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Abstract 

 

Deployable aerobrakes for Earth re-entry capsules may offer many advantages in the 

near future, including the opportunity to recover on Earth payloads and samples from 

Space with reduced risks and costs with respect to conventional systems. Such 

capsules can be accommodated in the selected launcher in folded configuration 

(optimizing the available volume) and, when foreseen by the mission profile, the 

aerobrake can be deployed in order to increase the surface exposed to the hypersonic 

flow and therefore to reduce the ballistic parameter.  

The ballistic parameter reduction offers as main advantage the opportunity to perform 

an aerodynamic de-orbit of the system without the need of a dedicated propulsive 

subsystem and an atmospheric re-entry with reduced aerothermal and mechanical 

loads. It makes also possible the use of relatively lightweight and cheap thermal 

protection materials (like the ceramic fabrics successfully tested in hypersonic plasma 

wind tunnels). Furthermore, the deployable surface can be modulated for the 

aerodynamic control of the de-orbit trajectory in order to correctly target the capsule 

towards the selected landing site. The aerodynamic de-orbit capability can be also 

exploited to implement alternative methods for the Space debris attenuation, which is 

becoming more and more important due to the growing number of micro, nano and 

pico-satellites launched every year in Low Earth Orbit.  

The main objective of the present thesis is to perform aerothermodynamic and mission 

analyses of re-entry systems characterized by deployable heat shields. In particular, 

the study has been focused on the assessment of the wide range of scientific 

applications offered by this technology and on the development of technological 

demonstrators for the experimental verification of its effectiveness and functionality 

along different flight profiles. 

The main outcomes of the study include the preliminary definition of the analyzed 

missions and of the corresponding deployment mechanism, the aerodynamic and 

aerothermodynamic study of the system in different flight regimes, from rarefied to 

continuum. 
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1 Introduction 

 

In the present Section a brief introduction on deployable aerobrakes is presented. The 

state-of-the-art technologies, including inflatable systems will be shown and their 

advantages for Earth re-entry operations underlined. Then some candidate materials 

for the realization of the aerobrake and potential mission scenarios are discussed. 

Finally, the opportunities offered by suborbital technology demonstrators are also 

presented. 

 

1.1 The advantages of deployable aerobrakes for re-entry capsules 

 

In recent years there has been an increasing interest for small Space platforms (micro 

and nano-satellites), in particular for Earth's environmental protection, prevention of 

natural disasters and homeland security. Other applications include scientific 

experiments or technology, Space exploration, observation of the Universe, 

astrophysics, biology or physical sciences in microgravity.  

Reducing size, mass and power implies a significant reduction of costs and of 

development time, increasing accessibility to Space and sustaining frequent launches. 

Unfortunately, as a consequence of the miniaturization, these systems require more 

sophisticated solutions to achieve ambitious scientific and technological goals and to 

offer the possibility to safely recover on Earth the payload and potential data. These 

are the main reasons why novel concepts of deployable and inflatable aerodynamic 

decelerators for de-orbit and re-entry purposes have been proposed in the aerospace 

community. 

These capsules can be in fact more easily accommodated in launch vehicles in folded 

configuration and, when foreseen by the mission scenario, their aerobrakes can be 

deployed (or inflated) in order to reduce the capsule ballistic coefficients, defined in 

Equation 1.1 as the ratio between the capsule mass m and its reference surface S, 

times the drag coefficient CD.  

 

 � = ��� ∙ 
 1.1 

 

This innovative approach decouples the ballistic coefficient from the launch vehicle 

mass and volumetric constraints characterizing the conventional, fixed-geometry 

capsules. In this way the ballistic coefficient can be considered a design parameter, 

able to provide the opportunity to optimize the entry path. 



 

Figure 1.1 shows the deployable aerobraking capsules within the international 

scenario. It is evident that 

ballistic re-entry (due to the almost null aerodynamic efficiency) 

ballistic parameter. 

The main reasons of this choice are shown in 

fact, imply larger decelerations in the upper part of the atmosphere, offering as main 

advantage the reduction of the aero

reliability of the re-entry phase.

 

Figure 1.1: Deployable aerobraking capsules within the international scenario in terms of 
ballistic parameter and aerodynamic efficiency 

 

From Figure 1.2a, in fact, it is evident that 

higher altitudes can be obtained 

lower ballistic coefficient capsules, 

re-entry as the altitude decreases, as depicted in 

1.2d finally show the imp

mechanical and aerothermal loads, respectively.

coefficient from 100 to 10 kg/m

factor 10, while the peak 

 

 

deployable aerobraking capsules within the international 

scenario. It is evident that these innovative capsules are intended to perform an almost 

(due to the almost null aerodynamic efficiency) with an extremely low 

The main reasons of this choice are shown in Figure 1.2. Lower ballistic coefficients, in 

fact, imply larger decelerations in the upper part of the atmosphere, offering as main 

advantage the reduction of the aero-thermal peak loads and, consequently, a higher 

entry phase. 

: Deployable aerobraking capsules within the international scenario in terms of 
ballistic parameter and aerodynamic efficiency  

a, in fact, it is evident that a more significant Mach number reduction at 

higher altitudes can be obtained as the ballistic coefficient decreases

lower ballistic coefficient capsules, a more rapid descent at high altit

entry as the altitude decreases, as depicted in Figure 1.2b. Figure 

d finally show the implications of the different dynamic behaviour

mechanical and aerothermal loads, respectively. Roughly, reducing the ballistic 

coefficient from 100 to 10 kg/m2, the peak stagnation-point pressure 

factor 10, while the peak stagnation-point heat flux ��
 by a factor 3. 
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(a) (b) 

  

(c) (d) 

Figure 1.2: Comparison among re-entry trajectories in terms of Mach number (a), flight duration 
(b), stagnation-point pressure (c) and stagnation-point heat flux (d) for capsules characterized 

by different ballistic parameters 

 

In addition, deployable aerobrakes may be also useful for aerodynamic de-obits not 

requiring a dedicated propulsive system. This aspect is fundamental, not only for re-

entry capsules, but also for the satellites de-orbit from Low Earth Orbit (LEO) at the end 

of their lifetime. Due to the increasing problem of the Space debris, in fact, the ability to 

autonomously remove an object from LEO after the natural duration of its mission 

appears to be a fundamental advantage, as it will be clarified in the following. 

Figure 1.3 shows that, assuming the same initial conditions, an aerodynamic de-orbit 

performed by means of a deployable decelerator can be almost equivalent, except for 

the de-orbit duration, to a propulsive de-orbit requiring a velocity change of 150 m/s. 
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Figure 1.3: Comparison between aerodynamic and propulsive de-orbit phases 

 

Finally, deployable aerobrake can offer the advantage to potentially modulate the 

reference surface area in order to aerodynamically control the de-orbit phase and 

correctly target the capsule towards the desired landing site. 

 

1.2 State-of-the-art inflatable and deployable aerobrakes 

 

Examples of inflatable systems proposed and already tested are the Inflatable Re-entry 

and Descent Technology (IRDT) (1) and the Inflatable Re-entry Vehicle Experiment 

(IRVE) (2). More recently, Andrews Space has designed and patented an inflatable 

Nanosat De-orbit and Recovery System for CubeSat payloads (3), (4). 

In particular, the IRDT technology shown in Figure 1.4 has been successfully tested in 

2000, re-entering the atmosphere after a 6-orbit flight into Space (1).  

 

  
(a) (b) 

Figure 1.4: The IRDT concept in folded configuration (a) and an artistic view of the capsule from 
Space (b) 
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A further demonstrating mission in 2002 has not been successful due to a failure in the 

launcher/payload interface of the Volna rocket, while in 2005 the capsule was not 

recovered for an unexpected trajectory overshoot. 

Figure 1.5(a) shows the assembly of the IRVE-3 re-entry demonstrator successfully 

tested in 2003. During the flight test the on-board systems inflated some inner tubes, 

creating the aeroshell depicted in Figure 1.5(b). In that case the heat shield protected a 

payload consisting in the inflation system, a steering mechanisms, a telemetry 

equipment and a camera gear. 

 

  
(a) (b) 

Figure 1.5: The IRVE-3 demonstrator assembly (a) and an artistic view of the capsule from 
Space (b) 

 

Beside those, different concepts for re-entry systems based on mechanically 

deployable heat-shields exist. In 1990 a deployable capsule was developed using an 

umbrella-like heat-shield, made of silicon fabrics and called parashield (5). A similar 

satellite called Bremsat and depicted in Figure 1.6 was studied in 1996 at the 

University of Bremen (6). 

 

 

 

(a) (b) 

Figure 1.6: Bremsat re-entry capsule in folded (a) and deployed (b) configurations 
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1.3 Candidate materials for the Thermal Protection System (TPS) 

 

One of the most important topics regarding the design of this innovative kind of re-entry 

systems, is the identification and testing of potential materials to be employed for the 

Thermal Protection System (TPS). In particular, TPS materials have to satisfy a 

number of requirements, including the ability to withstand high temperatures in a 

chemically reacting environment, the workability, the low cost and the availability. In 

addition, the conical part of the heat shield has to be made of a flexible, high 

temperature resistant material, so that it can be folded and deployed for the different 

phases of the mission. 

For the hemispherical rigid nose cone a number of RESCOR ceramic foams has been 

considered. Their main thermo mechanical properties are reported in Table 1.1. 

 

Property 

RESCOR 310M 

(99% pure 

Silica) SiO2 

RESCOR 311 

(Alumina Silica) 

Al2O3-SiO2 

RESCOR 750 

(Fused Silica) 

SiO2 

Max. Operating Temp. (°C) 1650 1430 1480 

Density (g/cm3) 0.80 0.80 1.76 

Thermal Expansion (10-6/°C) 0.54 5.22 0.54 

Elastic Modulus (GPa) 73 --- 73 

Compressive Strength (kg/cm2) 84 35 420 

Flexural Strenght (kg/cm2) 36.4 17.5 76.4 

Thermal Conductivity 

(BTU in/Hr/°F/Ft2) 
1.3 2.4 4 

Porosity (%) 63 52 19 

Table 1.1: Main thermo mechanical properties of RESCOR ceramic foams (7) 

 

Comparing the characteristics reported in Table 1.1, RESCOR 310M resulted 

particularly suitable for the scope under consideration. In fact, it is characterized by a 

maximum operative temperature of 1650°C, a low thermal expansion, a high resistance 

to thermal shocks, a low thermal conductivity. It is also particularly resistant to 

oxidation. Additional advantages include the possibility to glue the material by means of 

special adhesives, like RESCOR 901 and to treat it with liquid hardeners, like the 

RESCOR 901A. 

On the other hand, for the flexible part of the TPS, the NEXTEL woven ceramic fabric 

has been selected. Its main characteristics include the good chemical resistance, the 

low thermal conductivity, the high resistance to thermal shocks and the low porosity. 
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Different kind of ceramic fibres can be woven for this kind of fabric, but the most 

suitable for the aerospace field are the NEXTEL 312 and 440, whose main thermo 

mechanical properties are reported in Table 1.2. 

In particular, NEXTEL 312 has been selected for the lower density and thermal 

expansion coefficient. 

 

Property NEXTEL 312 NEXTEL 440 

Chemical composition (wt. %) 

62.5 Al2O3 

24.5 SiO2 

13 B2O3 

70 Al2O3 

28 SiO2 

2 B2O3 

Melting point (°C) 1800 1800 

Filament diameter (µm) 10-12 10-12 

Density (g/cm3) 2.7 3.5 

Thermal Expansion (10-6/°C) 3 5.3 

Specific Heat @ 500 °C (cal/g/°C) 0.25 0.27 

Table 1.2: Main thermo mechanical properties of NEXTEL ceramic fibres (8) 

 

In the last years the above mentioned materials have been employed to realize 

technology demonstrators of the concept under investigation to be tested in Plasma 

Wind Tunnel (PWT) facilities. In particular, the most significant experience in this sense 

has been realized testing the test article shown in Figure 1.7 through Figure 1.9 in the 

Scirocco PWT available at the Italian Aerospace Research Centre (CIRA). In particular, 

in Figure 1.8 and Figure 1.9 the ceramic fabric employed for the flexible part of the 

demonstrator and its nose cone, respectively, are shown in more details. 

The test conditions are reported in Table 1.3, being Parc the arc heater power, H0 the 

total enthalpy in the arc heater, p0,arc the total pressure in the arc heater and ��  the air 

mass flow rate. These parameters led to a stagnation-point pressure and temperature 

around 7 mbar and 350 kW/m2, respectively. The stagnation-point heat flux is in 

particular very close to characteristic re-entry conditions from LEO. 

 

Parc [MW] H0 [MJ/kg] p0,arc [bar] ��  [kg/s] 

10.7 11.5 2.5 0.5 

Table 1.3: Test conditions in Scirocco PWT 
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Figure 1.7: Technology demonstrator for the experimental testing of the concept under 
investigation in the Scirocco PWT 

 

 

Figure 1.8: NEXTEL 310 ceramic fabric employed for the flexible part of the demonstrator 

 

 

Figure 1.9: The nose cone of the demonstrator, made of RESCOR 310 
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On the basis of this experimental testing (9), it was evidenced that the selected 

materials are able to withstand maximum temperatures in the order of 1600°C at the 

stagnation-point (i.e. on the hemispherical nose come made of RESCOR) and of 

1400°C on the conical part of the heat shield (i.e. on the NEXTEL fabric). 

 

1.4 Potential orbital mission scenarios 

 

1.4.1 Space mailing to/from the ISS 

 

Space mailing missions to/from the International Space Station (ISS) could be of 

utmost importance in the present time, due to the urgent need of carrier vehicles for 

scientific experiments, in particular after the termination of the Space Shuttle 

programme. In fact, the payload capability of the Russian Soyuz is very limited, while 

the European ATV, the Russian Progress and the Japanese HTV cargo carriers are 

only able to deliver experiment to the Station, but not to return them back to Earth. 

In Figure 1.10 just one of the feasible scenarios for this kind of mission is depicted. In 

this case the deployable re-entry capsule contains a scientific experiment and is 

assumed itself as a piggy back payload of the European Automated Transfer Vehicle 

(ATV), launched by the Ariane 5. After rendez-vous and docking operations with the 

ISS, the experimental payload is implemented in the Station to perform its scientific 

mission. Once the scientific mission is completed, the experiment can be included 

again in the capsule and safely enter the Earth atmosphere (exploiting the deployable 

heat shield) for recovery and post-flight inspections and analyses. 

 

 

Figure 1.10: Potential scenario for a Space mailing mission to/from the ISS (10) 
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1.4.2 Orbital scientific mission to/from LEO 

 

The deployable re-entry capsule can be launched as a piggy back payload of a certain 

launcher directly into LEO for independent orbital missions, whose objective may 

include: 

• microgravity experiments, mainly in the fields of biology and biotechnology; 

• exoatmospheric research, including exobiology, Space materials science; 

• Space engineering and technology. 

Figure 1.11 reports a potential scenario for this kind of mission, taking advantage from 

the European launcher Vega. 

 

 

Figure 1.11: Potential scenario for orbital Space mission to/from LEO (10) 

 

1.4.3 Earth observation mission 

 

Further applications for the analyzed system may include Earth observation mission for 

Earth's environmental protection, prevention of natural disasters and homeland 

security. In some cases these mission scenarios require very responsive actions, not 

always feasible for conventional Earth observation satellites, which could require 

expensive and irreversible orbit changes.  

That is the reason why a system able to quickly access to Space into a specific orbit for 

a dedicated observation mission, to retrieve a large amount of data at high spatial 

resolution and to safely return on ground can be extremely attractive for the above 

mentioned applications.  

A properly designed deployable re-entry capsule could be very useful for these scopes, 

in particular using air-launch for orbit injection. In fact, the capsule can be included in 

folded configuration inside the payload bay of an air-launched rocket and injected into a 
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certain orbit, easily selectable taking advantage of the flexibility offered by air-launch. In 

fact (11), (12): 

• the airplane may be seen as a Flying Launch Pad able to serve any location on 

Earth; 

• any orbit inclination and launch azimuth can be achieved without expensive out-

of-plane orbital manoeuvres; 

• the payload can take full advantage of the mother airplane speed, orientation 

and altitude at the time of the release; 

• gravitational and aerodynamic losses are reduced;  

• air launch vehicles can operate free of national range scheduling constraints, 

have minimum launch site requirements and offer the potential for aircraft-like 

operations, providing responsive launch on demand or launch on schedule. 

The orbital injection can be performed at very low altitude (e.g. 150-200 km) to reduce 

size, mass and cost of optical equipment, optimize the spatial resolution on the ground. 

In this way the gap between platforms operating up to 50 km (e.g. stratospheric 

balloons and Unmanned Aerial Vehicles) and traditional satellites for Earth observation, 

generally operating above 400 km (13) can be bridged. In addition, many kind of orbits 

can be selected for efficient observations, depending on the specific mission 

requirement, due to the above mentioned flexibility offered by air launch (14).  

Once the mission is completed, after a maximum duration in the order of a few days, 

the aero-braking system performs an aerodynamic de-orbit manoeuvre, a controlled re-

entry into the atmosphere and a soft landing (or splash down) to allow users to retrieve 

and post-process the data recorded on board (13). 

 

1.4.4 Orbital decay system for Space debris mitigation 

 

The increasing diffusion of standardized nano and pico-satellites, like CubeSat (15) 

and PocketQube (16), characterized by limited volume and mass and by the use of 

Commercial Off-The-Shelf (COTS) electronic components, led in the last years to a 

large decrease of the satellite price tag, producing as a consequence a wider Space 

accessibility. This enabled regular launch opportunities for several systems in the last 

decade and many attractive projects are planned for the near future.  

On the other hand, as the number of missions increases, the risk produced by the 

orbital debris, intended as a combination between hazard and vulnerability, 

dangerously rises. Each year 30-40 launches inject 60-70 new objects into orbit, so 

that a report of the National Research Council of USA stated in 2010 that the orbital 

environment has already reached the “Tipping Point”, the threshold of the so called 
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“Kessler Syndrome”. According to this study, there is enough debris and junk to start a 

cascade of collisions that will make LEO unusable in decades from now (17). 

The dangerous proliferation of Space debris, now amounting to approximately 700000 

items circling the Earth, of which only about 21000 larger than 10 centimetres in 

diameter are tracked, enforces to find out complex solutions for their removal. Some 

examples in this directions are the Active Debris Removal (ADR) and the On-orbit 

Satellite Servicing (OSS) (18). ADR is mainly intended to remove objects in LEO 

(including spent rocket stages), while OSS is typically aimed at refuelling operations 

and safe lifting to “graveyard” orbits of inoperative GEO-based satellites (18). However, 

these proposals have to face with a multitude of difficulties due to technical complexity 

and funding issues. The last problem, in particular, is due to the difficulty of making 

such proposals commercially attractive, in order to raise funds for their achievement. In 

addition, legal and political consideration issues concerning the definition of Space 

debris, jurisdiction, legislation, control and liability related to those ADR and OSS 

solutions are even more troubling than technical hurdles. Other patented designs for 

Space debris removal are based on systems intended to create an artificial atmosphere 

at high altitudes in order to induce satellites decay (19), (20), (21). 

It is evident that it is smarter and more affordable not creating remnants rather than 

clean them up. In this regard, it is of utmost importance to develop safe and low cost 

de-orbit systems capable to fulfil the growing necessity to avoid on-orbit collisions and 

reduce Space debris.  

In this field RICE project (22) has the objective to develop a low-cost, low-mass flight 

system able to expose CubeSats to the LEO environment for scientific experiments 

and to safely recover them for post-flight analyses. RICE system is intended to be 

launched as a secondary payload and injected into LEO. After 1 to 4 weeks on-orbit, 

the vehicle is designed to perform a propulsive de-orbit manoeuvre and an atmospheric 

re-entry with the service module separation from the entry vehicle. Nonetheless, a 

number of disadvantages characterize this solution, including the need to use a 

dedicated propulsive subsystem for de-orbit operations and the impossibility to launch 

the system by means of a standard CubeSat Picosatellite Orbital Deployer (POD). 

In the present work the deployable decelerators concept is applied to nano-satellites, in 

particular to standard CubeSats, in order to exploit the aerodynamic drag to induce the 

rapid satellite decay after the end of its mission and therefore to contrast the problem of 

Space debris. 
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1.5 Design and development of suborbital technology demonstrators 

 

Several research studies and activities on deployable re-entry capsule have been 

carried out since 2010 at the University of Naples "Federico II" for different mission 

scenarios (17), (23), (24), (25), (26). However, many of them are recently focused on 

the development of technology demonstrators for European suborbital sounding 

rockets. The rational of the this choice is to obtain meaningful experimental 

verifications of several phenomena connected with the atmospheric re-entry of 

deployable capsules in mission scenarios characterized by relatively low complexity 

and then to exploit results for the study and development of analogous systems re-

entering from LEO.  

Sounding rockets have been used by the European Space Agency (ESA), since the 

’80s, as research platforms for scientific experiments performed in microgravity. The 

microgravity conditions are realized for periods of different duration: the larger the 

maximum achievable altitude of the suborbital parabolic trajectory, the larger the 

duration. A schematic view on the different class of European sounding rockets can be 

found in Figure 1.12. 

 

 

Figure 1.12: ESA sounding rockets (27) 

 

1.5.1 Mission scenario onboard MAXUS 

 

MAXUS is the largest sounding rocket of the ESA. Its main characteristics are 

summarized in Table 1.4 and in Figure 1.13(b).  

In addition to scientific experiments in microgravity, the recent MAXUS-8 mission in 

2010 also included a secondary payload, the capsule SHARK (Sounding Hypersonic 
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Atmospheric Re-entering Kapsule), designed by the Italian Aerospace Research 

Centre (CIRA) with the support of the European Space Agency (ESA) to test a sharp 

nose cone made of Ultra High Temperature Ceramic (UHTC) material in hypersonic 

conditions (28). 

During the ascent parabola of the sounding rocket, the capsule was ejected at an 

altitude of about 150 km, performing a 15 minutes flight in the atmosphere, concluded 

with the atmospheric re-entry and the final landing. The project proved for the first time 

the possibility to execute a re-entry test flight by dropping a capsule from the MAXUS 

sounding rocket.  

 

  

(a) (b) 

Figure 1.13: The launch of MAXUS-7 in May 2006 (a) and a schematic drawing of the MAXUS 
rocket (b) (27) 

 

Microgravity 
duration [min] 

Number of 
modules 

Payload  
Diameter [cm] 

Payload  
Length [m] 

Payload  
Mass [kg] 

12.5 5 64 3.8 480 

Table 1.4: Main features of the MAXUS sounding rocket (27) 

 

In the first suborbital scenario analyzed in this work, a technology demonstrator of 

deployable re-entry capsule is supposed to be ejected from the MAXUS rocket 

interstage similarly to the SHARK capsule. In particular, the capsule ejection can occur 

during the ascent phase of the MAXUS sounding rocket, after the payload bay 
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separation from the booster, also in this case around 150 km altitude. Then the capsule 

is intended to follow a parabolic trajectory, having an apogee around 720 km, and 

finally to enter the atmosphere. Despite the lower total energy, in this work it will be 

shown that the entry path is such that aerothermal and mechanical loads experienced 

in the descending leg of the trajectory are comparable and even larger than the ones 

characterizing an orbital re-entry, respectively. 

 

1.5.2 Mission scenario onboard REXUS 

 

The Rocket-borne EXperiments for University Students (REXUS) programme allows 

students from Universities across Europe to carry out scientific and technological 

experiments on small sounding rockets. The REXUS program (29) is realised under a 

bilateral Agency Agreement between the German Aerospace Centre (DLR) and the 

Swedish National Space Board (SNSB). Every year two rockets are launched from the 

Esrange Space Centre in northern Sweden. The student experiments are launched on 

unguided spin-stabilized solid propellant single stage rockets, like the one shown in 

Figure 1.14 (29). A typical REXUS rocket is composed of an improved Orion motor with 

exhaust nozzle extension, a tailcan, three stabilizing fins and a motor adapter with an 

integrated separation system. The standard payload bay include a recovery module, a 

service module and two experiment  modules. One of the two available REXUS rockets 

has also an ejectable nosecone. In this case there is the opportunity to perform an 

ejectable experiment, in addition to the standard experiment modules generally 

employed for microgravity, scientific and technology research.  

The total available mass for the student experiments is about 30 kg. REXUS standard 

configuration mass is reported in Table 1.5.  

 

Vehicle component Mass [kg] 

Improved Orion Motor 125 

Propellant 290 

Payload (without Experiment Modules) 60 

Experiment Modules 40 (max) 

Total 515 

Table 1.5: REXUS Standard mass budget 
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Figure 1.14: REXUS sounding rocket (29) 

 

When performing its mission (29), the rocket accelerates the payload for 26 s with a 

peak of acceleration of about 20 g during the boost phase. In the initial part of the flight, 

the rocket has a spin rate of approximately 4 Hz, in order to take advantage from 

gyroscopic stabilization (in the following part of the mission users can ask for yo-yo de-

spinning, if required by their experiment). The motor burnout is usually at an altitude of 

23 km. The time of the motor separation depends on the experiment requirements but 

will not be performed before the nosecone ejection, that can take place at altitudes 

larger than 55 km. The apogee is between 90 and 100 km, depending on the payload 

mass. During the descent phase in the lower atmosphere, at an altitude of about 26 

km, the payload is decelerated with a maximum acceleration of about 6 g. 

The recovery sequence of the payload remaining onboard the rocket is initiated after 

about 7 min, at an altitude of about 5 km. A parachute system decelerates the payload 

up to a terminal velocity of about 10 m/s before landing. The main typical events of the 

flight sequence are reported in Table 1.6, on the basis of the REXUS-3 mission. 

 

Flight event Flight time [s] Altitude [km] Range [km] 

Lift-off T0 0.0 0.0 

Motor burn-out T0+26 22.4 3.9 

Nosecone ejection T0+60 57.4 13.2 

Payload/motor separation T0+66 62.3 15.5 

Apogee T0+150 95.8 35.5 

Maximum payload deceleration T0+270 26.0 - 

Stabilizer chute release T0+420 5.0 70.0 

Main chute release T0+447   

Payload landing T0+640 0.0 70.0 

Table 1.6: Typical Flight Sequence based on the REXUS-3 mission (29) 

 

In this case a flight demonstrator can be ejected from the rocket fairing after the 

nosecone fairing ejection and before the rocket de-spinning. The experiment has to be 
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mounted below the ejectable nosecone on an adapter structure (see Fig. 2.13) and, 

once separated, will perform its entry mission. 

 

 

Figure 1.15: Example of experiment situated in the nosecone (29) 

 

It is clear that, due to the very low energy level of the rocket suborbital parabola (also 

when compared to the MAXUS mission scenario described in Section 1.5.1), the 

demonstrative mission would not be beneficial to test the aerothermodynamic 

behaviour of the capsule, but could give meaningful results in particular on the 

aerodynamic stabilization of the system and on the flight testing of the aerobrake 

deployment mechanism. 
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2 Numerical models 

 

In this Section the main numerical models implemented for the subsequent analyses 

will be described. First, the dynamic models employed to obtain re-entry and de-orbit 

trajectories, landing dispersion and aerodynamic control of the entry path will be 

shown. Finally, fluid dynamic and Computational Fluid Dynamic (CFD) models used for 

aerodynamic and aerothermodynamic studies will be presented. 

 

2.1 Dynamic models 

 

2.1.1 Dynamic equations of motion 

 

In order to compute entry trajectories, the set of first order nonlinear ordinary 

differential Equations 2.1 (30) has been numerically integrated at discrete time-steps 

and taking advantage of the Euler’s method. They represent the dynamic equations of 

motion for a point mass characterized by three degrees of freedom.  
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�
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/ 2.1 

 

In Equation 2.1 t is the time, V the velocity, H the altitude, γ the flight path angle, B the 

ballistic parameter, g the gravity acceleration, r the radius of curvature of the trajectory, 

ψ the azimuth angle, λ the latitude, Λ the longitude and ωE the Earth's angular velocity. 

The gravitational acceleration has been assumed to vary according to Equation 2.2, 

where g0 is the gravity acceleration at sea level and R⨁ is the Earth radius.  

 

 � = �
 ( 1⨁1⨁ + -)� 2.2 
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For re-entry trajectories air density, pressure and temperature have been assumed to 

vary according to the 1976 U.S. Standard Atmosphere Model. 

Some engineering calculations can been also performed on the basis of the computed 

trajectories to estimate some important parameter variation along the entry path. In 

particular, the stagnation-point heat flux ��
 can been estimated taking advantages of 

Equation 2.3, also known as Tauber’s engineering formula (31), being ρ the 

atmospheric density, V the flight velocity and Rc the nose curvature radius. 

 

 ��
 = 1.83 ∙ 10678 �19 ∙ �: 2.3 

 

The radiative equilibrium temperature profile corresponding to the convective heat flux 

computed at the stagnation-point can be calculated solving with respect to the wall 

temperature Tw the quartic Equation 2.4. The equation has been solved by means of 

the Newton's method, being cp the specific heat, σ the Stefan-Boltzmann constant and 

ε the surface emissivity. 

 

 ��
 ∙ ;1 − <= ∙ >?�� 2⁄ A − B ∙ C ∙ >?7 = 0 2.4 

 

Furthermore, the stagnation pressure p0 on the nose has been evaluated according to 

Equation 2.5 (being ρ the atmospheric density and V the flight velocity), since the 

pressure coefficient can be considered equal to 2 in hypersonic regime, according to 

Newton's theory (30). 

 

 �
 = � ∙ �� 2.5 

 

2.1.2 Period reduction model for orbital decay 

 

The orbital decay phase has been studied implementing both the dynamic equations 

described in Section 2.1.1 and a model based on the orbital period reduction due to the 

atmospheric drag (32).  

The period reduction model, reported in Equation 2.6, foresees that the orbiting object 

under consideration flies around the Earth along circular orbits, whose radius (and 

therefore whose orbital period) is step-by-step reduced by the influence of the 

aerodynamic drag. The latter factor depends, on the one hand, on the object ballistic 
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parameter B and, on the other hand, by the atmospheric density, assumed to vary, for 

altitudes larger than 175 km, according to the exponential law reported in Equation 2.7.  

In Equation 2.6 P is the orbital period, r is the orbital radius and μ⨁ the Earth’s standard 

gravitational parameter.  

 

 

���
���D�� = −3E �!�

! = 8D�F⊕4E�I / 2.6 
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In Equation 2.7 ρ0 is the reference density at 175 km altitude and SH is a scale height, 

strongly influenced by the atmospheric temperature, and therefore by the solar activity. 

In fact, the solar X-rays impinging on the Earth are absorbed at the base of the 

thermosphere (around 120 km) and this effect produces the atmospheric heating, 

which propagates upward from this level. The solar 10.7 cm radio flux is generally 

employed to directly correlate the total solar X-ray flux producing this effect with the 

scale height. This flux can vary from 65 to over 300 Solar Flux Units (SFU) within a 11-

years cycle (1 SFU = 10-22 W/m2/Hz). 

This model has been verified cross-checking its results with the analogous ones 

obtained thanks to the numerical integration of the dynamic equations of motion, for a 

capsule characterized by the ballistic parameter reported in Table 2.1. The range of 

altitudes considered varies from 270 and 100 km, while the drag coefficient has been 

preliminarily assumed constant and equal to 2, due to the high rarefaction level (26). 

 

m [kg] S [m2] CD [-] B [kg/m2] 
20 1.0 2.0 10 

Table 2.1: Capsule ballistic parameter 

 

Figure 2.1 shows the comparison of the results obtained by the two different 

approaches, in both cases assuming an Average Solar Activity (ASA). Despite the 

larger level of approximation for the period reduction method, the results agreement 

appears very satisfactory. 
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Figure 2.1: Comparison between the period reduction model and the numerical integration of 
the dynamic equations of motion for a capsule having a ballistic parameter of 10 kg/m

2
 

 

Finally, a similar validation between the two methods has been applied to the orbital 

decay from 300 to 180 km altitude, but considering a ballistic parameter in the order of 

160 kg/m2. Calculation results reported in Table 2.2 assume three different values for 

the solar activity: Minimum Solar Activity (MiSA), Average Solar Activity (ASA) and 

Maximum Solar Activity (MaSA). 

 

 Satellite lifetime [days] 
 MiSA ASA MaSA 

Direct equation solution 74.8 40.8 27.5 
Period reduction model 77.8 39.3 26.8 

Table 2.2: Satellite lifetime comparison for different solar activities 

 

Also in this case Table 2.2 shows that results obtained using the “Period reduction 

model” do not differ more than 5% from the “Direct equation solution”. It has to be 

specified that the validation test cases reported in this Section can be highly 

representative of the orbital decay for a variable geometry aerobraking capsule. The 

fist example considers the aerobrake in deployed configuration, whilst the second one 

assumes the folded aerobrake. 

 

2.1.3 Monte Carlo analysis for landing dispersion 

 

During a re-entry flight a huge number of uncertainties can be able to vary the nominal 

vehicle entry path. This can affect the re-entry phase and, in particular, the precise 

determination of the landing site. Most of these uncertainties are linked to the vehicle 

itself (e.g. uncertainties on the aerodynamic coefficients, mass distribution, reference 
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surface, parachute activation and so on). Some other disturbances, on the other hand, 

are due to the external environment (e.g. connected with the atmospheric density, the 

presence of wind). 

In order to reduce risks derived from the capsule landing and to assess the probability 

to correctly recover the system in a determinate geographical area, it can be therefore 

very important to perform re-entry calculations taking into account these uncertainties 

from a statistical point of view. The typical approach consists in Monte Carlo analyses 

for the evaluation of the landing dispersion and of the aerothermal and mechanical 

loads variation on the basis of random input parameters (33), (34), (35).  

First, a number of potential uncertainties have been identified for the missions under 

investigation, namely, the capsule mass, its reference surface, the vehicle drag and lift 

coefficients, the initial altitude, velocity and flight path angle, the density profile during 

re-entry, the influence of the wind on the aerodynamic forces. It is worth underlining 

that many other factors should be taken into account for a more detailed analysis, but 

the objective of the Monte Carlo analysis reported in this work is mainly to provide an 

order of magnitude for landing dispersion and for loads variances in a preliminary 

phase of the study. 

As second step, random Gaussian distributions are independently generated for all the 

input parameters, on the basis of their average values and 3-σ standard deviations. In 

this work each distribution consists in 1000 off-nominal cases, representative of 1000 

pseudo-experiments (i.e. statistical tests). 

Then, for each ith statistical test case, a re-entry trajectory is evaluated assuming the 

simultaneous effect of all the random parameters calculated at the ith step. Finally, 

collecting the results deriving from every randomly initialized trajectory, some 

significant output parameters (e.g. downrange, maximum aerothermal and mechanical 

loads) have been obtained and plotted. As the number of test cases increases, also the 

output parameters tend to assume normal distributions and the analysis reliability 

increases. 

 

2.1.4 Aerodynamic control of de-orbit trajectories 

 

The uncertainties discussed in Section 2.1.3, in particular the ones connected with the 

atmosphere properties, can affect not only the re-entry phase, but also the de-orbit 

path, as it will be clarified in this Section. As also mentioned in Section 1.1, one of the 

advantages of a deployable re-entry capsule consists in the possibility to modulate the 

reference surface area during the atmospheric re-entry to control the trajectory and 

target the payload into a desired un-populated area for safe landing and recovery. In 
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particular, the control can be performed in such a way to cope with the differences 

between the trajectory detected by on board instrumentation and the nominal one.  

In order to show the importance of such a kind of control, in particular for the de-obit 

phase, the shift for the entry interface point (conventionally at 120 km altitude) has 

been calculated and depicted in Figure 2.2 for an equatorial re-entry trajectory from 

LEO (assuming the ballistic parameter reported in Table 2.1). Figure 2.2 shows the 

entry point shift as a function of the solar radio flux discrepancy from the nominal 

conditions. It is evident that even small uncertainties in the above mentioned parameter 

can produces a huge error in the entry interface point and, as a consequence, a huge 

uncertainty on the landing site location. 

 

 

Figure 2.2: Entry interface point shift for different values of the solar radio flux error  
(with respect to the average conditions) 

 

In the de-orbit phase, an aerodynamically-based control has been therefore considered 

in the present work. At each time step, in particular, a surface increment or decrement 

ΔS has been applied to the reference surface, according to Equation 2.8 (being H and 

Hnom the actual and the nominal altitude and Λ and Λnom the actual and the nominal 

longitude, respectively). 

 

 P
 = QL ∙ %- − -RST' + Q� ∙ %Λ − ΛRST' 2.8 

 

In the previous equation the surface area correction has been assumed to be 

proportional to the altitude and longitude discrepancy between the nominal trajectory 

and the one detected by on-board instrumentation. The constant gains have been 

assumed equal to 0.1.  
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2.2 Fluid dynamic and Computational Fluid Dynamic (CFD) models 

 

2.2.1 Fluid dynamic models for hypersonic flows 

 

During hypersonic flights, due to the high total enthalpy and to the presence of strong 

shock waves, the huge energy conversion in sensible enthalpy can cause dissociation 

and, in more extreme conditions (which will not be considered in the present work) 

even ionization phenomena. In any case the perfect gas model is no longer applicable 

and the air has to be modelled as a mixture of reacting gases in chemical non-

equilibrium.  

In this case the fluid dynamic governing equations are the following (36): 

• Continuity 
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where ρ is the mixture density and V the mass velocity of the fluid mixture. 

• Species 
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where ρi, Di, αi and ωi are the density, the mass diffusivity, the mass fraction and the 

mass production of the ith species of the mixture, respectively. 

• Momentum 
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where p is the mixture density and pressure and μ the dynamic viscosity. For each 

species the perfect gas model is applicable, while the mixture pressure p can be 

calculated by means of the Dalton’s law reported in Equation 2.12 as a function of the 

partial pressures pi of the N species considered. 

 

 � = U �V
W
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• Energy 

 

 ( )
( )[ ] ( ) ( )








∇⋅+⋅∇⋅+∇⋅∇=+⋅∇+

∂

∂
∑

=
ii

N

i

i

s
DhVVTVpE

t

E
αρµλρ

ρ

1

0
2  2.13 

 

where E, λ and T are the total energy, the thermal conductivity coefficient and the 

temperature of the mixture, while hi the sensible enthalpy per unit mass of the ith 

species of the mixture. 

The source term for the ith chemical species in Equation 2.10 is the sum of the molar 

rate of creation/destruction of the ith species over the R reactions that the species 

participate in, as shown in Equation 2.14, being ℳV the molecular weight of the ith 

species. 

 

 �V = ℳV U �ZV,\
]

\XL  2.14 

 

The creation/destruction rate of each species can be obtained by means of the 

Equation 2.15. 

 

 �ZV,\ = Γ ∙ _νa,bcc − νa,bc d ∙ ekg,b hiCk,blmn,opqo
kXL − kr,b hiCk,blmn,oppqo

kXL s 2.15 

 

In Equation 2.15 Nr is the number of chemical species in the rth reaction, Cj,r the molar 

concentration of each reactant and product in the rth reaction, tV,\c  and tV,\cc  are the 

stoichiometric coefficients for reactant and product species i in the rth reaction, Qu,\ and Qv,\ the forward and the backward rate constant for reaction r, wx,\c  and wx,\cc  the forward 

and backward rate exponent for each jth reactant and product in reaction r and Γ takes 

into account the third body efficiency on the reaction rate. 

Finally, the forward rate constant for the generic rth reaction can be found by means the 

Arrhenius equation labelled as Equation 2.16. 

 

 Qu,\ = y\ ∙ T{o ∙ e6}o ℛ��  2.16 

 

In Equation 2.16 Ar is called pre-exponential factor, βr  temperature exponent, Er is the 

activation energy for the rth reaction and ℛ the universal gas constant (from a 

dimensional point of view the ratio �\ ℛ⁄  is a temperature and can be also referred as 
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activation temperature for the rth reaction). If the reaction is reversible, the backward 

rate constant for the rth reaction is computed from the forward rate constant using the 

equilibrium constant for the reaction. 

 

2.2.2 CFD models 

 

The governing equations presented in Section 2.2.1 can be also written in a generic 

vector form as shown in Equation 2.17. 

 

 
���� + ∇ ∙ _� − �d = 
 2.17 

 

In Equation 2.17 � is the unknown vector: 

 

  � =
���
���

�L��⋮�V�������
��� 2.18 

 � is the non dissipative part of the flux vector, that is: 

 

 � =
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���
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where � denotes the singular tensor. � represent the dissipative part of the flux vector: 
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being  �V the mass diffusivity of the ith species and �� the dissipative part of the stress 

tensor. 
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Finally, 
 is the production term: 

 

 
 =
���
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��� 2.21 

 

This system of equation with suitable boundary conditions has been numerically solved 

for aerodynamic and aerothermodynamic analyses taking advantage of the software 

FLUENT (37). The program is based on the solution of the discretized Equation 2.17 by 

means of a finite volume technique. In each control volume, Equation 2.17 can be 

written as reported in Equation 2.22, being VC the control volume considered and Ai 

one of its faces (see Figure 2.3). 
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Figure 2.3: Example of control volume 

 

Finally, in Equation 2.22: 
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In the present work, a density-based, time implicit, numerical resolution scheme, 

adopting the Advanced Upstream Splitting Method (AUSM+) scheme for convective 

numerical fluxes, has been used.  

The density-based approach consists in the simultaneous solution of the continuity, 

momentum and energy equations, while the pressure field is determined from the 

equation of state. Since the governing equations are non-linear (and coupled), a 

number of iterations of the solution loop must be performed before a converged 

solution is obtained. The non-linear governing equations are linearized to produce a 

system of equations for the dependent variables in every computational cell. The 

resultant linear system is then solved to furnish an updated flowfield solution at each 

iteration.  

The governing equations have been linearized by means of an implicit formulation. An 

implicit scheme foresees that, for a given variable, the unknown value in each cell is 

computed by means of a relation including both existing and unknown values from 

neighbouring cells. Each unknown will therefore appear in more than one equation in 

the system and these equations must be solved simultaneously to give the unknown 

quantities. 

For the mission scenarios characterized by relatively high energies (i.e. for LEO re-

entry missions), air has been modelled as a 5 species reacting mixture (O2, O, N2, N, 

NO) and constants in Equation 2.16 have been set according to the 5-reactions Park's 

model (38), (39), as reported in Table 2.3. In Table 2.3 M represents a generic third 

body not directly participating in the reaction. 

 

Reaction 
Af,r 

[m3/(kmol∙s)] 
βf,r Er  [J/kmol] 3rd body efficiency 

�� + � ↔ 2� + � 2.0∙1018 -1.5 4.94∙108 
O2=1, O=5, N2=1 

N=5, NO=1 

�� + � ↔ 2� + � 7.0∙1018 -1.6 9.40∙108 
O2=1, O=4.28, 

N2=1 
N=4.28, NO=1 �� + � ↔ � + � + � 5.0∙1012 0 6.28∙108 

O2=1, O=22, N2=1 
N=22, NO=22 �� + � + � ↔ �� + � + � 2.4∙106 1 1.61∙108 - 

�� + � + � ↔ �� + � + � 1.8∙1011 0 3.19∙108 - 

Table 2.3: Reaction rate parameters based on the Park's model (39) 

 

On the other hand, for entry missions along suborbital trajectories, air has been 

assumed as an ideal gas, considering that the total flow enthalpy in that cases is not 

able to trigger significant dissociation phenomena. 
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In addition, a laminar viscous model has been assumed. In any case the transport 

properties (i.e. the dynamic viscosity, the thermal conductivity and the mass diffusivity) 

have been evaluated according to the kinetic theory of gases (40). 

Different kind of boundary conditions have been used: 

• pressure far-field in order to model a free stream condition dictated by re-entry 

trajectories; 

• pressure outlet for the downstream surfaces; 

• wall conditions for the surface of the capsule; 

• axis/symmetry conditions to model 2D axisymmetric and 3D symmetric 

problems, respectively.  

In particular, on walls non-slip conditions and constant temperatures of 300 K were set. 

The latter setting has been assumed to have a conservative estimation for the 

convective heat fluxes.  

Also, for relatively high energy scenarios, CFD analyses have been performed setting 

either a Non-Catalytic (NC, see Equation 2.24) and a Fully-Catalytic (FC, Equation 

2.25) condition on the walls. In Equation 2.24 αi represents the concentration of the ith 

species and n the direction normal to the wall while, in the first relation in Equation 

2.25, αprod stands for the concentration of the species generated by the oxygen and 

nitrogen dissociation reactions. 

 

Non-Catalytic condition (NC) ;��V�� A? = 0 2.24 

 

Fully-Catalytic condition (FC) ��
�_ �=\S�d?  = 0      _���d?    = 0.22_�W�d?    = 0.78 / 2.25 

 

In Fully-Catalytic conditions the energy stored in the chemical degrees of freedom is 

completely released at the wall, causing additional heating. For a Non-Catalytic 

surface, this additional heating does not occur at all. The above two conditions 

represent the best and the worst possible case from the thermal heating point of view, 

but they are not necessarily encountered in practice. Generally, real materials have an 

intermediate catalycity. 
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3 Re-entry mission from LEO 

 

In this Section some possible re-entry missions for deployable aerobraking systems 

from Low Earth Orbit (LEO) will be presented. In particular, the attention will be focused 

on deployable aerobrakes applied to CubeSat satellites for de-orbit and re-entry 

purposes and on air-launched systems for Earth observation missions. 

 

3.1 System configurations 

 

3.1.1 General configuration 

 

The typical capsule configuration under consideration may consist of a cylindrical 

structure containing all the subsystems necessary for the on-orbit mission and for the 

re-entry phase, umbrella-like frameworks, off-the-shelf ceramic fabrics (e.g. NEXTEL) 

for the conical deployable heat shield and available ceramic materials (e.g. RESCOR, 

silica, alumina or zirconia) for the rigid hemispherical nose.  

The necessary subsystems include parachute, beacon, OBDH, AOCS, IMU, GPS 

receiver, batteries and sensors. The system launch mass is intended to be only few 

tens of kilograms so that the entire platform can be launched as a secondary payload 

of a launch vehicle or with a smaller air-launched rocket. After completing the on-orbit 

mission, the system performs an aerodynamic de-orbit manoeuvre taking advantage of 

the deployable structure.  

After aerocapture the separation of a satellite bus can be also foreseen, so that the 

capsule can safely re-enter through the atmosphere and, after landing, its payload can 

be recovered and/or delivered for post flight inspection and experimentation. The small 

mass/surface area ratio results in terminal velocities of the order of 10 m/s, requiring 

only terminal decelerators (e.g. small parachutes) or shock absorbers to mitigate the 

landing impact. 

Figure 3.1 shows possible vehicle configurations in the different phases of the mission. 

 

 

Figure 3.1: Capsule concept in launch (a), de-orbit (b) and re-entry (c) configuration 
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3.1.2 Aerobrake and re-entry modules on CubeSats 

 

In the present Section novel concepts of deployable aerodynamic decelerators for 

standard CubeSats are shown. In particular, two different configurations are proposed.  

As also discussed in Section 1.4.4, the first class of deployable aerobrakes is intended 

to increase the satellite cross sectional surface, in order to strongly reduce its de-orbit 

lifetime and therefore to contrast the problem of Space debris connected with the 

increasing number of micro, nano and pico-satellites into LEO. In the following, this 

configuration will be labelled as CubeSat End-of-Life System (CELS). 

The second concept, defined CubeSat De-orbit and Recovery System (CDRS), is 

based on a deployable heat shield also able to provide a safe recovery of payloads and 

potential data from LEO at low cost. It is clear that in principle these concepts can be 

applied, in general, to micro and nano-satellites. 

Since the objective for CELS configuration is to de-orbit the satellite without recovery, 

the umbrella-shaped aerobrake is not designed to withstand the aerothermal and 

mechanical loads acting during the atmospheric entry. In this regard the material 

requirements are not constraining and therefore simple and lightweight structures can 

be realized. As depicted in Figure 3.2, the CELS unit fulfils the maximum requirement 

of 11.3 centimetres in height, prescribed for Standard CubeSats (15) and, by means of 

deployable ribs, a reference diameter around 55 centimetres is reached. In this case 

the attached 2U standard CubeSat units represent the satellite payload. 

 

 

Figure 3.2: Preliminary concept for the CubeSat End-of-Life System (CELS) unit 

 

On the other hand, the proposed CubeSat De-orbit and Recovery System (CDRS) 

concept enables to safely protect the CubeSat modules during atmospheric re-entry 

allowing it to be recovered. In addition, it can be considered as a highly innovative 

system that shows, together with analogous inflatable solutions (3), (4), undoubted 

advantages if compared with solutions like the ones offered by RICE project (22).  
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In fact, unlike the RICE, the design solution proposed in the present thesis would allow 

users to launch the system by means of a standard CubeSat Picosatellite Orbital 

Deployer (POD) and to avoid propulsive devices for de-orbit operations. 

For CDRS the aerobrake structure, strengthened by the presence of an high 

temperature heat shield, is intended to protect the payload from the re-entry 

environment for its final recovery. As in the CELS case, after completing the on-orbit 

mission, the nano-satellite performs an aerodynamic de-orbit manoeuvre using the 

deployable structure. In addition, unlike the concept proposed by Andrews Space (3), 

(4), once the umbrella-like framework is opened, the reference surface can be 

modulated, changing the half-cone angle, to control the trajectory and target the 

payload into an un-populated area for landing and recovery, as widely discussed in 

Section 2.1.4. Thus the capsule safely re-enters through the atmosphere and, after 

landing, the payload is delivered for post flight inspections and experimentations. 

Furthermore, due to the small mass-over-surface ratio, it can be thought to use an 

integrated crushable structure, positioned between the heat shield and the payload, to 

increase the recovery reliability. The folded Thermal Protection System (TPS) is 1U 

sized, while the second unit is dedicated to a service module. In this case, realistically, 

only one unit can be dedicated to the payload to execute on-orbit operations (e.g. earth 

observation, microgravity, technology, life science, etc.). In particular the service 

module is intended to support orbital activities, to activate the heat shield deployment 

and to manage the aerodynamic control along the entire trajectory.  

As shown in Figure 3.3, the CDRS requires a spherical nose in ceramic materials (like 

C-SiC with special ceramic oxide coatings) in order to withstand thermal and 

mechanical loads acting around the stagnation-point and a flexible high temperature 

material for the conical part of the heat shield.  

The class of materials which can be used for the latter component strongly depends on 

the mission profile (i.e. on the temperature distributions encountered along the re-entry 

path). For maximum temperatures on the conical part of the heat shield lower than 

1200°C, multi-layer stitched blanket insulations, like the one described in (41), can be 

employed. The aerobrake described in (41) includes a first layer of cloth material that is 

resistant to temperatures up to 1400°C. It is followed by a sheet of non-porous metal 

foil and by a layer of flexible insulating felt material. A second sheet of non-porous foil 

optionally comes next, followed by a second layer of cloth material. The second cloth 

layer may be the same as the front one or may be less heat resistant to about 1000°C 

(41). A thread material that is adapted to withstand elevated temperatures is used to 

sew or stitch the two layers of cloth material, the layer of insulating material and the 

non-porous foil together (41). 
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Considering that in the present work, like it will be shown in the following 

maximum temperatures on the conical part of the heat shield can be

1200°C, flexible ablators for hypersonic decelerators, like the ones in course of 

development at NASA Ames Research Center (42), able to withstand heat fluxes in the 

, can be used. They mainly consist of PICA and SIRCA cousins with 

flexible matrixes made of silica and carbon-based felts or cloths, polymer

and organic/inorganic blended materials.  

: Preliminary concept for the CubeSat De-orbit and Recovery System (CDRS) unit

launched system for Earth observation missions

In this Section a possible configuration for an air-launchable micro

orbit and re-enter from LEO at the end of its mission, 

 the main components of the capsule are a deployable structure 

for efficient aerodynamic de-orbit and re-entry operations and a payload compartment 

able to accommodate instruments for a large variety of missions

Typical dimensions are reported in Figure 3.5. 

 

(b) 

: Possible avio-launchable system in folded (a) and deployed (b) configurations
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Figure 3.5: Typical dimensions (in mm) of the analyzed configuration

 

During the orbital phase, the deployable structure 

along its orbit and during the 

the aerobrake reference surface.

interface can be achieved

perform efficient manoeuvres in a 

propulsive boost. 

Together with the deployable heat shield

is the air launch system.

procedure are reported in 

mission is not included among the objectives of the present work.

 

3.2 De-orbit and re

 

3.2.1  CubeSats

 

3.2.1.1 De

 

As already discussed in Sectio

both the proposed CubeSat configurations have to perform an aerodynamic de

manoeuvre taking advantage from the deployable structure. Increasing the 

section, the ballistic coefficient of the satellite decreases, so that the de

atmospheric entry interface is strongly reduced. 

 

: Typical dimensions (in mm) of the analyzed configuration

ring the orbital phase, the deployable structure can be used to control the satellite 

during the orbital decay phase, by means of a proper mo

the aerobrake reference surface. In this way the right approach to the defined 

interface can be achieved. Thus, the deployable aerobrake can allow the capsule to

manoeuvres in a relatively short time, with low risk

Together with the deployable heat shield, one of the most critical aspects

system. The main advantages an capability of this innovative launch 

procedure are reported in (12) and (14), but a detailed analysis of this phase of the 

mission is not included among the objectives of the present work. 

orbit and re-entry trajectories 

CubeSats 

De-orbit trajectories 

in Section 3.1.2, after having completed the on

both the proposed CubeSat configurations have to perform an aerodynamic de

taking advantage from the deployable structure. Increasing the 

section, the ballistic coefficient of the satellite decreases, so that the de

atmospheric entry interface is strongly reduced. Table 3.1 summarizes the parameters 

34 

: Typical dimensions (in mm) of the analyzed configuration 

used to control the satellite 

, by means of a proper modulation of 

the right approach to the defined entry 

allow the capsule to 

ow risks and avoiding any 

aspects of the project 

The main advantages an capability of this innovative launch 

, but a detailed analysis of this phase of the 

, after having completed the on-orbit operations, 

both the proposed CubeSat configurations have to perform an aerodynamic de-orbit 

taking advantage from the deployable structure. Increasing the cross 

section, the ballistic coefficient of the satellite decreases, so that the de-orbit time to the 
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characterizing the de-orbit phase of a standard CubeSat and of the CELS/CDRS 

configurations. 

 

 m [kg] S [m2] CD B [kg/m2] 

Standard CubeSat 3.6 0.01 2 180 
CELS configuration 3.6 0.236 2 7.63 
CDRS configuration 3.6 0.174 2 10.3 

Table 3.1: De-orbit parameters for the lifetime evaluation 

 

The drag coefficient has been assumed equal to 2 in the de-orbit trajectory leg because 

of the high rarefaction level, according to results obtained from a Direct Monte Carlo 

aerodynamic simulation (26).  

In order to easily represent and understand the results, the comparison between the 

standard CubeSat and the CELS configuration is shown below. This can be justified 

noting that, according to Table 3.1, due to comparable values of the ballistic 

coefficients, the de-orbit results for the CELS and CDRS configurations would be very 

similar. 

In this regard, Figure 3.6 reports the satellite lifetime as a function of the initial altitude 

for a standard CubeSat (a) and then for CELS in deployed configuration (b). In 

particular, the de-orbit lifetime has been evaluated according to the period reduction 

model discussed in Section 2.1.2 and considering the Minimum Solar Activity (MiSA), 

the Average Solar Activity (ASA) and the Maximum Solar Activity (MaSA). 

 

  

(a) (b) 

Figure 3.6: Satellite lifetime as a function of the initial altitude  
for a standard CubeSat (a) and for the CELS deployed configuration (b) 

 

The results are also summarized in Table 3.2 to better understand the achievable 

improvement enabled by a deployable structure in terms of lifetime requirements. 
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Taking into consideration the maximum lifetime requirement of 25 years, it has to be 

noted that, in ASA conditions, the possible initial altitude shifts from about 550 

kilometres for a standard CubeSat to over 800 kilometres for CELS. 

 

 De-Orbit Lifetime [years] 
 Standard CubeSat Deployed CELS 

H [km] MiSA ASA MaSA MiSA ASA MaSA 
300 0.245 0.128 0.0889 0.0107 0.00561 0.00397 
400 3.65 1.02 0.489 0.155 0.0433 0.0210 
500 > 25 6.47 2.21 1.76 0.275 0.0940 
600 > 25 > 25 8.51 15.47 1.44 0.361 
700 > 25 > 25 > 25 > 25 6.25 1.19 
800 > 25 > 25 > 25 > 25 22.5 3.40 

Table 3.2: De-orbit time as function of initial altitude expressed in years 

 

Thus, the curves related to the ASA conditions in the range of altitude between 300 

and 600 kilometres have been superimposed in Figure 3.7, leading to meaningful 

results in terms of lifetime reduction. It can be noticed that, at an altitude of 600 km the 

lifetime ensured by the CELS configuration in ASA condition is almost reduced by a 

factor of 25, permitting the rapid satellite aero-capture and destruction in atmosphere. 

 

 

Figure 3.7: Comparison between the satellite lifetime as a function of the initial altitude for a 
standard CubeSat and for a CELS with the deployed decelerator; ASA conditions 

 

3.2.1.2 Re-entry trajectories 

 

Unlike the CELS, the CDRS has to be designed to withstand mechanical and thermal 

loads acting during the entire re-entry trajectory. In this regard, Table 3.3 reports the re-

entry distinctive features of the CDRS. 
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Configuration m [kg] S [m2] CD B [kg/m2] Rc [m] 
1 Re-entry module (1.3 kg) +  
1 Service module (1.3 kg) + 
1U-CubeSat Payload (1 kg) 

3.6 0.174 1.0 20.7 0.06 

Table 3.3: CDRS re-entry parameters 

 

Assuming that the re-entry phase begins at an altitude of 120 kilometres, Figure 3.8 

shows the final trajectory leg of the CDRS configuration, obtained integrating the 

dynamic equations of motion reported in Section 2.1.1.  

 

  

(a) (b) 

Figure 3.8: Altitude Vs time (a) and velocity (b) along the re-entry trajectory for the CDRS 

 

In this case, an Average Solar Activity and an orbital inclination of 51.6° (i.e. the one of 

the International Space Station) have been considered. Furthermore, the drag 

coefficient in the hypersonic continuum regime has been assumed equal to 1, 

according to CFD simulation analyses reported in Section 3.3.1. 

The discussion continues considering the aerothermal and mechanical loads 

experienced by the CDRS along its re-entry trajectory, in accordance with the 

engineering methods discussed in Section 2.1.1. Results are represented in Figure 3.9 

assuming a radius of curvature of 6 centimetres and a material emissivity of 0.8.  

Figure 3.9(b) shows in particular that the maximum radiation equilibrium temperature 

estimated for the stagnation-point region is in this case around 2000 K (i.e. around 

1700°C). 
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(a) (b) 

  

(c) (d) 

Figure 3.9: Stagnation-point heat flux (a), radiative equilibrium temperature (b), stagnation-point 
pressure (c) and deceleration (d) along the entire re-entry trajectory for the CDRS 

 

3.2.1.3 Control of the target re-entry point 

 

As mentioned in Section 3.1.2, once the umbrella-like framework is deployed, the 

reference surface area of the CDRS can be adjusted to control the trajectory and target 

the payload into a desired un-populated area for landing and recovery. In particular, the 

control is performed in such a way to cope with the differences between the de-orbit 

trajectory detected by on board instrumentation and the nominal one. Thus the capsule 

safely re-enters through the atmosphere and, after landing, the payload is delivered for 

post flight inspections and experimentations. 

A simple algorithm for the CDRS control in the de-orbit phase has been therefore 

considered. At each time step, in particular, a surface increment or decrement has 

been applied to the reference surface, according to Equation 2.8. 
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Figure 3.10(a) shows the surface control correction necessary to cope with the nominal 

trajectory in presence of a solar radio flux 5% higher than the average one and for 

different errors in the reference density �
 evaluated at 175 km of altitude. It is indeed 

evident that, as expressed in Equation 2.7, the above mentioned parameters strongly 

influence the re-entry, resulting in great dispersions of the re-entry interface point. In 

particular a solar radio flux 5% larger than the average leads to a ground distance error 

of about 3.5%. 

Finally, from Figure 3.10 (b) it is possible to understand the effectiveness of the control 

algorithm. In a conservative approach, a solar radio flux 5% larger than the average 

one and a reference density 5% smaller than the nominal have been chosen. The 

comparison between a controlled and an uncontrolled trajectory with respect to the 

nominal one shows that the controlled is very close to the nominal, leading to great 

advantages in terms of mission reliability. 

 

  

(a) (b) 

Figure 3.10: Surface control to contrast a solar radio flux 5% larger than the nominal and 
different values of the reference density (a); Comparison between controlled and uncontrolled 
trajectory, assuming a solar radio flux 5% larger than the nominal and a reference density 5% 

smaller than the nominal one (b) 

 

3.2.2 Avio-launched system 

 

3.2.2.1 De-orbit and re-entry trajectories 

 

In this Section possible de-orbit and re-entry trajectories of an avio-launched system for 

Earth observation will be analyzed. In particular, the attention will be focused on a 

capsule characterized by the entry parameters and initial conditions reported in Table 

3.4. In Table 3.4 the initial velocity has been assumed equal to the relative orbital 
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velocity at the initial altitude of 300 km (i.e. taking into account Earth's rotation). An 

orbit inclination of 45° has also been assumed. 

 

m [kg] S [m2] Rc [m] H [km] V [km/s] γ [°] 
15.0 0.785 0.210 300 7.44 0 

Table 3.4: Entry parameters and initial conditions for the avio-launched system 

 

In this case a variable drag coefficient has been assumed along the trajectory, so to 

take into account also the effect of air rarefaction on that aerodynamic coefficient. A 

bridging relation between the continuum (c) and the free molecular flow (f) regimes for 

the drag coefficient has been assumed and reported in Equation 3.1 (43). This relation 

is a function of the Knudsen number Kn, defined as the ratio between the mean free 

path and a characteristic dimension of the capsule (in this case the reference 

diameter). The mean free path is assumed to vary with respect to the altitude according 

to the standard atmosphere model. 

 

 �� = ��,9 + _��,u − ��,9d ���� + 0.1 3.1 

 

Also in this case the drag coefficient in free molecular and continuum regimes have 

been assumed equal to 2 and 1, respectively. 

With these assumptions the nominal re-entry trajectory has been calculated 

numerically integrating the dynamic equations of motions shown in Section 2.1.1. 

Figure 3.11 reports the orbital decay of the capsule with the deployed heat shield for 

ASA conditions above 120 km altitude. It is worth noticing that this phase is performed 

in less than 3 days, while according to Table 2.2 typical lifetimes for a capsule with a 

folded heat shield and a similar mass are in the order of a few months. 

On the one hand this can be useful to have a sufficient time to perform the orbital 

mission before deploying the aerobrake and, on the other hand, when the orbital phase 

of the mission is concluded, a relatively rapid decay can be obtained. 
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Figure 3.11: Orbital decay from 300 km altitude 

 

Finally, Figure 3.12 reports the most significant re-entry parameters below 120 km 

altitude. In this case a maximum stagnation point heat flux around 500 kW/m2 is 

experienced around 75 km altitude. This leads to a maximum radiation equilibrium 

temperature on the nosecone of about 1500°C assuming a surface emissivity of 0.8. 

 

  

(a) (b) 
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(c) (d) 

Figure 3.12: Velocity (a), stagnation-point heat flux (b), acceleration (c) and stagnation-point 
pressure (d) variation along the re-entry trajectory below 120 km for the avio-launched capsule 

 

3.2.2.2 Landing dispersion analysis 

 

In this Section a statistical analysis based on the Monte Carlo method will be carried 

out in order to assess the dispersion of the nominal trajectory reported in Section 

3.2.2.1. As also discussed in Section 2.1.3, the first step of the analysis foresees the 

identification of a number of uncertainties for some flight variables, which have been 

reported in Table 3.7, Table 3.5 and Table 3.6, divided in three categories. As far as 

the atmospheric conditions are concerned, the average density at each altitude has 

been assumed to be equal to the density prescribed by the standard atmosphere and a 

3-σ variance equal to the 10% of the average value has been assumed. 

 

Variable Average Value 3-σ Variance 
Initial altitude [km] 120 0.500 
Initial velocity [m/s] 7492 10.00 

Initial flight path angle [°] -0.2477 0.01 

Table 3.5: Mission uncertainties connected with the entry interface 

 

Variable Average Value 3-σ Variance 
Capsule mass [kg] 15 0.10 
Drag coefficient [-] Equation 3.1 0.10 
Lift coefficient [-] 0 0.010 

Reference Surface [m2] 0.79 0.010 

Table 3.6: Mission uncertainties connected with the capsule configuration 

 

 

 



 

Variable 
Air density [kg/m
Wind velocity [m/s]

Table 3.7: Mission uncertainties connected with the atmospheric conditions

 

Then, random Gaussian distributions are independ

parameters reported in 

assigned average values and 3

1000 pseudo-experiments and some of them are reported in 

Figure 3.15. In particular

velocity have been plotted at 20 km altitude

Finally, 1000 re-entry trajectories (one for each 

integrated assuming the simultaneous effect of all the random parameters at the 

step. 

 

(a) 

Figure 3.13: Random Gaussian distributions for the mission uncertainties connected with the 

 

 

Average Value 3-σ Variance
Air density [kg/m3] Standard atmosphere 
Wind velocity [m/s] 0 

: Mission uncertainties connected with the atmospheric conditions

Then, random Gaussian distributions are independently generated for all the input 

parameters reported in Table 3.7, Table 3.5 and Table 3.6, on the basis of the 

values and 3-σ standard deviations. All the distributions consist in 

experiments and some of them are reported in Figure 

In particular, in Figure 3.15 the random atmospheric density and wind 

lotted at 20 km altitude for example. 

entry trajectories (one for each ith pseudo-experiment) have been 

ing the simultaneous effect of all the random parameters at the 

 

(b) 

: Random Gaussian distributions for the mission uncertainties connected with the 
entry interface 
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σ Variance 
10% 
10 

: Mission uncertainties connected with the atmospheric conditions 

ently generated for all the input 

, on the basis of the 

 standard deviations. All the distributions consist in 

Figure 3.13 through 

the random atmospheric density and wind 

experiment) have been 

ing the simultaneous effect of all the random parameters at the ith 

 

: Random Gaussian distributions for the mission uncertainties connected with the 



 

(a) 

Figure 3.14: Random Gaussian distributions for the mission uncertainties connected with the 

 

(a) 

Figure 3.15: Random Gaussi

 

The occurrences of some significant parameters characterizing the 1000 integrated re

entry trajectories (i.e. the maximum deceleration, the impact velocity, the stagn

point pressure and heat flux) have been plotted in 

these distributions tend to Gaussian curves (increasing the number of pseudo

experiments, in particular, the

that the average values are very close to the corresponding nominal values along the 

nominal trajectory. 

 

 

 (b) 

: Random Gaussian distributions for the mission uncertainties connected with the 
capsule configuration 

 

 (b) 

: Random Gaussian distributions for the mission uncertainties connected with the 
atmospheric conditions 

The occurrences of some significant parameters characterizing the 1000 integrated re

entry trajectories (i.e. the maximum deceleration, the impact velocity, the stagn

point pressure and heat flux) have been plotted in Figure 3.16. It is evident that also 

these distributions tend to Gaussian curves (increasing the number of pseudo

experiments, in particular, the Gaussian trend would be more and more 

that the average values are very close to the corresponding nominal values along the 
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: Random Gaussian distributions for the mission uncertainties connected with the 

 

 

an distributions for the mission uncertainties connected with the 

The occurrences of some significant parameters characterizing the 1000 integrated re-

entry trajectories (i.e. the maximum deceleration, the impact velocity, the stagnation-

. It is evident that also 

these distributions tend to Gaussian curves (increasing the number of pseudo-

more and more evident) and 

that the average values are very close to the corresponding nominal values along the 



 

(a) 

(c) 

Figure 3.16: Statistical distributi
maximum stagnation-point pressure (c) and the maximum stagnation

 

Finally, the landing dispersion has been evaluated in terms of downrange dispersion 

and landing point location and plotted in 

classical landing ellipse is very tight because no disturbances in the crossrange 

direction have been considered for the capsule.

 

 (b) 

 

 (d) 

: Statistical distribution of the maximum deceleration (a), the terminal velocity (b), the 
point pressure (c) and the maximum stagnation-point heat flux (d)

Finally, the landing dispersion has been evaluated in terms of downrange dispersion 

ocation and plotted in Figure 3.17. It is evident that in this case the 

classical landing ellipse is very tight because no disturbances in the crossrange 

direction have been considered for the capsule. 
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on of the maximum deceleration (a), the terminal velocity (b), the 
point heat flux (d) 

Finally, the landing dispersion has been evaluated in terms of downrange dispersion 

It is evident that in this case the 

classical landing ellipse is very tight because no disturbances in the crossrange 



 

(a) 

Figure 3.17: Landing dispersion in terms of downrange 

 

3.3 Aerothermodynamic analyses

 

3.3.1 CubeSats

 

CFD simulations have been carried out for the flow field around the CDRS 

configuration, on the basis of the numerical models reported in Section 

reacting gas mixture.  

Figure 3.18 shows the pressur

line. The free stream conditions, according to 

maximum heat flux experienced along the re

3.8. 

 

H [km] 

73.7 

Table 

 

 

 (b) 

: Landing dispersion in terms of downrange and landing point location

dynamic analyses 

CubeSats 

CFD simulations have been carried out for the flow field around the CDRS 

, on the basis of the numerical models reported in Section 

shows the pressure (a) and temperature (b) profiles along the stagnation 

line. The free stream conditions, according to Figure 3.9(a), correspond to the 

maximum heat flux experienced along the re-entry trajectory and are reported i

�� [Pa] >� [K] �� 

2.93 211 20.6 

Table 3.8: Free stream conditions for CFD simulations
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and landing point location 

CFD simulations have been carried out for the flow field around the CDRS 

, on the basis of the numerical models reported in Section 2.22.2 for a 

e (a) and temperature (b) profiles along the stagnation 

a), correspond to the 

entry trajectory and are reported in Table 

V�� 2⁄  [MJ/kg] 

18.0 

: Free stream conditions for CFD simulations 
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(a) (b) 

Figure 3.18: CDRS pressure (a) and temperature (b) variations along the stagnation line for the 
maximum heat flux condition along the re-entry trajectory 

 

Figure 3.19 shows the corresponding pressure and heat flux  distributions along the 

CDRS wall surface. The convective heat flux has been estimated in particular in NC 

and FC conditions. 

Looking at Figure 3.9(a), it can be observed that the maximum value of the stagnation-

point heat flux, slightly larger than 1100 kW/m2, is very close to the NC solution 

obtained through the CFD analysis and reported in Figure 3.19(b). In addition, the 

maximum convective heat flux acting on the flexible part of the heat shield is roughly 

one half of the one acting on the stagnation-point. Finally, the stagnation pressure 

reported in Figure 3.19(a) is in great accordance with the one predicted along the re-

entry trajectory at an altitude around 74 km and shown in Figure 3.9(c). 

  

 
 

(a) (b) 

Figure 3.19: Pressure (a) and heat flux (b) profiles along the CDRS wall; evaluated at the 
condition of maximum heat flux experienced along the re-entry trajectory 
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3.3.2 Avio-launched system 

 

3.3.2.1 Aerodynamic stability 

 

In this Section several aerodynamic analyses have been performed to assess, in 

particular, the aerodynamic stability of the system for different positions of the Centre of 

Gravity (CoG), both in continuum and rarefied regimes. The latter class of calculations 

has been performed by means of the Direct Simulation Monte Carlo, whose results 

have been widely reported in (26).  

In the latter reference more information on the computational method can be also 

found. In this work it is only worth reminding that the DSMC method (44), (45) is 

currently the only possible tool for the solution of rarefied flow fields from free molecular 

to continuum low density regimes. DSMC considers the gas as made up of discrete 

molecules. It is based on the kinetic theory of gases and computes the evolution of 

millions of simulated molecules, each one representing a large number (say 1015) of 

real molecules in the physical space. Intermolecular and molecule-surface collisions 

are also taken into account. The computational domain is divided in cells, used for 

selecting the colliding molecules and for sampling the macroscopic fluid-dynamic 

quantities. 

In order to evaluate the drag coefficient, the ballistic parameter and the stability 

characteristics of the deployable capsules at high altitudes (i.e. at 100 and 150 km), a 

number of computations has been carried out using a 3D numerical code based on the 

DSMC method. Three intermediate steps of the TPS deployment sequence have been 

also taken into account at 150 km, while at 100 km altitude the TPS has been 

considered completely deployed. At these altitudes the overall Knudsen number (KnD∞) 

ranges from 0.11 to 42. According to Moss (46), a general definition of the transitional 

regime considers the overall Knudsen number between 10-3 and 50. The capsule is 

therefore in highly rarefied regimes, very close to the free molecular flow regime. Table 

3.9 reports free stream inputs parameters for DSMC computations at the altitudes 

under investigation (being N∞ the free stream number density). 

 

H [km] ρ∞ [kg/m3] N∞ [m-3] T∞ [K] p∞ [Pa] V∞ [m/s] M∞ [-] KnD∞ [-] 

150 2.08×10-9 5.20×1016 634 4.50×10-4 7600 13.4 42.0 

100 5.59×10-7 1.19×1019 196 3.20×10-2 7500 26.3 0.11 

Table 3.9: Input parameters for DSMC computations 

 



 

The intermediate configurations of the deployment sequence have been analyzed 

according to Figure 3.20

 

(a) 

(c) 

Figure 3.20: Sketch of the deployment process: (a) Step 1, 

The intermediate configurations of the deployment sequence have been analyzed 

20, being φ the half-cone angle at each deployment step.

 

 (b) 

 

 (d) 

: Sketch of the deployment process: (a) Step 1, φ=7.50° (b) Step 2, 
(c) Step 3, φ=35.0°, Step 4, φ=45.0° (d) 
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The intermediate configurations of the deployment sequence have been analyzed 

cone angle at each deployment step. 

 

 

 

 

=7.50° (b) Step 2, φ=18.5°  
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Figure 3.21 and Table 3.10 report the ballistic parameter variation during the 

deployment phase, starting from the folded configuration (Step 0) up to the completely 

deployed TPS (Step 4). It is evident that the ballistic coefficient is reduced of about one 

order of magnitude passing from the folded to the completely deployed configurations. 

The variation of this parameter provides the measure of the capability to 

aerodynamically control the capsule during the de-orbit phase. 

 

 

Figure 3.21: Ballistic parameter variation as a function of the deploying step (150 km altitude) 

 

 Step 0 Step 1 Step 2 Step 3 Step 4 

CD [-] 2.46 2.06 2.05 2.04 1.96 

S [m2] 0.0707 0.151 0.320 0.655 0.915 

B [kg/m2] 86.2 48.1 22.9 11.3 8.38 

Table 3.10: Drag coefficient, reference surface and ballistic parameter for the different 
deployment steps (150 km altitude) 

 

As far as the longitudinal stability is concerned, the angle of attack has been ranged 

from 0° to 10° for the computation of the stability derivatives (dCMz/dα) relative to the 

Nominal Equilibrium Condition (NEC), around the zero angle of attack and from 170° to 

180° for the stability evaluation in the Reverse Equilibrium Condition (REC), around the 

angle of attack of 180°. Due to the almost linear behaviour in these ranges, in both 

cases the stability derivative has been numerically approximated by the finite difference 

in the interval Δα=10°.  

The reference system has been assumed in accordance with Figure 3.22, being the z-

axis such as to form a right-handed triad with the x and y.  

 



 

Figure 3.22: Capsule reference system and analyzed CoG locations

 

As well known, in this case, a negati

stable condition (the more negative the derivative, the more stable the system), 

considering that a negative moment coefficient represents a pitching moment. The 

analysis has been carried out considering as

Centre of Gravity (CoG) shown in 

dimension of the capsule (i.e. 60 cm). At each deployment step, the reference surfac

reported in Table 3.10 have been also considered.

Figure 3.23(a) shows the stability derivative (dC

function of the deployment step with respect to the equilibrium condition around zero 

angle of attack and for the centre of gravity locations shown in 

3.23(b) refers to the REC

longitudinally stable during the entire deployment process with respect to 

almost all the CoG location analyzed

verified with respect to the 

favourable because implies the aerodynamic self stabilization of the 

expected, at each deployment step, as the centre of gravity moves forward, the stability 

derivative decreases. 

 

 

: Capsule reference system and analyzed CoG locations

As well known, in this case, a negative value of the stability derivative identifies a 

stable condition (the more negative the derivative, the more stable the system), 

considering that a negative moment coefficient represents a pitching moment. The 

analysis has been carried out considering as poles the five different positions for the 

Centre of Gravity (CoG) shown in Figure 3.22 and as reference length the longitudinal 

dimension of the capsule (i.e. 60 cm). At each deployment step, the reference surfac

have been also considered. 

(a) shows the stability derivative (dCMz/dα) profiles at 150 km altitude as a 

function of the deployment step with respect to the equilibrium condition around zero 

angle of attack and for the centre of gravity locations shown in Figure 

REC. These figures clearly show that the analyzed configuration is 

longitudinally stable during the entire deployment process with respect to 

almost all the CoG location analyzed. At the same time, an opposite behaviour

with respect to the REC, as reported in Figure 3.23(b). This situation is very 

favourable because implies the aerodynamic self stabilization of the 

ected, at each deployment step, as the centre of gravity moves forward, the stability 
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: Capsule reference system and analyzed CoG locations 

ve value of the stability derivative identifies a 

stable condition (the more negative the derivative, the more stable the system), 

considering that a negative moment coefficient represents a pitching moment. The 

poles the five different positions for the 

and as reference length the longitudinal 

dimension of the capsule (i.e. 60 cm). At each deployment step, the reference surfaces 

) profiles at 150 km altitude as a 

function of the deployment step with respect to the equilibrium condition around zero 

Figure 3.22. Figure 

clearly show that the analyzed configuration is 

longitudinally stable during the entire deployment process with respect to the NEC for 

an opposite behaviour can be 

(b). This situation is very 

favourable because implies the aerodynamic self stabilization of the capsule. As 

ected, at each deployment step, as the centre of gravity moves forward, the stability 
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(a) (b) 

Figure 3.23: Stability derivative profiles as a function of the deployment step for different CoG 
positions at 150 km altitude, with respect to the nominal (a) and the reverse (b) equilibrium 

attitude 

 

Table 3.11 reports the stability derivatives at 100 km altitude and for the above 

mentioned centre of gravity locations. Also in this case the analyzed configuration 

shows a good stability with respect to the NEC around zero angle of attack. In addition, 

in this case the capsule is also stable with respect the REC for almost all the analyzed 

CoG locations, but the module of the stability derivative is one order of magnitude 

lower than in the previous case. It is therefore clear that the effect of the Reynolds 

number increment (from 0.628 to 277) and of the Knudsen number reduction (from 42 

to 0.11) is generally to increase the atmospheric stabilization. If no active stabilization 

techniques are foreseen, the aerobraking deployment has to be therefore carried out at 

an appropriate altitude, so to take advantage of the unique stable equilibrium condition 

at relatively high altitudes. 

 

dCMz/dα [deg-1] CG≡A CG≡B CG≡C CG≡D CG≡E 

NEC -1.1·10-2 -7.0·10-3 -3.0·10-3 -6.4·10-3 -7.6·10-3 

REC 9.2·10-4 -5.0·10-4 -2.0·10-3 -1.8·10-3 -1.0·10-3 

Table 3.11: Stability derivatives [1/deg] with respect to the Nominal Equilibrium Condition (NEC) 
and Reverse Equilibrium Condition (REC) at 100 km altitude 

 

Finally, Table 3.12 reports aerodynamic stability analyses performed by means of 3D 

CFD calculations at 50 km altitude. Results confirm the capsule behaviour verified at 

100 km altitude also in continuum regime (KnD∞≈8·10-5). 
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dCMz/dα [deg-1] CG≡A CG≡B CG≡C CG≡D CG≡E 

NEC -4.5·10-3 -3.3·10-3 -2.1·10-3 -1.0·10-2 3.7·10-3 

REC -1.9·10-3 -1.8·10-3 -1.7·10-3 -1.2·10-2 8.5·10-3 

Table 3.12: Stability derivatives [1/deg] with respect to the Nominal Equilibrium Condition (NEC) 
and Reverse Equilibrium Condition (REC) at 50 km altitude 

 

3.3.2.2 Aerothermodynamic loads evaluation 

 

In this Section a comparative aerothermodynamic study between CFD and DSMC 

methods has been performed. Also in this case CFD simulations have been carried out 

on the basis of the numerical models reported in Section 2.22.2 for a reacting gas 

mixture. Then, both CFD and DSMC analyses considered fully-catalytic wall conditions, 

assuming a constant wall temperature of 300 K. 

Figure 3.24 reports the comparison between CFD and DSMC calculations regarding 

the most significant thermal and mechanical loads acting on the surfaces of the 

analyzed capsules. 

In particular, Figure 3.24(a) shows that the convective heat flux distribution on the 

capsule surface in Fully Catalytic conditions and for the maximum stagnation-point heat 

flux corresponding to the engineering profile plotted in Figure 3.12(b). On the other 

hand in Figure 3.24(b) the pressure distribution on the thermal protection system is 

evaluated for the maximum stagnation-point pressure conditions identified in profile 

shown in Figure 3.12(d). A very good accordance can be found both between the CFD 

and DSMC methods. 

 

  

(a) (b) 

Figure 3.24: Convective heat flux profiles along the capsule surface for FC wall at the maximum ��
 condition (a); pressure profiles along the capsule surface at the maximum �
 condition (b) 
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It is clear that, as also discussed in Section 2.2.2, the convective heat flux evaluated in 

FC conditions is generally an overestimation, considering the intermediate wall 

catalycity of the material. If one consider, in particular, materials characterized by very 

low catalycity, like the RESCOR, the real heat flux is much closer to the NC solution, 

which is compared to the FC one in Figure 3.25. The NC provides therefore in our case 

both a more realistic and a more affordable load condition for the class of materials 

under consideration. 

 

 

Figure 3.25: Comparison between FC and NC convective heat fluxes at the maximum ��
 
condition 

 

In Figure 3.26 the contour distributions for some significant flowfield variable have been 

reported in the maximum stagnation-point heat flux condition. From Figure 3.26 it can 

be noticed that DSMC calculations overestimate the stand-off distance and the shock 

wave thickness with respect to CFD, resulting in a smoother variation of the flowfield 

variables along the stagnation line. 

 



 

(a) 

Figure 3.26: Pressure (a), Temperature (b) and 
capsule configuration at the maximum stagnation

 

  

(b) 

: Pressure (a), Temperature (b) and Velocity (c) distributions in the flow field past the 
capsule configuration at the maximum stagnation-point heat flux condition
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(c) 

(c) distributions in the flow field past the 
point heat flux condition 
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4 Suborbital entry trajectories onboard sounding rockets 

 

4.1 System configurations and mission profiles 

 

In the present Section technology demonstrators to be launched onboard the MAXUS 

and REXUS sounding rockets will be described in terms of system configuration and 

mission profile. 

From an aerodynamic point of view, both the capsules present the same basic 

axisymmetric sphere-cone configuration, mainly consisting of a combination of a rigid 

hemispherical nose-cap and a conical flexible high temperature resistant fabric. A 

cylindrical compartment provides the accommodation for the payload and all the 

subsystems necessary for the mission (including batteries, actuators, sensors, data 

handling system and antenna beacon).  

Different mass and dimensions have been considered for the two analyzed scenarios 

due to the different available volumetric envelopes offered by the two sounding rockets. 

The MAXUS mission profile, as it will be more clear in the following, also requires a 

more resistant (and therefore more massive) structure to withstand the larger dynamic 

and thermal loads experienced along the re-entry path. The main geometric 

parameters of the analyzed configurations are reported in Table 4.1. 

 

 MAXUS REXUS 

Mass [kg] 15 5.0 

Reference surface [m2] 0.79 0.64 

Ballistic parameter [kg/m2] 19/14 7.8 

Reference diameter [m] 1.0 0.90 

Radius of curvature [cm] 17/27 12 

Table 4.1: Characteristic parameters for the analyzed configuration 

 

In addition, for the technology demonstrator to be launched onboard the MAXUS 

rocket, two aerodynamic configurations, characterized by two different half-cone angles 

(i.e. 45° and 60°), have been considered. The analyzed configurations are supposed to 

have the same mass and reference surface, but different ballistic parameters (due to 

the different drag coefficient, as it will be clarified in the following) and radius of 

curvature, as also reported in the second column of Table 4.1. 

As far as the deployment mechanism is concerned, for all the analyzed configurations, 

a proper number of telescopic rods, hinged to the main body of the capsule and a 

sliding structure are employed to rotate and tighten the flexible fabric, so to realize the 
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desired half-cone angle. Other structural constraints are provided by metallic threads 

anchored to the sliding structure and the main body of the capsule. The entire 

deployment sequence is supposed to be electronically controlled. 

 

4.1.1 Technology demonstrator for MAXUS sounding rocket 

 

The first suborbital mission scenario analyzed foresees the ejection of the deployable 

re-entry demonstrator from the MAXUS interstage at about 150 km altitude, during the 

exoatmospheric ascent phase, a parabolic trajectory up to an apogee around 720 km 

and, finally, an atmospheric re-entry phase starting from an altitude of 100 km, as also 

schematically depicted in Figure 4.1. 

 

 

Figure 4.1: Suborbital mission scenario from MAXUS sounding rocket 

 

For the flight events occurring below 100 km altitude, the main flight phases are in 

particular illustrated in Figure 4.2. After rocket burnout and coast, the MAXUS payload 

will be separated by the engine at 100 km altitude, 86 s after lift-off. Only during the 

exoatmospheric ascent phase the capsule will be ejected from the payload interstage 

at about 150 km altitude, continuing its ascent phase up to an apogee of about 720 km. 

The altitude and flight parameters (in particular velocity and flight path angle) at the 

time of the capsule ejection from the MAXUS payload shall be clearly identified in 



 

agreement with the mis

for a correct mission analysis

have been assumed in agreement with the SHARK mission 

 

Altitude [km]

150

Table 4.2: Preliminary flight parameter at the time of the capsule ejection from MAXUS

 

Figure 

 

The experimental procedure shall be automatically controlled using 

the onboard computer. 

deployment:  

• the deployment sequence begins and is completed in the exoatmospheric flight, 

i.e. before atmospheric re

• the aerobrake is only partially deployed in the exoatmospheric phase, assuming 

a partial half-cone 

tensioning is carried out during the descent trajectory between 90 km and 70 

km. 

The latter solution can be useful to exploit the unique aerodynamically stable attitude of 

the folded configuration, as it will be pointed out in the following. 

system for the aerobrake 

agreement with the mission managers and eventual dispersion shall be also provided 

for a correct mission analysis. In this work preliminary values reported 

in agreement with the SHARK mission (28). 

Altitude [km] Velocity [km/s] Flight path angle [°]

150 3.20 87.0 

: Preliminary flight parameter at the time of the capsule ejection from MAXUS

Figure 4.2: Mission scenario below 100 km altitude 

The experimental procedure shall be automatically controlled using 

the onboard computer. Two different scenarios may be foreseen for the heat shield 

deployment sequence begins and is completed in the exoatmospheric flight, 

i.e. before atmospheric re-entry; 

the aerobrake is only partially deployed in the exoatmospheric phase, assuming 

cone angle in the order of 20°, but complete deploymen

tensioning is carried out during the descent trajectory between 90 km and 70 

The latter solution can be useful to exploit the unique aerodynamically stable attitude of 

the folded configuration, as it will be pointed out in the following. A back

system for the aerobrake deployment, based on pressure and/
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ntual dispersion shall be also provided 

. In this work preliminary values reported in Table 4.2 

Flight path angle [°] 

: Preliminary flight parameter at the time of the capsule ejection from MAXUS 

 

The experimental procedure shall be automatically controlled using a time controller of 

Two different scenarios may be foreseen for the heat shield 

deployment sequence begins and is completed in the exoatmospheric flight, 

the aerobrake is only partially deployed in the exoatmospheric phase, assuming 

angle in the order of 20°, but complete deployment and 

tensioning is carried out during the descent trajectory between 90 km and 70 

The latter solution can be useful to exploit the unique aerodynamically stable attitude of 

A back-up activation 

, based on pressure and/or acceleration 
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measurements along the nominal re-entry trajectory, shall be also considered in case 

of temporal mismatch between nominal and real trajectory.  

The flight test should demonstrate the correct deployment procedure of the capsule 

heat shield, the aerodynamic deceleration and re-entry and the payload survivability. In 

addition, the most important flight data should be recorded and recovered for post-flight 

analyses to assess the thermal and aerodynamic performances of the deployable re-

entry capsule. The collected flight data can be also useful for trajectory reconstruction 

and comparison with the analysis and design techniques used in the development of 

the re-entry system. 

Considering the cylindrical volume available in the MAXUS interstage, having a 

diameter of 29 cm and a height of 25 cm and shown in Figure 4.3, different 

aerodynamic and structural configurations have been investigated for the 

demonstrator. 

 

 

Figure 4.3: A possible capsule integration in the sounding rocket interstage 

 

As already discussed in Section 4.1, a trade-off study will be performed between two 

possible solutions, the former characterized by a half-cone angle of 45° and the latter 

by a half-con angle of 60°, in order to select the most suitable configuration. The 

analyzed configurations are shown in Figure 4.4 and Figure 4.5 in folded, intermediate 

and completely deployed configurations, respectively. They have been designed in 

order to provide the same reference diameter and almost the same re-entry mass, in 

accordance with the values reported in Table 4.1. 
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Figure 4.4: Aerodynamic configuration characterized by a half-cone angle of 45° 

 

 

Figure 4.5: Aerodynamic configuration characterized by a half-cone angle of 60° 

 

In the first design solution, depicted in Figure 4.4, the telescopic rods are initially closed 

and parallel to the cylindrical body of the capsule. The heat shield deployment is 

performed in two phases. In the first phase, represented in second picture of Figure 

4.4, the rods elongate remaining almost parallel to the cylindrical surface of the payload 

container and the TPS fabric almost completely tensioned. In the second phase, 

represented in the third picture of Figure 4.4, the heat shield is deployed thanks to the 

sliding of a cylindrical supporting structure coaxial with the payload bay, able to 

guarantee the hinged rods rotation so to reach a half-cone angle of 45°.  

In the second design solution, shown in Figure 4.5, the mechanical rods are split in two 

sections, able to rotate and deploy as depicted in the second picture of Figure 4.5. In 

this case the final tensioning is applied through the metallic threads attached at the 

bottom sliding structure and a half-cone angle of 60° is reached. 

From an aerodynamic point of view there are therefore two main differences, which will 

be supported by some of the results reported in the following Sections: 

• the first configuration is more stable than the second one and, for the first 

configuration, aerothermal and mechanical loads more steeply reduce moving 

from the nose towards the flexible aerobrake; 

• the second configuration is characterized by a larger drag coefficient with 

respect to the first one. The second capsule (having the same mass and 

reference surface of the first one) has therefore the advantage to be 

characterized by a lower ballistic parameter, leading to lower aerothermal and 

mechanical loads during re-entry. 
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4.1.2 Technology demonstrator for REXUS sounding rocket 

 

The second suborbital mission scenario analyzed is characterized by a relatively low 

energy re-entry environment. It could be exploited to test the system, mainly from the 

aerodynamic and the mechanical points of view and to collect data in less severe entry 

conditions. This kind of scenario can therefore represent a reliable flight test basis for 

all the more complex, high-energy entry paths presented in this work, as also 

discussed in Section 1.5.2. 

This mission foresees that the capsule safely lands a dummy payload, mainly 

consisting of onboard electronics and of the recorded flight data, preserving its 

structural integrity and availability. All the data acquired during the re-entry phase will 

be collected on SD cards and, possibly, continuously downlinked to the ground to 

increase the mission reliability.  

Thus, through post-processing operations, data could be exploited to: 

• show the effectiveness of the innovative re-entry strategy; 

• validate theoretical models and pre-flight simulations; 

• refine the design for future missions. 

Considering the available volumetric envelope in the REXUS nosecone, and the 

relatively low energy re-entry scenario provided by this sounding rocket, a down-scaled 

version of the configuration presented in Section 4.1.1 has been considered.  

The characteristics geometric parameters for the configuration are reported in Table 

4.1 and in Figure 4.6. The cylindrical payload bay has a diameter of 20 cm and the 

aerobrake forms a half-cone angle of 45° with respect to the capsule symmetry axis. 

The rigid nosecone is characterized by a smaller radius of curvature than the one 

foreseen for the demonstrator launched by the MAXUS rocket. This aspect is not 

critical for this mission, considering that, as will be shown in the following, the thermal 

loads encountered during the re-entry path are largely sustainable by Commercial Off 

The Shelf (COTS) materials. In Figure 4.6 it is also specified that also in this case a 

sliding structure, able to increase the capsule height of about 10 centimetres, is 

foreseen for the deployment sequence. 

 



 

Figure 4.6: Re-entry demonstrator for a mission onboard REXUS s

 

Figure 4.7 shows some 

investigation. 

 

(a) 

(c) 

Figure 

 

entry demonstrator for a mission onboard REXUS sounding rocket

shows some CAD renderings of the folded and deployed configuration under 

 

(b) 

 

(d) 

Figure 4.7: CAD renderings of the analyzed configuration
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ounding rocket 

ed and deployed configuration under 

 

 

 

 

yzed configuration 



 

In this Section the deployment mechanism preliminarily designed for the analyzed 

configuration is also presented in 

is oriented towards the low complexity and the use of 

In folded configuration the telescopic rods 

to light blue aluminium disk 

by means of an electronic lock, while the nose cap

the cylindrical payload bay

one.  

 

(a) 

Figure 4.8: Capsule in folded configuration (a) and aluminium disk ejection (b)

 

When foreseen by the mission profile, an electric impulse 

lock. The aluminium disk, no more constrained, 

Figure 4.8(b). At this stage, t

from inside preloaded springs and the green fabric 

Figure 4.9). 

 

In this Section the deployment mechanism preliminarily designed for the analyzed 

configuration is also presented in Figure 4.8 through Figure 4.11. Basically, the design 

ards the low complexity and the use of COTS components.

In folded configuration the telescopic rods (label 4 in Figure 4.8) are kept closed thanks 

disk (label 7) constrained under the grey cylindrical box

by means of an electronic lock, while the nose cap (label 3) is constrained to the top of 

payload bay (label 6) thanks to an electronic lock similar to the previous 

 

 (b) 

: Capsule in folded configuration (a) and aluminium disk ejection (b)

When foreseen by the mission profile, an electric impulse unlocks

disk, no more constrained, is therefore ejected, as also depicted in 

At this stage, the telescopic rods are free to extend taking advantage 

from inside preloaded springs and the green fabric (label 2) is partially tightened
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In this Section the deployment mechanism preliminarily designed for the analyzed 

. Basically, the design 

components. 

are kept closed thanks 

the grey cylindrical box (label 1) 

is constrained to the top of 

thanks to an electronic lock similar to the previous 

 

 

: Capsule in folded configuration (a) and aluminium disk ejection (b) 

s the first electronic 

, as also depicted in 

free to extend taking advantage 

partially tightened (see 



 

 

A number of torsional springs 

providing the necessary arm in order to complete in an easy 

following step. A second electric impulse will unlock the second electronic lock. Some 

actuators or gas springs (label 5) can lift up the sliding structure and the nose cap. In 

this way the aerobrake is deployed, completing the full r

Figure 4.10 and Figure 4

 

Figure 

 

Figure 4.9: Telescopic rods extension 

orsional springs can guarantee a small rotation of the telescopic rods, 

providing the necessary arm in order to complete in an easy way the rotation during the 

A second electric impulse will unlock the second electronic lock. Some 

actuators or gas springs (label 5) can lift up the sliding structure and the nose cap. In 

this way the aerobrake is deployed, completing the full rotation of telescopic rods (see 

4.11). 

Figure 4.10: Preliminary rods rotation and nose lift up 
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guarantee a small rotation of the telescopic rods, 

e rotation during the 

A second electric impulse will unlock the second electronic lock. Some 

actuators or gas springs (label 5) can lift up the sliding structure and the nose cap. In 

otation of telescopic rods (see 

 

 



 

 

Finally, lower threads (label 8) hinged to the main body of the capsule and to the third 

part of the telescopic rods serve to avoid that the pressure load acting on the fabric 

during re-entry can refold again the aerobrake.

 

4.2 Mission analysis

 

4.2.1 Technology demonstrator for MAXUS sounding rocket

 

The trajectory computation for the technology demonstrator launched onboard the 

MAXUS rocket has been performed assuming the capsule parameters listed in 

4.1 and the initial conditions reported in 

 

H [km] 

150 

Table 

 

The parabolic trajectory of the capsule above 100 km altitude is shown in 

Re-entry trajectory computations below 100 km altitude have been performed for both 

the half-cone angle configurations. As alrea

the ballistic parameter (due to the different drag coefficient) and for the radius of 

curvature at the stagnation point (so that the nose cone is tangent to the conical part of 

the aerobrake). The most meaningful results are plotted in 

It is evident that, due to the slightly lower ballistic parameter, the 60° half

capsule exhibits a larger deceleration at higher altitudes, when compare

half-cone capsule. 

Figure 4.11: Final aerobrake deployment 

ower threads (label 8) hinged to the main body of the capsule and to the third 

part of the telescopic rods serve to avoid that the pressure load acting on the fabric 

ld again the aerobrake. 

Mission analysis 

Technology demonstrator for MAXUS sounding rocket

The trajectory computation for the technology demonstrator launched onboard the 

MAXUS rocket has been performed assuming the capsule parameters listed in 

and the initial conditions reported in Table 4.3. 

V [km/s] γ [°] λ [°] Λ 

3.20 87.0 67.9 21.1

Table 4.3: Initial parameters for trajectory computations

The parabolic trajectory of the capsule above 100 km altitude is shown in 

entry trajectory computations below 100 km altitude have been performed for both 

cone angle configurations. As already discussed in Section 

the ballistic parameter (due to the different drag coefficient) and for the radius of 

curvature at the stagnation point (so that the nose cone is tangent to the conical part of 

erobrake). The most meaningful results are plotted in Figure 4.13

It is evident that, due to the slightly lower ballistic parameter, the 60° half

capsule exhibits a larger deceleration at higher altitudes, when compare
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ower threads (label 8) hinged to the main body of the capsule and to the third 

part of the telescopic rods serve to avoid that the pressure load acting on the fabric 

Technology demonstrator for MAXUS sounding rocket 

The trajectory computation for the technology demonstrator launched onboard the 

MAXUS rocket has been performed assuming the capsule parameters listed in Table 

 [°] 

21.1 

computations 

The parabolic trajectory of the capsule above 100 km altitude is shown in Figure 4.12. 

entry trajectory computations below 100 km altitude have been performed for both 

dy discussed in Section 4.1, they differ for 

the ballistic parameter (due to the different drag coefficient) and for the radius of 

curvature at the stagnation point (so that the nose cone is tangent to the conical part of 

13. 

It is evident that, due to the slightly lower ballistic parameter, the 60° half-cone angle 

capsule exhibits a larger deceleration at higher altitudes, when compared with the 45° 



 

Figure 4.12

 

(a) 

Figure 4.13: Re-entry trajectories fo
Mach number (c) as functions of 

 

12: Capsule parabolic trajectory above 100 km altitude

 

 (b) 

 

(c) 

entry trajectories for the analyzed configurations: Time (a), Velocity (b) and 
Mach number (c) as functions of the Altitude 

66 

: Capsule parabolic trajectory above 100 km altitude 

 

 

r the analyzed configurations: Time (a), Velocity (b) and 



 

The aerothermal and mechanical loads have been calculated along the trajectories 

according to the engineering models discussed in Section 

4.14. 

 

(a) 

(c) 

Figure 4.14: Thermal and mechanical loads variation for the analyzed configurations: 
Acceleration (a), Stagnation

equilibrium Temperature (d) as functions of the Altitude

 

It is evident that the ballistic parameter reduction for a 60° half

would be obviously beneficial f

(while the maximum deceleration, as well known, is not significantly affected by the 

ballistic parameter variation). Nonetheless, maximum aerothermal and mechanical 

loads are not the only parameters dr

be pointed out in the following.

The aerothermal and mechanical loads have been calculated along the trajectories 

according to the engineering models discussed in Section 2.1.1 and plotted in 

 

 (b) 

 

 (d) 

: Thermal and mechanical loads variation for the analyzed configurations: 
agnation-point pressure (b), Stagnation-point heat flux (c) and Radiation 

equilibrium Temperature (d) as functions of the Altitude

It is evident that the ballistic parameter reduction for a 60° half-cone angle configuration 

would be obviously beneficial for a stagnation-point heat flux and pressure reduction 

(while the maximum deceleration, as well known, is not significantly affected by the 

ballistic parameter variation). Nonetheless, maximum aerothermal and mechanical 

loads are not the only parameters driving the choice of the final configuration, as it will 

be pointed out in the following. 
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The aerothermal and mechanical loads have been calculated along the trajectories 

and plotted in Figure 

 

 

 

 

: Thermal and mechanical loads variation for the analyzed configurations: 
point heat flux (c) and Radiation 

equilibrium Temperature (d) as functions of the Altitude 

cone angle configuration 

point heat flux and pressure reduction 

(while the maximum deceleration, as well known, is not significantly affected by the 

ballistic parameter variation). Nonetheless, maximum aerothermal and mechanical 

iving the choice of the final configuration, as it will 



 

The re-entry trajectories reported in 

evaluated considering the heat shiel

phase of the trajectory and assuming that the capsule reaches the conventional re

entry interface altitude (i.e. 100 km) with a proper attitude.

The effect on thermal and mechanical loads due to a heat shield dep

100 km altitude is now considered. This can be useful to investigate the effects of an 

undesired malfunctioning of the deployment mechanism or to study the possibility that 

the deployment procedure be completed only below the entry interface,

advantage from the aerodynamic stability of the folded configuration that should be 

able to guarantee the proper re

has been considered, but similar conclusion can be obtained for a 60

 

(a) 

(c) 

Figure 4.15: The effect of a delayed heat shield activation on the re
aerothermal and mechanical loads: Velocity (a) Acceleration (b), S

Stagnation

entry trajectories reported in Figure 4.13 and in Figure 

evaluated considering the heat shield completely deployed in the exoatmospheric 

phase of the trajectory and assuming that the capsule reaches the conventional re

entry interface altitude (i.e. 100 km) with a proper attitude. 

The effect on thermal and mechanical loads due to a heat shield dep

100 km altitude is now considered. This can be useful to investigate the effects of an 

undesired malfunctioning of the deployment mechanism or to study the possibility that 

the deployment procedure be completed only below the entry interface,

advantage from the aerodynamic stability of the folded configuration that should be 

able to guarantee the proper re-entry attitude. The 45° half-cone angle configuration 

has been considered, but similar conclusion can be obtained for a 60

 

 (b) 

 

 (d) 

: The effect of a delayed heat shield activation on the re-entry trajectory and on 
aerothermal and mechanical loads: Velocity (a) Acceleration (b), Stagnation

Stagnation-point heat flux (d) as functions of the Altitude
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Figure 4.14 have been 

d completely deployed in the exoatmospheric 

phase of the trajectory and assuming that the capsule reaches the conventional re-

The effect on thermal and mechanical loads due to a heat shield deployment below 

100 km altitude is now considered. This can be useful to investigate the effects of an 

undesired malfunctioning of the deployment mechanism or to study the possibility that 

the deployment procedure be completed only below the entry interface, in order to take 

advantage from the aerodynamic stability of the folded configuration that should be 

cone angle configuration 

has been considered, but similar conclusion can be obtained for a 60° half-cone angle. 

 

 

 

 

entry trajectory and on 
tagnation-point pressure (c), 

point heat flux (d) as functions of the Altitude 
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Figure 4.15 reports the outcomes of the above mentioned analysis, both in terms of re-

entry trajectory and in terms of aerothermal loads. It is evident that the aerobrake 

deployment up to an altitude of 70 km does not significantly affect any significant flow 

variable. On the contrary, deploying the aerobrake around 60 km, a sensible 

parameters variation may be noticed. It is therefore advisable not to foresee a heat 

shield deployment activation below 70 km altitude in this case. 

When considering the option to take advantaged from aerodynamic forces for attitude 

stabilization before aerobrake deployment, however, one should be also consider that 

the duration of the re-entry phase in the range of altitudes between 120 km and 30 km 

is only 25 seconds; while the capsule altitude changes from 80 km to 60 km in only 6 

seconds. For this reason, stabilization by aerodynamic forces before heat shield 

deployment can be highly risky, particularly in case of uncertainties in the flight 

trajectory. 

 

4.2.2 Technology demonstrator for REXUS sounding rocket 

 

The trajectory computation for the technology demonstrator launched onboard the 

REXUS rocket has been performed assuming the capsule parameters listed in Table 

4.1 and the initial conditions reported in Table 4.4. In particular, initial altitude, velocity 

and flight path angle refer to potential conditions at the trajectory apogee, based on 

flight data relative to past missions (29). In addition, in this case the heat shield has 

been supposed to be completely deployed at the apogee. 

 

H [km] V [m/s] γ [°] λ [°] Λ [°] 

90 250 0 67.9 21.1 

Table 4.4: Initial parameters for trajectory computations 

 

Nominal re-entry trajectories are reported in Figure 4.16, while in Figure 4.17 the main 

thermo-mechanical variables are plotted along the trajectory. It is clear that the present 

demonstrative mission is not properly useful for the aerothermal testing of the capsule, 

considering that the experienced heat flux is two orders of magnitude lower than the 

one characterizing an orbital re-entry or a parabolic flight at higher energy. 

Nonetheless, as already discussed, technology demonstrative missions onboard a low-

energy class of sounding rockets can lead to meaningful results for the flight testing of 

the deployment mechanism and for the capsule aerodynamic stabilization. 
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(a) (b) 

  

(c) (d) 

Figure 4.16: Re-entry trajectories for the analyzed configurations: Time (a), Flight Path Angle 
(b), Velocity (c) and Downrange (d) as functions of the Altitude 

 

  

(a) (b) 
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(c) 

Figure 4.17: Thermal and mechanical loads variation for the analyzed configurations: 
Acceleration (a), Stagnation-point pressure (b), Stagnation-point heat flux (c) as functions of the 

Altitude 

 

In this case a landing dispersion analysis similar to the one already discussed in 

Section 3.2.2.2, has been also performed. The input random parameters are reported 

in Table 4.5 through Table 4.7. 

 

Variable Average Value 3-σ Variance 
Initial altitude [km] 90 0.500 
Initial velocity [m/s] 250 1.000 

Initial flight path angle [°] 0 0.01 

Table 4.5: Mission uncertainties connected with the entry interface 

 

Variable Average Value 3-σ Variance 
Capsule mass [kg] 5.0 0.010 
Drag coefficient [-] Equation 3.1 0.10 
Lift coefficient [-] 0 0.010 

Reference Surface [m2] 0.64 0.010 

Table 4.6: Mission uncertainties connected with the capsule configuration 

 

Variable Average Value 3-σ Variance 
Air density [kg/m3] Standard atmosphere 10% 
Wind velocity [m/s] 0 10 

Table 4.7: Mission uncertainties connected with the atmospheric conditions 

 

The statistical distributions of the aerothermal and mechanical loads is plotted in Figure 

4.18, while the landing dispersion in terms of downrange and landing point location is 

depicted in Figure 4.19. 



 

(a) 

(c) 

Figure 4.18: Statistical distribution of the maximum deceleration (a), the terminal velocity (b), the 
maximum stagnation-point pressure (c) and the m

 

It is clear from Figure 4

classical elliptical footprint. Investigating 

behaviour, it was found that neglecting the uncertainty regarding the lift coefficient, a 

more classical result was found, as reported in 

a lower energy entry the aerodynamic coefficients 

downrange standard deviation and on the impact point location.

 

 (b) 

 

 (d) 

: Statistical distribution of the maximum deceleration (a), the terminal velocity (b), the 
point pressure (c) and the maximum stagnation-point heat flux (d)

4.19 that in this case the landing profile is 

classical elliptical footprint. Investigating which uncertainty factor affect

d that neglecting the uncertainty regarding the lift coefficient, a 

result was found, as reported in Figure 4.20. It is therefore clear that 

entry the aerodynamic coefficients produce a large

downrange standard deviation and on the impact point location. 
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: Statistical distribution of the maximum deceleration (a), the terminal velocity (b), the 
point heat flux (d) 

that in this case the landing profile is quite far from the 

uncertainty factor affected this 

d that neglecting the uncertainty regarding the lift coefficient, a 

It is therefore clear that for 

produce a larger impact on 



 

(a) 

Figure 4.19: Landing dispersion in terms of downrange and landing point location

 

(a) 

Figure 4.20: Landing dispersion in terms of downrange and landing point location

 

4.3 Aerodynamic analyses

 

4.3.1 Technology demonstrator for MAXUS sounding rocket

 

4.3.1.1 Aerodynamic stability

 

As far as the aerodynamic static stability is concerned, 

aerodynamic behaviour in folded and deployed configuration has been analyzed

entire range of variability for the angle of attack (0°

 

 (b) 

: Landing dispersion in terms of downrange and landing point location

 

 (b) 

: Landing dispersion in terms of downrange and landing point location
the uncertainty on the lift coefficient 

Aerodynamic analyses 

Technology demonstrator for MAXUS sounding rocket

Aerodynamic stability 

s far as the aerodynamic static stability is concerned, in this Section the capsule 

aerodynamic behaviour in folded and deployed configuration has been analyzed

entire range of variability for the angle of attack (0°-180°). Then, the influence of th
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: Landing dispersion in terms of downrange and landing point location 

 

 

: Landing dispersion in terms of downrange and landing point location, neglecting 

Technology demonstrator for MAXUS sounding rocket 

in this Section the capsule 

aerodynamic behaviour in folded and deployed configuration has been analyzed in the 

the influence of the 
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half-cone angle on the pitching moment of the fully-deployed configuration has been 

considered with respect to the nominal re-entry attitude. 

The capsule aerodynamic stability in folded configuration has been evaluated 

performing CFD simulations of the flowfield around the hemispherical nose and the 

cylindrical body, without considering the presence of the deployed conical fabric. 

Simulations have been carried out for angles of attack varying from 0° to 180°, with a 

step of 30°. The asymptotic conditions correspond to the one encountered at 100 km 

altitude. 

As it is possible to see from Figure 4.21, reporting the pitching moment coefficient as a 

function of the angle of attack, assuming a centre of gravity located on the longitudinal 

axis 10 cm distance from the nose tip, the capsule exhibits two trim angles of attack (0° 

and 180°). Nonetheless, it can be noticed a static stability behaviour with respect to the 

nominal re-entry attitude, while the reverse equilibrium attitude is statically unstable. 

This behaviour guarantees that the capsule will be aerodynamically self-stabilized 

when the aerobrake is folded. 

 

 

Figure 4.21: Pitching moment coefficient variation as a function of the angle of attack for the 
capsule in folded configuration (centre of gravity located 10 cm distance from the nose tip) 

 

A similar analysis has been performed for the capsule in deployed configuration, in 

particular for 60° half-cone angle. Similar results apply to the 45° half-cone angle 

configuration, in particular for what concern the stability behaviour around the reverse 

equilibrium attitude. As far as the stability derivative around the nominal re-entry 

attitude is concerned, much more influenced by the half-cone angle, a dedicated 

analysis is reported in the following, with a comparison between the two analyzed 

configurations. 



75 
 

Figure 4.22 shows the pitching moment coefficient variation as a function of the angle 

of attack assuming again the centre of gravity located on the longitudinal axis 10 cm 

distance from the nose tip. In this case the reverse equilibrium condition is statically 

stable (being the pitching moment derivative in the order of -0.0035 deg-1). However, 

the stability derivative is much less (in absolute value) in comparison to the 

corresponding value at the nominal attitude.  

Considering that an aerodynamic self-stabilization cannot be guaranteed with the 

deployed heat shield and the problems connected with the possible aerobrake 

activation below the re-entry interface (see Section 4.2.1), additional stabilization 

methods can be considered (e.g. spin stabilization, reaction wheels etc.). In this case, it 

is important to take into account that the average aerodynamic torque to be 

compensated by the attitude control system in the exoatmospheric flight (i.e. above 150 

km) has been estimated in the order of 10-5-10-4 N·m; in particular the average 

disturbance moments range from O(10-6) N·m at 300 km to O(10-4) N·m at 150 km. 

 

 

Figure 4.22: Pitching moment coefficient variation as a function of the angle of attack for the 
capsule in deployed configuration (centre of gravity located 10 cm distance from the nose tip) 

 

Finally, the aerodynamic stability has been investigated around the nominal re-entry 

attitude to compare the 45° and 60° half-cone configurations, considering again the 

centre of gravity located on the longitudinal axis 10 cm distance from the nose tip. 

From Table 4.8 it can be seen that both the capsule are stable with respect to the 

nominal re-entry attitude but, as also well known from the literature, the 45° half-con 

angle configuration exhibits a higher static stability than the 60° configuration. This 

behaviour would suggest to select, from this point of view, the 45° half-cone 
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configuration, which will be also exhibit, according to literature data, also a higher 

dynamic stability (47), (48), (49). 

 

 φ = 45° φ = 60° 

CMα [deg-1] -0.0281 -0.0150 

Table 4.8: Pitching moment derivative for the analyzed capsules in deployed configuration 
(centre of gravity located 10 cm distance from the nose tip) 

 

4.3.1.2 Aerothermodynamic loads evaluation 

 

The aerothermodynamic loads have been estimated by means of 2D CFD calculations, 

considering both the half-cone angle configurations, for the maximum stagnation-point 

heat flux conditions.  

In addition, the analysis includes the effect of the flexible heat shield bending under the 

pressure load. In particular, a fabric curvature characterized by a maximum 

displacement of 1 centimetre in the direction perpendicular to the one of the rigid 

aerobrake has been considered, according to the results of a non-linear structural 

analysis (50). 

In Figure 4.23 the non dimensional convective heat flux distributions along the capsule 

surface have been compared for two significant points of the suborbital re-entry 

trajectory (maximum stagnation-point convective heat flux and pressure conditions) 

and for a reference profile relative to an orbital re-entry scenario. It is evident that, for 

both the half-cone angles, similar trends can be observed. For each half-con angle it is 

therefore possible to assume the corresponding non dimensional profile applicable 

along the entire re-entry trajectory. Scaling these profiles with the stagnation-point heat 

flux evaluated in a certain condition of the trajectory by means of the Tauber's 

engineering formula reported in Equation 2.4, it is possible to have a first order 

approximation of the heat flux distribution along the capsule surface in any re-entry 

condition. 

In addition, Figure 4.23 shows another advantage of the 45° half-cone angle 

configuration. Despite the larger heat fluxes at the stagnation-point (due to the slightly 

larger ballistic parameter), for this configuration a steeper reduction of the convective 

heat flux can be observed with respect to the configuration characterized by a half-

cone angle of 60°. In the first configuration the flexible high temperature resistant fabric 

therefore experiences less severe aerothermal conditions. 
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(a) (b) 

Figure 4.23: Non dimensional convective heat flux distributions along the capsule surface for 
the 45° (a) and 60° half-cone angle configuration 

 

In Figure 4.24 the pressure profiles on the capsule surface as functions of the 

coordinate along the longitudinal axis are reported. It is evident that in both cases the 

fabric bending produces an additional compression shock wave, but the effect is much 

more important for the 60° half cone angle. This is an additional driving factor for the 

choice of the 45° half-cone angle configuration. 

 

  

(a) (b) 

Figure 4.24: Pressure profiles on the capsule surface for the 45° (a) 
and 60° (b) half-cone angles 
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4.3.2 Technology demonstrator for REXUS sounding rocket 

 

4.3.2.1 Aerodynamic load evaluation 

 

Also for the mission scenario onboard REXUS sounding rocket, 2D CFD analyses have 

been performed to evaluate the main loads distribution on the capsule surface. 

However, differently from other mission profiles, in this case only the pressure profile 

has been reported, considering the very low incidence of the aerodynamic thermal 

loads for the analyzed scenario. The pressure profile, in the point of the trajectory 

where a peak value at the stagnation-point is expected, is reported in Figure 4.25, 

while the corresponding pressure contour is shown in Figure 4.26. 

 

 

Figure 4.25: Pressure profile along the capsule surface for the maximum stagnation-point 
pressure condition of the entry trajectory 

 



 

Figure 4.26: Pressure contour for the maximum stagnation

 

It has been already pointed that, for the mission profile under consideration, 

and thermal loads are not so relevant

profile. Nonetheless, their numerical

method also against potenti

preliminary opportunity to test in

reproduce very well the final leg of a

 

4.3.2.2 Aerodynamic sta

 

For the mission scenario onboard the 

been carried out at different altitudes along the entry trajectory and at different 

locations of the Centre of Gravity

in the range 70-50 km. 

Table 4.9 in terms of free stream velocity, Mach number,

Reynolds number. 

 

H [km] 

70 

60 

50 

Table 4.9: Input data to CFD analyses for longitudinal stability analyses

 

 

: Pressure contour for the maximum stagnation-point pressure condition of the entry
trajectory 

It has been already pointed that, for the mission profile under consideration, 

and thermal loads are not so relevant, when compared to a high

their numerical estimation could serve to validate the 

potential flight data. In addition, this mission can serve as a 

preliminary opportunity to test in-flight the system at supersonic conditions that 

ce very well the final leg of a higher energy re-entry. 

Aerodynamic stability 

mission scenario onboard the REXUS sounding rocket, stability analyses 

at different altitudes along the entry trajectory and at different 

locations of the Centre of Gravity. The altitudes considered for the present ana

 The corresponding input data to CFD analyses are reported in 

in terms of free stream velocity, Mach number, pressure, temperature and 

V [m/s] M [-] p [Pa] T [K] Re

647.4 2.18 5.20 219.5 2710

706.5 2.25 20.3 245.4 10716

593.5 1.80 77.7 270.6 30008

: Input data to CFD analyses for longitudinal stability analyses
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point pressure condition of the entry 

It has been already pointed that, for the mission profile under consideration, dynamic 

a high-energy re-entry 

to validate the numerical 

In addition, this mission can serve as a 

flight the system at supersonic conditions that 

stability analyses have 

at different altitudes along the entry trajectory and at different 

altitudes considered for the present analysis are 

CFD analyses are reported in 

pressure, temperature and 

eD [-] 

2710 

10716 

30008 

: Input data to CFD analyses for longitudinal stability analyses 
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In Figure 4.27, at the altitude of 70 km, the variation of the moment coefficient around 

the z-axis with the angle of attack is reported. The range of angle of attack between 0° 

and 180° and different positions of the centre of gravity have been considered (both on 

and off the longitudinal axis).  

 

  

(a) (b) 

Figure 4.27: Longitudinal moment coefficient as a function of the angle of attack at five different 
centre of gravity positions at fixed longitudinal coordinates, 0.1 m (a) and 0.15 m (b) distance 

from the nose tip 

 

For the CoG located on the longitudinal axis of the capsule (yCG = 0), results show two 

stability conditions around 0° and 180°, and an unstable equilibrium condition around 

150°. It is also evident that the reverse equilibrium condition is much less stable than 

the nominal equilibrium condition. In addition it is clear that properly choosing a CoG 

location off the longitudinal axis (in particular below it), a unique stable equilibrium 

condition characterized by an angle of attack around 5°-10° can be obtained. Generally 

a relatively large trim angle of attack could result in over loading of the conical part of 

the capsule, but for this scenario dynamic and, in particular, thermal loads are not so 

critical, as also discussed in Section 4.3.2.1. 

In addition, a backward movement of the CoG decreases the absolute value of the 

stability derivative around both the nominal and reverse re-entry attitude. 

Then, the computation of the stability derivatives around the nominal and the reverse 

equilibrium condition for three different points of the re-entry trajectory (see Table 4.9), 

are reported in Table 4.10 and Table 4.11 for the CoG located on the longitudinal axis 

10 and 15 centimetres distance from the nose tip, respectively.  
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 dCM,CG/dα [1/deg] 

H [km] NEC REC 

70 -0.014 -0.0037 

60 -0.013 -0.0026 

50 -0.012 -0.0033 

Table 4.10: Stability derivatives evaluated at three re-entry conditions for the CoG located on 
the longitudinal axis at 10 centimetres distance from the nose tip 

 

 dCM,CG/dα [1/deg] 

H [km] NEC REC 

70 -0.012 -0.0035 

60 -0.012 -0.0024 

50 -0.011 -0.0030 

Table 4.11: Stability derivatives evaluated at three re-entry conditions for the CoG located on 
the longitudinal axis at 15 centimetres distance from the nose tip 

 

4.3.2.3 Unsteady analysis for dynamic behaviour characterization 

 

In the present Section results obtained by an unsteady CFD model are presented. The 

unsteady model is based, in particular, on a first order temporal discretization and on a 

fully implicit scheme (having the advantage to be unconditionally stable with respect to 

the time step size). The objective of the analyse is to give preliminary information about 

the time oscillations of some aerodynamic characteristic parameters, such as the force 

and moment coefficients or the pressure acting on the fabric surface. Such oscillations 

are caused by the unsteady flow characteristics present in the capsule wake, 

essentially unsteady due to the vortex shedding from the capsule. 

The analyzed case study considers the trajectory condition characterized by the 

maximum dynamic pressure and an angle of attack of 20° (see Table 4.12). 

 

H [km] α [°] V [m/s] M [-] p [Pa] T [K] ReD [-] 

40 0 381 1.2 278 251 77068 

Table 4.12: Input data for the unsteady CFD analysis 

 

Four velocity contours collected during the unsteady analysis are then represented in 

Figure 4.28. Considering that the dynamic phenomena is periodic, an reference time t0 

can be set. It can be seen that the period of the entire wake oscillation is of about 0.07 

s, due to the almost identity between Figure 4.28(a) and Figure 4.28(d). 
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(a) (b) 

  

(c) (d) 

Figure 4.28: Velocity contour during the unsteady analysis at t=t0 (a), t=t0+0.02 s (b), t=t0 +0.04 
s (c) and t=t0 +0.07 s (b) 

 

The oscillation of the pressure and of the aerodynamic coefficients has been also 

monitored over time. They all oscillate with the same frequency (≈ 14 Hz), but with 

different amplitudes, reported in Table 4.13. In this case the pressure amplitude 

reported refers to the maximum value registered along the flexible part of the 

aerobrake.  

 

 p [Pa] CL [-] CD [-] CM [-] 

Amplitude ≈ 80 ≈ 0.020 ≈ 0.015 ≈ 0.040 

Table 4.13: Pressure and aerodynamic coefficients oscillation amplitudes 

 

In conclusion, the present unsteady analysis can serve as a preliminary evaluation of 

dynamic phenomena registered during the re-entry phase of the capsule. In particular, 

it gives some information on the frequency of dynamic pressure loads that could affect 

the flexible part of the aerobrake from the aeroelastic point of view. They can also 
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serve as a reliable basis for future dynamic stability studies, where dynamic mesh 

should be also considered. 
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5 Conclusions and future developments 

 

Aerothermodynamic and missions analyses of new concepts of deployable aerobraking 

systems have been performed along different mission profiles. 

The concept allows flexible launch and re-entry operations, due to the opportunity to 

deploy the aerobrake and also to modulate its reference surface during the flight. 

Exploiting this peculiarity, the possibility to aerodynamically control the capsule de-orbit 

phase has been investigated and a preliminary control technique able to cope with the 

off-nominal entry conditions has been implemented. 

A number of possible re-entry scenarios has been presented in order to show the wide 

range of potential applications in the near future, including the possibility to deorbit 

micro and nano-satellites to contrast the phenomenon of Space debris. 

In addition, two different technology demonstrators to be launched onboard suborbital 

rockets have been presented. Suborbital demonstrative re-entry flights could be very 

useful to verify the effectiveness and the functionality of the innovative concept at 

growing energy levels, in particular before a more risky and expensive orbital re-entry 

flight test. 

All the presented results can be considered as starting points for future specific mission 

and system analyses and for the design of wind tunnel and flight drop tests. 
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