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1. THE IMPORTANCE OF GASTROINTESTINAL NEMATODES IN SMALL 

RUMINANTS 

 

Small ruminant farming has a prominent role in the sustainability of rural 

communities around the world (Park and Haenlein, 2006), as well as being 

socially, economically and politically highly significant at national and 

international levels, as with all livestock species (Morgan et al., 2013).  In the 

European Union (EU), for instance, there are currently around 101 million sheep 

and 12 million goats (FAOSTAT, 2009). Efficient small ruminant livestock 

production is also crucial to meet the increasing demands of meat and dairy 

products, especially in areas in which land is unsuitable for growing crops (Chiotti 

and Johnston, 1995). Small ruminant dairying is particularly important to the 

agricultural economy of the Mediterranean region, which produces 66% of the 

world’s sheep milk and 18% of the world’s goat milk (Pandya and Ghodke, 2007). 

However, there are several factors which affect the productivity of the small 

ruminant livestock sector, the capacity to maintain and improve a farm (i.e. its 

health and genetic potential) and, as a consequence, also human nutrition, 

community development and cultural issues related to the use of these livestock 

(Perry and Randolph, 1999; Nonhebel and Kastner, 2011).  

Among the factors that negatively affect the livestock production, infections with 

parasites and in particular with gastrointestinal nematodes (GIN) continue to 

represent a serious challenge to the health, welfare, productivity and reproduction  

of grazing ruminants throughout the world (Morgan et al., 2013; Scala et al., 2011).  

All grazing animals are exposed to helminth infections at pasture and any 

respective future intensification of livestock farming will increase the risk of 

helminth disease. The ranking of GIN as one of the top cause of lost productivity in 

small and large ruminants by the recent DISCONTOOLS programme 

(http://www.discontools.eu/home/index) witnesses the increasing EU’s 

consideration of the impact of these parasites upon animal health, welfare and 

productivity (Vercruysse, 2014). The economic costs of parasitic disease are  

currently difficult to quantify, however some estimates do exist within the 

scientific literature;  for example, studies in the UK have estimated the cost of GIN 

of sheep to be in the order of 99m € per year (Nieuwhof & Bishop, 2005). Within 

http://www.sciencedirect.com/science/article/pii/S0167587710003351#bib0120#bib0120
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the EU as a whole, annual sales of anthelmintic drugs used to control these 

infections in ruminants have been estimated to be in the order of 400 million € 

(Selzer, 2009). It is likely that these figures only represent the tip of the iceberg 

when it comes to calculating the true cost of livestock helminthoses  

endemic within the EU (Charlier et al., 2009). 

 

1.1. Gastrointestinal nematodes in small ruminants in Europe – Life cycle 

and epidemiology  

 

Grazing ruminants are frequently parasitized by multiple species of GIN 

(Nematoda, Strongylida) which cause the so called parasitic gastroenteritis (PGE) 

(Kassai, 1999). With respect to small ruminants, GIN parasitizing the abomasum, 

small and large intestines of sheep and goats include species of Haemonchus, 

Ostertagia, Teladorsagia, Trichostrongylus, Nematodirus, Oesophagostomum, 

Chabertia and Bunostomum (Zajac, 2006) listed in the following Fig. 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Location in the host for the prevalent species of GIN infecting small ruminants  in Europe. 
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Some key morphological characteristics (length), pre-patent period, location in the 

host of the genera of GIN that infect small ruminants in Europe are listed in the 

following Table 1.  

 

Table 1. The length, pre-patent period, location in the host of the most important genera of GIN 

infecting sheep in Europe (Anderson, 2000; Taylor et al., 2007; Roeber et al., 2013) . 

 

Genus   Length (mm) Pre-patent period (days)  Location in the host 
  
 
Haemonchus   ♂ 10-20  18-21    Abomasum 
  
   ♀ 18–30 
 
Teladorsagia  ♂ 7-8  15-21    Abomasum  
  
   ♀ 10–12       

 
Trichostrongylus  ♂ 2-8  15-23    Abomasum or 

  
   ♀ 3–9      small intestine 

 
Cooperia  ♂ 4-5  14-15    Small intestine 

  
   ♀ 5–6 

 

Nematodirus  ♂ 10-19  18-20    Small intestine 

  
   ♀ 15–29 
 
Bunostomum  ♂ 12-17  40-70    Small intestine 

  
   ♀ 19–26 
 
Oesophagostomum ♂ 12-16  40-45    Large intestine 

  
   ♀ 14–24 
 
Chabertia  ♂ 13-14  42-50    Large intestine 

  
   ♀ 17–20 
 

 

In general, with some exceptions (e.g. Nematodirus, Bunostomum), the life cycle of 

the GIN genera listed in Table 1 follows a similar pattern (Levine, 1968) as shown 

in Fig. 2. Sexually dimorphic adults are present in the digestive tract, where 

fertilized females produce large numbers of eggs which are passed in the faeces. 

Strongylid eggs (70–150 µm) usually hatch within 1–2 days. After hatching, larvae 

feed on bacteria and undergo two moults to then develop to ensheathed third-

stage larvae (L3s) in the environment (i.e. faeces or soil). The sheath (which 

represents the cuticular layer shed in the transition from the L2 to L3 stage) 
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protects the L3 stage from environmental conditions but prevents it from feeding. 

Infection of the host occurs by ingestion of L3s (with the exception of Nematodirus 

for which the infective L3 develops within the egg and of Bunostomum for which 

L3s may penetrate through the skin of the host). During its passage through the 

stomach, the L3 stage loses its protective sheath and has a histotrophic phase 

(tissue phase), depending on species, prior to its transition into the L4 and adult 

stages (Levine, 1968). Under unfavourable conditions, the larvae undergo a period 

of hypobiosis (arrested development; typical for species of Haemonchus and 

Teladorsagia). Hypobiotic larvae usually resume their activity and development in 

spring in the case of Haemonchus or autumn in the case of Teladorsagia. This may 

be synchronous with the start of the lambing season, manifesting itself in a peri-

parturient increase in egg production in ewes (Salisbury and Arundel, 1970). The 

peri-parturient reduction of immunity increases the survival and egg production of 

existing parasites, increases susceptibility to further infections and contributes to 

the contamination of pasture with L3s when young, susceptible animals begin 

grazing (Hungerford, 1990). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. The life-cycle of most species of GIN in ruminants. 
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The importance of different genera/species of GIN as causes of disease in small 

ruminants depends not only on their presence, but also their abundance and 

seasonal patterns of infection. The large number of prevalence surveys and studies 

of field epidemiology in diverse localities provide a qualitative picture of the 

distribution and relative importance of different species in Europe. In line with 

distribution in the southern hemisphere (Kao et al., 2000), H. contortus tends to be 

more common and more of a threat to sheep health and production in warmer, 

southern areas, while T. circumcincta is the dominant nematode of sheep in 

temperate and northern regions. Trichostrongylus and Nematodirus spp. are 

ubiquitous and their importance varies at local scale. N. battus is a major cause of 

disease in lambs only in northern Europe (Morgan and van Dijk, 2012). Update 

prevalence data on GIN genera in sheep in Europe have been recently generated 

within the EU-FP7 GLOWORM project.  The following Table 2 reports the 

prevalence data of GIN from 3 key European regions (Irland, Switzerland, Italy). 

 

Table 2. The prevalence of the most important genera of GIN infecting sheep in Europe (Musella et 
al. 2011; Dipineto et al. 2013; Gloworm Project - www.gloworm.eu). 

      Italy   Switzerland     Ireland 
GIN Genera   Prevalence  Prevalence  Prevalence 

    Min-Max (%)  Min-Max (%)  Min-Max (%) 
 
Haemonchus   56.3 - 72.4  71.6 - 81.7  3.6 - 6.1 
    
 
Teladorsagia   93.8 - 100  73.1 - 85.9  92.9 - 97.0 
     
 
Trichostrongylus   93.8 - 96.6  89.5 - 93.9  89.3 - 97.0 
       
 
Cooperia   12.5 - 34.5  28.2 - 32.8  33.3 - 60.7   
    
 
Nematodirus   35.1 - 53.8  33.3 - 38.9  61.0 - 68.8 
    
 
Bunostomum   0 - 3.4   0 - 8.5   3.6 - 9.1 
    
 
Oesophagostomum/  81.3 - 89.7  56.7 - 83.1  3.6 - 97.0  
Chabertia    
 
    

 

2. PATHOGENESIS AND PATHOLOGY OF GIN IN SMALL RUMINANTS 

 

Different species of GIN can vary considerably in their pathogenicity, geographical 

distribution, prevalence and susceptibility to anthelmintics (Dobson et al., 1996). 

Mixed infections, involving multiple genera and species are common in sheep and 

http://www.gloworm.eu/
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goats, and usually have a greater impact on the host than mono-specific infections 

(Wimmer et al., 2004). Depending on the number, species and burden of parasitic 

nematodes, common symptoms of PGE include reduced weight gain or weight loss, 

anorexia, diarrhoea, reduced production and, in the case of blood-feeding genera 

(e.g. Haemonchus), anaemia and oedema, due to the loss of blood and/or plasma 

proteins (Kassai, 1999).  Usually, low intensities of infection do not cause a serious 

hazard to the health of ruminants and may be tolerated (i.e. allowing the 

development of some immunity in the host), but as the numbers of worms 

increase, subclinical disease can manifest itself and is, therefore, of great economic 

importance (Fox, 1997; Zajac, 2006). The severity of disease is mainly influenced 

by factors such as: i) the parasite species - H. contortus, T. circumcincta and 

intestinal species of Trichostrongylus are considered highly pathogenic in sheep 

(Besier and Love, 2003); ii) the number of worms present in the gastrointestinal 

tract; iii) the general health and immunological state of the host; iv) environmental 

factors, such as climate and pasture type; v) other factors as stress, stocking rate, 

management and/or diet (Kassai, 1999). Usually, three groups of animals are 

prone to heavy worm burdens: (i) young, non-immune animals; (ii) adult, immuno-

compromised animals; and (iii) animals exposed to a high infection pressure from 

the environment (Zajac, 2006).  Beyond any doubt, a GIN species of primary 

concern is H. contortus (Fig. 3), a highly pathogenic blood-feeder helminth that 

causes anaemia and reduced productivity and can lead to death in heavily infected 

animals (Burke et al., 2007). 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  An abomasum of a sheep highly infected by H. contortus. 
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3. CONCLUDING REMARKS AND NEEDS FOR RESEARCH   

 

Although representing a significant economic and welfare burden to the global 

ruminant livestock industry, GIN infections in small ruminants are often neglected 

and implementation in research, diagnosis and surveillance of these parasites is 

still poor, mainly in the matter of diagnostic methods and their use/interpretation.  

The accurate diagnosis (and interpretation) of GIN directly supports parasite 

control strategies and is of relevance for investigations into parasite biology, 

ecology and epidemiology (Roeber et al., 2013). This aspect is now particularly 

important given the problems associated with anthelmintic resistance (AR) in GIN 

populations of small ruminants worldwide (Roeber et al., 2013 a,b).  

Various methods are employed for the ante mortem diagnosis of GIN infections in 

small ruminants. These include the observation of clinical signs indicative of 

disease (although non-pathognomonic), coprological diagnosis (faecal egg count – 

FEC), biochemical and/or serological, and molecular diagnostic approaches 

(reviewed in Roeber et al., 2013). However, still now, faecal egg count (FEC) 

techniques remain the most common laboratory methods for the diagnosis of GIN 

in small ruminants.  Also for FEC, widespread standardization of many laboratory 

techniques does not exist, and most diagnostic, research and teaching facilities 

apply their own modifications to published protocols (Kassai, 1999). Although 

these techniques are regarded to be standard diagnostic procedures, there is a lack 

of detailed studies of diagnostic performance, including the diagnostic sensitivity, 

specificity and/or repeatability (Roeber et al., 2013). Furthermore, many aspects 

concerning factors affecting FEC (e.g. season of sampling, sampling period, 

consistency of faeces, fecundity of worms, etc., as well as interpretation of FEC) have 

poorly been investigated so far. 

These are the reasons that motivated me in choosing “The coprological diagnosis 

of gastrointestinal nematode infections in small ruminants” as topic of my PhD 

thesis to help optimize the use and interpretation of FEC in small ruminants. 
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Literature review on “The coprological diagnosis of GIN  infections in small 

ruminants” 
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1. INTRODUCTION 

 

Even in the present era of genomics, metagenomics, proteomics and bioinformatics 

(Roeber et al., 2013), diagnosis of gastrointestinal nematodes (GIN) in ruminants 

still relies predominantly on coprological examination (Cringoli et al., 2010; 

Demeler et al., 2013). Indeed,  coproscopy (from the Greek words κόπρος = faeces 

and -σκοπία = examen), i.e. the  analysis of faecal samples for the presence of 

parasitic elements (e.g. eggs of GIN) is the most widely used diagnostic procedure 

in veterinary parasitology (Cringoli, 2004). This is the so-called coproscopy sensu 

scricto, instead, coproscopy sensu lato is the detection of antigens and/or DNA in 

faecal samples by immunological (e.g. ELISA) or molecular (e.g. PCR) methods. 

After fundation of copromicroscopy by C. J. Davaine in 1857, several 

copromicroscopic techniques (and devices/kits) have been developed, each with 

its own advantages and limitations. Figure 1 reports a time chart showing the 

different copromicroscopic techniques (including devices/kits) developed from 

1857 to 2013, such as the direct centrifugal flotation method (Lane, 1922), the 

Stoll dilution technique (Stoll, 1923), the McMaster method (Gordon and Whitlock, 

1939), the Wisconsin flotation method (Cox and Todd, 1962) and FLOTAC 

techniques (Cringoli, 2010). 

 

Fig. 1. Time chart showing the different copromicroscopic techniques (including devices/kits) 
developed from 1857 to 2013. 
 
 



23 
 

 

 

2. COPROMICROSCOPIC TECHNIQUES  

 

Several manuals of diagnostic veterinary parasitology are available in literature 

covering multiple animal species, including small ruminants, and describing a 

plethora of copromicroscopic techniques (MAFF, 1986; Thienpont, 1986; Foreyt, 

2001; Hendrix, 2006; Zajac and Conboy, 2012).   

Copromicroscopic diagnosis of GIN infections in small ruminants can be either 

qualitative (thus providing only the presence/absence of GIN eggs) or quantitative, 

providing also the number of eggs by faecal egg count (FEC). When quantification 

is pursued (FEC), GIN eggs are counted and usually expressed as the number of 

eggs per gram  (EPG) of faeces. 

Qualitative and/or quantitative copromicroscopy in small ruminants usually 

involves concentration of parasitic elements (e.g. GIN eggs) by either flotation (Fig. 

2) or sedimentation (Fig. 3) in order to separate GIN eggs from faecal material.  

 

              
Fig. 2. Flotation technique.          Fig. 3. Sedimentation technique. 

 
 

The faecal sedimentation concentrates both faeces and eggs at the bottom of a 

liquid medium, usually tap water. In contrast, the principle of faecal flotation is 

based on the ability of a flotation solution (FS) to allow less dense material 

(including parasite eggs) to rise to the top. It should be noted that, in livestock 

species, sedimentation techniques are considered useless (and time-consuming) to 

detect GIN eggs, whereas they are very useful for recovering heavy and 

operculated eggs (e.g. eggs of rumen and liver flukes, Paramphistomidae and 
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Fasciola hepatica) that do not reliably float or are distorted by the effect of 

flotation solutions (Dryden et al., 2005). Thus, the methods most frequently used 

to recover GIN eggs in ruminant faeces are those based on flotation. These 

procedures are based on differences in the specific gravity (s.g.) of parasite eggs, 

faecal debris and flotation solution (FS). Most of the FS used in coprology (see 

Table 1) are saturated and are made by adding a measured amount of salt or sugar 

(or a combination of them depending on the FS) to a specific amount of water to 

produce a solution with the desired s.g. After preparing any FS, it is mandatory to 

check the s.g. with a hydrometer, recognizing that the s.g. of the saturated solution 

will vary slightly depending on ambient temperature. FS used for 

copromicroscopic diagnosis of GIN infections in small ruminants are usually based 

on sodium chloride (NaCl) or sucrose and are characterized by low s.g. (usually 

1.200).  

 
Table 1. Flotation solutions (composition and specific gravity) used for copromicroscopy in small 
ruminants. 
Flotation solution Composition s.g.* 

Sucrose and formaldehyde C12H22O11 454 g, CH2O solution (40%) 6 ml, H2O 355 ml 1.200 
Sodium chloride NaCl 500 g, H2O 1000 ml 1.200 
Zinc sulphate ZnSO4∙7H2O 330 g, H2O brought to 1000 ml 1.200 
Sodium nitrate NaNO3 315 g, H2O brought to 1000 ml 1.200 
Magnesium sulphate MgSO4 350 g, H2O brought to 1000 ml 1.280 
Sodium nitrate NaNO3 250 g, Na2O3S2 ∙ 5 H2O 300 g, H2O brought to 1000 ml 1.300 
Zinc sulphate  ZnSO4∙7H2O 685 g, H2O 685 ml 1.350 
Sodium chloride and zinc 
chloride  

NaCl 210 g, ZnCl2 220 g, H2O brought to 1000 ml  1.350 

Sucrose and sodium nitrate C12H22O11 540 g, NaNO3 360 g, H2O brought to 1000 ml  1.350 
Sodium nitrate and sodium 
thiosulphate 

NaNO3 300 g, Na2O3S2∙5 H2O 620 g, H2O 530 ml 1.450 

Sucrose and sodium nitrate and 
sodium thiosulphate 

C12H22O11 1200 g, NaNO3 1280 g, Na2O3S2∙5 H2O 1800 g, H2O 720 ml 1.450 

*Specific gravity 

 

Copromicroscopic diagnosis of GIN in small ruminants is usually performed by 

quantitative techniques. All FEC techniques which assess the number of helminth 

eggs per gram of faeces (EPG) and use flotation are based on the microscopic 

examination of an aliquot of faecal suspension from a known volume of a faecal 

sample (Nicholls and Obendorf, 1994).  

FEC in small ruminants and other livestock species can be performed using 

different techniques/devices as McMaster (Fig. 4), FecPak (Fig. 5), the flotation in 

centrifuge (Cornell-Wisconsin technique) (Egwand and Slocombe, 1982) (Fig. 6), 

or using specific devices as FLOTAC and its derivatives Mini-FLOTAC and Fill-

FLOTAC (Fig. 7). 
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Fig. 4. McMaster                              Fig. 5. FECPAK 

 

 
Fig. 6. Flotation in centrifuge (Cornell-Wisconsin technique). 

 

 
Fig. 7. Devices of the “FLOTAC Family”: Mini-FLOTAC, FLOTAC and Fill-FLOTAC. 

 
 

The McMaster technique developed and improved at the McMaster laboratory of 

the University of Sidney (Gordon and Whitlock, 1939; Whitlock, 1948), and whose 

name derives from one of the great benefactors in veterinary research in Australia, 

the McMaster family (Gordon, 1980), is the most universally used technique for 

estimating the number of helminth eggs in faeces (Rossanigo and Gruner, 1991; 
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Nicholls and Obendorf, 1994). For decades, numerous modifications of this method 

have been described (Levine et al., 1960; Raynaud, 1970; Roberts and O'Sullivan, 

1950; Whitlock, 1948), and most teaching and research institutions apply their 

own modifications to existing protocols (Kassai, 1999). Many of these 

modifications make use of different FS, sample dilutions and counting procedures, 

which achieve varying analytic sensitivities (Cringoli et al., 2004; Roeber et al., 

2013). There are at least three variants of the McMaster (for details see MAFF, 

1986) with different analytic sensitivities: 50 EPG for the ‘modified McMaster 

method’ and the ‘modified and further improved McMaster method’ or 10 EPG in 

the case of the ‘special modification of the McMaster method. 

FECPAK is a derivative of McMaster, developed in New Zealand to provide a simple 

“on farm” method of egg counting for making decisions on the need to treat or to 

determine whether anthelmintics are effective. Is is essentially a larger version of 

the McMaster slide (www.fecpak.com), having a high analytic sensitivity (usually 

10-30 EPG). The use of such a system requires a significant level of cooperation by 

farmers and adequate training to ensure that correct diagnoses are made (McCoy 

et al., 2005).  

FEC methods that involve flotation in centrifuge include Cornell-Wisconsin 

(Egwand and Slocombe, 1982) and FLOTAC (Cringoli et al., 2010) both allowing for 

the detection of GIN up to 1 EPG.  

Cornell-Wisconsin (analytic sensitivity = 1 EPG) is based on flotation in a 

centrifuge tube and eggs are recovered by means of adding a cover slide to the 

meniscus of the flotation solution; when the number of eggs is high, inefficiencies 

may arise due to the lack of precision in the egg counting procedures owing to the 

absence of a grid on the coverslip. 

The FLOTAC techniques are based on the centrifugal flotation of a faecal sample 

suspension and subsequent translation of the apical portion of the floating 

suspension. FLOTAC device can be used with three techniques (basic, dual and 

double), which are variants of a single technique but with different applications. 

The FLOTAC basic technique (analytic sensitivity = 1 EPG) uses a single FS and the 

reference units are the two flotation chambers (total volume 10 ml, corresponding 

to 1 g of faeces). The FLOTAC dual technique (analytic sensitivity = 2 EPG) is based 

on the use of two different FS that have complementary specific gravities (s.g.) and 

http://www.fecpak.com/
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are used in parallel on the same faecal sample. With the FLOTAC dual technique, 

the reference unit is the single flotation chamber (volume 5 ml; corresponding to 

0.5 g of faeces). The FLOTAC double technique (analytic sensitivity = 2 EPG)  is 

based on the simultaneous examination of two different faecal samples from two 

different hosts using a single FLOTAC apparatus. With this technique, the two 

faecal samples are each assigned to its own single flotation chamber, using the 

same FS. With the FLOTAC double technique, the reference unit is the single 

flotation chamber (volume 5 ml; corresponding to 0.5 g of faeces).  

A main limitation of FLOTAC is considered the complexity of the technique which 

involve centrifugation of the sample with a specific device, equipment that is often 

not available in all laboratories. To overcome these limitations, under the “FLOTAC 

strategy” of improving the quality of copromicroscopic diagnosis, a new simplified 

tool has been developed, i.e. the Mini-FLOTAC, having an analytic sensitivity of 5 

EPG (Cringoli et al., 2013). It is a easy-to-use and low cost method, which does not 

require any expensive equipment or energy source, so to be comfortably used to 

perform FEC (Cringoli et al., 2013). It is recommended that Mini-FLOTAC be used 

in combination with Fill-FLOTAC, a disposable sampling kit, which consists of a 

container, a collector (2 or 5 gr of faeces) and a filter. Hence, Fill-FLOTAC facilitates 

the performance of the first four consecutive steps of the Mini-FLOTAC technique, 

i.e. sample collection and weighing, homogenisation, filtration and filling (Fig. 8). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8. The main components of Fill-FLOTAC. 
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The Appendix of this chapter reports the standard operating procedures (SOP) of 

the FEC techniques mostly used for the diagnosis of GIN in small ruminants, 

namely McMaster, Wisconsin, FLOTAC and Mini-FLOTAC. The following scheme 

(Fig. 9) shows the main characteristics (volume and reading area) and analytic 

sensitivities (multiplication factors when a dilution ratio of 1:10 is used) of the FEC 

techniques mostly used for the diagnosis of GIN in small ruminants.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Schematic features (volume, reading area, analytic sensitivity at 1:10 dilution ratio) of 

McMaster, FecPak, Cornell-Wisconsin, FLOTAC and Mini-FLOTAC techniques. 

 

It should be noted that each of the FEC technique described above shows strengths 

and limitations. Furthermore, they vary considerably according to their 

performance and operational characteristics (e.g. analytic sensitivity, accuracy and 

precision in assessing FEC, timing and ease of use).  
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3. IDENTIFICATION OF GIN EGGS AND COPROCULTURES  

 

For most GIN genera/species there is an overlap in size of the eggs (Fig. 9 a,b,c); 

only Nematodirus (Fig. 9 d) is an exception because its eggs are sufficiently 

different for their differentiation by size and shape (Table 2).  

 
Fig. 9. GIN eggs (a,b,c) and Nematodirus egg (d) . 

 

 
Table 2. Morphometric characteristics of the eggs of different genera of GIN infecting small 
ruminanst: size (µm), shape and shell (data from Thienpont, 1986). 

    
 
Table ... Size, shape and shell of GIN eggs. 
 

       
Genus   Size (µm)  Shape     Shell 
     
Haemonchus  62-95 X 36-50  Oval; the eggs contain numerous   Thin 

blastomeres hard to distinguish    
  
Teladorsagia  74-105 X 38-60  Oval; the eggs contain numerous   Thin 

blastomeres hard to distinguish   
     
Trichostrongylus  70-125 X 30-55  Oval; the eggs contain    Thin 

16 to 32 blastomeres    
       
Cooperia  60-95 X 29-44  Oval with parallel sides;    Thin 

 the eggs contain numerous  
blastomeres hard to distinguish 
     

Nematodirus  152-260 X 67-120 Oval; the eggs contain numerous  Thin 
blastomeres hard to distinguish   

    
Bunostomum  75-104 X 45-57  Oval; the eggs contain    Thin 

4 to 8 blastomeres   
    
Oesophagostomum 65-120 X 40-60  Oval; the eggs contain    Thin 

16 to 32 blastomeres    
  
Chabertia  77-105 X 45-59  Oval; the eggs contain    Thin 

16 to 32 blastomeres    
 
   

   



30 
 

 

Therefore, to aid the identification of different GIN present in mixed infections, FEC 

has to be followed by faecal culture to identify infective third-stage larvae (L3) of 

GIN. Currently, a number of protocols for coprocultures have been published 

which differ in the temperatures, times and media used for culture and the 

approach of larval recovery (reviewed in Roeber et al., 2013). The most widely 

employed protocol suggests incubation of faeces at 27 °C for 7 days (MAFF, 1986).  

However, studies have shown that different species of GIN require different 

conditions, such as environmental temperature and relative humidity, to enable 

adequate development (Beveridge et al., 1989; O'Connor et al., 2006). This is 

particularly important to consider when larval culture (LC) results are used to 

estimate the contribution of different species to mixed infections.  One culture 

protocol is likely to favour the development of one species over others (Dobson et 

al., 1992). For instance, Whitlock (1956) observed that culture conditions (27 °C 

for 7 days) are suitable for most species, but that the free-living stages of 

Teladorsagia species develop better at somewhat lower temperatures. Similarly, 

Dobson et al. (1992) demonstrated that the developmental success of L3 in faecal 

cultures was lower for Te. circumcincta than for T. colubriformis when cultured 

alone or concurrently, thus indicating that LCs are unreliable for estimating the 

contribution of individual species in mixed infections. In another study, Berrie et 

al. (1988) also concluded that faecal culture and subsequent larval differentiation 

are unsuitable for an accurate estimation of the proportions of individual species 

in mixed infections and can only be used to provide an indication of the species 

present.  

Further variability in the results obtained from LCs have been attributed to 

differences in the composition of the culture medium used, which influences the 

moisture, oxygen availability and/or pH that larvae encounter during their 

development (Hubert and Kerboeuf, 1984; Roberts and O'Sullivan, 1950). Hubert 

and Kerboeuf (1984) developed a modified method of LC using an 'on-agar' 

approach to provide standardized conditions. Their results showed that the 

culture on agar medium led to higher recoveries of larvae compared with 

traditional faecal cultures. However, lengthy preparation times and increased 

laboratory requirements appear to limit the routine application of this method.  
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In addition to the variability of results related to the culture conditions employed, 

the specific identification of cultured larvae provides challenges (Roeber et al., 

2013). For the identification of infective L3s (Fig. 10) to the species or genus level 

(Table 3), a number of different approaches have been described. A commonly 

employed method involves the detection of particular morphological features of 

the larvae (e.g. the length of the tail sheath extension and total body length of L3s) 

and their comparison with published identification keys (Dikmans and Andrews, 

1933; Gordon, 1933; MAFF,  1986; McMurtry et al., 2000; van Wyk et al., 2004). 

Various keys for the identification of L3s have been published (Dikmans and 

Andrews, 1933; Gordon, 1933; MAFF, 1986) and a substantial variability in the 

length of L3s has been reported by different authors (McMurtry et al., 2000). Van 

Wyk et al. (2004) developed a simplified approach which uses the mean length of 

the tail sheath extension (Table 3) to differentiate L3s of Teladorsagia and/or 

Trichostrongylus from the larvae of Haemonchus and Chabertia and/or 

Oesophagostomum. However, this approach has the disadvantage that it does not 

allow the unequivocal differentiation of all genera. For instance, Teladorsagia and 

Trichostrongylus cannot be differentiated based on sheath extension length alone. 

To further refine their differentiation, additional morphological features are 

required. Lancaster and Hong (1987) proposed the presence of an inflexion at the 

cranial extremity of Teladorsagia larvae as an informative morphological feature. 

However, this feature is very subtle and its detection is subjective. Another 

approach to differentiate L3s of Teladorsagia from those of Trichostrongylus was 

proposed by Gordon (1933); it is based on the body length measurements of the 

larvae. The differentiation of L3s of Oesophagostomum and Chabertia is not 

considered possible using current techniques for larval differentiation.  
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Table ... The total length and sheath tail of third-stage larvae of  GIN infecting sheep (van Wyk et al. 2004) 
 
Genus   Total length (µm)  sheath tail (µm)    
 
Haemonchus    604 - 720  65-82       
    
Teladorsagia  691 - 806  30-44       

  
Trichostrongylus  590 - 691  18-31       
    
Cooperia  666 - 956  62-82       
   

Nematodirus  752 -1248  267-309      
  
Bunostomum  560 - 633  85-115       
    
Oesophagostomum 720 - 864  122-207       
    
Chabertia  734 - 792  101- 150       
    
 
 
 

 
Fig. 10. Third-stage larvae (L3s) of key species of GIN of sheep, encountered following larval 
culture. 
 
 
 
 
Table 3. Total length and length of the sheath tail of L3 of GIN infecting small ruminants (from van Wyk et al. 
2004). 

 
  

 

 

 

 

 

 

 

 

 

A less commonly used method for larval differentiation involves the culture and 

morphological identification of L1s (Whitlock, 1959). This technique has the 

advantage of being rapid, since the time required for the development of the L1 

stage is shorter; however, the same limitations for the culture and identification of 

L3s exist for L1s and L2s (Lichtenfels et al., 1997). 
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For the reasons described above, some recent developments have been made 

towards improving species identification and differentiation of GIN. These include 

lectin staining for the identification of H. contortus eggs (Palmer and McCombe, 

1996), computerized image recognition of strongylid eggs (Sommer, 1996), as well 

as immunological and molecular methods (Roeber et al., 2013).  

PCR-based methods using specific genetic markers in the internal transcribed 

spacers of nuclear rDNA are considered enhanced tools to differentiate GINs. For 

instance, recent studies  have demonstrated that real-time PCR (RT-PCR) and 

multiplexed-tandem PCR (MT-PCR) assays can replace the method of larval culture 

(Roeber et al., 2011, 2013). This test improves the diagnosis of infections with 

nematode species, which are problematic to detect or identify by traditional 

coprological techniques, either because of their morphological/morphometric 

similarity with other species/genera (i.e., Teladorsagia and Trichostrongylus, C. 

ovina and O. venulosum) or their unfavourable development under ‘standard’ 

culture conditions (Roeber et al., 2013). In the next future the use of high-

throughput immunological and molecular-based technologies will offer the 

potential for multiplex, high-throughput diagnosis of GIN. As an example, the 

advent of microbead-based technologies has led to the development of a number of 

multiplex assay platforms e.g. LUMINEX®, that will permit multiple assays to be 

performed on the same samples and provide a range of versatile assay designs, 

including antibody/antigen, primer/probe and enzyme/substrate interactions, 

also for GIN (www.gloworm.eu). 

4. FACTORS AFFECTING FEC OF GIN IN SMALL RUMINANTS 

Interpretation of FEC results is of primary importance towards monitoring and 

controlling GIN infections in small ruminants. The previous section provided an 

overview of the different FEC techniques available for the diagnosis of GIN in small 

ruminants. From a general point of view, the method of copromicroscopy to be 

chosen should depend on what the information is going to be used for. 

Veterinarians, parasitologists and their staff should re-evaluate their attitude of 

“it’s only a faecal sample” and should therefore consider that suitable and timely 

http://www.gloworm.eu/
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sampling is the pre-requisite for interpreting the results of FEC in order to: 

estimate infection intensity (McKenna, 1987; McKenna and Simpson, 1987), 

determine the degree of contamination with helminth eggs (Gordon, 1967), assess 

the effectiveness of anthelmintics (Waller et al., 1989), determine the breeding 

value of an animal when selecting for worm resistance (Woolaston, 1992), and 

guide control and treatment decisions (Brightling, 1988).  

FEC results will depend on a plethora of different factors which include: storage of 

faecal sample, consistency (water content) of faeces, but also 

biological/epidemiological factors related either to the parasite or to the host (e.g. 

fecundity of worms, season of sampling, age and sex of animals, immunity 

development, etc). 

Storage conditions of faecal samples are of importance because, if not performed 

appropriately, they can cause a significant reduction in GIN egg numbers. An 

artefactual reduction in FECs occurs primarily due to hatching of eggs or biological 

degradation (Nielsen et al., 2010). To circumvent this problem, different strategies, 

such as chemical preservation (Whitlock, 1943)  or refrigeration (Nielsen et al., 

2010) have been recommended but the aspects concerning storage conditions 

deserve further investigation. It is important to underline that faecal samples 

should be put into individual labelled containers/gloves and sent promptly for 

FEC. If nematode larvae are to be cultured for identification, samples should not be 

stored at 4-8°C for more than 24 h as this may affect the hatching of eggs of H. 

contortus and Cooperia (McKenna, 1998). 

Consistency (water content) of the faecal sample is another aspect of great 

relevance for FEC interpretation. Indeed, samples intended for faecal analysis can 

be of varying consistencies, being soft to watery (diarrhoeic) or hard and 

desiccated (mostly from animals following transport and without access to food or 

water) (Gordon, 1953, 1981). These aspects are of importance, as the water 

content of the sample can either dilute or concentrate the numbers of GIN eggs 

determined from 1 g of faeces (EPG), depending on the actual amount of dry 

matter (Le Jambre et al., 2007). 

Fecundity of the different species of GIN is also another important factor affecting 

FEC. The biotic potential of different species of GIN varies (Gordon, 1981) and 

parasite density and immune mediated 'control' by the host have been shown to 
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influence the egg production of female worms in different species (Rowe et al., 

2008; Stear and Bishop, 1999). Indeed, some GIN as H. contortus are known to be 

highly fecund species (Robert and Swan, 1981), whereas some others show a low 

fecundity, such as species of Teladorsagia (Ostertagia) (Martin et al., 1985), 

Trichostrongylus (Sangster et al., 1979) and Nematodirus (Martin et al., 1985; 

McKenna, 1981). 

Also, the seasonal patterns of GIN infection in small ruminants should be 

considered as factor affecting FEC, in order to select the best period (months) of 

conducting helminth egg counts. A good knowledge of GIN epidemiology in a given 

area could be of great interest when deciding the best period to conduct a FEC in 

small ruminants. GIN egg counts are strongly influenced by the period of sampling 

(seasonality) and will vary greatly from one month to the next, one year to the next 

and between geographical locations depending on the prevailing climatic 

conditions (Cringoli et al., 2008; Morgan et al., 2013). The following Figure 11 

shows a typical seasonal pattern of GIN egg counts in sheep in southern Italy (a 

region with a Mediterranean climate) with two peaks of EPG (February and 

November) and a ditch (May to June). 

 

Months 

 

Fig.11. GIN egg count pattern in sheep in southern Italy. 

 

Similarly, Doligalska et al. (1996) showed that FEC variation is usually continuous 

but heavily skewed in sheep in Poland where the mean and variance of FEC differ 
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within seasons and years of sampling (Doligalska et al., 1996).  Other studies 

performed in Canada, demonstrated that GIN peaks occur in spring for the ewes 

and in summer for the lambs (Mederos et al., 2010). McMahona et al. (2012), in 

studies performed in Northern Ireland, showed that pasture contamination levels 

of GIN are at their highest over the period September-October having increased 

steadily over the immediately preceding months (March–May) (McMahona et al.,  

2012).  

Other important factors affecting FEC in small ruminants include the physiological 

status of the animals. It is well known that high GIN egg production is usually 

observed in ewes during the periparturient period (PP). The so called peri-

parturient rise (PPR) is a major source of GIN pasture contamination for both 

lambs and ewes (Barger, 1999; Scala et al. 2012). Dunsmore (1965) suggested that 

both environmental and physiological factors might be important contributors to 

the PPR. Some authors believe the PPR is linked to the ewes’ productivity stage, 

and the endocrine, immunological, and metabolic changes that ensue (Taylor, 

1935; Crofton, 1954; Brunsdon, 1970; Michel, 1976; Jeffcoate and Holmes, 1990; 

Coop and Holmes, 1996; Donaldson et al., 1998; Beasley et al., 2010b). Beasley et 

al. (2010b) showed that changes consistent with a reduction in immunity 

expression occurred in both pregnant and lactating ewes. These changes in 

immunity may facilitate the parasites’ establishment within the host, enhance their 

prolificacy, and increase their longevity (Michel, 1976).  

Another problem is the effect of the development of host immunity on rate of egg 

laying by GIN. The first effect on worms of developing host immunity is a reduction 

in egg laying so there is then no relationship between numbers of worms and egg 

counts. So whilst FEC may give an indication of worm burdens in young animals 

this no longer applies in older animals, unless the host species develops little or no 

natural immunity. Additional considerations are that FECs (i) only reflect patent 

but not pre-patent infections (Thienpont et al., 1986), (ii) do not provide any 

information regarding male or immature worms present (McKenna, 1981) and (iii) 

can be influenced by variation in times of egg excretion by adult worms (Villanua 

et al., 2006), age of the worm population and/or the immunity, age and sex of the 

host (Thienpont et al., 1986).  

All the findings described above underline that several host-parasite-related 
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factors could strongly affect FEC and therefore these factors should be taken into 

consideration when interpreting FEC results. Therefore, FEC alone should not be 

used to make a diagnosis or guide treatment decisions, but should be interpreted 

in conjunction with information about the nutritional status, age and management 

of sheep/goats in a flock (McKenna, 2002). 

 

5. THE USE (INTERPRETATION) OF GIN EGG COUNTS IN SMALL RUMINANTS 

 

The use of FEC in small ruminants and other livestock species has several 

important purposes. The first is to determine whether animals are infected and to 

estimate the intensity of infection. The second is to determine whether animals 

need to be treated to improve their health with the resulting increase of productive 

performance. The third is to predict pasture contamination by parasitic eggs. The 

fourth is is to determine the efficacy of anthelmintics (FEC reduction – FECR) as 

well as monitoring control programs. 

However, as described also in the previous section, the problem with interpreting 

FEC is of great relevance. A first issue to consider is that, at least in grazing 

animals, infections with GIN are usually multi species. Thus, with different species 

of worms laying eggs at different rates only estimates can be given for determining 

the intensity of infection and therefore deciding when animals should be treated. 

Some GIN species permit the natural development of immunity so that using FEC 

to decide whether treatment is required is a balance between permitting 

development of immunity and avoiding loss of productivity.  

A second important point to consider is the relation between FEC and worm 

burden. Indeed, there is a controversial debate in the literature to establish 

whether FEC results may predict the intensity of GIN infection. The relation 

between FEC and worm burden is a multifactorial issue and will depend on: i) the 

FEC technique employed; ii) the host and the parasite species involved. For 

example, FEC results for adult cattle are of limited diagnostic value for determining 

intensity of infection, as they do not usually correlate with worm burden 

(McKenna, 1981). Furthermore,  FECs in cattle are usually low and require more 

sensitive flotation techniques than for sheep (Mes et al., 2001); for species of 

Nematodirus, egg counts are also regarded to be of limited value, as most damage is 
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caused by the immature stages before egg-laying commences (McKenna, 1981).  

In small ruminants infected with H. contortus (Roberts and Swan, 1981; Coadwell 

and Ward, 1982) or T. colubriformis (Beriajaya and Copeman, 2006) FEC is 

strongly correlated with worm burden. However, this relationship does not hold 

true for infection with other nematode species, especially Nematodirus spp. (Coles 

et al., 1986) and T. circumcincta (Jackson and Christie, 1979). In addition, in areas 

where co-infection with many nematode species occurs, the high relatively high 

egg production of H. contortus may tend to mask the much lower egg production of 

species such as T. colubriformis and T. circumcincta (Roeber et al., 2013). Overall, 

exploring the relationship between FEC and worm burden is of primary 

importance in small ruminant practice and needs further investigation. 

The use of FEC is considered important to indicate levels of pasture contamination, 

triggering group treatment in the interests of longer-term reduction in infection 

pressure by GIN, in concert with pasture movement and rotation schemes (Kenyon 

et al., 2014). FEC has long been used in sheep and goat production systems, to 

focus group anthelmintic treatments for example at times of high challenge in 

growing lambs, or high egg production in peri-parturient ewes.  

With respect to sheep, as already mentioned in the previous sections, the number 

of GIN eggs in a faecal sample varies with factors related to the host and parasite 

species. This aspect should be taken into account to identify FEC thresholds for 

treatment. Indeed, not only there are no widely accepted defined FEC thresholds 

for treatment, but also these thresholds will vary between the different nematode 

species (Kenyon et al., 2014). Some authors suggest that less than 500 EPG is 

considered a low level of GIN infection, between 500 and 1500 EPG as moderate to 

high, and more than 1500 EPG as high level of infection (Hansen and Perry, 2000). 

According to other authors FEC of ≥ 200 EPG is regarded to indicate a significant 

worm burden and is used as basis for the decision for anthelmintic treatment 

(www.wormboss.com.au). Other authors suggest a threshold of 300-500 EPG 

(based on counts  of 10 animals) for treatment of sheep flocks (Coles G.C., personal 

communication). It is therefore clear that there is a misleading view of FEC 

thresholds for treatment in sheep and longer term trials justifying these values are 

lacking. Therefore, to gain maximal information from FEC, strict thresholds for 
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treatment should not be applied, instead baseline FEC data (i.e. longitudinal data) 

should be established so that it can be determined when worm burdens deviate for 

what can be expected on a particular farm. Therefore, besides FEC, accumulated 

experience of local epidemiological patterns, and knowledge of pastures and 

grazing history, should be regarded as extremely valuable information to target 

anthelmintic treatments in small ruminants (Kenyon et al., 2014). 

Another area in which FEC can also provide useful information is to indicate levels 

of pasture contamination, triggering group treatment to reduce the infection 

pressure, in concert with pasture management regimes. However, this approach is 

yet to be widely and systematically used in practice, and further research is 

required (Kenyon et al., 2014). 

FEC is of primary importance in determining the efficacy of anthelmintics and 

monitoring the drug-susceptibility and -resistance status of GIN in small ruminants 

and other livestock species. There are several methods (e.g. egg hatch assay,  larval 

development assay, molecular methods, etc.) for the detection of anthelmintic 

resistance (AR) in sheep but the faecal egg count reduction test (FECRT), with its 

ability to provide a measure of the performance of a number of different 

anthelmintics at a time, remains the method of choice to monitor anthelmintic 

efficacy against GIN in livestock. FECRT is currently the only test that can be used 

to detect resistance to all nematode species and anthelmintics in all hosts 

(McKenna, 2013). FECRT guidelines are made available by the World Association 

for the Advancement of Veterinary Parasitology (WAAVP). These guidelines (Coles 

et al., 1992) provide recommendations on the experimental set up (randomized 

control trial), sample size (≥10 or ≥15 animals per treatment group, each excreting 

at least 150 EPG), the FEC method (McMaster), statistical analysis (FECRT based 

on the arithmetic mean of grouped FEC after drug administration) and criteria 

defining reduced efficacy (FECRT <90% or FECRT <95% and lower limit of 95% 

confidence interval <90%).  

Different formulae for calculating FECR have been proposed (McKenna, 2002) 

which differ on the presence of a control group and/or on the use of composite 

faecal samples.  

The following Table 2 (adapted from Roeber et al., 2013) summarizes the main 

principles and limitation of FECRT.   
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Table 2. Summary of principles and limitations of FECRT (adapted from Roeber et al., 2013).  

Assay            Principle     Comments and existing limitations   References 

Faecal egg count                 Provides a an estimate of anthelmintic -  - Does not accurately estimate the efficacy  Martin et al. 

reduction test                       efficacy by comparing faecal egg counts of an anthelmintic to remove worms.   (1985) 

         from sheep before and after treatment.  - It rather measures the effects on egg  Presidente (1985) 

         Resistance is declared if reduction in the production by mature female worms.  Coles et al.(1992) 

         number of eggs counted is <95% and the - Different anthelmintics require sample  Jackson (1993) 

         lower confidence interval for the  collection at different time intervals.  Grimshaw et al. 

         percentage of reduction is below 90%.  - No agreed standard for FEC   (1996) 

method or for the calculation of reduction.  McKenna (1996, 

- Results can be inconclusive due to low  1997, 2006) 

analytical sensitivity of the technique.  Tayloret al.(2002) 

- Different results in repeated experiments.  Coles et al.(2006) 

- Does not provide species specific  Miller et al.(2006) 

information if undifferentiated. Larval  Dobsonet al.(2009) 

culture required for further differentiation.  Levecke et al.(2011) 

  

Since the publication of the WAAVP guidelines on how to conduct a FECRT, some 

limitations have been noted, including (i) the ignorance of host-parasite 

interactions that depend on animal and parasite species, (ii) their feasibility under 

field conditions, (iii) appropriateness of study design, and (iv) the high detection 

limit of the recommended FEC method. Field and computer-based studies by 

Levecke et al. (2011, 2012) highlighted that the interpretation of the FECRT is 

affected by a complex interplay of various factors, including the mean and level of 

aggregation of FEC.  

 

 

6. LIMITATIONS OF COPROMICROSCOPIC TECHNIQUES 

 

The abundance and distribution of GIN in small ruminants is a complex and 

dynamic issue affected by a whole range of parameters related to the parasite, the 

host and the environment. The situation is further complicated by interacting 

regional, seasonal and host-specific factors that influence infection and the fact 

that helminthoses are usually seen in animals that have concurrent multi-species 

infections (Morgan et al., 2013). 

Although widely used for diagnosis of GIN and other parasites of animal and 

humans, it is well know that copromicroscopy is prone to a number of 

shortcomings (Utzinger et al., 2012).  First, there is a clear lack of standardization 

of copromicroscopic techniques and usually each lab uses “its own” method mostly 
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based on the “lab traditions” rather than on the performance (e.g. sensitivity, 

specificity, reproducibility, negative predictive value), or operational 

characteristics (e.g. simplicity, ease of use, user acceptability) of the technique 

(Rinaldi and Cringoli, 2014). From a general point of view, when choosing a 

diagnostic technique the following principles should be considered: “To be useful, 

diagnostic methods must be accurate, simple and affordable for the population for 

which they are intended. They must also provide a result in time to institute effective 

control measures, particularly treatment” (Banoo et al., 2010). A key point to 

consider is that that different factors may influence the performance of any 

copromicroscopic technique, especially those based on flotation (e.g. McMaster, 

Wisconsin, FLOTAC and Mini-FLOTAC). These can include the method of faecal 

sampling, faecal storage, the duration of faecal storage before analyses, the 

selection of the flotation solution, and many other laboratory factors.  

Second, the results of any copromicroscopic technique strongly depend on the 

accuracy of laboratory procedures but also on the experience of the laboratory 

technicians reading the microscopic fields. Hence, a good diagnosis requires in-

depth training for faecal sampling, specimen preparation, and experience for 

subsequent FEC. The “human” factor (i.e. the hands and eyes of technicians) is of 

fundamental importance for copromicroscopic analyses compared to other 

diagnostic approaches (i.e. immunological or molecular methods).  

Third and most importantly, the main limitation of copromicroscopy is the time 

and cost to conduct copromicrocopic analysis (in particular FEC) on a 

representative number of animals. The number of animals to test and frequency of 

sampling for the FEC performed on faecal samples taken from single animals are 

seldom informative (Sargison, 2013). In small ruminants, GIN egg counts are 

generally performed on samples taken from 10/20 animals within a group, and 

usually show standard deviations that are similar to the arithmetic mean values. 

Thus, the individual FECs of animals within groups with a mean FEC of 450 EPG 

might be 50 or 1000 EPG, neither of which provides valid information about the 

level of challenge to the individual or to the group or about the need for 
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anthelmintic drug treatment (Sargison, 2013). Also, FEC have been criticized as a 

treatment indicator because it is poorly correlated with GIN worm burden and 

animal performance (Sargison, 2013).  

A further important point to consider is related to the international economic 

crisis and the resulting decline of research funds that impose the need to resolve 

issues at considerably lower costs taking into account the logistical difficulties in 

conducting field surveys (e.g. cross-sectional and longitudinal surveys of GIN in 

small ruminants as well as studies on efficacy of anthelmintics). The cost of 

individual FEC is often too high for small ruminant production, can be attenuated 

by performing  FEC on pooled samples, in which equal amounts of faeces from 

several individuals are mixed together and a single FEC is used as an index of 

group mean FEC (Morgan et al., 2005).  
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The general objective of my PhD was to study into details the different aspects 

concerning the coprological diagnosis of gastrointestinal nematode (GIN) 

infections in small ruminants. 

The specific objectives were:  

1. To define the accuracy of the FLOTAC technique and to compare it with 

other coprological techniques. For this purpose, laboratory trials were 

conducted on sheep faecal samples to calibrate the FLOTAC and to compare 

the diagnostic accuracy of three techniques: simple flotation, McMaster and 

FLOTAC. The aim was to find the best flotation solution (FS) and to evaluate 

the influence of faecal preservation methods combined with FS on GIN egg 

counts.  

[Chapter 2]. 

 

2. To study the importance of the sampling period and sampling time for the 

coprological diagnosis of GIN infections in small ruminants. For this 

purpose, a longitudinal study on GIN faecal egg count (FEC) was conducted 

in dairy goats aimed at evaluating: the effect of hour of faecal sample 

collection on GIN FECs and the relationship between FECs and worm 

burdens. 

[Chapter 3]. 

 

3. To evaluate the maintenance of anthelmintic efficacy in sheep in a 

Mediterranean climate. For this purpose, the presence of anthelmintic 

resistance was investigated on sheep farms using the FLOTAC technique in 

order to determine whether management practices in this region have 

allowed the maintenance of anthelmintic efficacy. 

[Chapter 4]. 

 

4. To determine the value of pooled faecal samples to assess GIN infection 

intensity (FEC) and anthelmintic efficacy (FECR). For this purpose, field 

trials were conducted to: compare FEC and FECR from individual sheep 
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samples and pools of different size (5, 10 and 20 individual sheep samples); 

assess the effect of three different analytic sensitivities (10, 15 and 50) on 

individual and pooled samples using McMaster (analytic sensitivities = 15 

and 50) and Mini-FLOTAC (analytic sensitivity = 10) and; determine the 

effect of the pooling on FECR.  

[Chapter 5]. 
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CHAPTER 2 

Calibration and diagnostic accuracy of simple flotation, McMaster and FLOTAC for 

parasite egg counts in sheep* 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Based on the manuscript: Rinaldi, L., Coles, G.C., Maurelli, M.P., Bosco, A.,  Musella, 

V., Cringoli G., 2011. Calibration and diagnostic accuracy of simple flotation, 

McMaster and FLOTAC for parasite egg counts in sheep. Vet Parasitol. 177 (3-4), 

345-52. 

 

http://www.ncbi.nlm.nih.gov/pubmed/21216533
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1. INTRODUCTION 

One of the most important issues facing sheep health is the development of 

anthelmintic resistance, a situation only being rescued in several countries by the 

introduction of a new anthelmintic type monepantel (Kaminsky et al., 2008). Early 

detection of resistance to all types of anthelmintic and especially the macrocyclic 

lactones would be of value so that the necessary changes in management can be 

made. A sensitive faecal egg count (FEC) procedure combined with use of a 

discriminating dose should help solve this problem. The parasites are usually 

diagnosed by copromicroscopic techniques (Cringoli et al., 2004; Mes et al., 2007). 

FEC techniques are considered relatively straightforward and protocols such as 

the McMaster technique and the Wisconsin flotation technique have been available 

for many years (Cringoli et al., 2010). 

The different variants of the McMaster method (MAFF, 1986) have the advantage 

that they are quick to use, particularly if centrifugation is not included in the 

protocol. 

For most purposes its sensitivity of 50 or 25 eggs per gram of faeces (EPG) is 

adequate. However, it is not suitable for helminths such as flukes and for situations 

where sensitive egg counts or lungworm larval counts are required (Cringoli et al., 

2010; Duthaler et al., 2010; Rinaldi et al., 2010). FLOTAC is a multivalent sensitive 

and accurate copromicroscopic method of examining faecal samples for the 

presence of eggs, larvae, oocysts and cysts. This technique uses the FLOTAC 

apparatus which allows up to 1 g of faeces to be prepared for microscopic analysis 

(Cringoli, 2006; Cringoli et al., 2010) (Fig 1). Flotation solutions (FS) and faecal 

preservation methods have fundamental role in determining the analytic 

sensitivity, the precision, and the accuracy of any copromicroscopic technique, 

either qualitative or quantitative, based on flotation, including the FLOTAC 

technique (Cringoli et al., 2004, 2010). In view of these considerations, there is a 

need for detailed calibration of the FLOTAC and other FEC techniques, to 

determine the optimal FS and faecal preservation method for an accurate diagnosis 

of parasitic elements. The present study was aimed at carrying out a calibration 

and a comparison of diagnostic accuracy of three FEC techniques, the simple 

flotation technique (MAFF, 1986), the McMaster (MAFF, 1986) and FLOTAC 

(Cringoli et al., 2010), in order to find the best FS for Dicrocoelium dendriticum, 
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Moniezia expansa and gastrointestinal (GI) strongyles, and to evaluate the 

influence of faecal preservation methods combined with FS on egg counts. 

 

 

Fig. 1. The Basic steps of the FLOTAC Technique (analytic sensitivity: 1 EPG, 1 LPG, 1 OPG and 1 
CPG). 

 

 

2. MATERIAL AND METHODS 

 

2.1. Experiment 1—calibration of flotation solutions and faecal preservation 

methods  

 

To determine the optimum FS, faecal preservation method, and technique for 

counting helminth eggs, faecal samples from naturally infected sheep were 

collected, combined, thoroughly homogenized and divided into four aliquots of 120 

g each. These were either directly examined (i.e. fresh), or preserved in 5 or 10% 

formalin or frozen at −30 °C prior to counting. Formaldehyde was added at 3 parts 

fixative to 1 part faeces. To prepare samples for examination by three counting 

techniques: (i) simple flotation technique (MAFF, 1986), (ii) McMaster technique 

(MAFF, 1986) and (iii) FLOTAC technique (Cringoli et al., 2010), each aliquot was 

diluted with 9 parts of water or water plus formalin (i.e. faecal dilution of 1:10), 

thoroughly homogenised and filtered through a 250 µm wire mesh sieve. The 

filtered suspension was divided into 162 aliquots of 6 ml to have six replicates for 

each of 9 FS for the 3 techniques. After centrifugation at 1500 rpm (170 g) for 3 
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min supernatant was discarded and flotation solutions were added. Tubes were 

randomly assigned to the three techniques and to the 9 FS described in Table 1. 

For the simple flotation technique tubes were filled with FS to give a slight 

meniscus and a 18 mm × 18 mm cover slip was added and left for 15 min before 

being removed and all eggs counted. 

 

Table 1. Flotation solutions used for the calibration and comparison of the three techniques: 
McMaster, simple flotation technique and FLOTAC. 

Flotation solutions Specific gravity (s.g.) 
FS1 Sheather’s Sugar Solution 1.200 
FS2 Satured Sodium Chloride 1.200 
FS3 Zinc Sulphate 1.200 
FS4 Sodium Nitrate 1.200 
FS5 Sucrose and Potassium Iodomercurate  1.250 
FS6 Magnesium Sulphate 1.280 
FS7 Zinc Sulphate 1.350 
FS8 Potassium Iodomercurate 1.440 
FS9 Zinc Sulphate and Potassium Iodomercurate  1.450 
 

For examination by the McMaster technique (special modification of the McMaster 

method—MAFF, 1986), FS were added up to 6 ml, the contents of the tube 

thoroughly mixed and 1.0 ml was then taken up by pipette to load the two cells of 

the McMaster slide (Weber Scientific International, England; volume = 1.0 ml). 

Slides were allowed to stand for 10 min before reading both cells. One egg seen is 

equivalent to 10 eggs per gram of faeces (analytic sensitivity = 10 EPG). 

For the FLOTAC technique, FS were added up to 6 ml, the contents thoroughly 

mixed and used to fill one of the two chambers of the FLOTAC-100 (volume of each 

chamber = 5 ml). Thus, a single flotation chamber of the FLOTAC-100 was utilized 

for each replicate (analytic sensitivity = 2 EPG). After centrifugation of the FLOTAC 

apparatus at 1000 rpm (120 g) for 5 min, the top of the flotation chambers were 

translated and the number of eggs counted. 

 

 

2.2. Experiment 2—preservation by vacuum packing 

 

Experiment 2 was aimed at determining the applicability of vacuum packing as 

faecal preservation method for GI strongyle FEC by FLOTAC and McMaster (using 
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FS2) (Fig. 2). It should be noted that we focussed this experiment on GI strongyles 

in order to contribute to the ongoing debate on the FEC reduction test. Faecal 

samples from naturally infected sheep were collected, combined, thoroughly 

homogenized and divided into 13 aliquots of 30 g each. These were either directly 

examined at day zero (i.e. fresh, D0), or preserved by vacuum packing at room 

temperature and examined weekly for 28 days (VP-RT: D7, D14, D21, D28), or 

preserved by vacuum packing in the fridge (+4 °C) and examined weekly for 28 

days (VP-F: D7, D14, D21, D28), or preserved in the fridge (+4 °C) without vacuum 

packing and examined weekly for 28 days (F: D7, D14, D21, D28). Vacuum packing 

was performed using a domestic appliance; this method can be used for preserving 

samples (van Wyk, J. personal communication). 

 

 

Fig. 2. The vacuum packing to preservation the faecal samples 

 

 

2.3. Statistical analysis 

 

The arithmetic mean eggs per gram of faeces (EPG), standard deviation (SD), and 

Coefficient of Variation (CV) of EPG values were calculated for the different FS for 
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each preservation method and each technique. Differences between solutions were 

analyzed using an one-way ANOVA with post hoc Fisher’s least significant 

difference (LSD). Statistical analysis was carried out using STATA 10.0 software 

(Stata Corp., TX 77845, USA). In addition, a likelihood ratio test of the equality of 

the CV of k normally distributed populations was performed using software 

developed by the Statistical Services at the Forest Products Laboratory (USA; 

http://www1.fpl.fs.fed.us/covtestk.html). 

 

 

3. RESULTS  

 

3.1. Experiment 1—calibration of flotation solutions and faecal preservation 

methods 

 

The results of the experiment 1 are shown in Figs. 1–3 which respectively shows D. 

dendriticum, M. expansa and GI strongyle egg counts (EPG and CV) in the composite 

sheep faecal sample, stratified by diagnostic technique, FS and faecal preservation 

method. The “gold standard” FS was defined as the FS which produced the highest 

EPG and the lowest CV. Statistical comparisons were performed only for FS 

producing EPG above the 50% of the gold standard (marked with a blue line in 

Figs. 3–5).  

 

3.1.1. Dicrocoelium dendriticum 

 

Eggs of D. dendriticum floated only with flotation solutions from FS6 to FS9 for all 

the three techniques used. The best results for D. dendriticum were obtained with 

FLOTAC using FS7 (EPG = 219, CV = 3.9%), FS8 (EPG = 227, CV = 5.2%) and FS9 

(EPG = 210, CV = 5.3%) (no significant difference between FS) on fresh faeces (Fig. 

1). F7 (EPG = 108, CV = 31.7%) was less effective when using McMaster but F8 

(EPG = 188, CV = 16.3%) gave acceptable results although with high CV. The simple 

flotation performed very poorly for estimating numbers of D. dendriticum eggs. 

http://www1.fpl.fs.fed.us/covtestk.html
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With respect to faecal preservation methods, FLOTAC with FS8 also performed 

well with faecal samples preserved in 5% and 10% formalin or if frozen, but less so 

for FS7 and FS9. 

 

3.1.2. Moniezia expansa 

 

All nine FS were capable of bringing M. expansa eggs in flotation for all the three 

techniques used. 

The “gold standard” for M. expansa was obtained with FLOTAC, using FS3 (EPG = 

122, CV = 4.1%) on fresh faeces but there were no relevant differences between 

the different FS. FLOTAC also showed good results with FS3 with faecal samples 

preserved in 5% formalin, whereas with the other two preservation method, i.e. 

10% formalin and frozen, controversial results were obtained regarding FS. As 

regard to McMaster, the best results were obtained with FS6 on fresh faeces (EPG = 

120, CV = 39.1%). Also for this method there were no significant differences 

between the different FS, however, CV was higher than FLOTAC for all FS and 

preservation methods. As regard to simple flotation, the mean EPG were lower and 

the CV were higher than with the other two techniques for all the FS and faecal 

preservation method used. 

 

3.1.3. Gastrointestinal strongyles 

 

Both the FLOTAC and McMaster techniques gave acceptable counts on fresh faeces 

with FS1 to FS6 but usually with a lower CV with FLOTAC counts. The “gold 

standard” for GI strongyles was obtained with FLOTAC when using FS5 (EPG = 

320, CV = 4%) and FS2 (EPG = 298, CV = 5%). 

With all three methods of preservation using formalin or freezing satisfactory egg 

counts were not obtained by any counting method. Moreover, as with egg counts of 

M. expansa and D. dendriticum the results from simple flotation were unacceptably 

low (Fig. 5). 
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3.2. Experiment 2—preservation by vacuum packing 

 

Anaerobic storage by using vacuum packing of faecal samples and refrigeration at 

4 ◦C permitted egg counts up to 21 days after collection although after this time 

some egg structure began to disappear (Fig. 6). Mould formed by day 14 if 

refrigeration without vacuum packing was used limiting the acceptability of this 

method. Preservation by vacuum packing with storage at room temperature (21.8 

◦C) was satisfactory until day 21 but from day 7 the smell from the samples limited 

their acceptability. From day 14 there was an increase in larvation of the eggs. 

 

4. DISCUSSION 

 

If a simple fast decision is required on whether sheep should be treated for 

infection with GI strongyles, M. expansa or D. dendriticum the present data 

confirms that the McMaster technique or its on farm version, FECPAK (Presland et 

al., 2005), are satisfactory, although the best results, in terms of sensitivity, 

accuracy and repeatability was obtained with FLOTAC technique, as in previous 

studies made for different parasites of veterinary and human importance (Cringoli 

et al., 2010), including parasites of sheep (Rinaldi et al., 2010). The simple flotation 

technique should never be used due to the very low and variable results obtained. 

The lower sensitivity, accuracy and repeatability of McMaster technique for egg 

count may has been also mentioned by Mes et al. (2007), who have reported that 

this technique requires extrapolation, and thus it renders EPG estimates less 

precise than methods that do not require extrapolation, such as the Wisconsin 

flotation method (Cox and Todd, 1962; Egwand and Slocombe, 1982) and the 

modified salt–sugar flotation method (Mes et al., 2007). Following this line of 

thought, larger multiplication factors are needed for extrapolation, for example, 

under the smaller McMaster slide areas (volumes), the less precise EPG counts will 

result. Moreover, using the FLOTAC technique, a large amount of faecal suspension 

is examined, and so also the sensitivity is greater; thus, this technique is less likely 

to give false negative results. The results confirm, also, that the faecal preservation 

methods as flotation solutions (FS) have a fundamental role in determining the 

analytic sensitivity of any copromicroscopic techniques; it is noteworthy if a 
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sample has examined to be fresh, does not produce the same results if the method 

of faeces preservation changes (e.g., frozen, fixed in formalin or in other fixatives). 

Faecal samples containing M. expansa or D. dendriticum eggs can be stored 

chemically (formaldehyde) or by freezing but this should not be used with GI 

strongyle eggs as demonstrated also by Foreyt (1986) for nematoda eggs in deer.  
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Fig. 3. The recovery of eggs of D. dendriticum from sheep faeces by FLOTAC, McMaster and tube 
flotation using 9 different flotation solutions and 4 different methods of sample preservation. *P < 
0.05; significant differences for different letters. 
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Fig. 4. The recovery of eggs of M. expansa from sheep faeces by FLOTAC, McMaster and tube 
flotation using 9 different flotation solutions and 4 different methods of sample preservation. *P < 
0.05; significant differences for different letters. 
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Fig. 5. The recovery of eggs of GI strongyles from sheep faeces by FLOTAC, McMaster and tube 
flotation using 9 different flotation solutions and 4 different methods of sample preservation. *P < 
0.05; significant differences for different letters. 
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Fig. 6. GI strongyle egg counts using McMaster or FLOTAC counts in fresh faecal samples or stored 
by refrigeration, vacuum packing or refrigeration and vacuum packing for up to 28 days (D7, D14, 
D21, D28). 
 

 

Vacuum storage or refrigeration can be used to store faecal samples for up to 21 

days without significantly reducing the egg counts, although the best combination 

is both vacuum packing and refrigeration, and so it could be a good alternative 

method to preserve the faeces to analyze and should be tried also on other 

helminth eggs of other animal species. Whilst this could be of value if very large 

numbers of samples are collected at one time or samples are being transported 

long distance for analysis, the storage is obviously not relevant if rapid decisions 

on treatment are required. Faecal egg counts have two important purposes. The 

first is the decision of whether to treat to improve the health of the animals and/or 

reduce pasture contamination. This decision is complicated by different egg laying 

rates with different nematodes, e.g., Haemonchus contortus versus Teladorsagia 



68 
 

circumcincta, egg counts unrelated to worm burdens, e.g., Nematodirus sp. and the 

physiological/immunological status of the host, e.g., resilient versus ‘normal’ 

versus resistant animals. So as yet there is no agreed egg count data for deciding 

when to treat and it may vary from animal to animal in the flock thus giving rise to 

the concept of targeted selective treatment (Kenyon et al., 2009) in which refugia 

is promoted by leaving selected animals untreated. Methods that are not too 

accurate are fully acceptable for these egg counts. The second use of egg counts is 

for the detection of anthelmintic resistance. To improve the sensitivity of detection 

accurate egg counts are required. Whilst counting of ten samples at treatment and 

ten samples 7–14 days later per anthelmintic used may be valuable for a research 

project the expense involved will not be acceptable to sheep farmers with very low 

profit margins. To overcome this composite sampling must be used and accurate 

egg counts have to be performed to give a reliable indication of the degree of 

resistance. This may be to check the efficacy of quarantine dosing to avoid the 

introduction of resistant worms when animals are brought on to a farm. It may 

also be to establish the resistance status of a flock so that evasive strategies may be 

introduced before resistance becomes a serious practical problem with any 

particular anthelmintic and results in lost production. Coles et al. (1992) suggested 

that efficacies in the faecal egg count reduction test of less than 95% with 95% 

confidence level less than 90% will indicate the presence of resistance. This, of 

course, requires the counting of samples from several sheep. Our ongoing research 

suggests that these values are incorrect and too low and that by using very 

accurate egg counts early stages of anthelmintic resistance can be detected. If 

confirmed this could remove the need to have molecular based tests to detect the 

early emergence of resistance, so far a largely elusive goal particularly for 

macrocyclic lactones. The key issue for counting helminth eggs for the detection of 

resistance is the use of a highly sensitive, accurate and repeatable egg counting 

procedure. This applies to other grazing species as well as sheep, including cattle 

(unpublished) and ivermectin resistance in horses (Dudeney et al., 2008). The 

present data confirms that the FLOTAC meets these requirements for use in 

accurate repeatable egg counts with sheep and could become the counting method 

of choice for all investigations into the epidemiology of anthelmintic resistance in 

all animal species including humans. 
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Although best results are often obtained with flotation solutions containing 

mercury salts the toxicity of these chemicals and the strict legal requirements for 

their disposal will exclude their widespread use (Cringoli et al., 2010). Based on 

the present results and previous results by Rinaldi et al. (2010) we suggest the use 

of two solutions that are easy and cheap to purchase and prepare, saturated 

sodium chloride (FS2) for nematoda and cestoda eggs and saturated zinc sulphate 

(FS7) or zinc chloride for trematoda eggs and nematoda larvae. The importance of 

M. expansa in lamb growth is debatable (Elliott, 1986) but since FS7 floats Fasciola 

hepatica and other trematode eggs, FLOTAC should be very useful in the detection 

of anthelmintic resistance in fluke which appears to be a growing problem with 

triclabendazole (Fairweather, 2009) as well possibly occurring with closantel 

(Fairweather and Boray, 1999). Further research is likely to result in the use of 

FLOTAC in the counting of oocysts, e.g., Eimeria sp. and also the detection of anti-

coccidial resistance. 
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CHAPTER 3 

 

Is gastrointestinal strongyle faecal egg count influenced by hour of sample 

collection and worm burden in goats?* 

 

 

 

 

 

 

 

 

 

 

 

*Based on the manuscript: Rinaldi, L., Veneziano, V., Morgoglione, M.E., Pennacchio, 

S., Santaniello, M., Schioppi, M., Musella, V., Fedele, V., Cringoli, G., 2009. Is 

gastrointestinal strongyle faecal egg count influenced by hour of sample collection 

and worm burden in goats? Vet. Parasitol. 163, 81-86. 
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1. INTRODUCTION 

The issue of controlling gastrointestinal (GI) strongyles is of particular economic 

importance in goat production system worldwide (Rinaldi et al., 2007b,c). 

Conventional methods of worm control involve treatment(s) of the whole flock 

with synthetic anthelmintics. However, in this day and age, the global problem of 

anthelmintic resistance in small ruminants ensures that attention also needs to be 

given to the sustainability of anthelmintic treatment regimes as well as to their 

immediate economic benefit (Cringoli et al., 2007a,b, 2008). There is currently a 

general agreement to replace the practice of treating the whole flock with targeted 

selective treatments (TST), where only animals showing clinical symptoms or 

reduced productivity are given drugs (van Wyk et al., 2006). Different 

pathophysiological and performance indicators of GI strongyle infection in small 

ruminants have been recently proposed; for example, the FAMACHA system (van 

Wyk and Bath, 2002) can be used to identify goats suffering from anaemia (likely 

caused by Haemonchus), and a diarrhoea index can be a good indicator of actual 

nematode infection during the summer and autumn in a temperate climate 

(Cabaret, 2004). In addition, body condition scoring (van Wyk and Bath, 2002), 

and liveweight gain and milk production (Hoste et al., 2002a,c) are also potential 

methods for identifying animals requiring anthelmintic treatments. However, the 

value of these methods in different climates and the benefits to animal productivity 

need further research (Ketzis et al., 2006) and faecal egg count (FEC) techniques 

remain the most common approaches for the estimation of prevalence and 

intensity of GI strongyle infections (Cringoli et al., 2004; Villanua et al., 2006). FEC 

results may be affected by many factors, either depending on FEC techniques or 

depending on biological factors. There is a clear need for the standardization of 

FEC techniques (Cringoli et al., 2004), and recently, the Flotac techniques (Cringoli, 

2006) has been developed for sensitive and accurate FECs. The validity of these 

techniques are supported by studies for different parasites in different host species 

(Rinaldi et al., 2007a,b,c; Gaglio et al., 2008; Traversa et al., 2008; Utzinger et al., 

2008; Knopp et al., 2009) including GI strongyles of ruminants (Cringoli G, 

unpublished data; FLOTAC1 Manual – Flotac techniques - Herbivores). Concerning 

the biological factors, FEC may be subjected to a great within-individual variation 

due to factors such as host reproductive status, weather, season, random day-
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today variation, and the phase of the parasitic infection (Villanua et al., 2006). In 

order to study the factors that can influence the significance of FEC results, the 

present paper reports a longitudinal study on GI strongyle FEC in dairy goats 

aimed at evaluating: (i) the effect of hour of faecal sample collection on GI 

strongyle FECs and (ii) the relationship between FECs and worm burdens.  

 

2. MATERIALS AND METHODS 

2.1.  Study farm and study animals 

The study was conducted at the experimental farm of the ‘‘C.R.A., Unita` di Ricerca 

Zootecnia Estensiva, Bella Scalo, Muro Lucano’’, located in the Potenza province of 

southern Italy (408210N and 1583002500E) at 360 m above sea level. A total of 63 

female Siriana goats were used for the study. They were approximately 1.5 years 

old at the start in July, 2005, and in their second grazing season. The goats in the 

farm grazed for 8 h/day and were supplemented with concentrates, corresponding 

to 50% of energy requirements. These goats, together with the rest of the flock, 

had been treated with moxidectin in June. Before the start of the study each goat 

was randomly assigned to a sampling day (see below).  

2.2. Relationship between the hour of sampling and GI strongyle FEC 

Every 3 weeks from 13th July 2005 to 6th September 2006 fecal samples were 

collected every 2 h for 24 h from three of the goats. At each sampling day, three 

goats were individually housed in digestibility cages containing a sieve in the 

bottom for separating faeces, as described by Fedele et al. (2002). The three cages 

were placed in the box where the rest of the flock was housed during the night 

after grazing. It should be noted that in order to avoid possible bias due to the 

caging, the experimental goats were acclimatized to the cages each evening for 1 

week before each sampling day. Goats were fed with hay and concentrates when 

caged. In addition, a soft lamp illuminated the stable so that goats were not 

disturbed by the technicians during the faecal sample collection. Thus, in the 

present study we attempted to avoid any confounding factor, being aware, 

however, that the change of diet resulting from grazing pasture to being confined 

in the box may have influenced the results. Every 3 weeks for 14 months faeces 

were collected every 2 h for 24 h from the individually caged goats. The faeces 
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were those passed by the goats during the 2 h preceding each collection. For each 

goat a 10 g sample obtained from this material, thoroughly homogenized, was 

analyzed using the Flotac double technique (Cringoli, 2006; FLOTAC1 Manual - 

Herbivores) having an analytic sensitivity of 2 EPG; a sucrose-based solution 

(specific gravity = 1.250) was used as flotation medium. To explore relationships 

between FECs and adult parasite counts, on the day following sampling, the three 

goats were euthanized and the nematodes present in the abomasa and intestines 

were recovered, identified and counted. Mean, standard error and 25th, 50th and 

75th percentiles of GI strongyle EPG values (not ln-transformed) were calculated 

for each sampling hour interval, pooling the data from the 63 goats. Then, EPG 

values were lntransformed in order to achieve the Normal distribution, as detected 

by the analyses of the Normality tests of Shapiro–Wilk (P > 0.05) and the Normal 

Q–Q Plots. On these ln-transformed data a generalized linear model (GLM) for the 

analysis of the effect of hour of sample collection on GI strongyle FEC was 

performed. In particular, EPG values were introduced in the model as dependent 

variables, hour and month of sampling as categorical fixed factors and individual 

animal was entered in the model as a random factor. All the statistical analyses 

were performed using SPSS software (Version 13). 

  

2.3. Relationship between worm burden and FEC 

On each sampling day, in order to have a FEC representative of the 24 h for each 

goat, a 5 g composite sample from the 12 samples was analyzed using the Flotac 

double technique as described above. In addition, on each sampling day a 

composite faecal culture was made per each goat (MAFF, 1986). Third stage larvae 

were identified using the morphological keys proposed by Gevrey (1971) and van 

Wyk et al. (2004). When a coproculture had 100 or less third stage larvae, all were 

identified; when more than 100 larvae were present, only 100 were identified. On 

the day following faecal sampling, the three goats were euthanized, and adult 

nematodes in the abomasa and intestines were recovered, identified and counted. 

The viscera were processed for sample collection, further worm counts and 

identification of parasites present in the abomasum and small and large intestines, 

following the procedures described in the WAAVP guidelines for evaluating the 

efficacy of anthelmintics in ruminants (Wood et al., 1995). Mean and standard 
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error of females, males and EPG counts were calculated for each GI strongyle 

species based on pooling data from the 63 goats. The degree of aggregation of FECs 

and worm counts of GI strongyles was assessed using the parameter k from the 

negative binomial distribution. Worm count values and EPG were ln-transformed 

in order to achieve the Normal distribution, as detected by the analyses of the 

Normality tests of Shapiro–Wilk (P > 0.05) and the Normal Q–Q Plots. On these 

lntransformed data, for each GI strongyle species, the relationship between worm 

burden and EPG was evaluated using Pearson correlation. All the statistical 

analyses were performed using SPSS software (Version 13) and STATA 9.2 

software. 

 

3. RESULTS 

3.1. Relationship between the hour of sampling and GI strongyle FEC 

Table 1 shows the GI strongyle EPG values (arithmetic means) every 2 h over the 

24-h sampling period, pooled for the 63 goats. The k values indicate that the data 

for all EPGs were aggregated (see below). The mean values of GI strongyle EPG 

ranged from 4417.0 (hour interval 2.00–4.00) to 8652.9 (hour interval 6.00–8.00). 

The results of GLM (controlling for the effect of individual by considering it as a 

random effect) did not revealed any significant effect of the hour of sample 

collection (F11,63 = 0.99; P = 0.449) on FEC, whereas a significant effect of the 

sampling month (seasonality) was found (F20,63 = 27.5; P = 0.000). Fig. 1 shows 

the GI strongyle FEC during all the study period; the highest EPG values were 

observed between April and June. 
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Table 1. Two-hourly GI strongyle FECs (arithmetic means) over 24 h pooled for 63 goats. 

Time of 

sampling  

Arithmetic 

mean  

Standard 

error 

Percentiles 

   25th 50th 75th 

8.00-10.00 7254.2 1800.7 1943 3331 8346 

10.00-12.00 6184.2 1006.4 1883 3998 7547 

12.00-14.00 4838.3 965.9 143 3383 4657 

14.00-16.00 4947.4 866.3 1658 2982 5672 

16.00-18.00 6923.2 1537.3 1974 3088 7032 

18.00-20.00 6816.9 1316.8 1890 3516 8856 

20.00-22.00 5686.3 989.8 1904 3530 8380 

22.00-24.00 4449.3 793.9 1012 2640 6396 

24.00-2.00 6965.3 1426.2 1025 3584 7495 

2.00-4.00 4417.0 855.4 1163 2932 5501 

4.00-6.00 8025.1 1572.4 1634 4138 9465 

6.00-8.00 8652.9 1605.8 2185 4189 10,633 

 

 

 

 

Fig. 1. Monthly GI strongyle FECs (arithmetic means) in the studied goats. 
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3.2. Relationship between worm burden and FEC 

The adult nematodes recovered and identified in the goats were: Teladorsagia 

circumcincta and Haemonchus contortus in the abomasum; Trichostrongylus 

colubriformis in the small intestine; and Oesophagostomum venulosum in the large 

intestine. GI strongyle EPG and worm population were aggregated with a positive 

skewed distribution; this aggregation was also found among the four species of GI 

strongyles, especially H. contortus (see the values of the k parameters from the 

negative binomial distribution in Table 2). Table 2 also shows the arithmetic mean 

and standard error of the different species of GI strongyles (EPG, number of 

females, males and total worms), the female/male ratio and the correlation 

between EPG and total number of worms (data pooled for 63 goats). The mean 

number of adult GI strongyles counted in the 63 studied goats was 4447.2 (range = 

310–13,992). 
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Table 2. GI strongyle FECs and adult parasite counts (arithmetic means) pooled for 63 goats. 

Parameters  GI strongyles  Haemonchus 
contortus 

 Oesophagostomu
m venulosum 

 Trichostrongyl
us 
colubriformis 

 Teladorsagia 
circumcincta 

 
EPG 
 
 

Arithmetic 
mean 

7660.8  3866.7  345.4  2490.5  958.2 

Standard error 
k parameter* 

1287.7 
0.65 

 753.3 
0.70 

 79.2 
0.70 

 406.9 
0.70 

 146.2 
0.68 

Females 
 
 
 

Mean 2844.4  555.4  17.5  1725.9  545.6 

Standard error 
k parameter* 

280.6 
0.66 

 87.5 
0.71 

 3.2 
0.72 

 215.1 
0.71 

 77.5 
0.68 

Males 
 
 
 

Mean 1602.8  410.8  13.6  851.6  326.8 

Standard error 
k parameter* 

154.3 
0.66 

 61.8 
0.71 

 2.8 
0.72 

 111.9 
0.71 

 39.2 
0.66 

Female/male 
ratio 

 1.7  1.3  1.3  2.0  1.7 

 
 
Total worms 
(females+male
s) 
 
 

 
 
Mean 

 
 

4447.2 

  
 

966.2 

  
 

31.1 

  
 

2577.5 

  
 

872.4 

Standard error 
k parameter* 

431.1 
0.66 

 148.2 
0.71 

 5.6 
0.72 

 323.0 
0.71 

 115.3 
0.68 

Pearson 
correlation  
(P< 0.001) 

 0.619  0.915  0.728  0.501  0.404 

a Negative binomial parameter (P < 0.001). 
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The most prevalent species was T. colubriformis, followed by H. contortus, T. 

circumcincta and O. venulosum. The mean EPG in the 63 studied goats was 7660.8 

(min 100, max 52,330). Combining the results of FEC and coproculture, H. 

contortus showed the highest egg output, followed by T. colubriformis, T. 

circumcincta and O. venulosum. The scatter plots of FEC and worm burden for each 

GI strongyle species are reported in Fig. 2. The Pearson correlation results showed 

a positive relationship between FEC and total GI strongyle worm burden (r = 

0.619; P = 0.000). At species level, the highest positive relationship was found for 

H. contortus (r = 0.915; P = 0.000), followed by O. venulosum (r = 0.728; P = 0.000), 

T. colubriformis (r = 0.501; P = 0.000), and T. circumcincta (r = 0.404; P = 0.000).  

 

4. DISCUSSION 

This study demonstrated no evidence of a circadian rhythm in the FECs of GI 

strongyles in goats. The study did show, however, a significant relationship 

between FECs and adult parasite counts on consecutive days, especially for H. 

contortus. The lack of a significant effect of the hour of sample collection on FEC 

was also reported by Bennett (1990) for strongyle parasites of equines, whereas a 

circadian rhythm of egg excretion has been observed for other nematode species, 

e.g. Heligmosomoides polygyrus in wild wood mice (Brown et al., 1994) and 

Passalurus ambiguus in rabbits (Rinaldi et al., 2007a,c). The findings of the present 

study have important practical implications, since they demonstrated for the first 

time that faecal sampling for GI strongyle FEC can be performed at any moment of 

the day on a goat farm without affecting FEC values. These results can be likely 

extended to sheep and cattle farms, since all these ruminants often share the same 

parasitic genera and/or species. In the present study, as expected, GI strongyle 

FECs were affected by month of sampling, and this should be considered in the 

design of parasite control programs for goats in regions with similar climate and 

management (Veneziano et al., 2004; Cringoli et al., 2008). The FEC and worm 

burden results of the present study showed that most of the GI strongyle burden 

may occur in a small percentage of hosts. Indeed, the distribution of FEC (at any 

hour of sample collection) and adults (both females and males) was 

asymmetrically positive. These findings are in agreement with other studies on 

small ruminants (Barger, 1985; Cabaret et al., 1998; Hoste et al., 2001, 2002b). 
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Secondly, the Pearson correlation results of the present study showed a positive 

relationship between FEC and total GI strongyle worm burden (r = 0.6). This 

positive relationship was found for all the GI strongyle. A positive correlation 

between EPG and GI strongyle worm counts has been previously found in dairy 

goats from several temperate and steppe areas, in particular when H. contortus, the 

most prolific species, was present (Cabaret and Gasnier, 1994; Cabaret et al., 

1998). In addition, Roberts and Swan (1982) also found a strong correlation 

between FEC and the total number of H. contortus adults in naturally infected 

sheep and, more recently, Beriajaya and Copeman (2006) demonstrated a strong 

relationship between FEC and worm burden in sheep experimentally infected by T. 

colubriformis.  
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Fig. 2. Scattered plots of GI strongyle FEC and worm burden (ln-transformed data) for each GI 
strongyle species. 

 
 
 

This relationship between FEC and worm burden may be influenced by many 

factors such as fecundity of species, age of worm, volume of ingesta and host 

resistance (Roberts and Swan, 1982). However, the association between FEC and 
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worm burden is not an illusion, even considering density-dependant phenomenon 

(Cabaret et al., 1998). The female–male ratio was similar to that observed in other 

studies (Coadwell and Ward, 1982; Paolini et al., 2003; Good et al., 2006). The 

strong linkage between FEC and worm burden supports the use of FEC techniques 

to measure the prevalence and intensity of infections for epidemiological surveys, 

to quantify the efficacy of treatments, and to detect anthelmintic resistance 

(Eysker and Ploeger, 2000). FEC also has potential in the identification of target 

animals for TST. To ensure cost effectiveness, however, further studies are needed 

to evaluate the costs of individual FEC on farms relative to other TST indicators. In 

conclusion, the present study showed that the hour of sample collection does not 

influence the GI strongyle FEC in goats and that there is a good relationship 

between FEC and total GI strongyle worm burden in goats. Gathering of this kind of 

information is recommended as an initial step for any host–parasite study 

(Villanua et al., 2006), and further research is needed on the influence of hour of 

sample collection and relationship with worm burden for other parasites of goats 

and for other ruminant species. 
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CHAPTER 4 

 

The maintenance of anthelmintic efficacy in sheep in a Mediterranean climate* 
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1. INTRODUCTION 

 

Anthelmintic resistance has become an urgent global issue in the control of 

nematodes of sheep and goats in major small ruminant producing regions, e.g. 

South America, Australasia, South Africa and the UK, with multiple resistance 

found on many farms. This is particularly true where Haemonchus contortus is the 

dominant species in summer rainfall areas. There is relatively little information on 

what is happening in sheep flocks in countries with a Mediterranean type climate, 

i.e. hot dry summers and cooler moist winters, with the exception of Greece 

(Papadopoulos et al., 2001) where mixing of flocks on mountain pastures may slow 

the development of resistance, and Algeria where benzimidazole resistance was 

found on five out of 14 pilot farms and ivermectin resistance on one (Bentounsi et 

al., 2007). However, in south-western Australia which also has a Mediterranean 

type climate resistance has been developing very rapidly (Suter et al., 2005). The 

climate in central and southern Italy is typically Mediterranean and in central Italy 

resistance to imidazothiazole and macrocyclic lactones was found in 

trichostrongylids on a number of sheep farms (Traversa et al., 2007). In addition 

one case of benzimidazole resistance has been reported in Trichostrongylus 

colubriformis on a goat farm (Cringoli et al., 2007). In the southern regions of Italy 

sheep are kept for milk production with anthelmintic treatments usually being 

given only twice per year to lambs (Cringoli, personal communication, 2013) and 

adults being left untreated during lactation (Cringoli et al., 2008; Cringoli et al., 

2009). Since these practices ought to leave abundant helminths in refugia for 

susceptible genotypes, and this is believed to be the most important issue in the 

development of anthelmintic resistance (Van Wyk, 2001), there should have been 

little development of resistance on farms using this system. 

In the present study the presence of anthelmintic resistance was investigated on 

54 farms using the faecal egg count reduction test (FECRT) following the 

recommendations of Coles et al. (1992) on flocks of sheep using four groups of 

anthelmintics (benzimidazoles, levamisole, ivermectin/moxidectin and 

monepantel) and the FLOTAC technique having a sensitivity of 2 eggs per gram of 
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faeces (Cringoli et al., 2010). The aim was to determine whether management 

practices in this region have allowed the maintenance of anthelmintic efficacy.  

 

2. MATERIAL AND METHODS 

 

2.1. Study area 

The study was conducted in the Campania region of southern Italy. In this area, 

sheep farms are widely distributed with an average area of approximately 50 ha. 

The area is mainly used for cereal production but small pastures occur on upland 

areas that are unsuitable for cropping (Fig 1). 

 

 
Fig. 1. Study area  

 

2.2.  Study farms and animals  

Trials were conducted between 2008 and 2011 on 54 sheep farms.  

Dairy sheep farms were randomly selected throughout the region and the selection 

was mainly driven by the availability of the farmer. The animals used for the trials 

were mainly local regional breeds, e.g. Bagnolese (for milk) and dairy crossbreeds 

(e.g. Comisana x Sarda) (Fig. 2). These animals were kept on the pasture all year 

round. 
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Fig. 2. Experimental animals 

 

The anthelmintic classes, drugs and dose as well as the number of farms and 

animals used in the study are given in table 1. On each farm all animals were 

weighed and given the correct dose. With ivermectin a half dose was also included 

to indicate whether resistance to the macrocyclic lactones might be developing 

(Palmer et al., 2000). Tests were run with groups of sheep (12 to 20 animals per 

group) using six anthelmintics administered orally, levamisole (Levacide,  

Norbrook, 7.5 mg/kg) on 8 farms, ivermectin (Oramec, Merial, 0.1 and 0.2 mg/kg) 

on 8 farms, moxidectin (Cydectin, Pfizer, 0.2 mg/kg) on 3 farms, monepantel 

(Zolvix, Novartis, 2.5 mg/kg) on 8 farms, netobimin (Hapadex, Intervet, 7.5 mg/kg) 

on 22 farms (pooled samples) and albendazole (Sverminator/Valbazen, 

Fatro/Pfizer 3.8 mg/kg) on 5 farms (pooled samples). Pooled samples were used 

where the presence of benzimidazoles was being investigated so that more farms 

could be surveyed (Rinaldi et al., accepted). Faecal samples were collected rectally 

on days 0 and 7 for levamisole and monepantel and on days 0 and 14 for 

ivermectin and netobimin/albendazole.  
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Table 1. The anthelmintics (class, drugs and dosages) used on sheep farms (no. of farms, animals and presence of a control group) in southern Italy.  Mean GI 
strongyle EPG and activity of netobimin, albendazole, levamisole, ivermectin, moxidectin and monepantel  against GI nematodes calculated by the four methods 

(FECR1, FECR2, FECR3 and FECR4). 
Anthelmintics Farm characteristics Day 0 

FEC (mean epg) 

Day 7 

FEC (mean epg) 

Day 14 

FEC (mean epg) 

The activities calculated by the different methods: min and max FECR (min 

and max lower confidence limits) 

Class Molecule Dosage of 

drug  

(mg/kg) 

No. of sheep 

farms tested  

No. of 

animals per 

treatment  

Presence of a 

control group  

Control  

group 

Treated  

group 

Control  

group 

Treated  

group 

Control  

group 

Treated  

group 

FECR1 

 

FECR2 

 

FECR3 

 

FECR4 

 

 

BZ/PBZ 

Netobimin 7.5  22  

(April, 2008) 

20 (pooled) No  - 505.0 - - - 4.8 - - 92.0-100 92.0-100 

(85.9-99.9) 

Albendazole 3.8  5 

(March, 2008) 

20  

(pooled) 

No  - 257.4 - - - 0 - - 100 100 

(94.4-98.3) 

LV Levamisole 7.5  8  

(August, 2009) 

12  Yes  425.4 372.7 353.6 1.9 - - 98.3-100 

(92.2-98.8) 

98.3-100 

(92.0-99.3) 

- 98.5-100 

(97.4-99.9) 

 

ML 

 

Ivermectin 0.2  8 

(March, 2009) 

12  Yes  218.0 302.4 - - 148.5 0.6 99.5-100 

(95.5-98.8) 

99.6-100 

(97.0-99.6) 

- 99.7-100 

(98.6-99.9) 

Ivermectin 0.1  8  

(June, 2009) 

12  Yes  218.0 283.2 - - 148.5 0.3 98.8-100 

(90.2-98.8) 

98.0-100 

(90.4-99.6) 

- 96.4-100 

(93.4-99.9 

Moxidectin 0.2  3 

(October, 2010) 

20  Yes  618.3 550.6 - - 306.3 0.2 99.9-100 

(99.1-99.4) 

99.9-100 

(99.5-99.6) 

- 99.9-100 

(99.8-99.9) 

AAD Monepantel 2.5  8  

(August, 2011) 

12  Yes  425.4 509.3 353.6 2.4 - - 97.3-100 

(94.9-99.4) 

97.8-100 

(95.7-98.5) 

- 97.0-100 

(96.1-99.8) 

a BZ/PBZ = Benzimidazoles/Probenzimidazoles; LV=Imidazothiazoles/Tetrahydropyrimidines, ML =Macrocyclic lactones; AAD = Amino Acetonitrile Derivates 
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2.3. Laboratory procedures 

In groups treated with LV (levamisole), ML (ivermectin and moxidectin) and AAD 

(monepantel), individual faecal egg counts were determined using the FLOTAC 

dual technique (Cringoli et al., 2010) with a sensitivity of 2 eggs per gram (EPG) of 

faeces, using a sodium chloride based flotation solution (FS2, specific gravity = 

1.200). On the farms treated with BZ/PBZ (albendazole and netobimin) FEC on 

pooled samples were performed, namely, equal amounts from individual faecal 

samples were pooled in the laboratory into one sample before and after treatment 

for each farm (Rinaldi et al., accepted). In addition, on each sampling day a 

composite faecal culture was conducted for each group (MAFF, 1986). Third stage 

larvae were identified to the level of genus using the morphological keys proposed 

by van Wyk et al. (2004). When a coproculture had 100 or fewer third stage larvae, 

all were identified; when more than 100 larvae were present, only the first 100 

examined were identified. 

 

2.4. Statistics  

On each faecal sampling occasion, arithmetic mean EPG was calculated as 

recommended by the WAAVP guidelines for evaluating the efficacy of 

anthelmintics in ruminants and, for each treatment group, percent efficacy (%) 

was calculated in terms of FECR on the different days (Coles at al., 1992; Dobson et 

al., 2009). Different formulae were used based on the presence of a control group 

and/or the use of pooled samples: 

1) FECR1 = 100 × (1−[T2/C2]), where T2 represents the mean post-treatment FEC 

of the treated group, and C2 represents the mean post-treatment FEC of an 

untreated control group (Coles at al., 1992). Arithmetic means were used and 95% 

Confidence Intervals (CI) calculated using variance in treatment and control 

groups as set out in Coles et al. (1992). 

2) FECR2 = 100 × (1−[T2/T1][C1/C2]), where T1 and T2 represent the mean pre- 

and post-treatment FEC of the treated group, respectively, and C1 and C2 

represent the mean pre- and post-treatment FECs of the untreated control group, 

respectively (Dobson et al., 2009; Dash et al., 1988; Pook et al., 2002). Confidence 

intervals were estimated by bootstrapping. Thus, pre and post treatment 

individual FEC for T and C groups were simulated from the original values with 

http://www.sciencedirect.com/science/article/pii/S0304401709002325#ref_bib15
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replacement, and FECR re-calculated. The procedure was repeated 10,000 times, 

and the 2.5 and 97.5 percentiles of the simulated results were used as 95% CI. The 

PopTools (CSIRO, Australia) add-in to Excel (Microsoft Corp, USA) was used for the 

simulations. 

3) FECR3 = 100 × (1−[T2/T1]), where T1 and T2 represented the mean pre- and 

post-treatment FECs of the treated group  (McKenna, 2006). This formula was 

calculated for farms without a control group and when pooled samples were used 

in the laboratory. 

4) FECR4 = 100 x (1-[T2/T1]), where T1 and T2 represent the total number of eggs 

counted in all individuals before and after treatment, respectively (Dobson et al., 

2012). This formula was calculated for farms on which individual or pooled FEC 

were conducted, whether or not control groups were included. Confidence 

intervals were estimated using the Jeffreys interval, as described in (Dobson et al., 

2012). Thus, 95% lower confidence limit = 100 x (1 – (BETAINV(0.975, T2+1, T1–

T2+1)) and 95% upper confidence limit = 100 x (BETAINV(0.025, T2+1, T1-T2+1), 

where BETINV is the cumulative inverse beta function. Microsoft Excel was used to 

estimate FECR and confidence intervals. 

 

3. RESULTS 

 

The genera of nematodes present (minimum and maximum percentages in each 

treatment group) at the time of treatment were: Trichostrongylus (68.9-80.4%); 

Teladorsagia (11.6-16.3%); Oesophagostomum/Chabertia (2.7-11.2%); 

Haemonchus (1.9-7.4%); Cooperia (0.6-2.6%) and Bunostomum (0-0.2%). There 

was no significant variation of this percentages in relation to year, whereas some 

variation were found in relation to the period of sampling, especially regarding 

Teladorsagia that showed the highest prevalence in autumn (unpublished data).   

The efficacies of the anthelmintic treatments are given in table 1. Very high efficacy 

was obtained with all anthelmintics tested as follows (average FECR between 

farms): levamisole 99.3% (range 98-100%), ivermectin half dose 99.5% (98.0-

100%), ivermectin full dose 99.9% (99.3-100%), moxidectin 100% (99.9-100%), 

monepantel 99.4% (97-100%), netobimin 99.1% (92-100%) and albendazole 

100%. Lower confidence limits (LCL) were generally high and always above 95% 
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for monepantel and 99% for moxidectin. On two of the eight farms on which 

ivermectin was used, LCL when using a half dose was between 90 and 95% using 

one or more statistical methods; for the full dose, the minimum LCL was 95.5% 

using FECR1 and 97.8 using FECR2. For levamisole, two of the eight farms tested 

showed LCL below 95%, using one or both methods.  

On one farm, a low efficacy of netobimin was observed (farm no. 9, FECR3 = 92%) 

and anthelmintic resistance was suspected. However, the farm was revisited after 

a period of 1 year, and the FECRT repeated at this time using a control group gave 

an efficacy of 100%. Faecal cultures suggested that there had not been a significant 

change in species composition between the two FECRT.  

 

4. DISCUSSION 

 

GI nematode infection (caused by different genera of nematodes, e.g. Teladorsagia, 

Haemonchus, Trichostrongylus and Oesophagostomum) remains one of the main 

constraints to small ruminant production in southern Italy (Musella et al., 2011; 

Dipineto et al., 2013) and so maintenance of anthelmintic efficacy is important to 

ensure high levels of production and animal welfare.  

The present data suggest that anthelmintic resistance is rare in southern Italy and 

supports the idea that with correct management the development of resistance can 

be greatly reduced. However, it should be noted that one limitation of the present 

study is that some of the results date back more than 5 years old and were 

conducted between March and October. It is likely that the infection levels and the 

ratio inhibited/immature/adults differ between seasons but according to our 

diagnostic data the epidemiological scenario did not change significantly in the 

years of our study (2008-2011). However, a constant monitoring of the efficacy of 

anthelmintics in sheep in southern Italy is strongly recommended. It has been 

established that more frequent treatments select for anthelmintic  resistance 

(Kenyon et al., 2009) so the use of about two anthelmintic treatments in sheep per 

year should reduce the rate at which anthelmintic resistance develops. Although 

albendazole, netobimin and moxidectin are licensed for use in dairy sheep, the 

withdrawal period and resultant loss of production of milk mean that in practice it 

is only administered during the dry period. Thus lactating ewes should provide an 
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important source of nematodes in refugia and refugia is believed to be very 

important in slowing development of resistance (van Wyk, 2001). An obvious 

method of spreading resistance is through the purchase of animals so the low 

movement of sheep between farms should help reduce the spread of resistance 

when it develops. Thus probably unintentionally the farming practices in southern 

Italy should slow the development of resistance. By contrast in western Australia 

treatment of sheep during drought probably encouraged the development of 

resistance as the major source of pasture contamination after the rains return will 

be worms surviving treatment (Geerts et al., 1997). Treatment of animals in 

southern Italy does not usually occur during or at the end of the drought thus 

avoiding this mechanism of selection for resistance. Studies performed in Greece 

(Papadopoulos et al., 2001) suggested that drought was an important issue in 

selecting for anthelmintic resistance in the Mediterranean zone. In southern Italy 

treatment is usually given in March and October when significant numbers of 

worm larvae are on pasture (Fig. 3). 

 

 

Fig. 3. Timing of anthelmintic treatments in sheep farms of southern Italy 

 

 

Whilst the running of the FECRT may appear straightforward, one farm was of 

concern due to the relatively low efficacy when netobimin was used (92.0%). 

Repeat of the FECRT one year later showed an efficacy of 100% without change in 
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species composition.  The reason for the initial lower value is not known but might 

be due to change in diet. This result indicates that a FECRT can sometimes 

underestimate the true efficacy and may suggest erroneously that low levels of 

resistance are present. Whilst this might not be important if used as the basis of 

advice to a farmer to change the type of anthelmintic used, since in that case loss of 

efficacy would be low in terms of production loss, it could lead to false positives in 

surveys of anthelmintic resistance and in scientific studies. Another possible 

limitation of the present study was that insufficient numbers of L3 larvae of 

Cooperia and Chabertia were found following faecal cultures to be sure that the 

high levels of efficacy found with the other genera would also be found with these. 

To assess possible macrocyclic lactone (ML) resistance on the farms, sheep were 

dosed both at the recommended dose rate (0.2 mg/kg) and at half this dose of 

ivermectin (0.1 mg/kg). This has been suggested as a simple method for the early 

detection of ivermectin resistance (Palmer et al., 2000). However, in the present 

study no suggestion of resistance was found using this method.  

The present findings on the efficacy of anthelmintics against nematodes of sheep in 

southern Italy suggests that the percentage FECR for deciding whether  

anthelmintic resistant nematodes are present in sheep could be raised, particularly 

for ivermectin. This would have the advantage of permitting early detection of the 

beginning of anthelmintic resistance. To obtain more reliable data on possible low 

levels anthelmintic resistance a more sensitive egg counting procedure than the 

McMaster slide is required, especially when GI strongyle EPG values before 

treatment are low. Although FLOTAC devices were used in the present study these 

require centrifuging and thus the counts have to be lab based. With the 

introduction of Mini-FLOTAC (Cringoli et al., 2013) which is sensitive to 5 epg and 

can be used on farm, sensitive monitoring for anthelmintic resistance is no longer 

confined to the laboratory. 

To reduce the cost of resistance testing for farmers the use of pooled faecal 

samples has been proposed (Morgan et al., 2005; Rinaldi et al., accepted) with 

equal weights of faeces taken from each sample with thorough mixing before 

counting. It has recently been confirmed that pooling is a valid method for the 

detection of anthelmintic resistance using the Mini-FLOTAC (Rinaldi et al., 

accepted). The pooling strategy was used in the present study to increase the 
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numbers of farms investigated for the possible presence of benzimidazoles 

resistance. There is a good correlation between averages of individual nematode 

egg counts and pooled samples in sheep (Nicholls and Obendorf, 1994; Morgan et 

al., 2005; Rinaldi et al., accepted). A disadvantage of pooled FEC for detection of 

anthelmintic resistance has been the inability to estimate confidence intervals 

when only a single figure for FECR is returned.  A recently published, novel method 

for estimating such confidence limits (Dobson et al., 2012) could greatly improve 

the utility of pooled FEC in estimating anthelmintic efficacy. In the present study, 

results using this method agreed closely with those obtained using individual FEC, 

and it appears that it can provide a flexible and robust analysis for screening and 

confirmatory FECRT, especially when pooled FEC offer cost and logistical 

advantages. 

The findings of the present study could be used when looking for the presence of 

low levels of anthelmintic resistance in ovine nematodes, especially when a 

sensitive egg counting procedure as FLOTAC is used. This would enable a small 

reduction in efficacy to be detected and this will be particularly valuable with 

anthelmintics which have a very high efficacy against nematodes of sheep with 

reduction in egg counts after treatment between 98 and 99%, as ML’s (Cringoli et 

al., 2008, 2009) and monepantel (Hosking et al., 2009; Jones et al., 2010).  

The possible changes that could be made to the definition of anthelmintic 

resistance in nematodes of sheep indicate that similar information should be 

prepared for all host species where anthelmintic resistance tests need to be 

undertaken, especially cattle, horses and other grazing animals.  

In conclusion, the development of anthelmintic resistance on sheep and goat farms 

could be limited in countries with a Mediterranean type of climate provided that 

refugia of the nematode populations are maintained, anthelmintic use is restricted 

and movement of animals is not permitted to spread resistance.  

 

 

 

 



 102 

5. REFERENCES 

Bentounsi, B., Attir, B., Meradi, S., Cabaret, J., 2007. Repeated treatment faecal egg 

counts to identify gastrointestinal nematode resistance in a context of low-level 

infection of sheep in farms in eastern Algeria. Vet. Parasitol., 144, 104-110. 

 

Coles, G.C., Bauer, C., Borgsteede, F.H.M., Geerts, S., Klei, T.R., Taylor, M.A., Waller, 

P.J. 1992. World Association for the Advancement of Veterinary Parasitology 

(W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of 

veterinary importance. Vet. Parasitol., 44, 35-44. 

 

Cringoli, G., Veneziano, V., Rinaldi, L., Sauve, C., Rubino, R., Fedele, V., Cabaret, J., 

2007. Resistance of trichostrongyles to benzimidazoles in Italy: a first report in a 

goat farm with multiple and repeated introductions. Parasitol. Res., 101, 577-581. 

 

Cringoli, G., Veneziano, V., Jackson, F., Vercruysse, J., Greer, A.W., Fedele, V., 

Mezzino, L., Rinaldi, L.,  2008. Effects of strategic anthelmintic treatments on the 

milk production of dairy sheep naturally infected by gastrointestinal strongyles. 

Vet. Parasitol., 156, 340-345.  

 

Cringoli, G., Rinaldi, L., Veneziano, V., Mezzino, L., Vercruysse, J., Jackson, F.,  2009. 

Evaluation of targeted selective treatments in sheep in Italy: effects on faecal worm 

egg count and milk production in four case studies. Vet. Parasitol., 164, 36-43. 

 

Cringoli, G., Rinaldi, L., Maurelli, M.P., Utzinger, J.,  2010. FLOTAC: new multivalent 

technique for qualitative and quantitative copromicroscopic diagnosis of parasites 

in animals and humans. Nature Prot., 5, 503-515. 

 

Cringoli, G., Rinaldi, L., Albonico, M., Bergquist, R., Utzinger, J., 1013. Geospatial 

(s)tools: integration of advanced epidemiological sampling and novel diagnostics. 

Geospat. Health, 7, 399-404. 

 



 103 

Dash, K.M., Hall, E., Barger, I.A., 1988. The role of arithmetic and geometric mean 

worm egg counts in faecal egg count reduction tests and in monitoring strategic 

drenching programs in sheep. Aust. Vet. J., 65, 66-68. 

 

Dipineto, L., Rinaldi, L., Bosco, A., Russo, T.P., Fioretti, A., Cringoli, G., 2013. Co-

infection by Escherichia coli O157 and gastrointestinal strongyles in sheep. Vet. J., 

197, 884-885.  

 

Dobson, R.J., Sangster, N.C., Besier, R.B., Woodgate, R.G., 2009. Geometric means 

provide a biased efficacy result when conducting a faecal egg count reduction test 

(FECRT). Vet. Parasitol., 161, 162-167. 

 

Dobson, R.J., Hosking, B.C., Jacobson, C.L., Cotter, J.L., Besier, R.B., Stein, P.A., Reid, 

S.A. 2012. Preserving new anthelmintics: A simple method for estimating faecal 

egg count reduction test (FECRT) confidence limits when efficacy and/or 

nematode aggregation is high. Vet. Parasitol., 186, 79-92. 

 

Geerts, S., Coles, G.C., Gryseels, B., 1997. Anthelmintic resistance in human 

helminths: learning from the problems with worm control in livesdtock. Parasitol. 

Today, 13, 149-151. 

 

Hosking, B.C., Griffiths, T.M., Woodgate, R.G., Besier, R.B., Le Feuvre, A.S., Nilonm, P., 

Trengove, C., Vanhoff, K.J., Kaye-Smith, B.G., Seewald, W., 2009. Clinical field study 

to evaluate the efficacy and safety of the amino-acetonitrile derivative, 

monepantel, compared with registered anthelmintics against gastrointestinal 

nematodes of sheep in Australia. Aust. Vet. J. 87, 455-462.  

 

Jones, M.D., Hunter, R.P., Dobson, D.P., Reymond, N., Strehlau, G.A., Kubacki, P., 

Tranchard, E.S., Walters, M.E., 2010. European field study of the efficacy and safety 

of the novel anthelmintic monepantel in sheep. Vet. Rec. 167, 610-613. 

 



 104 

Kenyon, F., Greer, A.W., Coles, G.C., Cringoli, G., Papadopoulos, E., Cabaret, J., Berrag, 

B., Varady, M., Van Wyk, J.A., Thomas, E., Vercruysse, J., Jackson, F., 2009. The role 

of targeted selective treatments in the development of refugia-based approaches to 

the control of gastrointestinal nematodes of small ruminants. Vet. Parasitol. 16, 3-

11. 

 

MAFF, Fisheries and Food, Reference Book, Manual of Veterinary Parasitological 

Laboratory Techniques, vol. 418. Ministry of Agriculture, HMSO, London; 1986. 

 

McKenna, P.B., 2006. Further comparison of faecal egg count reduction test 

procedures: sensitivity and specificity. NZ Vet. J. 54, 365-366. 

 

Morgan, E.R., Cavill, L., Curry, G.E., Wood, R.M., Mitchell, E.S., 2005. Effects of 

aggregation and sample size on composite faecal egg counts in sheep. Vet. 

Parasitol. 131, 79-87.  

 

Musella, V., Catelan, D., Rinaldi, L., Lagazio, C., Cringoli, G., Biggeri, A., 2011. 

Covariate selection in multivariate spatial analysis of ovine parasitic infection. 

Prev. Vet. Med. 99, 69-77.  

 

Nicholls, J., Obendorf, D.L., 1994. Application of a composite faecal egg count 

procedure in diagnostic parasitology. Vet. Parasitol. 52, 337-342. 

 

Palmer, D.G., Besier, R.B., Lyon, J., 2000. Anthelmintic resistance in Western 

Australia: a point of crisis? In:  B. Besier and R.Woodgate (Ed.). Proceedings of the 

Australian Sheep Veterinary Society, AVA Conference Perth, Australia, pp. 124-131. 

 

Papadopoulos, E., Himonas, C., Coles, G.C., 2001. Drought and flock isolation may 

enhance the development of anthelmintic resistance in nematodes. Vet. Parasitol. 

97, 253-259. 

 

Pook, J.F., Power, M.L., Sangster, N.C., Hodgson, J.L., Hodgson, D.R., 2002. Evaluation 

of tests for anthelmintic resistance in cyathostomes. Vet. Parasitol. 106, 331-343. 



 105 

 

Rinaldi, L., Levecke, B., Bosco, A., Ianniello, D., Pepe, P., Charlier, J., Cringoli, G., 

Vercruysse, J. Comparison of individual and pooled faecal samples in sheep for the 

assessment of gastro-intestinal strongyle infection intensity and anthelmintic drug 

efficacy using McMaster and Mini-FLOTAC. Vet. Parasitol., accepted with revisions. 

 

Suter, R.J., McKinnon, E.J., Perkins, N.R., Besier, R.B., 2005. The effective life of 

ivermectin on Western Australia sheep farms – a survival analysis. Prev. Vet. Med. 

72, 311-322. 

 

Traversa, D., Paoletti, B., Otranto, D., Miller, J., 2007. First report of multiple drug 

resistance in trichostrongyles affecting sheep under field conditions in Italy. 

Parasitol. Res. 101, 1713-1716. 

 

Van Wyk, J.A., 2001. Refugia – overlooked as perhaps the most potent factor 

concerning the development of anthelmintic resistance. Onderstepoort J. Vet. Res. 

68, 55-67. 

 

Van Wyk, J.A., Cabaret, J., Michael, L.M., 2004. Morphological identification of 

nematode larvae of small ruminants and cattle simplified. Vet. Parasitol. 119, 277-

306. 

 

 

 

 

 

 

 

 

 

 

 

 



 106 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

                                                                  CHAPTER 5 

 
Comparison of individual and pooled faecal samples in sheep for the assessment of 
gastro-intestinal strongyle infection intensity and anthelmintic drug efficacy using 
McMaster and Mini-FLOTAC* 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Based on the manuscript: Rinaldi, L., Levecke, B., Bosco, A., Ianniello, D., Pepe, P., 
Charlier, J., Cringoli, G., Vercruysse, J. Comparison of individual and pooled faecal 
samples in sheep for the assessment of gastro-intestinal strongyle infection 
intensity and anthelmintic drug efficacy using McMaster and Mini-FLOTAC. 
(Submitted to Vet. Parasitol., 2014) 
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1. INTRODUCTION 

 

Infections by gastrointestinal (GI) strongyles continue to represent a serious 

challenge to the health, welfare and productivity of grazing ruminants throughout 

the world (Morgan et al., 2013). The specific and sensitive diagnosis of GI strongyle 

infections of livestock underpins effective disease control, which is now 

particularly important given the problems associated with anthelmintic resistance 

(AR) in parasite populations (Roeber et al., 2013a, b). Currently, diagnosis of these 

infections relies predominantly on copromicroscopy (Cringoli et al., 2010; Demeler 

et al., 2013) and faecal egg count (FEC) techniques are the most widely used 

methods to estimate GI strongyle intensity through the assessment of eggs per 

gram of faeces (EPG). Moreover, reduction in faecal egg count (FECR) is the method 

of choice to monitor anthelmintic drug efficacy and to detect AR in ruminants 

(Coles et al., 1992, 2006).  

However, there are still some obvious limitations that will affect the use of 

FEC/FECR. From a general point of view, the main limitation of copromicroscopy is 

the time and cost to conduct FEC on a representative number of individual animals. 

An alternative to reduce the workload is to examine pooled (composite) faecal 

samples, in which equal amounts of faeces from several animals are mixed together 

and a single FEC is used as an index of group mean FEC. In their simulation-based 

study, Morgan et al. (2005) suggested that GI strongyle faecal egg density in a well-

mixed composite sample from 10 sheep (3 g of faeces from each), estimated by 

examination of four McMaster chambers, is likely to provide an adequate estimate 

of group mean FEC in the majority of situations. 

Similarly, examination of pooled samples in field studies was shown as a quick and 

valid alternative to the examination of individual samples for monitoring GI 

strongyle infections by means of FEC in sheep and cattle in Australia (Baldock et al., 

1990; Ward et al., 1997). Some other studies have described the use of pooled FEC 

for assessing infections by helminths (not only GI strongyles) in sheep for farm 

routines and in cross-sectional prevalence surveys (Nicholls and Obendorf, 1994; 

Cringoli et al., 2002; Musella et al., 2011).  
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However, there are still many issues to be clarified before the pooled FEC is 

introduced in the routine diagnosis of GI strongyles and, by extension, in the 

assessment of anthelmintic drug efficacy (FECR) in ruminant farms.  

First, the effect of pool size (i.e. the number of individual samples in each pool) has 

not been estimated so far and arbitrary numbers of individual faecal samples were 

used, ranging from 3 (Baldock et al., 1990) to 10 (Morgan et al., 1995). 

Second, the effect of analytic sensitivity of the FEC technique on pooling has not 

been evaluated so far and the McMaster technique (Gordon and Whitlock, 1939; 

MAFF, 1986) was usually employed with an analytic sensitivity of 15 or 50 eggs 

per gram (EPG) of faeces. It is likely that a FEC technique with a higher analytic 

sensitivity might be used to pool a greater number of samples. The recently 

developed Mini-FLOTAC (Cringoli et al., 2013) (Fig. 1) having an analytic 

sensitivity of 10 EPG may provide an alternative to the commonly applied 

McMaster for quantitative copromicroscopy in ruminants (Da Silva et al., 2013) in 

order to perform FEC on pooled samples.  

 

 

Fig. 1. Mini-FLOTAC 

 

 

Third, there is a little information on the application of pooled FEC to decide on 

control programmes and in drug efficacy studies to assess FECR. In their recent 
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simulation study, Calvete and Uriarte (2013) report that pooling samples is one 

interesting option for FECR tests since it considerably reduces the workload. 

In order to clarify some of these three key aspects concerning the effect of pooling 

faeces on FEC/FECR, the objectives of the present study were: (i) to further validate 

the pooling technique comparing FEC and FECR from individual sheep samples and 

pools of different size (5, 10 and 20 individual sheep samples), (ii) to assess the 

effect of three different analytic sensitivities (10, 15 and 50) on individual and 

pooled samples using McMaster (analytic sensitivities = 15 and 50) and Mini-

FLOTAC (analytic sensitivity = 10); and (iii) to determine the effect of the pooling 

on FECR. 

 

2. MATERIALS AND METHODS 

 

2.1. Study design 

Between October and December 2012, a study was conducted on 10 sheep farms 

located in the Campania region of southern Italy (Fig. 2). The animals on the farms 

were naturally infected with GI strongyles (Trichostrongylus spp., Haemonchus 

contortus and Teladorsagia circumcincta) (Dipineto et al., 2013). On each farm, 

individual faecal samples (at least 20 grams) from 20 adult sheep (when possible) 

were collected, before (D0) and after (D14) anthelmintic treatment with 

albendazole 3.75 mg/kg (Valbazen 19 mg/ml - oral suspension, Pfizer). For each 

farm and at each time point (D0 and D14) the 20 samples were numbered from 1 

to 20.  
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Fig. 2. Experimental animals 

 

 

All faecal samples were individually processed by the McMaster and the Mini-

FLOTAC techniques as described below.  

In addition, for each farm and at each time point (D0 and D14), the faecal samples 

were pooled in pools of 5 individual samples (n = 4), 10 individual samples (n = 2) 

and 20 individual samples (n = 1). All these pooled samples were prepared, using 

equal amounts from each individual faecal samples (2 grams) as shown in Figure 3.  

 

 

 

 

Fig. 3. Procedure to obtain pools of 5, 10 and 20 individual sheep faecal samples.  
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The total number of sheep farms and the total number of individual and pooled 

samples across the assessment of the infection intensity and the efficacy trial (D0 

and D14) are provided in Figure 4. It should be noted that the predefined pool 

sizes of 5, 10 and 20 could not be met when <20 animals were sampled on a farm. 

Therefore, it was anticipated to have 80 pools of 5 (4 pools per farm x 10 farms x 2 

occasions of sampling), 40 pools of 10 (2 pools per farm x 10 farms x 2 occasions of 

sampling) and 20 pools of 20 (2 pools per farm x 10 farms x 2 occasions of 

sampling) but the actual number of pools of different sizes is provided in Figure 2. 

However, it should be noted that in our analysis to verify differences in pool size, 

we considered all the samples met the predefined sample size. The pooled samples 

were stirred until homogenized. As for the individual samples, each pool was 

examined using McMaster and Mini-FLOTAC.  

 

 

Fig. 4. Number of sheep farms, individual faecal samples and pools used for the study. 
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2.2. Parasitological examination 

 

2.2.1. Modified McMaster technique 

The modified McMaster technique (MAFF, 1986) was performed using the 

following standard operating procedure (SOP). Three grams of faeces were put 

into a container and 42 ml of sodium chloride (NaCl, specific gravity = 1.200) were 

added (dilution ratio = 1:15). The faecal suspension was thoroughly homogenized 

and strained three times through a wire mesh (aperture of 250 µm) to remove 

large debris. The strained suspension was collected in a bowl and thoroughly 

mixed by pouring it 10 times in one bowl to another. Then, 0.5 ml aliquots were 

added to each of the two chambers of a McMaster slide 

(http://www.hawksley.co.uk/cell-count_glassware/05c_spec-chambers/). After 

10 minutes, the GI strongyle egg counts were performed under the two grids 

(volume = 0.3 ml) and both chambers (volume = 1.0 ml) of the McMaster (Cringoli 

et al., 2004) under a light microscope using a 100x magnification. FEC values, 

expressed as EPG of GI strongyles, were obtained by multiplying the total number 

of eggs by 50 (McM50) or 15 (McM15).  

 

2.2.2. Mini-FLOTAC technique 

The Mini-FLOTAC technique (Cringoli et al., 2013) was performed using the 

following SOP. Two grams of fresh faeces were put into the Fill-FLOTAC container 

and 38 ml of sodium chloride (NaCl, specific gravity = 1.200) were added (dilution 

ratio = 1:20). The suspension was then thoroughly homogenized using the 

homogenizer stick of the Fill-FLOTAC. The faecal suspension was then filtered 

through the Fill-FLOTAC, and used to fill the two chambers of the Mini-FLOTAC. 

After 10 minutes, the top part of flotation chambers were translated and the Mini-

FLOTAC was read under a light microscope using a 100x magnification. The 

analytic sensitivity of the Mini-FLOTAC basic technique was 10 EPG. 

For both McMaster and Mini-FLOTAC, quality of the parasitological examination 

was ensured by (i) analyzing the samples within an average of 7 hours of 

collection, (ii) verification of density of the NaCl solution using a hydrometer, (iii) 

calibration of the scale weighing the faecal material, (iv) supervision of the pooling 
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procedures and (iv) reading the McMaster and Mini-FLOTAC by two senior 

researchers.  

 

2.3.  Statistical analysis 

The statistical analyses were performed in the statistical software R (R 

Development Core Team, 2004). The level of significance was set at set at p <0.05 

for all tests. 

 

2.4. Comparison of individual and pooled samples for assessment of FEC and 

drug efficacy (FECR) 

The agreement in FEC between individual samples and pooled samples was 

verified by a permutation test (10,000 iterations) based on Pearson correlation 

coefficient and differences in EPG values for each of the pool sizes and FEC 

technique separately.  

The anthelmintic drug efficacy at each farm was measured by means of FECR using 

the formula below: 

 

 

As for FEC, the agreement in FECR between individual samples and pooled 

samples was verified by a permutation test (10,000 iterations) based on Pearson 

correlation coefficient and differences in FECR for each of the pool sizes and FEC 

technique separately. The Tukey’s method was applied for multiple comparisons.  

 

2.5. Comparison of diagnosis and assessment of drug efficacy across FEC 

techniques 

Agreement in qualitative and quantitative diagnosis of GI strongyles 

The three copromicroscopic techniques (Mini-FLOTAC, McM15 and McM50) were 

compared qualitatively (sensitivity) and quantitatively (FEC). Sensitivity was 

calculated for each technique, using the combined results of the techniques as the 

diagnostic ‘gold’ standard. Therefore, the specificity of both Mini-FLOTAC and 

McMaster was set at 100%, as indicated by the morphology of the eggs. Differences 

in sensitivity between techniques were assessed by a permutation test taking into 
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account the dependency of results within samples (10,000 iterations). The Tukey’s 

method was applied for pair-wise comparison. The variation in sensitivity within 

each technique was explored by a logistic regression model, which was fitted for 

each of the techniques with their test result (positive/negative) as the outcome, 

and the mean FEC across techniques as covariate. The predictive power of this 

model was evaluated by the proportion of the observed outcome that was 

correctly predicted by the model. To this end, an individual probability >0.5 was 

set as a positive test result, and negative if different. Finally, the sensitivity for each 

of the observed values of FEC was estimated based on this model.  

The agreement in FEC across the three techniques (Mini-FLOTAC, McM15 and 

McM50) was verified by a permutation test (10,000 iterations) based on Pearson 

correlation coefficient and differences in FEC. The Tukey’s method was applied for 

multiple comparisons. 

 

2.6. Agreement in assessment of anthelminthic drug efficacy (FECR) 

We assessed the agreement across FEC techniques in classifying the drug efficacy 

into ‘reduced’ (= FECR <95% AND lower limit of the 95% confidence interval (LL 

of 95%CI) <90%), ‘suspected to be reduced’ (= FECR <95% OR LL of 95%CI <90%) 

and ‘normal’ (= FECR ≥95% AND LL of 95%CI ≥90%) as described by Coles et al. 

(1992). The 95%CI was based on a nonparametric bootstrap (10,000 iterations). 

The agreement in classifying the drug efficacy was evaluated by a permutation test 

(10,000 iterations) based on the Kappa Fleiss statistic.  
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3. RESULTS 

 

3.1. Comparison of individual and pooled samples for assessment of FEC and 

FECR 

 

3.1.1. Agreement in assessment of FEC 

The correlation between FEC results of pooled samples and mean of individual FEC 

is illustrated by Figure 5. Overall, FEC results of pooled samples correlated 

positively with the mean FEC of individual samples, with high correlation 

coefficients (Rs), i.e. ≥ 0.94 (p <0.0001), regardless the pool size and the analytic 

sensitivity.  Although these Rs values were high, the concordance plots illustrate a 

difference in level of agreement between the individual and pooled samples. This 

particularly for pool sizes of 10 and 20, for which FEC based on pooled samples 

result in lower estimates compared to FEC individual samples as FEC increase 

(FEC based on pooled samples are located below the line of equality, slope 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5. The agreement in FEC based on the examination of individual and pools of 5 (top row), 10 

(middle row) and 20 (bottom row) samples for three different copromicroscopici techniques. R: 

Pearson’s correlation coefficient. The straight line represents the line of equality (slope = 1). 
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The difference in FEC between pooled and individual samples is summarized in 

Table 1. Overall, examination of individual samples resulted in higher FEC with 

differences in FEC ranging from 20 to 99 EPG. However, a significant difference in 

FEC was observed only for McM15 and when 10 samples were pooled. In this case, 

the mean difference between individual and pooled FEC was 99 (p = 0.05). 

 

Table 1. The difference in FEC between examination of pooled and individual samples for Mini-

FLOTAC and the two variants of the McMaster method (McM15 and McM50). 

 

Pair-wise comparison  Mean difference in FEC (EPG) 

(p-value) 

  Mini-FLOTAC McM15 McM50  

Individual vs. pools of 5  90 

(0.27) 

91 

(0.10) 

56 

(0.42) 

Individual vs. pools of 10  86 

(0.30) 

99 

(0.05) 

68 

(0.26) 

Individual vs. pools of 20  20 

(0.96) 

50 

(0.68) 

76 

(0.16) 

 

 

3.1.2. Agreement in assessment of FECR  

Table 2 summarizes per farm the FECR for the different pool sizes for each of the 

three copromicroscopic techniques. With the exception of one farm (#4), pooling 

samples allowed for assessing FECR on all farms using all three FEC techniques. On 

this farm (#4), no FECR could be determined when using McM15 as the mean FEC 

of the pools post treatment were zero. This was also the case for pools of 10 and 20 

when examined with McM50. With the exception of farms No. 2 and 3 (see Table 

4), FECR was 100% when calculated for individual animals and across the different 

pool sizes (n = 5, 10 and 20 individual samples) and copromicroscopic technique 

(Mini-FLOTAC, McM15 and McM50). Given the low variation in FECR results, no 
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attempts were taken to verify correlation, and differences in FECR between the 

three methods. However, noteworthy on Farm 3 FECR (%) was constantly below 

100% using Mini-FLOTAC when calculated for individual animals and across the 

different pool sizes (n = 5, 10 and 20 individual samples). Mini-FLOTAC actually 

found resistance at the pool size of  n=20, whereas the other methods missed it. 

 

3.2. Comparison of diagnosis and assessment of drug efficacy across FEC 

methods 

 

3.2.1. Agreement in qualitative and quantitative diagnosis of GI strongyles  

In 191 out of 386 (49.5%; 95% confidence intervals (95% CI) [44.4; 54.6]) samples 

GI strongyle eggs were detected with at least one of the three copromicroscopic 

techniques. Mini-FLOTAC allowed for the detection of eggs in all the 191 samples 

(sensitivity = 100%, 95%CI [100; 100]). The sensitivities of McM15 and McM50 

were 88.5% [84.0; 93.0] and 75.9% [69.9; 82.0], respectively. Mini-FLOTAC was 

more sensitive compared to both McM15 and McM50 (p <0.001). Furthermore, 

McM15 resulted in more sensitive test results compared to McM50  (p <0.001). 

Figure 4 indicates that both McM15 and McM50 often fail to detect low FEC, and 

that this was more pronounced for McM50. However, both McM15 and McM50 

became equally sensitive compared to Mini-FLOTAC when FEC increased. For both 

methods, the model could correctly predict the observed test results in more than 

95% of the cases. 
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Fig. 6. The predicted sensitivity derived from logistic regression for McMaster based on the 
examination of the entire slide (McM15; straight line) and of the grids (McM50; dashed line). For 
both methods, the model could correctly predict the observed test results in more than 95% of the 
cases. 
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Table 2. The agreement in FECR across different pool sizes (N) and copromicroscopic techniques (Mini-FLOTAC, McM15 and McM50). 

 

 

Farm 

  

Mini-FLOTAC   McM15   McM50 

Ind N = 5 N =10 N = 20   Ind N = 5 N =10 N = 20   Ind N = 5 N =10 N = 20 

  FECR (%)    FECR (%)    FECR (%)  

1 100 100 100 100   100 100 100  100   100 100 100  100 

2 99.6 100 100  100   99.1 100 100  100   98.6 100 100  100 

3 98.8 97.3  99.1  91.4   98.5 98.9 90.0  100   100 100 83.3  100 

4  100 100 100  100   100 100 100  _   100 100 _  _ 

5 to 10 100 100 100 100   100 100 100  100   100 100 100  100 

 

Ind = individual samples 
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Table 3 summarizes the agreement in FEC across the three copromicroscopic 

techniques. There was a significant positive correlation for each of the three pair-

wise comparisons (Pearson’s correlation coefficient >0.95, p <0.001). However, 

Mini-FLOTAC resulted in significant higher FEC compared to both McM15 and 

McM50, with a mean difference in egg counts of approximately 90 EPG (p <0.001). 

There was no significant difference in FEC across McMaster variants (mean 

difference of 3.9 EPG, p = 0.97). 

 

Table 3. The agreement in FEC across Mini-FLOTAC and the two variants of the McMaster method 

(McM15 and McM50). 

Pair-wise comparison Pearson correlation 

coefficient (p-value) 

Mean difference 

in FEC (p-value) 

Mini-FLOTAC vs McM15 0.98 (<0.001) 90.9 (<0.001) 

Mini-FLOTAC vs McM50 0.97 (<0.001) 87.0 (<0.001) 

McM15 vs McM50 0.99 (<0.001) -3.9 (0.98) 

 

3.2.2. Agreement in assessment of anthelminthic drug efficacy (FECR) 

Table 4 summarizes per farm the number of animals included in the efficacy trial, 

mean FEC at baseline, FECR and the final interpretation on drug efficacy for each of 

the three copromicroscopic techniques. At least 17 animals per farm were sampled 

both before and after the administration of the drug. There was a wide variation in 

mean FEC at baseline, ranging from 52 to 4078 EPG for Mini-FLOTAC, from 21 to 

3599 EPG for McM15, and from 29 to 3539 EPG for McM50. This was in contrast 

with the drug efficacy results, for which FECR were higher than 98% and drug 

efficacy was assigned as having ‘normal’ drug efficacy on all farms, and this was 

independent of the copromicroscopic techniques. Given this low variation in FECR 

results and the lack of disagreement in the final interpretation no attempts were 

taken to verify correlation, and differences in FECR and the final interpretation 

between the three techniques. 
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Table 4. The agreement in FECR across Mini-FLOTAC and the two variants of the McMaster method (McM15 and McM50). 

Farm ID 

  

No. 

samples 

  

Mini-FLOTAC McM15 McM50 

Mean FEC at D0 FECR (95%CI) Mean FEC at 

D0 

FECR(95%CI) Mean FEC at 

D0 

FECR (95%CI) 

1 20 1396 100(99.9; 100) 999 100(100; 100) 1023 100(100; 100) 

2 20 261 99.6(98.7; 100) 173 99.1(96.7; 100) 175 98.6(94.4; 100) 

3 20 536 98.8(97.5; 99.5)  341 98.5(96.4; 100) 388 100(100; 100) 

4 17 52 100(100; 100) 21 100(100; 100) 29 100(100; 100) 

5 19 1830 100(100; 100) 1444 100(100; 100) 1529 100(100; 100) 

6 18 225 100(100; 100) 219 100(100; 100) 219 100(100; 100) 

7 18 4078 100(100; 100) 3599 100(100; 100) 3539 100(100; 100) 

8 18 3621 100(100; 100) 3428 100(100; 100) 3365 100(100; 100) 

9 18 360 100(100; 100) 333 100(100; 100) 314 100(100; 100) 

10 18 72 100(100; 100) 54 100(100; 100) 64 100(100; 100) 
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4. DISCUSSION 

 

The present study provided new insights towards standardizing FEC/FECR on 

pooled faecal samples in sheep for the assessment of GI strongyle infection 

intensity and anthelmintic drug efficacy. In particular, the effect of different pool 

sizes and analytic sensitivities on pooled FEC/FECR was evaluated.  

Significant findings emerged regarding: (i) agreement between individual samples 

and pooled samples in assessment of FEC using the different analytic sensitivities 

(10 EPG using Mini-FLOTAC, 15 and 50 EPG using McMaster);  (ii) agreement 

between individual samples and pooled samples in assessment of anthelmintic 

drug efficacy (FECR) using different analytic sensitivities; and  (iii) qualitative 

(sensitivity) and quantitative (FEC) performance of the FEC methods.   

First, regarding the agreement between individual samples and pooled samples in 

assessment of FEC, our findings showed that GI strongyle EPG of pooled samples 

correlated positively with mean EPG of individual samples, with high correlation 

coefficients (≥0.94) regardless pool sizes and analytic sensitivities. Despite this 

high correlation, there was an apparent, but insignificant underestimation of FEC 

when samples are pooled, which may need further attention. Nevertheless, in line 

with previous studies our findings support the potency of pooling strategy to 

reduce the workload in the laboratory. However, it is important to note that this 

study was not designed to verify to which extent the outcome of one pool of 5, 10 

or 20 individual samples represents the average infection intensity at the flock 

level. Although, this would clearly further decrease the workload in both the field 

(fewer animals needed to be sampled) and the laboratory (only one FEC), this 

approach, as illustrated by Morgan et al. (2005), may resulted in a thwarted 

interpretation.  

Second, concerning drug efficacy, with the exception of two farms, the present 

study showed FECR values of 100% when calculated for individual animals and 

across the 3 different pool sizes and analytic sensitivities. Therefore, as for FEC, the 

pooling approach worked very well also for FECR regardless of whether the pool 

was made up of 5, 10 or 20 individual samples, supporting previous studies. The 

very high drug efficacy found in the present study confirms that AR is rare in sheep 

of southern Italy, a region with a Mediterranean type of climate where the 

management system guarantees the maintenance of nematode populations in 
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refugia, and anthelmintic use is limited (Cringoli et al., 2008, 2009; Rinaldi et al., 

accepted). However, the main limitation of these findings on FECR is represented 

by the high efficacy (100% in most of farms) of anthelmintics found in the present 

study. Therefore, further studies are required to assess the validity of FECR on 

pooled faecal samples also in settings where the efficacy of anthelmintics is less 

than 95% and AR is suspected.   

Third, regarding the sensitivity of the FEC techniques, as expected, our findings 

showed that Mini-FLOTAC was more sensitive compared to the two variants of 

McMaster (McM15 and McM50) for the diagnosis of GI strongyles in sheep (100% 

vs 88.5% vs 75.9%). Both McM15 and McM50 often failed to detect low GI strongyle 

EPG but became equally sensitive compared to Mini-FLOTAC when FEC increased, 

thus confirming the findings of other studies on comparison of FEC techniques (e.g. 

Rinaldi et al., 2011; Levecke et al., 2011, 2012a,b). Mini-FLOTAC also resulted in 

significant higher FEC compared to both McMaster variants, with a mean difference 

in egg counts of approximately 90 EPG (p <0.001). However, it remains unclear to 

which extent this difference has a biological and/or practical impact. We still do not 

know what is the EPG threshold above which it is advisable to intervene with a 

specific control program, for example using a targeted treatment or a targeted 

selective treatment approach. All these questions and considerations underline that 

it is imperative to pay more attention to the final interpretation of FEC prior to 

recommend any FEC technique and any analytic sensitivity.  

In addition, there is a lack of information regarding the actual cost-effectiveness of 

the pooled approach in copromicroscopy. It would be therefore advisable to 

conduct a comparative cost assessment study of individual and pooled FEC/FECR 

taking also in consideration the effect of different pool sizes and analytic 

sensitivities (e.g. McMaster versus Mini-FLOTAC). Valid examples of reliable and 

precise methodologies for assessing cost-effectiveness in copromicroscopy can be 

taken from the literature (e.g. Levecke et al., 2009; Speich et al., 2010).   

Overall, the results of our study showed that pooling faecal samples can be used 

for FEC and FECR. Our findings are in line with recent studies on the same topic. As 

an example, pooled FEC was successfully used in horses (Eysker et al., 2008) for 

monitoring helminth control. Furthermore, Daniel et al. (2012) used FECR on 

pooled samples to assess the efficacy of triclabendazole against Fasciola hepatica 

in sheep farms in the UK. Concerning public health, Mekonnen et al. (2013) 
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highlighted that pooling stool samples is a promising approach for rapidly 

assessing infection intensity of soil transmitted helminths in humans as well as for 

drug efficacy studies. Finally, in their recent computer-based simulation study, 

Calvete and Uriarte (2013) suggest that the diagnostic performance of the FECR 

test (also using a pooled approach) should be re-evaluated and the 

recommendations of the W.A.A.V.P. should be updated as already reported in 

Levecke et al. (2012a).  

In conclusion, the present study highlighted that pooling ovine faecal samples is a 

rapid procedure that holds promise as a cost-effective, but at the same time 

accurate strategy for assessing the intensity of GI strongyles (FEC) in sheep as well 

as anthelmintic efficacy (FECR). However, further research is required (i) to 

determine biological and epidemiological significance of FEC in sheep farms in 

order to establish the EPG thresholds for control programs;  (ii) to verify in-depth 

the cost-effectiveness of pooled FEC compared to individual FEC; (iii) to optimize 

and standardize the methodology of pooling faecal samples; (iv) to verify the 

validity of the pooled FECR test also in settings where anthelmintic efficacy is less 

than 95%; and (v) to assess the performance of pooling FEC for copromicroscopic 

diagnosis of helminths other than GI strongyles and protozoa in sheep as well as in 

other livestock species. 
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1. THE STRATEGY OF MONITORING INFECTIONS BY GI NEMATODES IN 

SMALL RUMINANTS   

 

As described in the previous chapters, faecal helminth egg counting has become a 

routine part of small ruminant veterinary practice, creating a context for 

interaction with farmer clients that is a prerequisite for effective health planning. 

Sheep helminth egg counts are performed in the investigation of failure of lambs to 

reach production targets or as ancillary diagnostic tests for the clinical 

examination of ill-thrifty, scouring or anaemic animals. Helminth egg counts are 

also used to monitor parasite control programmes, including the management of 

anthelmintic resistance. The most appropriate egg counting method, the numbers 

of samples required and interpretation of the results depend on the nature of the 

problem being investigated (Demeler et al., 2012). However, it should be noted 

that ancillary diagnostic tests, such as FEC are of limited value without the context 

of a full veterinary clinical examination. The diagnosis of helminth parasitism must 

involve a relevant history, placing the problem in context and focussing on 

previous grazing management and anthelmintic drug treatments in particular. The 

number of animals affected with scour, anaemia and subcutaneous oedema needs 

to be noted, along with the extent and severity of the clinical signs. Post-mortem 

examination of freshly dead carcases can be useful, whenever the opportunity 

arises, enabling the identification of the nematode parasites, assessment of 

associated pathology and total worm counts to be performed.  

There has been a tendency towards rigid interpretation of the results of FEC, 

propagated by diagnostic laboratories’ perceived need to interpret their reports 

without knowledge of the situation to which they pertain, and by a general 

veterinary wish for prescriptive information, whereby reference ranges have been 

created to indicate absence of, moderate or subclinical, significant and severe 

parasitism. However, such rigid interpretation is generally unhelpful with regards 

to assessment of the helminth burden or need for treatment. Egg counts provide 

valid information about the presence of patent helminth infections, but the value of 

information concerning numbers of nematode eggs per gram (EPG) of faeces 

depends on the manner in which it is interpreted. 
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Egg counts are presented on the basis of the ratio of EPG, hence their 

interpretation depends on knowledge of the relative faecal dry matter content, 

feed intake and of the manner in which the animals were fed at the time of 

sampling. The faecal dry matter may be influenced by host responses to nematode 

parasitism (Colditz, 2008), altering the ratio of EPG, but with no overall effect on 

the total number of eggs shed. Variation in egg production in relation to the 

numbers and pathogenicity of adult female nematodes needs to be accounted for, 

hence an understanding of these relationships, consideration of temporal 

regulatory influences on egg production of female nematodes (Stear et al., 1995) 

and knowledge of the helminth genera that are present is required. The eggs of 

some genera are characteristic, while those of Teladorsagia, Haemonchus, 

Trichostrongylus and Cooperia are not easily distinguishable without resorting to 

morphometrics, fluorescent agglutinin staining, coprocultured larval identification, 

or molecular methods (Roeber et al., 2013). Hence, in the absence of these further 

tests, it is necessary first to extrapolate which trichostrongyle genera are likely to 

be present, before interpreting the egg counts. It is also important to evaluate any 

effects of sheep breed, age, reproductive status and management on faecal 

helminth egg counts. 

 

1.1. Why monitoring infections with GI nematodes in small ruminants 

 

The principal reason for farming sheep is to convert primary forage, herbage or 

cereal crops into a marketable product, hence the profitability of global sheep 

production is heavily influenced by the efficiency of conversion of these primary 

crops into meat, wool, milk, or skins. Indeed, infections of the gastrointestinal 

nematodes (GIN) affect not only the quantity of sheep milk produced  but also the 

quality as reported in Scala et al (2012).  The feed to meat conversion efficiency is 

greater in sheep that achieve maximal growth rates than in ill thrifty animals, 

because there is a daily nutritional requirement for maintenance which must be 

met before growth can occur, irrespective of the time taken to reach slaughter 

weight. Furthermore, sheep which are slow to finish are more susceptible to 

compounding effects of production limiting diseases such as helminth parasitism, 

trace element deficiencies and respiratory disease than rapidly growing animals 

which may leave the farm before the main risk period for these problems. It is also 
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intuitive that net greenhouse gas emissions from efficiently produced ruminant 

livestock are less than those from ill thrifty animals, reflecting differences in the 

amounts of feed that must be metabolised per kg of meat produced. World-wide, 

helminth parasites are arguably the most important causes of suboptimal 

productivity in sheep, hence their sustainable control is a prerequisite for 

economically efficient farming,  in particular with GIN continue to represent a 

serious challenge to the health, welfare and productivity of grazing ruminants 

throughout the world (Morgan et al., 2013). All grazing animals are exposed to 

helminth infections at pasture and any respective future intensification of livestock 

farming will increase the risk of helminth disease. The ranking of GIN as one of the 

top cause of lost productivity in small and large ruminants by the recent 

DISCONTOOLS programme (http://www.discontools.eu/home/index) witnesses 

the increasing EU’s consideration of the impact of these parasites upon animal 

health, welfare and productivity. In addition, Scala et al. (2011) demonstrated  the 

negative effects of GIN on the fertility factor of sheep. The economic costs of 

parasitic disease are currently difficult to quantify, however some estimates do 

exist within the scientific literature. Within the EU as a whole, annual sales of 

anthelmintic drugs used to control these infections in ruminants have been 

estimated to be in the order of 400 million € (Selzer, 2009). It is likely that these 

figures only represent the tip of the iceberg when it comes to calculating the true 

cost of livestock helminthoses endemic within the EU (Charlier et al., 2009). 

 

2. THE NEED OF COPROLOGICAL EXAMINATIONS TO CONTROL 

INFECTIONS WITH GI NEMATODES IN SMALL RUMINANTS 

 

As mentioned above and the previous chapters, FEC is of primary importance 

towards monitoring and controlling GIN infections in small ruminants. In 

particular , the results of FEC are important in order to: estimate infection 

intensity (McKenna, 1987; McKenna and Simpson, 1987), determine the degree of 

contamination with helminth eggs (Gordon, 1967), assess the effectiveness of 

anthelmintics (Waller et al., 1989), determine the breeding value of an animal 

when selecting for worm resistance (Woolaston, 1992), and guide control and 

treatment decisions (Brightling, 1988). 
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FECRT is currently the only test that can be used to detect resistance to all 

nematode species and anthelmintics in all hosts (McKenna, 2013). FECRT 

guidelines are made available by the World Association for the Advancement of 

Veterinary Parasitology (WAAVP). These guidelines (Coles et al., 1992) provide 

recommendations on the experimental set up (randomized control trial), sample 

size (≥10 or ≥15 animals per treatment group, each excreting at least 150 EPG), the 

FEC method (McMaster), statistical analysis (FECRT based on the arithmetic mean 

of grouped FEC after drug administration) and criteria defining reduced efficacy 

(FECRT <90% or FECRT <95% and lower limit of 95% confidence interval <90%). 

Several host-parasite-related factors could strongly affect FEC and therefore these 

factors should be taken into consideration when interpreting FEC results. 

Therefore, FEC alone should not be used to make a diagnosis or guide treatment 

decisions, but should be interpreted in conjunction with information about the 

nutritional status, age and management of sheep/goats in a flock (McKenna, 2002).  

 

 

3. WHY COPROLOGICAL EXAMINATIONS CAN BE USED E.G. TO DECIDE 

THE NEED FOR CONTROL, TO DETERMINE EFFICACY OF TREATMENTS AND 

TO MONITOR CONTROL PROGRAMMES 

 

Various approaches are used for the control of gastrointestinal helminths of 

livestock. These are based on three basic principles (Hoste and Torres-Acosta, 

2011): 

i. The first principle is to reduce the exposure of the host to the infective stages 

(L3s), mainly achieved by strategies of grazing management (e.g. rotational 

grazing, alternate grazing, pasture-spelling and/or reduced stocking rates). 

ii. The second principle targets the development of a more favourable response of 

the host to gastrointestinal parasite infection (e.g. achieved through vaccination, 

improved nutrition, genetic selection of hosts and breeding for resistance). 

iii. The third principle directly targets the elimination of worms from their hosts 

through the administration of conventional (synthetic formulations) or non-

conventional (plant or mineral) anthelmintic compounds. 

Following the introduction of phenothiazines in the 1950’s, the control of 

gastrointestinal 
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parasites has been achieved using chemical anthelmintics (Hoste and Torres-

Acosta, 2011) and still predominantly relies on the treatment with broad-spectrum 

parasiticides. 

The frequent and often uncontrolled use of these drugs has led to widespread 

problems with AR in parasites of livestock (Taylor et al., 2009). AR in parasites of 

veterinary importance has emerged as a major bionomic and economic problem 

worldwide, being currently most severe in parasitic nematodes of small ruminants 

(von Samson-Himmelstjerna, 2006; Waller, 1994, 1997). 

Although there is hope for new, effective anthelmintics, there is also a major need 

to preserve those that we currently have at our disposal. Hence, monitoring the 

drug-susceptibility and -resistance status of strongylid nematode populations in 

livestock must be a high priority and should be an important component of 

integrated management strategies.  

To date, genetic resistance against parasites is considered to be linked with the 

MHC and IgE genes. Furthermore, several gene detection studies based on the 

genome scan approach for this trait are currently being carried out on both 

crossed experimental populations (fat x lean Blackface lines and Sarda x Lacaune) 

and pure breeds (Churra) (Carta and Scala, 2004). 

The major method for estimating levels of drug-susceptibility/resistance in 

strongylid nematodes of small ruminants remains the faecal egg count reduction 

test (FECRT) that can be used with all anthelmintic groups (Coles et al., 1992). 

Nematode eggs are counted in faeces at the time of treatment and at defined times 

after treatment, the time depending on the anthelmintic group used. A controlled 

efficacy test is the most reliable method of confirming anthelmintic resistance but 

expense usually excludes its use. Nevertheless, it is the gold standard for detecting 

anthelmintic resistance. Guidelines evaluating the efficacy of anthelmintics have 

been published elsewhere and should be adopted for investigating anthelmintic 

resistance (Wood et al., 1995; Duncan et al., 2002). 
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4. HOW CAN WE PROMOTE THE USE OF FLOTAC, MINI-FLOTAC AND 

OTHER COPROLOGICAL TECHNIQUES IN ITALY 

 

Proper FEC techniques are imperative for the accurate diagnosis of GIN in small 

ruminant.  

It is widely accepted that to be useful, diagnostic methods must be accurate, simple 

and affordable. They must also provide a result in time to institute effective control 

measures, particularly treatment (Banoo et al., 2010). ASSURED (affordable, 

sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable) 

diagnostic tests are needed (Banoo et al., 2010).  From a general point of view, the 

method of copromicroscopy to be chosen will also depend on what the information 

is going to be used for. Also the use of highly sensitive techniques, such as the 

FLOTAC and Mini-FLOTAC techniques, is of primary importance to obtain more 

reliable data on possible low levels (EPG) of GIN and to detection of a beginning of 

anthelmintic resistance. Although FLOTAC devices were used in several studies of 

this PhD, it should be noted that they require centrifuging and thus the counts have 

to be lab based. With the introduction of Mini-FLOTAC (Cringoli et al., 2013) which 

is sensitive to 5 EPG and can be used on farm, sensitive monitoring for 

anthelmintic resistance is no longer confined to the laboratory (Rinaldi and 

Cringoli, 2014). 

To reduce the cost of resistance testing for farmers the use of pooled faecal 

samples has been proposed (Morgan et al., 2005; Rinaldi et al., 2014) with equal 

weights of faeces taken from each sample with thorough mixing before counting. 

The pooling strategy was used in the present study to increase the numbers of 

farms investigated for the possible presence of benzimidazoles resistance. In the 

study described in the Chapter 5 of this thesis, results using this method agreed 

closely with those obtained using individual FEC, and it appears that it can provide 

a flexible and robust analysis for screening and confirmatory FECRT using the 

Mini-FLOTAC technique, especially when pooled FEC offer cost and logistical 

advantages. 
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5. STRATEGY OF SAMPLING, RECOMMENDATIONS 

 

The global problem of anthelmintic resistance in small ruminants ensures that 

attention also needs to be given to the sustainability of anthelmintic treatment 

regimes as well as to their immediate economic benefit (Cringoli et al., 2007a,b, 

2008). Different pathophysiological and performance indicators of GI strongyle 

infection in small ruminants have been recently proposed; for example, the 

FAMACHA system (van Wyk and Bath, 2002), body condition scoring (van Wyk 

and Bath, 2002) and liveweight gain and milk production (Hoste et al., 2002a,c) are 

also potential methods for identifying animals requiring anthelmintic treatments. 

However, the value of these methods in different climates and the benefits to 

animal productivity need further research (Ketzis et al., 2006) and faecal egg count 

(FEC) techniques remain the most common approaches for the estimation of 

prevalence and intensity of GI strongyle infections (Cringoli et al., 2004; Villanua et 

al., 2006).  

FEC results may be affected by many factors, either depending on FEC techniques 

or depending on biological factors or sampling mode. The number of animals to 

test and frequency of sampling for the FEC performed on faecal samples taken 

from single animals are seldom informative (Sargison, 2013). In small ruminants, 

GIN egg counts are generally performed on samples taken from 10/20 animals 

within a group, and usually show standard deviations that are similar to the 

arithmetic mean values. Veterinarians, parasitologists and their staff should re-

evaluate their attitude of “it’s only a faecal sample” and should therefore consider 

that suitable and timely sampling is the pre-requisite for interpreting the results of 

FEC in order to: estimate infection intensity (McKenna, 1987; McKenna and 

Simpson, 1987), determine the degree of contamination with helminth eggs 

(Gordon, 1967), assess the effectiveness of anthelmintics (Waller et al., 1989), 

determine the breeding value of an animal when selecting for worm resistance 

(Woolaston, 1992), and guide control and treatment decisions (Brightling, 1988). 

Noteworthy, the findings of the present PhD demonstrated that faecal sampling for 

GI strongyle FEC can be performed at any moment of the day in goat farms without 

affecting FEC values. This notion can be likely extended to sheep and cattle farms, 

since all these ruminants often share the same parasitic genera and/or species 

(Rinaldi et al, 2009). 
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6. FUTURE OF COPROMICROSCOPY IN SMALL RUMINANTS 

 

Although widely used for diagnosis of intestinal parasites, it is well know that 

copromicroscopy is prone to a number of shortcomings (Utzinger et al., 2012).  

First, there is a clear lack of standardization of copromicroscopic techniques and 

usually each lab uses “its own” method mostly based on the “lab traditions” rather 

than on the performance or operational characteristics of the technique. However, 

it is important to underline that different factors may influence the performance of 

any copromicroscopic technique, especially those based on flotation (e.g. 

McMaster, Wisconsin, FLOTAC and Mini-FLOTAC) and sedimentation.  

Second, the results of any copromicroscopic technique strongly depend on the 

accuracy of laboratory procedures but also on the experience of the laboratory 

technicians reading the microscopic fields (Becker et al., 2013). Hence, the reliable 

identification of parasitic infections requires in-depth training for specimen 

preparation, and expertise and experience for subsequent microscopic 

examination (Utzinger et al., 2012). 

Third and most importantly, the main limitation of copromicroscopy is the time 

and cost to conduct copromicrocopic analysis (in particular FEC) on a 

representative number of individuals. However, this limitation can be overcome by 

performing  FEC on pooled samples, in which equal amounts of faeces from several 

individuals are mixed together and a single FEC is used as an index of group mean 

FEC (Morgan et al., 2005). Recently, such pooling approaches have been applied to 

sheep faecal samples using Mini-FLOTAC and that has been demonstrated as a 

rapid procedure that holds promise as a valid strategy for assessing GIN infections 

in ruminants as described in Chapter 5. 

Noteworthy, together with pooling, one of the challenge of the future of 

copromicroscopy is to perform diagnosis of neglected parasitic infections directly 

in the field by using field portable kits including the new generation of field 

microscopes. This aspect has had a rather long track record of development with a 

prior microscope models. As an example, Stothard et al. (2005) reported a field 

evaluation of a handheld microscope for diagnosis of intestinal schistosomiasis in 

Ugandan school children. This handheld microscope was suggested as a pragmatic 

alternative to the compound microscope, playing an important role in the 
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collection of prevalence data to better guide anthelmintic drug delivery and also 

empower the diagnostic capacity of peripheral health centers where compound 

microscopes are few or absent (Stothard et al., 2005). More recently, Bogoch et al. 

(2013) described the proof of concept that a mobile phone can be converted into a 

microscope for the point-of-care diagnosis of STHs in resource-constrained 

settings. It is therefore evident that using portable field microscopes without the 

need of electricity would be the optimal solution for the diagnosis of helminths in 

health periphery (for STH) and on farms (for GIN). A closed diagnostic device as 

Mini-FLOTAC could be easily “attachable” to such kind of microscopes supplied 

with adaptors for mobile phone camera (Fig.1). 
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