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Chapter 1 - INTRODUCTION 

1.1. Background and motivations 

Seismic risk may be defined as the probability that a pre-defined level of loss for a 

specific structure due to earthquakes is exceeded within a time period of interest. It is a 

function of three main components: the seismic hazard, the seismic vulnerability and 

the exposure.  

Seismic hazard accounts for the probability of exceedance of a ground motion intensity 

measure at a site of interest in a given period.  

Seismic vulnerability refers to, instead, the probability of reaching a certain damage 

level given an intensity measure. 

Exposure represents the probability of exceedance of an economic loss given a damage 

level reached by the structure.  

A sound methodology for identifying and analyzing all details of the problem has been 

proposed by the Pacific Earthquake Engineering Research (PEER) Center and it is 

named Performance-Based Earthquake Engineering (PBEE; Cornell and Krawinkler, 

2000).  

The performance assessment and the design process used to evaluate the seismic risk is 

divided into four steps, Figure (1.1), consisting of quantifying the seismic ground 

motion hazard, assessing the structural response, estimating the damage to building and 

content and resulting consequences in terms of financial losses, fatalities and business 

interruption. Such an approach presents the advantage of separating the computation of 

seismic risk into different discipline-specific contributions (engineering seismology, 

structural engineering, cost analysis, decision making). This four independent 

“modules” are then linked together through intermediate output variables, i.e., Intensity 

Measures (IMs), Engineering Demand Parameters (EDPs) and Damage Measures 

(DMs). 
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Figure 1.1. Schematic illustration of the Performance-Based Earthquake Engineering 

framework and the “link” variables IM, EDP and DM. 

In the first phase, that is, the hazard analysis, the annual rate of exceedance of a ground 

motion intensity measure (IM) at a site is evaluated. The last one is also known as the 

hazard curve and it can be obtained from a conventional Probabilistic Seismic Hazard 

Analysis (PSHA; McGuire, 2004) that will be reviewed in the next section. 

In the structural analysis phase, an analytical modeling of the building is performed to 

obtain the Engineering Demand Parameter. This is a structural response parameter 

well-related to damage of structural and non-structural components and content of the 

structure. Examples of suitable EDPs are the interstorey drift or force demands to 

structural members, or in general, structural parameters that allow to control the state 

of the structure up to collapse. The relationship between EDPs and IMs is typically 

obtained through inelastic dynamic analyses (IDA; Vamvatsikos and Cornell, 2002). 

The output of this process, which is often referred to as Probabilistic Seismic Demand 

Analysis (PSDA; Shome 2006), is the conditional probability that the EDP exceeds a 

specified value edp, given that the IM is equal to a particular im. The integration of the 

previous probability over the hazard curve provides the mean annual frequency of 

exceedance of the EDP.  

In the damage analysis phase, EDPs are related to the damage measures of the 

building. In particular, it is possible to refer to its structural components, non-structural 

components or contents and for each component of interest, a Damage Measure (DM) 

may be defined to describe the level of damage reached during an earthquake. The 

output of the damage analysis is a relationship between the EDPs and the DMs 

expressing the probability of being in a damage state dm, given that the EDP is equal to 

a given value edp. Such relationships, referred to as fragility, are computed, in general, 

by means of analytical/numerical modeling, laboratory test or field experience. 

In the last phase of the PEER procedure, that is loss analysis, attention is focused on 

the losses (i.e., decision variables DVs) due to the chosen DMs. While DMs usually 
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refer to components, the DVs are defined at the system or building level. If the fragility 

functions for all relevant damage states of all relevant components are known, the DVs 

of interest can be evaluated either directly or by means of cost functions that relate the 

damage states to costs (Yeo and Cornell, 2005).  

All the procedure may be expressed as a triple integral based on the total probability 

theorem as shown in Equation (1.1), where the final result is the mean annual 

frequency (MAF), λ, of exceeding of a DV threshold (Yeo and Cornell, 2005). 

         | | | | |DV G DV DM dG DM EDP dG EDP IM d IM      (1.1) 

In the above Equation  IM  is the mean annual rate of exceeding a given IM level. 

 |G EDP IM
 
represents the complementary cumulative distribution function (CCDF) 

of EDP conditional to a given level of IM, i.e.,    | |G EDP IM P EDP y IM x   . 

 |G DM EDP and  |G DV DM are defined in a similar manner. 

The key assumption of the whole procedure is the conditional independence of DV and 

DM from IM, of DV from EDP and IM. This implies that intermediate variables EDP 

and DM, used to relate IM to DV, are chosen so that the conditioning information is 

not “carried forward”. It is to note that IM, EDP, DM and DV can potentially also be 

vectors (Yeo and Cornell, 2005). 

All previous components are usually considered to be time-invariant; however, 

variation in time of seismic structural risk may involve all three components that form 

the performance-based earthquake engineering framework (Cornell and Krawinkler, 

2000). This thesis focuses on the time-variant aspects that can involve both the hazard 

and the vulnerability assessment. In the following sections the traditional approaches 

used to evaluate the seismic hazard and the vulnerability are described. Hence, 

different cases where time-variant approaches may be suitable are presented. 
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1.2. Probabilistic Seismic Hazard Analysis 

One of the most important ingredients of the PEER equation is the evaluation of the 

seismic hazard. Ever since probabilistic seismic hazard analysis was developed in the 

late 1960s, the modeling of earthquakes occurrence has drawn considerable interest 

from various investigators (Villani, 2010). Thus, recurrence models have evolved 

significantly since they were first introduced. The stochastic processes which are used 

to model the earthquake generating phenomenon are based on the assumption that the 

occurrence of an earthquake in a region is independent of subsequent and previous 

earthquakes in that region. 

Hence, probabilistic seismic hazard analysis usually refers to homogeneous Poisson 

process (HPP) to probabilistically model earthquake occurrence. The latter is an 

independent- and stationary-increment (i.e., memory-less) model, which may be 

especially suitable when several (independent) sources contribute to the seismic threat 

for a site. This process has no memory of the past earthquakes, consequently, the 

occurrence of an event does not depend on how long it has been since the last event, 

that is, an event can occur at any time. The number of events, 
E

N , occurring in the 

time interval of interest,  ,t t T  , is Poisson distributed as in Equation (1.2), with 

mean 
E

T   , where 
E

  is the rate of the process (constant and time independent). 

     
 

,
!

E

E E

E

n
TT

P N t t T n P N T n e
n




  
         (1.2) 

Starting from the previous equation, the interarrival times are exponentially distributed, 

Equation (1.3). 

( ) E t

T Ef t e
  

   (1.3) 

The memoryless properties of this model are also put into evidence by the hazard rate 

function, h(t), defined as the ratio between the density function and the complementary 

cumulative distribution function of the interarrival times. It describes the probability of 
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an immediate event since no event had occurred ‘till that instant. For the Poisson 

process, the hazard rate function, is constant and equal to the average rate 
E

 , Equation 

(1.4). 

( )
( )

1 ( )
E

f t
h t

F t
 


 

(1.4)
 

This means that the probability of occurrence of an earthquake in a future small 

increment of time, remains constant independently of the size and the time spent since 

the last event.  

Under the hypothesis of a Poisson earthquake recurrence model, the annual rate of 

exceedance of an IM threshold, 
,im E , is obtained from 

E
  via Equation 1.5, where the 

term  | ,P IM im x y , provided by a ground motion prediction equation (GMPE), 

represents the probability that the intensity threshold is exceeded given an earthquake 

of magnitude EM x , from which the site is separated by a distance ER y .  

   
,max ,max

,min ,min

, ,| , ,
E E

E E

E E

r m

im E E M R

r m

P IM im x y f x y dx dy       
 

(1.5)
 

The term ,E EM Rf  is the joint probability density function (PDF) of magnitude and 

distance random variables (RVs). In the case of a single source, if these two RVs may 

be considered stochastically independent, 
EMf  is often described by a Gutenberg-

Richter (GR) relationship (Gutenberg and Richter, 1944), and 
ERf is obtained on the 

basis of the source-site geometrical configuration. The integral limits are the 

magnitudes bounding the GR relationship and the distances defining the domain of 

possible ER  values (e.g., Reiter, 1990).  
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1.3. History-dependency in seismic hazard  

History-dependent processes may be more appropriate to consider the occurrence of 

earthquakes on individual faults, fault interactions or to consider that earthquakes are 

typically clustered both in space and time. Moreover, they are suitable to consider a 

time scale different from that of the long term, that is, to perform an aftershock 

probabilistic seismic hazard analysis (APSHA; Yeo and Cornell 2009a). 

In the following, different cases where a time-variant approach is suitable are briefly 

reviewed.  

1.3.1.  Long-term seismic hazard 

The recurrence models for temporal behavior of earthquakes can roughly be 

subdivided into two types of processes, available in literature.  

The former, renewal processes, are usually employed to probabilistically model 

characteristic events, that is, when the fault tends to generate similar magnitude events 

(note however that HPP is a renewal process as well). Such stochastic models are 

defined as renewal as they assume that the system restarts as-new after the occurrence 

of each event. In these processes, interarrival times are independent and identically 

distributed (i.i.d.) random variables. Moreover, as no other RVs are considered, such a 

distribution completely characterizes the model.  

In the seismic context, renewal processes may be used to describe a sequence of large 

magnitude events, probabilistically modeling the mechanism of strain accumulation 

and release. In other words, they follow the average trend of elastic-rebound theory 

(Reid, 1910), which suggests that large tectonic earthquakes recur when a threshold 

elastic strain is reached in the crust. Strain is then released during the event and slowly 

re-accumulated by steady tectonic forces with a strain rate until the next event 

(Matthews et al., 2002). 

The second category of processes differs from the previous one as in this case a 

relationship between interarrival time and event magnitude which are both considered 

as RVs is included. The two main models are: the time-predictable (e.g., Anagnos and 
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Kiremidijan 1988) and the slip-predictable (e.g., Kiremidijan and Anagnos 1984). 

Further details about them are reported in chapter 2, where different history-dependent 

models are reviewed.  

1.3.2. Aftershock probabilistic seismic hazard analysis 

After an earthquake of large magnitude (referred to as the mainshock), many triggered 

events or aftershocks may occur. Aftershocks sequences cannot be represented by the 

homogeneous Poisson process since their rate appears to be dependent on the time, 

magnitude and location of the mainshock. For this reason a non-homogeneous Poisson 

process (NHPP) may be appropriate to probabilistically describe their occurrence. The 

importance of modeling aftershocks occurrence is related to the fact that aftershock 

ground motions may cause weakening and/or collapse of structures perhaps already 

damaged (but not yet repaired) by the mainshock. Moreover, aftershocks hazard is 

larger than mainshock hazard (computed trough a HPP) for many days after the 

occurrence of an event.  

Recently, Yeo and Cornell (2009a) have developed aftershock-PSHA to express 

aftershock hazard similar to the mainshock hazard; i.e., in terms of probability of 

exceedance of a ground motion intensity measure threshold. This is useful in the post-

mainshock emergency phase and for short-term risk management. 

The main assumption for the aftershocks probabilistic seismic hazard analysis is that 

the aftershock occurrence rate cannot be considered time-invariant. In fact, after the 

occurrence of a mainshock, the rate is at its maximum and then decreases with the 

increasing elapsed time from the occurrence of the mainshock in accordance with the 

modified Omori law. In accordance with this law, the instantaneous aftershock rate per 

day is expressed as a function of ( ) pt c , where t  is the number of elapsed days from 

the mainshock, while c  and p  are constant values for a particular aftershock 

sequence. The mean instantaneous daily rate of aftershocks with moment magnitude 

m , or larger, at time t , following a mainshock of moment magnitude Em , can be 

calculated using Equation (1.6), where a  and b  are the Gutenberg-Richter relationship 

parameters. 
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      min

| 10 10E

E

pa b m m a

A m t t c
  

  
 

(1.6)
 

The expected number of aftershocks with magnitudes between minm  (a lower bound 

aftershock magnitude of engineering interest) and Em  in the time interval  , At t T   

following a mainshock of magnitude mm can be evaluated through Equation (1.7). 

 

     
min

|

( )
1 1

|

,

10 10

1

E

A E

E

A m A

t T a b m m a
p p

A m A

t

E N t t T

d t c t T c
p

  

   
 

    

          
 

 
(1.7)

 

Since the daily rate of aftershocks is time-variant, a non-homogeneous Poisson process 

is used to model aftershocks occurrence, Equation (1.8).  

 

 

 
|

|exp
!

,

A

E A

E

t T

Am t T

t

Am

t

A

n

d

dP n
n

t t TN

  

  





 
 

       
 







   



 

(1.8)
 

NHPP requires a time-variant rate of exceeding site ground motion im  in  , At t T   

which can be computed, through Equation (1.9), in which  | ,P IM im m r  is the 

probability that intensity threshold is exceeded given an aftershock of magnitude m  

and separated from the site of interest by a distance equal to r  while ,A AM Rf  is the joint 

PDF of magnitude and source-to-site distance of the generic aftershock.  

       
,max

,min min

| ,,
| , ,

A E

E A AE

A

r m

Am M Rim A m

r m

t t P IM im w z f w z dw dz       
 

(1.9)
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1.3.3. Further time-variant aspects in seismic hazard analysis 

The APSHA put into evidence one of the most important characteristics of 

earthquakes, that is, their tendency to cluster both in space and time.  

In literature, there exist some models that account for the occurrence of the whole 

cluster, even though they usually refer to different time scales. Among the few spatio-

temporal models present in literature, the Epidemic Type Aftershock Sequence (ETAS) 

model is one of the most studied and applied (Console et al. 2007; Zhuang et al. 2011; 

Zhuang et al., 2002).  

Such a model was suggested by Ogata (1988). It assumes that each event produces 

events independently of the others. The probability distribution of the time until the 

occurrence of an earthquake is a function of the time spent since the last event and is 

independent of the magnitude. Instead, the probability distributions of location and 

magnitude of the triggered event are dependent on the magnitude and the location of 

the triggering one. The magnitudes of all the events, including background events and 

their offspring, are independent random variables drawn from the same probability 

distribution of density.  

Boyd (2012), instead, incorporated foreshocks and aftershocks into time-independent 

probabilistic seismic-hazard analysis. The author assumes the mainshock and its 

dependents as a time-independent cluster, each cluster being temporally and spatially 

independent from any other. The cluster has a recurrence time of the mainshock and, 

by considering the earthquakes in the cluster as a union of events, dependent events 

have an opportunity to contribute to seismic ground motions and hazard. It is to note, 

however, that the author, to perform the seismic hazard analysis does not provide an 

analytical formulation, but generates multiple synthetic sets of foreshocks and 

aftershocks with which to do the clustering analysis.  

Another aspect of the seismic hazard for which it should be suitable to use history-

dependent models is the interaction among different faults. In fact, when an event 

occurs it provides a tectonic loading change in surrounding regions where the 

perturbation of the stress level may delay or move up the occurrence of an event. In 

literature, there are different stochastic models that permit to consider that the stress 
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release on a fault may change the stress level on another one causing a triggering 

mechanism. The first one is the “linked” stress release model, which is an extension of 

the simple stress release model proposed by Vere-Jones (1978). In such a model, the 

accumulated stress release of earthquakes that occurred in a region is considered and a 

specific parameter measures the fraction of stress transferred from a region to another 

one. The second model, provided by Console et al. (2010) considers that, given a 

segment of fault, the earthquakes in the surrounding regions may produce a change in 

the coseismic static permanent Coulomb stress  CFF  that can delay or anticipate 

the occurrence of an event on that fault.  

1.4. Seismic vulnerability 

The vulnerability of a system may be affected by different phenomena of deterioration 

that lead the vulnerability to be history-dependent. In particular, some deterioration 

mechanism may increase the physical vulnerability of the system, improving the risk of 

structural failure. Two main sources of deterioration, which result to change in the 

mechanical characteristics of a structural system, are usually considered. 

The first one has substantially continuous effects and is usually tied to environmental 

and operating conditions (e.g., aging). The aging process is often related to aggressive 

environment, which worsens mechanical features of structural elements. Aging, 

therefore, directly affects the static and dynamic response of the structures and may 

show an effect in increasing seismic structural fragility. Since the time-variant changes 

are random in nature, the safety evaluation of the existing structures can be conducted 

rationally within a probabilistic framework (Shinozuka, 1983), taking into account 

various sources of uncertainty with respect to the deterioration process. However, the 

behavior of material in time and under variable conditions is a complex and 

multidimensional problem. 

The other source of deterioration has effects that are superposed occasionally to the 

first effects, and are usually related to external sudden actions, for example due to 

cumulative earthquake damage (e.g., Sanchez-Silva et al., 2011); thesis focuses on this 

last aspect.  
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Recent literature about life-cycle models for earthquake resistant structures considers 

that damage accumulation and failure are possibly due to subsequent shocks occurring 

during the time period of interest. This aspect is another important factor that may 

increase the risk of failure and that has to be treated in a time-variant probabilistic 

framework. Most of the seismic risk assessment models only consider the effect of 

mainshocks. This is also implicitly induced by common probabilistic seismic hazard 

analysis, which accounts for the exceedance of ground motion thresholds in 

compliance with memory-less Poisson processes. This is the reason why in the 

framework of Performance-Based Earthquake Engineering, structural fragility is 

usually assumed to be history-independent. Moreover, it is usually assumed that a 

structure, between two events, is repaired and this assumption justifies the fact that the 

risk assessment only considers intact structures. On the other hand, it is well known 

that earthquakes occur in clusters in which the mainshock represents only the principal 

event. Because there is a chance that also aftershocks worsen structural conditions, it 

may be appropriate to include this effect in the life-cycle assessment, also considering 

that the interval between subsequent shocks is insufficient to repair the structure (Yeo 

and Cornell, 2009b). Recently, stochastic processes of aftershock sequences and their 

effect on cumulative structural damage have been formalized. In the case only post-

mainshock context is considered, the collapse risk is assumed caused by the occurrence 

of aftershocks and usually, in this framework, the state of structure is quantified in 

terms of discrete damage states (Luco et al., 2011). In this approach, the performance 

of the system at a certain time, is a combination of two main factors: (i) the initial 

damage state of the structure (which is not necessarily known) and (ii) the capacity of 

the damaged building to resist to future events. The increment of damage in each event 

is therefore state-dependent, that is, the response of the structure depends on the state 

the earthquake found the system.  

An alternative approach based on the reduction of a parameter representing the seismic 

performance of the structure, or on the increase of a variable representing the damage 

accumulation over progressive cycles, is particularly interesting for life-cycle analysis. 

One of the last developed models is that proposed by Iervolino et al. (2013a). This 

model is briefly reviewed as the basis of the stochastic modeling of structures 
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cumulating damage formalized in this thesis. The model assumes as damage index, a 

measure proxy for the dissipated hysteretic energy that allows to consider that damage 

increments in subsequent events are i.i.d. RVs, that is, the response of the structure to 

any specific earthquake is independent of its status prior to the shock. One of these 

measures is the kinematic ductility, , which is the maximum displacement demand 

when the yielding displacement is the unit and it is suitable for a non-evolutionary 

elastic-perfectly-plastic (EPP) single degree of freedom system system (SDoF). In 

particular, the degradation process is formulated as in Equation (1.10), where *
 
is the 

capacity at 0t  , immediately after the mainshock of interest, and  D t  is the 

cumulated damage due to all aftershocks,  N t , occurring within t. Both i  (damage 

in one aftershock) and  N t  are RVs.  

   
 

* *

1

N t

i

i

t D t   


    
 

(1.10)
 

Given this formulation, the probability the structure fails within time t,  fP t , is the 

probability that the structure passes the limit-state threshold, LS , or the complement 

to one of reliability,  R t , Equation (1.11). In fact, it is the probability the cumulated 

damage is larger than the difference between the initial value and the threshold, 

*
LS    . 

         *1f LS LSP t R t P t P D t P D t                    
 (1.11)

 

In particular, using the total probability theorem,  fP t
 

may be computed from 

Equation (1.12), where  P N t k     may be calculated considering that the 

occurrence of aftershocks follows a NHPP, while    P D t N t k    , that is, the 

probability of cumulative damage exceeding the threshold conditional to number of 
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shocks may be easily computed if the distribution of  the sum of damages can be 

expressed in a simple form. 

       
1

f

k

P t P D t N t k P N t k




          (1.12)
  

In particular, authors assuming that damage increments are described by a gamma 

distribution, which enjoys the reproductive property, obtain a closed-form solution for 

the probability of failure conditional to a given number of shocks. 

However, it should be of interest to consider the aftershock contribute not only in the 

post mainshock context, but at the scale of the life of the structure, while Iervolino et 

al. (2013b) propose a similar model for the long term, it does not account for 

aftershocks. Therefore, in this thesis, a stochastic modeling of structures cumulating 

damage due to mainshock-aftershock seismic sequences has been developed to 

consider the effect of the whole cluster. 

1.5. Outline of the Thesis 

In Chapter 2, attention is focused on the long-term seismic hazard analysis evaluated 

using history-dependent models. Among the renewal processes, three different cases 

are considered: the Brownian Passage Time (BPT); a renewal process with Erlang (i.e., 

Gamma with integer shape parameter) interarrival time distribution; and finally, a 

model in which it is assumed that an inverted Gamma distribution represents the 

interarrival time.  

The BPT model is chosen because very well known in the field; the second one 

because it allows to formulate the counting process of events in a closed-form; the third 

process, assumes that the stress rate accumulation is a random variable Gamma-

distributed which lead to an inverted-Gamma interarrival time distribution.  

Among processes that consider both interarrival time and magnitude as RVs, the time-

predictable (e.g., Anagnos and Kiremidijan, 1988) and the slip-predictable (e.g., 

Kiremidijan and Anagnos 1984) are reviewed.  
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As an illustrative application, the Paganica fault (in central Italy) is considered to 

compute the seismic hazard, in terms of ground motion intensity measure, according to 

each of the models. Examples also include, as a benchmark, hazard when HPP is 

considered. 

 

In Chapter 3, starting from the APSHA and following Boyd (2012), it is shown how it 

is possible to analytically combine results of PSHA and APSHA to get a probabilistic 

seismic hazard analysis for mainshock-aftershocks seismic sequences.  

Considering a seismic cluster as the whole of mainshock and following aftershock 

sequence, it may be argued that the occurrence of clusters is probabilistically described 

by the same rate of the main event.  It is built on the hypotheses of HPP occurrence of 

mainshocks, aftershock occurrence may be modelled via a non-homogeneous Poisson 

process with a rate, which depends on the magnitude of the triggering mainshock 

according to the model of Yeo and Cornell (2009a).   

The combination of PSHA and APSHA is analytically discussed and, as an illustrative 

application, a generic seismogenic source is considered and the SPSHA expressed in 

terms of annual rate of exceedance of different IM-levels is finally computed.  

Results of the illustrative application presented help to assess the increase in seismic 

hazard considering the probability of exceeding an acceleration threshold (e.g., that 

considered for design) also considering the contribution of aftershocks. 

 

In Chapter 4 a stochastic life-cycle damage accumulation model for earthquake 

resistant structures is developed, accounting for the effect of the whole cluster.  

The developed compound point process assumes that damage increments are 

independent and identically distributed random variables and that the process 

regulating earthquake occurrence and seismic damage are mutually independent. It is 

shown that such a hypothesis may apply for simple, yet general, elastic-perfectly-

plastic single degree of freedom systems, considering energy-based damage measures. 

According to the last hypothesis, earthquake’s structural effects are i.i.d, that is, the 

structure, in an event, suffers damage that is independent of its state. These 

assumptions are also used to describe the cumulative damage in the single cluster, 
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where it is assumed that mainshock follows a homogeneous Poisson process while 

conditional aftershocks occurrence follows a non-homogeneous Poisson process, 

according to APSHA. Moreover, the model also considers that not all earthquakes are 

damaging; in fact, assuming that earthquake magnitude follows a Gutenberg-Richter 

relationship, not all events are strong enough to damage the structure.  

An illustrative application referring to an EPP-SDoF structure is considered to compute 

the structural lifetime distribution. It is evaluated when the gamma and inverse 

Gaussian distributions (considering both the exact and approximated solution) are 

adopted to approximate the damage increment in one cluster.  

The life-cycle assessment is also compared with the case damaging aftershock effect is 

ignored. Starting from the closed-form solutions, which provide the absolute (i.e., 

aprioristic) probability that a new structure fails in a time interval of interest, 

conditional failure probabilities, which account for information possibly available at 

the epoch of the evaluation, have been calculated.  

 

In Chapter 5, the general outcomes deriving from the developing and the application 

of the proposed procedures are, finally, discussed. 
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Chapter 2 - MODELS AND ISSUES IN HISTORY-

DEPENDENT MAINSHOCK HAZARD 

This chapter is derived from the following paper:  

Polidoro B., Iervolino I., Chioccarelli E., Giorgio M. (2013). Models and issues in 

time-dependent mainshock hazard. ICOSSAR, 11th International Conference on 

Structural Safety & Reliability 16-20 June, Columbia University, New York. 

 

2.1. Introduction 

Probabilistic seismic hazard analysis (PSHA; e.g., McGuire, 2004) usually refers to 

homogeneous Poisson process (HPP) to probabilistically model earthquake occurrence. 

The latter is an independent- and stationary-increment (i.e., memory-less) model, 

which may prove suitable when several (independent) sources contribute to the seismic 

threat for a site. However, when a single fault is of concern and/or the time scale is 

different from that of the long term, other models may be more appropriate to 

probabilistically describe the earthquakes occurrence process.  

The long-term mainshock occurrence is considered in this paper, neglecting other cases 

as the short-term aftershock sequence modeling (e.g., Yeo and Cornell, 2005) or the 

multi-scale operational forecasting (e.g., Jordan et al., 2011). In fact, the study focuses 

on two types of history-dependent models. The first category is that of renewal 

processes, which applies when characteristic earthquakes are of concern, that herein is 

when the considered source may produce a specific magnitude. The second type, which 

can be formalized on the basis of the theory of Markov renewal processes, enables, as 

an additional feature, modeling of correlation between magnitude and interarrival time; 

e.g., Anagnos and Kiremidijan (1988); Cornell and Winterstein (1988). 

The study is structured such that assumptions common to all the considered models are 
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presented first. Then, modeling of the random variables (RVs) involved in each of 

them, is reviewed. Moreover, an illustrative application is set-up with respect to 

evaluate the conditional probability of exceedance of a ground motion intensity 

measure (IM) value for a site of interest, and in a given time-frame.  

To this aim, the Paganica fault (in central Italy; believed to be the source of the 2009 

L’Aquila earthquake) and a site close to it are considered. This allows to compute, for 

each history-dependent model, the probability of observing one event in the time 

interval of interest, and the probability of exceedance of an IM-level, as a function of 

the time elapsed since the last earthquake.  

2.2. Renewal processes for earthquake occurrence 

A renewal process (RP) is, by definition, a sequence of independent and identically 

distributed (i.i.d.) non negative RVs (whose distribution completely characterizes the 

model). In the considered application the RV of interest is the time between successive 

occurrences of earthquakes (i.e., interarrival time, T). 

In the seismic context, RPs appear suitable to describe a sequence of similar and large 

magnitude events on a specific seismic source in the context of the elastic-rebound 

theory (Reid, 1910), which suggests that large tectonic earthquakes may recur at the 

onset of large elastic strain in the crust. Strain will then re-accumulate slowly by steady 

tectonic forcing until the next event.  

In fact, in all RPs it is assumed that the system (i.e., the earthquake source) restarts as-

new after the occurrence of each earthquake. In this sense, they appear suitable to 

model occurrence of characteristic earthquakes, that is sources that tend to produce 

specific-magnitude events.  

The renewal processes considered are: (1) an inverse Gaussian RP, related to the 

Brownian relaxation oscillator model, (2) an Erlang RP, featuring an analytically 

tractable counting process; (3) and finally an inverse gamma RP, related to a model in 

which load increases deterministically over time with random loading rate. 
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2.2.1. Inverse Gaussian 

This RP relates to the Brownian relaxation oscillator model. According to this model, 

load state,  X t , increases gradually over time until it reaches an earthquake-

triggering threshold. The model assumes that earthquake occurrence instantaneously 

relaxes back the system to some ground level. Load state process is modeled through a 

process with independent and stationary Gaussian-distributed increments, as in 

Equation (2.1) and sketched in Figure 2.1.  

In the equation, u  is the rate,  W t  is the standard Brownian motion, which has 

stationary and independent Gaussian increments, and   is a scaling factor that models 

process variance (Matthews et al., 2002). The deterministic (linearly increasing) part of 

the process, takes into account the constant-rate average loading, the random part 

represents contributions of all other factors affecting the eventual rupture of the 

considered source. 

   X t u t W t   
 

(2.1)
 

It is possible to show that, according to the above assumptions, the probability density 

function (PDF) of interarrival time,  Tf t , follows an inverse Gaussian distribution, 

Equation (2.2). This PDF, which is also called the Brownian passage time (BPT) 

distribution, is entirely described by two parameters: the mean recurrence time (  , the 

mean interarrival time, also referred to as the return period, Tr) and the coefficient of 

variation, or aperiodicity, of interarrival time   . The return period is in relation with 

the load rate  u  and the threshold  u . 
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The mean interarrival time or its reciprocal, the mean rate of occurrence, is the 

parameter of first order interest, that is the best-estimate of frequency at which events 

occur. The aperiodicity is a measure of irregularity in the event sequence, that is, a 

deterministic sequence features 0  .  

 
Figure 2.1. Sketch of source load modeling in the BPT model. 

2.2.2. Erlang-distributed interarrival time RP 

To define this process, an Erlang distribution (i.e., a gamma PDF with, k , as the 

integer shape parameter and   as the scale parameter) for the interarrival time is 

considered. The interarrival time distribution is given in Equation (2.3), where   is the 

gamma function. This PDF has a flexible shape that can easily characterize any data-

derived distribution (Takahashi et al., 2004).  

Note that the mean and the coefficient of variation (CoV) in this case are given by 

/k   and 1 k , respectively. These may be put in relation with the return period and 

the aperiodicity of the BPT model. 
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(2.3)

 

One of the main advantages of this process is that it allows a closed-form solution for 

the probability of occurrence of at least one event in time interval  0 ,t t , given that the 
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last earthquake occurred at 0t  , Equation (2.4). In the equation, 
0t  is the time of the 

probabilistic assessment, and  N t  is the function counting events in  0,t . 
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If the probability of having exactly one event is computed as in Equation (2.5), it is 

possible to evaluate how likely is that more than one earthquake occurs in the time-

frame of interest as a function of the time elapsed since the last event, Figure 2.2. 

This allows to understand that if the interval of interest is small with respect to the 

average recurrence time, as it usually happens for seismic risk analysis of engineering 

interest, the probability of having more than one event is very close to the probability 

of one event.  

In other words, it is unlikely that more than one earthquake occurs in a small time 

interval. This result will be helpful in probabilistic seismic hazard analysis discussed in 

Section 2.4.  
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Figure 2.2. Comparison between the probability of observing exactly one event, and at least 

one event, for the renewal process with gamma interarrival time distribution in a 50 yr time 

frame, as a function of the time elapsed since the last earthquake. 

2.2.3. Inverse-Gamma-distributed interarrival time RP 

This RP relates to a (simple) model, which assumes that the load on the fault increases 

linearly and deterministically over time, with a rate that varies randomly from event to 

event.  

Rate is modeled as a gamma-distributed random variable. The earthquake occurs once 

a threshold is reached. Then, the system resets itself until the next event, Figure 2.3.  

It is possible to show that these hypotheses lead to a renewal process characterized by 

an inverse-gamma-distributed (IG) interarrival time (Pandey and van Noortwijk, 2004). 

The latter is given in Equation (2.6), where γ and β are the shape and scale parameters, 

respectively. In the equation the mean and variance of the RV are also given as a 

function of the parameters. 
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Figure 2.3. Representation of loading in the renewal process with Gamma-distributed load rate. 

2.2.4. Homogeneous Poisson process 

It is to note that the HPP model may also be seen as a renewal process with 

exponential interarrival time, Equation (2.7), with mean and standard deviation equal 

to   and Poisson distribution for the increments of the associated counting process, 

Equation (2.8). The latter has independent and stationary increments that render the 

process memory-less. 
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2.3. Markov renewal processes 

The models reviewed in this section are of particular earthquake engineering interest, 

as they allow modeling the relationship between the time and the magnitude of the 
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earthquake (i.e., correlation between these RVs). Two simple examples of these 

Markov renewal processes (MRPs) are herein considered: the time-predictable and the 

slip-predictable models. 

2.3.1. Slip Predictable model 

The slip-predictable model (SPM), similarly to those in Section 2.2, may represent the 

case in which the stress accumulates starting from some initial level for a random 

period of time until an earthquake occurs (Kiremidjian and Anagnos, 1984).  

Interarrival times are modeled as Weibull independent and identically distributed RVs. 

The PDF, along with mean and variance, are given in Equation (2.9), where b  and 

1/ a  are the shape and scale parameters, respectively.  
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 (2.9)
 

In particular, in SPM, the magnitude (M) of the next event depends on the time since 

the last earthquake (Figure 2.4) via the functional relationship,  m g t , taken 

deterministic herein. Hence, assuming that the next event will occur in the interval 

 0 ,t t , the PDF of M depends on 0t  and t  as in Equation (2.10).  

This will be more clearly addressed in the application discussed in Section 2.4; it is to 

note here, however, that the SPM implies to not assume a fixed threshold for 

earthquake-related energy release. 
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Figure 2.4. Loading and energy release in the SPM. 

2.3.2. Time Predictable model 

The time-predictable model (TPM) assumes that the time of occurrence of the next 

earthquake depends on the size and the time of occurrence of the last event (Anagnos 

and Kiremidjian, 1984). In fact, the larger the last earthquake, the longer is, on average, 

the time to the next event. 

This hypothesis is different from the slip-predictable assumption, which implies that 

the size of the preceding event does not affect the occurrence time of the next 

earthquake.  

TPM may represent the stress buildup until a threshold at which an earthquake occurs 

and a random part of the accumulated energy is released (Figure 2.5).  

The magnitudes of events are assumed to be independent and identically distributed 

random variables.  

On the other hand, the interarrival times are Weibull-distributed RVs, conditional on 

the size of the last earthquake, Equation (2.11).  

The PDF is the same as in Equation (2.9), except that its parameters depend on the 

magnitude, 0M , of the last event or, in other words, on time that is needed to 

accumulate sufficient stress to reach again the threshold.  
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Figure 2.5.  Loading and energy release in the TPM. 

2.4. Probabilistic seismic hazard analysis in the case of 

hystory-dependent earthquake occurrence process 

Considering each of the models above, the probability that the ground motion intensity 

measure exceeds a certain threshold, at least once in the next 0t t  years (with 0t t ) 

given 0t  years passed since the last event, indicated as  0 0|P IM im tN      for 

simplicity, can be written as in Equation (2.12). In the equation, the term 

*| ,P IM im m r    represents the probability that intensity threshold is exceeded given 

an earthquake of magnitude m on the considered source. The latter is assumed to be 

separated from the site of interest by a distance equal to R; in the equation a fixed R 

value, r*, is considered. This probability may be computed via ground motion 

prediction equations, or GMPEs. 
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It is to note that Equation (2.12) avails of some approximations allowed by results of 

Section 2.2. It was found that in most of the cases of engineering interest, the interval 

of concern is much smaller than the return period of the characteristic event. Therefore, 

the probability in question can be computed considering only one term. Furthermore, 

the probability of occurrence of one event is about equal to that of at least one event 

(see Figure 2.2), which is relatively easy to compute. 

2.5. Illustrative application 

Hazard, in terms of peak ground acceleration (PGA), was computed according to the 

all reviewed models, considering the Paganica fault (central Italy) as a case-study 

(Figure 2.6). Hazard, here, is conditional on the time elapsed since the last event and its 

magnitude. Indeed, this kind of comparison is expected to highlight main differences 

among the reviewed models. 

Models are calibrated so that they can be considered homogeneous only in terms of 

return period of an event of about M 6.3. Hence, more than on specific values of 

hazard, attention will be put on their trends. 

In the case of BPT-, ERP-, and IG-RP, parameters of the interarrival time distributions 

were calibrated so that Tr is equal to 750 yr and the coefficient of variation is 0.43, 

which, according to Pace et al. (2006), characterize M 6.3 events on the Paganica fault. 

For the HPP the magnitude distribution was taken as a truncated exponential defined in 

the  5.8,6.8  interval as in Equation (2.13), while the rate of occurrence of HPP-

described earthquakes was assumed to be 1/750 event/yr, Figure 2.7.  
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Figure 2.6.  Source-site scheme. 

 
Figure 2.7.  Exponential magnitude distribution for the HPP process on the fault. 

For TPM, it was assumed that the last earthquake was a 0 6.3M   event, while M of 

the next characteristic event was considered to follow a truncated Gaussian distribution 

in the interval  5.8,6.8 , that is, the mean value is set equal to 6.3, while a standard 

deviation equal to 0.1667 is adopted.  

Finally, for SPM, all magnitudes were considered to be related to time of occurrence 

via Equation (2.14). A plot of the relationship is given in Figure 2.8. 
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(2.14)
 

The interarrival time distribution was calibrated in such a way that the mean of the 

interarrival time is equal to 750 yr and CoV is still 0.43.  

This leads to the same parameters of the TPM interarrival time PDF; however, it is to 

underline that the return period of a M 6.3 event does not result in exactly 750 yr for 

this SPM, yet it is close to it. Indeed, even if 750 yr is the expected time to the next 

event, which can virtually be of any magnitude, such an event, by virtue of the time-

magnitude relationship adopted, will be larger than M 5.8 with 0.91 probability. 

 
Figure 2.8. Time-magnitude relationship assumed. 

In Table 1.1, the resulting parameters are given for all the models; note that in the 

Erlang case the mean value ant the CoV are slightly different because of the integer 

shape parameter.  

Figure 2.9 shows the PDFs (that in this section are all indicated as  Tf t , also in the 

case of TPM) computed via these values. 
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Table 1.1. Parameters of time to next event PDFs. 

Model Distribution Parameters Tr [yr] CoV 

BPT μ = 750 α = 0.43 750 0.43 

Erlang k = 5   = 0.0072 693 0.45 

IG γ = 7.3 β = 4725 750 0.43 

SPM a = 0.00118 b = 2.5 752 0.43 

TPM a6.3 = 0.00118 b6.3 = 2.5 752 0.43 

 
Figure 2.9. PDFs of interarrival time according to the considered processes. 
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2.6. Results and discussion 

Figure 2.10 shows the probability of at least one event in a 50 yr time interval, 

calculated adopting  Tf t  defined in Table 1.1. 

 
Figure 2.10. Probability of at least one event in 50 years as a function of the time since the last 

earthquake. 

Trend observed in figure strictly depends on the shape of the hazard-rate function, 

Equation (2.15), which gives the instantaneous probability of an event occurrence 

given that no event had occurred until t. 
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It is noteworthy that, for some processes, after a certain time spent since the last 

earthquake, probability computed in figure tends to decrease. This depends on the fact 

that the hazard-rate function, associated to some of the considered  Tf t , has a non-

monotonic trend. In fact, as shown in Figure 2.11, BPT and IG models may have a 

non-monotonic hazard-rate functions that increase after the last earthquake, then 

decrease eventually (Matthews et al., 2002; Glen, 2011). Erlang RP with shape 
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parameter 1k   has a (bounded) increasing hazard-rate. Finally, SPM and TPM, with 

shape parameter of the Weibull distribution 1b  , feature a diverging hazard-rate 

(Matthews et al., 2002). HPP has a constant hazard rate which is 1/750. 

To compute seismic hazard expressed in terms of probability of exceedance of an IM-

value in 50 yr, the approximation in Equation (2.12), whose suitability was shown for 

the Erlang renewal model, was assumed for all the other processes because of the 

similarity of the PDFs of the time to the next event (Figure 2.9). 

 
Figure 2.11. Hazard rate function for the different models. 

To evaluate the *| ,P IM im m r    term, the Sabetta and Pugliese (1996) GMPE was 

considered. The site was set at fixed Rjb distance (Joyner and Boore, 1981) equal to 5 

Km (Figure 2.6).  

In Figure 2.12 the probability that the PGA exceeds a certain threshold is plotted 

versus the time passed since the last event. The IM-threshold was assumed, as an 

example, equal to 0.447g. It is the median PGA given M 6.3 and r* = 5 km for shallow 

alluvium site according to the considered GMPE.  

All history-dependent models, especially RPs, provide similar results for a time spent 

since the last earthquake of about one half of the return period of the event. 

Conversely, probabilities start to be increasingly different as 0t  gets significantly large. 
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This may render critical the selection of which one of the models to choose for a 

specific fault when the last known event is not recent. 

The non-monotonic hazard-rate function of some of them also shows up in the results 

given in Figure 2.12, which indicates that the probability of exceedance of IM may 

decrease after a certain time since the last event, a behavior that may not be easy to 

justify. 

 
Figure 2.12. Hazard for PGA = 0.447 g. 

2.7. Conclusions 

The memory-less homogeneous Poisson process, where interarrival times are 

independent and identically distributed exponential random variables, is often used in 

hazard assessment for engineering seismic risk analysis. However, when a single fault 

is of concern and/or the time scale is different from that of the long term, history-

dependent processes may be considered. In this paper, models for mainshock 

occurrence on an individual source, were reviewed with working examples. The 

models considered refer to the renewal, and Markov renewal point processes. 

 The Paganica fault (in central Italy) was considered to compute both the probability of 

occurrence of one event in the time interval of interest, as well as the seismic hazard, 
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expressed in terms of (conditional) probability of exceedance of an intensity value in a 

given time-frame. 

The magnitude is considered to be that of characteristic events, that is when the 

considered source generates almost fixed-magnitude earthquakes. To homogenize the 

models, these were calibrated to have mean and variance of time to next event 

distributions as similar as possible.  

Considering the time intervals of common engineering interest, it was assumed that the 

probability of more than one event is negligible (showed for the Erlang renewal 

process), simplifying hazard calculations.  

It was also observed that because of the hazard-rate function, some processes show a 

decreasing probability of occurrence after a certain time has passed since the last event. 

This appears not to be the result of explicit representation of actual earthquake physics, 

while rather a collateral effect of the mathematics of the assumed models. 

Engineering hazard analysis shows that history-dependent models have a similar trend, 

especially renewal processes, until a time of about a half of the mean return period of 

the event, and that the results from all models tend to relatively diverge as the elapsed 

time since the last event increases.  

This means that the longer is the time spent since the last known earthquake on the 

source, the more critical is the selection of the process which is considered to be 

appropriate to represent earthquake occurrence.  
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Chapter 3 - SEQUENCE-BASED PROBABILISTIC 

SEISMIC HAZARD ANALYSIS 

This chapter is derived from the following paper:  

Iervolino I., Giorgio M., Polidoro B. (2014). Sequence-based probabilistic seismic 

hazard analysis. Bulletin of the Seismological Society of America. doi: 

10.1785/0120130207 (in press). 

3.1. Introduction 

The probabilistic seismic hazard analysis (PSHA; e.g., McGuire, 2004) is a 

consolidated procedure to assess the seismic threat for a specific site. PSHA, in its 

classical format, refers to the occurrence of mainshocks. These are prominent 

magnitude earthquakes possibly identified within sequences of events concentrated 

both in space and time (i.e., clusters). 

On the other hand, aftershocks in the sequence may be seen as triggered by the 

mainshock. The features of each sequence are considered to depend only on the 

magnitude and location of the triggering event, being conditionally independent (in 

stochastic sense) of the past history. On these premises, Yeo and Cornell (2009) 

developed aftershock-PSHA (APSHA) to express aftershock hazard similar to the 

mainshock hazard. Indeed, APSHA results are in terms of rate of exceedance of a 

ground motion intensity measure  IM  threshold. This is useful in the post-mainshock 

emergency phase; see Yeo and Cornell (2005) for a discussion. 

It may be argued that the occurrence of clusters can be probabilistically described by 

the same stochastic process adopted to count the main events. In this context, it is 

assumed that the occurrence time for each cluster coincides with that of the triggering 
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earthquake. Indeed, starting from Toro and Silva (2001) and Boyd (2012), it appears 

possible to extend PSHA multiplying the rate of occurrence of mainshocks by the 

probability that a ground motion intensity measure threshold is exceeded at least once 

during the sequence. This means filtering the rate of occurrence of the clusters 

retaining only those causing the sought exceedance event.  

From the engineering point of view, computing the rate of the event referring to the 

exceedance of a ground motion intensity level (e.g., that critical to a structure) during 

the sequence, factually means to also consider the chance that an aftershock causes 

structural failure, while the mainshock did not. This leads to sequence-based PSHA, or 

SPSHA, which may be relevant for performance-based seismic design. It allows to 

determine the exceedance rate of the design intensity accounting for the aftershock 

potential (Iervolino et al., 2013a). As per common practice of current seismic codes, 

damage accumulation on the structure is neglected, while it may be of interest for 

short-term risk management; see Yeo and Cornell (2005) and Iervolino et al. (2013b) 

for some result in this direction.  

The study presented in the following, starting from the intuitions of the mentioned 

studies, derives the analytical formulation of SPSHA, that is including aftershocks in 

the hazard integral, which was still missing in Toro and Silva (2001) and Boyd (2012). 

It is built on the hypotheses that occurrence of mainshocks is regulated by a 

homogenous Poisson process (HPP), whereas occurrence of aftershocks is regulated by 

a conditional non-homogenous Poisson process (NHPP). It is assumed that: the rate of 

occurrence of the aftershocks pertaining to a given sequence, their magnitude range, 

and their spatial clustering, only depend on magnitude and location of the triggering 

mainshock. In the study foreshocks are neglected, as they are usually very limited in 

number (Yeo and Cornell, 2009). 

Because, as illustrated in the following, the model for aftershocks is based on the 

modified Omori law (Utsu, 1961), the study may be seen as modeling primary 

aftershocks. In fact, other models as epidemic-type aftershock sequences (ETAS; e.g., 

Ogata, 1988) are virtually able to model clusters in which each event is able to generate 

its own sequence.  
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The study will not directly deal with issues related to the declustering of earthquakes, 

which will appear only in terms of the resulting occurrence rate of mainshocks and the 

parameters of the modified Omori law that are input data for the proposed model. On 

the other hand, it is to recall that results obtained for both mainshocks and aftershocks 

are model-dependent. This is because, given the original catalog, clustering is 

performed on the basis of conventional rules, which are defined via the model one 

adopts to describe the occurrence of earthquakes.  

The chapter is structured such that PSHA and APSHA essentials are briefly reviewed 

first. Then, the combination of the two is analytically discussed to account for the 

effect of the whole sequence in a single hazard integral. The merely illustrative 

application, considering a generic seismogenic source, is finally carried out to compute 

the annual rate of exceedance of different IM-levels by means of SPSHA, and to 

evaluate the significance of differences with respect to classical seismic hazard 

analysis, in which the effects of aftershocks are neglected. 

3.2. Mainshock, aftershocks, and ground motion intensity 

In this section, stochastic processes and analytical formulations used to evaluate 

mainshock and conditional aftershock hazard, both expressed in terms of rate of 

exceedance of a ground motion intensity threshold, are briefly reviewed. 

3.2.1. Mainshock probabilistic seismic hazard analysis 

Probabilistic seismic hazard analysis usually adopts the homogeneous Poisson process 

to probabilistically model the number of earthquakes the seismic source produces. HPP 

is an independent- and stationary-increment (i.e., memory-less) process, entirely 

described by one parameter, the rate, E . According to HPP, the number of events, 

E
N , occurring in the time interval of interest,  ,t t T  , is independent of the history 

of earthquakes occurred in the past and has the Poisson probability mass function in 

Equation (3.1).  
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     
 

,
!

E

E E

E

n
TT

P N t t T n P N T n e
n




  
         (3.1)

 

It is also consequent to the HPP that the interarrival time distribution of mainshocks is 

an exponential distribution, where the mean time between arrivals is the reciprocal of 

the rate.  

In PSHA, at a site of interest, the exceedance of an IM threshold, im, is also 

probabilistically described by a HPP (Cornell, 1968). The rate of exceedance of im, 

,im E , is obtained from E  via Equation (3.2), where the term  | ,P IM im x y , 

provided by a ground motion prediction equation (GMPE), represents the probability 

that the intensity threshold is exceeded given an earthquake of magnitude EM x , 

from which the site is separated by a distance ER y .  

   
,max ,max

,min ,min

, ,| , ,
E E

E E

E E

r m

im E E M R

r m

P IM im x y f x y dx dy         (3.2)
 

The term ,E EM Rf  is the joint probability density function (PDF) of mainshock 

magnitude and distance random variables (RVs). In the case of a single source, if these 

two RVs may be considered stochastically independent, 
EMf  is often described by a 

Gutenberg-Richter (GR) relationship (Gutenberg and Richter, 1944), and 
ERf is 

obtained on the basis of the source-site geometrical configuration. The integral limits 

are the magnitudes bounding the GR relationship and the distances defining the domain 

of possible ER  values (e.g., Reiter, 1990).  

3.2.2. Aftershock probabilistic seismic hazard analysis 

APSHA is also expressed in terms of rate of occurrence of events exceeding a ground 

motion intensity measure threshold at a site of interest. The main difference with 

respect to PSHA is that such a rate is time-variant. The expected number of events per 

unit time decreases as the time elapsed since the triggering mainshock increases. In this 
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sense, the process that describes occurrence of aftershocks is conditional to occurrence 

and characteristics of the mainshock. 

The NHPP process adopted to build APSHA is based on the hypothesis that the daily 

rate of occurrence of the aftershocks,  | EA m t , can be expressed as in Equation (3.3), 

where t  indicates the time elapsed since the occurrence of the triggering mainshock, 

which according to the adopted time scale, occurred at 0t  . The model also assumes 

that magnitude of aftershocks is bounded between a minimum value of interest, minm , 

and that of the triggering mainshock. Coefficients a and b are from a suitable GR 

relationship, while c and p are from the modified Omori law (Utsu, 1961) for the 

considered sequence. Finally, given the intensity of the triggering mainshock, 

intensities of the aftershocks in the sequence are assumed to be stochastically 

independent random variables.  

      min

| 10 10E

E

pa b m m a

A m t t c
  

    (3.3)
 

From Equation (3.3) it follows that the expected number of aftershocks in the 

 , At t T   interval, is given by Equation (3.4). 

 

     
min

|

( )
1 1

|

,

10 10

1

E

A E

E

A m A

t T a b m m a
p p

A m A

t

E N t t T

d t c t T c
p

  

   
 

    

          
   (3.4)

 

Similar to PSHA, also APSHA filters the intensity of the process reducing the rate of 

occurrence of the events multiplying it by the (time-invariant) probability that the IM 

at the site of interest exceeds the threshold. This leads to the rate of the NHPP process, 

 , | Eim A m t , as in Equation (3.5), where ,A AM Rf  is the joint PDF of magnitude and 

source-to-site distance of the generic aftershock.  
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       
,max

,min min

| ,,
| , ,

A E

E A AE

A

r m

A m M Rim A m

r m

t t P IM im w z f w z dw dz         (3.5)
 

Same considerations given in the previous section for ,E EM Rf  also apply to ,A AM Rf . 

Aftershock location, and then source-to-site distance and its limiting values 

 ,min ,max,A Ar r , will be discussed later on. Indeed, despite the symbols in Equation (3.5), 

consistent with those of Yeo and Cornell (2009), the rate of exceedance of IM also 

depends on mainshock location.  

3.3. Combining mainshocks and conditional aftershocks 

stochastic processes 

In this section the probabilistic seismic hazard analysis accounting for the effects of 

both mainshock and aftershocks is formulated. The occurrence of sequences is 

described by a HPP process and, within a sequence, occurrence of aftershocks is 

described by a NHPP, the rate function of which is conditional to the magnitude of the 

triggering event. The aim is, again, to evaluate the annual rate, im , of exceedance of a 

ground motion intensity measure.  

Herein, such a rate accounts for the occurrence of events defined as the exceedance of 

an IM threshold at least once within a sequence, Equation (3.6).  

 

 1

im E E E A

E E A

P IM im P IM im IM im

P IM im IM im

  



          

       
 (3.6)

 

In the equation, IM is the maximum ground motion intensity among all events in the 

cluster, EIM  is the mainshock intensity measure, and AIM  indicates the maximum 

intensity among the aftershocks. Indeed, AIM
 
exceeds the threshold if and only if at 

least one aftershock produces intensity above the threshold at the site.  
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According to APSHA, the features of the aftershock sequence entirely depend on the 

characteristics of the mainshock. The number of events, their magnitude, and their 

location, are function of the size and location of the sequence-triggering earthquake. 

Therefore, conditional to magnitude and location of the mainshock, the two events 

defined as the IM threshold is not exceeded: (1) in the mainshock, and (2) in any of the 

aftershocks, are stochastically independent, Equation (3.7). (Note that this, which 

follows from the PSHA and APSHA models, is also consistent with Boyd, 2012). 

 

   

,

,

,

,

1 | , ,

1 | , | , ,

E E

E E

E E

E E

im E E A M R

M R

E E A M R

M R

P IM im IM im x y f x y dx dy

P IM im x y P IM im x y f x y dx dy

 



  
            

  

  
           

  





 (3.7)
 

The probability of not exceeding the threshold during the aftershock sequence is 

formulated accounting for the fact that such a sequence is comprised of a random 

number of events, AN . According to the NHPP assumption, such a random variable is 

Poisson distributed, as in Equation (3.1), yet with mean given in Equation (3.4). 

Therefore, applying the total probability theorem to the | ,AP IM im x y    term in 

Equation (3.7), Equation (3.8) results.  
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 (3.8) 

In the equation, | , , 1AP IM im x y i     for 0i  . |A x  reflects the fact that such a 

rate depends on the mainshock magnitude, and AT  is the duration of the aftershock 

sequence (the value assumed for this parameter may affect the result of SPSHA as the 

larger AT , the larger the mean of the AN  RV, thus the larger the resulting IM 

exceedance rate).  | ,AP IM im x y , equal for all aftershocks as per APSHA (Yeo and 

Cornell, 2009), is the non-exceedance probability of the intensity threshold in the 

generic aftershock, marginal with respect to its possible magnitude and location, yet 

given magnitude and location of the mainshock. 

Given magnitude and location of the aftershock, the probability the IM threshold is not 

exceeded is conditionally independent of the mainshock. Then, reformulating the 

 | ,AP IM im x y  term in Equation (3.8) via the total probability theorem, Equation 

(3.9) results.  
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In the equation, the  | ,AP IM im w z  term is the non-exceedance probability of im in 

the generic aftershock of known magnitude and location, and , | ,A A E EM R M Rf
 

is the 

magnitude and distance joint PDF of an aftershock, conditional to the features of the 

mainshock. This PDF accounts for the dependence, of both magnitude of the 

aftershocks and size/location of the seismogenic zone for aftershocks, on magnitude 

and location of the triggering mainshock (to follow). The integration limits are those of 

Equation (3.2) and Equation (3.5) for mainshock and aftershocks, respectively. 

A more compact expression of the hazard integral is given by Equation (3.10). 
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 (3.10) 

In fact, Equation (3.10) is obtained using the equality in Equation (3.11).
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(3.11)

  

It is to note that the result in Equation (3.10) could also be directly obtained, 

computing the probability of zero aftershocks causing the exceedance in  0, AT , via 

a NHPP of rate in Equation (3.5). Nevertheless, derivation given allows deeper insights 

into the implications of the assumptions on the aftershock process on the hazard 

integral. 

Having formulated the hazard integral for the cluster in the case of a single source, it 

may be worth to briefly discuss the common case of multiple (independent) sources 

contributing to the hazard of the site of interest. In the case for each of these the 

occurrence of mainshocks is modeled via a HPP, the resulting rate is just the 

summation, over all the sources, of the rates from Equation (3.9). If the occurrence of 

mainshocks is probabilistically described by means of other processes, for example a 

renewal process, then the rate of exceedance may not be time-invariant (see Polidoro et 

al., 2013, for a discussion). In such cases, if the modified Omori law still applies for 

aftershocks, then it is possible to write the equations for the exceedance probability 

within the cluster similar to this study, yet the resulting formulation will be certainly 

different. 

It is also to note that the proposed approach could be also extended to the case in which 

alternate models, such as the ETAS (e.g., Ogata, 1988), accounting for the possibility 

of any earthquake in the cluster to generate its own sequence, are employed in lieu of 

the modified Omori law to describe the seismic sequences. These models lead to 

change the rate of occurrence of aftershocks and possibly affect also that of 

mainshocks. 
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3.4. Illustrative application 

As an illustrative application of SPSHA, hazard was computed for a site in the middle 

of a generic seismic source represented by an area, the size of which is 230 100 km  

(Figure 3.1). 

 
Figure 3.1. Seismogenic source lattice for mainshocks, generic aftershock lattice around the 

epicenter of a mainshock, and site of interest. 

3.4.1. Characteristics of the mainshock and of the conditional 

aftershock sequence 

Mainshock epicenters were assumed as uniformly distributed in the areal seismic 

source of Figure 3.1, which was discretized by 25 5 km  lattice for computational 

purposes. Mainshock rate was, arbitrarily, assumed to be 0.054 /E events yr  .  

The magnitude distribution of mainshock was, arbitrarily again, chosen to be a 

truncated exponential defined in the  4.3,5.8  range, as illustrated in Figure 3.2. The b-

value of the GR relationship for mainshocks is 1.056.  

In the application, magnitude and source-to-site distance were considered to be 

independent RVs. 
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Figure 3.2. Magnitude distribution for mainshocks 

It was assumed that each mainshock has aftershocks constrained in an area around its 

epicenter. The size of the seismogenic zone for aftershocks in squared kilometers, AS , 

depends on the magnitude of the main event via Equation (3.12) (Utsu, 1970); Figure 

3.3.  

 4.1
10 Em

AS



 

(3.12)
 

Within this area, arbitrarily assumed to be a square and discretized by means of a 121 

points lattice, epicenters are uniformly distributed (see Figure 3.1). In fact, the 

proposed approach to hazard may deal with any shape of the aftershock source area 

(e.g., with an ellipsoidal shape, which is often considered) and/or any function 

representing the probability of each grid cell of such area being the location of an 

aftershock (e.g., probability density functions that have a bell-shaped radial decay from 

the mainshock location, such as in Zhuang et al., 2002). However, this issue does not 

significantly affect the conclusions of the study, and therefore the uniform distribution 

in the square was considered for simplicity. 
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Figure 3.3. Mainshock magnitude versus aftershock source area. 

The parameters used in the modified Omori law and in the Gutenberg-Richter 

relationship for aftershocks, that is the parameters of Equation (3.3), were taken from 

Lolli and Gasperini (2003): 1.66a   , 0.96b  , 0.03c  (in days), 0.93p  , and 

min 4.2m  .  

These apply to Italian generic aftershock sequences; Yeo and Cornell (2009), for 

example, use another set of parameters representing the equivalent California model.  

To evaluate both the  | ,EP IM im m r  and the  | ,AP IM im m r  terms, the 

Ambraseys et al. (1996) GMPE was used; therefore, the magnitude scale to be 

considered is that of this GMPE. Ambraseys et al. (1996) use the jbR  distance metric, 

which is the distance to the surface projection of the source (Joyner and Boore, 1981). 

On the other hand, because the points in Figure 3.1 are considered to be epicenters of 

mainshocks, the relationship in Gruppo di Lavoro (2004), Equation (3.13), was used to 

retrieve the value of jbR  (in km) to be plugged in the GMPE, converting from the 

epicentral distance, R, which is identified by ER  or AR  in the hazard integrals above. 

3.5525 0.8845jbR R     (3.13)
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3.4.2. Cases and Results 

Given the working assumptions taken for the application, SPSHA was computed 

according to Equation (3.10). In performing this first exercise, the IM was considered 

to be the PGA (peak ground acceleration) on rock. Moreover, following Yeo and 

Cornell (2009), the duration of the aftershock sequence
 
 AT  was considered 

arbitrarily (Yeo, personal communication, 2013) equal to 90 days since the mainshock 

occurrence. 

Figure 3.4 compares the SPSHA results, in terms of annual rate of exceedance of 

different PGA thresholds, to those obtained via PSHA using Equation (3.2), that is 

accounting only for mainshocks. Indeed, in Figure 3.5 the relative difference between 

the SPSHA and PSHA, in terms of rate, is also depicted. Even if hazard curves appear 

close differences up to 30% in rates may be observed. 

 
Figure 3.4. PSHA and SPSHA results in terms of PGA for the illustrative application. 
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Figure 3.5. PSHA and SPSHA differences in terms of PGA for the illustrative application. 

Because the 5% damped pseudo-spectral-acceleration,  Sa T , is an IM of general 

earthquake engineering interest, SPSHA was also computed in terms of this intensity 

measure, with T (structural period) varying in the 0s-2s range. Results of this further 

analysis are expressed in terms of uniform hazard spectrum (UHS) that is a spectrum 

the ordinates of which all have the same exceedance probability in a given time frame, 

or equivalently the same return period (e.g., Reiter, 1990). In Figure 3.6, the UHS 

referring to 475 yr, a typical life-safety-related design return period for ordinary 

structures, is compared with its PSHA counterpart. Figure 3.7 shows the relative 

differences between the spectra computed via SPSHA and PSHA. Note that in this case 

comparison is in terms of IM given the return period (rather than rate as in the previous 

example) and changes up to 10% are observed.  
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Figure 3.6. PSHA and SPSHA illustrative application results in terms of 475 yr UHS, that is 

5% damped pseudo-spectral acceleration versus oscillation period, where all ordinates share the 

same 10% in 50 yr exceedance probability.  

 
Figure 3.7. PSHA and SPSHA differences in terms of 475 yr UHS for the illustrative 

application. 

These results, in terms of changes in both rates and accelerations, are comparable to 

those found by Boyd (2012), even though the differences in the two studies and 

applications (Boyd, personal communication, 2013). 
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3.4.3. Further comparative examples 

Further examples have been carried out to highlith the influence of some parameters 

and functions used in the previous section. In particular, the duration of the aftershock 

sequence and the distribution of the aftershocks location have been considered.  

About the first aspect, SPSHA analysis both in terms of annual rate of exceedance of 

PGA and UHS have been conducted considering different AT
 
values. Figure 3.8 

shows hazard in terms of annual rate of exceedance of different thresholds when PGA 

(peak ground acceleration on rock) is the IM. The figure refers to the hazard considered 

only in terms of mainshocks, that is Equation (3.2), and considering also aftershocks 

according to Equation (3.10). The aftershocks durations  AT  considered are: 15 

days, 90 days, 1 year and 3 years since the time of occurrence of the mainshock.  

 
Figure 3.8. PSHA and SPSHA results in terms of PGA for the illustrative application. 

In Figure 3.9 the relative difference between the SPSHA (evaluated for the different 

AT  values) and PSHA in terms of annual rate of exceedance is also depicted. It can be 

noted that differences have the same trend and they increase with the increasing 

aftershocks duration  AT . In fact, with the increasing of AT  also the expected 
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number of aftershocks increases, hence, the probability that the intensity measure is 

exceeded. 

 
Figure 3.9. PSHA and SPSHA differences in terms of PGA for the illustrative application. 

As a further analysis, SPSHA was also computed taking the 5% damped pseudo-

spectral-acceleration,  Sa T , in the 0s-2s range of periods, as an IM. In Figure 3.10 

the resulting 475 yr return period uniform hazard spectra obtained for the different 

aftershocks durations are compared with the PSHA counterpart.  

Figure 3.11 shows the relative difference between the SPSHA and PSHA acceleration 

spectra. It can be noted that for a fixed  AT  value differences are almost constant, 

while they increase with the increasing aftershocks duration.   
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Figure 3.10. PSHA and SPSHA results in terms of 475 yr UHS varying the duration of the 

sequence for the illustrative application.  

 
Figure 3.11. PSHA and SPSHA differences in terms of 475 yr UHS varying the duration of the 

sequence for the illustrative application. 

In the previous section, it was assumed that each mainshock has aftershocks 

constrained in an area around its epicenter. The size of the seismogenic zone for 

aftershocks depends on the magnitude of the main event via Equation (3.12) and within 
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this area, epicenters are uniformly distribute (Updf). In this section another possible 

distribution (a bivariate Gaussian distribution, BGpdf) is considered, Equation (3.14), 

where x and y indicate the aftershock location, while d and   are the parameters of 

the distribution assumed arbitrarly equal to 20.121 10d    degrees
2
 and 0.972   

magnitude
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.  
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 (3.14)

 

Figure 3.12 compares the SPSHA results (considering both a uniform and a bivariate 

gaussian distributions), in terms of annual rate of exceedance of different PGA 

thresholds, to those obtained via PSHA using Equation (3.2), that is accounting only 

for mainshocks; in both cases aftershocks duration is assumed equal to 90AT   days. 

 
Figure 3.12. PSHA and SPSHA(considering for aftershock location both a uniform and a 

bivariate Gaussian distribution) results in terms of PGA for the illustrative application. 

In Figure 3.13 the relative difference between the SPSHA and PSHA, in terms of rate, 

is also depicted. Results show that a different distribution for the aftershocks location 

leads to similar results in terms of annual rate of exceedance of different PGA values. 
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Figure 3.13. PSHA and SPSHA differences in terms of PGA for the illustrative application. 

Results of this further analysis are also expressed in terms of uniform hazard spectrum 

referring to a return period equal to 475 yr., Figure 3.14.  

Figure 3.15 shows the relative differences between the spectra computed via SPSHA 

considering both a uniform and bivariate Gaussian distribution and PSHA. Results, 

show that differences between the two cases are negligible. 
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Figure 3.14. PSHA and SPSHA (considering for aftershock location both a uniform and a 

bivariate Gaussian distribution) results in terms of 475 yr UHS for the illustrative application.  

 
Figure 3.15. PSHA and SPSHA differences in terms of 475 yr UHS for the illustrative 

application. 
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3.5. Conclusions 

The study presented in this chapter aimed at contributing to the inclusion of Omori-

type aftershocks, to main earthquake events, in the seismic hazard analysis expressed 

in terms of rate of exceedance of a ground motion intensity measure. The focus was the 

probabilistically consistent formalization of the hazard integral, looking at the event of 

exceeding an intensity threshold at least once during the sequence.  

To directly extend seismic hazard including the aftershock potential in the computation 

of the exceedance rate may be useful for performance-based design, as the intensity 

critical to the structure of interest could be exceeded in any of the earthquakes of the 

cluster. 

Probabilistic seismic hazard analysis for mainshock-aftershocks seismic sequences was 

built on the homogeneous Poisson process assumption for occurrence of mainshocks, 

and on the conditional non-homogeneous Poisson process for the occurrence of 

aftershocks. The latter depends on the features of the mainshock via the modified 

Omori law and via a semi-empirical relationship between the mainshock characteristics 

and the aftershock source area. 

Sequence-based PSHA was formulated analytically considering that the effects of 

aftershocks (i.e., ground motion intensities) are conditionally independent on 

everything happens outside the cluster, given the magnitude and location of the 

triggering mainshock.  

The illustrative application refers to a generic source zone for mainshocks and to a 

generic aftershock sequence. The SPSHA was compared to the classical PSHA results, 

both in terms of rates given the IM threshold, and in terms of IM given the return 

period. Results, at least for the case set up, indicate changes up to about 30% in PGA 

rate and up to about 10% in pseudo-spectral acceleration values corresponding to the 

475 yr return period. 

Further examples have been carried out to highlith the influence of some parameters. In 

particular, a variation in terms of aftershock sequence duration and distribution of the 

aftershocks location have been investigated. Dealing with the first aspect, SPSHA 

analysis both in terms of annual rate of exceedance of PGA and UHS have been 
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conducted considering different aftershocks durations. Results indicate that, as with the 

increasing aftershock duration, the expected number of aftershocks improves, also the 

hazard expressed both in terms of annual rate of exceedance of PGA values and UHS 

rises. 

Finally, SPSHA results obtained considering a uniform distribution for the aftershocks 

location is compared with the case a bivariate Gaussian distribution is adopted. 

Analysis shows that the distributions lead to similar results. 

It is believed that the derived formulation may be of earthquake engineering interest, 

especially with respect to long-term performance-based design and assessment of 

structures. 
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Chapter 4 - RELIABILITY OF STRUCTURES TO 

EARTHQUAKE CLUSTERS 

This chapter is derived from the following papers:  

Iervolino I., Giorgio M., Polidoro B. (2014). Reliability of structures to earthquake 

clusters. (Under review). 

Iervolino I., Giorgio M., Polidoro B. (2014). Accounting for the aftershock effect in the 

life-cycle assessment of structures. Second European Conference on Earthquake 

Engineering and Seismology (2ECEES), Istanbul, Turkey. 

4.1. Introduction 

Life-cycle models for structures require to account for time-variant issues possibly 

affecting the assessment of the risk of failure. In particular, the degradation over time 

of structural performance may need to be considered, and it is the focus of the study 

presented herein. Usually, literature distinguishes between two categories of 

phenomena which may lead to damage accumulation: (1) continuous deterioration of 

material characteristics (or aging) and (2) cumulating damage because of repeated 

overloading due to earthquake shocks (e.g., Sanchez-Silva et al., 2011). In a 

probabilistic framework, the only possible when dealing with the uncertainties 

affecting the life-cycle assessment of structures, these two issues require different 

stochastic modeling as: the former is likely to be represented by a process, which 

considers damages that cumulate continuously over time, while the latter can be more 

properly interpreted as the accumulation of the effect of repeated shocks that are point-

in-time events with respect to the life-cycle of the structure. 
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The current best practice with respect to long-term seismic risk analysis of structures is 

certainly represented by the performance-based earthquake engineering framework (or 

PBEE; e.g., Cornell and Krawinkler, 2000). PBEE conveniently splits the structural 

assessment in sub-problems that can be more easily addressed, yet providing the 

sought result if combined: hazard, vulnerability, and loss (or exposure, that is the value 

of the elements at risk). 

Classical probabilistic seismic hazard analysis (PSHA) usually refers to the 

homogeneous Poisson process (HPP) in order to model the temporal distribution of 

seismic shocks at the earthquake source and at the site of the construction of interest 

(e.g., McGuire, 2004). A memory-less model is also adopted to account for the spatial 

distribution of the earthquakes. One of the main limitation of this approach is that it is 

used to account for the occurrence of mainshocks only. Indeed, in a context where 

structural damage accumulation is tackled, it is to consider that aftershocks may have a 

non-negligible effect on the assessment of seismic risk and then on the life-cycle (Yeo 

and Cornell, 2009b). Unfortunately, this classical PSHA cannot be directly extended to 

model occurrence of all the seismic events. Indeed, both the use of the HPP (a process 

with independent and stationary increments) and the model adopted to describe spatial 

distribution of mainshocks, are not suited to model the occurrence of events that are 

clustered in time and space. In fact, these clusters include a mainshock (i.e., the largest 

magnitude event) and the following aftershock sequence, whose spatial and temporal 

distribution depends on the characteristics of the triggering mainshock.  

Stochastic modeling of structures cumulating damage due to mainshock-aftershock 

seismic sequences is the issue addressed in the presented study. The work builds on 

recent results of the authors about stochastic modeling of degradation in earthquake 

resistant structures for life-cycle assessment (e.g., Iervolino et al., 2013a), short-term 

structural risk assessment based on aftershock probabilistic seismic hazard analysis (or 

APSHA; Yeo and Cornell 2009a), and damage accumulation in aftershock sequences 

(e.g., Iervolino et al. 2013b). In the study, earthquake clusters are considered 

instantaneous with respect to structural life; therefore, seismic events are described by 

a marked (or reward; Ross, 1996) point process, where each event is represented by its 

occurrence time (i.e., the occurrence time of the triggering mainshock) and damage 
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that it produces. The occurrence of earthquake clusters is modeled via the same HPP 

considered for the mainshocks (Boyd, 2012), while the random occurrence of 

aftershock is represented by means of a (conditional) non-homogeneous Poisson 

process (NHPP), the intensity of which depends on the characteristics of the sequence-

triggering mainshock (Yeo and Cornell, 2009a). On the structural vulnerability side, it 

is considered that the structure may suffer damage both in the mainshock and in the 

following aftershocks, and that performance degradation due to these seismic damages 

can eventually lead to failure.  

The main assumption of the model is that increments of damage accumulated over 

different seismic sequences are independent and identically distributed (i.i.d.) random 

variables (RVs), which are also independent of the process regulating occurrence of 

clusters. It is clear that the core reason for these assumptions is analytical convenience 

(to follow). Nonetheless, in the case of the considered application, they are less 

restrictive than it may appear; indeed, as it has been shown in Iervolino et al. (2013a-b) 

they are applicable to simple (yet of general application in the earthquake engineering 

context) elastic-perfectly-plastic (EPP) single degree of freedom (SDOF) systems, at 

least if energy-based damage indices are adopted. The model also explicitly accounts 

for the fact that not all earthquakes are damaging; i.e., it explicitly considers that some 

mainshocks and most of the aftershocks are not strong enough to induce energy 

dissipation in the structure.  

The chapter is structured such that the compound Poisson process modeling structural 

damage accumulation is described first. Then, the damage variable selected to define 

the state of the stochastic model is briefly discussed. Subsequently, starting from the 

hypotheses taken for hazard and vulnerability, the distribution of damage in a single 

cluster (i.e., a single mainshock-aftershock sequence) is derived. Finally, the problem 

of formulating the reliability of the considered structure is addressed. Different 

solutions are obtained, each of which accounting for a specific state of knowledge 

about the seismic history of the structure. In developing these conditional reliabilities 

two different models are adopted to represent the damage in a single cluster: (a) the 

gamma and (b) the inverse-Gaussian. Main motivation for this is that the reproductive 

property of these RVs enables closed-form solutions, or at least closed-form 
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approximations, for all the considered scenarios. An illustrative application of the 

proposed methodology, to an EPP-SDOF structure located in an ideal seismic source 

zone, closes the chapter. For this simple structure the model is calibrated and the 

probability of failure is obtained. Results of the life-cycle assessment are also 

compared with those in the case aftershock effect is ignored. 

4.2. Damage process formulation 

The issue tackled in this study is sketched in Figure 4.1, where the vertical axis reports 

the residual seismic capacity as a function of time. The source of deterioration, in 

absence of aging, is related to damaging events in seismic sequences comprised of a 

mainshock and following aftershocks (foreshocks are neglected as they are usually 

very small in number, Yeo and Cornell 2009a). Aging is neglected herein for 

simplicity; the interested reader may refer to Iervolino et al. (2013a) for the 

combination of cumulative seismic damage and continuous deterioration consistent 

with the framework of this study. Considering that a seismic sequence, with duration in 

the order of months, may be seen as a point-in-time event with respect to the life-cycle 

of the structure, cluster occurrence time is considered coinciding with that of the 

triggering mainshock.  
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Figure 4.1. Sketch of degradation in structures subjected to seismic damages in mainshock-

aftershocks sequences. 

On the other hand, the effect of the (whole) sequence on the structure is evaluated 

considering the effective occurrence time and location of the triggering mainshock and 

all the aftershocks in the cluster. The advantage of this modeling approach stands in the 

fact that it allows describing the sequence effect as that of a single event, as 

schematically illustrated in Figure 4.2. Clearly, this approach works satisfactorily in the 

case repair is assumed unfeasible within a sequence. 

Given a metric of the damage effect on the residual structural performance, for 

example the residual ductility to collapse,  t , the degradation process may be 

expressed as in Equation (4.1). In the equation, 0  is the initial capacity in the cycle 

and  D t  is the cumulated damage due to all clusters,  N t , occurring within t .  

   
 

0 0

1

N t

i

i

t D t   


      (4.1)
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Figure 4.2. Seismic cycle representation for a structure subjected to cumulative earthquake 

damages. 

It follows from Equation (4.1) that the probability the structure fails within time t, 

 fP t , that is the cumulative probability function (CDF) of structural lifetime,  TF t , 

complement to one of reliability,  R t , is the probability that the structure passes the 

limit-state (LS) threshold, LS . It can also be expressed as the probability the damage 

cumulated is larger than the difference between the initial capacity and the threshold, 

0 LS    , as in Equation (4.2).  

           01f T LS LSP t F t R t P t P D t P D t                        
 (4.2)

 

Because in this approach the damage in the single cluster, i , and  N t  are both 

RVs, the structural reliability problem may be computed by means of the total 

probability theorem as in Equation (4.3), where the probability of occurrence of k 

clusters and the probability of failure given k clusters, appear.  
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 (4.3)
 

The equation assumes that the process regulating the occurrence of clusters is a HPP. It 

is an assumption directly following from classical PSHA. Indeed, if mainshock 

occurrence is stochastically modeled by a HPP with rate equal to   (a common 

assumption in PSHA) then, the cluster initiation may be seen as described by the same 

process (Boyd, 2012; Iervolino et al., 2013d; Iervolino et al., 2014). Thus, 

 E N t t      is the expected number of clusters in  0,t . 

Once the total probability theorem is applied, and the probability of occurrence of 

clusters is formulated, the last issue to solve is to evaluate the probability of 

exceedance of a threshold for any given number of clusters,  
1

|
k

i

i

P N t k 


 
   

 
 . 

Because the latter is the probability of the sum of damages in k individual clusters, 

such a probability may be easily computed if i , the damage in a single sequence, is 

modeled via a random variable that enjoys additive reproductive property.
1
 It is well-

know the Gaussian RV enjoys this property; however, it is not suitable to model 

degradation, which is a monotonic process, thus requiring damage in a single event to 

be a non-negative RV. On the other hand, the lognormal RV, often used in the 

earthquake engineering context to model non-negative random variables, is not 

reproductive in the (additive) sense needed in the equations above.  

                                                      

1 The sum of i.i.d. RVs pertaining to a family that enjoys the reproductive property also belongs to the 

considered family. 
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Two RVs, featuring the needed property, are: the gamma (G) and the inverse-Gaussian 

(IG), which are two-parameters models and may be seen as particular cases of the 

generalized-inverse-Gaussian RV (Johnson et al., 1994). These will be considered in 

the following to model structural damage in earthquake clusters; however, because 

reproducibility requires that effects of clusters are independent, this hypothesis will be 

discussed in the next section along with the assumption that cluster damages are 

identically distributed. 

4.3. Damage measures and independent and identically 

distributed increments hypothesis 

This section focuses on the properties of damage measures that may characterize the 

dynamic performance of common structures in literature. According to Cosenza and 

Manfredi (2000) damage indices are usually comprised between two extremes: (i) 

displacement-related and (ii) energy-related. Measures in the former class assume that 

collapse is related to attainment or exceedance of some maximum strain limit. Those in 

the latter postulate that damage is related to the amount of energy dissipated by 

hysteretic loops. In fact, the most representative damage index of (i) is the maximum 

displacement demand, while hysteretic energy, defined as the total areas of plastic 

cycles during shaking, is a key member of (ii). Hybrid indices also exist (e.g., Park and 

Ang, 1985).  

If the simplest non-linear inelastic structure is considered, that is an EPP-SDOF 

(Figure 4.3a), according to a displacement-based damage criterion, the accumulation of 

degradation occurs in the second shock, that is part of a sequence of two, only if the 

maximum displacement reached in the second one is larger than the maximum in the 

first one. This makes the damage increment dependent at least on the residual 

displacement of the structure at the time of the shock, and violates the hypothesis, 

postulated in the previous section, that the cumulative damage process has independent 

increments. In this case, state-dependent approaches (e.g., Yeo and Cornell, 2005; 

Luco et al., 2011; Giorgio et al., 2010) may be required to stochastically model 

degradation. On the other hand, Figure 4.3b shows that the area of hysteretic loops 
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during the shaking from the second shock is measured regardless of the previous 

shaking demand. Therefore, due to the non-evolutionary (Cosenza and Manfredi, 2000) 

features of the EPP-SDOF system response, if a damage index measuring dissipated 

hysteretic energy is chosen, damage increments in subsequent events are i.i.d. RVs, 

that is, the response of the structure to a specific shock is independent of its status prior 

to the shock (see section 4.4). 

 
Figure 4.3. Elastic-perfectly-plastic non-evolutionary behavior (a), and monotonic (simplistic) 

scheme of cumulative response in terms of maximum displacement and dissipated hysteretic 

energy (b). F is the force, δ is the displacement, and y subscript indicates yielding. 

In this study the kinematic ductility,  , is considered as a simplistic proxy for 

dissipated hysteretic energy. It is the maximum displacement demand when the 

yielding displacement is the unit. To capture energy dissipation in a single shock only, 

ductility is computed as if the residual displacement at beginning of each ground 

motion is zero. Note that this implies that only events with intensity larger than that 

required to yield the structure may produce increment of damage. The collapse is 

assumed to occur when kinematic ductility, conservatively accumulated independently 

on the sign of maximum displacement, reaches some capacity value. 
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4.4. Damage distribution in the single cluster 

This section targets the formulation of the distribution of damage increment in a single 

seismic cluster, 
i . It is the fundamental component to obtain the distribution of the 

sum of damage in k clusters as per Equation (4.3). Under the hypotheses discussed in 

the preceding sections,
i  may be seen as the damage in the mainshock, ,E i , plus 

that accumulated in the aftershock sequence, ,A i , pertaining to the same mainshock, 

Equation (4.4). 

,

, , , ,

1

A iN

i E i A i E i A ij

j

    


          (4.4)
 

In the equation, ,A iN  is the number of aftershocks in the sequence following the i-th 

mainshock and ,A ij  is the damage in the j-th aftershock. The developed model 

considers all the terms of Equation (4.4) as random. Therefore, in the following it will 

be discussed first how ,A iN  is stochastically modeled, then the distribution of ,E i is 

addressed, and ,A ij  is discussed. Finally the strategy for combination of these terms 

to get i  is illustrated.  

4.4.1. Conditional aftershock occurrence process and APSHA 

hypotheses 

Given the occurrence of the mainshock initiating the seismic sequence, aftershocks are 

modeled herein following the aftershock probabilistic seismic hazard analysis approach 

of Yeo and Cornell (2009a). In APSHA, assuming that the mainshock occurred at 

0t  , the occurrence of aftershocks is described by a NHPP the daily rate of which, 

EA M
 , is provided by Equation (4.5). The rate refers to the aftershocks with magnitude 

bounded between a minimum value of interest, minm , and that of the mainshock, 

coefficients a and b are from a suitable Gutenberg and Richter (GR) relationship 
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(Gutenberg and Richter, 1944), while c and p are those of the modified Omori law 

(Utsu, 1961) for the considered sequence. Therefore, the process of aftershocks may be 

considered conditional to the mainshock. Moreover, it follows from Equation (4.5) that 

the expected number of aftershocks in  0, AT  is given by Equation (4.6). 

      min10 10E

E

pa b m m a

A M
t t c

  
    (4.5)

 

 

   
min( )

11

0

10 10

1

A E

E

A A E

T a b m m a
pp

AA M

E N T M x

d c T c
p

  

   


    

        
 

 (4.6)
 

APSHA, provides the rate of exceedance of a ground motion intensity measure (IM) at 

a site of interest,  ,A E EIM M R
t , during the aftershock sequence, via Equation (4.7). 

 

   

,

, ,
, , ,

A E E

E A A E E

A A

IM M R

A AA M M R M R

r m

t

t P IM im M w R z f w z x y dw dz







          
 (4.7)

 

In the equation, 
, ,A A E EM R M R

f  is the distribution of the aftershock magnitude and 

distance,  ,A AM R , conditional to those of the mainshock,  ,E EM R ,
2
 while 

,A AP IM im M w R z      is the probability of exceedance of IM conditional to 

magnitude and distance from a ground motion prediction equation (GMPE). It is worth 

to note that, to obtain Equation (4.7), APSHA also assumes that IMs in different 

aftershocks are i.i.d., given  ,E EM R . 

                                                      

2 This factually makes the aftershock rate to be dependent also on location of the mainshock and not only 

on magnitude. 
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4.4.2. Mainshock damage 

The PDF of the first term at the right hand side of Equation (4.4) that is the damage in 

the mainshock, ,E i , is computed consistently with PBEE. Indeed, the distribution of 

,E i ,  
,E i

f   , is calculated as in Equation (4.8).  

     

     

,

,

,

,,
, ,

EE i

E EE i E E

E E

E i IMIM

im

M RIM IM M R

im r m

f u f u du

f u f u x y f x y dx dy du

f




 








    

     



  
 (4.8)

 

In the equation 
,E i IM

f


 is the distribution of damage given an IM value (e.g., from 

incremental dynamic analysis or IDA; Vamvatsikos and Cornell, 2002), while
EIMf  is 

the PDF of the chosen IM given the occurrence of a mainshock. Indeed, as per the right 

hand side of Equation (4.8), the latter can be computed as in PSHA, via the joint PDF 

of mainshock magnitude and distance RVs for the site of the construction, ,E EM Rf , and 

the distribution of IM given the mainshock parameters, 
,E EIM M R

f , provided by a 

GMPE. In the case  ,E EM R  may be considered stochastically independent, the joint 

PDF is just the product of the marginal distribution of magnitude, often described by a 

GR relationship, and that of source-to-site distance, which depends on the source-site 

geometrical configuration. In fact, it will be shown in section 4..4.4 that to compute the 

distribution in the cluster, the distribution of damage in the mainshock, conditional to 

 ,E EM R  is of interest. It follows from Equation (4.8) and is given in Equation (4.9) in 

the case the structural response is independent of  ,E EM R  given IM. 

     
,, , ,

,,
E E E i E EE i M R IM IM M R

im

f u f u x y duf x y
 

     (4.9)
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4.4.3. Damage in the generic aftershock given the mainshock 

To compute the distribution of damage in the single aftershock of a certain mainshock, 

a similar approach can be used, as depicted in Equation (4.10). In the equation, 

,A E EIM M R
f  is the distribution of the ground motion intensity given the occurrence of a 

mainshock of magnitude 
EM x

 
 and separated by a distance 

ER y  from the site; 

i.e., from APSHA.
3
 In fact, 

,A E EIM M R
f  is the PDF corresponding to the integral term of 

Equation (4.7). 

     

     

, ,

,

, ,

, , ,

, ,

, , ,

A ij E E A ij A E E

A ij A A A A E E

A A

M R IM IM M R

im

IM IM M R M R M R

im r m

f x y f u f u x y du

f u f u w z f w z x y dw dz du

 



 



 



   

     



  
 (4.10)

 

Note that the 
,A ij IM

f


 term is the same as 
,E i IM

f


 in Equation (4.9). Indeed, in both 

equations it is assumed that the response of the structure is, given the IM, the same in 

mainshock and one aftershock, 
, ,E i A ijIM IM

f f
  

 , and independent on specific features 

of the earthquake (see section 4.6). In this case, the IM is said to be a sufficient one 

(Luco and Cornell, 2007). Moreover, it is also assumed that the same GMPE can be 

                                                      

3
 Models used in this study consider that the aftershock source zone depends on the magnitude 

and location of the mainshock. Considering magnitude and distance, instead, is equivalent 

herein. It is also to note that both 
,A E EIM M R

f  and 
,E E EIM M R

f should be indicated as 
, ,A ij E EIM M R

f  

and 
, ,E i E EIM M R

f , yet the notation is intentionally simplified due to the i.i.d. features of these 

RVs. Actually, while also damages are i.i.d., subscript are kept there to avoid confusion, as it 

will be clarified in the following. 



Chapter 4 - Reliability of structures to earthquake clusters 

______________________________________________________________________________________________________________________________ 

 

78 

 

used for both mainshock and aftershocks, so also the 
,A AIM M R

f  term is the same as 

,E EIM M R
f . 

4.4.4. Cluster damage 

On the basis of the above equations, it is possible to approach the distribution of 

damage in the whole cluster. Recalling Equation (4.4), the probability of exceedance of 

any damage level can be computed as in Equation (4.11). 

 
 ,

, ,

, , , ,

1

1 1
A i A

i E i A i

N T

E i A i E i A ij

j

P P

P P

    

     




         

 
               

 


 (4.11)
 

Because of the features of the EPP-SDOF response introduced in section 4.3, it may be 

argued that conditional to  ,E EM R , the increment damage in the mainshock and in 

the aftershock sequence are independent random variables. This is because, as 

discussed in section 4.2, the damage from any single event in a cluster only depends on 

the IM; moreover, the IMs associate to the events in a cluster are independent given the 

features of the triggering mainshock. Hence, applying the total probability theorem, 

, ,E i A iP          of Equation (4.11) can be rewritten as in Equation (4.12). 

 

   
,

, ,

,

, | , ,

0

, ,

, , ,

E E

E E

A i E E E E

E E

E i A i

i E E M R

r m

E i E E M R M R

r m

P

P M x R y f x y dx dy

P l M x R y f l x y f x y dl dx dy





  

 

  

      

          

            

 

  

 (4.12)
 

In the above equation, the term , | ,E i E EP l M x R y         
is obtained from 

Equation (4.9), while 
, | ,A i E EM Rf   represents the PDF of damage cumulated during the 
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aftershock sequence, given the features of the mainshock. Because, as discussed, the 

aftershock sequence is comprised by a random number of events, 
, | ,A i E EM Rf   can be 

evaluated applying the total probability theorem again; Equation (4.13). Note that, 

following the APSHA approach, the probability of having  j aftershocks in the cluster 

is provided by a Poisson distribution with mean in Equation (4.6). In the equation it is 

assumed that 
, ,, ,A i E E A iM R N

f


 degenerates in a unitary mass at zero when j equals zero.
 
 

     

 
    

, , ,

,

, ,

,, , ,
0

,

, ,
0

, , ,

, ,
!

A i E E A i E E A i

A i A E

A i E E A i

A i A EM R M R N
j

j

A i A E E N T M x

M R N
j

f l x y f l x y j P N T j M x

E N T M x
f l x y j e

j

 





 



    




       

   
  





 (4.13)
 

Under the assumption that damages produced in different aftershock events are i.i.d. 

RVs, given  ,E EM R , which follows from sections 4.3 and 4.2, the distribution of the 

sum of damages in a given number of aftershocks, conditional to magnitude and 

distance of the mainshock, 
, ,, ,A i E E A iM R N

f


, is just the j-th order convolution of 

, | ,A ij E EM Rf   from Equation (4.10), with itself, and it will be indicated as  

, | ,A i E E

j

M Rf   in 

the following.  

Applying a further simplification of the delta method (e.g., Oehlert, 1992) to Equation 

(4.13), the infinite-terms summation may be approximated by the term corresponding 

to the expected number of aftershocks in the time interval of interest, Equation (4.14). 
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




       






 (4.14)
 

At this point, combining Equation (4.14) with Equation (4.12), the probability of 

exceedance of an increment damage value in the single cluster results, and it is given in 

Equation (4.15), where it is assumed that 
 

, ,

A

A ij E E

N

M R
f


 degenerates in a unitary 

probability mass at , 0A ij   when 0AN  .
4
 

 

     
,

, ,,

0

1 , , ,A

E EA ij E E

E E

i

N

E i E E M RM R

r m

P

P l M x R y f l x y f x y dl dx dy





 

 


  

               
 (4.15) 

The strategy to compute the integral in Equation (4.15) will be discussed in section 4.6, 

while section 4.5 introduces the advantage of assuming that i  follows a G or an IG 

distribution. 

                                                      

4
 In Equation (4.15), and in others above, the distribution of damage is always indicated as a 

PDF, for simplicity of notation. However, it is not perfectly appropriate because the damage in 

a single event is not a continuous RV, as it will be clarified in the application. 
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4.5. Reliability solutions for Gamma and Inverse Gaussian 

damage in the cluster 

Because the EPP-SDOF assures the RVs adopted to model damages, 
i , accumulated 

over different clusters are i.i.d., a closed-form solution of the reliability problem may 

be obtained if the sum of the damages in multiple mainshock-aftershock sequences 

may be expressed using a (non-negative) RV, which possesses the reproductive 

property.  

4.5.1. Gamma-distributed damage increments 

An option discussed in Iervolino et al. (2013a) is given in Equation (4.16), in which it 

is considered that the damage increment is a gamma-distributed RV ( is the gamma 

function). The PDF of this RV is indexed by two parameters, D  and D , the scale and 

shape parameters, respectively. The mean and variance are D D   and 2

D D   

respectively. 

 
 

 

1D

D

i

D D

D

f e



 



  






 



 
 


 (4.16)

 

The main advantage in using the gamma model in the context of this study is that the 

sum of Dk  i.i.d. G-distributed RVs, with scale and shape parameters D  and D , is 

still G-distributed with parameters D  and D Dk  . Therefore, the probability of 

cumulative damage exceeding the threshold, conditional to Dk  shocks, is given by 

Equation (4.17) where  D Dk    and  U ,D D Dk       are referred to as the 

incomplete and the upper-incomplete gamma functions, respectively.  

   
 

 

 

 
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U ,D D

D

k

xD D D D D

D D

D D D D

x k
P D t N t k e dx

k k







    


 

 

    
             (4.17)
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Equation (4.17), allows a closed-form solution of the reliability problem given in 

Equation (4.3). However, because the gamma is a continuous RV, it gives 

 0 0iP    , thus, it can be adopted to account only for the effects of damaging 

clusters (this justifies the subscript D). This is the reason why the rate in Equation (4.3) 

has to be the one referring to damaging sequences, which can be obtained as the total 

cluster rate,  , times the probability that a cluster is damaging, that is 

 0D iP      . 

That said, it might be worth to introduce an approximation enabling closed-form for 

the reliability assessment. This is given in Equation (4.18) where  fP t  is replaced by 

the probability conditional to the expected number of damaging clusters until t . 

Tolerability of this approximation will be discussed in the application section.  
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 
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       

 

               

   


  



 
 (4.18)

 

4.5.2. Inverse-Gaussian-distributed damage increments 

Another RV with similar properties as those of the gamma, is the inverse-Gaussian, 

Equation (4.19). The IG distribution is the well-known solution of the first-passage 

time problem in processes regulated by Brownian motions (e.g., Matthews et al., 

2002). Also this RV has a PDF that is indexed by two parameters: D  and D . The 

mean and variance are D  and 3

D D   respectively.  
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  
 

 (4.19)
 

The sum of 
Dk  i.i.d. IG-distributed RVs, each of which with parameters 

D  and 
D , is 

still IG with parameters 2

D Dk   and 
D Dk  ; see Equation (4.20), where 

IGF  is the CDF 

of the IG-RV.  

Therefore, following from Equation (4.18), the failure probability in Equation (4.3) can 

be approximated by Equation (4.21). 
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         

   


 (4.20)

 

         2 21 ; ,f D D IG D D D DP t P D t N t E N t F t t                 
 (4.21)

 

4.5.3. Conditional reliability approximations 

Formulations above provide the absolute (i.e., aprioristic) probability that a new 

structure fails in a time interval of interest  0,t . However, according to the 

formulated models, it is possible to include in the reliability assessment other 

information about the structural conditions (e.g., after an inspection), still retaining the 

closed-forms (Iervolino et al. 2013a-b). In particular, it is possible to formulate the 

conditional failure probabilities when: (1) the residual capacity of the structure is 

known at the time of the reliability assessment; (2) it is only known that the structure is 

above the failure threshold at the time the evaluation is performed, yet with unknown 

residual seismic capacity; (3) same of case (2) with the additional information of the 

number of damaging clusters the structure suffered up to the time of the assessment.  

(1) In this case, at *t  during the life-cycle, the present capacity,  *t , of the structure 

is measured. The failure probability conditional to observed state has the same 



Chapter 4 - Reliability of structures to earthquake clusters 

______________________________________________________________________________________________________________________________ 

 

84 

 

expression above, just, replacing   and t  of Equations (4.18) and (4.21), with 

 * *

LSt   
 

and *t t . In fact, the structure has now to undergo a smaller 

capacity reduction to fail. Equation (4.22) and Equation (4.23) provide such probability 

when the damage increment in the cluster is susceptible of G or IG representation, 

respectively.
5
 

   
 

 

* *

U* * *

*

,
, 

D D D

LS

D D

t t
P D t t t t

t t

   
   

 

     
      

      
 

 (4.22)
 

   

   

* *

2
* 2 * * *1 ; , ,

LS

IG D D D D

P D t t

F t t t t t t

   

    

    
 

         
  

 (4.23)
 

(2) The second case considers that at *t  the structure is still surviving but with 

unknown damage condition. Failure probability may be computed via Equation (4.24) 

and it specializes in Equation (4.25) and Equation (4.26) for G and IG cases, 

respectively.  

       

   

 
 

 
 

 

* *

*

*

* **

1

1
1 1 1 ,

1

LS LS

LS f

fLS

P D t t P D t t

P D t t P tR t
t t

R t P tP t

     

  

 

         
   

           
  
 

 (4.24)
 

                                                      

5 The same relationship may be also used if the residual capacity 
*  is obtained via a repair at 

*t . 
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   

 
 

U

* *

*

U

*

,
1

1 ,
,

1

D D D

D D

LS

D D D

D D

t

t
P D t t t t

t

t

   

 
  

   

 

   


  
     
       

    

 (4.25)
 

   
 

 

2 2

* *

2
2 * *

; ,
1 ,

; ,

IG D D D D

LS

IG D D D D

F t t
P D t t t t

F t t

    
  

    

   
     
      

  

 (4.26)
 

(3) Finally, Equation (4.27) provides the probability of failure given the structure 

surviving at time *t  after  *

D DN t k
 

damaging clusters. Equation (4.28) and 

Equation (4.29) specialize for the G and IG cases, respectively. 

     

 
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 

  

 

 

 

 











 
   
 
        

   
   

 

 
           

    
 

   
 





 



 (4.27) 
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,
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D D D D

D D D

D D

P D t t N t k

k t t

k t t
t t

k

k

  

    

  

  



     
 

       
 
      
   

  


 

 (4.28) 
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     

    
 

* *

2
* *
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; ,

1 ,
; ,

LS D D

IG D D D D D D

IG D D D D

P D t t N t k

F k t t k t t

t t
F k k

  

    

  

     
 

          
   

  
 

 (4.29)
 

4.6. Model calibration strategy via an illustrative 

application 

To evaluate the developed models, an ideal application is performed. To this aim a 

simple EPP-SDOF system with unloading/reloading stiffness always equal to initial 

one, is considered. The period of the SDOF system is assumed to be equal to 0.5 s, its 

weight is 100 kN and the yielding force is equal to 10 kN, viscous damping is set at 

5%. The following sub-sections first illustrate the calibration of the damage cluster 

model. Then, the results of the reliability assessment are discussed. Finally, a 

comparison with the case the effect of aftershocks is neglected is carried out. 

4.6.1. Mainshock and aftershock intensity distributions 

The structure was assumed to be within a generic seismogenic source zone, the size of 

which is 220 80 km . Mainshock epicenters were assumed as uniformly distributed in 

the source zone discretized by means of the lattice depicted in Figure 4.4. The event 

rate of mainshocks, and then of clusters, was arbitrarily, assumed to be 

 0.013 events yr  . The magnitude distribution of mainshocks was taken as a 

truncated exponential defined in the  5,6.5  range. The b-value of the GR relationship 

was set to 1.056;  ,E EM R  were considered independent RVs. It was assumed that 

each mainshock has its aftershocks constrained in an area around its epicenter. The size 

of the aftershock seismogenic zone in squared kilometers, AS , depends on the 

triggering event’s magnitude according to Equation (4.30) from Utsu (1970). Within 
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this area, arbitrarily assumed to be a square, epicenters are uniformly distributed on a 

lattice with 0.5 km spacing (see Iervolino et al., 2014, for a discussion related to these 

issues).  

 4.1
10 Em

AS


  (4.30)
 

The length of aftershock sequences  AT  is set to 90 days after the mainshock 

(following Yeo and Cornell, 2009a). The parameters appearing in Equation (4.5), were: 

1.66a   , 0.96b  , 0.03c  , 0.93p  , and min 4.5m  ; i.e., those of generic 

aftershock sequences in Italy according to Lolli and Gasperini (2003).  

 
Figure 4.4. Seismogenic source lattice for mainshocks, generic aftershock lattice around a 

mainshock epicenter, and site. 

Given this set of parameters and source models, the distributions of IM, in the 

mainshock and in the generic aftershock, given magnitude and location of the 

mainshock, were computed via the integrals over magnitude and distance appearing at 

the right hand sides of Equation (4.8) and Equation (4.10).
6
  

                                                      

6 In fact, they are hazard integrals where the rate is not considered as these PDF are given the occurrence 

of the event of interest. 
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As an example, Figure 4.5 reports these distributions for some values representing the 

mainshock features.  

 
Figure 4.5. Distribution of IM in the mainshock given its features. 

 
Figure 4.6. Distribution of IM in the generic aftershock given the features of the mainshocks as 

per APSHA. 
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The required | ,E EIM M Rf
 

and | ,A AIM M Rf  terms for these calculations were taken 

considering the Ambraseys et al. (1996) GMPE, on rock sites, converting the epicentral 

distance, to jbR  distance (Joyner and Boore 1981) used by this GMPE, via a semi-

empirical relationship (Gruppo di Lavoro, 2004).  

4.6.2. Distribution of damage given intensity of single 

earthquake shock 

As discussed in section 4.3, the parameter chosen as a proxy for dissipating hysteretic 

energy in a single earthquake is the kinematic ductility computed as if the residual 

displacement of the structure before the earthquake was zero.
 
Hence, the damage 

increment,  , in each earthquake event may be evaluated via Equation (4.31). 

max

0

y

y

  


  


  

  
(4.31)

 

In the equation max  is the maximum absolute value of plastic displacement demand 

and   is the displacement associated to the ductility capacity; recalling that 0  is the 

initial capacity, values of   larger than one imply failure. Moreover, as discussed, 

damage is zero in those shocks not able to push the structure beyond yielding, which 

means ground motions with 5% damped spectral acceleration at 0.5 s lower than 0.10 

g. Because the response of the considered structure in terms of hysteretic energy in a 

generic earthquake shock should have always the same distribution given a sufficient 

IM – e.g., first mode spectral acceleration at the elastic period of the SDOF, or  Sa T  

– and it is independent on the shaking history, then a single set of IDAs is sufficient to 

calibrate the damage distribution conditional to earthquake intensity, 
IM

f


. In 

particular, it is sufficient to analyze the response of the as-new structure (see also 

Iervolino et al., 2013a-c). To this aim, IDAs have been performed using 30 records 

selected via REXEL (Iervolino et al., 2010), with moment magnitude between 5 and 7, 
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epicentral distances lower than 30 km and stiff site class;
7 

Figure 4.7 shows IDA’s 

output. For 
IM

f


 a lognormal distribution was assumed, as well-established 

hypothesis in the PBEE context. Figure 4.8 shows some of these conditional PDFs.  

 
Figure 4.7. Ductility demand from IDAs. 

                                                      

7 The same records and analyses have been used to calculate the response of the structure to aftershocks.  
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Figure 4.8. Some distributions of damage conditional to ground motion intensity. 

4.6.3. Damage distributions in mainshock, in the aftershock 

sequence, and in the cluster 

The integration of the distributions as per sections 4.5.1 and 4.5.2 allowed to get the 

PDFs of damage in the mainshocks and in a generic aftershock conditional to any value 

of the magnitude and distance of the mainshock, according to Equation (4.9) and 

Equation (4.10); as an example, some 
, ,E EE i M R

f   and 
, ,E EA ij M R

f   distributions are 

given in Figures 4.9 and 4.10. Note that, even if not represented in the figure, both 

these functions have a concentrated mass at zero, which is the probability that the 

earthquake of interest is not damaging. Indeed, due to the damage criterion considered, 

only the shocks with intensity larger than that causing yielding of the SDOF are able to 

induce hysteretic dissipation in the structure, then damage.  

In analytical terms, these distributions are defined as in Equation (4.32) and in 

Equation (4.33). In the cases of Figures 4.9 and 4.10  0

, ,
0.27,0.08,0.22

E EE i M R
P   for 

 6.5, 5E EM R  ,  6.0, 10E EM R  ,
 
 6.3, 22E EM R  , respectively, while 

 0

, ,
0.39,0.48,0.81

E EA ij M R
P   for  6.5, 5E EM R  ,  6.0, 10E EM R  ,
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 6.3, 22E EM R  , respectively (these probability masses are not shown in the 

pictures because of scale issues). 

 

 
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 (4.32) 
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 (4.33)
 

 
Figure 4.9. Distribution of damage in the mainshock conditional to some magnitude and 

distance values. 
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Figure 4.10. Distribution of damage in in the generic aftershock conditional to the same 

features of the mainshock. 

It is to recall now that, while 
, ,E EE i M R

f   is directly needed to compute the damage in 

the cluster as per Equation (4.15), 
 

, | ,

A

A ij E E

N

M Rf   is required for aftershocks. As discussed, 

it is the PDF of the sum of damage in the aftershocks sequence conditional to a 

 ,E EM R  mainshock, when the expected number  AN  of aftershocks in AT
 
occurs. 

It is convenient here to refer to the process counting the number damaging aftershocks, 

as they are the only contributing to damage accumulation. Because of the properties of 

Poisson processes, the rate of damaging aftershocks is simply that in Equation (4.5) 

times the probability that an aftershock is damaging, Equation (4.34). The integer part 

of the expected number of damaging aftershocks is then termed ,A DN . 

     0

|, , , , , ,
0 1

EE E E E E E E
A MA D M R A M A ij M R A ij M R

t P t P          
 

 (4.34) 

Because, given  ,E EM R , damage in different aftershocks are i.i.d., 
 ,

, | ,

A D

A ij E E

N

M Rf   
is just 

the convolution of 
, ,E EA ij M R

f   with itself of order ,A DN . The expected number of 
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aftershocks for some  ,E EM R  pairs is given in Figure 4.11, while Figure 4.12 reports 

the distributions of damage in the corresponding aftershock sequences.  

These distributions allow to compute, via Equation (4.15), the distribution of the 

damage accumulated over the cluster, that is integrating over  ,E EM R .  

The  iP   

 

 obtained is compared in Figure 4.13 with the distribution obtained 

when the contribution of aftershocks is neglected, that is with the results of Equation 

(4.8) in terms of complementary cumulative distribution function (CCDF).  

Changes in probability in the case the aftershock sequences are accounted for are 

depicted in Figure 4.14. Note that the distribution of damage in the cluster, Equation 

(4.35), is characterized by a probability mass in zero, as not all clusters are damaging, 

this accounts for the chance that the mainshock and all aftershocks are undamaging.  

For the considered example, the probability that the cluster is undamaging is 

 0 01 0.62i iP P     , which implies the rate of damaging clusters to be 

   0 0.013 0.38 0.005D iP events yr         .  

For comparison it may be worth to report also about the probability that the mainshock 

only is undamaging, which is 0

, 0.65E iP  , marginally with respect to  ,E EM R .

 

 
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0

0

0
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i

i
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i f z dz
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P
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 (4.35)
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Figure 4.11. Expected number of total and damaging aftershocks conditional to the features of 

the mainshock. 

 
Figure 4.12. Distribution of cumulated damage in aftershock sequences (obtained via Monte 

Carlo simulation) conditional to some mainshock cases. 
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Figure 4.13. CCDFs of damage increment in the cluster and in the mainshock only. 

 
Figure 4.14. Percent probability increments if the aftershock sequence effect is not neglected. 
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4.6.4. Results of reliability assessment 

The distribution of damage in the cluster,  iP    ,

 

given that the cluster is 

damaging, was then alternatively approximated via a gamma and an inverse-Gaussian 

distribution. It was anticipated that the damage RV is not continuous.  

Indeed, it has a probability mass at zero accounting for the non-damaging clusters, 

which cannot be modeled by the gamma and inverse-Gaussian distributions; therefore, 

these continuous RVs have been adopted to approximate only the continuous part of 

the damage in Equation (4.35) (whose area is normalized to one).  

The criterion to calibrate the parameters of these two distributions was to set their 

mean and variance the same as that of the damage conditional to the occurrence of a 

damaging cluster. These mean and variance are equal to 0.77 and 2.18, respectively. 

The corresponding parameters are given in Table 4.1.  

 

 

 

 

Table 4.1. Parameters of the gamma and of the inverse Gaussian distributions. 

Gamma Inverse-Gaussian 

 D   D   D  D   

0.3556 0.2762 0.2145 0.7766 

 

At this point it is possible to compute the CDF of the lifetime of the structure,  TF t . 

In fact, Figure 4.15 shows such distribution computed in different cases: 

according to Equation (4.18) and Equation (4.21), that is (i) when the distribution of 

damage in the cluster is assumed to follow a G or an IG distribution respectively, and 

the expected number of damaging clusters is considered; (ii) when the distribution of 

damage in the cluster is assumed to follow a G or an IG distribution, yet the 

approximation of the expected number of damaging clusters relaxed, that is reliability 
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is computed by means of Equation (4.3) where the probability of the sum of damages 

exceeding the threshold refers to G and IG approximations; (iii) without any 

approximation other than those yielding the distributions in Figure 4.13 (obtained by 

means of structural simulation), these structural lifetime distributions refer to both the 

cluster and the mainshock, and where computed applying Equation (4.3). 

The cluster simulation curve is a reference case, as it is the case without any 

approximating hypothesis. Therefore, Figure 4.16 reports on the ratios of the failure 

probabilities reported in Figure 4.15 as a function of time and with respect to this case. 

For example, the ratio of the probabilities from the simulationmainshock to those from the 

simulationcluster curve, allows appreciating the significance, in the considered example, 

of accounting for the potential damage effect of aftershocks in the cluster. Similar, the 

ratios of the other curves allow to evaluate the effect of the approximations considered, 

that is when damage is modeled by a G or an IG RV and also when the number of 

occurring clusters is replaced by the expected value of those damaging. Obtained 

results show that considering the mainshock only leads to an appreciable un-

conservative estimate of failure probability, and that the considered approximations, 

generally lead to acceptable errors, at least in the range of low failure probabilities, of 

largest civil engineering interest. At least in this application, the G approximation of 

cluster damage seems to provide better results than the IG. 
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Figure 4.15. Lifetime distributions accounting for the cluster effect with different degrees of 

approximation along with that when only mainshocks are considered. 

 
Figure 4.16. Ratio of failure probabilities from curves in the above figure to the reference case 

that is simulationcluster. 

Finally, Table 4.2 reports about examples of conditional failure probabilities as per 

section 4.5.3. In particular, the following cases were considered: (i) failure probability 

in 50 yr when at 25 yr 0.7 residual capacity is measured, from Equation (4.22) and 

Equation (4.23); (ii) failure probability in 50 yr when at 25 yr it is observed that the 
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structure hasn’t failed yet, from Equation (4.25) and Equation (4.26); (iii) failure 

probability in 50 yr when at 25 yr it is observed that the structure hasn’t failed yet, and 

it is known that it has suffered one damaging earthquake, from Equation (4.28) and 

Equation (4.29). It is confirmed, at least referring to this application, that 

approximations introduced are tolerable and that the G distribution performs better 

than the IG. 

Table 4.2. Conditional failure probabilities for different knowledge levels. 

 Simulation Gamma 
Inverse-

Gaussian 

   50 25 0.3P D D     0.0335 0.0359 0.0281 

   50 25 1P D D     0.0263 0.0282 0.0219 

   50 25 1 1DP D D k       0.0347 0.0357 0.0354 

4.7. Conclusions 

Starting from: classical stochastic modeling of mainshocks occurrence, conditional 

process modeling of aftershock sequences, and a probabilistic structural damage 

accumulation model, life-cycle reliability of constructions subjected to seismic clusters 

was addressed. The developed model, consistent with the classical framework of 

performance-based earthquake engineering, assumes that the occurrence of seismic 

clusters may be described by the same homogeneous Poisson process characterizing 

mainshock occurrence, while aftershocks’ occurrence follows a non-homogeneous 

Poisson process based on the modified Omori-law, and therefore is conditional on 

mainshock magnitude. 

The structural damage model postulated leads damage increments in different 

mainshocks to be independent and identically distributed; damage increments in 

aftershocks pertaining to a specific mainshock are also independent and identically 

distributed random variables, given the mainshock features. This allowed to formulate 



Chapter 4 - Reliability of structures to earthquake clusters 

______________________________________________________________________________________________________________________________ 

 

101 

 

the distribution of damage in a generic cluster, which is also i.i.d. with respect to other 

clusters. These characteristics of the cluster-damage distribution enable to formulate 

the non-negative damage accumulation process, which in turn, under the additional 

hypotheses that damage is a gamma or (as an alternative) an inverse-Gaussian RV, 

allowed closed-form solution, even if approximate, for the life-cycle reliability 

assessment. Finally strategies are also formulated which allow to use additional 

information about the status of the structure at the time of the assessment in order to 

perform state-dependent reliability evaluations.  

A simple application was set-up with a two-fold aim: (i) to appreciate the effect of 

changes in reliability assessment when the effect of virtually damaging aftershock 

sequences are not neglected, and (ii) to evaluate the tolerability of the adopted 

approximated closed-forms. An elastic perfectly plastic single-degree-of-freedom 

system located in a generic seismogenic areal source was considered, spatial 

distribution of aftershocks was modeled by a semi-empirical relationship function of 

mainshock magnitude and location. Then, distributions of intensities in mainshocks 

and in following sequences were obtained. Integration of those with the results of 

seismic demand analysis for the considered structure, led to the distribution of damage 

in mainshocks, aftershocks and, finally, in the single (generic) cluster. This 

distribution, conditional to damage larger than zero, was fitted by the mentioned 

reproductive models calibrated to retain mean and variance of damage computed via 

structural analysis. Results show that, at least in the examined case, the contribution of 

aftershocks to the life-cycle assessment of earthquake-resistant structures may be not 

negligible, yet the problem may be addressed via stochastic modeling consistent with 

PBEE, which may lead to convenient closed-form approximations.  

 

 

 



Chapter 4 - Reliability of structures to earthquake clusters 

______________________________________________________________________________________________________________________________ 

 

102 

 

References 

Ambraseys NN, Simpson KA and Bommer JJ (1996). Prediction of horizontal response 

spectra in Europe. Earthquake Eng. Struct. Dyn. 25: 371-400. 

Boyd OS (2012). Including foreshocks and aftershocks in time-independent 

probabilistic seismic hazard Analyses. B. Seism. Soc. Am. 102(3): 909-917. 

Cornell CA, Krawinkler H (2000). Progress and challenges in seismic performance 

assessment. Peer Center Newletter 3(2). 

Cosenza E, Manfredi G (2000). Damage indices and damage measures. Prog. Struct. 

Eng. Mat. 2(1): 50-59. 

Giorgio M, Guida M, Pulcini G (2010). A state-dependent wear model with an 

application to marine engine cylinder liners. Technometrics 52(2): 172-187. 

Gruppo di Lavoro (2004). Redazione della Mappa di Pericolosità Simica Prevista 

dall’Ordinanza PCM 3274 del 20 Marzo 2003, Rapporto conclusivo per il 

Dipartimento della Protezione Civile. Istituto Nazionale di Geofisica e 

Vulcanologia, Rome, Italy. (In Italian) 

Gutenberg R, Richter CF (1944). Frequency of earthquakes in California. B. Seism. 

Soc. Am. 34(4): 185-188. 

Iervolino I, Galasso C, Cosenza E (2010). REXEL: computer aided record selection for 

code-based seismic structural analysis. B. Earthq. Eng. 8(2): 339-362. 

Iervolino I, Giorgio M, Chioccarelli E (2013a). Gamma degradation models for 

earthquake resistant structures. Struct. Saf. 45: 48–58. 

Iervolino I, Giorgio M, Chioccarelli E (2013b). Closed-form aftershock reliability of 

damage-cumulating elastic-perfectly-plastics- ystems. Earthquake Eng. Struct. 

Dyn. http://dx.doi.org/10.1002/eqe.2363 (in press) 

Iervolino I, Giorgio M, Chioccarelli E (2013c). Gamma modelling of aftershock 

reliability of elastic-perfectly-plastic systems. Proc. of Vienna Congress on 

Recent Advances in Earthquake Engineering and Structural Dynamics (VEESD) 

– Vienna, Austria. 

Iervolino I, Giorgio M, Polidoro B (2013d). Probabilistic seismic hazard analysis for 

http://dx.doi.org/10.1002/eqe.2363


Chapter 4 - Reliability of structures to earthquake clusters 

______________________________________________________________________________________________________________________________ 

 

103 

 

seismic sequences. Proc. of Vienna Congress on Recent Advances in Earthquake 

Engineering and Structural Dynamics (VEESD) – Vienna, Austria. 

Iervolino I, Giorgio M, Polidoro B (2014). Sequence-based probabilistic seismic 

hazard analysis. B. Seism. Soc. Am. (in press)  

Johnson NL, Kotz S, Balakrishnan N (1994). Continuous univariate distributions. Vol. 

1, Wiley Series in Probability and Mathematical Statistics: Applied Probability 

and Statistics (2nd ed.), John Wiley & Sons, New York. 

Joyner WB and Boore DM (1981). Peak horizontal acceleration and velocity from 

strong motion records including records from the 1979 Imperial Valley, 

California, earthquake. B. Seism. Soc. Am. 71(6): 2011-38. 

Lolli B, Gasperini P (2003). Aftershocks hazard in Italy Part I: Estimation of time-

magnitude distribution model parameters and computation of probabilities of 

occurrence. J. Seismol. 7(2): 235-257. 

Luco N, Cornell CA (2007). Structure-specific scalar intensity measures for near-

source and ordinary earthquake ground motions. Earthq. Spectra 23(2): 357-

392. 

Luco N, Gerstenberger M, Uma S, Ryu H, Liel A, Raghunandan M (2011). A 

methodology for post-mainshock probabilistic assessment of building collapse 

risk. Proc. of the 9th Pacific Conference on Earthquake Engineering, Auckland, 

New Zealand. 

Matthews VM, Ellsworth LW, Reasenberg AP (2002). A Brownian model for recurrent 

earthquakes. B. Seism. Soc. Am. 92(6): 2233-2250. 

McGuire RK (2004). Seismic hazard and risk analysis. Earthquake Engineering 

Research Institute, MNO-10, Oakland, CA. 

Oehlert GW (1992). A note on the delta method. The American Statistician 46(1): 27-

29. 

Park Y, Ang A (1985). Mechanistic seismic damage model for reinforced concrete. J. 

Struct. Eng.-ASCE 111(4): 722-739. 

Ross SM (1996). Stochastic Processes, 2nd edn. Wiley Series in Probability and 

Statistics: Probability and Statistics, John Wiley & Sons, New York. 

Sanchez-Silva M, Klutke G-A, Rosowsky DV (2011). Life-cycle performance of 



Chapter 4 - Reliability of structures to earthquake clusters 

______________________________________________________________________________________________________________________________ 

 

104 

 

structures subject to multiple deterioration mechanisms. Struct. Saf. 33(3): 206-

217. 

Utsu T (1961). A statistical study on the occurrence of aftershocks. Geophys. Mag. 30: 

521–605. 

Utsu T (1970). Aftershocks and earthquake statistics (1): Some parameters which 

characterize an aftershock sequence and their interrelations. Journal of the 

Faculty of Science, Hokkaido University, Series 7, Geophysics 3(3): 129-195. 

Vamvatsikos D, Cornell CA (2002). Incremental dynamic analysis. Earthquake Eng. 

Struct. Dyn. 31(3): 491-514. 

Yeo GL, Cornell CA (2005). Stochastic characterization and decision bases under 

time-dependent aftershock risk in performance-based earthquake engineering, 

PEER Report 2005/13, Pacific Earthquake Engineering Research Center, 

Berkeley, CA, USA. 

Yeo GL, Cornell CA (2009a). A probabilistic framework for quantification of 

aftershock ground-motion hazard in California: Methodology and parametric 

study. Earthquake Eng. Struct. Dyn. 38: 45-60. 

Yeo GL, Cornell CA (2009b). Building life-cycle cost analysis due to mainshock and 

aftershock occurrences. Struct. Saf. 31(5): 396-408. 

 

 

 

 

 

 

 

 

 

 

 



 

105 

 

Chapter 5 - SUMMARY AND CONCLUSIONS 

5.1. Summary and conclusions 

The current best practice with respect to long-term seismic risk analysis of structures is 

represented by the performance-based earthquake engineering framework proposed by 

Pacific Earthquake Engineering Research Center. In particular, the performance 

assessment and the design process used to evaluate the seismic risk is divided into four 

steps, consisting of quantifying the seismic ground motion hazard, assessing the 

structural response, estimating the damage to building and contents and resulting 

consequences in terms of financial losses, fatalities and business interruption. All 

previous components are usually considered to be time-invariant; however, variation in 

time of seismic structural risk may involve all components that form the performance-

based earthquake engineering framework. This thesis mainly focused on the time-

variant aspects that can involve both the hazard and the life-cycle assessment of 

structures, highlighting in both cases, the aftershock contribution.  

 

Referring to the probabilistic seismic hazard analysis (PSHA), most of the studies 

related to seismicity and seismic hazard assessment are based on time-independent 

models. In fact, traditional PSHA uses the homogeneous Poisson process (HPP) which 

is a stationary-increment memory-less model; that is, the number of events depends 

only on the length of the considered time interval and it is independent of the starting 

time and the number of events happened before. Such a model is especially suitable 

when several (independent) sources contribute to the seismic threat. However, when a 

single fault is of concern and/or the time scale is different from that of the long term, 

other models may better represent random earthquakes generation.  

Chapter 2 provided a brief review of the most important assumptions of some history-

dependent processes underlining differences in terms of analytical hypotheses and 

physical interpretations. Attention was focused on two types of processes, available in 

literature, that model earthquakes occurrence.  
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The first typology considered was that of renewal processes, which usually applies 

when characteristic earthquakes are of concern, that is, when the considered source 

tends to produce a single magnitude events. Within this category, the reviewed models 

were: the Brownian Passage Time; a renewal process with Erlang (i.e., Gamma with 

integer shape parameter) interarrival time distribution; and finally, a model in which it 

is assumed that an inverted Gamma distribution represents the interarrival time.  

Differently from the above models, the second category reviewed allows to include a 

relationship between the time and the magnitude of the earthquake, both are considered 

as random variables. Two models were reviewed: the time-predictable and the slip-

predictable models.  

As an illustrative application, the Paganica fault (in central Italy; believed to be the 

source of the 2009 L’Aquila earthquake) and a site close to it were considered to 

compute both the probability of observing one event in the time interval of interest, and 

the seismic hazard, in terms of ground motion intensity measure as a function of the 

time elapsed since the last earthquake. Examples also included, as a benchmark, hazard 

when HPP is considered. The magnitude was considered to be that of characteristic 

events. To render homogeneous all models, these were calibrated so that the 

interarrival time distributions had the mean and variance as similar as possible. 

Considering the time intervals of common engineering interest, it was assumed that the 

probability of more than one event was negligible (showed for the Erlang renewal 

process), simplifying hazard calculations. It was also observed that as the hazard-rate 

function, some processes show a decreasing probability of occurrence after a certain 

time since the last event. 

Engineering hazard analysis showed that history-dependent models have a similar 

trend, especially renewal processes, until a time of about a half of the mean return 

period of the event, and that the results from all models tend to relatively diverge with 

the increasing elapsed time since the last event. This means that the longer is the time 

spent since the last known earthquake on the source, the more critical is the selection of 

the process which is considered to be appropriate to represent earthquake occurrence.  
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Traditional PSHA only refers to the occurrence of mainshocks, that is, prominent 

magnitude earthquakes possibly identified within a sequence of events concentrated 

both in space and time (i.e., clusters). Within the sequence, according to some models, 

aftershocks may be seen as triggered by the mainshock. The features of each sequence 

depend only on the magnitude and location of the triggering event, being conditionally 

independent (in stochastic sense) of the history. Starting from these premises, some 

authors put their attention on aftershocks occurrence, in particular on the ground 

motions that they may produce causing weakening and/or collapse of structures 

perhaps already damaged (but not yet repaired) by the mainshock. In this context, they 

developed the aftershock-PSHA to evaluate the aftershock hazard expressed in terms 

of probability of exceedance of a ground motion intensity measure threshold. Starting 

from these studies, in Chapter 3, it was shown how it is possible to analytically 

combine results of PSHA and APSHA to get a probabilistic seismic hazard analysis for 

mainshock-aftershocks seismic sequences (SPSHA). The model was built on the 

hypotheses that the occurrence of clusters is probabilistically described by the same 

stochastic counting process of the main events. Within the cluster, the occurrence of 

mainshock is regulated by a HPP, while occurrence of aftershocks is regulated by a 

non-homogeneous Poisson process (NHPP) with a rate, which depends on the 

magnitude of the triggering mainshock.  

As an illustrative application, a generic seismogenic source was considered and the 

SPSHA expressed in terms of annual rate of exceedance of different intensity measure 

levels was computed and compared to the classical PSHA results. The SPSHA was 

compared, both in terms of rates given the IM threshold, and in terms of IM given the 

return period. Results of the illustrative application presented helped to assess the 

increase in seismic hazard also considering aftershock contribute. In fact, at least for 

the considered case, it appeared changes up to about 30% in PGA rate and up to about 

10% in pseudo-spectral acceleration values corresponding to the 475 yr return period.  

 

Finally, accounting still for the effect of the whole cluster, in Chapter 4, a stochastic 

life-cycle damage accumulation model for earthquake resistant structures was 

developed. Earthquake clusters were considered instantaneous with respect to 
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structural life; therefore, seismic events were described by a marked point process, 

where each event was represented by its occurrence time (i.e., the occurrence time of 

the triggering mainshock) and damage that it produces. In particular, it was assumed 

that the occurrence of earthquake clusters was regulated by a HPP characterized by the 

same rate considered for the mainshocks (as in Chapter 3). 

The model presented, considers that the structure may suffer damage both in the 

mainshock and in the following aftershocks and that not all events are strong enough to 

damage it. Moreover, considering an elastic-perfectly-plastic single-degree of freedom 

system, it was assumed that increments of damage accumulated over different seismic 

sequences are independent and identically distributed random variables, which are also 

independent of the process regulating occurrence of clusters. These last assumptions 

were also used to describe the cumulative damage in the single cluster, where it was 

assumed that aftershocks occurrence follows a NHPP.  

Starting from the above hypothesis, the cumulative probability function of structural 

lifetime was formalized. It was also added the case in which damage in a single event 

was susceptible of gamma and inverse Gaussian representation whose reproductive 

property allowed, when event occurrence follows a HPP process, a closed- and/or 

approximate-form solutions for absolute and conditional reliability problems.  

As an illustrative application, an elastic-perfectly plastic single degree of freedom 

structure located in an ideal seismic source zone was considered to appreciate the 

effect of changes in reliability assessment when the aftershock contribute is considered, 

and to evaluate the tolerability of the adopted approximated closed-forms. In particular, 

spatial distribution of aftershocks was modeled by a semi-empirical relationship 

function of mainshock magnitude and location. Then, distributions of intensities in 

mainshocks and in following sequences were obtained. Integration of those with the 

results of seismic demand analysis for the considered structure, led to the distribution 

of damage in mainshocks, aftershocks and, finally, in the single (generic) cluster. This 

distribution, conditional to damage larger than zero, was fitted by the gamma and 

inverse Gaussian distributions calibrated to retain mean and variance of damage 

computed via structural analysis. The life-cycle assessment was hence compared with 

the case damaging aftershock effect was ignored.  
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Starting from the closed-form solutions, which provided the absolute (i.e., aprioristic) 

probability that a new structure fails in a time interval of interest, conditional failure 

probabilities, which account for information possibly available at the epoch of the 

evaluation, were calculated. Results showed that, at least in the examined case, the 

contribution of aftershocks to the life-cycle assessment of earthquake-resistant 

structures may be not negligible and that the considered approximations, generally lead 

to acceptable errors, at least in the range of low failure probabilities, of largest civil 

engineering interest. At least in the developed application, the gamma approximation 

of cluster damage seemed to provide better results than the inverse Gaussian. 

 

 


