds; in figure 5.32 some 
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Figure 5.32a - Estimated Hysteretic Friction compared with experimental points 

 

 The figures report as points the mean value of the friction coefficient for the two 

compounds in both dry and wet conditions. The applied load is constant (1

the sliding velocity assumes the values 0.05, 0.5, 1, 

provided by the model under the same operating conditions (i.e. applied load,  surface 

roughness, rubber characteristics) is plotted as a function of V

good accordance with the experimental r

and wet experimental results can be attributed to the substantial reduction of adhesive 

component of friction in wet conditions. 
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Estimated Hysteretic Friction compared with experimental points 

for 3M tape at 40 °C - Vertical Load 1 kg. 

Figure 5.32b - Vertical Load 2 kg. 

The figures report as points the mean value of the friction coefficient for the two 

compounds in both dry and wet conditions. The applied load is constant (1

the sliding velocity assumes the values 0.05, 0.5, 1, and 2 m/s.  Hysteretic friction trend 

provided by the model under the same operating conditions (i.e. applied load,  surface 

roughness, rubber characteristics) is plotted as a function of Vs in order to highlight the 

good accordance with the experimental results. As said above, differences between dry 

and wet experimental results can be attributed to the substantial reduction of adhesive 

component of friction in wet conditions.  
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Estimated Hysteretic Friction compared with experimental points  

The figures report as points the mean value of the friction coefficient for the two 

compounds in both dry and wet conditions. The applied load is constant (1 kg, 2 kg) and 

and 2 m/s.  Hysteretic friction trend 

provided by the model under the same operating conditions (i.e. applied load,  surface 

in order to highlight the 

esults. As said above, differences between dry 

and wet experimental results can be attributed to the substantial reduction of adhesive 
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6. Tyre Models Integration 
 

 

6.1 Introduction 
 Models, procedures and methodologies discussed in the previous chapters are 

able to describe and analyse different aspects of the phenomena concerning with 

tyre/road interaction, but their cooperation can constitute an even more powerful 

instrument to extend the comprehension of such complex theme. 

 In the following paragraphs different possibilities to make the models cooperate 

will be described, highlighting the main features of each combination and discussing its 

results in detail. A general overview of the developed models and procedures is reported 

in figure 6.1, in which it is possible to observe the connections that link the models, 

providing different solutions of employment. 

 

Fig. 6.1 - Models Integration Solutions. 

 

6.2 TRICK & TRIP-ID 
 TRICK (chapter 2) and TRIP-ID (chapter 3) have been developed with the initial 

aim to increase the confidence that car-makers can feel respect to the Magic Formula 

adoption in virtual drive modelling and in vehicle dynamics models employed for 

predictive performance analyses. One of the main advantages of the tool is the 

possibility to validate Pacejka coefficients provided by tyre-makers or even do without 

their contribution, identifying coefficients after a proper vehicle characterization and a 

specific track session. 

 The weak points of the initial MF parameters set identified with bench 

procedures by tyre company, highlighted by data analysis, are the followings: 

� Too high grip performances in longitudinal and lateral interaction; 

� Too low cornering stiffness in front tyres; 

� Lower than real attitude to allow to the driver to bring back the vehicle to a 

stability condition after the adherence limit crossing; 

� Absence of grip and stiffness variations due to thermal effects. 
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Fig. 6.2 - G-G diagram realized both with experimental data and with results of a simulation performed 

with starting MF tyre parameters set. 

 

 
Fig. 6.3 - A 3D render depicting the driving simulation system  

recently developed by Ferrari S.p.A..  

 

 In figure 6.2 a G-G diagram, a classical and simple instrument employed to 

evaluate global vehicle performances [9] is plotted (again in nondimensional form, for 

the already cited industrial confidentiality agreements), comparing on a reference track 

lap the measured vehicle accelerations with accelerations exported as an output from a 

commercial highly validated vehicle simulation model13 employed in virtual driving 

                                                 
13

 Ferrari has installed a motion platform named DiM (Driver in Motion) designed by VI-grade and 

engineered and manufactured by Saginomiya. The vehicle model is used to calculate the real-time 

response to the driver’s inputs; the vehicle motions are processed and transformed into feasible platform 

motions by VI-MotionCueing; actuator movement is eventually calculated on the fly by platform 

controller. 

The 9DOF platform consists of a small-size hexapod mounted on top of a planar frame moving on a very 

smooth sliding surface by means of an efficient and innovative system based on air pads and magnetic 

pads. The hexapod has been designed to produce consistent pitch/roll rotations and Z translations, as well 

as small X/Y translations and Yaw rotation. The consistent X, Y and Yaw movements required to generate 

the feeling of vehicle accelerations on the driver are instead generated by the base tripod. The cueing 

strategy harmonizes the system motion extending the motion envelope and separating low and high 

frequency contributions, which makes this type of motion platform suitable for both vehicle dynamics and 

ride studies (source: http://www.vehicledynamicsinternational.com). 
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simulation environment (Fig. 6.3) that adopted for the specific session the tyre MF 

parameters set provided by the tyremaker. In this last model the vehicle has been fully 

characterized from geometrical and constructive point of view, components mass has 

been carefully weighted, suspensions and steering chain have been modelled by means 

of KnC elasto-kinematic curves and control systems act in the same way of the real 

vehicle ones thanks to HIL or SIL implementation techniques; so, the system differs from 

the real vehicle mainly for tyre modelling, and the described activities focus on its 

evaluation. 

 High grip levels reached by bench tested tyres are often due to the fact that 

testing countersurface is abrasive paper (or rough material surfaces characterized by 

low macro-roughness), that is able to maximize contact patch effective area providing an 

interface surely better than the one that contact with real road allows.  

 The consequence of the grip overestimation is an improvement of the simulated 

vehicle performances respect to the real one, highlighted in figures 6.4 and 6.5 in terms 

of vehicle speed and lateral acceleration acquired in a lap sector. The correspondence 

between the compared data in each plot is not optimal as concerns time synchronization 

and manoeuvres reproduction because in both cases the vehicle has been driven by a 

human driver, obviously not able to perform the lap in the same identical way. 

 

 
Fig. 6.4 - Detail of a lap speed profile comparison between experimental data  

and results of a simulation performed with starting MF tyre parameters set. 

 

 
Fig. 6.5- Detail of a lap lateral acceleration profile comparison between experimental data 

 and results of a simulation performed with starting MF tyre parameters set. 
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 The employment of abrasive paper and of severe testing cycles causes, in addition 

to grip overestimation (and consequently to it), a continuous and massive heat 

generation at contact interface, that increases tyre temperature; as well known, one of 

the main effects that temperature has on tyres is stiffness variation [1][76] (increasing 

temperature causes decreasing stiffness), particularly evident in front tyres, commonly 

thinner, narrow and less thermically inert. Figure 6.6 focuses on these considerations, 

highlighting the unsatisfying results obtained as concerns front slip angles employing 

the starting tyres parameters set; the unbalances caused by slip angles misestimations 

act on the whole vehicle under/oversteering tendency [91], reported in figure 6.7 by 

means of the understeer gradient index [10]. 

 

 
Fig. 6.6 - Detail of the front (left image) and rear (right image) tyre slip angles, both from experimental 

data and from outputs of a simulation performed with starting MF tyre parameters set. 

 

 
Fig. 6.7 - Detail of the understeer gradient calculated both with experimental data  

and with outputs of a simulation performed with starting MF tyre parameters set. 

 

 The identification of the optimal parameters set performed by means of TRIP-ID 

procedure allows also to solve the vehicle driveability problems observed at simulator 

linked with the shape of the tyre starting set; the cited lower than real attitude to allow 

to the driver to bring back the vehicle to a stability condition after the adherence limit 

crossing is due to a double reason: an excessively "peaky" trend of lateral interaction 

curves and a too sharp decrease of cornering force in combined interaction at increasing 

values of slip ratio. The improvement that the characterized tyres have represented as 

concerns the cited effects can be observed in figures 6.8, that compare starting set pure 
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and combined lateral interaction curves (on the left, in black) with the optimal identified 

set ones, already shown in figures 3.10 and 3.12 (on the right, coloured). 
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Fig. 6.8 - PLOT F left: starting set, front tyre, pure lateral interaction. -  

PLOT F right: identified final set, front tyre, pure lateral interaction (Fig. 3.10). - 

 PLOT H left: starting set, rear tyre, pure lateral interaction. -  

PLOT H right: identified final set, rear tyre, pure lateral interaction (Fig. 3.10). -  

PLOT J left: starting set, front tyre, combined lateral grip. -  

PLOT J right: identified final set, front tyre, combined lateral grip (Fig. 3.12). -  

PLOT L left: starting set, rear tyre, combined lateral grip. -  

PLOT L right: identified final set, rear tyre, combined lateral grip (Fig. 3.12). 

 

 It can be noticed that data collected during experimental session described in 

chapter 2 are able to provide information useful to modify properly the starting set, 

obtaining an identified set that results in good agreement with the drivers' requests (as 

analyzed referring to figure 6.8) and with the objective data already shown acquired 

equipping the real vehicle with measurement instruments; figures from 6.9 to 6.12 show 

the results of the simulations performed employing the new tyres set, comparing them 

with the ones relative to the starting set, plotted in figures from 6.2 to 6.6 and reported 

in small size on the left. 

 

 
Fig. 6.9 - On the left, figure 6.2 in reduced size, reported for the sake of comparison; on the right, G-G 

diagram realized both with experimental data and with results of a simulation performed with the final 

identified MF tyre parameters set. 
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Fig. 6.10 - On the left, figure 6.4 in reduced size, reported for the sake of comparison;  

on the right, detail of the speed comparison between experimental data  

and results of a simulation performed with final identified MF tyre parameters set. 

 

 
Fig. 6.11 - On the left, figure 6.5 in reduced size, reported for the sake of comparison;  

on the right, detail of the lateral acceleration comparison between experimental data  

and results of a simulation performed with final identified MF tyre parameters set. 

 

 

 
Fig. 6.12 - On the left, the first image of figure 6.6 in reduced size, reported for the sake of comparison; on 

the right, detail of the front tyre slip angle comparison between experimental data and results of a 

simulation performed with final identified MF tyre parameters set. 
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6.3 TRICK & TRT 
 TRICK (chapter 2) and TRT (chapter 4) have been successfully employed 

together, constituting an instrument able to provide tyre thermal analyses, useful to 

identify the range of temperature in which grip performances are maximized, allowing 

to define optimal tyres and vehicle setup. TRT characterization has been moreover a 

fundamental stage in the development of a tyre interaction model that takes into 

account frictional and thermodynamic phenomena observable during tyre working; in 

particular, test results relative to a GT sport vehicle will be reported in the following. 

 The test procedures adopted to characterize tyres, obtaining data useful to 

initialize properly the models, can be schematically divided in two main subcategories, 

destructive and non-destructive; to the first one belong: 

• meridian plane section analysis 

This kind of test consists in the observation and measurement of the thickness of 

the different layers constituting the meridian section; in figure 6.13 it is possible 

to distinguish tread layer, characterized by an evident and deep pattern, bulk 

layer, in which steel cord plies are clearly observable and inner liner, very thin 

and impermeable. 

 

 
Fig. 6.13 - Detail of a tyre section cut along the meridian plane.  

Tread, plies and inner liner are distinguishable;  

a paper sheet, positioned for testing reasons, is visible at bottom surface. 

 

• thermal conductivity and specific heat measurements 

As described in chapter 4, tyre layers need to be characterized from 

thermodynamic point of view, focusing in particular on conductivity and specific 

heat measurements. Standard test procedure is carried out employing an Stabilite 

2017 argon-krypton laser (Fig. 6.14a) that is pointed on the whole tyre or on 

specimens of each layer, emitting a beam of given power. Knowing specimen 

thickness and measuring temperature of the two surfaces by means of two 

thermographic cameras (a Phoenix by Flir, figure 6.14b and a Ti-45 by Fluke, 

figure 6.14c), it is possible to provide an effective estimation of the desired 

parameters, validated thanks to the comparison with tests carried out with a 

COND1 device, following certified procedures [92]. 
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Fig. 6.14 - a: Stabilite 2017 argon-krypton laser. - b: Phoenix termographic camera. - c: Ti-45 termographic 

camera. - d: the laser spot on the tyre external surface. - e: a termographic camera image of the laser spot 

on the tyre external surface. - f: a termographic camera image of the laser spot on the tyre internal surface. 

 

• DMA viscoelastic characterization 

DMA has been described in paragraph 5.3. 

Tests carried out on GT sport tyres have highlighted interesting aspects, in 

particular comparing results with common passenger tyres ones. Figure 6.15 

shows that, as expected, sport tyres are characterized by lower storage modulus 

values in their optimal thermal working range (35 °C and over), that mean higher 

attitude to adhesion and to adapt to road asperities, optimising contact area, at 

the price of a lower wear resistance; passenger tyres are more stable and able to 

offer good adhesion levels also at very low temperatures, being adapt to the 

widest possible range of working conditions. Figure 6.16 reports in a clear plot 

the plausible reason of the so called "feeling the grip" phenomenon; GT tyres, 

differently from passenger ones, are characterized by a well distinct relative 

maximum at about 42 °C and by higher values of tan(δ) at the usual employment 

temperatures.  

Remembering that DMA test has been carried out at 1Hz frequency, definitely 

different from common tread stress frequencies, a quick calculation, 

hypothesizing an average road macro-roughness wavelength equal to 0.01 m and 

an average sliding speed of 5m/s, allows to estimate the real tyre temperature at 

which the tan(δ) maximum can be experienced by the driver. Re-applying 

equation 5.13, it is possible to obtain: 

 

8 *  log ( / )) 8 * ( log (5 / 0.01)) 21.610 10(T Vs Cλ∆ = = ≈ °  (6.1) 

 

that, added to the starting 42 °C, gives a temperature of 63.6 °C, absolutely in 

accordance with the experimental value shown in the further analyses presented 

in the following. 

 

a b c 

d e f 
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Fig. 6.15 - A comparison of storage modulus (E')  

between a common passenger tyre and a GT sport one. 

 

 
Fig. 6.16 - A comparison of tan(δ)  

between a common passenger tyre and a GT sport one. 

 

 

• indentation test 

Described in paragraph 5.3. 

• adhesion test 

Described in paragraph 5.4 

The applied non-destructive testing procedures are: 

• contact patch analysis 

The test bench described in 4.4.4 has been employed to apply static vertical load 

on tested tyres, analysing contact patch extension and pressure distribution. It 

has been possible interposing pressure sensitive Prescale sheets between tyre 



 

and flat steel countersurface, planning tests at different load, inflating pressure 

and camber angle. In figure 6.17 the results of a generic testing session on a 

235x35 front tyre are reported and figure 6.18 summarizes the results of the 0

camber session, providing dat

4.12. 

 

Fig. 6.17 - Scans of a GT tyre contact patch under different testing conditions at null camber angle. It is 

noticeable that at increasing load contact area increases, progressively inserting 

interaction zone; at high inflating pressure the central rib is more extended, while decreasing pressure the 

tyre tends to overload shoulders (Fig. 4.24) .

 

Fig. 6.18 - A diagram reporting contact patch area as a function of vertical for

summarizing results highlighted in figure 6.17.

6. 

countersurface, planning tests at different load, inflating pressure 

and camber angle. In figure 6.17 the results of a generic testing session on a 

235x35 front tyre are reported and figure 6.18 summarizes the results of the 0

camber session, providing data analogous to the ones described in figures 4.11 an 

Scans of a GT tyre contact patch under different testing conditions at null camber angle. It is 

noticeable that at increasing load contact area increases, progressively inserting 

interaction zone; at high inflating pressure the central rib is more extended, while decreasing pressure the 

tyre tends to overload shoulders (Fig. 4.24) . 

A diagram reporting contact patch area as a function of vertical force and inflating pressure, 

summarizing results highlighted in figure 6.17. 
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countersurface, planning tests at different load, inflating pressure 

and camber angle. In figure 6.17 the results of a generic testing session on a 

235x35 front tyre are reported and figure 6.18 summarizes the results of the 0-

a analogous to the ones described in figures 4.11 an 

 
Scans of a GT tyre contact patch under different testing conditions at null camber angle. It is 

noticeable that at increasing load contact area increases, progressively inserting shoulders in the 

interaction zone; at high inflating pressure the central rib is more extended, while decreasing pressure the 

 
ce and inflating pressure, 
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• SEL tests 

Described in paragraph 4.4.5.

• track thermal tests 

Specific thermal test session have been carried out following the procedure 

reported in table 2.3, developed with th

thermal conditions. In order to acquire tyre temperature, vehicle has been 

equipped with infrared sensors installed in the wheelhouses (Figure 6.19) and 

pointing on tread surface, whose signals have been acquired by 

hardware. Each tyre tread has been interested by two different measurements, 

particularly useful for front tyres, that, steering, could be characterized by 

discontinuous temperature profiles. In order to reduce such inconvenient, front 

sensors have been installed in correspondence of wheel centre, as shown in 

figure 6.20. 

 

Fig. 6.19 

Fig. 6.20 

 

 After having carried out a track experimental session (table 2.3), acquiring data 

useful to be processed by TRICK procedure, a "virtual telemetry" DATA matrix (table 

2.1) has been generated.  

 Speed, slip, camber and force channels have been used as an inp

results have been compared with measured surface temperatures (figure 6.21), 

obtaining good correspondence with available data and, very usefully for the grip 

analysis discussed in the following, an estimation of tyre bulk temperature.
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Described in paragraph 4.4.5. 

Specific thermal test session have been carried out following the procedure 

reported in table 2.3, developed with the aim to collect tyre data at different 

thermal conditions. In order to acquire tyre temperature, vehicle has been 

equipped with infrared sensors installed in the wheelhouses (Figure 6.19) and 

pointing on tread surface, whose signals have been acquired by 

hardware. Each tyre tread has been interested by two different measurements, 

particularly useful for front tyres, that, steering, could be characterized by 

discontinuous temperature profiles. In order to reduce such inconvenient, front 

e been installed in correspondence of wheel centre, as shown in 

Fig. 6.19 - Infrared thermal sensors installation and localization 

inside vehicle wheelhouses. 

 

 
Fig. 6.20 - Position of thermal sensors at front and rear axles.

After having carried out a track experimental session (table 2.3), acquiring data 

useful to be processed by TRICK procedure, a "virtual telemetry" DATA matrix (table 

Speed, slip, camber and force channels have been used as an inp

results have been compared with measured surface temperatures (figure 6.21), 

obtaining good correspondence with available data and, very usefully for the grip 

analysis discussed in the following, an estimation of tyre bulk temperature.
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e aim to collect tyre data at different 

thermal conditions. In order to acquire tyre temperature, vehicle has been 

equipped with infrared sensors installed in the wheelhouses (Figure 6.19) and 

pointing on tread surface, whose signals have been acquired by Dewesoft 

hardware. Each tyre tread has been interested by two different measurements, 

particularly useful for front tyres, that, steering, could be characterized by 

discontinuous temperature profiles. In order to reduce such inconvenient, front 

e been installed in correspondence of wheel centre, as shown in 

 
Infrared thermal sensors installation and localization  

 
Position of thermal sensors at front and rear axles. 

After having carried out a track experimental session (table 2.3), acquiring data 

useful to be processed by TRICK procedure, a "virtual telemetry" DATA matrix (table 

Speed, slip, camber and force channels have been used as an input for TRT, whose 

results have been compared with measured surface temperatures (figure 6.21), 

obtaining good correspondence with available data and, very usefully for the grip 

analysis discussed in the following, an estimation of tyre bulk temperature. 



 

Fig. 6.21 -

 Common analyses concerning the relationship between tyre friction coefficient 

and temperature are based on the only thermal data experimentally available, id est tyre 

external (and in few cases, internal) surface temperature, measured with a great variety 

of methodologies. A typical correlation between lateral grip and measured temperature 

appears like the one shown in figure 6.22, from which very few information can be 

deducted. 

Fig. 6.22 - 

6. 

- TRT results evaluation for front and rear tyres. 

 

Common analyses concerning the relationship between tyre friction coefficient 

and temperature are based on the only thermal data experimentally available, id est tyre 

ses, internal) surface temperature, measured with a great variety 

of methodologies. A typical correlation between lateral grip and measured temperature 

appears like the one shown in figure 6.22, from which very few information can be 

 

 Front and rear lateral grip reported as a function  

of tyre measured surface temperature. 
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Common analyses concerning the relationship between tyre friction coefficient 

and temperature are based on the only thermal data experimentally available, id est tyre 

ses, internal) surface temperature, measured with a great variety 

of methodologies. A typical correlation between lateral grip and measured temperature 

appears like the one shown in figure 6.22, from which very few information can be 
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Fig. 6.23 - Front and rear grip reported as a function of tyre bulk temperature estimated by means of TRT. 

Bell shape curves have been drawn to highlight the t

 Thanks to the availability of bulk temperature, it is possible to provide much 

more useful correlations, as the ones reported in figure 6.23, from which optimal 

thermal range can be identified. The reason for which bulk temperature offers better 

results can be attributed to the fact that surface temperature varies with very fast 

dynamics, not able to modify in a so short time polymers characteristics in order to have 

a response on the whole tyre frictional behaviour. Bulk temperature, on the other 

can be considered as the tread core temperature, more reluctant to fest variations and 

directly connected with rubber viscoelastic states. As a further validation of the 

described procedure, it can be noticed that temperature optimal value is in good

agreement with the theoretical result provided in equation 

model can be employed as a predictive instrument to investigate on performance 

optimization strategies and that, on the other side, a proper knowledge of polymer 

characteristics can be a useful starting point to a better comprehension of tyre 

interaction dynamics.  

 

6.4 TRIP-ID - TRT - GrETA 
 Thermal and grip model can usefully cooperate, employing TRT output as an 

input for GrETA, that can be so used to introduce in 

dependence from temperature, tyre working variables, road roughness and compound 

characteristics. 
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Front and rear grip reported as a function of tyre bulk temperature estimated by means of TRT. 

Bell shape curves have been drawn to highlight the trends. 

 

Thanks to the availability of bulk temperature, it is possible to provide much 

more useful correlations, as the ones reported in figure 6.23, from which optimal 

thermal range can be identified. The reason for which bulk temperature offers better 

esults can be attributed to the fact that surface temperature varies with very fast 

dynamics, not able to modify in a so short time polymers characteristics in order to have 

a response on the whole tyre frictional behaviour. Bulk temperature, on the other 

can be considered as the tread core temperature, more reluctant to fest variations and 

directly connected with rubber viscoelastic states. As a further validation of the 

described procedure, it can be noticed that temperature optimal value is in good

agreement with the theoretical result provided in equation 6.1, confirming that thermal 

model can be employed as a predictive instrument to investigate on performance 

optimization strategies and that, on the other side, a proper knowledge of polymer 

cteristics can be a useful starting point to a better comprehension of tyre 
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optimization strategies and that, on the other side, a proper knowledge of polymer 

cteristics can be a useful starting point to a better comprehension of tyre 

Thermal and grip model can usefully cooperate, employing TRT output as an 
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dependence from temperature, tyre working variables, road roughness and compound 
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 The advantages coming from the interaction of these models can be summarized 

in the following three points, currently already exploited, but further application 

possibilities are clearly available: 

• Prediction of tyre behaviour on different tracks of a racing championship, each one 

characterized by different road roughness (earlier measured) and weather 

conditions. 

• Performance evaluation at compound characteristics variation, that allows to 

establish a dialog channel with tyremakers, leading tyre construction and compound 

development to the achievement of a common aim. 

• Definition of optimal vehicle setup, in terms of wheel characteristic angles, load 

balance and tyre inflating pressure, and of driving strategies able to reach optimal 

grip/thermodynamic conditions. 

 Being not available local velocity and pressure distribution, GrETA is supposed to 

work in this case basing on global variables, measured on track or calculated in 

simulation; longitudinal and lateral friction estimated values are considered as sort of 

normalized scaling factors for longitudinal and lateral interaction forces coming as an 

output from Pacejka formulation. Figures 6.24 and 6.25 show the differences between 

forces data from telemetry and from Pacejka model, whose input are measured slip, load 

and camber values. In a first case the calculated forces are reported as scaled by a 

coulomb friction model, always constantly equal to one except for static value (it means 

considering standard Pacejka output, with no further processing); in a second case 

forces are processed with GrETA friction scaling factors, taking into account phenomena 

neglected in the first case. It can be noticed that grip model employment produces better 

results, in particular as concerns longitudinal interaction in traction phase, thermally 

stressful for high performance tyres and able to generate heat for friction power 

mechanism that induces not negligible effects in tyre/road interaction modelling. 

  

 
Fig. 6.24 - Comparison between longitudinal tyre forces modelled by MF  

with a coulomb friction law and with GrETA friction model.  
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Fig. 6.25 - Comparison between lateral tyre forces modelled by MF  

with a coulomb friction law and with GrETA friction model.  

 

 

6.5 TRT - GrETA - Physical Interaction Model 
 As clear from previous paragraph, and as well known from vehicle dynamics 

experience, Pacejka model is not the most flexible and detailed method to describe 

tyre/road interaction local phenomena, but represents a very robust and intuitive 

solution to obtain the hardly achievable aim to model tyre tangential forces. 

 For this reason, further developments of the activities discussed in the present 

work will focus on the realization of a fully physical interaction model that, starting from 

the knowledge acquired about the topic by the vehicle dynamics research group 

[21][51], will be able to interact deeply with the other developed models, creating an 

analytic and predictive instrument employed in a wide range of automotive applications. 
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Conclusions and Further Developments 
 

 

 In the presented thesis the author's PhD path has been described, from the initial 

phase of aim definition of the activities to the final development of an analysis and 

modelling multi-tool instrument, passing through the multitude of themes that concern 

with tyre/road interaction and, more generally, with vehicle dynamics. 

 The target, fixed in collaboration with a motorsport racing team, with a high 

performance vehicle manufacturing company and with a tyre research and development 

technical centre, evolved progressively, finally becoming the development of a 

procedure able to estimate tyre interaction characteristics, reproducing them in 

simulation environments taking into account the fundamental friction and thermal 

phenomena concerning with tyre/road interaction. 

 A first tool, called TRICK, has been developed with the aim to process data 

acquired from experimental test sessions, estimating tyre interaction forces and slip 

indices. Once characterised the vehicle, filtering and sensors output correction 

techniques have been employed on the available data, creating a robust procedure able 

to generate as an output a "virtual telemetry" and, following a specifically defined track 

driving routine, to provide tyre interaction experimental curves. 

 TRICK virtual telemetry can be employed as an input for the second tool, TRIP-ID, 

developed with the aim to identify the parameters of a Pacejka Magic Formula tyre 

model. The advantage of this kind of procedure is the possibility to simulate the 

behaviour of a tyre without the bench characterizations provided by tyremakers, with 

the further benefit to reproduce the real interactions with road and the phenomena 

involved with it, commonly neglected in bench data. 

 Among such phenomena, one of the most important is surely the effect that 

temperature induces on tyre performances, especially in racing applications. For this 

reason a specific model, called TRT, has been realised and characterised by means of 

proper thermodynamic tests, becoming a fundamental instrument for the simulation of 

a tyre behaviour as close to reality as possible. One of the most useful features provided 

by the model is the prediction of the so called "bulk temperature", recognized as directly 

linked with the tyre frictional performances. 

 With the aim to analyse and understand the complex phenomena concerning 

with local contact between viscoelastic materials and rough surfaces, GrETA grip model 

has been developed. The main advantage to which the employment of the grip model 

conducts is constituted by the possibility to predict the variations induced by different 

tread compounds or soils on vehicle dynamics, leading to the definition of a setup able to 

optimise performances as a function of tyre the working conditions. 

 The described models and procedures can cooperate, generating a many-sided 

and powerful instrument of analysis and simulation; the main features of the available 

employment solutions can be summarised as follows: 

� full geometric, thermodynamic, viscoelastic and structural characterization of 

tyres on which the analyses are focused; 

� estimation of the tyre interaction characteristic curves from experimental 

outdoor test data; 

� definition of a standard track driving procedure that employs tyres in multiple 

dynamic and thermal conditions; 
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� identification of Pacejka Magic Formula tyre models parameters on the basis of 

the estimated tyre interaction characteristic curves; 

� estimation of surface, bulk and inner liner tyre temperatures for variable 

working conditions  and real-time reproduction of tyre thermodynamic 

behaviour in simulation applications; 

� correlation of tyre thermal conditions with friction phenomena observable at the 

interface with road; 

� prediction of tyre frictional behaviour at tread compound and soil roughness 

variations; 

� modelling of tyre interaction by means of MF innovative formulations able to 

take into account grip and thermodynamic effects on vehicle dynamics; 

� definition of the optimal wheels and vehicle setup in order to provide the 

maximum possible performances improvement. 

 A further step in the field of tyre/road interaction modelling and analysis could 

be represented by the development of a fully physical contact and interaction model, 

able to cooperate with the presented ones, constituting an ideal instrument for the 

prediction and the simulation of the real tyre dynamics.  
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