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Abstract 

 

 

      

     Sensing and recognition of bio-molecules is of extreme interest nowadays 

because it allows for detection of specific targets which can be the hallmarks 

of diseases. Colloidal particles can be used as a powerful platform to 

recognize bio-molecules and to perform a fast screening of them. Indeed, in 

most cases the surface of colloidal particles can be easily functionalized with 

agents which allow to control specific interaction between the particles and 

specific recognition. In addition, colloids with a switchable recognition 

mechanism, which can be externally triggered, would have a tremendous 

impact in the field of drug delivery and bio-sensing. 

      “Smart” microgels are potentially suitable for these applications. They are 

extensively studied due to their swelling response to changes in specific 

environmental stimuli (i.e. pH, temperature, solute concentration, solvent 

composition, ionic strength, light, or electric field). While a variety of 

polymer systems have been explored, most attention has focused on 

microgels based on poly(N-isopropylacrylamide) (PNIPAM). They exhibit an 

extreme response to changes in temperature. Linear PNIPAM has a lower 

critical solution temperature (LCST) of 32 °C in aqueous solution, at which 

point the polymer reversibly switches from a fully soluble, hydrophilic 

random coil at lower temperatures to an insoluble globule at higher 

temperatures. When cross-linked into a colloidal gel, PNIPAM-based 

microgels exhibit this temperature responsiveness by undergoing a reversible 

de-swelling volume phase transition between 32 and 35 °C (the volume phase 

transition temperature, VPTT). 

     Smart environmental triggers can be incorporated into the PNIPAM 

microgels by co-polymerization, to provide multivariable control over the 
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particle swelling like temperature and pH. The functionalization of PNIPAM 

microgels with carboxylic acid groups can provide these proprieties and can 

achieve several objectives. The VPTT behavior of the microgel can be 

controlled via carboxylic groups incorporation. Both the value of the VPTT 

and the breadth of the deswelling transition can be influenced through 

copolymerization of more hydrophilic monomers. Functionalization can also 

provide reactive sites for post-modification of the gel, such as the 

bioconjugation of ligands. 

     Our work has consisted in synthesizing tunable thermo- and pH-

responsive core-shell microgels based on N-Isopropylacrylamide (NIPAM) 

coupled with vynil acetic acid (VAA) groups. Their volume sensitivity to pH 

and temperature were monitored by small-angle neutron scattering (SANS) 

and light scattering measurements. Ultra-structural analysis revealed core-

shell architecture of the microgels with the core consisting of PNIPAM while 

the shell composed by PNIPAM and VAA.  Volume change of the microgel 

in response to environmental pH and temperature were driven by separate 

mechanisms. Temperature sensitivity is conveyed mainly by the PNIPAM 

component while the pH sensitivity was imparted by the VAA component. 

As consequence, pH volume changes affected mainly the outer shell whereas 

the temperature volume change is localized both in the core and in the shell. 

Results indicated that by changing relative composition of NIPAM and VAA 

it is possible to tune the microgel VPTT and by changing the relative 

extension of core and shell compartment it is possible to tune the sensitivity 

of the gel to the environmental variation.   

     Afterwards, we set out to investigate whether DNA conjugated microgels 

were compatible with hybridization process, which is commonly used for 

manipulations of DNA in the design of DNA bioassays or biosensors. First, 

we performed a Quenching experiment, in order to investigate the nature of 

the interaction of DNA fragments with microgel (physisorption vs 

hybridization) and thus, the specificity of hybridization on microgels.  
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      Cy5-labeled DNA oligonucleotide was conjugated with PNIPAM-VAA 

particles and by using a full complementary DNA oligonucleotide, 

opportunely modified with Black Hole Quencher 2 (BHQ-2), we performed 

the quenching experiment. Once confirmed the capability of DNA conjugated 

microgels to catch and recognize specifically complementary DNA strands 

we analyzed the effect of temperature and pH on the hybridization event and 

its stability.  

     The hybridization process was performed and tested in terms of specific 

catching of a complementary oligonucleotide and successively, it was studied 

in details, looking at the effect of microgel structural changes.    

     The effect of the shrinkage controlled by temperature changes does not 

drive any de-hybridization process. No dependence of the hybridization 

process was highlighted during microgel conformation changing, neither 

when the shell has collapsed nor when it is fully extended outside the 

microgel. Even analyzing the process as function of the oligonucleotide 

exposure towards the complementary oligo sequence, there is no direct 

evidence of its effects on the interaction process between the two DNA 

strands. 

     Eventually, DNA conjugated PNIPAM-VAA microgels charge proprieties 

were exploited for a reproducible and facile approach optimized for 

physisorption of gold nanoparticles. The advance of this approach consists in 

the simple mechanism by which gold nanoparticles are adsorbed on 

microgels templates, without dealing with sophisticated chemical treatment 

for their conjugation with the microgel. The resulted PNIPAAm-40nm gold 

nanoparticles modes demonstrate that this approach provides the capability to 

tune the interparticle distance and therefore to control and modulate the 

Surface Enhanced Raman Spectroscopy (SERS) affinity upon temperature 

changing.   
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CHAPTER I 
 
Introduction 

 

 

 

1.1 TEMPERATURE SENSITIVE PNIPAM  BASED MICROGELS  

     Microgels are colloidally stable hydrogels whose size can vary from tens 

of nanometers to micrometers. Baker first coined the term “microgel” in 

literature, where the word “micro” referred to the size of the gel particles, 

while “gel” to the ability of a particle to swell in organic solvents [1]. 

Microgels behave much like hydrophobic colloids on a macroscopic level; 

they can be flocculated by the addition of salt or polymeric flocculant and 

they can be readily characterized by standard colloid techniques such as 

electrophoresis and dynamic light scattering. Structurally microgels resemble 

a three-dimensional, covalently cross-linked network and can swell in good 

solvents. On this microscopic level, microgels behave much like a 

conventional hydrogel and can be described in terms of their water content, 

average cross-link density, and characteristic time constants for swelling and 

deswelling. This superposition of the favorable proprieties of gels (i.e., 

elasticity, solvent retention, and dimensional stability) within the small 

dimensions of colloidal particles (facilitating faster swelling kinetics and the 

formation of ordered arrays) has made microgels of great interest in 
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industries such as cosmetics, coatings, lubricants, food oil recovery, drug 

delivery, biotechnology, and industrial processing. 

     In recent years, considerable interest has been focused on the development 

of “smart” aqueous microgels, whose proprieties change dramatically upon 

the application of specific environmental stimuli. While a variety of polymer 

systems have been explored [2], most attention has focused on microgels 

based on poly(N-isopropylacrylamide) (PNIPAM), argument of this work. 

PNIPAM-based proprieties display extreme temperature sensitivity in water. 

The basic structure of NIPAM is shown in Figure 1.1. PNIPAM microgels 

are cross-linked monodisperse colloidal dispersions and are readily 

synthesized by free-radical precipitation polymerization [3]. The particle size 

can be easily tuned with size distribution very narrow. They are composed by 

NIPAM, which is a polymer having a lower critical solution temperature 

(LCST) in water of ~32°C [3, 4, 5]. All the microgel proprieties are sensitive 

functions of temperature in the range of 15-50°C. The thermosensitivity of 

PNIPAM based aqueous microgels is inherited by gels made of PNIPAM. 

These microgels exhibit a volume phase transition temperature (VPTT) [6] at 

around the LCST of PNIPAM. The essential temperature-sensitive 

proprieties are illustrated in Figure 1.2. At room temperature, the microgel 

particle is swollen with water content, by a lower refractive index difference 

with water and a few electrically charges groups on the chain ends. At 

temperatures higher than the VPTT microgel particle shrinks, passing to a 

compact state (relatively hydrophobic); most of water content is released, the 

density of electrically charged groups is higher and the refractive index 

difference with water gets greater. 
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Figure 1.1: Formula of a PNIPAM molecule
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1.2 THERMO - AND PH-RESPONSIVE PNIPAM  MICROGELS WITH 

CARBOXYLIC GROUPS  

     Smart environmental triggers can be incorporated into the gel by co-

polymerization, to provide multivariable control over the particle swelling. 

The responsive behavior of PNIPAM can be extended to react on further 

stimuli as, e.g. ionic strength [14], solvent composition [15], radiation [16], 

selective reaction [17], and pH [18]. Carboxylic-acid-functionalized 

microgels based on PNIPAM exhibit reversible volumetric swelling response 

to the application of both thermal and pH stimuli. Carboxylic groups are pH 

ionizable, they produce electrophilic sites that, when ionized, increase the 

osmotic pressure inside the particle retarding the VPTT of the microgel. The 

versatility of the thermo- and pH-responsive microgels enhances the number 

of potential applications. In fact, the functionalization of PNIPAM microgels 

with carboxylic acid groups can achieve several objectives. The VPTT 

behavior of the microgel can be controlled via carboxylic groups 

incorporation. Both the value of the VPTT and its breadth of the deswelling 

transition can be influenced through copolymerization of more hydrophilic 

monomers. Functionalization can also provide reactive sites for post-

modification of the gel, such as the bioconjugation of ligands. 

     The total number of carboxylic groups and their distribution within the 

microgel play an important role in controlling its swelling behavior. The 

distribution of carboxylic groups strongly affects both the local charge 

density and the average chain length of PNIPAM, both of which have been 

found to influence the onset VPTT and the breadth of the volume phase 

transition [2, 19]. In addition, the distribution and the accessibility of the 

carboxylic groups are critical in determining the types of applications suitable 

for a particular microgel. Microgel suited for bioconjugation would contain 

carboxylic groups at or near to the particle surface which are readily 
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accessible for subsequent chemical reactions, while microgels targeted for 

drug delivery applications would ideally contain internal functional groups 

whose access is diffusion-controlled. 

    The distribution of carboxylic groups had much attention in literature, 

since it is very important for predicting the volume phase transition behavior 

and the applicability of microgel systems. Zhou and Chu [19] performed 

studies over a broad range of methacrylic acid (MAA)/NIPAM copolymer 

microgel. For MAA/NIPAM ratios in the range of 10%, they proposed a 

core-shell microstructure model in which a MAA-enriched shell exists 

surrounding a NIPAM-enriched core. Kokufuta [20, 21] carried out similar 

investigations on an acrylic acid (AA)/NIPAM copolymer microgel with 

extremely high acrylic acid content (30%) and concluded that the bulk of 

charges did not reside on the particle surface.    

     However, both copolymerization kinetics [22] and experimental 

observations [18] indicate that AA and MAA tend to form blocks within the 

NIPAM-rich polymer chains. Carboxylated monomers blocks inside the 

NIPAM-rich chains increase the pKa of the directly adjacent acid group, 

decreasing the sensitivity to pH stimuli. This particular behavior is known as 

polyelectrolyte effect [23]. In addition a high concentration of functional 

monomer decreases the NIPAM fraction and subsequently the temperature 

sensitivity. 

    On the basis of these considerations, Pelton introduced multiresponsive 

microgels with a kind of “core-shell” morphology preparing microgels based 

on PNIPAM functionalized with vinylacetic acid (VAA) [18]. Its 

morphology consists in a NIPAM-rich core and a surface shell consisting of 

low cross-link density NIPAM chains which are carboxy-terminated. Such 

morphology is arisen exploiting the tendency of allylic monomers such as 

VAA to behave as chain transfer agents instead of propagating monomers in 

free radical environments [24]. This particular structure allows VAA-

microgels to ionize over a narrow pH range and exhibits large increases in 
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volume upon ionization. Such a microstructure provides both the sharp 

thermal sensitivity (NIPAM-rich core) and sharp pH sensitivity desirable for 

triggering and bioconjugation-related application. 

1.3 SWELLING PROCESS OF PNIPAM  BASED MICROGELS  

     The behavior of any polymer in a solvent is related to the balance between 

solven-solvent, solvent-polymer and polymer-polymer interactions. For the 

case of PNIPAM in water, the polymer hydrogel bonds are related to water 

through the amide side chains. However, isopropyl groups on the side chains 

induce hydrophobic structuring of the water. This structured water leads to 

entropically driven polymer-polymer interactions caused by the hydrophobic 

effect [5]. Under conditions where PNIPAM has a random-coil structure, the 

solvent-polymer interactions are stronger than the polymer-polymer 

interactions. At higher temperatures, the hydrogen bonds to the water 

molecules break and there is an entropically favored release of bound and 

structured water, leading to the formation of a globular polymer 

conformation. In this case the polymer-polymer hydrophobic interactions 

become stronger than the polymer-solvent interactions, and the polymer 

phase separates. The temperature at which this phase separation occurs is the 

LCST.  

     Significant effort has been invested in predicting the swelling behavior of 

hydrogel systems. The most widely use of these approaches is the Flory-

Huggins thermodynamic theory [25], which treats the swelling in terms of a 

series of osmotic pressure effects: the mixing of the polymer chains with the 

solvent, the elastic resistance of the cross-linked network to expansion or 

shrinking and the Donnan equilibrium of mobile counterions within the gel 

network.  



7 
 

    The first to apply semi-empirical extended Flory-Huggins theory to predict 

the volume phase transitions of PNIPAM microgels was Prausnitz` group 

[26]. Some of the model parameters were obtained from the experimental 

proprieties of linear PNIPAM solutions. The predicted VPTT was about 1°C 

higher than the LCST of linear PNIPAM. However, the swelling predictions 

were significantly less accurate than those achieved with smaller, more 

homogeneous particles [27]. 

     Flory-Huggins theory has been remarkably successful in describing the 

swelling of a wide range of bulk. This success is facilitated by the fact that 

bulk hydrogels can be considered as largely homogeneous on the microscale, 

with any microscopic inhomogeneous averaged out over the macroscale 

dimensions of the gel. Microgels, however, exhibit systematic 

inhomogeneities within their nanoscale dimensions. Strong, systematic trends 

in radial cross-linking density [28, 29] and functional group density [18, 19, 

30] have been observed in PNIPAM-based microgel systems. Given the 

critical importance of the cross-link density to the elastic contribution to gel 

swelling and the functional group density to the charge contribution to gel 

swelling, such nanoscale gradients may have very significant effects on the 

swelling responses. Chain stiffness and direct charge-charge repulsion 

between the fixed network charges cannot be addressed using the basic Flory-

Huggins model.  

     Combining the polyelectrolyte gel swelling theory of Hasa [31] with the 

direct polyelectolyte repulsion term derived by Katchalsky and Michaeli [32], 

Hoare and Pelton [33] has published an approach which generalizes and 

describes the pH dependence of copolymer PNIPAM microgels containing 

carboxylic groups (COOH groups). This analysis takes into account the 

electrostatic interactions between the fixed charges within the polyelectrolyte 

(repulsive, driving swelling) and the salt counterions and the polyelectrolyte 

(attractive, driving deswelling). 
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1.4 BIOMEDICAL APPLICATIONS OF PNIPAM  MICROGELS  

     Hydrogels are now widely used as biomaterials. These materials are 

biocompatible because their physicochemical proprieties are similar to those 

of the living tissues, e. g., high water content, soft and rubbery consistency, 

and low interfacial tension with water or biological fluids. In addition, many 

hydrogels can alter their swelling degree in response to changes in their 

environment, such as pH, temperature, or ionic strength. Therefore hydrogels 

have found many applications in biomedicine and biotechnology, including 

tissue engineering scaffolds, biosensor, biomedical devices, and drug carriers 

[34, 35, 36].  

     Microgels are miniature hydrogels with a size ranging from tens of 

nanometers to several microns [37, 38]. Similar to bulky gels, microgels are 

usually biocompatible [39], and, due to their small size, they exhibit many 

advantages over bulky gels when used as biomaterials. One major advantages 

is that rate of the microgel responding to external stimuli is much faster than 

bulky gels [40, 41], as the rate of volume change is scaled as  l-2, where l is 

the relevant length scale of gel [42]. Secondly, colloidal microgel particles 

allows for minimally invasive administration when used as drug carriers. 

     Because of unique PNIPAM microgels proprieties, such as the size 

particles tunability, the thermo-responsivity, and the possibility to extend 

their sensitivity to other stimuli, they have found numerous applications, 

especially in biomedical areas. In particular PNIPAM microgels have been 

exploited for drug delivery and biosensing. 

1.4.1 PNIPAM microgels for drug delivery 

     As drug carrier, PNIPAM microgels combine the advantages of both 

hydrogels and nanoparticles. The advantages, such as hydrophilicity, 
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flexibility, high water absorptivity, and good biocompatibility, are 

characteristic of hydrogels, while the advantages such as long life span in 

circulation and the possibility of being actively or passively targeted to the 

desired biophase, e.g. tumor sites, originate from their size which falls in the 

colloidal range. As recognition by the reticuloendothelial system is the 

principal reason for the removal of many colloidal drug carriers from the 

blood compartment [43], size of nanoparticle drug carriers should be 

controlled to be below 200 nm to extend their blood circulation time, which 

can be easily achieved for PNIPAM microgels.  

   PNIPAM microgel particles have a sponge-like structure with interstitial 

spaces filled with solvent. Usually the drug can be loaded by equilibrium 

partitioning between the solution and microgel phases [44]. Electrostatic 

interaction [44, 45], hydrophobic interaction [44], and hydrogen bonding [46] 

may play an important role for the drug loading. Drugs can also be loaded by 

the so called ‘‘breathing-in’’ method [47], in which the lyophilized microgels 

are resuspended in an aqueous solution of the drug. The payload can be 

completely imbibed by the hydrogel network, resulting in high loading 

efficiency. Similar to bulky gel carriers, the most common mechanism of 

drug release from PNIPAM microgel is passive diffusion [48]. The 

responsibility of PNIPAM microgels to various external stimuli, e.g., 

temperature [49], pH [50], light [51], and glucose [52], has been widely 

exploited to achieve controlled drug release.  

   PNIPAM microgels have been tested for the controlled release of 

anticancer drugs [50, 52]. Their small size (below 200 nm) allows for the 

optimal extravasation into tumors. The drug can be incorporated by either 

physical means or covalent attachment. Numerous release mechanisms, 

which may be induced by biological stimuli such as a change in pH or 

interactions with enzymes, ions, or proteins, are available for the design of a 

controlled release system.  
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   The presence of various surface functional groups allows for conjugation 

with targeting species, leading to targeted delivery of the drug to specified 

sites [47, 53]. For example, Nayak [17] synthesized a core-shell PNIPAM 

microgel with a fluorescently labelled core, which enables particle tracking, 

and a shell conjugated with folic acid, a targeting ligand. Both the folate-

conjugated microgel and the non-conjugated control microgel were incubated 

with KB cells with overexpressed folate receptors. Only the folate-conjugated 

particles are internalized by the cells, revealing their potential specific 

targeting of cancer cells. 

   Through rational design, Das synthesized a pH-responsive PNIPAM 

microgel to delivery anti-cancer drugs to cancer cells [50]. The microgel size 

was controlled to be small (~150 nm), which maximizes extravasation into 

tumors. Receptor-specific ligand (transferrin) was conjugated onto the 

microgel surface for targeting the diseased cells. Drugs were loaded by 

physical means (via electrostatic interaction), instead of covalent attachment, 

which may potentially alter the drug’s effectiveness. A release mechanism, 

which is triggered by biological stimuli, i.e., pH change from 7.4 in the 

extracellular matrix to 4.5 in lysosome, was selected. An in vitro study 

reveals that the bio-functionalized, pH-responsive microgels can selectively 

carry the chemotherapeutic agent into tumor cells and cause significant 

cytotoxicity. 

     PNIPAM microgels are also good carrier for protein/peptide drugs. As a 

particulate drug carrier, microgels may protect the drugs from enzymatic 

degradation. High stability is one advantage of PNIPAM microgels over 

other particulate carriers, such as liposome or micelle. Particulate carriers 

from hydrophobic polymers may cause denaturation of protein drugs. In 

contrast, the PNIPAM microgel is hydrophilic, thus avoids this problem. 

     It is well-known that insulin should be supplied according to the blood 

glucose level of the patient. To achieve this, Zhang and others authors [52, 

54, 55], synthesized glucose-sensitive poly(N-isopropylacryamide-co-3-
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acrylamidophenylboronic acid) (P(NIPAM-AAPBA)) microgels using 

phenylboronic acid (PBA) group as glucose-sensing moiety. Glucose can 

bind with PBA and transfer it from a neutral, hydrophobic form to a 

negatively charged, hydrophilic form, which results in swelling of the PBA 

containing microgels. Two approaches have been used to synthesize 

P(NIPAM-AAPBA) microgels. The first one directly copolymerizes NIPAM 

and AAPBA [54, 56], while the second one introduces the functional groups 

by modification of a precursor poly(N-isopropylacrylamide-co-acrylic acid) 

(P(NIPAM-AAc)) microgel [52, 55]. The first approach doesn’t seem very 

successful, as the glucose-responsibility of the resultant microgel strongly 

depends on its initial state, which depends itself on the initial temperature and 

the functionalization degree of the particle. It was postulated that the microgel 

might have an ‘‘island/ocean’’- like heterogenous microstructure with PBA-

rich domains as the ‘‘islands’’ and PNIPAM segments as the ‘‘ocean’’ [56], 

which results in the complicated behavior. In contrast, microgel synthesized 

via the second approach shows excellent glucose-sensitivity. At [Glu] = 

0.01M, the hydrodynamic radius of the microgel increases one-fold, which 

correspond to a seven-fold increase in volume [52]. The high glucose 

sensitivity may be attributed to the relatively homogenous structure of the 

microgel, which it inherits from the P(NIPAM-AAc) precursor microgel [57]. 

     Control over the permeability of a drug diffusing from the interior to the 

outside of microgels is key for their application as controlled drug delivery 

systems. For self-regulated insulin delivery, the permeability of the microgels 

should be able to be tuned by glucose. To demonstrate this, a core-shell 

microgel was designed in which the core can be degraded by NaIO4, while 

the P(NIPAM-AAPBA) shell is glucose-sensitive [58]. The polymer debris 

from the degradation of the core diffuses out through the shell, which can be 

traced conveniently by turbidity. It was found that the polymer debris can be 

held by the P(NIPAM-AAPBA) nanoshell because of its low permeability, 

while they diffuse freely through a P(NIPAM-AA) shell. The permeability of 
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P(NIPAM-AAPBA) nanoshell can be tuned by temperature and pH, but more 

importantly by glucose. An increase in glucose concentration increases the 

swelling degree of the shell, thus its permeability, which in turn allows more 

polymer debris to be released. If insulin is loaded in the core area, it is 

expected that its release rate will increase with increasing glucose sensitive 

P(NIPAM-AAPBA) microgels were studied using a microgel monolayer as 

the platform [59]. It was found that the drug release at low temperature can 

be described as passive diffusion of the drugs, while at temperatures higher 

than VPTT, the drugs are released via a “squeeze-out” mechanism Figure 1.3. 

There glucose enhances the release of insulin at low temperature, but retards 

it at high temperature. However, drugs can bind with PBA groups through 

reversible phenylboronate ester bonds and glucose enhances their release at 

all temperatures. Therefore there may be two ways to achieve self-regulated 

insulin release. One is the modification of insulin with diol structures, so it 

can bind with PBA groups and glucose will enhance its release by competing 

for PBA binding site. A second way is to create a core-shell structure [58, 60, 

61], in which the drug is loaded in the core, while the glucose-sensitive shell 

will control the release of the drug, as we suggested previously [58]. 

 

 

Figure 1.3: Drug release mechanisms at different temperature. At 4 C°, the 

drug release follows a passive diffusion mechanism. At temperature close to 

the VPTT of the microgel, the diffusion of the drug is retarded by a thin 

dense “skin layer”. At temperature higher than the VPTT, the drugs are 

squeezed out due to the quick shrinkage of the microgel. 
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1.4.2 PNIPAM microgels for biosensing 

     PNIPAM microgel particles offer good platforms for biosensing because 

of their large surface area, narrow size distribution and the versatility of 

functional groups on the surface. As an example, Ali [62] achieved DNA 

manipulation on a PNIPAM microgel surface. As shown in Figure 1.4, a 5`-

amine modified DNA oligonucleotide (DNA1) was first coupled onto the 

microgel using EDC chemistry. Then the coupled DNA1 was ligated with a 

second DNA oligonucleotide (DNA2) in the presence of T4 DNA ligase and 

a template oligonucleotide. Rolling circle amplification (RCA) was carried 

out for signal amplification. Finally hybridization with a fluorescent DNA 

probe (DNA3) allows signal detection. Paper strips immobilized with DNA 

oligonucleotide modified microgels were further developed, which can be 

used to perform ligation/RCA-mediated amplification procedures for 

sensitive detection of DNA [63]. These DNA sensors have great promise in 

the identification of biological sources, such as specific pathogens. 

 

 

Figure 1.4: Schematic illustration of DNA manipulations on the PNIPAM 

microgel. (I) Covalent coupling of DNA with microgel by EDC/NHSS; (II) 

DNA ligation; (III) RCA; (IV) signal generation by hybridization with a 

fluorescent DNA probe. 
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    In the above examples, PNIPAM microgels only act as a platform. The 

most prominent property of the PNIPAM microgel is its sensitivity to 

external stimuli. Sensors can be designed if this property is coupled with a 

suitable reporting method. Compared with sensors based on bulky hydrogels, 

the microgel-based sensors have the benefit that they respond much quicker.  

     Based on the glucose-sensitivity of PBA-functionlized microgel, Wu [64] 

designed an optical glucose-sensor using fluorescent quantum dots (QDs) as 

optical labels. As shown in Figure 1.5, the fluorescent CdS QDs were 

synthesized in situ in the interior of the copolymer microgels. The resultant 

hybrid microgel remains glucose sensitive, i.e., it swells to a larger degree in 

the presence of glucose. The swelling of the microgel results in an increase in 

the number of emission quenching centers located on the polymer–CdS QD 

interface, which in turn results in the quenching of the fluorescence of the 

CdS QDs. Therefore the optical detection of glucose can be achieved from 

the glucose induced fluorescence quenching. This sensor was further 

improved by using a PBA with a low pKa [65]. As a result, the sensor can 

detect glucose at physiological pH.  

 

 

Figure 1.5: Reversible fluorescence quenching and anti-quenching of CdS 

QDs embedded in interior of glucose sensitive microgels in response to the 

change in gluocose concentration.  
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CHAPTER II 
 
Engineering tunable temperature and 

pH responsive PNIPAM-VAA core-shell 
microgel particles 

 

 

INTRODUCTION  

     Sensitive microgels are colloidally stable hydrogels responsive to external 

stimuli such as ionic strength [1], solvent composition [2], radiation [3], 

selective reaction [4] and pH [5]. PNIPAM is the most widely investigated 

temperature-sensitive microgel system, with particle sizes ranging from tens 

of nanometers up to micrometers. Generally, PNIPAM microgels have a 

LCST of 32 ºC and, when chemically cross-linked in aqueous solution, show 

pronounced particle deswelling if heated above the VPTT [6]. PNIPAM 

microgels nowadays are present in a wide range of biomedical applications 

such as drug delivery [7], biomolecules immobilization and absorption [8] or 

sensor [9]. 

     PNIPAM thermo-responsive microgels benefit from their capacity of 

being easily tuned to deswell. The possibility to tune the VPTT becomes 

important for potential applications that demand environmentally triggered 

changes in the microgel structure, surface charge and gel hydrophobicity. The 

tuning of the hydrophilic and hydrophobic groups ratio offers the possibility 

to modulate the VPTT of microgels [10]. This tunability can be achieved by 

using PNIPAM together with a copolymer containing carboxylic groups [5] 
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to encode the pH sensitivity in microgels. Indeed, carboxylic acid groups 

inside the microgels are ionized by increasing the pH, which causes an 

increase in the osmotic pressure inside the particle (due to the counter-ions) 

and shifts the VPTT of the microgel to higher solution temperatures. 

     Hoare and Pelton [11] introduced multi-responsive microgels of core-shell 

morphology based on PNIPAM functionalized with vinylacetic acid (VAA). 

Such morphology consists of a NIPAM-rich core and a surface shell made of 

low cross-link density NIPAM chains, which are carboxy-terminated. These 

features are due to the tendency of allylic monomers -such as VAA- to 

behave as chain transfer agents instead of propagating monomers in free 

radical environments [12]. The spatial separation of two different 

components -each responsive to a single stimulus- gives an important 

contribution to the modulation of responsivity. This particular structure 

allows VAA-PNIPAM microgels to ionize over a narrow pH range and to 

exhibit a large increase in volume upon ionization. It provides valuable 

features such as faster rates of swelling and a sharp thermal and pH 

sensitivity. The influence of the relative core-to-shell ratio implies an 

additional tuning factor for microgel responsive.  

     In this work highly monodisperse VAA-PNIPAM particle samples were 

prepared and the effect of changes in pH, temperature and core-to-shell ratio 

has been investigated by transmission electron microscopy (TEM) and 

scattering techniques. In particular, the particle swelling was followed by 

neutron and light scattering techniques during alkalization. The non-uniform 

swelling resulting from small angle neutron scattering (SANS) and static 

light scattering (SLS) was interpreted in terms of a core-shell model, 

consolidating the structure proposed by Hoare and Pelton [11]. The studied 

VAA-PNIPAM particle resulted composed of a NIPAM-rich core, whose 

volume varies according to the PNIPAM LCST, and most of the VAA groups 

localized in the shell, whose volume varies depending on the relative 

alkalization. When the pH is lower than the pKa ≈ 4.8 of VAA, all the acid 
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groups are non-ionized and the shell shrinks. Above the pKa, the shell is fully 

swollen and microgels exhibit a phase transition shifting, which depends on 

the pH value and on the relative size of core to shell. As a consequence, the 

control of the microgel structure becomes fundamental to modulate how the 

acid shell thickness influences the microgel responsivity. Form factor 

analysis indicates that, by changing the mutual influence of core to shell, it is 

possible to modulate the sensitivity of the microgel to the environmental 

variations. 

2.1 MATERIALS AND METHODS  

2.1.1 Materials 

  N-Isopropylacrylamide (NIPAM, 97%), vinylacetic acid (VAA, 97%), N,N′-

Methylenebisacrylamide (MBA, 99%) as cross-linker, potassium persulfate 

(KPS, 99%) as starter, and sodium dodecyl sulfate (SDS) were purchased 

from by Sigma-Aldrich and used as received. Water used in the synthesis and 

characterization was of Millipore Milli-Q grade. 

2.1.2 Microgel Preparation 

    Two separated microgel samples were synthesized: VAA-SDS-CS and 

VAA-CS. The composition in terms of monomers and cross-linkers was 

equal, while differentiation in size was obtained during VAA-SDS-CS 

synthesis by SDS addition to get a smaller microgel size. 
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    The microgel particles were synthesized with a standard precipitation 

polymerization method [11]. Polymerizations were carried out in a 200 ml 

three-necked flask equipped with a condenser and a stirrer. NIPAM (1.4 g), 

MBA (0.07 g), SDS (0.05 g), and the functional monomer VAA (0.07 g) 

were all dissolved in 50 ml of water and heated to the polymerization 

temperature of 70 °C under a nitrogen purge. After 30 min. 5 ml of initiator 

solution (KPS) were injected to initiate the polymerization, which were 

carried out for 5 hours. After cooling, all microgels were cleaned by 

dialyzing against pure water for 15 days. The microgels were stored at 4 °C 

at a concentration c ≈ 2.5 wt%. 

2.1.3 TEM micrographs 

     A solution of VAA-CS at a concentration c ≈ 0.5 wt% was prepared. The 

anionic functional groups in the microgel were selectively stained by mixing 

a 0.05 ml aliquot of the microgel suspension with 0.5 ml of a 1 mM uranyl 

acetate solution and stirring the mixture for 1 h. A single drop of the stained 

suspension was dropped on a Formvar-coated copper TEM grid and dried 

overnight. TEM micrographs were acquired at 200 kV (FEI Company – 

TECNAI G2 20, Hillsboro, USA). 

2.1.4 Light Scattering experiments 

     The apparatus used to perform the dynamic and static light scattering 

(DLS/SLS) experiments was an compact goniometer (ALV-LASER GmbH – 

ALV/CGS-3, Langen, Germany) operating at a wavelength of 633nm in 

vacuum and a time correlator (ALV-LASER GmbH – ALV/LSE-5003, 

Langen, Germany) to perform the DLS experiments. Each sample was 
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measured in highly diluted and temperature stable conditions (c ≈ 0.01 wt%). 

The sample temperature was controlled by an external heating and 

refrigerated bath (JULABO – FS18, Seelbach, Germany). The pH value was 

adjusted the day before the measurement with HCl or NaOH, respectively, 

and controlled with a pH-meter (METTLER TOLEDO – Seven easy, 

Columbus, USA) directly before each measurement. The scattering angle θ, 

was varied from 20° to 140°. 

2.1.5 Dynamic Light Scattering Analysis 

     The hydrodynamic radii, ��, of the particles were determined by fitting 

the long-time baseline of the intensity correlation function [13]. The used 

formula is a derivate of the moment-based expression from Pusey and Van 

Megen [14] and the Siegert relation [15] for the filed-field time 

autocorrelation function, and is written as:  

���� � � 	 
 ��������� �1 	 ��
�! ���

�
 (1), 

where the factor � is referred to the baseline, 
 the factor of the experimental 

geometry, and � the delay time of the normalized autocorrelation function of 

the scattered light intensity. For monodisperse particles in solution the field-

correlation function decays exponentially with a decay rate �� � ���, with 

the diffusion coefficient � � �� 6"#��⁄ , where �� is the Boltzmann 

constant,   the temperature, and # the dynamic viscoysity of the Stokes-

Einstein relation. �� is the hydrodynamic radius of a sphere that would have 

the same average diffusion constant as the scattering particles [13]. The 

magnitude of the scattering wave vector � � �4"& '(⁄ � sin�, 2⁄ �, with &  the 

refractive index of the solvent, and '( the laser wavelength of the used 

goniometer. 
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2.1.6 Small Angle Neutron Scattering experiments 

     SANS experiments were performed on the instruments SANS-I and 

SANS-II at SINQ, Paul Scherrer Institut, Switzerland. With a radius close to 

100 nm, the VAA-SDS-CS particles have a size that is relatively large for 

SANS. Therefore, the instruments were set up to reach low q values. On 

SANS-I, two setups were used: The sample-detector distance and the 

collimation distance were equal and were 18 m or 4.5 m; the wavelength was 

8 Å. These two settings give access to the q range from 0.025 nm-1 to 1.14 

nm-1. SANS-II is a smaller instrument, where also two different settings were 

used: The sample-detector and collimation distances were equal and chosen 

to be 6 m and 2 m with a wavelengths of 10.5 Å and 8 Å, respectively. These 

two settings give access to the q range from 0.023 nm-1 to 1.1 nm-1. The 

samples were suspended in D2O to improve the scattering length density 

contrast and were measured in quartz cuvettes with a thickness of 2 mm. 

2.1.7 Small Angle Neutron Scattering and Static Light Scattering 

Analysis 

     Particle interactions can be neglected for sufficiently diluted colloidal 

dispersions or polymer solutions and scattering intensity can be described by 

the form factor .���. Two different form factors were used to fit the 

experimental data of pH and temperature sensitive VAA microgels. 

     It is well known that PNIPAM microgel structure is presumably 

composed by a uniformly cross-linked core and by a shell in which the 

polymer density decreases towards the surface of the particle [16]. The 

particle form factor for an inhomogeneous sphere ./0123��� can be modeled, 

in reciprocal space, as the product of the form factor of a homogeneous 
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sphere and a Gauss function with a characteristic length scale 45678 

proportional to the thickness of the shell [17, 18]. 

./0123 ��� � 9: ;501�<=>�� <=>?35�<=>�@
�<=>�A exp �E �FGHIJ <��

� �K
�
 (2), 

Within this model, the polymer density decreases to half of its core value at 

the core radius �? and reaches the overall particle size (core + shell) at 

�?5 � �? 	 245678.  
     For polymer particle composed by a core-shell structure, a different model 

is used, with a polymer density (Figure 2.1 b) defined as  

ρ(r) � 1     0   <  r  <  Rc* 
ρ(r) � φ52UVV Rc* <  r  <  Rcs* 
ρ(r) � 0    Rc* <  r 

The particle core-shell form factor ./?5(�) is differently calculated, given by: 

./?5(�) � W:XGYZ[[<=>G\?35 (<=>G\)�:(�]^XGYZ[[)(<=>\?35 (<=>\)�501 (<=>\))�:XGYZ[[501(<=>G\)
<A((�]^XGYZ[[)=>\�XGYZ[[=>G\A) _�

(3), 
where �?\ is the core radius and �?5\ is the overall particle size.  

     In these two models, polidispersity has been included by assuming a 

Gaussian radius distribution by 

a b��, �, 4c3Vde �  ]
f�gFhi[j� =�� exp WE (=�=�)�

�gFhi[j� =��_ (4), 

where �� is the average particle radius and 4c3Vd denotes the relative particle 

size polydispersity. For simplicity �� is assumed to be �k or �?5\, in order if it 

has been calculated using ./0123(�), or  ./?5(�). The solution form factor for 

the whole solution is thus described by 

. (�) �  l ./ (�) · a (��, �, 4nopq) (5). 
     SANS can investigate higher q values than SLS, thus scattering intensity 

results also by the fluctuations of the network. To account for this 

contribution, a Lorentzian function tu � tu(0) / ;1 	 ��ξ�@ was added to the 

form factor model used to analyze the SANS data, where ξ can be considered 

related to the microgel mesh size [19, 20, 21, 22, 23, 24]. 
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2.2 RESULTS AND DISCUSSION  

2.2.1 Transmission electron micrographs 

     Core-shell microgels based on PNIPAM functionalized with VAA are 

characterized by a NIPAM-rich core and a surface shell consisting of low 

cross-link density NIPAM chains, which are carboxy-terminated. Two 

different samples VAA-SDS-CS and VAA-CS, expected to have the same 

morphological and structural proprieties were synthesized in this work. The 

swollen microgel structure for a pH level above the pKa of VAA is illustrated 

in Figure 2.1a. The functional groups distribution of VAA-CS sample is 

shown in the TEM micrograph in Figure 2.1b, where the PNIPAM microgel 

structure with a uniformly cross-linked core and the corresponding shell in 

which the polymer density decreases towards the surface of the particle is 

illustrated. PNIPAM-VAA microgels present a core-shell structure, where the 

stained functional groups are localized on the surface. This particular 

distribution is mainly due to two factors: the behavior of VAA monomer as a 

chain transfer [12, 25], like all the allylic monomers; and the NIPAM 

monomer propagation rate, which is several orders of magnitude faster 

compared to VAA [12]. The first factor contributes to the production of 

single vinylacetic groups incorporated on the chain-ends of NIPAM, while 

the second factor causes the rich core of NIPAM to be formed before the 

VAA-containing oligomers are produced via chain transfer. 
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Figure 2.1: TEM micrograph of VAA-CS microgels. (a) Cryo-TEM of swollen 

microgels; (b) shrunken microgel with anionic sites, where the PNIPAM microgel 

structure with a uniformly cross-linked core and the corresponding shell in which 

the polymer density decreases towards the surface of the particle is illustrated. The 

sample illustrates a core-shell structure, where VAA groups are localized on the 

surface. 

2.2.2 Hydrodynamic radii and swelling ratio 

     Both VAA-SDS-CS and VAA-CS particles are temperature and pH 

sensitive. The dependence of the swelling ratio on temperature is shown in 

Figure 2.2 for both samples at different pH values. Generally, VAA-SDS-CS 

and VAA-CS particles have different radii depending on pH, in particular -at 

25 ºC- the VAA-SDS-CS radius is measured to be 70 - 150 nm, while the 

VAA-CS radius is 450 - 600 nm. 

     Both samples present approximately the same swelling ratio values for 

equal pH levels, which ensure similar microgel structure and morphology. 

Generally, the swelling of the particle is strongly influenced by the presence 

of carboxylic groups. When pH levels increase, the repulsion between 

ionized acid groups becomes stronger, creating an osmotic pressure inside the 

particle that delays the shrinkage, resulting in a bigger particle size. In fact, in 
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the pH range of the pKa of VAA, the VPTT is similar to the LCST of 

PNIPAM. Swelling profiles are rather sharp in terms of both the narrow 

temperature range of their volume phase transition and the degree of 

volumetric deswelling observed upon heating.  Specifically, for pH 3 the 

VPTT is ~32 ºC. By increasing the pH level above the pKa of VAA, the size 

distribution of the measured particles increases and the VPTT shifts to higher 

temperatures. For pH 8, where most of the carboxylic groups are 

deprotonated, the VPTT shifts up to ~39 ºC for VAA-SDS-CS and ~45 ºC for 

VAA-CS, besides showing a broader swelling profile. Eventually, at high 

temperatures all the radii at all pH collapsed to one single size. At very low 

pH and high temperatures both samples tend to aggregate, because acid 

groups become fully protonated and repulsions is minimized, as the particles 

are in a collapsed state. This behavior limits scattering measurements for 

VAA-SDS-CS the pH 3 sample at temperatures under 30 ºC. 

 

 

Figure 2.2: Swelling ratio of VAA-SDS-CS (a) and VAA-CS (b) at different pH 

values measured by DLS. At pH 3 the VPTT is ~32 ºC and profiles are rather sharp. 

At higher pH values the particle size increases and the VPTT shifts. For high 

temperatures all radii at all pH values collapse into one single microgel size. 
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2.2.3 Structure of VAA-particles 

     The structure of microgel particles in solution is obtained by analyses of 

the form factor using SANS and SLS measurements. SANS and SLS data for 

pH 5 and pH 8, obtained from our core-shell particles at three different 

temperatures are shown with corresponding fits in Figure 2.3. The form 

factor minima indicate that polydispersity is small, with an average of ~12% 

(see Table 2.1 for SANS and Table 2.2 for SLS). A shift of the form factor 

minimum toward higher q values is observed with increasing temperature and 

decreasing pH because of the shrinking particle size. 

 

(a) SANS –VAA-SDS-CS 

  

(b) SLS - VAA-CS  

 

Figure 2.3: SANS (a) and SLS (b) scattering graphs at different temperatures for 

pH 5 and pH 8. The index INHO in the legend indicates the inhomogeneous form 

factor fit, while CS is used for the core-shell fit. All corresponding fitting curves are 

plotted as gray line. 
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2.2.4 Small Angle Neutron Scattering 

     We calculated the VAA-SDS-CS particle radius through the core-shell 

model.  In Figure 2.4 core and shell radii are reported as function of 

temperature at two different pH values, pH 5 and pH 8. Microgel cores are 

pH independent, while shells vary with pH. At 25 ºC, when microgel 

particles are fully swollen, �?\ is about 30 nm. By increasing the temperature 

up to 37 ºC, significantly above the PNIPAM LCST, �?\ reaches the fully 

shrunken state of 21 nm and remain collapsed for any higher temperature. 

This effect is due to the high NIPAM concentration in the core. Otherwise, 

�?5\ remains swollen for high pH and increasing temperature because of the 

VAA in the shell. �?5\of 53 nm for pH 5 and 59 nm for pH 8 was measured 

at 25 ºC. Whereas by increasing the temperature up to 37 ºC, the pH 5 shell 

collapse to �?5\ of 33 nm, while pH 8 shells are still swollen. This behavior 

agrees with the swelling ratio values at 37 ºC in Figure 2.2a, where pH 8 

particles have not collapsed yet, while pH 5 particles are almost shrunken. 

Also the polymer density, φshell, confirms this behavior (see inset in Figure 

2.4). The polymer distribution at 25 °C is equally distributed for both pH 

levels, while for 37 °C at pH 5 most of the shell polymers go into the core 

whereas shells are still swollen at pH 8. 

     In terms of LCST, a VPTT shift to higher temperature and pH values is 

recognized. This shift implies a change of the relative core-to-shell ratio, 

which can be used to modulate the microgel phase transition. Eventually, at 

45 ºC the pH 5 and pH 8 shells collapse and �?5\ is 32 nm (see Table 2.1). 

The particle size from SANS measurements is in good agreement with the 

hydrodynamic radius. 
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Figure 2.4: Radius of VAA-SDS-CS particles calculated from SANS measurements 

at pH 5 (red circles) and pH 8 (blue circles). Solid circles represent the pH-

independent NIPAM-rich cores, �k\, while open circles give �kx\ with the pH-

dependent VAA shell structure. The inset shows the polymer density of the microgel 

shell as function of temperature at pH 5 (red circles) and pH 8 (blue squares). 

 

Table 2.1. Summary of the structural parameters obtained from SANS data 

analysis. 

pH T Rc* σpoly* φshell* ξ Rcs* 

  [°C] [nm] [%] [%] [nm] [nm] 

5 25 28 12 51 11 53 

5 37 21 14 92 7 33 

5 45 21 12 98 7 32 

8 25 30 15 46 12 59 

8 37 21 17 45 6 47 

8 45 21 13 92 4 32 

*refers to values obtained by core-shell form factor .kx(�) analyses. 
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2.2.5 Static light scattering 

     The inhomogeneous sphere model was used to fit SLS data for pH 3 and 

pH 5 and temperatures higher than 40 ºC. Otherwise, the core-shell model 

was used (pH 6 and pH 8). 

 

 

Figure 2.5: Radius of VAA-CS particles calculated from SLS measurements at 

different pH levels. Solid squares represent the pH-independent NIPAM-rich cores, 

�k\, while the open squares give the �kx\ with the pH-dependent VAA shell 

structure. 

 

     In Figure 2.5 �?\ and �?5\ from SLS data analyses are reported as function 

of temperature at pH 3, 5, 6 and 8. As it was expected from SANS 

measurements, particles are composed of a mainly pH-independent core and 

a pH-dependent shell, implying a tunable microgel VPTT. For pH 3 cores, 

the VPTT is ~32 ºC and increases until 35 ºC for pH 8, indicating that only a 

small amount of VAA is localized in the core.  At 22 ºC the average �?\ has 

been calculated with ~353 nm. When increasing the temperature up to 40 ºC, 

�?\ reach the shrunken state of about ~237 nm and remain collapsed at higher 

temperatures, apart from pH 8, whose size is slightly bigger.  
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Table 2.2. Summary of the structural microgel parameters obtained from SLS data 

analyses. 

pH T Rc σpoly φshell ξ Rcs 

  [°C] [nm] [%] [%] [nm] [nm] 

3 22 352 ± 6  20 ± 7 6 ± 1 - 392 ± 20 

 
30 319 ± 12 0 11 ± 1 - 319 ± 12 

 
35 247 ± 10 0 6 ± 4 - 247 ± 10 

 
40 243 ± 3 0 7 ± 2 - 243 ± 3 

  45 219 ± 2 0 7 ± 1 - 219 ± 2 

5 22 358 ± 3 25 ± 7 8 ± 1 - 408 ± 17 

 
30 333 ± 4 12 ± 2 10 ± 1 - 357 ± 8 

 
35 248 ± 26 0 7 ±3 - 248 ± 26 

 
40 232 ± 3 0 7 ± 1 - 232 ± 3 

  45 221 ± 1 0 6 ± 1 - 221 ± 1 

6 22 352 ± 11* - 13 ± 2* 42 ± 3* 402 ± 20* 

 
30 344 ± 4* - 21 ± 1* 52 ± 2* 374 ± 10* 

 
35 248 ± 2* - 5 ± 1* 69 ± 3* 271 ± 9* 

 
40 230 ± 1 0 8 ± 1 - 230 ± 1 

  45 229 ± 1 0 14 ± 1 - 229 ± 1 

8 22 351 ± 8* - 14 ± 1* 43 ± 4* 461 ± 9* 

 
30 344 ± 5* - 24 ± 6* 42 ± 3* 449 ± 3* 

 
35 300 ± 15* - 11 ± 1* 62 ± 6* 385 ± 3* 

 
40 242 ± 6* - 15 ± 3 64 ± 7* 331 ± 10* 

 
45 219 ± 1 0 5 ± 1 - 219 ± 1 

  50 218 ± 1 0 6 ± 1 - 218 ± 1 

*refers to the values obtained by core-shell form factor .kx(�) analyses. 

   The VPTT changes according to pH levels. At 22 ºC the microgel shells are 

swollen with �?5\ of 400 nm and 476 nm at pH 6 and pH 8 are, respectively. 

By increasing the temperature up to 40 ºC -where the core has reached the 

shrunken state- pH 6 shells collapse and pH 8 shells start shrinking. This 
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behavior agrees with values at 40 ºC in Figure 2.2b, where pH 8 particles 

have not collapsed yet, while pH 6 particles are almost shrunken. At 45 ºC all 

measured particles are collapsed, with a value comparable to the 

hydrodynamic radius size.  

     These results are in good agreement with literature [11], as shown in our 

TEM micrographs, where microgel particles are composed by a non-pH-

sensitive core and a pH-sensitive shell. �?\ depends mainly on temperature, 

implying high concentration of PNIPAM chains, while all the vinylic groups 

are concentrated in the pH-sensitive shell, affecting the shell thickness and 

the VPTT of the microgel particles 

 

 

Figure 2.6: Shell volume fraction of VAA-CS and VAA-SDS-CS. The VAA-CS 

microgel shows a significant smaller shell volume fraction compared to VAA-SDS-

CS at all temperature levels, until the microgel shells collapse at 45 °C. 

 

    A comparison of the core-to-shell ratio for both microgels (Figure 2.6) 

concludes the discussion. The shell volume fractions of VAA-CS microgel 

show significant smaller values compared to VAA-SDS-CS at all 

temperature levels. Moreover, an increased relative pH-dependence of VAA-

SDS-CS from 25 °C to 37 °C compared to the other sample is recognized. 
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This indicates a different degree of deswelling between the two microgel 

types, according to the applied pH values, until the microgel shells collapse at 

45 °C. Smaller sized microgels are highly responsive to external triggers due 

to their internal structure. 

CONCLUSIONS 

     We tuned the PNIPAM-VAA microgel sensitivity in terms of VPTT 

features: position, width and induced degree of swelling. The swelling 

behavior of differently sized core-shell microgels depending on pH and 

temperature changes has been proofed by SANS and light scattering 

measurements. We were able to obtain a higher or lower degree of shell 

swelling by modulating the core-to-shell ratio via pH, particle size and 

temperature variations. 

     The result is a microgel composed of a NIPAM-rich core and a surface 

shell consisting of low cross-link density carboxy-terminated NIPAM chains, 

which collapse for pH values smaller than the pKa of the VAA. Increasing the 

solution temperature, at pH levels above the pKa, the core passes through a 

phase transition equal to the PNIPAM LCST, while the shell remains swollen 

at a degree that depending on the applied pH level. As a consequence of an 

increased pH value, the VPTT position and width of the microgel shifts to 

higher values, providing the possibility to tune VAA-PNIPAM microgel 

phase transition using external triggers. At temperatures above 40 °C all 

microgel shells collapse and no specific pH sensitivity can be observed.  

     The ability to independently tune the VPTT through the core-shell 

architecture increases the relevance of PNIPAM microgel. In fact, it can be 

used in applications that rely on switch on/off mechanisms of interaction 

between the microgel structure and the surrounding environment. 
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Chapter III 
 
DNA hybridization process on 

PNIPAM-VAA microgels particles 

 

 

 

 

INTRODUCTION  

     DNA not only serves as a carrier of generic information in living 

organisms, but also founds important applications in many areas such as 

disease diagnosis [1, 2], gene therapy [3, 4, 5, 6, 7], biosensor [8, 9, 10, 11], 

and nanotechnology [12, 13, 14, 15, 16]. 

     In many cases, DNA is combined with suitable polymers or solid supports 

to achieve its full potential. DNA microarrays have become useful tools in 

genomic studies and drug discovery [17, 18]. Unlike other hybridization 

formats, microarrays allow significant miniaturization, as thousands of 

different DNA fragments or oligonucleotide probes can be spotted onto a 

solid support. Therefore, this technology is ideal for extensive gene profiling 

studies and multiplexed detection of nucleic acids for diagnostic purpose. In-

fact, DNA microarray is one good example where DNA is immobilized onto 

a solid support to facilitate simultaneous analysis of all RNA transcripts in a 

given organism [19, 20]. Therefore, surface immobilization of nucleic acids 
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is one of the most important criteria to consider for developing DNA based 

bioassays or detection technology. 

     In recent years, latex colloidal particles with submicron size have been 

shown to be suitable materials for the surface immobilization of biomolecules 

such as proteins and DNA, through both physical adsorption and covalent 

coupling [21, 22]. The large area, low dispersity, and versatility of functional 

groups on the surface make colloidal particles particularly desirable for this 

purpose. It has been shown that cationic latex particles conjugated to DNA 

oligonucleotides can be used in the Enzyme Link Oligonucleotide Sorbent 

Assay (ELOSA) technique to detect nucleic acids with increased sensitivity 

[21, 22, 23]. Among the colloidal particles, PNIPAM microgels are a class of 

cross-linked colloidal particles possessing interesting physical proprieties of 

swelling and shrinking under external stimuli. Because of these attractive 

proprieties, PNIPAM microgels have been extensively investigated for use in 

many biomedical and industrial applications as already discussed in Chapter 

1. 

     In this chapter we set out to investigate whether DNA conjugated 

microgels were compatible with hybridization process, that is commonly 

used for manipulations of DNA in the design of DNA bioassays or 

biosensors. First, we performed a Quenching experiment, in order to 

investigate the nature of the interaction of DNA fragments with microgel 

(physisorption vs hybridization) and thus, the specificity of hybridization on 

microgels. 

     Quenching of a fluorophore can occurs as a result of the formation of a 

non-fluorescent complex between a fluorophore and another fluorophore or 

non-fluorescent molecule. This mechanism is known as ‘‘contact quenching” 

[24]. In contact quenching two molecules interact by proton-coupled electron 

transfer through the formation of hydrogen bonds. In aqueous solutions 

electrostatic, steric, and hydrophobic forces control the formation of 

hydrogen bonds. When this complex absorbs energy from light, the excited 
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state immediately returns to the ground state without emission of a photon 

and the molecules do not emit fluorescent light. Thanks to the nature of this 

phenomenon the fluorescence emission switch off can be the result of 

hybridization and does not occur in case of aspecific absorption on microgel 

surface. 

      Thus, Cy5-labeled DNA oligonucleotide was conjugated with PNIPAM-

VAA particles and by using a full complementary DNA oligonucleotide, 

opportunely modified with Black Hole Quencher 2 (BHQ-2), we performed 

the quenching experiment. Once confirmed the capability of DNA conjugated 

microgels to catch and recognize specifically complementary DNA strands 

we analyzed the effect of temperature and pH on the hybridization event and 

its stability.  

 

3.1 MATERIALS AND METHODS  

3.1.1 Materials 

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and 2-(N-

morpholino)ethanesulfonic acid (MES) were provided by Aldrich. DNA 

oligonucleotides reported in Table 3.1 were purchased from Diatech-

Eurogenetec. Tris(hydroxymethyl)aminomethane) (TRIS) was provided by 

Applichem. Water used was from Millipore Milli-Q grade. 
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Table 3.1 List of oligonucleotide sequences used to test the hybridization process 

on PNIPMA-VAA microgel particles. 

Name Sequence 5’���� 3` 5` modification 3` modification 
T melting 

[°C] 

Cy5-DNA 

ACC-CGG-GTA-

AGG-AAA-CAA-

CTG-TAG-G 

AMINE C6  Cy 5 54.2 

BHQ-complementary 

CCT-ACA-GTT-

GTT-TCC-TTA-

CCC-GGG-T 

BHQ-2   - 54.2 

BHQ-random 

TCC-ATG-GTT-

CAG-ACG-TTG-

CAT-GCT-G 

BHQ-2   - 54.2 

FITC-complementary 

CCT-ACA-GTT-

GTT-TCC-TTA-

CCC-GGG-T 

6-FITC  - 54.2 

FITC-random 

TCC-ATG-GTT-

CAG-ACG-TTG-

CAT-GCT-G 

6-FITC  - 54.2 

 

3.1.2 DNA conjugation on PNIPAM-VAA microgel particles 

     1 mg of PNIPAM-VAA microgels were left overnight in 250 µL of the 

buffer solution (MES, pH 4.8). The coupling reaction was carried out at 4 °C: 

EDC (0.05 M, final concentration, dissolved in the coupling buffer that was 

freshly prepared just before use) was added to the buffer solution, followed 

by the addition of 500 pmol Cy5-DNA oligonucleotide (see Table 3.1). The 
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total volume reaction was 0.5 mL. The reaction solution was covered with 

alumina and left overnight on a shaker at 4 °C. The reaction mixture of Cy5-

DNA conjugated microgel was then precipitated down by ultra-centrifugation 

at 50000 rpm for 50 min. at room temperature. Precipitant was re-suspended 

in 1 mL of Milli-Q water. This washing step was repeated three more times. 

The microgels were resuspended at a final concentration of ~1 mg/mL. A 

control experiment was done using the same procedure but without EDC 

being added. 

3.1.3 Spectrofluorymetry 

     For the design of fluorescent hybridization probes that utilize contact 

quenching, it is reported in literature that Cy5 is best quenched by the BHQ-2 

(Figure 3.1) [25]. Thus, BHQ-2 quencher was set both on two different 

oligonucleotides: 1) BHQ-complementary, the complementary sequence to 

Cy5-DNA; 2) BHQ-random, for which the sequence is random and well 

chosen in order to avoid any type of interaction with Cy5-DNA (see Table 

3.1).  

     The quenching experiment with BHQ-complementary/BHQ-random and 

Cy5 DNA strands was previously tested in solution in order to ascertain the 

electronic interaction of the two fluorescent probes. 20 pmol of Cy5-DNA 

were mixed to 20 pmol of BHQ-complementary in 0.1 M TRIS, pH 8 buffer 

in a final volume of 200 µL and incubated at 25°C for 90 min. The specificity 

of the quenching event was evaluated by using BHQ-random oligonucleotide. 

Each sample was loaded onto a 96-well microplate and the fluorescence 

emission intensity was measured in 2300 EnSpire multilabel reader (Perkin-

Elmer, Waltham, MA) by setting the λex(cyanine5)=633 and λem(cyanine5) =650. 

The quenching efficiency was evaluated by comparing the fluorescence 

emission in presence of BHQ-complementary with the fluorescence of Cy5-



 

DNA oligonucleotide alone. The fluorescence emission measured in presence 

of BHQ-random oligonucleotide was used to evaluate the presence of 

aspecific interaction. 

standard deviation of three replicates.

Figure 3.1:

3.1.4 Quenching experiments on Cy5

microgels particles. 

     Quenching solutions were prepared diluting 

conjugated microgels

Successively, 14 pmol of the BHQ

to the solution and incubated for 10 min at 25 °C. 200 

quenched particles were analyzed by confocal m

633nm;  λem(cyanine5) = 650nm).

DNA oligonucleotide alone. The fluorescence emission measured in presence 

random oligonucleotide was used to evaluate the presence of 

aspecific interaction. The experimental uncertainties indicated repres

standard deviation of three replicates. 

Figure 3.1: Molecular structure of Cy5 (a) and BHQ-2

3.1.4 Quenching experiments on Cy5-DNA coupled PNIPAM

 

uenching solutions were prepared diluting 0.050 mL of Cy5

s (1 mg/mL) in 0.450 mL of pH 8, 0.1 M 

14 pmol of the BHQ-complementary/BHQ-random w

and incubated for 10 min at 25 °C. 200 µ

quenched particles were analyzed by confocal microscopy (

= 650nm). 
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DNA oligonucleotide alone. The fluorescence emission measured in presence 

random oligonucleotide was used to evaluate the presence of 

The experimental uncertainties indicated represent the 

 

2 (b). 

DNA coupled PNIPAM-VAA 

0.050 mL of Cy5-DNA 

(1 mg/mL) in 0.450 mL of pH 8, 0.1 M TRIS buffer. 

random were added 

µL aliquots of 

icroscopy (λex(cyanine5) = 
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3.1.5 Hybridization on PNIPAM-VAA microgel coupled with Cy5-DNA 

     Hybridization solutions were prepared diluting 0.050 mL of Cy5-DNA 

conjugated microgels (1 mg/mL) in 0.450 mL of 0.1 M TRIS buffer. Then, 

14 pmol of the DNA were added to the solution for 10 min. to allow the 

DNA hybridization. We tested the hybridization process with two 

fluoresceine labeled DNA sequences: the complementary sequence, named 

FITC-complementary, and the random one, FITC-random (see Table 3.1).  

     Hybridization process on PNIPAM-VAA microgels coupled with Cy5-

DNA was analyzed as function of temperature in two sets of experiments: 1) 

the hybridization was carried out on Cy5-DNA conjugated PNIPAM-VAA 

microgels at 25 °C at two different pH values (pH 3 and pH8). Successively, 

the microgels were analyzed over an increasing temperature range (25, 30, 

35, 40, and 45°C); 2) different aliquots of Cy5-DNA conjugated PNIPAM-

VAA microgels were heated at different temperatures (25, 30, 35, 40 and 45 

°C) at which the hybridization was carried out. In this case we analyzed 

microgels hybridization process only at pH 8. For each experiment 200 µL 

aliquots of hybridized particles were analyzed by confocal microscopy 

(λex(fluoresceine) = 488 nm; λem(fluoresceine) = 530nm).  

3.1.6 CLSM imaging for fluorescence quantification 

      200 µl of microgels diluted solution (~0.1 mg/mL) from the quenching 

experiment and hybridization experiment (paragraphs 3.1.4 and 3.1.5)were 

loaded onto thermal chamber, illuminated at confocal laser scanning 

microscope Leica SP5 using Helium Neon laser 633 nm, Argon laser 488 nm 

and fluorescence images of microgel were collected. Objective: HCX PL 

APO CS 40.0x1.10 water, section thickness 1.2 µm, scan speed 700 Hz, 
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Excitation Laser Argon 488 nm, λem(fluoresceine) range 500-530 nm, Excitation 

Laser Helium neon 633 nm, λem(cyanine5) range 680-780 nm, image size 

77.5x77.5 µm 2. 

      For microgel experiments, 100 microparticles were selected for each 

sample to be analyzed and their fluorescence quantified. All captured images 

were analysed with a public domain image-processing Image J (version1,43i, 

NIH, Bethesda, MD). Briefly the images were thresholded by Otsu algorithm 

and then processed with the Image J Analyze Particles function to 

computationally determine the number of single fluorescent particles sizing 

in the range of 1µm. The fluorescence mean and standard deviation of each 

sample were calculated. The experimental uncertainty represents the standard 

error of the mean of three replicates measurements.  

3.1.7 Dynamic Light Scattering Microgel Characterization  

   We determined the hydrodynamic radius of the particle using ALV – CGS-

3 compact goniometer (ALV-Laser GmbH, Langen, Germany) operating at a 

wavelength of 633nm in vacuum and a time correlator ALV – LSE-5003 

(ALV-Laser GmbH, Langen, Germany). From the measured time-average 

intensity correlation function, g(2) (q, τ) the translational free diffusion is 

determined and the particle hydrodynamic radius extracted by common 

procedures [26]. We restricted the analysis to scattering angles θ = 40°, 60°, 

80°, 100°, 120°.  
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3. 2 RESULTS AND DISCUSSION: STUDY OF THE HYBRIDIZATION 

PROCESS ON PNIPAM-VAA  MICROGELS  

   Our investigative plan in this study is illustrated in Figure 3.3, which 

includes: 1) covalent coupling of 5`-amine modified Cy5-DNA 

oligonucleotide to carboxylic groups of PNIPAM-VAA microgels; 2) 

hybridization with a fluorescent probe (FITC-complementary/FITC-random). 

At the end of this process we analyzed the hybridization process as function 

of temperature by confocal microscopy imaging. 

 

 

Figure 3.3: Schematic illustration of DNA coupling and hybridization on PNIPAM-

VAA microgels. 

 

    We first synthesized the microgels as reported in Chapter 2. In order to 

confirm the covalent conjugation, the coupling reaction was conducted 

without EDC as control sample. After three washings of the particles, they 

were re-suspended in 1 mL of Milli-Q water and seen by confocal (Figure 

3.4). The particle images show that the microgels control sample does not 

show any fluorescence emission (Figure 3.4a), ruling out any possible Cy5-

DNA aspecific absorption on the particles.  



 

     We analyzed the effect of the hybridization on the PNIPAM

hydrodynamic radius.

    Two hybridization experiments were

microscopy: quenching experiment and the hybridization experiment are 

described below.  

 

Figure 3.4: Confocal images of PNIPAM

Cy5-DNA added in the coupling mixture without EDC; (b) Cy5

PNIPAM-VAA particles via EDC reaction. 

3.2.1 Hydrodynamic Radii

     The particle size and the shrinkage play an important role in the 

interaction of the microgel with oligonucleotide substrates, in terms of 

We analyzed the effect of the hybridization on the PNIPAM

hydrodynamic radius. 

Two hybridization experiments were analyzed next by confocal 

microscopy: quenching experiment and the hybridization experiment are 

Confocal images of PNIPAM-VAA particles after coupling reaction: (a) 

DNA added in the coupling mixture without EDC; (b) Cy5-DNA coupled to 

VAA particles via EDC reaction.  

3.2.1 Hydrodynamic Radii 

The particle size and the shrinkage play an important role in the 

interaction of the microgel with oligonucleotide substrates, in terms of 
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We analyzed the effect of the hybridization on the PNIPAM-VAA 

analyzed next by confocal 

microscopy: quenching experiment and the hybridization experiment are 

 

VAA particles after coupling reaction: (a) 

DNA coupled to 

The particle size and the shrinkage play an important role in the 

interaction of the microgel with oligonucleotide substrates, in terms of 
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surface extension and electronic interactions. As reported in Chapter 2, the 

effect of a polyelectrolyte conjugation, like in this case DNA or an 

oligonucleotide sequence, could suppress the microgels thermo-responsivity.   

 

 

Figure 3.2: Size characterization by DLS of naked PNIPAM-VAA particles (blue 

squares); PNIPAM-VAA particles coupled with Cy5-DNA (red circles); and 

PNIPAM-VAA particles. 

 

     The experimental data (Figure 3.2) shows the swelling profile for i) 

naked-, ii) Cy5-DNA coupled- and iii) FITC-complementary hybridized- 

PNIPAM-VAA microgels at pH 8 in H2O and in TRIS buffer. Naked 

particles size profile at pH 8 is rather broad. Both core and shell are swollen 

and the VPTT is shifted up 45 °C as described in Chapter 2. In proximity of 

the phase transition the total radius in water decreases as function of 

temperature from ~531 nm to ~216 nm. As already reported by several 

authors [27, 28], the hydrodynamic radius of PNIPAM microgels depends on 

the nature and the concentration of the electrolyte. The addition of TRIS 

buffer and the effect of DNA coupling and hybridization do not produce a 

completely shrinkage of the hydrodynamic radius and do not suppress the 

microgel thermo-responsivity. 
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3.2.2 Cy5-DNA conjugated PIPAM-VAA microgels capability in 

catching specific DNA oligonucleotides: hybridization or adsorption? 

     The use of fluorescent nucleic acid hybridization probes that generates a 

fluorescence signal only when they bind to their target enables real-time 

monitoring of nucleic acid detection assays. In the specific, the use of BHQ-2 

quencher, attached both on the complementary oligonucleotide sequence to 

Cy5-DNA and on the random one, allowed us to investigate the specificity of 

hybridization process on Cy5-DNA PIPAM-VAA conjugated microgels.  

     We first validated the DNA probe design by evaluating the quenching 

efficiency of the Cy5-DNA oligonucleotide in solution in presence of the 

complementary and non complementary oligonucleotide. The Figure 3.5a 

reports the Cy5-DNA emission fluorescence in presence of the BHQ-

complementary and BHQ-random oligonucleotide sequence. In presence of 

BHQ-random, Cy5-DNA maintains the same fluorescence emission value, 

which drops when in presence of the complementary sequence, BHQ-

complementary.  

 

 

Figure 3.5: Quenching experiment performance: (a) Fluorescence intensity at 25°C 

of Cy5-DNA free, in presence of BHQ-complementary and in presence of BHQ-

random oligonucleotide in solution. (b) Fluorescence intensity of Cy5-DNA 

conjugated on the PNIPAM-VAA microgels as function of temperature in presence 

of BHQ-complementary or BHQ-random oligonucleotide sequence. 
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     Then the quenching experiment was performed on Cy5-DNA conjugated 

microgel in order evaluate their ability to specifically hybridize the complementary 

DNA strand. The experiment was performed by incubating the Cy5-DNA 

conjugated microgels with BHQ-complementary, or the  random oligonucleotide 

sequence, BHQ-random. As shown in Figure 3.5b when BHQ-random is dispersed 

in solution, microgel particles still emits fluorescence which does not change with 

temperature. Otherwise adding BHQ-complementary, Cy5 fluorescence emission 

on PNIPAM-VAA particles surface turns off. This demonstrates that there is a 

direct interaction between the complementary sequence and the Cy5-DNA attached 

on the microgel surface. The two strands form a double strand structure and the 

hybridization process occurs on the particles surface.  

3.2.3 Effect of temperature on on Cy5-DNA conjugated PNIPAM-VAA 

microgels hybridization  

     Hybridization process on PNIPAM-VAA microgels coupled with Cy5-

DNA was analyzed as function of temperature and microgel shrinking in two 

sets of experiments. In the first experiment the temperature effect on the de-

hybridization process was evaluated at two different pH, pH 3 and pH 8. In-

fact, as we reported in the Chapter 2, these two pH values correspond to two 

microgel structures: at pH 3 value, the external shell is completely collapsed 

on the core of the particle; at pH 8, shell and core are swollen and microgel 

reaches the largest degree of swelling. Our experiment was set to evaluate 

whether the different degrees of swelling of the microgels (in terms of 

different temperatures) at two different architectures could drive the de-

hybridization process on the surface of PNIPAM-VAA microgel particles. In 

Figure 3.6 we show the FITC-complementary/FITC-random emission 

fluorescence measured on the particles heated up 45 °C. This temperature 

value is far away from the temperature value of 54.2 °C, which corresponds 
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to the Melting Temperature (Tmelting, see Table 3.1) of used DNA 

oligonucleotides sequences. Both sequences interact with the microgel 

particles, for which it is possible to detect a fluorescence value. The 

interaction between Cy5-coupled PNIPAM-VAA microgels and FITC-

random is aspecific and the fluorescence value measured on the particles is 4 

times lower than the one measured using the complementary sequence. The 

quenching experiments discussed above demonstrated that the interaction 

between Cy5-coupled PNIPAM-VAA microgels and FITC-complementary is 

specific and the hybridization process occurs on the Cy5-DNA conjugated 

particles. Increasing temperature, the FITC fluorescence value measured on 

particles remain constant both for pH 3 and pH 8 values. This means that the 

particle shrinkage and the degree of swelling have no effects on the 

hybridization process. The fluorescence intensity at pH 3 results lower than 

the one at pH 8. This is due to the fact that FITC fluorophore is pH-sensitive. 

 

 

Figure 3.6: Fluorescence intensity measured on Cy5-DNA conjugated PNIPAM-

VAA microgels incubated with FITC-complementary and FITC-random 

oligonucleotides as function of temperature and pH. FITC-complementary and 

FITC-random were added in the microgel solution before heating. 
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     In the second experiment we analyzed the hybridization process as 

function of Cy5-DNA chains exposure on the microgel surface to the 

complementary and random oligonucleotide sequence. We performed 

hybridization process on Cy5-DNA coupled microgel, by adding FITC-

complementary/FITC-random at different temperatures (25, 30, 35, 40 and 45 

°C). 

     The analysis of the particles fluorescence emission is shown in Figure 3.7. 

Also in this case the emission fluorescence level measured on microgels is 

the same at each hybridization temperature tested. This result means that 

different exposure degree of Cy5-DNA does not have any effects on the 

hybridization in terms of process efficiency. The fluorescence emission f 

values measured in Figure 3.7 are comparable with the values shown in 

Figure 3.6. 

 

 

Figure 3.7: Fluorescence intensity measured on Cy5-DNA conjugated PNIPAM-

VAA microgels incubated with FITC-complementary and FITC-random 

oligonucleotides at different temperatures. FITC-complementary and FITC-random 

were added in the microgel solution and the hybridization analyzed at each 

temperature tested (from 25 to 45 °C). 
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CONCLUSIONS 

     Thermo- and pH-responsive core-shell PNIPAM-VAA microgels were 

synthesized in order perform the hybridization process on them. They were 

opportunely engineered with carboxylated functionalizations on the shell to 

conjugate amino modified DNA sequences. The hybridization process was 

performed and tested in terms of specific catching of a complementary 

oligonucleotide, ruling out any aspecific absorption on the microgel surface.  

Successively, the hybridization process was studied in details, looking at the 

effect of microgel structural changes.    

     The effect of the shrinkage controlled by temperature changes does not 

drive any de-hybridization process, whereas it affects the particle degree of 

swelling. No dependence of the hybridization process was highlighted during 

microgel conformation changing, neither when the shell has collapsed nor 

when it is fully extended outside the microgel. Eventually, even analyzing the 

process as function of the oligonucleotide exposure towards the 

complementary oligonucleotide sequence, there is no direct evidence of its 

effects on the interaction process between the two oligonucleotides. 
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Chapter IV 
 
High efficient SERS substrate 

formulation by self-assembled gold 
nanoparticles physisorbed on PNIPAM 
thermoresponsive hydrogels  

 

 

 

INTRODUCTION  

     There is a big variety of analytical techniques that can be used for 

molecular detection of pollutants [1, 2] narcotics [3, 4] and bio-molecules for 

health and life science. Usually, the real samples are in complex media of 

compounds that need to be quantified. This problem is amplified when trace 

analyte detection is required, as signals from background molecules can 

overlap the signal of the analyte. One technique that holds great promise in 

this regard is Surface Enhanced Raman Spectroscopy (SERS). It is an 

extremely sensitive technique that can be tailored to provide the detection of 

specific analytes through their unique vibrational fingerprints [5]. The narrow 

line width of Raman spectra allows for multiple-analyte detection within 

complex mixtures, including detection down to the single molecule level [6, 

7]. The enhancement of the Raman signal comes as a result of exciting 

localized surface plasmons within metallic nanostructures [8]. A further 

increase in the signal strength can be achieved by tailoring the metallic 

substrate, thereby lowering the limits of detection (LOD). This increment 
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comes mainly from the multiple hotspots that are being generated in a 

uniform fashion over a larger substrate producing high signal enhancement 

[9] across this area. There are various methods to fabricate such structures 

including lithographic [10, 11] and chemical approaches [12, 13]. However, 

minimizing the gap between particles or cavities and the complexity of 

substrate preparation -while maximizing uniformity- is crucial in optimizing 

the electromagnetic field enhancement [14]. Precise nanofabrication 

techniques capable of achieving these goals can be costly, time consuming 

and non-scalable.  

     In SERS, it is well known that the plasmonic coupling effect between 

nano-particles induces huge electromagnetic enhancement that allows SERS 

signals to be detected even with single-molecule sensitivity. Many studies 

have showed that small structures and gaps (around 10 nm) are required to 

generate the ‘‘hotspots’’ typically associated with high SERS activity [15, 16, 

17]. Various approaches to prepare regular substrates with a plethora of 

hotspots for SERS detection have been demonstrated [18, 19, 20]. Actually, 

fabrication of uniform and efficient SERS substrates remains challenging due 

to the complex processes and high cost. So, it would be favorable to design 

and fabricate SERS substrates with a simple method that provides a much 

more uniform hotspot formation with high enhancement factors. The control 

of the inter-particle distance should be also desirable in order to optimize the 

Raman enhancement factor for each different experimental condition. In most 

cases, once Au nanoparticle assemblies are formed, the spatial distribution of 

Au nanoparticle building block is fixed. Thus, it is highly advantageous to 

fabricate responsive Au nanoparticle assemblies, in which the overall 

dimensions and inter particle spatial distances can respond to external 

stimuli. 

     During the past decade, intelligent hydrogels that can adjust their volume 

but also their properties in response to ambient stimuli have drawn enormous 

research interest in biomedical and pharmaceutical applications [21, 22]. 
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Among them, PNIPAM has been detailed studied with regard to its well-

known phase behavior in aqueous solutions, which has the sharpest transition 

in the class of thermo sensitive alkylacrylamide polymers [23, 24]. Indeed, it 

undergoes a reversible phase transition at about 32 0C in pure water from a 

swollen state to a shrunken state upon increasing temperature (see Chapter 1). 

These phase transitions in the PNIPAM hydrogel are expected to induce 

dramatic modifications in the optical properties of the substrate [25]. The 

seed growth of Ag and Au nanoparticles and nanorods in a PNIPAM 

hydrogel has been reported [26, 27, 28, 29] but sophisticated chemistry were 

required. PNIPAM were also used as a switch between the gold nanoparticles 

and the gold surface. However, most of the aforementioned approaches 

required complex and sophisticated chemistry for the conjugation of the gold 

nanoparticles on the surface of the hydrogels. 

     Herein, in this work we report on a robust, reproducible and easy to 

handle method for the engineering of PNIPAM-VAA thermo- and pH-

responsive (see Chapter 2) hydrogel surfaces optimized for physisorption of 

gold nanoparticles and the fabrication of SERS active surfaces. These modes 

show the capability of tuning the interparticle distance and therefore control 

and modulate the SERS enhancement factor because hydrogels templates 

change their size upon temperature changing. 

4.1 MATERIALS AND METHODS  

4.1.1 Materials 

  1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and 2-(N-

morpholino)ethanesulfonic acid (MES) were purchased from by Sigma-
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Aldrich and used as received. DNA oligonucleotide (5`-GCC-CAG-TAA-

GGA-3`) was 5`-amine modified and were purchased from Diatech-

Eurogenetec. 40 nm gold nanoparticles was purchased from BBI. Water used 

in the synthesis and characterization was of Millipore Milli-Q grade. 

4.1.2 DNA coupling reaction with PNIPAM-VAA microgels and 

absorption of gold nanoparticles 

     For the DNA coupling 1 mg of microgel particles were dissolved in MES 

buffer 0.1M at pH 4.5. Particles were left overnight in the buffer solution. 

The coupling reaction was carried out at 4 °C. EDC was added before the 

addition of 500 pmol DNA. Total volume reaction was 0.5 mL and EDC 

concentration was 0.5M. The reaction solution was covered with alumina and 

left overnight on a shaker at 4 °C. The reaction mixture of microgel-DNA 

conjugated was then precipitated down by ultra-centrifugation at 50000 rpm 

for 50 min at room temperature. Precipitant was re-suspended in 1 mL of 

Milli-Q water. After the coupling of PNIPAM-VAA microgels, gold 

nanoparticles were added to the solution and after 15 min of incubation were 

adsorbed on hydrogel.  

4.1.3 UV-Vis absorption spectroscopic measurements 

     UV-Vis absorption spectroscopic measurements were performed on 

peptide-gold nanoparticles conjugates solutions placed in 1 cm path-length 

quartz optical cuvettes. Spectra were recorded with a Cary 100 UV-Vis 

spectrometer from 200 to 800. The estimated resolution was 1nm and 

background was corrected with Milli Q water. 
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4.1.4 Dynamic Light Scattering measurements 

The Dynamic light scattering measurements were performed with an ALV 

– CGS-3 compact goniometer (ALV-Laser GmbH, Langen, Germany) 

operating at a wavelength of 633nm in vacuum and a time correlator ALV – 

LSE-5003 (ALV-Laser GmbH, Langen, Germany. 

4.1.5 TEM micrographs 

     Electron microscopy samples were prepared on a 200 mesh fromvar 

copper TEM grids from Agar scientific. One drop of solution was applied to 

the grid from a pipette. After solution evaporation the grid was washed with 

deionized water in order to remove salt excess from grid surface. Scanning 

transmission electron microscopy was performed with a Cryo-TEM 

tomography TECHNAI 20 FEI COMPANY. The images were acquired on a 

Vacuum generator operated at 250KV with camera (FEI-EAGLE) exposure 

time of 1 second. The estimated point to point resolution was 2 A. 

4.1.6 Raman spectroscopy 

     The Raman spectra were excited with a diode laser 780 nm. An 10x/x0,25 

objective was utilized to focus the laser beam into the well plate which were 

filled with gold nano-colloidal suspensions. The Raman spectra were 

acquired with a DXR Raman spectrometer from Thermofischer Scientific 

with 20 mW laser power. 
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4.2 RESULTS AND DISCUSSION   

     As mentioned above, the advance of this approach consists in the simple 

mechanism by which the gold nanoparticles are adsorbed on a hydrogel 

template. More detailed, the PNIPAM-VAA microgel surface is engineered 

and optimized for the physisorption of gold nanoparticles. This physical 

adsorption is based on electrostatic interactions between the positive charge 

of engineered PNIPAM-VAA microgels and the negative charge of Au 

nanoparticles. The most important part of the study is that surface charge 

inversions have been taking place after the DNA coupling giving us the 

possibility for electrostatic based interactions between the hydrogels and the 

gold AuNPs. This charge inversion, which sounds very strange as far as on 

negative surface charged PNIPAM-VAA microgel attached also negative 

charged DNA strands, is based on the universal theory of charge inversion 

and the idea of a strongly correlated liquid of adsorbed counter-ions [30]. The 

absolute values of the ζ-potential measured before and after the DNA 

coupling was -25 and +20 respectively. The overall process is presented 

schematically in details in scheme 4.1 on which it is demonstrated the 

experimental procedure step by step. The great advantage of using DNA in 

order to inverse the surface charge of PNIPAM microgels is that DNA does 

not generate important SERS spectra. It is extremely important that the 

engineered and fabricated SERS surfaces possess the advantage for as much 

lower spectral background as possible; in our case the oligonucleotide plays 

this role successfully. 
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Scheme 4.1: The experimental process for the engineering of PNIPAM-VAA 

thermo-responsive microgel surfaces optimized for physisorption of gold 

nanoparticles. A) as prepared PNIPAM-VAA microgels with negative surface 

charge because of the presence of the COO- , B) charge inversion after the 

coupling of the DNA and final on C) the surface loaded PNIPAM-VAA microgels 

with AuNPs. 

 

 

     For the characterization of the PNIPAM-VAA-AuNPs composites, we  

started with the kinetics studies of this adsorption procedure. This study was 

of paramount interest because it will help to better understand the system, but 

also to decide for the appropriate experimental parameters. Therefore, 40 nm 

gold nanoparticles were added continuously in a PNIPAM-VAA microgel 

solution. UV-vis absorption spectra were acquired at each sample with the 

time and presented in Figure 4.1. We can see from both experimental 

procedures that the adsorption of AuNPs is fast and seems to stop for a ratio 

around 300 AuNPs per microgel. More specifically, we can see that there is a 

continuous shifting of the absorption band for the AuNPs ratio’s 50, 100 and 

150. At higher AuNPs concentrations (200 and 250) almost no changes were 

observed with time. Another important outcome of this experiment is that the 

adsorption at each one of the different AuNPs concentrations was fast as far 

as no more spectroscopic changes were observed after 15 min as clearly 

shown in the Figure 4.1. Finally, it was found that for even higher loading no 
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spectroscopic changes were appeared that means that no more AuNPs 

adsorbed on the hydrogel template. After this kinetic study, the conclusion 

was that the adsorption of AuNPs on PNIPAM-VAA microgels are a fast 

procedure and the maximum loading is found to be around 250. 

 

 

 

Figure 4.1: (Top) UV-vis absorption and (bottom) ζ-potential measurements at 

PNIPAM-VAA-Au composites at different 40 nm AuNPs loading with the time. 
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Similar results were found after ζ-potential measurements. Specifically, on 

PNIPAM−VAA-ssDNA with ζ-potential around 20 mV, AuNPs were added 

continuously and the ζ-potential was measured as a function of time. As seen 

in Figure 4.1, the ζ-potential drops with the time as long as the adsorption 

procedure continues. The biggest differences appeared at the first moments of 

the AuNP addition, and after 15 min, the changes were insignificant. We have 

also verified in this way that the maximum adsorption was around 250 

AuNPs per microgel because the changes in ζ-potential were eliminated. 

 

 

 

 

 
 

 

 

 

 

 

Figure 4.2: TEM images of PNIPAM-VAA-Au composites for different Au loading 

(A=50, B=150, C&D=250.) 

     Continuing, in Figure 4.2 we present the Transmission electron 

microscopy (TEM) images of PNIPAM-VAA microgels after the gold 

nanoparticle adsorption at different gold nanoparticle concentrations. 

Specifically, 50,150 and 250 AuNPs per PNIPAM-VAA microgels were 

added and the difference can be easily visualized by the TEM images. As it is 

A B 

C D 
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clearly demonstrated from Figure 4.2, the adsorption of AuNPs was 

successful at all of the different AuNPs loading. Furthermore, higher quantity 

of AuNPs added on the starting hydrogel solution means bigger amount of 

physisorbed  AuNPs on the hydrogel template. 

     Thermoresponsive PNIPAM-VAA-Au composites were characterized by 

DLS. Figure 4.3 exhibits the variation of the hydrodynamic radius as the 

temperature changes from 15 to 40 0C for PNIPAM-VAA-Au templates with 

250 AuNPs per hydrogel. The reversibility of this phase transition was also 

clearly demonstrated in this figure as far as the radius on 15 0C after the first 

heating cycle is almost the same as in the beginning. The critical temperature, 

where the radius changed rapidly, was at around 32 0C for our system. Since 

the measured LCST is similar to that of the pure PNIPAM-VAA microgel, 

the presence of vast Au nanoparticles does not significantly affect the 

swelling behavior of the PNIPAM-VAA template. Specifically, the radius on 

15 0C for the totally swelled hydrogels measured 670 nm and for collapsed 

ones on 40 0C was around 390 nm, as demonstrated clearly in Figure 4.3. 

 

Figure 4.3: Temperature dependence of the Radius of PNIPAM-VAA-Au 

composites for high AuNPS loading (250). 
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     In Figure 4.4 UV-vis absorption spectra were recorded on the 

aforementioned system at different temperatures (250 AuNPs per PNIPAM-

VAA microogel). The difference on plasmon resonance of AuNPs on the 

PNIPAM-VAA microogel surface was crucial for the fabrication of SERS 

active substrates. In Figure 4.4 we present also the UV-vis absorption spectra 

at different temperatures. It is clearly demonstrated that, as temperature 

increases, the absorption band of AuNPs at 525 nm changes. In detail, a 

continuous broadening of the band is shown until the LCST; above this 

temperature changes were intense and a second band at a higher wavelength 

around 700 nm appeared. This band results from the coupling of surface 

plasmons between closely spaced particles. In aggregated colloids, the 

particles are physically connected, but it is essential to note that direct contact 

is not always needed to observe collective plasmon modes. In fact, even if the 

spacing between particles is narrowing compared to the wavelength of light, 

these collective plasmon modes can be observed. In this case, the interparticle 

spacing became narrow because of the decrease in the AuNPs-PNIPAM-

VAA radius resulting in this new red shifted absorption band at ~700 nm. 

 

 

Figure 4.4: UV-vis absorption spectra of PNIPAM-VAA-Au composites upon 

temperature changes. 



69 
 

 

     In order to better understand the dynamic changes that were taking place 

because of the hydrogel template shrinkage, the calculation of the 

interparticle distance between the adsorbed AuNPs was critical. Assuming 

uniform dispersed AuNPs on the hydrogel and having the scheme in the inset 

of Figure 4 in our mind, we calculated the interparticle distance between the 

gold nanoparticles at different temperatures. In detail, assuming cubes with 

dimension 80 + 2δ as it is clearly shown from the scheme and calculating the 

area of these cubes knowing the total surface of the hydrogel, we can 

determine the δ, which gives the distance between two gold nanoparticles. 

For example, for 264 gold nanoparticles, there are 66 cubes in which these 

particles are placed (4 AuNPs per Cube). The area of each cube can be easily 

calculated and, as far as the area of the hydrogel at each temperature is 

already known from the DLS measurements, the interparticle distance was 

calculated for the high AuNPs loading (256 Au particles per hydrogel) - as 

demonstrated in Figure 4.5. 

 

 

Figure 4.5: The interparticle distance at different temperatures calculated 

assuming uniform dispersed gold nanoparticles on the PNIPAAm hydrogels 

surface. 
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     The SERS enhancement of the aforementioned PNIPAM-VAA-Au modes 

was tested using adenine as an analyte. 500 ng/mL of adenine solution were 

added in PNIPAM-VAA-Au composites and left some time in order to let the 

adenine molecules to adsorb on Au nanoparticles. Then 100 µL of the 

aforementioned solution were added in a well plate and placed under the 

microscope. The spectra were collected using a 10X/xO,25 objective at 

different temperatures. The recorded spectra were presented in Figure 4.6 

demonstrating the intensity dependence on the temperature. As it is clearly 

shown in the figure, the intensity of the adenines band at 735 wavenumbers at 

20 0C is very low, but -as the temperature increased- the intensity also 

increased dramatically. Such a result was expected; when the radius of the 

composite decreases, the AuNPs comes closer, the hotspots are created, 

resulting in high enhancement on Raman spectra. In our case the 

enhancement factor changed from 104 to 106 upon temperature increase. It is 

also important to report the dependence of the intensity on the interparticle 

distance. It would be interesting to observe the appropriate interparticle 

distance for the higher enhancement on the Raman spectra. These results are 

presented in Figure 4.6, which demonstrate the intensity versus the inverse of 

the interparticle distance (for better observation). The interparticle distance 

with the higher enhancement was at around 15 nm, close to the theoretical 

studies that predict a hotspot generation at interparticle distances of around 

10 nm [15, 16, 17].  
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Figure 4.6: (Top) SERS spectra of 500ng/mL adenine solution at different 

temperatures and (bottom) the corresponding relationship between the logarithmic 

plot of SERS intensity at 735 cm-1. 
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CONCLUSIONS 

     In conclusion, in this work we have presented a new, simple and 

reproducible method of physisorption of 40 nm gold nanoparticles on 

PNIPAM-VAA thermo- and pH-responsive microgels for the fabrication of 

highly efficient SERS substrates. We tuned the interparticle distance of the 

adsorbed gold nanoparticles because hydrogels matrixes changed their size 

upon temperature variations. We also studied the kinetics of this absorption 

and found that at around 15 min the process was rather finished. We 

performed a deep characterization with dynamic light scattering and UV-vis 

absorption spectroscopy for either the size or interparticle AuNPs observation 

upon temperature variation, or the optical characterization of the system. 

Finally, we collected SERS spectra and were able to verify the strong 

dependence of the intensity on the interparticle distance of the adsorbed 

AuNPs. These results stress the capability and the potentiality of the usage of 

smart polymer or even bio-polymer templates for SERS, but also for other 

plasmonic applications. The big advantage of these templates is that -beside 

the well-known role of concentrators- a second and much more crucial 

parameter that can enhance the information can be acquired from this 

concentrated analyte, the Raman spectra in our case; it offers the possibility 

for extreme low LOD. 
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