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I N T R O D U C T I O N A N D
M OT I VAT I O N
The combination different functionalities in a single device can be
achieved in a hybrid, as for instance a device made of a semiconducting
barrier connecting two superconducting electrodes. The scope of
superconducting hybrid devices is to take advantage of the functionality
of the different barriers. The proximity effect, induced by the
superconducting electrodes, in addition, gives the unique capability to
carry macroscopic coherence.

The new capabilities of assembling coplanar hybrid devices with
unconventional barriers is becoming the new frontier both for the
understanding of how superconductivity propagates in exotic
conditions and for new possible perspectives of smart functionalities for
innovative applications. Here, well established and universally accepted
concepts need to be revised.

The diffusion of devices with nano/hybrid barriers has favored the
use of junctions with lower critical current and capacitance, thus falling
a regime of moderate damping, where the dissipation plays a significant
role. The study of the dynamics of the escape from the metastable zero
voltage state of the junction, is a standard tool to investigate the phase
dynamics of the system, including its quantum codes. Here devices with
higher dissipation are characterized by the onset of multiple re-trapping
processes, described in this work.

The introduction of topological insulators, recently discovered in
systems with strong spin-orbit, represents one of the milestones towards
this re-definition of fundamental concepts, which passes through the
study of the superconductivity in un-trivial topologies. These are the
favorable conditions for the study of new phenomena, as for instance
the presence of Majorana fermions at the edge states of a 1D topological
superconductor, or embedded in two-dimensional vortex states.

This work is motivated by the study of the Josephson effect in
unconventional conditions. A special attention is devoted to the study of

a. the moderate damping regime, characteristic of most hybrid
devices, and

b. of topological insulator barrier. The aim is to identify those effect
which are unconventional, in the sense of imprinting of
topologically non trivial states.

Evidence of a ballistic coherent transport have been observed in a
superconductor-topological insulator-superconductor junction, and it
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has been attributed to the dominant role of the topological edge state to
carry super-current. This work included a systematic and complete set
of transport measurements of Al/Bi2Se3/Al junctions in an external
magnetic field, and in a microwave field. The most revealing
measurement was the critical current as a function of the temperature,
which gave the notion of the coherent ballistic transport. A comparative
study of Shubnikov - de Haas oscillations and scanning tunneling
spectroscopy gave an experimental signature compatible with a two
dimensional electron transport channel with a Dirac dispersion relation.

The same ballistic transport regime was also confirmed on
Al/Bi2Te3/Al junctions, where, in addition, special attention was
devoted to the escape dynamics. The merit of these measurements is to
be the very first ones on junctions with topological barriers, further
supported by a comparison with numerical codes based on Monte Carlo
simulations. Our data gave evidence of moderate damping, through a
comparative analysis performed also on other junctions, such as
bi-epitaxial YBCO junctions. The possibility to reproducibly achieve low
critical currents in sub-micron junctions can be controllably induced in
larger junctions in case of low critical current densities, or in junctions
with larger intrinsic dissipation levels, as occurring in high temperature
supeconductors, thanks to their design scalability, and flexibility in
controlling the level of damping.

These studies are based on a long-standing experience earned on a
variety of devices, including NbN junctions with various barriers. It
includes advanced knowledge on low noise measurements, performed
at cryogenic temperatures, which I assimilated during my PhD project,
in the laboratory of prof. Francesco Tafuri. I also had the opportunity of
spending one year at the Chalmers University of Technology, in the
laboratory of prof. Floriana Lombardi, where I completed my formation
with competences in nano-fabrication techniques and in high magnetic
field measurement systems.
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Herewith follows a short description of the main content of this PhD
thesis.

The first chapter is dedicated to a review of the main concepts of
Josephson effect, including a study of the electrodynamics of the system.
The study of the various regime of the superconducting transport are
also discussed, as well as the dynamics of the escapes.

The second chapter is a quick review of the main concepts of the
quantum Hall effect, in view a topological approach to the problem. The
chapter also includes a short introduction of topological insulators and
Majorana fermions.

In the third chapter I describe the experimental setup used for the low
noise transport measurements and for measurements in high magnetic
field. I also review the main fabrication techniques used in this work, and
the main features of the coplanar hybrid devices fabricated.

In the fourth chapter I present the high magnetic field characterization
of the Bi2Se3 barriers, including the transport measurements performed
on the Hall bars and the STM analysis performed on the cleaved surface
of the crystal.

In the fifth chapter the transport measurements of Al/Bi2Se3/Al
Josephson junctions is discussed in detail, including the measurement
of the IC(T) curve, which gave the notion of ballistic coherent transport.

The sixth chapter is devoted to a comparative analysis of escape
dynamics, performed on various devices. Here the measurements
performed on Al/Bi2Te3/Al junctions are compared with those
performed on other junctions, as NbN junctions, bi-epitaxial YBCO
junctions and with numerical codes based on Monte Carlo simulations



1 R E M A R K S O N P R O X I M I T Y
E F F E C T

The Josephson effect is one of the most fascinating topics of the modern
physics. This effect gives a direct experimental access to the quantum
nature of a macroscopic system, paving the way to the notion of
"quantum device".

Historically tunnel Josephson junctions have been the first play
ground to characterize macroscopic quantum phenomena [54, 123, 43],
physically related to the quantum behavior of the Josephson phase
difference between the two electrodes. This is a macroscopic degree of
freedom (i.e. the Gauge invariant phase difference between the BCS
states of two condensates) manifesting a collective quantum behavior.

A Josephson junction (JJ) is a device formed by two superconducting
electrodes see Fig. 1a, separated by a thin barrier [91]. When the gap
between the electrode is small enough to create a coupling ("weak link")
between the two condensates "the vacuum space becomes
superconducting" (cit. A. Barone). In other words a dissipation-less
current flows across the device up to a certain threshold value, referred
as "critical current" (IC).

A Josephson junction can be considered as a non-linear resonator [55],
characterized by a quality factor (Q), which describes its dynamics. This
is not surprising if we consider the junction as a capacitor to which the
superconductivity of the electrodes has basically added an effective (i.e.
"kinetic") inductance, thus creating a resonant LC circuit. The study of
the dissipation mechanism is therefore one of the main issues for any
quantum superconducting device. The typical resonant frequency (the
plasma frequency ωp) of Josephson junctions falls in the 100 GHz -
1 THz regime, making a Josephson junction an interesting element for a
wide range of devices and applications (THz detectors [72, 154] and
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remarks on proximity effect 6

emitters [181, 182, 15], SQUIDs magnetometers [42, 133], micro-coolers
[112], molecular detectors [170], hot electrons bolometers [138] etc).

(a) (b)

Figure 1: (a) Sketch of a Josephson junction. The magnitude of the wave-function of the
condensates ΨL,R is vanishing in the barrier, with a finite overlap. (b) Typical
current-voltage characteristic of a device (adapted from Ref. [14]).

The nonlinear resonant nature of Josephson junctions, combined with
their macroscopic quantum nature, makes them ideal candidates for the
creation of "artificial atoms" in quantum bits (QuBIT)
[187, 189, 39, 40, 148]. Superconducting QuBITs have been a strong
motivation for the study of macroscopic quantum phenomena [29], also
in unconventional hybrid systems, which could benefit of the
functionalities of complementary quantum components [135].

The propagation of superconductivity across the barrier is becoming
more dense of a variety of physical flavors thanks to the recent
introduction of capabilities
[64, 90, 139, 185, 191, 146, 158, 153, 53, 49, 41, 62]:

• of assembling nanowires and bi-dimensional flakes (of topological
insulators and graphene for instance) with superconducting
electrodes

• of building advanced coplanar structures

• of solving a broad range of problems of material science, which
leads to a large variety of interfaces

Here, well established and universally accepted concepts need to be
revised. The aim of this paragraph is to review the fundamental notions
of the Josephson effect, which are functional for the understanding of
the results presented in this work, and to give a tentative description of
some unconventional features that will be discussed in the presentation
of the experimental results.
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1.1 josephson effect and the weak
superconductivity

The Josephson effect can be observed when the wave-functions of the
coherent condensates of the two superconducting electrodes create an
overlap, thus supporting the coherent flow of Cooper pairs.

The dynamics of the system is described by the well-known Josephson
equations [14, 113].

I = IC sinϕ (1)
dϕ

dt
=

2e
 h
V (2)

The first equation describes a relation between the dissipation-less
current flowing through the junction and the Josephson phase. This
relation is also referred as current-phase relation (CPR). As we will
discuss in the next paragraphs, unconventional devices are
characterized by modifications of the CPR [73]. For instance normal
metal barriers includes a second harmonic [188, 22, 23], this feature was
also observed in HTS superconductors [89]. Different barriers, like
nanowires [141] or graphene 2D barriers [45] may lead to a more
complex CPRs. Topologically non trivial barrier are expected to modify
the periodicity of the CPR to a 4π periodic function [65, 149, 161]. More
detail on the phenomenology in this type of devices is given in Sec. 2.4.

As a current bias is ramped up to the device, the Josephson phase is
is adjusted to match the two members of Eq. 1. When the bias current
exceeds the critical current IC (see Fig. 1b), the current voltage (IV)
curve of the device switches to a linear branch with a slope RN. This is
called the "normal resistance" of the junction. As discussed in the next
paragraphs (Sec. 1.5), the transition to the resistive state can be either
determined by a sudden switch or by a progressive crossover,
corresponding to a rounded non-linear behavior of the IV curve.
However, the appearance of a difference of potential V across the device
corresponds to a time variation of the Josephson phase, following
(Eq. 2).

Normally the measurement of current-voltage curves (IV) cannot
measure the CPR, and only the value of IC is measurable. Nevertheless
the CPR strongly affects the behavior of the device under the effect of
an external magnetic field, or a microwave field [14].
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1.2 junctions electrodynamics
In this paragraph the typical features of the Josephson junctions under
the effect of an external magnetic field and of a microwave field are
described.

1.2.1 Effects of Magnetic Field

The effect of a magnetic field is to create a spatial modulation of the
phase ϕ along the barrier

∂ϕ

∂x
=
2e
 hc
Bydeff (3)

where By is the component of the magnetic field perpendicular to the
junction plane, d is the separation between electrodes, and deff = (2λ+

d) is the effective width of the barrier (see Fig. 2a), including the London
penetration depth λ of the electrodes [155].

(a) (b)

Figure 2: (a) Sketch of a Josephson junction, the shaded area corresponds to the effective
area of the junction. (b) Sketch of the spatial modulations of the critical current
density along the junction (see Eq. 4).

The modulation of the phase induces a spatial modulation of the
critical current density (see Fig. 2b).

J = JC sin
(
ϕ+

Φ

Φ0

)
(4)

In the simple case of a rectangular cross section with a homogeneous JC,
the simple Fraunhofer pattern can be found [14, 113].

IC(B) = IC0

∣∣∣∣sin ((B · S)/φ0)
(B · S)/φ0

∣∣∣∣ (5)
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Here w is the width of the junction S = wdeff is the surface, as shown
in Fig. 2a, and φ0 = h/2e is the elementary flux quantum. The Eq. 5,
shown in Fig. 3, comes from a spatial integration of Eq. 4 on the
rectangular cross section barrier [14]. Deviations are expected for a
different geometry of the barrier [130], for a not-uniform distribution of
the critical current density across the cross section of the junction
[197, 198, 57], or in a thin-film approximation [155]. Thus, the
measurements of the Fraunhofer pattern is the standard test to verify
the homogeneity of the critical current (and of the barrier) in a
Josephson junction.

Figure 3: Modulation of the critical current as a function of the magnetic flux enclosed in
the effective area of the junction. The modulation follows a Fraunhofer pattern
(see Eq. 5) in a rectangular geometry.

There is a characteristic length-scale for the determination of the
dynamics of the junction, called "Josephson penetration depth" [14, 113]

λJ =
φ0

2πµ0deffJC
(6)

If the physical dimensions of the junction exceed λJ, the screening
effects become significant [196, 147] and the magnetic field response of
the junction can be more complex than the model presented above,
including for instance the appearance of screening current on the edge
of the junction. The junction in this case is said "magnetically long" [14].

A remarkable effect can be detected when the critical current density
is completely concentrated on the edges. This is what conceptually is
realized in a d.c. SQUID, with the only practical difference that the area
in a SQUID can be macroscopically different.

1.2.2 Magnetic Field in Annular Geometries: d.c. SQUIDs

A d.c. SQUID is a devices made of two Josephson junctions in parallel
[14, 176], enclosing a superconducting loop. When a magnetic field is
treaded in the loop, the fluxoid∫ ∫

S

B · dσ+
m

2ρe2

∮
Γ

Js · dl = nΦ0 (7)
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is quantized to an integer value of the elementary flux Φ0.
The total current flowing through the circuit is given by

I = Ia sinϕ∗a + Ib sinϕ∗b (8)

The dependence of IC(H) is characteristic of the nature and performance
of the SQUIDs.

If the SQUID is made of two identical junctions, this modulation of IC
is [14]

IC(B) = 2IC0

∣∣∣∣sinπΦj/Φ0
πΦj/Φ0

∣∣∣∣ |cosπΦext/Φ0| (9)

At low field the modulation is a co-sinusoidal curve.
SQUIDs are ideal systems to study the unconventional features related

to un-trivial current phase relations [183, 141]. The recent introduction
of barrier of topological insulator reinforced the interest in this kind of
measurements, as the presence of a topological barrier is expected to
modify the periodicity of the CPR [183, 184] (Eq. 1).

1.2.3 Effects of Microwaves and the Shapiro Steps

This paragraph is dedicated to a description of how a microwave field
modifies the IV curve of a junction. These measurements are also of
fundamental interest, since they give an experimental access to the
periodicity of the CPR of the device. Combining together Eq. 1, and 2 it
is possible to obtain the equation

J = JC sin
(
ϕ+

2V

eh
t

)
(10)

describing an oscillatory current across the junction. The frequency of the
oscillation of the critical current is connected to a fundamental constant

2e

h
' 483.6MHz/µV (11)

The case discussed here is the ideal case of a Josephson junction driven
by an a.c. voltage [177]

V = V0 + V1 cosω1t (12)

where ω1 is the frequency of the a.c. voltage bias. In this case the phase
is tuned by the microwave field, via the a.c. Josephson effect

φ = φ0 +ωpt+

(
2eV1
 hω1

)
sinω1t (13)
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where

ωp =

√
2eIC
 hC

(14)

is the plasma frequency, a parameter already qualitatively introduced in
the introduction of this Chapter, which describes the typical resonant
frequency of the junction. In order to have a detectable effect ω1 should
be in the range of the plasma frequency. In fact the contribute to the
d.c. component is relevant only when ωp = nω1, that is only when the
potential V is an integer multiple of h/2e. The effect is the appearance of
steps (see Fig. 4a) in the IV curve at voltages

Vn = n
h

2e
ν (15)

where ν is the frequency of the microwaves.

(a) (b)

Figure 4: (a) Current - voltage characteristic of a Josephson junction under the effect of a
microwave field of increasing power. The figure clearly shows the appearance
of the Shapiro steps at the positions given by Eq. 15. In the figure the steps
are shown for two different values of the parameter η (see Eq. 17). Curves
are shifted for clarity (adapted from Ref. [157]). (b) Modulation of the critical
current and of the first two Shapiro step amplitudes for various values of η
(see Eq. 17). The curves follows the Bessel behavior for η = 1, while the width
and the amplitude of the modulations is progressively reduced when η → 0

(adapted from Ref. [157].
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The amplitude of the step is tuned by the amplitude V1 of the voltage
induced by the microwaves across the junction

In = IC Jn

(
2eV1
hν

)
(16)

where Jn(x) is the nth Bessel functions.
The modulations of the step amplitude in a real case is a bit more

complicated, since junctions are usually current biased. Moreover, when
the ICRN product is much bigger than the microwave frequency
 hωRF/2e a numerical approach is required [157].

α0 +α1 sin (ητ) =
dϕ

dτ
+ sinϕ (17)

where α0 = I/IC, α1 = IRF/IC are the d.c. and a.c. component of the
current bias, normalized to IC, and τ = Ωt is the normalized time, with
Ω = 2eIcRN/ h. As it is shown in Fig. 4b, the parameter
η =  hωRF/2eICRN is fundamental for the dynamics of the junction.
When η / 1 the modulations follows the ideal Bessel modulation, when
instead η � 1, both width and amplitude of the modulations are
progressively reduced.

1.2.4 The Sine-Gordon Equation

In the most general case the behavior of the junction in an
electromagnetic field can be described by the Sine-Gordon equation
[13, 46]

∂2ϕ

∂x2
+
∂2ϕ

∂y2
−
1

cJ

∂2ϕ

∂t2
=
1

λJ
sinϕ (18)

where cJ = c
√
deff/εrw is the effective speed of light in the barrier and

εr is the relative dielectric constant of the material.
In the case of zero magnetic field the equation yields

∂2ϕ

∂t2
+ω2p sinϕ = 0 (19)

ωp = cJ/λJ is the plasma frequency, already introduced in Eq. 14. This
result points to oscillations of the phase at a frequency given by ωp. This
effect, as discussed in Sec. 1.5.3 has many consequences on the dynamics
of the junctions, particularly those influencing the escape dynamics of
the phase in moderately damped regime.
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1.3 general theory of sis and sns
junctions

1.3.1 SIS Junctions

A microscopic derivation of the theory of the Josephson effect, can be
achieved in the framework of the Gor’kov equations within the
Ambegaokar and Baratoff model [5]. In this model the dissipation-less
current flowing through the device can be derived from the Green’s
function of the Cooper pairs:

JC(T) =
πσ∆

2e
tanh

(
β∆

2

)
(20)

where JC is the critical current density, σ the conductivity of the barrier,
β = 1/kBT and ∆ is the superconducting gap of the electrodes. This
result is the heart of the Ambegaokar and Baratoff model, yielding the
temperature dependence of the critical current in the case of a tunneling
barrier. This is one of the fingerprint of the junction behavior, giving
information on the nature of the barrier. The model also gives the
fundamental relation

eICRN =
π

2
∆ (21)

which provides an upper limit (defined by superconducting gap of the
electrodes) for the ICRN quality factor of the junction.

Unconventional hybrid devices are often characterized by the use of
exotic materials as barrier. The coherent transport across these barrier
can be described by the Josephson equations (Eq. 1, 2), with the inclusion
of an unconventional CPR.

1.3.2 SNS Junctions

In the case the barrier is made of normal metal (SNS junctions) the device
shows different features from the tunnel case [30, 73, 48, 47]. There are
many differences between the features of SNS and SIS junctions, here we
focus on two aspects:

1. the behavior of the IC(T) curve

2. the feature of the IV curve at high bias, nominally the presence of
an "excess current"

Further elements determines the features of SNS devices, with
remarkable differences with respect to tunnel devices. For instance the
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lower capacitance that typically characterizes SNS junctions determines
a rounded non-linear behavior of the IV curve, as described in Sec. 1.5.1.

Temperature Dependence of the Critical Current

The IC(T) curve can be described by the Likharev model [52]:

IC = IC0e
−L/ξn (22)

where ξn is the coherence length, qualitatively describing the decay
length of the superconductivity in the normal metal [52].

In normal barrier, coherence effect, known as "proximity effect" [51,
134], can be supported by electron-holes states. The basic mechanism of
the proximity effect is the "Andreev reflection" [9].

Andreev Reflections

An electron with energy E lower than gap ∆0 finds no available levels
in the superconductor at energy E [92]. However, a coherent transport
can be sustained at the Fermi energy by the Cooper pairs. The Andreev
reflection, schematically shown in Fig. 5a is based on the transmission of
an electron at energy E, through the creation of a Cooper pair. In order
to maintain the charge and momentum conservation, a hole state must
be formed (and ’reflected’) in the normal metal. This process involves no
energy transfer and it is reversible, in the sense that an incoming hole
annihilates with a Cooper pair, producing a backscattered electron [92].

(a) (b)

Figure 5: (a) Schematic illustration of the Andreev reflection at a S-N interface. An
electron with energy E lower than gap finds no available levels at the energy
E. However a transport mechanism involving an electron-hole couple is
energetically permitted. (b) Schematic illustration of Andreev bound states
in a S-N-S structure. The Antreev reflection at the two SN interfaces creates
resonant bound states, which can contribute to the superconducting transport
(adapted from [92]).
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The presence of Andreev reflections in an SNS structure determines
a transport mechanism through resonant bound states, called "Andreev
Bound States", as shown in Fig. 5b [92].

The quantity ξn introduced in Eq. 22 is the characteristic length of the
coherent transport through Andreev bound states.

Excess Current

Although at high voltage (eV > ∆) the IV characteristic of an SNS
junctions is linear, with slope RN, it does not in general fall on the
normal-state curve V = IRN, as it does in a tunnel junction (see Fig. 6a).
Rather, it is displaced by a constant amount referred to as the "excess
current", Iex, determined in the case of a perfectly transparent junction
(z = 0) by the equation [30]

Iex(V) =
4∆

3eRN
tanh

eV

2kBT
(23)

were kB is the Boltzmann’s constant. The excess current can be found by
extrapolating the linear part of the IV characteristic at V = 0.

(a) (b)

Figure 6: (a) IV characteristics for different values of the strength of the barrier. The
tunnel junction (z = 50) falls on the normal-state curve V = IRN (dashed line).
As the transparency is reduced, the IV characteristic approaches an ideal S-N-S
behavior (corresponding to z = 0). Correspondingly an excess current appears
from the extrapolation linear part of the IV characteristic at V = 0 (dotted line).
The amount of the excess is modified by the barrier strength, as shown in
panel (b), where the parameter eIexRN/∆ is shown as a function of the barrier
strength z (adapted from [30]).
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1.3.3 SINIS Junctions

The case of a SNS junction implies a perfect transmission (z = 0) of the
electrons on the SN interfaces. However, in many experimental
conditions this approximation does not hold, and a finite transmission
coefficient D should be considered. The transparency of the interface is
connected to strength of the barrier z through the relation

D = (1/(1+ z2)) (24)

A SINIS junction [201, 69, 31, 32] includes an insulating layer between
the superconductor and the normal barrier, that reduces the transmission
coefficientD. ChangingD it is possible to tune the behavior, from an SNS
(D = 1) to an SIS (D = 0) junction, specifically the excess current follows
the non analytical relation [30] shown in Fig. 6a, 6b.

In what follows in the experimental section, we will verify how the
transparency D influences:

1. The behavior of the IC(T) curve

2. The amount of the excess current

The shape of Ic(T) curve is determined by many factors, including if
the junction is in a diffusive or a ballistic transport regime [52, 4, 69, 180].
More details are given in the next paragraph.

1.4 ballistic and diffusive transport
regimes

In this paragraph we will discuss the diverse regimes of the coherent
transport across a proximity device and their related phenomenology.
These notes, far from being exhaustive, are inspired by the uncommon
features coming from hybrid structures.

Transport regimes can be first classified on the basis of the ballistic
and diffusive regimes of transport. By ballistic we mean that the charge
carriers passes through the barrier without experiencing any scattering
event. Diffusive, on the other hand, is referred to regimes where the
transport is dominated by scattering events (i.e. Mott scattering,
electron-phonon, impurities etc). It is worth noting here that diffusive
does not necessarily imply the loss of phase coherence, which in many
case can be conserved [19].

In addition junctions can be divided in short and long junction,
according to the mutual relation between the coherence length ξn and
the distance d between the electrodes.
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1.4.1 Long Junctions

The long junction regime (d� ξn) can be approached in the framework
of the Likharev model (Eq. 22) described Sec. 1.3. The coherence length
ξn describes the coherent transport within the barrier, determined by the
uncertainty principle. Therefore it is approximately [52]

ξn = τTvF (25)

where vF is the Fermi velocity and τT =  h/(2πkBT) is the electron
relaxation time.

If the coherence length is larger than the mean free path of the metal,
we are in the ballistic regime, where the coherence length is determined
by the equation

ξn =
 hvF
kBT

(26)

In the diffusive regime, instead, ξn is determined by the diffusion
coefficient Dn

ξn =
√
τTDn (27)

1.4.2 Short Junctions

In the short junction regime (d � ξn), the transport is strongly
influenced by the superconducting gap of the material [19, 4]. In this
case the distinction between diffusive and ballistic regime is given by
the mutual relation between d and the mean free path le. This can be
summed up in the table below.

Ballistic Diffusive

ξn � le ξn � le

Eth =  hvF/d Eth =  hD/d2

Long Short Long Short

d� le � ξn ξn � le � d d� ξn � le ξn � d� le

IC = evFl/L
2 IC = Ne∆/ h IC ' eDn/L2 IC ' e∆/ h

In the table, where N is the number of the transverse modes at the
Fermi level which can propagate through the junction. Eth is the
Thouless energy, which is a fundamental constant for the Josephson
Effect in the mesoscopic scales. In fact the notion of long and short
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junction can be equivalently given in terms of relative magnitudes of
Eth and ∆. Particularly the short junction regimes holds when ∆ � Eth
whereas the long junction regime is ∆� Eth.

1.4.3 Eilenberger Model

An hybrid structure containing superconductors can be described on the
basis of the Gor’kov equations. In the case of short SINIS junctions [32],
the model can be generalized for junctions of arbitrary length [69]. The
critical current can therefore be extracted from the formula

I = a
2

π
ek2F

kBT

h
sin(χ)

∑
ωn

∫1
0

ζ dζ
t2

Q1/2(t,χ, ζ)
(28)

where ζ = kx/kF and t = D/(2−D) with D the transparency of the S-N
interface, a is the cross section of the junction and

Q =
[
t2 cos(χ) + (1+ (t2 + 1)ω2n/∆

2) cosh (2ωnL/µ hvF)+

+2tωnΩn/∆
2 sinh (2ωnL/µ hvF)

]2
− (1− t2)2Ω2n/∆

2

where ωn = 2πkBT(2n + 1) are the Matsubara frequencies and
Ωn =

√
ω2n +∆2 respectively. χ is the phase difference between the two

superconducting islands.

Figure 7: IC(T) sample curves simulated from Eq. 28 and 29 for a short ballistic
(Eilenberger) and diffusive (Usadel) junction more detail on the simulations
and on the parameter are discussed in Sec. 5.3.

1.4.4 Usadel Model

A short SNS junction in the diffusive transport regime can be modeled
with the Usadel equation [185, 180]

ΦS,N = ∆S,N + ξ2S,N
πkBTC
ωnGS,N

d

dx

(
G2S,N

d

dx
ΦS,N

)
(29)
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where Φ is a quantity determined by the Green’s function G, and ωn
are the Matsubara frequencies. This model can be simplified in the case
of a dirty superconductor, yielding the temperature dependence of the
critical current density [107]:

J =
2πσkBT

e
=m

∑
ωn>0

G2N
ω2n

ΦN
d

dx
ΦN (30)

For junctions with arbitrary length and arbitrary barrier transparency, no
analytical expression exists for the Green’s functions, though a numerical
recipe can be used.

The IC(T) curve is again the fingerprint of the junction dynamics. Fig. 7

shows a numerical estimation made from Eq. 28 and 29 for a consistent
set of junction parameters, showing a remarkable difference. A detailed
account on the simulation parameters in the various regime is given in
Sec. 5.3.

1.5 rcsj model
Up to here we have described a Josephson junction as an ideal element,
isolated from its environment. A real device is characterized by the
presence of parasitic capacitance and by resistive losses through the
barrier. The Resistively and Capacitatively Shunted Junction (RCSJ)
model [165, 131, 93], described below, accounts for the effects of stray
capacitance and resistance of the junction. The case of negligible
capacitance is also described in Sec. 1.5.1. This model (RSJ) can be
solved exactly [14], including the effects of thermal fluctuations.

The equivalent circuit of the junction should also incorporate the lines
used for the measurements, the filtering stages eventually present in the
circuit, and the high frequency losses of the device through the substrate.
All these elements can be included in the theoretical framework of the
RCSJ Model.

The model circuit is an ideal Josephson junction, connected in parallel
with a capacitor ad a resistor (see Fig. 8a). The circuit is usually closed
on a current generator, therefore giving a current bias to the device. The
equation of the circuit is

d2ϕ

dτ2
+
1

Q

dϕ

dτ
+ sinϕ =

I

IC
(31)

where
Q = ωpRC
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(a) (b)

Figure 8: (a) RCSJ equivalent circuit. In this model the dynamics of the device is
equivalent to the motion of a particle on the potential in Eq. 32, shown in
panel (b) for an increasing value of the bias current.

is the damping factor of the circuit. It has already been introduced in
the introduction of this Chapter, and it represents the dissipative term of
Eq. 31. ωp is the plasma frequency of the junction (Eq. 14).

This equation cannot be solved analytically. However a broad
phenomenology can be understood considering a mechanical analog of
this equation. Indeed it can be readily verified that Eq. 31 is the
Hamilton-Lagrange equation of the dynamics of a point particle along
the potential (see Fig. 8b)

U(ϕ) = −EJ

(
cosϕ−

I

IC
ϕ

)
(32)

where EJ =  hIC/2e is the Josephson energy.
First introduced by Steward and Mc Cumber in 1968 [165, 131]. After

the discovery of macroscopic quantum behavior in JJs [54, 123, 43] the
model has progressively turned out to be a powerful tool to describe the
dynamics of the junction, including its quantum nature. The dimension
along which the particle ’moves’ is indeed the Josephson phase, a
macroscopic degree of freedom of the device. This "phase particle" is a
mechanical analog of the junction dynamics, capturing the nature of the
device dynamics and its quantum codes.

1.5.1 Under-damped and Over-damped IV Characteristics

The current voltage characteristic of a junction can be qualitatively
explained very easily in terms of the RCSJ model. In fact when the bias
current is zero the phase particle is trapped in one of the minima on the
potential. In this case we know (from Sec. 1.2.4) that the phase oscillates
at the plasma frequency, and this is reflected into an oscillation of the
particle around the minimum of the potential. When the current bias is
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increased the particle is still trapped into a local minimum, but the
plasma frequency changes with the current

ωp = ωp0

(
1−

(
I

IC

)2)(1/4)

(33)

Ramping up the bias current, the tilt of the potential Eq. 32 is increased
(see Fig. 8b). When the bias current exceeds IC the minima disappears
and the particle switches to a ’running’ state. In this state the particle
is running down the potential, therefore the phase is changing in time,
meaning a finite difference of potential across the junction (cfr. Fig. 8b).

The dynamics is significantly influenced by the damping factor: when
the damping is high (Q . 1) the IV curve is completely determined by
the bias current. In this case the Eq. 31 is analytically solvable [14]. When
instead the damping effect can be neglected (Q� 1), the IV curve shows
up an hysteresis effect. In this regime a stochastic switching from the
metastable, zero voltage state to a resistive state is detected. This is the
case of high capacitance junctions.

Figure 9: (above) Sketch of IV curves in under-damped (left) and in over-damped (right)
regimes. The figure below shows how Shapiro steps appear in IV curves with
different features (adapted from [99])

RSJ Model

As mentioned before, the case of over-damped junctions can be treated
analytically. In this case, the capacitance effects of the junction are
negligible, therefore the model is also called RSJ [14].
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The effects of thermal fluctuations can also be included in the model
through a thermal coefficient γ =  hIC(T)/ekBT yielding the thermal
average of the potential as a function of I, and γ:

〈V〉 = 2

γ
RNIC

eπγi − 1

eπγi
T−1 (34)

where i = I/IC is the normalized current, γ is the thermal coefficient and

T−1 =

∫2π
0

e−
γ
2 iϕ I0

(
γ sin

ϕ

2

)
dϕ

is a normalization factor, I0 is the 0 order modified Bessel function of the
first kind and kB is the Boltzmann’s constant.

Figure 10 shows the result of a numerical calculation of Eq. 34.
Increasing the γ the IV curves become more and more rounded, and for
γ→∞ the IV goes towards an ohmic behavior.

Figure 10: IV curves of an over-damped junction for different values of the thermal
coefficient γ. The curves are obtained from a numerical estimation of Eq. 34

with 1 < γ < 47.

Underdamped Regime

When Q � 1 (Under-damped junctions) the IV is characterized by an
hysteretic behavior (see Fig. 9). This effect can be qualitatively described
as an inertial effect of the particle in the running state. When the current
is ramped back to zero the value of the bias necessary to stop the motion
of the particle (called re-trapping current Ir) is lower than IC, and ideally
Ir = 0 in the case of no dissipation. The value of the re-trapping current
is given by a balance between the dissipation of the resistance and the
kinetic energy of the phase particle, and it can be estimated from the
equation [132, 202, 179]

Q2 =
2− (π− 2)Ir/IC

(Ir/IC)2
(35)

As discussed above, the under-damped dynamics is characterized by
stochastic switching events from the local minimum of the potential.



1.5 rcsj model 23

The study of the escape dynamics is a powerful tool to characterize the
dynamics of the junction.

1.5.2 Escape dynamics

When the bias current approaches IC, the junction can escape from the
local minimum of the potential. This effect is responsible for the
hysteresis in the IV curve (Fig. 9). There are two main mechanisms
inducing the switching: thermal effects and quantum effects (see
Fig. 11a).

(a) (b)

Figure 11: (a) Sketch of the escape dynamics from a local minimum of the potential
Eq. 32. The escape can be triggered by a thermal mechanism (Eq. 36) or by a
quantum mechanism (Eq. 38). (b) Re-trapping of the particle from a running
state. The re-trapping rate is given by Eq. 41

The thermal effects can be theoretically treated within the framework
of the Kramers problem of a thermal escape from a potential [74]. The
probability per unit time to escape the potential is given by the so called
"escape rate" [68]

ΓT = Γ0T
ωp

2π
exp

(
∆U

kBT

)
(36)

Γ0T is a pre-factor containing a thermal dependence

Γ0T ' 4
[
(1+QkBT/1.8∆U)

1
2 + 1

]−2
and

∆U(I) = EJ

(√
1−

I

IC
− cos−1

(
I

IC

))
(37)

is the potential barrier created by the potential (Eq. 32) at the value I of
the bias current. Quantum effects are related to tunneling events of the
phase particle across the potential barrier ∆U (see Fig. 11a). The
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expression of the quantum escape rata can be obtained in the WKB
approximation [34, 190]

Γq = Γ0q
ωp

2π
exp

[
−7.2

∆U
 hωp

(
1+

0.87
Q

)]
(38)

where
Γ0q ' (864π∆U/ hωp)

1
2

The main difference between the two contribution is that in the
thermal regime the dynamics is determined by the exponent (∆U/kBT ),
which explicitly depends on the temperature, while in the quantum
regime the exponent is temperature independent (∆U/ hωp). To express
the experimental measurements of the escape rate in a way that is as
independent as possible of the parameters of the junction, a parameter,
called "escape temperature" (Tesc), is traditionally introduced [54]. In
the thermal regime the escape temperature coincides with the
temperature of the bath, while in the quantum regime (Tesc =  hωp/kB).
The model can therefore be re-parametrized in therms of Tesc

Γ(I) =
ωp

2π
e
− ∆U
kBTesc

(
Γ0q + Γ0T

)
(39)

In the experiment a current ramp is given to the junction. When the
current bias approaches IC the junction undergoes a stochastic switching.
The value of the current at which the switching happened is therefore
registered (switching current), and the junction is reset (i.e. the current is
put to zero). Multiple (' 1000− 10000) events are therefore collected, to
create a switching current distribution (SCD) (see Fig. 12).

Figure 12: Sketch of switching current distribution for various temperatures. As the
temperature is increased, the histograms become broader, and their mean
value progressively decreases. The inset shows the mean value and the width
of the SCD as a function of the temperature.
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This is related to the escape rate through the equation [68]

Γ(I) =
γP(I)

1−
∫I
0 P(i)di

(40)

The experimental signature is the behavior of the SCDs as function of
the temperature. In MQT regime the histograms overlap [172, 123, 54]
as the the mechanism of the escape is temperature independent. This is
reflected in a constant value of Tesc, which is determined by the quantum
noise of the junction. In thermal activation regime the SCDs progressively
becomes larger and their amplitude decreases as shown in Fig. 12. The
width of the histogram increases following a universal scaling law T2/3

[108]. This power law is determined within the Kramers model [74, 68].
Peculiar features can be detected in hybrid barriers [108, 45], or in the

case of superconducting nanowires [109, 10, 159], generally related to the
particular nature of the junctions. For instance a theoretical description
of the phenomenology of the MQT in a ballistic regime has never been
completely developed up to now.

1.5.3 Moderate Damping: Re-trapping and Phase Diffusion

Once the phase particle has escaped from the local minima of the
potential, the junction is in a running state (corresponding to the
resistive branch of the IV curve). In this state the energy gained by
passing from one well to the next one barely exceeds the dissipative
losses and the particle eventually gets re-trapped (see Fig. 11b)
[93, 124, 59], diffusing to the next wells. This effect manifests in the
behavior of the SCD. Specifically, the width of the distribution decreases
when the temperature is increased. The SCD histograms move to lower
currents till they touch the limit IR = (4IC/π)1/Q. This phenomenon
can be well described by the re-trapping rate [21]

ΓR =
I− Ir
IC

ωp

√
EJ

2πkBT
e
−

(
EJQ

2(I−Ir)
2

2kBTI
2
C

)
(41)

where ir ' 4IC/πQ. Here is worth noting that the re-trapping is a
thermal phenomenon in the sense that it is enhanced by thermal
fluctuations [122].

Eq. 41 strictly holds in the limit Q � 1. In the moderate damping
regime this model still applies in a good approximation [104], but the
dynamics involves multiple escape and re-trapping events [122]. This
behavior is determined by the enhanced re-trapping rate at lower Q

(ΓR ' e
−
EJQ

kBT ).
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First introduced by Kautz and Martinis [93], the main experimental
signature was detected in the appearance of a finite voltage on the IV
curve of moderately damped devices near IC. Only in 2008 Fenton and
Warburton [59] introduced a quantitative description of the
phenomenon, thanks to the introduction of Monte Carlo methods to
describe the dynamics of multiple escapes and re-trappings. This
dynamics significantly influences the behavior of the SCDs, and
determines a progressive shrinking of the histograms for an increasing
temperature [59, 122].

Frequency Dependent Damping

A complete description of the dynamics of moderateQ junctions requires
a slight generalization of RCSJ model, taking into account the frequency
effect on the effective shunting circuit of the junction [93].

(a) (b)

Figure 13: (a) Equivalent circuit to describe a frequency dependent damping. (b)
Effective quality factor as a function as a function of the frequency of the
current bias. The rwo plateaus corresponds to QH and QL.

The frequency dependent damping factor is Q(ω) = ωpC/G(ω),
where ωp is the plasma frequency of the junction, C is the shunt
capacitance and G(ω) is the frequency dependent leads loaded on the
junction. The equivalent circuit is represented in Fig. 13a: Rb and Cb
models the external impedance felt by the junction, Rs is the resistance
of the transmission line, R and C are the intrinsic shunt capacitance and
resistance of the junction. At low frequencies the load on the junction is
basically given by the shunt resistance of the junction (R), in parallel
with Rs and Rc, while at high frequencies the external circuit
capacitance behaves like a short, therefore the load is determined by the
impedance of the transmission line Rs. The resulting frequency
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dependent damping factor (Fig. 13b) shows two flat plateaus: the low
frequency one gives the low frequency damping factor QL whereas the
high frequency one gives QH.

Classically the low frequency damping (QL) should play no role in
the dynamics of the PDR, since the phase particle should only feel the
effect of the high frequency damping factor (QH determined by the
damping of the external circuit), but there are some evidence of a
nontrivial dependence of the thermal behavior of the width of the SCD
w(T) from the low frequency damping factor QL, as described in
Sec. 6.3.2.

To sum up the escape dynamics is a very powerful tool to
characterize the junction dynamics. The study of the SCDs reveals the
nature of coherence and dissipation of the device, including the features
traditionally related to the dynamics of multiple escapes and
re-trappings. This is the characteristic regime of unconventional hybrid
devices and nano-structures. Macroscopic quantum phenomena are
typically manifested at the lowest temperatures, and determines the
main switching mechanism of the devices.



2 H A L L E F F E C T:
A S H O R T S U M M M A R Y

In the last Chapter we have extensively described the physics of the
Josephson effect, that is one of the most fascinating field where
quantum phenomena appear on a macroscopic scale. The next
paragraphs are dedicated to the Hall (Sec. 2.1.1) and quantum hall effect
(QHE) [98] (Sec. 2.1.3). A short review of the main concepts of
topological insulators [136, 81, 8] (Sec. 2.2) is also included, with a
special focus to those features connected to the manifestation of their
topological nature in the study of the Shubnikov - de Haas oscillations
[152, 185, 6] (Sec. 2.3). Specifically we discuss how the presence of a zero
energy Landau level, which is typical of Dirac electrons, manifests
through a Berry phase ϕB [25, 8], which is expected to be π in
topological insulators and 0 in topologically trivial materials. A final
paragraph (Sec. 2.4) is devoted to the introduction of topological
superconductors and Majorana bound states.

2.1 introductory remarks
A two-dimensional electron gas (2DEG), embedded in a perpendicular
magnetic field shows up quantized energy levels:

En =  hωc(n+
1

2
) (42)

known as Landau levels. Here the quantity ωc is the cyclotron frequency,
given by

ωc =
eH

cm
(43)

28
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Figure 14: Sketch of a Hall bar in a perpendicular magnetic field. The device is biased
with a current Ib. The Hall voltage VH and the longitudinal voltage Vxx are
measured between the voltage probe as shown in figure.

The device to study Hall effect is the Hall bar, which is a six terminal
device. Two contacts are used to give a bias current I, the remaining
four contacts can be used to measure the voltage difference between
different points of the device. Specifically we are interested in Vxx and
VH (see Fig. 14), which are used to define the longitudinal and
transversal resistance

Rxx = Vxx/I

Rxy = VH/I (44)

As a consequence of the formation Landau levels [110] the transversal
conductance is quantized in units of

G0 =
2e2

 h
(45)

The value of G0 = 7.74809 · 10
−5 S is a constant of fundamental interest

both for the physics of semiconductor [7, 98] an for mesoscopic physics
[33].

Due to the strong magnetic field, the current flows only on the edges
of the Hall bar, while the bulk is a sort of insulating material. This makes
the QHE a topologically non trivial state of matter [178, 11, 151].

2.1.1 Classical Hall Effect

The Hall effect was introduced by the studies of E. H. Hall [78], involving
the appearance of a transverse "Hall" voltage VH, when a magnetic field
was applied to a metallic or semiconducting bar. When the magnetic field
is not strong enough to induce coherence effect related to the quantum
confinement, the Hall voltage is proportional to the magnetic field and
to the bias current I. Therefore it is possible to define a coefficient

RH = −
VHt

ne
(46)
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called "Hall coefficient" (here t is the thickness of the Hall bar). This was
the regime studied by Hall et al. [78] in the end of the XIX century.

In the linear regime, the Hall coefficient is related to the carrier density
of the system, via the relation

n = −
1

RHq
(47)

where q is the charge (including sign) of the carriers. It is possible to
directly determine the sign of this charge q, which in metallic Hall bars
is typically negative (i.e. the charge is transported by the electrons),
while for instance in semiconductors it can either be positive or
negative, depending on the doping of the material.

From the value of the charge carrier density and the conductivity one
can also infer the value of the electrical mobility

µ =
σ

ne
(48)

If the system is an ideal 2D electron gas (2DEG), the thickness t is an
ill defined quantity, therefore one can define

R2DH = −
VH
n2De

(49)

yielding

n2D = −
1

R2DH e
= −

1

RHet
(50)

In the case of a purely 2D system the Hall coefficient is defined by Eq. 49,
while in 3D systems this quantity should be normalized to the thickness
t of the Hall bar [164] (as in Eq. 46). Clearly, R2DH and R3DH cannot be
simultaneously independent of the sample thickness t. Therefore one
can infer if the transport takes place in the bulk of the flake or in the 2D
edge states by studying the thickness dependence of the 2D and 3D Hall
coefficients.

There is a great deal of phenomena determining a quasi 2D transport
mechanism. Classically these phenomena are observed in field effect
transistors and heterostructures, due to the effect of a quantum
confinement [50]. Hall measurements in graphene samples
[206, 144, 145] show unconventional properties [143], due to the
presence of a zero energy Landau level, which is peculiar of Dirac
electrons. These features are discussed in more detail in Sec. 2.1.3, 2.3.

More recently new insights on transport in low dimensions have been
taken by the introduction of the topological insulators (see Sec. 2.2). In
this case the transport on a 2D channel is made possible by a
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mechanism of topological protection of the edge states [66, 8, 81]. In
these materials an unwanted contribution can also arise from impurity
states in the bulk of the material. Therefore a hybrid 2D - 3D transport
state can be observed [164, 70].

In the case of a mixed transport, modeled as a parallel of a 2D and a
3D channel [164], the result is given by the equation:

R2DH =
n3Dα

2t+n2D
e(n3Dα2t+n2D)2

R3DH = R2DH t (51)

where α is the ratio between the bulk and the surface mobility. It is
expected to be in the order of the unity in this model.

2.1.2 Drude Model

Classical electrodynamics relates the electric field to the current density
by means of the Ohm’s law

~E = ρ~J (52)

where ρ is the resistivity tensor. This is a fundamental quantity to
describe the phenomenology of magnetoresistance (MR) phenomena.
This quantity is experimentally accessible. In fact, provided that the
material is homogeneous and isotropic, there are only two independent
elements of the resistivity tensor:

ρ =

(
ρxx ρxy

ρxy ρxx

)
(53)

ρxx and ρxy are simply related to the quantities Rxx and Rxy (see Eq. 44):

ρxx =
Rxxw

l
ρxy = Rxy (54)

Here l and w are the length and the width of the Hall bar, respectively.
By simple inversion of Eq. 55, we have ~J = σ~E, where the conductivity

tensor σ = ρ−1 is

σ =

(
σxx σxy

σxy σxx

)
(55)

where

σxx = ρxx/(ρ
2
xy + ρ

2
xx)

σxy = −ρxy/(ρ
2
xy + ρ

2
xx). (56)
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In the simple case of Drude theory, for instance, this can be obtained
from the Lorentz’s law acting on a gas of free carriers, yielding the result

σ(H) = σ0
1

1+ω2cτ
2

(
1 −ωcτ

ωcτ 1

)

σ0 =
ne2τ

m
(57)

where τ is the relaxation time, that is the average time between two
scattering events.

We can account for more than one kind of carrier [94] using the
equation set

σxx(B) =
l

w

(
e

(
n1µ1

1+ µ21B
2
+

n2µ2

1+ µ22B
2

))
σxy(B) = eB

(
n1µ

2
1

1+ µ21B
2
+

n2µ
2
2

1+ µ22B
2

)
(58)

Upon considering the Onsager’s reciprocal relations [76], we can see
that σxx is symmetric with respect to magnetic field σxx(B) = σxx(−B)),
while σxy is antisymmetric (σxy(B) = −σxy(−B)). The same symmetry
relations applies to the resistance tensor.

(a) (b)

Figure 15: Anomalies in the geometry of a Hall device can induce deviation of the
longitudinal and transversal voltages. In fact a misalignment con induce an
intermixing between the two components.

Experimentally, the presence of anomalies in the geometry of the
device can induce deviations from the ideal case (see Fig. 15), therefore
the experimental quantities cannot be in general fully symmetric or
antisymmetric.
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2.1.3 Quantum Hall Effect

At high magnetic fields

µB� 1 (59)

the charge carriers are able to close at least one loop around the
cyclotron orbit with negligible decoherence, which is in fact induced by
the scattering phenomena. The conductance tensor in the collision-less
regime is given by

σ(H) = σ0

(
0 −1

1 0

)
(60)

When the Fermi energy

EF =
π hn2D
m

(61)

lies between two Landau levels (Eq. 42), the system is collision-less, this
means that a current flows along the x direction with no electric field (i.e.
Rxx = 0). Correspondingly the transversal conductance Gxy assumes an
integer multiple of G0 [178].

Figure 16: Longitudinal and transversal resistance in quantum Hall effect. ρxy (in
red) presents the appearance of plateaus, which become more and more
pronounced as the magnetic field is increased. Correspondingly ρxx (in black)
shows pronounced peacks.

The position of the Fermi energy with respect to the Landau levels can
be tuned either by changing the magnetic field (i.e. moving the position
of En, see Eq. 42) or depleting the channel with a gate (i.e. moving the
position of EF see Eq. 61). When EF passes through a Landau level, the
system is no longer in the collision-less approximation, this corresponds
to a peak of Gxx and to the passage of Gxy form a plateau to one another
(see Fig. 16).
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Landau Levels in 3D Systems

Landau levels are an exclusive features of 2DEG systems. In a 3D electron
gas in magnetic field, Landau levels are broadened into bands. In this
case each Landau level corresponds to a free particle parabolic band (see
Fig. 17a)

EN,kz =

(
N+

1

2

)
 hωc +

 h2k2z
2m

(62)

with the density of states (shown in Fig. 17b) given by the expression [77]

D(E,H) =
1

2
 hωcA∞∑

N=0

1√
E−

(
N+ 1

2

)
 hωc

Θ

(
E−

(
N−

1

2

)
 hωc

)
(63)

where A = 4πV(2m)3/2h−3.

(a) (b)

Figure 17: (a) Parabolic bands of an electron gas in a high magnetic field. Each parabolic
band corresponds to a Landau level in 2D. (b) Density of state of the 3D
electron gas, presenting poles in correspondence of the energies of the Landau
levels.

The density of states presents poles in correspondence to the position
of Landau levels. Therefore it is possible to detect features related to
LLs in 3D systems as for instance Shubnikov de Haas oscillations [166],
described in more detail in Sec. 2.3.

Quantum Hall Effect and Topological Invariants

The quantum Hall effect, as discussed before, can be intended in the
framework of topological field theory [178]. The two main features
characterizing the quantum Hall states are: 1) the presence of edge
currents 2) the quantization of Hall resistance.
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Figure 18: Sketch of the gedanken experiment proposed by Laughlin (adapted from
[11]).

1. The current flows without a voltage along the x axis of the bar (i.e.
Vxx = 0). This current is carried by the edge states of the system.
In the quantum Hall state there is an edge state, represented by a
1D system. The edge state is chiral and the electrons are localized
on different sides of the Hall bar (see Fig. 19a), thus preventing
any intermixing between the left movers and the right movers.
This protects the charge carriers from random collisions, giving
the notion of a dissipation-less current.

2. The quantization of the Hall resistance is connected with the
concept of adiabatic curvature [178, 85]. It is worth mentioning
here the gedanken experiment proposed by Laughlin [110]. He
interpreted the QHE as a quantum pump.

Let us suppose to close an Hall bar on itself, along the direction of
the current, thus creating a closed ribbon. The magnetic field is
everywhere orthogonal to the ribbon, while the Hall voltage can
be detected between the edges. Laughlin introduced a fictitious
magnetic flux treading the loop (see Fig. 18). Using simple gauge
invariance arguments it is possible to show that, by changing the
flux by a unit flux quantum (Φ0 = hc/e), the system remains
unchanged, this phenomenon was first observed in silicon
metal-oxide-semiconductor field-effect transistor, thus giving the
feature of the flat plateaus of the conductance.

There is no guarantee that the charge transported in each cycle is the
same. The answer to the Hall quantization have to be sought in the
topology [11], which connects the Hall conductance to the adiabatic
curvature of the parameter space. However, the details of the
topological approach to the QHE, and to the topological phase
transitions are theoretically extremely complex, and falls beyond the
purposes of this work.
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(a) (b)

Figure 19: (a) Edge states of a Hall bar in a in a the quantum Hall state. The edge states,
represented by 1D states, are spatially separated. (b) Spin current separation
of the quantum spin Hall state. Each edge of the system is characterized by
two counter-propagating currents with opposite spin (adapted from [151]).

2.2 topological insulators
Topological insulators (TI) are a new class of material generating a
surge of research activity. Historically the first topological state of
matter was the QHE [178], but the word topological insulator was
introduced much later [136], after the discovery of the quantum spin
Hall effect [101, 24]. The materials which presents this effect are
normally referred as 2D topological insulators.

The unconventional features of TI are related to their uncommon
band structure [24, 63, 64], generated by their strong spin-orbit coupling.
Specifically in heavy elements (Bi, Te, Sb and Hg) compounds with
large spin-orbit coupling, the p band can be pushed down so much in
energy to generate an inversion between the p and s band of the
material. When the topological insulator is terminated and faces an
ordinary insulator (including the vacuum), a matching condition must
apply to the p and s bands (see Fig. 20). The consequence is the creation
of a crossing point between the bands at the edge of the material. Near
the crossing point the dispersion of the states is linear, thus recreating
the energy dispersion of massless Dirac fermions in 1D.

2.2.1 2D Topological Insulators

Recently it has been shown that systems with strong spin-orbit coupling
can show a state similar to the QHE, but in absence of the magnetic
field. In this case there are two helical edge states due to the spin-orbit
scattering. Counter-propagating electrons have also opposite projections
of the spin along the direction of motion (see Fig.19b). First observed in
CdTe/HgTe/CdTe quantum wells [101, 24], this effect is usually
considered as the birth of a the topological insulators [136, 81, 8].
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Figure 20: Schematic explanation of the König experiment [101]. (a) Sketch of the s and
p bands of the system in the inverted and non inverted (i.e. trivial) state.
The corresponding band structure is shown in (b), where the Dirac cone is
depicted in red and blue. The cone is a manifestation of the bend inversion,
in correspondence of the edge of the system. (c) Experimental signature of
the topological state, consisting of the appearance of a transport channel with
conductance G0 when the thickness of the bar exceeded the critical thickness
d of 6.5 nm. Below the critical thickness the conductance shows a divergence
of at least 107 Ω. The figure is adapted from [151]
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The effect, in fact, involves a crossing between s and p bands, detected
when the thickness of the HgTe was above a critical thickness of 6.5 nm.
The effect reported in Ref. [101] is the creation of a conduction state with
conductance G0. Below the critical thickness, the structure showed zero
conductance, as expected in the case of a quantum well with a normal
electronic structure.

2.2.2 3D Topological Insulators

3D topological insulators where theoretically predicted in 2006 [66, 137,
156], and experimentally found in the rare earths materials [63, 192, 205,
37, 86, 82]. In 3D the edge state is a surface (i.e. a 2D electron gas) with a
Dirac dispersion

The simplest 3D topological insulator can be thought as a stack of 2D
TIs [100]. In this case the surface edge state exists but it is not protected
against a weak disorder. Therefore it is experimentally rather difficult
to observe such states [81], thus referred as ’weak’. However, in 3D it is
possible to have different topological states, called ’strong’ TIs, which are
topologically protected. By topological protection we mean that [8]

1. the existence of a gapless edge state is guaranteed as long as the
time reversal symmetry is conserved

2. the backscattering of electrons with momentum +k into electrons
with momentum −k is prohibited

3. the presence of a π Berry phase, which protects the electrons to
weak localization ((see also Sec. 2.3.1 and 2.3.3)).

Figure 21: Energy dispersion of the topological edge state of a 3D TI. The spin and
the orbital momentum are locked together, to create a chiral edge state. The
energy has a linear dispersion, thus creating the feature of a Dirac cone
(adapted from [151]).
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Strong TIs are characterized by a metallic 2D surface state with an
odd number of Dirac cones [63, 66]. The spin and the orbital
momentum k are locked together, thus generating chiral states in the
Dirac cone, where the direction of the spin is everywhere tangential to
the cone (see Fig.21). This circumstance is more complex than the spin
separation, which instead characterizes 2D and weak TIs.

The presence of fractional topological classes in 3D, which are
prohibited in 2D, can be intuitively understood with a simple argument
[136]. In three dimensions it is possible to create a knot (for example
with a rope), this feature is impossible to be recreated on a 2D surface
(for instance marking a line with a pencil) without overlapping the line
(thus in fact invoking a third dimension). The rope represents a
topological class which describes strong 3D topological insulators, as
the examples shown in Fig. 22.

Figure 22: An illustration of topological change and the resultant surface state. The knot
is a topological insulator, and the loop is an ordinary insulator. Because there
is no continuous deformation by which one can be converted into the other,
there must be a surface where the string is cut, shown as a string with open
ends (centre), to pass between the two knots (adapted from [136]).

Topological insulators materials have been recently classified among Bi
compounds, particularly tetradymite chalcogenides. Bi2Te3, Bi2Se3 and
Sb2Te3 have been extensively studied by means of Angle Resolved Photo
Emission Spectroscopy (ARPES), revealing the presence of the edge state
Dirac cones [37, 205, 192, 86]. More recently evidence of 2D transport
channels in Bi compounds devices and in HgTe nano-ribbons have been
confirmed by the study of the Shubnikov - de Haas oscillations
[152, 185, 195, 174, 6, 83, 175, 164, 58, 166].

2.3 shubnikov - de haas oscillations
If in a quantum Hall state (see Sec. 2.1.3) EF �  hωc, many (N > 10)
Landau levels are populated and it is not possible to resolve their
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discreteness. Therefore σxx shows typical oscillations, known as
"Shubnikov - de Haas" (SdH) oscillations (see Fig. 23). This is the case
for instance of low magnetic field and high doping levels.

The recent introduction of topological insulators required a
systematic method to study topological features of Hall devices,
including the determination of the Berry phase
[152, 185, 6, 195, 83, 166, 58] (see Sect. 2.3.3). Specifically, as discussed in
Sec. 2.2, 3D topological insulators are characterized by a linear energy
dispersion, thus obeying Dirac’s equation.

Figure 23: Oscillations of the residual conductance as a function of the reverse of the
magnetic field. ∆Gxx shows typical, equally spaced oscillations (see Eq. 66).
The position of the Landau level are given by the position of the minima and
the values of N and 1/BN are extracted (see text for details).

The oscillations are related to the passage of the Fermi energy across
the Landau levels, therefore their periodicity is related to the ratio
ωc/EF. Nominally the frequency is given by the Onsager’s quantization
condition [160, 8]

AN =
2πe
 hc
B

(
N+

1

2
−β

)
(64)

which is satisfied when the Nth Landau level is crossing the Fermi
energy. Here, AN is the area enclosed by electrons in the k-space with
their cyclotron orbits on the Fermi surface. The parameter β = ϕB/2π is
determined by the Berry phase [25] (see Sec. 2.3.1, 2.3.3), which is
expected to be π in topological insulators (i.e. β = 1/2) and 0 in
topologically trivial materials.

In order to evidence the effect, the background conductance is typically
subtracted, and the oscillations of the residual conductance ∆Gxx are
studied. The position of the Landau levels can therefore be addressed
from the position of the minima of the ∆Gxx, as shown on in Fig. 23.
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2.3.1 SdH in a Dirac Electron Gas

Dirac electrons are characterized by a value of the Berry phase of π
[8, 144, 203, 119]. It can be shown that a 2D electron gas with a Dirac
energy dispersion in a Magnetic field have Landau levels. However their
energies are different with respect to Landau levels in ’normal’ (i.e.
Schrödinger) 2DEGs (see Fig. 24). Nominally the energies

EN =
√

 hωcN (65)

are characterized by

• An aperiodic spacing of Landau levels

• The presence of a Landau level at E = 0, which is not present for
Schrödinger electrons (see Eq. 42). The position of this level cannot
be tuned with the magnetic field.

Figure 24: Landau levels in Schrödinger (a) and in Dirac (b) electrons.

From the analysis of the SdH it not possible to see the trace of the
aperiodic level spacing, which instead can be verified with STM analysis
[208, 38]. However from the value of the Berry phase it is possible to
infer whether one has Dirac electrons or Schrödinger electrons. This can
be done with the fan diagram.

2.3.2 Fan Diagram

In Fig. 25, the sequence of the values 1/BN of the Nth minima of the
magneto-conductance oscillations

∆σxx ' cos
[
2π

(
F

B
−
1

2
+β

)]
(66)
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Figure 25: Fan diagram of the 1/BN values of the σxx minima. The slope of the line is
given by the frequency F of the σxx oscillations (see Eq. 67). The intercept
of the line, instead, is connected to the value of the Berry phase. In the case
of ϕB = π, the line shows a value of the intercept of β = 1/2 (downward
triangles, in green), while the topologically trivial case (ϕB = 0) is depicted
by upward triangles, in black.

are plotted as a function of the label N.
The minima of ∆σxx occurs each time that value of the argument

2π

(
F

B
−
1

2
+β

)
equals π(2N− 1). Therefore the slope of the straight line which connects
the value of 1/BN vs N is the frequency F, which is connected to the
carrier density

F =
 hc

e
n2D (67)

The intercept of the line, instead, is connected to the value of the Berry
phase [25], and it is a fundamental information on the topology of the
system.

2.3.3 Berry Phase

When the linear fit is interpolated to 1/BN → 0, the intercept of the
N-axis assumes a value β, which is connected to the the Berry phase.
Specifically a value of β = 1/2, corresponding to a Berry phase of π is
expected in the case of Dirac electrons, while a β = 0 is the typical value
of the Berry phase ϕB = 0 of the Schrödinger electrons [8].

The index N of the Landau levels, as extracted from the oscillations, is
defined up to an arbitrary constant. The absolute value of N can be
extracted imposing the value N = 0 when 1/BN → 0. The presence of
Berry phase modifies the boundary condition to be N = 0 + β (when
1/BN → 0). Therefore the Berry phase gives a rigid shift to the fan
diagram, as shown in Fig. 25. However, this shift cannot be accounted
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on the arbitrary attribution of the label N as the displacement is a
semi-integer value of N.

A spurious 1/2 shift, instead [193, 8], can appear if the fan diagram is
constructed using the oscillations of ρxx. In this case an uncertainty in the
assignment of the indexes is given, namely whether to assign an integer
index to a minimum or to a maximum of ρxx. In fact, if a wrong choice
is made, a spurious β = 1/2 intercept can be observed for Schrödinger
electrons.

When the condition σxx � σxy is satisfied (which is usually the case
with low-carrier-density semiconductors), ρxx ' σxx/σ

2
xx and the

minima in ρxx coincide with those in σxx. This is the reason why the
fan diagram constructed from the minima of ρxx data can give the
correct phase factor in graphene [142, 120, 207]. However, in the case of
TIs, due to the presence of the bulk transport channel, often the
condition σxx � σxy does not strictly hold [8, 70]. In the extreme case,
when σxy � σxx (which is usually the case in metals), ρxx = σ−1xx , and
the minima of ρxx now coincide with the maxima in σxx. In this limit,
as mentioned a recent paper [193], one should refer to resistance
maxima. However, this ambiguity is avoided by directly referring to the
minima of the ∆Gxx [194].

2.3.4 SdH in 3D Systems

Shubnikov - de Haas oscillations are not an exclusive feature of 2D
system, but they can also be detected in 3D systems, under some
conditions, due to the formation of Landau bands [166]. In 3D it is
possible to observe oscillations for any direction of the magnetic field.
Therefore a support to the 2D nature of SdH oscillations can be
provided by a study of the oscillations as a function of the angle θ
between the magnetic field and the surface of the sample [152, 58].

The projection of the 3D Fermi surface on the plane orthogonal to the
magnetic field, cuts a 2D projection in the k-space. The area of this 2D
projection determines the frequency of the SdH oscillations, following
the Onsager’s relation (Eq. 64). If the system has an isotropic Fermi
surface, the frequency of the oscillations F should be independent from
the angle θ, while in anisotropic systems F depends on the value of the
angle θ, following the different sections of Fermi surface along different
orientations [167, 84, 80].

This effect is traditionally [8] studied by plotting the SdH oscillations
as a function of the normal component 1/BN

2π

(
F

BN
−
1

2
+β

)
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If the system is a 2DEG, the position of the minima should not vary with
the angle θ.

Figure 26: Frequency of the oscillation as a function of the angle θ for different shapes
of the Fermi surface. The green dashed line is the case of an ellipsoid Fermi
surface (2 axis of the ellipsoid are equal, and one is a factor of two bigger),
while the red line describes the case of a 2D transport, given by a cylindrical
Fermi surface.

Equivalently [175], it is possible to extract if the transport is a 2D or
an anisotropic 3D by studying the behavior of F vs θ. Specifically in the
case of a 2D transport, F changes as 1/ cos θ. If instead the transport
is an anisotropic 3D, the frequency of the oscillations still changes as
a function of the angle, but the dependence does not follow the cosine
dependence behavior (see Fig. 26).

2.4 topological superconductors
When superconductivity is induced in a topological insulator, a new state
of matter is created. This is called a "Topological Superconductor". In this
case a spinless superconducting state with a p wave order parameter can
be created [18, 1]. The presence of Majorana bound states at the interface
between a trivial superconductor and a topological superconductor is
predicted [18, 1, 96, 149].

2.4.1 Majorana Bound States

Majorana fermions were predicted in 1937 by Ettore Majorana [121], as
neutral solution of the Dirac equation of relativistic quantum field
theory. Majorana fermions are spin 1/2 massless fermion, which are
their own antiparticles, therefore they were proposed as candidates to
describe neutrinos ("there is now no need to assume the existence of
antineutrons or antineutrinos", cit. E. Majorana).

The simplest model accounting for Majorana fermions as boundary
excitations is the Kitaev model [96, 95]. This model describes a one
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dimensional p-wave spinless superconductor. The solution of the model
predicts the formation of Majorana bound states at the end of the chain
(see Fig., 27a), under certain constraints on the hamiltonian parameters.
In fact, let’s consider a chain on N Dirac fermion. The hamiltonian of
the system:

H−µN =
∑
i

t
(
c
†
ici+1 + c

†
i+1ci

)
−µc†ici+∆

(
cici+1 + c

†
i+1c

†
i

)
(68)

where µ and t represents on-site interactions and the interactions with
the nearest neighbors fermions of the chain respectively. ci and c

†
i are

the electron annihilation and creation operators, respectively. The system
can be recast in terms of Majorana fermions. In the limiting case of µ = 0

and 2t > 0, the ground state of the system presents unpaired Majorana
fermions the the edges of the chain.

It can be shown that the an s wave quasi-1D superconductor (i.e. a
wire) in presence of spin-orbit coupling and a magnetic field along the
wire can be mapped onto a spinless quasi 1D p wave superconductor
(Kitaev model) in the low energy limit [96, 149, 61]. This is why recently,
InAs and InSb nanowires in proximity with s wave superconductors are
expected to present the physics of unpaired Majorana fermions. However,
to the date, the most relevant experiment by Mourik et al. [139] is still
strongly debated.

In two dimensions the presence of Majorana fermions embedded in
the core of a vortex is predicted [18]. In the p wave, the superconductor
opens an excitation gap, which can be closed locally by a magnetic field
(see Fig. 27b). As the Majorana fermions have to stick at zero energy, a
possible experimental route is to look for zero energy bias anomalies in
tunneling spectroscopy [139, 102]. However, no clear signature have been
measured up to now [140, 60].

The presence of Majorana bound states in Josephson junctions with
topological barrier, is expected to modify the CPR, thus giving a 4π
periodic relation [65, 18, 1, 149, 161, 191, 103, 184, 183]. However, the
condition to experimentally observe Majorana bound states are rather
stringent, as pointed out in recent papers [161, 150, 183, 118]. The
reason of this difficulty has to be sought in the competing mechanisms
of different transport channels. Specifically if a trivial superconducting
transport is created within the junction, there is a competing
mechanism between a 2π and a 4π periodic relation. In this case the
experiments also give evidence of the lower periodicity [153, 183].

Moreover even if 4π periodicity was measured, this would not be an
unambiguous proof of the existence of Majorana fermions, as possible
Landau-Zener transitions could result in similar evidences.



2.4 topological superconductors 46

(a) (b)

Figure 27: (a) Sketch of a 1D spinless p-wave superconductor. As the intra-site
interaction t is increased the coupling between the nearest neighbors is
increased, yielding, in the limiting case of µ = 0 and t > 0 to the creation of a
couple of unpaired Majorana fermions at the end of the chain (courtesy of P.
Lucignano). (b) Schematic representation of a Majorana fermion embedded to
an Abrikosov vortex core. The magnetic field creates sub-gap states En = nδ,
which does not include En = 0. The presence of a Majorana fermion shifts
the energy of the levels of an amount α = 1/2, thus creating an En = 0 energy
state (adapted from [18]).



3 M E A S U R E M E N T S E T U P
A N D D E V I C E FA B R I C AT I O N

In this Chapter I will present the equipment used to fabricate the
devices (Sec. 3.1) and the experimental setup used for low noise
measurements in cryogenic environments and high magnetic fields
(Sec. 3.2). A description of the device realized in this work is also
included (Sec. 3.3).

3.1 nano-lithography techniques
The fabrication process is based on the e-beam lithography technique,
which allows to define the geometry of the devices with an extremely
high resolution (10 − 100 nm).

3.1.1 e-beam lithography

The e-beam lithography has become the universal standard for nano-
fabrication techniques, thanks to its versatility and high performances.
In fact it is relatively easy to achieve sub-micron patterning without the
use of a hard mask, as for instance in photolithography technique. In
the e-beam lithography, the design is be created on a CAD file, and then
converted to a format which is interpreted by the software of the machine
and impressed on the device through a focussed electron beam. This
gives the high versatility of this technique, as the design can be changed
and adjusted as required.

The e-beam machine used to fabricate the Bi2Se3 and Bi2Te3 devices
presented on this work is the Jeol-JBX 9300 FS. This system has a gaussian
beam of 4 nm of diameter, emitted by a ZrO/W thermal field source.

47
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Figure 28: The Jeol JBX 9300 FS system.

The system allows for exposition at 50 kV or at 100 kV at beam currents
ranging between 50 pA and 100 nA. The system is also equipped with
an interferometric stage allowing for a positioning with a precision of
0.62 nm.

3.1.2 e-beam resist, development and Lift-Off

In order to impress the design on the sample a thin film (10 − 100 nm)
of a sensitive polymer (e-beam resist) is spun on the sample (in this
work ZEP-520A 1:2 Anisole) and baked at 130

◦C. The exposition of the
resist to e-beam changes the chemical composition of the exposed part.
Therefore it can be removed upon immersion of the device in a suitable
solution, called "developer" (in this work Hexyl Acetate). The ZEP is a
positive e-beam resist, this means that the exposed parts are removed
in the development procedure. A copolymer (MMA EL8) is spun on the
sample prior to the ZEP. Its use is required for the lift-off procedure,
described below. This procedure is used to transfer the design from the
e-beam resist to the final device.

In the lift-off, a thin metallic film is evaporated on the sample (in this
work through an e-beam evaporation technique, performed in a Lesker
PVD 225 system). The unwanted parts of the metal thin films can be
therefore removed in a warm acetone bath (this last step is the so called
called lift-off).

The resolution of the lithography is typically limited by electron
diffraction phenomena which take place in the e-beam resist, therefore a
higher resolution is achieved with thinner resist layer, on the other hand
the thickness should be sufficient to permit the lift-off. In order to have
a good lift-off, the thickness of the resist has to be significantly (i.e. 30%)
higher than the thickness of the metal film. In our samples a total
thickness of 190 nm was achieved (ZEP: 60 nm, EL8: ' 130 nm). The use
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Figure 29: Lift off procedure: (on the left) lift off layer deposition, resist layer deposition,
exposure; (on the right) develop (undercuts produces a gap in the deposited
metal), metal deposition, and lift off.

of a copolymer is used to create undercuts after the development (MMA
EL8 is developed in MIBK:IPA 1:1). As shown in Fig. 29, the undercuts
are required to create a gap between the part of the metallic film
deposited on the top of the resist layer and the part directly deposited
on the sample.

3.1.3 Description of the e-beam Machine

Column

The very heart of the e-beam machine is the electro-optical equipment
used to create the focussed electron beam. This is called the "column".
The column is composed of several lenses, made of magnetic multipoles,
used to focus the beam (see Fig. 30). The beam line also includes an
astigmatism correction electrode, and two pairs of deflectors (main
deflectors and subsidiary deflectors), which are used to move the beam
on a writing field in the x and y direction. The writing field size of the
system is 500 µm x 500 µm.

Stage

To achieve design are bigger than 500 µm x 500 µm, the chip is divided
in fields, and a movement of the stage is used to move the sample below
the column. When the exposure of a writing field is completed, the stage
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Figure 30: A sketch of the electro-optical system of the Jeol JBX. The main components
are labeled.

moves to the next writing field as shown in Fig. 31a. At the edges of the
writing field the exposition is interrupted, and continued after the stage
movement, therefore the alignment is a crucial step. It the system used in
this work, this is achieved through a couple of two arms interferometer
(see Fig. 31b), allowing to a precision of 0.62 nm in the positioning of the
stage. The edges of the writing field usually have a lower resolution than
the center. This is due to effects of distortions of the deflectors which
are more severe at higher deflection angles. For this reason, the most
demanding part of the design (in terms of resolution) should always be
positioned as close as possible to the center of the writing field.

System Calibration

The fundamental issue to increase the performances of the system is an
accurate calibration of the optics, including:

• the adjustment of the focus

• a correction of the beam astigmatism

• a calibration of the main and subsidiary deflectors

• a correction of the field distortion

• the alignment of the sample
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This procedure is performed by using two detectors, allowing the
detection of both absorbed electrons (AE) and (BE) backscattered
electrons (see Fig. 32a, 32b). These detectors can be also used to perform
an imaging of parts on the sample (SEM), if required. The calibration is
initialized by eye (optimizing the SEM image), and then implemented
using an automatic procedure, which is repeated right before each
exposure.

(a) (b)

Figure 31: (a) Sketch of the movement of the stage from a writing field to the new writing
field. (b) Scheme of the stage of the machine, including the interferometer
system for the stage positioning.

The system is conceived to automatically recognize the position of a
cross marker, using the BE sensor. Upon a scan on the arms of the cross it
is possible to extrapolate the centroid of the marker, through a procedure
of numerical differentiation and autocorrelation of the BE signal.

The focus and astigmatism of the beam is optimized through multiple
scans on the edge of a mark (see Fig. 32a). The parameters are optimized
to get the sharpest profile. The focus is optimized on a reference surface,
whose height is measured to high precision using a couple of laser-beams
and two four quadrant photodiodes (see Fig. 32c). Then the height of
the sample is measured, and the focus is continuously optimized during
the exposure, through the dynamic focus correction electrode shown in
Fig. 30.

To calibrate the deflector of the beam a cross markers is used. The
marker is moved to different position of the writing field and detected
with the beam. The absolute value of the distance is separately
measured with the interferometer, as shown in Fig. 33. Therefore the
deflector positioning is calibrated with high precision.

The field distortion is corrected using an array of equally spaced cross
markers. The deflector and sub-deflector voltage deviates from the
linear behavior at higher angles, generating the distortions at the edges
of the field described above. The distortion corresponds to an apparent
dislocation of the markers at the edge of the writing field. However the
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(a)

(b)

(c)

Figure 32: Scheme of the detectors for adsorbed electrons (AE) - panel (a) and
backscattered electrons (BE) - panel (b). (c) Scheme of the system for height
measurements, the system is based on two crossed laser. The position of the
reflected light is measured with a four quadrant photodiode. The optical lever
enhances the precision of the measurement.
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Figure 33: Sketch of the calibration procedure of the deflectors.

distortions can be partially compensated by correcting the deflection
voltage to minimize the apparent dislocations of the markers.

The last crucial step of the calibration is the alignment of the sample.
In this step the system searches two cross marks on the sample, using the
correlation function of the BE sensor, as described above. These marks are
usually defined in a preliminary lithography step. The relative position
of the two marks with respect to the design is specified on the CAD file.
In this way, the position of the sample is aligned with the design. In our
samples, for instance, this is required to align the Al electrodes to the
flake of TI, as described in Sec. 3.3.1 below.

3.2 low noise measurements at
cryogenic temperatures

In this paragraph we will describe the equipment used to perform
transport measurements. The measurements have been performed in a
cryogenic environment, and includes the use of high magnetic field,
generated by superconducting coils included in the system. State of art
electronic equipment was used to perform low noise measurement,
including high gain amplifiers, with high signal to noise ratio, and
advanced filtering stages, both at room temperature and at cryogenic
temperatures.

3.2.1 High Magnetic Field Measurements

The preliminary characterization of Bi2Se3 samples at high magnetic
field, described in Sec. 4.1 was performed in a Quantum Design PPMS
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system. This system is equipped with a NbTi magnet to perform
measurements in magnetic field up to 14 T, at temperatures down to
2 K. The system is optimized for measurements of R(T) and R(B) in a
four point configuration. The device is biased with a d.c. current of
1 µA, and the corresponding voltage is measured. We performed
measurements in a Hall configuration, thus measuring Vxx and VH (see
Fig. 34) as a function of the magnetic field. It is possible to rotate the
sample with respect to the magnetic field, using a motor. The position
of the sample can be changed while keeping the system cold.

Figure 34: Sketch of a Hall bar in a perpendicular magnetic field. The device is biased
with a current Ib. The Hall voltage VH and the longitudinal voltage Vxx are
measured between the voltage probe as shown in figure.

3.2.2 Evaporation Refrigerator

Most of the low noise transport characterization included in this work are
performed using an evaporative refrigerator (Oxford Instruments Heliox
VS system). This system allows to reach a base temperature of roughly
250 mK, basing on the principle of the evaporative cooling of 3He. This
is a very robust system, that allows a fast cool down with limited 4He
consumption.

The system is immersed in a thermal bath of 4He (at the temperature of
4.2 K), from which the cryostat is thermally decoupled through a vacuum
cell (IVC).

Figure 35: A sorb cryo-pump. The scale is signaled by the pen.
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The system uses a 1 K pot to cool down to the temperature below
2.2 K, the liquefaction temperature of 3He, down to a approximately
1.5 K. The 3He, which is contained in a closed tank, is therefore
condensed in, and later pumped in a ’single shot’ operation with a
sorption pump, allowing a stability at base temperature of
approximately 7 h. The sorption pump is a molecular pump that is
based on the adsorption mechanism (see Fig. 35). It consists of a large
amount of zeolite, enclosed in a small cylinder inside the cryostat.
When zeolites are at a temperatures lower than 30 K, the vapor of 3He
are adsorbed. The pump can be activated and switched off by a heating
system, as needed.

This system allowed measurements with high thermal stability at
temperatures between 250 mK and 80 K. The system is also equipped
with a NbTi superconducting coil to apply an external magnetic field to
the system, up to 300 mK, and with a microwave line, allowing to shine
a RF radiation on the sample via a linear antenna.

3.2.3 Dilution Refrigerator

A characterization of the samples down to 20 mK was performed using
dilution refrigerators. Specifically measurements are mainly performed
a Oxford Kelvinox MX dilution refrigerator. Measurements presented in
Sec. 6.5, instead have been measured in a cryogen free Oxford Triton 200

refrigerator.
The Oxford Kelvinox MX was equipped with a NbTi coil to apply an

external magnetic field up to 50 mT. The Oxford Triton 200 instead was
equipped with a 12 T NbTi magnet for high field measurements. Lower
field could be achieved with a 10 mT Cu Humboldt coil, with the axis
orthogonal to the main magnet. Moreover the system was also equipped
with a microwave line, similarly to the Heliox system described above.

Generally speaking the working principle of the two systems is rather
similar: it is based on the principle of cooling by diluting a 3He - 4He
mixture. As shown in Fig. 36 the mixture, below 867 mK, undergoes a
phase separation. Therefore the dilution induces a cooling process,
following the phase separation curve. This process is achieved in the
dilution unit.

Dilution Unit

The hearth of the dilution unit is the mixing chamber: a pot, connected
with two pipes, allowing to selectively address the the two phases of
the mixture. In fact when the two phases separates, the 4He rich phase,
which is heavier, goes below the 3He rich phase. The pipe connected to
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the bottom (called "Still line") is connected to the 4He rich phase. It is
used to extract the 3He, through a mechanical pump. The 3He is then
brought back through the the pipe (called "condenser line") connected to
top of the pot (see Fig. 36), thus creating a closed loop.

Figure 36: Scheme of a dilution unit, showing the main components, and phase diagram
of the 3He - 4He mixture.

Diluting the 4He phase is possible by applying some heat, which
prevailingly causes the evaporation of the 3He. This ’distillation’
procedure is normally performed in a separate pot, called "Still". The
3He evaporated in the Still is evacuated by a mechanical pump. The
dilution of the mixture in the mixing chamber, instead, is driven by the
osmotic pressure created between the mixing chamber and the Still.

Finally the 3He recollected by the mechanical pump is re-condensed
and added to the 3He rich phase through the condenser line. The system
thus allows for continuous operations.

The crucial part of the continuous circulation system is the
pre-cooling of the warm 3He added to the mixing chamber. The 3He is
first pre-cooled in several steps, using the various stages of the cryostat
to progressively cool down the gas, however the most demanding part
in the thermalization at the lowest temperatures. This is achieved
trough a combination of a continuous heat exchanger and a cold plate
exchanger (see Fig. 37), optimized to enhances the heat transfer between
the still and the condenser line.

The dilution units is the most complex part of a dilution refrigerator,
however it is the last of several stages of cooling of the cryostat. At this
regards different solutions can be used.
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Figure 37: Picture of dilution unit. The heat exchangers and the mixing chambers are
pointed out.

Wet and Dry Fridges

Most of dilution refrigerators uses a 4He bath and a 1 K pot to reach
the temperatures required to condense the mixture. The 1 K pot is also
used to pre-cool the mixture in the circulation procedure. In this case the
system is similar to an evaporation refrigerators described is Sec. 3.2.2.
More recently the use of cryogen-free refrigerators is becoming more
and more widespread.

(a) (b)

Figure 38: (a) Scheme of a pulse tube and (b) picture of the system.

A cryogen-free cryostat is based on a pulse tube to pre-cool the system
allowing to cool down to 20 mK without the use of cryogenics. The pulse-
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tube is based on a non-equilibrium thermodynamic cycle of 3He. The
tube is alternatively connected to a reservoir with high (3 bar) and low
(1 bar) pressure, thus creating an enthalpy flux flowing from the middle
part of the tube (see Fig. 38) to its extremities. Therefore the middle of the
tube cools down. However, a detailed description of the working scheme
goes beyond the purposes of this work. With a double stage of pulse tube
coolers it is possible to reach temperatures of the order of 5 K.

In order reach the temperatures needed to condense the mixture, a
further step is required. This is usually achieved with a Joule Thomson
stage. This requires the use of a compressor, adjoint to the condenser
line. At this stage the 3He - 4He mixture is compressed up to 2 bar,
thermalized at 5 K and finally adiabatically expanded. In this way the
mixture cools down and condenses. The following stages of the cryostat
follows the classical sequence of the dilution unit.

3.2.4 Low noise measurements: IV characteristics and switching
current distributions

Figure 39: Sketch of a Josephson junction, the shaded area corresponds to the effective
area of the junction.

All the measurements presented in this work have been realized in
a magnetically shielded environment. The shielding was provided by a
system of superconducting and cryoperm screens.

The measurements were performed in a pseudo four point contact
configuration. A current bias is applied to the junction, using a waveform
generator in series with a high (1 MΩ) resistor. The voltage across the
junction is measured with two voltage probe (see Fig. 39) and amplified
by a voltage amplifier with a high gain (100 - 10 000). The IV curves
are therefore measured. To increase the sensitivity the actual IV curve is
mediated on many (500) sweeps.
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Figure 40: Repeated measurements of the switching current. A zoomed area of the graph
is also shown. A threshold detector is used to detect the switching to the
resistive state. The threshold is set to be just above the voltage noise in the
zero voltage state, and far below the switching voltage, as shown in the inset

To measure switching current distributions (SCD), a current ramp is
used to bias the junction. when the bias current approaches IC, the
voltage shows a sudden jump to a finite value. The switching event is
detected through a threshold detector, and the value of the switching
current is extrapolated. The switching current distribution is therefore
achieved by collecting switching currents over many (104) repeated
ramps (see Fig. 40).

The system is equipped for low noise quasi d.c. measurements,
including some stages of cryo-filters. Specifically, the filtering is
guaranteed by a room temperature electromagnetic interference filter
stage followed by low pass RC filters with a cutoff frequency of
1 − 10 MHz anchored at 1.5 K, and by a combination of copper powder
and twisted pair filters (see Fig. 41) thermally anchored at the cold
finger (mixing chamber - 3He pot).

3.3 devices
In this paragraph the devices realized within this work are presented,
with a special focus to the fabrication of Al/Bi2Se3/Al and AlBi2Te3/Al
coplanar devices.

3.3.1 S/TI/S coplanar structures

We have fabricated coplanar Josephson junctions on the surface of the
Bi2Se3 and Bi2Te3 flakes. The flakes were exfoliated from Bi2Se3 single
crystals and from Bi2Te3 thin films, epitaxially grown through molecular
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Figure 41: (left) Picture of the Kelvinox MX system used in this work (right) A detail
of the two Cu powder filtering stages working at 50 mK (top picture) and at
20 mK (bottom picture). The pen sets the scale of the picture.

beam epitaxy (MBE), and transferred on a Si/SiOx substrate substrate,
to pattern Josephson and Hall devices.

Bi2Te3 Thin Film Deposition

Here we will describe the MBE technique, used to grow thin Bi2Te3
films. Thin film growth using MBE allows more precise control over the
composition and thickness [67, 163]. The thin films are grown
epitaxially with their c axis perpendicular to the surface, as verified
through XRD analysis. Specifically the (0 0 1) planes were detected
using a symmetric ω− 2θ X-ray diffraction (XRD) scans.

A phase transition occurs from Bi2Te3 to Bi4Te3 during the MBE
growth of bismuth telluride thin films when low tellurium flux is used
[67], and we selected samples with the ideal Bi2Te3 stoichiometric
composition, which are expected to show the TI features, to perform the
transport measurements presented in Sec. ??. The stoichiometric
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composition of the film was confirmed via a combination of XRD
analysis and AFM, as shown in Fig. 42

Figure 42: XRD scans showing diffraction peaks for samples various samples containing
Bi4Te3, both Bi2Te3 and Bi4Te3, and only Bi2Te3, respectively. The values in
the parentheses next to each peak indicate the Miller indices of the crystal
planes.

The samples were grown on Si (1 1 1) and GaAs (1 1 1) substrates
using a Riber Compact 21 MBE system. Before the growth, the Si
substrates were etched by a mixed chemical solution of HF and NH2F
to remove the surface oxide, and then quickly transferred to the degas
chamber of the MBE and heated to 600

◦C until the pressure in the
chamber dropped below 1 · 10

−8 Torr. The GaAs substrates were cleaned
thermally in the growth chamber at 650

◦C. The growth took place
under ultra-high vacuum in the range of 10

−11 Torr. Prior to the epitaxy,
a one minute Te soaking on the substrate was implemented to passivate
the surface dangling bonds. Then both Bi and Te were simultaneously
open to grow the Bi2Te3thin films. The growth temperature was varied
between 140

◦C and 200
◦C. A Philips X Pert Materials Research

Diffractometer was used to perform the ω − 2θ scans to extract the c
axis length and a Bruker Dimension 3100 SPM was used for the atomic
force microscopy (AFM) scans. The electrical measurements were
performed using a Physical Properties Measurement System by
Quantum Design at 5 K and up to 14 T.
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Bi2Se3 Crystal Growth

Single crystals of Bi2Se3 are realized through by melt-growth method
by reacting pressed pellets of mixed powder of Bi and Se in a evacuated
quartz tube. Bi2Se3 crystals are characterized by a rhombohedral crystal
structure [192] with stacks of weakly linked quintuple layers [204].
Therefore flakes of material can be collected through micro-mechanical
exfoliation, and transferred on a Si/SiOx substrate.

Figure 43: (a) AFM of the surface of a Bi2Se3 flake. The presence of the quintuple layers
is evidenced by the presence of the steps, signifying an exfoliation along the
c axis of the crystal. The steps, with typical separation of 5 − 10 nm can be
observed.

In Fig. 43 we show a typical Atomic Force Microscopy (AFM) image
of an exfoliated Bi2Se3 flake. In the picture the surface topography of
the sample shows a characteristic stairway like feature. Steps with a
typical height of 5 − 10 nm are clearly visible from the analysis of a
line-scan (Fig. 44a), extracted from the AFM image. The surface is very
smooth between the steps, with a roughness below 1 nm (see Fig. 44b),
thus we obtain flat surfaces by the exfoliation through the quintuple
layer. However steps are created by the mechanical stress accumulated
during the wrench required for the exfoliation procedure. In order to
increase the smoothness of the surface and to reduce the thickness of
the flake, a procedure of multiple exfoliation was performed. The
surface shows no steps on a scale of a few microns, which is required to
fabricate our devices (see Fig. 34, 39). The final thickness of the flake is
typically between 30 and 100 nm.

Nano-fabrication Details

We have fabricated coplanar Josephson junctions on the surface of the
Bi2Se3 flakes, with a separation of 400 nm between the Al electrodes. The
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(a) (b)

Figure 44: (a) Line-scan extracted from the AFM shown in Fig. 43. The steps, with typical
separation of 5 − 10 nm can be observed. (b). The panel (c) shows the surface
of one of the steps. The roughness is below 1 nm, underlining the presence of
an atomically flat layer on a scale of at least 1.5 µm. The bending of the line
is a spurious effect of the background subtraction.

flakes were randomly deposited on the Si/SiOx substrate, where a set of
Cr/Au markers were previously patterned through a lift-off combined
with electron beam lithography. The markers are required to align the
electrodes to the position of the flake.

The Al electrodes geometry was then defined through electron beam
lithography. The aluminum was deposited by e-beam evaporation in a
10

−7 mbar environment. The electrodes were then achieved using a lift
off procedure.

To increase the adhesion of the aluminum on the Bi2Se3 flake, and
improve the interface transparency, a short (10 s) Ar+ ion etching was
performed to clean the flake surface. For the same reason a thin buffer
layer was deposited in situ before the Al deposition. The buffer layer
improves the contact between the Al film and the surface of the Bi2Se3
flake and reduces the contact resistance. For instance, a sample (not
shown here) was fabricated with no buffer layer and no charge
transport through the junction could be detected (its room temperature
resistance was too high to be measured).

We have tried 3 different recipes, which differ in the treatment of the
interface prior to the electrodes evaporation, and in the material used as
a buffer layer. Different treatments lead to different typical
characteristics of the devices, and in this manuscript we present three
sample junctions with identical distance between the electrodes and
comparable cross sections, one representative for each type. The width
and the thickness of the junction are defined by the flake geometry and
they cannot be fully controlled. However, devices with comparable cross
section have been selected. Specifically we present 2 junctions with a Ti
interface (junctions 1 and 2). In junction 1 the vacuum was broken
between the Ar+ etching and the Ti/Al deposition, while in junction 2
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JJ size (see Fig. 39)
(W (µm) · t (nm) · L (nm))

Buffer layer Etching

1 2 · 70 · 400 Ti (5 nm) Ar+ 10 s

2 2 · 100 · 400 Ti (5 nm) Ar+ 30 s (in situ)

3 1.5 · 80 · 400 Pt (3 nm) Ar+ 10 s

Table 1: Fabrication parameters of junctions 1,2,3.

the etching was made in situ. We finally present a junction with a Pt
buffer layer (junction 3). Further details are listed in Table 1.

Transport Measurements

In figure 45 we report the current voltage characteristics of the three
measured devices at the temperature of 280 mK, representative of the
different behaviors. The IV curves for junctions 2 and 3 show an ideal
over-damped RSJ behavior [14], typical of junctions with a low
capacitance barrier. The measured parameters for the three devices are
summarized in Table 3. To have a fully comparable dataset, we refer to
quantities which are fully independent of the cross section of the
junctions (i.e. critical current density JC, specific resistance RNA and
characteristic voltage ICRN).

Figure 45: IV measurements of junctions 1, 2 and 3. The inset shows a magnification
of the area at low voltages and current, evidencing the difference between
junction 1 and 2. In fact while junction 2 shows a clear super-current branch,
only a nonlinearity can be observed in junction 1

From Table 2 a clear trend towards better coupling between the
electrodes and higher transparency interfaces can be seen from junction
1 to junction 3. This emerges as an increase of the critical current density
(Junction 1 did not show a clear dissipation-less current, but only a
non-linearity at low voltage), and a consequent increase of the
characteristic voltage of the junction (given by the ICRN product). The
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specific resistance RNA (where A is the cross section of the junction),
correspondingly, shows a slight decrease. The induced superconducting
gap and the total effective transparency of the junctions are the most
relevant parameters in hybrid superconducting devices [106, 73, 30].
They are strictly connected to the interface quality and to the buffer
layer.

Here we have focused on junctions 2 and 3. Both junctions show an
ICRN product much smaller than the bare Al gap. As a matter of fact, the
induced gap in the buffer layer (both Ti and Pt) is rather small and this
has consequences also on the critical current of the devices. However, as
seen in Table 3, devices with Pt buffer layer have a critical current density
and a characteristic voltage which are more than one order of magnitude
larger than those with Ti buffer, thus outperforming them.

From the excess current we can also obtain indications on the junction
transparency (see Ref. [30]). In junction 2, Iex/IC is below 4 %
(0.03 ± 0.01), thus pointing out to a barrier of D < 0.3 (the most likely
value being 0.2). This estimate has to be taken with some precaution,
due to the poor signal to noise ratio. However, a clear indication of a
low transparency interface can be extracted from our data. In junction 3,
thanks to a more favorable signal to noise ratio (here IC is much larger
than in junction 2), we can infer a barrier transparency of
D = (0.86 ± 0.6), given by a value of Iex/IC = (0.57 ± 0.03).

JJ IC JC RNA ICRN D

(µA) (A/cm2) (Ω µm2) (µeV)

1 0 0 8.4 0 not eval.

2 0.070 35 2.4 0.89 < 0.3

3 1.70 1.4 · 103 1.1 13.9 (0.86 ± 0.6)

Table 2: Physical parameters of junctions 1,2,3.

These outcomes point to a better compatibility of the Pt buffer layer
with the TI material, for the creation of a high transparency interface.
These devices are therefore good candidates for a complete
characterization of the Josephson effect, and for the search of those
unconventional features expected in the case of topologically non trivial
barriers.

3.3.2 Bi-epitaxial Josephson Junctions

The YBCO devices presented in this work have been realized with the
bi-epitaxial fabrication technique [168]. In bi-epitaxial junctions, two
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different crystalline orientations of YBCO film are induced using a
structured substrate, to obtain a grain boundary. The substrates used in
this work are La0.3Sr0.7)(Al0.65Ta0.35)O3 (LSAT) or SrTiO3 (STO),
providing an epitaxial growth of the YBCO film in the (1 0 3)
orientation. The template for the growth is defined with a patterned
CeO2 seed layer, which provides a different orientation of the YBCO
(0 0 1) film with respect to the one induced by the substrate. The main
feature provided is the presence of an off axis electrode obtained thanks
to the (1 0 3) orientation of the YBCO film grown on the substrate. This
feature most likely determines the lower barrier transitivity that
characterizes the transport properties of these devices.

A promising route to further improve the quality of the device is the
realization of smaller junctions. Sub-micron HTS junctions have already
been used to reduce decoherence [179]. They could prove to be more
uniform and of better quality for applications. Measurements on such
structures could also provide feedback to improve GB junctions and to
clarify the transport mechanisms of GB barriers.



4 A M A G N E T I C F I E L D C H A R A C T E R I Z AT I O N
O F T H E B I S M U T H S E L E N I D E

This Chapter includes a high magnetic field characterization of the
Bi2Se3 barrier. Measurements have been performed in Hall bars using
the PPMS system described in Sec. 3.2.1. The results of this study are
combined with the analysis of scanning tunneling microscopy (STM)
performed on the cleaved surface of the sample. STM and SdH
oscillations studies are necessary to characterize the typical properties
of the Bi2Se3 barriers used in our hybrid devices.

4.1 hall effect in bismuth selenide
devices

We describe here the high magnetic field characterization of the Bi2Se3
flakes. This study is a fundamental step to gather information on the
relevant transport parameters of the barrier, which are used to realize
hybrid S-Bi2Se3-S devices. We have measured 9 Hall devices (for
fabrication detail see Sec. 3.3.1) at low magnetic field (|B| < 5 T). Further
analysis performed at high field is discussed below.

4.1.1 Low field Hall coefficients

In Fig. 46 we report the typical behavior of the longitudinal (Rxx) and
transversal (Rxy) resistance of Bi2Se3 flakes. The longitudinal resistance
(Rxx = Vxx/I) has a quasi-parabolic background, which is connected to
the band structure of the bulk of the crystal. The transversal resistance

67
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Figure 46: Longitudinal (Rxx) and transversal (Rxy) resistance of sample Bi2Se3X2S19 as
a function of the external magnetic field. The longitudinal resistance shows a
quasi-parabolic background whereas the transversal resistance have a typical
Hall behavior. At high field there are some nonlinear effects, which are
discussed below.

is related to the Hall coefficient (Rxy = VH/I). For the geometry of the
device see Sec. 3.2.4, 3.2.1 and Fig. 47b.

In Fig. 47a we report a typical Rxy(B) curve. In the linear regime it
gives indications on the sign and the density of the main free carrier of
the measured device. The slope of the line is connected to the density
of the free carriers (n3D = 1/etRH - see Sec. 2.1.1 for more details). In
3D systems n3D is expected to be independent of the thickness of the
flake, while the most appropriate quantity to be referred in 2D systems
is n2D = 1/eRH. This quantity is expected to be independent of the
flake thickness, if the transport is purely 2D. In our case the shunting

(a) (b)

Figure 47: (a) Typical low field Hall effect. The transversal resistance has a linear
behavior up to 5 T. (b) Sketch of the measurement setup on an optical image
of the device.

effect due to the conduction through impurities in the bulk of the crystal
cannot be neglected, therefore both 2D and 3D carrier contribute to the
transport. In Fig. 48a we show the behavior of the carrier densities n2D
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and n3D as a function of the sample thicknesses t. The thickness of the
flake is measured with an AFM tip at one of the edge of the flake, prior
to the fabrication.

Following the argument by Jalillo-Herrero [164] clear dependence of
both quantities indicates that the transport takes place in a complex
structure, created by a parallel of a 2D and a 3D transport channel,
namely the bulk and the surface of the crystal. This is confirmed by the
behavior of the 2D and 3D Hall coefficients, shown in Fig. 48b. Their
behavior can be quantitatively modeled using Eq. 51:

(a) (b)

Figure 48: (a) 2D and 3D carrier density as a function of the flake thickness for the 6

Bi2Se3 Hall devices realized. Both quantities show a thickness dependence
on t, typical of a transport through a parallel of the 2D surface state and the
3D shunting bulk. The behavior of 2D and 3D Hall coefficients as a function
of the flake thickness is reported in panel (b). The red line is a model of
transport through a parallel of a 2D and a 3D channel, shown in Eq. 51.

This analysis has been performed in a recent paper [164], on Bi2Se3
samples. In that case a better control of the thickness and of the level of
defects created in the crystal was made possible by the molecular beam
epitaxy used for the fabrication. In our case a pronounced data scattering
makes the interpretation of the fit less straightforward. This effect can be
ascribed to three different reasons:

• uncertainties in the value of the thickness t

• inhomogeneities of the flake thickness

• fluctuations of the defect density from flake to flake, also
determined by the different aging of the crystal

However, despite the scattering, our data follows the general trend of the
model, plotted as a red line in Fig.48b, yelding the results:

n3D = 5 · 1019cm−3

n2D = 2 · 1014cm−2

α = 2.5 (69)
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A more careful estimation of the carrier density of the 2D channel can
be extracted from the analysis of the Shubnikov - de Haas oscillations
(see Sec. 4.1.3 below). The estimation of n2D, in this case is in the range
between 4.1 − 4.8 · 10

12 cm−2, which is two orders of magnitude below
the result of this fit. A discussion about this will be given at the end of
the Chapter (Sec. 4.1.3).

4.1.2 Two band analysis

In Fig. 46 it is possible to observe a nonlinear behavior of the Rxy at high
fields. This effect is typically due to the presence of more than one charge
carriers in the device. These effects are traditionally modeled in terms of
the conductance tensor, which we achieve using the inversion relation
Eq 56.

Figure 49: Longitudinal and transversal conductance for sample Bi2Se3X2S19. The
nonlinearities at high field are typical of a transport through many transport
channels (see Figure. 46), and can be fitted with the two carrier model
presented in Eq. 58.

In order to drop spurious effects due to the non ideal geometry of the
device (Sec. 2.1.1) it is highly desirable to symmetrize the diagonal part of
the resistance tensor and an anti-symmetrize the off diagonal elements:

Rxx(B) =
Rxx(B) + Rxx(−B)

2

Rxy(B) =
Rxy(B) − Rxy(−B)

2
(70)

In Fig. 49 we show the symmetric (Gxx) and anti-symmetric (Gxy)
elements of conductance tensor, obtained by the inversion of the data in
Fig. 46, according to Eq. 56. The data have been fitted using the two
band model [94] (see Eq. 58), which confirms our hypothesis about the
multiple carriers contributing to the transport.
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In order to limit the degrees of freedom of the fit, the model can be
re-parametrized:

Gxy(B) = eB

(
C1µ1 −C2

(µ1/µ2 − 1)
(
1+ µ22B

2
)+

+
C1µ2 −C2

(µ1/µ2 − 1)
(
1+ µ22B

2
)) (71)

where C1 and C2 can be obtained upon inversion of the system

n1 =
C1µ2 −C2

µ1µ2 − µ
2
1

; n2 =
C1µ2 −C2

µ1µ2 − µ
2
2

The coefficients C1 and C2 can be extracted from the low field limit:

Gxx(0)

e
= n1µ1 +n2µ2; lim

B→0

Gxy(0)

eB
= n1µ

2
1 +n2µ

2
2 = C2

which corresponds to the simple case of a Drude model, in the case of a
single band.

The result is that data fits quite well the model, giving the results

n1 = 1.5 · 1014 cm−2

µ1 = 1200 cm2/Vs

n2 = 6.3 · 1017 cm−2

µ2 = 0.1 cm2/Vs (72)

Remarkably, the value of n1 is in a good agreement with the result of
n2D in the fit presented in Eq. 69.

This result points to the presence of a low carrier density high mobility
band, namely the topologically protected edge state, and a high carrier
density band with low mobility.

We have performed a complete characterization of the high mobility
band through the study of the Shubnikov - de Haas oscillations. As
already pointed out in the discussion of Eq. 69, the carrier density is
two order of magnitude higher than the estimation given by the SdH
oscillations.

The low mobility band does not match with the estimation given by
the Hall effect at low field, and we have two possible explanation for this.
On the one hand Eq. 58 holds for a 2D Drude gas with two transport
band, therefore the results badly reproduces the contribution of bulk
states, which is supposed to be due to impurity states. On the other
hand it is possible that a third channel of conductance, coming from the
confinement of electrons on the surface of the flake [83], is created in
Bi2Se3 flakes. It is worth noticing that the second band, in spite of the
high carrier density, has an extremely low mobility (2 cm2/Vs), therefore
negligible contribution is given to the transport.
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4.1.3 Shubnikov - de Haas Oscillations

We have studied the high field behavior of our devices. In five of them
we observed magnetoresistance oscillations, which we studied through
careful characterization at high magnetic field. By slowly sweeping the
magnetic field from 0 T to 14 T, we observed small magnetoresistance
oscillations on the quite large parabolic background. In Fig. 50 we report
the typical behavior of the longitudinal resistance at high field, after the
subtraction of the background.

Figure 50: High field oscillations of the longitudinal resistance (sample Bi2Se3X2S23)
after background removal. The blue line is a spline interpolation and it is a
guide for the eyes. The red dashed line in the best fit line according to the
model presented in Eq. 73.

The background has been extrapolated with a 4
th grade polynomial, to

take into account effects related to the geometry of the devices (see Fig. 15

in Sec. 2.1.2). The residual resistance ∆Rxx could be studied within the
framework of the Shubnikov - de Haas magnetoresistance oscillations
(see Sec. 2.3), and it can be fitted with the model [8]

Rxx ∝
λ

sinh (λ)
exp

(
−

π

ωcτc

)
cos
[
2π

(
F

B
+
1

2
+ϕ ′B

)]
(73)

where λ = 2π2kBT/ hωc, ωc = eB/cmc is the cyclotron frequency, τc
is the scattering time and mc is the cyclotron mass. F is defined by the
Onsager’s relation (Eq. 64 in Sec. 2.3) and ϕ ′B is a phase shift related to
the presence of a Landau level at zero energy.

Since the theory of the magneto conductance oscillations is formulated
in terms of the conductance, it is convenient referring to the conductance
tensor. It can be obtained from raw data upon inversion of the resistance
matrix, shown in Eq. 56.

In Fig. 51 we report the oscillations of the residual conductance ∆Gxx
after background removal. The oscillations follow the model presented
in Eq. 66

∆Gxx ' cos
[
2π

(
F

B
−
1

2
+β

)]
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and they are expected to be equally spaced in the reverse of the magnetic
field. The minima of the conductance corresponds to the complete filling
of Landau levels, which can be easily identified by simple inspection.

In Fig. 52 we elaborated a fan diagram from our data. As discussed in
Sec. 2.3, this is a useful tool for a quantitative analysis of
magneto-resistance oscillations. In the figure, the Landau index is
plotted as a function of the position in magnetic field of the
corresponding minima. To increase the statistics, a semi-integer value
was attributed to the position of the maxima. Our data are clearly
aligned along a line, as expected in the case of SdH oscillations.

Figure 51: High field conductance oscillations of the flake presented in Figure. 46 vs the
reverse of the magnetic field. The longitudinal conductance Gxx is obtained
upon inversion of the resistance tensor (see Eq. 56) and after background
removal. The line is a spline interpolation and guides the eye.

The slope of the line is connected to the frequency F of the oscillations
via the Onsager’s relation (Eq. 64) [160, 8], and it gives information on
the carrier density of the transport channel that generates the oscillations.
We have observed a surface carrier density lying in a very narrow range
(4.1 − 4.8 · 10

12 cm−2).
The intercept β, instead, is connected to the Berry phase φB discussed

in Sec. 2.2, 2.3, specifically a semi-integer value of β is compatible with
a Berry φB = π+ 2nπ and with a hypothesis of Dirac electrons, whereas
an integer value of β indicates a φB = 2nπ and Shrödinger electrons.

The study of the Berry phase, as well as the study of the oscillations as
a function of the angle (proposed below), indicates that the oscillations
arises from a topologically protected 2D edge state.

Determination of the Berry Phase

To increase the precision of the fit, as shown in Fig. 52, we have
extrapolated the frequency of the oscillation through a Fourier
transform analysis. In the inset of the figure we report the FFT spectrum
of the signal. The signal clearly shows a Lorentz peak, corresponding to
the frequency F, and a 1/f background, which is related to the noise
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Figure 52: Fan diagram of data presented in 51. The red line is a best fit line. The slope of
the line is obtained from the Fourier of SdH oscillations (shown in the inset):
F = (200 ± 15) T. The value of intercept if extracted from the fit. We obtained
a value of β = (0.76 ± 0.16), which is an intermediate value between 1 (i.e.
Shröedinger electrons) and 0.5 (i.e. Dirac electrons). In the inset: FFT of the
signal with a Lorentz peak. The red line is the best fit for the Lorentz curve
plus a 1/fη background.

present in the measurement, which can be discharged. The analysis of
the FFT spectrum evidenced a single frequency of oscillations. No hint
of beatings was observed on the measured devices.

To achieve a reliable estimation of the Berry phase, we have tried two
different strategies, with controversial results. On the one hand we
extrapolated both the slope and the intercept from the fan diagram, on
the other hand we extrapolated the slope directly from the FFT, as
discussed above and in Ref. [8]. In the case of the sample shown in
Fig. 52, the two analysis gives a substantially equivalent result, in other
cases (not shown here, see [70]) the results of the two analysis might be
conflicting. The conclusion is that the results of the fan diagram can be
significantly affected from the uncertainties of the measurements and,
especially when the Landau levels are populated up to high indexes, the
results have to be taken ’cum grano salis’. The value of the Berry phase
can be firmly established only populating low order Landau levels
(close to N = 1). In our case this would require much higher fields
certainly higher than 30 T. However, the information given by the fan
diagram can be integrated with complementary analysis (like STM), as
reported in Sec. 4.2 and in Ref. [70].

Shubnikov - de Haas Oscillations in 2D and 3D

As discussed in Sec. 2.3, SdH are not a unique feature of 2D system, but
they can also appear in 3D systems, under suitable conditions. To prove
that the oscillations are generated by the 2D edge state of the system,
a study of the behavior of the oscillations as a function of the angle is
necessary. We swept the field from 0 T to 14 T, with different orientation
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of the sample in the magnetic field. In Fig. 53a we present the resistance
oscillations as a function of the normal component of the magnetic field.
The angle θ represents the angle between the the magnetic field and the
direction orthogonal to the transport plane.

(a) (b)

Figure 53: (a) SdH oscillations as a function of the normal component of the magnetic
field for sample Bi2Se3X2S19. The curves corresponds to different angles θ
between the transport plane and the magnetic field, namely 0°, 10°, 20°, 30°,
40°, 50° and 60°. Above 50° no oscillation can be detected. Curves are shifted
for clarity. The position of the minima of the different curves are aligned, as
expected in the case of a 2D transport. (b) Frequency of the SdH oscillations as
a function of the angle θ. The curves follow the ideal cosine behavior, shown
in red, valid for a 2D transport up to 50°. The inset shows a sketch of the
measurement setup.

In the case of a 2D transport, only the normal component of the field
is effective to the oscillations, therefore the position of the minima of the
oscillations are fixed with respect to the B⊥ component, and differently
from what observed in the case of oscillations arising from a 3D trivial
band [70, 58, 152, 6, 166]. As a further check we determined the frequency
F of the oscillations for the different angles, and studied this dependence
(see Fig.53b). The modulation of F as a function of the angle θ follows a
cosine curve up to at least 50°, as expected in the case of a 2D transport
[152], and differently from the ellipsoid shaped Fermi surface expected
for the bulk band structure of the Bi2Se3.

A Comparative Analysis

Shubnikov-de Haas oscillations have been studied on various Bi
compounds with different interpretations
[58, 175, 152, 35, 193, 166, 83, 185, 164, 195, 6, 174]).

Specifically, the presence of SdH oscillations in Bi2Se3 samples can be
connected, in some circumstances, to the spurious effect of the 3D
oscillations related to the bulk electrons [26]. In this case, as discussed
by Eto et al. [58] in a recent paper, the SdH oscillations can be seen for
any direction of the magnetic field (see Fig. 54a). For instance some
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(a) adapted from Ref. [58] (b) adapted from Ref. [175]

Figure 54: SdH oscillation in Bi2Se3 devices in the case of a prevailing 3D transport
channel (a) and in the case of a transport through the topological edge state
(shown in panel b).

measurements performed by the same group [175] on a Bi2Se3 thin
films, obtained from MBE deposition, a completely different angular
dependence was observed (see Fig 54b). In this case the peaks are rather
well aligned, when plotted as a function of the normal component of
the magnetic field B⊥, in complete agreement with our data (see
Fig. 53a). This angular dependence was attributed to a transport
through the topological edge state of the material.

The reason of the different transport regimes can be attributed to the
different contributions given to the transport from the topological surface
state and the bulk transport. When the transport is mediated by the bulk,
the oscillations have poor angular dependence, and can be found even
at θ = 90°. When instead the transport takes place in the topologically
protected edge state, the oscillations shows the typical cos θ dependance
shown in Fig. 54b, 53a.

In the case of Ref. [58, 175], the different contribution was basically
tuned with thickness of the material (Bi2Se3 flakes in Ref. [58] and MBE
thin films in Ref. [175]). However, a similar effect was detected in a work
by Qu et al. [152] on Bi2Te3 MBE thin films, by tuning the quality of
the crystal. In fact the Authors were able to observe a crossover from a
condition of oscillations clearly arising from a 3D spurious effect (in low
quality films, N1 in Fig. 55) to oscillation showing the typical features
of a pure 2D transport (in high quality film, Q1 in Fig. 55). Specifically
while in high quality films the behavior of the oscillations as a function of
the angle θ follows the expected cosine dependence, in low quality films
the frequency still modulates, but without the cosine behavior, especially
at higher angles (θ > 30°). In this work, the quality of the film was
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Figure 55: SdH oscillations in the Bi2Te3 thin films for various film quality. High quality
devices supports a purely 2D transport, as clearly evident from the figure (A),
including a cosine dependance of the frequency of the oscillations (C). In the
case of low quality films, instead, the oscillations are present at all angles of
the magnetic field (B). However the frequency of the oscillations still changes
as a function of the angle (D), but the dependence does not follow the cosine
dependence behavior (adapted from Ref. [175]).
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changed by an intentional deterioration, obtained upon film exposure to
the atmosphere for a long time.

The different, and sometimes controversial outcomes found in
literature on the nature of SdH oscillations in tetradymite chalcogenides
can be therefore accounted on the different quality and thickness of the
material, including the different fabrication techniques.

Quite recently [35] SdH detected on Bi2Se3 flakes were attributed to
an effect of a possible layered bulk material, having therefore a
cylindrical Fermi surface (implying a cosine dependence of the
frequency of the oscillations as a function of the angle, as shown in
Fig. 56). In this work the Authors also extracted a ϕB = 0 phase, in
agreement with the absence of Dirac electrons. However, the conclusion
of this paper are not completely convincing under some aspects. In fact
in this paper the angular dependence of the frequency of the oscillations
is only traced for θ < 45°. Moreover, the Berry phase was extracted from
the minima of resistance, and for values of the magnetic field allowing
only a depletion of the highest Landau levels (n > 10) (see Sec. 2.3.3).

Figure 56: ShD oscillation on Bi2Se3 flake, showing a cosine dependence. The Authors
extracted a value of the Berry phase ϕB = 0. The effect was attributed to a 3D
Hall effect, related to the presence of a stack of parallel 2D transport planes
in the material (adapted from Ref. [35]).

As mentioned in some recent papers [193, 194, 8], in the regime
where Rxy � Rxx the inversion of the conductance matrix is non trivial,
therefore some cautions must be taken in the analysis of the SdH
oscillations (see Sec. 2.3.3), to avoid misleading results. This behavior is
rather different from the case of graphene [142, 120, 207], and implies
that in the evaluation of the Landau Level index from the Rxx might be
dangerous. In our case this ambiguity is avoided by directly referring to
the minima of the ∆Gxx as shown in Fig. 51, 52.
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4.2 scanning tunneling microscopy
analysis

Transport data obtained from Shubnikov - de Haas oscillations can be
efficiently combined with the analysis of the scanning tunneling
microscopy (STM). The analysis was performed on the cleaved surfaces
of the Bi2Se3 crystal at the temperature of 2 K with an ultra high
vacuum (UHV) Unisoku USM-1300 STM.

Figure 57: Tunneling conductance spectrum acquired at the surface of a Bi2Se3
crystal. The spectrum has been measured with a bias modulation amplitude
Vmod = 2.5 mVrms. The V-shaped spectrum is consistent with the Dirac
dispersion with the Dirac point at V = −350 mV (minimum of the spectrum
indicated by the arrow and labeled as ED). The inset is an atomic
resolved topographic image showing triangular shaped defects. The imaging
conditions are: V = +0.1 V, I = 10 pA, scan area is 14.5 nm x 14.5 nm (scale
bar is 1 nm).

In Fig. 57 a typical conductance spectrum is reported. The spectrum
exhibits a V-shape with a minimum at V = −350 mV, representing the
Dirac point. The presence of the Dirac point located below the Fermi
level has already been reported in literature [79, 38, 81, 86] and it has been
attributed to the presence of defects. The inset of Fig. 57 is a topographic
image of the (0 0 1) surface of the crystal, and it reveals the presence
of triangular shaped defects with a typical spacing of few nanometers.
Defects in Bi2Se3 crystal are mainly typically due to Se vacancies and
defects in the Bi plane [3, 2, 28, 27].

STS spectra have been captured with a magnetic field perpendicular
to the sample surface. Peaks are clearly visible above 5 T (Fig. 58a),
signaling the presence of not equally spaced Landau levels. Defects are
known to suppress the topological edge state in Bi2Se3 crystals.
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(a)

(b)

Figure 58: (a) Tunneling conductance spectra captured in the presence of a magnetic
field applied perpendicular to the sample surface. The spectra measured
at the value of the magnetic field of at 7 T (in blue) and 8 T (in red) are
shown, after a polynomial background subtraction. After the subtraction the
Landau levels are clearly visible and they can be labeled. Curves have been
shifted for clarity. (b) Landau levels energy En follows the aperiodic spacing,
proportional to

√
nB. Moreover the presence of a peak at N = 0 is evident

from magnetic field above 6 T. The position of the N = 0 peak does not
depend on the field, as expected for Dirac electrons. The inset shows raw
data for the tunneling spectra above 5 T, showing a series of peaks associated
with the formation of the Landau levels.
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However, for the defect density observed in our samples (' 10 nm) is
still possible to observe the presence of Landau levels in STM
measurements, as pointed out in the work by Chen at al. [38]. Our
samples in fact are comparable with the sample (b) of their work (see
Fig. 59). For this reason, the oscillations detected at the STM are
dominated by a strong background. Only upon an accurate subtraction
of the background, in fact, the oscillations clearly appear, and can be
labeled (see Fig. 58a the inset of Fig. 58b).

The energy dependence of the Landau levels is given by [36]

En = ED + sgn(n)vF
√
2e h|n|B (74)

where En is the energy of the nth Landau level, n = (0,±1,±2...±n) is
the Landau level index, ED is the Dirac point, vF the Fermi velocity,  h is
the Plank constant and B the magnetic field [208].

In the inset of Fig. 58b the peaks at magnetic field of 7 T and 8 T are
shown, after background subtraction. A plot of En versus

√
nB reveals

a reasonable good linear behavior above the Dirac point as expected for
the dispersion of a topological insulator (Fig. 58b). Moreover the presence
of peak corresponding to n = 0, at the Dirac point, that is independent
of the applied magnetic field strongly supports the hypothesis of Dirac
electrons. Indeed, in the case of a conventional two dimensional electron
gas with a parabolic dispersion this level does not exist.

No Landau levels were observed below the Dirac point. This is
consistent with previous reports on Bi2Se3 crystals [38] and it can be
attributed to a coupling to the bulk valence band located just below the
Dirac point.

4.3 conclusions
Our data supports the hypothesis of a major role played by the
topological edge state in magneto-resistance oscillations [70]. This is
confirmed by a detailed study of the behavior of the SdH, which
followed the ideal cosine behavior up to 50° (see Fig. 53a, 53b). What is
instead an issue in our measurements is that we cannot establish, from
the SdH oscillations that the 2D gas consists of topologically protected
Dirac states. Indeed, depending on the way we extract the frequency of
oscillations, we get a Berry phase zero (trivial 2D states) or π

(topologically protected states). In our work the final confirmation that
we are dealing with topological protected edge states, comes from the
STM analysis. STM in magnetic field confirms the Dirac-fermion nature
of the surface states, because massless Dirac fermions present peculiar
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Figure 59: STM of Bi2Se3 thin films and the relative spectra, acquired in a static
magnetic field of 11 T. The oscillations are suppressed as the density of
defects in increased. However in a moderate level of defects, as for instance
is the case of our samples (cfr. Fig. 57), the the oscillations are clearly visible
in the measurement (adapted from [38]).



4.3 conclusions 83

Landau quantization with a level spacing changing as
√
nB and the

zero-energy Landau level pinned at the Dirac point.
Measurements performed in high magnetic field measurements are

able to reveal the presence of a high mobility 2D channel, while at low
field we expect contribution to the transport coming also from the bulk
states of the crystal. This result supports the hypothesis that the
mobility of the surface states is much larger than those of bulk states,
thus a negligible contribution to the conductance oscillations is coming
from the bulk states.



5 P R O X I M I T Y E F F E C T I N
B I S M U T H S E L E N I D E B A R R I E R S

The new frontiers of material science and nanotechnology offer a variety
of different barriers, where proximity effect controls the coherent
propagation of Cooper pairs. Innovative devices offer specific
functionalities, obviously related to the nature of the barrier (topological
insulators, graphene, semiconductors, ferromagnets, nanowires, etc.),
and to the possibility of being hybridized with superconductors. Here
we focus on those devices which use topological insulators as barriers.
This study has great relevance on the propagation of coherence in edge
states, where in addition a Dirac cone in the energy dispersion comes
from the topological band structure of the material. The follow-up of
this study includes the characterization of the superconductivity on
topologically non trivial configurations, and in the long run the study of
Majorana fermions. These are zero energy states which are expected to
be free from decoherence effects thanks to their topological protection.

We refer to junctions employing both Bi2Se3 barrier exfoliated from
single crystal and Bi2Te3 thin films, presented in the next Chapter
(Chap. 6). A consistent picture emerges from our measurements, with
clear indication of ballistic transport regime in the edge states.
Quantitive differences determined by the different fabrication
procedure, as discussed in Sec. 3.1, come from the different gaps of the
materials and from their morphology, which also implies different
thickness of the barrier.

The ballistic nature of transport is proved by the the temperature
dependence of the critical current. The analysis of I-V curves in
presence of magnetic field and microwaves allows a full characterization
of the junctions and of their transport modes.

84
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This Chapter includes most of the experimental results on the
characterization of the proximity effect in Al/Bi2Se3/Al structures (see
also Sec. 3.3.1). We have realized and characterized about 15 coplanar
Josephson junctions and SQUIDs. Devices have been realized using
flakes of Bi2Se3 single crystals and an e-beam lithography, combined
with a lift off procedure, to define the geometry of Al electrodes. More
details on the fabrication technique are presented in Sec. 3.1, 3.3.1.

5.1 measurement setup
Measurements are performed in a four probes configuration, using a
slow current bias to polarize the junction. Most of data presented in this
paragraph have been measured in an Oxford Heliox VS system (base
temperature 250 mK). Data relative to device Bi2Se3X2S20 have been
measured with an Oxford Kelvinox MX cryostat (down to 20 mK) Some
stages of cryo-filters and a room temperature stage of lowpass filters are
used to reduce the noise of the measurement, and to reduce the heating
effect of the lines. Further details on the measurements scheme are
discussed in Sec. 3.2.4.

Figure 60 shows a typical resistance vs temperature (R(T))
measurement (Bi2Se3X2S20). Measurements are performed in a four
probe configuration (see Sec. 3.2.4), with a standard lock in technique.
By lowering temperature, the R(T) follows a metallic-like behavior,
down to the temperature of 50 K. Below 50 K the resistance is constant
and at about 1.1 K (critical temperature of Al) an abrupt drop of R takes
place. Below this temperature a quite broadened transition,
characteristic of a progressive transition to the superconducting state
[71], was observed. Below 600 mK the resistance is zero.

As discussed in Sec. 3.3.1, the devices presented in this work are
realized following two main recipes: some samples were fabricated
using a Ti thin layer between the Al electrodes and the Bi2Se3 flake, in
other devices, instead, a Pt buffer layer was used. The role of the buffer
layer is to tune the transparency of the interface. Specifically high
transparency devices were achieved with Pt buffer layer, whereas a Ti
buffer layer determines low transparency barriers.
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Figure 60: Resistance vs temperature plot for a typical device (sample Bi2Se3X2S21). The
graph shows a metallic-like behavior down to 50 K, and a flat plateau below
this temperature. The inset shows a zoom of the lowest temperatures. The
abrupt drop of resistance at 1.1 K has to be attributed to the superconducting
transition of the Al electrodes. Below this transition, a progressive transition
to the superconducting state was observed.

5.2 iv curves and their temperature
dependance

In Fig. 61 we show the IV curves of two devices, one Al/Pt electrodes
(Fig. 61a) and one with Al/Ti electrodes (Fig. 61b). The Pt buffer layer
device is characterized by a high critical current density
(1.4 · 10

3 A/cm2), and a high transmission coefficient (D = (0.86 ± 0.06)),
estimated from the excess current Iex as described in Sec. 1.3. The high
critical current density is also reflected into a relatively high
characteristic voltage (ICRN/e), which in this case is about 14 µV, when
compared with the ICRN product of the Pt buffer layer device. The
critical current density of this device, as well as the characteristic
voltage and the transmission coefficient are significantly lower
(JC = 140 A/cm2, D = (0.6 ± 0.1), ICRn/e = 1.6 µV).

The lower values of the IcRN product of the junction, compared to the
values expected form the Ambegaokar and Baratoff model [5] (see
Sec. 1.3 and Eq. 21) reveals a suppressed effective gap, consistently with
all measurements performed up to now [185, 158, 191, 153, 146] (see
Tab. 3). The reason of this is mainly connected to the interface between
the superconducting electrodes and the TI barrier. Moreover, bulk shunt
strongly increases the conductivity of the sample, thus reducing the
measured RN. Despite an almost identical geometry, the samples with a
Pt buffer layer show a critical current which is an order of magnitude
larger than those with Ti. The actual IV curve is determined by both the
effects. It is difficult to disentangle the two components because the
ratio between the surface and the bulk resistivity in our samples cannot
be easily determined. This is a common problem of coplanar S-TI-S
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(a) (b)

Figure 61: (a) IV curves as a function of temperature for a sample (Bi2Se3X2S24) with a
Pt buffer layer. Typical critical current densities of 10

3 A/cm2 can be observed
for this type of device. The inset shows an optical image of the device. The
cross marker is 5 µm wide. The same plot is presented in (b) for a sample
(Bi2Se3X2S20) with a Ti buffer layer, in this case the critical current density is
more than one order of magnitude lower (35 A/cm2). The scale bar is 5 µm

junctions, when the bulk conductivity of the barrier is not negligible
[185, 158].

Information on the proximity effect can be also tracked through the
features of the IV curves at finite voltage pointing to over-damped
behavior (see Sec. 1.5). Specifically all devices showed rounded,
non-hysteretic IV curves. The nonlinearity falls on a rather linear
sub-gap resistance, at a typical voltage which is much lower than the
superconducting gap. The voltage at which the IV curve falls in a linear
regimes scales quite well with the ICRN product. This framework is
consistent with a picture of S-I-N-I-S junction, showing suppressed
values of critical current density and ICRN with respect to standard
S-N-S devices [31, 32, 201].

Figure 62 shows typical IV curves at higher bias. The curves have an
almost linear sub gap resistance, with no significant features (such as
peaks or kinks in corresponding to the Al gap), as confirmed by the
analysis of the conductance spectra, numerically elaborated from raw
data (see inset of Fig. 62). Figure 63 shows the IV curves of device
Bi2Se3X2S20, with the result of the RSJ fit [14] (see Sec. 1.5, Eq. 34).

〈V〉 = 2

γ
RNIC

eπγi − 1

eπγi
T−1

5.3 fitting procedure of the IC(T )
The study of the behavior of the critical current as a function of the
temperature is a crucial analysis to gather information on the relevant
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Ref. Dev. L

(nm)
Ic
(µA)

eIcRn
∆ D µ (m

2

Vs ) n ( cm−2)

Bi2Se3
X2S20

Al/Pt
Bi2Se3

400 0.228 0.011 0.6 > 0.15 4.1 - 4.8 1012

Bi2Se3
X2S24

Al/Ti
Bi2Se3

300 1.67 0.086 0.9 > 0.15 4.1 - 4.8 1012

[185] Nb
Bi2Te3

50 18 0.02 - 0.8 1.2 1012

[158] Al
Bi2Se3

400 0.3 0.073 -
0.093

- 0.5 1 - 5 1012

[191] Al
Bi2Se3

45 0.850 0.067 -
0.267

- - -

[153] Nb
InSb

30 0.45 0.13 > 0 - -

[146] Nb
HgTe

200 3.8 0.19 0.5 2.6 0.5

Table 3: Comparison of the parameters of two of the junctions realized in this work with
those available in the literature.

Figure 62: Typical IV curve (sample Bi2Se3X2S21 in green and Bi2Se3X2S24 in blue)
at high bias at the temperature of 20 mK. The sub-gap branch shows no
significant structures, up to the value of ∆/e = 130 µV. This is confirmed by
the conductance spectra, shown in panel. The inset shows the conductance
spectrum of sample Bi2Se3X2S21 The spectrum have been numerically
elaborated and digitally filtered, after data smoothing. The narrow zero bias
peak is determined by the dissipation-less current of the IV curve.
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Figure 63: RSJ fit for the IV curves of sample Bi2Se3X2S20 (in red scale). In the legend
we report the temperature used to fit our data, which are the same of the
measured temperature of the corresponding IV curve (in blue scale). Curves
are shifted for clarity.

parameters of the proximity devices [19, 4, 180]. Specifically the IC(T)
gives information of the transport regime of the junction, and also on
the coherence length of the normal barrier (see Sec. 1.4). Our junctions
gave evidence of a ballistic transport regime. Moreover the junction is
believed to be in a regime which lies in between the long and short
junction approximation. This means that the length of the junction L is
comparable with the coherence length ξn. Therefore, by increasing the
temperature it is possible, to go from a regime where the transport is
strongly influenced by the superconducting gap, to a more conventional
regime, fully supported by the Andreev bound state, as discussed in
Sec. 1.4.

In Fig. 64 we report the critical current as a function of the
temperature (IC(T )) for the two devices presented in Fig. 61, in
normalized units. The two datasets show a remarkable agreement,
falling on the same curve. Sample Bi2Se3X2S20 has been measured
down to 20 mK, in the Oxford Kelvinox MX dilution refrigerator [70]
(see Sec. 3.2.3). A wide temperature range allows a more accurate fitting
procedure.

In the high temperature range data can be simulated using an
analytical model [105, 111]

Ic(T ) ∝
√
T e

−
2πkBT

Eth (75)

where Eth is the Thouless energy. A value of the Thouless energy of
about Eth = 100 µeV gives a fairly good fit of experimental data above
150 mK. Below this temperature, the validity of Eq. 75 breaks down as
kBT < Eth/2π. The estimate of the Thouless energy is comparable with
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the gap of aluminum (e∆ = 130 µeV). Therefore the junction lies in an
intermediate regime between the long and short junction limit [19], as
discussed before. From the value of the Thouless energy it is possible to
extract an estimation of the coherence length ξn of the device at 150 mK.
For both junctions considered here we achieved a value of ξn of about
3 µm. Since ξn � L, the junction is in a fully ballistic regime.

A simulation of the experimental data in the whole temperature range
requires a numerical ballistic model [69] (see Eq. 28 in Sec. 1.4), first
proposed in Ref. [185]

I = a
2

π
ek2F

kBT

h
sin(χ)

∑
ωn

∫ 1
0

ζ dζ
t2

Q1/2(t , χ , ζ)

The pre-factor of Equation 28 is connected with the normal resistance
of the sample RN which is unknown, due to the shunt of the surface
state with the bulk states. RN is therefore a fitting parameter, as done in
Ref. [185].

Figure 64: Critical current vs temperature for the two presented devices (Bi2Se3X2S20,
Bi2Se3X2S24) in normalized units. A remarkable agreement between the two
datasets can be observed. The continuous lines are the results of numerical
simulation of the Eilemberger model presented in Eq. 28, performed using a
value of the transparency extracted for the excess current of the IV curve. The
inset shows a sketch of the measurement setup.

The ballistic transport supports the hypothesis of a transport through
the topologically protected surface states of the TI. An inconsistent
scenario would arise in the hypothesis that the transport is carried by
the bulk of the crystal, as in this case the presence of defects would
determine a diffusive regime of transport. As a further check we made
an attempt to fit experimental data in the diffusive regime through
Usadel equations Sec. 1.4, providing a not self consistent scenario and
yielding unphysical values of the fitting parameters.

Specifically we discuss below in more details the various scenarios,
which could nominally reproduce the behavior of experimental data in
different the frameworks presented in Sec. 1.4, for the junction with the
Ti interface (Bi2Se3X2S20).
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(a)

(b)

Figure 65: (a) Experimental data of the IC(T)of junction (Bi2Se3X2S20), also shown
if Fig. 64, where we have added a few additional curves to clarify how
a diffusive approach leads to an unphysical scenario. A ballistic approach
with a coherence length below 300 nm gives a temperature dependence of
the critical current very different form the experimental results. (b) IC(T)
and IC(L) curves of Nb/Bi2Te3/Nb junctions (adapted from Ref. [185]) are
in complete agreement with the outcomes of our fit. This outcome was
interpreted as a superconducting transport along the topologically protected
edge state of the material.
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A simulation based on the Usadel model was obtained by Cuevas et
al [Priv. Comm.]. The model does reproduce experimental data, but it
yields unphysical values of the fitting parameters (see Fig. 65a).
Specifically the Thouless energy obtained is 0.2∆ in contrast with our
estimation of 0.8∆ (obtained from Eq. 75). Moreover a resistivity of the
barrier lower than the resistivity of the Al electrodes was extracted,
which is clearly unphysical. This corresponds to a value of
γ = ρSξS/ρNξN > 1 , according to the parametrization of the model
[185, 180, 107] discussed in Sec. 1.4. For the validity of the model [185]
this parameter should be γ � 1. A Usadel simulation performed with
physically reliable parameters, instead, is clearly different with what
observed in the experiment. This result is in complete agreement with
the outcomes published in Ref. [185] (see Fig. 65b).

The hypothesis of ballistic transport is confirmed by the successful
simulation of our data with the Eilenberger clean model. A satisfactory
agreement with experimental data is in fact possible using a Fermi
velocity of 4 .5 · 10

5 m/s and a transparency coefficient of D = 0.6.
A short (i.e. ξn < L = 300 nm) coherence length corresponds to

lower values of the Fermi velocity, one order of magnitude below what
found in literature. However, the result of the Eilenberger simulation
performed with different values of vF (4 .5 · 10

4 m/s and 1 .5 · 10
3 m/s)

gives a temperature dependence of the critical current very different form
the experimental results, as shown in shown in Fig. 65a.

5.4 effects of microwaves and
magnetic field

To study the nature of dissipation-less transport in our junctions, we
have performed measurements of IV curves in presence of microwave
irradiation and magnetic field. The presence of Majorana bound states
in the mid-gap energy spectrum of the junction is expected to modify
the current phase relation (CPR) to a 4π periodic function
[18, 161, 150, 64, 65], as discussed in Sec. 2.4. Therefore phase sensitive
measurements are good candidates to study the topological nature of
Josephson junctions with a TI barrier. Nevertheless if the junctions
supports a multimodal transport regime [161, 186, 183] there is a
combined effect of a 2π periodicity, coming from the trivial transport
modes, and a 4π periodicity, due to the topological states. In these
conditions the Majorana phenomenology is expected to be masked. Our
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junctions support a multichannel transport regime (N ' 500), as
extracted from the value of the normal resistance

GN =
1

RN
= NG0 (76)

with G0 ' 3 .874 · 10
−5 S. With a prevailing 2π periodic CPR.

The modulations of IC in an external magnetic field, and a study of
the Shapiro steps are also important to give a detailed characterization
of the Josephson coupling (see Sect. 1.2). Our Junctions showed an ideal
Josephson behavior, including the typical modulations of the critical
current in magnetic field and the modulation of the Shapiro steps
(described below), which were in a complete agreement with the
expected behavior.

5.4.1 Microwaves

We have detected Shapiro steps in the interval of 15 − 4 GHz,
confirming the presence of the a.c. Josephson effect. In Fig. 66a typical
IV curves with an increasing microwave radiation power are displayed.

The position of the steps is connected to the frequency of the
microwaves by the relation

ν =
2e

h
V (77)

where 2e/h ' 483 .6 MHz/µV. This is a fundamental relation, which
is determined by the periodicity of the current phase relation (see
Sec. 1.2.3).

Figure 66b shows conductance curve, numerically elaborated from IV
the curves, as a function of the temperature. The position of the peaks
indicates the position of the Shapiro steps, clearly temperature
independent. The position of the Shapiro steps has been verified in
various junctions and SQUIDs at different frequencies, giving a strong
evidence of a standard current phase relation. A four periodic CPR
would generate Shapiro steps at a voltage position V = h/eµ, which is
doubled with respect to the conventional relation [18, 153] (Eq. 77). The
amplitude of the steps, instead, is modulated by the power of the
applied microwave field.

In the case of multimodal modes, a possible scenario is that the h/2e
periodic (i.e. topologically trivial) steps have a suppressed amplitude
modulation, especially at low RF power, in presence of a strong
(B > 2 T) magnetic field. In Ref. [153] the IV curve of a Nb/InSb/Nb
nanowire junction was measured in a 3 GHz microwave radiation, for
different values of the magnetic field up to 2.2 T. The use of Nb
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(a) (b)

Figure 66: (a) IV curves as a function of the applied microwave field at the frequency
of 2 GHz for the sample Bi2Se3X2S24 at the temperature of 280 mK. The
appearance of Shapiro step at integer multiples of ν/Φ0 = 4.1 µV can be
observed. (b) Conductance curves as a function of the voltage for different
temperatures. The position of the peaks correspond to the Shapiro step and
it shows no dependence on the temperature, as expected in the case of the
universal voltage-frequency relation (Eq. 77). Curves are shifted for clarity.

electrodes, characterized by a high critical field, was required to support
a superconducting transport at high magnetic field.

When the junction is irradiated with the microwaves, in the absence
of an external magnetic field, Shapiro steps at Vn = µh/2e are observed,
suggesting that the transport is mediated by Cooper pairs, with
charge 2e. At high magnetic fields the height of the first Shapiro step is
doubled to µh/e, compatibly with a super-current is carried by charge-e
quasiparticles. This is a unique signature of the Majorana fermions,
implying a 4π periodic CPR. The measured effect was the progressive
suppression of h/2e periodic Shapiro step for increasing values of the
magnetic field.

In our case the use of Al electrodes only supported proximity effect in
a weak magnetic field (T < 100 mT), we therefore could only verify the
dominant 2π component of the current phase relation in a zero magnetic
field.

Figure 67a shows the amplitude modulations of the two lowest Shapiro
steps and of the critical current (i.e. 0

th Shapiro step), for the junction
presented in Fig. 66a. Since our junctions are current biased, and their
characteristic voltage ICRN is much larger than the microwave frequency
 hωRF/2e (nominally the dimention-less parameter η =  hωRF/2eICRN is
0.22), we are in a regime where the modulation of the Shapiro steps does
not follow the Bessel-like dependance on microwave amplitude. This is
indeed valid for voltage biased JJs [157] (see Sec. 1.2.3).
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The modulation of the lowest order steps was then numerically
simulated using Eq. 17 [157]

α0 +α1 sin (ητ) =
dϕ

dτ
+ sinϕ

The result of the simulation of our data is presented in the inset of
Fig.67a. Data have been efficiently reproduced using a sinϕ current
phase relation, thus confirming the expected behavior in case of
multimodal transport.

(a)

(b)

Figure 67: (a) Modulation of the critical current and of the first two Shapiro steps
as a function of the applied microwave power (sample Bi2Se3X2S24). The
curves shows typical modulations of Shapiro steps. (b) Conductance map of
the same devices presented above as a function of the current and applied
microwave power. The cyan spots correspond to the position of Shapiro steps.
The characteristic pattern of the peaks in current and power is typical of
Shapiro modulations.

The pattern of the Shapiro steps in current and microwave power can
be summarized in a logarithmic conductance map (shown in Fig. 67b).
The map presents a regular pattern of peaks and dips (corresponding to
light and dark spots in the map). The distribution of these peaks reflects
the 3D Bessel-like pattern of the Shapiro steps. The red part has an
infinite conductance, and it represents the dissipation-less current
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current flowing in the junction. Its edge corresponds to the critical
current modulation shown in Fig. 67a.

5.4.2 Magnetic Field

We have measured the modulation of the critical current as a function of
the external magnetic field in our Al/Bi2Se3/Al devices. We have
obtained conventional Fraunhofer patterns, as shown in Fig. 68a. As
discussed in Sec. 1.2, a regular magnetic pattern imply a spatially
uniform distribution of the current along the junction width, thus
supporting the picture of a uniform barrier. Specifically we have verified
the consistency of the geometrical area of the junction (w · (λL + d)) with
the value extracted from the fit of the period of the IC modulations.

(a)

(b)

Figure 68: (a) Critical current as a function of an external magnetic field for the sample
Bi2Se3X2S24. The red line is the expected Fraunhofer behavior, valid for a
short junction. (b) Modulation of the critical current in an external magnetic
field, for a Al/Bi2Se3/Al coplanar junction. A reduction of the scale of the
pattern and the nonuniform spacing are evident. (adapted from [191]).

This is important if one wants to evaluate the periodicity of the CPR
[186]. As pointed out in a recent paper by Williams et al. [191], the
presence of anomalies in the magnetic pattern could, in principle,



5.5 conclusions 97

denounce the presence of Majorana fermions (see Fig. 68b). However, as
the same Authors pointed out [162], similar effects could be due to the
presence of Pearl vortices, typical of long Josephson junctions, making
the interpretation of experimental data more difficult. Moreover, in
coplanar junctions, the magnetic are of the junction could be larger than
expected, as the London penetration length in the thin aluminum
electrodes could be higher than their bulk value [44, 20]. A more
efficient estimation of the periodicity of the current phase relation can
be achieved using SQUID devices [183, 184].

Figure 69: Critical current as a function of the magnetic field, in normalized units,
for a S/Bi2Se3/S SQUID (sampleBi2Se3X3S1-1 - in blue). The modulation
are compared with a reference device, having an identical loop, but the
junctions replaced by Al nano-bridges (in green). The two modulations
present identical period. The difference of the amplitude of the modulation
is a well know effect related to the different self inductance of the SQUIDs
[141].

Figure 69 shows the modulation of dc SQUIDs with different
geometry (sample Bi2Se3X3S24-1-3). The period of the oscillations
corresponds to a loop area of 19 µm2, whereas the designed area was
9.6 µm2. This discrepancy is coming from a flux focussing effect [155]
due to the geometry of the SQUID and of the electrodes, as confirmed
by a comparison of the period of the SQUID oscillations with that of Al
reference SQUID, realized on the same chip (also shown in Fig. 69). The
optical images of the devices are shown in Fig. 70. The two Al/Bi2Se3
SQUIDs and the reference devices show the same modulation period,
which supports the existence of a conventional CPR, independently
from the geometry of the device.

5.5 conclusions
The body of our results confirms, for the first time also for Al/Bi2Se3/Al
junctions, the dominant role of two dimensional surface states to carry
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(a) SQUD with S-TI-S
junctions

(b) On-flake SQUD with S-
TI-S junctions

(c) reference SQUID with Al
nanobridges

Figure 70: The three devices have an identical loop of 9.6 µm2. Device in (a) and (b)
have coplanar Al/Bi2Se3/Al junction, while device in (c) the Al/Bi2Se3/Al
junctions are replaced by Al nano bridges, which are topologically trivial. (a)
and (b) have different geometry of the loops. The three devices have identical
magnetic period of the IC modulations (see Fig.69).

super-current, which can be considered to some extent universal. Bi2Se3
crystals, which are produced in quite different conditions and whose
surfaces are treated in quite different manners [71], behave as ballistic
barriers independently of the exact interface with the superconducting
electrodes, as confirmed by the temperature dependence of the critical
current. The ballistic transport supports the scenario of a super-current
carried by the topologically protected surface states of the TI.

A comparative study of the behavior of the IV curves with the effect
of an external magnetic field, and of a microwave field confirmed the
presence of a conventional Josephson coupling, with a topologically
trivial current phase relation, as expected in the case of multichannel
transport.



6 E S C A P E DY N A M I C S
I N H Y B R I D J O S E P H S O N D E V I C E S

In this Chapter I will present a comparative study of switching current
distributions (SCD) in superconducting hybrid junctions. This is a
standard tools to investigate phase dynamics [54, 123, 43, 68, 59, 122].
From the analysis of SCD histograms, indications on the transition to
macroscopic quantum tunneling from thermal activation can be
inferred.

The interest of this study lies in the recent introduction of Josephson
devices with semiconducting barrier, or in combination with nanowires,
or flakes of topological insulators in coplanar geometries. These devices
show lower values of critical current and capacitance, when compared
to the standard tunnel devices, which typically falls in the moderate
damping regime.

Therefore this work was motivated by the need of a better
understanding of coherence and dissipation in moderate damping, to
which we tried to contribute unifying the various results achieved on
NbN junctions (Sec. 6.5) and on YBCO bi-epitaxial junctions (see
Sec. 6.4) with the results of numerical simulations (see Sec. 6.3). The
outcomes of this work were also compared with data available in
literature, in the attempt to condensate the various regimes in a (Q -
EJ/kBT ) phase diagram. This was an unavoidable step for a complete
comprehension of the dynamics of hybrid Al/Bi2Se3/Al coplanar
devices presented below.

99
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6.1 switching current distributions
We have performed a study of the SCDs in superconducting hybrid
junctions. In devices with underdamped dynamics the IV characteristics
typically shows an hysteresis. These devices are characterized by
stochastic switchings from the superconducting to the resistive state.
This switching corresponds to a bi-stability of the phase particle in the
tilted washboard potential (Eq. 32) [165, 131, 93], describing the
dynamics of the system (as described in Sec. 1.5.2). An estimation of the
relevant physical quantities can be also achieved, including the
dissipation level of the device, well described by the damping
parameter Q and by the shunting impedance of the circuit [14, 113].

The moderate damping regime is typical of nano-structured and
hybrid devices. Indeed the typical low critical current density
nano-channels barrier, together with values of capacitance significantly
lower than the more standard tunneling junctions, imply lower values
of the damping parameter

Q(I) = ωp(I)RC (78)

Moderate damping typically falls in the regime 1 < Q < 5, which can
be controllably induced in larger junctions in case of low critical current
densities in junctions with larger intrinsic dissipation levels, as occurring
in HTS systems [104, 117].

This regime is rather unexplored, and the determination of the
switching dynamics requires an accurate determination of the junction
parameter, through the use of numerical Monte Carlo simulations.

The measurements discussed here have been obtained using a dilution
cryostat. Measurements were performed in a four probe configuration.
A current ramp was used to bias the junction. when the bias current
approaches IC, the voltage shows a sudden jump to a finite value see
Fig. 71a. More details on the measurement setup are given in Sec. 3.2.4.

6.2 escape dynamics in niobium
nitride josephson junctions

In this introductory paragraph we want to describe the standard
phenomenology of the escape dynamics. We will show results from
NbN tunnel junction with MgO barriers [115, 116]. These junctions fall
in the moderately damped regime which is very interesting as
comparative study for hybrid devices. A complete description of these
features goes beyond the purposes of this work [125].
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(a) (b)

Figure 71: (a) IV curve of a NbN Josephson junction at the temperature of 90 mK. The
IV curves have an under-damped typical feature, with an hysteresis and a
stochastic switch from the superconducting to the resistive state. The curve
in red shows the corresponding SCD. (b) SCD of the same NbN Josephson
junction with a best fit line. The corresponding experimental switching rate
was achieved using Eq. 40. The Rate was fitted using Eq. 39.

We report measurements of SCDs, performed at the current rate of
122 µA/s in the temperature range of 20 mK - 2.4 K. The main
experimental signature is the switching current distribution, extracted
from the threshold, through a direct or indirect measurement of the
switching current.

Raw data have been analyzed, and an estimation of the escape rates
was extracted [68] using Eq. 40

Γ(I) =
γP(I)

1−
∫I
0 P(i)di

where P(I) is the probability of the switching, experimentally extracted
from the SCD and γ is the ramp rate. Figure 71b shows the SCD and the
corresponding escape rate.

The behavior of the SCD as a function of the temperature, shown in
Fig. 72, is the real fingerprint of the phase dynamics. As discussed in
Sec. 1.5.2, when the junction is the quantum regime, the histograms
overlap [172, 123, 54], therefore the mean value (Isw) and the width (σ,
or w) of the distribution do not depend on the temperature (see Fig. 73).
In this regime the escape dynamics is completely temperature
independent, since the escape rates are dominated by the quantum
contribution Γq determined by the plasma frequency (see Eq. 38).
Negligible contribution, indeed, are given by the thermal escapes rates
ΓT (Eq. 36), which is in fact suppressed at low temperatures. Moreover,
the mean switching current at the lowest temperatures is usually
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Figure 72: Switching current as a function of the temperature for the NbN junction.
The black curves are the experimental data corresponding to the MQT - TA
regime, with the best fit line shown in red. The blue curves corresponds to
the PD regime, which cannot be fitted with an analytical model.

constant, due to a saturation of the IC(T), observed for most junctions
(see. Eq. 20).

In TA regime the histograms progressively broadens when increasing
the temperature. This corresponds to an increase of the width, following
the scaling behavior σ ∝ T2/3. The mean switching current, instead,
progressively decreases. This behavior is the result of two different
mechanisms: on the one hand the switching is more likely to happen at
lower currents when the temperature is increased, as the thermal
activation energy enhances the escape rate (Eq. 36). On the other hand
the absolute value of the critical current progressively decreases,
following the behavior determined by the IC(T) curve (see Sec. 1.3).

The crossover temperature Tcr between the quantum and thermal
regime is experimentally detected by a crossover from a constant σ to a
σ(T) with a positive slope (dσ/dT > 0), as shown Fig 73a.

In MQT and TA regime the escape rate and the SCD can be fitted using
the model (Eq.39)

Γ(I) =
ωp

2π
e
− ∆U
kBTesc

(
Γ0q + Γ0T

)
The results of the fit have been shown in Fig. 72, for data below 1.6 K.
Above this temperature, the behavior of the SCD cannot be described in
terms of this model, and the effects of multiple escape and re-trapping
processes have to be quantitatively considered, as described in Sec. 1.5.3.

In moderately damped junctions (with 1 < Q < 5), a transition from
TA to PD regime occurs [93, 124, 59] at a crossover temperature T∗, which
marks a distinctive change in the sign of the temperature derivative of σ,
with dσ/dT > 0 for T < T∗ and dσ/dT < 0 for T > T∗.
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(a) (b)

Figure 73: (a) Mean switching current extracted from the SCDs as a function of the
temperature for different values of the magnetic field. (b) Width of the SCDs
as a function of the temperature (in a log scale). The three different regimes
(MQT, TA, PD can be clearly identified). The inset shows a magnification of
the TA - PD crossover in a linear scale.

The reduction of the σ above T∗ can be qualitatively related to the
interplay between escape and re-trapping events, which also determines
a progressive symmetrization of the SCD for an increasing temperature
[115, 122].

The transition is also visible in the shape of the switching histogram,
which becomes more and more symmetric as approaching towards the
PD regime. The skewness γ (defined as the third momentum of the
distribution, divided by σ3) is a measurement of the level of asymmetry
of the SCD. At low temperatures a value of γ = −1 corresponds to a
SCD lying in the quantum or thermal regime. As the temperature
increases the distributions become more and more symmetric as
approaching towards the PD regime. Correspondingly γ goes to zero.

The effect of the symmetrization of the SCD can be also traced in the
shape of the escape rates, which deviates from the exponential behavior.
The experimental escape rates is suppressed at the lower values of the
bias current, at which the effect of the re-trapping is more pronounced.
Figure 74b shows the experimental escape rates as a function of the
height of the potential energy (see Eq. 37)

∆U = EJ

(√
1−

I

IC
− cos−1

(
I

IC

))

As the temperature is increased above T∗, the rates appear more and
more rounded, on a logarithmic scale. The rounded shape is signaling a
deviation from the exponential behavior, more pronounced at the highest
value of ∆U/kBT , corresponding to the lower currents.
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(a) (b)

Figure 74: (a) Skewness of the SCDs as a function of the temperature. The plot shows
a progressive symmetrization of the SCDs in the PD regime. The progressive
symmetrization of the SCDs is also signaled in the Escape rates, shown in
panel (b) as a function of the potential energy ∆U/kBT . The curves shows
a bending, more pronounced at higher values of ∆U/kBT , corresponding to
the lower values of the bias current.

6.3 moderately damped regime and
monte carlo simulations

Monte Carlo simulations are a very useful tool to achieve a quantitative
description of SCD in the moderate damping regime [59]. In fact, while
the behavior of the width (w) of the switching histograms in the
thermal activation regime follows the universal scaling behavior
w ∝ T2/3, the scaling behavior of the w in phase diffusion (PD) regime
is not analytically reproducible, since it is determined by two combined
stochastic events. On the one hand the event of the escape from the local
minimum of the washboard potential (see Sec. 1.5.3 for details), on the
other hand the probability (once escaped) to be re-trapped in one of the
following minima.

We have used a noise-affected Runge-Kutta algorithm to recreate the
dynamics of the RCSJ model. The noise was generated by the RANLUX
random numbers generator of the FORTRUN Cern library. The algorithm
was run on a grid of parallel batch of processors (available at CINECA).
Each batch simulates the switching distribution at a given temperature.
Simulated data have then been analyzed with the same routine in use for
real data, and the w(T) curve has been extrapolated.

Figure 75 shows some w(T) curves, simulated with different values of
the Q. A fundamental information is given by the simulated value of
the crossover temperature T∗ as a function of damping factor (shown in
the inset of Fig.75). The simulations presented here are referred to a
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junction with a critical current of 1.2 µA, typical of the moderate
damping regime. Nevertheless these data are of general validity since,
the behavior for different values of the IC can be obtained by simply
rescaling the temperatures.

Figure 75: Monte Carlo simulations of the width of a switching current distribution as
a function of the temperature, for different values of the damping factor. The
critical current used in this case is 1.2 µA. The inset shows the modulation of
the crossover temperature as a function of Q.

An additional feature is given by the behavior of the curve in the PD
regime. In fact the collapse of the w(T) curve in phase diffusion is not
universal, but it is determined by the damping. Particularly, the critical
exponent γ can be inferred from a log log plot

6.3.1 Q - kBT/EJ Phase Diagram

The results achieved through MC simulations are of general validity. In
fact the dynamics is determined by the damping factor Q, which is a
universal dimensionless parameter. The other element that determines
the dynamics is the thermal activation energy (kBT ). This have been is
normalized to the height of the potential barrier (EJ) (see Eq. 36, 41 and
Ref. [74, 68, 59, 122]), to obtain a second universal and dimensionless
parameter. This can be condensed in a (Q, kBT/EJ) phase diagram [117,
127, 172], which summarizes the various activation regimes. This has
been already expressed in the form of a phase diagram by Kivioja et
al. [97] (see Fig.76b) who have shown that by spanning the (EJ, kBT )
parameter space it is possible to engineer all different regimes ranging
from phase diffusion and thermal activation to macroscopic quantum
tunneling.

The good agreement between experimental data, which refer to
various works reported in the literature, and the simulations is
highlighted by Fig. 76a, where the experimental crossover temperatures
are put on top of the numerically estimated transition curve. This makes
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(a)

about 2!. However, if dissipation is strong enough, there is
a finite probability that, upon escape from the well, the
particle is relocalized in the next well instead of running
down the potential: the phase then diffusively moves from
one metastable well to another, see Fig. 1(b). In this UPD
regime the average voltage across the junction is much
smaller than 2! [3].

As it was pointed out over a decade ago [7], phase
diffusion can occur even in a hysteretic junction due to
the dependence of dissipation on frequency ! [4]. Our
experiment corresponds to the simplified equivalent circuit
with frequency dependent dissipation as presented in the
inset of Fig. 1(b). After switching to the running state, the
dominant part of dissipation comes from small !, gov-
erned by R!!" 0#, typically given by the large junction
subgap resistance, on the order of 1 M". In the phase
diffusion regime the phase mainly oscillates in a well at
the plasma frequency and thus the dissipation is charac-
terized by R!!p#, which is much smaller, typically on the
order of vacuum impedance Z0 $ 377 ", since Cs
[Fig. 1(b)] acts as a short. Here we will consider junctions
that are underdamped even at !p, in contrast to [3].

The dissipated energy between neighboring potential
maxima can be approximated by ED $ 8EJ=Q and if the
particle has energy less than ED above the next barrier top,
it simply diffuses to the next well. The maximum possible
dissipated power due to phase diffusion can be written as
1
2!

2eV
#h ED, where V is the average voltage across the junc-

tion. By equating this with the applied bias power ImV, we
find the maximum possible phase diffusion current Im %
4Ic=!Q, which is identical in form to the well-known
retrapping current formula, but now the value of Q is that
at plasma frequency !p. For I < Im, there is nonzero
probability that the phase relocalizes after escape. The
gray area in Fig. 1(a) presents the UPD regime, where
escape does not necessarily lead to the transition into a
running state. The condition $TA!Im; TD# $ 1=" deter-
mines the separatrix ED

J !TD# between the TA and UPD
regions in Fig. 1(a) with current pulses of length ":

ED
J $ 3

2
kBTD!1& Im=Ic#&3=2 ln!!p"=2!#: (1)

Similarly, for T < T0, the separatrix between MQT and
UPD is found from $MQT!Im# $ 1="; ED

J is independent of
T, and given by Eq. (1) with T0 replacing TD.

We present experimental data of two samples, a dc-
SQUID and a single JJ. They were fabricated using stan-
dard electron beam lithography and aluminum metalliza-
tion in a UHV evaporator. The AlOx tunnel barriers were
formed by basic room temperature oxidation of Al. The dc-
SQUID consists of two wide superconducting planes con-
nected by two short superconducting lines with tunnel
junctions in the middle forming the dc-SQUID loop of
area 20' 39!#m#2 (see the inset in Fig. 2). The loop
inductance was determined [8] to be around 100 pH, small
as compared to the calculated Josephson inductance (L %
%0
2!Ic

% 400 pH per junction). The dc-SQUID thus behaves
almost like a single JJ, whose Ic can be tuned. The other
measured sample was a single junction between long in-
ductive biasing lines. The normal state resistances of the
dc-SQUID and the single JJ were 1:3 k" and 0:41 k"
yielding for Ic 199 and 630 nA, respectively. Assuming a
specific value of 50 fF=!#m#2, the capacitances of the
samples were estimated to be 100 and 130 fF, respectively.
Both measured samples had strongly hysteretic I-V char-
acteristics with retrapping currents well below 1 nA.

The experimental setup is presented in the inset in Fig. 2.
Switching probabilities have been measured by applying a
set of trapezoidal current pulses through the sample and by
measuring the number of resulting voltage pulses. At the
sample stage we used low pass RC filters (surface mount
components near the sample). In the measurements on a
single junction we used surface mount capacitors (Cs %
680 pF), but in the dc-SQUID measurements we had !
filters in series with resistors, with Cs " 5 nF capacitance
to ground. The resistors were Rs % 500 " and 680 " in
the measurement on a dc-SQUID and on a single junction,
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FIG. 1 (color). (a) The various operation regimes of a
Josephson junction with low EJ. For details, see text. The
UPD region corresponds to Rs % 500 ", CJ % 100 fF ,and " %
100 #s. (b) The dynamics in the upper well and schematic
behavior upon escape. Inset: equivalent circuit of the junction
with frequency dependent dissipation.
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Figure 76: (a) Phase diagram of TA vs PD dynamics, the figure shows the Q vs
kBT/EJ transition curve between TA and PD regime, determined by the MC
simulations. The dashed sidebands are the error bars, determined by the finite
temperature step used in the simulation. The various points are referred
to experimental phase transition points available for various junctions in
literature ([117, 122, 115, 97, 200, 12]) (with the exemption of the work by
Bae et al. [12], where a PD behavior in the whole temperature range was
found, as confirmed by the phase diagram). Junctions of Ref. [117] is the
YBCO bi-epitaxial junctions presented in Sec. 6.4, Junctions of Ref. [115] is the
NbN junction presented in Sec. 6.2. (b) (EJ, kBT ) phase diagram proposed by
Kivioja et al. [97].
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this phase diagram a valid guideline in order to define the relation
between EJ, the turnover temperature T∗ and the junction quality factor
Q. In addition it indicates how the transition from TA to PD regime can
be tuned by the critical current and the shunting capacitance of the
junction.

The pioneering studies of Kautz and Martinis [93, 124] and Iansiti [87,
88] on small junctions can be now supported and developed by different
types of junction of quite different sizes. These devices are characterized
by intermediate levels of dissipation and by low critical current density
JC limit, characteristic also of nano-hybrids devices [172, 129].

In this general scenario, YBCO grain boundary junctions, presented
in the next paragraph (Sec. 6.4), are a an ideal play ground to engineer
devices with different parameters, thanks to the flexibility of the
bi-epitaxial fabrication technique. It facts it is relatively easy, for HTS
junctions, to meet the requirements to contribute to new regimes of the
(Q, kBT/EJ) phase diagram [117, 128, 126]. This is the case, for instance,
of junctions fabricated on substrates that reduces the values of the stray
capacitance.

These device combines a moderately-high damping Q & 1 with a
relatively high Josephson energy, thus meeting the requirement T∗ < Tcr
to detect a direct transition from MQT to phase diffusion [117]. This
regime can be achieved by engineering junctions with lower critical
current and junction capacitance [104, 200, 199, 117, 125]. An example is
given by a experiment presented in a paper by Yu et al. [200] on
sub-micron Nb/AlOx/Nb junctions. Data show an anomalous w(T)
dependence with a negative dw/dT over the entire temperature range.
Another example is given by the paper by Krasnov et al. [104], in this
paper the Authors use shunt capacitance to tune the crossover
temperature.

6.3.2 Frequency Dependent Damping

As discussed above there are two main features that are tuned by the
damping factor: the turnover temperature T∗ and the critical exponent
γ. Apparently the two effects can be disentangled in the framework of a
more complex model, which takes into account the effects of the
frequency on the effective damping (see Sec. 1.5.3). The main effect of a
frequency dependent damping (presented in Sec. 1.5.2) can be properly
described by using a simplified scheme with two characteristic damping
parameters [93]. One which is the effective damping at the plasma
frequency ωp of the junction, which is called high frequency damping
factor (QH), and one which is the effective damping at the quasi d.c.
bias frequency of the bias ramp (1 − 100 Hz). While QL is substantially
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determined by the sub-gap resistance of the junction, QH which is
mainly determined by the circuit.

(a) (b)

Figure 77: (a) Monte Carlo simulations of the width of the SCD vs temperature in
a frequency dependent damping model. In this plot the high frequency
damping has been kept constant at QH = 1.5, while QL is varied. The curve
in the descendent part (corresponding to PD) shows a clear trend towards
lower slopes at low values of QL. The crossover temperature shows a weak
dependence on QL. (b) Critical exponent γ as a function of the low frequency
damping QL.

The body of the result presented below is that while T∗ is mainly
determined by the high frequency damping QH, the critical exponent is
significantly affected by the intrinsic shunting of the junction
(determined by the low frequency damping QL) in some circumstances.

With the same algorithm used for the simulations presented above we
have produced two more datasets. One was performed by keeping the
QH at the value of 1.5, while QL was changed, in the other one QH was
varied and QL was fixed at the value of 5. The frequency independent
damping, presented above, in fact, have been achieved in the
approximation QH = QL = Q.

Figure 77a shows the w(T) curves in the case of a constant QH. The
critical exponent shows a significant dependence on QL (as shown in
Fig. 77b) when QL is reduced, and saturates when QL is high (QL > 5).
The indication of the MC simulation is that in the regime QH . QL,
when both high and low frequency damping falls in the moderately
damped regime, some unconventional features can be observed, namely
the critical exponent γ of the w(T) curve. When instead QL is high, the
curve is determined only by the circuit, as in the well established
framework of Fenton and Warburton [59].

However, the crossover temperature is in no case significantly affected
by QL. This can be observed in Fig. 78, where a comparable modulation
of T∗ can be observed in curves with the same value of QH (the figure
shows the curve for QH = QL and for QL = 5), independently on the
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Figure 78: Crossover temperature vs damping factor for three set of simulations with
different values of QH and QL. Specifically data plotted in black was
simulated using a constant QL = 5, and QH is changed. Its behavior is quite
close to data plotted in blue (see Fig.75), where a frequency independent
damping was used (i.e.QL = QH). Data plotted in green shows a significantly
different behavior. They corresponds to a QH = 1.5 and QL is varied (see
Fig. 77a). In this case the crossover temperature is almost independent of Q.

value of QL. Only negligible variations of T∗, instead, are determined by
a the variation of QL (green curve in Fig. 78, also shown in Fig. 77).

6.4 moderate damping in ybco
bi-epitaxial junctions

Looking at recent literature, HTS systems have represented the start for
SCD measurements on systems different from LTS junctions
[17, 16, 104]. Some of the more recent advances in the field of HTS
Josephson devices have been pushed by advances in nanotechnology.
Moreover off axis grain boundary (GB) junctions, fabricated on
substrate with low capacitance [169] fall in the typical moderately
damped regime that can be encountered in nano-scale junctions
[173, 129]. Therefore YBCO bi-epitaxial grain boundary junctions are a
fantastic test branch for the study of switching dynamics, thanks to
their design scalability and flexibility in controlling the level of
damping [117, 126, 127].

We demontrate a direct transition from macroscopic quantum
tunneling to phase diffusion, thus exploring a new region of the phase
diagram presented in Sec. 6.3.1 (see Fig. 76a).

We have used YBaCuO off-axis grain boundary bi-epitaxial JJs
[114, 171, 17, 16, 169], whose scheme is shown in Fig. 79. The GB is
determined at the boundary between the (1 0 3) oriented grains growing
on the bare substrate and the (0 0 1) grains growing on the CeO2 seed
layer. Figure 79b shows a SEM image of an extended grain boundary.
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(a) (b)

Figure 79: (a) Sketch of a bi-epitaxial grain boundary Josephson junction. Junctions
was fabricated using a LSAT substrate (in blue) and a CeO2 seed layer (in
grey). The green plane represents the CuO2 transport plane on the YBCO,
presenting the characteristic off axis orientation on the LSAT substrate. The
orientation of the d-wave order parameter in the two configuration is also
shown. The blue structures presents the geometry of the junctions in different
angles of the grain boundary (30°, 90°, 0° respectively, from left to right).
(b) Scanning electron microscopy of a grain boundary, corresponding to the
meeting of the (1 0 3) with the (0 0 1) grains. The image was performed on a
LSAT/CeO2 structure, prior to the lithography of the YBCO structures.

We have engineered junctions on (La0.3Sr0.7)(Al0.65Ta0.35)O3 (LSAT)
rather than on SrTiO3 (STO) substrates, where MQT in a high
temperature superconductor JJ was first demonstrated [17, 16]. The new
design fully responds to the need of reducing stray capacitances.
Specific capacitances are one order of magnitude lower than those
measured on STO-based devices. Dynamical junction parameters can be
tuned by choosing the interface orientation indicated by the angle (see
Fig. 79a), which also sets d-wave induced effects.

The IV curves of these devices, shown in Fig. 80, gave evidence of a
pronounced hysteresis (50%) and a critical current of 1.2 µA.

On these junctions we have studied the switching dynamics in a
temperature range between 20 mK and 2.2 K. We have substantially
engineered a device with T∗ . Tcr [117].

We report measurements of SCD in a temperature range from 20 mK
to 2.2 K, performed with a sweep rate of dI/dt = 17.5 µA/s. These
measurements, collected over a wide range of temperatures, are
reported in Fig. 81. Our data are characterized by two distinct regimes.
A progressive broadening of the histograms occurs when lowering the
temperature, which is a distinctive feature of the PD regime
[122, 115, 104, 12]. For temperatures below about 135 mK the
histograms overlap, following the typical MQT behavior [54, 123, 43].
This is a typical signature of a quantum activation regime.

Figure 81b shows the width of the SCDs as a function of the
temperature, with a direct transition from a constant regime, to a
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Figure 80: IV curve of junction YBCO16a. The red and blue part corresponds to the
different direction of the current bias. The IV shows an hysteresis, typical of
under-damped junctions. Around IC the voltage shows a sudden jump to a
voltage of 1 mV.

decreasing regime. This corresponds to a direct transition from a regime
where the escape is dominated by macroscopic quantum tunneling, to
the phase diffusion regime. The inset shows the corresponding mean
switching current Isw and the IC, extracted form the model (see
Sec. 6.5). For temperatures T well below Tcr, MQT contributions to
escape rates are larger than those coming from both thermal escape and
multiple re-trapping processes. MQT processes are substantially
followed and assisted by thermally ruled re-trapping processes.
However, a fully quantum account of phase fluctuations passes through
the empirical condition of a Josephson energy much larger than
Coulomb energy, EJ � EC with EC = e2/2C, given by Iansiti et al. [87].

Above 135 mK the negative temperature derivative of w is consistent
with the phase diffusion regime, due to the multiple escapes and
re-trapping in the potential wells. This regime has been fitted using MC
simulations (shown in Sec. 6.3) with a damping factor Q = 1.3 (see
Fig. 81b).

HTS junctions lead to new insights on intermediate regimes of
dissipation, which are of relevance also for hybrid devices. Junctions,
fabricated on low loss LSAT substrate, were characterized by a
combination of a low Q factor to a relatively high critical current
(1.1 µA), thanks to the reduced stray capacitance of the substrate. These
junctions are engineered to explore a new region of the phase diagram,
made available by the different ranges of Q and IC.
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(a) (b)

Figure 81: (a) Switching current distributions shown for various temperatures for
junctions YBCO16a. Below 135 mK the SCDs overlap. Above this temperature
measurements shows progressive broadening of the histograms, giving
evidence of a direct transition towards a phase diffusion regime. (b)
The width of the SCDs shown in Fig. 81a is reported as a function of
the temperature, giving evidence of the direct MQT-PD transition. This
corresponds to the crossover from a constant w to a negative dw/dT slope.
The red solid line is the result of simulations in the diffusive regime with a
damping parameter of Q = 1.3. The inset shows the mean switching current
of the histogram and IC, extracted form a fitting procedure of the SCDs.

6.5 phase dynamics in bismuth
telluride barriers

The results presented here are referred to Al/Bi2Te3/Al junctions.
Coplanar hybrid devices have been produced through a procedure
similar to the Al/Bi2Se3/Al fabrication presented in Sec. 3.3.1. The
main difference is the technique used for the fabrication of the TI. In the
case Bi2Te3 thin films have been produced by molecular beam epitaxy
(MBE) deposition [67, 163]. The junctions showed an over-damped I-V
curves, with hysteresis clearly visible up to 300 mK.

The body of our results is based on the study of the switching current
distributions, and contains a careful characterization of coherence and
dissipation in this kind of devices performed, for the first time to our
knowledge, on coplanar hybrid devices with TI barriers. The estimation
of all the junctions parameters includes an estimation of the Q factors
and of plasma frequency ωp, based on the results of the simulations
presented in Sec. 6.3. A careful characterization of the proximity effect
has been also performed, including a study of the critical current as a
function of the temperature.

As shown for the over-damped Al/Bi2Se3/Al junctions presented in
Sec. 5.2, 5.3, also in these moderately damped junctions, we have
measured IV as a function of the temperature, with the same indication
of a predominant ballistic transport regime. We also measured the IV
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Figure 82: IV curve of the junction at the temperature of 75 mK of a Al/Bi2Te3/Al
device. The curve shows a sub-gap resistance of 250 Ω, as depticed by the
red dashed line. The black arrows underlines the direction of the bias ramp.
The shaded part is shown in inset with a higher magnification.

curves in magnetic field and in a microwaves field, to fully characterize
the features of the conventional Josephson coupling, following a similar
framework to the characterization presented in Sec. 5.4

6.5.1 Proximity Effect in Al-Bi2Te3-Al junctions

Figure 82 shows a typical current - voltage curve with a hysteresis of
50% of the IC value. The value of the IC for this device is 1.94 µV at
20 mK and the normal resistance is 24 Ω. The switching voltage of the
junction is 40 µV. In the sub-gap branch, the IV follows a rather linear
behavior until 18 µV. Below this value the resistance goes up to values of
roughly 250 Ω. This value, called sub-gap resistance, is of fundamental
importance for the switching dynamics [93].

A careful characterization of the junction properties has been
performed, including the measurement of the modulation of the critical
current as a function of an external magnetic field (presented in
Fig. 83a), that follows the expected Fraunhofer patterns. The magnetic
area, estimated from the period the modulations is 1.15 µm2, in a
reasonable agreement with the geometric area of the device, taking into
consideration the flux focussing effects [155] already discussed in
Sec. 5.4.

Figure 83b shows the Shapiro steps, measured at 20 mK with a
frequency of 5 GHz. The position of the steps, and their modulation is
in agreement with a conventional Josephson relation. Anomalies in the
Shapiro steps have been detected above 10 GHz, and their study is still
a work in progress. Some preliminary results are presented below (see
Fig. 85, 86).

Figure 84 shows the IV curves as a function of the temperature.
Devices showed a much lower transparency than the Al/Bi2Se3/Al
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(a) (b)

Figure 83: (a) Critical current as a function of an external magnetic field (sample
Bi2Te3R708B). The red line is the best fit curve for the expected Fraunhofer
behavior. (b) IV curves for various applied power of the microwave field at
the frequency of 5 GHz, and at the temperature of 18 mK. The curves shows
the appearance of Shapiro steps at multiple integers of 10.5 µV. Curves are
shifted for clarity.

junctions described in Sec. 5.1 (D = (0.41 ± 0.05) ), with pronounced
hysteresis up to 300 mK.

Figure 84: IV curves as a function of the temperature. Curves show a pronounced
hysteresis up to 300 mK, due to to the high capacitance of the devices. The
inset shows curves at higher temperatures, in higher magnification scale

Half Integer Shapiro Steps

We detected Shapiro steps at semi-integer position of the conventional
voltage - frequency relation (Eq. 77), for frequencies of 10 GHz and
20 GHz. Our results are shown in Fig. 85, where Shapiro steps are
visible at multiple integers of V = νh/4e of the current - voltage
characteristic. These results were confirmed on two different devices,
and the appearance of half integer steps was confirmed at the same
frequencies of the microwave field. A non-equilibrium dynamical
model, based on time-dependent Andreev bound states, is traditionally
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reported in literature [111, 56] to accounts for the appearance of half
integer Shapiro step and for an enhancement in the conductance near
zero bias. By irradiating the junction with microwaves at a frequency ν,
the nth harmonic of the CPR (Eq. 1) can create phase-locking resonance
at voltages 2neV/h, generally called fractional Shapiro steps.

(a) (b)

Figure 85: (a) IV curves of junction Bi2Te3R708B at the temperature of 20 mK for an
increasing microwave field at the frequency of 20 GHz. The curves shows the
appearance of Shapiro steps at voltages of νh/4e, corresponding to a value of
20.5 µV. The half integer steps disappear at lower powers of the microwave
field, compared to the regular Shapiro steps. (b) The modulation of the critical
current, and of the first integer and half integer Shapiro steps. The modulation
of the half integer step are more irregular, and disappear at lower values of
the RF power.

6.5.2 Ballistic transport in Bi2Te3 barriers

A fitting procedure of the IC(T) curve has been performed, in analogy
of what described in Sec. 5.3. We have a clear evidence of a ballistic
transport regime (see Fig. 87). The fit of the analytical model was
performed above the temperature of 160 mK. We obtain a comparable
value of the Thouless energy (97 µeV) to the value obtained for Bi2Se3
samples. In Bi2Te3 the Fermi velocity is known to be smaller than in
Bi2Se3 (vF ' 1 · 10

5 m/s). Therefore a significantly shorter coherence
length was extracted (ξBi2Te3n = 700 nm, ξBi2Se3n = 3 µm). In devices
fabricated on Bi2Te3 thin films devices with a separation between the
electrodes of L = 200 nm were produced.

A numerical simulation of our data has been performed using Eq. 28,
using a value of transparency of D = 4, in agreement with the
experimental value extracted from the IV curve. The value of Fermi
velocity extracted from the simulation is (1.8 · 10

5 m/s). This value is in
fair agreement with data available in literature [185]. The result of the
numerical simulation is shown in Fig. 87, confirming the hypothesis of
ballistic superconducting transport.
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Figure 86: Conductance map of the junction Bi2Te3R708B, at the frequency of 10 GHz
and the temperature of 20 mK. The map is analog to the one presented in
Fig. 67b, for Bi2Se3 junctions. In this case additional peaks can be seen,
corresponding to the position of half integer Shapiro steps, as signaled by
the white spots.

Figure 87: IC vs T curve extracted from Fig. 84. The red line is the best fit line from the
analytical model (Eq. 75), while the green curve is the result of a numerical
simulation of the Eilenberger model (Eq. 28)



6.5 phase dynamics in bismuth telluride barriers 117

6.5.3 Switching Current Distributions in S/Bi2Te3/S junctions

We have measured the switching current distributions (SCD) as a
function of the temperature. We measured two different devices (sample
Bi2Te3R708B), basically confirming the same results. The junctions were
biased with a fast current ramp (γ = 2.3 mA/s). A clock is used to
measure the time taken from the start of the current ramp to the
switching event. This is called the time of flight (TOF). This technique to
evaluate the switching current is basically equivalent to the one
described in Sec. 6.2, 6.4, with the main difference that in this case the
current is not directly measured, but indirectly obtained from the
measurement of the TOF. Therefore one must take special care to the
calibration of the electronic equipment. In the measurements presented
here an additional feature is given by the feature of the current ramp
used to bias the junction. The ramp, indeed is extremely fast
(γ = 2.3 mA/s) and, soon (' 1 µs) after the detection of the switching
the current, it is set to zero for a time of about 4 ms before the next
ramp. This feature allows to prevent any heating effect of the current
bias ("self heating"). The dwell time is set to be far above the relaxation
time of the device.

Figure 88a shows the SCDs for temperatures going from 20 mK to
300 mK. From the figure three different regimes can be observed:
macroscopic quantum tunneling (MQT), thermal activation regime (TA)
and phase diffusion (PD). The crossover temperature Tcr between MQT
and TA is 75 mK, while the turnover temperature T∗ to the phase
diffusion is 135 mK.

Figure 88b shows the experimental escape rates, extracted from SCDs
at the temperature of 20 mK and 300 mK, and the best fit line for the
escape rate at 20 mK. Above T∗, the escape rates are no longer
reproducible with the model, and a Monte Carlo approach is required
(see Sec. 6.3). The experimental signature is a bending of the log Γ(∆U)
curve, clearly visible in the cyan curve of Fig. 88b. This effect is well
known [115, 122], and it is a consequence of the symmetrization of the
SCD in phase diffusion regime, as discussed in Sec. 6.2.

From the fit we have extracted the value of the critical current IC and
of the escape rate Tesc as a function of the temperature, shown in
Fig. 89. From Fig. 89a it is possible to see that the junction switches at
values of roughly 94% of IC at 20 mK, that is fundamental for the
correct evaluation of the junction parameters present below. Figure 89b
clearly shows the three regimes (MQT, TA, PD) mentioned above.

Below Tcr the escape temperature is basically constant. This is a clear
evidence that the junction is in a quantum regime as clearly confirmed
when applying the magnetic field (see below). Indeed the escape
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(a)

(b)

Figure 88: (a) Switching current distributions as a function of the temperature. The MQT
regime can be seen below 75 mK (in red), the thermal activations follows
at temperature between 75 and 135 mK (in orange - yellow). Above 135 mK
a phase diffusion regime have been detected (in green - blue). (b) Escape
rates as a function of the height of the potential barrier, normalized to kBT .
The curves at lower temperature (T < 135 mK) follows the ideal exponential
behavior (linear in logarithmic scale). The red line is the fit of the model Eq. 39

to our data. Above T∗ the curves show a pronounced bending, typical of the
phase diffusion regime.
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(a) (b)

Figure 89: (a) Mean swithing current as a function of the temperature, extracted from the
SCD shown in Fig. 88a (in blue). Data have been fitted with the model shown
in Eq. 39. The values of the critical current IC and of the escape temperature
Tesc have been extracted from the fit of the SCD. The value of IC vs the
temperature is shown in red, the value of Tesc vs the temperature is shown
in (b).

temperature is settled by the quantum noise of the device, determined
by the plasma frequency (kBTesc =  hωp). In TA regime, instead, the
escape temperature is determined by the thermal noise, and it is
proportional to the temperature of the bath. This determines the
positive slope of the Tesc vs T curve at temperature between 75 mK and
135 mK. Finally above T∗ the analytical model in no longer reliable, as
the processes of multiple escapes and re-trappings becomes dominant.
This is the characteristic feature of the phase diffusion regime, also
described for NbN junctions (Sec. 6.2) and for YBCO bi-epitaxial
junctions (6.4). In PD regime, the escape temperature decreases when T
is increased. This qualitatively follows the behavior of the width of the
distribution.

In Fig. 90 we show the mean switching current Isw and the width
of the histogram as a function of the temperature, for various values of
the external magnetic field. This is a fundamental test to verify that the
width of the distribution follows the modulation of the plasma frequency,
which in fact is reduced by an external magnetic field. Increasing the
field, the absolute value of w is reduced, ruling out the eventuality that
the saturation of w at low temperatures is determined by a saturation of
the sensitivity of the electronics. In addition, it is possible to verify that
the two quantities T∗ and Tcr modulates with the field. These quantities,
in fact are connected to the Josephson energy EJ = ICφ0/2π and the
plasma frequency ωp0 =

√
2eIC/ hC, respectively by the relations

T∗ ∝ EJ/kB

Tcr =
 hωp0
2πKB

(79)
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Therefore it is possible to verify the consistency of the model by tuning
EJ and ωp with the magnetic field. We verified that T∗ and Tcr follows
the expected modulations. This practically means that T∗ scales with IC,
while Tcr scales with

√
IC.

(a) (b)

Figure 90: (a) Mean switching current as a function of the temperature for three different
values of the external magnetic field. The value of Isw was reduced by 27%
with a magnetic field of 0.74 mT and by 57% with a field of 1.11 mT. (b)
Width of the SCD as a function of the temperature. The width is reduced
by applying an external magnetic field, as expected from the switching
dynamics. Moreover the values of Tcr and T∗ showed a modulation in
agreement with the theoretical prediction (see text for details, Eq. 79).

Figure 91a shows the w(T) curve at zero field, in a bi-logarithmic
scale. The critical exponents of the curve in TA and PD regimes are
extracted, as shown by the dashed lines. As shown in Fig. 91a, the w(T)
curve in MQT regime is not completely constant, but a small trend can
be observed. This effect has to be attributed to the presence of a
temperature dependence of the critical current IC down to 20 mK.
Junctions in a Ballistic regime, as discussed in Sec. 1.4, typically do not
present any saturation of the IC(T) at low temperatures, which instead
is the case observed in most of devices. The anomalous behavior of
w(T), which has been never observed so far to our knowledge, probably
requires a redefinition of some standard notions of the escape dynamics.

A theoretical description of the phenomenology of the MQT in a
ballistic regime has never been completely developed up to now, and its
study obviously goes beyond the purposed of this work. However a
tentative phenomenological description, inspired by the generalized
Kurkjävi theory [108] is attempted below. We noticed that the width of
the distribution scales with height of the barrier ∆U, which is in fact
proportional to the critical current IC, therefore a possible approach is
to normalize at each temperature the width of the distribution to the of
the height of the barrier ∆U. In Fig. 91b, the width have been
normalized to the values of the Isw, which has been used to extract an
estimate of the barrier at the temperature T . The w/Isw(T) curve shows
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a flat MQT regime, as expected in the standards of the conventional
macroscopic quantum tunneling.

The critical exponent of the w(T) curve, shown in Fig. 91a, in thermal
activation regime does not follow the universal regime T2/3. In our case
an exponent of (0.279± 0.001) was exacted from the curve. This is close
to an exponent 1/3. A scaling law of the w(T) of 1/3 in TA regime was
observed in graphene samples [45] and interpreted as a distinctive
feature of a phase slip dynamics, in terms of a generalized Kurkjävi
theory [108], mentioned above. However, the thermal excitation regime
have been observed in our sample for a very narrow temperature range
(since the crossover temperature is quite close to the PD transition)
making a faithful estimation of the critical exponent rather difficult.

(a) (b)

Figure 91: (a) Width of the zero field SCD in log log scale. The critical exponent of the
TA and PD regime can be extrapolated with a linear fit (black dashed lines).
The best fit gave the result of (0.269 ± 0.002) for the TA, and of (-1.668 ± 0.002)
for the PD regime. (b) Width of the distribution normalized to IC. The small
trend visible in Fig. 91a in the MQT regime is not visible any more.

We have used w(T) curve (see Fig. 91a) to make a careful estimation
of the damping factors of the junction the zero field, taking advantage of
the Monte Carlo simulations presented in [117], and Sec. 6.3.

Particularly we used the phase diagram shown in Fig. 76a to estimate
the high frequency damping factor. A value of QH ' 1.2 is in a fair
agreement with our data. The critical exponent of the w(T) curves,
instead gives information on the low frequency damping factor, as
discussed, and in this case we extracted a value of QL = 4.2.

An independent estimation of the damping can also been extracted
directly from the IV curve, taking into account the amount of hysteresis.
From the Eq.35

Q2 =
2− (π− 2)Ir/IC

(Ir/IC)2

In this case we estimated Q = 2.4. This value is in reasonable agreement
with data extracted from MC simulations
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We have observed a crossover from MQT to TA at Tcr = 75 mK. This
value, taking into account the value of the high frequency damping
QH = 1.2 obtained from the simulations, implies a plasma frequency
ωp0 = 314 GHz and a junction capacitance of C = 62 fF. We used the
well-known formula [172]

Tcr =
 hωp
2πkB

(√
1+

1

4QH(Isw)2
−

1

2QH(Isw)

)
(80)

which includes the effects of dissipations in the quantum regime [126,
75].

The estimation of the plasma frequency and capacitance of the
junction is important to verify the self consistency of our model. In fact
we can extract a value of the shunting resistance of the junction at high
and low frequency and verify the congruence of these estimations with
experimental data. This is an important fidelity test to support our
approach and the main conclusions.

The low (' 50 fF) capacitance extracted is consistent with the coplanar
geometries of devices with metallic barriers. The high frequency shunt
value has been evaluated to be 61Ω, in a reasonable agreement with data
available in literature [117, 122, 115, 97, 200, 12]. Considering the effect
of the low frequency damping factor, instead, one can obtain the shunt
resistance at low frequency. In this case a value of 215 Ω can be extracted
form the model, which is in agreement with the sub gap resistance of the
junction.

6.6 conclusions
We have presented a comparative study of escape dynamics in
superconducting hybrid devices. This is a sector of interest for the
integration of hybrid or unconventional barriers, which usually falls in
the moderate damping regime. The analysis of this regime was
performed through a confrontation of the Monte Carlo results, to data
available in literature (including the ones on NbN junctions presented
in this work). This effort was condensed in a Q - EJ/kBT phase diagram.
YBCO bi-epitaxial junctions are ideal candidates to explore new regimes
of the phase diagram, engineering devices where direct MQT - PD
transitions were observed.

We have measured IV curves of Al/Bi2Te3/Al Josephson junctions as
a function of the temperature, with a strong indication of a predominant
ballistic transport regime, already observed for Al/Bi2Se3/Al junctions
(Chap. 5). On these devices the study of SCD gave evidence of a
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moderately damped regime, which we have studied through a
comparative analysis performed also on other junctions, specifically
bi-epitaxial YBCO and NbN junctions, and further supported by a
comparison with numerical codes based on Montecarlo simulations.

The merits of these measurements are to be the very first ones on
junctions with topological barriers. This study is in progress and opens
to the possibility of a better understanding of how the escape dynamics
can be modified in the case of ballistic coherent transport regimes.



S U M M A R Y A N D C O N C L U S I O N S

In this work we have studied proximity effect in hybrid devices. The
main efforts are directed towards the study of Al/Bi2Se3/Al and
Al/Bi2Te3/Al junctions, where the barrier is a topological insulator. In
these devices evidence of Josephson effect have been obtained by a
careful characterization of the superconducting transport in an external
magnetic field, and in presence of a microwave field. A ballistic
coherent transport in such a structures has been confirmed by the study
of the IC(T) curve, that we have compared with numerical simulation of
the temperature dependences for the diffusive and ballistic regimes. The
importance of this finding lies in the fact we have been able to isolate
the contribution of the surface edge states in the superconducting
transport. This is one of the very first examples of Josephson
super-current through a topologically protected surface state.

The evidence of a Josephson super-current through a topologically
protected surface state is supported by a combined analysis of the
superconducting transport and scanning tunneling microscopy. The
presence of triangular defects, with a typical spacing of 10 nm was in
fact confirmed by the morphological analysis of the STM. The notion of
ballistic transport is clearly incompatible with the hypothesis that the
transport is carried by the bulk of the crystal. In fact in this case the
presence of defects would determine a diffusive regime of transport.

The presence of a two dimensional electron transport channel with a
Dirac dispersion relation has been also confirmed through a high
magnetic field characterization, obtained from a combination of
transport measurements in Hall bars and a STM analysis performed on
the cleaved surface of the crystal. Shubnikov - de Haas oscillations have
been detected in Hall bars above 5 T, and the study of the oscillations as
a function of the angle confirmed the 2D nature of the transport
channel. The presence of aperiodic peaks, including an N = 0 Landau
level, observed in STM, together with the direct detection of the Dirac
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cone, confirmed the non-trivial topology of the channel, which was in
fact identified as the topological surface state of the material. The
normal transport at low field, instead, is dominated by the conductivity
of the impurity states of the bulk of the crystal.

The superconducting hybrid devices studied in this work belongs to
the family of moderately damped devices, which seems to be
characteristic of the emergent nano/hybrid superconducting devices.
The recent implementation of devices with unconventional barrier, as
semiconducting nanowires, or bi-dimensional systems, promoted the
occurrence of devices in the moderate damping regime. This is
determined by the characteristic level of dissipation, and by the low
critical current, observed in hybrids and nano-structures, and gives a
strong motivation to a deeper understanding of dissipation at
intermediate damping regimes.

The dynamics of the escape processes from the metastable zero bias
state to the resistive state was studied in Al/Bi2Te3/Al coplanar hybrid
junctions. These devices showed a ballistic transport regime, also found
in the Al/Bi2Se3/Al junctions. The measurements of the escape
dynamics gave evidence of a moderate damping regime, which we
comparatively studied.

Proximity effect has been studied on various devices, with special
focus to the escape dynamics. NbN junctions and YBCO bi-epitaxial
junction were compared with those with a topological insulator barrier.
All these devices have in common the same moderately high levels of
damping (Q & 1), and low critical current regime (1 µA). Though, the
mechanisms underlying coherence and dissipation in these devices are
significantly different. An attempt of a jointed description of all these
phenomenology is condensed in a Q - EJ/kBT phase diagram, obtained
from the Monte Carlo simulation. Data of various devices, available in
literature, showed a remarkable agreement with our numerical
simulation. YBCO bi-epitaxial junctions turned out to be a fantastic tool
to explore new regions of this phase diagram, including the possible
direct transitions from macroscopic quantum tunneling to phase
diffusion regimes.

We compared data of switching current distributions in
Al/Bi2Te3/Al with both the result obtained in S-I-S devices with LTS
electrodes (NbN junctions) and with HTS devices (YBCO grain
boundary junctions). These systems have been used as a reference to
classify peculiar features in unconventional devices, as for instance
those observed both in thermal activation and macroscopic quantum
tunneling on Al/Bi2Te3/Al junctions. These characteristics are probably
related to the particular nature of the junctions, and to their ballistic
transport regime.
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