UNIVERSITA' DI NAPOLI FEDERICO II

Dottorato di ricerca in Ingegneria dei Sistemi Idraulici, di Trasporto e Territoriali

Tesi di dottorato

Caratterizzazione cinematica degli aeromobili per la valutazione del degrado delle pavimentazioni

Antonella Schibani

1

Tutor:

Prof. Ing. Bruna FestaCoordinatore di dottorato:Prof. Arch. Elvira Petroncelli

Ringraziamenti

A chiusura di questo lungo ed intenso percorso formativo, pieno di stimoli ed esperienze diverse, non posso non ringraziare chi mi ha dato questa opportunità di crescita personale e professionale.

Ringrazio l'Aeronautica Militare che spero di poter ripagare mettendo a frutto le competenze acquisite nel corso di questi studi e sicura che il tempo impiegato per l'accrescimento culturale è tempo prezioso per l'individuo ma anche per l'organizzazione cui esso appartiene.

Ringrazio il Col. Girolamo Iadicicco, comandante del 31° Stormo di Ciampino che con la sua disponibilità e professionalità ha consentito di effettuare i rilievi dei dati fondamentali per la stesura di questo elaborato. Ringrazio inoltre la sezione impianti di Ciampino che mi ha fornito un utilissimo supporto tecnico nonchè il Lgt. Rodolfo Di Rocco e tutto il personale della torre di controllo di Ciampino che mi ha ospitato fornendomi indicazioni importantissime per l'interpretazione dei dati.

Ringrazio l'università di Napoli "Federico II" che mi ha accolto in questi anni ed in particolar modo la mia tutor Prof. Bruna Festa che mi ha sempre permesso di seguire la mia strada e i miei interessi pur rappresentando in ogni momento una guida ed un sicuro punto di riferimento. Ringrazio inoltre il prof. Mauro D'Apuzzo, fugatore di dubbi e fonte continua di spunti e stimoli.

Ringrazio tutti i colleghi di stanza e del dipartimento e chiunque mi abbia dato una mano con stimoli, consigli, supporto fisico e morale o anche semplicemente donandomi momenti di serenità, in particolare i miei "compagni di merenda" Luigi e Francesco.

Ringrazio i miei genitori e le mie sorelle che non hanno mai smesso di credere in me e di dimostrarmelo.

Ma soprattutto vorrei ringraziare mio marito Francesco che mi ha sempre aiutato a dare il giusto peso ai pezzi che compongono la mia vita, mio figlio Daniele, fonte inesauribile di gioia infinita e amore immenso e mia figlia Giulia che in simbiosi con me ha condiviso nel senso più profondo del termine pensieri e sensazioni, vita nella vita. Grazie per avermi portato per mano fin qui!

Sintesi

Il buon progetto e la gestione della manutenzione delle pavimentazioni aeroportuali rappresentano oggigiorno un obiettivo fondamentale per le autorità aeroportuali, sia civili che militari, nonchè per gli enti gestori.

A tal proposito gli approcci meccanicistici ed empirici richiedono una conoscenza più accurata delle azioni esercitate dai carrelli degli aeromobili sulle pavimentazioni. Risulta pertanto fondamentale non solo la valutazione delle traiettorie degli aeromobili sulla pista di volo, ma anche un'analisi delle caratteristiche cinematiche degli aeromobili nelle operazioni di decollo e atterraggio giacchè tali informazioni rappresentano un punto fondamentale per l'analisi delle forze esercitate dai carrelli degli aeromobili e, di conseguenza, per la valutazione del danno indotto dai velivoli sulle pavimentazioni.

Con tale obiettivo numerosi dati sono stati rilevati utilizzando telecamere ad alta definizione nel corso di una campagna sperimentale; la metodologia di monitoraggio proposta appare efficace nel fornire informazioni utili per il progetto delle pavimentazioni e per lo sviluppo di modelli di degrado.

I dati rilevati sono stati elaborati ed analizzati statisticamente al fine di ottenere modelli di distribuzione sia trasversale che longitudinale dei punti di toccata. Sono stati inoltre proposti sulla base delle evidenze sperimentali dei modelli cinematici a partire dai quali è stato possibile arrivare all'analisi della variazione di carichi trasmessi dagli aeromobili alle pavimentazioni.

Indice delle Figure

Figura 1- Istogramma della distribuzione laterale del traffico degli aerei
sulla pista per il decollo, aeroporto internazionale di Cleveland pista 23L (HoSang 1975)
Figura 2 – Distribuzione trasversale sulle piste per tutti gli aerei e tutti gli aeroporti (HoSang 1975)
Figura 3 – Velocità nelle operazioni di decollo
Figura 4 – Velocità nelle operazioni di atterraggio 28
Figura 5 – Pista dell'aeroporto di Roma Ciampino 31
Figura 6 – Pista dell'aeroporto di Roma Ciampino-Aerodrome chart ICAO
Figura 6 – Telecamera in testata pista 15
Figura 7 – Telecamere sulla torre di controllo 35
Figura 8 – Spettro di traffico
Figura 9 – Costruzione grafica per l'individuazione dello scostamento trasversale dei punti di toccata
Figura 10 – Scostamento angolare di un aeromobile in toccata 43
Figura 11 – Scarto interquartile in una gaussiana 46
Figura 12 – Pdf per la v.a
Figura 13 – Azione del vento traverso sulla distribuzione trasversale dei punti di toccata
Figura 14 – Costruzione grafica per l'individuazione della posizione longitudinale dei punti di toccata
Figura 15 – Pdf per la v.a. y relativa al Boeing 737-800 55
Figura 16 – Distribuzione spaziale dei punti di toccata 60

Figura 17 – Pdf della v.a. con delimitatori	61
Figura 18 – Pdf della v.a. y con delimitatori	61
Figura 19 – Esempi di segnaletica orizzontale delle piste	62
Figura 20 – Correlazione tra MD e LF	65
Figura 21 – Correlazione tra MD e LF per le diverse tipologie aeromobile	di 66
Figura 22 – Correlazione tra MD e LF con retta di regressione	68
Figura 23 – Velocità operative in decollo del Boeing 737-800	70
Figura 24 – Interpolazione polinomiale del secondo ordine per le veloc medie del Boeing 737-800	ità 71
Figura 25 – Schema delle forze agenti sui velivoli	75
Figura 26 – Andamento dell'accelerazione nello spazio	79
Figura 27 – Schema delle forze verticali agenti	82
Figura 28 – Carico agente sul carrello anteriore	84
Figura 29 – Carico agente sul carrello principale	84

Indice delle Tabelle

Tabella 1 – Distribuzioni caratteristiche degli aerei (HoSang 1975) 21				
Tabella 2 – Numero di operazioni rilevate				
Tabella 3 – Lunghezza e distanza progressiva dei capisaldi 39				
Tabella 4 – Distanza progressiva dei raccordi 40				
Tabella 5 – Test di bontà di adattamento della funzione normale per la v.a				
Tabella 6 – Test di bontà di adattamento per la v.a. : riepilogo 49				
Tabella 7 – Test di bontà di adattamento della funzioni log-logistica per la v.a. y				
Tabella 8 – Test di bontà di adattamento per la v.a. y: riepilogo 57				
Tabella 9– Landing Distance Required 65				
Tabella 10- Risultati del modello di regressione 67				
Tabella 11– Valori di W _e in funzione di _{by}				
Tabella 12- Parametri del B738 per il calcolo delle forze agenti 76				
Tabella 13–Calcolo delle forze agenti per il B73877				
Tabella 14–Calcolo delle accelerazioni a(y) 80				
Tabella 15–Calcolo dei carichi al carrello del B738				

Indice degli argomenti

Intro	duzione		
1	Stato del	l'arte14	
	1.1	Contributo allo stato dell'arte	
2	Campagna sperimentale e raccolta dei dati		
	2.1	Metodologia di rilievo	
	2.2	Dati di traffico	
3	Analisi d	ei dati e sviluppi	
	3.1	Individuazione dei capisaldi	
	3.2	Analisi dei dati relativi alle operazioni di atterraggio40	
	3.2.1	Analisi trasversale dei punti di toccata	
	3.2.2 toccata	2 Effetto del vento sulla distribuzione trasversale dei punti di 51	
	3.2.3	Analisi longitudinale dei punti di toccata	
	3.2.4	Distribuzione spaziale dei punti di toccata	
	3.2.5	5 Analisi cinematica e diagrammi di velocità	
	3.2.6 in atterra	6 Correlazione tra decelerazione e lunghezza di pista utilizzata ggio	
	3.2.7	7 Modello stocastico di velocità	
	3.3	Analisi dei dati relativi alle operazioni di decollo	
	3.3.1	Analisi dei modelli di velocità69	
	3.3.2	2 Calibrazione del modello fisico71	
	3.3.3	Analisi dei carichi sulla pavimentazione	
Con	clusioni		
Rife	rimenti bi	bliografici	
		9	

Appendice A – Scheda rilievo dati95
Appendice B – Acronimi tipologia aeromobili dello spettro di traffico98
Appendice C – Spettro di traffico100
Appendice D – Caratteristiche tecniche degli aeromobili più presenti nei rilievi dello spettro di traffico
Appendice E – Individuazione capisaldi
Appendice F – Test di normalità sui dati relativi ai punti di toccata trasversali
Appendice G – Test non parametrici (k campioni) sui dati relativi allo scostamento trasversale dei punti di toccata
Appendice H – Test non parametrici (k campioni) sui dati relativi alla posizione longitudinale dei punti di toccata
Appendice I – Punti sperimentali di velocità in atterraggio134
Appendice L – Coefficienti di aderenza statica μ_0 e di resistenza al rotolamento a basse velocità $_0$ delle ruote con pneumatico
Appendice M – Caratteristiche tecniche Boeing 737-800139

Introduzione

Il problema della manutenzione in campo aeroportuale è, ora più che mai, al centro del dibattito e dell'attenzione degli operatori del settore delle infrastrutture. Ciò che viene attualmente ravvisato non è tanto l'esigenza di un generico incremento degli interventi quanto la necessità di una più razionale programmazione e gestione degli interventi stessi. La mancanza di sensibilità nei confronti di un'ottimizzazione della pianificazione degli interventi in aeroportuale nasce, fondamentalmente, dalla mancanza campo di consapevolezza nei confronti dei vantaggi ottenibili con i diversi investimenti nella manutenzione e dallo scarso contributo, sotto il profilo della ricerca, sulle previsioni degli effetti complessivi di lungo periodo, derivabili da una scelta infrastrutturale manutentiva "strategica". Ciò è riconducibile, essenzialmente, al fatto che le spese di manutenzione rappresentano solo una piccola parte dei costi globali di gestione dell'infrastruttura aeroportuale nel suo complesso.

L'aeroporto è una realtà fortemente dinamica, dove le condizioni delle infrastrutture direttamente (piste, raccordi e piazzali) e indirettamente (hangar di manutenzione, torre di controllo, strutture di ricovero, uffici) correlate all'attività di volo determinano la qualità del servizio. È indubbio che alle pavimentazioni sia dedicata un'attenzione particolare nel contesto aeroportuale: esse necessitano di strumenti operativi che consentano di monitorare nel tempo lo stato di conservazione e, secondo una moderna logica predittiva, prevenire quelle condizioni che non ne consentono l'uso, con conseguenti danni diretti all'attività di volo.

È necessario, pertanto, trovare un nuovo e moderno approccio alla gestione delle realtà aeroportuali e alla programmazione degli interventi secondo una logica che possa aggiornare le strategie manutentive al variare dei parametri di stato delle pavimentazione e delle risorse economiche disponibili.

Altro fattore da non sottovalutare è costituito dalla sicurezza aeroportuale che, per quel che concerne le pavimentazioni aeroportuali, si traduce nell'individuazione di criteri da applicare in fase di progetto e nella pianificazione degli interventi di manutenzione e riabilitazione. Tra le organizzazioni che mirano a garantire gli standard adeguati nell'ambito dell'aviazione civile si citano L'ICAO (International Civil Aviation Administration), agenzia specializzata delle Nazioni Unite creata per "promuovere il sicuro e regolare sviluppo dell'aviazione civile internazionale" e "stabilire gli standard e le norme necessari per la sicurezza, l'efficienza e la regolarità dell'aviazione e per la tutela dell'ambiente" e l' FAA (Federal Aviation Administration), agenzia del Dipartimento dei Trasporti statunitense fondata per "provvedere alla sicurezza e ad un uso efficiente dello spazio aereo".

Per quanto detto risulta fondamentale analizzare approfonditamente il degrado delle caratteristiche superficiali e strutturali delle pavimentazioni (regolarità, aderenza, portanza).

Un notevole contributo a tale studio può derivare dall'analisi della distribuzione trasversale delle traiettorie di decollo e di atterraggio. Inoltre la distribuzione trasversale dei punti di toccata e la loro deviazione dall'asse della pista di volo rappresenta un elemento fondamentale per i requisiti di larghezza della pista di volo assunti dall' ICAO e dall' FAA e in generale per le assunzioni circa le distribuzioni delle traiettorie dei carrelli nelle metodologie di progetto delle pavimentazioni. Tali informazioni sono pertanto utili per individuare le aree più sollecitate di una pista di volo al fine di ottimizzare la procedura di calcolo delle pavimentazioni.

Lo studio dell'influenza di fattori esterni, quali l'effetto del vento traverso, sulla distribuzione trasversale dei punti di toccata rappresenta un ulteriore fenomeno interessante da valutare ed approfondire.

Ulteriore aspetto importante è rappresentato dallo studio dei diagrammi di velocità degli aeromobili nelle operazioni di decollo e atterraggio poiché dal calcolo dei ricoprimenti e dallo studio del danno indotto dagli aeromobili sulla superficie della pavimentazione, è possibile studiare il degrado nel tempo dei parametri di stato delle pavimentazioni. Le caratteristiche cinematiche degli aeromobili nelle operazioni di decollo e atterraggio rappresentano un punto fondamentale per l'analisi delle forze esercitate dai carrelli degli aeromobili e, di conseguenza, per la valutazione del danno indotto dai velivoli 12 sulle pavimentazioni. Tale analisi risulta indispensabile per comprendere l'incidenza delle operazioni aeroportuali sulla pavimentazione, e quindi l'evoluzione delle sue caratteristiche nel corso della sua vita utile.

Infine l'analisi dei tempi di occupazione della pista può rappresentare un fattore importante per il miglioramento della capacità aeroportuale. Nell'ampio spettro dei fattori che influenzano la capacità aeroportuale, ridurre il tempo di impiego della pista da parte dell'aeromobile rappresenta uno dei fattori principali in quanto anche una piccola riduzione del tempo medio di occupazione della pista da parte dell'aeromobile può avere un forte impatto sulla capacità generale della pista stessa.

1 Stato dell'arte

Allo stato attuale si può affermare che le pavimentazioni sono semplicemente mantenute e non gestite, e gli interventi mirano alla risoluzione delle problematiche contingenti con poca attenzione per i life-cycle costs e per l'analisi complessiva a livello di rete. In considerazione della situazione economica odierna, a differenza di quanto fatto negli anni passati, è quanto mai importante stabilire l'effettiva necessità di un intervento nell'ambito di un piano di manutenzione delle pavimentazioni, nonché la priorità da associare agli interventi stessi per ottimizzare la gestione a livello di rete.

Un sistema di gestione di tipo ingegneristico (Engineering Managment System) consiste in un insieme di strumenti ingegneristici necessari ad effettuare i rilievi dei parametri di stato e la previsione delle condizioni future per lo sviluppo dei piani di lavoro, con l'obiettivo di ottimizzare le risorse economiche disponibili. Tali sistemi adoperano tecnologie di ingegneria per determinare i modi, i tempi ed i luoghi per mantenere nelle migliori condizioni le infrastrutture di qualsivoglia tipologia, mettendo in opera tutte le azioni necessarie a rendere quanto più efficaci gli investimenti (1).

Le caratteristiche funzionali di una pavimentazione dipendono in prevalenza dall'irregolarità e dai fenomeni di ammaloramento superficiale, mentre le condizioni strutturali sono essenzialmente legate alle caratteristiche di portanza della sovrastruttura. Le caratteristiche della pavimentazione non sono costanti nel tempo; esse si presentano come variabili dipendenti da diversi fattori quali il traffico, il tempo, le condizioni ambientali, etc. Dopo un certo intervallo di tempi i valori assunti dagli indicatori di stato non sono più accettabili, poiché non consentono di garantire adeguati standard di sicurezza, tutto ciò comporta la necessità di intervenire al fine di ripristinarne idonei livelli di accettabilità. Queste considerazioni consentono di definire il concetto di vita utile di una pavimentazione, ossia il tempo, dall'entrata in servizio, trascorso il quale la sovrastruttura non è più in grado di svolgere il proprio compito garantendo una funzionalità sopra un prefissato standard f_{min} .

E' possibile definire tali valori limite per le caratteristiche funzionali e strutturali delle pavimentazioni, stabilendo così il livello complessivo minimo di funzionalità. Per aumentare la vita utile, è necessario adottare soluzioni tecnologiche che consentano di avere curve di decadimento spostate verso l'alto mediante la definizione di interventi programmati di manutenzione per sanare quei degradi che comportano perdite di funzionalità.

Un aspetto importante di un sistema di gestione delle pavimentazioni (Pavement Managment System) è la sua capacità di determinare i parametri di stato di un insieme di pavimentazioni e di prevederne le condizioni future utilizzando un sistema di valutazione oggettivo e ripetibile. L'aspetto predittivo di un P.M.S. rappresenta di sicuro la componente dal più alto valore tecnologico di cui necessariamente un moderno sistema di gestione deve essere dotato.

Per quanto detto è fondamentale che le autorità aeroportuali abbiano a disposizione una serie di curve di degrado relative ai parametri di stato rappresentativi delle caratteristiche superficiali e strutturali delle pavimentazioni. Le curve di degrado sono importanti strumenti di supporto alla pianificazione della manutenzione per le previsioni a breve termine. Un modello di degrado valido deve prendere in considerazione le variabili significative che influenzano il processo, il principio fisico che è alla base del meccanismo e un approccio statistico rigoroso per la stima del modello. Per quanto riguarda le variabili da considerare, il meccanismo di degrado dell'infrastruttura è complesso poiché è impossibile prendere in considerazione ed inserire in un modello di decadimento tutti i fattori che lo influenzano. E' necessario però che venga analizzato il principio fisico fondamentale alla base del fenomeno per fare in modo che il processo sia ben rappresentato e il modello sia efficace dal punto di vista ingegneristico; inoltre ogni singolo parametro considerato deve essere accuratamente strutturato e definito. Sebbene non sia realistico considerare tutte le variabili coinvolte è necessario identificare e inserire nel modello le variabili critiche. Per quanto riguarda il degrado delle caratteristiche funzionali di una pista aeroportuale sono variabili critiche il materiale, il traffico, il tempo, le condizioni ambientali e le attività manutentive. Nel considerare modelli di degrado locali ovvero contestualizzati ad una specifica infrastruttura, il parametro da

considerare è il traffico ed il fenomeno fisico da studiare è l'interazione pneumatico-pavimentazione.

Il concetto di "ricoprimento" è utilizzato da molti anni per il calcolo delle pavimentazioni sia rigide (2) che flessibili (3). Un ricoprimento si verifica quando un punto della pavimentazione è sottoposto alla pressione massima per effetto del passaggio dell'aeromobile durante una determinata operazione, assumendo la pressione costante per l'intera area di impronta della ruota. I ricoprimenti risultanti dalle operazioni di un determinato tipo di aeromobile dipendono dal numero di passaggi dell'aereo, dal numero e la spaziatura delle ruote del carrello principale, dall'ampiezza dell'area d'impronta e dalla distribuzione laterale delle traiettorie di toccata.

Il ricoprimento in un determinato punto della pavimentazione prodotto da un determinato tipo di aeromobile che si muove secondo una certa traiettoria lungo la pista si calcola utilizzando la seguente funzione (4):

$$R_{nose}(x,y) = \begin{cases} lnw_{nose} & (a) \\ 0 & (b) \end{cases}$$
 1)

(a) se $y \in \left\{ \left[-\frac{i_{nose}}{2} - \frac{a_{nose}}{2} + x; -\frac{i_{nose}}{2} + \frac{a_{nose}}{2} + x \right] \cup \left[\frac{i_{nose}}{2} - \frac{a_{nose}}{2} + x; -\frac{i_{nose}}{2} + \frac{a_{nose}}{2} + x \right] \right\}$ (b) negli altri punti

$$R_{main_left}(x,y) = \begin{cases} lnw_{main} & (a) \\ 0 & (b) \end{cases}$$
 2)

(a) se
$$y \in \left\{ \left[-\frac{i_{nose}}{2} - \frac{a_{nose}}{2} - d + x; -\frac{i_{nose}}{2} + \frac{a_{nose}}{2} - d + x \right] \cup \left[\frac{i_{nose}}{2} - \frac{a_{nose}}{2} - d + x \right] \\ x; -\frac{i_{nose}}{2} + \frac{a_{nose}}{2} - d + x \right] \right\}$$

(b) negli altri punti

$$R_{main_right}(x, y) = \begin{cases} lnw_{main} & (a) \\ 0 & (b) \end{cases}$$
3)

(a) se
$$y \in \left\{ \left[-\frac{i_{nose}}{2} - \frac{a_{nose}}{2} + d + x; -\frac{i_{nose}}{2} + \frac{a_{nose}}{2} + d + x \right] \cup \left[\frac{i_{nose}}{2} - \frac{a_{nose}}{2} + d + x \right] \right\}$$

(b) negli altri punti

dove

 lnw_{main} rappresenta il numero di ruote nella direzione longitudinale del carrello principale (1,2 o3);

 lnw_{nose} rappresenta il numero di ruote nella direzione longitudinale del carrello anteriore;

x è la distanza dell'asse longitudinale dell'aeromobile dall'asse della pista;

y è la distanza del punto in superficie dall'asse della pista

 i_{nose} è la distanza tra le ruote del carrello anteriore;

a_{nose} è il diametro dell'area di contatto delle ruote del carrello anteriore;

i_{main} è la distanza tra le ruote di ciascun ciascun carrello principale;

 a_{main} è il diametro dell'area di contatto delle ruote del carrello principale;

d è la distanza tra i carrelli.

L'area di contatto si considera ellittica quindi "a" è il semiasse minore, dato da:

$$a = \sqrt{\frac{2}{\Pi} * \frac{q_r}{p}} \tag{4}$$

dove q_r è il carico sulla singola ruota e p è la pressione di gonfiaggio.

Poiché q_r assume valori molto diversi in decollo e in atterraggio bisogna calcolare due funzioni $R(x,y)_i$:

$$R_{i_D}(x, y) = R_{nose_D}(x, y) + R_{main_sin_D}(x, y) + R_{main_dx_D}(x, y)$$
 5)

$$R_{i_A}(x,y) = R_{nose_A}(x,y) + R_{main_sin_A}(x,y) + R_{main_dx_A}(x,y)$$
 6)

Il numero di ricoprimenti cumulati in un determinato punto a distanza y dall'asse della pista si ottiene come:

$$N_{tot}(y) = N_{tot_D}(y) + N_{tot_A}(y)$$
 7)

dove

$$N_{tot_D}(y) = \sum_i N_{i_D}(y)$$
⁸

rappresenta il numero cumulato di ricoprimenti nelle operazioni di decollo;

$$N_{tot_{\mathcal{A}}}(y) = \sum_{i} N_{i_{\mathcal{A}}}(y)$$
9)

rappresenta il numero cumulato di ricoprimenti nelle operazioni di atterraggio;

$$N_{i,D}(y) = n_{i,D} * PR_{i,D}(y)$$
 10)

è il numero cumulato di ricoprimenti prodotto dall'i-esimo aereo nelle operazoni di decollo;

$$N_{i_{A}}(y) = n_{i_{A}} * PR_{i_{A}}(y)$$
¹¹

è il numero cumulato di ricoprimenti prodotto dall'i-esimo aereo nelle operazoni di atterraggio;

 n_{i_D} è il numero di decolli dell'i-esimo aereo; n_{i_A} è il numero di atterraggi dell'i-esimo aereo;

$$PR_{i_{D}}(y) = \int_{-\infty}^{+\infty} f_{i_{D}}(x) * R_{i_{D}}(x, y) dx$$
 12)

$$PR_{i_{A}}(y) = \int_{-\infty}^{+\infty} f_{i_{A}}(x) * R_{i_{A}}(x, y) dx$$
13)

dove

 $f_{i_D}(x)$ è la funzione densità di probabilità della distribuzione trasversale delle traiettorie sulla pista nelle operazioni di decollo;

 $f_{i_A}(x)$ è la funzione densità di probabilità della distribuzione trasversale delle traiettorie sulla pista nelle operazioni di atterraggio.

Per il calcolo delle pavimentazioni rigide utilizzate dal PCA (Portland Cement Association) si assumeva inizialmente che la distribuzione laterale

delle traiettorie fosse per il 75% uniformemente distribuita in una fascia di ampiezza pari a 7,5 ft (2,3 m) per le vie di rullaggio e 37,5 ft (11,4 m) per le piste di volo. Questa assunzione è stata successivamente riesaminata ed è stato osservato che le distribuzioni trasversali delle traiettorie dei carrelli sia sulle piste che sui raccordi e le vie di rullaggio sono molto meglio rappresentate da una legge di distribuzione normale piuttosto che uniforme.

Nel loro studio (5) Brown e Thompson hanno dimostrato che nello sviluppo del progetto delle pavimentazioni e nei criteri di valutazione dell'effetto degli aeromobili con configurazione complessa dei carrelli, le procedure per mettere in relazione le operazioni degli aeromobili (passaggi) con i ricoprimenti (p/c ratio) non erano accurate. Pertanto i due studiosi hanno riesaminato tale procedura assumendo curve di distribuzione trasversale del traffico di tipo normale adattando tali curve al numero limitato di operazioni sperimentali a loro disposizione. Con tale studio si è giunti a due importanti conclusioni. Prima di tutto è stata evidenziata la necessità di avere a disposizione un numero più consistente di dati di traffico che potessero essere rappresentativi della reale distribuzione di traffico. In secondo luogo è stato evidenziato come l'utilizzo di curve di distribuzione teoriche del traffico di tipo normale piuttosto che uniforme, alla base del calcolo del fattore di conversione p/c (passages/coverages), fornisse dei risultati più rappresentativi della reale distribuzione di traffico.

In seguito lo studio più importante sulla distribuzione trasversale delle traiettorie degli aeromobili sulle pavimentazioni di piste di volo, raccordi e vie di rullaggio è stato condotto nel 1975 da HoSang (6). Sono stati raccolti numerosi dati presso i nove maggiori aeroporti civili americani con traffico caratterizzato dagli aerei civili più comunemente in uso. Sono stati inoltre raccolti dati sulla distribuzione longitudinale dei punti di toccata in atterraggio e di distacco in decollo oltre alle velocità operative a terra dei velivoli. Le traiettorie trasversali degli aerei sono state determinate in tre punti specifici sulla pista: (a-Primo Punto) subito dopo il punto di toccata (in atterraggio) o di partenza (in decollo); (b-Ultimo Punto) prima del distacco del carrello (in decollo) o dell'uscita dalla pista (in atterraggio); in un punto intermedio tra (a) e (b). Il metodo di rilievo dei dati era costituito essenzialmente da sensori

infrarossi posizionati in particolari punti lungo la pista, i raccordi e le vie di rullaggio collegati ad un computer per la registrazione e l'elaborazione dei dati. In questo modo è stato possibile rilevare la traiettoria trasversale in termini di scostamento dell'asse degli aerei rispetto all'asse della pista con la precisione di più o meno 1 piede. Nell'ambito di questo studio è stata valutata anche l'influenza di fattori esterni legati alle condizioni metereologiche e della pista per studiarne i possibili effetti sulle distribuzioni osservate, ottenendo un buon numero di informazioni in condizioni diverse di fattori quali lunghezza della pista, altitudine, temperatura, vento e altre condizioni metereologiche. Sono state quindi calcolate la media e la deviazione standard della distribuzione trasversale e le velocità operative per ogni campione (singole tipologie o gruppi di aerei, aeroporti singoli o raggruppati) e questi due principali parametri statistici sono stati utilizzati per descrivere e comparare i campioni. Sono stati quindi diagrammati gli istogrammi degli scostamenti osservati tra l'asse degli aerei e l'asse della pista su entrambi i lati della centerline con intervalli pari a due piedi. Lo studio effettuato da HoSang ha portato ad una serie di conclusioni importanti:

> Analizzando gli istogrammi come quello riportati in Fig. 1 è risultato evidente come la distribuzione laterale degli aerei su pista, raccordi e vie di rullaggio è rappresentata molto meglio da una funzione di distribuzione di tipo normale piuttosto che da una funzione di distribuzione uniforme modificata come invece in precedenza assunto nelle procedure di calcolo del rapporto p/c. Questa osservazione è stata verificata anche statisticamente. In media si è riscontrato uno scostamento dell'asse degli aeromobili rispetto alla centerline verso sinistra sulle piste di volo, verso destra sulle vie di rullaggio, verso destra o sinistra sui raccordi in funzione della configurazione degli stessi.

Figura 1– Istogramma della distribuzione laterale del traffico degli aerei sulla pista per il decollo, aeroporto internazionale di Cleveland pista 23L (HoSang 1975)

2. In media le caratteristiche della distribuzione delle traiettorie sono riassunte nella seguente tabella:

TIPO LARGHEZZA DISTRIBUZIONE (FT.) CARATTERISTICA **SCOSTAMENTO** DEVIAZIONE MEDIO (FT.) (1) **STANDARD** (FT) Pista Atterraggio 150 0.9-1.5 Sin 7.0-10.3 200 0.8 Dx - 2.3 Sin 9.0-11.2 Decollo 150 0.5-1.2 Sin 6.0-8.3 $20\overline{0}$ 2.3-2.5 Sin 7.5-8.2 Via di rullaggio 75 2.1 Dx 2.5-4.0 3.2 Dx 100 6.0 Raccordi varie (2) 8.0-10.5

Tabella 1 – Distribuzioni caratteristiche degli aerei (HoSang 1975)

(1) Scostamento misurato tra l'asse dell'aereo e l'asse della pavimentazione.

(2) Lo scostamento si verifica a sinistra o destra della guideline a seconda della configurazione di volo dell'aereomobile e della tipologia di raccordo.

21

Per le piste di volo HoSang ottenne le distribuzioni riportate nella seguente Figura 2.

3. L'impatto complessivo di fattori come le operazioni notturne, il vento traverso, la pavimentazione bagnata si considera non rilevante sulla distribuzione del traffico aereo.

In conclusione questo studio ha raccomandato l'utilizzo di curve di distribuzione delle traiettorie trasversali di tipo normale sia sulle piste che sulle vie di rullaggio e sui raccordi per un calcolo più realistico dei rapporti p/c.

Nel 2001 è stato condotto un nuovo studio sulle traiettorie di tre differenti aerei commerciali (B-777, B-727, DC-10) che operano presso l'aeroporto internazionale di Denver (7). In tale studio è stata sviluppata una metodologia per identificare la posizione degli aeromobili lungo una sezione di pavimentazione strumentata posizionata nell'area di decollo della pista (34R-16R). La metodologia si basa sul posizionamento di due file di 18 sensori ciascuna che hanno consentito l'identificazione delle traiettorie dei tre aerei sopra menzionati in tre diversi punti lungo lo sviluppo longitudinale ovvero in corrispondenza dei punti in cui sono stati posti i sensori e in un punto intermedio ricavato nell'ipotesi di traiettoria rettilinea tra i due punti di rilievo. Sebbene l'estensione trasversale dell'area in cui sono stati posizionati i sensori non ha consentito di rilevare tutti i passaggi è stato possibile giungere a importanti conclusioni. Confrontando i risultati con quelli ottenuti da HoSang, tale studio ha confermato che la distribuzione trasversale delle traiettorie è rappresentata meglio da una curva di distribuzione normale piuttosto che uniforme e i valori di media e deviazione standard sono compresi nel range atteso. Lo scostamento dell'asse dell'aereo rispetto alla centerline della pista è maggiore per gli aerei wide-body (B-777 e DC-10) e minore per il B-727. Una volta calcolate media e deviazione standard, sono state ricavate curve di distribuzione ideali delle traiettorie utili per studiare la risposta critica delle pavimentazioni alle sollecitazioni applicate.

Secondo una ricerca fatta da Jeng (8), nel calcolo dei ricoprimenti per il progetto delle pavimentazioni flessibili degli aeroporti con il metodo CBR dell'FAA (9) la ripetizione dei carichi si considera utilizzando un p/c ratio

computato sulla base di una distribuzione delle traiettorie di tipo normale con distribuzione standard pari a 30.5 in (77.5 cm).

Tale valore di deviazione standard è utilizzato anche nel test su larga scala del National Airport Pavement test Facilities (NAPTF) che simula le traiettorie degli aeromobili variando la posizione trasversale dei carrelli (10).

Nel 2008 sono stati condotti ulteriori studi presso l'aeroporto internazionale di Taoyuan (11). Lo studio ha interessato le lastre in calcestruzzo delle taxiway dove sono stati inseriti dei sensori per osservare la distribuzione trasversale degli aeromobili. Il risultato di questo studio è stato che gli aerei si muovono prevalentemente lungo la centerline e il numero di passaggi decresce su entrambi i lati con una distribuzione a campana. Inoltre tutti i velivoli tendevano ad avere uno scostamento verso sinistra rispetto all'asse della pavimentazione con una deviazione standard pari a 50.4 cm (19.8 in). Il valore della deviazione standard riscontrato durante i monitoraggi è quindi più piccolo del valore calcolato nel corso degli studi condotti dall'FAA in 1975 e più piccolo anche del valore utilizzato nel metodo di progetto delle pavimentazioni dell'FAA (77.5 cm). Il valore della deviazione standard influisce sul calcolo del p/c ratio dei diversi tipi di aerei, e quindi sugli spessori delle pavimentazioni. Nonostante ciò è stato dimostrato che l'effetto di una piccola variazione di deviazione standard sullo spessore richiesto delle lastre non è particolarmente significativo.

Analizzato l'aspetto relativo al calcolo dei ricoprimenti, per giungere all'espressione dei ricoprimenti equivalenti è necessario associare al numero di ricoprimenti il danno indotto alla pavimentazione per effetto del passaggio delle diverse tipologie di carrello. A tal proposito uno dei criteri di danno utilizzati è quello basato sull'assunzione che il danno indotto dallo pneumatico sulla superficie della pavimentazione è proporzionale all'energia dissipata nel processo di usura dello pneumatico stesso e all'area d'impronta (12). L'energia d'attrito dissipata è a sua volta funzione del coefficiente di attrito longitudinale o trasversale, dello slittamento longitudinale o trasversale e del carico verticale (13). Si deduce l'importanza di conoscere il valore del carico verticale e quindi dello sforzo indotto sulla pavimentazione al fine di determinare il danno.

Per quanto riguarda la correlazione tra ricoprimenti e andamento delle caratteristiche superficiali delle pavimentazioni, sono stati effettuati diversi studi al fine di determinare la legge che meglio esprima tale correlazione. In particolare è stata proposta una legge di correlazione tra l'aderenza espressa in termini di IFI (International Friction Index) e i ricoprimenti equivalenti (4).

Ulteriori studi hanno consentito di indagare la correlazione tra regolarità espressa in RMSVA (Root Mean Square of Vertical Acceleration) e i ricoprimenti (14). L'evoluzione delle suddette grandezze è dunque messa in relazione, tramite opportuni modelli di degrado di concezione prevalentemente empirica, con le prestazioni delle sovrastrutture e con le azioni prodotte dal traffico nel corso del tempo. E' fondamentale pertanto studiare gli effetti delle sollecitazioni indotte dal traffico aereo sulle pavimentazioni aeroportuali. Tali sollecitazioni sono correlabili all'andamento dell'accelerazione dei velivoli lungo la pista e quindi alle leggi di moto.

Nello studio delle leggi del moto dell'aeromobile bisogna distinguere tra la fase di decollo e quella di atterraggio (15).

Per il decollo, l'avanzamento di un velivolo sulla pista di volo e l'aumento della sua velocità vengono prodotti dalla spinta fornita dalle eliche o dai reattori (aerei a getto). In questa fase, si generano delle forze sulle ali dal basso verso l'alto che determinano la portanza dell'aeromobile. Quando la velocità raggiunge un valore prestabilito, detto velocità di sostentamento, in cui la portanza (P) risulta uguale al peso dell'aereo (G) che, pertanto, non grava più sulla pista, si ha il distacco dell'aereo dalla pavimentazione.

Nelle operazioni di partenza di un aereo si distinguono nettamente diverse fasi caratteristiche (16):

- Avviamento e riscaldamento motori. Dura pochi minuti, i motori girano al minimo e le spinte si riducono di conseguenza al 4 o 5% di quella massima.
- (2) Marcia a bassa velocità (V< 50 km/h) sulle vie di rullaggio per raggiungere l'estremità della pista di decollo. Per una distanza media di 3 km a 30 km/h occorrono 6 minuti e la spinta è quella necessaria a muovere l'aereo al suolo a bassa velocità.

- (3) Attesa dell'autorizzazione della torre di controllo all'imbocco della pista di rullaggio. La durata di questa fase varia da pochi secondi a molte decine di minuti a seconda del traffico dell'aeroporto, mentre i motori girano al minimo come in (1).
- (4) Rullaggio sulla pista di decollo. L'aereo con gli ipersostentatori estesi e i motori al massimo regime consentito accelera da fermo fino ad una velocità V_R un po' superiore a quella minima di distacco dal suolo. La durata di questa fase varia da 20 a 60 sec, al crescere del carico alare, della quota e della temperatura dell'aria dell'aeroporto e negli aviogetti è maggiore che in un velivolo ad elica.
- (5) Manovra di rotazione, nella quale l'aereo passa dall'assetto di rullaggio all'incidenza massima consentitagli dall'angolo di seduta. I motori girano sempre al massimo, la durata è compresa tra 3 e 4 secondi.
- (6) Superamento dell'ostacolo regolamentare di altezza h₀: l'aereo sale rapidamente sempre con i motori al massimo e alla velocità di decollo lungo la traiettoria, impiegando da 3 a 4 secondi a superare l'ostacolo.
- (7) Operazioni conclusive. Retrazione del carrello, salita a 300-450 metri dal suolo, volo orizzontale, chiusura degli ipersostentatori e accelerazione fino alla velocità prescelta per la salita: la durata di questa fase non supera di solito i 150 secondi, con i motori al massimo. In ogni caso però i motori a getto dopo 5 minuti dall'inizio del rullaggio devono ridurre la spinta da dec di decollo al valore massimo continuativo utilizzabile per la salita.

Quanto descritto è chiaramente illustrato nella seguente figura.

Figura 3 - Velocità nelle operazioni di decollo

Anche nelle operazioni di atterraggio si possono distinguere diverse fasi caratteristiche:

- (1) Avvicinamento: l'aereo da una quota relativamente bassa, continuando la discesa si avvia lungo una traiettoria che lo porterà sulla pista dell'aeroporto e nel frattempo apre progressivamente gli ipersostentatori, abbassa il carrello, regola la velocità al valore prescritto per l'atterramento.
- (2) Approccio: da un'altezza regolamentare h_0 di 50 piedi (=15.25 m) da terra, quindi da 300 a 350 metri prima del contatto col suolo, l'aereo raggiunge la verticale corrispondente all'inizio della pista e con breve incurvamento della traiettoria si porta a toccare il suolo.
- (3) Manovra: il pilota compie la manovra di rotazione con la quale l'aereo passa dall'assetto finale di approccio a quello di rullaggio, e quindi apre i freni aerodinamici di atterramento e manovra i comandi per l'inversione della spinta dei propulsori ove questa sia prevista.

- (4) Rullaggio di frenatura: sotto l'azione della spinta inversa, quando è prevista, e dei freni sulle ruote, l'aereo rallenta rapidamente fino ad arrestarsi o quasi.
- (5) Marcia a bassa velocità (V< 50 km/h): sulla pista di servizio per raggiungere la piazzola di arresto o il punto di sbarco dei passeggeri e delle merci.

La seguente figura mostra chiaramente la successione delle diverse fasi sopra elencate.

Figura 4 - Velocità nelle operazioni di atterraggio

La conoscenza delle fasi caratteristiche nelle operazioni aeroportuali di decollo e atterraggio è fondamentale per l'interpretazione del comportamento dei velivoli e per l'analisi dei dati sperimentali relativamente alle velocità assunte dagli aeromobili lungo la pista di volo.

1.1 Contributo allo stato dell'arte

Lo studio effettuato ha consentito di analizzare un ampio spettro di traffico al fine di ricavare informazioni accurate sulla distribuzione delle traiettorie degli aeromobili nonché dei punti di toccata nelle operazioni di atterraggio. Tali informazioni sono utili per una lettura critica delle normative sul dimensionamento delle pavimentazioni, per il confronto con l'area della pista effettivamente percorsa da ogni tipo di aeromobile finalizzata alla pianificazione degli interventi di manutenzione sulla pavimentazione.

Inoltre in questo studio è stata definita una procedura di controllo strumentale che ha consentito di studiare le caratteristiche cinematiche degli aeromobili sia nelle operazioni di decollo sia di atterraggio permettendo di monitorare gli aeromobili durante il loro spostamento sulla pista di volo. La variazione della velocità lungo la pista va letta come variazione dei carichi che l'aeromobile trasmette sulla pavimentazione: in atterraggio, al diminuire della velocità, diminuisce anche la portanza, per cui aumenta progressivamente il carico che l'aereo sgrava sulla pavimentazione; viceversa accade in decollo.

Sono state inoltre analizzate separatamente la distribuzione delle distanze dalla soglia della pista e la distribuzione degli scostamenti dalla centre-line; per questo secondo aspetto sono stati confrontati i risultati ottenuti dai dati rilevati nel corso dello studio con i risultati presenti in bibliografia ed utilizzati per valutare il carico trasmesso dagli aeromobili alle pavimentazioni espressi in termini di ricoprimenti.

E' stato altresì valutato l'impatto di fattori quali le condizioni di vento traverso sulla distribuzione trasversale dei punti di toccata al fine di accertarne l'influenza nelle condizioni in cui è garantita l'operatività della pista di volo.

Infine è stata indagata la correlazione tra le decelerazioni degli aeromobili nelle operazioni di atterraggio e l'effettiva lunghezza della pista utilizzata durante le operazioni stesse; questa è a sua volta funzione della posizione nella direzione longitudinale dei punti di toccata e del raccordo utilizzato dall'aeromobile per abbandonare la pista di volo e raggiungere la via di rullaggio.

Tale analisi è stata condotta per valutare l'influenza di fattori quali le caratteristiche tecniche dell'aeromobile e la precisione in atterraggio del pilota sulle azioni trasmesse alla pavimentazione.

2 Campagna sperimentale e raccolta dei dati

La fase di rilievo dei dati ha interessato l'aeroporto "G. B. Pastine" di Roma-Ciampino. L'aeroporto è di tipologia mista (militare aperto al traffico civile) ed è gestito, per la parte commerciale, dalla Società Aeroporti di Roma insieme con l'Aeroporto intercontinentale Leonardo da Vinci di Fiumicino, con il quale forma il sistema aeroportuale di Roma Capitale; per la parte Militare è gestito dall'Aeronautica Militare Italiana: in particolare, è sede del 31° Stormo e del 2° Reparto Genio AM. Gli aeromobili del 31° Stormo sono utilizzati per il trasporto di Stato e per missioni di pubblica utilità, quali il trasporto sanitario. L'aeroporto è inoltre main base della flotta di velivoli antiincendio CL-415 della Protezione Civile Nazionale.

L'aeroporto è dotato di un'unica pista di dimensioni 2207 x 45 m ed orientata nella direzione 15/33.

Figura 5 - Pista dell'aeroporto di Roma Ciampino

Figura 6 – Pista dell'aeroporto di Roma Ciampino-Aerodrome chart ICAO

La scelta dell'aeroporto è stata dettata dalla combinazione di due fattori: le esigenze legate alle procedure autorizzative, necessarie al fine di eseguire riprese del sedime aeroportuale e la composizione della flotta tale da avere a disposizione un numero significativo di dati da analizzare. Per quanto riguarda il primo punto è stato possibile effettuare i rilievi grazie all'autorizzazione dello Stato Maggiore Aeronautica e del Comando Aeroporto.

I rilievi sono stati effettuati in un totale di 15 giornate distribuite nei mesi di Febbraio (16,18,21,24 e 26), Marzo (1,3,16,17,28) e Aprile (3,10,17,18,30) del 2013.

2.1 Metodologia di rilievo

Al fine di acquisire i dati relativi al posizionamento degli aeromobili sulla pista di volo nonché ai valori di velocità assunti nelle operazioni di decollo e di atterraggio sono state utilizzate cinque telecamere ad alta risoluzione.

Per determinare la traiettoria trasversale dei velivoli in pista è stata posizionata una telecamera in testata pista in corrispondenza del sentiero di avvicinamento, solidarizzata ad uno dei supporti delle luci del Calvert e opportunamente protetta al fine di evitare il danneggiamento della stessa in caso di maltempo ed identificata con la lettera T.

Non essendo possibile un'alimentazione diretta della telecamera T sono state utilizzate delle batterie a lunga durata per le quali è stato comunque necessario prevedere la sostituzione nel corso della giornata di rilievo non avendo le stesse autonomia tale da garantire la continuità dei rilievi per l'intera giornata.

Figura 6 - Telecamera in testata pista 15

L'utilizzo di 4 telecamere posizionate sulla terrazza della torre di controllo (t1, t2, t3 e t4) ha consentito altresì di monitorare il movimento dell'aeromobile lungo la pista di volo e, in seguito ad una post-elaborazione dei video, di ottenere dati che hanno consentito di tracciare i diagrammi delle velocità per tipologia di aeromobile.

L'analisi dei primi risultati è stata indispensabile per la messa a punto dei protocolli di rilievo al fine di ottenere dati attendibili. In questo caso è stato possibile alimentare le telecamere mediante collegamento ad un quadro elettrico esistente. Analogamente a quanto fatto per la telecamera di testata sono stati posizionati sui supporti delle telecamere, solidarizzati alla ringhiera della terrazza, degli elementi a copertura onde evitare il danneggiamento della strumentazione in caso di precipitazioni piovose.

Le informazioni relative alle condizioni meteorologiche, del vento e della pista di volo con possibile effetto sulle distribuzioni delle traiettorie sono state registrate in schede dati opportunamente predisposte delle quali se ne riporta un esempio in appendice A.

I dati registrati sono i seguenti:

- Tipologia di operazione : L = Landing, D=Departure; L/D= Touch and go;
- Ora effettiva dell'operazione;
- Denominazione dell'aeromobile in accordo con l'Aircraft Type Designator dell'ICAO (*17*) (vedi appendice B);
- Intensità del vento (kts);
- Orientamento del vento;
- Nominativo dell'aeromobile.

Figura 7 – Telecamere sulla torre di controllo

2.2 Dati di traffico

I rilievi effettuati hanno consentito di analizzare un numero di operazioni complessive pari a 1001 suddivise in partenze, decolli e touch and go secondo quanto riassunto nella seguente tabella.

Tabella 2 – Numero di operazioni rilevate					
DECOLLI	478				
ATTERRAGGI	477				
TOUCH AND GO	46				
TOTALE	1001				

Lo spettro di traffico, riportato in Appendice C, è composto prevalentemente da 5 tipologie di aeromobili ovvero il Boeing 737-800 della compagnia Ryanair (B738), il Canadair CL-415 della protezione civile (CL2T), il Piaggio P-180 (P180), il Falcon 900 (F900) e il Falcon 2000 (F2TH) dell'Aeronautica Militare.

La composizione del traffico è schematizzata nel diagramma della figura di seguito riportata.

Figura 8 – Spettro di traffico
In appendice D si riportano le immagini delle cinque tipologie di aeromobili più presenti (18) e le relative informazioni in termini di caratteristiche generali e dati tecnici.

3 Analisi dei dati e sviluppi

L'analisi e l'elaborazione dei filmati ripresi dalle 5 telecamere posizionate sul sedime aeroportuale è stato effettuato utilizzando i seguenti software:

- ✓ Il software utilizzato per l'analisi dei filmati ripresi dalle 5 telecamere è stato Adobe® Premiere® ProCS6. Questa piattaforma ha permesso di sfruttare al meglio la qualità dei video d'indagine. Questi ultimi, infatti, sono stati girati in formato .M2TS con estensione file. MTS (High-definition MPEG TransportStream), ovvero un formato di file contenitore per la multiplazione di audio e video, e ad una frequenza di 25 fps (frame per second). Con il suddetto software è stato quindi possibile impostare l'editing del video alla stessa frequenza (25 fps) e nello stesso formato. Far coincidere tali caratteristiche video ha consentito di effettuare l'analisi dei vari filmati con precisione del singolo frame , cioè del 1/25 di secondo.
- ✓ Il software utilizzato per effettuare le misure sulle immagini riprese dalla telecamera posizionata in testata è stato Autodesk® AutoCAD®2013.
- ✓ L'analisi statistica dei risultati ricavati è stato utilizzato EasyFit 5.5, il quale permette di adattare automaticamente le distribuzioni di probabilità alla serie di dati e scegliere il modello che meglio la caratterizzi.
- ✓ Per il calcolo numerico, l'analisi e la visualizzazione dei dati sono stati utilizzati Microsoft Excel 2011 e MATLAB_R2011b.

3.1 Individuazione dei capisaldi

Per eseguire una precisa analisi del materiale d'indagine è stato necessario individuare lungo la pista alcuni punti di riferimento denominati capisaldi che avessero una lunghezza nota.

Si è scelto di sfruttare a tale scopo la segnaletica orizzontale presente lungo la pista, in primo luogo perché è formata da segmenti di dimensioni 38 note; inoltre, la loro posizione è fissa all'interno della pista e il colore bianco ha un ottimo contrasto con la pavimentazione, cosa che li rende ben distinguibili dalle telecamere.

I capisaldi sono stati identificati con le lettere dell'alfabeto; si riportano nella seguente tabella le denominazioni con le rispettive lunghezze e le progressive rispetto ad un sistema di riferimento avente origine coincidente con la soglia della pista.

IDENTIFICATIVO	Lunghezza (m)	Distanza
		progressiva (m)
А	44,5	357,25
В	70	414,5
С	22,5	460,75
D	125	534,5
E	22,5	608,25
F	30,5	896,5
G	30,5	946,5
Н	30,5	996,5
Ι	30,5	1046,5
J	30,5	1096,5
K	30,5	1146,5
L	30,5	1196,5
М	30,5	1246,5
Ν	30,5	1296,5
0	30,5	1346,5
Р	30,5	1396,5

Tabella 3 – Lunghezza e distanza progressiva dei capisaldi

Sono stati inizialmente identificati sulla pista anche i capisaldi Q ed R ma gli stessi non sono stati di seguito utilizzati per le elaborazioni per una serie di considerazioni:

- La segnaletica nella parte terminale della pista non è facilmente distinguibile essendo la torre di controllo più spostata verso la testata 15;
- Da un'analisi delle operazioni aeroportuali è apparso evidente come la pista venga utilizzata prevalentemente nella direzione 15/33;

- La porzione di pista in corrispondenza della testata 33 viene utilizzata in atterraggio quasi esclusivamente dagli aeromobili di dimensioni maggiori (Boeing 737-800 e Airbus A319/320) i quali liberano la pista prevalentemente attraverso il raccordo C₃ e solo in parte attraverso il raccordo D4 per cui la porzione di pista per la quale non abbiamo informazioni di velocità risulta modesta;
- Nelle operazioni di decollo il distacco avviene quasi sempre prima di raggiungere il caposaldo Q.

E' stata inoltre identificata la posizione dei raccordi di uscita dalla pista denominati A_1 , B_2 , C_3 e D_4 dei quali si riporta la distanza progressiva facendo riferimento all'asse del raccordo rispetto alla soglia della pista.

14	– Disiunza progressiva aei	raccorai
	IDENTIFICATIVO	Distanza
		progressiva (m)
	A_1	490
	B_2	1140
	C ₃	1423
	D ₄	1915

Tabella 4 – Distanza progressiva dei raccordi

In Appendice E si riporta la posizione dei capisaldi sulla pista di volo in pianta e nella visione dalle rispettive telecamere.

3.2 Analisi dei dati relativi alle operazioni di atterraggio

Nella descrizione dell'analisi dei dati rilevati si considerano separatamente le operazioni di atterraggio e quelle di decollo.

Per quanto riguarda le operazioni di atterraggio si descrivono nei seguenti paragrafi le osservazioni fatte relativamente alla distribuzione trasversale e longitudinale dei punti di toccata, alla lunghezza di pista effettivamente utilizzata dagli aeromobili nonchè all'analisi cinematica delle singole operazioni in termini di velocità e decelerazioni.

3.2.1 Analisi trasversale dei punti di toccata

Una prima analisi sui dati rilevati è stata condotta sui filmati ripresi dalla telecamera T in testata pista 15 al fine di studiare la distribuzione trasversale dei punti di toccata, fondamentale nelle procedure di calcolo utilizzate per ricavare i ricoprimenti e studiare quindi il fenomeno fisico dell'interazione pneumatico-pavimentazione nella sua componente relativa al fattore traffico.

I dati di interesse sono stati ricavati dall'editing dei video secondo la procedura di seguito descritta.

Una volta individuato l'istante in cui le ruote del carrello principale toccano contemporaneamente la pavimentazione della pista è stato compiuto uno screen shot del frame. Quest'ultimo è stato salvato in formato di file raster Targa (estensione del file*.*tga*), utilizzato per memorizzare fotografie ed immagini digitali nel modo più preciso e fedele possibile, salvaguardando il risultato da quelle alterazioni che spesso si verificano con i formati compressi (ad esempio il *.*jpg*).

In seguito l'immagine è stata importata in un file autocad *.*dwg*. Per eseguire la misura con la massima accuratezza, il fotogramma è stato scalato rispetto ad una lunghezza nota e successivamente è stata effettuata una verifica con un secondo parametro di dimensioni note.

In particolare sono stati considerate le seguenti grandezze di riferimento:

- la larghezza della segnaletica orizzontale che segue la center line, normata dall'ICAO e pari a 0,95 m;
- l'apertura alare (oppure, nei ridotti casi in cui l'aeromobile atterri troppo vicino alla telecamera e non sia dunque interamente ripreso dalla stessa, l'ampiezza del piano di coda) (18).

La procedura utilizzata per scalare l'immagine è la seguente:

- si traccia una retta r parallela alla base della striscia rettangolare più vicina della segnaletica orizzontale: questa retta risulta parallela alla linea di terra, alla linea di orizzonte e quindi a tutti i segmenti orizzontali;
- 2. si tracciano le rette m ed n costituenti i lati verticali dei rettangoli componenti la segnaletica orizzontale. Queste rette, parallele

nella realtà, risultano incidenti per effetto della prospettiva. Il loro punto di incontro è detto punto di fuga e rappresenta il recapito finale di tutti i segmenti verticali (e quindi ortogonali a quelli orizzontali);

- si traccia la retta orizzontale s, parallela ad r e passante per i punti (A e B) di contatto delle ruote dell'aeromobile con la pista: su questa retta si andrà a misurare lo scostamento dell'asse dell'aereo rispetto alla centre-line, quest'ultima individuata dal punto medio N del segmento CD compreso fra le rette m ed n;
- 4. si individua l'asse dell'aereo, considerando il punto medio M del segmento AB avente per estremità le due ruote.

Figura 9 – Costruzione grafica per l'individuazione dello scostamento trasversale dei punti di toccata

A questo punto si può scalare l'immagine rispetto all'apertura alare del velivolo, e si misura il segmento CD. Questo segmento risulta in genere diverso dai 95cm reali per due motivi: in primo luogo non è detto che il piano verticale a cui appartengono i segmenti CD e AB contenga anche il segmento rappresentativo della apertura alare. Ciò implica che scalando rispetto al

segmento più vicino all'osservatore (A'A"), quello più lontano (AB) risulta minore di quanto realmente dovrebbe essere. Questo comporta una sottostima dello scostamento dalla centre-line.

In secondo luogo bisogna considerare che raramente un aereo atterra con il proprio asse perfettamente parallelo all'asse della pista. Lo scostamento angolare (α) si traduce in un errore nella misura dell'apertura alare (A'A"): la telecamera (T) inquadra, infatti, la proiezione (L) del segmento (A'A"), legata ad esso dalla relazione trigonometrica:

 $L = AA' * \cos \alpha$

Figura 10 - Scostamento angolare di un aeromobile in toccata

Per questi motivi è opportuno scalare l'immagine non rispetto all'apertura alare ma rispetto al segmento CD, lungo 95cm, che giace sulla retta in cui si andrà a misurare lo scostamento (). La misura dell'apertura alare risulta comunque utile come verifica per prevenire errori grossolani. Convenzionalmente lo scostamento viene assunto positivo quando l'asse dell'aereo è a destra rispetto all'asse della centre-line.

Per l'analisi statistica dei dati si fa riferimento agli aeromobili caratterizzati da una numerosità campionaria significativa ovvero il Boeing 737-800, il Canadair CL-415, il Piaggio P-180, il Falcon 2000 e il Falcon 900.

Una prima analisi è stata fatta considerando che, in seguito ai risultati di studi precedenti, nelle procedure di calcolo delle pavimentazioni, per la distribuzione delle traiettorie trasversali si fa riferimento ad una funzione densità di probabilità di tipo normale. Pertanto sono stati condotti dei test di normalità sui campioni relativi ai punti di toccata dei singoli aeromobili il cui esito si riporta nel dettaglio in appendice F.

Tali test hanno dimostrato che ad eccezione del caso del Piaggio P-180 si può accettare l'ipotesi per cui la variabile da cui sono estratti i campioni relativi ai singoli aeromobili segue una distribuzione simmetrica di tipo Normale.

A questo punto è stata fatta un'ulteriore analisi statistica per verificare se i campioni relativi alle diverse tipologie di aeromobile potessero considerarsi provenienti dalla stessa popolazione e pertanto potessero essere analizzati insieme al fine di prendere in considerazione una funzione di probabilità descrittiva della distribuzione dei punti di toccata trasversali indipendente dalla tipologia di aeromobile.

Sono stati condotti a tal proposito test non parametrici sui 5 campioni il cui dettaglio si riporta in appendice G.

Si precisa che nella statistica non parametrica i modelli matematici non necessitano di ipotesi a priori sulle caratteristiche della popolazione (ovvero, di un parametro), o comunque le ipotesi sono meno restrittive rispetto a quelle usuali nella statistica parametrica. In particolare non si assume l'ipotesi che i dati provengano da una popolazione normale o gaussiana. Viene considerata da alcuni la statistica dei piccoli campioni in quanto è soprattutto in questi casi che l'ipotesi di distribuzione gaussiana è fatta spesso in modo arbitrario. Ma questa definizione può essere fuorviante in quanto la non parametrica viene applicata anche in presenza di campioni relativamente grandi.

I test condotti hanno consentito di accettare l'ipotesi di appartenenza dei campioni alla stessa popolazione.

Sulla base di tale assunzione sono stati analizzati i dati complessivi relativi agli aeromobili significativi; gli stessi sono stati diagrammati utilizzando una rappresentazione ad istogramma.

L'istogramma è stato rappresentato suddividendo le n determinazioni $x_1,..., x_n$ della variabile aleatoria in m intervalli di uguale ampiezza. Per scegliere il numero giusto di intervalli si può usare come riferimento la formula di Sturges:

$$m = 1 + \log_2(n) \tag{14}$$

o in presenza di dati anomali la formula di Freedman-Diaconis:

$$m = \frac{Max(x_1, x_n) - Min(x_1, x_n)}{2*(\hat{x}_{0.75} - \hat{x}_{0.25})} * n^{1/3}$$
¹⁵

Pertanto è stata prima di tutto verificata la presenza di dati anomali, cioè di quei valori x_i tali che:

$$x_i < \hat{x}_{0.25} - 1.5 * (\hat{x}_{0.75} - \hat{x}_{0.25})$$
¹⁶

ovvero

$$x_i > \hat{x}_{0.75} + 1.5 * (\hat{x}_{0.75} - \hat{x}_{0.25})$$
¹⁷

dove:

 $\hat{x}_{0.25}$ rappresenta il primo quartile; $\hat{x}_{0.75}$ rappresenta il terzo quartile.

Nella seguente figura si riporta la rappresentazione grafica dello scarto interquartile in una funzione di distribuzione di probabilità di tipo normale o gaussiano.

Figura 11 – Scarto interquartile in una gaussiana

In sintesi un dato è anomalo se è esterno allo scarto interquartile. Per il caso in esame su un totale di 313 osservazioni sono stati registrati 9 dati anomali e si è calcolato un valore di m ovvero del numero di intervalli di uguale ampiezza in cui suddividere l'istogramma pari a 17.

A questo punto è stata condotta un'analisi statistica finalizzata ad adattare le distribuzioni ai dati campionari e selezionare il modello migliore sulla base dei risultati dei test di bontà di adattamento. Questi test valutano la compatibilità di un campione casuale con la distribuzione teorica. In particolare sono stati condotti i test di adattamento di Kolmogorov-Smirnov, di Anderson-Darling e Chi-quadrato.

E' stata valutata la bontà di adattamento di 61 distribuzioni differenti, prendendo poi in considerazione solo le distribuzioni biparametriche.

Il risultato delle analisi condotte ha confermato come la distribuzione che meglio si adatta ai dati campionari sia una distribuzione Normale. Come è ben noto il grafico della funzione di densità di probabilità ad essa associata è simmetrico ed ha una forma a campana. La distribuzione Normale dipende da due parametri ovvero la media μ e la varianza ². La funzione densità di probabilità cui spesso si fa riferimento con la dizione curva di Gauss assume la forma:

$$f(x) = \frac{e^{\frac{-(x-\mu)^2}{2\sigma^2}}}{\sigma\sqrt{2\pi}}$$
18)

Nel caso specifico i due parametri assumono i seguenti valori:

μ	-0,3785
	1,0393

Si riporta nella seguente figura l'istogramma ottenuto suddividendo le 304 determinazioni della variabile aleatoria in 17 intervalli e si rappresenta graficamente la funzione densità di probabilità Normale che meglio si adatta ai dati campionari caratterizzata dai valori dei parametri esplicitati.

Figura 12 – Pdf per la v.a.

Normal							
Kolmogorov-Smirnov							
Dimensione del campione Statistica Valore P Rango	304 0,03235 0,89754 5						
α	0,2	0,1	0,05	0,02	0,01		
Valore critico	0,06154	0,07014	0,07789	0,08706	0,09343		
Respingi?	No	No	No	No	No		
Anderson-Darling							
Dimensione del campione Statistica Rango	304 0,33133 3						
α	0,2	0,1	0,05	0,02	0,01		
Valore critico	1,3749	1,9286	2,5018	3,2892	3,9074		
Respingi?	No	No	No	No	No		
Chi-quadrato	<u> </u>	·	·	·			
Gradi di libertà Statistica Valore P Rango	8 2,6959 0,95197 5						
α	0,2	0,1	0,05	0,02	0,01		
Valore critico	11,03	13,362	15,507	18,168	20,09		
Respingi?	No	No	No	No	No		

Si riporta nella seguente tabella il dettaglio dei test di bontà di adattamento condotti sui dati campionari depurati dei dati anomali.

Tabella 5 – Test di bontà di adattamento della funzione normale per la v.a.

Si riportano quindi nella tabella che segue delle informazioni di riepilogo relative ai test di bontà di adattamento effettuati per le distribuzioni di probabilità analizzate:

#	Distribuzione	Kolmogorov Smirnov		Anderson Darling		Chi-quadrato	
		Statistica	Rango	Statistica	Rango	Statistica	Rango
5	Dagum (4P)	0,02982	1	0,24236	1	1,7516	1
2	Burr (4P)	0,03093	2	0,32605	2	2,4261	4
27	Normal	0,03235	5	0,33133	3	2,6959	5
7	Error	0,03272	8	0,33792	4	3,2205	7
10	Fatigue Life (3P)	0,03179	3	0,33804	5	2,1738	2
29	Pearson 6 (4P)	0,03183	4	0,34168	6	2,2396	3
20	Johnson SB	0,03268	6	0,34418	7	2,7099	6
19	Inv. Gaussian (3P)	0,03493	10	0,35201	8	3,9509	11
1	Beta	0,03346	9	0,36302	9	3,3091	8
24	Log-Logistic (3P)	0,04489	18	0,37251	10	7,5335	17
26	Lognormal (3P)	0,03271	7	0,39572	11	3,5989	9
6	Erlang (3P)	0,03795	14	0,45899	12	4,3688	12
14	Gen. Gamma (4P)	0,03545	12	0,46432	13	4,4902	13
12	Gamma (3P)	0,03529	11	0,47096	14	5,2516	16
36	Weibull (3P)	0,03793	13	0,49157	15	4,5797	15
21	Kumaraswamy	0,03825	15	0,49653	16	4,5682	14
13	Gen. Extreme Value	0,03861	16	0,50982	17	3,7609	10
25	Logistic	0,0514	19	0,5331	18	10,434	19
28	Pearson 5 (3P)	0,04457	17	0,69069	19	7,7378	18
18	Hypersecant	0,06643	20	1,1921	20	14,368	22
30	Pert	0,06995	21	2,0726	21	12,288	20
34	Triangular	0,08001	25	2,2024	22	12,508	21
22	Laplace	0,08671	27	3,0514	23	29,97	25
3	Cauchy	0,07396	22	4,1166	24	32,275	27
11	Frechet (3P)	0,09539	29	4,594	25	30,446	26
16	Gumbel Max	0,09314	28	5,8612	26	19,549	24
17	Gumbel Min	0,07687	23	5,8893	27	14,484	23
32	Rayleigh (2P)	0,13481	30	10,983	28	52,129	30
8	Error Function	0,15775	31	19,935	29	46,73	29
33	Student's t	0,15964	32	20,286	30	45,734	28

Tabella 6 – Test di bontà di adattamento per la v.a. : riepilogo

31	Power Function	0,24275	34	25,243	31	143,73	31			
4	Chi-Squared (2P)	0,21046	33	28,98	32	194,42	32			
9	Exponential (2P)	0,31945	35	50,687	33	324,45	33			
35	Uniform	0,0854	26	70,609	34	N/A				
15	Gen. Pareto	0,07834	0,07834 24 73,325 35 N/A							
23	Levy (2P)	0,46101	36	77,882	36	657,76	34			
37	Burr	Impossibile adattare (min < 0)								
38	Chi-Squared	Impossibi	le adatta	are (min <	0)					
39	Dagum	Impossibi	le adatta	are (min <	0)					
40	Erlang	Impossibi	le adatta	are (min <	0)					
41	Exponential	Impossibi	le adatta	are (min <	0)					
42	Fatigue Life	Impossibile adattare (min < 0)								
43	Frechet	Impossibile adattare (min < 0)								
44	Gamma	Impossibi	le adatta	are (min <	0)					
45	Gen. Gamma	Impossibi	le adatta	are (min <	0)					
46	Inv. Gaussian	Impossibi	le adatta	are (min <	0)					
47	Johnson SU	Impossibi	le adatta	are						
48	Levy	Impossibi	le adatta	are (min <	0)					
49	Log-Gamma	Impossibi	le adatta	are						
50	Log-Logistic	Impossibi	le adatta	are (min <	0)					
51	Log-Pearson 3	Impossibi	le adatta	are						
52	Lognormal	Impossibi	le adatta	are (min <	0)					
53	Nakagami	Impossibi	le adatta	are						
54	Pareto	Impossibi	le adatta	are						
55	Pareto 2	Impossibi	le adatta	are						
56	Pearson 5	Impossibi	le adatta	are (min <	0)					
57	Pearson 6	Impossibi	le adatta	are (min <	0)					
58	Rayleigh	Impossibile adattare (min < 0)								
59	Reciprocal	Impossibile adattare								
60	Rice	Impossibile adattare								
61	Weibull	Impossibile adattare (min < 0)								

3.2.2 Effetto del vento sulla distribuzione trasversale dei punti di toccata

Dai dati relativi ad intensità ed orientamento del vento è stato possibile calcolare la componente di vento traverso (cw) nelle operazioni di atterraggio. Tale dato è stato utilizzato per valutare l'effetto della componente di vento traverso sulla distribuzione trasversale dei punti di toccata.

In primo luogo è stata valutata la congruenza tra la direzione del vento e la posizione dello scostamento dell'aeromobile rispetto alla centerline; si è verificato come solo nel 65% dei casi esiste una corrispondenza tra i due valori a fronte del 35% dei casi in cui tale corrispondenza non è verificata.

Successivamente è stato rappresentato in forma di diagramma la componente di vento traverso sull'asse delle ascisse (espressa in nodi) e lo scostamento del punto di toccata rispetto alla centerline della pavimentazione sull'asse delle ordinate (espressa in metri). Lo scostamento è considerato positivo se il punto di toccata è alla destra della centerline nella direzione operativa della pista 15-33; la componente di vento traverso è considerata positiva se il vento soffia nella direzione 240°N.

Qualora ci fosse stata effettivamente una dipendenza tra i due parametri avremmo dovuto osservare una distribuzione dei punti sperimentali nel primo e terzo quadrante del diagramma rappresentato; al contrario è evidente una distribuzione della nuvola di punti molto dispersa.

Volendo trovare una linea di tendenza che, con l'adattamento ai minimi quadrati, crei una retta ottimale in grado di approssimare al meglio i punti sperimentali, si osserva come il valore del coefficiente di correlazione R^2 risulta molto prossimo allo zero.

Si riporta il diagramma nella seguente figura.

Figura 13 – Azione del vento traverso sulla distribuzione trasversale dei punti di toccata

Il risultato ottenuto conferma quanto già stabilito da HoSang negli studi precedenti relativamente alla scarsa influenza di una serie di fattori, tra cui appunto l'influenza del vento sulle distribuzione trasversale delle traiettorie degli aeromobili.

3.2.3 Analisi longitudinale dei punti di toccata

Per determinare la posizione longitudinale dei punti di toccata (y) è stato preso un sistema di riferimento con origine in corrispondenza della soglia della pista.

I dati di interesse sono stati ricavati dall'editing dei video della telecamera denominata t_1 secondo la procedura di seguito descritta.

In particolare per sfruttare il maggiore zoom della telecamera T posizionata in testata al fine di sopperire alla distanza con la quale i punti di atterraggio sono stati invece ripresi dalla telecamera t_1 , sono state sincronizzate le due telecamere sfruttando un frame comune ad entrambe le inquadrature (ad esempio il lampeggio della strobe light alare dell'aeromobile).

Con questa procedura è stato eseguito lo screen shot dell'esatto frame di touchdown degli aeromobili. Per scalare l'immagine si fa riferimento alla segnaletica orizzontale aggiungendo il valore della distanza tra il primo caposaldo (A) e la soglia della pista, tenendo comunque in considerazione che la misura è affetta da errore per effetto della prospettiva.

Figura 14 – Costruzione grafica per l'individuazione della posizione longitudinale dei punti di toccata

A questo punto è stata condotta un'ulteriore analisi statistica per verificare se i campioni relativi alle diverse tipologie di aeromobile potessero considerarsi provenienti dalla stessa popolazione e pertanto potessero essere analizzati insieme al fine di prendere in considerazione una funzione di probabilità descrittiva della distribuzione dei punti di toccata trasversali indipendente dalla tipologia di aeromobile.

Sono stati effettuati a tal proposito test non parametrici sui 5 campioni il cui dettaglio si riporta in appendice H.

I test condotti non hanno consentito di accettare l'ipotesi di appartenenza dei campioni alla stessa popolazione.

Sulla base di tale assunzione sono stati analizzati solo i dati relativi al Boeing 737-800 caratterizzato da una numerosità significativa; gli stessi sono stati diagrammati utilizzando una rappresentazione ad istogramma.

L'istogramma è stato rappresentato suddividendo le n determinazioni x_1 , ... x_n della variabile aleatoria in m intervalli di uguale ampiezza. Per scegliere il numero giusto di intervalli è stata usata come riferimento la formula di Freedman-Diaconis.

Per il caso in esame su un totale di 197 osservazioni sono stati registrati 12 dati anomali e si è calcolato un valore di m ovvero del numero di intervalli di uguale ampiezza in cui suddividere l'istogramma pari a 21.

A questo punto è stata condotta un'analisi statistica finalizzata ad adattare le distribuzioni ai dati campionari e selezionare il modello migliore sulla base dei risultati dei test di bontà di adattamento. Questi test valutano la compatibilità di un campione casuale con la distribuzione teorica. In particolare sono stati condotti i test di adattamento di Kolmogorov-Smirnov, di Anderson-Darling e Chi-quadrato.

E' stata valutata la bontà di adattamento di 61 distribuzioni di probabilità differenti. Il risultato delle analisi condotte ha evidenziato come la distribuzione che meglio si adatta ai dati campionari sia una distribuzione Log-logistica a tre parametri. Tale distribuzione, nell'ambito di una classificazione per ranghi effettuata sulla base dei tre test di bontà di adattamento condotti, risulta adattarsi meglio ai risultati sperimentali. Bisogna tuttavia sottolineare che nell'effettuare il test del Chi-quadrato il test ha dato esito positivo solo a partire da un livello di significatività pari a 0,02.

La funzione densità di probabilità della distribuzione log-logistica assume la forma:

$$f(x) = \frac{\alpha}{\beta} \left(\frac{x-\gamma}{\beta}\right)^{\alpha-1} \left(1 + \left(\frac{x-\gamma}{\beta}\right)^{\alpha}\right)^{-2}$$
¹⁹

Nel caso specifico i tre parametri della distribuzione α , $\beta e \gamma$ assumono i valori descritti di seguito:

α	5,5442
β	261,59
γ	174,92

Si riporta nella seguente figura l'istogramma ottenuto suddividendo le 185 determinazioni della variabile aleatoria y in 21 intervalli e si rappresenta graficamente la funzione densità di probabilità Log-logistica che meglio si adatta ai dati campionari caratterizzata dai valori dei parametri sopra esplicitati.

Figura 15 – Pdf per la v.a. y relativa al Boeing 737-800

Si nota come nel caso della distribuzione longitudinale dei punti di toccata l'andamento non risulta essere simmatrico, bensì si ha un picco di dati registrati nella zona della pista di volo compresa tra i 300 e i 450 metri di distanza dalla soglia della pista assunta come origine del sistema di riferimento.

Log-Logistica (3P)							
Kolmogorov-Smirnov							
Dimensione del campione Statistica Valore P Rango	185 0,05715 0,56179 2						
α	0,2	0,1	0,05	0,02	0,01		
Valore critico	0,07889	0,08992	0,09984	0,11161	0,11977		
Respingi?	No	No	No	No	No		
Anderson-Darling							
Dimensione del campione Statistica Rango	185 0,58681 2						
α	0,2	0,1	0,05	0,02	0,01		
Valore critico	1,3749	1,9286	2,5018	3,2892	3,9074		
Respingi?	No	No	No	No	No		
Chi-quadrato							
Gradi di libertà Statistica Valore P Rango	7 15,959 0,02549 14						
α	0,2	0,1	0,05	0,02	0,01		
Valore critico	9,8032	12,017	14,067	16,622	18,475		
Respingi?	Si	Si	Si	No	No		

Si riporta nella seguente tabella il dettaglio dei test di bontà di adattamento condotti sui dati campionari depurati dei dati anomali.

Tabella 7 – Test di bontà di adattamento della funzioni log-logistica per la v.a. y

Si riportano quindi nella tabella che segue delle informazioni di riepilogo relative ai test di bontà di adattamento effettuati per le distribuzioni di probabilità analizzate:

#	Distribuzione	Kolmogorov Smirnov		Anderson Darling		Chi-quadrato	
		Statistica	Rango	Statistica	Rango	Statistica	Rango
2	Burr	0,05175	1	0,55553	1	10,25	2
37	Log-Logistic (3P)	0,05715	2	0,58681	2	15,959	14
25	Gumbel Max	0,05889	3	0,80128	5	17,495	19
18	Frechet (3P)	0,06583	4	0,75934	4	15,467	13
21	Gen. Extreme Value	0,06728	5	0,75309	3	16,403	15
47	Pearson 5 (3P)	0,07421	6	0,82289	6	16,64	17
41	Lognormal (3P)	0,07553	7	0,8497	7	17,013	18
36	Log-Logistic	0,07564	8	0,95465	16	17,865	22
38	Log-Pearson 3	0,07626	9	0,85124	8	19,504	26
49	Pearson 6 (4P)	0,07683	10	0,88116	9	19,759	28
29	Inv. Gaussian (3P)	0,07686	11	0,88852	11	19,727	27
30	Johnson SB	0,077	12	1,6851	25	21,342	33
16	Fatigue Life (3P)	0,07703	13	0,88123	10	19,767	29
46	Pearson 5	0,07813	14	0,8892	12	18,983	24
23	Gen. Gamma (4P)	0,07868	15	0,92014	13	19,344	25
20	Gamma (3P)	0,08006	16	0,94816	15	18,305	23
48	Pearson 6	0,08014	17	0,92126	14	17,63	20
24	Gen. Pareto	0,08272	18	46,239	51	N/A	
53	Rayleigh (2P)	0,08396	19	1,669	23	21,633	35
17	Frechet	0,08563	20	1,9208	27	11,518	3
35	Log-Gamma	0,08629	21	1,0771	17	16,405	16
40	Lognormal	0,08978	22	1,2008	19	15,222	10
4	Cauchy	0,09065	23	2,6572	30	5,3894	1
15	Fatigue Life	0,09072	24	1,217	20	15,226	11
10	Erlang (3P)	0,09409	25	1,1155	18	13,742	7
60	Weibull (3P)	0,09716	26	1,4973	21	15,239	12
9	Erlang	0,10204	27	1,6568	22	12,388	5
22	Gen. Gamma	0,10282	28	1,6942	26	14,507	8
19	Gamma	0,10342	29	1,6764	24	12,641	6
32	Laplace	0,10574	30	3,8457	38	20,325	31

Tabella 8 – Test di bontà di adattamento per la v.a. y: riepilogo

55	Rice	0,10698	31	3,3816	37	27,603	40
27	Hypersecant	0,11367	32	3,1576	36	20,286	30
42	Nakagami	0,11433	33	2,3657	28	17,717	21
39	Logistic	0,11984	34	2,9864	33	22,632	37
57	Triangular	0,12279	35	2,7009	31	15,0	9
6	Chi-Squared (2P)	0,12319	36	2,9022	32	21,238	32
11	Error	0,1263	37	3,0563	34	21,592	34
43	Normal	0,12833	38	3,1372	35	22,953	38
28	Inv. Gaussian	0,12929	39	2,3874	29	11,637	4
1	Beta	0,13815	40	5,403	40	26,33	39
58	Uniform	0,1457	41	62,806	53	N/A	
59	Weibull	0,14796	42	6,6821	41	33,315	41
50	Pert	0,15548	43	4,0138	39	21,984	36
54	Reciprocal	0,17143	44	10,506	43	71,649	44
31	Kumaraswamy	0,1748	45	9,2097	42	79,087	45
7	Dagum	0,18479	46	20,486	46	45,767	42
26	Gumbel Min	0,19379	47	14,524	44	50,312	43
51	Power Function	0,20181	48	16,177	45	N/A	
5	Chi-Squared	0,24875	49	112,09	58	137,72	47
14	Exponential (2P)	0,26542	50	23,242	47	104,43	46
52	Rayleigh	0,29606	51	28,658	48	244,38	51
44	Pareto	0,3113	52	31,887	49	139,28	48
34	Levy (2P)	0,4136	53	40,117	50	261,87	52
13	Exponential	0,47525	54	56,592	52	581,44	53
3	Burr (4P)	0,48967	55	63,977	54	182,76	49
8	Dagum (4P)	0,54163	56	76,693	55	216,58	50
33	Levy	0,57436	57	77,101	56	956,42	55
45	Pareto 2	0,5957	58	92,068	57	627,78	54
12	Error Function	0,99912	59	2386,1	60	7,9206E+5	56
56	Student's t	0,99999	60	2157,3	59	5,1721E+7	57
61	Johnson SU	Impossibi	le adatt	are			

3.2.4 Distribuzione spaziale dei punti di toccata

L'analisi dei dati relativi alla distribuzione spaziale dei punti di toccata rappresenta un'informazione fondamentale per il progetto nonchè per i sistemi di gestione della manutenzione delle pavimentazioni aeroportuali.

I punti di toccata rappresentano infatti quei punti della pista deputati ad assorbire l'energia cinetica associata alla componente verticale della velocità di atterraggio e soggetti ad elevata temperatura per l'impatto tra il pneumatico e la pavimentazione.

Inoltre le informazioni relative alle prestazioni operative di touchdown risultano fondamentali in quanto critiche nell'ambito della sicurezza aeroportuale (19).

I piloti nelle operazioni di atterraggio hanno prescrizioni relative alla velocità da mantenere e all'angolo di discesa (pari a 3°) indicato generalmente dai sentieri di avvicinamento. Al contrario non hanno prescrizioni specifiche relative al punto preciso di toccata se non le indicazioni fornite visivamente dalla posizione della segnaletica orizzontale sulla pista. Bisogna tuttavia precisare che alcune note relative alle distanze di atterraggio parlano di una distanza di 1000 piedi (305 metri) tra un punto posto a 50 piedi (15 m) sulla soglia della pista e il punto di toccata.

Inoltre le distanze di atterraggio su piste asciutte in condizioni standard definite nei manuali di volo degli aeromobili, prendono in considerazione le distanze registrate nel corso dei test di certificazione effettuati dagli aeromobili stessi. Tali distanze variano con il peso degli aeromobili ma definiscono nominalmente un punto di toccata che si posiziona intorno ai 1000 piedi (305 metri) di distanza dalla soglia della pista. Tuttavia generalmente per effetto della presenza di sistemi di atterraggio automatici a disposizione del pilota, il punto di toccata risulta spostato rispetto al valore di riferimento precedentemente indicato.

Si riporta nella figura seguente la rappresentazione grafica della distribuzione spaziale dei punti di toccata realizzata utilizzando i risultati delle analisi sperimentali effettuate.

Figura 16 – Distribuzione spaziale dei punti di toccata

I punti rappresentati sono relativi al totale delle operazioni rilevate in atterraggio ovvero prendono in considerazione le rilevanze sperimentali rappresentative dell'intero spettro di traffico monitorato non differenziato per tipologia di aeromobile.

Partendo dall'osservazione della distribuzione spaziale dei punti di toccata e nelle ipotesi di distribuzione trasversale e longitudinale degli stessi descritte nei precedenti paragrafi sono state ricavate le osservazioni di seguito enunciate:

- il 95% del traffico aereo in atterraggio si distribuisce in un'area compresa nell'intervallo $\mu = -0.34 \pm 2$ metri ovvero nell'intervallo [-2,4 ; 1,6] metri a cavallo dell'asse della centerline così come evidenziato nella seguente figura. In essa è riportata la rappresentazione grafica della funzione di distribuzione normale dei punti di toccata nella direzione trasversale della pista di volo con due soglie che delimitano nella zona centrale l'area al di sotto della curva gaussiana in cui si concentra il 95% dei dati osservati.

Figura 17 – Pdf della v.a. con delimitatori

- il 92% del traffico aereo in atterraggio si distribuisce longitudinalmente in un'area compresa tra i 300 e i 600 metri.

Figura 18 – Pdf della v.a. y con delimitatori

Il range individuato corrisponde all'area identificata dall'ICAO (20) per piste comprese tra i 1500 e i 2400 metri.

Figura 19 – Esempi di segnaletica orizzontale delle piste

3.2.5 Analisi cinematica e diagrammi di velocità

I filmati registrati dalle telecamere poste sulla torre di controllo sono stati postelaborati per calcolare la velocità degli aeromobili nei capisaldi definiti nel paragrafo 3.1.

Il valore della velocità è stato calcolato come rapporto tra la lunghezza nota dei capisaldi e il tempo impiegato per percorrerli; tale valore di velocità medio per il tratto di lunghezza noto preso in considerazione, è stato associato al punto medio di tale tratto identificato come caposaldo con l'ipotesi di velocità istantanea dell'aeromobile nel punto stesso.

Utilizzando tale procedura è stato possibile ricavare i diagrammi di velocità sia per le operazioni di atterraggio che di decollo.

Si riportano in appendice I i punti sperimentali in atterraggio ottenuti per le cinque tipologie di aeromobili più numerose (B738, CL2T, P180, F900, F2TH).

La decelerazione nella j-ima operazione di atterraggio è stata calcolata facendo l'ipotesi di moto uniformemente decelerato nello spazio d_i tra due capisaldi successivi. In questo modo è stata calcolata la decelerazione media, pesata con le distanze d_i, nelle operazioni di atterraggio utilizzando la seguente relazione:

$$MD_j = \frac{\sum a_i * d_i}{\sum d_i}$$
 20)

3.2.6 Correlazione tra decelerazione e lunghezza di pista utilizzata in atterraggio

I dati relativi alla posizione longitudinale dei punti di toccata sono stati utilizzati per calcolare quella che è stata definita Real Landing Distance (RLD), ovvero la porzione di pista realmente utilizzata dall'aeromobile nelle operazioni di atterraggio sulla pista. Tale valore è stato calcolato come differenza ta il punto in cui l'aeromobile abbandona la pista e il punto di toccata.

La distanza di atterraggio è definita dall'ICAO come "la distanza orizzontale attraversata dall'aeromobile da un punto sul sentiero di avvicinamento ad una determinata altezza sulla superficie di atterraggio al punto in cui l'aereo si ferma definitivamente" (21). Questa definizione è generalmente utilizzata per calcolare la Landing Distance Required (LDR), valutata in funzione di una serie di parametri e in particolare da:

- il peso in atterraggio dell'aeromobile;
- condizioni di vento e temperatura;
- quota e pendenza della pista;
- condizioni superficiali della pavimentazione (pista asciutta, bagnata, contaminata...);

- stato dei sistemi di frenatura dell'aeromobile.

Il calcolo della LDR viene effettuato dai piloti assumendo che l'aeromobile si troverà ad una determinata altezza (generalmente assunta pari a 50 piedi) alla corretta velocità e che la procedura sia in accordo con quanto dettagliato nei manuali di volo degli aeromobili e nelle procedure di sicurezza delle compagnie.Il valore così calcolato viene corretto considerando un fattore di sicurezza.

In questo studio la LDR è stat calcolata considerando i seguenti parametri convenzionali:

- ISA (International Standard Atmosphere) (22): Le caratteristiche dell'Atmosfera Standard Internazionale ICAO seguono un modello ideale dell'atmosfera media reale, considerata ad una latitudine di 45°:
- Aria secca (umidità relativa: 0%) e priva di impurità;
- Pressione atmosferica al livello medio del mare: 1 atm = 101325
 Pa = 1013,25 hPa;
- Temperatura al livello medio del mare: 15 °C, ovvero 288,15 K in termini di Temperatura assoluta;
- Densità dell'aria al livello medio del mare: 1,225 kg/m³.
- Gradiente barico verticale: -1 hPa ogni 27 ft di altitudine. In realtà tale valore può assumersi valido solo fino a 3-4000 piedi, in quanto la variazione non segue una legge lineare;
- Gradiente termico verticale: -6,5 °C ogni 1000 m di altitudine fino a 11000 m; nullo da 11000 a 20000 m di altitudine; irregolare oltre i 20000 m di altitudine;
- 2. Livello del mare;
- 3. Flaps 45 DEG;
- 4. MLW (Maximum Landing Weight).

Con queste ipotesi è stata calcolata la LDR per le cinque tipologie di aeromobile caratterizzate da maggiore numerosità; si riportano i valori nella seguente tabella:

Tabella 9– Landing Distance Required							
Tipologia aeromobile	LDR (m)						
B738	1600						
CL2T	650						
P180	1350						
F900	1000						
F2TH	880						

A questo punto è stato introdotto un nuovo parametro definito Landing Factor (LF) calcolato come rapporto tra la distanza di pista realmente utilizzata dall'aeromobile in aterraggio (RLD) e la distanza di atterraggio richiesta calcolata nelle ipotesi appena descritte (LDR):

$$LF = \frac{RLD}{LDR}$$
 21)

La decelerazione media calcolata come descritto nel precedente paragrafo è stata diagrammata in funzione del valore di LF così calcolato.

Figura 20 – Correlazione tra MD e LF

Considerando separatamente i risultati ottenuti per le diverse tipologie di aeromobile il diagramma ottenuto è quello riportato nella seguente figura.

Figura 21 – Correlazione tra MD e LF per le diverse tipologie di aeromobile

E' stata quindi effettuata una regressione statistica allo scopo di ricavare una correlazione tra MD (variabile dipendente) e LF (variabile indipendente) utilizzando un modello lineare con il metodo dei minimi quadrati. L'analisi statistica mostra che i due parametri sono correlati da una dipendenza lineare che non è legata alla tipologia di aeromobile ovvero le caratteristiche cinematiche dell'aeromobile in termini di decelerazione nelle operazioni di atterraggio sembrerebbero indipendenti dalla tipologia di aeromobile e funzione invece della posizione longitudinale del punto di toccata.

Dall'analisi di regressione e' stata ricavata la seguente equazione:

$$MD = 1,46 \, LF - 3,13 \tag{22}$$

Si riportano nella seguente tabella i risultati dell'analisi di regressione:

	10001	ia 10 Ristiliali aci m	oucho un regressio	ne -	
Definizione	del modello:				
$Y = a^*x + b$					
Numero di o	sservazioni = 321				
Number of o	sservazioni mancanti =	= 0			
Somma dei r	esiduali = 3.38840067	115598E-13			
Residuale m	$edio = 1.0555765330^{\circ}$	704E-15			
Errore stand	ard della stima = 0.391	283953100628			
Coefficiente	e di correlazione multir	$a(R^2) = 0.426915175$			
Coefficiente		<i>(((2) = 0, (20) 15175</i>			
Risultati de	ella variabile di regre	essione			
Variabile	Valore	Frrore Standard	t-ratio	Prob(t)	
a	1 45923183622757	9 46602425116701E-02	15 41 54 66 91	0.0	
h	-3 12682356078407	9 48829801641191E-02	-32 9545252	0.0	
D	3,12002330070107	5,10025001011151E 02	52,75 15252	0,0	
68% Intory	alla di confidanza				
Voriobilo	Voloro	689/ (11)	Timita infaniana	Limita gunariara	
variabile	1 45023183622757	0 / 2 8 1 6 0 1 5 / 1 6 2 3 / F 0 2	1 36405023468505	1 553513/377602	
a 1.	2 12692256079407	9,42810013410234E-02	2 22122700002754	2 02222011254061	
D	-3,12082330078407	9,43034462434020E-02	-3,22132700902734	-3,03232011234001	
00% Interv	alla di confidanza				
Variable	Voluo	90% (+/-)	I imite inferiore	I imite superiore	
variabit	1 45923183622757	0 156151536047251	1 30308030018032	1 61538337227482	
a h	-3 12682356078407	0 156518964078731	-3 2833425248628	-2 97030459670534	
U	-3,12002330070407	0,150510704070751	-3,2033423240020	-2,77030+3707033+	
95% Interv	allo di confidenza				
Variable	Value	95% (+/-)	Limite inferiore	Limite superiore	
9	1.45923183622757	0.18623456111746	1.27299727511011	1.64546639734503	
h	-3.12682356078407	0.186672775174888	-3.31349633595896	-2.94015078560918	
0					
99% Interv	allo di confidenza				
Variable	Value	99% (+/-)	Limite inferiore	Limite superiore	
a	1,45923183622757	0,245293086420491	1,21393874980708	1,70452492264806	
b	-3.12682356078407	0.245870266499282	-3.37269382728335	-2.88095329428479	
-					
Analisi di v	arianza				
Sorgente	DF	Somma dei quadrati	Media quadratica	F Ratio	Prob(F)
Regressione	1	36,3829108019412	36,3829108019412	237,6366201	0
Errore	319	48.8398990933434	0.153103131954054		
Totale	320	85,2228098952846			
		· · · · · · · · · · · · · · · · · · ·			

Tabella 10– Risultati del modello di regressione

Si riporta nella seguente figura il totale dei dati sperimentali osservati con la rappresentazione grafica della linea di tendenza:

Figura 22 – Correlazione tra MD e LF con retta di regressione

3.2.7 Modello stocastico di velocità

Nell'ipotesi semplificata di moto uniformemente decelerato nello spazio definito Real Landing Distance (RLD) e quindi avvalendosi delle espressioni delle leggi di moto uniformemente decelerato, è possibile utilizzare la seguente equazione che esprime il valore della velocità in funzione dello spazio s e del parametro RLD:

$$v(s) = v_0 \left(1 - \frac{s}{RLD} \right) \tag{23}$$

dove v_0 rappresenta il valore della velocità in corrispondenza del punto di toccata e può essere calcolato utilizzando la seguente equazione:

$$RLD = \frac{v_0^2}{2*MD\,(LF)}$$
 24)

dove MD (LF) può essere calcolato utilizzando la legge di dipendenza ricavata e descritta nel precedente paragrafo.

Si propone quindi il seguente modello di velocità in atterraggio:

$$v(s) = \left(1 - \frac{s}{RLD}\right) * \sqrt{2 * MD (LF) * RLD}$$
²⁵

dove la decelerazione media è espressa in dipendenza del Landing Factor e quindi della Real Landing Distance che è a sua volta funzione della posizione longitudinale del punto di toccata la quale può essere, come visto, descritta da una legge di distribuzione log-logistica.

La conoscenza dell'andamento della velocità nello spazio è fondamentale in quanto consente di calcolare le forze agenti sull'aeromobile nelle operazioni di atterraggio e quindi i carichi verticali trasmessi dai carrelli dell'aeromobile alla pavimentazione.

3.3 Analisi dei dati relativi alle operazioni di decollo

Nella descrizione dell'analisi dei dati rilevati si passa ora alla valutazione delle osservazioni relative alle operazioni di decollo.

Si descrivono nei seguenti paragrafi i risultati ottenuti relativamente all'analisi cinematica delle operazioni in termini di velocità e decelerazioni nonchè all'analisi dei carichi trasmessi alla pavimentazione.

3.3.1 Analisi dei modelli di velocità

La varietà dello spettro di traffico osservato impone di rinunciare alla ricerca di un unico modello che possa interpretare ciascuna operazione prescindendo dalla tipologia di aeromobile. L'analisi dei diagrammi di velocità viene condotta, quindi, separatamente per tipo di aeromobile

Le seguenti considerazioni sono riferite ai dati relativi al Boeing 737-800 caratterizzato da una maggiore numerosità.

Seguendo la procedura descritta nei precedenti paragrafi relativamente al calcolo della velocità, sono stati calcolati i valori per le 201 operazioni di decollo del B738. Si riportano i risultati nella seguente figura.

Figura 23 - Velocità operative in decollo del Boeing 737-800

Per ciascun caposaldo è stata preso in considerazione il valore medio delle velocità operative sperimentali.

Quindi si è passati ad analizzare quale fosse la funzione interpolante in grado di descrivere meglio la relazione che intercorre tra l'insieme dei valori riferiti alle progressive e i valori di velocità medie nei capisaldi ricavati.

Nell'interpretazione dei dati è stata scartata sia la funzione logaritmica che non consente di fissare il passaggio per l'origine, sia un polinomio di grado superiore al quarto che presenta punti di flesso privi di significato fisico.

Al contrario una interpolazione polinomiale del secondo ordine (parabolica) oltre ad avere un elevato grado di correlazione (R²=0,9944) presenta una concavità costantemente rivolta verso il basso ovvero il rapporto 70 incrementale della velocità è sempre decrescente, e ciò trova riscontro con la maggiore variazione di velocità nel primo tratto della pista.

Si rappresenta nella seguente figura il risultato grafico dell'interpolazione polinomiale effettuata.

Figura 24 – Interpolazione polinomiale del secondo ordine per le velocità medie del Boeing 737-800

La funzione interpolante ha la seguente equazione:

$$V_m = 10^{-4} y^2 - 0,3636y 26)$$

3.3.2 Calibrazione del modello fisico

Per lo studio del moto, si parte dall'equazione fondamentale della dinamica che in questo caso si scrive:

$$T - R = \left(\frac{Q}{g}\right)a\tag{27}$$

in cui T-R, differenza tra la trazione T dei propulsori e la resistenza R all'avanzamento, è la forza motrice libera, Q/g è la massa del velivolo al decollo, massa che si suppone costante durante tutto il rullaggio, e *a* è l'accelerazione istantanea.

La trazione T al decollo varia con la pressione ela temperatura dell'aria e con la velocità di traslazione del velivolo e si può calcolare con la seguente relazione:

$$T = T_{dec} * \chi_1(V) \tag{28}$$

dove T_{dec} rappresenta la spinta al decollo data dalla spinta del singolo motore per il numero di motori, mentre ₁(V) si calcola con la seguente relazione:

$$\chi_1(V) = \left(1 - \frac{V}{W_e}\right) \tag{29}$$

 W_e è la velocità equivalente del getto propulsivo, media ponderale fra la velocità $W_g = 500 \div 550$ m/s dei gas caldi dell'ugello e la velocità $W_a = 280 \div 300$ m/s dell'aria accelerata dalla ventola del turbofan.

Per W_e si possono assumere i valori arrotondati riportati nella seguente tabella in funzione del rapporto di by-pass _{by}; quest'ultimo rappresenta il rapporto tra la portata in massa del getto freddo e quella del getto caldo.

Tabella 11–Valori di We in funzione di by

1

400

2e3

350

4

325

0

500

 $\frac{W_{e}(m/s)}{W_{e}(m/s)}$

La resistenza	a complessiv	a R all'avanz	amentosu di una	pista o	orizzontale è
costituita da	u due parti:	la resistenza	al rotolamento	$R_r \ e \ 1$	a resistenza
aerodinamica	a R _a :				
$$R = R_r + R_a \tag{30}$$

La resistenza al rotolamento è quella di un veicolo su gomma; nel caso del decollo il carico sulle ruote va via via decrescendo a mano a mano che con l'aumentare della velocità cresce l'azione portante sviluppata dall'ala che si calcola con la seguente relazione:

$$P = \frac{1}{2}\rho V^2 C_{Prull} S \tag{31}$$

dove:

- è la densità dell'aria a quota zero in aria tipo ovvero alla pressione p=760 mm_{Hg} e alla temperatura di 15°C pari a 1,225 kg/m³;
- C_{p rull} è il coefficiente di portanza in rullaggio;
- S è la superficie alare.

La resistenza al rotolamento risulta quindi essere:

$$R_r = \sigma_r \left(Q - P \right) \tag{32}$$

in cui il coefficiente \cup_R si calcola con la relazione:

$$\sigma_r = \sigma_0 + k_p \frac{q_r * V^2}{g * p * D^3}$$
33)

73

nella quale:

- k_p è un coefficiente adimensionale sperimentale = 0,0020
- q_r è il peso gravante sulla ruota (kg)
- D è il diametro esterno del pneumatico (m)
- p è la pressione di gonfiamento del pneumatico (kg/m³)
- V è la velocità di traslazione
- g è l'accelerazione di gravità pari a 9,81 m/s²

 0 è un coefficiente i cui valori dipendono dalla natura della superficie della pista o del terreno su cui avviene il rotolamento secondo quanto indicato in appendice L.

Il carico medio gravante su ciascuna delle m ruote del carrello si calcola con la relazione:

$$q_r = \frac{(Q - P)}{m}$$

$$34)$$

Data l'incertezza nella conoscenza e la variabilità da caso a caso dei coefficienti di resistenza al rotolamento $_{\rm r}$, si raggiungono risultati pienamente attendibili considerando il peso del velivolo ripartito uniformemente fra tutte le m ruote del carrello, comprese quelle di prora, e attribuendo a tutte le ruote lo stesso diametro D di quelle principali.

All'aumentare della velocità la resistenza al rotolamento diminuisce perchè il carico sulle ruote viene allegerito dalla portanza aerodinamica che cresce con il quadrato della velocità.

La resistenza aerodinamica è data dall'equazione:

$$R_a = \frac{1}{2} \rho V^2 C_{R \ rull} S \tag{35}$$

I coefficienti $C_{P \text{ rull}}$ e $C_{R \text{ rull}}$ dipendono dall'assetto del velivolo in pista e dalla barra prescelta per gli ipersostentatori.

Nel caso ideale considerato di pista perfettamente orizzontale, la resistenza complessiva al moto risulta dunque essere:

$$R = \sigma_r \left(Q - P \right) + R_a \tag{36}$$

e quindi introducendo l'espressione di σ_r e di R_a :

$$R = \left[\sigma_0 + k_p \frac{q_r * V^2}{g * p * D^3}\right] (Q - P) + \frac{1}{2} \rho V^2 C_{R \, rull} \, S$$
³⁷)

Utilizzando le relazioni sopra riportate e i dati dedotti dall'Aircraft Flight Manual del Boeing 737-800, è stato possibile calcolare le forze agenti sul velivolo in decollo secondo lo schema riportato nella seguente figura:

Figura 25 – Schema delle forze agenti sui velivoli

Nel caso di asfalto rugoso pulito asciutto in cattive condizioni si assume:

$$_0 = 0,018$$

Noti i seguenti valori:

$$= 1,225 \text{ kg/m}^3$$

g = 9,81 m/s²
k = 0,002

è necessario conoscere, per il calcolo delle forze agenti sull'aeromobile, i parametri relativi al caso specifico del velivolo Boeing 737-800 dedotti dai dati pubblicati dalla casa costruttrice relativi alle caratteristiche fisiche dell'aeromobile e riportati nella seguente tabella.

S [m²]	125
CR rull	0,057
CP rull	0,615
Q [kg]	79010
т	6
<i>p</i> [<i>kg</i> / <i>m</i> ²]	140000
D [m]	1,13
We [m/s]	325
N• motori	2
Spinta [kg]	11000

Tabella 12– Parametri del B738 per il calcolo delle forze agenti

Si precisa che per quanto riguarda i motori del Boeing 737-800, il velivolo è dotato di due motori Turbofan CFMI CFM56-7 con una spinta unitaria pari a circa 110kN.

Utilizzando il modello di velocità espresso nella relazione 26) ricavato dai dati sperimentali, è possibile calcolare il valore della velocità in corrispondenza del valore della progressiva, e di conseguenza calcolare come variano le forze agenti sul velivolo al variare della velocità.

Si riportano nella seguente tabella i risultati ottenuti relativi al calcolo della portanza, della resistenza (somma della resistenza aerodinamica e di quella al rotolamento) e della spinta calcolate utilizzando rispettivamente le equazioni 31) 37) e 28).

Si precisa che:

- I valori delle progressive a partire dalle quali sono stati effettuati i calcoli sono quelli relativi ai capisaldi presi a riferimento per il rilievo dei dati;
- si è passati dal calcolo della velocità in km/h alla conversione in velocità espressa in m/s al fine di ottenere il valore della portanza (espresso in kg) in funzione del quadrato della velocità e della massa volumica dell'aria

у	V _m	V	V^2	$1/2* * V^2$	Р
m	km/h	(m/s)	(m^2/s^2)	kg/m ²	kg
0	0	0	0	0	0
357,25	117,133344	32,5370399	1058,65897	66,0987378	5081,34047
414,5	133,531175	37,0919931	1375,81595	85,9008429	6603,6273
460,75	146,299644	40,6387899	1651,51125	103,114234	7926,90676
534,5	165,775175	46,0486597	2120,47906	132,394845	10177,8537
608,25	184,162894	51,1563594	2616,9731	163,39409	12560,9207
896,5	245,596175	68,2211597	4654,12663	290,586398	22338,8293
946,5	254,561175	70,7114375	5000,10739	312,188153	23999,4642
996,5	263,026175	73,0628264	5338,1766	333,29594	25622,1254
1046,5	270,991175	75,2753264	5666,37476	353,787415	27197,4075
1096,5	278,456175	77,3489375	5982,85813	373,547462	28716,4612
1140	284,544	79,04	6247,3216	390,05958	29985,8302
1146,5	285,421175	79,2836597	6285,8987	392,468191	30170,9922
1196,5	291,886175	81,0794931	6573,88419	410,448937	31553,262
1246,5	297,851175	82,7364375	6845,31809	427,396262	32856,0876
1296,5	303,316175	84,2544931	7098,8196	443,223956	34072,8416
1346,5	308,281175	85,6336597	7333,12368	457,853033	35197,4519
1396,5	312,746175	86,8739375	7547,08102	471,211735	36224,4021
1423	314,9099	87,4749722	7651,87077	477,754418	36727,3709
1915	329,5715	91,5476389	8380,97019	523,276681	40226,8948

Tabella 13-Calcolo delle forze agenti per il B738

qr	Rr	Ra	R	1(V)	Т
kg	kg	kg	kg		kg
13168,333	1422,1800	0	1422,1800	1	22000
12321,443	2303,9742	470,9535	2774,9277	0,8999	19797,49268
12067,729	2516,5926	612,0435	3128,6361	0,8859	19489,15739
11847,182	2683,1512	734,6889	3417,8401	0,8750	19249,06653
11472,024	2928,8863	943,3133	3872,1996	0,8583	18882,85996
11074,847	3139,7581	1164,1829	4303,9409	0,8426	18537,10798
9445,1951	3534,3338	2070,4281	5604,7619	0,7901	17381,95226
9168,4226	3535,3630	2224,3406	5759,7041	0,7824	17213,37962
8897,9791	3520,3016	2374,7336	5895,0352	0,7752	17054,20868
8635,4321	3491,3440	2520,7353	6012,0793	0,7683	16904,43944
8382,2565	3450,8210	2661,5257	6112,3467	0,7620	16764,07192
8170,6941	3408,0127	2779,1745	6187,1872	0,7568	16649,6
8139,8346	3401,1157	2796,3359	6197,4516	0,7560	16633,10611
7909,4563	3344,5931	2924,4487	6269,0418	0,7505	16511,54201
7692,3187	3283,5417	3045,1984	6328,7401	0,7454	16399,37962
7489,526	3220,1271	3157,9707	6378,0978	0,7407	16296,61893
7302,0913	3156,3571	3262,2029	6418,5600	0,7365	16203,25996
7130,9330	3094,0577	3357,3836	6451,4413	0,7327	16119,30269
7047,1048	3062,2004	3404,0002	6466,2006	0,7308	16078,61726
6463,8509	2818,5351	3728,3463	6546,8814	0,7183	15802,92906

Una volta calcolati i valori delle forze agenti al variare della velocità secondo quanto riportato nella precedente tabella, è possibile, partendo dall'equazione fondamentale della dinamica espressa con l'equazione 27), calcolare e diagrammare i valori dell'accelerazione utilizzando l'espressione di seguito riportata. In essa l'accelerazione è espressa in funzione delle forze orizzontali di spinta T e resistenza al moto R, della forza peso Q e dell'accelerazione di gravità g:

$$a = \frac{(T-R)}{\binom{Q}{g}} \tag{40}$$

I punti rappresentativi dell'accelerazione in funzione della distanza progressiva dalla soglia della pista calcolati con la relazione 40) si riportano nella seguente figura:

Figura 26 – Andamento dell'accelerazione nello spazio

I risultati del calcolo effettuato per ottenere i valori dell'accelerazione così come rappresentato nella precedente figura e come descritto nell'equazione 40) si riportano nel dettaglio nella seguente tabella. In essa si riportano in funzione della distanza progressiva dalla soglia della pista, anche i valori della componente delle forze orizzontali esercitate ovvero la differenza tra la spinta esercitata dai motori e la resistenza totale espresse in kg:

У	T-R	a = (T-R)/(Q/g)
m	kg	m/s ²
0	20577,82	2,554972968
357,25	17022,565	2,11354718
414,5	16360,5213	2,031346836
460,75	15831,2264	1,965628792
534,5	15010,6604	1,863746084
608,25	14233,167	1,767211347
896,5	11777,1903	1,462273602
946,5	11453,6755	1,422105517
996,5	11159,1735	1,3855397
1046,5	10892,3601	1,352411754
1096,5	10651,7252	1,322534168
1140	10462,4128	1,299028847
1146,5	10435,6546	1,295706509
1196,5	10242,5003	1,271724182
1246,5	10070,6396	1,250385701
1296,5	9918,52116	1,23149845
1346,5	9784,69999	1,214883013
1396,5	9667,86142	1,200376162
1423	9612,41661	1,193492051
1915	9256,04762	1,149244743

Tabella 14–Calcolo delle accelerazioni a(y)

A questo punto si è passati ad analizzare quale fosse la funzione interpolante in grado di descrivere meglio la relazione che intercorre tra l'insieme dei valori riferiti alle progressive posti in ascissa e i valori di accelerazione nei capisaldi ricavati in ordinata.

Sono state analizzate diverse funzioni interpolanti ed è stata infine presa in considerazione una interpolazione polinomiale del secondo ordine che descrive bene i dati sperimentali.

La funzione interpolante che meglio si adatta ai dati dedotti dai valori di velocità sperimentali ed elaborati utilizzando il modello di velocità proposto, ha la seguente espressione:

$$a(y) = 5E - 07y^2 - 0,0017y + 2,6123$$
⁴¹

L' interpolazione polinomiale del secondo ordine oltre ad avere un elevato grado di correlazione (R^2 =0,9965) presenta una concavità costantemente rivolta verso l'alto con un rapporto incrementale dell'accelerazione decrescente.

La conoscenza dell'andamento dell'accelerazione in funzione dello spazio e quindi la possibilità di calcolarne il valore al variare della progressiva y, rappresenta un punto fondamentale nell'analisi di variazione dei carichi lungo la pista.

La conoscenza dell'andamento dei carichi approfondita nel seguente paragrafo, costituisce un necessario obiettivo per la valutazione del degrado dei parametri di stato delle pavimentazioni aeroportuali ed in particolare, nel caso di specie, delle piste di volo.

Il calcolo di un modello di accelerazione così come descritto dall'equazione 41) a partire da un modello di velocità rappresenta uno strumento importante che consente di validare il modello cinematico proposto nel presente elaborato.

3.3.3 Analisi dei carichi sulla pavimentazione

Come detto le caratteristiche cinematiche degli aeromobili nelle operazioni di decollo e atterraggio rappresentano un punto fondamentale per l'analisi delle forze esercitate dai carrelli degli aeromobili e, di conseguenza, per la valutazione del danno indotto dai velivoli sulle pavimentazioni.

Per il calcolo delle forze verticali esercitate dai carrelli si ipotizza il baricentro di massa al quale sono applicati forza peso e portanza posizionato in corrispondenza dei motori come rappresentato nella seguente figura:

Figura 27 – Schema delle forze verticali agenti

La distanza del carrello principale e del carrello anteriore dal baricentro risulta essere pari rispettivamente a :

-
$$d_m = 4,6 m;$$

-
$$d_n = 11 m$$

Per il calcolo dei carichi verticali sulle ruote del carrello anteriore (N_n) e del carrello principale (N_m) si applicano le equazioni di equilibrio alla traslazione verticale e alla rotazione attorno al baricentro delle masse.

In sintesi si risolve il seguente sistema di due equazioni nelle due incognite N_n ed N_m essendo Q pari al peso massimo al decollo ed avendo calcolato, nel paragrafo precedente, il valore della portanza alare P che varia come noto al variare della velocità.

$$\begin{cases} Q - P = N_n + N_m \\ N_n * d_n = N_m * d_m \end{cases}$$

$$(38)$$

da cui si ricava:

01	
δ/.	
~-	

$$\begin{cases} N_m = (Q - P) * {d_n / d_n + d_m} \\ N_n = (Q - P) * {d_m / d_n + d_m} \end{cases}$$
39)

Si riportano nella seguente tabella i valori dei carichi verticali sui carrelli calcolati al variare della velocità in decollo.

Nn	Nm
Tn	Tn
23,2978205	55,7121795
21,7994765	52,129183
21,3505971	51,0557756
20,9603993	50,1226939
20,2966585	48,5354878
19,5939593	46,85512
16,7107298	39,9604409
16,2210554	38,7894803
15,7425784	37,6452962
15,2780721	36,5345203
14,8301461	35,4633928
14,4558449	34,5683248
14,4012459	34,4377619
13,9936535	33,4630845
13,609487	32,5444254
13,2507006	31,6864579
12,9190847	30,8934634
12,616266	30,1693318
12,4679547	29,8146744
11,4360438	27,3470613
	Nn Tn 23,2978205 21,7994765 21,3505971 20,9603993 20,2966585 19,5939593 16,7107298 16,2210554 15,7425784 15,7425784 15,2780721 14,8301461 14,4558449 14,4012459 13,9936535 13,609487 13,2507006 12,9190847 12,616266 12,4679547 11,4360438

Tabella 15–Calcolo dei carichi al carrello del B738

Il valore della velocità in corrispondenza del valore della progressiva è stata calcolata utilizzando il modello di velocità espresso nella relazione 26) ricavato dai dati sperimentali.

I valori calcolati ed esplicitati nella tabella sono stati diagrammati nelle due figure che seguono:

Figura 28 - Carico agente sul carrello anteriore

Figura 29 – Carico agente sul carrello principale

I valori dei carichi verticali così calcolati rappresentano il punto di partenza per futuri approfondimenti relativi all'andamento dei parametri rappresentativi dello stato delle pavimentazioni, al loro degrado nel tempo e di conseguenza alla gestione della manutenzione delle pavimentazioni.

Conclusioni

Il lavoro descritto in questo elaborato di tesi si basa sui dati sperimentali raccolti presso l'aeroporto italiano di Roma Ciampino in quindici giornate di rilievo effettuate tra febbraio e aprile 2013.

In questo studio è stata definita una procedura di rilievo strumentale che ha consentito di studiare le caratteristiche cinematiche degli aeromobili sia nelle operazioni di decollo sia di atterraggio permettendo di monitorare gli aeromobili durante il loro spostamento sulla pista di volo dell'aeroporto oggetto di studio.

La variazione della velocità lungo la pista va letta come variazione dei carichi che l'aeromobile trasmette alla pavimentazione: in atterraggio, al diminuire della velocità, diminuisce anche la portanza, per cui aumenta progressivamente il carico che l'aereo sgrava sulla pavimentazione; situazione opposta si verifica nelle operazioni di decollo in cui al crescere della velocità aumenta l'azione della forza di portanza.

Inoltre lo studio effettuato ha consentito di analizzare un ampio spettro di traffico al fine di ricavare informazioni accurate sulla distribuzione delle traiettorie degli aeromobili nonché dei punti di toccata nelle operazioni di atterraggio.

Tali informazioni sono utili per una lettura critica delle normative sul dimensionamento delle pavimentazioni nonché per l'analisi dell'area della pista effettivamente percorsa da ogni tipologia di aeromobile finalizzata alla pianificazione degli interventi di manutenzione sulla pavimentazione della pista stessa.

Sono state inoltre analizzate separatamente sia la distribuzione delle distanze dalla soglia della pista che la distribuzione degli scostamenti dalla centerline.

Per questo secondo aspetto sono stati confrontati i risultati ottenuti dai dati rilevati nel corso dello studio con i risultati presenti in bibliografia ed utilizzati per valutare il carico trasmesso dagli aeromobili alle pavimentazioni espressi in termini di ricoprimenti. Il presente studio ha confermato che il modello di distribuzione normale si adatta meglio di altri modelli statistici ai dati sperimentali in accordo con quanto determinato dagli studi precedentemente effettuati.

E' stato altresì valutato l'impatto di fattori quali le condizioni di vento traverso sulla distribuzione trasversale dei punti di toccata al fine di accertarne l'influenza nelle condizioni in cui è garantita l'operatività della pista di volo.

Il risultato ottenuto conferma quanto già stabilito da HoSang negli studi precedenti relativamente alla scarsa influenza di una serie di fattori, tra cui appunto l'influenza del vento, sulle distribuzione trasversale delle traiettorie degli aeromobili.

Si precisa che l'analisi effettuata a tal proposito riguarda esclusivamente l'influenza del vento sullo scostamento rispetto all'asse della segnaletica orizzontale di centro pista; non si esclude la possibilità di un'influenza dei dati relativi alla componente di vento traverso sulla distribuzione della traietttoria degli aeromobili lungo lo sviluppo della pista di volo.

In questo studio è stata inoltre indagata la correlazione tra due parametri ritenuti significativi ovvero le decelerazioni degli aeromobili nelle operazioni di atterraggio e l'effettiva lunghezza della pista utilizzata durante le operazioni stesse; quest'ultimo parametro è a sua volta funzione della posizione nella direzione longitudinale dei punti di toccata e del raccordo utilizzato dall'aeromobile per abbandonare la pista di volo e raggiungere la via di rullaggio.

Tale analisi è stata condotta per valutare l'influenza di fattori quali le caratteristiche tecniche dell'aeromobile e la precisione in atterraggio del pilota sulle azioni trasmesse alla pavimentazione.

L'analisi statistica mostra che i due parametri sono correlati da una dipendenza lineare che non sembra essere legata alla tipologia di aeromobile ovvero le caratteristiche cinematiche dell'aeromobile in termini di decelerazione sembrerebbero indipendenti dalla tipologia di aeromobile e funzione invece della posizione longitudinale del punto di toccata e di conseguenza dalla lunghezza di pista effettivamente interessata dall'azione dell'aeromobile nelle operazioni di atterraggio.

Infine per quanto riguarda la valutazione delle osservazioni relative alle operazioni di decollo, è stata condotta un'analisi cinematica delle operazioni in termini di velocità elaborando un modello stocastico di velocità. In particolare facendo riferimento all'aeromobile caratterizzato da una numerosità più significativa in termini di operazioni monitorate ed elaborate, per ciascun caposaldo è stata preso in considerazione il valore medio delle velocità operative sperimentali ricavando la funzione interpolante che meglio si adattasse ai valori sperimentali.

Sulla base del modello proposto, è stata effettuata un'analisi delle forze agenti sull'aeromobile e, a partire da questa, un'analisi dei carichi trasmessi dall'aeromobile alla pavimentazione della pista di volo attraverso il carrello di atterraggio.

I rilievi effettuati hanno consentito pertanto di prendere in considerazione diversi aspetti relativi al movimento dei velivoli sulla pista di volo, nonché all'interazione tra aeromobile e pavimentazione, principio alla base dello studio del modello fisico di degrado delle pavimentazioni.

Esso rappresenta un contributo all'analisi del fenomeno e i dati raccolti nel corso dei rilievi effettuati possono essere ulteriormente elaborati non solo per approfondimenti riguardanti la procedura stessa di rilievo, ma anche per l'analisi dei fenomeni diversi quali ad esempio gli episodi di overrun strettamente legati sia al punto di toccata che al diagramma di velocità in atterraggio.

Inoltre le osservazioni relative alle caratteristiche cinematiche degli aeromobili e ai tempi di occupazione della pista possono essere un dato importante per gli studi legati alla gestione delle operazioni aeroportuali in termini di safety.

Infine ampliare i dati disponibili effettuando rilievi su nuove piste di volo caratterizzate da uno spettro di traffico differente, può consentire di dare generalità ai modelli ricavati dagli studi effettuati, oggetto di questo elaborato. Del resto il punto di forza della procedura sperimentale proposta consiste nella semplicità con cui è possibile effettuare il rilievo, il che rende la metodologia di rilievo facilmente riproponibile in altre realtà aeroportuali. La possibilità di monitorare uno spettro di traffico differente ed avere pertanto a disposizione un database ampio e differenziato rapresenta uno stimolo per la ricerca di ulteriori elementi che possano validare i risultati descritti nel presente elaborato.

Riferimenti bibliografici

(1) Shahin M.Y. (2002). Pavement Management for Airport, Roads, and parking lots, Springer

(2) Packard R.G. (1995). *Design of Concrete Airport Pavement*. Portland Cement Association.

(3) Airport Pavement Design and Evaluation. FAA AC No. 150/5320-6D, Federal Aviation Administration, 1995.

(4) Festa B., Giuliana G., Nicolosi V. (2008). A Method for Developing Preliminary Friction Deterioration Model on Runway – 6th Symposium on pavement surface characteristics – PIARC.

(5) Brown D.N., Thompson O.O. (1973). *Lateral distribution of aircraft traffic*. Report n. AD-765435. U.S. Army.

(6) HoSang V.A. (1975). Field survey and analysis of aircraft distribution on airport pavements – FAA-RD-74-36. Federal Aviation Administration.

(7) Rufino D., Roesler, J., Tutumluer E., and Barenberg E. (2001). *Wander Patterns for Commercial Aircraft at Denver International Airport*. Advancing Airfield Pavements: pp. 158-170. doi: 10.1061/40579(271)13

(8) Jeng, P.K. – Development of New Thickness Design Procedures for Rigid Airfield Pavements. Master Thesis of TamKang University, Taiwan, 1998.

(9) Airport Pavement Design and Evaluation (2009). Advisory circular No: 150/5320-6E. U.S. Department of Transportation, Federal Aviation Administration

(10) National Airport Pavement Test Facility (NAPTF). http://www.airtech.tc.faa.gov/naptf/. Accessed January, 2007.

(11) Wang S.Y., Chou C.P., Cheng H.J. – *Effect of Field Aircraft Lateral Distribution Pattern on Required Thickness by FAA Design Method*. Proceedings of the 87th Annual Meeting of the Trasportation Research Board, 2008.

(12) D'Apuzzo M., Giuliana G., Nicolosi V. – A dissipated energybased runway skid resistance degradation - Sixth International Conference on Maintenance and Rehabilitation of Pavement and Technological control – TORINO, 2009.

(13) Bennett C. e Greenwood I. – *Modeling road user and environmental effects in HDM-4*. Volume 7, HDM-4, ISOHDM, Highway

Development and Management, 2001.

(14) D'Apuzzo M., Giuliana G., Mancini L., Nicolosi V. – *Modeling roughness progression by measurement of runway surface profiles* - Sixth International Conference on Maintenance and Rehabilitation of Pavement and Technological control – TORINO, 2009.

(15) A. Tocchetti - Infrastrutture aeroportuali - Aracne 2006.

(16) A. Lausetti – *Decollo e atterramento aeroplani, idrovolanti e trasportati* – Libreria editrice universitaria Levrotto & Bella 1992.

(17) ICAO Doc 8643 – Aircraft type Designators - Edition 41.

(18) <u>www.skybrary.aero</u>

(19) Cheng A., Ouyang M. – A simulation study on identifying aircraft touchdown point point by using in-flight recorded data – Proceedings of AIAA Guidance, Navigation and Control Conference – TORONTO, 2010.

(20) ICAO Annex 14 – Aerodromes – Third Edition – July 1999.

(21) ICAO Doc 9760 Annesso 8–*Airworthiness Manual* – 11th Edition – 2010.

(22) ICAO - Manual of the ICAO Standard Atmosphere (extended to 80 kilometres (262 500 feet)), Doc 7488-CD - Third Edition, 1993, ISBN 92-9194-004-6.

(23) Boeing- 737 Airplane characteristics for airport planning – Document D6-58325-6- Ottobre 2005.

Appendice A – Scheda rilievo dati

Si riporta, a titolo esemplificativo, uno stralcio della scheda per la registrazione dei dati compilata in data 18 Aprile 2013 a supporto dell'analista per la successiva fase di elaborazione dei video.

I dati registrati sono i seguenti:

- Tipologia di operazione : L = Landing, D=Departure; L/D= Touch and go;
- Ora effettiva dell'operazione;
- Denominazione dell'aeromobile in accordo con l'Aircraft Type Designator dell'ICAO;
- Intensità del vento (kts);
- Orientamento del vento;
- Nominativo dell'aeromobile.

	OPERAZIONE	ORA	TIPOLOGIA AEREO	INTENSITA' VENTO(kn)	ORIENTAMENTO VENTO	NOTE
1	L	05.51	B738	1	330	RYR 4EZ
2	L	05.55	P180	2	360	12169
3	D	06.16	B738	4	50	RYR 6072
4	D	06.20	A320	2	40	WZZ61Z
5	D	06.27	F900	2	40	SNM921
6	D	06.32	B738	3	60	RYR 6342
7	L	06.36	P180	3	30	POLYB16
8	D	06.40	P180	2	30	12169
9	D	06.42	DA42	2	50	OEFCC
10	D	06.46	B738	2	50	RYR 41PZ
11	L	06.55	B738	3	30	RYR 3134
12	D	07.06	CL2T	1	360	IDPCG
13	L/D	07.12	CL2T	2	340	IDPCG
14	L	07.15	P180	2	330	BPA 4046
15	L/D	07.16	CL2T	2	340	IDPCG
16	L	07.32	B738	1	360	RYR 96V
17	L	07.24	B738	1	310	RYR 7074
18	L	07.26	B738	1	10	RYR 6DA
19	L	07.29	B738	1	360	RYR 9462
20	L	07.33	C215	2	330	M0Z218
21	L	07.35	B738	2	330	RYR 7067
22	D	07.37	P180	3	350	POLIB16
23	L	07.38	B738	2	320	RYR 4878
24	L	07.41	B738	1	350	RYR 9674
25	D	07.43	B738	1	330	RYR 3135
26	L	07.45	GLF5	2	330	N363MF
27	L	07.49	H25B	1	60	NJE1TY
28	D	07.58	F900	1	350	IAM 3171
29	L/D	08.03	F900	1	340	IAM 3171
30	L	08.04	B738	1	340	RYR 9WM
31	L/D	08.07	F900	1	340	IAM 3171
32	D	08.09	A319	0	320	IAM 3163
33	L/D	08.12	F900	2	360	IAM 3171
34	D	08.13	B738	1	350	RYR 9633
35	L	08.15	F900	1	310	IAM 3171

36	D	08.19	B738	2	330	RYR 9666
37	D	08.34	B738	1	360	RYR 9ZJ
38	D	08.36	B738	0	360	BVB 9BF
20	D	08.30	P729	1	30	PVP 7069
33		08.33	B738	1	20	K1K7008
40	L	08.44	B/38	2	340	IAPBL
41	D	08.45	C525	3	310	MOZ318
42	D	08.50	B738	2	30	RYR 9677
43	L	08.52	B738	2	40	RYR 7RT
44	D	08 57	B738	2	70	BYB 9397
45	D	00.57	0730	- 1	310	DVD 8VI
45	U	09.10	B/30	1	510	KIK OIL
46	L	09.14	B738	2	290	RYR 96B
47	L	09.19	A319	1	270	IAM 3161
48	L	09.22	B738	4	280	RYR 61A
49	D	09.23	H25B	4	280	NJE119P
50	L	09.24	BH12	5	240	DRAGO 63(ELICOTTERO)
51	1	09.27	CL 2T	1	270	IDPCG
51		00.21	D190	4	270	DRACO 193
52	D	09.51	P160	4	280	DRAGO 182
53	D	09.50	B738	2	230	RYR3TF
54	D	10.15	B738	4	170	RYR 6104
55	D	10.28	BH12	1	290	DRAGO 63(ELICOTTERO)
56	D	10.30	GLF4	3	260	N315MK
57	D	10.35	AT45	3	270	KRP5101
58	-	10.47	BH12	5	240	DRAGO 63/EUCOTTERO)
50	-	10.47	0112	5	240	DIAGO 03(EEICOTTERO)
59	L	10.56	HZ5B	5	280	NJESLE
60	L L	11.00	P180	2	330	DRAG 182
61	L	11.02	B738	2	230	RYR 63NV
62	D	11.03	F900	4	250	IAM 3150
63	L	11.06	GLF5	5	180	IDEAS
64	D	11.08	B738	5	260	RYB 769
65		11 11	B738	7	250	RYB QUIV
05		11.11	0738	,	230	KIK 50V
66	D	11.15	CL21	4	230	IDPCG
67	D	11.17	F2TH	6	300	SIO614
68	D	11.23	B738	4	210	IDPCG
69	L	12.02	B738	7	230	RY7069
70	L	12.15	P180	8	260	FXR18K
71	1	12.18	A139	11	210	IAM 3172(ELICOTTERO)
72	-	12.10	CEEV	211 0	220	
72	L	12.21	CJUA	8	220	ICDOL
/3	L	12.23	SR22	6	240	N238CK
74	L	12.25	E135	11	240	GSH294
75	D	12.26	B738	8	260	RYR 9795
76	D	12.31	B738	5	250	RYR 9662
77	L	12.38	CL2T	10	250	IDPCG
78	L	12.41	C56X	9	260	NJE051N
79		12/13	BH12	7	250	DBAGO 63(EUCOTTERO)
,,,		12.45	5000	,	230	
80	U	12.44	F900	10	230	IAIVI 31/1
81	D	12.46	P180	6	280	FXR18K
82	D	12.48	CL2T	5	220	CND18
83	L	12.53	F900	9	230	IAM 3171
84	L	12.56	B738	6	220	RYR 7205
85	L	12.59	FA20	3	200	ADE207
86	1	13.01	B738	7	220	RYB 9X7
97		13.02	P190	, F	220	BDA1017
07		12.05	1250	10	2/0	
88		13.05	H25B	10	300	
89	D	13.07	в738	9	240	күк 6704
90	L	13.09	C510	8	230	GAC139A
91	L	13.10	BH12	6	220	DRAGO 63(ELICOTTERO)
92	D	13.27	SR22	8	250	N238CK
93	p	13.30	H25 B	7	240	IEPAM
Q/	-	13 32	B738	6	230	BYB 9634
05	L .	12.32	5730		230	IAM 2450
32		13.38	1 1900	5	240	IAIVI 3150
96	D	13.40	в738	6	240	күк 7206
97	D	13.43	GLF4	8	240	N767DT
98	L	13.47	BE40	8	230	ITOPX
99	D	13.50	B738	10	230	IEDLO
100	D	13.56	C56X	7	230	NJE7009
101		14.00	B738	10	230	BYR 7192
101		12.00	0,50		230	
102		15.02	D112	s F	230	
103	U	14.11	P180	5	210	F1K18J
104	L	14.21	B738	7	240	RYR 9398
105	L	14.26	A412	8	220	DRAGO 63(ELICOTTERO)
106	L	14.33	B738	8	220	RYR 6103
107	D	14.35	C56X	6	230	ICDBS
108	- P	14.45	B728	<u> </u>	220	BYR 6561
100		14.55	GIES	10	220	IDEAS
109		14.33	0173	10	200	IDEAS
110	I L/D	1 12.00	I P92	ı ک	230	I ICUKI

111	L	15.08	B738	7	210	RYR 9VN
112	L	15.14	P180	9	220	12167
113	D	15.16	H25B	6	220	NJE133C
114	L	15.19	F2TH	9	190	FPG788
115	D	15.21	F2TH	4	200	SNM643
116	L	15.30	B738	7	190	RYR 9796
117	L	15.33	CL2T	6	230	CND18
118	L	13.35	B738	5	230	RYR 9616
119	D	15.40	B738	7	240	RYR 7025
120	D	15.42	BH12	7	230	DRAGO 63(ELICOTTERO)
121	L	15.47	B738	5	230	RYR 9464
122	D	15.54	B738	10	200	RYR 6098
123	L	15.57	F2TH	4	230	SIO619
124	L	15.59	BH12	6	200	DRAGO 63(ELICOTTERO)
125	D	16.00	B738	6	200	RYR 1UL
126	L	16.05	P180	4	230	FXR18H

Appendice B – Acronimi tipologia aeromobili dello spettro di traffico

C25B	CESSNA 525°
	CITATION CJ3
C510	CESSNA 510°
	CITATION MUSTANG
C525	CESSNA 525°
	CITATION JET
C550	CESSNA 550°
	CITATION 2
C56X	CESSNA 560X°
	CITATION EXCEL
C650	CESSNA 650°
	CITATION 3/6/7
C750	CESSNA 750°
~	CITATION 10
CL2T	CANADAIR CL-415
AT 6 0	SUPERSCOOPER
CL30	BOMBARDIER BD-100
CT (0)	CHALLENGER 300
CL60	CANADAIR
D 4 40	CHALLENGER 600
DA40	DIAMOND DA40
DA42	DIAMOND TWIN STAR
DV20	DIAMOND DV20
	KATANA
E135	EMBRAER ERJ-135
E50P	EMBRAER 500
F2TH	DASSAULT FALCON
	2000
FA7X	DASSAULT FALCON
	7X
F900	DASSAULT FALCON
	900
FA20	DASSAULT FALCON
	20

A139	AUGUSTAWESTLAND
	AW-139
A319	AIRBUS A-319
A320	AIRBUS A-320
AT45	ATR ALENIA ATR42-
	500
AT72	ATR ALENIA ATR72
AT75	ATR ALENIA ATR72-
	500
B738	BOEING 737-800
B744	BOEING 747-400
BE20	BEECH 200 SUPER
	KING AIR
BE40	BEECH 400 BEECHJET
BE9L	BEECH 90 KING AIR
BE9T	BEECH KING AIR (F90)
BH12	AVIA BH-12
C150	CESSNA 150
	COMMUTER
C152	CESSNA 152 AEROBAT
C17	BOEING C-17
	GLOBEMASTER 3
C172	CESSNA 172
	SKYHAWK
C177	CESSNA 177
	CARDINAL
C182	CESSNA 182 SKYLANE
C215	CANADAIR CL-215
C25A	CESSNA 525°
	CITATION CJ2

FA50	DASSAULT FALCON 50	G150	GULFSTREAM G150
GALX	IAI 1126 GALAXY	LJ45	LEARJET 45
GL5T	BOMBARDIER	LJ60	LEARJET 60
GLEX	GLOBAL 5000 BOMBARDIER	MU30	MITSUBISHI MU-300 DIAMOND
CI E4	SENTINEL CUL ESTREAM	P180	PIAGGIO P-180
GLF4	AEROSPACE 4	P92	TECNAM P92
GLF5	GULFSTREAM	PA34	PIPER PA-34 SENECA
H25B	RAYTHEON BAe-125-	PC12	PILATUS PC-12 EAGLE
11250	700/800	PRM1	RAYTHEON 390
HA4T	HAWKER	~~~~	PREMIER 1
	BEECHCRAFT 4000	S208	SIAI MARCHETTI S208
LJ35	GATES LEARJET 35	SR22	CIRRUS SR-22
LJ40	LEARJET 40		

Appendice C – Spettro di traffico

A139	16
A319	22
A320	2
A36	1
AT45	1
AT72	1
AT75	1
B738	424
B744	1
BE20	3
BE40	13
BE9L	1
BE9T	2
BH12	8
C150	1
C152	1
C17	1
C172	2
C177	1
C182	1
C215	1
C25A	1
C25B	2
C510	4
C525	7
C550	11
C56X	34
C650	10

C750	1
CL2T	101
CL30	5
CL60	5
CS25	1
DA40	1
DA42	1
DV20	1
E135	4
E50P	2
EB135	1
F2TH	57
F900	57
FA20	1
FA50	15
FA7X	4
G150	2
GALX	1
GL5T	1
GLEX	3
GLF4	4
GLF5	15
H25B	43
HA4T	1
LJ35	2
LJ40	1
LJ45	1
LJ60	2

MU30	2	P180	76
P92	2	S208	1
PA34	3	SR22	3
PC12	1	Totale	1001
PRM1	5		

Appendice D – Caratteristiche tecniche degli aeromobili più presenti nei rilievi dello spettro di traffico.

Si riportano di seguito le caratteristiche tecniche principali delle tipologie di aerei che interessano maggiormente l'aeroporto di Roma Ciampino (18):

1) Boeing 737-800 (B738)

E	3738
Name	737-800
Manufacturer	BOEING
Body	Wide
Туре	Fixed Wing
итс	Medium
APC	С
Engine	Jet
Engine count	Multi
Also manufacturere	d as:
BOEING BBJ2	
BOEING 737-800 BBJ	2
30EING 737-800	

General

Aircraft name	737-800
ICAO code/WTC	B738 / M
Manufacturer	BOEING
Type Code/APC	L2J/C

Technical Data

Wing span	34.4 m
Length	39.2 m
Heigth	12.57 m
Powerplant	2 x 117 kN CFM56-7B turbofans.
Engine Model	CFM International CFM56

2) Canadair CL-415 (CL2T)

	CL2T
Name	CL-415 SuperScooper
Manufacturer	CANADAIR
Body	Narrow
Туре	Fixed Wing
WTC	Medium
APC	В
Engine	Turboprop
Engine count	Multi
Also manufactu	rered as:
CANADAIR Supe	rScooper
CANADAIR CL-4	15 SuperScooper
CANADAIR CL-2	15T

General

Aircraft name	CL-415 SuperScooper
ICAO code/WTC	CL2T / M
Manufacturer	CANADAIR
Type Code/APC	A2T / B

Technical Data

Wing span	28.63 m
Length	19.82 m
Heigth	8.98 m
Powerplant	2 x 2.380 SHP P&W PW123AF turboprops with blade propellers.
Engine Model	Pratt & Whitney Canada PW100

3) Piaggio P180 (P180)

CANADAIR CL-415

P180	
Name	P-180 Avanti
Manufacturer	PIAGGIO
Body	Narrow
Туре	Fixed Wing
WTC	Light
APC	В
Engine	Turboprop
Engine count	Multi
Also manufacturer	ed <mark>a</mark> s:
PIAGGIO P-180 Ava	nti
PIAGGIO Avanti	

General

Aircraft name	P-180 Avanti
ICAO code/WTC	P180 / L
Manufacturer	PIAGGIO
Type Code/APC	L2P/B

Technical Data

Wing span	14 m
Length	14.4 m
Heigth	3.9 m
Powerplant	2 x 850 SHP P&W PT6A-66 turboprops with 5 blade propellers.
Engine Model	Pratt & Whitney Canada PT6

4) Dessault Falcon 2000(F2TH)

F2TH		
Name	Falcon 2000	
Manufacturer	DASSAULT	
Body	Narrow	
Туре	Fixed Wing	
WTC	Medium	
APC	С	
Engine	Jet	
Engine count	Multi	
Also manufacturer	ed as:	
DASSAULT Falcon 2	000	

General

Aircraft name	Falcon 2000
ICAO code/WTC	F2TH / M
Manufacturer	DASSAULT
Type Code/APC	L2J/C

Technical Data

Wing span	19.3 m
Length	20.2 m
Heigth	7.1 m
Powerplant	2 x 26.7 kN GE CFE738-1-1B turbofans.
Engine Model	General Electric CFE738

5) Dessault Falcon 900 (F900)

F900	
Name	Falcon 900
Manufacturer	DASSAULT
Body	Narrow
Туре	Fixed Wing
WTC	Medium
APC	В
Engine	Jet
Engine count	Multi

Also manufacturered as:

DASSAULT Mystere 900 DASSAULT Falcon 900

General

Aircraft name	Falcon 900
ICAO code/WTC	F900 / M
Manufacturer	DASSAULT
Type Code/APC	L3J / B

Technical Data

Wing span	19.3 m
Length	20.2 m
Heigth	7.6 m
Powerplant	3 x 20 kN Garrett TFE731-5AR-1C or 3 x 21,1 kN Allied Signal TFE731-5BR turbofans.
Engine Model	Garrett TFE731, Honeywell TFE731
Appendice E – Individuazione capisaldi

1. Vista in planimetria e dalla telecamera t_1 dei capisaldi A,B,C,D,E e del raccordo A1.

2. Vista in planimetria e dalla telecamera t_2 dei capisaldi F,G e H.

4. . Vista in planimetria e dalla telecamera t_4 dei capisaldi M, N, O, P, Q, R e dei raccordi C3 e D4.

Si riporta di seguito l'individuazione dei raccordi di uscita sulle planimetrie ICAO Aerodrome.

In particolare in questa prima planimetria sono visibili i raccordi denominati per le elaborazioni effettuate nella presente ricerca come A1 e B2 mentre nella seguente planimetria i raccordi denominati C3 e D4.

Si precisa che non si tratta di una denominazione standardizzata bensì utilizzata esclusivamente nel presente elaborato.

Appendice F – Test di normalità sui dati relativi ai punti di toccata trasversali

Si riportano di seguito i risultati dei test di normalità condotti sulle cinque tipologie di aeromobile con numerosità maggiore.

Boeing 737-800

Statistiche descrittive

Variabile	Osservazioni	Minimo	Massimo	Media	Deviazione std
	183	-3,58	2,82	-0,358	1,187

Test di Shapiro-Wilk

W	0,995
p-value	0,743
α	0,05

Interpretazione del testo:

 H_0 : la variabile da cui è stato estratto il campione segue una distribuzione Normale.

H_a: la variabile da cui è stato estratto il campione non segue una distribuzione Normale.

Considerando che il p-value calcolato è superiore al livello di significazione della soglia α =0,05, non è possibile rifiutare l'ipotesi nulla H₀. Il rischio di rifiutare l'ipotesi nulla H₀ mentre è vera è del 74,3%.

Test di Anderson-Darling

A^2	0,301
p-value	0,577
α	0,05

Interpretazione del testo:

 H_0 : la variabile da cui è stato estratto il campione segue una distribuzione Normale.

 H_a : la variabile da cui è stato estratto il campione non segue una distribuzione Normale.

Considerando che il p-value calcolato è superiore al livello di significazione della soglia $\alpha{=}0{,}05$, non è possibile rifiutare l'ipotesi nulla H_0 .

Il rischio di rifiutare l'ipotesi nulla H_0 mentre è vera è del 57,7%.

Test di Lilliefors

D	0,041
D(normalizzato)	0,558
p-value	0,627
α	0,05

Interpretazione del testo:

 H_0 : la variabile da cui è stato estratto il campione segue una distribuzione Normale.

H_a: la variabile da cui è stato estratto il campione non segue una distribuzione Normale.

Considerando che il p-value calcolato è superiore al livello di significazione della soglia α =0,05, non è possibile rifiutare l'ipotesi nulla H₀.

Il rischio di rifiutare l'ipotesi nulla H_0 mentre è vera è del 62,7%.

Test di Jarque-Bera

JB (Valore osservato)	0,186
JB (Valore critico)	5,991
GDL	2
p-value	0,911
α	0,05

Interpretazione del testo:

H₀: la variabile da cui è stato estratto il campione segue una distribuzione Normale.

 H_a : la variabile da cui è stato estratto il campione non segue una distribuzione Normale.

Considerando che il p-value calcolato è superiore al livello di significazione della soglia α =0,05, non è possibile rifiutare l'ipotesi nulla H₀. Il rischio di rifiutare l'ipotesi nulla H₀ mentre è vera è del 91,1%.

Canadair CL-415

Statistiche descrittive

Variabile	Osservazioni	Minimo	Massimo	Media	Deviazione std
	42	-2,714	2,423	-0,303	1,024

Test di Shapiro-Wilk

W	0,975
p-value	0,464
α	0,05

Interpretazione del testo:

 H_0 : la variabile da cui è stato estratto il campione segue una distribuzione Normale.

H_a: la variabile da cui è stato estratto il campione non segue una distribuzione Normale.

Considerando che il p-value calcolato è superiore al livello di significazione della soglia α =0,05, non è possibile rifiutare l'ipotesi nulla H₀.

Il rischio di rifiutare l'ipotesi nulla H_0 mentre è vera è del 46,4%.

Test di Anderson-Darling

A^2	0,458	
p-value	0,252	
α	0,05	

Interpretazione del testo:

 H_0 : la variabile da cui è stato estratto il campione segue una distribuzione Normale.

H_a: la variabile da cui è stato estratto il campione non segue una distribuzione Normale.

 $\label{eq:considerando che il p-value calcolato è superiore al livello di significazione della soglia $\alpha=0,05$, non è possibile rifiutare l'ipotesi nulla H_0.}$

Il rischio di rifiutare l'ipotesi nulla H_0 mentre è vera è del 25,2%.

D	0,113
D(normalizzato)	0,734
p-value	0,192
α	0,05

Interpretazione del testo:

 H_0 : la variabile da cui è stato estratto il campione segue una distribuzione Normale.

 H_a : la variabile da cui è stato estratto il campione non segue una distribuzione Normale.

Considerando che il p-value calcolato è superiore al livello di significazione della soglia α =0,05, non è possibile rifiutare l'ipotesi nulla H₀. Il rischio di rifiutare l'ipotesi nulla H₀ mentre è vera è del 19,2%.

Test di Jarque-Bera

JB (Valore osservato)	0,635
JB (Valore critico)	5,991
GDL	2
p-value	0,728
α	0,05

Interpretazione del testo:

 H_0 : la variabile da cui è stato estratto il campione segue una distribuzione Normale.

H_a: la variabile da cui è stato estratto il campione non segue una distribuzione Normale.

Considerando che il p-value calcolato è superiore al livello di significazione della soglia α =0,05, non è possibile rifiutare l'ipotesi nulla H₀.

Il rischio di rifiutare l'ipotesi nulla H_0 mentre è vera è del 72,8%.

<u> Piaggio P-180</u>

Statistiche descrittive

Variabile	Osservazioni	Minimo	Massimo	Media	Deviazione std
	39	-4,366	0,969	-0,442	1,191

Test di Shapiro-Wilk

W	0,828
p-value	<0,0001
α	0,05

Interpretazione del testo:

 H_0 : la variabile da cui è stato estratto il campione segue una distribuzione Normale.

 H_a : la variabile da cui è stato estratto il campione non segue una distribuzione Normale.

Considerando che il p-value calcolato è inferiore al livello di significazione della soglia α =0,05, si dovrebbe rifiutare l'ipotesi nulla H₀ e accettare l'ipotesi alternativa H_a.

Il rischio di rifiutare l'ipotesi nulla H_0 mentre è vera è inferiore al 0.01%.

Test di Anderson-Darling

A^2	1,825
p-value	<0,0001
α	0,05

Interpretazione del testo:

H₀: la variabile da cui è stato estratto il campione segue una distribuzione Normale.

 H_a : la variabile da cui è stato estratto il campione non segue una distribuzione Normale.

Considerando che il p-value calcolato è inferiore al livello di significazione della soglia α =0,05, si dovrebbe rifiutare l'ipotesi nulla H₀ e accettare l'ipotesi alternativa H_a.

Il rischio di rifiutare l'ipotesi nulla H_0 mentre è vera è inferiore al 0.01%.

Test di Lilliefors

D	0,161
D(normalizzato)	1,005
p-value	0,012
α	0,05

Interpretazione del testo:

 H_0 : la variabile da cui è stato estratto il campione segue una distribuzione Normale.

H_a: la variabile da cui è stato estratto il campione non segue una distribuzione Normale.

Considerando che il p-value calcolato è inferiore al livello di significazione della soglia α =0,05, si dovrebbe rifiutare l'ipotesi nulla H₀ e accettare l'ipotesi alternativa H_a.

Il rischio di rifiutare l'ipotesi nulla H_0 mentre è vera è inferiore al 1.23%.

Test di Jarque-Bera

JB (Valore osservato)	37,164
JB (Valore critico)	5,991
GDL	2
p-value	< 0.0001
α	0,05

Interpretazione del testo:

H₀: la variabile da cui è stato estratto il campione segue una distribuzione Normale.

H_a: la variabile da cui è stato estratto il campione non segue una distribuzione Normale.

Considerando che il p-value calcolato è inferiore al livello di significazione della soglia α =0,05, si dovrebbe rifiutare l'ipotesi nulla H₀ e accettare l'ipotesi alternativa H_a.

Il rischio di rifiutare l'ipotesi nulla H_0 mentre è vera è inferiore al 0.01%.

Dessault Falcon 2000

Statistiche descrittive

Variabile	Osservazioni	Minimo	Massimo	Media	Deviazione std
	24	-2,281	2,376	-0,432	1,035

Test di Shapiro-Wilk

W	0,963
p-value	0,496
α	0,05

Interpretazione del testo:

 H_0 : la variabile da cui è stato estratto il campione segue una distribuzione Normale.

H_a: la variabile da cui è stato estratto il campione non segue una distribuzione Normale.

Considerando che il p-value calcolato è superiore al livello di significazione della soglia α =0,05, non è possibile rifiutare l'ipotesi nulla H₀.

Il rischio di rifiutare l'ipotesi nulla H_0 mentre è vera è del 49,6%.

Test di Anderson-Darling

A ²	0,294
p-value	0,571
α	0,05

Interpretazione del testo:

H₀: la variabile da cui è stato estratto il campione segue una distribuzione Normale.

H_a: la variabile da cui è stato estratto il campione non segue una distribuzione Normale.

Considerando che il p-value calcolato è superiore al livello di significazione della soglia α =0,05, non è possibile rifiutare l'ipotesi nulla H₀.

Il rischio di rifiutare l'ipotesi nulla H_0 mentre è vera è del 57,1%.

Test di Lilliefors

D	0,101
D(normalizzato)	0,493
p-value	0,764
α	0,05

Interpretazione del testo:

 H_0 : la variabile da cui è stato estratto il campione segue una distribuzione Normale.

 H_a : la variabile da cui è stato estratto il campione non segue una distribuzione Normale.

Considerando che il p-value calcolato è superiore al livello di significazione della soglia α =0,05, non è possibile rifiutare l'ipotesi nulla H₀. Il rischio di rifiutare l'ipotesi nulla H₀ mentre è vera è del 76,4%.

Test di Jarque-Bera

JB (Valore osservato)	1,634
JB (Valore critico)	5,991
GDL	2
p-value	0,442
α	0,05

Interpretazione del testo:

H₀: la variabile da cui è stato estratto il campione segue una distribuzione Normale.

H_a: la variabile da cui è stato estratto il campione non segue una distribuzione Normale.

Considerando che il p-value calcolato è superiore al livello di significazione della soglia α =0,05, non è possibile rifiutare l'ipotesi nulla H₀. Il rischio di rifiutare l'ipotesi nulla H₀ mentre è vera è del 44,2%.

Dessault Falcon 900

Statistiche descrittive

Variabile	Osservazioni	Minimo	Massimo	Media	Deviazione std
	24	-3,739	1,448	-0,977	1,282

Test di Shapiro-Wilk

W	0,968
p-value	0,627
α	0,05

Interpretazione del testo:

H₀: la variabile da cui è stato estratto il campione segue una distribuzione Normale.

H_a: la variabile da cui è stato estratto il campione non segue una distribuzione Normale.

Considerando che il p-value calcolato è superiore al livello di significazione della soglia α =0,05, non è possibile rifiutare l'ipotesi nulla H₀.

Il rischio di rifiutare l'ipotesi nulla H_0 mentre è vera è del 62,7%.

Test di Anderson-Darling

A ²	0,327
p-value	0,503
α	0,05

Interpretazione del testo:

 H_0 : la variabile da cui è stato estratto il campione segue una distribuzione Normale.

H_a: la variabile da cui è stato estratto il campione non segue una distribuzione Normale.

Considerando che il p-value calcolato è superiore al livello di significazione della soglia α =0,05, non è possibile rifiutare l'ipotesi nulla H₀.

Il rischio di rifiutare l'ipotesi nulla H_0 mentre è vera è del 50,3%.

Test di Lilliefors

D	0,114
D(normalizzato)	0,561
p-value	0,574
α	0,05

Interpretazione del testo:

H₀: la variabile da cui è stato estratto il campione segue una distribuzione Normale.

H_a: la variabile da cui è stato estratto il campione non segue una distribuzione Normale.

Considerando che il p-value calcolato è superiore al livello di significazione della soglia α =0,05, non è possibile rifiutare l'ipotesi nulla H₀. Il rischio di rifiutare l'ipotesi nulla H₀ mentre è vera è del 57,4%.

Test di Jarque-Bera

JB (Valore osservato)	0,813
JB (Valore critico)	5,991
GDL	2
p-value	0,666
α	0,05

Interpretazione del testo:

H₀: la variabile da cui è stato estratto il campione segue una distribuzione Normale.

H_a: la variabile da cui è stato estratto il campione non segue una distribuzione Normale.

Considerando che il p-value calcolato è superiore al livello di significazione della soglia α =0,05, non è possibile rifiutare l'ipotesi nulla H₀. Il rischio di rifiutare l'ipotesi nulla H₀ mentre è vera è del 66,6%.

Appendice G – Test non parametrici (k campioni) sui dati relativi allo scostamento trasversale dei punti di toccata

Variabili	Osserva	Oss. con	Oss.senza	Min	Max	Media	Dev.
	zioni	dati	dati				std
		mancanti	mancanti				
B738	183	0	183	-3,58	2,82	-0,36	1,19
CL2T	183	141	42	-2,71	2,42	-0,30	1,02
P180	183	144	39	-4,37	0,97	-0,44	1,19
F900	183	159	24	-3,74	1,45	-0,98	1,28
F2TH	183	159	24	-2,22	2,38	-0,43	1,03

Statistiche descrittive

Test di Kruskal-Wallis

K (Valore osservato)	5,300
K (Valore critico)	9,488
GDL	4
p-value (bilaterale)	0,258
α	0,05

Interpretazione del testo:

H₀: i campioni vengono dalla stessa popolazione.

H_a: i campioni non vengono dalla stessa popolazione.

Considerando che il p-value calcolato è superiore al livello di significazione della soglia α =0,05, non è possibile rifiutare l'ipotesi nulla H₀. Il rischio di rifiutare l'ipotesi nulla H₀ mentre è vera è del 25,8%.

Comparazioni multiple a coppie utilizzando la procedura di Steel-Dwass-Critchlow-Fligner/Test bilaterale:

Campione	Frequenza	Somma dei ranghi	Media dei ranghi	Gruppi
F900	24	2840,000	118,333	А
F2TH	24	3620,000	150,833	А
B738	183	28956,000	158,230	А
CL2T	42	6895,500	164,179	А
P180	39	6516,500	167,090	А

 W_{ij}

	B738	CL2T	P180	F900	F2TH
B738		-0,526	-0,695	2,819	0,446
CL2T	0,526		-0,334	2,865	1,018
P180	0,695	0,334		2,982	1,201
F900	-2,819	-2,865	-2,982		-1,895
F2TH	-0,446	-1,018	-1,201	1,895	

Differenze significative

	B738	CL2T	P180	F900	F2TH
B738		No	No	No	No
CL2T	No		No	No	No
P180	No	No		No	No
F900	No	No	No		No
F2TH	No	No	No	No	

p-values

	B738	CL2T	P180	F900	F2TH
B738	1	0,996	0,988	0,269	0,998
CL2T	0,996	1	0,999	0,253	0,952
P180	0,988	0,999	1	0,216	0,915
F900	0,269	0,253	0,216	1	0,666
F2TH	0,998	0,952	0,915	0,666	1

Appendice H – Test non parametrici (k campioni) sui dati relativi alla posizione longitudinale dei punti di toccata.

Statistiche descrittive

Variabili	Osserva	Oss. con	Oss.senza	Min	Max	Media	Dev.
	zioni	dati	dati				std
		mancanti	mancanti				
y B738	196	0	196	275,7	1173,3	469,9	121,7
y CL2T	196	154	42	229,0	1004,4	380,5	128,3
y P180	196	155	41	254,1	900,7	467,2	134,4
y F900	196	173	23	301,6	773,36	482,3	129,2
y F2TH	196	172	24	334,0	974,88	527,8	147,8

Test di Kruskal-Wallis

K (Valore osservato)	35,145
K (Valore critico)	9,488
GDL	4
p-value (bilaterale)	< 0,0001
α	0,05

Interpretazione del testo:

H₀: i campioni vengono dalla stessa popolazione.

H_a: i campioni non vengono dalla stessa popolazione.

Considerando che il p-value calcolato è inferiore al livello di significazione alfa=0.05, si dovrebbe rifiutare l'ipotesi nulla H0 e accettare l'ipotesi alternativa Ha.

Il rischio di rifiutare l'ipotesi nulla H_0 mentre è vera è inferiore a 0.01%.

Comparazioni multiple a coppie utilizzando la procedura di Steel-Dwass-Critchlow-Fligner/Test bilaterale:

Campione	Frequenza	Somma dei	Media dei	Gruppi
		ranghi	ranghi	
CL2T	42	3636,000	86,571	А
P180	41	6987,000	170,415	В
B738	196	33613,000	171,495	В
F900	23	4118,000	179,043	В
F2TH	24	4947,000	206,125	В

 W_{ij}

	B738	CL2T	P180	F900	F2TH
B738		7,906	-0,216	-0,504	-2,561
CL2T	-7,906		-4,766	-5,171	-6,240
P180	0,216	4,766		-0,584	-2,268
F900	0,504	5,171	0,584		-1,234
F2TH	2,561	6,240	2,268	1,234	

Differenze significative

	B738	CL2T	P180	F900	F2TH
B738		Si	No	No	No
CL2T	Si		Si	Si	Si
P180	No	Si		No	No
F900	No	Si	No		No
F2TH	No	Si	No	No	

p-values

	B738	CL2T	P180	F900	F2TH
B738	1	< 0,0001	1,000	0,997	0,367
CL2T	< 0,0001	1	0,007	0,002	< 0,0001
P180	1,000	0,007	1	0,994	0,495
F900	0,997	0,002	0,994	1	0,907
F2TH	0,367	< 0,0001	0,495	0,907	1

Appendice I – Punti sperimentali di velocità in atterraggio.

Appendice L – Coefficienti di aderenza statica μ_0 e di resistenza al rotolamento a basse velocità $_0$ delle ruote con pneumatico.

Si riportano nella seguente tabella i valori del coefficiente di aderenza statico μ_0 e del coefficiente di resistenza al rotolamento $_0$ per superfici di diversa natura e in diverse condizioni su cui può avvenire il contatto di un pneumatico.

Natura e condizioni della	μ_0			0
pista o del terreno	buone condizioni	cattive condizioni	buone condizioni	cattive condizioni
Calcestruzzo rugoso pulito asciutto	1.00	0.80	0.012	0.015
Asfalto rugoso pulito asciutto	0.90	0.70	0.015	0.018
Calcestruzzo rugoso pulito bagnato	0.80	0.60	0.015	0.018
Asfalto rugoso pulito bagnato	0.70	0.50	0.018	0.020
Macadam asciutto	0.80	0.65	0.020	0.030
Macadam bagnato	0.65	0.50	0.030	0.040
Tappeto erboso sodo asciutto	0.60	0.55	0.040	0.045

Tappeto erboso	0.55	0.45	0.045	0.050
sodo bagnato				
Tappeto erboso	0.40	0.35	0.050	0.055
soffice asciutto				
Tappeto erboso	0.35	0.30	0.055	0.060
bagnato				
Pista innevata con	0.35	0.30	0.025	0.035
neve asciutta				
(spessore neve <				
6 cm)				
Pista innevata con	0.25	0.20	0.030	0.040
fanghiglia nevosa				
(spessore				
fanghiglia < 6				
cm)				
Pista ghiacciata	0.20	0.15	0.015	0.020
opaca				
Pista ghiacciata	0.15	0.10	0.010	0.015
lucida				

Appendice M – Caratteristiche tecniche Boeing 737-800.

Si riportano in questa appendice le caratteristiche tecniche del B737-800 e i diagrammi utilizzati per il calcolo delle pavimentazioni tratte dal documento D6-58325-6 prodotto dalla Boeing relativo alle caratteristiche degli aeromobili della famiglia B737 (23).

		737-800			737-900				
	DESCRIPTION	MAX (AT OEW)		MIN (AT MTW)		MAX (AT OEW)		MIN (AT MTW)	
		FT - N	м	FT - N	М	FTIN	М	FT N	М
A	TOP OF FUSELAGE	18-3	5.56	17 - 9	5.41	18 - 4	5.59	17 - 10	5.44
В	ENTRY DOOR NO 1	9-0	2.74	8-6	2.59	9-0	2.74	8-6	2.59
с	FWD CARGO DOOR	4-9	1.45	4-3	1.30	4-9	1.45	4-3	1.30
D	ENGINE	2-1	0.64	1-7	0.48	2-1	0.64	1-7	0.48
E	WINGTIP	12 - 10	3.91	12-0	3.66	12 - 10	3.91	12-0	3.66
F	AFT CARGO DOOR	5 - 11	1.80	5-5	1.65	5-11	1.80	5-5	1.65
G	ENTRY DOOR NO 2	10 - 3	3.12	9-9	2.97	10 - 3	3.12	9-9	2.97
н	STABILIZER	18 - 6	5.64	18- 0	5.49	18 - 7	5.66	18 - 1	5.51
J	VERTICAL TAIL	41 - 5	12.62	40 - 7	12.37	41 - 5	12.62	40 - 7	12.37

NOTES: CLEARANCES SHOWN ARE NOMINAL. ADD PLUS OR MINUS 3 INCHES TO ACCOUNT FOR VARIATIONS IN LOADING, OLEO AND TIRE PRESSURES, CENTER OF GRAVITY, ETC.

DURING ROUTINE SERVICING, THE AIRPLANE REMAINS RELATIVELY STABLE, PITCH AND ELEVATION CHANGES OCCURRING SLOWLY.

2.3.4 GROUND CLEARANCES MODEL 737-800, -900,-900ER

	UNITS	737-600	737-700	737-800	737-900	737-900ER
MAXIMUM DESIGN	LB	124,500 THRU 145,000	133,500 THRU 155,000	156,000 THRU 174,700	164,500 THRU 174,700	164,500 THRU 188,200
TAXI WEIGHT	KG	56,472 THRU 65,771	60,554 THRU 70,307	70,760 THRU 79,242	74,616 THRU 79,242	74,616 THRU 85,366
NOSE GEAR TIRE SIZE	IN.		27 x 7.7 - 15 12 PR			27 x 7.75 - 15 12 PR
NOSE GEAR	PSI	206	205	185	185	185
TIRE PRESSURE	KG/CM ²	14.50	14,44	13.03	13.03	13.03
MAIN GEAR TIRE SIZE	IN.	H43.5 x 16.0 - 21 24PR OR 26 PR	H43.5 x 16.0 - 21 26 PR	H44.5 x 16.5 - 21 28 PR	H44.5 x 16.5 - 21 28 PR	H44.5 x 16.5 - 21 30 PR
MAIN GEAR	PSI	182 THRU 205	197THRU 205	204 THRU 205	204 THRU 205	205 THRU 220
TIRE PRESSURE	KG/CM ²	12.80 THRU 14.41	13.85 THRU 14.41	14.39 THRU 14.41	14.34 THRU 14.41	14.41 THRU 15.47
OPTIONAL TIRES						
MAIN GEAR TIRE SIZE	IN.	H44.5 x 16.5 - 21 28PR (1)	H44.5 x 16.5 - 21 28PR	NOT AVALABLE	NOT	NOT AVAILABLE

TIRE SIZE	Jac.	28PR (1)	28PR	AVAILABLE	AVAILABLE	AVAILABLE
MAIN GEAR	PSI	168 THRU 205	179 THRU 205	NOT AVAILABLE	NOT AVAILABLE	NOT AVAILABLE
TIRE PRESSURE	KG/CM ²	11.81THRU 14.41	12.59 THRU 14.41	NOT AVAILABLE	NOT	NOT

NOTE: (1) H44.5 x 16.5 - 21 28PR TIRE CERTIFICATED ON 737-600 UP TO 144,000 LB (65,317 KG)

7.2.5 LANDING GEAR FOOTPRINT MODEL 737-500, -700, -800, -900, -900ER WITH AND WITHOUT WINGLETS

CHARACTERISTICS	UNITS	MODEL 737-800, -800 WITH WINGLETS		
MAX DESIGN	POUNDS	156,000	173,000	174,900
TAXI WEIGHT	KILOGRAMS	70,760	78,471	79,333
MAX DESIGN	POUNDS	155,500	172,500	174,200
TAKEOFF WEIGHT	KILOGRAMS	70,534	78,245	79,016
MAX DESIGN	POUNDS	144,000	144,000	146,300
LANDING WEIGHT	KILOGRAMS	65,317	65,317	66,361
MAX DESIGN	POUNDS	136,000	136,000	138,300
ZERO FUEL WEIGHT	KILOGRAMS	61,689	61,689	62,732
OPERATING	POUNDS	91,300	91,300	91,300
EMPTY WEIGHT (1)	KILOGRAMS	41,413	41,413	41,413
MAX STRUCTURAL	POUNDS	44,700	44,700	47,000
PAYLOAD	KILOGRAMS	20,276	20,276	21,319
SEATING CAPACITY (1)	TWO-CLASS	160	160	160
	ALL-ECONOMY	184	184	184
MAX CARGO	CUBIC FEET	1555	1555	1555
- LOWER DECK	CUBIC METERS	44.1	44.1	44.1
USABLE FUEL	US GALLONS	6875	6875	6875
	LITERS	26,022	26,022	26,022
	POUNDS	46,063	46,063	46,063
	KILOGRAMS	20,894	20,894	20,894

NOTE: (1) OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.

F.A.R. LANDING RUNWAY LENGTH REQUIREMENTS - FLAPS 30 MODEL 737-800

V _{NG} = MAXIMUM VERTICAL NOSE GEAR GROUND LOAD AT MOST FORWARD CENTER OF GRAVITY V _{MG} = MAXIMUM VERTICAL MAIN GEAR GROUND LOAD AT MOST AFT CENTER OF GRAVITY

H = MAXIMUM HORIZONTAL GROUND LOAD FROM BRAKING

NOTE: ALL LOADS CALCULATED USING AIRPLANE MAXIMUM DESIGN TAXI WEIGHT

		MAXIMUM DESIGN STATI TAXI MOST WEIGHT C.C	VNG		V MG PER	H PER STRUT		
MODEL	UNITS DE T WE		STATIC AT MOST FWD C.G.	STATIC + BRAKING 10 FT/SEC ² DECEL	STRUT AT MAX_LOAD AT STATIC AFT_C.G.	STEADY BRAKING 10 FT/SEC ² DECEL	AT INSTANTANEOUS BRAKING (µ= 0.8)	
737-600	LB	124,500	16,839	26,489	58,333	19,298	46,666	
	KG	56,472	7,638	12,015	26,459	8,708	21,167	
737-600	LB	144,000	19,020	30,180	66,708	22,320	53,366	
	KG	65,317	8,627	13,689	30,258	10,124	24,206	
737-600	LB	145,000	19,000	30,236	66,454	22,475	53,163	
	KG	65,771	8,618	13,715	30,143	10,194	24,114	
737-700	LB	133,500	17,558	26,711	63,000	20,692	50,400	
	KG	60,554	7,963	12,116	28,576	9,386	22,861	
737-700	LB	153,500	18,740	29,265	71,482	23,792	57,185	
	KG	69,626	8,500	13,274	32,424	10,792	25,939	
737-700	LB	155,000	16,925	27,552	71,060	24,025	56,847	
	KG	70,307	7,677	12,497	32,232	10,898	25,785	
737-800	LB	156,000	16,770	25,510	75,062	24,180	60,050	
	KG	70,750	7,607	11,571	34,047	10,968	27,442	
737-800	LB	173,000	17,059	26,752	82,143	26,815	65,715	
	KG	78,471	7,738	12,134	37,259	12,163	29,808	
737-800	LB	174,700	15,100	24,886	81,730	27,078	65,384	
	KG	79,242	6,849	11,279	37,060	12,282	29,658	
737-900	LB	164,500	14,998	23,369	78,962	25,498	63,169	
	KG	74,616	6,803	10,600	35,817	11,566	28,653	
737-900	LB	174,700	14,155	23,045	81,743	27,078	65,394	
	KG	79,242	6,421	10,453	37,078	12,282	29,662	
737-900ER	LB	188,200	15,206	24,810	88,993	29,227	71,194	
	KG	85,366	6,897	11,254	40,367	13,257	32,293	

7.3.3 MAXIMUM PAVEMENT LOADS

MODEL 737-600, -700, -800, -900, -900ER WITH AND WITHOUT WINGLETS

7.4.10 LANDING GEAR LOADING ON PAVEMENT MODEL 737-800, -800 WITH WINGLETS

7.5.6 FLEXIBLE PAVEMENT REQUIREMENTS - U.S. ARMY CORPS OF ENGINEERS DESIGN METHOD (S-77-1) AND FAA DESIGN METHOD MODEL 737-600, -700, -800, -900, -900R WITH AND WITHOUT WINGLETS, 737 BBJ, 737 BBJ2

7.6.6 FLEXIBLE PAVEMENT REQUIREMENTS - LCN METHOD MODEL 737-600, -700, -800, -900, -900ER WITH AND WITHOUT WINGLETS, 737 BBJ, 737 BBJ2

MODEL 737-600, -700, -800, -900, -900ER WITH AND WITHOUT WINGLETS, 737 BBJ, 737 BBJ2

7.10.35 AIRCRAFT CLASSIFICATION NUMBER - RIGID PAVEMENT MODEL 737-800 WITH AND WITHOUT WINGLETS

