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Introduction

The public key cryptosystems play an important role in digital communications. Several

public key cryptosystems were proposed in the past, among them the RSA (acronym of

the surnames of the authors) by Ron Rivest, Adi Shamir and Leonard Adleman in 1977

and the ECC (Elliptic Curve Cryptography) proposed independently by Victor Miller and

Neal Koblitz around 1985. These last two cryptosystems are actually the most popular,

even if over the years ECC increased its popularity. Some factors that made the ECC more

attractive than RSA are:

• existence of subexponential algorithm (some of them based on elliptic curves) to solve

the integer factorization problem on which rely the RSA

• more �exibility in the choice of the parameters for the ECC

• a computationally e�cient arithmetic on elliptic curves that allows implementations

also for devices with low computational power.

This thesis continue and expands the work presented previously in the master thesis [25]

and in the articles [22] and [23]. It is focused on improving some tools commonly used for

cryptanalytical applications on elliptic curves, and some of them can be applied also when

performing modular arithmetic in a more general context than the cryptological one.
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In chapter 1 it is given an introduction to the NVidia CUDA programming model and

described some problems that can appear while writing code that must run on graphic

processing units.

In chapter 2 it is described a full implementation for single-instruction multiple-data

architectures of a fast modular arithmetic library, with emphasis on the modular inversion.

It is presented a variant of the Stein's algorithm that reduces divergence among thread and

allows to consider it as a good alternative (for su�ciently big prime �elds) to the branch-free

algorithm based on Euler-Fermat theorem.

In chapter 3 it is discussed the Rho-Pollard implementation for single-instruction multiple-

data architectures that uses the negation maps. It is presented also a variant of the classical

iterating function of the Rho-Pollard algorithm to reduce the overhead to check for fruitless

cycles.

Chapter 4 contains the description of an experimental work performed on SAGE and

aimed to apply the Smart's attack on anomalous elliptic curves (de�ned on prime �elds) to a

curve de�ned over a ring Zn1n2 with n1n2 points. To realize these experiments, the author,

implemented into SAGE a complete system of addition laws for elliptic curves over rings,

and the functions to perform arithmetic on polyadic numbers.
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Chapter 1

High performance computing on graphic

processing units

Due to the increasing request from the market of realtime, high-de�nition 3D graphics, in re-

cent years Graphic Processor Units (GPUs) have evolved into higly parallel, multithreaded,

multicore processors with an extremely high computational power and very high bandwidth

as can be clearly seen from the next �gures.
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Typical problems where the GPUs are well suited are the ones that can be expressed as

data-parallel (where the same program is executed on many data elements in parallel), as, for

example, in graphic rendering, where the computation of the whole scene can be performed

applying the same algorithm to smaller portions of the scene itself.

Anyway, data parallel problems are not restricted to image rendering �eld, in fact there

are many algorithms that take advantage from the data-parallel processing from very di�er-

ent �elds: signal processing, physics simulation, computational �nance and computational

biology.

1.1 CUDA

CUDA is the acronym of Compute Uni�ed Device Architecture. It is the programming

model created by NVIDIA and implemented on their GPUs. This programming model

allows developers to access GPUs and the memory on video cards for generic computations

like common CPUs. This approach to solve generic problems on GPUs is called General-

Purpose computing on Graphic Processing Units (GPGPU). CUDA platforms can
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be programmed through CUDA accelerated libraries available as extensions for industry-

standard languages like C/C++ and Fortran or through third-party wrappers for Python,

Perl, Java, Ruby, Matlab and Mathematica.

1.1.1 The CUDA data parallel threading model

The core of the parallel programming model of CUDA are three main abstractions:

• a hierarchy of thread groups

• shared memories

• barrier syncronization.

These abstractions are available to the programmer through a minimal set of language

extensions and provide an e�cient way to �nely handle:

• problems that can be split into subproblems that can be solved indipendently in

parallel by blocks of threads

• subproblems that can be furtherly split into smaller pieces that can be solved coop-

erately by all threads within a block.

This hierarchy of threads allows automatic scalability on di�erent GPUs: each block of

threads can be scheduled on any of the Streaming Multiprocessors (SMs) available on a

GPU in any order (sequentially or concurrently) so a CUDA program can execute on GPUs

with any number of SM and only the runtime system needs to know the physical number of

multiprocessors available.
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In CUDA C the programmer de�nes C functions called kernels that, when called, are

executed N times in parallel by N di�erent CUDA threads.

A kernel is de�ned with the__global__ declaration speci�er and the number of CUDA

threads that execute that kernel is speci�ed within the brackets <<<...>>> between the

name of the kernel and the list of arguments in a kernel call.

Each thread has a unique thread ID that is accessible within the thread itself through a

threadIdx variable.

As example, in the following code (taken from [24]):

// Kernel d e f i n i t i o n
__global__ void VecAdd( f loat ∗ A, f loat ∗ B, f loat ∗ C)
{

int i = threadIdx . x ;
C[ i ] = A[ i ] + B[ i ] ;

}
int main ( ) {

. . .
// Kernel invoca t i on wi th N threads
VecAdd<<<1, N>>>(A, B, C) ;
. . .

}

are instantiated N threads, each of them executing VecAdd().

1.1.2 Thread hierarchy and syncronization

Threads are grouped into blocks.

Since all the theads into a block are expected to reside on the same processor core and

share the limited memory resources of that core, there is a maximum number of threads per

block that actually is 1024. Anyway a kernel can be executed by multiple blocks of threads,

grouped into a logical structure called grid.
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Threads (resp. blocks) can be organized into a one, two or three dimensional block (resp.

grid).

Blocks of threads must run independently, in this way they can be scheduled on the

available SMs in parallel or in series.

Threads are executed in groups of 32 for each streaming multiprocessor. A group of

threads is called Warp.

Each SM loads a single instruction at time and execute it on all threads running on it,

this means that inside a warp each thread do the same thing at the same time.

Threads within a block on the other hand, can cooperate and share some informations

through some shared memory and synchronize their execution to coordinate memory ac-

cesses. The function__syncthreads() is used (as the name suggests) to syncronize threads

within a block, and acts as a barrier that all thread into a warp must reach before any of

them is allowed to continue.

1.1.3 Memory hierarchy

CUDA o�ers multiple memory spaces to threads, each of them with their own charateristics:

• each thread has access to a private local memory,

• each thread into a block has access to a shared memory with the same lifetime of

the block,

• all threads have access to the same global memory,

• two additional read-only memory spaces are available to all threads: the constant

and the texture memory spaces.
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The global, constant and texture memory spaces are persistent across kernel launches by

the same application.

1.1.4 Memory access

The access to data in the global memory space is a critical factor for the performances of a

CUDA application.

Global memory is implemented with dynamical random access memories (DRAM) and

the read of it is a very slow process.

Modern DRAMs use a parallel process and each time a memory location is requested,

many consecutive locations are read at the same time including the requested one.

Since all thread into a warp execute the same instruction, maximum performances are

achieved when all threads into a warp have to read the same location or a group of consecutive

locations. When this conditions are met the hardware try to coalesce multiple reading

requests into a single one. NVidia GPUs can coalesce accesses to 8-bit words into a request

for 32Byte, 16-bit words into 64Byte, and for 32-bit and 64-bit words 128Byte, if needed it

can be issued a smaller request to avoid the waste of bandwidth due to unused words.

Figure 1.1 shows two di�erent ways to store the elements of n vectors of length m that

lead to an uncoalesced memory access (a) and a coalesced memory access (b). Element i

of vector j is denoted by vij. Each thread in the GPU kernel is assigned to one m-length

vector. Threads in CUDA are grouped in an array of blocks and every thread in GPU has a

unique id which can be de�ned as indx = bd× bx+ tx, where bd represents block dimension,

bx denotes the block index and tx is the thread index in each block. Let's suppose that
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Figure 1.1: Uncoalesced memory access (a) Vs Coalesced memory access (b)

each thread, in parallel, accesses to the �rst element of its own vector. In the �rst case (a)

with a linear memorization of the vectors, we need to access to addresses 0,m, 2m, . . . of the

memory (pointed by arrows). These locations are not consecutive, so the reading requests

will read also locations contiguous to the needed ones leading to a waste of bandwidth due

to the loading of unused words. If, on the other hand, these elements (�rst elements of each

vector) are packed together like in (b), all of them can be loaded with fewer reading requests

and the wasted bandwidth will be much lower (hopefully will be zero). Since the allowed

size of residing threads per GPU block is limited to bd, a coalesced data arrangement can be

nicely achieved storing the �rst elements of the �rst bd vectors in consecutive order, followed

by the second elements of the �rst bd vectors and so on, and starting again with the second

db vectors that will be stored in a similar way like shown in �gure 1.1 (b). In the linear

data storage (a), the component i (0 ≤ i < m) of vector indx (0 ≤ indx < n) is addressed

by m × indx + i; the same component in the coalesced storage pattern (b) is addressed as



1.1. CUDA 11

(m× bd)ixC + bd× ixB + ixA = bx, where ixC = floor[(m× indx+ i)/(m× bd)], ixB = i

and ixA = mod(indx, bd) = tx. In the coalesced memory storage the access to the elements

of the vectors is a little tricky, but leads to a signi�cant higher memory bandwidth of GPU

global memory.

1.1.5 Thread divergence

Since each SM loads a single instruction and execute it on all threads running on it, it means

that inside a warp each thread do the same thing at the same time.

This lead us to the main cause of performance loss when executing code on GPUs: the

presence of the so-called "divergent threads".

The divergence of a thread (or a subset of threads) happens when it needs to execute an

instruction di�erent from other threads of the warp.

Let's suppose that we want to execute a simple piece of code like this:

. . .
i f (x<0.0)
{

z=x−2.0;
}
else
{

z=sq r t ( x ) ;
}
. . .

if the x variable is di�erent in various threads, the compiler can't decide if the whole

if-else statement can be optimized discarding one branch or the other one, so, through the

so called "predicated instructions" mechanism, it is associated a predicate to the condition

of the if statement and each instruction of the statement is executed.
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. . .
p = (x<0.0) ;
i f (p) z = x−2.0;
i f ( ! p ) z = sq r t ( x ) ;
. . .

It will be chosen then the correct value of z according the predicate that is true or false.



Chapter 2

Modular arithmetic for multiword

integers on GPU

One of the key factors for an e�cient implementation of cryptographic primitives or crypt-

analytical attacks is an e�cient modular arithmetic. On GPUs one can take advantage of

the huge processing power available, unfortunately some factors must be taken into account

to not waste such a huge power. For the memory accesses, one can adopt some memorization

patterns that allow coalesced accesses. For the divergence of threads all algorithms must be

evalued carefully to reduce such divergence to the minimum, or completely avoid if possible.

In this chapter we describe our implementation of basic modular multiword arithmetic and

show a modi�ed algorithm for modular inversion, derived by the Stein's algorithm, that per-

forms better than the Euler-Fermat modular exponentiation (widely adopted since it can be

implemented without divergenace) on prime �elds that have a characteristic with a binary

representation greater than 5̃00 bits.

13
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2.1 Addition, subtraction and product

For our implementation we used a radix-32 representation of unsigned integers1 stored into

C arrays following patterns that grant coalesced memory accesses for reading and writing

into global memory by all threads.

These patterns will not be considered in the description of the algorithms, so in our

pseudocode an integer A in radix-32 representation that needs Maxlength =
⌈
logA
32

⌉
words,

is stored into an array A[Maxlength] = a[0], a[1], ..., a[Maxlength − 1] where a[0] contains

the less signi�cant bits.

In the description of our algorithms P will always be the modulus, A and B will always

be the operands, Maxlength is the size in number of words of P .

2.1.1 Addition and subtraction

Sum and di�erence modulo P are performed in a similar trivial way.

Both use two temporary arrays named Result0 and Result1 of size Maxlength to store

intermediate computations and two integers carry and borrow initially set to 0.

For addition, given A,B < P, we perform a cycle of length Maxlength where for

each couple of words a[i] and b[i] we store2 (carry, result1[i]) = a[i] + b[i] + carry and

in (borrow, result0[i]) = result1[i]− p[i]− borrow.

In a similar way it is performed subtraction modulo P .

In both algorithms, once the For cycle ends we return the array resultborrow[] ofMaxlength

words that contains the correct result.

1we worked on a NVidia's gpu of the FERMI family, where single word 32-bit multiplication is natively
supported and is more e�cient than 24-bit multiplication that was natively supported on previous architec-
tures by NVidia.

2Carry and borrow generated by single word operands can be computed using a temporary 64-bit word.
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Algorithm: Addition(P,A,B)

input : A prime P and integers A,B ∈ FP

output: A+B mod P

1 carry ← 0;
2 borrow ← 0;
3 result0[Maxlength]← 0;
4 result1[Maxlength]← 0;
5 for i← 0 to Maxlength− 1 do
6 (carry, result1[i])← a[i] + b[i] + carry;
7 (borrow, result0[i])← result0[i]− p[i]− borrow;
8 end
9 return resultborrow[];

Algorithm 1: Addition

Algorithm: Subtraction(P,A,B)

input : A prime P and integers A,B ∈ FP

output: A−B mod P

1 carry ← 0;
2 borrow ← 0;
3 result0[Maxlength]← 0;
4 result1[Maxlength]← 0;
5 for i← 0 to Maxlength− 1 do
6 (borrow, result0[i])← a[i]− b[i]− borrow;
7 (carry, result1[i])← result0[i] + p[i] + carry;

8 end
9 return resultborrow[];

Algorithm 2: Subtraction

2.1.2 Product

We considered the standard Montgomery product.

Following values (that can be precomputed) are needed:

• R = 2Maxlength∗32(modP )

• R−1 and P ′ are the integers for which RR−1 − PP ′ = 1 (they can be easily computed

through the Extended Euclidean Algorithm)

Into the arrays R[], R−1[] and P ′[] (with size Maxlength) we store their representation
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radix-32 mod P

We call A the Montgomery representation of the integer A de�ned as A = AR(mod P )

while Montgomery product is de�ned as

ABR−1(modP ) = (AR)(BR)R−1(modP ) = ABR(modP ) = AB(mod P ).

As pointed out in [10] the most e�cient implementation of this product is the one that

uses the (so called) Coarsely Integrated Operand Scanning approach.

Algorithm: MonPro(P,A,B, p′[0])

input : A prime P , integers A,B ∈ FP and value p′[0]
output: The Montgomery product of A and B

1 carry ← 0, sum← 0;
2 result[Maxlength+ 2];
3 for i← 0 to Maxlength− 1 do
4 carry ← 0;
5 for j ← 0 to Maxlength− 1 do
6 (carry, sum)← result[j] + a[j] ∗ b[i] + carry;
7 result[j]← sum;

8 end
9 (carry, sum)← result[Maxlength] + carry;
10 result[Maxlength]← sum;
11 result[Maxlength+ 1]← carry;
12 carry ← 0;
13 m← result[0] ∗ p′[0]mod 232;
14 (carry, sum)← result[0] +m ∗ p[0];
15 for j ← 1 to Maxlength− 1 do
16 (carry, sum)← result[j] +m ∗ p[j] + carry;
17 result[j − 1]← sum;
18 (carry, sum)← result[Maxlength] + carry;
19 result[Maxlength− 1]← sum;
20 result[Maxlength]← result[Maxlength+ 1] + carry;
21 result[]← Normalize(result[],p[]);
22 end
23 end
24 return result[];

Algorithm 3: Montgomery product (CIOS)

From the relation RR−1−PP ′ = 1 we have PP ′ = −1 (Mod R) = −1 (Mod 232∗Maxlength)

and p[0]p′[0] = −1 (Mod 232). This relation is used into lines from 15 to 22 to compute
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result := result+result[0]∗p′[0]∗p[] equivalent to the partial product modulo P (potentially

bigger than R) but with last 32 bit all set to zero (so it can be right shifted without any

information loss). A minor improvement can be obtained in CUDA substituting line 12

(where is performed a full 32-bit product and then an addition with carry propagation) with

this line:

1 carry ← __umulhi(m, p[0]) + (result[0]?1 : 0);

where we just compute higher half of the product m∗p[0] with the function __umulhi()

since we know that the lower half will be 0 when we will add result[0], and this last addition

will generate a carry every time result[0] will be di�erent from 0 (from which result[0]?1 : 0).

Into line 21 it is called functionNormalize that takes in input result[] of sizeMaxlength+

1 containing the product 0 ≤ AB < 2P and (similarly to the subtraction) computes AB

(Mod P ).

Algorithm: Normalize(P,A)

input : A prime P and an integer 0 ≤ A < 2P
output: AmodP

1 carry ← 0;
2 borrow ← 0;
3 temp← 0;
4 result0[Maxlength]← 0;
5 result1[Maxlength]← 0;
6 for i← 0 to Maxlength− 1 do
7 (borrow, result0[i])← a[i]− p[i];
8 result1[i]← a[i];

9 end
10 (borrow, temp)← a[Maxlength]− borrow;
11 return resultborrow[];

Algorithm 4: Auxiliary function for the Montgomery Product

To convert an integer A into its Montgomery representation, we can use MonPro with

R2 in input as second operand, infact AR2R−1(ModP ) = AR(ModP ) = A. While to convert
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A back into its "standard" representation we can call MonPro with 1 as second operand.

2.2 Modular inversion

2.2.1 Euler-Fermat

Modular inverse can be computed applying the Euler-Fermat theorem. Working in the FP

�eld we have3 ∀a ∈ FP , a
φ(P ) ≡ aP−1 ≡ 1(Mod P ) from which aP−2 ≡ a−1(Mod P ).

This exponentiation can be computed withO(logP )Montgomery multiplications through

a square-and-multiply approach.

Algorithm: EulerFermatInversion(P,A)

input : A prime P and an integer A ∈ FP

output: A−1 modP

1 Ptemp[]← P []− 2;

2 A[]← MonPro(A,R2, P,Maxlength, P ′[0]);

3 t[]← A[];

4 mask ← 2⌊logPtemp⌋;
5 for i← 0 to ⌊logPtemp⌋ do
6 currentbit← Ptemp[] & mask;
7 t[]← MonPro(t, t, P,Maxlength, P ′[0]);
8 if (currentbit == 1) then
9 t[]← MonPro(t, A, P,Maxlength, P ′[0]);
10 end
11 mask ← ShiftRight(mask, 1);

12 end
13 t[]← MonPro(t, 1, P,Maxlength, P ′[0]);
14 return t[];

Algorithm 5: Inversion through the Euler-Fermat theorem

It is the most used method when computing the inverse on SIMD architectures, indeed,

once the modulus is �xed, the algorithm follow the same control �ow whatever is the integer

A ∈ FP in input.

3φ(n) is the Euler's totient function that gives the number of integers less than n that are coprime with
n
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Since each Montgomery multiplication has a complexity of O(log2 P ) and the total num-

ber of multiplication is proportional to logP the algorithm has a cubic complexity.

The worst case is when the prime P is in the form 2k+1, since the binary representation

of P − 2 is a sequence of all ones.

2.2.2 "Sloppy reduction"

Recently, Bos et al. [6] have proposed a really fast reduction algorithm that exploits the

redundant representation of the modulus.

In the resolution of the ECDLP problem over the prime �eld of 112 bits it appeared

that the modulus P = 2128−3
11·6949 . They decided to use the reduction modulo P̃ = 2128 − 3 to

perform all the computations and only when needed to check for distinguishing property or

partitioning, they switched back to the modulo P representation.

Performing reductions modulo P̃ is extremely fast since x · 2128(mod P̃ ) ≡ 3x(mod P̃ ).

The algorithm is called "sloppy" since it has a negligible probability to produce an in-

correct result.

For this reason, as stated in the paper, the algorithm is not suitable for cryptographical

application, while it is for cryptanalytical ones.

2.3 Stein's algorithm

The binary gcd (or Stein's algorithm) is a variation of the classical Euclidean algorithm for

the greatest common divisor computation.

It is based on four simple observations:
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• if a, b are both even, then the gcd(a, b) = 2 gcd(a/2, b/2)

• if a is even and b is odd, then gcd(a, b) = gcd(a/2, b)

• gcd(a, b) = gcd(a− b, b)

• if a, b are both odd, then |a− b| is even and less than max{a, b}

These observations lead to an extremely simple algorithm that uses only multiplications

and divisions by 2 (performed through left and right shifts) and subtractions.

Algorithm: BinaryGCD(A,B)

input : Integers A,B ∈ Z
output: The greatest common divisor of A and B

1 u← A;
2 v ← B;
3 while u ≡ 0(mod 2) and v ≡ 0(mod 2) do
4 u← u/2;
5 v ← v/2;
6 e← 2e;

7 end
8 while u ̸= 0 do
9 while u ≡ 0(mod 2) do
10 u← u/2;
11 end
12 while v ≡ 0(mod 2) do
13 v ← v/2;
14 end
15 if u ≥ v then
16 u← u− v;
17 else
18 v ← v − u;
19 end
20 end
21 return v · e;

Algorithm 6: Binary GCD

The algorithm has been extensively studied by [17][9][1], its average complexity isO(log2(ab))

with a constant c ≃ 0.8 while in the worst case scenario [17, (66) p.353, (39) p.653] the al-



2.3. STEIN'S ALGORITHM 21

gorithm performs max{⌊log a⌋ , ⌊log b⌋}+ 1 subtractions and log(ab) shifts as happens with

inputs a = 2n+1 − 2 and b = 2n+1 − 1.

Algorithm: ExtBinAlgForInv(P,A)

input : A prime P and an integer A ∈ FP

output: A−1 modP

1 u← A;
2 v ← P ;
3 x1 ← 1;
4 x2 ← 0;
5 while u ̸= 1 and v ̸= 1 do
6 while u ≡ 0(mod 2) do
7 u := u/2;
8 if x1 ≡ 0(mod 2) then
9 x1 ← x1/2;
10 else
11 x1 ← (x1 + P )/2;
12 end
13 end
14 while v ≡ 0(mod 2) do
15 v ← v/2;
16 if x2 ≡ 0(mod 2) then
17 x2 ← x2/2;
18 else
19 x2 ← (x2 + P )/2;
20 end
21 end
22 if u ≥ v then
23 u← u− v;
24 x1 ← x1 − x2;
25 else
26 v ← v − u;
27 x2 ← x2 − x1;
28 end
29 end
30 if u == 1 then
31 return (x1modP );
32 else
33 return (x2modP );
34 end

Algorithm 7: Modular inversion through the Extended Binary GCD

Like the "classical" Euclidean algorithm, also the binary algorithm has an "extended"
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version that computes also the so called Bézout coe�cient x and y of the equation ax+ by =

gcd(a, b).

Working in a �eld FP we know that ∀a ∈ FP , gcd(a, P ) = 1(modP ), we can use this infor-

mation to compute a−1(modP ). In fact from the Bézout's equation ax+ Py = gcd(a, P ) =

1(modP ) from which ax ≡ 1− yP (modP ) ≡ 1(modP ), and x = a−1(modP ).

This version of the algorithm sadly is not suitable for SIMD architectures since, once

�xed the modulus, it follows a di�erent control �ow according the binary representation of

the given integer to invert.

A trivial observation is that we can obtain an algorithm that follows a unique control

�ow regardless of the integer to invert, if we always perform the maximum number of loops

of the main while cycle and for each loop a subtraction.

Of course the subtraction is not needed if we have u or v even, in that case the result of

the subtraction is discarded, if a subtraction is needed when the shift function is called, it

is called with 0 as number of bits that the operand must be shifted.



2.3. STEIN'S ALGORITHM 23

The Algorithm 8 is an implementation on SIMD architectures for multiword integers:

Algorithm: SIMDExtBinAlgForInv(P,A)

input : A prime P and an integer A ∈ FP

output: A−1 modP

1 A0[]← P ;
2 A1[]← A;
3 B0[]← 0;
4 B1[]← 1;
5 temp[]← 0;
6 t← 0;
7 greater ← 1;
8 newgreater ← 0;
9 parityA ← 0;
10 parityB ← 0;
11 ∗targetdifference, ∗result;
12 targetdifference← temp;
13 result← temp;
14 for j ← 0 to 2 ∗ ⌈logP ⌉+ 1 do
15 targetdifference[]← temp[];
16 result[]← (Bgreater[]−B(1−greater)[])modP ;
17 t← Agreater[0]&1;
18 Agreater[]← ShiftRight(Agreater[], 1− t);
19 parityB ← Bgreater[0]&1;
20 parityB ← t?0 : parityB;;
21 AddModulus(Bgreater, Bgreater, P, parityB);
22 Bgreater[]← ShiftRight(Bgreater[], (1− t));
23 parityA ← Agreater[0]&1;
24 newgreater ← GreaterThan(temp,A0, A1, P );
25 greater ← parityA?newgreater : greater;
26 targetdifference← parityA?Agreater : temp;
27 result← parityA?Bgreater : temp;
28 result← (newgreater ̸= 2)?result : temp;
29 targetdifference← (newgreater ̸= 2)?targetdifference : A1;
30 greater ← (newgreater ̸= 2)?greater : 1;

31 end
32 return B1[];

Algorithm 8: Modular inversion through the Extended Binary GCD on SIMD
architecture

This algorithm uses some additional functions:

• function GreaterThan takes 4 integers as input Result, A,B, P (respectively: the
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destination of the result, the two integers that must be compared and the modulus),

writes into Result = |A−B|modP and returns 0, 1 o 2 if A > B,A < B o A = B

• function AddModulus takes in input integers Result, A and P and a boolean value

parity, and returns Result = A if parity is 0 otherwise Result = A+ P if parity is 1.

• function4 ShiftRight takes in input two integers A(in multiword representation or not)

and t, and performs a right shift of the array of bits that represents A of t positions

to the right.

It is important to note that each branch do not cause divergence since it is translated by

the compiler into a single "compare" instruction.

2.3.1 A "reduced divergence" version of the Stein's algorithm

When one of the operands in Stein's algorithm is even, one bit is removed performing a right

shift of the operand itself for each iteration of the inner while cycle. Since for multiword

integer the shift operation is costly and takes the same time if we perform a shift of one or

more bits (since it must be shifted the whole array where the operand is stored), it would

be nice to remove as many zeroes as possible in the same iteraction of the main while cycle.

Instead of performing a loop to detect the number of "trailing zeros" of an operand, a

well known trick can be used.

Obtaining the number of zeroes in the least signi�cant position of a non zero integer A

is clearly equivalent to obtain the position of the �rst bit set to 1 starting from the least

signi�cant positions of its binary representation.

4The function ShiftLeft that will be used in the following algorithms operates in a similar way performing
a left shift
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Let's consider a one word integer A. First we need to isolate the least signi�cant bit

of the integer A. We can do that easily in two's complement representation computing the

value X = A&(−A) in this way we obtain a binary string X that contains a one in the

position of the least sign�cant bit set (if there's one) of the word A.

After that we can obtain the number of trailing zeroes of X (and of course of A) with

the help of De Bruijn's sequences [21].

A De Bruijn's sequence of length n = 2k is a cyclic sequence of 0 and 1 where it's

possible to �nd exactly once, as substring, every sequence of length log n = k . An example

of length 8 is 00011101. In this string can be recognized as substrings (from left to right)

000, 001, 011, 111, 110, 101 and, if we wrap around the string, 010, 100.

These sequences have the amazing property that multiplied with a string Y of the same

length with just one bit set, they return a new string where the most signi�cant k = log n

bits contains a di�erent value for each string of length n that contains just one bit set. In

this way the most signi�cant k bits can be used as a hash value to obtain the number of

trailing bits of Y .

So if we have a 32 bits integer A, at �rst we compute B = A&−A, then we multiply by the

corresponding De Bruijn sequence of 32 bit that is the hexadecimal string 077CB531 (or in

binary 00000111011111001011010100110001), then we do a right shift of 27 bits (32− log 32),

now we have a value in the interval [0, 31] that can be used as index into an array of 32

elements to obtain the position of the �rst bit set to 1 in the string B (that is the same

position of the �rst non zero bit of the string A).

Into line 3 it is returned value 32 if the unsinged integer in input is zero (infact A = 0

and A ≡ 1mod 2 generate same output after the multiplication by the De Bruijn sequence),
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Algorithm: LeastSigni�cantBit(A)

input : An unsigned (one word) integer A
output: The number of bits set to zero before the �rst set to one starting from

the least signi�cant bit of the integer A. The function return 32 if A = 0

1 MultiplyDeBruijnBitPosition[32]← {0, 1, 28, 2, 29, 14, 24, 3, 30, 22,
20, 15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9};

2 r ←MultiplyDeBruijnBitPosition[ShiftRight(((A&−A)∗0x077CB531U), 27)];
3 return A?r : 32;

Algorithm 9: Function LeastSigni�cantBit

in this way we can give in input to the function LeastSignificantBit every 32bits value,

without any ambiguity.

With this function we can implement a "new" version of the Stein's algorithm for multi-

word integers (Algorithm 10) that removes up to 32bits from one of the two operands (if it

is even) within a single iteraction of the while loop.

The function PowerOfTwoDiv performs a division of the (multiword) integer taken in

input by a power of 2 up to 232. In this function the value p′[0] is used in a similar way to

what has been done for the Montgomery multiplication algorithm for intermediate products.

This version of the Stein's algorithm performs the same operations on all threads until

the condition of the while loop isn't false. When the condition of the while loop is false

it calls the function __syncthreads() that puts the thread into a "waiting state" until all

other threads in the same block have reached their __syncthreads() call. The worst case of

the DeBruijnBinaryInversion algorithm is (of course) still linked to the worst case of the

Stein's algorithm and happens (for example) when the modulus is in the form of 2n+1−1 and

the integer to invert is in the form 2n . In that case the algorithm performs n+Maxlength

iterations of the while loop (one for each shift+subtraction and one for each shift followed

by another shift).
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Algorithm: DeBruijnBinaryInversion(P,A)

input : A prime P and an integer A ∈ FP

output: A−1 modP

1 A0[]← P ;
2 A1[]← A;
3 B0[]← 0;
4 B1[]← 1;
5 temp[]← 0;
6 t← 0;
7 greater ← 1;
8 newgreater ← 0;
9 parity ← 0;
10 ∗targetdifference, ∗result;
11 targetdifference← temp;
12 result← temp;
13 while greater < 2 do
14 targetdifference[]← temp[];
15 result[]← (Bgreater[]−B(1−greater)[])modP ;
16 t← LeastSignificantBit(Agreater[0]);
17 Agreater[]← ShiftRight(Agreater[], t);
18 PowerOfTwoDiv(Bgreater, t, P, P

′[0]);
19 parity ← Agreater[0]&1;
20 newgreater ← GreaterThan(temp,A0, A1, P );
21 greater ← parity?newgreater : greater;
22 targetdifference← parity?Agreater : temp;
23 result← parity?Bgreater : temp;

24 end
25 __syncthreads();
26 return B1;

Algorithm 10: Modular inversion through the Extended Binary GCD (using De
Bruijn sequences and Montgomery arithmetic) on SIMD architecture

The algorithm can be easily modi�ed to operate without synchronization, performing

always the maximum number of cycles of the main loop, with a little overhead to save the

correct result. This can be useful for cryptographic purposes as countermeasure to side

channel attacks.
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Algorithm: PowerOfTwoDiv

input : A prime P and an integer A ∈ FP

output: A/2t modP

1 carry ← 0;
2 m← (A[0] ∗ P ′[0])&(2t − 1);
3 (MulHi,MulLow)← m ∗ P [0];
4 (carry, sum)←MulLow + A[0];
5 A[0]← sum;
6 carry ←MulHi+ carry;
7 for i← 1 to Maxlength do
8 (MulHi,MulLow)← m ∗ P [i];
9 (carry, sum)← carry + A[i] +MulLow;
10 A[i]← sum;
11 carry ← carry +MulHi;

12 end
13 A[]← ShiftRight(A[], t);
14 A[Maxlength− 1]← A[Maxlength− 1] + (ShiftLeft(carry, 32− t));
15 A[]← (A[]− P [])modP ;
16 return A[];

Algorithm 11: Division modulo P of an integer A by 2

2.3.2 Test of Modular inversion algorithms on CUDA

In this section we examine performances of the various modular inversion algorithms pre-

sented (except "sloppy reduction").

Each test was performed on a prime �eld loading a batch of integers belonging to it. To

test the algorithms, we choose the prime �elds where are de�ned some of the problems of

the CERTICOM ECC Challenge[11], with bit sizes from 79 bits to 359 bits, and, together

with them, we tested the algorithms also on two prime �elds with characteristic 2521− 1 and

2607− 1 (the 13th and 14th Mersenne prime) to have the worst case of the algorithms based

on Binary GCD.

For each batch of integers we perform a modular inversion with each of the algorithms

presented earlier. The total amount of integers loaded for each batch is 336 to have one

integer to invert for each shader of the GeForce GTX 460 card used in the tests.
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Each batch is composed of 335 integers randomly choosen (through the mpz_urandomm

function of The GNU Multiple Precision Arithmetic Library) in the interval [0, P − 1].

Together with them it is loaded also the integer 2⌊logP ⌋, in this way the number of subtractions

performed by the binary gcds will never be lower thanH(P )−1 (whereH(P ) is the Hamming

weight of P). Table 2.1 shows the timings in milliseconds of each kernel launch:

Field H(P ) Algorithm 5 Algorithm 8 Algorithm 10 Algorithm 10*

Fp79: 39 0.252898 1.089207 0.643887 0.734762

Fp97: 46 0.420742 1.868598 1.101820 1.292625

Fp109: 61 0.494477 2.126993 1.207894 1.440418

Fp131: 61 1.058161 3.389219 1.874419 2.300335

Fp163: 84 1.762847 5.194430 2.932256 3.570646

Fp191: 101 2.086245 6.109649 3.417678 4.134653

Fp239: 132 4.271451 10.159895 5.807271 7.128032

Fp359: 165 12.477047 23.607784 13.480877 16.418306

Fp521: 521 64.032623 96.310081 68.006874 72.007965

Fp607: 607 93.859047 128.207870 88.764221 93.967064

Table 2.1:
• Algorithm 5 = Euler-Fermat.

• Algorithm 8 = Inversion through the Binary GCD.

• Algorithm 10 = Binary GCD with De Bruijn sequences and synchronization.

• Algorithm 10* = Binary GCD with De Bruijn sequences without synchronization.

We underline that while the Euler-Fermat method and the Binary GCD as implemented in

the Algorithm 10* (performing the maximum number of iteractions of the main loop) always

take the same time, once �xed the modulus regardless the integer to invert, the Binary GCD

as implemented in the Algorithm 8 and Algorithm 10 can be faster than the timings shown

in the table since performances have been tested in one of the worst cases (the worst for

prime �elds de�ned on Mersenne primes).
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Some considerations

In this chapter we presented a generic method that do not exploit any optimization based

on the particular nature of the prime that de�nes the �eld.

The method proposed (unlike the traditional Stein's algorithm) uses also multiplications,

anyway the number of single word multiplications performed is Maxlength + 1 for each

loop of the algorithm (one into the LeastSignificantBit() function and Maxlength into

the PowerOfTwoDiv() function), leading again to a quadratic complexity.

Our method is faster than the Euler-Fermat method for su�ciently big prime �elds. Of

course if we renounce to the generality of the algorithm there are other optimizations that

exploit the particular structure of the prime to obtain better performances ( like the "sloppy

reduction" or methods based on sliding windows).

If modular inversions can be delayed (like in a ρ/λ-Pollard implementation), it is still a

good practice to use the method described by Montgomery in [12, p.209], in this way the

impact on performance of the inversion operations is ammortized.



Chapter 3

A new iterating function in the

rho-Pollard method

The ρ-Polard method is the most e�cient algorithm to solve generic ECDLP instances.

Further speed up can be obtained parallelizing the algorithm on multiple processor and

using automorphisms in the group structure. Unfortunately, while iterating, the algorithm

could close into loops that don't provide any information for the ECDLP resolution. These

loops are commonly called fruitless cycles. In this chapter it is presented a new iterating

function for the ρ-Pollard algorithm. This function has the advantage that considerably

reduce the overhead to check for fruitless cycles when the algorithm is implemented taking

advantage by automorphism of order two also called negation maps.

3.1 The discrete logarithm problem

De�nition 3.1.1. Let G be a group with an operation written multiplicatively. The discrete

logarithm problem (DLP) to the base g ∈ G is:

31
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given y ∈ G, �nd an integer x such that gx = y. (3.1)

Note that such an integer x exists if and only if y belongs to the subgroup of G generated

by g, usually denoted by ⟨g⟩. For example, if G is the multiplicative group of the positive

real numbers, then it is well known that the equation in (3.1) is solvable for any given y

with respect to any �xed base g ̸= 1, but the solution x = logg y is not necessarily an

integer. On the other side, the word discrete indicates that the computational problem

under consideration here is not the classical continuous case. Namely, (3.1) concerns with a

�nite cyclic group ⟨g⟩, where, by assuming that the order of ⟨g⟩ does not exceed n, one may

restrict the search for the DL to the interval 0 ≤ x ≤ n − 1. In particular, given integers

a, b that are nonzero modulo a prime p, the classical DLP is to �nd an integer k such that1

ak ≡ b mod p. Since k is a solution if and only if so is k+(p−1), any DL should be regarded

as being de�ned mod p−1, or modulo a divisor d of p−1 whenever ad ≡ 1 mod p. Analogous

considerations hold for the multiplicative group F∗
q of a �nite �eld. For example, by taking

G = F∗
19 := (Z/19Z)∗ and g = 2 it is readily seen that (3.1) is solvable for y = 7 with x = 6.

Finally, observe that, if the operation of G is assigned additively, then the equation

in (3.1) becomes xg = y. In particular, such an additive formulation applies to discrete

logarithm problem on the the elliptic curves (ECDLP):

for P,Q ∈ E(Fq) �nd an integer x such that Q = xP .

1Sometimes we write shortly ak ≡p b.
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3.1.1 The Pollard rho method for discrete logarithms

There are several cryptographic applications of the DLP, where it turns out that the security

of the cryptosystems relies on the di�culty of solving such a problem in a suitable �nite

group. Trying all possible values of x to solve (3.1) becomes impractical when the solution is

an integer of several hundred digits, which is a typical size used in cryptography. Therefore,

some less trivial techniques have been introduced to attack DLP of cryptographic interests.

Among these one �nds the index calculus in the multiplicative group of a �nite �eld [39],

that, however, does not work for DLP in a general �nite abelian group of a rather large

order. In this regard, we remark that discrete logarithms in a �nite abelian group2 G with

composite order can be e�ciently reduced to multiple instances of discrete logarithms into

subgroups of G through the method of Pohlig-Hellman [26]. Also we recall the baby step-

giant step method [32] that applies to any G and has both complexity and space requirements

O(
√
|G|).

In 1975, John M. Pollard [27] introduced a so called Monte Carlo method to factor a

composite integer. Soon it turned out that very similar ideas can be adapted for discrete

logarithm computations. Indeed, in [28] there is a �rst description of the so called rho

algorithm for the discrete logarithm in the group F∗
p. However, it was immediately clear

that the same method is applicable to any �nite cyclic group G for which one can assign

numerical labels to the group elements and for which it is possible to perform e�ciently the

group operations and to check whether y = w for any y, w ∈ G. Moreover, Pollard's setting

requires that G can be partitioned into r disjoint sets of roughly equal size for a su�ciently

small r (the original choice is r = 3), so that it can be e�ciently determined which of these

2Hereafter, when it is not explicitly mentioned, G denotes a �nite abelian group.
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sets contains any given y ∈ G. It has been observed that in general the algorithms based on

the rho method have roughly the same run time of those based on the baby step-giant step

method. However, the space requirements of the rho method that in the original settings is

O(
√
|G|), can be reduced up to O(1) through some tricks at the expense of few calculations.

Moreover, an important feature of the rho method is that DLP computations can be easily

distributed to many processors.

The meaning of rho. At the core of the rho algorithms design there is a suitable choice

of an iterating function f : G→ G that generates a sequence

xi+1 = f(xi)

from an arbitrarily chosen x0 ∈ G. Since G is �nite, it is plain that there exist i0 < j0 such

that xi0 = xj0 . This immediately yields

xi0+1 = f(xi0) = f(xj0) = xj0+1

and more in general one gets the collisions (or matches) xi0+s = xj0+s for all integers s ≥ 0.

Thus, the resulting sequence {xi}i≥0 is cyclic having a divisor of j0 − i0 (proper or not) as

period. One might diagram such a sequence with the Greek letter ρ, whose tail indicates

the precyclic part, while the cyclic part is represented by the oval of the letter.

One of the main aspects of such a periodic sequence is that the collisions yield relations

between di�erent elements of G. Let us show how in the original rho method introduced by

Pollard one could exploit such matches in order to solve instances of the DLP in F∗
p.

The original setting of the rho method. Let us suppose that, given g, h ∈ F∗
p = {1, 2, . . . , p−

1} for any �xed prime p > 3, our goal is to �nd an integer k such that

gk ≡ h mod p.

Assuming further that g is a generator of F∗
p (i.e. ⟨g⟩ = F∗

p) and recalling that gp−1 = 1,
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we might think of k as the least nonnegative value within a residue class modulo p− 1 that

we are searching for, and simply write gk = h in F∗
p. Then, the original iterating function

fP : F∗
p → F∗

p is de�ned as follows:

fP(x) =


gx if x ∈ T1

x2 if x ∈ T2

hx if x ∈ T3

where Tj := [(j− 1)p/3, jp/3]∩F∗
p, j = 1, 2, 3. In particular, the sequence {xi}i≥0 generated

by fP , with a starting point x0 = 1, is given by

xi = gaihbi

where a0 = b0 = 0 and for any i ≥ 0 one has


ai+1 ≡p−1 ai + 1 , bi+1 = bi if xi ∈ T1

ai+1 ≡p−1 2ai , bi+1 ≡p−1 2bi if xi ∈ T2

ai+1 = ai, bi+1 ≡p−1 bi + 1 if xi ∈ T3

Since which set Tj an element is in has seemingly nothing to do with the group F∗
p, one may

think of the sequence {xi}i as random. Whenever a collision xi0 = gai0hbi0 = xj0 = gaj0hbj0

is found, then by using gk = h we can write gai0+kbi0 = gaj0+kbj0 , that infers

ai0 − aj0 ≡ k(bj0 − bi0) mod p− 1.

Now, it is well known that the latter congruence has the solution

k ≡ (bj0 − bi0)−1(ai0 − aj0) mod (p− 1)/d ,

where d := g.c.d.(p− 1, bj0 − bi0) and (bj0 − bi0)−1(bj0 − bi0) ≡ 1 mod (p− 1)/d.
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In particular, if d is su�ciently small, then it is possible to verify all the admissible d choices

for k:

k = (bj0 − bi0)−1(ai0 − aj0) +m(p− 1)/d for some m = 0, . . . , d− 1 .

Note that the case d = 1 yields immediately the desired solution k = (bj0−bi0)−1(ai0−aj0)

for the DLP, indicating that we ran across a golden collision. On the other side, when

d = p− 1 the above congruence equation does not allow to determine the discrete logarithm

k, and then one has to start over the algorithm to look for another collision. However, it is

worthwhile to remark that the case d < p−1 occurs with the large probability (p−2)/(p−1).

Later we will see that it may be assumed that there is at least a collision before O(
√
p)

iterations.

The general setting of the rho method into an additive group. For the sake of clarity,

in view of next discussion regarding the ECDLP, let us generalize the Pollard setting of the

rho method to a �nite abelian group G written additively. So the DLP to the base P ∈ G

is formulated as:

given Q ∈ G, find an integer k such that kP = Q. (3.2)

Divide G into three disjoint subsets T1, T2, T3 of approximately the same size |G|/3 and

such that none of the Ti is a subgroup of G. Assuming that at random we can choose four

integers ai, bi ∈ Z/nZ, i = 1, 2, where n := |G|, we de�ne the iterating function f : G → G

as
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fP(X) =


X + a1P + b1Q if X ∈ T1

2X if X ∈ T2

X + a2P + b2Q if X ∈ T3

Clearly, from a starting point a0P + b0Q ∈ G the sequence generated by fP is of the type3

{ujP + vjQ}j≥0 with uj, vj ∈ Z/nZ.

Therefore, the recurrence formula becomes

uj+1P + vj+1Q = ujP + vjQ+ aiP + biQ

⇕

(uj+1, vj+1) = (uj, vj) + (ai, bi) = (uj + ai, vj + bi) mod n.

Thus, a collision uj0P + vj0Q = ui0P + vi0Q in G is equivalent to the congruence k ≡

(vj0 − vi0)−1(ui0 − uj0) mod n/d , where d := g.c.d.(n, vj0 − vi0).

Of course, at this point we can recover all the remarks previously drafted for the original

setting of the rho method. Further, note that here the case n prime is particularly sensitive,

because the possible choices for d are solely 1 and n, which correspond to a golden collision

and a starting over the algorithm, respectively.

3.1.2 Alternative iterating functions

The randomness of the iterating function. Any iterating sequence of the type described

before is a simulation of a walk in the group G. The �niteness of G ensures that at some

point such a walk becomes a loop. However, the �rst collision occurrence strictly depends

on the iterating function de�ned on G. For example, given f : F∗
p → F∗

p, the largest integer

3Note that the straightforward analogous of Pollard's original function is obtained by taken a0 = b0 = 0,
a1 = b2 = 1 and a2 = b1 = 0.



3.1. THE DISCRETE LOGARITHM PROBLEM 38

i such that for some x0 ∈ F∗
p the elements

x0, x1 = f(x0), x2 = f(x1), x3 = f(x2), ..., xi−1 = f(xi−2)

are all distinct, is the so-called epact of the prime p with respect to f .

In particular, if f is a linear function, i.e. f(x) = ax+ b, then it is easy to see that the epact

of p is p when p|a− 1 and p̸ |b, while it is the order of a mod p if p ̸ |a− 1, and such an order

is usually a large divisor of p−1. Concerning quadratic functions of the form x2+ c, while it

is easily proved that c = 0,−2 produce bad epacts, it is still conjectured that for c = 1 the

epact of p is O(
√
p log p). Nevertheless, according to next proposition (see [18], Proposition

V.2.1) one could give an estimate of how many iterations are required before we encounter

the �rst match.

Proposizione 3.1.1. Let GG denote the set of all the maps from a �nite set G to itself and

for a �xed integer m ≥ 1 let GG,m be the set of pairs (x0, f) ∈ G×GG such that the following

elements of G are distinct:

x0, f(x0), f(f(x0)), . . . , ( f ◦ f . . . ◦ f︸ ︷︷ ︸
m times

)(x0).

If m = 1 +
[√

2α|G|
]
for a �xed real number α > 0, then

|GG,m|
|G×GG|

=
m∏
j=1

(
1− j

|G|

)
<

1

eα
.

In particular, note that the latter upper bound does not depend on the cardinality of G,

which is generally large in the application.

Somehow, a �rst motivation of the partitioning F∗
p into the rules Ti in the Pollard original

function is an attempt to reduce the possibility of long epacts. A further important reason

is that the basic assumption in the analysis of the expected run time of the rho method is
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the randomness of the walks. Indeed, it appears that the iterating function f and the initial

element x0 must be as much random as they can be, for otherwise either the algorithm

would fail most of the times or it would succeed for an instance of the DLP just because that

instance is not a problem at all. But what does random really mean here? According to

Teske [37][38], a function is random "in the sense that each of the |G||G| functions f : G→ G

is equally probable". Thus, by starting with a point randomly chosen in G according to

the uniform probability theory, one generates a so-called[38] random random walk. However,

since "the very notion of randomness is suspect in the world of Turing machine and serial

programs" [13], here we just say that, assuming that somehow the initial element x0 might

be chosen at random in the sense of probability theory, roughly speaking, an admissible

iterating function should always generate an unpredictable sequence {xi}i≥0 of elements in

G. In other words, a priori the length of both the tail and the oval of the resulting ρ diagram

should be unknown, and the sole predictable fact should remain the certainty of collisions

at some points. Thus, what we always know is that there exist two uniquely determined

smallest integers, the preperiod µ ≥ 0 and the period λ ≥ 1, such that xi = xi+λ for every

i ≥ µ.

Adding walks and mixed walks. The expected value for µ + λ of the idealized version

of Pollard's rho method is proved to be close to4
√
π|G|/2. Thus, the approximate value

1.2533
√
|G| might be assumed to be the average number of generated items needed to have

more than 50% chances to generate a collision in an ideal situation. However, with the

support of experimental results, Teske [38] observed that the average performance of the

4Somehow this is related to the argument of the so called birthday problem (known also as birthday
paradox since the solution is a value incredibly small). The birthday problem is stated as follows: how many
people must be into a room to have a probability higher than 50% that two of them have the same birthday?
(considering only day and month of birth, and disregarding leap years). The answer is [

√
π365/2] = 23.
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Pollard classical function, i.e. fP : F∗
p → F∗

p, is worse than expected for a random mapping,

namely collisions occur after an average number of 1.37
√
p− 1 iterations. Even worst is the

scenario regarding the generalization of the Pollard function for arbitrary groups (of prime

order), namely an experimental average of almost 1.56
√
|G| iterations. In this sense, the

walks generated by the Pollard function are in general not random enough, from whence the

need of alternative iterating functions. Arguing heuristically, Teske showed that remarkable

improvements are allowed by increasing the number of the partition sets of the group, namely

up to r = 100 rules instead of r = 3 as in the Pollard case. Indeed, with an appropriate

choice of the parameters (for example a �xed r ≥ 16) Teske's new functions yield an average

performance that is hardly distinguishable from the performance of a random mapping. For

example, in the case of an arbitrary group of rather large order experiments indicate that

r = 20 leads to a speed-up by about 20% compared to the Pollard function. A more general

heuristic due to Brent and Pollard implies that nonrandomness slows down this type of walk

by a factor
√
1− r−1.

Teske classi�es the iterating walks as r -adding walks and r + q-mixed walks, where r

and r + q denote the number of rules for the respective iterating functions. However, while

at each step of the �rst walks it is performed one of the r prescribed additions, the mixed

walks include also the possibility of doublings as in the Pollard original setting. We describe

here the two type of walks for a �nite abelian group G written additively.

Given positive integers r, q, let M1, . . . ,Mr ∈ G be randomly chosen and let us take two

hash functions,

H : G→ {1, ..., r} and K : G→ {1, ..., r + q} .
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The functions fH : G → G and fK : G → G are said to be respectively r-adding and

r + q-mixed if they are de�ned as

fH(X) := X +MH(X), fK(X) :=


X +MK(X) if 1 ≤ K(X) ≤ r

2X if K(X) ≥ r + 1

.

By setting for every i ∈ {1, ..., r}, j ∈ {1, ..., r + q} the rules

Hi := {Y ∈ G : H(Y ) = i} and Kj := {Y ∈ G : K(Y ) = j} ,

we obtain the more explicit assignments

fH(X) =



X +M1 if X ∈ H1

...
...

...

X +Mi if X ∈ Hi

...
...

...

X +Mr if X ∈ Hr

fK(X) =



X +M1 if X ∈ K1

...
...

...

X +Mr if X ∈ Kr

2X if X ∈ Kr+1

...
...

...

2X if X ∈ Kr+q

Note that the Pollard original function fP is 2 + 1-mixed. Further, bearing in mind the

DLP (3.2), the pointsMi := aiP+biQ are precomputed with random generated ai, bi ∈ Z/nZ,

where n := |G|. However, r-adding walks can be computed even if the group order is not

known. Indeed, since the increase of the terms in the above additions is linear in the number

of iterations, it is not necessary to perform the reduction modulo |G|.
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On the other side, while in [38] we read that

"In experiments with cyclic elliptic curve (sub)groups, collisions in 20-adding walks occur

after an average of 1.26
√
n. This is approximately the performance of a random walk."

in [5] it is asserted that

"Additive walks have disadvantages. The walks are noticeably nonrandom and need more

iterations than the generic rho method to �nd a collision. This e�ect disappears as r grows,

but if r is large then the precomputed tableMi does not �t into fast memory. Additive walks

also have trouble with automorphisms..."

The last sentence is important for our next discussion on the rho method on equivalence

classes. But �rst let us devote the �nal part of the present to a short excursion on the problem

of the collisions detection and the memory requirements in a rho algorithm implementation.

The collisions detection and the memory requirements. The trivial detection of the

collisions consists in storing any element generated while running the algorithm until the

next occurrence of a collision (hopefully a golden one that helps to solve the DLP). As

already mentioned, an algorithm based on the rho method runs in approximately the same

time as a baby step-giant step algorithm. However, a trivial detection of the collisions would

take around
√
|G| storage, which is similar to baby step-giant step. Nevertheless, at the

cost of a little more computation, a strong improvement concerning the space complexity

for the rho method with respect to the naive collisions detection can be obtained through

an expedient, the so-called Floyd cycle-�nding method, also known as the tortoise and the

hare algorithm, that we describe as follows.

Beyond the usual sequence generated by the iterating function f applied once at each

step, it is required to generate another sequence by a double application of f . That is
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Xj+1 = f(Xj) (the tortoise walk)

X2(j+1) = f(f(X2j)) (the hare walk)

Clearly, the hare sequence is a subsequence of the tortoise one. The key observation is

that once there is a collision for two indices di�ering by the period of the tortoise sequence,

all subsequent indices di�ering by such a period will yield collisions. More precisely, if µ ≥ 0

and λ ≥ 1 are respectively the preperiod and the period of the �rst sequence, then one has

j ≥ µ ∧ λ|j =⇒ X2j = Xj.

Hence, the Floyd method requires the computation of the pairs (Xj, X2j) for j = 0, 1, . . .,

but only the storage of the current pair at each step. With such a simple expedient the space

requirements are lowered to O(1) at the cost of the extra computation of the hare sequence.

Another method of �nding a match consists in storing only points that satisfy a certain

property (call them distinguished points), that should be easily testable to avoid an high

overhead on computations. A typical distinguishing requirement is the last w bits of the

binary representation of the x-coordinate to be 0. Thus, on the average, one out of every

2w points Xi is stored. If Xi is not one of the distinguished points, but it is involved in

a collision like Xi = Xj, then one might expect Xi+s to be a distinguished point for some

s such that 1 ≤ s ≤ 2w, approximately. Consequently, one gets the collision Xi+s = Xj+s

between distinguished points with only a little more computation. Note that on one hand

a small value of w gives more chances to detect a collision at an earlier step, on the other

it increases the number of stored points. Clearly, for w = 0 the space complexity does not

di�er from the trivial detection.
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3.2 The rho method via the negation map

3.2.1 The rho method on equivalence classes

An alternative use of the rho method on a �nite abelian group G is to iterate a walk trough

the equivalence classes introduced by a given equivalence relation on G. In other words, we

can iterate a function on the quotient group of G with respect to such a relation. Since the

cardinality of the quotient group, i.e. the number of the equivalence classes, is of the type

|G|/m, a collision between equivalence classes should be found in an ideal time
√
π|G|/(2m),

which improves on
√
π|G|/2 plainly when m > 1.

Equivalence classes by automorphisms. A way to introduce equivalence relations on G

is by using automorphisms of G. Assuming that G is written additively, recall that an

automorphism of G is a bijective map

σ : G→ G such that σ(X + Y ) = σ(X) + σ(Y ) for all X,Y ∈ G.

The set of the automorphisms of G is denoted by Aut(G) and the map composition

makes Aut(G) a group of order |G|. Samples of automorphisms are the identity map and

the negation map, respectively

id : X ∈ G→ id(X) = X ∈ G,

−id : X ∈ G→ −id(X) = −X ∈ G.

By de�nition σ0 = id for every σ ∈ Aut(G). The order of σ ∈ Aut(G) is the least

nonnegative integer m such that

σm := σ ◦ σ . . . ◦ σ︸ ︷︷ ︸
m times

= id.

In particular, the negation map has order 2 being plain that (−id)2 = id. Any σ ∈ Aut(G)

induces an equivalence relation in G:
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X ∼ Y ⇐⇒ Y = σi(X) for some nonnegative integer i,

and an equivalence class is denoted as X = {Y ∈ G : Y ∼ X}.

If the order of σ is m, then the quotient group of G with respect to the equivalence

relation induced by σ has cardinality |G|/m. As said, in this case the rho algorithm applied

to the equivalence classes would have an expected speed-up of
√
m. However, there are basic

requirements for the method to work e�ciently like the relatively easiness of computing

equivalence classes. In this regard, the negation map is with no doubt the most simple one.

Iterating functions on equivalence classes. We could choose an iterating function f that

operates as usual trough the group G, while we could search for the matches on the equiva-

lence classes only: if the points Pi, Pj of an iterating sequence generated by f are in the same

class, i.e. Pi = Pj, then we try to �nd a collision between elements of the class. However, in

order to avoid non-deterministic path when one has to parallelize the algorithm (see [16]),

it is advisable to look for iterating functions well de�ned on the equivalence classes, that is

f(X) = f(Y ) whenever X = Y , and to iterate as Pi+1 ∈ f(Pi).

3.2.2 The inverse-point strategy for the ECDLP

It is well known that in the case of an elliptic group E(K), the order of its automorphism

group is a divisor of 24, depending on the characteristic char(K) of the �eld K and the

so called j-invariant j(E) of E(K) (see [33], Ch.3, Theorem 10.1). More precisely, for
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j0 := 3 · 242 = 1728 one has

|Aut(E(K))| =



2 if j(E) ̸= 0, j0

4 if j(E) ̸= j0, char(K) ̸= 2, 3

6 if j(E) ̸= 0, char(K) ̸= 2, 3

12 if j(E) = 0 = j0, char(K) = 3

24 if j(E) = 0 = j0, char(K) = 2

For the anomalous curve (or Koblitz curves) over binary extensions �elds F2m , Wiener

and Zuccherato [40] exploit the Frobenius automorphism of degree m in the rho algorithm

application to obtain a speed-up by a factor of up to
√
2m. In the same paper, an inverse-

point strategy is introduced in order to exploit the simplicity of the negation map of an

elliptic group over a �nite �eld K = Fpm . Since such an automorphism has order 2, the

strategy allows a speed-up by a factor of up to
√
2 in the application of the rho algorithm to

the ECDLP. As already observed, through the equivalence relation induced by the negation

map each group element P is paired with its inverse −P in order to halve the search space

of the algorithm.

Within the implementation of the Pollard rho algorithm for the ECDLP via the negation

map, the equivalence class P = {P,−P} is usually represented by the point with y-coordinate

of least absolute value.

3.2.3 A technicality of the strategy: fruitless cycles

Dealing with equivalence classes, it is not surprising that the most obvious usage of the

automorphisms in the context of the Pollard rho method leads to useless cycles trapping the
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random walks, that is the iterating process falls into a loop that keeps on generating always

the same equivalence class. Commonly called fruitless cycles, such loops do not provide any

useful information for the ECDLP resolution right after their �rst occurrence.

The occurrence of 2-cycles. If the rho algorithm is implemented via the negation map,

i.e. the inverse-point strategy, it is easy to explain why fruitless cycles of length 2 might

appear. In this regard, let us consider a r-adding function fH de�ned on an elliptic group

E(Fpm). Further, let us assume that by the negation map each P = (x, y) ∈ E(Fpm) is

identi�ed with −P , but fH is always applied to the representative of the class P with the

least y-coordinate. Thus, it might happen that two consecutive points, Ri and Ri+1 say, of

an iterating sequence generated by fH satisfy both the following properties:

1) H(Ri) = H(Ri+1) = j, i.e. Ri, Ri+1 ∈ Hj, that yields

Ri+1 ∈ Ri +Mj and Ri+2 ∈ Ri+1 +Mj

2) Ri+1 = −(Ri +Mj) is the representative of the class Ri +Mj that has to be chosen in

order to calculate Ri+2 = fH(Ri+1)

Consequently, it turns out that Ri+2 = fH(−Ri−Mj) = −Ri−Mj+Mj = −Ri, revealing

the occurrence of the 2-cycle Ri+2 = Ri.

The probability of the fruitless cycles. More in general, a rho algorithm implemented

with a r-adding function fH on the equivalence class de�ned by a σ ∈ Aut(E(Fpm)) might

be a�ected by fruitless cycles of length t like

R1, R2, ..., Rt, Rt+1 = R1,

that can be analyzed as follows. Let us set ri := H(Ri) for i = 1, 2, . . . , t and, if Ri+1 is

picked as the representative of the class fH(Ri) = Ri +Mri via the automorphism εi := σmi ,

then we write
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[εi](Ri +Mri) := Ri+1

Thus, it is easy to see that

[ε−1
t ]Rt+1 = [εt−1...ε1]R1 + T

where T := [εt−1...ε1]Mr1 + [εt−1...ε2]Mr2 + ... + [εt−1]Mrt−1 +Mrt .

Thus, this is a fruitless cycles of length t if T = O, where O is the in�nity point of the

curve. As already said, we may assume that the points Mj are randomly chosen, so that

there is no trivial relation between them involving powers of σ. If this is the case, then a

necessary condition for having T = O is that for all i ∈ {1, 2, ..., t} exists a j ̸= i such that

H(Ri) = H(Rj).

Clearly, the speedup of the rho method via the automorphisms depends on the expected

number of t-cycles. In this regard, let us quote Proposition 31 from [16].

Proposizione 3.2.1. If P(t) denotes the probability that a useless t-cycle occurs when a

r-adding function is iterated on the equivalence classes de�ned by σ ∈ Aut(G) of order m,

then

P(t) ≤
min(r,t/2)∑

k=1

1

mk
min

(
1,

r!kt

(r − k)!rt
)
.

More precisely, for t ∈ {2, 3, 4} one has
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t pattern P(t)

2 r1 = r2 = (mr)−1

3 = 0 if 3 ̸ |m,

≤ 2(mr)−2 if 3|m

4 r1 = r2 = r3 = r4 ≤ (1− 1/m)2m−1r−2

r1 = r1 = r3, r2 = r4 = (1− 1/r)(mr)−2

Note that the expected number of t-cycles is P(t)t|G|/m, and in particular for t = 2 it

is |G|/2r. Further, observe that the probability to �nd a t-cycle reduces as r and t increase.

On the other side, large values of r are impractical, while the most promising medium values

are not always compatible with all environments (see [6]). So the detection of the cycles

occurrence and recurrence and their treatment are key topics in the development of the rho

algorithms when dealing with negation maps or other automorphisms.

Eliminating the fruitless cycles. In the literature there are many concrete proposals on

the use of the negation map in the Pollard rho method. Mostly, they are a combination

of several ideas for avoiding, detecting, and escaping fruitless cycles. A good review and

comparison of such proposals is the Appendix of [5], where the authors remark that none

of the proposed algorithms perform e�ciently on SIMD architectures because of frequent

conditional operations.

In the same paper [5] an alternative method to detect and escape fruitless cycles is deeply

discussed. Basically it requires checking from time to time fruitless 2-cycles, while longer

cycles are checked even more rarely, because 2-cycles appear with the larger probability

(2r)−1 according to the previous Proposition. Further, 2-cycles persist after they appear,

wasting subsequent iterations (in the sense that new points and new collision opportunities do
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not occur), until we check for them. A planned check every w iterations yields approximately

the probability w(2r)−1 that a 2-cycle appears, and for it we expect to waste approximately

w/2 iterations on average if it does appear. However, a sharply small value for w does not

become necessary here. Indeed, if a cycle has not appeared, then checking for it wastes an

iteration. Thus, the total of wasted iterations amounts to one iteration for the check plus

the average number of wasted iterations multiplied by the probability that a 2-cycle occurs:

1 + (w/2)w/(2r) = 1 + w2/(4r) out of w.

An optimization of the quotient (1 + w2/(4r))w−1 = 1/w + w/(4r) requires w to be very

close to 2
√
r.

More generally, fruitless cycles of relatively small length t appear with probability ap-

proximately proportional to (
√
r)−t , so the optimal checking frequency is approximately

proportional to (
√
r)−t/2, which rapidly goes to zero as t increases.

In [5] the authors also claim that their PlayStation 3 software takes r = 2048 checks

for 2-cycles every 48 iterations, and checks for larger cycles with even lower frequency. To

simplify the software they unify the checks for 4-cycles and 6-cycles into a check for 12-cycles

every 49152 iterations, whereas the choice r = 512 requires checking for 2-cycles every 24

iterations.

The occasional check for 2-cycles works as follows. One computes Ri+2 and checks if it

is equal to Ri. Then, the de�nition of Ri+3 changes according to the two possible cases (but

the �rst one is the most probable):

Ri+3 :=


Ri+2 if Ri+2 ̸= Ri

∥2min(Ri+2, Ri+1)∥ if Ri+2 = Ri
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where min(Ri+2, Ri+1) is taken in the lexicographic sense and the symbol ∥R∥ means that

one has to take the point in the class R according to a pre�xed canonical selection (such as

the least y-coordinate or the parity of the y-coordinate). Similarly, one proceeds in case of

fruitless cycles of lengths 6, 8, etc., up to the smallest even length that exceeds (log n)/(log r),

where n is the order of the elliptic group. This escaping technique was used earlier by Escott

([14]).

Now observe that, from a point on the cycle, R = aP + bQ say, the subsequent points

are generated by adding one of the Mi = aiP + biQ or by doubling, and negating if needed.

If c ≥ 1 is the number of doublings in the cycle, then we get a relation of the form

R = ±2cR +
r−1∑
i=0

ciMi = ±2cR +
r−1∑
i=0

ciaiP +
r−1∑
i=0

cibiQ

with ci ∈ Z, that yields

(
(1∓ 2c)a−

r−1∑
i=0

ciai

)
P +

(
(1∓ 2c)b−

r−1∑
i=0

cibi

)
Q = O .

Since 1∓ 2c ̸= 0, the expression
(
(1∓ 2c)a−

∑r−1
i=0 ciai

)
is most likely not divisible by the

group order. This is the argument that Bos, Kleinjung and Lenstra ([7]) followed to get the

following heuristic: a cycle with at least one doubling is most likely not fruitless.

3.3 A new iterating function

Anything that breaks linearity would be convenient.

This is what Duursma, Gaudry and Morain claim while they tell about Taking care of

useless cycles in [16]. So we try to break linearity in a linear way by proposing the following
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iterating function for the Pollard rho algorithm. It is a sort of r+1-mixed function, but has

two variables: the �rst one for an element of the group and the other for the step number of

the iteration.

More precisely, for a �xed integer r ≥ 3 letM1, . . . ,Mr be preassigned points of an elliptic

group E(Fpm). Then, we set

FH(X, i) :=


X +MH(X)+i if i ̸≡ 0 mod r

2X if i ≡ 0 mod r

where the hash value H(X) is the least positive residue mod r of the x−coordinate of X

and H(Mk) ≡r k (hereafter, the index k of Mk is always reduced mod r).

From a starting pair (X0, 1) with a randomly chosen X0 ∈ E(Fpm), the initial r+1 steps

of the iterating sequence Xi+1 := FH(Xi, i+ 1) are

X0

X0+Mx0+1−→ X1

X1+Mx1+2−→ X2 −→ . . . −→ Xi

Xi+Mxi+i+1−→ Xi+1 −→ . . .

. . . −→ Xr−2

Xr−2+Mxr−2+r−1

−→ Xr−1
2Xr−1−→ Xr

Xr+Mxr+1−→ Xr+1 . . .

where for brevity we have set H(Xj) := xj. More in general, for any index i ≥ 0 and any

integer s ≥ 1 one has

Xi+s = Xi +
i+s−1∑
j=i

Yj , (3.3)

where

Yj :=


Mxj+j+1 if j + 1 ̸≡ 0 mod r

Xj if j + 1 ≡ 0 mod r

.

The period of the iterating sequence. From (3.3) it follows immediately that a collision
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Xi+s = Xi occurs if and only if

∆s(Xi) :=
i+s−1∑
j=i

Yj = O .

Moreover, for every i ≥ 0 and every s ≥ 1 it turns out that

∆s(Xi+1) = ∆s(Xi) + Yi+s − Yi .

Thus, if we assume that Xi+s = Xi for some s ≡ 0 mod r, it is easily seen that Yi+s = Yi,

which in turn yields ∆s(Xi+1) = O. Therefore,

Xi+s = Xi for some s ≡r 0 =⇒ Xi+s+1 = Xi+1 .

More in general, by induction on k we have the following implication between collisions of

points at distance s ≡ 0 mod r:

Xi+s = Xi =⇒ Xi+s+k = Xi+k for every k ≥ 0 .

The above discussion and next proposition show that the period of the sequence Xj has

to be necessarily a multiple of r.

Proposizione 3.3.1. Let s ̸≡ 0 mod r. Then

Xi+s = Xi =⇒ Xi+s+1 ̸= Xi+1 . (3.4)

Proof. Let us assume that (3.4) is not true for some i, i.e. one has the simultaneous
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occurrence of the matches

Xi+s = Xi and Xi+s+1 = Xi+1 . (3.5)

This is equivalent to ∆s(Xi) = ∆s(Xi+1) = O, that implies Yi+s = Yi.

Now, since s ̸≡ 0 mod r, the only possible cases are:

1) i+ 1 ̸≡r 0 and i+ s+ 1 ̸≡r 0

2) i+ 1 ̸≡r 0 and i+ s+ 1 ≡r 0

3) i+ 1 ≡r 0

Let us show that (3.5) leads to a contradiction in all the cases above.

1) Note that

i+ 1 ̸≡r 0 =⇒ Yi =Mxi+i+1,

i+ s+ 1 ̸≡r 0 =⇒ Yi+s =Mxi+s+i+s+1 =Mxi+i+s+1,

where the last equality holds because Xi+s = Xi. Hence, from (3.5) and the previous

implications we infer that Mxi+i+1 = Yi = Yi+s = Mxi+i+s+1 in contradiction with the

hypothesis s ̸≡ 0 mod r.

2) In this case one has

i+ 1 ̸≡r 0 =⇒ Yi =Mxi+i+1,

i+ s+ 1 ≡r 0 =⇒ Yi+s = Xi+s .

Hence, from (3.5) we see that Mxi+i+1 = Yi = Yi+s = Xi+s = Xi, which yields H(Xi) =

H(Mxi+i+1) ≡r xi + i+ 1 ≡r H(Xi) + i+ 1 against i+ 1 ̸≡r 0.
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3) Since s ̸≡ 0 mod r, then from i+ 1 ≡r 0 it follows i+ s+ 1 ̸≡r 0. Therefore, in this case

(3.5) implies

Xi = Yi = Yi+s =Mxi+i+s+1 =Mxi+s ,

again a contradiction with s ̸≡ 0 mod r.

This conclude the proof of the proposition.

Formula (3.3) suggests that any subsequence {Xj}jmod r can be seen as generated by a

classical Pollard rho function whose rules are given by ∆r(Xj), that prescribes a succession

of r addition (one of which is a doubling). Seen in this way, the new function has the same

behaviour of a classical iterating function of one variable. Thus, r valid points are generated

on the curve, and hopefully a couple of distinguished points to solve the ECDLP.

The occurence of kr-cycles. For what we have seen before, the smallest cycle that can appear

within such an iterating function5 is after r steps of the iterating function. By taking s = kr

in (3.3) for some k ≥ 1 we have

Xi+kr = Xi +
i+kr−1∑
j=i

Yj = Xi +
kr−1∑
t=0

Yt+i .

Now, let us consider ir ∈ {0, . . . , r − 1} such that ir + i+ 1 ≡r 0 and write

Xi+kr = Xi +
ir−1∑
t=0

Mt,i + (etpt) +
ir+r−1∑
t=ir+1

Mt,i + (etpt)+

ir+2r−1∑
t=ir+r+1

Mt,i + (etpt) + . . .+

ir+(k−1)r−1∑
t=ir+(k−2)r+1

Mt,i + (etpt) +
kr−1∑

t=ir+(k−1)r+1

Mt,i ,

where we mean all the sums of the Mt,i := Mxt+i+t+i+1 to be zero when ir = 0, and at any

5As usual, we also assume that the points Mi are randomly generated and there are in no trivial relations.
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(etpt) we mean that one has to add "everything that precedes this" (etpt). More precisely,

for

P0 := Xi +
ir−1∑
t=0

Mt,i = Xi+ir ,
∑
(j)

:=

ir+jr−1∑
t=ir+(j−1)r+1

Mt,i, (j = 1, . . . , k − 1),

since
kr−1∑

t=ir+(k−1)r+1

Mt,i = Xi+kr −Xi+ir+(k−1)r .

it is easy to see that

Xi+kr = 2kP0 + 2k−1
∑
(1)

+2k−2
∑
(2)

+ . . .+ 2
∑
(k−1)

+
kr−1∑

t=ir+(k−1)r+1

Mt,i =

2kP0 +
k−1∑
j=1

2k−j
∑
(j)

+Xi+kr −Xi+ir+(k−1)r .

Hence, this reduces to

Xi+ir+(k−1)r = 2kP0 +
k−1∑
j=1

2k−j
∑
(j)

.

In case of a collision Xi+kr = Xi, one has Xi+ir+(k−1)r = Xi+ir = P0 and we conclude that a

cycle is possible only if

P0 = 2kP0 +
k−1∑
j=1

2k−j
∑
(j)

,

where ∑
(j)

:=

ir+jr−1∑
t=ir+(j−1)r+1

Mt,i

has r − 1 summands picked with possible repetitions from the set of the r precomputed

points Mi. So that they are
(

2r−1
r−1

)
.
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The previous expression is similar to the one we quoted previously from [7], where with

a heuristic argument the authors assert that only small cycles have to be taken into account

when using a function that generates mixed random walks. However, with our new iterating

function there is no need to check for cycles smaller than r.



Chapter 4

Smart's attack and elliptic curves over

rings

The purpose of the work described in this chapter is to adapt to elliptic curves over a ring

Z/nZ with n points the attack to the ECDLP over anomalous curves (over �nite �elds)

as described by Smart in [35]. This experimental project required the implementation on

SAGE of the functions to work on elliptic curves de�ned over rings and a basic arithmetic to

work on polyadic numbers. The research led to some results concerning amicable pairs like

lemma 4.4.1 and showed that, starting with a curve E ′(Fp) with ♯E
′(Fp) = q, sometimes is

really easy to build a curve E ′′(Fq) with ♯E
′′(Fq) = p. Right now this is a work that is still

in progress and it's being the object of further investigations.

4.1 The anomalous elliptic curves over a �eld Fp

An elliptic curve E de�ned over a �eld Fp is said to be anomalous if ♯E(Fp) = p or equiv-

alently if the trace of Frobenius t = p + 1 − ♯E(Fp) = 1. These curves are particularly

58
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weak from a cryptographic point of view. The �rst attacks described on these curves were

proposed by Semaev[31] and Satoh-Araki[30]. In the following we will describe the attack

by Smart [35], but, before talking of the attack, we need some tools.

4.1.1 Lifts and Hensel's Lemma

Given a polynomial f(X) ∈ Z[X] and a x such that f(x) ≡ 0mod p, if we want to �nd x′

such that f(x′) ≡ 0mod p2 and x′ ≡ xmod p, we can use the Hensel's Lemma:

Theorem 4.1.1. For f(X) ∈ Z[X] let x a root modulo ps and let f ′(x) be invertible modulo

p. If we call u the inverse of f(x) modulo p, then

x′ = x− uf ′(x)

is such that x′ ≡ xmod ps and f(x′) ≡ 0mod ps+1.

The value x′ is called lift of x modulo ps+1. The Hensel's Lemma, allow us to lift a

solution of a polynomial, from a base �eld to any extension of it and also to p-adic numbers.

4.1.2 p-adic numbers

Given a prime p and a rational number a, then a can be expressed as a = pr m
n
where r ∈ N

and m,n ∈ Z are not divisible by p. We then de�ne

ordp(a) = r and |a|p =


p−r, if a ̸= 0

0, if a = 0

.

The function |.|p : Q→ [0,∞) is a norm on Q, in fact:

1. |a|p = 0⇔ a = 0
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2. |ab|p = |a|p|b|p

3. |a+ b|p ≤ |a|p + |b|p

This norm satisfy a stronger condition than the common triangular inequality(3):

|a+ b|p ≤ max{|a|p, |b|p}

and induce a metric dp(., .) on Q de�ned as:

dp(a, b) = |a− b|p

The �eld Qp of p-adic numbers is de�ned as the completion of Q for the metric dp.

The elements of this �eld are the equivalence classes of the Cauchy sequences, where two

sequences are equivalent if their di�erence converges to zero according the metric de�ned

above.

Every element x of Qp can be written in a unique way as an in�nite series:

∞∑
i=k

aip
i

where k is some integer for which ak ̸= 0 and each ai ∈ 0, . . . , p− 1.

This series, according to the metric dp, converges to x.

An element a ∈ Qp is called p-adic integer, if ordp(a) ≥ 0 and the set of p-adic integers

is denoted as Zp.

4.1.3 Expansion around O of an elliptic curve

Let's consider an elliptic curve E de�ned over a �eld K by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (4.1)
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with the following change of variables

u = −x
y
and w = − 1

y

we obtain a new representation of the elliptic curve in uw coordinates, where the equation

that describe the curve become:

w = u3 + a1uw + a2u
2w + a3w

2 + a4uw
2 + a6w

3 (4.2)

If we substituite the equation recursively into itself, we obtain w as a power series in u:

w = u3 + (a1u+ a2u
2)w + (a3 + a4u)w

2 + a6w
3 = (4.3)

= u3 + (a1u+ a2u
2)(u3 + (a1u+ a2u

2)w + (a3 + a4u)w
2 + a6w

3) + (4.4)

+ (a3 + a4u)(u
3 + (a1u+ a2u

2)w + (a3 + a4u)w
2 + a6w

3)2 + (4.5)

+ a6(u
3 + (a1u+ a2u

2)w + (a3 + a4u)w
2 + a6w

3)3 (4.6)

= . . . = u3 + a1u
4 + (a21 + a2)u

5 + (a31 + 2a1a2 + a3)u
6 + (4.7)

+ (a41 + 3a21a2 + 3a1a3 + a22 + a4)u
7 + . . . (4.8)

This procedure can be shown to converge [33, Chapter IV, Proposition 1.1] to a power

series w(u) ∈ Z[a1, a2, a3, a4, a6][[u]].

From the power series w(u) obtained, we can derive the Laurent series for x and y:

x(u) =
u

w(u)
=

1

u2
− a1

u
− a2 − a3u− (a4 + a1a3)u

2 − . . . (4.9)

y(u) = − 1

w(u)
= − 1

u3
+
a1
u2

+
a2
u

+ a3 + (a4 + a1a3)u+ . . . (4.10)
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The couple (x(u), y(u)) is a formal solution of the equation 4.1, meaning that substituiting

the power series for x(u) and y(u) we obtain the same formal power series on each side. To

obtain the points of an elliptic curve E(K) through the u-coordinate, it is needed that the

series x(u) and y(u) converge in the �eld K.

If K = Qp the convergence is assured[33] if ordp(u) ≥ 1 (or equivalently u is in the

maximal ideal of Qp) and if coe�cients a1, a2, a3, a4, a6 are in Zp.

4.1.4 Reduction mod p

If we have an elliptic curve E de�ned over Qp we can obtain the curve Ẽ(Fp) reducing the

coe�cients of E modulo p. Similarly, if A = (x1, y1, z1) is a point on E(Qp) we obtain the

reduced point Ã on Ẽ(Fp) reducing the coordinates of A modulo p. In this way it is de�ned

a reduction map:

E(Qp) → Ẽ(Fp) (4.11)

A → Ã (4.12)

4.1.5 Formal group associated to an elliptic curve

From the formal power series x(u) and y(u) it can be derived another formal power series

that express the addition law for E(K). Given two points (u1, w1) and (u2, w2) of an elliptic

curve E(K), the coordinate u3 of the sum of these points is given by the following power

series:
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u3 = F (u1, u2) = u1+u2−u1u2−a2(u21u2+2a3u1u
3
2)−(2a3u31u2−a1a2−3a3)u21u22+2a3u1u

3
2)+. . .

(4.13)

From the corresponding properties for E, we deduce that also the power series F (u1, u2)

satisfy commutativity, associativity and existence of inverse. This power series F (u1, u2) is

called formal group associated to the elliptic curve E(K) and can be seen as "a group law

without any group elements" [33].

If E is an elliptic curve de�ned over Qp, the group Ê(pZp) is the set pZp with the addition

law x⊕ y := F (x, y), for all x, y ∈ pZp.

It can be built a group isomorphism logF : E(pZp) → pZp, where pZp is equipped with

the usual addition law. Since it is an isomorphism, we must have:

logF F (u1, u2) = logF (u1) + logF (u2) with u1, u2 ∈ pZp (4.14)

To obtain this isomorphism the �rst thing needed is a power series P , such that

P (F (T, S))FX(T, S) = P (T ) (4.15)

where FX is the partial derivative of F with respect to the �rst variable. Setting T = 0 we

have

P (S)FX(0, S) = P (0). (4.16)
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So, every power series P that satisfy 4.15, has the form:

P (T ) = aFX(0, T )
−1 with a ∈ Qp. (4.17)

If we choose a = 1, P has the form

P (T ) = 1 + d1T + d2T
2 + d3T

3 + . . . (4.18)

The formal logarithm map is the power series

logF (T ) =

∫
P (T )dT = T +

d1
2
T 2 +

d2
3
T 3 + . . . (4.19)

To show that it is an homomorphism we integrate 4.15 with respect to T obtaining

logF F (T, S) = logF (T ) + C(S) (4.20)

where C(S) is a constant depending on S. If we set T = 0, we obtain

C(S) = logF (S) (4.21)

To show that logF induces an isomorphism from E(pZp) to pZp it is needed an inverse power

series that converges on pZp. This power series is called expF and its existence is guaranteed

by a classical result on the formal power series [33, ch.IV, lemma 2.4].
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4.1.6 The subgroups En(Qp)

In the description of the Smart's attack on anomalous elliptic curves it is useful to de�ne

the subgroup

En(Qp) = P ∈ E(Qp)| ordp(x(P ))) ≤ −2n ∪O∞ (4.22)

where x(P ) is the x-coordinate of the point P . Among all groups En(Qp), two of them

play an important role:

• E0(Qp) = Ẽ(Fp)

• E1(Qp) = {P ∈ E(Qp) : P̃ = Õ∞}

where˜denotes the reduction mod p. In general each of the groups En(Qp) is isomorphic to

Ê(pnZp).

4.1.7 Smart's attack

Given an elliptic curve Ẽ(Fp) with ♯Ẽ(Fp) = p, as �rst step to compute the value m such

that Q̃ = [m]P̃ with Q̃, P̃ ∈ Ẽ(Fp) we compute the lifts P,Q ∈ E(Qp) of P̃ , Q̃ through the

Hensel's lifting. Since the reduction modulo p is an homomorphism, we have

Q− [m]P = R ∈ E1(Qp) (4.23)

We have that Ẽ(Fp) ≃ E(Qp)/E1(Qp) and [33, Chapter VII, ex. 7.4] E1(Qp)/E2(Qp) ≃

F+
p .

From the relations above and since ♯Ẽ(Fp) = p, we have that the multiplication by [p]

maps the elements of E(Qp) to E1(Qp) and elements of E1(Qp) to E2(Qp).
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If we multiply both sides of equation 4.23 by p, we obtain:

[p]Q− [m]([p]P ) = [p]R ∈ E2(Qp) (4.24)

Since both [p]P and [p]Q are in E1(Qp), we can apply the isomorphism logF to obtain

logF ([p]Q)−m logF ([p]P ) ∈ p2Zp. (4.25)

and from this equation we can derive m simply computing logF [p]Q
logF [p]P

mod p.

4.2 Elliptic curves over rings

Elliptic curves can be also de�ned on commutative rings. The most important application of

elliptic curves over rings is in the factorization method proposed by Lenstra [15] and known

as ECM (Elliptic Curves Method). When an elliptic curve is de�ned over a ring the addition

and doubling formulas de�ned for elliptic curves over �elds may fail, anyway, a full theory

of elliptic curves on commutative rings can be de�ned through a di�erent set of addition

formulas. Let R a ring (commutative and with 1), a tuple of elements (x1, x2, . . .) of R is

said to be primitive if there exist elements r1, r2, . . . ∈ R such that r1x1+r2x2+ . . . = 1. Two

primitive triples (x, y, z) and (x′, y′, z′) are said to be equivalent if there exists a unit u ∈ R×

such that (x′, y′, z′) = (ux, uy, uz). A two dimensional projective space on R is de�ned as:

P 2(R) = {(x, y, z) ∈ R3|(x, y, z) is primitive} mod equivalence (4.26)

The equivalence class of (x, y, z) is denoted by (x : y : z).
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Two additional conditions are needed to de�ne elliptic curves over rings:

1. 2 ∈ R×

2. If (aij) is an m × n matrix such that (a11, a12, . . . , amn) is primitive and such that all

2×2 subdeterminants vanish, then some R-linear combination of the rows is a primitive

n-tuple.

If we have a ring R satisfying conditions 1 and 2 described above, an elliptic curve E on

R is given by an homogeneous equation

y2z = x3 + Axz2 +Bz3 (4.27)

with A,B ∈ R such that 4A3 + 27B2 ∈ R×. De�ne

E(R) = {(x : y : z) ∈ P 2(R)|y2z = x3 + Axz2 +Bz3}. (4.28)

On this set the addition laws are much more complicated that the ones for elliptic curves

over rings. Given (xi, yi, zi) ∈ E(R) for i = 1, 2, we consider the following three sets of

equations:
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1.

x′3 = (x1y2 − x2y1)(y1z2 + y2z1) + (x1z2 − x2z1)y1y2

− A(x1z2 + x2z1)(x1z2 − x2z1)− 3B(x1z2 − x2z1)z1z2

y′3 = −3x1x2(x1y2x2y1)− y1y2(y1z2 − y2z1)− A(x1y2 − x2y1)z1z2

+ A(x1z2 − x2z1)(y1z2 − y2z1) + 3B(y1z2 − y2z1)z1z2

z′3 = 3x1x2(x1z2 − x2z1)− (y1z2 + y2z1)(y1z2 − y2z1)

+ A(x1z2 − x2z1)z1z2

2.

x′′3 = y1y2(x1y2 + x2y1)− Ax1x2(y1z2 + y2z1)− A(x1y2 + x2y1)(x1z2 + x2z1)

− 3B(x1y2 + x2y1)z1z2 − 3B(x1z2 + x2z1)(y1z2 + y2z1) + A2(y1z2 + y2z1)z1z2

y′′3 = y21y
2
2 + 3Ax21x

2
2 + 9Bx1x2(x1z2 + x2z1)− A2x1z2(x1z2 + 2x2z1)

− A2x2z1(2x1z2 + x2z1)− 3ABz1z2(x1z2 + x2z1)− (A3 + 9B2)z21z
2
2

z′′3 = 3x1x2(x1y” + x2y1) + y1y2(y1z2 + y2z1) + A(x1y2 + x2y1)z1z2

+ A(x1z2 + x2z1)(y1z2 + y2z1) + 3B(y1z2 + y2z1)z1z2
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3.

x′′′3 = (x1y2 + x2y1)(x1y2 − x2y1) + Ax1x2(x1z2 − x2z1)

+ 3B(x1z2 + x2z1)(x1z2 − x2z1)− A2(x1z2 − x2z1)z1z2

y′′′3 = (x1y2 + x2y1)y1y2 − 3Ax1x2(y1z2 − y2z1) + A(x1y2 + x2y1)(x1z2 − x2z1)

+ 3B(x1y2 − x2y1)z1z2 − 3B(x1z2 + x2z1)(y1z2 − y2z1) + A2(y1z2 − y2z1)z1z2

z′′′3 = −(x1y2 + x2y1)(y1z2 − y2z1)− (x1z2 − x2z1)y1y2

− A(x1z2 + x2z1)(x1z2 − x2z1)− 3B(x1z2 − x2z1)z1z2

A complete system of addition laws for E(R) is a collection of addition laws with the

property that for any pair of points on E(R), at least one of the addition laws can be used

to add the points. It can be shown [8][19][20] that the minimal cardinality of a complete

system of addition law for elliptic curves over rings is two. If we refer to the equation given

above, we have a complete system if we consider the addition laws:

• x′3, y′3, z′3 and x′′3, y′′3 , z′′3

• x′′3, y′′3 , z′′3 and x′′′3 , y
′′′
3 , z

′′′
3

while the set consisting of addition laws x′3, y
′
3, z

′
3 and x

′′′
3 , y

′′′
3 , z

′′′
3 do not form a complete

system of addition laws. The justi�cation to the last sentence can be easily found if we

consider the so called exceptional set of points for a given addition law.

A couple of points is exceptional for a given addition law if that addition law cannot be

used to add those points.
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A pair of points P1, P2 is exceptional[8]

• for x′3, y
′
3, z

′
3 if and only if P1 = P2

• for x′′3, y
′′
3 , z

′′
3 if and only if the di�erence of the y-coordinate of P1 − P2 is zero

• for x′′′3 , y
′′′
3 , z

′′′
3 if and only if the di�erence of the x-coordinate of P1 − P2 is zero.

These set of equations, when R is a �eld, give the usual group law and the output is a

point in P 2(R).

Theorem 4.2.1. Let n1, n2 be odd integers such that gcd(n1, n2) = 1 and let E be an elliptic

curve de�ned over Z/n1n2Z. Then there is a group isomorphism[39]

E(Z/n1n2Z) ≃ E(Z/n1Z)⊕ E(Z/n2Z) (4.29)

Proof. Suppose that E is given by an equation like 4.27 with A,B,∈ Z/n1n2Z and 4A3 +

27B2 ∈ (Z/n1n2Z)×. We can also consider A and B as elements of Z/niZ and 4A3+27B2 ∈

(Z/niZ)×. From the Chinese Remainder Theorem, we know that there is an isomorphism of

rings

Z/n1n2Z ≃ Z/n1Z⊕ Z/n2Z (4.30)

given by

xmodn1n2 ↔ (xmodn1, xmodn2)). (4.31)

In this way we have a bijection between triples (this holds also for primitive triples) in

Z/n1n2Z and pairs of triples, one in Z/n1Z and the other in Z/n2Z.

Moreover
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y2z = x3 + Axz2 +Bz3(modn1n2)⇔


y2z = x3 + Axz2 +Bz3(modn1)

y2z = x3 + Axz2 +Bz3(modn2)

The bijection ψ : E(Z/n1n2Z) → E(Z/n1Z) ⊕ E(Z/n2Z) can be easily shown to be an

homomorphism. Let P1, P2 ∈ E(Z/n1n2Z) and P3 = P1 + P2. If all the computation are

reduced modni (for i = 1, 2) we have the same result modni : the point P3 modni =

P1 modni + P2modni.

The previous theorem, implicitly, gives also a method to construct an elliptic curve E

over a ring Z/n1n2Z starting from two curves E ′(Z/n1Z) and E ′′(Zn2) through the Chinese

Remainder Theorem.

4.3 Building elliptic curves with a given number of points

Suppose we want to build an elliptic curve over a �eld Fp with a given number of points

N = p+1− t. The Hasse Theorem states that the integer N belong to the so called Hasse

interval

Hp = [p+ 1− 2
√
p, p+ 1 + 2

√
p]. (4.32)

If the order of the curve is not N = p + 1 (in that case any supersingular elliptic curve

over Fp is good) or if no curve on Fp with j-invariant 0 or 1728 has order N , we can simply

try to build random curves starting from their j-invariant and then check if a point on them

has order p + 1 ± t. An elliptic curve E over a �eld Fp with j-invariant j(E) can be built
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from equation

E : y2 = x3 +
3j(E)

1728− j(E)
x+

2j(E)

1728− j(E)
(4.33)

If the point on a curve E has order p+1− t then we've found the curve, if the point has

order p+ 1 + t then the quadratic twist of the curve E will have order p+ 1− t.

This method, even if is quite simple, is not really e�cient. A more e�cient method,

due to Atkin and Morain [2], rely on the theory of complex multiplication. The theory of

complex multiplication to build elliptic curves with a given number of points involves deep

arguments of analytic number theory. In the following we will describe only the steps that

must be performed, referring the reader to [2],[33],[13] and [39] for the underlying theory.

If we are working on a prime �eld Fp and want a curve with N = p + 1 − t points the

�rst step is to write 4p = t2 − Dv2. Since we know both p and t we can compute the the

value ∆ = −Dv2 and from ∆ we can build the associated Hilbert Polynomial H∆(x).

An alternative approach that can save some computation when ∆ has a large square factor,

consists into considering the fundamental discriminant of the �eld Q(
√
−D) where −D is

the square free factor of ∆. The root of this Hilbert Polynomial is the j-invariant of a curve

E(Fp). Since a curve and its quadratic twist have the same j-invariant we have only to check

(as said before) if the order is p+ 1− t or p+ 1+ t and eventally perform a quadratic twist

of the curve.
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4.4 Amicable pairs and aliquot cycles

The classical de�nition of aliquot cycle in number theory is a list of integers (n1, n2, ..., nl)

such that

σ̃(n1) = n2, σ̃(n2) = n3, . . . , σ̃(nl−1) = nl, σ̃(nl) = n1 (4.34)

where σ̃(n) = σ(n) − n is the sum of the proper divisors of n. An aliquot cycle of

lenght one is called perfect number, and an aliquot cycle of lenght two is called amicable

pair. Similarly for elliptic curves it can be de�ned the notion of aliquot cycle:

♯Ẽp1(Fp1) = p2, ♯Ẽp2(Fp2) = p3, . . . , ♯Ẽpl−1
(Fpl−1

) = pl, ♯Ẽpl(Fpl) = p1 (4.35)

where pk are primes and ♯Ẽpk(Fpk) is the cardinality of the group de�ned by the elliptic

curve E reduced modulo pk.

For elliptic curves, an aliquot cycle of lenght 2 is still called amicable pair like in the

classical case while for aliquot cycles of lenght one is used the name of anomalous prime

(and anomalous elliptic curve, like already de�ned previously).

In [36] it is shown that exist elliptic curves with arbitrary long aliquot cycles. Here we

are interested particularly into amicable pairs. Since the group orders of an elliptic curve

over a prime �eld Fp are restricted to the Hasse interval Hp = [p + 1 − 2
√
p, p + 1 + 2

√
p],

to have an amicable pair, we need two primes such that one belongs to the Hasse interval of

the other and vice versa.

Lemma 4.4.1. Let p and q primes di�erent from 2 and 3 and p ̸= q. If q belongs to the

Hasse interval of p, then p belongs to the Hasse interval of q.
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Proof. If q is the order of Ẽp(Fp) then it belongs to the Hasse interval Hp:

p+ 1− 2
√
p ≤ q = p+ 1− t ≤ p+ 1 + 2

√
p (4.36)

If p (p = q − 1 + t from the previous equation) is in the Hasse interval of q, then:

q + 1− 2
√
q ≤ p = q − 1 + t ≤ q + 1 + 2

√
q

1− 2
√
q ≤ t− 1 ≤ 1 + 2

√
q

−2√q ≤ t− 2 ≤ 2
√
q

|t− 2| ≤ 2
√
q

|t− 2| ≤ 2
√
p+ 1− t

Since q = p + 1 − t is supposed to be a prime di�erent from p we have that t ̸= 0, 1, 2.

Squaring the inequality lead to:

(t− 2)2 ≤ (2
√
p+ 1− t)2

t2 + 4− 4t ≤ 4p+ 4− 4t

t2 ≤ 4p

that is always true since, from the equation 4.36, we have that |t| ≤ 2
√
p.
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The existence of an elliptic curves with order t for every t inside the Hasse interval is

guaranteed by the Deuring's theorem. So if we have an elliptic curve E(Fp) with order q

prime, we are sure that (p, q) is an amicable pair.

It can be shown also that a2p−4p = a2q−4q. Infact, if (p, q) is an amicable pair for elliptic

curves we have

q = p+ 1− ap and p = q + 1− aq (4.37)

where ap(resp. aq) is the trace of Frobenius of the curve de�ned over Fp (resp. Fq). Sub-

tracting the second equation to the �rst in 4.37 we have:

q − p = p+ 1− ap − q − 1 + aq

ap − 2p = aq − 2q

(ap − 2p)2 = (aq − 2q)2

a2p − 4p(ap − p) = a2q − 4q(aq − q)

if we substitute ap − p = 1− q and aq − q = 1− p (from equation 4.37)

a2p − 4p(1− q) = a2q − 4q(1− p)

a2p − 4p+ 4pq = a2q − 4q + 4pq

a2p − 4p = a2q − 4q.
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4.5 Our work

In cryptography, anomalous elliptic curves over �elds are weak since the Smart's attack can

solve an instance of ECDLP over them in linear time. Good candidates are the elliptic curves

over a �eld Fp that have a number of points q prime and with p ̸= q because the most e�cient

algorithm to solve an ECDLP instance over them requires an exponential time. We asked

ourselves if it could be performed a "lifting" of an elliptic curve E ′(Fp) with ♯E ′(Fp) = q

to a curve E(Z/pqZ) such that ♯E(Z/pqZ) = pq, and once performed this lift if it could be

applied the Smart's algorithm to solve ECDLP. As we've seen in the previous paragraphs, if

we have an elliptic curve E ′(Fp) with cardinality q with p and q primes greater than 3 and

p ̸= q it is always possible to build another elliptic curve E ′′(Fq) with cardinality q. This

operation, if we apply the "complex multiplication" algorithm requires the resolution of an

Hilbert class polynomial. In [3] is given a tighter bound to the complexity of the analytic

algorithm for the computation of the Hilbert class polynomial HD (with discriminant D)

that is O(|D|(log |D|)3(log log |D|)3). We underline here that the discriminant D could be

really small compared to the �eld size. As example we considered the curve secp192k1 of

the document SEC 2: Recommended Elliptic Curve Domain Parameters [29] over the �nite

�eld Fp with (values are in hexadecimal format):

p = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37

= 2192 − 232 − 212 − 28 − 27 − 26 − 23 − 1
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described by the equation E : y2 = x3 + ax+ b with:

a = 000000000000000000000000000000000000000000000000

b = 000000000000000000000000000000000000000000000003

and with order:

q = FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D

In few seconds with SAGE we are able to compute the curve over Fq with p points. This

curve must have:

aq = q + 1− p =

= −146402144145231529258894028969

let's compute the discriminant of the Hilbert class polynomial:

D = (aq)
2 − 4q =

= −3674819131225572514449326781648645596526050223001970845347
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and its factorization:

factor(D) = −1 ∗ 3 ∗ 314 ∗ 49312 ∗ 540592 ∗ 1366252466671812972

Since D has a huge square factor, the Hilbert class polynomial can be solved really fast,

leading to a j-invariant for the curve:

j = 5783708012616087999643491142013477486619602496317566169561

Now we build the curve over Fq with equation y2 = x3+ 3j
1728−j

x+ 2j
1728−j

. It can be easily

checked (with SAGE) that this curve doesn't have p points, but performing a quadratic twist

leads to the desired curve with order p and with:

a = 6068357910793510789605581141929989070703987109173272323718

b = 5163801337556440901274678590361129865273727616387121840829

This example shows that in special conditions it could be really easy to build an ami-

cable pair (p, q). Building an elliptic curve E(Z/pqZ) with ♯E(Z/pqZ) = pq starting with

an amicable pair (p, q) such that ♯E ′(Fp) = q and ♯E ′′(Fq) = p is trivial through the Chi-

nese Remainder Theorem. The curve E(Z/pqZ) have some interesting properties as group

structure[34]:

E(Z/pqZ) ≃ Zp ⊕ Zq ≃ E ′(Z/p2Z) ≃ E ′′(Z/q2Z). (4.38)
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An instance of ECDLP Q′ = k′P ′ from E ′(Fp) can be esily moved to E(Z/pqZ) to points

Q,P in a way that preserve the relation Q = k′P if we use the Chinese Remainder Theorem

to build1 Q = C.R.T (Q′, O′′
∞) and P = C.R.T (P ′, O′′

∞) or we can obtain Q = kP with

k ≡ k′mod p if we build Q = C.R.T (Q′, P ′′) and P = C.R.T (P ′, P ′′), where P ′′ is any point

di�erent from the point to in�nity over E ′′(Fq). While it is trivial to map an instance of

ECDLP from E ′(Fp) to E(Z/pqZ), is it much more complicate to operate over the curve

E(Z/pqZ) and even harder to try to apply the attack by Smart. To work on elliptic curves

modulo pq we implemented a complete set of addition laws in SAGE like described in section

4.2. The attack by Smart( since we're not working anymore over a �eld with a prime p, but

we're on a ring Z/pqZ) required the implementation of the modular arithmetic of Polyadic

Numbers as described by Bennett in [4].

1O′′
∞ is the point to in�nity of the curve E′′(Fq)
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