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ABSTRACT 

 

 

 

Glioblastoma multiforme is the most common and lethal primary human brain 

tumor. Despite aggressive treatment, including surgery, adjuvant 

temozolomide-based chemotherapy, and radiotherapy, glioblastoma still has a 

dismal prognosis. 

Platelet-derived growth factor receptor β (PDGFRβ), a cell-surface tyrosine 

kinase receptor, is an important hallmark involved in glioma since it influences 

several cellular processes of tumor biology including proliferation, migration, 

and angiogenesis. It represents a compelling therapeutic target in glioma. A 

number of tyrosine kinase inhibitors under development as antitumor agents 

have been found to inhibit PDGFRβ. However, they are not selective as they 

present multiple tyrosine kinase targets, exhibiting modest efficacy. Thus, there 

is the urgent need to design new PDGFRβ-targeting drugs for a more specific 

and selective tumor therapy.  

Here, we report a novel PDGFRβ-specific antagonist represented by a 

nuclease-resistant RNA-aptamer, named Gint4.T.  

Aptamers, thanks to their unique characteristics (low size, good target affinity, 

no immunogenicity, high stability), represent a new class of molecules with a 

great potential to rival monoclonal antibodies in both therapy and diagnosis.  

Gint4.T aptamer is able to specifically bind to the human PDGFRβ ectodomain 

(Kd: 9.6 nmol/l) causing a strong inhibition of ligand-dependent receptor 

activation and of downstream signaling in cell lines and primary cultures of 

human glioblastoma cells. Moreover, Gint4.T aptamer drastically inhibits cell 

migration and proliferation, induces differentiation, and blocks tumor growth 

in vivo. In addition, Gint4.T aptamer prevents PDGFRβ heterodimerization 

with and resultant transactivation of epidermal growth factor receptor. As a 

result, the combination of Gint4.T and an epidermal growth factor receptor–

targeted aptamer is better at slowing tumor growth than either single aptamer 

alone.  

These findings reveal Gint4.T as a PDGFRβ-drug candidate with translational 

potential. 
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1. BACKGROUND 

 

 

 

1.1 Gliomas 

 

 

 

Gliomas are the most common and lethal primary central nervous system 

(CNS) tumors, affecting the cerebral hemispheres, generally characterized by 

highly infiltrative nature, high malignancy, and poor clinical outcome. 

Histologically gliomas are classified as astrocytomas, oligodendrogliomas, or 

ependymomas depending on cell morphology (Louis 2006; Wen and Kesari 

2008). On the basis of the degree of malignancy, judged by various histological 

features accompanied by genetic alterations, as established by the World 

Health Organization (Louis et al. 2007), they can be further categorized as low 

grade (grade I and grade II) and high grade gliomas (grade III and grade IV). 

Grade I tumors are relatively benign and show the best prognosis. Grade II 

tumors contain some anaplastic cells and can progress to higher-grade tumors. 

Grade III tumors show a high degree of anaplasia and mitotic activity and are 

often rapidly fatal. The most aggressive type of glioma is the grade IV 

astrocytoma or glioblastoma multiforme (GBM) that arise either de novo 

(primary) or progress from lower grade to higher grade over time (secondary); 

the tumors of patients originally diagnosed with a lower grade lesion will often 

progress to a GBM before their death. 

GBM, a highly anaplastic and malignant tumor typified by uncontrolled 

cellular proliferation, intense resistance to cell death, diffuse infiltration, robust 

angiogenesis, and associated vascular edema, is well recognized for such 

intratumoral heterogeneity as the term “multiforme” indicates (Inda et al. 2014). 

The heterogeneous nature of GBM cancer cells manifests as mixed cytological 

subtypes, regional differences in gene expression, and nonuniform 

representation of key gene mutations and genomic alterations (Furnari et al. 

2007; Jung et al. 1999; Kleihues et al. 2002; Maher et al. 2001; Network 2008). 

 

 

 

1.1.1 Molecular features  
 

 

 

Malignant transformation in gliomas results from the sequential accumulation 

of genetic aberrations and the deregulation of growth-factor signaling 

pathways. The most common defects in growth factor signaling involve 

oncogenes epidermal growth factor receptor (EGFR) and platelet-derived 

growth factor receptor (PDGFR) (Figure 1) (Furnari et al. 2007). Amplification 
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of EGFR occurs almost exclusively in primary glioblastomas and is seen in 

approximately 40%–60% of patients with that type of tumor. In approximately 

half of the tumors with amplified EGFR, a constitutively autophosphorylated 

variant of EGFR (EGFRvIII, also known as EGFR type III, de2-7, ∆EGFR), 

that lacks the extracellular ligand-binding domain (exons 2 through 7), can be 

detected (Inda et al. 2010; Pelloski et al. 2007).  

In addition to the EGFR signaling axis, platelet-derived growth factor (PDGF) 

signaling is a key regulator of glial development, and both ligands and 

receptors are frequently expressed in gliomas creating an autocrine and 

paracrine loops that stimulates proliferation of the tumor. Expression of  

PDGFs ligands and PDGFRs is found even in low-grade gliomas, suggesting 

that this pathway is possibly an early oncogenic event, in contrast to EGFR, 

which is much more commonly found in high-grade gliomas (Kim et al. 2012).   

Recently, it has been proved receptor coactivation or cooperation suggests that 

tumor receptor tyrosine kinase (RTK) profiling may be an important step in the 

development of a personalized GBM therapeutic regimen (Stommel et al. 

2007). 

Another hallmark involved in the development of GBM is the cell cycle 

dysregulation concerning alteration of tumor suppressor genes p16INK4a, 

p14ARF, PTEN, RB1, and TP53. Frequent loss of heterozygosity (LOH) at 1p, 

10p, 10q, 19q, and 22q suggests the participation of additional tumor 

suppressor genes (Furnari et al. 2007). 

Further, it has been established that GBM tumors contain a small population of 

highly malignant glioblastoma stem cells (GSCs) (Jin et al. 2011) and give rise 

to malignant gliomas by escaping the mechanisms that control proliferation and 

programmed differentiation.  It is now ascertained that GSCs are a major cause 

of glioma recurrence after therapy (Salmaggi et al. 2006). Recent evidence 

suggests that PDGFRβ regulates the tumorigenic potential of GSCs and, as 

recently emerged, targeting PDGFRβ in GSCs, attenuates GSC self-renewal 

and tumor growth and induces cell differentiation (Kim et al. 2012). 

Thus, it has been demonstrated that PDGFRβ may function on different levels 

of the complex systems in cancer and is likely to be a viable target for anti-

glioma therapies.  

Despite recent advances in surgery, radiotherapy and chemotherapy, including 

the milestone of chemotherapy with the alkylating drug temozolomide (TMZ), 

GBM patients have a dismal prognosis, with a median survival of less than 1 

year. Moreover, one crucial challenge for human glioma treatment is to deliver 

drugs effectively to invasive glioma cells residing in a sanctuary within the 

CNS. Currently, it is not practical to administer drugs to humans by invasive 

procedures such as intracerebroventricular infusion or intracerebral injection, 

on the other hand, noninvasive intravenous administration of brain 

neurodiagnostic or neurotherapeutic agents remains a challenge because of the 

low permeability of the blood-brain barrier (BBB). Indeed, the same 

mechanisms that protect the brain against intrusive chemicals can also frustrate 

therapeutic interventions. BBB is constituted by endothelial cells of brain 
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capillaries, which exhibit tight junctions that act as zippers and close 

interendothelial pores, thereby restricting the free movement of substances 

between the blood and the cerebral interstitial fluid (Rubin et al. 1999). More 

than 98% of small-sized drugs do not cross the BBB. Once crossed the BBB, a 

safe and efficient therapeutic agent for glioma has to specifically target cancer 

cells in order to avoid unwanted side effects (Catuogno et al. 2012).  

Intratumoral heterogeneity has conspired to make this cancer one of the most 

difficult to understand and to treat. In this regard, huge efforts will be 

essentially dedicated to design effective therapies against this devastating 

disease to avoid tumor escape. 

 

 

 

 

 

 

 



11 

 

 
 

 

 

Figure 1. Major signaling pathways in malignant gliomas and the 

corresponding targeted agents in development for glioblastoma. 
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1.2 PDGFR 

 

 

 

PDGFs constitute a family of potent mitogens for most mesenchyme-derived 

cells. The PDGF family consists of four polypeptides, A-D, forming five 

disulfide-linked dimeric proteins, PDGF-AA, -BB, -AB, -CC, and -DD, that 

signal through two structurally similar RTKs, PDGFR receptors α and β 

(PDGFRα and PDGFRβ) (Fredriksson et al. 2004; Ostman 2004). The ligands 

and receptors can form homodimers or heterodimers depending on cell type, 

receptor expression, and ligand availability. PDGF-BB and PDGF-DD are the 

primary activators of ββ homodimeric receptors. PDGF-AA activates only αα 

receptor dimers, whereas PDGF-AB, PDGF-BB, and PDGF-CC activate αα 

and αβ receptor dimers (Matsui et al. 1989; Yarden et al. 1986) (Figure 2). The 

dimeric ligand molecules bind to two receptor proteins simultaneously and 

induce receptor dimerization, autophosphorylation of specific residues within 

the receptor's cytoplasmic domain, and intracellular signaling (Figure 3). It has 

been demonstrated that the activation of PDGFRβ signaling pathway induces 

various cellular responses, including cell proliferation, migration and 

angiogenesis (Andrae et al. 2008; Cao et al. 2004; Ustach et al. 2010). 

Pathogenic roles of altered PDGF/PDGFR signaling have been established for 

a number of human diseases including cancer. Preclinical studies have not only 

shown an important role for the overexpression, point mutations, deletions, and 

translocations of PDGFRβ in tumorigenesis and maintenance of the malignant 

phenotype (Gilbertson and Clifford 2003; Ostman 2004), but have also proven 

that the targeted inhibition of signaling cascades has significant anticancer 

effects (Kilic et al. 2000; Shamah et al. 1993). Overall these data indicate that 

PDGFRβ represents a valuable target for tumor therapeutic development. So 

far, a number of tyrosine kinase inhibitors (TKIs) that act on a wide spectrum 

of tyrosine protein kinases including PDGFRβ (Dagher et al. 2002; Roberts et 

al. 2005) are under development as antitumor agents.  

Among them, Imatinib mesylate (Gleevec®/STI571) was developed as an 

Abelson (Abl) TKI, and also inhibits c-kit, PDGFRα, and PDGFRβ. The 

clinical efficiency of imatinib against other cancers such as chronic myeloid 

leukemia by inhibiting Bcr-Abl (Druker et al. 2001) and gastrointestinal 

stromal tumors by inhibiting c-Kit (Demetri et al. 2002) has been 

demonstrated.  

In addition, since Imatinib is active in GBM cell lines and mouse models, 

several clinical trials have evaluated its efficiency in GBM patients (Razis et al. 

2009). However, most of these clinical trials were not able to demonstrate any 

advantage of Imatinib. A phase I/II study suggest that Imatinib has minimal 

single-agent activity in malignant gliomas due to several potential reasons 

(Wen et al. 2006). 

The penetration of the drug across the BBB is likely to be limited by P-

glycoprotein and other efflux pumps, reducing tumor concentrations of the 
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drug. Although the Imatinib concentrations in malignant gliomas may be 

increased as a result of a partially disrupted BBB, the generally lower 

concentrations of Imatinib in the CNS probably contribute to its limited 

efficacy.  

Sunitinib malate (Sutent®/SU11248) is a broad-spectrum, orally available 

multitargeted TKI with activity against vascular endothelial growth factor 

receptor (VEGFR), PDGFR, c-KIT, and FLT-3. A phase II clinical trial 

demonstrated that Sunitinib has insufficient activity to warrant further 

investigation of this monotherapy regimen in recurrent GBM (Neyns et al. 

2011). 

CP-673,451 is an inhibitor of both PDGFRα and PDGFRβ. 

Sorafenib (Nexavar®) is an inhibitor of Ras/Raf/MEK/ERK pathway and of 

angiogenic RTKs VEGFR2 and PDGFRβ. In human glioblastoma cell lines, 

Sorafenib inhibited proliferation synergistically in combination with 

bortezomib, a proteosome inhibitor (Yu et al. 2006), and rottlerin, an 

experimental inhibitor of protein kinase C (Jane et al. 2006). A phase II clinical 

trial found that first-line TMZ and radiotherapy followed by TMZ plus 

Sorafenib was tolerated by patients with GBM, although preliminary efficacy 

data for this regimen were similar to data for standard therapy (Hainsworth et 

al. 2010). 

These TKIs might overcome molecular heterogeneity within or between cancer 

patients and therefore have a better chance of success; however, unnecessary 

targeting of multiple receptors could cause toxicity and limit drug effectiveness 

(Dancey and Chen 2006). 

Neutralizing antibodies for PDGF ligands and receptors have been used in 

experiments evaluating the importance of PDGF signaling in pathogenic 

processes but, to date, none of such antibodies has entered the clinic (Andrae et 

al. 2008; Sano et al. 2002; Shen et al. 2009; Song et al. 2005).  

Thus, there is the urgent need to design new PDGFRβ-targeting drugs for a 

more specific and selective tumor therapy.  
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 Figure 2. PDGF receptors family and their ligands.  

 

 

Figure 3. Activation of PDGFR. The PDGFR is a typical RTK. The PDGF 

dimer binds together two PDGFR monomers, which then phosphorylate each 

other on multiple tyrosine residues that then provide docking sites for 

components of a number of prominent signaling pathways.  
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1.3 Aptamer 

 

 

 

Aptamers are short structured single-stranded oligonucleotides (DNA, RNA or 

modified RNA) able to bind tightly to specific targets, ranging from small 

chemical compounds to cells and tissues, by folding into complex tertiary 

structures (Figure 4) (Hermann and Patel 2000). Thus, unlike other small 

noncoding RNAs either natural or artificial such as antisense, ribozymes, small 

interfering RNAs (siRNAs) and microRNAs (miRNAs) that inhibit gene 

expression, aptamers act by directly binding the protein target without 

interfering with its expression.  

DNA or RNA aptamers are isolated from combinatorial libraries by an in vitro 

evolution-based approach named Systematic Evolution of Ligands by 

Exponential enrichment (SELEX). Thus, they are entirely chemically 

synthesized, avoiding complex manufacturing processes using cell-based 

(eukaryotic or prokaryotic) expression systems that are required for antibodies 

production. As a result, aptamers show binding affinities in the low nanomolar 

to picomolar range.  

They have a small size (8-15 kDa), between that of a single chain antibody 

fragment and a small peptide, which allows easy membrane penetration and 

short blood residence and can be chemically modified to enhance their 

stability, bioavailability, and pharmacokinetic (PK). Furthermore, aptamers 

have frequently the potential to inhibit the biological function of the target 

molecules (Cerchia and de Franciscis 2007). 

Because of their high specificity and low toxicity, aptamers can successfully 

compete with the universally used antibodies for clinical diagnosis and for in 

vivo-targeted recognition as therapeutics or delivery agents. (Cerchia and de 

Franciscis 2010; Esposito et al. 2011; Jayasena 1999; Keefe et al. 2010;). 

 

 

 

 

Figure 4. Schematic representation of the functionality of aptamers. 
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1.3.1 Aptamer production: SELEX technology 

 

 

 

The SELEX technology is an evolutionary, in vitro combinatorial chemistry 

process used to identify aptamers as specific ligands of a given target, from 

large pools of diverse oligonucleotides (Ellington et al. 1990; Tuerk and Gold 

1990).  

The starting point for the generation of an aptamer is the chemical synthesis of 

a single-stranded nucleic acid (RNA, DNA or modified RNA) library of large 

sequence complexity. This is followed by the selection for oligonucleotides 

that can bind with high affinity and specificity to a target molecule. A typical 

oligonucleotide library contains random sequences of 20–50 bases flanked by 

two constant regions that include primer sites for PCR amplification (Figure 5). 

Randomisation of a synthetic sequence stretch from 22 up to 100 nucleotides in 

length creates an enormous diversity of possible sequences (4
N
 different 

molecules) in fact a typical aptamer library has a predicted complexity of 10
14

–

10
15

 different molecules which in consequence generate a vast array of 

different conformations with different binding properties. As schematized in 

Figure 5, the SELEX method comprises the following steps: (i) incubating the 

library with the target molecule under favorable binding conditions, depending 

on the nature of the target; (ii) partitioning molecules that, under the employed 

conditions, adopt conformations that permit binding to a specific target from 

other sequences; (iii) dissociating the nucleic acid-protein complexes and (iv) 

amplifying the nucleic acid pool to generate a library of reduced complexity, 

enriched in sequences that bind to the target. The pool obtained from the first 

cycle will be then used as starting pool for the next round of selection. Thus, 

reiterating these steps a library of reduced complexity enriched in sequences 

that bind to the target is generated.  

The number of rounds is determined by both the type of library used as well as 

by the specific enrichment achieved per selection cycle. After the final round, 

the resulting oligonucleotides are subjected to DNA sequencing. The sequences 

corresponding to the initially variable region of the library are screened for 

conserved sequences and structural elements indicative of potential binding 

sites and subsequently tested for their ability to bind specifically to the target 

molecule. 

SELEX usually requires eight or more rounds of screening to isolate aptamers 

with nanomolar affinities.  

Even if many aptamers are still selected by the traditional in vitro 

methodology, over the last few years considerable efforts have focused on 

automating in vitro selection procedures (Eulberg et al. 2005), thereby 

accelerating aptamers generation. 
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Figure 5. Schematic representation of in vitro SELEX technology. The 

RNA/DNA aptamer library contains a random sequence of 20–100 bases 

flanked by two constant regions. These constant regions include primer sites 

for PCR/RT-PCR amplification and transcription. The library is incubated with 

the target (Selection), non-binding sequences are partitioned away (Partition) 

and bound aptamers are recovered and amplified (Amplification). After 

reiterating these steps, the resulting oligonucleotides are subjected to cloning 

and sequencing. 
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1.3.2 Cell-based SELEX 

 

 

 

A great promise in developing specific molecular probes for disease biomarker 

discovery and for diagnostic and therapeutic applications is represented by the 

cell-SELEX strategy that allows to select nucleic acid aptamers against living 

cells (Cerchia et al. 2009; Cerchia and de Franciscis 2010; Shamah et al. 

2008;).  

Aptamer selection approaches that target the cell surface open a new path 

which presents two major advantages: i) direct selection without prior 

purification of membrane-bound targets, ii) access to membrane proteins in 

their native conformation similar to the in vivo conditions. Furthermore, cell-

SELEX can be developed without prior knowledge of the multiple proteins 

exposed on the surface of the target cells allowing the selection of aptamer 

ligands that specifically recognize a surface molecular signature specific of the 

cells. In general, the RNA/DNA library is first incubated with a non-target cell 

as a counter-selection step. Unbound aptamers are then recovered and 

incubated with the target cell, which might either express a particular 

biomolecule target or be a target cell type, in a positive selection step. Bound 

aptamers are recovered and amplified, as for SELEX (Figure 6). 

By using living cells as targets, aptamers able to discriminate cells from distant 

tumor types like small lung cancer cells versus large cell lung cancer (Chen 

HW  et al. 2008), T-cell acute lymphocytic leukemia versus B-cell lymphoma 

(Shangguan et al. 2006) and colon cancer cells versus other cancer cells (Sefah 

et al. 2010) have been generated.  

Furthermore, by applying the SELEX technology against whole-living cells in 

culture, in our laboratory, it was demonstrated that even by using complex 

targets as intact cells, it is possible to obtain aptamers against even rare 

antigens if specifically expressed on the target cell (Pestourie et al. 2006). This 

strategy was adopted to generate nuclease resistant RNA-aptamers specific for 

PC12 cells expressing the human RTK Ret and select aptamers that bind 

specifically to Ret and inhibit its downstream signaling effects (Cerchia et al. 

2005; Vento et al. 2008). 

The cell-SELEX approach has been further developed to discriminate even in 

the same cancer cell type different properties (such as malignancy, therapeutic 

response, metastatic potential). In this regard, in our laboratory, a panel of 

aptamers that bind human malignant GBM cells, discriminating them from 

non-tumorigenic GBM was isolated by differential cell-SELEX approach 

(Cerchia et al. 2009).  

Moreover, the great advances in cell-SELEX offer also the opportunity to 

develop innovative approaches to identify and isolate cancer stem cells that are 

an emerging important target to develop more effective cancer therapy (Guo et 

al. 2007).  
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In addition to cell-SELEX, even a tumor implanted in mice (in vivo-SELEX) 

(Mi et al. 2010) have been used to select aptamers. 

Recently, a sophisticated approach that combines fluorescence activated cell 

sorting (FACS) technology with in vitro selection (FACS–SELEX) has been 

performed (Raddatz  et al. 2008), thus enabling a live-cell/dead-cell separation 

within a cultured cell mixture.  

A novel variants of the cell-SELEX approach, referred to as cell-internalization 

SELEX, have been recently used by us and others to select aptamers that 

internalize upon binding to their cognate receptor (Thiel KW et al. 2012). Cell-

internalization SELEX has several advantages over other selection approaches 

for targeted therapeutic applications: i) it favors the isolation of RNAs that bind 

to receptors in their native state; ii) it enriches for RNAs capable of entering 

the target cell. To date, this approach has yielded aptamers capable of 

internalizing into HER2-positive mammary carcinoma cells (Thiel KW et al. 

2012), vascular smooth muscle cells (Thiel WH et al. 2012) and TrkB-

expressing cells (Huang et al. 2012).  
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Figure 6. Schematic representation of cell-SELEX technology. In cell-

SELEX, the RNA/DNA library (generated as shown in Figure 5) is first 

incubated with a non-target cell (shown in red) in a counter-selection step. 

Non-specific membrane proteins are shown in grey. Unbound aptamers are 

then recovered and incubated with the target cell (shown in green), which 

might either express a particular target (specific target membrane proteins 

shown in color) or be a target cell type. Bound aptamers (yellow) are recovered 

by phenol extraction and amplified via RT-PCR (or PCR, in the case of DNA), 

as in traditional SELEX. 

 

 

 

 

 

 

 

 

 

Phenol

extraction

Selection

Counter-selection

Unbound aptamers

Transcription

-

RNA/DNA LIBRARY

Selected

aptamer

dsDNA pool

RT-PCR/PCR



21 

 

1.4 Aptamers in therapy and diagnosis  

 

 

 

1.4.1 Modifications of aptamers for clinical applications 

 

 

 

RNA aptamers resulting from the SELEX process, generally, could be 

truncated to the minimal target-binding domain in order to reduce the risk of 

unwanted interactions. The reduction in the aptamer length, combined with 

different modifications, may allow to optimize their PK and pharmacodynamic 

(PD) profiles (Figure 7) for clinical applications. Since aptamers, especially 

RNA-based aptamers, are rapidly degraded by nucleases in whole organisms, 

major efforts have been addressed to improve their stability by a variety of 

approaches (Keefe and Cload 2008). 

In order to enhance resistance to nuclease attack, the most typical chemical 

modifications are the substitution at the 2’position of ribonucleotides (Faria 

and Ulrich 2008). RNA aptamers with 2′-fluoro, 2’-amino pyrimidine (2’-F-Py, 

2’-NH2-Py) or 2′-O-alkyl nucleotides modifications may survive for several 

hours in vivo against degradation by nucleases. 

The most used chemical modification for the development of RNA aptamers 

stable in animal serum is the substitution of 2’-OH with 2’-F in pyrimidines. 

Since the folding rules for single stranded oligonucleotide regions can change 

when these modifications are introduced, such RNA can also be efficiently 

transcribed in vitro with a mutant viral T7 RNA polymerase, thus facilitating 

its use in the SELEX process (Sousa 2000). 

Another example of modified nucleic acids is represented by the spiegelmers. 

Spiegelmers do not contain groups added to the sugar moieties but instead are 

enantiomers of natural nucleic acids (Eulberg and Klussmann 2003). In other 

words, the natural D-nucleic acids are substituted with enantiomeric L-nucleic 

acids. This property prevents recognition by nucleases, thereby increasing the 

stability of the aptamers. 

A hurdle to administering aptamers to patients for many therapeutic 

applications is a short circulating half-life due to the small size of RNA and 

DNA aptamers. While a low molecular weight can be an advantage as it allows 

cost-effective chemical synthesis, low immunogenicity, and good target 

accessibility, it renders them susceptible to a rapid clearance by renal filtration. 

To overcome this problem, the most used strategy is to increase the molecular 

weight of the aptamers by conjugation with polyethylene glycol (PEG) 

(Boomer et al. 2005; Healy et al. 2004). 

Addition of cholesterol to aptamers is another approach to enhance the PK 

profile (Willis et al. 1998). 
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Figure 7. Aptamer modifications. Scheme of the most typical modifications 

used to improve aptamers nuclease resistance (red) or its PK profile (green). 
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1.4.2 Aptamers as therapeutics 

 

 

 

In the last years, the development of aptamers as therapeutics has primarily 

involved aptamers that bind and inhibit the activity of their protein targets 

(Figure 8). The list of aptamers against important therapeutic targets is growing 

rapidly and a handful of aptamers is now in clinical trials as therapeutic agents 

(Table 1). 

To date, the most successful therapeutic application of an aptamer is 

represented by the RNA-aptamer commercially known as Macugen (or 

Pegaptanib, marketed by Eyetech Pharmaceuticals/Pfizer), that binds and 

antagonizes the action of vascular endothelial growth factor (VEGF) (Ng et al. 

2006). The aptamer has been fully approved by the Food and Drug 

Administration (FDA) in December 2004, for the treatment of age-related 

macular degeneration (AMD) (Table 1), characterized by the formation of a 

neovascular membrane leaking blood and fluid under the retina with 

consequent destruction of the macula and loss of vision (Ng et al. 2006; 

Ruckman et al. 1998). The aptamer binds and antagonizes the action of VEGF-

165, the VEGF isoform preferentially involved in pathological ocular 

neovascularization. In order to translate this aptamer into the clinic, it was 

chemically modified with 2′-F-Py and 2′-OMe-Pu, capping, and linkage to a 40 

kDa branched PEG molecule to generate a better therapeutic agent (Ng et al. 

2006; V.I.S.I.O.N. et al. 2006). Different studies have been recently carried out 

to assess the clinical effectiveness and cost-effectiveness of Macugen and 

Ranibizumab (Lucentis, Genentech), a monoclonal antibody targeting all 

isoforms of human VEGF-A and approved in 2006 by the FDA for the 

treatment of exudative AMD. Both drugs show comparable therapeutic 

efficacy and mild adverse events, while the economic evaluation varies 

considerably depending on the methodology for cost-effectiveness used in 

different studies. In addition to AMD, a phase III clinical trials also 

investigated Macugen in the treatment of diabetic retinopathy, resulting in 

improved vision and reduced macular edema. Furthermore, given that 

inhibiting vascularization is a major focus for anticancer drugs, Macugen is a 

potential candidate for treatment of solid tumors that are extensively 

vascularized, even if the effectiveness of a systemic administration is still 

unclear. 

In addition to the RNA-aptamer Macugen, other two aptamers, named E10030 

and ARC1905, are in phase II and Ι of clinical trials for the treatment of AMD, 

respectively. E10030 (Ophthotech Corp./Archemix Corp.) is a DNA-aptamer 

directed against the PDGF-B chemical modified with 2′-F-Py and 2′-OMe-Pu 

and PEG (Green et al. 1996); while ARC1905 (Ophthotech Corp./Archemix 

Corp.) is a RNA-aptamer targeting the complement component 5 containing 2′-

F-Py and PEG (Biesecker et al. 1999). 
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Many other aptamers, not yet approved by the FDA, are currently in clinical 

trials (Table 1). Among them, it is very interesting for cancer therapy the 

AS1411 DNA aptamer (AGRO100) (Antisoma, Archemix Corporation) 

directed against nucleolin (Bates et al. 2009), a protein often overexpressed on 

the surface of cancer cells. This DNA aptamer is part of the guanine-rich 

oligonucleotide class of aptamers that form G-quartets, a structural element 

that exhibits antiproliferative activity. Once bound to nucleolin, the AS1411 

aptamer is taken into the cancer cells, where it causes cellular death by 

apoptosis through inhibiting nuclear factor-κB (Girvan et al. 2006) and Bcl-2 

(Soundararajan et al. 2008) pathways. It shows its effectiveness as an 

anticancer therapy for different solid human malignancies as well as for acute 

myeloid leukemia (AML) and is currently in phase IIb clinical trial to evaluate 

its effectiveness in combination with high-dose cytarabine in patients with 

relapsed and refractory AML. 

Among aptamers currently in clinical trials, some are directed against blood 

clotting factors, such as von Willebrand factor, thrombin, factor VII and factor 

IXa (Table 1). The ARC1779 is a DNA-aptamer directed against the A1 

domain of von Willebrand factor, currently in phase II clinical trials for the 

treatment of thrombotic microangiopathies (Diener et al. 2009; Gilbert et al. 

2007); while Nu172 is a chemical unmodified DNA-aptamer directed against 

thrombin, currently in phase II clinical trials to evaluate its potential use as an 

anticoagulant during acute coronary artery bypass surgery.  

Particularly interesting is REG-1, an aptamer targeting the coagulation factor 

IXa. This is the first case of a modulator-controlled aptamer able to provide a 

time-controllable therapy. REG-1 is a two-part therapeutic agent, consisting of 

an RNA aptamer specific for the coagulation factor IXa (RB006) and a single 

stranded RNA oligonucleotide complementary to the RB006 aptamer (RB007). 

Aptamer inhibition of the factor IXa by RB006 is structurally disrupted by 

administration of the antidote complementary strand RB007. The REG-1 

aptamer-antidote therapy has been tested in phase I and II clinical trials with 

promising results as an anticoagulation therapy to prevent clot formation 

during cardiac surgery (Rusconi et al. 2004). 

In addition to the aptamers in clinical trials mentioned above, many other 

aptamers are not yet developed in clinic but target molecules of high 

therapeutic interest thus appearing as excellent drug candidates for a wide 

range of human pathologies (Esposito et al. 2011). 
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Figure 8. Aptamers against important therapeutic targets. Examples of 

aptamers used as specific inhibitors of diverse target protein families in vitro 

and in vivo. 

 

 

  

 

Table 1. Aptamers in the clinical papeline. Abbreviations: C5, complement 

component 5; CCL2, Chemokine (C-C motif) ligand 2; SDF-1α, Stromal cell-

derived factor 1α; TMA, thrombotic microangiograpathie; vWF, von 

Willebrand factor. 
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1.4.3 Aptamers as delivery agents   
 

 

 

Another promising application of aptamers that bind to internalized cell surface 

receptors is to use their high binding specificity for designing targeting 

moieties to deliver any kind of secondary reagents to a given cancer cell or 

tissue (Figure 9). In this way, only targeted cells will be exposed to the 

secondary reagent thus increasing the efficacy of a given therapy as well as 

attenuating the overall toxicity of the drug (Cerchia and de Franciscis 2010). 

At this regard, currently an increasing number of aptamers targeting cancer cell 

surface epitopes have been successfully used for the specific delivery of active 

drug substances both in vitro and in vivo, including nanoparticles (Farokhzad et 

al. 2006; Wang et al. 2013), anti-cancer therapeutics (Bagalkot et al. 2006), 

toxins (Chu et al. 2006), enzymes (Chen CH et al. 2008), radionuclides (Hicke 

et al. 2006), viruses (Tong et al. 2009), siRNAs (Chu et al. 2006; Thiel and 

Giangrande 2010; Zhou and Rossi 2010) and more recently microRNAs 

(Esposito et al. 2014; Liu et al. 2012; Wu et al. 2011). 

Several cell-internalizing aptamers against surface epitopes of cancer cells 

have been successfully used as targeting vehicles. These include aptamers 

against the protein tyrosine kinase 7 (PTK7), nucleolin, prostate specific 

membrane antigen (PSMA), mucin 1 (MUC1) and EGFR (Table 2), which 

have been selected through either protein- or cell-SELEX strategies.  

To date, the best-characterized aptamers for targeted delivery are the two 2′-F-

Py-RNA aptamers (A9 and A10) that have been generated against the 

extracellular domain of PSMA (Lupold et al. 2002). These aptamers have been 

used to deliver nanoparticles, quantum dots, toxin or siRNA to prostate cancer 

cells. PSMA–aptamer has been linked to siRNAs by different approaches 

including non-covalent conjugation of siRNA with aptamer via a streptavidin 

connector (Chu et al. 2006) or generation of aptamer–siRNA chimeras by 

extending the 3’ end of the aptamer with a nucleotide sequence complementary 

to the antisense strand of the siRNA (McNamara et al. 2006) (Figure 10). 

This new approach is based on the annealing of two different RNA strands: the 

aptamer portion of the chimeras mediates binding to PSMA, a cell-surface 

receptor overexpressed in prostate cancer cells and tumor vascular 

endothelium, whereas the siRNA portion targets the expression of survival 

genes. When applied to cells expressing PSMA, these RNAs are internalized 

and processed by Dicer, resulting in depletion of the siRNA target proteins and 

cell death (Figure 11). In addition to siRNAs, PSMA–aptamer has been further 

use to deliver to prostate cancer cells toxins (Chu et al. 2006) or 

chemotherapeutic agents encapsulated within nanoparticles or directly 

intercalated into the aptamer (Farokhzad et al. 2006). 

Another promising delivery molecule is the phototoxic aptamer against MUC1 

that carries the toxin chlorin e6, a heme-like photodynamic therapy (PDT) 

agent released after activation by light. MUC1 is a membrane specific marker 
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expressed on a broad range of epithelial cancer cells such as breast, ovary, 

prostate, pancreas, colon and lung. After the binding of the aptamer, the new 

complex is internalized and routed through endosomal and Golgi 

compartments by cancer cells. The aptamer directed at the MUC1 peptide is  

armed to carry a cytotoxic cargo such as the light-activated PDT drug, chlorin 

e6, that produce cytotoxic singlet oxygen species. When aptamers directed at 

the MUC1 peptide or its related Tn antigens were armed to carry a cytotoxic 

cargo such as the light-activated PDT drug, chlorin e6, their ability to kill 

epithelial cells was enhanced by several orders of magnitude upon light 

exposure in comparison to the free drug alone. As a result, there is a selective 

induction of apoptosis in MUC1 expressing cells (Ferreira et al. 2009). 

Also, John Rossi’s group used a RNA aptamer against gp120 for targeted 

delivery of siRNA against Human Immunodeficiency Virus infections (Zhou et 

al. 2011).  

Furthermore, recently few papers explored the use of aptamer to deliver 

microRNAs as cancer therapeutics. Second generation PSMA targeting 

aptamer (A10-3.2) was conjugated to a polyamidoamine-based miRNA (miR-

15a and miR-16-1) via bifunctional PEG to deliver miRNAs to prostate cancer 

cells (Wu et al. 2011).  In addition, chimeras that combines MUC1 aptamer and 

let-7i microRNA or miR-29b have been reported (Liu et al. 2012). 

Recently, an RNA aptamer (GL21T) that binds the Axl tyrosine kinase receptor 

(Cerchia et al. 2012) was covalently linked to the human let-7g miRNA as a 

gene silencing moiety (Esposito et al. 2014). The conjugate GL21.T-let 

selective delivers miRNA to Axl-target cells, that is processed by the RNA 

interference (RNAi) machinery, and silences let-7g target genes. This study is 

innovative because of the generation of a multi-functional aptamer chimera 

thanks both to antagonistic activity that the cell-targeting capability of GL21.T. 

These new compounds are provide innovative cancer therapeutic strategies 

even if their effectiveness has not yet been proven. 
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Figure 9. Aptamers as delivery agents. Aptamers against cell surface proteins 

can act both as direct antagonist of the receptor targets (a) and as delivery 

agents for: (b) aptamer-streptavidin-siRNA conjugates; (c) aptamer-siRNA 

chimeras, (d) aptamer-nanoparticles-drug conjugates, (e) aptamer-doxorubicin, 

(f) aptamer-protein conjugates, (g) aptamer-radionuclide/fluorescent agents 

conjugates.  

 

 

 

 

 
 

 

 

Table 2. Aptamers for targeted delivery. Abbreviation: QDs, quantum dots. 
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Figure 10. Anti-PSMA aptamer-siRNA chimeras. (a) The RNA duplex and 

RNA aptamers are chemically conjugated with biotin. Thus, two biotinylated 

siRNAs and two aptamers are non-covalently assembled via streptavidin; (b) 

the 3′ end of the aptamer is extended to contain the nucleotide sequence that is 

complementary to the antisense strand of the siRNA, and the chimera is formed 

by annealing the aptamer to the siRNA antisense strand; (c) optimized 

chimeras in which the aptamer portion of the chimera is truncated, and the 

sense and antisense strands of the siRNA portion are swapped. A two 

nucleotide 3′-overhang and a PEG tail are added to the chimera; (d) the 3′-

terminus of the aptamer is conjugated to the sense strand of the siRNA, 

followed by a 10-mer loop sequence and then by the antisense strand of the 

siRNA.  
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Figure 11. Mechanism of action of aptamer-siRNA chimeras. The aptamer-

siRNA chimera binds to the cell surface receptor (light green rectangle), is 

endocytosed, and subsequently released from the endosome to enter the RNA 

interference pathway. The endogenous miRNA silencing pathway is shown for 

comparison (red arrows). A pre-microRNA (pre-miRNA) exits the nucleus 

upon cleavage by Drosha, is recognized by the endonuclease Dicer, which 

processes the pre-miRNA into a 21nt mature miRNA. The mature miRNA is 

subsequently incorporated into the silencing complex (RISC) where it mediates 

targeted mRNA degradation. 
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1.4.4 Aptamers in diagnosis 

 

 

 

RNA aptamers have also started to play increasingly important roles not only 

in environmental and food analysis, but also in human disease diagnosis 

(Jayasena 1999; Soontornworajit and Wang 2011; Tombelli 2007). Indeed, 

since the chemistry for the production and the modification of oligonucleotides 

is well developed, once aptamers are selected, they can be functionalized using 

a wide variety of fluorophores, as well as cobalt or iron paramagnetic particles, 

gold, radioisotopes and biotin. These characteristics render the aptamers 

suitable as ligands for protein detection in a great number of different 

methodologies.  

RNA aptamers can also aid in clinical diagnosis of diseases due to their high 

affinity to bind specific cell markers. Recently, RNA aptamers have become an 

attractive tool in detecting diseased cells on a histological section and, most 

importantly, the presence of very low amounts of circulating disease cells in 

the bloodstream. One such example is to use the RNA aptamer against EGFR 

to determine the presence or extent of GBM, a deadly disease that is hard to 

detect. To achieve that, Wan et al. (2010) first immobilized the aptamer on a 

chemically modified glass surface and exposed it to the cells in question, either 

from serum or the tumor margin (Figure 12). Through these procedures, they 

were able to detect primary human GBM cells expressing high levels of EGFR 

with high sensitivity and specificity. Therefore, this approach could lead to 

earlier diagnosis of this highly malignant tumor and monitoring of residue 

disease after the treatment by detecting circulating tumor cells in the serum. In 

the case of a tumor resection, this would also allow the surgeon to know 

whether surgical resection margins of the tumor are free from diseased cells. 

RNA aptamers have also shown potential for use in conjunction with flow 

cytometry to detect diseased cells. Li et al. (2007) have recently tested RNA 

aptamers against Human EGFR Related 3, tenascin-C (Tn-C), PSMA, and 

EGFR for detection of varieties of human cancer cells. They optimized the 

assay and received strong signals by fluorescent labeling of biotinylated RNA 

aptamers with streptavidin-phycoerythrin for flow cytometry. 

Furthermore, aptamers can also be utilized in a similar manner that antibodies 

have been used in a two-site binding assay, the most commonly used 

diagnostic format today. Using this approach, Drolet et al. (1996) were able to 

detect VEGF protein, which plays an important role in angiogenesis and has 

been used as biomarker for breast cancer, lung cancer and colorectal cancer. 
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Figure 12. Scheme of anti-EGFR aptamer in diagnosis. The amine-modified 

DNA probes were first immobilized on the glass substrates. After hybridization 

with 1 µmol/L anti-EGFR RNA aptamer at 37°C for 2 h, substrates were 

incubated with tumor cells at 37°C for 30 min. After incubation, the substrates 

were washed with 1xPBS for 8 min. 
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1.4.5 Aptamers for in vivo imaging 

 

 

 

Due to their relatively small size (8-15 kDa) in comparison to antibodies (150 

kDa), aptamers should be better suited for rapid tissue penetration and blood 

clearance, two excellent characteristics for contrast agents in imaging.  

The first example of the use of aptamers as in vivo imaging probes is 

represented by the use of the DNA aptamer against the human neutrophil 

elastase for diagnostic imaging of inflammation (Charlton et al. 1997). The 

aptamer was labelled with Technetium-99m (
99m

Tc) and used for imaging in a 

rat model. Remarkably, a better signal-to-noise ratio was achieved by the 

aptamer compared to the rat anti-elastase antibody.  

The application of aptamers for in vivo imaging is especially promising for 

cancer diagnosis. A large number of aptamers have been raised against cancer 

associated antigens and helped in finding new approaches for cancer diagnosis. 

Among them, TTA1, a modified RNA aptamer targeted against Tn-C, has been 

conjugated to the 
99m

Tc for performing single photon emission-computed 

tomography (SPECT), a 3D-imaging technique that allows for visualization of 

tumors at a spatial resolution in the sub-millimeter range (Figure 13). Tn-C is 

known to be overexpressed in several tumors, including carcinomas of the 

lung, breast, prostate and colon, as well as lymphomas, sarcomas, 

glioblastomas and melanomas. Using murine xenograft models of GBM and 

breast cancer it has been successfully showed that TTA1-
99m

Tc has rapid tumor 

penetration and blood clearance. Tumor retention was durable and the tumor-

to-blood signal was significantly high, thus enabling clear tumor imaging 

(Hicke et al. 2001). 

Further examples of aptamers used for in vivo imaging are represented by two 

DNA aptamers targeting MUC1 and nucleolin, respectively. Anti-MUC1 

aptamer was labeled with 
99m

Tc, while anti-nucleolin AS1411 aptamer was 

conjugated with a cobalt-ferrite nanoparticle surrounded by fluorescent 

rhodamine and, the resultant particle was further labeled with radionuclide 

gallium citrate (Ga-67). This complex gives rise to a system capable of 

concurrent fluorescence imaging, radionuclide imaging and magnetic 

resonance in vivo. 
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Figure 13. Aptamers used in tumor imaging can distinguish cancerous 

cells from healthy cells. Cartoon of (a) micro-SPECT imaging system and (b) 

penetration into a tumor mass of a TTA1 aptamer labeled with a radionuclide 

(yellow sphere). (c) SPECT g-camera images of tumors. The human-TN-C-

specific TTA1 aptamer is labeled with 99mTc, injected intravenously at 3.25 

mg/kg in U251 glioblastoma xenograft mice, and imaged. In the presence of 

the TTA1 aptamer, but not with the control aptamer, the tumor is faintly visible 

at 10 min, prominent at 3 h, and brightest at 18 h. Structures prominent at 10 

min include bladder and visceral mass. Large intestine, bladder and tumor can 

be seen at 3 h.  
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2. AIM OF THE STUDY 

 

 

 

PDGFRβ is an important member of RTK family that plays a crucial role in 

tumorigenesis and tumor progression of malignant glioma. To date, inhibitors 

of PDGFRβ existing consist of small molecule TKIs that exhibit limited 

specificity and modest efficacy while no antibodies have entered the clinic. 

Nucleic acid-based aptamers represent an emerging wave of targeted 

therapeutic molecules against RTKs. 

They are short structured single-stranded RNA or DNA ligands that bind with 

high affinity to their target molecules and are now emerging as promising 

molecules to recognize specific cancer epitopes in clinical diagnosis and 

therapy. Because of their high specificity and low toxicity, aptamers can 

successfully compete with the universally used antibodies for in vivo-targeted 

recognition as therapeutics or delivery agents for nanoparticles, small 

interfering RNAs, chemotherapeutic cargos, and molecular imaging probes. 

Further, in contrast to monoclonal antibodies, aptamers are characterized by 

high stability and convenient synthesis and modification with minimal inter-

batch variability. Different therapeutic aptamers are now being tested in 

clinical trials and one has been approved by the US FDA thus supporting the 

potential effectiveness of aptamer-based methods for therapeutic purposes. 

The aim of this study is to apply an aptamer-based approach to develop new 

PDGFRβ-targeting drugs for a specific and selective tumor therapy.  

Aimed at generating antagonist PDGFRβ aptamers not only useful in their own 

right, but also as escorts for therapeutic or diagnostic reagents, we developed 

the first nuclease resistant RNA-aptamer that binds to human PDGFRβ and 

internalizes into GBM target cells. In addition to exquisite cell specificity and 

antitumor effect in a xenograft model of GBM, this aptamer strongly 

cooperates with a previously described anti-EGFR aptamer (Esposito et al. 

2011) to induce inhibition of tumor growth, providing the basis for further 

development of antitumor combination therapies. 

Taken together, these results show that Gint4.T aptamer is a promising RNA-

based molecule that can be developed as a more effective alternative to 

currently used PDGFRβ inhibitors. 
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3. MATERIALS AND METHODS 

 

 

 

3.1 Cell lines and transfection 
 

 

 

Human GBM U87MG and T98G, epidermoid carcinoma A431 (American 

Type Culture Collection, Manassas, VA) were grown in Dulbecco's modified 

Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS). 

Non-small-cell lung cancer (NSCLC) A549 cells (American Type Culture 

Collection) were grown in RPMI (Invitrogen, Carlsbad, CA) supplemented 

with 10% FBS. U87MG-luc2 (herein indicated as U87MG-luc) and human 

breast MCF7-luc-F5 (herein indicated as MCF7-luc) (Caliper Life Sciences, 

Hopkinton, MA) were grown following the provider indications. Primary cell 

cultures from GBM specimens were provided by A.H. Jacobs (University of 

Colonia, Germany) and grown in DMEM-F12 (Invitrogen) supplemented with 

10% FBS (Cerchia et al. 2009). 

To obtain neurospheres from U87MG (herein indicated as U87MG-sphere) 

cells were grown in DMEM-F12 supplemented with GSCs growth factor 

including 1% B-27, human recombinant basic fibroblast growth factor (10 

ng/ml) and epidermal growth factor (EGF) (20 ng/ml), both from Sigma-

Aldrich. Neurospheres were induced to differentiate through the addition of 

10% FBS in stem cell medium (herein indicated as U87MG-diff). The cancer 

stem cell phenotype of these cells was confirmed by stemness markers 

(PDGFRβ, Nanog, Sox-2, and Shh).  

For PDGFRβ gene silencing, U87MG and T98G cells (3.5x10
5
 cells per 6-cm 

plate) were transfected with short hairpin RNA (shRNA) PDGFRβ or 

shRNActrl (2 µg; Open Biosystems, Huntsville, AL) and Lipofectamine 2000 

(Invitrogen) in Opti-MEM I reduced serum medium  (Invitrogen). After 5-

hours incubation, complete culture medium was added to the cells and 

incubation was prolonged up to 72 hours. 

 

 

 

3.2 Cell-internalization SELEX and aptamers  
 

 

 

Following 14 rounds of selection performed onto U87MG cells as previously 

described (Cerchia et al. 2009), the enriched pool was incubated onto U87MG 

for 30 minutes (first internalization round) and 15 minutes (second 

internalization round) at 37 °C and unbound aptamers were removed by five 

washes with DMEM serum free. To remove surface-bound aptamers, target 
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cells were treated with 0.5 µg/µl proteinase K (Roche Diagnostics, 

Indianapolis, IN) for 30 minutes, washed with DMEM serum free and 

internalized RNA aptamers were then recovered by RNA extraction and RT-

PCR as described (Cerchia et al. 2005; Cerchia et al. 2009). 

Gint4.T, 5′ FAM-labeled Gint4.T, CL4 (Esposito et al. 2011) and the unrelated 

2′F-Py RNAs were purchased from ChemGenes corporation (Wilmington, 

MA).  

Gint4.T aptamer:  

5′UGUCGUGGGGCAUCGAGUAAAUGCAAUUCGACA3′. The scrambled 

sequence of CL4 aptamer (Esposito et al. 2011) has been used as a negative 

control; herein indicated as unrelated: 

5′UUCGUACCGGGUAGGUUGGCUUGCACAUAGAACGUGUCA3′. 

For in vivo experiments, aptamers have been internal-labeled with Alexa Fluor 

647 fluorescent probe following the provider indications (Invitrogen). 

Before each treatment, the aptamers were subjected to a short denaturation-

renaturation step (85 °C for 5 minutes, snap-cooled on ice for 2 minutes, and 

allowed to warm up to 37 °C). For cell incubation longer than 24 hours, the 

aptamer treatment was renewed each day and the RNA concentration was 

determined to ensure the continuous presence of at least 200 nmol/l 

concentration, taking into account the 6 hours-half-life of the aptamer in 10% 

serum. 

 

 

 

3.3 Binding assays 

 

 

 

Aptamer binding to cells was performed in 24-well plates in triplicate with 5’-

[
32

P]-labeled RNA. For labeling 2’-F-Py RNAs were 5’-end dephosphorylated 

with tha Alkaline Phosphatase (AP) (Roche) before [
32

P]-5’-endlabeled using 

T4 kinase (Invitrogen) and γ-[
32

P]-ATP (6x10
3
Ci/mmol, GE Healthcare Bio-

Sciences, Uppsala, SE) according to the supplier’s instructions. 

Cells (2x10
4
 cells/well in 24-well plates) were incubated  with 100 nmol/l 

radiolabeled Gint4.T or the unrelated aptamer in 200 µl of serum-free grown 

medium for 20 min at room temperature in the presence of 100 mg/ml 

polyinosine as a nonspecific competitor (Sigma, St. Louis, MO). After five 

washings of 500 µl of grown medium, bound aptamers were recovered in 200 

µl of sodium dodecyl sulfate (SDS) 1% +100 µl grown medium and the 

amount of radioactivity recovered was counted. 

Filter binding analysis with EC-PDGFRα and EC-PDGFRβ (R&D Systems, 

Minneapolis, MN) was performed by incubating 1 nmol/l of radiolabeled 

aptamers with 1, 3.2, 10, 32, 100, 320, and 1.000 nmol/l of EC-PDGFRβ or 

EC-PDGFRα  for 15 min at 37°C in phosphate buffered saline (PBS) 

supplemented with 0.01% bovine serum albumin (BSA). 
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To check the endocytosis rate, 100 nmol/l radiolabeled Gint4.T or the unrelated 

aptamer was incubated onto U87MG cells for increasing incubation times 

(from 15 minutes up to 2 hours) and at desired times, cells have been treated 

with 0.5 µg/µl proteinase K (Roche Diagnostics) at 37 °C. Following 30-

minutes treatment, the amount of RNA internalized has been recovered and 

counted. 

 

 

 

3.4 Immunoprecipitation, Immunoblot, and Immunofluorescence analyses  

 

 

 

Cell extracts, immunoprecipitation, and immunoblot were performed as 

described (Esposito et al. 2008). The primary antibodies used were: anti-

phospho-PDGFRβ (Tyr771, indicated as pPDGFRβ), anti-PDGFRβ, anti-

phospho-EGFR (Tyr1068, indicated as pEGFR), anti-EGFR, anti-phospho-

44/42 MAPK (D13.14.4E, indicated as p-Erk), anti-phospho-Akt (Ser473, 

indicated as pAkt), anti-Akt, anti-caspase 3 (Cell Signaling Technology Inc., 

Danvers, MA); anti-Erk1 (C-16), anti-Nanog (5A10) (Santa Cruz 

Biotechnology, Santa Cruz, CA); anti-Sox-2 (Abnova, Taipei, TW); anti-α-

tubulin (DM 1A; Sigma, St. Louis, MO). RTK antibody arrays (R&D Systems) 

were performed as recommended. Densitometric analyses were performed on 

at least two different expositions to assure the linearity of each acquisition 

using ImageJ (v1.46r). Blots shown are representative of at least four 

independent experiments. 

To assess the effect of the aptamers on ligand-dependent PDGFRβ and EGFR 

activation, cells (1.5x10
5
 cells per 3.5-cm plate) were serum starved or GSCs 

growth factor-deprived overnight, pretreated with 200 nmol/l aptamer for 3 

hours and then stimulated for 5 minutes with 50 ng/ml PDGF-BB or EGF 

(R&D Systems) in the presence of 200 nmol/l aptamer.  

For immunofluorescence, cells grown on glass coverslips were treated at 

different incubation times with 2.5 µmol/l FAM-Gint4.T, washed five times 

with PBS and fixed with 4% paraformaldehyde in PBS for 20 minutes at room 

temperature. The coverslips were washed three-times in PBS and then blocked 

in PBS, 1% BSA for 30 minutes. Cells were incubated with anti-PDGFRβ 

(R&D Systems), anti- early endosome antigen 1 (EEA1) and anti- lysosomal 

associated membrane protein 1 (LAMP1) (Abcam, Cambridge, MA) diluted in 

PBS, 1% BSA for 1 hour at 37 °C. Coverslips were washed three-times with 

PBS and treated with Alexa Fluor 568 Goat Anti-Rabbit IgG (H+L) 

(Invitrogen) for 30 minutes at 37 °C. Coverslips were washed, mounted with 

Gold antifade reagent with DAPI (Invitrogen) and the cells were visualized by 

confocal microscopy. For co-localization experiments of Gint4.T with early 

EEA1 and LAMP1, cells have been permeabilized with PBS, 0.5% Triton X-

100 for 15 minutes at room temperature before blocking. The 



39 

 

immunofluorescence images have been analyzed for quantization of 

colocalized spots using the ImageJ plugin Coloc2 and Manders’ coefficients 

(M1 and M2) (Costes et al. 2004) have been calculated. 

 

 

 

3.5 Cell viability and proliferation 

 

 

 

Cell viability was assessed with CellTiter 96 AQueous One Solution Cell 

Proliferation Assay (Promega, Madison, WI) according to the supplier’s 

instructions (4x10
3
 cells/well in 96-well plates). For combined treatment with 

Gint4.T, we used Gefitinib (LC Laboratories, Woburn, MA), Cetuximab 

(provided by Prof. G. Tortora), Imatinib mesylate (Santa Cruz Biotechnology), 

TMZ (Sigma). 

For cell proliferation assay, T98G and U87MG cells (2x10
4
 cells/well in 24-

well plates) were mock-treated or treated for 24 and 48 hours with Gint4.T or 

the unrelated aptamer. During the final 6 hours, cells were pulsed with 1 

µCi/ml [
3
H]-thymidine (45 Ci/mmol) (Amersham Bioscience, Piscataway, NJ) 

added in complete growth medium and incubated at 37 °C. At the end of each 

pulse, cells were harvested and [
3
H]-thymidine incorporation was analyzed by 

a Beckman LS 1701 Liquid Scintillation Counter. 

To assess cell cycle analysis, anti-5-bromodeoxyuridine (BrdU) (BD 

Biosciences, Heidelberg, Germany) incorporation was performed according to 

the manufacturer’s protocol and then analyzed by FACS. 

 

 

 

3.6 Cell migration  

 

 

 

For transwell migration assay, T98G and U87MG cells were pretreated for 3 

hours either with 200 nmol/l Gint4.T or with unrelated aptamer and then 

trypsinized, re-suspended in DMEM serum free, and counted. Cells (1x10
5
 in 

100 µl serum-free medium per well) were then plated into the upper chamber 

of a 24-well transwell (Corning Incorporate, Corning, NY, USA) in the 

presence of either 200 nmol/l Gint4.T or the unrelated aptamer and exposed to 

PDGF-BB (50 ng/ml) or 10% FBS as inducers of migration (0.6 ml, lower 

chamber). After incubation at 37°C in humidified 5% CO2 for 24 hours, cells 

were visualized by staining with 0.1% crystal violet in 25% methanol. 

Percentage of migrated cells was evaluated by eluting crystal violet with 1% 

SDS and reading the absorbance at 570 nm wavelength. 
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For wound healing assay, T98G and U87MG cells were plated in six-well 

plates and grown to confluence. After serum starvation overnight in the 

absence or in the presence of 200 nmol/l Gint4.T or the unrelated aptamer, 

cells were scraped to induce a wound. Culture medium with 0.5% FBS 

with/without treatment with aptamers was added and the wounds were 

observed using phase-contrast microscopy. The extent of wound closure was 

quantitated by measuring the wound areas obtained from 10 independent fields 

using ImageJ (v1.46r). 

 

 

 

3.7 Reverse transcription-PCR or qPCR analysis 

 

 

 

RNA was extracted by TRiZol (Invitrogen) and 1 µg total RNA was reverse 

transcribed with iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA) 

and the resulting cDNA fragments were used as PCR or qPCR templates. For 

qPCR, the amplification was performed  with the miScript-SYBR Green PCR 

Kit.  

Primers used were:  

- glial fibrillary acidic protein (GFAP),  

Fwd 5′GAGTCCCTGGAGAGGCAGAT3′,  

Rev 5′CCTGGTACTCCTGCAAGTGG3′;  

- β-actin, Fwd 5′CAAGAGATGGCCACGGCTGCT3′,  

Rev 5′TCCTTCTGCATCCTGTCGGCA3′;  

- PDGFRβ, Fwd 5′AGGACACGCAGGAGGTCAT3′,  

Rev 5′TTCTGCCAAAGCATGATGAC3′;  

- Nanog, Fwd 5′CTAAGAGGTGGCAGAAAAACA3′,  

Rev 5′CTGGTGGTAGGAAGAGTAAAGG3′;  

- Shh, Fwd 5′TCGGTGAAAGCAGAGAAC3′,  

Rev 5′AGGAAAGTGAGGAAGTCG3′;  

- Sox-2, Fwd 5′TGGGTTCGGTGGTCAAGTC3′,  

Rev 5′ CGCTCTGGTAGTGCTGGGA3′. 

PCR  amplifications were performed by using the following conditions: GFAP, 

30 cycles: 1 minute at 95°C, 1 minute at 61°C, and 1 minute at 72°C; β-actin, 

15 cycles: 30 seconds at 95 °C, 30 seconds at 57 °C, and 1 minute at 72 °C. 

Densitometric analyses was performed by using ImageJ (v1.46r). 

β-actin expression was used for normalization of the qPCR data and the ∆∆Ct 

method for relative quantization of gene expression was used.  
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3.8 Neurosphere formation assay 

 

 

 

To generate U87MG cell spheroids, 1x10
4
 cells were grown in stem cell 

medium in 60 mm low-adherent plate. Sphere were left growing for 10 days 

either in the absence or in the presence of 200 nmol/l Gint4.T or unrelated 

aptamer (renewing the treatment each two days). Spheroids were fixed with 

0.5% agar in PBS, counted and photographed. 

 

 

 

3.9 Animal model studies  

 

 

 

Athymic CD-1 nude mice (nu/nu) were housed in a highly controlled 

microbiological environment, thus to guarantee specific pathogen free 

conditions. 

For the in vivo evaluation of Gint4.T tumor-binding specificity, mice were 

injected subcutaneously with 5x10
6
 U87MG-luc and 8x10

6
 MCF7-luc cells on 

the left and right sides of the animal, respectively. When tumor mean volume 

reached 60 mm
3
, mice (five for group) were treated by caudal vein injection 

with 1.600 pmol in 100 µl (1.04 mg aptamer/kg mean body-weight) Alexa 

Fluor 647-labeled Gint4.T or unrelated aptamer. For imaging analysis, the 

CALIPER IVIS Spectrum has been used, and the images were processed by 

using Caliper living image software 4.1. 

To follow tumor growth inhibition, mice were injected subcutaneously with 

5x10
6
 U87MG-luc cells. When tumor mean volume reached 150 mm

3
, mice 

(five for group) were treated by caudal vein injection with 1.600 pmol of 

Gint4.T, CL4, Gint4.T plus CL4, and unrelated aptamer. Saline (PBS) treated 

animals were used as control. Tumor growth was measured with calipers or 

bioluminescence. Animals were sacrificed following 10 days. All tumors were 

recovered, processed for protein and pooled for immunoblot. 

To determine immune response, livers, and spleens of treated animals at 24 

hours and 10 days following aptamer treatment were excised, lysed for RNA 

extraction and pooled. As a positive control, spleens from mice (five for group) 

treated for 24 hours with Poly (I:C; 10 µg and 100 µg in 100 µl, Sigma) were 

processed for total RNA. P56 and OAS1 mRNAs were analyzed by RT-qPCR 

as reported (Zhou et al. 2013). GAPDH expression was used for normalization 

of the qPCR data.  

Primers used were:  

- P56, Fwd 5′TCAAGTATGGCAAGGCTGTG3′, 

Rev 5′GAGGCTCTGCTTCTGCATCT3′;  

- OAS1, Fwd 5′ACCGTCTTGGAACTGGTCAC3′,  
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Rev 5′ATGTTCCTTGTTGGGTCAGC3′;  

- GAPDH, Fwd 5′AACTTTGGCATTGTGGAAGG3′,  

Rev 5′ACACATTGGGGGTAGGAACA3′. 

 

 

 

3.10 Histology and immuno-histochemistry 
 

 

 

Histological examinations for hematoxylin and eosin and Ki-67 was performed 

to confirm the diagnosis of the tumors and to evaluate the proliferative activity 

of the neoplastic cells, respectively.  

Tumors were embedded in paraffin and sectioned at 4 µm. For histological 

examinations, serial paraffin sections were stained with Harris hematoxylin and 

aqueous eosin (H&E, BDH Laboratory Supplies). Cell proliferation was 

assessed by Ki-67 immunohistochemistry using anti-human Ki-67 antibody 

(Epitomics, Burlingame, CA, USA, diluted 1:500) with immunoperoxidase-

based system “Vectastain ABC kit” and the “DAB substrate kit for peroxidise” 

(Vector labs, Burlingame, CA), according with the manufacturer's protocol.  

Ki-67 proliferation index was calculated as the percentage of Ki-67 positive 

cells/total cell count for 10 randomly selected 20x microscopic fields. 
 

 

 

3.11 Statistics 

 

 

 

Statistical values were defined using Graphpad Prism 6. A P value of 0.05 or 

less was considered significant. 
 

 

 

3.12 Ethics Statement 
 

 

 

All the animal procedures were approved by the Ethical Committee for the 

Animal Use (CESA) of the Istituto di Ricerche Genetiche Gaetano Salvatore 

(IRGS) and where communicated to the national authorities accordingly with 

national and European rules.  

Primary tumor cultures were derived from surgical biopsies. The study 

protocol was approved by the local Ethics Committee of the University of 

Cologne. Written informed consent was acquired prior to surgery from every 

patient for further studies on primary glioma cultures. 
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4. RESULTS 

 

 

 

4.1 The Gint4.T aptamer specifically interacts with the extracellular 

domain of the PDGFRβ 

 

 

 

Gint4.T is a 33 mer-truncated version (Figure 14a) of the original 2′F-Py 

nuclease-resistant RNA-aptamer generated by a differential cell-SELEX 

approach on highly tumorigenic U87MG GBM cells. 

As an attempt to identify the functional targets of Gint4.T, we first performed a 

phospho-receptor tyrosine kinase antibody array analysis that suggested that 

the target of Gint4.T could be PDGFRβ (Figure 14b). Indeed, among the 

receptors whose serum-dependent phosphorylation was reduced following 

aptamer treatment, the greater inhibition was detected for PDGFRβ. To 

definitely establish the Gint4.T affinity and specificity for the target, we next 

performed a filter binding analysis with the soluble extracellular domains of 

human PDGFRα and PDGFRβ (here indicated as EC-PDGFRα and EC-

PDGFRβ, respectively), used as targets. In the assay, an unrelated sequence 

was used as a negative control. As shown in Figure 14c, Gint4.T had a strong 

affinity for EC-PDGFRβ (Kd value of 9.6 nmol/l) whereas it did not bind to 

EC-PDGFRα. 

Further, we observed that the binding of Gint4.T to U87MG cells was strongly 

competed by the recombinant EC-PDGFRβ but not EC-PDGFRα (Figure 14d), 

thus supporting the ability of the aptamer to recognize target cells through the 

binding to the extracellular domain of PDGFRβ on the cell surface and proving 

that the aptamer is able to discriminate PDGFRβ from the structurally similar 

PDGFRα receptor. In agreement with these results, Gint4.T did not bind to 

PDGFRβ-negative NSCLC A549 cells and to U87MG target cells in which the 

expression of the endogenous PDGFRβ was abrogated by a specific shRNA 

(Figure 15a). 

To further characterize the binding identity of Gint4.T aptamer to PDGFRβ-

expressing cells, 10 minutes-treatment of U87MG with FAM-labeled Gint4.T 

was combined with staining with a specific PDGFRβ antibody (Figure 15b-e). 

An extensive overlap of PDGFRβ antibody and FAM-Gint4.T fluorescent 

signals was observed in any field examined by confocal microscopy, thus 

indicating a clear co-localization of the aptamer and the antibody on the 

receptor expressed on cell surface. No FAM-Gint4.T binding to PDGFRβ-

knockdown U87MG (Figure 15f,g) and PDGFRβ-negative A549 cells (Figure 

15h,i) was observed. 
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Figure 14. Gint4.T aptamer specifically binds to human PDGFRβ. (a) 

Secondary structure of Gint4.T predicted by using DNAsis software. (b) 

U87MG cells were serum starved overnight and then incubated with culture 

medium supplemented with 20% FBS for 10 minutes in the presence of 200 

nmol/l Gint4.T or the unrelated aptamer and cell extracts were prepared. 200 

µg-lysates were incubated on RTK antibody arrays. Phosphorylation levels 

were determined by subsequent incubation with anti-phosphotyrosine 

horseradish peroxidase. Arrows indicate phosphorylated PDGFRβ and 

PDGFRα. The pixel intensity associated to the phosphorylation status of the 

receptors whose serum-dependent activation is altered following Gint4.T 

treatment is reported. (c) Binding isotherm for Gint4.T: EC-PDGFRβ complex. 

(d) Binding of 100 nmol/l radiolabeled Gint4.T, prior incubated with 200 

nmol/l EC-PDGFRα or EC-PDGFRβ for 15 minutes at 37°C, to U87MG cells. 

In c, d, the results are expressed relative to the background binding detected 

with the unrelated aptamer, used as a negative control. (b-d) Error bars depict 

mean ± SD (n = 3). EGFR, epidermal growth factor receptor; HGFR, 

hepatocyte growth factor receptor; MSPR; macrophage-stimulating protein 

receptor; PDGFRβ/α, platelet-derived growth factor receptor β/α; VEGFR1, 

vascular endothelial growth factor receptor 1.  
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Figure 15. Gint4.T specifically interacts with PDGFRβ. (a) Left, binding of 

100 nmol/l radiolabeled Gint4.T to U87MG cells following 72 h-transfection 

with a specific PDGFRβ short hairpin RNA (U87MG/shRNAPDGFRβ ) or a 

nonrelated shRNA (U87MG/shRNActrl), or to A549 cells. The results are 

expressed relative to the background binding detected with the unrelated 

aptamer. Error bars depict means ± SD. (n = 3). Right, lysates from transfected 

U87MG or A549 cells were immunoblotted with anti-PDGFRβ antibody. 

Values below the blot indicate signal levels relative to shRNActrl-transfected 

cells, arbitrarily set to 1 (labeled with asterisk). Equal loading was confirmed 

by immunoblot with anti-α-tubulin antibody. Molecular weights of indicated 

proteins are reported. (b–i) Following 10-minutes FAM-Gint4.T treatment, 

U87MG, U87MG/shRNAPDGFRβ or A549 cells were stained with anti-

PDGFRβ antibodies, visualized by confocal microscopy and photographed. All 

digital images were captured at the same setting to allow direct comparison of 

staining patterns. Scale bars = 10 µm. (e) The Manders’ coefficients for the 

amount of co-localization were: M1, 0.975 and M2, 0.908. PDGFRβ, platelet-

derived growth factor receptor β. 
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Moreover, by cell-binding assays with radiolabeled aptamer we demonstrated 

that the Gint4.T aptamer is rapidly endocytosed into U87MG glioma cells, 

getting about 50% of cell internalization following 30 minutes-incubation and 

reached more than 70% following 2 hours of aptamer treatment (Figure 16a). 

Consistently, co-localization experiments of FAM-Gint4.T with the 

endocytosis markers, EEA1 and LAMP1, confirmed the ability of the aptamer 

to rapidly enter into U87MG cells, showing the majority of internalized 

aptamer in compartments positive for EEA1 (early endosomes) and LAMP1 

(late endosomes/lysosomes) following 30 minutes and 2 hours of incubation, 

respectively (Figure 16b-i). 

Taken together, these results indicate that Gint4.T specifically recognizes 

PDGFRβ either if expressed on the cell surface in its physiological context or 

the purified soluble extracellular domain of the receptor. Furthermore, because 

of its ability to rapidly internalize into PDGFRβ-positive target cells, it is a 

highly promising candidate as cargo for tissue specific internalization. 
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Figure 16. Gint4.T aptamer rapidly internalizes into GBM cells. (a) 

Internalization rate of radiolabeled Gint4.T and unrelated aptamer into U87MG 

cells. Results are expressed as percentage of internalized RNA relative to total 

bound aptamer. Error bars depict mean ± SD (n = 3). (b–i) Following treatment 

with FAM-Gint4.T for the indicated times, U87MG cells were stained with 

anti-EEA1 (b–e) or LAMP1 (f–i) antibodies, visualized by confocal 

microscopy and photographed. All digital images were captured at the same 

setting to allow direct comparison of staining patterns. Scale bars = 10 µm. The 

Manders’ coefficients for the amount of co-localization were: M1, 0.620 and 

M2, 0.615 (e); M1, 0.980 and M2, 0.972 (i). EEA1, early endosome antigen 1; 

LAMP1, lysosomal-associated membrane protein 1. 
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4.2 Gint4.T inhibits the PDGFRβ-mediated signal pathways and 

migratory responses of GBM cells 
 

 

 

As a next step, we asked whether, because of its binding to PDGFRβ, Gint4.T 

could interfere with ligand-dependent activation of the receptor and 

downstream signaling. As shown in Figure 17a, 200 nmol/l-Gint4.T treatment 

drastically reduced the tyrosine-phosphorylation of PDGFRβ following 

stimulation of T98G (left) and U87MG (right) cells with PDGF-BB, the 

primary activator of PDGFRβ, causing about 70% inhibition at 5 minutes of 

ligand treatment. No effect was observed in the presence of the unrelated 

sequence used as a negative control. Consistently, a substantial reduction of 

PDGF-BB-dependent phosphorylation of extracellular signal-regulated kinase 

1 and 2 (Erk1/2) and PKB/Akt kinase was observed in the presence of Gint4.T 

treatment in both cell lines (Figure 17b). Furthermore, the neutralizing effect of 

the aptamer was also observed in primary cell cultures of malignant 

glioblastomas (Figure 17c). 

Intracellular signaling initiated by PDGFRβ has been reported to be involved in 

the metastatic potential of cancer (Gilbertson and Clifford 2003) and its 

inhibition in vitro results in impairment of cell migration (Abouantoun and 

MacDonald 2009), thus we determined whether Gint4.T could affect migration 

of GBM cells. 

As shown in Figure 18a, treating T98G and U87MG cells with Gint4.T 

aptamer strongly reduced cell migration, either stimulated by serum and by the 

PDGF-BB, as compared with the unrelated aptamer. In addition, monolayers of 

T98G and U87MG cells were scratched and images were taken at 0, 24, and 48 

hours after wounding (Figure 18b). The wound closure was significantly 

delayed in the presence of Gint4.T treatment compared with controls, the effect 

of the aptamer being time dependent (see lower panels). Thus, in good 

agreement with previous reports, PDGFRβ inhibition by Gint4.T treatment 

results in cell migration impairment. 
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Figure 17. Gint4.T inhibits PDGF-BB-dependent PDGFRβ activation. (a–

c) Serum-starved T98G, U87MG, or primary glioma cells from two patients 

(PG-G and VS-GB) were either left untreated or stimulated with PDGF-BB in 

the presence of Gint4.T or the unrelated aptamer (used as a negative control), 

as indicated. Cell lysates were immunoblotted with anti-pPDGFRβ, anti- 

PDGFRβ, anti-pERK, anti-pAkt. Filters were stripped and reprobed with anti-

Erk and anti-Akt antibodies, as indicated. Values below the blots indicate 

signal levels relative to PDGF-BB stimulated cells in the absence (a) or in the 

presence (b, c) of unrelated aptamer, arbitrarily set to 1 (labeled with asterisk). 

(a–c) Equal loading was confirmed by immunoblot with anti-α-tubulin 

antibody. Molecular weights of indicated proteins are reported. 



50 

 

 
 

 

Figure 18. Gint4.T inhibits GBM cell migration. (a) Motility of T98G and 

U87MG cells was analyzed by Transwell Migration Assay in the presence of 

Gint4.T or the unrelated aptamer, used as a negative control, for 24 hours 

toward 10% FBS or PDGF-BB (50 ng/ml) as inducers of migration. The 

migrated cells were stained with crystal violet and photographed. 
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Representative photographs of at least three different experiments were shown. 

The results are expressed as percent of migrated cells in the presence of 

Gint4.T with respect to cells treated with the unrelated aptamer. (b) Confluent 

monolayers of T98G and U87MG cells were subjected to scratch assays and 

mock-treated or treated with Gint4.T or the unrelated aptamer for 24 and 48 

hours. Phase-contrast microscopy images were taken at the indicated time and 

the extent of wound closure was calculated (magnification 4x). (a, b) ***P < 

0.0001 relative to unrelated (n = 3). Error bars depict means ± SD. FBS, fetal 

bovine serum; PDGF, platelet-derived growth factor. 
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4.3 Gint4.T blocks GBM cell proliferation  

 

 

 

Based on the Gint4.T inhibitory potential on the activation of Erk1/2 and the 

PKB/Akt pathways, we determined whether the aptamer was also able to 

reduce cell viability and proliferation in vitro. As assessed by 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, treatment 

of T98G and U87MG with Gint4.T strongly inhibited cell viability in a dose-

dependent (Figure 19a,b) and time-dependent (Figure 19a,b, inserts) manner. 

The effect was comparable or even stronger than in the presence of the anti-

EGFR pro-apoptotic CL4 aptamer (Esposito et al. 2011), used as a positive 

control. Remarkably, no cytotoxicity was observed with the unrelated aptamer, 

even at high concentration. 

 

 

 
Figure 19. Gint4.T inhibits GBM cell survival. T98G (a) and U87MG (b) 

cells were mock-treated or treated for 24 hours with increasing amounts of 

Gint4.T, CL4 or the unrelated aptamer as a negative control, or with 200 nmol/l 

final concentration of each aptamer for the indicated incubation times (inserts). 

Cell viability was analyzed and expressed as percent of viable treated cells with 

respect to mock-treated cells. (a, b) P values for Gint4.T and CL4 relative to 

unrelated are: ***P < 0.0001; **P < 0.005; *P < 0.05 (n = 6). Error bars depict 

means ± SD. 
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To establish whether Gint4.T inhibits cell proliferation, we performed flow 

cytometry of cells stained with anti-BrdU and propidium iodide (PI). 

Interestingly, 72-hours treatment of T98G (Figure 20a) and U87MG (Figure 

20b) with Gint4.T (left) depleted cells at G2/M phases, with a consistent 

increase of the cell population in S-phase compared with the unrelated 

aptamer-treated cells (right). Analyzing the anti-5-bromodeoxyuridine 

incorporation profile (see inserts), we observed that the Gint4.T treatment did 

not prevent T98G and U87MG cells from entering the S-phase, even if cells 

displayed an evident defect in intra-S, but caused a failure of the cells to 

complete S and move toward G2 phase. 

Accordingly, growth curve experiments confirmed that the aptamer exerted a 

severe inhibitory effect on T98G and U87MG cell proliferation (almost 80% 

inhibition at day 6) with respect to cells mock-treated or treated with the 

unrelated sequence, that proliferated at comparable rates (Figure 20c,d). 

Furthermore, to determine whether GBM cells would resume proliferation 

upon removal of Gint4.T, T98G cells were left in culture over a 11-day time 

period in the presence of Gint4.T (Figure 20c, solid line) or at day 4 medium 

containing Gint4.T was replaced with aptamer-free medium and incubation 

was further prolonged for 7 days (Figure 20c, dashed line). As shown, a slight 

increase of cell growth was observed indicating that Gint4.T was able to induce 

an almost full inhibition of glioma cells proliferation over the entire period of 

observation. 

Consistently with the inhibitory effects of Gint4.T on cell viability and 

proliferation, treating U87MG and T98G cells with the aptamer caused a time-

dependent reduction of [
3
H]-thymidine incorporation (Camorani et al. 2014).  

Taken together, the results indicate that Gint4.T inhibits growth by inducing S-

phase cell-cycle arrest.  
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Figure 20. Gint4.T inhibits GBM cell proliferation. T98G (a) and U87MG 

(b) cells were treated for 72 hours with Gint4.T or the unrelated aptamer, as 

indicated. Cell-cycle profile were determined by BrdU incorporation and PI 
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staining. Percentages of cells in each cycle phase are indicated. T98G (c) and 

U87MG (d) cells were either mock-treated or treated with Gint4.T or the 

unrelated aptamer, used as a negative control, by renewing the aptamer 

treatment each 24 hours and the cell number was counted at the indicated time 

points. In (c), at day 4 of Gint4.T treatment, the aptamer was removed from the 

culture medium (the arrow) and incubation prolonged (dashed line). (c, d) 

Growth curves represent the average of three independent experiments. ***P < 

0.0001; **P < 0.005; *P < 0.05 relative to unrelated (n=6). Error bars represent 

mean ± SD. BrdU, anti-5-bromodeoxyuridine; PI, propidium iodide. 
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4.4 Gint4.T induces GBM cell differentiation 

 

 

 

The block of T98G and U87MG cells proliferation was accompanied by a 

dramatic morphological change of the cells that became spindle shaped with 

long processes; the effect was evident starting from 2 days of Gint4.T 

treatment and more pronounced after 6 days (Figure 21a). Since these 

morphological alterations are also suggestive of cellular differentiation we 

monitored the expression of GFAP, a determining factor for astrocytic cell 

shape (Conti et al. 2005). 

Our results showed that the expression of GFAP was remarkably increased in 

Gint4.T-treated cells, compared with untreated T98G and U87MG cells, with 

the highest expression observed at 6-day treatment (Figure 21b). Expression 

levels were similar to those observed in cells treated with 1 µmol/l all-trans 

retinoic acid (ATRA) (herein indicated as AR) that has been reported to induce 

differentiation with upregulation of GFAP in both U87MG and T98G cells 

(Das et al. 2009). 

 

 

Figure 21. Gint4.T induces GBM cell differentiation. (a) T98G and U87MG 

cells were treated for 6 days with Gint4.T or the unrelated aptamer and 

photographed by phase-contrast microscopy (magnification 4x). (b) Cells were 

treated as in (a) or with 1 µmol/l ATRA (AR) and GFAP mRNA levels were 

analyzed by RT-PCR. ATRA, all-trans retinoic acid; GFAP, glial fibrillary 

acidic protein. 
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Recently, it has been reported that PDGFRβ is expressed by self-renewing 

tumorigenic GSCs, suggesting a more definitive role for this RTK in 

tumorigenesis and/or maintenance. Thus, targeting PDGFRβ (by shRNA and 

small inhibitors) in GSCs, attenuates self-renewal and tumor growth and 

induces cell differentiation (Kim et al. 2012).  

Preliminarily, in order to investigate whether Gint4.T could inhibit self-

renewal and induce differentiation of GSCs, we have settled the experimental 

conditions to obtain neurospheres from U87MG cells, grown in stem cell 

culture medium. As assessed by immunoblot (Figure 22a) and RT-qPCR 

(Figure 22b), U87MG neurospheres (herein indicated as U87MG-sphere) 

express glioma stem cell markers and highly levels of PDGFRβ compared to 

U87MG differentiated cells (herein indicated as U87MG-diff) obtained from 

neurospheres grown in serum-containing medium. 

Self-renewal is a defining characteristic of cancer stem cells (Reya et al. 2001). 

Therefore, to determine whether targeting PDGFRβ expression could influence 

neurosphere formation, size of spheres and receptor level, U87MG 

neurospheres  has been mock-treated or treated with 200 nmol/l Gint4.T or the 

unrelated aptamer. Interestingly, Gint4.T reduced neurosphere formation 

(Figure 23a, left) and size of spheres (Figure 23a, right). Accordingly, a 

reduction of PDGFRβ expression levels was observed (Figure 23b). 

As a next step, based on the Gint4.T inhibitory potential on PDGF-BB-induced 

activation of PDGFRβ, we determined whether the aptamer was still able to 

interfere with ligand-dependent activation of the receptor in GSCs. As shown 

in Figure 23c, 200 nmol/l Gint4.T treatment reduced the tyrosine-

phosphorylation of PDGFRβ following stimulation of U87MG neurospheres 

with PDGF-BB, causing about 30% inhibition at 5 minutes of ligand treatment. 

Taken together, the results indicate that Gint4.T inhibits growth by inducing 

differentiation in GBM cells and that it reduces self-renewal ability of U87MG 

neurosphere cultures thus supporting the hypothesis that it could be effective 

even in patient-derived GSCs. 
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Figure 22. Expression of stemness markers in U87MG neurospheres. (a, b) 

U87MG cells have been grown as neurospheres (U87MG-sphere) in stem cell 

culture medium. (a) Lysates from U87MG neurospheres and neurospheres 

upon the induction of differentiation using serum (U87MG-diff) were 

immunoblotted with anti-PDGFRβ, anti-Nanog, anti-Sox2 antibodies, as 

indicated. Equal loading was confirmed by immunoblot with anti-α-tubulin 

antibody. Molecular weights of indicated proteins are reported. (b) Cells as in 

(a) and Nanog, Sox-2, PDGFRβ, Shh mRNA levels were analyzed by RT-

qPCR. Error bars depict mean ± SD (n = 3). PDGFRβ, platelet-derived growth 

factor receptor β. 
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Figure 23. The anti-PDGFRβ Gint4.T aptamer reduces neurosphere 

formation and size of spheres. (a) U87MG neurosphere were mock-treated or 

treated for 10 days with Gint4.T or the unrelated aptamer and spheroid number 

has been calculated (left). Error bars depict mean ± SD (n = 3). Representative 

photographs of the spheroids by phase-contrast microscopy (magnification 4x) 

(right). (b) U87MG neurosphere were treated as in (a) and cell lysates were 

immunoblotted with anti-PDGFRβ antibody. (c) GSCs growth factor-deprived 

overnight U87MG neurospheres were either left untreated or stimulated with 

PDGF-BB in the presence of Gint4.T or the unrelated aptamer, as indicated. 

Cell lysates were immunoblotted with anti-pPDGFRβ antibody. Values below 

the blots indicate signal levels relative to PDGF-BB stimulated cells in the 

presence of unrelated aptamer, arbitrarily set to 1 (labeled with asterisk). (b, c) 

Equal loading was confirmed by immunoblot with anti-α-tubulin antibody. 

Molecular weights of indicated proteins are reported. PDGF, platelet-derived 

growth factor; PDGFRβ, platelet-derived growth factor receptor β 
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4.5 Gint4.T prevents PDGFRβ-mediated EGFR transactivation in GBM 

cells 

 

 

 

It has been reported that PDGFR stimulation transactivates EGFR in rat aortic 

vascular smooth muscle (Saito et al. 2001) and in medulloblastoma 

(Abouantoun and MacDonald 2009) and that receptor heterodimerization is an 

essential mechanism for PDGF-induced EGFR transactivation. Thus, we asked 

whether interfering with PDGFRβ expression and function by a specific 

shRNA (Figure 24a) or Gint4.T aptamer (Figure 24b), respectively, could 

inhibit basal EGFR phosphorylation in T98G cells that express high levels of 

both EGFR and PDGFRβ. As shown, we observed about 30% of inhibition of 

EGFR phosphorylation with both the approaches thus indicating that PDGFRβ 

can transactivate EGFR under basal unstimulated cell condition. 

Further, we determined whether PDGF-BB stimulation could enhance the 

EGFR transactivation observed in unstimulated cells and, if that was the case, 

whether inhibiting PDGFRβ and EGFR with Gint4.T and CL4, respectively, 

could affect this event. As shown, PDGF-BB stimulation significantly 

activated EGFR in U87MG and T98G cells but not in A431 cells, which 

overexpress EGFR but lack PDGFRβ, indicating that PDGF stimulates EGFR 

in PDGFRβ-dependent manner (Figure 24c). Remarkably, PDGF-BB 

dependent transactivation of EGFR in T98G cells was decreased by Gint4.T as 

well as CL4 treatment (Figure 24d) thus likely occurs via receptor 

heterodimerization. Further, by combining Gint4.T and CL4 treatment, a more 

pronounced reduction of PDGFRβ and EGFR phosphorylation (about 80%) 

was observed (Figure 24d). In addition, we found that the amount of 

pEGFR/EGFR coimmunoprecipitated with PDGFRβ increases following 

PDGF-BB stimulation of the cells and that Gint4.T as well as CL4 inhibited 

PDGF-induced PDGFRβ/EGFR heterodimers and EGFR transactivation 

(Figure 24e). This suggested that the binding of each aptamer to the 

extracellular domain of its related receptor interfered with the heterodimers 

formation, again the inhibition results stronger by using the two aptamers in 

combination (Figure 24e). In agreement with these observations from T98G 

cells also in U87MG cells, both aptamers were able to block PDGF-induced 

EGFR transactivation (Camorani et al. 2014). 
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Figure 24. Gint4.T prevents PDGFRβ-mediated EGFR transactivation. (a, 

b) Lysates from T98G cells, following transfection with shRNAPDGFRβ or 

shRNActrl (a) or treated for 6-hours with Gint4.T or the unrelated aptamer as a 

negative control (b), were immunoblotted with anti-pPDGFRβ, anti-PDGFRβ, 

anti-pEGFR, anti-EGFR antibodies, as indicated. (c) Serum-starved U87MG, 

T98G, and A431 cells were either left untreated or stimulated with PDGF-BB 

or EGF and cell lysates were immunoblotted with anti-pEGFR, anti-EGFR 

antibodies, as indicated. (d, e) Serum-starved T98G cells were either left 

untreated or stimulated with PDGF-BB in the absence or in the presence of 200 

nmol/l Gint4.T, 200 nmol/l CL4, 200 nmol/l Gint4.T plus 200 nmol/l CL4, or 

400 nmol/l unrelated aptamer, as indicated. Cell lysates were either 

immunoblotted with anti-pPDGFRβ, anti-PDGFRβ, anti-pEGFR, anti-EGFR 

antibodies (d) or immunoprecipitated with anti-PDGFRβ antibody and 

immunoblotted with anti-pEGFR and anti-EGFR antibodies (e). (a–e) Values 

below the blot indicate signal levels relative to each control, arbitrarily set to 1 

(labeled with asterisk). (a–d) Equal loading was confirmed by immunoblot 

with anti-α-tubulin antibody. Molecular weights of indicated proteins are 

reported. 
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As a next step, we compared their inhibition on cell viability to that of three 

commercially available inhibitors that are currently in clinical use as anticancer 

therapeutics for EGFR, Gefitinib (TKI), and Cetuximab (monoclonal 

antibody), and for PDGFRβ, Imatinib (TKI). In dose- and time-dependent 

experiments, T98G and U87MG cells resulted highly resistant at both the 

EGFR inhibitors (Carrasco-García et al. 2011; Camorani et al 2014). Regarding 

Imatinib, an appreciable reduction of cell viability was observed only starting 

from a concentration of 10 µmol/l (Ranza et al. 2010; Camorani et al 2014). 

Further, single drugs and pairwise combinations were analyzed in T98G and 

U87MG for cell viability (Figure 25a). No additive or synergic effect was 

observed with each drug combinations except that for the treatment with CL4 

plus Gint4.T that appeared to be the best combination for inhibiting cell 

viability with additive interaction, reaching about 70% inhibition when 

compared with mock-treated cells or cells treated with the unrelated aptamer 

(Figure 25a). 

Ultimately, as shown in Figure 25b, the massive decreasing of T98G and 

U87MG cell viability level after the combined treatment with Gint4.T and CL4 

at a total concentration of 400 nmol/l is comparable with that obtained with a 

concentration of  TMZ, the chemotherapeutic agent used to treat glioblastomas, 

even much higher than that used in clinic (Ostermann et al. 2004). Further, 

almost 80% inhibition of cell viability was observed in both cell lines by 

combined treatment of the two aptamers with TMZ. 

Altogether, these results establish that the use of the two aptamers in 

combination causes a drastic reduction of PDGF-BB-dependent activation of 

the receptors that results in the inhibition of cell viability even stronger than 

that caused by high concentration of approved PDGFR and EGFR inhibitors 

and of TMZ. 
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Figure 25. Combined effect of Gint4.T and CL4 on cell viability. (a, b) 

T98G and U87MG cells were mock-treated or treated for 72 hours with 200 

nmol/l Gint4.T, 200 nmol/l CL4, and (b) 10 µmol/l Imatinib (indicated as Ima), 

5 µmol/l Gefitinib (indicated as Gef), 1 µmol/l Cetuximab (indicated as Cet), or 

(b) 100 µmol/l and 400 µmol/l TMZ, as single agents or in combination, as 

indicated and cell viability was analyzed. (a) As a negative control, cells were 

treated with the unrelated aptamer at a concentration of 400 nmol/l. ***P < 

0.0001; **P < 0.005; *P < 0.05 relative to mock-treated (n=6). ###P < 0.0001. 

Error bars depict means ± SD. TMZ, temozolomide. 
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4.6 Gint4.T inhibits tumor growth and enhances antitumor activity of the 

CL4 anti-EGFR aptamer 

 

 

 

To assess tumor targeting by Gint4.T, mice bearing palpable (~60 mm
3
) 

xenograft tumors from GBM U87MG-luc cells (PDGFRβ+) and breast MCF7-

luc cells (PDGFRβ−) on left and right flanks, respectively, were treated with a 

single intravenous injection of 1.600 pmol (1.04 mg aptamer/kg mean body-

weight) of Alexa-labeled Gint4.T or Alexa-labeled unrelated aptamer. The 

affinity of Gint4.T for PDGFRβ was unchanged by the labeling procedure. 

The aptamer amount in the tumors was thus monitored at different times by 

evaluating the intensity of fluorescent signal per bioluminescence as measure 

of tumor mass. As shown in Figure 26a, the signal of Gint4.T, normalized to 

that of the unrelated aptamer, consistently increased from 60 to 120 minutes 

and remained high up to 24 hours in U87MG target tumors but not in MCF7 

nontarget tumors, thus indicating that Gint4.T still preserves its binding 

specificity in vivo. Further, 15 days after aptamer injection the bioluminescence 

increased approximately four times in unrelated aptamer control tumors while 

remained unchanged in Gint4.T-treated tumors (Figure 26b) thus indicating 

that a single aptamer treatment is sufficient to cause a significant tumor growth 

inhibition at least in mice bearing small tumors. 

Therefore, to test the efficacy of Gint4.T and CL4 in combination in U87MG-

derived mouse xenografts, treatments were initiated at 24 days after cell 

inoculation, when tumor mean volume was ~150 mm
3
, and tumor growth was 

monitored by bioluminescence imaging (Figure 26c, left) and calipers 

measuring (Figure 26c, right) for further 10 days. CL4 and Gint4.T were 

administered intravenously individually or in combination at day 0, 3, 5, and 7. 

As shown, xenografts of CL4-treated and Gint4.T-treated mice grew at a 

significantly slower rate than xenografts of unrelated aptamer and vehicle 

control-treated mice, Gint4.T revealing more effective in inhibiting tumor 

growth than CL4. Further, reproducing the cell culture findings, the combined 

treatment of the two aptamers inhibited tumor growth (Figure 26c) and 

decreased the extent of EGFR and PDGFRβ tyrosine phosphorylation (Figure 

26d) more efficiently than the treatment with each single agent. 

The antitumor activity of Gint4.T was also confirmed by immunohistochemical 

staining for Ki-67 that revealed a strong reduction of the number of 

proliferating Ki-67-positive cells in tumors from Gint4.T-treated mice 

compared with tumors from mice vehicle-treated (Figure 26e). This inhibition 

of GBM-derived tumor growth was further enhanced when Gint4.T was used 

in combination with the CL4 aptamer (Figure 26e). Notably, the inhibiting 

effect of Gint4.T and CL4, both if administrated alone or in combination, 

culminated in a strong induction of caspase-3 cleaved fragments, a hallmark for 

induction of apoptosis (Woo et al. 1998) (Figure 26f). 
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At last, in order to exclude nonspecific immune activation in response to 

aptamer treatments, we observed that the expression levels of interferon-

inducible IFIT1 (P56) and OAS1 genes were not increased in liver and spleen 

of treated animals (Figure 26g). 
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Figure 26. Gint4.T cell specificity in vivo and inhibition of tumor growth. 
(a, b) Mice bearing MCF7-luc (right-flank) and U87MG-luc (left-flank) 

xenografts (tumor mean volume: 60 mm
3
) were injected intravenously either 

with Alexa-labeled Gint4.T or the unrelated aptamer, used as a negative 

control. (a) Aptamer amount was monitored by evaluating the intensity of 

fluorescent signal normalized for the bioluminescence and measured at the 

indicated times. Example shows fluorescence signal in one representative 

animal from each treatment group at 120 minutes after injection. The circles 
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indicate where the tumors are located. (b) Tumor growth inhibition was 

measured as bioluminescence intensity (photons/second). ***P < 0.0001 (n=5). 

(c) Mice bearing U87MG-luc xenografts (tumor mean volume, 150 mm
3
) were 

injected intravenously with Gint4.T, CL4, Gint4.T plus CL4, unrelated aptamer 

or PBS (vehicle) at day 0, 3, 5, and 7. Tumor volumes were measured by 

bioluminescence (left) and calipers (right) and experimental raw data 

(expressed as fold increase) were interpolated with no curve fitting or 

regression analysis. **P < 0.005; *P < 0.05 relative to vehicle (n = 5). In (b, c) 

day 0 marks the start of treatments. (d) Immunoblot with anti-pPDGFRβ, anti-

PDGFRβ, anti pEGFR, anti-EGFR, and anti-α-tubulin antibodies of pooled 

lysates from recovered tumors. Values are expressed as relative to vehicle, 

arbitrarily set to 1 (labeled with asterisk). (e) Representative sections of tumors 

from each groups were stained with H&E and Ki-67 antibody, and Ki-67 

proliferation index was calculated. ***P < 0.0001; **P < 0.005 relative to 

vehicle (n=5). ###P < 0.0001. Scale bars are indicated. (f) Immunoblot with 

anti-caspase-3 and anti-α-tubulin antibodies of pooled lysates from recovered 

tumors. (g) P56 and OAS1 mRNAs expression relative to control arbitrarily set 

to 1. PBS and Poly (I:C)-treated mice were used as a negative and positive 

control, respectively. In (a–c, e, g) error bars depict means ± SD. EGFR, 

epidermal growth factor receptor; PDGFRβ, platelet-derived growth factor 

receptor β. 
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5. DISCUSSION 

 

 

 

Glioblastoma is the most common and highest-grade primary malignant brain 

tumor in adults. Being one of the most aggressive cancers, GBM is well 

recognized for its intratumoral heterogeneity and is characterized by rapid 

growth rate and highly invasive capacity to infiltrate to critical neurological 

areas within the brain. 

Insights into the molecular pathogenesis of GBM have not yet resulted in 

relevant clinical improvement. Currently, patients with GBM are usually 

treated with standard therapy, which consists of surgical resection with 

concomitant TMZ in addition to radiotherapy followed by adjuvant TMZ, and 

their median duration of survival is 12–14 months. To date, many studies 

report several determinants of resistance to this aggressive therapy: the 

complexity of several altered signaling pathways in GBM, the existence of 

GSCs and the BBB (Ohka et al. 2012). 

As the challenge of treating GBM is enormous, the development of novel 

molecular-targeting agents and novel strategies targeting is one of the most 

significant advances in cancer therapy and diagnosis in recent years. Thus, the 

design of new drugs, including monoclonal antibodies and TKIs, and targets 

are constantly being investigated. These drugs can be very selective in action 

and may provide opportunities to attack brain cancers on a qualitatively new 

front. 

Targeted therapies block activation of oncogenic pathways, either at the 

ligand–receptor interaction level or by inhibiting downstream signal 

transduction pathways, thereby inhibiting growth and progression of cancer. 

Because of their specificity, targeted therapies should theoretically have better 

efficacy and safety profiles than systemic cytotoxic chemotherapy or 

radiotherapy (Wick et al. 2011).  

Furthermore, new data indicate that subtypes of GBM exist with distinct 

molecular characteristics, suggesting that to fully evaluate targeted agents, 

patient selection based on tumor subtype may be needed. Because of the 

progressive nature of GBM and the accumulation of genomic and proteomic 

changes, it is also possible that a recurrent tumor may have characteristics 

different from those of the primary tumor, suggesting that additional biopsy 

specimens should be obtained from tumors at recurrence to ensure that an 

appropriate therapy is selected.  

The starting point for appropriate targeted therapies to improve patient 

outcomes is the identification of cancer-specific biomarkers. Tyrosine kinases 

play a fundamental role in signal transduction cancer, and deregulated activity 

of these enzymes have been associated with tumor oncogenesis. 

Previous studies indicate that PDGFRβ contributes significantly to the 

pathogenesis process associated with malignant gliomas (Ostman 2004), and its 

direct inhibition leads to tumor growth arrest (Kilic et al. 2000), indicating that 
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PDGFRβ might be a therapeutic target for GBM. The current class of PDGFRβ 

drugs consist of small molecule TKIs that exhibit limited specificity and 

modest efficacy while no antibodies have entered the clinic. However, some of 

these agents are unlikely to be of practical value in the treatment of patients 

with brain cancer because of the presence BBB. In addition, an intact BBB 

may represent an important impediment limiting the efficacy in the treatment 

of patients with brain cancer. 

Given the absence of specific anti-PDGFRβ strategies in clinic, prompted us to 

develop more effective cancer drugs that specifically target PDGFRβ for a 

more specific and selective tumor therapy. 

In the last decade, an emerging new class of therapeutic molecules against 

RTKs is composed of nucleic acid aptamers (Cerchia and de Franciscis 2011). 

Aptamers are short structured single-stranded RNA or DNA that bind with 

high affinity to their target molecules. Thanks to their unique characteristics 

(low size, low cost, convenient synthesis and modification with high batch 

fidelity, no immunogenicity, rapid tissue penetration, and long-term stability) 

the aptamers represent a new class of molecules with a great potential to rival 

monoclonal antibodies in both therapy and diagnosis (Esposito et al. 2011). 

Furthermore, in the last years, aptamers targeting cell surface proteins are 

being explored as cargos for drug delivery applications (Burnett and Rossi 

2012; Cerchia et al 2011; Thiel and Giangrande 2010). 

In this study, we have developed a 33mer nuclease-stabilized RNA aptamer, 

named Gint4.T, that acts as a neutralizing ligand for human PDGFRβ. To our 

knowledge, this is the first report of an anti-PDGFRβ aptamer. Conversely, one 

aptamer recognizing the PDGF-B ligand and blocking its proliferative effect 

has already entered clinical trials for the treatment of AMD (Green et al. 1996), 

supporting the potential effectiveness of our approach aimed at blocking the 

activation of the PDGFR for therapeutic purposes. 

The aptamer, generated by a cell-SELEX approach on malignant U87MG 

GBM cells, specifically binds to the extracellular domain of PDGFRβ with a 

Kd of 9.6 nM, and inhibits the receptor activity in GBM cells and in vivo. We 

demonstrate that the binding of the Gint4.T to PDGFRβ strongly reduces the 

receptor TK activity and the consequent activation of the two main 

downstream effectors Erk1/2 and Akt. 

Accordingly with the involvement of PDGFRβ in cancer cell migration and 

proliferation, we show that Gint4.T dramatically inhibits in vitro GBM cell 

migration and blocks cell proliferation. Importantly, following continuous 

aptamer exposure, the effect on cell proliferation does not disappear within at 

least 1 week after removal of the aptamer from the culture medium, indicating 

that Gint4.T was able to induce an almost full inhibition of glioma cells 

proliferation over the entire period of observation. 

The Gint4.T-dependent inhibition of cell proliferation is accompanied by a 

profound U87MG and T98G morphological transformation indicative of cell 

differentiation, which is further supported by the upregulation of glial 

differentiation marker GFAP. A differentiating effect on immortalized glioma 
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cell lines, including U87MG and T98G, has previously been observed 

following cell treatment with ATRA (Das et al. 2009) and cycloheximide (Liu 

et al. 2010). However, to date it has never been reported following treatment 

with PDGFRβ-inhibitors, thus advising new insights into the role of PDGFRβ 

signaling in glioma development and progression and showing important 

impact on anti-cancer differentiation therapies.  

Recently, PDGFRβ has been shown to promote GSCs self-renewal, suggesting 

a more definitive role for this RTK in tumorigenesis and/or maintenance. As 

emerged, PDGFRβ correlates with stemness of GSCs and targeting PDGFRβ 

(by shRNA and small inhibitors) in GSCs, attenuates self-renewal and tumor 

growth and induces cell differentiation (Kim et al. 2012; Dong et al. 2012).  

Recently, we have indicated that Gint4.T reduces self-renewal ability of 

U87MG neurosphere cultures thus supporting the hypothesis that it could be 

effective even in patient-derived GSCs. Furthermore, we are currently 

investigating whether Gint4.T could as well induce glioma stem cells 

differentiation and reduce the ability of these cells to propagate tumors in vivo. 

Accordingly with the remarkable specificity of aptamers that can distinguish 

targets on the basis of subtle structural differences, as assessed by different 

biochemical approaches, Gint4.T binds to PDGFRβ at high affinity and 

discriminate between the β and the α receptors. It has been shown that human 

GBM have a different cellular distribution of PDGFRα and PDGFRβ and that 

the two receptors can stimulate distinct signals once activated by PDGFs (Kim 

et al. 2012; Hermanson et al. 1992). Thus, Gint4.T may help to understand the 

role of individual PDGF receptors on glioma cellular biology and signaling. 

From a therapeutic standpoint, because no specific antagonists exist for 

discrimination of the two receptor subtypes, Gint4.T shows a great potential 

with respect to conventional pharmacological approaches for GBM treatment. 

Interestingly, the co-activation of c-Met and PDGFR in GBM has been 

suggested to be one of the mechanisms that potentially leads to GBM 

resistance to anti-EGFR therapy and limits the efficacy of therapies targeting 

single receptors (Stommel et al. 2007; Velpula et al. 2012). Here we first 

demonstrate that PDGFRβ induces transactivation of EGFR in GBM cells 

under basal condition that is further increased following PDGF-BB stimulation 

of the cells. Remarkably, we found that the treatment of the cells with the anti-

PDGFRβ Gint4.T aptamer inhibits PDGF-BB-induced EGFR transactivation, 

thus likely occurs via receptor heterodimerization. This is in good agreement 

with previous reports showing that Imatinib blocks migration and invasion of 

medulloblastoma cells by inhibiting PDGFRβ-mediated transactivation of 

EGFR (Abouantoun et al. 2009).  

Further, the combination of Gint4.T and the anti-EGFR CL4 aptamer inhibits 

the PDGF-BB-induced EGFR transactivation at a higher extent compared with 

single aptamer treatment. 

In addition, we found that the amount of pEGFR/EGFR coimmunoprecipitated 

with PDGFRβ increases following PDGF-BB stimulation of the cells and that 

Gint4.T as well as CL4 inhibits PDGF induced PDGFRβ/EGFR heterodimers 
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and EGFR transactivation. Thus, the binding of each aptamer to the 

extracellular domain of its proper receptor interfered with the heterodimers 

formation, again the inhibition being stronger by using the two aptamers in 

combination.  

Accordingly, the use of two aptamers in combination causes a drastic inhibition 

of cell viability even stronger than that caused by high concentration of 

approved PDGFRβ (Imatinib) and EGFR inhibitors (Gefitinib and Cetuximab) 

and of TMZ, the benchmark agent for the management of GBM. Further, 

almost 80% inhibition of cell viability was observed by combined treatment of 

GBM cell lines with the two aptamers and TMZ. 

Importantly, the potent inhibitory effect of Gint4.T extended to a xenograft 

model of GBM. Indeed Gint4.T, administrated with a single intravenous 

injection in mice bearing small tumors (60 mm
3
), induces a remarkable tumor 

growth inhibition, thus in good agreement with the effective block of cell 

proliferation observed in vitro. Synergistic tumor growth inhibition is obtained 

by the combination treatment of Gint4.T and CL4 aptamers in mice bearing 

large tumors (150 mm
3
), again, confirming the relevance of the cell culture 

data to in vivo models. 

Notably, no nonspecific immunostimulatory effects were observed with CL4 

and Gint4.T aptamers, as expected by the use of chemically-modified 

nucleotides (Yu D et al. 2009; Zhou et al. 2013). 

Furthermore, we show that when systemically administrated Gint4.T is able to 

discriminate between target tumors (U87MG, expressing the related receptor) 

and nontarget tumors which do not express PDGFRβ (MCF7), thus providing 

exquisite aptamer cell specificity not only in cell culture but also in vivo. 

Moreover, the potential impact of Gint4.T as therapeutic, is strongly 

highlighted by the finding that the aptamer not only binds to the PDGFRβ at 

high affinity and inhibits its activity, but also rapidly and specifically 

internalizes within the target cells. Further, Gint4.T aptamer is rapidly 

endocytosed into PDGFRβ-positive target cells, getting about 50% of cell 

internalization following 30 minutes-incubation and reached more than 70% 

following 2 hours of aptamer treatment. Consistently this is confirmed by co-

localization of FAM-Gint4.T with EEA1 and LAMP1 endocytosis markers. 

Thus, based on the recent development of aptamer-siRNA/miRNA 

bioconjugates (Burnett and Rossi 2012; Thiel and Giangrande 2010), Gint4.T 

appears as a prime candidate tool for delivering cell-selective gene knockdown, 

the major challenge for translating RNAi into therapy. 

One crucial challenge for human glioma treatment is to deliver drugs 

effectively to invasive glioma cells residing in a sanctuary within the CNS. The 

brain is protected from infectious and toxic agents by a dynamic barrier, the 

BBB, which also impedes drug transport into the brain via the blood 

circulation.  

Several noninvasive strategies have been proposed to overcome this problem, 

such as delivery through the nasal mucosa (Banks 2008), osmotic opening of 

the BBB (Schäfer et al. 2011), nanoparticle coating (Koffie et al. 2011; 
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Dilnawaz et al. 2012), transporter vectors (Allen and Lockman 2003), and viral 

vectors (Foust et al. 2009; Chen YH et al. 2009). An untested area of 

investigation for approaching brain delivery is aptamers. It is generally 

considered that for compounds to cross the BBB, they should have a molecular 

weight of <400 Da and be lipophilic (Chen and Liu 2012). Given the chemical 

and physical attributes of aptamers, they may enter via adsorptive-mediated 

transcytosis, channel and/or receptors for uptake or fluid-phase pinocytosis 

(Hanss et al. 1998).  

Whether a Gint4.T fraction sufficient for therapeutic benefit could penetrate on 

its own the BBB after systemic injection (Cheng et al. 2013), remains to be 

determined. Alternatively, Gint4.T could breach the BBB once conjugated to 

nanoparticles. Indeed, paclitaxel loaded nanoparticles cross the blood–brain 

barrier and reduce GBM growth in animal models (Dilnawaz et al. 2012; Kim 

et al. 2013; Gao et al. 2012), suggesting the potential of increasing the affinity 

and specificity of these molecules through conjugation to Gint4.T aptamer. 
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6. CONCLUSIONS 

 

 

 

In the last decade, research in the aptamer field has generated great interest 

because of their high potential as targeting agents.  

Collectively, all the findings reported in this work show the inhibitory 

properties of the anti-PDGFRβ Gint4.T aptamer demonstrating its potential 

usefulness as a lead compound for the design of a new class of anticancer drugs 

and may become a valuable alternative to the repertoire of inhibitors that target 

PDGFRβ in cancers. Moreover, based on the recent development of aptamer-

siRNA/miRNA bioconjugates, Gint4.T appears as a prime candidate tool for 

delivering cell-selective gene knockdown, the major challenge for translating 

RNAi into therapy. 

In conclusion, given the paucity of selective inhibitors for RTKs, our study 

represents an initial development of novel aptamer-based therapies as well as 

novel delivery routes that in combinations with conventional therapeutics will 

allow to face with human glioblastomas and should inspire other attempts to 

harness aptamer technology for improved cancer treatment. 
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Platelet-derived growth factor receptor β (PDGFRβ) is a 
cell-surface tyrosine kinase receptor implicated in several 
cellular processes including proliferation, migration, and 
angiogenesis. It represents a compelling therapeutic tar-
get in many human tumors, including glioma. A num-
ber of tyrosine kinase inhibitors under development as 
antitumor agents have been found to inhibit PDGFRβ. 
However, they are not selective as they present multiple 
tyrosine kinase targets. Here, we report a novel PDGFRβ-
specific antagonist represented by a nuclease-resistant 
RNA-aptamer, named Gint4.T. This aptamer is able to 
specifically bind to the human PDGFRβ ectodomain (Kd: 
9.6 nmol/l) causing a strong inhibition of ligand-depen-
dent receptor activation and of downstream signaling 
in cell lines and primary cultures of human glioblastoma 
cells. Moreover, Gint4.T aptamer drastically inhibits cell 
migration and proliferation, induces differentiation, and 
blocks tumor growth in vivo. In addition, Gint4.T aptamer 
prevents PDGFRβ heterodimerization with and resultant 
transactivation of epidermal growth factor receptor. As 
a result, the combination of Gint4.T and an epidermal 
growth factor receptor–targeted aptamer is better at 
slowing tumor growth than either single aptamer alone. 
These findings reveal Gint4.T as a PDGFRβ-drug candi-
date with translational potential.

Received 8 November 2013; accepted 18 December 2013; advance online  
publication 25 February 2014. doi:10.1038/mt.2013.300

INTRODUCTION
The platelet-derived growth factors (PDGFs) signal through two 
structurally similar tyrosine kinase receptors (RTKs), PDGF 
receptors α and β (PDGFRα and PDGFRβ).1–4 Pathogenic roles of 
altered PDGF/PDGFR signaling have been established for a num-
ber of human diseases including cancer. Preclinical studies have 
not only shown an important role for the overexpression, point 
mutations, deletions, and translocations of PDGFRβ in tumori-
genesis and maintenance of the malignant phenotype,2,5 but have 
also proven that the targeted inhibition of signaling cascades has 
significant anticancer effects.6,7

Our objective was to apply an aptamer-based approach to 
develop new PDGFRβ-targeting drugs for a specific and selective 
tumor therapy. Nucleic acid-based aptamers represent an emerg-
ing wave of targeted therapeutic molecules against RTKs.8–14 
They are short structured single-stranded RNA or DNA ligands 
that bind with high affinity to their target molecules and are now 
emerging as promising molecules to recognize specific cancer 
epitopes in clinical diagnosis and therapy.15–17 Because of their 
high specificity and low toxicity, aptamers can successfully com-
pete with the universally used antibodies for in vivo-targeted 
recognition as therapeutics or delivery agents for nanoparticles, 
small interfering RNAs, chemotherapeutic cargos, and molecular 
imaging probes.18–20 Further, in contrast to monoclonal antibod-
ies, aptamers are characterized by high stability and convenient 
synthesis and modification with minimal inter-batch variability. 
Different therapeutic aptamers are now being tested in clinical tri-
als and one has been approved by the US FDA15,16 thus supporting 
the potential effectiveness of aptamer-based approaches for thera-
peutic purposes.

So far, a number of tyrosine kinase inhibitors (such as Imatinib 
mesylate, Sunitinib malate and Sorafenib) that act on a wide 
spectrum of tyrosine protein kinases including PDGFRβ21,22 are 
under development as antitumor agents. They might overcome 
molecular heterogeneity within or between cancer patients and 
therefore have a better chance of success; however, unnecessary 
targeting of multiple receptors could cause toxicity and limit drug 
effectiveness.23

Neutralizing antibodies for PDGF ligands and receptors have 
been used in experiments evaluating the importance of PDGF sig-
naling in pathogenic processes but, to date, none of such antibod-
ies has entered the clinic.24–27 Furthermore, one aptamer against 
PDGF-B ligand has already entered clinical trials for the treat-
ment of age-related macular degeneration.28

Aimed at generating antagonist PDGFRβ aptamers not only 
useful in their own right, but also as escorts for therapeutic or 
diagnostic reagents, we developed the first nuclease-resistant 
RNA-aptamer that binds to human PDGFRβ and internalizes 
into glioblastoma (GBM) target cells. In addition to exquisite cell 
specificity and antitumor effect in a xenograft model of GBM, 
this aptamer strongly cooperates with a previously described 
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anti-epidermal growth factor receptor (EGFR) aptamer9 to induce 
inhibition of tumor growth, providing the basis for further devel-
opment of antitumor combination therapies.

Taken together, these results show that Gint4.T aptamer is a 
promising RNA-based molecule that can be developed as a more 
effective alternative to currently used PDGFRβ inhibitors.

RESULTS
The Gint4.T aptamer specifically interacts with the 
extracellular domain of the PDGFRβ
Gint4.T is a 33 mer-truncated version (Figure 1a) of the origi-
nal 2′-fluoropyrimidine (2′F-Py) nuclease-resistant RNA-aptamer 
generated by a differential cell-SELEX approach on highly tumori-
genic U87MG GBM cells.

As an attempt to identify the functional targets of Gint4.T, 
we first performed a phospho-receptor tyrosine kinase antibody 
array analysis that suggested that the target of Gint4.T could be 
PDGFRβ (Supplementary Figure S1a). Indeed, among the recep-
tors whose serum-dependent phosphorylation was reduced fol-
lowing aptamer treatment, the greater inhibition was detected for 
PDGFRβ. To definitely establish the Gint4.T affinity and speci-
ficity for the target, we next performed a filter binding analysis 
with the soluble extracellular domains of human PDGFRα and 
PDGFRβ (here indicated as EC-PDGFRα and EC-PDGFRβ, 
respectively), used as targets. In the assay, an unrelated sequence 
was used as a negative control. As shown in Figure 1b, Gint4.T 
had a strong affinity for EC-PDGFRβ (Kd value of 9.6 nmol/l) 
whereas it did not bind to EC-PDGFRα (data not shown).

Further, we observed that the binding of Gint4.T to U87MG 
cells was strongly competed by the recombinant EC-PDGFRβ 
but not EC-PDGFRα (Figure 1c), thus supporting the ability of 
the aptamer to recognize target cells through the binding to the 
extracellular domain of PDGFRβ on the cell surface and prov-
ing that the aptamer is able to discriminate PDGFRβ from the 
structurally similar PDGFRα receptor. In agreement with these 
results, Gint4.T did not bind to PDGFRβ-negative non-small-cell 
lung carcinoma A549 cells and to U87MG target cells in which the 
expression of the endogenous PDGFRβ was abrogated by a spe-
cific short hairpin RNA (shRNA) (Supplementary Figure S1b).

To further characterize the binding identity of Gint4.T 
aptamer to PDGFRβ-expressing cells, 10 minutes-treatment of 
U87MG with FAM-labeled Gint4.T was combined with staining 
with a specific PDGFRβ antibody (Figure 1d–g). An extensive 
overlap of PDGFRβ antibody and FAM-Gint4.T fluorescent sig-
nals was observed in any field examined by confocal microscopy, 
thus indicating a clear co-localization of the aptamer and the anti-
body on the receptor expressed on cell surface. No FAM-Gint4.T 
binding to PDGFRβ-knockdown U87MG (Figure 1h,i) and 
PDGFRβ-negative A549 cells (Figure 1j,k) was observed.

Moreover, by cell-binding assays with radiolabeled aptamer 
we demonstrated that the Gint4.T aptamer is rapidly endocytosed 
into U87MG glioma cells, getting about 50% of cell internaliza-
tion following 30 minutes-incubation and reached more than 70% 
following 2 hours of aptamer treatment (Figure 1l). Consistently, 
co-localization experiments of FAM-Gint4.T with the endocy-
tosis markers, early endosome antigen 1 (EEA1) and lysosomal-
associated membrane protein 1 (anti-LAMP1), confirmed the 

ability of the aptamer to rapidly enter into U87MG cells, showing 
the majority of internalized aptamer in compartments positive 
for EEA1 (early endosomes) and LAMP1 (late endosomes/lyso-
somes) following 30 minutes and 2 hours of incubation, respec-
tively (Figure 1m–t).

Taken together, these results indicate that Gint4.T specifically 
recognizes PDGFRβ either if expressed on the cell surface in its 
physiological context or the purified soluble extracellular domain 
of the receptor. Furthermore, because of its ability to rapidly inter-
nalize into PDGFRβ-positive target cells, it is a highly promising 
candidate as cargo for tissue specific internalization.

Gint4.T inhibits the PDGFRβ-mediated signal 
pathways and migratory responses of GBM cells
As a next step, we asked whether, because of its binding to 
PDGFRβ, Gint4.T could interfere with ligand-dependent acti-
vation of the receptor and downstream signaling. As shown in 
Figure 2a, 200 nmol/l-Gint4.T treatment drastically reduced the 
tyrosine-phosphorylation of PDGFRβ following stimulation of 
T98G (left) and U87MG (right) cells with PDGF-BB, the primary 
activator of PDGFRβ, causing about 70% inhibition at 5 minutes 
of ligand treatment. No effect was observed in the presence of 
the unrelated sequence used as a negative control. Consistently, 
a substantial reduction of PDGF-BB-dependent phosphorylation 
of extracellular signal-regulated kinase 1 and 2 (Erk1/2) and PKB/
Akt kinase was observed in the presence of Gint4.T treatment in 
both cell lines (Figure 2b). Furthermore, the neutralizing effect of 
the aptamer was also observed in primary cell cultures of malig-
nant glioblastomas (Figure 2c).

Intracellular signaling initiated by PDGFRβ has been reported 
to be involved in the metastatic potential of cancer5 and its inhi-
bition in vitro results in impairment of cell migration,29 thus we 
determined whether Gint4.T could affect migration of GBM cells.

As shown in Figure 3a, treating T98G and U87MG cells with 
Gint4.T aptamer strongly reduced cell migration, either stimulated 
by serum and by the PDGF-BB, as compared with the unrelated 
aptamer. In addition, monolayers of T98G and U87MG cells were 
scratched and images were taken at 0, 24, and 48 hours after wound-
ing (Figure 3b). The wound closure was significantly delayed in the 
presence of Gint4.T treatment compared with controls, the effect 
of the aptamer being time dependent (see lower panels). Thus, in 
good agreement with previous reports, PDGFRβ inhibition by 
Gint4.T treatment results in cell migration impairment.

Gint4.T blocks GBM cell proliferation and induces cell 
differentiation
Based on the Gint4.T inhibitory potential on the activation of Erk1/2 
and the PKB/Akt pathways, we determined whether the aptamer 
was also able to reduce cell viability and proliferation in vitro. As 
assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium  
bromide (MTT) assay, treatment of T98G and U87MG with 
Gint4.T strongly inhibited cell viability in a dose-dependent 
(Figure 4a,b) and time-dependent (Figure 4a,b, inserts) manner. 
The effect was comparable or even stronger than in the presence 
of the anti-EGFR pro-apoptotic CL4 aptamer,9 used as a positive 
control. Remarkably, no cytotoxicity was observed with the unre-
lated aptamer, even at high concentration.

2 www.moleculartherapy.org    
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Figure 1 Gint4.T aptamer specifically binds to human PDGFRβ and rapidly internalizes into GBM cells. (a) Secondary structure of Gint4.T 
predicted by using DNAsis software. (b) Binding isotherm for Gint4.T: EC-PDGFRβ complex. (c) Binding of 100 nmol/l radiolabeled Gint4.T, prior 
incubated with 200 nmol/l EC-PDGFRα or EC-PDGFRβ for 15 minutes at 37 °C, to U87MG cells. In b, c, the results are expressed relative to the 
background binding detected with the unrelated aptamer, used as a negative control. (d–k) Following 10-minutes FAM-Gint4.T treatment, U87MG, 
U87MG/shRNAPDGFRβ (U87MG cells following 72 hour-transfection with a specific PDGFRβ short hairpin RNA) or A549 cells were stained with anti-
PDGFRβ antibodies, visualized by confocal microscopy and photographed. (l) Internalization rate of radiolabeled Gint4.T and unrelated aptamer into 
U87MG cells. Results are expressed as percentage of internalized RNA relative to total bound aptamer. In b, c, l error bars depict mean ± SD (n = 3). 
(m–t) Following treatment with FAM-Gint4.T for the indicated times, U87MG cells were stained with anti-EEA1 (m–p) or LAMP1 (q–t) antibodies, 
visualized by confocal microscopy and photographed. (d–k, m–t) All digital images were captured at the same setting to allow direct comparison 
of staining patterns. Scale bars = 10 µm. The Manders’ coefficients for the amount of co-localization were: M1, 0.975 and M2, 0.908 (g); M1, 0.620 
and M2, 0.615 (p); M1, 0.980 and M2, 0.972 (t). EEA1, early endosome antigen 1; GBM, glioblastoma; LAMP1, lysosomal-associated membrane 
protein 1; PDGFRβ, platelet-derived growth factor receptor β.
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To establish whether Gint4.T inhibits cell proliferation, we 
performed flow cytometry of cells stained with anti-5-bromode-
oxyuridine and propidium iodide. Interestingly, 72-hours treat-
ment of T98G (Figure 4c) and U87MG (Figure 4d) with Gint4.T 
(left) depleted cells at G2/M phases, with a consistent increase 
of the cell population in S-phase compared with the unrelated 
aptamer-treated cells (right). Analyzing the anti-5-bromodeoxy-
uridine incorporation profile (see inserts), we observed that the 
Gint4.T treatment did not prevent T98G and U87MG cells from 
entering the S-phase, even if cells displayed an evident defect in 

intra-S, but caused a failure of the cells to complete S and move 
toward G2 phase.

Accordingly, growth curve experiments confirmed that the 
aptamer exerted a severe inhibitory effect on T98G and U87MG 
cell proliferation (almost 80% inhibition at day 6) with respect to 
cells mock-treated or treated with the unrelated sequence, that 
proliferated at comparable rates (Figure 5a,b). Furthermore, to 
determine whether GBM cells would resume proliferation upon 
removal of Gint4.T, T98G cells were left in culture over a 11-day 
time period in the presence of Gint4.T (Figure 5a, solid line) or at 

Figure 2 Gint4.T inhibits PDGF-BB-dependent PDGFRβ activation. (a–c) Serum-starved T98G, U87MG, or primary glioma cells from two patients 
(PG-G and VS-GB) were either left untreated or stimulated with PDGF-BB in the presence of Gint4.T or the unrelated aptamer (used as a negative 
control), as indicated. Cell lysates were immunoblotted with anti-pPDGFRβ, anti-PDGFRβ, anti-pERK, anti-pAkt. Filters were stripped and reprobed 
with anti-Erk and anti-Akt antibodies, as indicated. Values below the blots indicate signal levels relative to PDGF-BB stimulated cells in the absence 
(a) or in the presence (b, c) of unrelated aptamer, arbitrarily set to 1 (labeled with asterisk). (a–c) Equal loading was confirmed by immunoblot with 
anti-α-tubulin antibody. Molecular weights of indicated proteins are reported. PDGFRβ, platelet-derived growth factor receptor β.
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Figure 3 Gint4.T inhibits GBM cell migration. (a) Motility of T98G and U87MG cells was analyzed by Transwell Migration Assay in the presence 
of Gint4.T or the unrelated aptamer, used as a negative control, for 24 hours toward 10% FBS or PDGF-BB (50 ng/ml) as inducers of migration. 
The migrated cells were stained with crystal violet and photographed. Representative photographs of at least three different experiments were 
shown. The results are expressed as percent of migrated cells in the presence of Gint4.T with respect to cells treated with the unrelated aptamer. 
(b) Confluent monolayers of T98G and U87MG cells were subjected to scratch assays and mock-treated or treated with Gint4.T or the unre-
lated aptamer for 24 and 48 hours. Phase-contrast microscopy images were taken at the indicated time and the extent of wound closure was 
calculated (magnification 4×). (a, b) ***P < 0.0001 relative to unrelated (n = 3). Error bars depict means ± SD. FBS, fetal bovine serum; PDGF, 
platelet-derived growth factor.

a
Unrelated Gint4.T

 FBS

200

300

400

500

600

700

800

900

0 24 48

Time (h)

T98G

PDGF-BB

Mock                      Unrelated                  Gint4.T

0

24

48

 FBS

Unrelated Gint4.T

0

24

48

T
im

e 
(h

)

200

300

400

500

600

700

800

900

0 24 48

Time (h)

U87MG

PDGF-BB

b

***
*** ***

***

Unrelated 
Gint4.T

Mock 

Unrelated 
Gint4.T

Mock 

 A
re

a 
(µ

m
2 ) 

of
 w

ou
nd

 c
lo

su
re

 

 A
re

a 
(µ

m
2 ) 

of
 w

ou
nd

 c
lo

su
re

 

M
ig

ra
tio

n 
ra

te
 (

%
)

FBS PDGF-BB

0

20

40

60

80

100

120
***

Unrelated 
Gint4.T

0

20

40

60

80

100

120

 FBS PDGF-BB
M

ig
ra

tio
n 

ra
te

 (
%

)

*** *** *** Unrelated 
Gint4.T

T
im

e 
(h

)

T98G U87MG

Mock                     Unrelated                 Gint4.T

Molecular Therapy 5



© The American Society of Gene & Cell TherapyAptamer Inhibition of PDGFRβ

day 4 medium containing Gint4.T was replaced with aptamer-free 
medium and incubation was further prolonged for 7 days (Figure 
5a, dashed line). As shown, a slight increase of cell growth was 
observed indicating that Gint4.T was able to induce an almost full 
inhibition of glioma cells proliferation over the entire period of 
observation.

Consistently with the inhibitory effects of Gint4.T on cell via-
bility and proliferation, treating U87MG and T98G cells with the 
aptamer caused a time-dependent reduction of [3H]-thymidine 
incorporation (Supplementary Figure S2).

The block of T98G and U87MG cells proliferation was 
accompanied by a dramatic morphological change of the cells 
that became spindle shaped with long processes; the effect was 
evident starting from 2 days of Gint4.T treatment and more 
pronounced after 6 days (Figure 5c). Since these morphologi-
cal alterations are also suggestive of cellular differentiation 
we monitored the expression of glial fibrillary acidic protein 
(GFAP), a determining factor for astrocytic cell shape.30 Our 
results showed that the expression of GFAP was remarkably 
increased in Gint4.T-treated cells, compared with untreated 

Figure 4 Gint4.T inhibits GBM cell survival and proliferation. T98G (a) and U87MG (b) cells were mock-treated or treated for 24 hours with 
increasing amounts of Gint4.T, CL4 or the unrelated aptamer as a negative control, or with 200 nmol/l final concentration of each aptamer for the 
indicated incubation times (inserts). Cell viability was analyzed and expressed as percent of viable treated cells with respect to mock-treated cells. (a, 
b) P values for Gint4.T and CL4 relative to unrelated are: ***P < 0.0001; **P < 0.005; *P < 0.05 (n = 6). Error bars depict means ± SD. T98G (c) and 
U87MG (d) cells were treated for 72 hours with Gint4.T or the unrelated aptamer, as indicated. Cell-cycle profile were determined by BrdU incorpora-
tion and PI staining. Percentages of cells in each cycle phase are indicated. BrdU, anti-5-bromodeoxyuridine; PI, propidium iodide.
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T98G and U87MG cells, with the highest expression observed 
at 6-day treatment (Figure 5d). Expression levels were simi-
lar to those observed in cells treated with 1 µmol/l all-trans  
retinoic acid that has been reported to induce differentiation 
with upregulation of GFAP in both U87MG and T98G cells.31 
Taken together, the results indicate that Gint4.T inhibits growth 
by inducing S-phase cell-cycle arrest and differentiation in 
GBM cells.

Gint4.T prevents PDGFRβ-mediated EGFR 
transactivation in GBM cells
It has been reported that PDGFR stimulation transactivates EGFR 
in rat aortic vascular smooth muscle32 and in medulloblastoma29 
and that receptor heterodimerization is an essential mechanism 
for PDGF-induced EGFR transactivation. Thus, we asked whether 
interfering with PDGFRβ expression and function by a specific 
shRNA (Figure 6a) or Gint4.T aptamer (Figure 6b), respectively, 

Figure 5 Gint4.T induces GBM cell differentiation. T98G (a) and U87MG (b) cells were either mock-treated or treated with Gint4.T or the unre-
lated aptamer, used as a negative control, by renewing the aptamer treatment each 24 hours and the cell number was counted at the indicated time 
points. In (a), at day 4 of Gint4.T treatment, the aptamer was removed from the culture medium (the arrow) and incubation prolonged (dashed 
line). (a,b) Growth curves represent the average of three independent experiments. ***P < 0.0001; **P < 0.005; *P < 0.05 relative to unrelated (n = 
6). Error bars represent mean ± SD. (c) T98G and U87MG cells were treated for 6 days with Gint4.T or the unrelated aptamer and photographed by 
phase-contrast microscopy (magnification 4×). (d) Cells were treated as in (c) or with 1 µmol/l ATRA and GFAP mRNA levels were analyzed by RT-PCR. 
ATRA, all-trans retinoic acid; GFAP, glial fibrillary acidic protein.
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Figure 6 Gint4.T prevents PDGFRβ-mediated EGFR transactivation. (a, b) Lysates from T98G cells, following transfection with shRNAPDGFRβ or shRN-
Actrl (a) or treated for 6-hours with Gint4.T or the unrelated aptamer as a negative control (b), were immunoblotted with anti-pPDGFRβ, anti-PDGFRβ, 
anti-pEGFR, anti-EGFR antibodies, as indicated. (c) Serum-starved U87MG, T98G, and A431 cells were either left untreated or stimulated with PDGF-BB or 
EGF and cell lysates were immunoblotted with anti-pEGFR, anti-EGFR antibodies, as indicated. (d, e) Serum-starved T98G cells were either left untreated 
or stimulated with PDGF-BB in the absence or in the presence of 200 nmol/l Gint4.T, 200 nmol/l CL4, 200 nmol/l Gint4.T plus 200 nmol/l CL4, or 400 
nmol/l unrelated aptamer, as indicated. Cell lysates were either immunoblotted with anti-pPDGFRβ, anti-PDGFRβ, anti-pEGFR, anti-EGFR antibodies (d) or 
immunoprecipitated with anti-PDGFRβ antibody and immunoblotted with anti-pEGFR and anti-EGFR antibodies (e). (a–e) Values below the blot indicate 
signal levels relative to each control, arbitrarily set to 1 (labeled with asterisk). (a–d) Equal loading was confirmed by immunoblot with anti-α-tubulin 
antibody. Molecular weights of indicated proteins are reported. (f, g) T98G and U87MG cells were mock-treated or treated for 72 hours with 200 nmol/l 
Gint4.T, 200 nmol/l CL4, and (f) 10 µmol/l Imatinib (indicated as Ima), 5 µmol/l Gefitinib (indicated as Gef), 1 µmol/l Cetuximab (indicated as Cet), or 
(g) 100 µmol/l and 400 µmol/l TMZ, as single agents or in combination, as indicated and cell viability was analyzed. (f) As a negative control, cells were 
treated with the unrelated aptamer at a concentration of 400 nmol/l. ***P < 0.0001; **P < 0.005; *P < 0.05 relative to mock-treated (n = 6). ###P < 0.0001. 
Error bars depict means ± SD. EGFR, epidermal growth factor receptor; PDGFRβ, platelet-derived growth factor receptor β; TMZ, temozolomide.
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could inhibit basal EGFR phosphorylation in T98G cells that 
express high levels of both EGFR and PDGFRβ. As shown, we 
observed about 30% of inhibition of EGFR phosphorylation with 
both the approaches thus indicating that PDGFRβ can transacti-
vate EGFR under basal unstimulated cell condition.

Further, we determined whether PDGF-BB stimulation could 
enhance the EGFR transactivation observed in unstimulated 
cells and, if that was the case, whether inhibiting PDGFRβ and 
EGFR with Gint4.T and CL4, respectively, could affect this event. 
As shown, PDGF-BB stimulation significantly activated EGFR 
in U87MG and T98G cells but not in A431 cells, which overex-
press EGFR but lack PDGFRβ, indicating that PDGF stimulates 
EGFR in PDGFRβ-dependent manner (Figure 6c). Remarkably, 
PDGF-BB dependent transactivation of EGFR in T98G cells was 
decreased by Gint4.T as well as CL4 treatment (Figure 6d) thus 
likely occurs via receptor heterodimerization. Further, by combin-
ing Gint4.T and CL4 treatment, a more pronounced reduction of 
PDGFRβ and EGFR phosphorylation (about 80%) was observed 
(Figure 6d). In addition, we found that the amount of pEGFR/
EGFR coimmunoprecipitated with PDGFRβ increases follow-
ing PDGF-BB stimulation of the cells and that Gint4.T as well as 
CL4 inhibited PDGF-induced PDGFRβ/EGFR heterodimers and 
EGFR transactivation (Figure 6e). This suggested that the binding 
of each aptamer to the extracellular domain of its related receptor 
interfered with the heterodimers formation, again the inhibition 
results stronger by using the two aptamers in combination (Figure 
6e). In agreement with these observations from T98G cells also in 
U87MG cells, both aptamers were able to block PDGF-induced 
EGFR transactivation (Supplementary Figure S3).

As a next step, we compared their inhibition on cell viability 
to that of three commercially available inhibitors that are cur-
rently in clinical use as anticancer therapeutics for EGFR, Gefitinib 
(tyrosine kinase inhibitor), and Cetuximab (monoclonal anti-
body), and for PDGFRβ, Imatinib (tyrosine kinase inhibitor). In 
dose- and time-dependent experiments, T98G and U87MG cells 
resulted highly resistant at both the EGFR inhibitors (see previ-
ous report33 and Supplementary Figure S4). Regarding Imatinib, 
an appreciable reduction of cell viability was observed only start-
ing from a concentration of 10 μmol/l (see previous report34 and 
Supplementary Figure S4). Further, single drugs and pairwise 
combinations were analyzed in T98G and U87MG for cell viability 
(Figure 6f). No additive or synergic effect was observed with each 
drug combinations except that for the treatment with CL4 plus 
Gint4.T that appeared to be the best combination for inhibiting 
cell viability with additive interaction, reaching about 70% inhibi-
tion when compared with mock-treated cells or cells treated with 
the unrelated aptamer (Figure 6f, Supplementary Figure S5).

Ultimately, as shown in Figure 6g, the massive decreasing of 
T98G and U87MG cell viability level after the combined treat-
ment with Gint4.T and CL4 at a total concentration of 400 nmol/l 
is comparable with that obtained with a concentration of temo-
zolomide (TMZ), the chemotherapeutic agent used to treat glio-
blastomas, even much higher than that used in clinic.35,36 Further, 
almost 80% inhibition of cell viability was observed in both cell 
lines by combined treatment of the two aptamers with TMZ.

Altogether, these results establish that the use of the 
two aptamers in combination causes a drastic reduction of 

PDGF-BB-dependent activation of the receptors that results in 
the inhibition of cell viability even stronger than that caused by 
high concentration of approved PDGFR and EGFR inhibitors and 
of TMZ.

Gint4.T inhibits tumor growth and enhances 
antitumor activity of the CL4 anti-EGFR aptamer
To assess tumor targeting by Gint4.T, mice bearing palpable 
(~60 mm3) xenograft tumors from GBM U87MG-luc cells 
(PDGFRβ+) and breast MCF7-luc cells (PDGFRβ−) on left and 
right flanks, respectively, were treated with a single intravenous 
injection of 1,600 pmol (1.04 mg aptamer/kg mean body-weight) 
of Alexa-labeled Gint4.T or Alexa-labeled unrelated aptamer. The 
affinity of Gint4.T for PDGFRβ was unchanged by the labeling 
procedure (data not shown). The aptamer amount in the tumors 
was thus monitored at different times by evaluating the intensity of 
fluorescent signal per bioluminescence as measure of tumor mass. 
As shown in Figure 7a, the signal of Gint4.T, normalized to that of 
the unrelated aptamer, consistently increased from 60 to 120 min-
utes and remained high up to 24 hours in U87MG target tumors 
but not in MCF7 nontarget tumors, thus indicating that Gint4.T 
still preserves its binding specificity in vivo. Further, 15 days after 
aptamer injection the bioluminescence increased approximately 
four times in unrelated aptamer control tumors while remained 
unchanged in Gint4.T-treated tumors (Figure 7b) thus indicating 
that a single aptamer treatment is sufficient to cause a significant 
tumor growth inhibition at least in mice bearing small tumors. 
Therefore, to test the efficacy of Gint4.T and CL4 in combination 
in U87MG-derived mouse xenografts, treatments were initiated 
at 24 days after cell inoculation, when tumor mean volume was 
~150 mm3, and tumor growth was monitored by bioluminescence 
imaging (Figure 7c) and calipers measuring (Figure 7c, insert) 
for further 10 days. CL4 and Gint4.T were administered intrave-
nously individually or in combination at day 0, 3, 5, and 7. As 
shown, xenografts of CL4-treated and Gint4.T-treated mice grew 
at a significantly slower rate than xenografts of unrelated aptamer 
and vehicle control-treated mice, Gint4.T revealing more effective 
in inhibiting tumor growth than CL4. Further, reproducing the 
cell culture findings, the combined treatment of the two aptamers 
inhibited tumor growth (Figure 7c) and decreased the extent of 
EGFR and PDGFRβ tyrosine phosphorylation (Figure 7d) more 
efficiently than the treatment with each single agent.

The antitumor activity of Gint4.T was also confirmed by 
immunohistochemical staining for Ki-67 that revealed a strong 
reduction of the number of proliferating Ki-67-positive cells 
in tumors from Gint4.T-treated mice compared with tumors 
from mice vehicle-treated (Figure 7e). This inhibition of GBM-
derived tumor growth was further enhanced when Gint4.T was 
used in combination with the CL4 aptamer (Figure 7e). Notably, 
the inhibiting effect of Gint4.T and CL4, both if administrated 
alone or in combination, culminated in a strong induction of cas-
pase-3 cleaved fragments, a hallmark for induction of apoptosis37 
(Figure 7f).

At last, in order to exclude nonspecific immune activation in 
response to aptamer treatments, we observed that the expression 
levels of interferon-inducible IFIT1 (P56) and OAS1 genes were 
not increased in liver and spleen of treated animals (Figure 7g).
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Figure 7 Gint4.T cell specificity in vivo and inhibition of tumor growth. (a, b) Mice bearing MCF7-luc (right-flank) and U87MG-luc (left-flank) 
xenografts (tumor mean volume: 60 mm3) were injected intravenously either with Alexa-labeled Gint4.T or the unrelated aptamer, used as a negative 
control. (a) Aptamer amount was monitored by evaluating the intensity of fluorescent signal normalized for the bioluminescence and measured at the 
indicated times. Example shows fluorescence signal in one representative animal from each treatment group at 120 minutes after injection. The circles 
indicate where the tumors are located. (b) Tumor growth inhibition was measured as bioluminescence intensity (photons/second). ***P < 0.0001 (n = 
5). (c) Mice bearing U87MG-luc xenografts (tumor mean volume, 150 mm3) were injected intravenously with Gint4.T, CL4, Gint4.T plus CL4, unrelated 
aptamer or PBS (vehicle) at day 0, 3, 5, and 7. Tumor volumes were measured by bioluminescence and calipers (insert) and experimental raw data 
(expressed as fold increase) were interpolated with no curve fitting or regression analysis. **P < 0.005; *P < 0.05 relative to vehicle (n = 5). In (b, c) day 0 
marks the start of treatments. (d) Immunoblot with anti-pPDGFRβ, anti-PDGFRβ, anti-pEGFR, anti-EGFR, and anti-α-tubulin antibodies of pooled lysates 
from recovered tumors. Values are expressed as relative to vehicle, arbitrarily set to 1 (labeled with asterisk). (e) Representative sections of tumors from 
each groups were stained with H&E and Ki-67 antibody, and Ki-67 proliferation index was calculated. ***P < 0.0001; **P < 0.005 relative to vehicle (n = 
5). ###P < 0.0001. Scale bars are indicated. (f) Immunoblot with anti-caspase-3 and anti-α-tubulin antibodies of pooled lysates from recovered tumors. 
(g) P56 and OAS1 mRNAs expression relative to control arbitrarily set to 1. PBS and Poly (I:C)-treated mice were used as a negative and positive control, 
respectively. In (a–c, e, g) error bars depict means ± SD. EGFR, epidermal growth factor receptor; PDGFRβ, platelet-derived growth factor receptor β.
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DISCUSSION
The crucial roles that PDGFRβ plays in tumorigenesis and tumor 
progression,2,5 together with the absence of specific anti-PDGFRβ 
strategies in clinic, prompted us to develop more effective cancer 
drugs that specifically target PDGFRβ.

In this study, we prove that a 33 mer nuclease-stabilized RNA 
aptamer, named Gint4.T, acts as a neutralizing ligand for human 
PDGFRβ by inhibiting the receptor activity and downstream sig-
naling in GBM cells and in vivo.

We show that Gint4.T dramatically inhibits in vitro GBM cell 
migration and blocks cell proliferation. The Gint4.T-dependent 
inhibition of cell proliferation is accompanied by a profound 
U87MG and T98G morphological transformation indicative of 
cell differentiation, which is further supported by the upregulation 
of glial differentiation marker GFAP. As recently emerged, target-
ing PDGFRβ (by siRNA and small inhibitors) in self-renewing 
tumorigenic glioma stem cells, attenuates glioma stem cell self-
renewal and tumor growth and induces cell differentiation.38,39 We 
are currently investigating whether Gint4.T could as well induce 
glioma stem cells differentiation and reduce the ability of these 
cells to propagate tumors in vivo.

Accordingly with the remarkable specificity of aptamers that 
can distinguish targets on the basis of subtle structural differ-
ences, as assessed by different biochemical approaches, Gint4.T 
binds to PDGFRβ at high affinity and discriminate between the β 
and the α receptors. It has been shown that human GBM have a 
different cellular distribution of PDGFRα and PDGFRβ and that 
the two receptors can stimulate distinct signals once activated by 
PDGFs.38,40 Thus, Gint4.T may help to understand the role of indi-
vidual PDGF receptors on glioma cellular biology and signaling. 
From a therapeutic standpoint, because no specific antagonists 
exist for discrimination of the two receptor subtypes, Gint4.T 
shows a great potential with respect to conventional pharmaco-
logical approaches for GBM treatment.

Interestingly, the co-activation of c-Met and PDGFR in GBM 
has been suggested to be one of the mechanisms that potentially 
leads to GBM resistance to anti-EGFR therapy and limits the 
efficacy of therapies targeting single receptors.41,42 Here we first 
demonstrate that PDGFRβ induces transactivation of EGFR in 
GBM cells under basal condition that is further increased fol-
lowing PDGF-BB stimulation of the cells. Remarkably, we found 
that the treatment of the cells with the anti-PDGFRβ Gint4.T 
aptamer inhibits PDGF-BB-induced EGFR transactivation. 
This is in good agreement with previous reports showing that 
Imatinib blocks migration and invasion of medulloblastoma 
cells by concurrently inhibiting activation of PDGFRβ and 
transactivation of EGFR.29 Further, the combination of Gint4.T 
and the anti-EGFR CL4 aptamer inhibits the PDGF-BB-induced 
EGFR transactivation at a higher extent compared with single 
aptamer treatment. Accordingly, the use of the two aptamers 
in combination causes a drastic inhibition of cell viability even 
stronger than that caused by high concentration of approved 
PDGFRβ and EGFR inhibitors (imatinib, gefitinib, and cetux-
imab) and of TMZ, the benchmark agent for the management 
of GBM. Further, almost 80% inhibition of cell viability was 
observed by combined treatment of GBM cell lines with the two 
aptamers and TMZ.

Importantly, the potent inhibitory effect of Gint4.T extended 
to a xenograft model of GBM. Indeed Gint4.T, administrated 
with a single intravenous injection in mice bearing small tumors 
(60 mm3), induces a remarkable tumor growth inhibition, thus 
in good agreement with the effective block of cell proliferation 
observed in vitro. Synergistic tumor growth inhibition is obtained 
by the combination treatment of Gint4.T and CL4 aptamers in 
mice bearing large tumors (150 mm3), again, confirming the rel-
evance of the cell culture data to in vivo models. Notably, no non-
specific immunostimulatory effects were observed with CL4 and 
Gint4.T aptamers, as expected by the use of chemically-modified 
nucleotides.43,44

Furthermore, we show that when systemically administrated 
Gint4.T is able to discriminate between target tumors (U87MG, 
expressing the related receptor) and nontarget tumors which do 
not express PDGFRβ (MCF7), thus providing exquisite aptamer 
cell specificity not only in cell culture but also in vivo.

Moreover, the potential impact of Gint4.T as therapeutic, 
is strongly highlighted by the finding that the aptamer not only 
binds to the PDGFRβ at high affinity and inhibits its activity, 
but also rapidly and specifically internalizes within the target 
cells. Thus, based on the recent development of aptamer-siRNA/
miRNA bioconjugates,19,20 Gint4.T appears as a prime candidate 
tool for delivering cell-selective gene knockdown, the major chal-
lenge for translating RNAi into therapy.

Whether a Gint4.T fraction sufficient for therapeutic benefit 
could penetrate on its own the blood–brain barrier after systemic 
injection,45 remains to be determined. Alternatively, Gint4.T could 
breach the blood–brain barrier once conjugated to nanoparticles. 
Indeed, paclitaxel loaded nanoparticles cross the blood–brain 
barrier and reduce GBM growth in animal models,46–48 suggest-
ing the potential of increasing the affinity and specificity of these 
molecules through conjugation to Gint4.T aptamer.

Collectively, our study represents an initial development of 
novel aptamer-based therapies that in combinations with conven-
tional therapeutics will allow to face with human glioblastomas.

MATERIALS AND METHODS
Cell lines and transfection. Growth conditions for human GBM U87MG 
and T98G, epidermoid carcinoma A431, non–small-cell lung carcinoma 
A549 (American Type Culture Collection, Manassas, VA) were previ-
ously reported.9 U87MG-luc2 (herein indicated as U87MG-luc) and 
human breast MCF7-luc-F5 (herein indicated as MCF7-luc) (Caliper Life 
Sciences, Hopkinton, MA) were grown following the provider indications.

Primary cell cultures from GBM specimens were derived and grown 
as described previously.11

For PDGFRβ gene silencing, U87MG and T98G cells (3.5 × 105 cells 
per 6-cm plate) were transfected with shRNA PDGFRβ or shRNActrl 
(2 µg; Open Biosystems, Huntsville, AL) and Lipofectamine 2000 
(Invitrogen, Carlsbad, CA) in Opti-MEM I reduced serum medium 
(Invitrogen). After 5-hours incubation, complete culture medium was 
added to the cells and incubation was prolonged up to 72 hours.

Cell-internalization SELEX and aptamers.  Following 14 rounds of selec-
tion performed onto U87MG cells as previously described,11 the enriched 
pool was incubated onto U87MG for 30 minutes (first internalization 
round) and 15 minutes (second internalization round) at 37 °C and 
unbound aptamers were removed by five washes with Dulbecco's modified 
Eagle medium (DMEM) serum free. To remove surface-bound aptamers, 
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target cells were treated with 0.5 µg/µl proteinase K (Roche Diagnostics, 
Indianapolis, IN) for 30 minutes, washed with DMEM serum free and 
internalized RNA aptamers were then recovered by RNA extraction and 
RT-PCR as described.11,12

Gint4.T, 5′ FAM-labeled Gint4.T, CL49 and the unrelated 2′F-Py 
RNAs were purchased from ChemGenes corporation (Wilmington, MA).

Gint4.T aptamer: 5′UGUCGUGGGGCAUCGAGUAAAUGCAAU 
UCGACA3′.

The scrambled sequence of CL4 aptamer9 has been used as a negative 
control; herein indicated as unrelated:

5′UUCGUACCGGGUAGGUUGGCUUGCACAUAGAACGUGU 
CA3′.

For in vivo experiments, aptamers have been internal-labeled with 
Alexa Fluor 647 fluorescent probe following the provider indications 
(Invitrogen).

Before each treatment, the aptamers were subjected to a short 
denaturation-renaturation step (85 °C for 5 minutes, snap-cooled on ice 
for 2 minutes, and allowed to warm up to 37 °C).

For cell incubation longer than 24 hours, the aptamer treatment was 
renewed each day and the RNA concentration was determined to ensure 
the continuous presence of at least 200 nmol/l concentration, taking into 
account the 6 hours-half-life of the aptamer in 10% serum.

Binding assays.  Aptamer binding to cells was performed as described.9 
Filter binding analysis with EC-PDGFRα and EC-PDGFRβ (R&D 
Systems, Minneapolis, MN) was performed by incubating 1 nmol/l of 
radiolabeled aptamers with 1, 3.2, 10, 32, 100, 320, and 1,000 nmol/l of 
EC-PDGFRβ or EC-PDGFRα as described.9

To check the endocytosis rate, 100 nmol/l radiolabeled Gint4.T or 
the unrelated aptamer was incubated onto U87MG cells for increasing 
incubation times (from 15 minutes up to 2 hours) and at desired times, 
cells have been treated with 0.5 µg/µl proteinase K (Roche Diagnostics) at 
37 °C. Following 30-minutes treatment, the amount of RNA internalized 
has been recovered and counted.

Immunoprecipitation, Immunoblot, and Immunofluorescence analyses.  
Cell extracts, immunoprecipitation, and immunoblot were performed as 
described.49 The primary antibodies used were: anti-phospho-PDGFRβ 
(Tyr771, indicated as pPDGFRβ), anti-PDGFRβ, anti-phospho-EGFR 
(Tyr1068, indicated as pEGFR), anti-EGFR, anti-phospho-44/42 MAPK 
(D13.14.4E, indicated as p-Erk), anti-phospho-Akt (Ser473, indicated as 
pAkt), anti-Akt, anti-caspase 3 (Cell Signaling Technology Inc., Danvers, 
MA); anti-Erk1 (C-16; Santa Cruz Biotechnology, Santa Cruz, CA); anti-
α-tubulin (DM 1A; Sigma, St. Louis, MO). RTK antibody arrays (R&D 
Systems) were performed as recommended. Densitometric analyses were 
performed on at least two different expositions to assure the linearity of 
each acquisition using ImageJ (v1.46r). Blots shown are representative of 
at least four independent experiments.

To assess the effect of the aptamers on ligand-dependent PDGFRβ 
and EGFR activation, cells (1.5 × 105 cells per 3.5-cm plate) were serum-
starved overnight, pretreated with 200 nmol/l aptamer for 3 hours and 
then stimulated for 5 minutes with 50 ng/ml PDGF-BB or EGF (R&D 
Systems) in the presence of 200 nmol/l aptamer.

For immunofluorescence, cells grown on glass coverslips were treated at 
different incubation times with 2.5 µmol/l FAM-Gint4.T, washed five times 
with phosphate buffered saline (PBS) and fixed with 4% paraformaldehyde 
in PBS for 20 minutes at room temperature. The coverslips were washed 
three-times in PBS and then blocked in PBS, 1% bovine serum albumin 
for 30 minutes. Cells were incubated with anti-PDGFRβ (R&D Systems), 
anti-EEA1 and anti-LAMP1 (Abcam, Cambridge, MA) diluted in PBS, 
1% bovine serum albumin for 1 hour at 37 °C. Coverslips were washed 
three-times with PBS and treated with Alexa Fluor 568 Goat Anti-Rabbit 
IgG (H+L) (Invitrogen) for 30 minutes at 37 °C. Coverslips were washed, 
mounted with Gold antifade reagent with DAPI (Invitrogen) and the cells 
were visualized by confocal microscopy. For co-localization experiments of 

Gint4.T with EEA1 and LAMP1, cells have been permeabilized with PBS, 
0.5% Triton X-100 for 15 minutes at room temperature before blocking. 
The immunofluorescence images have been analyzed for quantization of 
colocalized spots using the ImageJ plugin Coloc2 and Manders’ coefficients 
(M1 and M2)50 have been calculated.

Cell viability and proliferation. Cell viability was assessed as reported.10 
For combined treatment with Gint4.T, we used Gefitinib (LC Laboratories, 
Woburn, MA), Cetuximab (provided by Prof. G. Tortora), Imatinib mesyl-
ate (Santa Cruz Biotechnology), TMZ (Sigma).

For cell proliferation assay, T98G and U87MG cells (2 × 104 cells/well 
in 24-well plates) were mock-treated or treated for 24 and 48 hours with 
Gint4.T or the unrelated aptamer as previously described.9 To assess cell-
cycle analysis, anti-5-bromodeoxyuridine (BD Biosciences, Heidelberg, 
Germany) incorporation was performed according to the manufacturer’s 
protocol and then analyzed by fluorescence activated cell sorting (FACS).

Cell migration.  Transwell migration assay on T98G and U87MG cells 
were performed as described10 by using PDGF-BB (50 ng/ml) or 10% fetal 
bovine serum as inducers of migration. For wound healing assay, T98G 
and U87MG cells were plated in six-well plates and grown to confluence. 
After serum starvation overnight in the absence or in the presence of 200 
nmol/l Gint4.T or the unrelated aptamer, cells were scraped to induce a 
wound. Culture medium with 0.5% fetal bovine serum with/without 
treatment with aptamers was added and the wounds were observed using 
phase-contrast microscopy. The extent of wound closure was quantitated 
by measuring the wound areas obtained from 10 independent fields using 
ImageJ (v1.46r).

Reverse transcription-PCR analysis.  RNA was extracted by TRiZol 
(Invitrogen) and 1 µg total RNA was reverse transcribed with iScript cDNA 
Synthesis Kit (Bio-Rad, Hercules, CA, USA) and the resulting cDNA frag-
ments were used as PCR templates.

Primers used were: GFAP, Fwd 5′GAGTCCCTGGAGAGGCAGAT3′, 
Rev 5′CCTGGTACTCCTGCAAGTGG3′; β-actin, Fwd 5′CAAGAGAT 
GGCCACGGCTGCT3′, Rev 5′TCCTTCTGCATCCTGTCGGCA3′. 
Amplifications were performed by using the following conditions: GFAP, 
30 cycles: 1 minute at 95 °C, 1 minute at 61 °C, and 1 minute at 72 °C; 
β-actin, 15 cycles: 30 seconds at 95 °C, 30 seconds at 57 °C, and 1 minute 
at 72 °C. Densitometric analyses was performed by using ImageJ (v1.46r).

Animal model studies.  Athymic CD-1 nude mice (nu/nu) were housed in 
a highly controlled microbiological environment, thus to guarantee spe-
cific pathogen free conditions.

For the in vivo evaluation of Gint4.T tumor-binding specificity, mice 
were injected subcutaneously with 5 × 106 U87MG-luc and 8 × 106 MCF7-
luc cells on the left and right sides of the animal, respectively. When tumor 
mean volume reached 60 mm3, mice (five for group) were treated by 
caudal vein injection with 1,600 pmol in 100 µl (1.04 mg aptamer/kg mean 
body-weight) Alexa Fluor 647-labeled Gint4.T or unrelated aptamer. For 
imaging analysis, the CALIPER IVIS Spectrum has been used, and the 
images were processed by using Caliper living image software 4.1.

To follow tumor growth inhibition, mice were injected subcutaneously 
with 5 × 106 U87MG-luc cells. When tumor mean volume reached 
150 mm3, mice (five for group) were treated by caudal vein injection with 
1,600 pmol of Gint4.T, CL4, Gint4.T plus CL4, and unrelated aptamer. 
Saline (PBS) treated animals were used as control. Tumor growth was 
measured with calipers or bioluminescence. Animals were sacrificed 
following 10 days. All tumors were recovered, processed for protein and 
pooled for immunoblot.

To determine immune response, livers, and spleens of treated 
animals at 24 hours and 10 days following aptamer treatment were 
excised, lysed for RNA extraction and pooled. As a positive control, 
spleens from mice (five for group) treated for 24 hours with Poly (I:C; 
10 µg and 100 µg in 100 µl, Sigma) were processed for total RNA. P56 
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and OAS1 mRNAs were analyzed by RT-qPCR as reported.44 GAPDH 
expression was used for normalization of the qPCR data. Primers used 
were: P56, Fwd 5′TCAAGTATGGCAAGGCTGTG3′, Rev 5′GAGGC 
TCTGCTTCTGCATCT3′; OAS1, Fwd 5′ACCGTCTTGGAACTGGTC 
AC3′, Rev 5′ATGTTCCTTGTTGGGTCAGC3′; GAPDH, Fwd 5′AAC 
TTTGGCATTGTGGAAGG3′, Rev 5′ACACATTGGGGGTAGGAACA3′.

Histology and immuno-histochemistry.  Histological examinations for 
hematoxylin and eosin (H&E, BDH Laboratory Supplies) and Ki-67 was 
performed as described.10 Ki-67 proliferation index was calculated as the 
percentage of Ki-67 positive cells/total cell count for 10 randomly selected 
20× microscopic fields.

Statistics.  Statistical values were defined using Graphpad Prism 6. A P 
value of 0.05 or less was considered significant.

Ethics Statement. All the animal procedures were approved by the 
Ethical Committee for the Animal Use (CESA) of the Istituto di Ricerche 
Genetiche Gaetano Salvatore (IRGS) and where communicated to the 
national authorities accordingly with national and European rules. 
Primary tumor cultures were derived from surgical biopsies. The study 
protocol was approved by the local Ethics Committee of the University of 
Cologne. Written informed consent was acquired prior to surgery from 
every patient for further studies on primary glioma cultures.

SUPPLEMENTARY MATERIAL
Figure S1. Gint4.T specifically interacts with PDGFRβ.
Figure S2. Gint4.T reduces [3H]-thymidine incorporation.
Figure S3. Gint4.T cooperates with CL4 in preventing EGFR transac-
tivation in U87MG cells.
Figure S4. Effect of Gefitinib, Cetuximab and Imatinib on cell viability.
Figure S5. Combined effect of Gint4.T and CL4 on cell viability.
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Axl is a tyrosine kinase receptor that was first identified 
as a transforming gene in human myeloid leukemia. 
Recent converging evidence suggests its implication in 
cancer progression and invasion for several solid tumors, 
including lung, breast, brain, thyroid, and pancreas. 
In the last decade, Axl has thus become an attractive 
target for therapeutic development of more aggressive 
cancers. An emerging class of therapeutic inhibitors is 
now represented by short nucleic acid aptamers. These 
molecules act as high affinity ligands with several advan-
tages over conventional antibodies for their use in vivo, 
including their small size and negligible immunogenic-
ity. Furthermore, these molecules can easily form con-
jugates able to drive the specific delivery of interfering 
RNAs, nanoparticles, or chemotherapeutics. We have 
thus generated and characterized a selective RNA-based 
aptamer, GL21.T that binds the extracellular domain of 
Axl at high affinity (12 nmol/l) and inhibits its catalytic 
activity. GL21.T blocked Axl-dependent transducing 
events in vitro, including Erk and Akt phosphorylation, 
cell migration and invasion, as well as in vivo lung tumor 
formation in mice xenografts. In this respect, the GL21.T 
aptamer represents a promising therapeutic molecule 
for Axl-dependent cancers whose importance is high-
lighted by the paucity of available Axl-specific inhibitory 
molecules.

Received 24 April 2012; accepted 20 July 2012; advance online 
publication 21 August 2012. doi:10.1038/mt.2012.163

IntroductIon
Axl belongs to the TAM family of tyrosine kinase receptors (RTKs) 
that also includes Sky (Tyro3, Dtk) and Mer. They are character-
ized by an extracellular domain consisting of two immunoglobu-
lin-like domains followed by two fibronectin type 3-like domains. 
Axl-family members are activated by Growth-arrest-specific gene 6 
(Gas6), a member of the vitamin K-dependent protein  family that 
resembles blood coagulation factors rather than typical growth 
factors.1–4 In addition to Gas6, Protein S can also activate Sky and 
Mer on different cells types under physiologic and/or pathologic 
conditions.5–7

Axl overexpression has been reported in many human can-
cers and is associated with invasiveness and/or metastasis in lung,8 
prostate,9 breast,10 gastric11 and pancreatic12 cancers, renal cell car-
cinoma13 as well as glioblastoma.14 Furthermore, by a phospho-
proteomic approach based on the profiling of phosphotyrosine 
signaling, activated Axl protein was detected in ~5% primary 
tumors of non–small-cell lung cancer.15 More recently, activa-
tion of Axl has been found in thyroid papillary and anaplastic 
carcinomas,16 cutaneous melanomas17 as well as in B-cell chronic 
lymphocytic leukemia.18

Furthermore, it has been reported that expression of Axl is 
induced by targeted and chemotherapy drugs and upregulation 
of Axl by chemotherapy confers drug resistance in acute myeloid 
leukemia19 and its overexpression has been shown to be one of the 
mechanisms that can promote resistance to epidermal growth fac-
tor receptor-family directed therapies in breast.20

Despite the importance of Axl in several tumors has been well 
established, its biological functions have only recently begun to be 
understood. Axl has been characterized as an oncogenic kinase by 
its promotion of cancer cell survival, proliferation, invasion and 
migration, and more recently, it has been shown that Axl is able to 
mediate the oncogenic roles of the FOS-related component Fra-1 
on tumor cell motility21 and to drive YAP-dependent oncogenic 
functions leading to proliferation and invasion of cancer cells.22

These data indicate that Axl signaling represents a novel tar-
get class for tumor therapeutic development.23,24 To date, only few 
inhibitors of Axl have been reported that are completely unrelated 
to the anti-Axl aptamer both from the structural and mode of 
action point of view: (i) small-molecule inhibitors, such as R428, 
that block the catalytic activities of Axl;25 (ii) anti-Axl monoclo-
nal antibody that blocks the ligand Gas6 binding to the receptor;26 
(iii) proteins derived from the extracellular domain of Axl that 
inhibit its action by competition on ligand binding (International 
Patent application WO2008098139).

An emerging new class of therapeutic molecules against RTKs is 
composed of nucleic acid aptamers.27 Aptamers are short structured 
single-stranded RNA or DNA that bind with high affinity to their 
target molecules. Aptamers possess many advantages over proteins 
as therapeutic reagents, including low cost, convenient synthesis and 
modification with high batch fidelity, no immunogenicity, rapid tis-
sue penetration, and long-term stability.28 Furthermore, in the last 
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years, aptamers targeting cell surface proteins are being explored as 
promising delivery agents to specifically drive nanoparticles, small 
interfering RNAs, chemotherapeutic cargos and molecular imaging 
probes toward a distinct disease or tissue.29,30

Herein, we have developed and characterized a nuclease 
resistant 2′-fluoro pyrimidines RNA aptamer, named GL21.T, 
capable of binding and inhibiting Axl RTK. When applied to Axl-

expressing cancer cells the aptamer strongly inhibits cell migration 
and invasion and interferes with spheroid formation by cancer 
cells. Furthermore, it strongly inhibits tumor growth in a mouse 
xenograft model of human non–small-cell lung cancer.

Taken together, the results show that GL21.T aptamer is a 
promising RNA-based molecule that can be developed as a more 
effective alternative to existing Axl inhibitors.
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results
Axl receptor is target of Gl21
By using differential whole cell SELEX on human glioma cell 
lines we recently identified a 2′-F Py-containing RNA aptamer, 
named GL21, that binds the highly malignant U87MG cells with 
an apparent Kd of 221 nmol/l.31 Using a rational approach based 
on its predicted secondary structure31,32 we designed a 34mer 
truncated version of the 92mer original molecule, named GL21.T, 
that contains the active site of GL21 and preserves high binding 
affinity to the U87MG cells (Supplementary Figure S1). As a 
first attempt to identify the functional targets of GL21.T we per-
formed a phospho-receptor tyrosine kinase (RTK) array analysis 
that provided us with convincing evidence that the target(s) of 
GL21.T may belong to the TAM receptor family (Supplementary 
Figure S2).

Therefore, to definitely determine the target of GL21.T we first 
performed a filter binding analysis with the soluble extracellular 
domain of human Axl, Dtk (Tyro3) and Mer as targets (here indi-
cated as EC-Axl, EC-Dtk, and EC-Mer, respectively), that revealed 
a stronger affinity of GL21.T for EC-Axl (Kd of 13 nmol/l) than 
for EC-Dtk (Kd of 43 nmol/l) (Figure 1a) whereas no saturable 
binding was detectable for EC-Mer (data not shown). Since the 
EC-Axl and EC-Dtk used in the binding assay are disulfide-linked 
homodimers we determined as well the binding of GL21.T upon 
their reduction to monomers and showed that the aptamer binds 
in vitro the ectodomain of Axl and Dtk irrespective of whether 
proteins are present as dimers or monomers (Figure 1b).

Consistently with its ability to specifically bind to the mem-
brane-bound Axl as well as to the soluble ectodomain of the 
receptor, binding of GL21.T in stable tumor-derived cell lines 
was solely detected for the Axl receptor-positive cells (Figure 1c). 
Accordingly, binding of the GL21.T aptamer to the human breast 
cancer cells, SkBr3, that do not express Axl, may be rescued by 
forced expression of exogenous Axl in the cell derivative, SkBr3/
Axl (Figure 1d) and, conversely, binding to the U87MG target 
cells was abrogated by depletion of endogenous Axl with a spe-
cific short hairpin RNA (shRNA) (Figure 1e). Furthermore, we 
show that binding of GL21.T to the U87MG cells was strongly 
competed by the recombinant EC-Axl (Figure 1f), thus confirm-
ing that recognition of target cells is mediated by aptamer binding 
to the extracellular domain of Axl on the cell surface. Moreover, 
differently from other aptamers that we have generated as high-
affinity ligands for respective targets (Kd value around 10 nmol/l) 
but that are not endocytosed into target cells (data not shown), 
GL21.T is readily internalized into U87MG cells, getting ~30% of 

cell internalization following 15-minute incubation and reached 
~60% following 2 hours of aptamer treatment (Figure 1g).

Taken together, these results indicate bona fide that the GL21.T 
aptamer specifically recognizes Axl and, at a lower affinity, Dtk 
receptors either if expressed on the cell surface in their physiologi-
cal context as well as the purified soluble extracellular domain of 
the receptor both in monomeric and dimeric form. Furthermore, 
because of its ability to rapidly internalize within Axl-positive 
target cells it is a highly promising candidate as cargo for tissue 
specific internalization.

the Gl21.t aptamer inhibits the Axl signaling  
but does not hamper cell growth
Gas6, the principal natural ligand of Axl,2 induces tyrosine 
phosphorylation of the receptor and the resulting activation of 
downstream signaling pathways that can lead to cell prolifera-
tion, migration, or to prevention of apoptosis.33 We first deter-
mined whether GL21.T could affect Axl activation following Gas6 
stimulation. As shown in Figure 2a, treating either U87MG (left 
panel) or A549 (right panel) cells with GL21.T (200 nmol/l) dras-
tically reduced the amount of tyrosine-phosphorylated Axl reach-
ing around 50% inhibition at 15 minutes of Gas6 stimulation, 
whereas no effect was observed in the presence of an unrelated 
sequence used as a negative control. Consistently, treatment with 
the GL21.T aptamer reduces the extent of activation of two criti-
cal intracellular effectors of Axl, the extracellular-signal regulated 
kinase 1 and 2 (Erk1/2) and the PKB/Akt kinase,34 thus confirm-
ing that GL21.T acts as a competitive inhibitor of Axl.

Erk1/2 and the PKB/Akt are intracellular signaling effectors 
that promote cell survival and proliferation.33 Therefore, because of 
GL21.T inhibitory potential on the activation of both these path-
ways we determined whether GL21.T may reduces cell viability and 
proliferation. To this end, we analyzed the effects of GL21.T treat-
ment on cell viability in four distinct cell lines. As assessed by the 
MTT assay, interfering with Axl function reduced the percent of 
viable cells of ~20% in all cell lines analyzed (Figure 2b, left) that 
remained stable up to 890 nmol/l-aptamer treatment (Figure 2b, 
insert), thus displaying a poor inhibitory potential. On the other 
hand, by using a specific shRNA to knock down Axl, we compared 
the effects on cell viability of the depletion of Axl to those of com-
petitive inhibition by GL21.T. As shown in Figure 2c, interfer-
ing with Axl expression has a much stronger effect that aptamer 
treatment since it reduced the percent of viable cells to around 
50%. Consistently with the poor effects of GL21.T on cell viabil-
ity, inhibiting Axl with the aptamer had no relevant effects on cell 

Figure 1 Gl21.t aptamer specifically interacts with Axl. (a) Binding isotherm for GL21.T: EC-Axl (left) and GL21.T:EC-Dtk (right) complexes. 
(b) EC-Axl or EC-Dtk (40 nmol/l, with and without 5 mmol/l DTT treatment), were incubated with 1 nmol/l GL21.T, protein-bound RNA was collected 
by nitrocellulose filters and radioactivity quantified. (c) Left, binding of 50 nmol/l radiolabeled GL21.T on the indicated cell lines. Right, lysates from 
the indicated cell lines were immunoblotted with anti-Axl antibodies. (d), Left, binding of 50 nmol/l radiolabeled GL21 on U87MG, SkBr3, or SkBr3 
cells following 72 hours-transfection with Axl TruClone (Axl). Right, lysates from SKBr3 or SKBr3 transfected with Axl were immunoblotted with anti-
Axl antibodies. (e), Left, binding of 50 nmol/l radiolabeled GL21.T on U87MG cells following 72 hours-transfection with a specific Axl short hairpin 
RNA (shRNA) (shRNAAxl) or a nonrelated shRNA (shRNActrl). Right, lysates from U87MG cells following 72 hours-transfection with shRNAAxl or 
shRNActrl were immunoblotted with anti-Axl antibodies. Values below the blot indicate signal levels relative to shRNActrl-transfected cells, arbitrarily 
set to 1 (labeled with asterisk). Intensity of bands has been calculated using the NIH Image Program on at least two different expositions to assure 
the linearity of each acquisition. In (c–e), blots shown are representative of at least three independent experiments and anti-α–tubulin antibodies 
were used as an internal control. (f) Binding of 50 nmol/l radiolabeled GL21.T, prior incubated with 150 nmol/l EC-Axl for 15 minutes at 37 °C, on 
U87MG cells. In (b–f), the results are expressed relative to the background binding detected with the unrelated aptamer used as a negative control. 
(g) Internalization rate of GL21.T and unrelated uptamer. Results are expressed as percentage of internalized RNA relative to total bound aptamer. In 
(a–g), error bars depict means ± SD (n = 3).
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Figure 2 Gl21.t inhibits Axl activation. (a) Serum-starved U87MG and A549 cells were either left untreated or treated for 3 hours with 
200 nmol/l GL21.T or the unrelated aptamer and then stimulated for the indicated times with Gas6 in the presence of each aptamer. Cell lysates 
were either immunoprecipitated with anti-(phospho)-tyrosine (pTyr) antibodies and immunoblotted with anti-Axl antibodies or immunoblot-
ted with anti-Axl, anti-(phospho)-Erk1/2 (pErk), anti-(phospho)-Akt (pAkt) antibodies, as indicated. Filters were stripped and reprobed with 
anti-Erk and anti-Akt antibodies, as indicated. Values below the blots indicate signal levels relative to 15 minutes-Gas6 stimulated unrelated 
aptamer control, arbitrarily set to 1 (labeled with asterisk). Quantitations were done as in Figure 1. Blots shown are representative of at least 
four independent experiments. (b) Indicated cell lines were left untreated or treated for 24 hours with increasing concentrations of GL21.T or 
the unrelated aptamer (as indicated), cell viability was analyzed as reported in Materials and Methods and expressed as percent of viable treated 
cells with respect to control, untreated cells. (c) Left, A549 cells were treated for 72 hours with GL21.T or the unrelated aptamer (200 nmol/l-
final concentration) or A549 were transfected with shRNAAxl or shRNActrl and cell viability was analyzed as in b. Right, lysates from A549 cells 
following 72 hours-transfection with shRNAAxl or shRNActrl were immunoblotted with anti-Axl antibodies. Values below the blot indicate signal 
levels relative to mock-transfected cells, arbitrarily set to 1 (labeled with asterisk). Quantitation was done as in Figure 1. (d) U87MG and A549 
cells were treated for 24 or 48 hours with GL21.T or the unrelated aptamer (200 nmol/l -final concentration) and proliferation was determined 
by [3H]-thymidine incorporation. (e) A549 cells were treated for 24 hours with GL21.T or the unrelated aptamer (200 nmol/l-final concentration) 
as single agents or in combination with TRAIL, cisplatin (Cis) and paclytaxel (Pacl) at the indicated concentrations. Cell viability was analyzed 
as in b. (f) A549 cells were treated for 24 hours with GL21.T or the unrelated aptamer (200 nmol/l-final concentration) as single agents or in 
combination with CL4 aptamer at the indicated concentrations. Cell viability was analyzed as in b. In (b–f) error bars depict means ± SD (n = 4). 
shRNA, short hairpin RNA.
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proliferation (Figure 2d) and cell cycle (data not shown) in both 
A549 and U87MG cells. In A549 cells long-term serum withdrawal 
induces cell death reducing in 72 hours the percent of viable cells 
to ~30%. Since cell death was, however, not further increased by 

inhibiting Axl with GL21.T (data not shown), we thus investi-
gated whether or not GL21.T may instead sensitize cells to external 
insults as conventional chemotherapeutics. To this end we treated 
A549 cells with three different chemotherapeutics that acts through 
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different molecular mechanisms, cisplatin, paclitaxel, and TRAIL. 
As shown in Figure 2e, irrespective of the molecule used, all treat-
ments reduce cell viability to ~60% and no measurable synergy 
was observed when combined with GL21.T. On the other hand, 
since the use of the multikinase inhibitor of Axl, Met, and vascular 
endothelial growth factor receptor GSK1363089, has been shown to 
enhance the effects of anti-HER1 and HER2 inhibitors,20 we used 
GL21.T together with the CL4 anti-HER1 aptamer, that cause selec-
tive apoptotic cell death,35 and analyzed their combined effects on 
cell viability. As expected, treating A549 cells with CL4 reduces the 
percent of viable cells to ~50%, however, the effect is not enhanced 
by the combination with GL21.T (Figure 2f). This indicates that 
hampering Axl activity and downstream signaling with the aptamer 
has poor effects on in vitro cell proliferation.

Gl21.t interferes with cell migration and invasion
Even though the modest inhibitory effects of GL21.T on cell growth 
is in apparent discrepancy with its ability to interfere with Axl-
dependent Erk and Akt activation, intracellular signaling initiated 
by Axl has been reported to be mostly involved in cancer cell migra-
tion and invasion rather than in cell proliferation.25,36–38 Indeed, 
besides promoting cell proliferation, one of the most relevant 
effects caused by the activation of Erk1/2 pathway is the regulation 
of cellular migration and invasion.39 Therefore, by using the Boyden 
chamber assay, we addressed the possibility that GL21.T might 
interfere with cell migration and invasion. As shown in Figure 3a 
treating cells with GL21.T aptamer (at 200 nmol/l) reduces U87MG 
and A549 cell migration either stimulated by 10% fetal bovine 
serum (FBS) (upper panels) or by the Axl physiological ligand, 
Gas6 (lower panels) of several folds (between 60 and 80% as com-
pared to the unrelated aptamer, see upper right panel), the effect of 
the aptamer being dose dependent (see lower right panel). Next, 
we analyzed the interference of GL21.T on the invading capability 
of the U87MG cells by a chemoinvasion assay in which cells were 
plated on Matrigel coated filters and allowed to migrate. As shown 
in Figure 3b, U87MG cells possess a moderate but significant abil-
ity to migrate through Matrigel in the presence of 10% FBS, that is 
almost completely prevented by treatment with GL21.T.

Because of the inhibitory effects of GL21.T on cell invasion 
and migration, we also examined the activation of Rac1. This is a 
member of the Rho family of GTPases that are involved in inte-
grins-mediated cell adhesion, spreading, and migration through 
modulation of the actin cytoskeleton.40 As shown, a marked 
reduction in the active GTP-bound Rac 1 protein is observed fol-
lowing GL21.T treatment, that is consistent with inactivation of 
such signaling pathway (Figure 3c). Thus, in good agreement with 
previous reports that make use of a specific shRNA or the small 
drug R428,25,41 Axl inhibition by GL21.T treatment results in cell 
migration and invasiveness impairment.

To further confirm the inhibitory effect of GL21.T, we thus 
determined the effect of the aptamer on spheroid formation and 
cellular motility. When grown in ultra-low adherent culture dish 
the U87MG cells forms spheroids that increase in size up to 10 
days. As shown in Figure 4a, both the mean size and the num-
ber of spheroids was clearly decreased by GL21.T treatment (of 
~30%). Furthermore, inhibition on glioma cell motility was then 
analyzed by using a spheroid radial migration assay. At 10 days 
tumor spheroids were plated on cell culture dishes and the num-
ber of cells spreading out from the spheroid of more than twice the 
mean radius of spheroids at 24 hours was determined. As shown 
in Figure 4b, upon treatment with the GL21.T aptamer cell motil-
ity is drastically impaired and cells remain clustered as spheroids 
or closely around them.

Increased cell motility and ability to invade the extracellu-
lar matrix characterize the epithelial-mesenchymal transition 
(EMT) in cancer cells.42 Since Axl has been recently shown to 
be involved in EMT transition and cell invasiveness41 we thus 
asked whether the aptamer GL21.T might specifically interfere 
with the acquisition of the mesenchymal phenotype. Several 
pleiotropic transcription factors, including Snail, Twist, and 
ZEB1/2 are known to mediate EMT that can be induced by sev-
eral agents, including transforming growth factors β (TGFβ). 
In A549 cells, the GL21.T aptamer is unable to interfere with 
TGFβ1-induced entry of cells in the mesenchymal state as 
determined by its inability to interfere with increased expres-
sion of Snail and of the mesenchymal N-cadherin and with the 
repression of the epithelial marker E-cadherin levels (data not 
shown). Consistently GL21.T had no major effects on cell viabil-
ity of TGFβ1-treated A549 cells (Figure 4c), thus suggesting that 
inhibiting Axl neither impairs the acquisition of a mesenchymal-
like phenotype nor selectively interferes with proliferation of  
TGFβ-induced cells.

The efficiency of sphere formation is considered a measure of 
tumor aggressiveness being considered a typical feature of tumor-
initiating cells.43,44 Since U87MG-derived spheroids are consti-
tuted in large part of CD133(+) cells, a subpopulation of cells that 
in human gliomas has been shown to bear stemness and tumor-
initiating capabilities,44 we thus determined whether the GL21.T 
aptamer impairs sphere formation by selectively interfering with 
viability of CD133(+) U87MG cells. As shown in Figure 4d, the 
U87MG spheroids, if left growing for 7 days in medium supple-
mented with basic fibroblast growth factor and epidermal growth 
factor, are constituted of CD133(+) cells for around the 40%, 
as determined by fluorescence-activated cell sorting analysis. 
However, cell viability of such enriched CD133(+) population 
appears to be insensitive to GL21.T treatment (Figure 4e) thus 
indicating that Axl activity is required in vitro for anchorage inde-
pendent cell growth rather than for cell survival.

Figure 4 Gl21.t aptamer inhibits spheroid formation. (a) U87MG spheroid diameter (left) and number (right) have been calculated following 10 
days of treatment in the presence of GL21.T or the unrelated aptamer. (b) Spheroids average ~200 µm in diameter were seeded onto 24-well plates 
and allowed to adhere and migrate for 24 hours. Left, representative photographs of the spheroids before and after migration. Right, quantitation 
of U87MG cells migrated from the initial spheroids, error bars depict means ± SD (n = 10). Bar: 100 µm. (c) A549 cells were left untreated or treated 
for 48 hours with transforming growth factors β1 (TGFβ1) either in the absence or in the presence of GL21.T or the unrelated aptamer as reported 
in Materials and Methods. Left, cell viability was analyzed as in Figure 2. Right, proliferation was determined by [3H]-thymidine incorporation. 
(d,e) U87MG spheroids of ~200 µm in diameter were treated with GL21.T or the unrelated aptamer for 72 hours. (d) Spheroids were stained with 
anti-CD133 antibodies. (e) Cell viability was analyzed as in Figure 2. In (a–e), error bars depict means ± SD (n = 4).
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Gl21.t inhibits cell transformation
Because of its inhibitory potential on Axl activation and of the 
resulting impairment of Erk1/2 and Akt activation, we further 
determined whether GL21.T may interfere with the transforming 

potential of A549 and U87MG cells. To this end, we first assessed 
the effects of GL21.T on long-term cellular colony formation effi-
ciency in semisolid media. Cells were treated with either the unre-
lated control or GL21.T aptamers and then plated in soft agar for 
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3 weeks. As shown in Figure 5a, as compared to the unrelated 
aptamer control, treatment with GL21.T led in both cell lines to a 
significant decrease in the efficiency of colony formation.

Furthermore, by using xenografts of A549-luc or A549 cells into 
(nu/nu) immunodeficient mice we evaluated the ability of GL21.T 
to inhibit in vivo tumor growth. To this end we determined the bio-
luminescence intensity (total flux of photons) of A549-luc tumors 
as a measure of tumor cell mass. As shown in Figure 5b (left panel), 
at 7 days after intratumoral injection the bioluminescence increased 
of approximately six times in unrelated aptamer control tumors 
while only of approximately two times times in GL21.T-treated 
tumors. Similarly, 10 days of systemic administration of G21.T 
inhibited tumor growth as compared to the unrelated aptamer 
(Figure 5b, right panel). To confirm the in vivo growth inhibitory 
action of GL21.T we then evaluated the increases in tumor volume 
in A549-mouse xenografts. As shown in Figure 5c, in A549-mouse 
xenografts a pronounced reduction in tumor volume was observed 
in the presence of GL21.T treatment. Treatments were initiated at 
two weeks after A549 cell injection, when tumor mean volume was 
~25 mm3, and followed for further three weeks until tumors treated 
with the unrelated control reached a volume of ~220 mm3 whereas 
those treated with GL21.T remained ~of 70 mm3.

At day 22, mice were sacrificed, tumor excised, embedded in 
paraffin, and six tumors per group randomly selected analyzed. 
As shown in the Figure 5d, the tumor sections showed, in every 
aspects, features of poorly differentiated carcinoma. Strikingly 
tumors from the treated group, but not controls, revealed marked 
degenerative features as extensive tumor necrosis and focal crys-
talline deposits (Figure 5e). To address further this issue we 
assessed the immunohistochemical staining for Ki-67. Notably 
the treated tumors showed a Ki-67 cutoff value <10% (Figure 5g), 
whereas in control tumors the value of Ki-67 was higher >75% 
(Figure 5f). Whether GL21.T inhibits tumor growth by allowing 
the apoptotic process to take place was thus addressed by immu-
noblot analysis of cleavage products of caspase3 and PARP. As 
shown in Figure 5h, at difference of what observed in vitro (left 
panel), in treated tumors GL21.T dramatically induces the activa-
tion of the apoptotic process (right panel).

We thus verified whether the binding specificity of GL21.T for 
Axl-expressing cells is still preserved in vivo following intravenous 
administration of the aptamer. To this end, we determined the capa-
bility of GL21.T to spread into the body and to specifically accu-
mulate in the Axl-expressing A549-derived tumor xenografts with 
respect to control MCF7 that do not express Axl. A549-luc cells 
were xenografted subcutaneously on the right flank and MCF7-luc 
cells were xenografted subcutaneously on the left flank. Thus we 

treated the mice so described with a single intravenous injection of 
1,600 pmol of Alexa-labeled GL21.T and Alexa-labeled unrelated 
aptamer. Mice inoculated with fluorescent GL21.T showed an 
increased concentration of the aptamer corresponding to the A549 
tumor region with respect to the MCF7 and to the whole body at 
180 minutes. Conversely in mice treated with Alexa-labeled unre-
lated aptamer there are no significant differences in the concentra-
tion of aptamer in both the tumor masses (Figure 6a).

As shown in Figure 6b, over a period of 27 hours the Alexa-
labeled GL21.T aptamer specifically accumulates in the A549 
tumor region with respect to the MCF7, whereas the unrelated 
aptamer is retained at the same extents on both tumor types 
(Figure 6c). A major peak of accumulation was observed between 
5 and 30 minutes. Taken together these results indicate that 
GL21.T may hamper Axl-dependent tumor formation.

dIscussIon
Here, we show that a short RNA-based aptamer, GL21.T, acts as 
a neutralizing ligand for the transmembrane RTK Axl on tumor 
cells. The aptamer, isolated with the use of a combinatorial selec-
tion-based approach, binds Axl at high affinity (Kd of 12 nmol/l) 
and high specificity. Indeed, we demonstrate that GL21.T may bind 
to living cells in culture provided that the human Axl is expressed 
on the cell surface and that such binding can be competed with an 
excess of the recombinant EC-Axl protein.

Axl has been recently implicated in several human cancers as 
being prognostic of a less favorable histiotype.8–14 The functional 
implication of Axl in tumors has been recently proposed in experi-
mental models either by depletion with a specific shRNA or by 
functional inhibition with the TK inhibitor, R428,25 and by the mAb 
YW327.6S2.26 Furthermore, converging evidence indicate that Axl 
is likely involved in determining the EMT in cancer cells.41

We demonstrate that the binding of the GL21.T aptamer to 
Axl strongly reduces the receptor TK activity and the consequent 
activation of the two main downstream effectors Erk and Akt. 
According with the involvement of Axl in motility and invasion, 
we show that GL21.T strongly inhibits in vitro cell migration, 
extracellular matrix invasion, sphere formation and cell spread-
ing. Given the potential consequences of these effects on meta-
static potential it is possible that this anti-Axl aptamer could have 
therapeutic potential in metastatic spread. However, even impair-
ing both Erk and Akt activation, as compared to Axl depletion, 
treating cells with GL21.T had poor effects on cell viability and 
proliferation that are both decreased by the treatment with the 
aptamer but only of ~20%. Based on previous reports of the need 
of Axl for EMT, we thus insight the mechanism that specifies the 

Figure 5 Gl21.t inhibits tumor growth. (a) Colony formation assay showing U87MG and A549 cells grown for 2 weeks in the presence of GL21.T 
or the unrelated aptamer. Representative photographs of at least three different experiments were shown. Bar: 100 µm. Colonies number of 15–20 
random fields were counted and expressed as percent with respect to the unrelated aptamer-treated control. Vertical bars indicate the standard 
deviation values. (b) A549-luc xenografts were left growing for 30 days following implantation before aptamer injection. Mouse xenograft model 
bearing A549-luc cells tumors were injected intratumorally (left) or intravenously (right) with GL21.T or unrelated aptamer. Growth inhibition of 
tumors was measured as bioluminescence intensity (photon/sec) as indicated. Data shown are means ± SEM (n = 3 tumors). (c) Growth inhibition of 
tumors in a mouse xenograft model bearing A549 cells upon GL21.T treatment. Day 0 marks the first day of injection. Data are shown as means ± 
SEM (n = 8 tumors) (see Materials and Methods section for details). (d–g) Representative sections of tumors from unrelated aptamer or GL21.T-
treated mouse were stained with (d,e) hematoxylin and eosin (H&E) and (f,g) Ki-67 antibody, as indicated. Magnification, ×200. (h) Three tumors 
per group selected randomly were excised, lysed, and the pooled or lysates were prepared from A549 cells treated for 24 hours with GL21.T or 
unrelated aptamer. Lysates were immunoblotted with anti-caspase-3, anti-PARP, and anti-α–tubulin antibodies, as indicated. Molecular weights of 
indicated proteins are reported.
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Figure 6 Gl21.t intravenous injection. (nu/nu) Mice-bearing MCF7-luc cells (left-hand side) and A549-luc (right-hand side) xenografts were injected intra-
venously either with 1,600 pmol of Alexa-labeled GL21.T or of unrelated aptamer. The aptamer amount in vivo was thus monitored by evaluating the intensity 
of fluorescence signal normalized for the tumor mass as determined by cell bioluminescence and measured at different times as indicated. (a) Typical image 
of one set of mice by IVIS camera at 180 minutes after injection. Arrows indicate the tumor regions (left-hand side MCF7-luc, right-hand side A549-luc). The 
corresponding fluorescent signal is reported for GL21.T (left mouse), unrelated aptamer (middle mouse), and sham control (right mouse). (b) The graph 
depicts the photon rate normalized by the bioluminescence signal (as measure of tumor volume) up to 110 minutes following GL21.T aptamer injection. The 
insert represents the signal measured from 140 to 1,620 minutes. (c) The same as in b for the mice injected with an unrelated aptamer sequence.
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extent of cell death and asked whether the presence of an intrinsic 
heterogeneity in the cell culture may lead to a small population 
of Axl-dependent cells with a mesenchyme-like phenotype more 
sensitive to GL21.T. To address this possibility, we determined cell 
viability and proliferation either after TGFβ-dependent induction 
of the mesenchymal transition or in a partitioned CD133(+) cell 
population. However, it seems unlikely to be the case since in both 
cases we observed no increase of the inhibitory effect of GL21.T 
on cell growth. On the other hand, as recently shown, Axl inter-
acts with other RTKs by multiple intracellular mechanisms that in 
concert contribute to the final cell phenotype45 thus likely deter-
mining responsiveness to GL21.T inhibition on cell viability.

We also show that, despite the poor effects on in vitro cell growth, 
in vivo the GL21.T aptamer efficiently inhibited tumor growth and 
induced apoptosis. This apparent discrepancy likely relies on the 
mechanism of action of GL21.T that by binding to Axl interferes 
with Gas6-induced receptor activation. Indeed, the expression 
of Axl and its ligand, Gas6, have been shown to be implicated in 
several tumors and metastasis. Activation of Axl in tumor cells 
implicates the production of high levels of Gas6 ligand by tumor 
infiltrating cells, including macrophages and leukocytes that thus 
promote cell growth (for a review, see ref. 46). Therefore, even if the 
molecular mechanisms remain to be investigated, the need of sur-
rounding microenvironment for proper Axl function may provide 
a plausible explanation for the more drastic effects observed in vivo 
by GL21.T treatment.

Despite the still growing interest for the Axl-Gas6 axis as thera-
peutic targets for cancer,24 only few Axl inhibitors of in vivo tumor 
growth have been described to date, including the mAB YW327.6S2, 
the shRNA and the small TKI R428. The aptamer GL21.T binds Axl 
at high affinity and inhibits its TK activity likely interfering with 
Gas6-induced dimerization. Further GL21.T preserves in vivo its 
binding specificity, thus distinguishing Axl-expressing from non-
expressing tumor cells in the same animal. Therefore, it has a major 
advantage over other therapeutics since it couples high binding spec-
ificity and affinity to a low molecular weight, of ~10 kDa. Together 
with the monoclonal antibody,26 thus far the aptamer GL21.T is 
the only biomolecule that may act as inhibitory ligand for Axl thus 
revealing as a lead molecule not only as an inhibitory agent but also 
as a receptor specific ligand able to drive conventional therapeutics, 
nanoparticles and imaging agents for selective recognition of cancer 
cell surface.30,47 Most importantly, based on the recent development 
of aptamer-siRNA bioconjugates48–50 GL21.T appears as a prime 
candidate tool for the cell-specific receptor-mediated intracellular 
delivery of therapeutic RNAs.

MAterIAls And Methods
Aptamers. GL21.T and the unrelated 2′-fluoropyrimidine aptamer used 
as a negative control were purchased from Sigma (Sigma-Aldrich, St 
Louis, MO).

GL21.T: 5′ AUGAUCAAUCGCCUCAAUUCGACAGGAGGC 
UCAC 3′.

Uunrelated aptamer: 
5′UUCGUACCGGGUAGGUUGGCUUGCACAUAGAACGUGUCA3′

Before each treatment, the aptamers were subjected to a short 
denaturation–renaturation step (85 °C for 5 minutes, snap-cooled on 
ice for 2 minutes, and allowed to warm up to 37 °C). For cell treatments 
longer than 6 hours, RNA concentrations were determined to ensure 

the continuous presence of at least 200 nmol/l-concentration taking 
into account the 6 hours-half-life of the aptamer in 10% serum. For 
imaging assays aptamers have been internal-labeled with Alexa Fluor 
647 fluorescent probe following the provider indications (Invitrogen, 
Carlsbad, CA).

Cell lines and transfection. Human glioma U87MG, human breast SKBr3, 
MCF7, MDA-MB-231 cells and epidermoid carcinoma A431 (American 
Type Culture Collection, Manassas, VA), were grown in Dulbecco’s 
modified Eagle’s medium (DMEM) supplemented with 10% FBS and 
2 mmol/l L-glutamine (Invitrogen). Non–small-cell lung cancer A549 cells 
(American Type Culture Collection) were grown in RPMI (Invitrogen) 
supplemented with 10% FBS and 2 mmol/l L-glutamine. A549-luc-C8 
and MCF7-luc-F5 (Caliper Life Sciences, Hopkinton, MA) were grown in 
RPMI supplemented with 10% FBS, 2 mmol/l L-glutamine and 150 µg/ml 
G418 (Sigma-Aldrich).

For Axl gene silencing, U87MG were transfected with shRNAAxl 
or shRNActrl (Open Biosystems, Rockford, IL). Axl expression in 
human breast SKBr3 cells was obtained by transfection of Axl TruClone 
(Origene, Rockville, MD). Cells (3.5 × 105 cells per 6-cm plate) were 
grown and overlaid with the transfection mixtures containing the 
shRNAAxl, shRNActrl, or Axl TruClone (6 μg) and Lipofectamine 2000 
(Invitrogen) in Opti-MEM I reduced serum medium (Invitrogen). After 
5-hour incubation, complete culture medium was added to the cells and 
incubation was prolonged up to 72 hours. Binding or [3H]-Thymidine 
incorporation assays with transfected cells were performed after 24 hours 
from transfection.

Binding assays. Binding to cells of GL21.T or unrelated aptamer as a nega-
tive control (50 nmol/l final concentration) was performed as described.35 
Briefly, filter binding analysis with the soluble extracellular domain of 
human Axl, Dtk, and Mer as targets (R&D Systems, Minneapolis, MN), 
was performed by incubating 1 nmol/l of radiolabeled aptamers with 1, 
3.2, 10, 32, 100, 320, and 1,000 nmol/l of EC-Axl, EC-Dtk, or EC-Mer as 
described.

In all binding assays the background values obtained with the 
unrelated aptamer were subtracted from the values obtained with the 
GL21.T.

To check the endocytosis rate, 100 nmol/l radiolabeled GL21.T or 
unrelated uptamer have been incubated on U87MG cells for increasing 
incubation times (from 15 minutes up to 2 hours) and at desired times, 
cells have been treated with 0.5 µg/µl proteinase K (Roche Diagnostics, 
Indianapolis, IN) at 37 °C. Following 30-minute treatment, the amount of 
RNA internalized has been recovered and counted.

Immunoblot analyses. To assess the effects of GL21.T aptamer on Axl 
activity, U87MG or A549 cells (1.5 × 105 cells per 3.5-cm plate) were 
serum-starved overnight, pre-treated with 200 nmol/l GL21.T aptamer or 
unrelated negative control aptamer for 3 hours and then stimulated with 
400 ng/ml Gas6 (R&D Systems) either alone or in presence of each aptamer. 
Cell extracts, immunoprecipitation, and immunoblotting were performed 
as described.31 The primary antibodies used were: anti-phospho-ERK1/2 
(E10), anti-phospho-AKT (Ser473), anti-phospho-AKT (Thr308), anti-
AKT, anti-caspase-3, and anti-PARP (Cell Signaling Technology, Danvers, 
MA); anti-ERK1 (C-16) (Santa Cruz Biotechnology, Santa Cruz, CA); 
anti-phospho-tyrosine (4G10; Upstate Biotechnology Incorporated, Lake 
Placid, NY); anti-Axl (R&D Systems); anti-αtubulin (DM 1A) (Sigma-
Aldrich). RTK antibody arrays (R&D Systems) were performed as recom-
mended. Endogenous active GTP-bound Rac1 levels were detected using 
PAK-binding domain pull down assay (Cytoskeleton) according to the 
supplier’s instructions.

Cell viability and [3H]-thymidine incorporation assays. Cell viability 
was assessed with CellTiter 96 AQueous One Solution Cell Proliferation 
Assay (Promega, Madison, WI) according to the supplier’s instructions 
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(4 × 103 cells/well in 96-well plates). To asses cell viability in the presence 
of TGFβ1, cells were maintained in DMEM 0.1% FBS for 24 hours and 
then treated with 50 ng/ml TGFβ1 (R&D Systems) alone or in presence of 
GL21.T or of the unrelated aptamer (200 nmol/l final concentration) for 
additional 48 hours.

For cell proliferation assay, A549 or U87MG cells (2 × 104 cells/well 
in 24-well plates) were treated for 24 hours or 48 hours with GL21.T or 
unrelated aptamer. During the final 6 hours, cells were pulsed with 1 µCi/
ml [3H]-thymidine (45 Ci/mmol) (Amersham Bioscience, Piscataway, NJ) 
added in complete growth medium and incubated at 37 °C. At the end of 
each pulse, cells were harvested and [3H]-thymidine incorporation was 
analyzed by a Beckman LS 1701 Liquid Scintillation Counter.

Transwell migration/invasion and soft-agar colony formation assays. 
A549 or U87MG cells were pretreated for 3 hours either with 200 nmol/l 
GL21.T or with unrelated aptamer and then trypsinized, re-suspended 
in DMEM serum free, and counted. Cells (1 × 105 in 100 μl serum-free 
medium per well) were then plated into the upper chamber of a 24-well 
transwell (Corning Incorporate, Corning, NY) in the presence of increasing 
concentrations of either GL21.T or unrelated aptamer and exposed to Gas6 
(400 ng/ml) or 10% FBS as inducers of migration (0.6 ml, lower chamber). 
For invasion assays the upper chamber of a 24-well transwell was coated 
with 20% Matrigel matrix (BD Biosciences, San Jose, CA) before plating 
of the cells. After incubation at 37 °C in humidified 5% CO2 for 24 hours, 
cells were visualized by staining with 0.1% crystal violet in 25% methanol. 
Percentage of migrated cells was evaluated by eluting crystal violet with 1% 
sodium dodecyl sulfate and reading the absorbance at 570 nm wavelength.

For soft-agar colony formation assay, 1 × 104 U87MG or A549 cells, 
pretreated for 3 hours either with GL21.T or with the unrelated aptamer, 
were plated in 60 mm dishes in a solution containing DMEM 2× (Sigma-
Aldrich), Tryptose phosphate broth and 1.25% of Noble Agar (Difco; 
BD, Franklin Lakes, NJ). Cells were left grown for 2 weeks in presence of 
each aptamer (200 nmol/l-final concentration) renewing the treatment 
each 3 days.

Spheroid formation assay. To generate U87MG cell spheroids, 1 × 104 cells 
left either untreated or treated for 3 hours with 200 nmol/l GL21.T or, alter-
natively, with unrelated aptamer, were grown in DMEM-F12 supplemented 
with 1% B-27, human recombinant basic fibroblast growth factor (10 ng/
ml), and epidermal growth factor (20 ng/ml), both from Sigma-Aldrich, 
in 60 mm low-adherent plate. Sphere were left growing for 10 days either 
in the absence or in the presence of each aptamer (renewing the treat-
ment each 3 days). Spheroids average ~200 µm in diameter were seeded 
in complete grown medium onto 24-well plates and allowed to adhere and 
migrate for 24 hours. Anti-CD133 antibodies (Cell Signaling Technology) 
staining was performed following the provider indications.

In vivo experiments. Athymic CD-1 nude mice (nu/nu) were housed in a 
highly controlled microbiological environment, thus to guarantee specific 
pathogen free conditions. To assess the GL21.T aptamer ability to inhibit 
in vivo tumor growth, mice were injected subcutaneously with 3 × 106 (in 
100 µl) in vitro propagated A549. Sixteen non-necrotic tumors of ~0.5 cm 
in diameter were randomly divided into two groups of eight mice as fol-
lows: group 1, unrelated aptamer-treated; group 2, GL21.T-treated.

Aptamers (200 pmol/injection) were injected intratumorally in 100-µl 
volumes three times a week for 22 days. During the study mice were daily 
monitored to avoid any sign of suffering. Tumors were measured every 
2 days with calipers and tumor volume was calculated as follows: VT = 
(WXLXH) × 0.5236 (W, the shortest dimension; L, the longest dimension; 
H, the intermediate dimension). The growth curves are plotted as the 
means tumor volume ± SEM. Alternatively, A549-luc cells (5 × 106 in 
100 µl) were injected into mice, tumors were left growing until they were 
palpable and then treated with the aptamers (for intratumor treatment, 
a single 200-pmol injection; for retro-orbital intravenous treatment, 

1,600 pmol/day for the first 4 days plus a single dose of 1,600 pmol at 
day 8). Growth inhibition of tumors was measured as bioluminescence 
intensity by CALIPER IVIS Spectrum.

For the in vivo evaluation of aptamer binding specificity, six (nu/
nu) immunodeficient mice each bearing a double tumor xenograft were 
utilised. To this end, each mouse was injected subcutaneously with 3 × 106 
A549-Luc cells and 6 × 106 MCF7-Luc cells on the right and left sides of the 
animal, respectively. Aptamers, GL21.T and the unrelated aptamer, have 
been internal-labeled with the fluorescent probe Alexa Fluor 647 following 
the provider indications (Invitrogen) and then administered by retro-
orbital injection. Three mice were injected with 1,600 pmol of GL21.T and 
three mice with 1,600 pmol of the unrelated aptamer. Results are shown 
in Figure 6 for a single couple of mice and were found reproducible for 
all cases. For the in vivo imaging analysis it has been used the CALIPER 
IVIS Spectrum. The system allows a noninvasive monitoring in living 
animals by using optical imaging technology to acquire bioluminescences 
and fluorescence images. The images were processed by using “Caliper 
living image software 4.1.” Unmixing algorithm has been used to reduce 
the tissue and ingested food background, in order to enhanced the 
fluorescence images.

Histology and immunohistochemistry. Formalin-fixed, paraffin embed-
ded tissues from the tumors were selected. Representative slides of each 
tumor were stained with hematoxylin and eosin to confirm the diagnosis 
of the tumors. To evaluate the proliferative activity of the neoplastic cells, 
4-μm serial sections from representative blocks were cut, mounted on 
poly-L-lysine coated glass slides and used for the immunohistochemical 
staining of the Ki-67 antigen. Ki-67 is a proliferative marker and its cut-
off value of 10% is commonly used in several types of malignant tumors. 
Representative sections were incubated overnight at 4 °C with the primary 
antibodies. Subsequently, the slides were incubated with biotinylated sec-
ondary antibodies, peroxidase-labeled streptavidin (DAKO LSAB kit HRP; 
DAKO, Carpinteria, CA) and chromogenic substrate diaminobenzidine 
(DAB; Vector Laboratories, Burlingame, CA) for the development of the 
peroxidase activity. Slides were counterstained with hematoxylin, dehy-
drated and cover-slipped with a synthetic mounting medium (Entellan, 
Merck, Germany).

Ethics statement. All the experimental procedures were approved by the 
Ethical Committee for the Animal Use (CESA) of the Istituto di Ricerche 
Genetiche Gaetano Salvatore (IRGS) and where communicated to the 
national authorities accordingly with national and European rules (permit 
numbers 1551, 1564).

suPPleMentArY MAterIAl
Figure S1. GL2.T aptamer.
Figure S2. GL2.T inhibits serum-dependent Axl phosphorylation.
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Abstract: RNA-based approaches are among the most promising strategies aimed at 

developing safer and more effective therapeutics. RNA therapeutics include small  

non-coding miRNAs, small interfering RNA, RNA aptamers and more recently, small 

activating RNAs. However, major barriers exist to the use of RNAs as therapeutics such as 

resistance to nucleases present in biological fluids, poor chemical stability, need of specific cell 

targeted delivery and easy entry into the cell. Such issues have been addressed by several 

recent reports that show the possibility of introducing chemical modifications in small RNAs 

to stabilize the molecular conformation and increase by several fold their integrity, while still 

preserving the functional activity. Further, several aptamers have been developed as excellent 

candidates for the specific recognition of cell surface targets. In the last few years, by taking 

advantage of recent advances in the small RNA field, molecular bioconjugates have been 

designed that permit specific targeting and may act as cargoes for cell internalization of small 

RNAs acting on gene expression that will be discussed in this review. 
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1. Introduction 

Innovative targeted therapeutic strategies aim at developing new molecules with high target affinity 

and specificity with suitable pharmacokinetic properties for in vivo applications. From this optic short 

non-coding RNAs were revealed to be attractive molecules. In the last decades significant advances 

have been attained in the knowledge of molecular mechanisms leading to selective inhibition of gene 

expression and protein function. However, in order to successfully translate RNA-based therapeutics to 

the clinic several challenges must be addressed, including appropriate stability in biological fluids, 

high efficiency and specificity of delivery, durable safety and target selectivity. 

Several classes of molecules have been characterized with potential applications as RNA 

therapeutics in the treatment of human diseases. These include ribozymes, RNA decoys, aptamers, 

small interfering RNA (siRNA) and microRNA (miRNA) [1]. 

The discovery of RNA-mediated interference (RNAi) for gene silencing has provided a powerful 

tool for loss-of-function studies and therapeutic opportunities [2,3]. RNA interference is a natural 

process of gene specific silencing that occurs in organisms ranging from plants to mammals as a defense 

against viruses. si/miRNAs are formed from longer precursor molecules as short double-stranded RNAs 

(dsRNAs) of 20–24 base pairs [4]. One strand that directs silencing is the guide strand while the other 

strand, named the passenger, is degraded. In the cytoplasm, the RNA-induced silencing complex 

(RISC) drives the guide strand of the dsRNA to hybridize with the target mRNA to prevent translation 

or induce degradation depending on the degree of complementarity [5]. Base pairing between siRNAs 

and their targets generally shows full complementarity whereas, with the exception of the 2–8 bases 

seed region at the 5’ terminus, miRNAs usually show partial complementarity with their targets. 

miRNAs have the capacity to target multiple genes simultaneously and regulate important biological 

processes including, transcription, cell cycle, cell growth, proliferation and apoptosis. They have been 

shown to be involved in the pathogenesis of diverse diseases including cancer, stroke, diabetes, 

diseases of the liver, kidney, and cardiovascular system as well as neurodegenerative and infectious 

diseases [6-8]. On the other hand siRNAs are the best characterized RNA-based reagents that have 

been developed for several disease including cancer, kidney, ocular, retinal and metabolic disorders. 

As a difference with siRNAs and miRNAs, the function of ribozymes and aptamers doesn’t involve 

the formation of the RISC. The hammerhead small ribozymes are nucleolytic oligonucleotides that 

recognize and excise a given target RNA molecule [9]. Aptamers constitutes an emerging attractive 

class of therapeutic molecules able to tightly bind to specific protein or non-protein targets by folding 

into complex tertiary structures [10,11]. 

Recognition by toll-like receptors (TLRs) in immune cells represents a major obstacle to the use of 

RNA-based therapeutics. However, immune recognition the immune response of single stranded 

siRNAs (ss-siRNA) or ds-siRNAs by TLRs can be bypassed by the replacement of only uridines with 

their 2′-fluoro, 2′-deoxy, or 2′-O-methyl modified counterparts without reducing their silencing 

potency [12-15]. In addition, immunogenicity has been found to be either absent or limited when 

1,000-fold higher doses of a nucleic acid aptamer than would be required clinically were administered 

to monkeys [16]. This property depends on the fact that antibodies to synthetic oligonucleotides are not 

generally produced and, in addition, the innate immunity response against non-self RNAs does not 

hinder aptamer therapy because 2’-modified nucleotides abrogate TLRs responses [17].  
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A major impediment to the clinical development of RNA drugs is the lack of an appropriate and 

high efficiency in vivo delivery strategy to guarantee intracellular target accessibility and specificity of 

delivery. The use of viral vectors, despite their high efficiency, has been impaired greatly due to the 

associated mutagenicity or oncogenesis, several host immune responses, and high cost of production. 

Therefore, non-viral vectors continue to draw significant attention despite their low efficacy. 

2. RNA-Based Therapies 

Currently, the list of oligonucleotides of therapeutic interest is growing rapidly with over one 

hundred clinical trials and two therapeutic oligonucleotides that have been already approved by U.S. 

Food and Drug Administration (FDA) and marketed, the Vitravene antisense antiviral and the 

Macugen RNA-based aptamer. Two classes of therapeutic oligonucleotides have predominantly been 

developed: siRNA and aptamers, and several of them are currently in clinical trials (Table 1). 

Table 1. siRNAs and aptamers in clinical trials. 

 Name Company Target (s) Therapeutic Indication 
Clinical 

Stage 

siRNAs 

TD101  

 

Pachyonychia Congenita 

Project 

Keratin 6A N171K 

mutant 
Pachyonychia congenita  Phase I  

QPI-1007  Quark Pharmaceuticals Caspase 2  
Non-arteritic anterior ischaemic 

optic neuropathy 
Phase I  

AGN211745  Sirna Therapeutics VEGFR1  
AMD 

Choroidal neovascularization 
Phase II  

PF-655  Quark  RTP801  
Diabetic macular oedema (DME), 

AMD 
Phase I  

SYL040012  Sylentis 
β2 adrenergic 

receptor  
Glaucoma  Phase II  

CEQ508  MDRNA β-catenin  Familial adenomatous polyposis Phase I  

ALN-PLK1  Alnyam Pharmaceuticals  PLK1  Liver tumours Phase I  

FANG  Gradalis Furin  Solid tumours Phase II  

CALAA-01  Calando Pharmaceuticals RRM2  Solid tumours Phase I  

SPC2996  Santaris Pharm. BCL-2  Chronic myeloid leukaemia  Phase II  

ALN-VSP02  Alnylam Pharmaceuticals 
VEGF,kinesin spindle 

protein  
Solid tumours Phase I  

NCT00672542  Duke University 
LMP2, LMP7, and 

MECL1  
Metastatic melanoma Phase I  

Atu027  Silence Therapeutics PKN3  
Advanced, recurrent or metastatic 

solid malignancies 
Phase I  

QPI-1002/I5NP  Quark Pharmaceuticals p53  Acute kidney injury Phase II  

TKM-ApoB  
Tekmira Pharmaceuticals 

Corp. 
APOB  Hypercholesterolaemia Phase I  

PRO-040,201  
Tekmira Pharmaceuticals 

Corp. 
APOB  Hypercholesterolaemia Phase I  
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Table 1. Cont. 

 Name Company Target (s) Therapeutic Indication 
Clinical 

Stage 

siRNAs 

SPC3649  Santaris Pharma miR-122  Hepatitis C virus Phase II  

pHIV7-shI-

TAR-CCR5RZ  

City of Hope Medical 

Center/Benitec 

HIV Tat protein, HIV 

TAR RNA, human CCR5 
HIV Phase 0  

ALN-RSV01  Alnylam Pharmaceuticals  RSV nucleocapsid  RSV in volunteers Phase II  

Aptamers 

Macugen 

(Pegaptanib) 

Eyetech 

Pharmaceuticals/Pfitzer 

VEGF-165 AMD 

Diabetc retinopathy 

Approved  

Phase III 

E10030 Ophthotech 

Corp./Archemix Corp. 

PDGF-B  AMD Phase II 

ARC1905  

 

Ophthotech 

Corp./Archemix Corp. 

C5 AMD Phase I 

ARC1779  Archemix Corp. vWF TMA Phase II 

NU172 

 

ARCA Biopharma/ 

Archemix Corp. 

Thrombin Acute coronary artery  

bypass surgery 

Phase II 

REG-1 

(RB006/RB007) 

Regado Biosciences/ 

Archemix Corp. 

Factor IXa Percutaneous coronary 

intervention 

Phase II 

NOX-A12  

 

NOXXON Pharma SDF-1α Lymphoma patients 

(undergoing autologous stem 

cell transplantation) 

Phase I 

NOX-E36  

 

NOXXON Pharma CCL2 Type 2 diabetes and diabetic 

Nephropathy 

Phase I 

AS1411 

(AGRO001) 

Antisoma/Archemix Corp. Nucleolin AML Phase II 

2.1. siRNAs 

Recently, the use of RNAi-based gene silencing has been demonstrated in humans for treatment of 

several diseases, as discussed in multiple recent reviews [18]. We report here only few not exhaustive 

examples of the possible therapeutic applications.  

Various clinical studies have explored the direct tissue delivery of siRNA into the eye for macular 

degeneration in humans. Among the growth factors implicated in the age-related macular degeneration 

(AMD) process, the vascular endothelial growth factor (VEGF) has been shown to be a major inducer 

of choroidal neovascularization [19]. Several studies have recently addressed the silencing of  

VEGF [20,21] or the VEGF receptor 1 (VEGFR1) [22] by RNA interference (RNAi) using either 

intravitreous/periocular injection of siRNA or using adenovirus backbones to allow stable endogenous 

transgene expression of short hairpin (sh)RNAs resulting in a potent reduction of VEGF or VEGFR1. 

Silencing of gene expression by RNAi has been extensively studied to develop innovative cancer 

therapeutic strategies. Indeed, many of the siRNAs are in different stages of development for the 

treatment of different kind of tumors. For examples, among the siRNA therapeutics for the treatment 

of solid tumors, CALAA-01 and Atu027, targeting the M2 subunit of ribonucleotide reductase and 

protein kinase N3, respectively, are in Phase I, whereas, FANG against Furin is in Phase II.  

Further, SPC2996 against BCL-2 is in Phase II for treatment of chronic myeloid leukemia  
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(from http://ClinicalTrials.gov). As shown in Table 1, the number of possible applications of RNAi 

therapeutics are growing rapidly and now include also viral infections, respiratory, brain, skin and 

metabolic diseases.  

In recent studies, given the strong impact of siRNAs for therapeutic applications, a great effort is 

focused on the optimization of the efficacy of the siRNAs through relatively minor chemical and 

structural modifications to canonical siRNA. The final aim is to improve loading of the guide strand 

into the RNAi machinery and reduce off-target effects and competition with endogenous miRNAs. 

The group of Rossi [23-26] has reported pioneering studies demonstrating that Dicer substrate 

interfering RNA (dsiRNA) are more potent than classical synthetic 21-mer siRNAs, showing more 

robust formation of a high molecular weight complex known to contain Dicer and TRBP (two primary 

members of the RISC-loading complex). 

2.2. Aptamers  

Aptamers are short single-stranded DNAs or RNAs that like antibodies, bind with high affinity to 

specific targets by folding into complex tertiary structures. They have some important advantages over 

antibodies and other protein-based reagents as therapeutics. A number of these advantages stem from 

the fact that aptamers are generated by an iterative in vitro evolution procedure named Systematic 

Evolution of Ligands by EXponential enrichment (SELEX) avoiding the use of animals or cells.  

In addition, aptamers can be readily chemically modified to enhance their bioavailability and 

pharmacokinetics [27-29]. Further, as discussed above, another important advantage of RNA aptamers 

over proteins is the fact that RNA is much less immunogenic than proteins [16].  

The list of aptamers against important therapeutic targets is growing rapidly and some of them have 

already entered the clinical pipeline (see Table 1) for the treatment of different diseases [30-32]. The 

most successful therapeutic application of an aptamer is represented by Macugen (or pegaptanib, 

marketed by Eyetech Pharmaceuticals/Pfizer), an RNA-aptamer that binds and antagonizes the action 

of VEGF. The aptamer has been fully approved by the FDA in December 2004 for the treatment of 

exudative AMD. In order to translate this aptamer into the clinic, it has been chemically modified with 

2′-fluoropyrimidines (2′-F-Py), 2′-O-Me-purines (2′-O-Me-Pu) and polyethylene glycol (PEG) to 

generate a better therapeutic agent [33,34]. 

Many other aptamers, not yet approved by the FDA, are currently in clinical trials. For example other 

two aptamers, named E10030 and ARC1905, are in Phase II and Ι of clinical trials for the treatment of 

AMD, respectively. E10030 is a DNA-aptamer directed against the platelet-derived growth factor-B 

(PDGF-B) chemical modified with 2′-F-Py and 2′-OMe-Pu and PEG [35]; while ARC1905 is a  

RNA-aptamer targeting the complement component 5 (C5) containing 2′-F-Py and PEG [36,37]. 

Furthermore, different aptamers targeting blood-clotting factors seems to be effective anticoagulant 

agents. The ARC1779 is a DNA-aptamer directed against the A1 domain of von Willebrand factor, 

currently in phase II clinical trials for the treatment of thrombotic microangiopathies (TMA) [38,39]; 

while Nu172 is a chemical unmodified DNA-aptamer directed against thrombin, currently in phase II 

clinical trials to evaluate its potential use as an anticoagulant during acute coronary artery bypass surgery. 

Particularly interesting is REG-1, an aptamer targeting the coagulation factor IXa. This is the first 

case of a modulator-controlled aptamer able to provide a time-controllable therapy. REG-1 is a  
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two-part therapeutic agent, consisting of an RNA aptamer specific for the coagulation factor IXa 

(RB006) and a single stranded RNA oligonucleotide complementary to the RB006 aptamer (RB007). 

Aptamer inhibition of the factor IXa by RB006 is structurally disrupted by administration of the 

antidote complementary strand RB007. The REG-1 aptamer-antidote therapy has been tested in Phase 

I and II clinical trials with promising results as an anticoagulation therapy to prevent clot formation 

during cardiac surgery [40]. 

Moreover, different aptamers for cancer therapy are also in clinical trials. NOX-A12 is an L-RNA 

spiegelmer directed against the stromal cell-derived factor-1α (SDF-1α), a chemokine which attracts 

and activates immune and non-immune cells that bind to chemokine receptors CXCR4 and CXCR7. 

This aptamer is in Phase I clinical trials for the treatment of hematologic tumors. The AS1411 aptamer, 

instead, showed effectiveness for the treatment of acute myeloid leukaemia (AML) in phase I and II 

clinical trials. AS1411 is a DNA-aptamer, directed against nucleolin [41], a protein often 

overexpressed on the surface of cancer cells. This DNA aptamer is part of the guanine-rich oligonucleotide 

class of aptamers that form G-quartets, a structural element that exhibits antiproliferative activity. 

Nucleolin has many functions, so inhibiting this protein with AS1411 affects a variety of signaling 

pathways, including NF-κB [42] and Bcl-2 [43]. 

Apart from the aptamers mentioned above, many other aptamers are not yet developed in clinic but 

target molecules of high therapeutic interest thus appearing as excellent drug candidates for a wide 

range of human pathologies [30]. 

2.3. miRNAs 

Although the clinical development of miRNAs has not yet been realized, they are attractive 

candidates as prognostic biomarkers and therapeutic targets in different diseases including cardiovascular 

disease and cancer. In addition, the use of complementary antisense oligonucleotides has been developed 

for miRNA silencing in research and therapy. Antisense inhibitors act by competing for miRNA binding 

to the proper sites on target mRNAs and include small synthetic RNAs, antagomir, and modified RNA 

oligonucleotides, as locked nucleic acid (LNA) [44]. 

Cardiovascular disease is the leading cause of death in industrialized nations. Several miRNAs have 

been recently implicated in cardiomyocyte hypertrophy, increased fibrosis and apoptosis during heart 

failure [45]. Using mice with induced cardiac hypertrophy it has been recently shown that miR21 is 

upregulated in hearth fibroblasts, increases the extracellular signal-related kinases (ERKs)-mitogen-

activated protein kinase (MAPK) activity and regulates cell survival and growth factor secretion. 

Cardiac hypertrophy and fibrosis can be attenuated and even prevented by the administration of a 

specific antagomir that suppresses miR-21 levels and reduces cardiac ERK-MAPK activity [46]. On 

the other hand, has been shown that miR-199a expression is sensitive to low oxygen levels and is 

rapidly downregulated in cardiac myocytes to undetectable levels, thus rapidly resulting in increased 

levels of mRNA target, hypoxia-inducible factor (Hif)-1alpha. Conversely, restoring miR-199a levels 

during hypoxia inhibits Hif-1alpha expression, reduces apoptosis and protects the cells from hypoxic 

injury [47]. Cardiac remodeling can be as well prevented by the administration of an inhibitory 

antagomir for the cardiac-specific miR-208a thus improving the overall survival of treated rats [48]. 

All together, these studies indicate the potential of RNA-based therapies for cardiovascular diseases. 



Pharmaceuticals 2011, 4 1440 

 

Expression of several miRNAs has been shown to be deregulated in many cancer types. Further, 

based on their involvement in basic cellular functions, miRNAs may act as oncogenes (oncomirs) or 

tumor suppressor as critical players in cell transformation [49-51]. 

For example, it has been demonstrated that the let-7 family contains miRNAs regulating the RAS 

family of oncogenes [52]. Petrocca et al. [53] showed that the miR-106b-25 cluster plays a key role in 

gastric cancer interfering with proteins involved both in cell cycle and apoptosis. In other studies, miR-155 

was found overexpressed in Hodgkin lymphoma, pediatric Burkitt lymphoma and diffuse large B-cell 

Lymphoma [54-56]; miR-143 and miR-145 were significantly downregulated in colon cancer tissue 

compared with colonic mucosa [57]; miR-21 was overexpressed in many tumors [49], including 

glioblastoma [58], cholangiocarcinoma [59], multiple myeloma cells [60] and breast cancer [61,62]. 

Moreover, studies that investigated the expression of the entire microRNAome in various human solid 

tumors and hematologic malignancies have revealed differences in miRNA expression profiling 

between neoplastic and normal tissues [63-66]. miRNAs play a key role also in tumor metastasis. 

Indeed, for example miR-139 suppresses metastasis of hepatocellular carcinoma, while miR10-b was 

found highly expressed in metastatic breast cancer cells [67,68] even if its clinical utility is still 

questioned [69]. 

3. RNA-Based Bioconjugates Molecules for siRNA Delivery 

Potent sequence selective gene inhibition by siRNA ‘targeted’ therapeutics promises the ultimate 

level of specificity, but siRNA therapeutics is hindered by poor intracellular uptake, thus efficient 

delivery strategies remains the main challenge for their clinical development [70]. 

In this respect a promising application of aptamers is to use them to deliver a variety of secondary 

reagents, including therapeutic siRNAs, specifically to a targeted cell population (Table 2) [71,72].  

Table 2. Aptamers as delivery tools. 
Aptamer composition Target Cargos/targeted delivery Therapeutic Indication 

RNA, 2’-F-Py PSMA siRNA,Toxin, QDs, nanoparticles 

and chemiotherapeutics 

Prostate cancer therapy 

RNA, 2’-F-Py gp120 siRNA HIV infection 

RNA, 2’-F-Py CD4 siRNA HIV infection 

RNA EGFR Au NPs Cancer 

DNA PTK7 Doxorubicin, Au-Ag NPs  Cancer 

DNA  Mucin 1 QDs, photodynamic therapy agents  Cancer  

DNA  Nucleolin QDs  Cancer  

This means that aptamers function as specific recognition ligands to target cells, which is especially 

significant given the whole cell-SELEX strategy to target specifically cell surface epitopes [73]. Once 

delivered, the secondary reagents would then impart their therapeutic effect to this subset of cells 

within the treated individual. Because non-targeted cells would not be exposed to the secondary 

reagent, the potential for unwanted side-effects such as death of normal cells is substantially reduced.  

The cell-SELEX method allows for the generation of aptamers against cell surface targets by 

replicating the native conformation and glycosylation pattern of the extracellular regions of proteins. 
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Recently, multiple groups have reported selections using living cells as the target to identify  

receptor-specific aptamers and those that bind to a specific cell type [73,74]. Some of these aptamers 

have been used as delivery cargos to target cells giving the cell-type specific expression of cell surface 

proteins on cell populations of therapeutic value. 

In the aptamer-based delivery approach, the last goal is to develop an aptamer to the extracellular 

portion of such a protein and then use the aptamer to deliver the secondary reagent to the targeted cell 

population via binding the targeted protein on the surface of the targeted cell type. Because this 

binding in some cases also results in the endocytosis of the aptamer/secondary reagent complex, this 

approach can be used to deliver reagents such as siRNAs that depend on delivery to intracellular 

compartments for their proper function (Figure 1). 

Figure 1. Aptamers as delivery agents. Aptamers that bind to cell surface receptors can be 

used to deliver siRNA to target cells.  
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To date, the best-characterized aptamers for targeted delivery are the two 2′-F-Py-RNA aptamers 

(A9 and A10) that have been generated against the extracellular domain of the prostate-specific 

membrane antigen (PSMA) [75]. These aptamers bind with high affinity to the acinar epithelial cells of 

prostate cancer tissue. They have been used to deliver not only siRNA, but also nanoparticles, quantum 

dots (QDs) and toxins to prostate cancer cells [73]. Different approaches in which PSMA-aptamer has 

been linked to siRNAs have been reported (Figure 2). 

A first study reports the non-covalent conjugation of siRNA with A9 aptamer via a streptavidin 

connector [76]. The 27mer Dicer substrates targeting laminin A/C and GAPDH genes and the RNA 

aptamers were chemically conjugated with biotin. Thus, two biotinylated siRNAs and two aptamers 

were non-covalently assembled via a streptavidin bridge. The resulting conjugates were incubated with 

PSMA-positive LNCaP cells without any further preparation, and were taken up within 30 min. The 

inhibition of gene expression was mediated by the aptamers and as efficient as observed with 

conventional lipid-based reagents. 
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Figure 2. Anti-PSMA aptamer-siRNA chimeras. (a) The RNA duplex and RNA aptamers 

are chemically conjugated with biotin. Thus, two biotinylated siRNAs and two aptamers 

are non-covalently assembled via streptavidin; (b) The 3′ end of the aptamer is extended to 

contain the nucleotide sequence that is complementary to the antisense strand of the 

siRNA, and the chimera is formed by annealing the aptamer to the siRNA antisense strand; 

(c) optimized chimeras in which the aptamer portion of the chimera is truncated, and  

the sense and antisense strands of the siRNA portion are swapped. A two-nucleotide  

3′-overhang and a PEG tail are added to the chimera; (d) the 3′-terminus of the aptamer is 

conjugated to the sense strand of the siRNA, followed by a 10-mer loop sequence and then 

by the antisense strand of the siRNA. 
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In the same year, McNamara et al. [77] described the generation of the anti-PSMA A10  

aptamer-siRNA chimeras. The 3′ end of the aptamer was extended to contain the nucleotidic sequence 

complementary to the antisense strand of siRNA targeting the polo-like kinase 1 (PLK1) and BCL-2 

survival genes, and the chimera was formed by annealing the aptamer to the siRNA antisense strand. 

The resulting chimeras were effective in silencing target genes and inducing cell death specifically in 

PSMA-positive cancer cells.  

In addition, the PSMA-siRNA chimeric molecule has been further modified for in vivo  

application [78]. The aptamer portion of the chimera was truncated, and the sense and antisense 

strands of the siRNA portion were swapped. A two-nucleotide 3′-overhang and a PEG tail were added 
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to the chimera. The modified chimera was able to inhibit prostate cancer xenograft growth when 

administrated systemically. 

To date several groups have adapted the covalent assembly approach to aptamer-mediated siRNA 

delivery [72]. In these studies, the anti-PSMA A10 aptamer has been conjugated to siRNAs against 

eukaryotic elongation factor (EEF)2 [79] and two key components of the nonsense-mediated mRNA 

decoy (NMD) [80]. In addition, since short hairpin RNAs (shRNAs), like miRNA precursors are better 

substrates for Dicer, Ni et al. [81] linked a shRNA against the DNA-activated protein kinase (DNA-PK) 

to a truncated A10 aptamer (A10-3) generating a single intact nuclease-stabilized 2’ fluoro-modified 

pyrimidine molecule. The 3’-terminus of the A10 aptamer was conjugated to the passenger (sense) 

strand of the siRNA, followed by a 10-mer loop sequence and then by the guide or silencing 

(antisense) strand of the siRNA. 

Rossi and colleagues have extensively characterized the HIV glycoprotein gp120 as a target for 

aptamer-mediated siRNA delivery [82-84]. In these studies, an inhibitory RNA aptamer targeting the 

HIV envelope protein gp 120, has been used to deliver attached anti-HIV tat/rev siRNAs into HIV 

infected cells via binding to envelope expressed on the cell surface, resulting in internalization of the 

aptamer and delivery of a dicer substrate siRNA to RISC. In vivo delivery of the aptamer and  

aptamer-siRNA conjugates into a humanized mouse model for HIV infection suppressed HIV 

replication and completely protected T-cells from HIV mediated T-cell killing.  

With the development of the conjugation strategies, the list of aptamers against surface epitopes 

that are being used as delivery agents is growing rapidly and now includes those against PTK7 [85,86], 

nucleolin [87], mucin 1 [88,89], and EGFR [90] the have been used to deliver not only siRNA, but 

also nanoparticles, quantum dots (QDs), toxin and chemiotherapeutics to target cells (see Table 2). 

4. Market and Perspectives 

Even if only one nucleic acid aptamer has been approved and is on the market, aptamers hold an 

extraordinary potential in drug development and it is plausible that the global interest for their 

development will increase in the next few years. Accordingly, a new technical market research report, 

from BCC Research [91], estimated that the global aptamer market value of $236 million in 2010 will 

grow to nearly $1.9 billion in 2014, for a 4-year compound annual growth rate of 67.5%. 

To date, Archemix Corp. is a leading biopharmaceutical company in the development of aptamers 

as therapeutics. It is the owner of the aptamer technology patent and it collaborates with other 

pharmaceutical companies (Regado, Antisoma, ARCA Biopharma and Ophthotech) to develop and 

commercialize a pipeline of partnered aptamers in the cardiovascular disease, hematology  

and oncology areas. 

Moreover, the development of aptamers as delivery agents for therapeutic RNAs can have a 

considerable impact on aptamer market in the near future. Indeed, intracellular delivery has been a key 

challenge for RNA modalities and the potential of bringing together the properties of aptamers and 

microRNA therapeutics will allow to overcome this limitation and open further potential for  

RNA-based therapeutics. 

Recently Archemix Corp. started a collaboration with miRagen Therapeutics Inc., a biopharmaceutical 

company focused on developing innovative microRNA-based therapeutics for cardiovascular and 
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muscle disease, for the development of conjugated aptamer-microRNA molecules capable of 

intracellular delivery and subsequent microRNA targeting. Combining aptamers and microRNA 

therapeutics has the potential to solve the intracellular delivery challenge for certain RNA-based 

therapeutic approaches. In this perspective, even if aptamer-miRNA chimeras have not been already 

described in literature, it is plausible that the approaches discussed in this review for aptamer-siRNA 

conjugation could be as well adapted to generate aptamer-miRNA molecules of fundamental 

therapeutic value. 
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