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ABSTRACT 

 

 

The study of self-organization is a relatively new field that received great attention in 
the last decades related to the study of complex systems. In particular, self-organizing 
properties of some systems are particularly important in the development of spatial patterns, 
and their analysis could lead to interesting insights into their functioning. Self-organization is 
a process in which pattern at the global level of a system emerges solely from the interactions 
among the lower-level components of the system and the best tool to study such interactions 
is the use of mathematical models to simulate the emergent behaviour of the system. 

This thesis addresses two specific problems related to pattern formation in plants at 
different scales. The first topic is the emergence of vegetation patterns at landscape level. 
Different putative mechanisms have been proposed as drivers of vegetation pattern formation 
in different environments. The most studied mechanism is related to short range positive 
feedbacks and long range negative feedbacks between plants and the available water. Such 
explanation provides important insights on the dynamics of arid and semiarid environments 
where water is a limiting factor, but fails to explain the emergence of similar patterns in 
humid environments. For this reason we formulated a mathematical model to test the effects 
of the release of autotoxic compounds during litter decomposition, i.e. plant-soil negative 
feedback, on the emergence of vegetation patterns, in particular the formation of ring 
structures by clonal plants. Model simulations show that the formation of rings can be 
explained by autotoxicity and that resource scarcity is not a necessary condition. Moreover, 
we further developed the model to consider both water and toxic compounds influences on 
plant biomass growth in order to assess the relative importance of the two mechanisms. 
Numerical simulations show that water/biomass feedbacks lead to stable spatial patterns, 
while autotoxicity has a destabilizing effect on the system, leading to unstable patterns that 
continuously evolve in time. 

The second topic is the differentiation of primary vascular patterns at cellular/tissue 
level. Most of the attention has focused on the genetic regulation and the hormonal control of 
specific aspects of the development of vascular tissues. In this study, we formulated a model 
defining a set of logical and functional rules to simulate the differentiation of procambium, 
phloem and xylem and their emerging spatial patterns, starting from an homogeneous group 
of undifferentiated cells. Specific attention has been given to the factors responsible for the 
intra- and inter-specific variability of  the arrangements observed in plants. Simulation results 
show that the model is capable of reproducing most vascular patterns observed in plants, from 
primitive and simple structures constituted of a single strand of vascular bundles (protostele), 
to more complex and evolved ones, with separated vascular bundles arranged in an ordered 
pattern within the plant section (e.g. eustele). Presented results demonstrate, as a proof of 
concept, that a common genetic-molecular machinery can be at the base of different spatial 
patterns of plant vascular tissues. 
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1 

INTRODUCTION 

 

 

The study of self-organization is a relatively new field, but it has already received great 
attention producing a large body of literature on different topics. Generally, self-organization 
is defined as a process where a system evolves into an organized form in absence of external 
pressures. An interesting definition, related to pattern formation in biological systems, is 
provided by Camazine et al. (2001): 

"Self-organization is a process in which pattern at the global level of a system emerges solely 

from numerous interactions among the lower-level components of the system. Moreover, the 

rules specifying interactions among the system’s components are executed using only local 

information, without reference to the global pattern." 

A more general definition is provided by Haken (2006): 

“A system is self-organizing if it acquires a spatial, temporal, or functional structure without 

specific interference from the outside. By ‘specific’ we mean that the structure or functioning 

is not impressed on the system but that the system is acted upon from the outside in a non-

specific fashion. For instance, the fluid which forms hexagons is heated from below in an 

entirely uniform fashion and it acquires its specific structure by self-organization.” 

Self-organization occurs in a huge variety of physical, chemical, biological and social 
systems. Common examples are crystallization, convection patterns of heated fluids, 
formation of sand dunes, swarm behaviour of animals, spontaneous folding of proteins, 
formation of patterns in animal coats and the way neural networks learn to recognize complex 
patterns. 

The role of self organization in vegetation pattern formation 

The origin of regular spatial patterns in ecological systems has long fascinated 
researchers. The activator–inhibitor principle, originally proposed by Turing (1952), provided 
a potential mechanistic explanation for the emergence of regular patterns in biology 
(Meinhardt 1982; Murray 2002; Kondo and Miura 2010) and chemistry (Castets et al. 1990; 
Ouyang and Swinney 1991). More recently, this principle has been applied to different 
ecological systems such as arid and semiarid bushlands (Klausmeier 1999; von Hardenberg et 

al. 2001; Rietkerk et al. 2002; Ravi et al. 2008), mussel beds (van de Koppel et al. 2005), and 
boreal peatlands (Eppinga et al. 2008, 2009). The abovementioned studies are essentially 
based on the principle of scale-dependent feedbacks (Rietkerk and van de Koppel 2008). 
Ecosystems are essentially composed of organisms and the environment, which interact with 
each other in different ways. Such interactions can be positive if, for instance, the organisms 
help each other by modifying the environment through facilitation, or can be negative since 
they generally compete for a common resource. The occurrence of such feedbacks at different 
spatial scales (i.e. scale-dependent) can lead to symmetry breaking and the emergence of 
heterogeneous spatial patterns even without underlying environmental heterogeneity. 
Considering the example of vegetation dynamics in arid ecosystems, the main limiting 
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resource is, obviously, water. In this context, plants have a local positive effect on each other 
through the disruption of the soil-crust that inhibits water infiltration in soil, thus facilitating 
each other over short distances. On the other hand, plants also compete with each other since 
water is a limiting factor, creating a long range negative feedback. The co-occurrence of these 
processes is thought to be responsible for the formation of spatial patterns such as the tiger 

bush (stripes), the leopard bush (spots), labyrinths and gaps in such environments. Other 
examples of scale dependent dynamics are reviewed in (Rietkerk and van de Koppel 2008) 
although they all relate pattern emergence to the scarcity of a specific resource. Other peculiar 
vegetation patterns observed in different environments are regularly shaped rings formed by 
clonal plants. Also called fairy rings, central die-back and monk’s tonsure-like gaps, they are 
observed both in water and nutrient deprived environments like deserts and peatlands as well 
as in mountain and alluvional grasslands and in salt marshes where water is not a limiting 
factor.  

Recently, a new hypothesis has been proposed that could provide an explanation for the 
emergence of spatial patterns without limiting resources. Species-specific plant-soil Negative 
Feedback (NF) has been defined as the rise of negative conditions for plant vegetative and 
reproductive performances induced in the soil by the plants themselves and has been 
described for many plant species (Mazzoleni et al. 2007; Kulmatiski et al. 2008). Such effect 
can both be intra- and inter- specific (Oremus and Otten 1981; van der Putten et al. 1993; 
Bever 1994; Singh et al. 1999; Packer and Clay 2000; Klironomos 2002; Kardol et al. 2007; 
Mazzoleni et al. 2007) and has been related to different mechanisms such as depletion of soil 
nutrients (Ehrenfeld et al. 2005), build up of soil-borne pathogens (van der Putten et al. 1993; 
Packer and Clay 2000), shifts of soil microbial communities (Bever 1994; Klironomos 2002; 
Kardol et al. 2007), and phytotoxicity of decomposing plant litter (Webb et al. 1967; Singh et 

al. 1999; Armstrong and Armstrong 2001). Evidence for autotoxicity is abundant in 
agriculture (reviewed in Singh et al. 1999) and also present in some ecological studies (Webb 
et al. 1967; Armstrong and Armstrong 2001; Perry et al. 2005; Bonanomi, Rietkerk, et al. 
2007). Plant-soil negative feedback has been also considered as the driver of plant species 
coexistence (Bonanomi, Giannino, et al. 2005) and tree species diversity along a latitudinal 
gradient in a recent modelling work (Mazzoleni et al. 2010). 

 
Regarding the occurrence of rings of clonal plants and other spatially heterogeneous 

vegetation patterns in ecosystems where resources may or may not be limiting factors, I 
specifically address the following research questions (RQ): 

RQ1. Can plant-soil negative feedback and, specifically, autotoxicity explain the formation of 
ring patterns in conditions where water is not a limiting factor? 

RQ2. What are the interactions between biomass-water feedbacks and the negative feedback 
between plant biomass and toxic compounds released during litter decomposition? 

The role of self organization in the development of plants 

The control of development in higher organisms is one of the most fascinating problems 
in biology. How development proceeds must be somehow genetically determined, but genetic 
and biochemical investigations alone are not sufficient to lead to a full understanding of the 
problem because of the difficulty to infer cause/effect relationships between different events. 
Recently, process-based mathematical models have provided new insights in this context. 

Most of the attention has focused on the hormonal control, auxin in particular, and the 
genetic regulation of development. Plant hormones regulate many aspects of growth (Wolters 
and Jürgens 2009). Auxin seems to have a central role and has been the centre of many 
studies. Critical to the auxin dynamics is its polar transport which is mediated by membrane-
bound influx and efflux carriers, i.e. AUX and PIN family proteins. In roots such carriers are 
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expressed in static patterns that were used to predict auxin distribution in the organ. 
Grieneisen et al. (2007) implemented fixed PIN patterns in a two-dimensional model showing 
that this was sufficient to create an experimentally verified stable auxin maximum at the root 
apex, also predicting several perturbations. Recently, Muraro et al. (2013) developed a 
simulation model incorporating auxin and cytokinin signalling networks and transport 
dynamics to study their involvement in xylem and procambium specification in root radial 
sections of Arabidopsis. In other contexts (e.g. leaf venation), auxin patterning shows a more 
dynamic localization of carriers. The first model was formulated by Sachs (1969) proposing 
the so called "canalization hypothesis", i.e., auxin export through a cell wall promotes further 
transport in the same direction, thus creating canals of preferential flow as a self-organization 
property of the system. Based on this hypothesis, many molecular models were formulated 
(e.g. Mitchison 1980; Feugier et al. 2005; Bayer et al. 2009). 

Genetic regulation has a fundamental role in the study of other developmental events. 
Cellular differentiation leading to trichome formation appears at the epidermis in young 
leaves and in roots, and the underlying genetic networks seem to be similar (Pesch and 
Hülskamp 2004; Benítez et al. 2007). The molecular mechanisms represent a classical 
reaction-diffusion model where proteins activate and repress each other and also transport 
between cells is present. Digiuni et al. (2008) used a deterministic differential equation model 
to support their new data on protein transport and could discriminate between different 
hypotheses for the formation of a competing inactivated complex in the leaf. With a different 
approach, Savage et al. (2008) used a stochastic Boolean model to show that the often used 
self-activation of one of the activators could not explain all mutant data available for the root. 
Another example is the spatial and temporal organization of the shoot apical meristem (SAM) 
which is responsible for the formation of all above-ground organs. Many proteins have been 
discovered to be important in SAM regulation and, of particular interest, the feedback loop 
between CLAVATA (CLV) and WUSCHEL (WUS). Jönsson et al. (2003, 2005) used a 
multicellular model to investigate different aspects of the CLAVATA/WUSCHEL feedback. 
They provided a hypothesis for how the asymmetric localization of a CLV3 region from the 
activating WUS region could appear (Jönsson et al. 2003), and demonstrated how a spatially 
restricted activation of WUS via a reaction-diffusion dynamics was sufficient to explain the 
spontaneous organization and perturbed reorganization of the WUS domain (Jönsson et al. 
2005). Fujita et al. (2011) developed a mathematical model of the SAM, including the 
WUS/CLV dynamics, the spatial restriction of such dynamics and cell division. The model 
was capable of reproducing the different SAM patterns observed in plants as well as aberrant 
patterns generated in wus and clv mutants. 

Although the abovementioned simulation models have tackled many specific issues 
related to plant development, a complete understanding of the dynamic behaviour of such 
processes is still to be achieved. In particular, still no effort has been done to put together all 
the steps leading to the specification of provascular tissues and primary phloem and xylem. 
Related to the genetic and molecular interactions involved in the differentiation of vascular 
tissues in plants and also the diversity of patterns observed in nature, I specifically address the 
following RQ: 

RQ3. Is it possible that a single genetic and molecular machinery can account for all the 
primary vascular patterns of plants? What are the possible mechanisms and processes 
responsible for intra- and inter-specific variation? 
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Outline of the thesis 

In Chapter 2, we develop a reaction-diffusion mathematical model to address the effects 
of plant-soil negative feedback on the emergence of ring spatial patterns in ecosystems where 
water is not a limiting factor (RQ1). The model describes the spatial and temporal dynamics 
of a clonal plant biomass and autotoxic compounds released in soil as a result of litter 
decomposition. 

In Chapter 3, we further investigate the effects of plant-soil negative feedback on 
pattern formation, also including the interactions with the plant-water positive and negative 
feedbacks. To address this issue (RQ2) we devised a mathematical model starting from 
published works that studied the interactions between plant biomass and water, also including 
the autoinhibitory effects discussed in Chapter 2. 

In Chapter 4, we apply the same reaction-diffusion modelling approach to study a 
different problem: the differentiation of plant vascular tissues. Inspired by the work of 
Meinhardt (1982) on biological pattern formation, we introduce a new modular mathematical 
model to address the differentiation of phloem and xylem with a specific focus on the factors 
responsible for the emergence of the different primary vascular arrangements observed in 
nature (RQ3). 

In Chapter 5, I bring all the results together and conclude highlighting the questions 
raised by this work that will be the subject of future investigations. 
  



 

7 
 

2 

NEGATIVE PLANT SOIL FEEDBACK EXPLAINING RING 

FORMATION IN CLONAL PLANTS 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fabrizio Cartenì, Addolorata Marasco, Giuliano Bonanomi, Stefano Mazzoleni, Max 
Rietkerk, Francesco Giannino. 

Journal of Theoretical Biology. 2012. 313:153–161. 



 

8 
 

Abstract 

Ring shaped patches of clonal plants have been reported in different environments, but 
the mechanisms underlying such pattern formation are still poorly explained. Water depletion 
in the inner tussocks zone has been proposed as a possible cause, although ring patterns have 
been also observed in ecosystems without limiting water conditions. In this work, a spatially 
explicit model is presented in order  to investigate the role of negative plant-soil feedback as 
an additional  explanation for ring formation. The model describes the dynamics of the plant 
biomass in the presence of  toxicity produced by the decomposition of accumulated litter in 
the soil. Our model qualitatively reproduces the emergence of ring patterns of a single clonal 
plant species during colonization of a bare substrate. The model admits two homogeneous 
stationary solutions representing bare soil and uniform vegetation cover which depend only 
on the ratio between the biomass death and growth rates. Moreover, differently from other 
plant spatial patterns models, but in agreement with real field observations of vegetation 
dynamics, we demonstrated that the pattern dynamics always lead to spatially homogeneous 
vegetation covers without creation of stable Turing patterns. Analytical results show that ring 
formation is a function of two main components, the plant specific susceptibility to toxic 
compounds released in the soil by the accumulated litter and the decay rate of these same 
compounds, depending on environmental conditions. These components act at the same time 
and their respective intensities can give rise to the different ring structures observed in nature, 
ranging from slight reductions of biomass in patch centres, to the appearance of marked rings 
with bare inner zones, as well as the occurrence of ephemeral waves of plant cover. Our 
results highlight the potential role of plant-soil negative feedback depending on 
decomposition processes for the development of transient vegetation patterns. 
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1. Introduction 

The occurrence of regularly shaped circles or rings of clonal plants has been 
documented since long time (Watt 1947; Curtis and Cottam 1950; Cosby 1960). Clonal plant 
establishment starts with spots of highly aggregated ramets. However, as new ramets develop 
centrifugally, their density in the patch interior decreases, with senescence of older shoots and 
appearance of a ring belt (see Fig. 2.1). 

 

Figure 2.1. Examples of ring forming plants in different ecosystems: (a-b) Sesleria appennina 

in alpine conditions; (c-d) Brachypodium rupestre in mountain grassland; (e-f) Ampelodesmos 

mauritanicus in semiarid Mediterranean grassland; (g-h) Scirpus holoscoenus in alluvial 
grassland. The last picture (h) refers to the same individual reported in (g) after its excavation 
to show the tussock ring shape. All photographs by G. Bonanomi. 

Such pattern has been also reported as fairy rings (Hitchcock 1935), rings (Watt 1947), 
central die-back (Adachi et al. 1996), monk’s tonsure-like gaps (Lewis et al. 2001), and often 
observed in resources deprived environments including water and nutrient limited ecosystems 
such as deserts (Danin 1996; Sheffer et al. 2007), peatland (Lanta et al. 2008), and primary 
succession over bare substrate (Adachi et al. 1996). The mechanisms underlying the 
formation of plant rings are still poorly known. Water depletion in the inner zone of the ring 
has been proposed as a possible explanation of central die-back and, consequently, of ring 
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patterns formation (Ravi et al. 2008; Sheffer et al. 2011). However, clonal ring perennial 
plants have been also observed in ecosystems without water limiting conditions. Examples 
include the grasses Brachypodium rupestre (Bonanomi and Allegrezza 2004) (see Fig. 2.1), 
Bromus inermis in mountain grasslands (Otfinowski 2008), the sedge Scirpus holoshoenus in 
alluvial grassland (Bonanomi, Rietkerk, et al. 2005) (Fig. 2.1), and several species of Spartina 
in salt marshes (Caldwell 1957; Castellanos et al. 1994). It is quite obvious that in these cases 
the water limitation hypothesis cannot be considered as an exhaustive explanation. 

Alternatively, central die-back could be induced by the build-up of negative plant-soil 
feedback in the inner clonal zone (Curtis and Cottam 1950; Bonanomi, Rietkerk, et al. 2005). 
Negative plant-soil feedback is defined as the rise of negative conditions for plant vegetative 
and reproductive performances induced in the soil by the plants themselves (Mazzoleni et al. 
2007). Recognized mechanisms producing negative plant-soil feedback are: the soil nutrient 
depletion (Ehrenfeld et al. 2005), the build-up of soil-borne pathogen populations (Packer and 
Clay 2000), the changing composition of soil microbial communities (Klironomos 2002), and 
the release of autotoxic compounds during organic matter decomposition (Singh et al. 1999). 
Curtis and Cottam (Curtis and Cottam 1950) provided the first evidences supporting the 
negative feedback hypothesis based on litter autotoxicity, by studying the prairie sunflower 
Heliantus rigidus. This perennial forb in the field showed clones with central die-back. The 
removal of dead roots and rhizomes, which in laboratory had autotoxic effects, improved H. 

rigidus growth, while no positive effect was found after application of mineral nutrients. 
Moreover, the authors replaced, in open field, the soil present inside the ring with soil 
collected in the external grassland not previously affected by the same species. This greatly 
enhanced the biomass recovery of H. rigidus in the die-back zone. Following experimental 
studies provided evidence that herbaceous plant with phalanx growth strategy accumulate 
large amount of leaves, rhizome and root litter in the die-back zone of the clones (e.g. Watt 
1947; Curtis and Cottam 1950; Falinska 1995; Danin 1996; Lanta et al. 2004; Bonanomi, 
Rietkerk, et al. 2005), that negatively affect conspecific regeneration. As a consequence, 
negative feedback escape strategies depend on life form and propagation patterns. For 
instance, trees and shrubs can avoid the “home” soil (sensu Bever 1994) via seed dispersion, 
thus producing a Janzen-Connell distribution of seedling emergence (Packer and Clay 2000; 
Bonanomi, Antignani, et al. 2007), while perennial clonal plants with “phalanx” growth 

strategy (Doust 1981) can move away by vegetative growth thus forming rings (Olff et al. 2000; 
van der Putten 2003; Bonanomi, Rietkerk, et al. 2005).  

Recently, a substantial modelling effort has been done to investigate the mechanisms 
underlying the formation of several types of vegetation patterns in water-limited ecosystems 
(Rietkerk et al. 2002; Gilad et al. 2007; Meron et al. 2007; Barbier et al. 2008). Despite of a 
significant body of empirical studies on plant forming rings, only a few models have been 
developed to explain the appearance of such patterns in clonal plants. Available models 
addressed the possible role of water limitation on the formation of plant rings in semiarid 
environments (Sheffer et al. 2007; von Hardenberg et al. 2010). Here, we investigated the 
possibility that negative plant-soil feedback may be considered an additional explanation for 
ring formation in clonal plants with “phalanx” propagation strategy. The mathematical models  
proposed in (Bever et al. 1997; Bonanomi, Giannino, et al. 2005) demonstrated, by means of 
non-spatial simulations, how intra-specific negative feedback can allow species coexistence, 
by creating unsuitable conditions for conspecifics, and suitable conditions for other species. 
However, to our knowledge, no studies explored the potential effects of negative plant-soil 
feedback resulting from toxic compounds during litter decomposition for the formation of 
vegetation patterns. 

In this paper, first we introduce a spatially explicit model for biomass dynamics of one 
clonal plant, derived by the model described in Mazzoleni et al. (2010), to investigate the role 
of intra-specific plant-soil negative feedback conceived as the product of litter toxicity 
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(Bonanomi et al. 2006) and autotoxicity (Blok and Bollen 1993; Singh et al. 1999; Mazzoleni 
et al. 2007). Then, we develop a qualitative and quantitative analysis of the model, with 
special attention to the main mechanisms underlying pattern formation. This section contains 
the mathematical study of the model, including stability analysis of the homogeneous steady-
state values, linear stability analysis to spatially heterogeneous perturbations and an estimate 
of the “invasion velocity” of the plant biomass. Finally, we discuss the implications of the 
presented mechanism in the framework of water-limitation induced pattern formation. 

2. The mathematical model 

Based on the work of Mazzoleni et al. (2010), we introduce a model for biomass 
dynamics of one clonal plant with phalanx growth strategy and for the rising tussock spatial 
patterns induced by negative plant-soil feedback. Beginning from an initial small tussock of 
tillers, roots and rhizomes surrounded by bare soil (Fig. 2.2, panel A), the plant starts to 
propagate colonizing the soil around it in any direction. As the propagation proceeds, dead 
tillers, roots and rhizomes start to accumulate in the central area of the tussock, where the 
plant is older. During decomposition of these residues, litter degradation and microbial 
activity produce phytotoxic materials (Bonanomi et al. 2006) with a direct harmful effect on 
plants. Also, plant resistance to pathogens attack can be reduced by the phytotoxic conditions 
(Patrick and Toussoun 1965; Bonanomi, Antignani, et al. 2007). Moreover, decaying organic 
matter provides the growth substrate for saprophytic pathogens, thus enhancing their 
pathogenicity (Hoitink and Boehm 1999; Blomqvist et al. 2000; Bonanomi et al. 2010; 
Bonanomi, Antignani, et al. 2011). Recent work on phytotoxicity dynamics is clearly showing 
such trends of toxicity relation with litter decomposition processes (Bonanomi, Incerti, et al. 
2011). As previously stated, the raise of negative conditions is concentrated in the older 
(central) part of the tussock thus reducing the growth performance of the plant (Fig. 2.2, panel 
B). In real conditions, toxicity persistence is linked to litter-decaying rate and, consequently, 
to related environmental conditions such as temperature and water availability. For simplicity, 
in this model, toxicity is reduced in time by a constant decay/removal process of toxic 
compounds (Bonanomi et al. 2006; Bonanomi, Incerti, et al. 2011). 

 

Figure 2.2. Schematic representation of a clonal plant structure during vegetative propagation 
with phalanx strategy. Starting from an initial small tussock of tillers, roots and rhizomes (A) 
the plant begins to propagate, colonizing the surrounding soil in every direction. As the 
propagation proceeds, dead tillers, roots and rhizomes start to accumulate in the central 
tussock area, where the plant is older. The accumulation of dead biomass and its consequent 
decomposition, releasing autotoxic compounds, reduces the plant growth performance (B). 
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2.1. Model description 

The model consists of  a system of two nonlinear partial differential equations 
describing the dynamics of two state variables: plant biomass B (kg cm-2) and toxic 
compounds T (kg cm-2). Plant biomass changes as a function of plant growth, mortality and 
vegetative propagation. In the mathematical modelling, plant root and shoot were not 
considered separately because functional root system and living shoot are in close proximity 
in clonal plants with phalanx growth strategy (Bonanomi, Rietkerk, et al. 2005). Plants grow 
logistically with growth rate parameter g (month-1) and carrying capacity Bmax (kg cm-2). Plant 
mortality is due to a constant loss rate d (month-1) and an extra loss induced by the negative 
plant-soil feedback function of T concentration by means of a parameter s (cm2 kg-1 month-1). 
Plant vegetative propagation is approximated by a diffusion term  of coefficient D (cm2 
month-1). Toxic compounds are produced by a fraction of the dead biomass c (dimensionless) 
and is reduced by litter removal or decay process simply summarized by a parameter k 

(month-1) which is the removal/decay rate of T. For simplicity no diffusion of T is considered 
by the model. 

The model parameters descriptions are summarized in Table 2.1. In all simulations the 
parameter values are chosen according to either Mazzoleni et al. (2010) or set to order-of-
magnitude realistic values. 

Owing to the above description, the model equations are 
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In this paper, we studied the model only for positive values of the parameters g, d, s, D, 
c, k, since for s = 0 the nonlinear partial differential equations (1) are decoupled, and for k = 0 
the model refers to a system in which there is no toxicity decomposition. 

In order to minimize the number of parameters involved in the model it is extremely 
useful to write the system (1) in nondimensional form. Introducing the following 
dimensionless variables 
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where α = d/g, β = (csBmax)/k, γ = k/g and, for convenience, we omitted the superscript. 
Rescaled variables and parameters are summarized in Table 2.2. We remark that α is 

plant basal mortality rate relative to growth rate; β is a composite dimensionless parameter 
that measures the impact of toxic compounds on inflation of plant mortality, combining the 
plant sensitivity s (per unit of concentration of toxic compounds), with typical biomass 
concentration of toxic compounds cBmax, and typical duration of such toxic influence (k-1). 
Finally, γ measures the characteristic rate of toxicity dynamics relative to plant growth rate. 
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Table 2.1. List of model parameters and their units. 

Parameter Description Unit Assigned value 

g Growth rate of B month-1 0.5 
Bmax Plant biomass carrying capacity kg cm-2 1 
d Death rate of B month-1 0.05 
s Plant sensitivity to T cm2 kg-1 month-1 Between 0.15 and 1 

D 
Plant biomass propagation 
coefficient 

cm2 month-1 0.05 

k Decay rate of T month-1 Between 0.05 and 0.2 
c Proportion of toxic products by 

litter decomposition 
- 0.5 

 

Table 2.2. Definitions of the nondimensional variables and parameters appearing in Eq. (2) in 
terms of their dimensional counterparts. 

Quantity Scaling 

B
~

 B/Bmax 

T
~

 Tk/cdBmax 

x
~  x(g/D)1/2 

y
~  y(g/D)1/2 
t
~

 gt 

α d/g 

β csBmax/k 

γ k/g 
 

3. Results 

3.1. Stability analysis of the spatially homogeneous equilibria  

 The first step in studying the patterns of system (2) is to determine the equilibria of the 
spatially homogeneous system 
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i.e., the solution of the algebraic equations 
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Biologically feasible equilibrium points are the non-negative solutions of (4) in the 
interior of the first quadrant. System (3) has at most two equilibria depending on the 
magnitude of parameter α: 

• if α ≥ 1 we have only the trivial equilibrium (0,0); 

• if 0 < α < 1, in addition to (0,0), we have the following equilibrium 
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The Jacobian matrix J(B,T) for system (3) is given by 
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and at the steady-state (0,0) admits the eigenvalues λ1 = 1 – α, λ2 = –γ. Moreover, at the 
steady-state (B

*, T*
) the Jacobian matrix J

*
 has two eigenvalues with negative real parts (see 

Appendix A). Then, the linear analysis of stability allows us to recognize that for any positive 
values of parameters β, γ we have: 

• the equilibrium (0,0) is asymptotically stable if α > 1, unstable if 0 < α < 1, and 
consequently  α = 1 is a bifurcation value; 

• the equilibrium (B
*, T*

) is always asymptotically stable for any value of α : 0 < α < 1. 

This analysis shows that the model has two homogeneous stationary solutions 
representing bare soil and uniform vegetation cover. Figure 2.3 shows the non-trivial 
equilibrium values (B

*, T
*
) versus β, for some fixed values of plant basal mortality rate 

relative to growth rate (α). Recalling that α = d/g, the existence and the stability character of 
the equilibria are ecologically consistent. In fact, if the plants death rate d is higher that the 
growth rate g, the only possible solution is the complete loss of vegetation cover. On the other 
hand, if the growth rate is higher than the death rate, the biomass stabilizes in a long time on 
the uniform value B

*
. 

 

Figure 2.3. Spatially homogeneous equilibria of B (left panel) and T (right panel) versus β, 
for three different plant species: α = 0.1 (solid line), α = 0.4 (dashed line) and α = 0.7 (dotted 
line). At low levels of impact of toxic compounds (β) both the equilibria of plant biomass and 
toxicity are high, i.e., the equilibria decreasing as β increases. 
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3.2. Linear stability analysis to spatially heterogeneous perturbations 

To study the effect of diffusion on the model system, we perform the linear stability 
analysis of the stationary homogeneous solution (B

*, T
*
) of the spatial model (2) to 

nonuniform infinitesimal perturbations.  We consider the perturbed solutions 

B(r, t) = 
*

B + aB(t)eir·h + cc, 

T(r, t) = 
*

T + aT(t)eir·h + cc,  (5) 

where r = (x,y), h = (h1,h2) is the wave vector of the perturbation, a(t) = (aB(t), aT(t)) is 
the vector of the perturbation amplitudes and “cc” stands for the complex conjugate. 

Substituting the Eqs. (5) into (2) and keeping terms to first-order only, we obtain the 
following system of linear ODEs for the perturbation amplitudes a(t) 
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 (6) 

where  h = |h| is the perturbation’s wave number. 
Assuming exponential growth for the perturbation amplitudes, i.e., 

aB(t) = B(0)eλt,   
aT(t) = T(0)eλt, (7) 

we obtain the eigenvalue problem 

J(h)a = λa, (8) 

where J(h) is the coefficient matrix of (6). The solutions λ = λ(h) of (8) gives the 
dispersion relations, i.e., provide information about the stability of the stationary 
homogeneous solution (B

*, T*
). In fact, the growth rate of a perturbation characterized by a 

wave number h is given by the largest real part of λ = λ(h). In our case, when 0 < α < 1 and the 
coefficients β and γ are positive, all wave numbers have negative growth rates and any 
perturbation decays, i.e., the uniform solution is asymptotically stable (see Appendix B). In 
ecological terms, these results show that for 0 < α < 1, and β, γ, positive parameters, pattern 
formation always leads to spatially uniform vegetation covers (B

*
), and stable Turing patterns 

cannot exist. 

3.3. Travelling fronts 

Finally, we examine the system’s dynamics when the initial conditions of system (1) are 
finite, i.e., 

B (x,y,0) = φ(x,y),              T (x,y,0) = ψ(x,y), (x,y) ∈ Ω 

where φ and ψ are suitable functions with a finite support in the planar domain Ω. In 
this case, our model, as for some reaction-diffusion models, produce travelling waves of the 
plant biomass B that travel at velocity c(t) approaching the asymptotic speed 

.)(4 dgDc −=
∞  (9) 
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In effect, the simple equation for asymptotic invasion velocity for the Fisher model is 
not restricted to logistic population growth, but more generally arises as 

.)0('4DFc =
∞  (10) 

where F(B) is a general class of population growth functions (Holmes et al. 1994). In 

our case, the asymptotic speed 
∞
c  of the travelling wavefronts, can be obtained easily from 

heuristic arguments (Volpert and Petrovskii 2009). In fact, at the position of the biomass 
front, the toxic compounds T is absent and hence this is a problem effectively described by a 
single KPP-Fisher equation (Kolmogorov et al. 1937; Fisher 1937); its speed therefore being 
given by (10), where 

.)()(
2

max

B
B

g
BdgBF −−=

 

 Owing to relation (9), we can conclude that the asymptotic “invasion velocity” of the 
biomass B is determined only by the rates of net population growth (g - d) and diffusion D. 
Since the “coexistence” steady state (B

*, T
*
) is locally stable against a nonuniform 

infinitesimal perturbation, the front is a narrow region that moves with constant shape and 
speed (Fig. 2.4). As can be better seen in Figure 2.5, a circular invasion front spreads out from 
the point at which the plant biomass is initially localized, then the area inside the front is 
populated by plant biomass according to the intensity of the negative feedback (synthetically 
represented by the dimensionless parameter β=(csBmax)/k) produced by T. Consequently, an 
increase in the impact of toxic compounds on plant mortality (i.e., an increase in the plant 
sensitivity to autotoxicity s or a decrease in toxic compounds decay/removal rate k), produces 
a decrease in the equilibrium values as well as a decrease in height and width of the external 
biomass peaks (Fig. 2.6). Interestingly, for sufficiently high values of β, secondary concentric 
rings are formed within the patch (Figs. 2.5 and 2.6). As previously described in section 3.2, it 
has to be remembered that, for long times, inside all the ring patterns there will always be a 
spatially uniform region with plant biomass and toxic compounds at their coexistence values 
(B

*, T*
) (Fig. 2.3). 

 

Figure 2.4. Biomass travelling waves. Solid lines represent snapshots from subsequent times 
from the initial spot centre of B (denoted by •). Lines are obtained as cross-sections of two 
dimensional simulations of the model equations (Eq. 2). The wavefronts proceed at constant 
speed (Eq. 9) from the initial spot while the biomass in the centre of the ring slowly 
approaches the equilibrium value B

*
 (dashed line). Simulation parameters: α = 0.1, β = 1.5, γ 

= 0.1. 
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Figure 2.5. Comparison of model simulations (rows) at different values of β, obtained by 
numerical integration of the model equations (Eq. 2). Each panel shows a grey-scale map of 
biomass distribution with darker shade representing higher biomass density. Time proceeds 
from left to right. Other simulation parameters: α = 0.1, γ = 0.1. 

 
 

 

Figure 2.6. Model simulations showing responses of biomass and toxicity distribution along a 
central transect view across the clonal patch, according to different values of β. The profiles 
are cross-sections of two dimensional simulations of the model equations (Eq. 2). Each panel 
shows the distributions of B (solid black line) and T (solid grey line) compared to their 
equilibrium values B

*
 (dashed black line) and T

*
 (dashed grey line). All simulations run for 50 

time steps. Other simulation parameters: α = 0.1, γ = 0.1. 
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4. Discussion 

Previous modelling studies related the formation of rings by clonal plants to a resource 
shortage, i.e., water in arid ecosystems (Rietkerk et al. 2002; Gilad et al. 2007; Sheffer et al. 
2007; von Hardenberg et al. 2010) which cannot explain the occurrence of ring forming plants 
when water is not a limiting factor. In particular, such models are based on scale-dependent 
positive and negative feedbacks between biomass and water (Rietkerk and van de Koppel 
2008). Vegetation reduces the presence of soil-crust that inhibits water infiltration and 
produces shading that reduces soil water evaporation. This set of processes give rise to a 
positive feedback of vegetation on itself due to the increased water uptake that is only limited 
by the overall water availability of the system (i.e. precipitation). In this context, the biomass 
depression in the tussock centre, up to the formation of a clear ring, is the result of 
competition for water by the surrounding plants, constituting the negative feedback. However, 
experimental evidences for the water depletion hypothesis are not compelling. For instance, 
Sheffer et al. (2007), studying the grass Poa bulbosa, found in a greenhouse experiment that 
seedlings allocate more biomass to the external tillers, compared to internal ones, as water 
availability decreases. Indeed, evidence that water depletion occurs inside the rings in open 
field was not provided. Later, Ravi et al. (2008) proposed that the rings of the bunchgrass 
Bouteloua gracilis in semiarid grassland, emerge due to the co-occurring effects of aeolian 
deposition, changes in soil property inside the clones and water limitation. Specifically, the 
authors reported that water soil infiltration capacity and water content were slightly, but 
significantly, reduced inside small and medium size tussocks in the field. However, the 
difference in soil water content was very small compared to the outwards vegetated belt. 
Further studies should clarify if a water deficit of such entity can kill a drought adapted 
bunchgrass. On the other hand, some studies reported an higher water holding capacity in the 
die-back zone of the ring shaped clones because of the higher organic matter content and 
changes of soil texture with an higher content of the clay fraction (Pemadasa 1981; Pignatti 
1997; Bonanomi 2002; Lanta et al. 2004). In conclusion, water depletion may be a factor in 
the formation of rings in arid systems, but further evidences are required to clarify if this 
process may explain the formation of rings in ecosystems where water is not a limiting factor. 
In contrast with the previously described models, our formulation is based on a negative 
feedback only. The decomposition of biomass produces an increase in soil negative conditions 
that means a negative effect of vegetation on itself. Our model shows that this type of plant-
soil negative feedback can be an additional mechanism responsible for the formation of rings 
and the appearance of other vegetation patterns in clonal plants. Moreover, compared to 
previous works on ring formation, the spatial patterns expected by our model are, in a limited 
interval of time, inhomogeneous states, always leading to long term homogeneous equilibria 
and uniform vegetation, in contrast with models proposed by Rietkerk et al. (2002) and Gilad 
et al. (2007) that provide, for some set of parameters, stationary Turing patterns. 
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Figure 2.7. Comparison of three model simulations (rows) obtained by numerical integration 
of the model equations (Eq. 2), initialized with 20 spot-like patches randomly distributed over 
either the entire domain (first two rows) or the first 10 columns of the lattice (last row), at two 
different levels of β. Each panel shows a grey-scale map of biomass distribution, with darker 
shade representing higher biomass density. Time proceeds from left to right. Other simulation 
parameters: α = 0.1, γ = 0.1. 

This model output is actually reflecting real world dynamics, where clear rings are 
observed only in scattered plants with other patterns becoming evident at higher soil cover 
levels. In fact, clonal rings have been often reported during colonization of bare substrates in 
primary successions. Examples include peatland (Lanta et al. 2008), volcanic slope (Adachi et 

al. 1996) and salt marsh mud (Caldwell 1957; Castellanos et al. 1994). In these conditions, 
new recruitments occur in an empty space without competition (Caldwell 1957), thus forming 
clones of regular shape. Similarly, the model provided regular shaped rings after colonization 
of an empty simulation grid followed, when the clones develop and come into contact with 
other patches, by their progressive disappearance with subsequent coalescence as observed in 
nature (Watt 1947; Heslop-Harrison and Heslop-Harrison 1958). Interestingly, the 
disappearance of regular patterns after rings coalescence has been observed also for fungal 
“fairy rings” when underground mycelia of neighbouring rings come into contact (Dowson et 

al. 1989). However, the mechanisms underlying the spatial rearrangement of vegetative 
structures during clones coalescence are unknown. Keeping in mind such considerations, it 
seems clear that the occurrence of either rings or other patterns, such as wave-like structures, 
during the colonization of bare substrates, is dependent on the initial arrangement of plant 
recruitment. Simulations shown in Figure 2.7 (first two rows) indicate that randomly 
distributed plant patches do produce regularly shaped rings or part of rings if new patches are 
initially enough spaced (i.e. the distance between their establishment locations is larger than 
the average adult patch diameter), progressively disappearing with rings contact and 
coalescence. On the other hand, if  initial recruitment occurs in clusters or along a line (last 
row of Fig. 2.7), e.g. in a grassland colonization from a woodland edge, different patterns may 
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emerge as wave-like bands. A real pattern similar to that obtained at intermediate stages of 
our simulation, showing semi-rings waves, has been reported in herbaceous grasslands and 
related to the build-up of species-specific negative feedback (Blomqvist et al. 2000; Olff et al. 
2000). In such communities, dominant species move away from “home” soil by vegetative 
propagation, to escape accumulated soil-borne pathogens. Likely, in these cases regular rings 
do not emerge because all soil is covered and each plant may expand only into spaces released 
by other species when they are affected by their own negative feedback. Indeed, further 
modelling attempts might investigate the effects of species-specific negative feedback on the 
spatial arrangement of multi-species plant assemblages. 

Model analysis showed that the negative feedback intensity (parameter β) strongly 
affects the biomass production in the central tussock zone, ranging, with increasing β , from a 
slight reduction of central shoots, to a complete die-back, to bare soil. This variability in 
degeneration levels of the internal ring zone has been reported in natural ecosystems. For 
instance, Bonanomi and Allegrezza (2004) reported, in the case of the ring forming grass B. 

rupestre, both small reductions and complete absence of biomass in the central parts of 
different clones in four different study sites. Recently, Otfinowski (2008) also found only a 
small reduction of living biomass in the centre of B. inermis clones. In contrast, many studies 
reported completely empty central areas of most investigated rings (Watt 1947; Curtis and 
Cottam 1950; Caldwell 1957; Castellanos et al. 1994; Danin 1996; Lewis et al. 2001; 
Bonanomi, Rietkerk, et al. 2005). These observations are consistent with the large variability 
of experimentally observed negative plant-soil feedback intensity, ranging from small 
reductions of plant growth to lack of regeneration of conspecific individuals (Packer and Clay 
2000; Klironomos 2002; Kardol et al. 2007; Mazzoleni et al. 2007; Kulmatiski et al. 2008). 
We also suggest that an elevated negative feedback intensity, resulting from high plant 
sensitivity coupled with low levels of removal/decay rates of toxic compounds, may well 
explain the development of concentric rings within the same clone. This rarely observed 
pattern (Caldwell 1957; G. Bonanomi, pers. obs.), appeared in our model simulations if the 
plant suffered strong negative feedback with, at the same time, the toxicity slowly 
disappearing from the affected soil. Under these conditions, several concentric waves of 
vegetative propagation can develop in the absence of interspecific competition because the 
soil can be re-colonized by the same species as soon as the detrimental effect of negative 
feedback is decreased. Experimental studies are needed to test the consistency of this 
hypothesis. 

In conclusion, our simple single-species model demonstrates that negative plant-soil 
feedback due to toxicity by the decomposition processes of accumulated litter may well 
explain the formation of differently shaped rings and of vegetation waves during substrate 
colonization. Previous models (Sheffer et al. 2007; von Hardenberg et al. 2010) were also 
able to reproduce clonal rings, but only in arid, water-limited ecosystems. Far from stating 
that plant-soil negative feedback is the only process involved in the formation of vegetation 
patterns, an interesting development on this topic could be the formulation of a model that 
considers the integration of both mechanisms (plant-water and plant-soil toxicity feedbacks), 
in order to evaluate the relative importance of such processes in different environmental 
conditions. Moreover, a multi-species model, with species-specific negative plant-soil 
feedback, can be developed for better understanding plant species distribution in space and 
time. 



 

21 
 

Future manipulative field experiments are certainly strongly required to test specific 
hypotheses and to clarify the mechanisms underlying ring formation. In particular, the water 
limitation hypothesis could be verified by irrigating the central part of the rings to check if 
this would allow a centripetal recolonization by the clonal plant. On the other hand, the 
investigation of the toxicity hypothesis should imply a clarification of the mechanisms 
producing plant-soil negative feedback which has been attributed to nutrient depletion 
(Ehrenfeld et al. 2005), soil-borne pathogens (Packer and Clay 2000), soil microbial 
communities (Klironomos 2002) and autotoxicity produced by litter decomposition (Singh et 

al. 1999). Fertilization experiments could be used to test the role of nutrient levels in ring 
formation, whereas, comparative chemical and microbial characterization of the inner and 
outer zones of the clonal rings in the field should be performed to assess the other 
mechanisms. In particular, following previous research work (Bonanomi, Incerti, et al. 2011), 
further detailed studies by NMR-CPMAS methods could address this critical issue, with 
experiments being specifically designed to support the autotoxicity theory. 
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Appendix A 

The non-negative uniform steady-state (B
*, T*

) is asymptotically stable if and only if 0 < 

α < 1 and the parameters β and γ are positive. In fact, the characteristic equation is given by 
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After some standard calculations, we derive that det J
*
 > 0 and tr J

*
 < 0 if and only if 0 

< α < 1 and the parameters β and γ are positive. Then, the Jacobian matrix J
*
 has two 

eigenvalues with negative real parts. 

Appendix B 

The linear stability of the uniform state (B
*, T*

) is deduced from the dispersion relations 

J(h)a = λa, (B.1) 

where the Jacobian matrix is 
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Indeed, the Eq. (B.1) can be written as 
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Then, (B
*, T*

) is asymptotically stable if and only if the matrix J(h) has two eigenvalues 

with negative real parts. Owing to h > 0, the stability condition takes the following form: 

det J(h)
*
 > 0,  

tr J(h)
*
 < 0, 

which holds if 0 < α < 1 and the parameters β and γ are positive.  
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Abstract 

The formation of vegetation patterns has been widely analyzed and discussed over the 
years and, generally, it has been related to biomass-water feedbacks. In this work, we study 
the mechanisms underlying vegetation pattern formation as a result of both positive feedback 
between biomass and water and negative plant–soil feedback due to the presence of toxic 
compounds. The proposed model exhibits different spatial patterns, although Turing 
conditions are not satisfied, and the distribution of biomass within the patterns is not 
symmetrical as predicted by other models. Furthermore, we show that, in case of high 
persistence of toxicity in the soil, spatial patterns are continuously moving in space without 
reaching a stable spatial configuration. 
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1. Introduction 

The occurrence of regular patterns of vegetation has been studied by plant ecologists for 
a long time (Watt 1947; White 1971). Different patterns, such as spots, labyrinths, gaps and 
stripes as well as plant rings and fungal fairy rings (Valentin et al. 1999; Bonanomi et al. 
2012, 2013) have been reported in a variety of natural environments (Boaler and Hodge 1964; 
Wickens and Collier 1971; Leprun 1999; Okayasu and Aizawa 2001). Recently Deblauwe et 

al. (2008), by studying 249 geographical locations, have explained the occurrences of regular 
patterns by means of climatic variables and soil properties. The interest for vegetation pattern 
formation is related to the comprehension of local and global phenomena like climate change 
(Rietkerk et al. 2002; Dekker et al. 2010). In particular, the study of vegetation patterns in 
arid and semi-arid environments could provide useful tools to identify early warning signals 
for climate shifts and critical transitions (Rietkerk et al. 1997, 2004; van de Koppel et al. 
1997; Scheffer et al. 2009). Several feedback mechanisms have been proposed to explain the 
formation of vegetation patterns, and many mathematical models have been formulated to test 
these hypotheses (Rietkerk and van de Koppel 2008; Meron 2010; Zelnik et al. 2013).  

 Starting from the analysis of biomass evolution, Lefever and Lejeune (Lefever and 
Lejeune 1997) developed a phenomenological model which ascribes vegetation patterns to 
two feedbacks: short-range facilitation of plants under their aerial structures, and long-range 
competition between plants by overlapping root zones (Lejeune et al. 1999, 2002). A huge 
part of the scientific literature, however, identifies water as the main causal factor for the 
emergence of vegetation patterns. These models are usually written in terms of partial 
differential equations (PDEs) reproducing the dynamics of water and plant biomass. The first 
model, based on two equations, was introduced by Klausmeier (1999). In this model, the 
formation of patterns derives from two main processes: short range facilitation of plants on 
themselves, and long range inhibition due to shortage of available water. Following 
Klausmeier's work, several authors modelled water as two separate state variables, soil and 
surface water (von Hardenberg et al. 2001; Rietkerk et al. 2002; Meron et al. 2004, 2007; 
Ursino and Contarini 2006; Gilad et al. 2007; Nathan et al. 2013). The outcome of these 
models still shows that the occurrence of vegetation patterns is strictly connected with 
feedbacks between biomass and water, such as water infiltration, evaporation, plant uptake 
and surface runoff. On the other hand, the formation of vegetation patterns can hardly be 
explained in humid environments (Rietkerk and van de Koppel 2008 and references therein) if 
water is assumed to be the only responsible factor. Therefore, the plant-soil negative feedback 
(NF) hypothesis (Mazzoleni et al. 2007) has been used to justify the emergence of ring 
vegetation patterns (Carteni et al. 2012). Species-specific NF has been defined as the raise of 
negative conditions for plants induced by the accumulation in the soil of toxic compounds 
released by decomposing litter of the same plant species. The presence of soil-borne 
pathogens, the changing composition of soil microbial communities (Kulmatiski et al. 2008), 
and the accumulation of autotoxic compounds from decomposing plant litter (Bonanomi, 
Incerti, et al. 2011) are just some of the mechanisms involved in the plant-soil negative 
feedback. So far, this phenomenon has been proved to play an important role in plant species 
coexistence as in biodiversity (Mazzoleni et al. 2010). Following this hypothesis, another 
model, consisting of two partial differential equations (PDEs) for biomass and toxicity, has 
been proposed to explain the occurrence of ring patches in clonal plants (Carteni et al. 2012). 
Moreover, Marasco et al. (2013) have recently introduced a new model formulation for 
vegetation pattern formation based on the interactions between water and plant-soil negative 
feedback. According to the numerical simulations, although without a solid mathematical 
analysis of the underlining PDEs, the model shows the ability to reproduce the emergence of 
vegetation patterns even when water is not a limiting resource. 

 Spatial patterns are often defined as Turing patterns named after Alan Turing who first 
proposed the regular pattern formation by scale-dependent feedbacks in chemical and 
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biological systems (Turing 1952). Such patterns arise from the so-called activator-inhibitor 
principle in chemical (Rovinsky and Menzinger 1993; Jensen et al. 1994; Coullet et al. 2000), 
physical (Tlidi et al. 1994; Kessler and Werner 2003), and biological systems (Meinhardt 
1995; Murray 2002). In particular, the mechanism at the base of Turing vegetation patterning 
is the difference between the diffusion rates of plant biomass and water, with the latter being 
sensibly higher. In mathematical terms, a reaction-diffusion system exhibits Turing patterns if 
the stability of an homogeneous steady state is lost with respect to heterogeneous 
perturbations. In many cases, however, dynamical models reveal the presence of vegetation 
patterns even when this condition is not satisfied (Petrovskii et al. 2001; Volpert and 
Petrovskii 2009; Kéfi et al. 2010). In Kéfi et al. (2010), this case is explained as the 
emergence of non-Turing patterns. Moreover, Petrovskii et al. (2001) highlighted an 
interesting phenomenon which leads to pattern formation called dynamical stabilization. This 
phenomenon describes the formation of an unstable plateau behind the diffusive front, due to 
"the interplay between the diffusion and nonlinear inter-species interactions" (Petrovskii et 

al. 2001). The dynamical stabilization appears opposite to the mechanisms of Turing pattern 
formation. 

 In this paper, we study the mechanisms underlying the vegetation pattern formation as 
a result of both positive and negative feedbacks between biomass and water, and negative 
plant-soil feedback due to the presence of the toxic compounds. Performing a suitable 
nondimensional analysis, differently to Marasco et al (2013), we introduce new dimensionless 
variables and model parameters that allow us to simulate the emergence of the vegetation 
patterns with realistic values of precipitation. The resulting PDEs system exhibits stable 
spatial patterns although Turing conditions are not satisfied. In addition, we show that in case 
of high persistence of toxicity in the soil, the generated spatial patterns are continuously 
moving in space. Numerical simulations also highlight that the distribution of biomass within 
the patterns, is not symmetrical as predicted by other models (Rietkerk et al. 2002; Meron et 

al. 2004, 2007; Gilad et al. 2007). 
The paper is organized as follows. In Section 2 we define the mathematical model in 

dimensional and nondimensional form. Section 3 is devoted to the linear stability analysis to 
spatially homogeneous and heterogeneous perturbations. In order to compare our results with 
the ones presented in the Klausmeier's work (1999), the same analysis was also carried out 
assuming no toxicity effects on biomass dynamics. In addition, we perform a bifurcation 
analysis on some characteristic parameters. Finally, numerical simulations are performed in 
order to illustrate the evolution of these patterns in time, and the influence of toxicity on 
biomass dynamics. In Section 4, we conclude discussing the ecological and mathematical 
implications of our results. 

2. The mathematical model 

To explain the occurrence of vegetation patterns under different environmental 
conditions, we present a differential system that models the positive and negative feedbacks 
among biomass B, water W, and toxic compounds T inspired by Klausmeier (1999), Cartenì et 

al. (2012), and Marasco et al. (2013). 
As schematically represented in Figure 3.1, we suppose that plant biomass B (kg/m2) 

grows according to water availability, and its intrinsic mortality (d) is incremented by an extra 
loss induced by the toxic compounds T (kg/m2). Moreover, the total water content W is 
affected by rain, evaporation and plant uptake (i.e., transpiration), while the decomposition of 
dead plants (i.e., litter) produces toxic compounds T that are degraded and removed from the 
soil according to environmental conditions (such as precipitation and temperature), exerting a 
negative effect on plant growth performance (Fig. 3.1). 
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Starting from the model presented in Marasco et al. (2013), we develop a different 
mathematical analysis of the PDEs system showing how the dynamical stabilization 
phenomenon, occurring in the presence of water limitation and negative plant–soil feedback, 
allows us to explain vegetation patterns formation that are spatially unstable in time. 
Moreover, our model exhibits vegetation patterns on flat soil, also when we neglect the 
negative plant–soil feedback. 

 

Figure 3.1. Soil-Plant-Atmosphere System. Schematic representation of the feedbacks and 
interactions among plant biomass (B), toxic compounds (T) and soil water (W). Continuous 
lines represent transfers of matter between the compartments while dashed lines represent 
influences. 

2.1. Model equations 

Plant biomass B (representing the whole system of roots and shoots) grows 
proportionally (c) to water availability, its intrinsic mortality (d) is incremented by an extra 
loss induced by the toxic compound T by means of a sensibility parameter s. The vegetative 
growth and the seed dispersal is modelled by a diffusion term of coefficient DB. Furthermore, 
water W representing both soil and surface water, is supplied uniformly due to precipitation at 
constant rate p and lost due to evaporation at rate lW; plants absorb water at rate rB

2
W, and, 

finally the transport of water (following the Darcy's law) is modelled by a diffusion term of 
coefficient DW. Toxic compounds T are produced by a fraction γ of the dead biomass, and are 
reduced by intrinsic decay and water precipitation processes through the parameters k and ε, 
respectively.  

All the model parameters are summarized in Table 3.1; their values are chosen 
according to Klausmeier (1999) and Cartenì et al. (2012) or set to order-of-magnitude feasible 
values. The spatial variables are (x,y), while t is the time variable. 

According to the above  hypotheses, the model equations are 
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where we assume only positive values for the parameters c, d, p, r and γ, whereas l, s, ε, 

k, DB, DW are non negative. 
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Introducing the dimensionless variables and parameters 
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we obtain the following nondimensional model (for convenience, we omit the 
superscript) 
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(3) 

where α can be interpreted as the intrinsic death rate, obtained balancing the plant 
mortality rate and the toxicity loss velocity k+εp (depending on the decay parameter k and the 
rain washing effect εp). δ is an extra death rate directly proportional to the parameters 
controlling plant growth (i.e., growth rate c and rain p) and plant mortality (i.e., toxic 
compounds released from a fraction γ of dead biomass and its sensibility s to toxicity), and 
inversely proportional to the toxicity loss velocity (k+εp) and to water uptake r. The 
parameter υ is the ratio between the parameters controlling plant growth and the product of 
toxicity loss velocity and water uptake. Finally, λ is the ratio of the water loss parameter l on 
toxicity loss velocity, and ϑ  is the ratio between biomass and water diffusion coefficients. 

 

Table 3.1. List of model parameters 

Parameter Description Unit Assigned Value 

c Growth rate of B due to water uptake m4 day-1 kg-2 0.002 

d Death rate of B day-1 0.01 

s Plant sensitivity to T m2 kg-1 day-1 0 or 0.2 

DB 
Plan biomass propagation coefficient m2 day-1 0.01 

p Rainfall kg day-1 m-2 
Between 0 and 
2 

r Water uptake due to biomass growth m4 day-1 kg-2 0.35 

l Water loss due to evaporation and drainage day-1 0.01 

DW Water diffusion coefficient m2 day-1 0.8 

γ 
Proportion of toxic products by litter 
decomposition 

- 0.05 

k Decay rate of T day-1 0.01 or 0.2 

ε Washing effect due to precipitation kg day-2 m-2 0.001 
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3. Results 

In this section, we perform a stability analysis of the spatially homogeneous equilibria 
of Eqs. (3), and we draw the bifurcation diagrams of biomass, with rainfall p as a bifurcation 
parameter, for different values of k and s. In addition, we numerically integrate Eqs. (3) fixing 
the values of all the dimensional parameters except the precipitation p, the sensibility s, and 
the decay rate k of T. Moreover we numerically investigate both the effects of initial biomass 
condition and rain parameter p. 

3.1 Stability analysis of the spatially homogeneous equilibria 

We perform a stability analysis of the spatially homogeneous equilibria in two cases:  

a) the parameter s and consequently the non-dimensional parameter δ is strictly positive, i.e., 
we assume that the negative plant–soil feedback affects biomass dynamics; 

b) the parameter s and consequently δ are zero, i.e., the biomass and water equations in (3) are 
decoupled with respect to the toxic compounds T, then the resulting biomass–water 
differential system becomes equivalent to Klausmeier's model on flat soil.  

 

Case a): s≠0 therefore δ≠0 

In the first stage we find the stationary solutions of the spatially homogeneous system, 
i.e., the solutions of the system 
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Biologically feasible equilibrium points are the non-negative solutions of the above 
system, i.e., 
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The Jacobian matrix J(B,W,T) associated to system (3) is given by 
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Then, the linear analysis of stability allows us to obtain the following results: 
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i) the equilibrium (B1,W1,T1) (corresponding to bare soil) is asymptotically stable if and only 
if α>0. In fact, the Jacobian matrix at (B1,W1,T1) admits the eigenvalues λ1=-1,   λ2=-λ,   

λ3=-α; 

ii) at the equilibria (B2,W2,T2) and (B3,W3,T3)
± (corresponding to uniform vegetation) the 

stability properties involves all model parameters in a non trivial way. Then, the linear 
analysis of stability of these equilibria should be examined only on varying the 
ecologically relevant parameters p and k,  whereas for the others we assume that c=0.002, 
d=0.01, s=0.2, r=0.35, l=0.01, DW=0.8, DB=0.01, γ=0.05, ε=0.001, i.e., 
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where from now on, for the sake of simplicity, we omit the parameter units. 
Owing to (5), the equilibrium (B2,W2,T2) does not exist (since λ≠0).  
 
We define  

F(k,p)=-7000k - 47p + 20000kp
2
 + 20p

3
 

(6) 

and, for any fixed value k of k 

G(p)=F( k ,p)=-7000 k  - 47p + 20000 k p
2
 + 20p

3
 

(7) 

Then, (B3,W3,T3)
± exist if and only if p≥p*( k ), where p* is the positive root of the 

polynomial G(p), and (B3,W3,T3)
- is always unstable, and (B3,W3,T3)

+ is always stable to 
homogeneous perturbations (see Fig. 3.2a-b) 

 

Case b): s=0 therefore δ=0 

An analogous scenario is obtained assuming that toxicity and biomass dynamics are 
decoupled, i.e., δ=0. In this case, our model becomes a biomass-water model similar to 
Klausmeier's model but without soil topographic variations. Once again we will have a bare 

soil equilibrium ),,(
111
TWB and three possible uniform vegetation equilibria ),,(

222
TWB , and 

±

),,(
333

TWB  as in Table 3.2. 

Fixing the parameters as in (5) (except for δ and s which are now equal to zero), the 

equilibrium ),,(
222

TWB  does not exist (since λ≠0), whereas ±

),,(
333

TWB  exist if and only if 

5

7

2

1
≥p . In fact, in this case neglecting the value of toxicity decay rate k only the 

parameter p influence biomass dynamics. 

Stability analysis to spatially homogeneous perturbations leads us to ),,(
111
TWB  and 

+

),,(
333

TWB  are asymptotically stable equilibria, conversely −

),,(
333

TWB  is always unstable 

(see Fig. 3.2c).  
Owing to the above results, in Section 3.2 we perform a stability analysis to nonuniform 

infinitesimal perturbations. Moreover, in Figure 3.2 we report three bifurcation diagrams 
corresponding to the cases δ≠0 and δ=0. In the first case, we examine the stability character of 
the equilibria only when k=0.01 (i.e., high presence of toxicity in the soil) and  k=0.2 (i.e., low 
presence of toxicity in the soil). 
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Figure 3.2. Bifurcation diagrams for homogeneous stationary solutions of the model 
equations (1) showing the biomass B versus the precipitation rate p, for k=0.01 (panel a) and 

k=0.2 (panel b) when s=0.2 and for any k when s=0 (panel c) . Red lines denote stable 
equilibria of the spatial and nonspatial model. Continuous lines are unstable equilibria of the 
nonspatial model. Spatial bistability occurs when p≥p*. 
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Table 3.2. Stationary solutions for model equations (2) with different biomass-toxicity 
dynamics 
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3.2 Linear stability analysis to spatially heterogeneous perturbations  

In order to investigate the effect of the biomass and water diffusion on the model system 
(3) we perform the linear stability analysis of the stationary homogeneous solutions 
(B1,W1,T1) and (B3,W3,T3)

+ to nonuniform infinitesimal perturbations.  
We consider the perturbed solutions  

B(x, t) = 
*

B + aB(t)e
ix·h

 + cc, 

W(x, t) = 
*

W + aW(t)e
ix·h

 + cc, 

T(x, t) =
*

T + aT(t)e
ix·h

 + cc, 

where ),,(
***

TWB  is a spatially stable equilibrium solution, x=(x,y) is the space 
variables vector, h=(h1,h2) is the wave vector of the perturbation, a(t)=(aB(t),aW(t),aT(t)) is the 
perturbation amplitudes vector and “cc” stands for complex conjugate. 

Substituting the above perturbed solutions in (3) and keeping terms to first-order only, 
we obtain the following system of linear ODEs for the perturbation amplitudes a(t): 
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where h=|h| is the perturbation’s wave number. 
Assuming exponential growth for the perturbations amplitudes, i.e., 
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aB(t) = aB(0)eλt,      aW(t) = aW(0)eλt,      aT(t) = aT(0)eλt, 

we obtain the eigenvalues problem 

J(h)a=λa, 
 (9) 

where 
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The solution of problem (9) gives the dispersion relations which provide information 
about the stability of the stationary homogeneous solution ),,(

***
TWB  (see Cartenì et al. 

2012). In fact, the growth rate of a perturbation characterized by a wave number h is given by 
the largest real part of the eigenvalues λ=λ(h). 

 

Case a): δ≠0 

When we estimate the eigenvalues of the Jacobian matrix J(h) at the steady-states we 
obtain: 

i) when λ>0, at (B1,W1,T1) the Jacobian matrix admits the eigenvalues 

λ1=-1,    λ2=-α-h
2
ϑ ,    λ3=-λ 

which are all negative if α>0. Then, the bare soil equilibrium (B1,W1,T1) is stable to 
heterogeneous perturbations if and only if α>0; 

ii) as we said in Section 2.1 for the homogeneous perturbations case, our analysis is 
performed fixing toxicity decay rate with two different values k=0.01 and k=0.2 and 
examining the stability character of the equilibria only depending on the parameter p. 
Numerical analysis, performed with the software Mathematica®, allow us to obtain that in 
both cases the asymptotically stable equilibria ((B1,W1,T1) and (B3,W3,T3)

+) preserve their 
stability character. In particular, (B1,W1,T1) is asymptotically stable for every value of p, 
and (B3,W3,T3)

+ is still asymptotically stable for every value of p≥p
*
(k), where 

p
*
(k)=0.692478, for k=0.01 and 0.596614 for k=0.2 (see Eq. (7)).  

 
We remark that in both cases, Turing pattern conditions are not satisfied. The 

bifurcation diagrams related to biomass equilibria stability versus the precipitation rate p are 
reported in Figure 3.2a-b. 

 

Case b): δ=0 

Analogous results are obtained assuming that biomass and toxicity dynamics are 

decoupled. In particular, if 
5

7

2

1
≥p . we obtain the bifurcation diagram in Figure 3.2c. 

3.3 Numerical simulations 

We analyze model behaviour along an environmental gradient considering the 
combined effects of water availability, represented by precipitation rate p, and the persistence 
of toxicity in soil, represented by parameter k, that depends on the temperature,. Furthermore, 
we test the model behaviour with and without the effects of plant-soil negative. It has to be 
noted that in the latter case (s=0), the toxicity equation is decoupled from biomass and water 
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equations, and the system is equivalent to the model proposed by Klausmeier (1999) when the 
soil topographic variations are neglected. 

All simulations were performed using zero-flux Neumann boundary conditions on a 
square lattice of 100x100 units, and with initial biomass peaks set as 0.2, randomly distributed 
over the lattice. Any simulation is carried out for 100,000 time steps, and the parameter values 
are summarized in Table 3.1. In addition, we also test the effects of both biomass initial 
condition (IB) and precipitation (p) on the emergence of spatial patterns. 

Figure 3.3 shows the spatial distributions of plant biomass at the end of each simulation 
according to different values of precipitation rate p (columns), decay rate of toxicity k (rows), 
and plant sensitivity to toxic compounds s. In the first row (s=0) the simulations reproduce 
the typical stable spatial patterns reported in the literature for arid and semi-arid environments 
(Rietkerk et al. 2002; Gilad et al. 2007; Meron et al. 2007; Kéfi et al. 2010). In this case, as 
the precipitation rate increases, the spatial distribution of plant biomass goes from bare soil to 
homogeneous cover, passing through spot, labyrinth and gap patterns. Analogously, also with 
the effect of NF (s=0.2) and sufficiently high values of toxicity decay rate (k=0.2, Fig. 3.3 
second row), the same stable patterns described above occur. In this case the toxicity is 
degraded too fast to affect the pattern formation, and the only visible effect is a shift of the 
gap pattern that occurs at higher values of precipitation. However, a significant reduction of 
the decay rate (k=0.01, Fig. 3.3 third row), produces a longer persistence of toxicity in the soil 
causing increased effects on the plant biomass. Moreover, for k=0.01 and for precipitation 
values between 0.6 and 1.1, no stable patterns occur. In fact, distinct spots or stripes of plants 
are still formed, but they constantly move in time, "escaping from the toxicity" that 
accumulates in the soil patches previously occupied by the vegetation (see Supplementary 
Material, SPOT_k=0.01_p=0.6.avi). 

This particular behaviour is clearly shown in Figure 3.4 (last row) where each panel 
contains a plot of the plant biomass value (y-axis) of the central pixel (black line) and the 
average value of the entire lattice (gray line) during the simulation time (x-axis). It is evident  
that for k=0.01 and 0.6≤p≤1.1, the biomass Bcp in the central point of the spatial domain, 
continues to oscillate indefinitely, meaning that the spots or stripes structures continue to 
move without reaching a stable spatial configuration (see videos in the Supplementary 
Material). In the other cases, the values of the biomass Bcp tend to be stable in time after more 
or less pronounced oscillations. It has also to be noted that for bare soil and uniform 
vegetation (i.e., no spatial pattern) the biomass value Bcp coincides with the average values of 
the lattice at the end of the simulations. 

Figure 3.5 shows the effects of the initial value of biomass IB, the precipitation p and 
the decomposition rate k, on the emergence of spatial patterns. Every simulation was launched 
on varying IB within the interval [400,1600] (in all other simulations we set IB=1000). As 
shown in Figure 3.5a (k=0.2), bare soil emerges for p=0.4 independently from IB values, and 
the same result is obtained for p=0.6 and IB<800. In addition, with high toxicity (k=0.01) 
bare soil is obtained also for p=0.8 and IB<600. On the other hand, uniform vegetation is 
obtained for p≥1.4 (k=0.2), independently of IB, while in case of k=0.01, is obtained also for 
p=1.2. Vegetation patterns emerge for all other combinations of parameters. 
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Figure 3.3. Spatial patterns emerging at different levels of precipitation p (columns), toxicity 
decay rate k (rows) and plant sensitivity to toxic compounds s, obtained by numerical 
integration of the model equations Eq. (1). Each panel shows a grey-scale map of biomass 
distribution with darker shade representing higher biomass density. In the first row (s=0) the 
model behaves independently of toxicity T, reproducing the typical spatial patterns reported 
for arid and semi-arid environments. Analogous results are produced with the effect of NF 
(s=0.2) and high values of toxicity decay rate (k=0.2, second row). On the other hand, a 
significant reduction of the decay rate (k=0.01, third row) still produces distinct spots or 
stripes of plants, but they constantly move in time, escaping from the toxicity that 
accumulates in the previously occupied soil patches. Other parameter values are reported in 
Table 3.1. 

 

 
Figure 3.4. Plots of the biomass value Bcp in time (x-axis) of the central pixel of the 

simulation domain (black line) compared to the average value of the entire lattice (gray line), 
at different levels of precipitation p (columns), toxicity decay rate k (rows) and plant 
sensitivity to toxic compounds s. Biomass values Bcp tend to be stable in time after more o 
less pronounced oscillations. It has to be noted that for k=0.01 and 0.6≤p≤1.1, the biomass in 
the central point continues to oscillate indefinitely in time, meaning that the spots or stripes 
structures continue to move without reaching a stationary  spatial configuration. Other 
parameter values are reported in Table 3.1. 
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Figure 3.5. Effects of precipitation p, initial biomass IB, and decomposition rate k on pattern 
formation. The two panels (panel a: k=0.2; panel b: k=0.01) show the emerging spatial pattern 
as a function of precipitation rate (0.4≤ p ≤2.0) and the initial value of the biomass B. White, 
grey, and black zones correspond to bare soil, vegetation pattern (i.e. spot, labyrinth or gaps), 
and  homogeneous vegetation, respectively. 

4. Discussion and research perspectives 

 Owing to the analytical difficulties to study mathematical models consisting of more 
than two equations, the quasi-steady-state approach is often employed to perform a stability 
analysis and to verify Turing conditions. This method is based on the phenomenological 
assumption that the dynamics of one state variable are much faster than the others. In 
vegetation pattern models with soil and surface water, the last one is often assumed to be 
constant, then the model is reduced to only two PDEs (HillerisLambers et al. 2001; Kéfi et al. 
2010). However, this approach presents some drawbacks as shown by Flach and Schnell 
(2006), then we have chosen to avoid this kind of assumption, although the analysis of our 
model presents a huge mathematical complexity as in (Sherratt 2005, 2010; Sherratt and Lord 
2007). 

We showed that the mechanism underlying pattern formation, even though Turing 
conditions are not satisfied, originates from the contribution of both positive and negative 
feedbacks. In detail, depending on environmental conditions, our model exhibits a bistability 
area (Fig. 3.2) (von Hardenberg et al. 2001; Rietkerk et al. 2002), i.e., the coexistence of two 
stable and one unstable states for the same values of parameter p. Moreover, when the high 
presence of toxicity in the soil makes the NF overwhelming with respect to positive water 
feedback, a phenomenon of dynamical stabilization occurs (Petrovskii et al. 2001). In this 
case, our vegetation system evolves to spatial patterns that are spatially unstable in time. Due 
to the nonlinear contribution of both feedbacks, our model exhibits the presence of vegetation 
patterns in an area of the parameters space p-k where the bare soil is the only existing 
homogeneous equilibrium and it is also stable both for the spatial and nonspatial perturbations 
(Fig. 3.2). Nevertheless, as in (Rietkerk et al. 2002; Meron et al. 2004, 2007; Kéfi et al. 2010; 
Meron 2010), when the rainfall decreases, the vegetation cover shifts from uniform to gaps, 
labyrinths, spots and, finally, bare soil. It has to be noted that with high toxicity persistence in 
soil (Fig. 3.5b, k=0.01), regular vegetation patterns occur in a smaller region of the parameter 
space compared to lower or absent persistence (Fig. 3.5a, k=0.2). This can be explained 
remembering that toxicity is a factor that enhances plant mortality. In the presence of low 
precipitation, a bigger amount of initial biomass is needed to prevent bare soil, while for 
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higher precipitation rates, toxicity has a destabilizing effect that breaks the pattern formation 
leading to homogeneous vegetation covers. 

In our model, opposing forces interact to create the peculiar observed biomass 
dynamics. In fact, on the one hand, the low water availability promotes the aggregation of 
biomass into isolated spots or stripes due to the local facilitation properties of the system. On 
the other hand, the aggregation of biomass produces local high levels of toxicity forcing the 
plants to propagate where the negative effect of T in the soil is lower. An interesting result, 
when the discussed interacting forces are not balanced, is the occurrence of patterns that 
continuously move in space. This phenomenon becomes more evident as the persistence of 
toxicity in the soil increases, i.e., as parameter k decreases. In particular, for low values of 
toxicity decay and precipitation rates, the vegetation spots constantly move in the space due to 
the accumulation of toxicity in the soil (SPOT_k=0.01_p=0.6.avi in Supplementary Material). 
Moreover, also for higher precipitation rates (p≥0.6), i.e., when the vegetation pattern shape 
reaches a stationary configuration, the biomass continuously move within the patches (see 
LABYRINTH_k=0.01_p=1.0.avi and GAP_k=0.01_p=1.1.avi in Supplementary Material). 

In addition, the typical shape of spots and stripes is not neat and symmetrical as the ones 
observed in other model simulations (Rietkerk et al. 2002; Meron et al. 2004, 2007; Gilad et 

al. 2007; Kéfi et al. 2010; Meron 2010). Indeed, in our simulations, each spot has the biomass 
peak shifted towards the side it is moving to, and not in its centre (as in the usual simulated 
patterns) since this is the zone with the highest toxicity accumulation. Further  simulations 
were performed to study the asymmetrical patterns. As we show in Figure 3.6, the overall 
shape of the spot changes according to the persistence of toxicity in the soil (parameter k). In 
detail, analyzing the biomass distribution along a central transect, we clearly show the 
different shapes of the spots in absence of toxic effects (Fig. 3.6, left panel) and with 
increasing toxicity (Fig. 3.6, right panel). In the first case, the spot presents the usual 
symmetrical shape as predicted by other model simulations. In the second case, the effect of 
the spots movement is made evident by the shift of the peak towards the direction 
corresponding to a less concentration of toxicity (direction of biomass movement is indicated 
by the arrow in Fig. 3.6, right panel). Moreover, the biomass distribution presents a tail on the 
side opposite to the movement direction. The shape of such biomass tail is found to be highly 
dependent on the persistence of toxicity in the soil. Specifically, with low values of k 
(k=0.005 in Fig. 3.6, right panel), the biomass tail is almost absent due to the high toxicity left 
in the previously occupied soil. On the contrary, with higher k values (k=0.01 and k=0.015, in 
Fig. 3.6, right panel), the toxic effect decreases allowing a higher portion of biomass to persist 
in the tail. This effect clearly creates the asymmetric vegetation patterns. 

From an ecological point of view, both the continuous movement and the asymmetrical 
shape of the patterns are very relevant phenomena, although its time scale (years) makes them 
difficult to be observed and studied with field experiments. Analysis of aerial photographs 
was carried out, and shown in Figure 3.7, to test the asymmetrical patterns behaviour in two 
sites reported in literature (Deblauwe et al. 2008). Using specific filters, the aerial 
photographs (Fig. 3.7 first column) have been edited to highlight zones of high (black), 
medium (dark grey) and low (light grey) biomass density (Fig. 3.7 second column), and then 
are compared to model simulations (Fig. 3.7 third column). Such analysis clearly shows a 
good qualitative correspondence between real vegetation spots and the ones predicted by 
model simulations (Fig. 3.7 first row). Similarly, labyrinths present an heterogeneous 
distribution of biomass within the stripes that was also observed in natural patterns (Fig. 3.7 
second row). 
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Figure 3.6. Transect view of single biomass spots at different levels of plant sensitivity to 
toxic compounds (s) and toxicity decay rate (k). Each panel shows the concentration of plant 
biomass B along a single spatial dimension (x) at the end of a simulation run. In the left panel, 
the model is only influenced by biomass-water dynamics and the simulation produces stable 
isolated spots with typical distribution of biomass with a peak in the centre. The right panel 
shows the shape of the biomass curve in response to three levels of k, in the case of simulated 
spots that continuously moving in space. The arrow indicates the direction of the moving 
biomass front. The top-right corner of each panel shows the positioning of the plane view of 
simulated spots. 

 

 

Figure 3.7. Comparison of model simulation outputs (spots and labyrinths in rows) with 
aerial photographs of real vegetation patterns and image interpretation. Spots and  labyrinths 
refer to California, 26°48' N, 112°53' O and Sudan, 11°08' N, 27°50' E, respectively. 
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Abstract 

• Background and Aims The process of vascular development in plants results in the 
formation of a specific array of bundles that run throughout the plant in a characteristic spatial 
arrangement. Although much is known about the genes involved in the specification of 
procambium, phloem and xylem, the dynamic processes and interactions that define the 
development of the radial arrangement of such tissues remain elusive. 

• Methods In this study we present a spatially explicit reaction-diffusion model defining 
a set of logical and functional rules to simulate the differentiation of procambium, phloem and 
xylem and their spatial patterns, starting from an homogeneous group of undifferentiated 
cells. 

• Key Results Simulation results showed that the model is capable of reproducing most 
vascular patterns observed in plants, from primitive and simple structures constituted of a 
single strand of vascular bundles (protostele), to more complex and evolved ones, with 
separated vascular bundles arranged in an ordered pattern within the plant section (e.g. 
eustele). 

• Conclusions Presented results demonstrated, as a proof of concept, that a common 
genetic-molecular machinery can be at the base of different spatial patterns of plant vascular 
development. Moreover, the model could become a useful tool to test different hypotheses of 
genetic and molecular interactions involved in the specification of vascular tissues. 
  



 

42 
 

Introduction 

During growth of plant axial organs, the process of vascular development takes place in 
two specific regions located right below the shoot and root apical meristems. Such 
developmental processes result in the formation of a specific array of vascular bundles that 
run throughout the plant in a characteristic spatial arrangement. One of the first events in plant 
development that precedes the differentiation of the provascular tissues (as well as other 
tissues) is the establishment of polarity with the differential expression of patterning genes 
along both the apical-basal and the central-peripheral axes. Considering the radial patterning 
alone, the juxtaposition of the central and peripheral domains is thought to drive cotyledon 
and leaf outgrowth (Waites et al. 1998) as well as providing a direct input in the radial 
patterning of vascular bundles (Carlsbecker and Helariutta 2005). 

Two distinct levels of spatial organization can be distinguished within the vascular 
system (Esau 1977): a longitudinal pattern, i.e. the array of vascular bundles within an organ; 
and a radial pattern which is the spatial arrangement of phloem and xylem within each 
vascular bundle and, more generally, within a transversal plant section. For the scope of our 
work we will concentrate our attention on the radial pattern of plant stems and roots. In such 
context, new procambium, phloem and xylem are consistently differentiated in a specific 
spatial pattern that varies between organs and species. The combination of the vascular tissues 
of stems and roots with any other associated fundamental or ground tissue, such as pith and 
interfascicular regions, is defined "stele" or "central cylinder" (Esau 1977). Beck et al. (1982) 
listed several types of recognized steles and classified them into three basic types: i) 
protostele presenting a solid column of vascular tissue; ii) siphonostele characterised by an 
hollow cylinder of vascular tissue; iii) eustele showing separated strands of vascular tissue, 
usually arranged as a discontinuous cylinder.  

Much attention has been given to hormonal (Bowman and Floyd 2008; Vanstraelen and 
Benková 2012) and genetic (Caño-Delgado et al. 2010) control of developmental events and 
in particular to the role of auxin polar transport in the patterning of developing organs (Blilou 
et al. 2005; Teale et al. 2006), somehow ignoring the stimuli responsible for its involvement. 
Recent works on Arabidopsis roots provided new insights on the mechanisms controlling 
vascular patterning. Bishopp et al. (Bishopp, Help, et al. 2011; Bishopp, Lehesranta, et al. 
2011) investigated the roles of auxin and cytokinin in specifying and maintaining the radial 
patterning of xylem cells, identifying the feedback loop network between hormonal signalling 
and transport. On the other hand, phloem is established through asymmetric cell divisions 
followed by differentiation. APL, a myb family transcription factor, has been identified to 
promote such developmental events (Bonke et al. 2003). In apl mutants, xylem differentiates 
in place of phloem cells and, interestingly, when APL is ectopically expressed, the 
differentiation of xylem precursors is suppressed. Evidence from studies on Arabidopsis 

mutants (Kerstetter et al. 2001; Eshed et al. 2001) shows that ectopic expression of KANADI 
genes results in abaxialized organs that do not develop any vasculature. These results 
suggested the antagonistic role of HD-ZIP III and KANADI genes and that the establishment 
of both adaxial/central and abaxial/peripheral domains is needed for the correct development 
of vascular tissues (Ilegems et al. 2010). 

In the late 70's, Wilson (1978) proposed an hypothesis, based on experimental evidence, 
for the differentiation of vascular tissues in regenerating cambia involving opposing gradients 
of auxin and sucrose. Recently, new studies highlighted the possible interplay between sugar 
and auxin in plant growth and development (reviewed in Eveland and Jackson 2011). 
Searching for genes expressed during the first stages of leaf development, Pien et al. (2001) 
found five genes showing a specific spatial pattern of expression within apical meristems. 
Interestingly, three of those genes encoded enzymes involved in sugar metabolism, showing 
evidence that also carbohydrate metabolism is spatially regulated during key developmental 
processes. 
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In the last decades, simulation models have proven to be useful tools to unravel the 
often non-intuitive relations between local processes and the emergence of global forms and 
patterns (Jönsson and Krupinski 2010). Several studies using computational modelling have 
been carried out on plant morphodynamics (reviewed in Prusinkiewicz and Runions 2012) 
and recent work (reviewed in Jönsson et al. 2012) has focused on two topics: i) venation and 
phyllotaxis driven by auxin polar transport and ii) genetic regulation of stem cells in apical 
meristems (Fujita et al. 2011). In particular, modelling studies on vascular development 
mainly concentrated on the role of auxin in leaf venation. The first model was formulated by 
Sachs (1969) proposing the so called "canalization hypothesis". According to this model, 
auxin export through a cell wall promotes further transport in the same direction, thus creating 
canals of preferential flow as a self-organization property of the system. Based on this 
hypothesis, many molecular models were formulated (e.g. Mitchison 1980; Feugier et al. 
2005; Bayer et al. 2009) and tested against experimental data (e.g. Scarpella et al. 2006). A 
recently published work (Muraro et al. 2013) based on the work of Bishopp et al. (2011) 
presents a simulation model providing useful insights on the signalling network behind the 
radial patterning of procambium and xylem in Arabidopsis root. 

Aside from the work of Muraro et al. (2013), no modeling effort has been done yet to 
study the radial patterning of primary vascular structures, i.e., the specification and spatial 
organization of procambium, phloem and xylem. Moreover, as far as we know, there are no 
published models able to simulate the diversity of steles observed in nature. In this study we 
present a spatially explicit reaction-diffusion model inspired by the pioneering works of 
Turing (1952) and Meinhardt (1982). Our model defines a set of logical and functional rules 
able to simulate the differentiation of procambium, phloem and xylem and the emerging 
radial patterns of vascular tissues. The model qualitatively reproduces most stelar structures 
observed in different plant taxa, demonstrating, as a proof of concept, that a common genetic-
molecular machinery can be at the base of vascular development and patterning. 

Methods 

Model description 

We assume that a concentration gradient of a morphogenetic factor is established within 
plant meristems that is interpreted by cells as a positional cue to initiate the definition of the 
central and peripheral domains. The following differentiation of vascular cells, strictly 
depends on the establishment of the radial patterning. In particular, the juxtaposition of central 
and peripheral domains is assumed to be indispensible for procambium definition and to 
provide positional cues for the specification of phloem and xylem. Scattered evidence is 
available on the spatial processes involved in the specification of procambium. Auxin seems 
to regulate the initiation of procambial cells during early embryo development. In the absence 
of auxin signalling mediated by MONOPTEROS (MP), an auxin-responsive factor, 
procambial cells do not form properly (Hardtke and Berleth 1998). Wilson (1978) proposed 
the hypothesis that two morphogens, centrifugally diffusing auxin and centripetally diffusing 
sucrose, were responsible for the positioning of regenerating cambium after wounding. Based 
on these evidence, we assume that the activation of genes involved in procambium 
differentiation require the presence of two different substances with opposing gradients. 
Moreover, phloem and xylem tissues are always found associated to one another and arranged 
in consistent patterns within each organ. It is possible to assume that the genes and molecules 
responsible for their differentiation somehow inhibit each other locally (meaning that a single 
cell can only become either phloem or xylem), but also facilitate each other laterally so that 
both tissues can differentiate at the same time. These assumptions are supported by the 
antagonistic role of HD-ZIP IIIs and KANADIs in the determination of the adaxial-abaxial 
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organ polarity and the regulation of vascular tissues specification (Emery et al. 2003) and also 
by the evidence on the effects of APL on phloem and xylem differentiation (Bonke et al. 
2003). For the sake of simplicity, we used reaction-diffusion formulations that could 
adequately mimic the general behaviour of the abovementioned interactions. 

Based on such premises, we implemented a mathematical model that simulates the 
development of a group of undifferentiated cells in a sub-apical transverse section of stems 
and roots (Fig. 4.1). The model is composed of 3 groups of partial differential equations 
(PDEs), each module describing a set of developmental events leading to the differentiation of 
vascular tissues. 

 

Figure 4.1. Schematic representation of a typical arrangement of vascular tissues in plants. 

Spatial domain definition. The first equation describes the dynamics of the first 
morphogenetic factor,  S0 within each cell. Its production is assumed to be a linear function of 
the distance from the centre of the section (d), while its consumption is due to a constant rate 
μS0. So, we can write: 

���

��
= ��� ��

�
�− ����� + ���∆�� (1) 

where σS0 is the basic production rate, r is the radius of the domain and DS0 is the 
diffusion coefficient. Cells that have an S0 concentration lower than a threshold value (S0*) 
trigger the production of a specific diffusible signal S1, while concentrations that are higher or 
equal to S0* trigger the production of another specific diffusible signal S2 (Fig. 4.2A). 

Procambium. The differentiation of procambium is formulated as an activator-substrate 
system (Meinhardt 1982) describing the dynamics of two diffusible substrates and one 
diffusible autocatalytic activator. Signals S1 and S2 have the role of substrates and they are 
both consumed to promote the autocatalytic reaction of the procambium activator AP (Fig. 
4.2B). The system is written as: 
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where ������� and ������� are spatially variable parameters defined as follows: 
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������� = 
 0, �� < ��∗
��, �� ≥ ��∗

� 
and σS is the basic production rate of the two substrates that are specifically produced in 

different conditions: S1 is produced only in the central domain (S0 < S0*) while S2 only in the 
peripheral domain (S0 ≥ S0*); σAP is the basic production rate of the procambium activator; kS 
is the saturation constant of substrates production; ρS and ρAP are the cross-reaction 
coefficients; μAP is the removal rate of AP and DS and DAP are the diffusion coefficient. If the 
concentration of AP is higher or equal than the threshold value AP*, triggers the differentiation 
of procambium (Fig. 4.2C). 

Phloem and xylem. The differentiation of phloem and xylem vascular tissues is 
described by the dynamics of two autocatalytic activators (AF and AX, promoting the 
differentiation of phloem and xylem respectively) that exclude each other locally through the 
production of a common repressor R, but mutually activate each other over long range via the 
production of each other's substrate (SF and SX). Moreover, facilitation of phloem in the 
peripheral zone and xylem in the central zone are considered (Fig. 4.2D). The equations are 
formulated, based on Meinhardt and Gierer (1980), as follows: 
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where ��������� is a spatially variable parameter defined as: 
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meaning that the substances in equations (5-9) are only produced and react within 

differentiated procambial cells (AP ≥ AP*). Two more spatially variable parameters, ������� and 
��
����, are included to define the local facilitation of phloem and xylem activation. Here we 
assume the promotion of phloem over the peripheral zone and the xylem over the central 
zone, defined as follows: 
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σAXF and σSXF are the basic production rates, ρAXF and γSXF are the reaction coefficients, 
μAXF, μSXF and μR are the removal rates, and DAF, DAX and DSXF are the diffusion coefficients. 
If the concentration of either AF or AX is higher or equal than the threshold value A*, triggers 
the differentiation into phloem or xylem, respectively (Fig. 4.2E). 

Figure 4.2 graphically explains the general behaviour of all three parts of the model. 
Moreover, Figure 4.3 shows the diagram of the model steps leading to the differentiation of 
vascular tissues from the point of view of a single cell. 
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Figure 4.2. Schematic representation of model processes. A) Steady state profile of S0 
concentration along the section radius. Central and peripheral zones are defined according to 
S0*. B) Procambium substrates-activator dynamics described by eqns (2)-(4). C) Steady state 
profile of S1, S2 and AP along the radius of a simulated plant section. AP peak is established at 
the boundary between the central and peripheral zones as an emergent property of both S1 and 
S2 concentration gradients. Procambium is differentiated where AP is above the threshold 
value AP*. D) Xylem and phloem activators dynamics described by eqns (5)-(9). E) Steady 
state profile of xylem and phloem activators (AX and AF) and substrates (SX and SF) within a 
procambial strand. 
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Figure 4.3. Diagram of the model steps leading to the differentiation of vascular tissues from 
the point of view of a single cell. 

Numerical simulations 

All numerical calculations were implemented in MATLAB R2012b (MathWorks Inc.) 
and the reaction-diffusion dynamics were integrated using Euler method. The simulations 
were carried out for a total time T = 20000 (and a time step dt = 0.1) or until steady state was 
reached. The plant section, i.e. the equations spatial domain, was set as a circular lattice with 
zero-flux Neumann boundary conditions and radius r (number of pixels). The initial value of 
all state variables was set to zero. Tables 4.1 and 4.2 contain the list of all parameters and the 
values used in numerical simulations. For simplicity, no domain growth was considered 
during the simulations. 

The model analysis has been performed through a series of numerical simulations: 

i) The definition of central and peripheral zones has been tested in relation to section radius r; 
ii) The emergence of procambial spatial patterns has been assessed in relation to the change of 

two parameters: section radius r and procambium cross-reaction coefficient ρAP. 
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iii) Starting from different arrangements of procambium, the effects of AF and AX diffusion 
coefficients (DAF and DAX) on the emergent patterns of phloem and xylem were tested.  

A qualitative comparison between simulated patterns and observed vascular 
arrangements (as classified by Beck et al. 1980) was carried out. 

 

Table 4.1. List of equations (1-4) parameters and simulation values 

Parameter Description Value 

σS0  S0 basic production rate 0.012 

r radius of the domain 20; 40 

d distance from centre of the domain [0 r] 

μS0 S0 consumption rate 0.015 

DS0 S0 diffusion coefficient 0.8 

σS S basic production rate 0.04 

kS S production saturation constant 20 

ρS S cross-reaction coefficient 0.08 

DS S diffusion coefficient 0.5 

σAP AP basic production rate 0.001 

ρAP AP cross-reaction coefficient 0.03; 0.05 

μAP AP removal rate 0.02 

DAP AP diffusion coefficient 0.02 

S0* threshold value for definition of central/peripheral zones 0.5 

AP* threshold value for differentiation of procambium 0.5 

 

Table 4.2. List of equations (5-9) parameters and simulation values 

Parameter Description Value 

σAXF  AF and AX basic production rate 0.01 

ρAXF AF and AX cross-reaction coefficient 0.1 

μAXF AF and AX removal rate 0.01 

DAF AF diffusion coefficient 0.001-0.003 

DAX AX diffusion coefficient 0.001-0.003 

σSXF SF and SX basic production rate 0.001 

γSXF SF and SX reaction coefficient 0.03 

μSXF SF and SX removal rate 0.01 

DSXF SF and SX diffusion coefficient 0.02 

μR R removal rate 0.5 

A* threshold value for differentiation of phloem and xylem 30 
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RESULTS 

Central and peripheral zones definition 

The simple diffusive processes described by eqn. (1) produce a rapid change of the 
concentration of S0 which reaches the steady state with a concentration gradient along the 
radius (Fig. 4.2A), with a maximum at the boundary of the domain and a minimum at the 
centre. For values of the radius r > 10, eqn (1) consistently produces two distinct zones, one 
internal with S0 < S0* and one external with S0 ≥ S0*, while for values of the radius r ≤ 10, the 
concentration of S0 was found to be higher than S0* in all the domain, thus failing to produce 
the internal zone (simulations not shown). 

Procambium differentiation 

The emergent spatial pattern of procambium differentiation was found to be highly 
dependent on the cross-reaction coefficient of the procambium activator (ρAP) and the radius 
of the simulated spatial domain (r). As shown in Figure 4.4, no procambium is differentiated 
for low reaction coefficients (ρAP ≤ 0.020) as well as for very small sections (r ≤ 10). In the 
first case, no peaks of AP may establish due to the insufficient conversion of the substrates 
into activator, while in the second case the production of AP cannot start due to the absence of 
substrate S1 production because of the concentration gradient of S0 (see previous section). A 
protostelic structure (P) consistently emerges for domains with a radius lower than 30, while, 
for higher radiuses, either eustelic (E) or siphonostelic (S) patterns emerge, clearly depending 
on parameter ρAP. The eustele and siphonostele structures differentiate for low and high values 
of ρAP respectively. Interestingly, for values of ρAP around 0.038 an intermediate pattern 
between eustele and protostele emerges (SE in Fig. 4.4), where isolated spots arranged in an 
eustelic pattern are still connected by a continuous thin ring of procambial cells. 

The increase in the cross-reaction coefficient ρAP, resulted in a shift from a spotted to a 
striped pattern, which is coherent with the work on activator-substrate systems by Meinhardt 
(1982). The striped pattern assumes a ring shape due to the emergent property of activator 
peaks positioning. Activator autocatalysis needs two substrates that are produced in distinct 
areas. For this reason AP peaks tend to form at the boundary between the two areas, i.e. where 
both substrates are most available. As the domain size decreases, spots or stripes that are 
usually segregated begin to form closer to one another until they merge together forming a 
single spot in the centre of the domain (r ≤ 30). Such protostelic structures are typically found 
in roots of most plant species and also in some stems, particularly of primitive species. 

Other parameters such as the diffusion coefficients (DAP and DS) were found to have no 
effect on the type of pattern generated, but related to other features like the width of AP peaks, 
i.e. the width of procambium spots and rings (simulations not shown). 
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Figure 4.4. Effects of radius r and cross-reaction coefficient ρAP on procambium 
differentiation patterns. A protostelic structure (P) is formed for domains with a radius lower 
than 30, while, for higher radiuses, eustelic (E) and siphonostelic (S) patterns emerge. An 
intermediate pattern between siphonostele and eustele emerges (SE) for values of ρAP around 
0.038. Other parameter values are listed in Table 4.1. See text for details. 

Phloem and xylem differentiation 

In the second simulated experiment (Fig. 4.5), we tested the effects of both the diffusion 
coefficients of phloem and xylem activators (DAX and DAF) and the starting spatial 
configuration of procambium (depending on ρAP and r) on phloem and xylem differentiation 
patterns. The diffusion coefficients were progressively increased, in a factorial combination, 
from 0.001 up to 0.003. In general, as the diffusion coefficients increase, so does the width of 
the activators peaks. According to this, with  DAX = DAF = 0.001, a central band of xylem is 
formed surrounded by phloem both on the inside and the outside, generating three easily 
recognizable structures: amphiphloic protostele (Fig. 4.5, section 1); eustele with bicollateral 
bundles (Fig. 4.5, section 2); amphiphloic siphonostele (Fig. 4.5, section 3). With DAX = DAF = 
0.002, the size of activators peaks start to increase and so does the competition for space, 
creating two more distinct patterns: actinostele (Fig. 4.5, section 4) with spots of phloem on 
the outside of the vascular strand with internal star-shaped xylem; eustele with collateral 
bundles (Fig. 4.5, section 5; [Supplementary Information - Video S1]). Similarly, for DAX = 
DAF = 0.003, a protostele with mixed phloem and xylem (Fig. 4.5, section 7) and an 
ectophloic siphonostele (Fig. 4.5, section 9; [Supplementary Information - Video S2]) are 
formed. Interestingly, for decoupled values of the diffusion coefficients (DAX ≠ DAF), every 
single vascular bundle differentiate with one tissue type completely surrounded by the other. 
In particular, the one with the higher diffusion coefficient consistently occupies the central 
position and four new observed structures are produced by simulations: ectophloic (Fig. 4.5, 
section 10) and endophloic (Fig. 4.5, section 12) protostele; eustele with amphicribal (Fig. 
4.5, section 11) and amphivasal (Fig. 4.5, section 13) bundles. 
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Figure 4.5. Effect of diffusion coefficients DAX and DAF and procambium configuration on 
xylem and phloem differentiation patterns. Other parameter values are listed in Tables 4.1 and 
4.2. See text for details. 
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DISCUSSION 

Since the beginning of the twentieth century, an increasing attention to the anatomical 
structure of vascular tissues in plants from evolutionary and developmental points of view is 
found in the botanical literature (e.g. Worsdell 1902; Jeffrey 1903). In the following decades, 
the focus shifted from macro and microscopic studies of anatomical features, to the 
investigation of genetic and physiological aspects of vascular differentiation (Sieburth and 
Deyholos 2006). 

A great number of experimental studies, mainly on model plants like Arabidopsis, 
Zinnia and Populus, reported on plant hormones control of vascular development. Auxin, in 
particular, has been considered for its wide influence on several aspects of development, e.g. 
promoting cell division (Schrader et al. 2004), inducing the differentiation of xylem tracheary 
elements (Yoshida et al. 2009), formation and maintenance of vascular continuity along plant 
organs through its polar transport (Scarpella et al. 2006). Brassinosteroid was also found to 
play a role in promotion of cell expansion and vascular development (Vert and Chory 2006). 
Cytokinin was found to negatively regulate protoxylem specification in Arabidopsis 
(Mähönen et al. 2006). Many transcriptional regulators implicated in vascular cell 
specification have been recently identified. For example, MP is an auxin-responsive 
transcriptional activator, belonging to the family of ARFs, that regulates the specification of 
procambial cells via the induction of expression of ATHB-8 (Donner et al. 2009).  

Most experimental works focused on different specific aspects of the vascular 
development of plants, however, the interactions between the system components still need to 
be clarified in both their spatial and temporal processes. Recent modelling work by Muraro et 

al. (2013) showed the possibility to effectively simulate the molecular networks involved in 
xylem and procambium specification and their radial patterning. The authors developed a 
mathematical model incorporating auxin and cytokinin signalling networks and transport 
dynamics to test whether their mutually inhibitory interactions can explain vascular 
patterning. In particular, they were able to show that the restriction of PHB by 
miRNA165/166 is necessary for the establishment of the Arabidopsis root bisymmetric 
pattern and also that an unidentified component of the network is required to account for the 
spatial expression of ARR5. 

The aim of our work was to investigate the spatial and temporal processes involved in 
vascular patterning that could also account for the diversity of steles observed in nature. 
Following this scope, we formulated a general modelling framework based on the reaction-
diffusion systems proposed by Turing (1952) and applied by Meinhardt (1982) to animal and 
plant development. 

The main feature of the proposed model is its ability to dynamically simulate 
developmental processes as different integrated modules. Moreover, the simplicity of the 
formulation allowed for the recognition of a limited number of parameters generating 
different emerging patterns of both procambium within the plant section, and phloem and 
xylem within each bundle. Simulation results showed that the model was capable of 
reproducing most vascular spatial patterns observed in plants, from primitive and simple 
structures, constituted of a single strand of vascular bundles (protostele), to more complex and 
evolved ones, with separated vascular bundles arranged in an ordered pattern within the plant 
section. An interesting result is the formation of the protostele for small simulation domains. 
This result seems to be consistent with the occurrence of this particular structure in species 
and organs with relatively smaller dimensions which are typically found in primitive plants 
(e.g. Pteridophyta). Noteworthy, apical meristems in roots are generally smaller than in shoots 
and the usual root vascular arrangement is the atactostele where peripheral spots of phloem 
are surrounded by internal xylem (Esau 1977). Figure 4.6 summarizes such results showing 
representative comparative examples between simulated patterns and transverse sections of 
different species. 
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All the reported patterns were determined under the assumption that phloem and xylem 
are specifically promoted in the peripheral and central zones respectively. As already 
mentioned, this assumption reflects the experimental evidences suggested by genetic analyses 
on Arabidopsis that genes involved in the specification of adaxial-abaxial (central-peripheral) 
polarity are also responsible for specification of phloem and xylem. We also investigated two 
different cases, i.e., the opposite facilitation condition (with phloem and xylem promoted in 
the central and peripheral zone respectively) and the case of complete absence of local 
facilitation. Interestingly, some spatial patterns resulted to be completely insensitive to 
facilitation, in particular the ones that emerged due to differences of the diffusion coefficients 
of the phloem and xylem activators (Fig. 4.5B). On the one hand, when opposed local 
facilitation was assumed, the radial patterns of phloem and xylem simply resulted to be 
inverted (data not shown). On the other hand, when no facilitation of the two activators was 
implemented (������� = ��
���� = 0), the simulations generated an arrangement where phloem and 
xylem form alternated bands, a structure called plectostele (see Fig. 4.6) that is found, for 
instance, in plants of the genus Lycopodium. 

 

Figure 4.6. Spatial patterns of vascular tissues in both simulated and observed plant 
transverse sections. Haplostele: Mespilus germanica root. Actinostele: Psilotum nudum stem. 
Plectostele: Lycopodium annotinum stem. Siphonostele: Mespilus germanica stem. Eustele 
with collateral bundles: Carex glareosa stem. Eustele with bicollateral bundles: Cucumis 

sativa stem. Eustele with amphivasal bundles: Osmunda regalis stem. Eustele with 
amphicribal bundles: Dryopteris robertiana stem. 
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Another important structure, typical of the monocots, is the atactostele, generally 
defined as a "system of randomly scattered bundles", whereas it is clear that the system 
components have a specific and predictable behaviour (Beck et al. 1982). In 
monocotyledonous seedlings, the vascular system is arranged in a central cylinder very 
similar to that of dicotyledons (Tomlinson 1970). Afterwards, peripheral stem bundles 
originate from the disks of leaf insertion, where the midvein and secondary veins develop 
both acropetally through the leaf lamina and basipetally into the stem where they eventually 
connect with the stem vasculature (Nelson and Dengler 1997). For such reasons, the presented 
model is coherent with the development of vascular bundles also in monocots where the first 
and innermost set of bundles develops as a typical eustelic pattern and the formation of new 
leaves leads to the insertion of new veins within the stem, resulting in the final observed 
pattern (Fig. 4.7). 

In conclusion, the model showed the capability of qualitatively reproduce the most 
diverse radial arrangements of vascular tissues. Future work could be done to perform a 
systematic comparison of our simulations with a more extensive set of observed patterns to 
verify, for instance, the prediction of structures not (yet) found in nature and to investigate the 
occurrence of the protostele in correlation to meristem size. Moreover, the model could be 
applied for comparative analysis with Arabidopsis mutants which show aberrant vascular 
patterns to better understand the relationships between specific gene functionality and 
anatomical development. 

 

Figure 4.7. Schematic representation of the formation of the atactostele. 
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5 

CONCLUSIONS AND FUTURE PERSPECTIVES 

 

 

The exponential evolution of technology and data collection techniques had an 
enormous impact on the recent history of scientific inquiry. While high resolution images and 
in-depth measurements highly increased the knowledge on specific processes, at the same 
time, this uncanny amount of available data diverted the attention of scientists from the global 
functioning of the systems they were studying. 

Biological systems are very often complex and a reductionist approach is not the most 
appropriate to the study of complexity. This is also suggested by the etymology of the word 
complex itself. Complex is derived from the latin 'complexus' (past participle of the verb 
'complecti') that means 'consisting of different and connected parts', this denotes a tight 
interrelation between the parts. As a matter of fact, a complex system is defined as a set of 
interacting components, whose relations are often non linear, presenting a global behaviour 
that is different from the behaviour of its single parts. From this definition it's easy to 
understand that an accurate study of the system components is useful and necessary, but is 
often not sufficient to understand the behaviour of the entire system. With these 
considerations in mind, this thesis presents a series of theoretical studies addressing two 
problems related to pattern formation in plants at different scales. 

The role of self organization in vegetation pattern formation 

The first study subject was the spontaneous formation of vegetation spatial patterns and 
the putative mechanisms responsible for their emergence. First, we reviewed the mechanistic 
explanations found in literature for this phenomenon (Chapters 2 and 3). The main body of 
work focuses the attention on the interactions between biomass and water, since such patterns 
are mainly observed in arid and semiarid environments. In order to explain the emergence of 
these patterns also in environments where water is not a limiting factor, we formulated a 
mathematical model to test the effects of the release of autotoxic compounds during litter 
decomposition, i.e. plant-soil negative feedback, on the emergence of vegetation patterns, in 
particular the formation of ring structures by clonal plants (Chapter 2). Simulation results 
show that autotoxicity can be a putative explanation for the formation of ring patterns during 
the colonization of bare substrates in primary successions. It is important to note a significant 
difference between water/biomass model outputs and the proposed biomass/toxicity model. 
The first formulation produces stable Turing patterns, while our formulation has only two 
equilibrium solutions, bare soil and uniform vegetation cover, meaning that the interactions 
between plant biomass and toxic compounds alone produce transient structures that, in time, 
always lead to homogeneous cover. This result is consistent with the fact that clear rings are 
not commonly observed in nature and frequently during new substrate colonization. This 
interesting result leads to new hypotheses on the formation and dynamics of rings by clonal 
plants that need to be experimentally verified. Moreover the research for the characterization 
of the compounds responsible for autotoxicity is ongoing using NMR-CPMAS methods. This 
new results should better clarify the importance of autotoxicity in the context of the plant-soil 
negative feedback and the ecological relevance of the phenomenon. 
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Furthermore, we also wanted to test the effects of both water and toxicity feedbacks on 
plant biomass dynamics and pattern formation (Chapter 3). Simulation results show that the 
effect of toxicity on the system is dependent on the decay rate of such compounds. For rapid 
removal rates of toxicity from soil, the effect is limited to a general reduction of the plants 
fitness. If the removal rate is lower, meaning a longer persistence of toxicity in soil, a 
surprising result appears, i.e. aggregated spots of plants are still formed due to the 
water/biomass feedbacks, but they constantly move in space to avoid the local accumulation 
of toxicity. Considering the slow growth rates of plants in arid environments, the described 
phenomenon is difficult to observe and further studies are highly recommended to test the 
model results. Moreover, simulations reveal that in case of toxic effects and moving plant 
spots, the biomass distribution along the spots should appear with a characteristic shape while 
other formulations predict a symmetrical distribution of biomass. This result has been 
preliminarily tested comparing simulations with satellite images and a more complete and 
robust analysis will be the subject of future studies. 

The role of self organization in the development of plants 

The second topic of this thesis was the differentiation of vascular tissues in plants and 
their spatial arrangements. In this part of the work (Chapter 4) we reviewed the current 
knowledge of the factors responsible for the specification of provascular tissues, phloem and 
xylem with a particular attention to the processes involved in their spatial positioning. 
Accordingly, we formulated a modular mathematical model that, starting from an 
homogeneous group of undifferentiated cells, reproduces the key developmental steps leading 
to the differentiation of primary vascular patterns. The results showed the capability of 
simulating both the position of vascular tissues along a radial section of stems and roots, and 
the arrangement of phloem and xylem within each bundle. Simulated structures were also 
qualitatively compared with patterns observed in nature. The numerical analysis of the model 
provided interesting insights related to the factors involved in the intra- and inter-specific 
variability of patterns. One example is the occurrence of protostelic structures for smaller 
simulation domains. Such structures are generally observed in roots and primitive plants. To 
test this prediction, a systematic analysis comparing the dimension of meristems of species 
and organs showing this particular arrangement will be performed in future studies. 
Moreover, in order to test the assumptions made during the formulation of the model, further 
work will be carried out to simulate aberrant patterns produced by mutations of key genes 
involved in vascular patterning of model species like Arabidopsis. 
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