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Introduction

The word cooperate derives from the Latin words co- and operare
(to work), thus it connotes the idea of working together to achieve a
common/mutual benefit, as opposed to working in competition for self-
ish benefit. The main idea behind cooperation is that each cooperating
entity can take advantage from the unified action by receiving a benefit
as a reward for sharing its resources. This definition is in contrast with
altruism, a behavior where one of the participants does not benefit from
the interaction to support the others; contrarily, a cooperative behavior
aims at guaranteeing the fairness among the cooperators for achieving
some advantages.

The cooperative paradigm [1], [2], is extensively applied in nature,
both at small scale (i.e., few entities collaborate) and at large scale (i.e.,
massive collaboration), where the latter includes cooperation between
the members of large groups up to the society itself. One illustrative
example that gives a perfect idea about the meaning of cooperation is
the behavior of vampire bats. These mammals live in large groups and
spend most of the day in hollow trees. In the night, they search for
large animals that have some bleeding cuts. Once they find such an
animal, they will sit next to the cut and simply sip as much blood as
they can. Bats try to feed every day, but are able to survive also some
time without feeding. The critical limit for a period without any food
is sixty hours, where most of the bats without any blood will starve to
death. Fortunately, bats that have found enough blood can help the
others that have not enough once they are back at their hollow trees.
The donation of blood is not based on altruism, but on a strict scoring
table. Bats are able to remember which bats gave them blood previ-
ously. Furthermore they can detect if other bats getting asked for blood
are declining these requests even though they have enough to donate.
The bats punish cheaters by refusing to help them when they are in
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2 Introduction

need, but reward cooperators by helping them when they need it. Bats
can live up to eighteen years so cooperation is well established since the
cheaters do not survive for long time but cooperators live to breed over
many seasons.

Cooperation is a well studied paradigm in many subject areas. One
of the most famous example is the prisoner’s dilemma, invented around
1950 by Merrill Flood and Melvin Dresher. The prisoner’s dilemma tries
to describe the problem of cooperation of two entities, where each entity
is trying to maximize its own gain, without concern for the well-being
of the other entity, and it is a representative of a non-zero sum game re-
garding the game theory. The prisoner’s dilemma describes two thieves
who are caught by the police and they are interrogated separately at
the same time. Each thief has two options, namely not telling the truth
to the police (cooperating with his colleague) or confessing (not cooper-
ating with his colleague). In total there are four possible outcomes. If
both confess they will go to jail for a long time. If one confesses and the
other is loyal, the latter will go into jail for a very long time, while the
former one goes free. But if both cooperate (not telling anything to the
police), both will go to jail for a short period only. The dilemma they
are facing is that both decisions are made independently (even though
before the police arrested them they might have promised to be loyal)
and cannot be sure that the other will remain loyal. Moreover, they may
hope the other will cooperate so that they could decline their coopera-
tion to get a larger advantage out of it. To cooperate, or not cooperate?
This simple question (and the implicit question of whether to trust, or
not), expressed in an extremely simple game, is a crucial issue across a
broad range of life.

The cooperative paradigm is typically adopted in wireless commu-
nication systems [3], [4]. In this context the cooperative entities are
wireless nodes connected each other (e.g., wireless terminals and radio
base stations) whose purpose is to exchange information in a reliable and
efficient manner. Cooperation can be applied at each layer of the Inter-
net protocol stack (TCP/IP), from physical layer to application layer,
with the aim to improve the overall network performance. The entities
at each layer can act independently from the other layers, or in turn
they can act in a collaborative manner by exchanging information each
other in order to optimize the performance (cross-layer paradigm). Co-
operation also requires that nodes make available their communication
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resources, such as battery, computational capabilities and bandwidth,
to achieve better performances; thus, the cooperative gain comes at the
cost of a cooperation overhead that is an important factor to take into
account for the design of cooperative strategies.

Several research efforts in wireless networks have been addressed at
the physical layer due to the related fundamental issues and challenges.
The main reason is that the reliability of communication over wireless
channels is severely compromises by the adverse effects of multipath
and shadow fading that introduce strong attenuation in the amplitude
of the radio signals. In this case, the main idea behind cooperation is
to exploit the spatial diversity that arises from the presence of spatially
distributed wireless nodes subjected to independent fading conditions:
the greater the number of cooperating nodes, the smaller the probability
that all the nodes experience severe fading conditions; in the literature,
such kind of diversity is also referred to as cooperative diversity [5–7].
These nodes may serve as relay stations for a given source-destination
pair (cooperative relaying system), helping the source to transmit the
symbols toward the destination, as shown in Fig. 1, thus yielding higher
reliability than direct transmission. The principle is the same used in
Multiple-Input Multiple-Output (MIMO) systems, where multiple an-
tennas at both the source and destination create multiple independent
channels, if the antennas are sufficiently separated, and such degrees
of freedom can be used to improve the reliability or the throughput of
communication. However, the use of multiple antennas is not a prac-
tical solution in several scenarios, such as wireless ad-hoc and sensor
networks, where the nodes have limited hardware and energy capabili-
ties. Contrary, a cooperative relaying system effectively overcome these
limitations, and it can be considered like a virtual MIMO system where
each relay is a virtual antenna of a multiple antenna device that share
its resources with the others relays.

The cooperative transmission process takes place in two phases: (i)
Broadcasting, (ii) Relaying. In the first phase, the source node trans-
mits in broadcast a block of symbols toward the relays, whereas, in the
second phase, each relay forwards the block of symbols toward the des-
tination by simply amplifying the received signal (Amplify-and-Forward
(A&F)), or first by decoding the block of the received symbols (Decode-
and-forward (D&F)) before to forward them toward the destination, in
absence of decoding errors. In particular, an efficient relaying strategy to



4 Introduction

Source Destination

Relay 1

Relay 2

Relay N

. . .

Figure 1: Cooperative relaying system.

transmit the symbols is given by the Space-Time Block Coding (STBC)
schemes [8], natively developed for MIMO systems but extensively ap-
plied to distributed systems, that introduce correlation in different time
slots and among different relays nodes to improve the performance. Con-
trary to the repetition coding, where the transmission of the relays takes
place in different time slots, the use of STBC schemes allows the relays
to transmit the information simultaneously, thus improving the spectral
efficiency. This advantage is obtained at the cost of an increased com-
plexity of the receiver, since it is required a block decoding to recover
the transmitted symbols; however, in particular cases, such as orthogo-
nal STBC, the complexity is notably reduced since it is required only a
single symbol decoding.

However, the transmission of information is not the only purpose
for using cooperation in wireless networks. Typical examples are given
by radio-localization [9], for determining the position of wireless nodes
in the network, and beamforming [10], that is a powerful mean for in-
terference suppression along certain directions of an array of antennas,
which enables space division multiple access among the wireless nodes.
Other examples can be also found at the upper layers of the protocols
stack, especially with reference to wireless ad-hoc networks. In partic-
ular, at the MAC layer, the cooperation can be used to improve the
network throughput [11] or to mitigate the multi-channel hidden ter-
minal problem in multi-channel ad-hoc networks [12]. At the network
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Figure 2: Spectrum Holes concept.

layer [13, 14], the cooperation is intrinsically used to send the packets
from a source node to a destination node through multiple intermediate
hops, that otherwise would not be possible with a direct transmission
due to the large distance between source and destination; furthermore,
cooperation can be also used to discover more effective paths toward
the destination or to exploit the path-diversity [15] which arises from
independent traffic and links conditions characterizing different routes.

Cooperation has been also considered in Cognitive Radio (CR) Net-
works [16, 17], which differ from traditional networks due to the uncer-
tainty of spectrum availability, and have been introduced as an effective
way to improve the radio spectrum efficiency and satisfy the increased
demand for bandwidth. This objective is achieved by allowing the un-
licensed users, referred to as Cognitive Users (CUs), to dynamically
exploit the spectrum opportunities, also referred to as Spectrum Holes
(Fig. 2, [18]), namely the portions of the radio spectrum temporarily
not occupied by the licensed users, referred to as Primary Users (PUs),
which have the priority for using the spectrum and generally do not
cooperate with the CUs. To this aim, CR networks necessitate unique
functionalities, such as spectrum sensing that enables the CUs to detect
the transmissions of the PUs through the analysis of the radio signals
received from the surrounding radio environment.

The objectives of spectrum sensing are twofold: first, to guarantee
an high detection accuracy for avoiding harmful interference against PU
networks and, second, to efficiently identify and exploit the spectrum
holes for enhancing the transmission capacity and the quality-of-service
(QoS) of CR networks. Thus, the sensing accuracy in spectrum sens-
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Figure 3: Multipath/shadow fading and receiver uncertainty problem.

ing is a crucial factor that determines the performance of both primary
and CR networks. However, these objectives are difficult to achieve due
to many factors that compromise the sensing reliability such as multi-
path fading, shadowing and primary receiver uncertainty problem that
happen when the CU is outside the transmission range of the PU trans-
mitter but the primary receiver is inside the CU interference range, as
illustrated in Fig. 3 [19]. In these cases, the CUs may experience very
low signal-to-noise ratio (SNR) conditions such that it is required a large
sensing time to achieve an acceptable detection performance, thus intro-
ducing a large sensing overhead.

Also in this case, an effective way to improve the sensing performance
is to exploit the spatial diversity through the cooperation of spatially
distributed CUs [19], that share their sensing information for making a
combined decision more accurate than the individual decision (coopera-
tive spectrum sensing). The cooperative sensing process, represented in
Fig. 4, takes place in three phases: (i) Sensing Phase, where a certain
number of CUs perform the sensing of a given channel, by sampling
the received signal for a certain interval of time; (i) Reporting Phase,
where the sensing data are transmitted on a common control channel
through point-to-point links, referred to as reporting channels, toward
a specific node of the network referred to as Decision Maker; (iii) Com-
bining Phase, the Decision Maker combines the received sensing data,
by implementing a fusion-rule, and takes the cooperative decision about
the presence/absence of the PU that is transmitted in broadcast to all
the CUs. Thus, cooperative sensing is an effective way to counteract the
fading effects and reduce the primary receiver uncertainty problem, thus
yielding to higher detection performance than local spectrum sensing,
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Decision 
Maker

Sensing 

Channels

Reporting 

Channels

: Cognitive User (CU)

Primary UserPrimary User

CU1

CU2

. . .

CUM

Figure 4: Cooperative sensing process.

with a lower sensing time, that allows to reduce interference against the
PU networks and increase the transmission capacity of CR networks.

Similarly to traditional ad-hoc networks, the cooperation can be also
used at MAC and network layers in cognitive radio ad-hoc networks [18],
but the problems are more challenging due to the uncertainty of spec-
trum availability, that varies in time and space, and due to the interfer-
ence avoidance principle against the PU networks.

Thus, the scope of this thesis is to demonstrate that the coopera-
tive paradigm in wireless network is an effective way to counteract the
impairments of wireless channels caused by the fading effects, through
the exploitation of the spatial diversity, and so to guarantee satisfac-
tory performance that otherwise would not be achievable through an
individual action. More specifically, the advantages of the cooperative
paradigm are shown with reference to both traditional relay networks,
for cooperative transmission, and the emerging cognitive radio networks,
for cooperative spectrum sensing, and three different works on these re-
search topics are presented.

Therefore, the thesis is organized as follows:

• In Chapter 1, the performance analysis of distributed STBC
schemes involving multiple decode-and-forward relays is carried
out in the presence of impulsive noise, which, together with mul-
tipath fading, is one of the major sources of performance degrada-



8 Introduction

tion in many wireless systems. To this aim, the Middleton Class-A
impulsive noise model is adopted, and as decoding structures at
the destination, the maximum-likelihood (ML) detector (optimum
detector), its ideal version (IML), as well as the minimum-distance
(MD) detector, that is suboptimum in non-Gaussian noise, are con-
sidered. For the proposed receiving structures, the performances
are derived in terms of average bit-error rate, coding gain, finite
signal-to-noise ratio (SNR) diversity order and asymptotic (i.e.,
when the SNR is sufficiently large) diversity order, and the impact
of impulsive noise on these performance metrics is studied.

• In Chapter 2, the performance analysis of several cooperative
spectrum sensing techniques in cognitive radio networks is carried
out for two different decision approaches according to the role of
the decision maker. In the first approach, referred to as Combining
Decision (CD), the role of the decision maker is only to combine
the sensing information collected from its cooperators, without
participating in the sensing of the monitored band. Differently,
in the second approach, referred to as Sensing & Combining De-
cision (SCD), the decision maker combines not only the sensing
information of its cooperators, but also its own local sensing infor-
mation. The accuracy of the cooperative decision strictly depends
on the selected decision approach (CD or SCD), independently of
the considered cooperative technique. For this reason, the criteria
for an effective decision-approach selection are analytically derived
with the object of maximizing the detection accuracy in presence
of realistic channel propagation effects.

• In Chapter 3, the spatio-temporal spectrum sensing design prob-
lem for cognitive radio networks in the presence of PU mobility is
addressed, with the aim to optimize the sensing time that maxi-
mizes the actual transmission capacity achieved by the CU with a
limited sensing accuracy, while satisfying the PU interference con-
straints. This is a crucial problem since the choice of the sensing
time deeply affect the sensing accuracy that is an important factor
that determines the actual performance achieved by the CU. This
problem is very challenging in the spatio-temporal spectrum sens-
ing scenario with PU mobility, since the mobility effect can deeply
influence the transmission capacity achieved by the CU.



Chapter 1

Performance Analysis of
Distributed Space-Time
Block Coding Schemes in
Middleton Class-A Noise

1.1 Introduction

Cooperative diversity [5–7], arising from the presence of terminals
distributed in space, which may serve as relay stations for a given source-
destination pair, offers significant robustness against the adverse effects
of fading in wireless communications, thus yielding higher reliability and
throughput than direct transmission. Decode-and-Forward (D&F) and
Amplify-and-Forward (A&F) relaying are popular cooperation protocols:
in the former one, the relay node forwards the source symbols if it has
correctly decoded the received data; in the latter one, the relay node sim-
ply scales the received signal and retransmits it to the destination. Early
cooperative communication schemes employed a single relay [5], [6]; sub-
sequently, multiple relays have been allowed to forward signals at the
same time [7]. In this latter case, to benefit from cooperative diversity
without a significant loss in spectral efficiency, the use of Space-Time
Block Coding (STBC) among the relays has been proposed in [20–29],
which was originally designed for co-located antennas [30], [31]. STBC
rules can be employed in a distributed manner by allowing each relay
to transmit a linear combination of the L columns of a conventional

9
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Block Coding Schemes in Middleton Class-A Noise

STBC matrix. The weights of the aforementioned linear combination
can be optimally assigned to each relay by a central unit [20], i.e., in
a centralized fashion, which requires extra signaling overhead. On the
other hand, such weights can be chosen by the relays locally in a random
way [21]- [29], i.e., in a decentralized manner. Decentralized techniques
eliminate the requirement of space-time codeword assignment and re-
duce the coordination among the source and the relays, thus leading to
a reduction in signaling cost.

Design and analysis of distributed STBC (DSTBC) rules [20–29] fo-
cus on the classical additive white Gaussian noise (AWGN) model. How-
ever, together with multipath fading, impulsive (non-Gaussian) noise is
the prevalent source of performance degradation in many wireless sce-
narios, such as indoor, urban, rural, industrial, medical, commercial,
modern local and personal area networks [32–34]. Recently, the use of
cooperative techniques has been also proposed in [35], [36] for power line
communications. A widely-accepted impulse noise model is the Middle-
ton Class-A (MCA) one [37–39], which was derived bearing in mind
the real physical mechanisms that generate disturbance in communica-
tion receivers, whose validity has been confirmed by many measurement
campaigns. Other well-known models are the Bernoulli-Gauss one [40],
which can be regarded as an approximation to the more fundamental
MCA noise model in many practical scenarios, and the symmetric alpha
stable distribution [41], which models the multiple access interference in
a multi-user network when the interfering nodes are scattered according
to a spatial Poisson point process. The combined effects of fading and
impulsive noise on the performance of MIMO systems with co-located
antennas have been studied in [42], [43] by using the MCA noise model
and in [44] by considering the symmetric alpha stable distribution. More
recently, performance and optimization of cooperative diversity systems
in impulsive noise have been considered in [45], [46]. Both the A&F
diversity scheme considered in [45] and the D&F cooperative system
studied in [47] do not employ DSTBC by assuming that the source and
the relays use orthogonal channels, e.g., the source and the relays trans-
mit in different time slots or different frequency bands, and maximum
ratio combining techniques are used at the destination to extract the
source information from the received signals. Even though DSTBC is
employed across the relays in [46], the performance analysis in the case of
minimum distance (MD) detection at the destination is targeted at A&F
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relaying and it is based on the assumption that impulsive noise samples
at the relays and the destination are temporally dependent during a
transmission frame.

The aim of this work [48] is to study the effects of both fading and
impulsive noise on cooperative links employing multiple D&F relays with
DSTBC, by completing and extending the preliminary results of [49]. To
this goal, we use the MCA noise model and, as decoding structures at
the destination, we consider the maximum-likelihood (ML) detector, its
ideal version (IML), as well as the MD detector that is suboptimum in
non-Gaussian noise.1 Our analysis shows that the IML detector is able
to satisfactorily counteract the impulsiveness of the noise in the asymp-
totic signal-to-noise ratio (SNR) regime,2 by achieving an asymptotic
diversity order Rmax that is equal to the minimum between L and the
maximum number of cooperating nodes (relays plus source). However,
thanks to closed-form formula directly linking the finite-SNR perfor-
mance to the main parameters of both impulse noise and STBC, we
highlight that the IML detector pays a penalty in terms of diversity or-
der for a wide range of SNR values of practical interest; in particular,
we show that, in the case of complex orthogonal STBC, such a penalty
becomes negligible for increasing values of Rmax. It is also demonstrated
that, even though it ensures the same asymptotic diversity order Rmax

of the IML detector, the performance of the simpler MD detector is ad-
versely affected not only in terms of finite-SNR diversity order but also
in terms of coding gain; specifically, we show that, in the case of complex
orthogonal STBC, there is an increase in such a penalty as Rmax grows.

The chapter is organized as follows. In Section 1.2, the cooperative
protocol is described and the detection process at the relays is analyzed
by using the MCA noise model introduced in Subsection 1.1.1. The
asymptotic- and finite-SNR performances of the IML and MD detectors
are derived in Sections 1.3 and 1.4, respectively. Monte Carlo simula-
tion results, in terms of average bit-error-rate (ABER) and finite-SNR

1Alternative suboptimal methods for reducing the adverse effect of impulse noise
is to precede the MD detector with a memoryless nonlinearity [50]. In some contexts,
such as multiuser detection [51] and multicarrier modulation [52], this strategy allows
to bridge much of the gap between the IML (or ML) detector and the MD one,
without a substantial increase in complexity. A detailed study of the tradeoff between
performance and complexity of such detectors in the DSTBC framework at hand is
outside the scope of this work.

2Our numerical results show that ML and IML detectors substantially exhibit the
same performances.
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diversity order, are presented in Section 1.5 for the ML, IML, and MD
detectors and compared with our analytical results. Finally, some con-
clusions are drawn in Section 1.6.

1.1.1 Notations and preliminaries

The fields of complex, real, and nonnegative integer numbers are de-
noted with C, R, and N, respectively; matrices [vectors] are denoted with
upper [lower] case boldface letters (e.g., A or a); the field of m×n com-
plex [real or nonnegative integer] matrices is denoted as Cm×n [Rm×n
or Nm×n], with Cm [Rm or Nm] used as a shorthand for Cm×1 [Rm×1

or Nm×1]; the superscripts ∗, T , H, and −1 denote the conjugate, the
transpose, the conjugate transpose, and the inverse of a matrix, respec-
tively; |A| represents the cardinality of the set A; min(x, y) [max(x, y)]
is the minimum [maximum] value between x ∈ R and y ∈ R; 0m ∈ Rm,
1m ∈ Rm, Om×n ∈ Rm×n, and Im ∈ Rm×m denote the null vector,
the vector whose entries are all equal to one, the null matrix, and the
identity matrix, respectively; {a}i indicates the ith element of a ∈ Cm,
with i ∈ {1, 2, . . . ,m}; rank(A) is the rank of A ∈ Cm×n; det(A) and
trace(A) denote the determinant and the trace of A ∈ Cn×n, respec-
tively; ‖a‖ is the Euclidean norm of a ∈ Cn; the eigenvalues of a matrix
A ∈ Cm×m are denoted as µi(A), for i ∈ {1, 2, . . . ,m}, and, when
they are real, they are ordered as µ1(A) ≥ µ2(A) ≥ · · · ≥ µm(A); let
A ∈ Cn and B ∈ Cn be Hermitian matrices, we write A � B [A � B]
if the matrix A − B is positive definite [semidefinite];

(
n
k

)
is the bi-

nomial coefficient, for n, k ∈ N; o(x) denotes the Landau symbol, i.e.,
for a function f(x) = o (g(x)), the ratio f(x)/g(x) → 0, as x → 0;
Q(x) , (1/

√
2π)

∫ +∞
x e−u

2/2 du denotes the Q function; P (A) denotes
the probability that an event A occurs and P (A |B) is the conditional
probability of A given an event B; the operator E[·] denotes ensemble
averaging and, specifically, Ex̃ | Ỹ[·] is the conditional mean with respect

to the random vector x̃ ∈ Cm given the random matrix Ỹ ∈ Cn×k;
if Ỹ = Y, the value of the random variable (RV) Ex̃ | Ỹ[·] is denoted

as Ex̃ | Ỹ=Y[·]; a circular symmetric complex Gaussian random vector

x ∈ Cn with mean µ ∈ Cn and covariance matrix K ∈ Cn×n is denoted
as x ∼ CN (µ,K).

In the high-SNR regime, the average symbol error probability (ASEP)
for a digital communication system over a fading channel usually behaves
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as ASEP(γ) ≤ (Gc γ)−Gd [53], where γ denotes the average SNR, Gc is
the coding gain, and Gd is the asymptotic diversity order; at an arbitrary
SNR γ, the finite-SNR diversity order Gd(γ) is defined [54] by the neg-
ative slope of the log-log plot of the average pairwise error probability
(APEP) versus SNR, that is,

Gd(γ) , −d log[APEP(γ)]

d log(γ)
= − γ

APEP(γ)

d APEP(γ)

dγ
(1.1)

which converges to Gd for asymptotically high SNR values.
According to [37]- [39], the MCA complex noise RV x̃ is the sum of

two independent components: a Gaussian component ñ with variance
σ2
ñ and an interfering component ı̃ with variance σ2

ı̃ , and its probability
density function (pdf) fx̃(x), with x ∈ C, is given by

fx̃(x) =
+∞∑
m=0

pm̃(m) fx̃ | m̃(x |m) (1.2)

with

fx̃ | m̃(x |m) ,
1

π σ2 σ2
m

exp

{
− |x|

2

σ2 σ2
m

}
(1.3)

and

pm̃(m) , exp{−λ} λ
m

m!
and σ2

m ,
mλ−1 + Γ

1 + Γ
(1.4)

where λ is the impulsive index, i.e., the average number of impulses af-
fecting the receiver in a symbol period, Γ , σ2

ñ/σ
2
ı̃ > 0 is the Gaussian-

to-impulse ratio, and σ2 = σ2
ñ + σ2

ı̃ is the variance of x̃. Such a model
comes from the assumption that the number of interfering impulses af-
fecting the receiver is a Poisson RV m̃ with parameter λ, whose prob-
ability mass function (pmf) is denoted as pm̃(m), which represents the
probability of having m ∈ N impulses within the considered symbol pe-
riod. It is seen from (1.2) that fx̃ | m̃(x |m) is the conditional pdf of x̃
given m̃ = m and, thus, x̃ | m̃ ∼ CN (0, σ2 σ2

m). The parameters λ and
Γ control the “impulsiveness” of the noise: for λ � 1, the noise x̃ be-
comes more and more impulsive; for λ ≥ 1, the probability distribution
of x̃ approaches that of Gaussian noise;3 for small values of Γ, the noise
becomes more impulsive; the noise tends to be Gaussian for large values
of Γ.

3In the case of λ = 10, the noise x̃ can be regarded as a circular symmetric
complex Gaussian RV.
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1.2 Cooperative transmission scheme and per-
formance analysis at the relays

We consider a wireless network where Nmax randomly and indepen-
dently placed potential relay nodes might assist the data transmission
between a given source-destination pair. Each node in the network
employs a single transmit/receive antenna. The relays work in half-
duplex mode, i.e., they cannot transmit and receive at the same time,
and they adopt a D&F relaying protocol. The link between each node
pair is modeled as a frequency-flat4 Rayleigh block-fading channel, i.e.,
it is characterized by a single fading coefficient that remains constant
within P > 0 symbol intervals. Let the source wish to send the block
ã , [ã1, ã2, . . . , ãK ]T ∈ CK towards the destination, with K ≤ P , which
is composed of independent and identically distributed (i.i.d.) zero-mean
unit-variance equiprobable symbols. The vector ã assumes values in the
symbol set A = {a1,a2, . . . ,a|A|}. The cooperative transmission takes
place in two phases.

In Phase I (broadcast phase), which spans a time interval of K con-
secutive symbol periods, the source broadcasts the symbol vector ã to all
the potential relays, which try to decode it. The discrete-time baseband
equivalent received signal at the nth relay is given by z̃n = f̃n ã + w̃n,
for n ∈ {1, 2, . . . , Nmax}, where f̃n denotes the channel gain between
the source and the nth relay, whereas the entries of the noise vec-
tor w̃n , [w̃n,1, w̃n,2, . . . , w̃n,K ]T ∈ CK are modeled as i.i.d. MCA
RVs [43, 55], whose pdf is given by (1.2), with parameters Γ, λ, and
variance σ2 , E[|w̃n,k|2]. Moreover, according to the Rayleigh-fading
assumption, the channel vector f̃ , [f̃1, f̃2, . . . , f̃Nmax ]T ∈ CNmax is mod-
eled as f̃ ∼ CN (0Nmax ,Σf̃ ), with Σf̃ , diag(σ2

f̃1
, σ2

f̃2
, . . . , σ2

f̃Nmax

), which

is independent of ã and {w̃n}Nmax
n=1 . Assuming that error detection mech-

anisms such as cyclic redundancy check are employed at the potential
relays, only those nodes that successfully decode ã will serve as relays
in the subsequent phase, whose number is unknown and randomly time-
varying. Following the related literature, e.g., [5], [20], [21], perfect
synchronization is assumed at the symbol level among the source and

4This assumption is made for the sake of simplicity and might be removed. If the
channel is frequency selective, orthogonal frequency-division multiplexing techniques
may be used to transform a frequency-selective channel into parallel frequency-non-
selective channels.
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the relays.

In Phase II (relaying phase), which spans a time interval of P consec-
utive symbol periods, all the active relays, along with the source, simul-
taneously transmit in the same frequency band a space-time block coded
version of ã and it is assumed that the destination uses only the data re-
ceived in such a phase to decode the source symbols. More precisely, as
done in standard STBC [30], [31], the source and each active relay first
map the vector ã onto a given STBC matrix C(ã) ∈ CP×L, where L ≥ 2
denotes the number of virtual antennas in the underlying space-time
code. Without considering any specific code structure, we only assume
that code matrix satisfies the rank criterion [31], which states that, for
any pair Ck , C(ak) and C` , C(a`), where ak,a` ∈ A with k 6= `, the
matrix Ck,` , Ck−C` is full rank, i.e., rank(Ck,`) = min(P,L). Then, the
source and each active relay virtually act as a single antenna in a mul-
tiple antennas transmitter, by transmitting a linear combination of the
columns of C(ã). Specifically, let r̃n ∈ CL be a signature vector contain-
ing the linear combination coefficients for the nth node, the transmitted
code x̃n ∈ CP is given by x̃n = C(ã) r̃n, for n ∈ {0, 1, . . . , Nmax} (where
n = 0 is the representative index of the source), and, then, the baseband
equivalent discrete-time signal received at the destination assumes the
form

ỹ = g̃0 x̃0 +

Nmax∑
n=1

s̃n g̃n x̃n + d̃

= C(ã) R̃ S̃ g̃ + d̃ = C(ã) h̃ + d̃ (1.5)

where g̃0 is the channel coefficient between the source and the desti-
nation; for n ∈ {1, 2, . . . , Nmax}, s̃n ∈ {0, 1} is a binary RV indicating
if the nth relay is active in Phase II (i.e., if it correctly decoded the
symbols of ã), with s̃n1 statistically independet of s̃n2 , for n1 6= n2 ∈
{1, 2, . . . , Nmax}; g̃n denotes the fading channel gain between the nth
active relay and the destination; the matrix R̃ , [r̃0, r̃1, . . . , r̃Nmax ] ∈
CL×(Nmax+1) collects the signature vectors used by the source and the
relays; according to the Rayleigh-fading assumption, the vector g̃ ,
[g̃0, g̃1, . . . , g̃Nmax ]T ∈ CNmax+1 is modeled as g̃ ∼ CN (0Nmax+1,Σg̃),
with Σg̃ , diag(σ2

g̃0
, σ2

g̃1
, . . . , σ2

g̃Nmax
), which is statistically indepen-

dent of S̃ , diag(1, s̃1, s̃2, . . . , s̃Nmax) ∈ R(Nmax+1)×(Nmax+1); the vector
h̃ , R̃ S̃ g̃ ∈ CL represents the overall channel between the cooperating
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nodes in Phase II and the destination; the vector d̃ , [d̃1, d̃2, . . . , d̃P ]T ∈
CP denotes additive noise, which is independent of ã and h̃, whose en-
tries are modeled as i.i.d. MCA RVs [43], [55], whose pdf is given by
(1.2), with parameters Γ, λ, and variance σ2 , E[|d̃p|2].5 The signal
model (1.5) is quite general and subsumes different distributed STBC
approaches. In a centralized approach [5], each simultaneously transmit-
ting node transmits a pre-assigned column of the STBC matrix C(ã),
i.e., L = Nmax + 1 and R̃ is proportional to INmax+1. In a decentral-
ized deterministic scheme [20], matrix R̃ has to be properly optimized.
In the decentralized randomized coding rule developed in [21]- [29], the
vector r̃n is random and generated locally at the nth node. It is note-
worthy that, in decentralized strategies, there is no relationship between
L and the number of active relays in Phase II and, thus, L can be chosen
without knowing what is the number of relays that are simultaneously
transmitting.

For the statistical characterization of the RVs s̃1, s̃2, . . . , s̃Nmax , it
is seen [56] that s̃n is a Bernoulli RV, whose success probability is
P (s̃n = 1) = (1 − ASEPn)K , for n ∈ {1, 2, . . . , Nmax}, where ASEPn is
the average (over the random gain f̃n) symbol error probability (SEP)
at the output of the ML detector of the nth relay, which is modula-
tion dependent. It can be shown [57] that, in the case of memoryless
modulation schemes, the following result holds

ASEPn =

+∞∑
m=0

pm̃(m) ASEPn,RAY(σ2 σ2
m) (1.6)

where ASEPn,RAY(σ2 σ2
m) is the average SEP (ASEP) for a Rayleigh-

fading channel affected by AWGN with variance σ2 σ2
m, which can be

(approximatively) expressed [58] as

ASEPn,RAY(σ2 σ2
m) = α

1−

√√√√ β σ2
f̃n

σ2 σ2
m + β σ2

f̃n

 (1.7)

with α and β being modulation-dependent parameters that depend on
the constellation size. For instance, in the case of QPSK modulation, it
results that α = 1 and β = 1/2.

5We have assumed for the sake of simplicity that the noise variances at the relays
and at the destination are all equal.
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1.3 Performance analysis of the ML detector

The optimum detector makes a decision on ã based on the observa-
tion of a particular realization y of the received vector ỹ in (1.5) such
that the probability of correct decision is maximized, provided that the
noise pdf parameters λ, Γ, and σ2 are known exactly.6 Since ã assumes
values in A with equal probability, under the assumption that the real-
ization h of the channel vector h̃ is perfectly known by the destination,7

optimum detection corresponds [58] to the ML criterion: choose the
vector ak that maximizes the conditional pdf of ỹ given that ã = ak
was transmitted and h̃ = h, which is denoted as fỹ | ã,h̃(y |ak,h). Since

fỹ | ã,h̃(y |ak,h) = fd̃(y − Ck h), one has the decision rule

âml = arg max
k∈{1,2,...,|A|}

P∏
p=1

+∞∑
mp=0

pm̃p
(mp)

π σ2 σ2
mp

exp

{
−|{y − Ck h}p|2

σ2 σ2
mp

}
.

(1.8)

For practical implementations, it is customary to resort to the normal-
ized M -term truncation f̂d̃p(dp) of the pdf given in (1.2) (see [60] for

details), which converges pointwise to fd̃p(dp) as M → +∞. Start-

ing from f̂d̃p(dp), the infinite series in (1.8) is replaced with a sum
having only M terms. Performance measures of the ML decoder are
ASEPml , E[SEPml(h̃)], where SEPml(h̃) is the SEP at the output of

the ML decoder [58], conditioned on h̃, and APEPml , E
[
PEPml(h̃)

]
,

where PEPml(h̃) , P ({ak → a`}ml | h̃) is the pairwise error probability
(PEP) of the ML detector [21], conditioned on h̃, i.e., the probability
that a` is detected at the destination when ak was transmitted. Due to
the awkward expression of the ML decision rule (1.8), exact computa-
tion of ASEPml and APEPml is very difficult, even when union bound-
ing techniques are used. However, with reference to a MIMO system
with co-located antennas, it has been numerically shown in [43] that the

6The expectation-maximization algorithm can be used [59] to derive estimates for
the parameters of the MCA noise model.

7The relevant channel vector realization h can be estimated at the destination
by allowing each data transmission in Phase II be preceded by a training period,
wherein all the active relays transmit a symbol sequence known to the destination; the
signature vectors used during the training phase will be maintained in the subsequent
data transmission.
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ASEP performance of the ML detector (1.8) is very similar to that of
the ideal ML (IML) detector, which has perfect knowledge of the realiza-
tion of m̃ , [m̃1, m̃2, . . . , m̃P ]T ∈ NP .8 For the distributed framework
at hand, this behavior is confirmed by the simulation results in Sec-
tion 1.5. Let Σm , diag(σ2

m1
, σ2

m2
, . . . , σ2

mP
) ∈ RP×P , the IML criterion

amounts to choosing the vector ak that maximizes the conditional pdf

of Σ
−1/2
m ỹ given that ã = ak was transmitted, h̃ = h was acquired, and

m̃ = m , [m1,m2, . . . ,mP ] ∈ NP . Since Σ
−1/2
m d̃ ∼ CN (0P , σ

2 IP ), the
IML decision rule ends up to

âiml = arg min
k∈{1,2,...,|A|}

(y − Ck h)H Σ−1
m (y − Ck h) (1.9)

whose PEP is simpler to analyze than that of (1.8). Let PEPiml(h̃, m̃) ,
P ({ak → a`}iml | h̃, m̃) be the PEP, conditioned on h̃ and m̃, at the out-
put of the IML decoder, it can be analytically shown that PEPiml(h,m) ≤
PEPml(h) for h̃ = h and m̃ = m, which is the consequence of the fact
that, with respect to the ML case, the IML detector utilizes the addi-
tional knowledge of m̃ = m. As previously announced, our simulation

results show that APEPiml , E
[
PEPiml(h̃, m̃)

]
turns out to be an ap-

proximation of APEPml, and not necessarily a lower bound. From (1.9),
the PEP at output of the IML decoder is given by

PEPiml(h,m) = Q

(
‖Σ−1/2

m Ck,` h‖√
2σ2

)

=
1

π

∫ π/2

0
exp

(
−

hH CHk,` Σ−1
m Ck,` h

4σ2 sin2 θ

)
dθ (1.10)

where the last equality is the consequence of a change of variables from
rectangular to polar coordinates in the integral defining the Q-function.
Recalling that h̃ = R̃ S̃ g̃, we keep the signature matrix R̃ fixed, i.e.,
R̃ = R, with R ∈ CL×(Nmax+1) being a certain matrix with Rmax ,
rank(R) = min(L,Nmax + 1), and we average PEPiml(h̃, m̃) over all
the realizations of s̃ , [s̃1, s̃2, . . . , s̃Nmax ]T ∈ RNmax (which collects the
random diagonal entries of S̃), g̃, and m̃.

8Such a detector is ideal since knowledge or estimation of a particular realization
of m̃ is unrealistic and, for such a reason, it has been referred to as genie-aided
detector in [43].
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In the sequel, we first study the performance of the IML detector in
the high-SNR regime by evaluating the asymptotic diversity order, and,
then, we focus on its achievable finite-SNR diversity order.

1.3.1 Analysis of the IML detector in the high-SNR re-
gion

Let S , diag(1, s1, s2, . . . , sNmax) ∈ R(Nmax+1)×(Nmax+1) be a re-
alization of the matrix S̃, with

∑Nmax
n=1 sn = N(s), where the vector

s , [s1, s2, . . . , sNmax ]T ∈ RNmax is the corresponding realization of s̃,
i.e., only N(s) ≤ Nmax relays are active in Phase II, for sufficiently high
(but finite) SNR values, the ASEP at the output of the IML detector,
given R̃ = R and s̃ = s, can be approximated (see, e.g., [58]) as

ASEPiml(R, s) ≈ Ne · max
k, ` ∈ {1, 2, . . . , |A|}

` 6= k

Em̃ | s̃=s,R̃=R

{
Eg̃ | m̃,s̃=s,R̃=R

[
PEPiml(h̃, m̃)

]}
(1.11)

where Ne is the average number of minimum-distance neighbors for A.
The following theorem holds:

Theorem 1 (IML ASEP for a fixed number of active relays). Let us
assume without loss of generality that P ≥ L and the diagonal entries
of Σg̃ are arranged in increasing order, i.e., σ2

g̃0
≤ σ2

g̃1
≤ · · · ≤ σ2

g̃N
, and

define the average SNR as γ , 1/σ2. It results that

ASEPiml(R, s) / Υ(N(s))

R(s)∏
r=1

1

µr(SRHRS)

 γ−R(s) (1.12)

where R(s) , rank(RS) = min(L,N(s) + 1) and

Υ(N(s)) , Ne Θ

 N(s)∏
r=N(s)−R(s)+1

1

σ2
g̃r



·

 max
k, ` ∈ {1, 2, . . . , |A|}

` 6= k

L∏
r=L−R(s)+1

1

µr(CHk,` Ck,`)

 (1.13)

with Θ , 4R(s)

π

∫ π/2
0 (sin2 θ)R(s) dθ.
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Proof. See Appendix A.

Theorem 1 shows that the impact of MCA noise on the high-SNR
performance of the IML (or ML) detector is similar to that of the Gaus-
sian noise considered in [21]. Strictly speaking, the IML detector is
able to completely counteract the “impulsiveness” of the noise in the
high-SNR regime. Eq. (1.12) characterizes the performance of the IML
detector for a given realization s of the vector s̃, which means that
the number of active relay is fixed to the value N(s). In order to
take into account the randomness in the number of active relays, the
next step is to further average (1.12) with respect to s̃, thus obtaining

ASEPiml(R) , Es̃ | R̃=R

[
ASEPiml(R̃, s̃)

]
. Accounting for the statisti-

cal characterization of s̃ discussed in Section 1.2, one has

ASEPiml(R) =
∑

s∈{0,1}Nmax

{
Nmax∏
n=1

[P (s̃n = 1)]sn

· [1− P (s̃n = 1)]1−sn
}

ASEPiml(R, s) (1.14)

where we recall that P (s̃n = 1) = (1 − ASEPn)K , with ASEPn given
by (1.6) and (1.7). To obtain an approximation of ASEPiml(R) valid
in the high-SNR regime, we observe that, if σ2 σ2

m � β σ2
f̃n

, which is

equivalent to γ � σ2
m/(β σ

2
f̃n

), eq. (1.7) can be approximated [53] as

ASEPn,RAY(σ2 σ2
m) ≈ (ασ2

m)/(2β γ σ2
f̃n

), for any9 finite values of m.

Hence, it follows from (1.4) and (1.6) that

ASEPn ≈
α

2β γ σ2
f̃n

E[m̃]λ−1 + Γ

1 + Γ
=

α

2β γ σ2
f̃n

(1.15)

where we have also used the fact that E[m̃] = λ. Furthermore, at
high SNR, it holds that (1 − ASEPn)K ≈ 1 − K ASEPn ≈ 1 and
1 − (1 − ASEPn)K ≈ K ASEPn. Consequently, owing also to (1.12),
the following upper bound on (1.14) can be written in the high-SNR

9If λ is small, the first few terms of the infinite sum in (1.6) dominates the value
of ASEPn.
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region

ASEPiml(R) /
∑

s∈{0,1}Nmax


Nmax∏
n=1

[
αK

2β σ2
f̃n

]1−sn
Υ(N(s))

·

R(s)∏
r=1

1

µr(SRHRS)

 γ−[R(s)+Nmax−N(s)]

=

Nmax∑
n=0

ASEP
(n)
iml(R) γ−[min(L,n+1)+Nmax−n] (1.16)

where

ASEP
(n)
iml(R) , Υ(n)

(
αK

2β σ2
f̃n

)Nmax−n

·
∑

s ∈ {0, 1}Nmax

with N(s) = n

R(s)∏
r=1

1

µr(SRHRS)

 . (1.17)

The upper bound in (1.16) is expressed as a power sum in the average

SNR γ, where the nth coefficient ASEP
(n)
iml(R) collects all the other

relevant parameters for the
(
Nmax

n

)
different network configurations with

n active relays. Specifically, when L ≥ Nmax + 1, one has that Rmax =
Nmax + 1, hence it follows from (1.16) that min(L, n+ 1) +Nmax − n =
Nmax + 1, for each n ∈ {0, 1, . . . , Nmax}, thus obtaining

ASEPiml(R) /

[
Nmax∑
n=0

ASEP
(n)
iml(R)

]
γ−(Nmax+1) . (1.18)

In this case, the asymptotic diversity order of the IML detector is equal
to Rmax, i.e., the rank of the signature matrix R, which coincides with
the number of potential relays plus one. On the other hand, when L <
Nmax + 1, one has Rmax = L, hence eq. (1.16) can be rewritten as

ASEPiml(R) / ASEP
(Nmax)
iml (R) γ−L + o(γ−L) . (1.19)

The asymptotic diversity order of the IML detector is now equal to L,
i.e., the rank of R, which is equal to the number of virtual antennas
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in the underlying space-time code. Therefore, we can conclude that
the asymptotic diversity order of the system is always given by Rmax =
min(L,Nmax + 1).

Eqs. (1.18) and (1.19) additionally show that the randomness in the
number of active relays affects the coding gain of the system only when
L ≥ Nmax + 1. Indeed, in the case of L < Nmax + 1, the coding gain is
the same of the case when all the potential relays are active in Phase II
and depends on the nonzero eigenvalues of RHR; in such a case, the
coding gain is maximized when the product of the nonzero eigenvalues
of RHR is maximized, which is tantamount to solving the constrained
optimization problem

Ropt = arg max
R∈CL×(Nmax+1)

Rmax∏
r=1

µr(RHR) (1.20)

subject to trace(RHR) = ρ > 0, where the imposed constraint avoids
the trivial solution for which the Frobenius norm of R is unbounded.
Instead, in the case of L ≥ Nmax +1, the coding gain is maximized when
the product of the nonzero eigenvalues of SRHRS is maximized for all
the possible configurations of active relays, which leads to the following
constrained optimization problem

Ropt = arg max
R∈CL×(Nmax+1)

R(s)∏
r=1

µr(SRHRS) (1.21)

subject to trace(SRHRS) = ρR(s)/Rmax, for all the 2Nmax different
realizations s of s̃. With regard to the solution of (1.20) and (1.21), we
give the lemma:

Lemma 1. When L < Nmax + 1 and, thus, Rmax = L, the solution
of (1.20) obeys Ropt RH

opt = (ρ/L) IL. On the other hand, when L ≥
Nmax + 1 and, thus, Rmax = Nmax + 1, the solution of (1.21) is given by
RH

opt Ropt = [ρ/(Nmax + 1)] INmax+1.

Proof. See Appendix B.

It is noteworthy that the signatures (1.20) and (1.21) cannot be cho-
sen by the relays locally, i.e., in a decentralized manner, but they must
be assigned to them by a central unit, i.e., in a centralized fashion. To
decentralize the coding method, the nth active relay can choose r̃n at
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random locally [21], without coordinating with other cooperating re-
lays. The ASEP performance of a randomized scheme can be obtained
by evaluating the ensemble average of (1.18) and (1.19) with respect to
R̃. We directly defer to [21] for details on how to explicitly calculate
such averages in the case of some specific randomization rules, such as
real/complex Gaussian, uniform phase, real/complex spherical distribu-
tion, and antenna selection.

1.3.2 Finite-SNR analysis of the IML detector

Numerical results reported in Section 1.5 show that the behavior
of the finite-SNR diversity order as a function of γ is not significantly
affected by the randomness in the number of active relays for moderate-
to-high SNR values. Thus, in order to also simplify the analysis, we
refer herein to the case in which all the relays are active in Phase II,
i.e., we consider the single realization10 s = 1Nmax of s̃. In this case, for
a given pair (ak,a`), the finite-SNR diversity order Giml

d (γ, k, `) of the
IML detector can be obtained from (1.1) where APEP(γ) is replaced
with

Em̃ | s̃=1Nmax ,R̃=R

{
Eg̃ | m̃,s̃=1Nmax ,R̃=R

[
PEPiml(h̃, m̃)

]}
.

Accounting for all possible pairwise errors, the finite-SNR diversity order
of the IML detector is defined as

Giml
d (γ) , min

k, ` ∈ {1, 2, . . . , |A|}
` 6= k

Giml
d (γ, k, `) (1.22)

whose exact expression is given by the following theorem:

Theorem 2 (IML finite-SNR diversity order). Let us define Φk,` ,
Ck,`RΣg̃ RHCHk,` ∈ CP×P and Λm , diag(λm1/m1!, . . . , λmP /mP !) ∈

10The generalization of the forthcoming results to an arbitrary realization of the
random vector s̃ is straightforward.
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RP×P . It results that Giml
d (γ) is given by

Giml
d (γ) = min

k, ` ∈ {1, 2, . . . , |A|}
` 6= k

+∞∑
m1=0

+∞∑
m2=0

. . .
+∞∑
mP =0

det(Λm)

∫ π/2

0
u1(γ, θ,m)u2(γ, θ,m) dθ

+∞∑
m1=0

+∞∑
m2=0

. . .
+∞∑
mP =0

det(Λm)

∫ π/2

0
u1(γ, θ,m) dθ

(1.23)

with

u1(γ, θ,m) , det−1
(
IP +

γ

4 sin2 θ
Σ−1

m Φk,`

)
(1.24)

u2(γ, θ,m) , trace

[(
4 sin2 θ

γ
Σm + Φk,`

)−1

Φk,`

]
(1.25)

where rank(Σ−1
m Φk,`) = rank(Φk,`) = rank(Ck,`R) = Rmax ≤ P , pro-

vided that P ≥ L.

Proof. See Appendix C.

As a first remark regarding Theorem 2, we observe that Σm �
[Γ/(1 + Γ)] IP and, thus, one gets(

4 Γ sin2 θ

γ (1 + Γ)
IP + Φk,`

)−1

�
(

4 sin2 θ

γ
Σm + Φk,`

)−1

(1.26)

which, along with sin2 θ ≥ 0, implies [61] that

u2(γ, θ,m) ≤ lim
θ→0

trace

{[
4 Γ sin2 θ

γ (1 + Γ)
IP + Φk,`

]−1

Φk,`

}
. (1.27)

By invoking the limit formula and the properties of the Moore-Penrose
inverse [62], one has

u2(γ, θ,m) ≤ trace

[(
Σ

1/2
g̃ RHCHk,`

)† (
Σ

1/2
g̃ RHCHk,`

)]
= trace

[(
RHCHk,`

)† (RHCHk,`
)]

= rank
[(
RHCHk,`

)† (RHCHk,`
)]

= rank(Ck,`R) = Rmax . (1.28)
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The first consequence of (1.28) is that Giml
d (γ) ≤ Rmax, where we recall

that Rmax is the asymptotic diversity order (see Subsection 1.3.1). More-
over, the functions u1(γ, θ,m) and u2(γ, θ,m) are non-decreasing and
non-increasing, respectively, with respect to m = [m1,m2, . . . ,mP ] ∈
NP , i.e., let m , [m1,m2, . . . ,mP ] ∈ NP , ifmp ≤ mp for p ∈ {1, 2, . . . , P},
then Σm � Σm implying [61] that u1(γ, θ,m) ≤ u1(γ, θ,m) and
u2(γ, θ,m) ≥ u2(γ, θ,m). With regard to the behavior of Giml

d (γ) for fi-
nite values of the SNR, it is seen that u1(γ, θ,m) is a non-increasing func-
tion with respect to γ, i.e., if γ1 < γ2, then u1(γ1, θ,m) ≥ u1(γ2, θ,m);
whereas, the function u2(γ, θ,m) is non-decreasing with respect to γ,
i.e., u2(γ1, θ,m) ≤ u2(γ2, θ,m) if γ1 < γ2. In highly-impulsive noise
cases, this fact does not allow Giml

d (γ) to monotonously increase for rais-
ing values of γ, by leading to a fluctuating trend.

To gain more insight into this behavior, let us consider an M -term
truncated version of the MCA noise model, with M ≥ 2, which has been
shown to be a good approximation for several scenarios of interest [60].
In this case, the diversity order (1.23) can be approximated as

Giml
d (γ) ≈ min

k, ` ∈ {1, 2, . . . , |A|}
` 6= k

M−1∑
m1=0

M−1∑
m2=0

. . .

M−1∑
mP =0

det(Λm)u1(γ, π/2,m)u2(γ, π/2,m)

M−1∑
m1=0

M−1∑
m2=0

. . .

M−1∑
mP =0

det(Λm)u1(γ, π/2,m)

(1.29)

where we have additionally used the trapezoid rule11 to approximate
the integrals in (1.23). Let us consider the cases of near-Gaussian and
highly-impulse noise separately.

Near-Gaussian noise case

Under the assumption that (M − 1)/λ � Γ, i.e., the noise is near
Gaussian, it results from (1.4) that

σ2
mp
≈ σ2

0 =
Γ

1 + Γ
(1.30)

11Let b > a and f(x) ≥ 0, the following approximation
∫ b

a
f(x) dx ≈ (1/2) (b −

a) [f(a) + f(b)] is called the trapezoid rule.
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for each mp ∈ {0, 1, . . . ,M − 1} and p ∈ {1, 2, . . . , P}. Thus, it follows
from (1.24), (1.25), and (1.29) that

Giml
d (γ) ≈ min

k, ` ∈ {1, 2, . . . , |A|}
` 6= k

trace

[(
4σ2

0

γ
IP + Φk,`

)−1

Φk,`

]
(1.31)

which is a non-decreasing function of the SNR approaching its asymp-
totic value Rmax as γ → +∞.

As a case study, let us assume that: (i) the source and all the relays
are (approximatively) at the same location, i.e., Σg̃ = σ2

g̃0
INmax+1; (ii)

L ≤ Nmax + 1 and Ropt RH
opt = (ρ/L) IL (see Lemma 1);12 (iii) the

space-time code is complex orthogonal [31], i.e., CH(a)C(a) = ‖a‖2 IL,
∀a ∈ CK − {0K}. Under these assumptions, it results that Φk,` =
[(σ2

g̃0
ρ)/L]Ck,` CHk,`, with L ≤ P , and, hence, it follows from (1.31) that13

Giml
d (γ) ≈ Lτ γ

L+ τ γ
, with τ ,

ρ (1 + Γ) ∆2
min σ

2
g̃0

4 Γ
(1.32)

where ∆min denotes the minimum distance between the blocks of sym-
bols in A. Eq. (1.32) clearly shows that Giml

d (γ) monotonously increases
as a function of γ for reaching the asymptotic value Rmax = L.

Highly-impulsive noise case

Under the assumption that λΓ � 1 with Γ < 1, i.e., the noise is
highly impulsive, it results from (1.4) that

σ2
mp
≈ mp

λ (1 + Γ)
(1.33)

for each mp ∈ {1, 2, . . . ,M−1} and p ∈ {1, 2, . . . , P}. In this case, using
(1.33) and neglecting all the summands that tend to zero faster than λ,

12The case of L > Nmax + 1 and RH
opt Ropt = [ρ/(Nmax + 1)] INmax+1 can be

treated in a similar way.
13We have used the three facts that: (i) (a IP + Ck,` CH

k,`)
−1 = a−1[IP −

Ck,`(CH
k,` Ck,` + a IL)−1CH

k,`], where a is an arbitrary constant; (ii) trace(Ck,` CH
k,`) =

trace(CH
k,` Ck,`); (iii) CH

k,` Ck,` = ‖ak − a`‖2 IL.
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the diversity order given by (1.29) can be further approximated as

Giml
d (γ) ≈ min

k, ` ∈ {1, 2, . . . , |A|}
` 6= k

u1(γ, π/2,0P )u2(γ, π/2,0P ) + λ
P∑
p=1

u1(γ, π/2, ep)u2(γ, π/2, ep)

u1(γ, π/2,0P ) + λ

P∑
p=1

u1(γ, π/2, ep)

(1.34)

where ep ∈ CP has the only nonzero entry {ep}p = 1, for each p ∈
{1, 2, . . . , P}. To streamline our analysis, let us focus on the case study
considered in Subsection 1.3.2, with the additional assumption that the
space-time code is square (L = P ),14 i.e., when Φk,` = [(σ2

g̃0
ρ)/L] ‖ak −

a`‖2 IL. In this case, it can be seen that (1.24) and (1.25) simplifies to

u1(γ, π/2, ep) =
L∏
p=1

(
1 +

ρ ‖ak − a`‖2 σ2
g̃0

4L

γ

σ2
mp

)−1

(1.35)

u2(γ, π/2, ep) =
L∑
p=1

(
1 +

4L

ρ ‖ak − a`‖2 σ2
g̃0

σ2
mp

γ

)−1

(1.36)

for each p ∈ {1, 2, . . . , P}. By substituting (1.35) and (1.36) in (1.34),
and using (1.33), after some algebraic rearrangements, one has

Giml
d (γ) ≈

τ γ

(1 + τ
L γ)2

+
Lλ

1 + τ
L λΓ γ

[
(L− 1) τ

L γ

1 + τ
L γ

+
τ
L λΓ γ

1 + τ
L λΓ γ

]
1

1 + τ
L γ

+
Lλ

1 + τ
L λΓ γ

(1.37)

Example 1. The exact value of Giml
d (γ) in (1.23), and its approxi-

mations (1.29) and (1.34), are depicted in Fig. 1.1 (left-side plot) as
a function of γ for different STBC rules, with QPSK signaling, i.e.,

14With respect to their nonsquare counterparts, square complex orthogonal code
matrices require a much smaller processing delay, with the consequence of a slightly
smaller maximum code rate [63].
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ãk = {±1/
√

2 ± j/
√

2}, for k ∈ {1, 2, . . . ,K}, Nmax = L − 1, M = 2,
λ = 10−3, Γ = 0.1, and σ2

g̃0
, d−2

SD, where dSD = 10 meters is the
distance between the source and the destination. Specifically, we con-
sidered as STBC rules the full-rate Alamouti complex code [64] of order
L = K = P = 2, the complex orthogonal code of order L = K = 3
with code rate K/P = 3/4 [65], and, finally, the complex orthogonal
code of order L = K = 4 with code rate K/P = 4/8 = 1/2 [8, Example
4.7.1]. In all these cases, the asymptotic diversity order is Rmax = L. It
is seen that, for the 2 × 2 and 4 × 3 STBC matrices, the diversity or-
der rises and falls between a maximum and a minimum before starting
to monotonically increase for reaching the asymptotic values 2 and 3,
respectively; such a fluctuating behavior completely disappears in the
case of the 8× 4 STBC matrix, where Giml

d (γ) monotonously reaches its
asymptotic value 4. It can be observed a satisfactory agreement among
(1.23), (1.29), and (1.34): with reference to the Alamouti code, the
simple formula (1.37), which exactly coincides with (1.34) for L = P ,
accurately captures the behavior of Giml

d (γ), by showing only a slight
discrepancy in the neighborhood of the local minimum.

After some straightforward but tedious calculations, it is shown that
Giml
d (γ) given by (1.37) has local maximum and minimum points at

γiml
max ≈

L

τ
√
λ

and γiml
min ≈

√
L

λ τ
√

Γ
(1.38)

respectively, which allow to directly link the extrema of Giml
d (γ) to the

parameters of noise and STBC. In the case of the Alamouti code (see
Example 1), eq. (1.38) gives γiml

max = 24.56 dB and γiml
min = 43 dB, whereas

their corresponding exact values numerically obtained from (1.23) are
24 dB and 42 dB, respectively.

1.4 Performance analysis of the MD detector

The diversity scheme considered in Section 1.3 requires that the des-
tination node implements the decision rule (1.8) for ML detection of
ã, by resorting to the M -term truncation of the noise pdf. For those
systems with simple terminal units such as wireless sensor networks and
practical ad hoc or multihop wireless networks, this processing may be
too computationally expensive for large value of K, M , P , and/or |A|.
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Herein, we investigate the performance of a suboptimal scheme, which
is based on the MD decision rule and, thus, involves a less processing
burden at the destination.

Given h̃ = h, the MD decision rule is defined as follows

âmd = arg min
k∈{1,2,...,|A|}

‖y − Ck h‖2 (1.39)

which turns out to be optimal (in the minimum-error-probability sense)
when the noise d̃p boils down to a circular symmetric complex Gaussian
RV, for each p ∈ {1, 2, . . . , P}. For the noise model at hand, this happens
for asymptotically large values of λ and/or Γ.

In what follows, we study the cases of the high- and finite-SNR
regimes separately, by again keeping the signature matrix R̃ fixed to
R, with rank Rmax = min(L,Nmax + 1).

1.4.1 Analysis of the MD detector in the high-SNR region

As previously done in the IML case, for sufficiently high SNR val-
ues, the ASEP at the output of the MD decoder, given s̃ = s, can be
approximatively expressed as

ASEPmd(R, s) ≈ Ne · max
k, ` ∈ {1, 2, . . . , |A|}

` 6= k

Em̃ | s̃=s,R̃=R

{
Eg̃ | m̃,s̃=s,R̃=R

[
PEPmd(h̃, m̃)

]}
(1.40)

where, from (1.39), we have that PEPmd(h̃, m̃) , P ({ak → a`}md | h̃, m̃),
conditioned on h̃ = h and m̃ = m, is given by

PEPmd(h,m) = Q

(
‖Ck,` h‖2

√
2σ2 ‖Σ1/2

m Ck,` h‖

)
≤ Q

(
‖Ck,` h‖√

2σ2 µ1(Σm)

)

=
1

π

∫ π/2

0
exp

(
−

hH CHk,` Ck,` h

4σ2 µ1(Σm) sin2 θ

)
dθ (1.41)

where the Rayleigh-Ritz inequality ‖Σ1/2
m Ck,` h‖2 ≤ µ1(Σm) ‖Ck,` h‖2

has been invoked [61]. It is noteworthy that, by directly comparing
(1.10) and (1.41), it results that, if the number of impulses affecting the
destination is identical in each symbol period, i.e., Σm = σ2

m1
IP , the
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MD detector has the same PEP performance of the IML one. More gen-
erally, it results that PEPml(h) ≤ PEPmd(h,m), which is a consequence
of the fact that the ML detector minimizes the probability of error when
the specific realization of m̃ is unknown. Given R̃ = R and s̃ = s, the
ASEP performance of the MD detector in the high-SNR region is given
by the theorem:

Theorem 3 (MD ASEP for a fixed number of active relays). Under the
same assumptions of Theorem 1, it results that

ASEPmd(R, s) / Ψ(λ,R(s)) Υ(N(s))

·

R(s)∏
r=1

1

µr(SRHRS)

 γ−R(s) (1.42)

where

Ψ(λ,R(s)) , P E

[(
m̃p λ

−1 + Γ

1 + Γ

)R(s)
]

(1.43)

whereas Υ(N(s)) and γ have been defined in Theorem 1.

Proof. See Appendix D.

It is apparent from Theorems 1 and 3 that the upper bounds (1.12)
and (1.42) on the ASEP performance of the IML and MD detectors, re-
spectively, differ only for the presence of the function Ψ(λ,R(s)). There-
fore, following the same steps done in Subsection 1.3.1, one obtains

ASEPmd(R) , Es̃ | R̃=R

[
ASEPmd(R̃, s̃)

]
/

Nmax∑
n=0

ASEP
(n)
md(R) γ−[min(L,n+1)+Nmax−n] (1.44)

where ASEP
(n)
md(R) , Ψ(λ,R(s)) ASEP

(n)
iml(R), which, compared to (1.16),

shows that the IML and MD detectors have the same asymptotic diver-
sity order Rmax but different coding gains. In particular, it is shown
in [43, Appendix I] that Ψ(λ,R(s)) ≥ 1 and, additionally, that the func-
tion Ψ(λ,R(s)) is monotonically decreasing in λ and monotonically in-
creasing in R(s). In other words, the coding gain of the MD detector
is smaller than or equal to that of the IML one and the performance
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Figure 1.1: Very highly-impulsive noise: Diversity orders Giml
d (γ) (left-side plot)

and Ĝmd
d (γ) (right-side plot) versus γ for different STBC rules (Examples 1 and 2:

QPSK signaling, Nmax = L− 1, M = 2, λ = 10−3, Γ = 0.1, and σ2
g̃0 , 10−2).

penalty enlarges for increasing values of R(s); on the other hand, for
a fixed value of R(s), such a penalty is negligible in the case of near
Gaussian noise, i.e., for high values of λ, while it becomes significant if
the noise is highly impulsive, i.e., for small values of λ. However, the
signature matrix Ropt given by (1.20) and (1.21) also maximizes the
coding gain of the system with MD detection at the destination when
L < Nmax + 1 and L ≥ Nmax + 1, respectively. The ASEP performance
of a randomized scheme with a specific probability distribution directly
follows from (1.44) by using the results of [21].

1.4.2 Finite-SNR analysis of the MD detector

As done for the IML detector in Subsection 1.3.2, the finite-SNR per-
formance of the MD detector is evaluated by considering the single real-
ization s = 1Nmax of the vector s̃. In this case, for a given pair (ak,a`),
the exact expression of the finite-SNR diversity order Gmd

d (γ, k, `) can
be obtained from (1.1) where APEP(γ) is replaced with

Em̃ | s=1Nmax ,R̃=R

{
Eg̃ | m̃,s=1Nmax ,R̃=R

[
PEPmd(h̃, m̃)

]}
.



32
Chapter 1 Performance Analysis of Distributed Space-Time

Block Coding Schemes in Middleton Class-A Noise

In this respect, by resorting to the upper bound in (1.41), we observe
that

Em̃ | s=1Nmax ,R̃=R

{
Eg̃ | m̃,s=1Nmax ,R̃=R

[
PEPmd(h̃, m̃)

]}
≤ P

π

+∞∑
mp=0

pm̃p
(mp)

∫ π/2

0
det−1

(
IP + γ

Φk,`

4σ2
mp

sin2 θ

)
dθ

(1.45)

where we have used (D.1) in Appendix D, with Φk,` defined in Theo-
rem 2, and the facts that µ1(Σm̃) = max(σ2

m̃1
, σ2

m̃2
, . . . , σ2

m̃P
) and the

pmf of m̃ , max(m̃1, m̃2, . . . , m̃P ) can be upper bounded as in (D.4) in
Appendix D. Similarly to (1.22), the finite-SNR diversity order of the
MD detector is defined as

Gmd
d (γ) , min

k, ` ∈ {1, 2, . . . , |A|}
` 6= k

Gmd
d (γ, k, `) . (1.46)

In order to simplify the mathematical derivations, an estimate Ĝmd
d (γ) of

Gmd
d (γ) is evaluated in the following theorem by using (1.1) and replacing

APEP(γ) with the upper bound in (1.45). The good agreement between
Ĝmd
d (γ) and Gmd

d (γ) is demonstrated in Section 1.5 through Monte Carlo
simulations.

Theorem 4 (Estimate of the MD finite-SNR diversity order). It results
that Ĝmd

d (γ) is given by

Ĝmd
d (γ) = min

k, ` ∈ {1, 2, . . . , |A|}
` 6= k

+∞∑
mp=0

λmp

mp!

∫ π/2

0
v1(γ, θ,mp) v2(γ, θ,mp) dθ

+∞∑
mp=0

λmp

mp!

∫ π/2

0
v1(γ, θ,mp) dθ

(1.47)
with

v1(γ, θ,mp) , det−1

(
IP +

γ

4σ2
mp

sin2 θ
Φk,`

)
(1.48)

v2(γ, θ,mp) , trace

(4σ2
mp

sin2 θ

γ
IP + Φk,`

)−1

Φk,`

 (1.49)
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where Φk,` has been defined in Theorem 2.

Proof. The proof is omitted since it can be carried out by proceeding as
in Appendix C.

Similarly to (1.27) and (1.28), it can be shown that v2(γ, θ,mp) ≤
Rmax, which implies that Ĝmd

d (γ) ≤ Rmax, where Rmax is the asymptotic
diversity order. Moreover, the functions v1(γ, θ,mp) and v2(γ, θ,mp) are
non-decreasing and non-increasing, respectively, with respect to mp ∈ N.

As previously done for the IML detector, we approximate the di-
versity order (1.47) by considering an M -term truncated version of the
MCA noise model, with M ≥ 2, thus obtaining

Ĝmd
d (γ) ≈ min

k, ` ∈ {1, 2, . . . , |A|}
` 6= k

M−1∑
mp=0

λmp

mp!
v1(γ, π/2,mp) v2(γ, π/2,mp)

M−1∑
mp=0

λmp

mp!
v1(γ, π/2,mp)

(1.50)
where we have again used the trapezoid rule to approximate the integrals
in (1.47). In the sequel, the cases of near-Gaussian and highly-impulse
noise are studied separately.

Near-Gaussian noise case

If (M − 1)/λ � Γ, the approximation (1.30) holds and, then, it
follows from (1.48), (1.49), and (1.50) that Ĝmd

d (γ) ≈ Giml
d (γ), where

Giml
d (γ) is given by (1.31). In other words, when the noise is near Gaus-

sian, the MD and IML detectors achieve the same finite-SNR diversity
order, which is a monotonous increasing function of the SNR [see also
the particular case (1.32)].

Highly-impulsive noise case

If λΓ � 1 with Γ < 1, approximation (1.33) holds and, hence,
neglecting all the summands in (1.50) that tend to zero faster than λ,
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one obtains

Ĝmd
d (γ) ≈ min

k, ` ∈ {1, 2, . . . , |A|}
` 6= k

v1(γ, π/2, 0) v2(γ, π/2, 0) + λ v1(γ, π/2, 1) v2(γ, π/2, 1)

v1(γ, π/2, 0) + λ v1(γ, π/2, 1)
(1.51)

Under the same assumptions for which (1.35) and (1.36) hold, eqs. (1.48)
and (1.49) boil down to15

v1(γ, π/2,mp) =

(
1 +

ρ ‖ak − a`‖2 σ2
g̃0

4L

γ

σ2
mp

)−L
(1.52)

v2(γ, π/2,mp) = L

(
1 +

4L

ρ ‖ak − a`‖2 σ2
g̃0

σ2
mp

γ

)−1

. (1.53)

By substituting (1.52) and (1.53) in (1.51), one obtains

Ĝmd
d (γ) ≈

τ γ

(1 + τ
L γ)L+1

+
τ λ2 Γ γ

(1 + τ
L λΓ γ)L+1

1

(1 + τ
L γ)L

+
λ

(1 + τ
L λΓ γ)L

. (1.54)

Example 2. The diversity order Ĝmd
d (γ) given by (1.47), and its ap-

proximations (1.50) and (1.51), are depicted in Fig. 1.1 (right-side plot)
as a function of γ, by using the same setting of Example 1. All the
curves show a very good agreement between estimated and approximate
results. We recall that the simple formula (1.54) exactly coincides with
(1.51) for L = P . It is apparent that, as in the IML case (see left-side
plot of Fig. 1.1), the function Ĝmd

d (γ) is characterized by a fluctuating

trend. However, Ĝmd
d (γ) exhibits wider fluctuations than that of the

IML one, which do not smooth as Rmax increases, thus deteriorating
the system performance; differently from the IML case, it is noteworthy
that the diversity order of the MD detector can be smaller than 1 over
a wide region of SNR values, i.e., Ĝmd

d (γ) < 1 for γmd
lower < γ < γmd

upper.

15Additionally, such expressions also hold if the complex orthogonal code matrix
is nonsquare, i.e., L < P .
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Starting from (1.54) and putting aside the threshold γmd
lower that falls

into a SNR regime of no practical interest in many communication sce-
narios, it can be verified that

γmd
upper =

L

τ λΓ (L− 1)
(1.55)

which diminishes for increasing values of L. In the case of the Alam-
outi code (Example 1), eq. (1.55) gives γmd

upper = 49.58 dB, whereas its
corresponding exact value numerically obtained from (1.47) is 50 dB.

1.5 Monte Carlo performance analysis

We present a Monte Carlo numerical analysis of the cooperative
schemes considered in Sections 1.3 and 1.4 to validate and complete
our theoretical performance analyses, with reference to both centralized
and decentralized relaying, denoted with the subscripts “C” and “D”
in the plots, respectively. In the former case, the signature matrix R̃
is chosen according to Lemma 1, i.e., the source and each active relay
transmit a preassigned column of the STBC matrix C(ã); in the latter
case, R̃ = [ρ/(LN)]1/2 Ñ , where the entries of Ñ ∈ CL×N are i.i.d.
CN (0, 1), i.e., the source and each active relay transmit a linear combi-
nation of the columns of C(ã) with complex Gaussian coefficients. In all
the experiments, we adopted the following simulation setting. All the
relay nodes are uniformly and independently distributed in a circle of
radius 10 meters centered around the destination node. The distance
dSD between the source and the destination is 10 meters, and σ2

g̃0
, d−2

SD.

For n ∈ {1, 2, . . . , Nmax}, we assumed that σ2
f̃n

, d−2
SR,n and σ2

g̃n
, d−2

RD,n,

where dSR,n is the distance between the source and the nth relay, whereas
dRD,n is the distance between the nth relay and the destination. We sim-
ulated three different impulsive noise environments: near-Gaussian with
(λ,Γ) = (1, 0.1), highly-impulsive with (λ,Γ) = (10−2, 0.1), and very
highly-impulsive with (λ,Γ) = (10−3, 0.1). We studied the performances
of ML, IML, and MD detectors in terms of ABER and diversity order
as a function of the SNR. As a reference, the ABER of the optimum de-
tector for the classical Rayleigh-fading channel affected by AWGN with
variance σ2, which is referred to as “Gauss” in the plots, was addition-
ally reported. For each of the 106 independent Monte Carlo run carried
out (wherein, besides the network configuration, channel coefficients,
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Figure 1.2: Very highly-impulsive noise: Comparison between (1.22)–(1.23) (left-
side plot) and (1.46)–(1.47) (right-side plot) versus γ for different STBC rules (Ex-
ample 3: QPSK signaling, Nmax = L− 1, λ = 10−3, Γ = 0.1, and σ2

g̃0 , 10−2).
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Figure 1.3: Near-Gaussian noise: ABER versus SNR (Example 4: 2 × 2 Alamouti
complex code, Nmax = 1 and Nmax = 3 potential relays): in the left-side plot, the
number of active relays in Phase II is fixed; in the right-side plot, the number of
active relays in Phase II is randomly time-varying.

impulsive noise, data sequences, and randomization coefficients are ran-
domly generated), an independent record of 102 symbols was considered
to evaluate the ABER and the APEP to be used in (1.1).

Example 3: Finite-SNR diversity order analysis of the IML and MD
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Figure 1.5: Highly-impulsive noise: ABER versus SNR (Example 5: 4× 3 complex
orthogonal code and Nmax = 2 potential relays): in the left-side plot, the number
of active relays in Phase II is fixed to 2; in the right-side plot, the number of active
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detectors for different STBC rules

In this example, the left-side plot of Fig. 1.2 shows the comparison
between the diversity order Giml

d (γ) defined by (1.22), which was evalu-
ated by using (1.1) and averaging the exact expression of PEPiml(h,m)
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complex orthogonal code and Nmax = 2 potential relays): in the left-side plot, the
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active relays in Phase II is randomly time-varying.

reported in (1.10), and its expression given by (1.23). We resorted to
the same simulation setting of Examples 1 and 2. It is confirmed that
the result (1.23) of Theorem 2 is exact. Additionally, we reported in
the right-side plot of Fig. 1.2 the comparison between the estimated di-
versity order Ĝmd

d (γ) (see Theorem 4) and its exact counterpart Gmd
d (γ)

defined by (1.46), which was evaluated by using (1.1) and averaging the
exact expression of PEPmd(h,m) reported in (1.41). All the curves show
a good agreement between exact and approximate results for both the
considered STBC rules, thus demonstrating that Ĝmd

d (γ) is good candi-
date to substitute Gmd

d (γ) when theoretical findings are of concern.

Example 4: ABER analysis with Alamouti STBC (L = 2)

In this example, it was used a QPSK signaling and the full-rate
Alamouti code of order L = K = P = 2 [64], as in Example 1. Figs. 1.3
and 1.4 refer to the case of near-Gaussian and very highly-impulsive
noise, respectively. In this case, the asymptotic diversity order of all the
schemes under comparison is equal to Rmax = min{L,Nmax + 1} = 2
for both the values of Nmax. In the left-side plot, the number of ac-
tive relays in Phase II is kept fixed, whereas in the right-side plot, the
number of active relays in Phase II is randomly time-varying according
to the statistical distribution of the vector s̃ discussed in Section 1.2.
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It is apparent from all the figures that the ABER curves of the IML
detector strictly follow the corresponding ones of the ML detector. In
particular, independently of the detecting structure employed at the
destination, the complex Gaussian decentralized scheme pays a perfor-
mance degradation with respect to its centralized counterpart in both
the noise environments, that becomes slight by increasing the number of
relays. Moreover, with reference to the very highly-impulse noise case,
the fluctuating trend of the finite-SNR diversity order of the MD detec-
tor significantly penalizes the ABER performance of such a detector in
both its centralized and decentralized versions. Finally, the randomness
in the number of active relays impacts on both the coding gain and the
diversity order of the detectors in both noise environments; in particu-
lar, it is worth noticing that, for moderate-to-high SNR values, such an
impact on the diversity order is not significant, i.e., each ABER curve
in the left-side plots of Figs. 1.3 and 1.4 exhibits a similar slope to the
corresponding curve in the right-side plots.

Example 5: ABER and finite-SNR diversity order analysis with orthog-
onal STBC of order L = 3

In this example, it was used a BPSK signaling, i.e., ãk = {±1},
for k ∈ {1, 2, . . . ,K}, to reduce the implementation complexity of the
ML detector. We considered as STBC rule the complex orthogonal
code of order L = K = 3 code rate is K/P = 3/4 [65]. The ABER
curves of Fig. 1.5 and the finite-SNR diversity order results in Fig. 1.6,
the latter ones were obtained by using (1.1) and averaging (1.10) and
(1.41), refer to the case of Nmax = 2 active relays for highly-impulsive
noise. In this case, the asymptotic diversity order of all the schemes
under comparison is equal to Rmax = min{L,Nmax + 1} = 3. In the
left-side plot, the number of active relays in Phase II is kept fixed to
2, whereas in the right-side plot, the number of active relays in Phase
II is randomly time-varying according to the statistical distribution of s̃
discussed in Section 1.2. Besides confirming the results of Example 4, it
is also apparent from Fig. 1.5 that, in the case of highly-impulsive noise,
the larger is the diversity order, the more evident is the performance
penalty of the MD detector with respect to the ML and IML ones in
terms of coding gain. This is in accordance with the theoretical results
derived in Subsections 1.3.2 and 1.4.2. Finally, it can be argued from
Fig. 1.6 that, for γ > 16 dB, the diversity order of the MD detector
when the number of relays is randomly time-varying approximatively
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exhibits the same behavior of the case in which the number of relays is
fixed, whereas the randomness in the number of active relays tends to
smooth the difference between the diversity order of the centralized and
decentralized IML detectors.

1.6 Conclusions

In this first chapter, we studied the performance of distributed Space-
Time Block Coding (STBC) schemes involving multiple decode-and-
forward (D&F) relays in the presence of Middleton Class-A (MCA)
impulsive noise, by considering both optimal and suboptimal detect-
ing structures at the destination. Our analytical analysis and simula-
tion results show that the principal adverse impact of highly-impulsive
noise on the system performance is to significantly slow down the rate
of convergence of the diversity order to its asymptotic value Rmax =
min(L,Nmax +1). This effect is much more evident for the MD detector,
which additionally pays a significant performance penalty with respect
to the ML and IML detectors in terms of coding gain. Future research
issues consist of applying our general framework to different relaying
strategies and suboptimal detectors with memoryless nonlinearity.



Chapter 2

Decision Maker Approaches
for Cooperative Spectrum
Sensing: Participate or Not
Participate in Sensing?

2.1 Introduction

Cognitive Radio (CR) [66], [67], [68], is considered the enabling tech-
nology of the Dynamic Spectrum Access (DSA) paradigm which is en-
visaged to solve the current radio spectrum inefficiency problem and
satisfy the increased demand for bandwidth. This objective is achieved
by allowing the unlicensed users, referred to as Cognitive Users (CUs),
to dynamically exploit the spectrum opportunities, also referred to as
Spectrum Holes, namely the portions of the radio spectrum temporarily
not occupied by the licensed users, referred to as Primary Users (PUs),
which have the priority for using the spectrum.

Spectrum Sensing [69], [70], is the key functionality of CR networks
since it enables the CU to discover the spectrum opportunities in the sur-
rounding radio environment, namely to discriminate between the pres-
ence or the absence of the PU. One of the main objectives of spectrum
sensing techniques is to guarantee an high detection accuracy for avoid-
ing PU interference. However, this objective is difficult to achieve due
to the wireless-channel impairments, such as multipath fading and shad-
owing, that severely affect the sensing reliability. Thus, recently, cooper-
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ative spectrum sensing has been proposed as an effective way to improve
the sensing performance by exploiting the spatial diversity among the
CUs. By cooperation, CUs share their local sensing information through
links, referred to as reporting channels (RCs), and a decision maker com-
bines these sensing statistics to take the cooperative decision about the
presence of the PU [17,19,71–74].

The cooperative sensing techniques available in literature are mainly
based on two different decision approaches, according to the role of the
decision maker. In the first approach, referred to as Combining Deci-
sion (CD), the role of the decision maker is only to combine the sensing
information collected from its cooperators, without participating in the
sensing of the monitored band. Differently, in the second approach, re-
ferred to as Sensing & Combining Decision (SCD), the decision maker
combines not only the sensing information of its cooperators, but also
its own local sensing information.

Traditionally, the choice between the CD and SCD approaches is
based on the adopted cooperative sensing architecture [19]. More in de-
tail, CD is adopted in centralized cooperative sensing architectures1,
whereas SCD is adopted in distributed cooperative sensing architec-
tures2. This choice is mainly historical, due to the application of the
classical centralized versus distributed paradigm in CR scenarios. Never-
theless, in the appealing context of the CR Ad-Hoc Networks (CRAHNs)
[18], the aforementioned choice to associate the CD and the SCD ap-
proaches to centralized and distributed cooperative sensing architec-
tures, respectively, is not mandatory. Hence, any arbitrary cooperative
sensing technique can be implemented according to either the CD or the
SCD approach, regardless of the underlying cooperative sensing archi-
tecture.

As we prove through the work [75], the adoption of the CD or the
SCD approach deeply affects the performance of the considered coopera-
tive sensing technique, in terms of detection accuracy and, consequently,
in terms of PU interference avoidance [19]. However, the key issue of

1Centralized cooperative sensing architecture denotes a cooperative sensing based
on a central entity, referred to as Fusion Center (FC), that handles the entire cooper-
ative process. In infrastructure-based networks, the CR base-station is naturally the
FC, whereas in CRAHNs any CU can act as FC [19].

2Distributed cooperative sensing architecture denotes a cooperative sensing that
does not rely on a central entity that handles the cooperative process, but the task
is distributed among the CUs acting as decision makers.
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choosing the decision approach that guarantees the higher detection ac-
curacy independently of the underlying cooperative sensing architecture
is still an open problem.

For this reason, in this work, we derive the criteria for an effective
decision-approach selection. To the best of our knowledge, this is the
first work that addresses this issue.

Specifically, we prove that the detection accuracy of a cooperative
spectrum sensing technique exhibits a threshold behavior as a function
of the adopted decision approach: it exists a threshold value that de-
termines two different operating regions, depending on the sensing and
reporting channel parameters. In one region, the higher detection ac-
curacy is assured by implementing the cooperative sensing technique
according to the CD approach, whereas in the other region, the higher
detection accuracy is guaranteed by the SCD approach, regardless of
the underlying cooperative sensing architecture and the adopted sens-
ing technique3.

The rest of the chapter is organized as follows. In Sec. 2.2, we present
the problem statement, along with the contributions of the paper. In
Sec. 2.3, we describe the system model. In Sec. 2.4 we present interme-
diate results that will be used in Sec. 2.5 to prove the existence of the
threshold behavior in the detection accuracy. We validate the analytical
results by simulation in Sec. 2.6. In Sec. 2.7, we conclude the paper,
and, finally, some proofs are demonstrated in the appendices.

2.2 Problem Statement and Contributions

In the following, we first present some definitions used through the
paper, then we formulate the problem statement along with the contri-
butions of the work.

2.2.1 Problem Statement

Let us consider a typical cooperative sensing scenario in which M
CUs cooperate to take the decision about the PU presence on the mon-
itored band. In the rest of the paper, we consider an equal number M

3In Sec. ??, we prove that the adopted cooperative sensing technique influences
only the value of the threshold, not its existence.
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Figure 2.1: (a) Combining Decision (CD) Approach; (b) Sensing & Combining
Decision (SCD) Approach.

of cooperative CUs in both the CD and the SCD approaches for a fair
comparison.

Definition 1. Combining Decision (CD) Approach. The decision maker
combines, according to a certain criterion, only the local sensing data
of its cooperators, without participating in the sensing of the monitored
band, as depicted in Fig. 2.1-(a).

Remark 1. Definition 1 implies that all the M sensing statistics are
sent from the CU neighbors to the decision maker through the reporting
channels, since the decision maker does not participate in the sensing of
the monitored band. Thus, in Fig. 2.1-(a), the sensing link between the
decision maker and the arbitrary PU is denoted as deactivated.

Definition 2. Sensing & Combining Decision (SCD) Approach. The
decision maker combines, according to a certain criterion, both the sens-
ing data received from its cooperators and its own local sensing data, as
depicted in Fig. 2.1-(b).

Remark 2. Definition 2 implies that (M − 1) sensing statistics (rather
than M) are sent from the CU neighbors to the decision maker through
the reporting channels, since a sensing statistic is locally available at the
decision maker. Thus, in Fig. 2.1-(b), the reporting channel between the
decision maker and the arbitrary CU1 is denoted as deactivated.
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In Remarks 3 and 4 we discuss the applicability of the CD and SCD
approaches in both centralized and distributed cooperative sensing ar-
chitectures.

Remark 3. CD is the traditional approach adopted in centralized coop-
erative sensing architectures. In fact, in such a case, the decision maker
(CU0 in Fig. 2.1-a), acts only as FC and the other CUs perform local
sensing and report the results back to CU0 [19]. Differently, adopting
the SCD approach in centralized cooperative sensing architectures con-
stitutes a new hybrid solution, in which the decision maker CU0 not
only acts as FC, but it also participates in the sensing of the band.

Remark 4. SCD is the traditional approach adopted in distributed
cooperative sensing architectures. In fact, in such a case, each CU ex-
changes its sensing information with its neighbors and then it combines
its local data with the received sensing data for deciding on the PU
presence4 [19]. Differently, adopting the CD approach in distributed
cooperative sensing architectures constitutes a new hybrid solution, in
which an arbitrary CU combines the received sensing data, without par-
ticipating in the sensing of the monitored channel band.

Problem Definition:. To analytically single out the criteria estab-
lishing how to choose the decision approach that guarantees the higher
detection accuracy independently of the underlying cooperative sensing
architecture. From Definitions 1 and 2, this problem can be reformu-
lated as to analytically single out the criteria establishing when it is
more advantageous in terms of detection accuracy to use the local sens-
ing statistic of the decision maker, by allowing it to participate in the
sensing process, than to involve another CU in the cooperative process.

4Traditionally, in distributed cooperative sensing architectures, the CUs repeat
the described process to converge to a unified decision [19]. In this work, we focus on
enhancing the reliability of the decision made by each CU by selecting the effective
decision approach, since, clearly, this enhances in turn the reliability of the possible
unified decision. Moreover, we observe that reaching a unified decision could be not
practicable for two main reasons: i) in dynamic PU environments, the long decision
delays induced by the iterative nature of the unified-decision techniques could not
be tolerable; ii) if the RCs are not ideal, the underlying assumption of the unified-
decision techniques, i.e., to have a reliable decision exchange among the CUs, is
violated. Hence, in these scenarios, enhancing the reliability of the decision made by
each CU is even more important.
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2.2.2 Contributions

In this work, we solve the aforementioned decision approach prob-
lem through a theoretical analysis, by adopting the realistic multipath
frequency-selective channel model for the RCs. To guarantee generality
to the proposed analysis, we consider three different cooperative sens-
ing techniques, implemented according to both the decision approaches:
the optimal Likelihood Ratio-Test (LRT) based on the Neyman-Pearson
criterion [76] used as benchmark, and two techniques, based on a Linear
(L) and Widely-Linear (WL) processing.

We observe that the CD design of a L and a WL cooperative tech-
nique able to work in presence of temporal dispersive RCs has been
recently proposed in literature [72,77], as we discuss in Sec. 2.4. Differ-
ently, to the best of our knowledge, no technique designed according to
the SCD approach able to work in presence of temporal dispersive RCs
is available in literature. Motivated by this, to carry out the theoretical
comparison between the two decision approaches, in this paper we also
design both a L and WL cooperative techniques according to the SCD
approach for dispersive RCs (see Sec. 2.4).

In a nutshell, the contribution of the work is threefold: i) we design
two cooperative techniques for the SCD approach, able to counteract
the RC temporal dispersion; ii) we analytically derive the criteria for
choosing the decision approach assuring the higher detection accuracy,
independently of the underlying cooperative sensing architecture; iii)
we analytically prove that the detection accuracy exhibits a threshold
behavior as a function of the adopted decision approach, and we provide
the closed-form expression of the threshold value.

2.3 System Model

Here we first describe the system model at each CU, then the sys-
tem model for both the CD and the SCD approaches, by accounting for
temporal dispersive RCs.

Notations: H0 and H1 denote the hypotheses of absence and pres-
ence of the PU, respectively; the fields of complex and real numbers
are denoted with C and R; matrices [vectors] are denoted with upper
case [lower case] boldface letters (e.g., X or x); the field of m× n com-
plex [real] matrices is denoted as Cm×n [Rm×n], with Cm [Rm] used as
a shorthand for Cm×1 [Rm×1]; the superscripts ∗, T , H, −1 and † de-
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note the conjugate, the transpose, the Hermitian (conjugate transpose),
the inverse of a matrix and the Moore-Penrose inverse (generalized in-
verse) [78], respectively; the subscripts c and sc denote the CD and
the SCD approaches, respectively; Im ∈ Rm×m, 0m×n ∈ Rm×n and
1m ∈ Rm , [1, . . . , 1]T denote the identity matrix, the null matrix and
the unitary vector, respectively; trace(X) and rank(X) represent the
trace and the rank of the matrix X; R(X) and N (X) denote the range
and the null space of X; for any a ∈ Cm, ||a||22 ,

√
aHa denotes the

Euclidean norm; A = diag(A11A22 . . .Ann) is a diagonal matrix with
elements Aii on the main diagonal; E[·] and Var[·] denote the statistical
mean and variance, respectively; Re[·] denotes the real part.

2.3.1 The Local Sensing Model

We consider a CR network with M cooperative CUs. The base-band
received signal xi(k) at the i-th CU is [19,72]:

xi(k) =

{
vi(k) H0

gi s(k) + vi(k) H1

(2.1)

where s(k) is the PU’s transmitted signal, gi is the complex channel
coefficient that models the sensing channel (SC) between the PU and
the i-th CU, vi(k) ∼ CN (0, σ2

i ) is the complex zero-mean Additive
White Gaussian Noise (AWGN), assumed circular (or proper) [79], i.e.,
E[vi(n) vi(m)] = 0,∀n,m ∈ Z. Each CU adopts an energy detector as
local sensing technique, i.e., ui(q) = 1

N

∑qNs+N−1
k=qNs

|xi(k)|2 [80], where
N = bτ fsc is the number of samples available in the sensing time τ , fs
is the sampling frequency and Ns > N denotes the period of the sensing
process. According to the Central Limit Theorem, for large N , ui(q)
is approximated by a Gaussian random variable (r.v.) under both the
hypotheses H0 and H1 [72, 80, 81], with mean E[ui(q)|Hj ] , νi|Hj

and

variance Var[ui(q)|Hj ] , ζi|Hj
given by, respectively [72]:

νi|Hj
=

{
σ2
i H0

|gi|2Ĕs + σ2
i H1

, ζi|Hj
=

{
σ4
i
N H0

2 |gi|2Ĕsσ2
i +σ4

i
N H1

(2.2)

where, Ĕs = Es/N =
∑N−1

k=0 |s(k)|2/N is the PU transmitted energy
normalized with respect to the sensing samples5 N .

5s(k) is assumed deterministic and unknown as in [72, 77, 81]. However, if s(k)
is modeled as a sequence of i.i.d. r.vv., ui(q) is still approximated by a Gaussian
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2.3.2 The SCD Approach Model

Let us consider an arbitrary CU, say CU0, acting as decision maker
according to the SCD approach and combining M sensing statistics.
From Definition 2, it follows that (M − 1) sensing statistics are received
from (M − 1) cooperative CUs, whereas one sensing statistic is locally
available. Without loss of generality, let us denote the (M −1) coopera-
tive CUs as CU2, . . . ,CUM . The base-band signal at CU0 RF front-end,
received from the i-th CU, can be written as:

yi(l) =

{
u0(l), if i = 0∑Lgi−1

n=0 ui(l − n)hi(n) + ni(l), if i ∈ {2, . . . ,M}
(2.3)

where l-th is the arbitrary sampling instant at the CU0 side, ni(l) ∼
CN (0, δ2

i ) is the complex, circular, zero-mean, spatially un-correlated,

AWGN at the CU0 side, {hi(n)}Lgi−1
n=0 is the finite multipath channel

impulse response with length Lgi that models the RC between the i-
th CU and CU0, and u0(l) is the CU0 local sensing statistic. It is
reasonable to assume that geographically distributed CUs experience
independent fading. Therefore, ui(l1) and uj(l2), i 6= j, are spatially
uncorrelated under each hypothesis [72] and independent of the noise
too. To simplify the notation, Lg denotes the largest channel length,
i.e., Lg = maxMi=2 Lgi . At CU0, due to the dispersive RCs, we jointly
elaborate Le received samples for each CU, i.e., yi(l) , [yi(l) yi(l −
1) . . . yi(l − Le + 1)]T ∈ CLe , which, by using (2.3), is equal to:

yi(l) =

{
H0 u0(l), if i = 0

Hi ui(l) + ni(l), if i ∈ {2, . . . ,M}
(2.4)

In (2.4), for i 6= 0, Hi ∈ CLe×(Le+Lg−1) is a Toeplitz upper trian-
gular matrix with first row [hi(0) . . . hi(Lg − 1) 0 . . . 0] and first col-
umn [hi(0) 0 . . . 0]T , H0 ∈ RLe×(Le+Lg−1) is the Toeplitz matrix with
first row and first column equal to [1 0 . . . 0]T , ui(l) , [ui(l) . . . ui(l −
Le − Lg + 2)]T ∈ RLe+Lg−1 and ni(l) , [ni(l) . . . ni(l − Le + 1)]T ∈
CLe . By defining Hsc , diag[H0 H], with H , diag[H2 . . .HM ] ∈
C(M−1)Le×(M−1)(Le+Lg−1), usc(l) , [uT0 (l) uT (l)]T , with
u(l) , [uT2 (l) . . .uTM (l)]T ∈ R(M−1)(Le+Lg−1), nsc(l) , [0TLe

nT (l)]T , with

r.v. [80], and the subsequent analysis continues to hold.
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n(l) , [nT2 (l) . . .nTM (l)]T ∈ C(M−1)Le , and y(l) , [yT2 (l) . . .yTM (l)]T ,
(2.4) is rewritten as6:

ysc(l) ∈ CMLe , [yT0 (l) yT (l)]T = Hscusc(l) + nsc(l) (2.5)

By using (2.2) and (2.5), the mean µsc|Hj
, E[ysc(l)|Hj ] ∈ CMLe and

the covariance matrix Cysc|Hj
, E[(ysc(l) − µsc) (ysc(l) − µsc)

H |Hj ] ∈
CMLe×MLe of the Gaussian random vector ysc(l) are equal to, respec-
tively:

µsc|Hj
= HscE[usc(l)|Hj ] = Hsc ηsc,Hj

(2.6)

Cysc|Hj
= Hsc Cusc|Hj

HH
sc + Rnsc (2.7)

In (2.6), ηsc|Hj
, E[u(l)|Hj ] = [ηT0|Hj

ηTHj
]T , with ηHj

defined as ηHj
,

[ηT2|Hj
. . .ηTM |Hj

]T and ηk|Hj
= νk|Hj

1{Le+Lg−1}.

In (2.7), Rnsc , E[nsc(l) nHsc(l)] ∈ RMLe×MLe is the noise covariance
matrix equals to:

Rnsc = diag[0Le×LeRn2 . . .RnM ] , diag[0Le×Le Rn] (2.8)

with Rni , E[ni(l) nHi (l)] = δ2
i I{Le×Le} and Rn ∈ R(M−1)Le×(M−1)Le ,

diag[Rn2 . . .RnM ], whereas Cusc|Hj
, E[(usc(l)−ηsc)(usc(l)−ηsc)

H |Hj ] ∈
RM(Le+Lg−1)×M(Le+Lg−1) is the sensing covariance matrix equals to:

Cusc|Hj
= diag[Cu0|Hj

Cu2|Hj
. . .CuM |Hj

]

, diag[Cu0|Hj
Cu|Hj

] (2.9)

with Cui|Hj
, E[(ui(l) − ηi)(ui(l) − ηi)H |Hj ] = ζi|Hj

I{Le+Lg−1} and

Cu|Hj
, diag[Cu2|Hj

. . .CuM |Hj
]. By exploiting (2.5), Cysc|Hj

in (2.7)
is equivalently expressed as:

Cysc|Hj
=

[
Cy0|Hj

0Le×(M−1)Le

0(M−1)Le×Le
Cy|Hj

]
(2.10)

where
Cy0|Hj

∈ RLe×Le , H0 Cu0|Hj
HH

0 = ζ0|Hj
I{Le} (2.11)

6The transmissions of different CUs are assumed orthogonal, [72,77,81].
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Cy|Hj
∈ C(M−1)Le×(M−1)Le , H Cu|Hj

H
H

+ Rn (2.12)

Finally, since the pseudo-covariance matrix which is defined as Cy∗sc|Hj
,

E[(ysc(l)−µ) (ysc(l)−µ)T |Hj ] ∈ CMLe×MLe of ysc(l) is not null, ysc(l)
is improper [79], and Cy∗sc|Hj

is given by:

Cy∗sc|Hj
= HscCusc|Hj

HT
sc =

[
Cy0|Hj

0Le×(M−1)Le

0(M−1)Le×Le
Cy∗|Hj

]
(2.13)

where, we exploited the circular property of nsc(l), i.e., Rn∗sc = 0, Cy0|Hj

is given in (2.11) and, finally,

Cy∗|Hj
∈ C(M−1)Le×(M−1)Le = H Cu|Hj

H
T

(2.14)

2.3.3 The CD Approach Model

Let us consider now CU0 acting as decision maker according to the
CD approach and combining M sensing statistics. From Definition 1,
all the M sensing statistics are received from the M cooperative CUs,
denoted without loss of generality as CU1, . . . ,CUM . Hence, the base-
band signal at CU0 RF front-end received from the i-th CU can be
written as:

yi(l) =

Lgi−1∑
n=0

ui(l − n)hi(n) + ni(l), i ∈ {1, 2, . . . ,M} (2.15)

Remark 5. (2.15) differs from (2.4) for the presence of the CU1 sensing
statistic and the absence of the decision maker sensing statistic u0(l).
In fact, according to Definition 1, the decision maker CU0 does not
participate in the sensing of the monitored band and another CU, labeled
without loss of generality as CU1, is involved in the cooperative sensing
process. We underline that the number of cooperators is fixed to M in
both the approaches for a fair comparison. Clearly, the definitions of H,
u(l) and y(l), given above, are kept unchanged since they involve the
cooperative CUs common to both the approaches, i.e., CU2, . . . ,CUM .

Similarly to Sec. 2.3.1, by denoting with H1 ∈ CLe×(Le+Lg−1) the
Toeplitz upper triangular matrix with first row [h1(0) . . . h1(Lg−1)0 . . . 0]
and first column [h1(0)0 . . . 0]T , Hc , diag[H1 H], uc(l) , [uT1 (l) uT (l)]T ,
nc(l) , [nT1 (l) nT (l)]T , (2.15) is reformulated as follows:

yc(l) ∈ CMLe = [yT1 (l) yT (l)]T = Hcuc(l) + nc(l) (2.16)
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The mean µc|Hj
∈ CMLe and covariance matrix Cyc|Hj

, E[(yc(l) −
µc)(yc(l) − µc)H |Hj ] ∈ CMLe×MLe of the Gaussian vector yc(l) are
equal to:

µc|Hj
, E[yc(l)|Hj ] = HcE[uc(l)|Hj ] = Hc ηc,Hj

(2.17)

Cyc|Hj
= HcCuc|Hj

HH
c + Rnc =

[
Cy1|Hj

0Le×(M−1)Le

0(M−1)Le×Le
Cy|Hj

]
(2.18)

In (2.17), ηc|Hj
, E[uc(l)|Hj ] = [ηT1|Hj

ηTHj
]T . In (2.18), Cy|Hj

is given

by (2.12), Rnc ∈ RMLe×MLe , E[nc(l) nHc (l)] = diag[Rn1 Rn] and

Cy1|Hj
∈ CLe×Le = H1 Cu1|Hj

HH
1 + Rn1 (2.19)

Finally, the no-null pseudo-covariance matrix which is defined as Cy∗c |Hj
,

E[(yc(l)− µc)(yc(l)− µc)T |Hj ] ∈ CMLe×MLe of yc(l) is:

Cy∗c |Hj
= HcCuc|Hj

HT
c =

[
Cy∗1 |Hj

0Le×(M−1)Le

0(M−1)Le×Le
Cy∗|Hj

]
(2.20)

with Cy∗|Hj
reported in (2.14) and Cy∗1 |Hj

= H1 Cu1|Hj
HT

1 .

2.4 Cooperative Spectrum Sensing Techniques

Here, after brief descriptions of the cooperative WL, L and LRT
techniques, we specialize them for both the CD and SCD approaches in
presence of temporal dispersive RCs.

2.4.1 The Widely Linear Cooperative Technique

A WL cooperative technique consists in processing jointly, according
to a certain criterion, the received vector at the radio front-end of an
arbitrary CU and its conjugate version [72,77], regardless of the decision
approach. Hence, by defining the augmented received vector as ya(l) ,
[yT (l) yH(l)]T ∈ C2MLe , and the augmented processing vector as fT ,
[tT qT ], the WL test statistic can be written as:

dwl(l) = tH y(l) + qH y∗(l) = fH ya(l) (2.21)

with q = t∗, since f exhibits the conjugate symmetric property for real
sensing data {ui(q)}, [72]. For this, dwl(l) results real.



52

Chapter 2 Decision Maker Approaches for Cooperative
Spectrum Sensing: Participate or Not

Participate in Sensing?

Remark 6. In (2.21), y(l) is ysc(l) given by (2.5), if the SCD is adopted,
otherwise y(l) is yc(l) given by (2.16). In the following, we omit the
subscripts “c” and “sc” for describing the WL strategy regardless of the
considered decision approach.

Since y(l) and y∗(l) are Gaussian, dwl(l) is Gaussian as well, with
mean µwl|Hj

, E[dwl(l)|Hj ] and variance ϕ2
wl|Hj

, Var[dwl(l)|Hj ] equal

to, respectively:

µwl|Hj
= fH E[ya(l)|Hj ] , fH µ̃Hj

(2.22)

ϕ2
wl|Hj

= fHE[(ya(l)− µ̃)(ya(l)− µ̃)H |Hj ]f , fHCya|Hj
f (2.23)

By denoting with Ha , [HT HH ]T , µ̃Hj
∈ C2MLe in (2.22) can be

equivalently expressed as:

µ̃Hj
, E[ya(l)|Hj ] = Ha ηHj

= [µTHj
µHHj

]T (2.24)

where, H, ηHj
and µHj

are given by (2.5) and (2.6) if the SCD is
adopted, otherwise they are given by (2.16) and (2.17). By denoting
with Rna , diag[Rn Rn] ∈ R2MLe×2MLe , the augmented covariance
matrix Cya|Hj

∈ C2MLe×2MLe in (2.23) of the received vector ya can be
equivalently expressed as:

Cya|Hj
= HaCu|Hj

HH
a + Rna =

[
Cy|Hj

Cy∗|Hj

C∗y∗|Hj
C∗y|Hj

]
(2.25)

with7 Cy|Hj
and Cy∗|Hj

given by (2.10) and (2.13) for the SCD, oth-
erwise by (2.18) and (2.20). Then, the decision on the PU presence is
taken by comparing dwl(l) with a threshold γwl:

dwl(l) R
H1
H0

γwl (2.26)

where γwl can be set to obtain a targeted false-alarm probability [72].
Clearly, the performance of the WL technique depends on the selected
optimization criterion used to design f . According to [72], we single

7Since a covariance matrix is positive definite, except in some degenerate cases
of no interest, it is reasonable to assume the covariance matrices Cy|Hj

and Cy∗|Hj

invertible, in both the adopted decision approaches.



2.4 Cooperative Spectrum Sensing Techniques 53

out f by maximizing the Deflection Coefficient (DC), i.e., the variance-
normalized distance between the expectations of dwl(l). To avoid un-
determined solutions, the DC is maximized under the f unit-norm con-
straint:

max
f

{
m2

wl(f) ,
[µwl|H1

− µwl|H0
]2

ϕ2
wl|H1

}
=

= max
f

[fH(µ̃H1
− µ̃H0

)]2

fHCya|H1
f

, subject to fHf = 1 (2.27)

The WL Technique for the CD Approach

By adopting the CD approach, the solution of (2.27) coincides with
the solution derived in [72] for a centralized cooperative sensing archi-
tecture. In fact, as underlined in Sec. 2.2, by using the CD approach in
a centralized cooperative sensing architecture, Definition 1 agrees with
the traditional decision approach. Hence the system model (2.16) for-
mally coincides with the system model presented in [72]. For the sake
of completeness, here we report the mentioned solution:

fwl-c =

[
twl-c

t∗wl-c

]
=

C−1
yc,a|H1

(µ̃c|H1
− µ̃c|H0

)

||C−1
yc,a|H1

(µ̃c|H1
− µ̃c|H0

)||22
(2.28)

with Cyc,a|H1
and µ̃c|Hj

given by (2.25) and (2.24), respectively (Re-
mark 6). The maximized DC assured by fwl-c is equal to:

m2
wl-c(fwl-c) = (µ̃c|H1

− µ̃c|H0
)HC−1

yc,a|H1
(µ̃c|H1

− µ̃c|H0
) (2.29)

The WL Technique for the SCD Approach

By adopting the SCD approach, we can not proceed as in [72] to
determine the solution of (2.27), since Cysc,a|Hj

∈ C2MLe×2MLe is rank-
deficient, and hence, not invertible (Proposition 1). In Propositions 1
and 2, we show intermediate results, used in Theorem 5 to derive the
solution of (2.27).

Proposition 1. The rank of the augmented covariance matrix Cysc,a|Hj

is (2M − 1)Le.

Proof. See Appendix E.
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We observe that the rank-deficiency of Cysc,a|Hj
is a consequence of

the stacked procedure (Appendix E and footnote 7).

Proposition 2. The optimized WL processing vector fwl-sc, maximiz-
ing the deflection coefficient when the SCD approach is adopted, is the
solution of the following constrained maximization problem:

max
fsc

m2
wl-sc(fsc) = max

fsc

[fHsc (µ̃sc|H1
− µ̃sc|H0

)]2

fHsc Cysc,a|H1
fsc

,

subject to

{
fsc ∈ R(Cysc,a|H1

)

fHsc fsc = 1
(2.30)

Proof. Since R(Cysc,a|H1
) = R(CH

ysc,a|H1
) and N (Cysc,a|H1

) are comple-

mentary orthogonal subspaces [78], any vector fsc ∈ C2M Le can be
uniquely decomposed as fsc = fR(Cysc,a|H1

) + fN (Cysc,a|H1
). The DC

is not affected by fN (Cysc,a|H1
) since (µ̃sc|H1

− µ̃sc|H0
) ∈ R(Hsc,a) ⊆

R(Cysc,a|H1
), with µ̃sc|Hj

in (2.24). Hence, the processing vector fwl-sc

maximizing the DC can be equivalently obtained by solving the problem
(2.30).

Theorem 5. The optimized WL processing vector fwl-sc, maximizing
the deflection coefficient when the SCD approach is adopted, has the
following expression:

fwl-sc =

[
twl-sc

t∗wl-sc

]
=

C†ysc,a|H1
(µ̃sc|H1

− µ̃sc|H0
)

||C†ysc,a|H1
(µ̃sc|H1

− µ̃sc|H0
)||22

(2.31)

where C†ysc,a|H1
is the Moore-Penrose inverse [78] of the augmented co-

variance matrix (2.25) and µ̃sc|Hj
is given by (2.24).

Proof. See Appendix F

By substituting (2.31) in the DC expression, it results that the max-
imized DC is equal to:

m2
wl-sc(fwl-sc) = (µ̃sc|H1

− µ̃sc|H0
)HC†ysc,a|H1

(µ̃sc|H1
− µ̃sc|H0

) (2.32)
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2.4.2 The Linear Cooperative Technique

The L cooperative technique consists in processing linearly, accord-
ing to a certain criterion, the received vector at the radio front-end of
an arbitrary CU [72], regardless of the adopted decision approach. By
denoting with w the processing vector and accounting for Remark 6, the
L complex test statistic is:

d(l) = wH y(l) (2.33)

The PU decision is taken by comparing the real part of d(l) with a
decision threshold γl [72]:

Re[d(l)] RH1
H0

γl (2.34)

where the real-part operator accounts for the real-nature of the trans-
mitted symbols {ui(q)}. Since y(l) is Gaussian, Re[d(l)] is Gaussian
too. By following similar reasonings as in [72], the mean µl|Hj

and the

variance ϕ2
l|Hj

of Re[d(l)] are equal to:

µl|Hj
, E[Re[d(l)]|Hj ] = Re(wH µHj

) (2.35)

ϕ2
l|Hj

, Var[Re[d(l)]|Hj ] =
wHCy|Hj

w + Re[wHCy∗|Hj
w∗]

2
(2.36)

In (2.35), µHj
is given by (2.6) for the SCD approach, otherwise by

(2.17). In (2.36), Cy|Hj
and Cy∗|Hj

are given by (2.10) and (2.13) for
the SCD approach, otherwise by (2.18) and (2.20). As for the WL case,
w is designed to maximize the DC:

max
w

m2
l (w) = max

w

{
|wH(µH1

− µH0
)|2

wHCy|H1
w

}
subject to wHw = 1 (2.37)

The L Technique for the CD Approach

For the reasons underlined for the WL case, by adopting the CD
approach, the solution of (2.37) coincides with the one derived in [72].
For the sake of completeness, here we report the mentioned solution:

wl-c =
C−1

yc|H1
(µc|H1

− µc|H0
)

||C−1
yc|H1

(µc|H1
− µc|H0

)||22
(2.38)
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where µc|Hj
and Cyc|Hj

are reported in (2.17) and (2.18), respectively.
The maximized DC assured by wl-c is equal to:

m2
l (wl-c) = (µc|H1

− µc|H0
)HC−1

yc|H1
(µc|H1

− µc|H0
) (2.39)

The L Technique for the SCD Approach

By adopting the SCD approach, differently from the WL case, we
can proceed similarly to [72] to determine the solution of (2.37), since
Cysc|Hj

in (2.7) is invertible (footnote 7). For the sake of brevity we
omit every step and we report only the result:

wl-sc =
C−1

ysc|H1
(µsc|H1

− µsc|H0
)

||C−1
ysc|H1

(µsc|H1
− µsc|H0

)||22
(2.40)

with µsc|Hj
and Cysc|Hj

given by (2.6) and (2.7), respectively. By sub-
stituting (2.40) in the DC definition, it results that the maximized DC
is equal to:

m2
l-sc(wl-sc) = (µsc|H1

− µsc|H0
)HC−1

ysc|H1
(µsc|H1

− µsc|H0
) (2.41)

2.4.3 The LRT-Based Cooperative Technique

According to the Neyman-Pearson criterion, the optimum test con-
sists in comparing the likelihood ratio of y(l) with a threshold to make
the decision on the PU presence [76].

The LRT-Based Technique for the CD Approach

The LRT-based statistic dc-LRT(l), after some algebraic manipula-
tions, assumes the quadratic form:

dc-LRT(l) = yHc,a(l)
[
C−1

yc,a|H0
−C−1

yc,a|H1

]
yc,a(l)+

+ 2 Re
[(
µ̃Hc|H1

C−1
yc,a|H1

− µ̃Hc|H0
C−1

yc,a|H0

)
yc,a(l)

]
(2.42)

with Cyc,a|Hj
and µ̃c|Hj

given by (2.25) and (2.24). To derive (2.42), we
used the PDF expression [82] of improper Gaussian random vectors and
accounted for the definition of yc,a(l).



2.5 The Decision Approach Threshold Behavior 57

The LRT-Based Technique for the SCD Approach

The LRT-based statistic dsc-LRT(l), after some algebraic manipula-
tions, assumes the quadratic form:

dsc-LRT(l) = yHsc,a(l)
[
C†ysc,a|H0

−C†ysc,a|H1

]
ysc,a(l)+

+ 2 Re
[(
µ̃Hsc|H1

C†ysc,a|H1
− µ̃Hsc|H0

C†ysc,a|H0

)
ysc,a(l)

]
(2.43)

In (2.43), since Cysc,a|Hj
is rank-deficient, we used the degenerate PDF

expression [83] of improper Gaussian random vectors.

Remark 7. Since, as well known, finding the optimal threshold for the
LRT test is not mathematically tractable, to prove that the LRT-based
technique exhibits the threshold behavior as a function of the adopted
decision approach we proceed numerically in Sec. 2.6.

2.5 The Decision Approach Threshold Behavior

Here, we prove the main result of this paper: the detection accu-
racy exhibits a threshold behavior as a function of the adopted decision
approach, regardless of the underlying cooperative sensing architecture.
Then, the analytical results are discussed at the end of the section.

2.5.1 Threshold Behavior for the WL Cooperative Tech-
nique

To prove the main result of Sec. 2.5.1, i.e., Theorem 6, Proposition 3
is needed. For this, let us introduce the following definitions of the
matrices Ω ∈ C(M−1)Le×(M−1)Le and Ωc ∈ CLe×Le :

Ω ,
(
Cy|H1

−Cy∗|H1
(C∗y|H1

)−1C∗y∗|H1

)−1

Ωc ,
(
Cy1|H1

−Cy∗1 |H1
(C∗y1|H1

)−1C∗y∗1 |H1

)−1
(2.44)

with Cy|Hj
, Cy∗|Hj

, Cy1|Hj
and Cy∗1 |Hj

given by (2.12), (2.14), (2.19)
and (2.20), respectively.

Proposition 3. The optimized WL sub-vectors twl-c and twl-sc for the
CD and SCD approaches, given in (2.28) and (2.31), respectively, can
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be expressed as:

twl-c =
Σwl-c (ηc|H1

− ηc|H0
)

√
2 ||Σwl-c (ηc|H1

− ηc|H0
)||22

twl-sc =
Σwl-sc (ηsc|H1

− ηsc|H0
)

√
2 ||Σwl-sc (ηsc|H1

− ηsc|H0
)||22

(2.45)

with ηc|Hj
and ηsc|Hj

reported in (2.17) and (2.6), respectively, and
Σwl-c and Σwl-sc are equal to, respectively,

Σwl-c =

[
Ωc H1 −C−1

y1|H1
Cy∗1 |H1

Ω∗c H∗1 0Le×(M−1) (Le+Lg−1)

0(M−1)Le×(Le+Lg−1) Ω H−C−1
y|H1

Cy∗|H1
Ω
∗
H
∗

]
(2.46)

Σwl-sc =

[
1
2 C−1

y0|H1
H0 0Le×(M−1) (Le+Lg−1)

0(M−1)Le×(Le+Lg−1) Ω H−C−1
y|H1

Cy∗|H1
Ω
∗
H
∗

]
(2.47)

In (2.46) and (2.47), Cy0|Hj
is given in (2.12), H and H1 are defined in

Sec. 2.3.

Proof. See Appendix G.

Theorem 6. The WL cooperative technique implemented according to
the SCD approach assures higher (lower) detection accuracy than the
WL cooperative technique implemented according to the CD approach
if and only if θwl > 1 (θwl < 1), where θwl is a positive8 scalar quantity
equals to:

θwl ,

(
ν0|H1

− ν0|H0

)2
ζ−1
0|H1

Le

2
(
ν1|H1

− ν1|H0

)2
1T
{Le+Lg−1}Re

[
HH

1

(
Ωc H1 −C−1

y1|H1
Cy∗1 |H1

Ω∗cH∗1

)]
1{Le+Lg−1}

(2.48)

In (2.48), νk|Hj
and ζk|Hj

are given by (2.2).

Proof. See Appendix H.

Remark 8. As proved in Appendix H, when θwl = 1 the detection accu-
racy assured by the WL cooperative technique implemented according
to the CD approach coincides with the detection accuracy assured by
the WL technique implemented according to the SCD approach. Thus,
θwl = 1 constitutes the searched threshold value of the WL detection
accuracy.

8The positive nature of θwl is discussed in Appendix H.
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Corollary 1. The threshold θwl (2.48) depends only on the statistics
and the channel characteristics of CU0 and CU1.

Proof. It follows directly from the proof of Theorem 6 given in Ap-
pendix H.

Remark 9. The results of Corollary 1 agree with the intuition. In
fact, the (M − 1) cooperative CUs, denoted with CU2, . . . ,CUM , affect
the performance of both the CD and SCD implementations of the WL
technique in the same way. This means that, although the performance
of both the implementations improves as the number M of cooperative
CUs grows, the threshold value does not change, as confirmed by the
numerical results in Sec. 2.6.

Remark 10. From (2.48), it is immediate to verify that if Lg1 → ∞
(with Le <∞), i.e., if the RC established in the CD approach between
CU1 and CU0 has a infinite memory, θwl → 0. This means that the
CD approach outperforms the SCD one, i.e., it assures higher detection
accuracy than the SCD approach, regardless of the CU1 sensing channel
conditions. In other words, it is always more advantageous in terms
of detection accuracy involving another CU in the cooperative process
rather than using the local sensing statistic of the decision maker CU0,
independently of the sensing channel conditions. This surprising result
suggests that frequency-selective fading on the RC introduces degrees
of freedom that the CD approach is able to exploit. In practice, it is
enough Lg1 >> 1, in the order of 10 in operative conditions of practical
interest, to assure this behavior (see Sec. 2.6).

Remark 11. From (2.48), it results that if the noise power on the CU0

sensing channel goes to infinity, σ2
0 →∞, θwl → 0, i.e., the CD approach

assures higher detection accuracy than the SCD one, regardless of the
CU1 RC conditions. Hence, it is more convenient involving CU1 in the
cooperative process rather than using the local statistic of CU0, affected
by deep noise. Clearly, if σ2

1 → ∞, θwl → ∞, i.e., the CD approach
behavior is inverted with respect to the one described. In practice, it
is enough σ2

1 >> σ2
0, to assure this behavior in operative conditions of

practical interest (see Sec. 2.6 ).

Remark 12. When the noise power δ2
1 of CU1 at CU0 side goes to

infinite, i.e., δ2
1 → +∞, θwl → +∞ as well, i.e., the SCD approach out-

performs the CD one. This suggests that if the RC noise power increases
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significantly, it is more advantageous using the sensing statistic of CU0,
not affected by the RC impairments, than involving another CU in the
cooperative process, independently of the SC conditions. In practice,
it is enough δ2

1 >> 0 to assure this behavior in operative conditions of
practical interest (see Sec. 2.6).

Corollary 2. If Lg1 → 1, i.e., if the RC established between CU1 and
CU0 in the CD approach is not temporal dispersive, we have:

lim
Lg1→1

θwl =
|g0|4 ζ−1

0|H1

|g1|4 2 |h1|2
2 |h1|2 ζ1|H1

+δ2
1

(2.49)

Proof. By using (2.19), (2.20) and H1 = h1 ILe when Lg1 → 1, (2.49) is
achieved.

Remark 13. From (2.49) it results that:

lim
δ2
1→0

{
lim

Lg1→1
θwl

}
=
|g0|4 ζ−1

0|H1

|g1|4 ζ−1
1|H1

(2.50)

Therefore, when the RC between CU1 and CU0 is ideal, the detection
accuracy threshold depends only on the sensing channel propagation
effects of CU0 and CU1, as expected.

2.5.2 Threshold Behavior for the L Cooperative Tech-
nique

To prove the main result of Sec. 2.5.2, i.e., Theorem 7, Proposition 4
is needed.

Proposition 4. The optimized L vectors wl-c and wl-sc for the CD and
the SCD approaches, given in (2.38) and (2.40), respectively, can be
expressed as:

wl-c =
Σl-c (ηc|H1

− ηc|H0
)

||Σl-c (ηc|H1
− ηc|H0

)||22

wl-sc =
Σl-sc (ηsc|H1

− ηsc|H0
)

||Σl-sc (ηsc|H1
− ηsc|H0

)||22

(2.51)
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with ηc|Hj
and ηsc|Hj

reported in (2.17) and (2.6), respectively, and Σl-c

and Σl-sc equal to:

Σl-c =

[
C−1

y1|H1
H1 0Le×(M−1) (Le+Lg−1)

0(M−1)Le×(Le+Lg−1) C−1
y|H1

H

]
(2.52)

Σl-sc =

[
C−1

y0|H1
H0 0Le×(M−1) (Le+Lg−1)

0(M−1)Le×(Le+Lg−1) C−1
y|H1

H

]
(2.53)

Proof. The proof follows after some algebraic manipulations, by exploit-
ing (2.38) and (2.40) and by using the lemma for the inverse of a parti-
tioned matrix [61].

Theorem 7. The L cooperative technique implemented according to
the SCD approach assures higher (lower) detection accuracy than the
L cooperative technique implemented according to the CD approach, if
and only if θl > 1 (θl < 1), where θl is a positive scalar quantity equal
to:

θl ,

(
ν0|H1

− ν0|H0

)2
ζ−1

0|H1
Le(

ν1|H1
− ν1|H0

)2
1T{Le+Lg−1}H

H
1 C−1

y1|H1
H11{Le+Lg−1}

(2.54)

Proof. The proof is achieved by reasoning as for Theorem 6 and by using
(2.51).

Remark 14. Similarly to the WL case, when θl = 1 the detection
accuracy assured by the L cooperative technique implemented according
to the CD approach coincides with the detection accuracy assured by the
L technique implemented according to the SCD approach. Thus, θl = 1
constitutes the searched threshold value of the L detection accuracy.

Corollary 3. The threshold θl (2.54) depends only on the statistics and
the channel characteristics of CU0 and CU1.

Proof. It follows directly from Theorem 7.

Remark 15. The results of Corollary 3 agree with the intuition. In
fact, the (M − 1) cooperative CUs, denoted with CU2, . . . ,CUM , affect
the performance of both the CD and SCD implementations of the L
technique in the same way. This means that, although the performance
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of both the implementations improves as the number M of cooperative
CUs grows, the threshold value does not change, as confirmed by the
numerical results in Sec. 2.6. Moreover, Remarks 10, 11 and 12 hold
also for the L cooperative technique.

Corollary 4. If Lg1 → 1, i.e., if the RC established between CU1 and
CU0 in the CD approach is not temporal dispersive, we have:

lim
Lg1→1

θl =
|g0|4 ζ−1

0|H1

|g1|4 |h1|2
|h1|2 ζ1|H1

+δ2
1

(2.55)

Proof. The proof follows the same guidelines used for Corollary 2.

If δ2
1 → 0, θl is given by (2.50) and Remark 13 still holds.

2.5.3 Result Discussion

Stemming from the developed analysis, we can make some consider-
ations. For example, if the local noise levels on the SCs and/or the RCs
are known a priori (possibly from experimental measurements when the
primary system is turned off, or from some previous experience), then
it is possible to have a-priori insights to choose the decision approach
for an arbitrary cooperative technique. In other words, having some
a-priori information on the environment provides guidelines on the de-
cision approach to adopt. This is very important, since the choice be-
tween the two approaches affects not only the detection accuracy of an
arbitrary cooperative sensing technique, but also the entire CR network
efficiency/performance, involving crucial trade-off reasonings. In fact, in
the CD approach, the decision maker is not involved in the sensing pro-
cess, thus being able to perform other CR tasks during its cooperators’
sensing time. However, since another CU is involved in the coopera-
tive process, the coordination cost increases. Differently, in the SCD
approach, the decision maker is directly involved in the sensing process.
Consequently, the coordination cost decreases but the decision maker
cannot perform other CR tasks during its cooperators’ sensing time.

2.6 Performance Evaluation

Here, we validate the derived analytical results by extensive Monte
Carlo simulations. Specifically, first, we validate the proposed WL and
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Figure 2.2: Experiment 1: Detection Probability (Pdet) versus the SNR (left-side
plot) and versus the False-Alarm Probability (Pf ) (right-side plot), for different values
of Le, for the SCD approach.

L cooperative sensing techniques implemented by adopting the SCD ap-
proach9, then we validate the existence of the threshold behavior in
the detection accuracy as a function of the adopted decision approach,
for all the sensing techniques considered in Sec. 2.4. Each experiment
consists in 106 independent Monte Carlo runs, and in each run the
noise samples, the sensing channels {gi}Mi=1 and the tap values of the
FIR filters, modeling the RCs, are randomly and independently gen-
erated according to a zero-mean complex Gaussian distribution. For
simplicity, s(k) = 1. The average SNR at each CU is defined as [72,81]:
{SNRi}Mi=1 = E[|gi|2]Es/(N σ2

i ).

Experiment 1: the left-side of Fig. 2.2 shows the detection probability
Pdet versus (vs) the SNR, for a fixed value of the false-alarm probability
Pf = 10−2 and for two different values of Le

10. The noise variances of

9The WL and L cooperative sensing techniques implemented by adopting the CD
approach do not need to be validated, since as highlighted in Sec. 2.4, they perform
as the techniques in [72].

10Let us recall the main notations adopted through the paper: Le is the number of
jointly elaborated received samples for each CU, N is the number of samples available
in the sensing time, M is the number of cooperative CUs, Lgi is the length of the finite
multi-path channel impulse response between the i-th CU and CU0, Lg , maxM

i=2 Lgi ,
δ2
i is the noise variance for the i-th RC, and finally σ2

i is the noise variance for the
i-th sensing channel.
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each CU at CU0 side are set equal to δ2
2 = 0.1, δ2

3 = 0.2 and δ2
4 = 0.4.

Moreover, an additional non-cooperative (NC) sensing technique is con-
sidered, in which CU0 takes the decision based only on its local energy.
The results show that the cooperative techniques perform notably better
than the NC one, as expected, and that the WL detector outperforms
the L one in operative conditions of practical interest, i.e., for low SNR
values, assuring so less interference on the PU. The WL gain is justified
by its capacity to exploit the information contained in the statistical
pseudocovariance of the received signal. Plus, for both the Le values,
the WL detector performs almost comparable with the optimal LRT,
but with a significantly lower computational complexity.

Instead, the right side of Fig. 2.2 shows Pdet vs Pf , with the same
previous simulation setting. The SNR is different for each CU to an-
alyze how different sensing capabilities can affect the global decision,
and it is set as: SNR0 = −8 dB, SNR2 = −8.6 dB, SNR3 = −9.2 dB,
SNR4 = −10 dB. The results confirm the performance gain of the WL
detector with respect to the L one, and the capability of the cooperative
strategies, implemented by adopting the SCD approach, to counteract
the channel impairments.

In the following, we conduct several experiments to substantiate the
threshold behavior of the detection accuracy as a function of the adopted
decision approach, by varying different sensing and reporting channel pa-
rameters encapsulated in the non-linear forms (2.48) and (2.54). For all
the experiments, Pf = 10−2, N = 60.

Experiment 2: Figs. 2.4, show Pdet vs the ratio σ2
1/σ

2
0 between the

noise variances of CU0 and CU1 on the SCs, for all the considered coop-
erative sensing techniques and for different values of Le, when M = 3.
The results are obtained by fixing SNR0 = −8 dB, i.e., by fixing σ2

0, and
letting σ2

1 to vary. The SNR and the noise variances are set as follows:
SNR2 = −8.6 dB, SNR3 = −9.2 dB, δ2

1 = 0.8, δ2
2 = 0.2 and δ2

3 = 0.4.
In the figures, the red squares denote the points in which the two deci-
sion approaches perform the same, i.e, the threshold values in terms of
σ2

1/σ
2
0. The results confirm the presence of the threshold behavior for

the detection accuracy, regardless of the considered cooperative sensing
technique. In particular, for all the considered techniques, when Le in-
creases, the threshold value in terms of σ2

1/σ
2
0 decreases. This agrees

with the intuition, in fact, when Le increases, the SCD approach bene-
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Figure 2.3: Experiment 2: Detection Probability (Pdet) versus the ratio between the
noise variances of CU0 and CU1 on the Sensing Channels (σ2

1/σ
2
0), for different values

of Le, and for the WL strategy (upper-left-side plot), L strategy (upper-right-side
plot), and LRT strategy (lower-side plot).

fits from processing an increased number of local sensing statistics not
affected by the RC impairments. Hence, for smaller values of σ2

1/σ
2
0,

the SCD is able to outperform the CD. Moreover, it is confirmed the
validity of Remark 11 for all the considered cooperative techniques.

Experiment 3: Figs. 2.4, show Pdet vs σ2
1/σ

2
0, for different values

of M , when Le = 2, SNR4 = −10 dB, δ2
4 = 0.6, and the remaining

parameters are set according to Experiment 3. For all the cooperative
techniques, the results show that when the number M of cooperative
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Figure 2.4: Experiment 3: Detection Probability (Pdet) versus the ratio between the
noise variances of CU0 and CU1 on the Sensing Channels (σ2

1/σ
2
0), for different values

of M , and for the WL strategy (upper-left-side plot), L strategy (upper-right-side
plot), and LRT strategy (lower-side plot).

SCUs increases, the threshold value in terms of σ2
1/σ

2
0 does not change.

This agrees with the analytical results (Corollary 1 and 3), assuring that
cooperative CUs different from CU0 and CU1 affect the performance of
both the decision approaches in the same way.

Experiment 4: Figs. 2.5, show Pdet vs δ2
1 , i.e., vs the CU1 noise vari-

ance at CU0 side, for all the considered cooperative sensing techniques
and for different values of Lg1 , when M = 3 and M = 4, Le = 1,
and σ2

1/σ
2
0 = 1. The SNRs are set according to Experiment 1 (right-
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Figure 2.5: Experiment 4: Detection Probability (Pdet) versus the noise variance
at CU0 on the Reporting Channel corresponding to CU1 (δ2

1), for different values
of Lg1 , and for the WL strategy (upper-left-side plot), L strategy (upper-right-side
plot), and LRT strategy (lower-side plot).

side plot) and the noise variances of the remain CUs are set equal to
δ2

2 = 0.2, δ2
3 = 0.4 and δ2

4 = 0.6. Clearly, the performances of the coop-
erative techniques implemented by adopting the SCD approach do not
depend on Lg1 and δ2

1 , as confirmed by the performance curves paral-
lel to the abscissa axis. The results show that when Lg1 increases, the
threshold value in terms of δ2

1 increases as well, in agreement with Re-
mark 10 and Corollary 3 for all the considered cooperative techniques.
This means that when Lg1 increases, the CD approach assures higher
detection accuracy than the SCD one for a wider range of δ2

1 values. It
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Figure 2.6: Experiment 5: Detection Probability (Pdet) versus the ratio between
the noise variances of CU0 and CU1 on the Sensing Channels (σ2

1/σ
2
0) when Lg1 → 1,

and for the WL strategy (upper-left-side plot), L strategy (upper-right-side plot), and
LRT strategy (lower-side plot).

is confirmed that the multipath fading on the RC introduces degrees of
freedom that the cooperative strategies implemented according to the
CD approach are able to exploit.

Experiment 5: Finally, Figs. 2.6, show Pdet vs σ2
1/σ

2
0, when Lg1 → 1,

i.e., when the RC between CU0 and CU1 is not temporal dispersive, for
different values of the CU1 noise power δ2

1 at the CU0 side, M = 3 and
Le = 1 (the SNRs and {δi}3i=2 are set as in the previous experiment).
The results confirm again the presence of the threshold behavior for
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the detection accuracy, regardless of the considered cooperative sensing
technique. Moreover, when δ2

1 increases, the threshold value in terms
of σ2

1/σ
2
0 decreases, as expected. This means that the SCD approach

outperforms the CD one for smaller value of σ2
1/σ

2
0. In fact, when δ2

1

increases, the propagation conditions on the RC between CU1 and CU0

worsen, and therefore, it is enough a small degradation of the CU1 sens-
ing conditions (increased σ2

1) to have a significant performance loss by
adopting the CD approach with respect to the SCD one (Remark 12).

2.7 Conclusions

Cooperative spectrum sensing techniques are mainly based on two
different decision approaches, according to the role of the decision maker:
the Combining Decision approach and the Sensing & Combining Deci-
sion approach. The choice of the decision approach deeply affects the
performance of any cooperative spectrum sensing technique. Thus, in
this chapter, by accounting for the effects of realistic channel propaga-
tion, a theoretical analysis has been developed to single out the criteria
for choosing the decision approach that maximizes the detection accu-
racy of an arbitrary cooperative technique, regardless of the underlying
cooperative sensing architecture. Specifically, it has been proved that
the detection accuracy exhibits a threshold behavior as a function of the
adopted decision approach, i.e., it exists a threshold value depending
on the sensing and reporting channel parameters that determines two
different operating regions. In one region, the higher detection accuracy
is assured by implementing the cooperative sensing technique accord-
ing to the Combining Decision approach, whereas in the other region,
the higher detection accuracy is guaranteed by the Sensing & Combin-
ing Decision approach, regardless of the underlying cooperative sensing
architecture. Closed-form expressions of the threshold are analytically
derived, and practical insights for the decision approach selection have
been provided.





Chapter 3

Spatio-Temporal Spectrum
Sensing Design for
Cognitive Radio Networks
with Primary-User
Mobility

3.1 Introduction

In Cognitive Radio Networks, spectrum opportunities can be classi-
fied as temporal or spatial opportunities [84]: a temporal opportunity
is defined as the time interval in which the PU is inactive, whereas a
spatial opportunity is defined as the time interval in which the PU is
active while the CU is located outside the PU protection range (PrR). In
fact, to avoid harmful interference against the PU receiver, the CU must
be able to detect the PU transmitter within a range, referred to as pro-
tection range (see Fig. 3.1), determined by the PU transmission range
and CU interference range; therefore, when the CU is located outside
the PrR it is allowed to use the spectrum even when the PU is active.

The main objective in spectrum sensing design is to select the
sensing time that provides the maximum percentage of discovered spec-
trum opportunities without introducing an excessive overhead. In fact,
there exists a trade-off between the percentage of discovered spectrum

71
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PU transmission range CU interference range 

PU PROTECTION RANGE 

PU tx PU rx CU tx 

CU rx 

Figure 3.1: Protection range of the Primary User in cognitive radio networks.

opportunities, which increases with the sensing time, and the sensing
efficiency, given by the ratio of the transmission time and the sensing
period, which conversely decreases with the sensing time; the combina-
tion of these two factors determines the transmission capacity achieved
by the CU that measures the efficiency in using opportunistically a given
spectrum band. For this reason, a key issue in spectrum sensing design
is the optimization of the sensing time that maximizes the transmission
capacity achieved by the CU, while limiting the interference against the
PU.

Traditionally, this issue has been addressed only with reference to the
temporal spectrum sensing scenario [80], [85], where the CU is assumed
inside the PrR of the PU, thus only the temporal opportunities can be
considered, due to the temporal activity of the PUs. This assumption
is reasonable for large-scale PU networks, as for example when the PU
transmitter is the tower of a TV broadcasting system or the base-station
of a cellular system. However, the aforementioned sensing issue becomes
more challenging with reference to the spatio-temporal spectrum sensing
scenario, recently considered in the literature [86], [87], [88]. In fact, in
this scenario not only the temporal activity but also the spatial distri-
bution of the PUs within a network region is taken into account, namely
the PU network topology, whereby the CU can be also assumed outside
the PrR of the active PU, as shown in Fig. 3.2. Thus, both the temporal
and spatial dimension of the spectrum environment are jointly consid-
ered in the spatio-temporal sensing framework, that is more suitable and
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Figure 3.2: Spatio-temporal spectrum scenario in cognitive radio networks.

appealing for studying the scenario of a small-scale PU network, such as
wireless microphone, emergency, military and sensors networks, which
has recently gained attention in the literature [89], [90].

In the spatio-temporal spectrum scenario, also the spatial oppor-
tunities can be potentially exploited, thus the maximum transmission
capacity that is possible to achieve is higher than that corresponding to
the temporal spectrum scenario. However, due to the limited sensing
accuracy, not only the temporal but also the spatial opportunities can
be missed. In fact, when the CU is located outside the PrR, it can still
detect the transmission of the PU1, but without the knowledge of the
PU position it will decide incorrectly for the absence of the spectrum
opportunity. This sensing problem, referred to as spatial false-alarm
problem [91], assumes considerable importance since it can have a great
impact on the actual transmission capacity achieved by the CU. A vi-
able solution is to increase the sensing time while satisfying a constraint
on the detection probability when the CU is located inside the PrR, so
that the communication of the PU is sufficiently protected from harmful
interference. Contrary, the sensing efficiency decreases, thus it is very
important to properly select the sensing time in the spatio-temporal
spectrum scenario.

1It is because, given the strict PU detection constraint at the boundary of the
protection range, the detection probability does not decrease efficiently as the distance
between PU and CU increases.
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3.1.1 Motivations and Contributions

The spatio-temporal spectrum sensing design problem has not been
already investigated in the literature; in particular, the last recent works
only assume that the PUs are in static positions. The aforementioned
sensing issue becomes even more interesting but also challenging in the
presence of PU mobility. In fact, the PU movement creates a spatial dis-
tribution where each point of the network region is visited at a specific
rate, depending on the mobility pattern. This mobility effect can deeply
influence the percentage of discovered spatial opportunities, and conse-
quently also the transmission capacity achieved by the CU. Therefore,
a key issue in spatio-temporal spectrum sensing design is the optimiza-
tion of the sensing time that maximizes the actual transmission capacity
achieved by the CU with a limited sensing accuracy and in the presence
of PU mobility, while satisfying the PU interference constraints.

For this reason, in this work, we provide a theoretical analysis of
the spatio-temporal spectrum sensing framework in the presence of PU
mobility with the goal to address the aforementioned sensing issue, by
completing and extending the preliminary results of [92].

More specifically, the contributions of this work can be summarized
as follows. First of all, we extend the spatio-temporal spectrum sensing
model to the mobile PU network scenario. Then, for the considered sce-
nario, we introduce the mobility-aware sensing enabled capacity that is a
new performance metric for CR networks that measures the actual trans-
mission capacity achieved by the CU with a limited sensing accuracy.
In particular, when the CU is located inside the PrR, we limit the inter-
ference against the PU, caused by the missed-detection sensing errors,
with a constraint on the detection probability that is satisfied by select-
ing the proper value of the decision threshold. Moreover, we limit the
further interference against the PU, due to the PU reappearance during
the transmission stage, with a constraint on the interference probabil-
ity that is satisfied by selecting a maximum transmission time, which
depends on both traffic and mobility statistics of the PU. Then, by ana-
lyzing the framework for a generic PU mobility model, we theoretically
prove the existence of a single optimal sensing time that maximizes the
mobility-aware sensing enabled capacity. Finally, with reference to the
well-known and widely adopted mobility models [93], [94], i.e., the Ran-
dom Walk mobility Model (RWM) and the Random Way-Point mobility
Model (RWPM), we carry-out the performance assessment to validate
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the theoretical results. Moreover, through several experiments we pro-
vide interesting guidelines for spectrum sensing design that show how
the optimal sensing time, which depend on the adopted mobility model,
should be set in according to the radio environment conditions, such as
the signal-to-noise-ratio, the protection range, the statistics of the PU
temporal activity and the number of cooperative users.

The rest of the work is organized as follows. In Section 3.1.2, we dis-
cuss the related works. In Section 3.2, we present the spatio-temporal
spectrum sensing model with the PU mobility, while in Section 3.3, we
define the performance metrics. These metrics are analyzed in Section
3.4, where it is proved the existence of a single optimal sensing time
that maximizes the mobility-aware sensing enabled capacity. The theo-
retical analysis is validated by simulations in Section 3.5, where several
experiments are also provided. Finally, in Section 3.6, we draw the con-
clusions.

3.1.2 Related works

Recently, several works appeared in the literature that address sev-
eral issues in the spatio-temporal spectrum scenario. In [86], the au-
thors propose a joint spatial-temporal cooperative sensing scheme that
exploits the information from the spatial sensing, i.e., both the posi-
tion and the transmit power of the PU, to improve the accuracy of the
temporal sensing. By accounting for the spectrum heterogeneity, in [88]
the authors propose a two-dimensional sensing framework that exploits
the correlations in time and space of the sensing results to improve the
detection performance. However, these works assume that the PUs are
in static positions. The effects of PU mobility on both the detection
capability and maximum transmission capacity achieved by the CU are
studied in [95], where in [96] the authors derived the optimal trans-
mission time that maximizes the sensing efficiency, while satisfying the
PU interference constraint, and a maximum sensing time threshold over
which the sensing accuracy does not improve; however, these works do
not take into account the spatial false-alarm problem, neither the effects
of the PU mobility on the percentage of discovered spatial opportunities.
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3.2 System Model

In this section, we first describe the PU and CR network models,
the PU temporal activity model, and we give some definitions. Then,
we present the spatio-temporal spectrum sensing model with the PU
mobility features.

3.2.1 Network and Traffic Models

PU Network Model : For the sake of simplicity, we consider a
network with a single PU transmitting on a given channel. Initially,
the PU is placed randomly inside a square network region A of size
[0, a] × [0, a], then it moves in according to a general mobility model.
fXPU

(xPU) denotes the probability density function (pdf) of the PU
steady-state spatial distribution, with XPU representing the random
PU position.

CR Network Model : The CU is assumed static and randomly
placed inside the network region A. fXCU

(xCU) denotes the pdf of
the CU spatial distribution, with XCU representing the random CU
position.

PU Temporal Activity Model : The PU temporal activity is mod-
eled as a two state (ON-OFF) Markov chain, where the processes of ar-
rivals and departures are Poisson distributed with arrival rate λoff and
departure rate λon. In the ON state the PU is active, whereas in the
OFF state the PU is inactive, and these two temporal events have the
following probabilities:

Pon =
λoff

λon + λoff
, Poff = 1− Pon =

λon

λon + λoff
. (3.1)

3.2.2 Definitions

Definition 3. Inside spatial event. The CU is located inside the PrR of
the PU if the random distance S , ||XCU −XPU|| is not greater than
the radius of the PrR, denoted as R, that is a known parameter. This
spatial event, denoted as I, has the following probability:

P (I) = P (S ≤ R) =

∫ R

0
fS(s) ds (3.2)

where fS(s) is the pdf of the random variable S, which depends on the
adopted PU mobility model [95].
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Definition 4. Outside spatial event. The CU is located outside the
PrR of the PU if the distance S is greater than R. This spatial event,
denoted as O, has the following probability:

P (O) = 1− P (I) =

∫ √2a

R
fS(s) ds. (3.3)

3.2.3 Spectrum Sensing Model

In the spatio-temporal spectrum scenario, the sensing problem is
modeled as a composite hypothesis testing [87], [88], [91], which discrim-
inate between the presence or the absence of a spectrum opportunity.
In particular, by accounting also for the PU mobility statistics, we have
the following spectrum sensing model:

H0 :

{
T0 : y(n) = v(n)

S0 : y(n) =
√
Pr(s, g)x(n) + v(n)

n = 1, 2, . . . , N (3.4)

H1 : y(n) =
√
Pr(s, g)x(n) + v(n) n = 1, 2, . . . , N (3.5)

where H0 = T0∪S0 denotes the presence of a spectrum opportunity, i.e.,
a temporal opportunity when the PU is inactive (T0), which is indepen-
dent on the PU position, or a spatial opportunity (S0 = T1 ∩ O) when
the PU is active (T1) and the CU is located outside the PrR (O), with
s ∈ (R,

√
2a] the distance from the PU. Instead, H1 = T1 ∩ I denotes

the absence of a spectrum opportunity, with s ∈ (0, R].
We assume that the PU transmitted signal x(n) is deterministic but

not known, the noise v(n) ∼ CN (0, σ2
v) is a circularly symmetric complex

Gaussian (CSCG) random process with power Pv, where N = bTsfsc is
the number of samples collected during the sensing time Ts, and fs is
the sampling frequency which depends on the channel bandwidth. The
received power from the PU at a given distance S = s and for a given
channel power gain G = g, due to the combination of both multipath
and shadow fading, is defined as:

Pr(s, g) = Pt

(
1

s

)ρ
g (3.6)

where Pt is the PU transmitted power measured at a reference distance,
ρ is the path-loss exponent. Finally, the signal-to-noise ratio (SNR) is
defined as γ(s, g) = Pr(s, g)/Pv. In the considered model we assume that
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both the overall channel power gain, due to the fading effects, and the
distance between PU and CU remain stationary during the sensing time
Ts, namely we assume a slow-mobility scenario that can be reasonable
for pedestrian or slow vehicular patterns [97].

Moreover, we assume an energy detector as a local sensing technique:

Y =
1

N

N∑
n=1

|y(n)|2 RH1
H0

ε (3.7)

where ε is the decision threshold. According to the Central Limit Theo-
rem (CLT), for large N , the sensing statistic Y can be approximated as
a real Gaussian random variable under both the hypothesis H0 and H1.
More specifically, in according to the previous assumptions, under the
hypothesis T0, the mean value and the variance of the sensing statistic
are given as follows:

E[Y |T0] = Pv, Var[Y |T0] =
1

N
P 2
v (3.8)

whereas, under the hypothesis T1 and conditioned on S = s and G = g,
we have:

E[Y |T1, S = s,G = g] = (1 + γ(s, g))Pv

Var[Y |T1, S = s,G = g] = (1 + 2γ(s, g))
P 2
v

N
(3.9)

3.3 Performance Metrics

In this section, we define the performance metrics for the proposed
spectrum sensing framework that will be mathematically analyzed in
Section 3.4.

3.3.1 Missed Spectrum Opportunities

Due to the limited sensing accuracy, a percentage of both temporal
and spatial opportunities can be missed. Thus, to measure the actual
use of the licensed channel, we need to account for the sensing errors
that cause the loss of spectrum opportunities. To this aim, we can define
the following false-alarm probabilities:
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Definition 5. Temporal False-Alarm Probability : the probability that
the sensing statistic exceeds the decision threshold, conditioned on the
event that the PU is inactive (T0). By accounting for (3.8), it is given
as follows:

Pf,t = P (Y > ε |T0) = Q

((
ε− Pv
Pv

)√
Tsfs

)
(3.10)

where Q(·) denotes the Q-function [98], whose expression is written as

Q(x) = (1/
√

2π)
∫ +∞
x exp(−u2

2 ) du. This probability measures the per-
centage of missed temporal opportunities.

Definition 6. Spatial False-Alarm Probability : the joint probability
that the sensing statistic exceeds the threshold and the CU is located
outside the PrR (O), conditioned on the event that the PU is active
(T1). By accounting for (3.3), it is given as follows [91]:

Pf,s , P (Y > ε,O |T1) =

∫ √2a

R
Pd(s) fS(s) ds (3.11)

where Pd(s) , P (Y > ε |T1, S = s) is the detection probability at a
given distance S = s, averaged over the random channel power gain G,
that, by accounting for (3.9), is given as follows:

Pd(s) =

∫ +∞

0
Q

((
ε

Pv
− 1− γ(s, g)

)√
Tsfs

1 + 2γ(s, g)

)
fG(g) dg

(3.12)
where fG(g) is the pdf of the overall channel power gain. The spatial
false-alarm probability measures the percentage of missed spatial oppor-
tunities and, as it is possible to note in (3.11), it is influenced by the PU
mobility through the pdf of the distance (fS(s)).

3.3.2 Mobility-Aware Sensing Enabled Capacity

In the spatio-temporal spectrum scenario, the CU can opportunisti-
cally access to a licensed channel when the PU is inactive or when the
PU is active and the CU is outside the PrR. Thus, we can define the
following probabilities:
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Definition 7. Channel Access Probability : the probability that the
channel is available for the opportunistic access. By accounting for (3.1)
and (3.3), it is given as follows:

CAP = Poff + PonP (O) (3.13)

This probability measures the maximum percentage of temporal and
spatial opportunities that is possible to exploit.

Definition 8. Channel Access Probability enabled by sensing : the prob-
ability that the channel is correctly sensed available and used for the
opportunistic access. By accounting for (3.10) and (3.11), it is given as
follows:

CAPsens = (1− P (Y > ε |T0))Poff + (1− P (Y > ε |T1,O))P (O)Pon

= (1− Pf,t)Poff + (P (O)− Pf,s)Pon (3.14)

This probability measures the actual percentage of discovered temporal
and spatial opportunities enabled by sensing, i.e., by taking into account
the impact of sensing accuracy2. Due to the sensing errors, it is lower
than CAP but can be improved by increasing the sensing time, as we
will show in Section 3.4.

Finally, to measure the actual use of the licensed channel, we need
also to take into account the sensing efficiency (η), given by the ratio
of the transmission time (Tx) and the sensing period (Ts + Tx), that
contrary decreases with the sensing time. To this aim, we define the
following performance metric:

Definition 9. Mobility-Aware Sensing Enabled Capacity : the product
of the sensing efficiency and the channel access probability enabled by
sensing. By accounting for the expression of η and (3.14), it is given as
follows:

MSC = ηCAPsens =
Tx

Ts + Tx
((1− Pf,t)Poff + (P (O)− Pf,s)Pon) .

(3.15)
This performance metric measures the actual transmission capacity that
is achieved by CU with a limited sensing accuracy and in the presence
of PU mobility.

2We don’t assume to know the PU position in which case the missed spatial
opportunities should not be considered. Instead, our objective is to select the sensing
time that maximizes the percentage of discovered temporal and spatial opportunities
without introducing an excessive overhead.
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3.3.3 PU interference constraints

In the spatio-temporal spectrum scenario, interference against the
PU can occur during the transmission stage only when the CU is inside
the PrR, thus the average interference is lower than that corresponding
to the temporal spectrum scenario. More specifically, a first occurrence
is when the CU does not detect the active PU during the sensing stage
and, consequently, starts to transmit by interfering with the PU. In this
instance, the maximum level of interference can be limited by introduc-
ing a constraint on the detection probability in the worst case, namely
when the CU is at the boundary of the PrR, at the distance R from
the PU, where the detection probability is minimum [80], [91]. This
constraint is satisfied by selecting the decision threshold ε as follows:

Find : ε

Subject to : Pd(R, Ts, ε) ≤ α (3.16)

where Pd is given in (3.12), whereas α is the detection constraint. This
problem has a unique solution since the detection probability is a mono-
tonic decreasing function with ε [76], thus Pd(ε) is invertible and the
decision threshold satisfying (3.16) can be calculated.

Moreover, even though the PU is inactive and the sensing decision is
correct, interference can still occur during the transmission stage since
the PU can became active again. In this instance, it is possible to limit
the level of interference by introducing a constraint on the interference
probability that is satisfied by selecting a maximum transmission time
[99]. To this aim, we can define the interference probability as follows3:

Pint = (1− Pf,t(Ts))P (Toff < Tx)Poff P (I)

= (1− Pf,t(Ts)) (1− exp(−λoffTx))Poff P (I)

≤ (1− exp(−λoffTx))Poff P (I) (3.17)

where Toff ∼ Exp(λoff) is the random variable that models the duration
of the OFF state that is exponentially distributed, since the process of
arrival is Poisson distributed4 [98]. The upper bound in (3.17) represents

3We assume that, during the transmission time, the CU remains inside or outside
the protection range, i.e., the PU movements are sufficiently slow.

4We remember that, due to the memoryless property of the Poisson distribution,
the residual time from the most recent instant in which the channel is sensed to that
before the PU becomes active again, is statistically equivalent to Toff.
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the maximum interference probability without the impact of sensing
accuracy, that becomes very tight when the sensing time is sufficiently
large. In the following, we use this expression that allows us to make
the analysis (Section 3.4) mathematically tractable. In particular, as
it is possible to note, the interference probability increases with the
transmission time Tx, and reaches its maximum value Poff P (I) when
Tx is sufficiently large. More specifically, Tx has to solve the following
problem:

Find : Tx

Subject to : Pint ≤ β (3.18)

where β is the interference probability constraint. By using (3.17) and
after simple mathematical manipulations, the maximum transmission
time that satisfies (3.18) has the following expression:

Tmax
x =

1

λoff
ln

(
Poff P (I)

Poff P (I)− β

)
(3.19)

that is valid when β < Poff P (I), otherwise the interference constraint
is always satisfied independently on the value of Tx. As it is possible to
note, the maximum transmission time depends on both the PU traffic
and mobility statistics; in particular, it increases when Poff or P (I)
decreases since the interference probability also decreases.

3.4 Theoretical Performance Analysis

In this section, we first formulate the optimization problem that con-
sist in finding the sensing time value that maximizes the mobility-aware
sensing enabled capacity, while satisfying the PU interference constraints
(subsection 3.3.3). Then, we theoretically prove the existence of a single
optimal sensing time. Finally, the theoretical results are discussed at
the end of the section.



3.4 Theoretical Performance Analysis 83

3.4.1 Sensing Time Optimization Problem

To prove the existence of a single optimal sensing time, we formulate
the following optimization problem:

Find : Ts

Maximizing : MSC(Ts)

Subject to : Pd(R, Ts, ε) ≤ α, Pint ≤ β (3.20)

where MSC(Ts) is given in (3.15) and the interference constraints are
given in subsection 3.3.3. To prove the existence of a single solution,
we have to analyze the expression of MSC(Ts) obtained from (3.15) by
introducing the interference constraints, in particular we have to analyze
the temporal and spatial false-alarm probability with the sensing time.
In order to make the analysis mathematically tractable, we give the
proof in the AWGN channel hypothesis, i.e., by removing the effects of
multipath and shadow fading. In Section 3.5, we will extend the analysis
through simulations by considering also their effects.

3.4.2 Analysis of Pf,t with the sensing time

To analyze the temporal false-alarm probability with the sensing
time, first we have to single-out the expression of the decision threshold
satisfying (3.16). To this aim, by accounting for (3.12), we have to solve
the following equation:

Pd(R, Ts) = Q

((
ε

Pv
− 1− γ(s)

)√
Tsfs

1 + 2γ(s)

)
= α. (3.21)

By using the Q-function inverse, after simple mathematical manipula-
tions, we have:

ε =

(
Q−1(α)

√
1 + 2γ(R)

Ts fs
+ 1 + γ(R)

)
Pv (3.22)

and, by substituting (3.22) in (3.10), finally we have:

Pf,t(Ts) = Q
(
Q−1(α)

√
1 + 2γ(R) + γ(R)

√
Ts fs

)
(3.23)

The temporal false-alarm probability decreases with the sensing time Ts,
since Q(.) is a monotonic decreasing function. Moreover, we have the
following result:
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Proposition 5. The temporal false-alarm probability Pf,t is a convex
function with Ts if the following condition (a) otherwise (b) is satisfied:

(a) : |Q−1(α)|2 (1 + 2γ(R))− 4 < 0; (3.24)

(b) : (Ts < t21) ∪ (Ts > t22) (3.25)

where t1 and t2 are given in (I.4).

Proof. See Appendix I.

Remark 16. If the condition (a) is satisfied, then Pf,t is a convex func-
tion, independently from Ts. For example, in low SNR scenarios, i.e.,
γ(R) << 1, the condition (a) is satisfied when α < Q(−2) = 0.97. Oth-
erwise, the sensing time has to satisfy the condition (b). In particular,
as also proved in [80], this condition is satisfied when Ts is sufficiently
large such that Pf,t(Ts) < 0.5, that is reasonable in conditions of prac-
tical interest.

3.4.3 Analysis of Pf,s with the sensing time

By substituting (3.22) in (3.12), after simple mathematical manipu-
lations, we have the following expression of the detection probability:

Pd(s, Ts) = Q

(
Q−1(α)

√
1 + 2γ(R)

1 + 2γ(s)
+ (γ(R)− γ(s))

√
Ts fs

1 + 2γ(s)

)
(3.26)

As it is possible to note, when s < R, i.e., the CU is located inside
the PrR, the detection probability increases with the sensing time Ts,
since γ(s) > γ(R), and it converges to one; when s = R, i.e., the CU is
located at the boundary of the PrR, the detection probability is equal to
α; furthermore, when s > R, i.e., the CU is located outside the PrR, the
detection probability decreases with the sensing time, since γ(s) < γ(R),
and it converges to zero. This behavior is a consequence of the imposed
constraint on the detection probability at the boundary of the PrR. This
behavior is desired since by increasing the sensing time, from one side,
we want to reduce the interference against the PU inside the PrR and,
from the other side, we want to increase the percentage of discovered
spatial opportunities and so the performance of the CR network. In
particular, when s is sufficiently large such that γ(s) ' 0, the detection
probability converges to the temporal false-alarm probability in (3.23).
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From the above discussion, we can state that the spatial false-alarm
probability Pf,s(Ts), given in (3.11), is a decreasing function with the
sensing time. Moreover, we have the following result:

Proposition 6. The spatial false-alarm probability Pf,s is a convex
function with Ts if the following condition (c) otherwise (d) is satisfied:

(c) : |Q−1(α)|2 (1 + 2γ(R))− 4 (1 + 2γ(s)) < 0; (3.27)

(d) : (Ts < t23) ∪ (Ts > t24) (3.28)

where t3 and t4 are given in (J.4).

Proof. See Appendix J.

Remark 17. The considerations of Remark 16 can also be extended to
Pf,s. In particular, when s tends to R, the condition (d) is certainly
satisfied, since t3 tends to infinite, whereas, when s is sufficiently large
such that γ(s) << γ(R), the conditions (c) and (d) become equal to (a)
and (b) in Proposition 5, respectively.

3.4.4 Analysis of MSC with the sensing time

In the following, we prove in Theorem 8 the existence of a single opti-
mal sensing time that solves the problem (3.20), namely that maximizes
MSC(Ts). The proof requires first the following result:

Proposition 7. The channel access probability enabled by sensing is
an increasing and concave function with Ts.

Proof. From (3.14) it follows that:

dCAPsens(Ts)

dTs
= −

dPf,t(Ts)

dTs
Poff −

dPf,s(Ts)

dTs
Pon. (3.29)

Since the temporal and spatial false-alarm probabilities decrease with
Ts, then the channel access probability increases with Ts, namely (3.29)
is positive. In particular, by exploiting the Propositions 5 and 6, we
have that (3.29) is decreasing with Ts.

Theorem 8. It exists a single optimal sensing time Ts that maximizes
the mobility-aware sensing enabled capacity, while satisfying the PU
interference constraints.
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Proof. From (3.15), we have that:

dMSC(Ts)

dTs
= − Tx

(Ts + Tx)2
CAPsens(Ts) +

Tx
Ts + Tx

dCAPsens(Ts)

dTs
(3.30)

where the first term at the right side of the equality (3.30) is negative
and the second term is positive. In particular, when Ts tends to zero,
the first term is finite (see (3.14), (3.23) and (3.26)) but the second term
tends to infinite (see (3.29), (I.1) in Appendix I and (J.1) in Appendix J),
thus (3.30) is positive. On the other hand, when Ts tends to infinite, the
second term tends exponentially to zero, that can be neglected compared
to the first term when Ts is sufficiently large, thus (3.30) is negative.
This means that MSC(Ts) has at least one maximum, and from (3.30)
we have:

dMSC(Ts)

dTs
= 0 ⇔ dCAPsens(Ts)

dTs
=

CAPsens(Ts)

Ts + Tx
(3.31)

Moreover, by deriving (3.30), after simple mathematical manipulations,
we have:

d2 MSC(Ts)

dT 2
s

=
2Tx

(Ts + Tx)3
CAPsens(Ts)−

2Tx
(Ts + Tx)2

dCAPsens(Ts)

dTs

+
Tx

(Ts + Tx)

d2 CAPsens(Ts)

dT 2
s

(3.32)

and, by replacing (3.31) in (3.32), we have:

d2 MSC(Ts)

dT 2
s

=
Tx

(Ts + Tx)

d2 CAPsens(Ts)

dT 2
s

(3.33)

Since CAPsens(Ts) is a concave function with Ts (Proposition 7), then
(3.32) is negative when (3.30) is zero, thus MSC(Ts) has a single maxi-
mum.

3.5 Performance Assessment

In this section, we carry out the performance assessment of the pro-
posed framework when two widely adopted mobility models are con-
sidered [93], [94], i.e., the Random Walk mobility Model (RWM) and
the Random Way-Point mobility Model (RWPM). To this aim, first of
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all, we validate the theoretical results derived in Section 3.4 through
Monte Carlo simulations for the AWGN scenario, then the effects of
both multipath and shadow fading are considered; in particular, for the
multipath fading we use the exponential distribution (that comes from
the Rayleigh fading assumption), whereas for the shadow fading we use
the log-normal distribution [100].

More specifically, to simulate the PU mobility, we first generate 104

topologies by placing both the PU and CU randomly in a squared net-
work region. Then, for each topology, we let the PU moves according to
the adopted mobility model (RWM or RWPM) for enough time to reach
the steady-state distribution5. Then, the probability that the PU visits
each position and the probability that the PU is inside the protection
range, are estimated. Furthermore, to simulate the effects of both mul-
tipath and shadow fading, we generate 104 realizations of the channel
power gains according to their statistical distributions. In the following,
we provide several experiments that validate the theoretical analysis;
interesting guidelines for spectrum sensing design are also provided.

Experiment 1. In this experiment, we assume the AWGN channel
model and validate the theoretical results when the RWM and RWPM
are adopted. In particular, we use the following set of parameters: the
protection range is R = 0.4 a, the PU inactivity probability is Poff = 0.6,
the detection constraint is α = 0.9, the interference probability con-
straint is β = 10−2, the PU arrival rate is λoff = 0.5, the sampling
frequency is fs = 106, the path-loss exponent is ρ = 4.

In Fig. 3.3, left-side plot, it is shown the Detection Probability
(Pd(s, Ts)), given in (3.26), versus the distance between PU and CU
normalized to the network side (s/a), when the CU is located outside
the PrR (s > R), and for different values of the sensing time (Ts). It is
shown that, the Pd(s, Ts) decreases with Ts, while satisfying the detec-
tion constraint (α)6. In particular, the Pd(s, Ts) decreases when the SNR
at the boundary of the protection range (γ(R)) increases. Furthermore,
the Pd(s, Ts) decreases with the distance and converges to the Temporal

5We remember that, the spatial distribution of the considered mobility models is
independent from the speed of the mobile node, but it only depends on the network
region.

6Conversely, it can be shown that the detection probability increases with the
sensing time when the CU is located inside the PrR, namely when the distance is
lower than the protection radius.
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Figure 3.3: Experiment 1: On the left-side plot, it is shown the Detection Proba-
bility (Pd(s, Ts)) versus the distance between PU and CU normalized to the network
side (s/a), when the CU is located outside the PrR (s > R), and for different values of
Ts. On the right-side plot, it is shown the Spatial False-Alarm Probability (Pf,s(Ts))
versus Ts, for both the mobility models (RWM, RWPM), in the AWGN scenario.
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Figure 3.4: Experiment 1: On the left-side plot, it is shown the Channel Ac-
cess Probability (CAP) and the Channel Access Probability enabled by sensing
(CAPsens(Ts)) versus Ts, whereas, on the right-side plot, it is shown the Mobility-
Aware Sensing Enabled Capacity (MSC(Ts)) versus Ts, for both the mobility models
(RWM, RWPM), in the AWGN scenario.

False-Alarm Probability (Pf,t(Ts)), given in (3.23), that, for the sake of
simplicity, it is not plotted here.

In Fig. 3.3, right-side plot, it is shown the Spatial False-Alarm Prob-
ability (Pf,s(Ts)), given in (3.11), versus Ts, for both the adopted mo-
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bility models. First of all, we observe that, the analytical expressions
given in (3.11), where the pdf of the distance (fS(s)) has been derived
in [95] for both the RWM and RWPM, match well the simulated results.
Then, we observe that, the Pf,s(Ts) decreases with Ts and it is a convex
function, since, as proved in Proposition 6, the condition (c) is verified7.
The same results can be shown for the temporal false-alarm probability
(Pf,t(Ts)), given in (3.23), as proved in the Proposition 5. Furthermore,
we observe that, the Pf,s(Ts) decreases with γ(R), and depends on the
adopted mobility model.

In Fig. 3.4, left-side plot, it is shown the Channel Access Probability
(CAP), given in (3.13), and the Channel Access Probability enabled by
sensing (CAPsens(Ts)), given in (3.14), versus Ts, for both the adopted
mobility models. First of all, we observe that, the CAPsens(Ts) is lower
than CAP, due to the missed temporal and spatial opportunities. How-
ever, the CAPsens(Ts) increases with Ts, since both the Pf,t(Ts) and
Pf,s(Ts) decreases, and approaches to the CAP when Ts is sufficiently
large. Moreover, the CAPsens(Ts) increases with γ(R). In particular,
the CAPsens(Ts) is a concave function, as proved in the Proposition 7.
Furthermore, by accounting for the PU mobility effect, we observe that,
in the RWM case, both the CAP and CAPsens(Ts) are higher than the
RWPM case. This is because, in the RWM case, the probability that
the CU is located outside the protection range (P (O)) is higher than
the RWPM case, as well as the percentage of spatial opportunities.

Finally, in Fig. 3.4, right-side plot, it is shown the Mobility-Aware
Sensing Enabled Capacity (MSC(Ts)), given in (3.15), versus Ts, for
both the adopted mobility models. We observe that, by increasing
Ts, the MSC(Ts) at the beginning increases, since the increasing of the
CAPsens(Ts) overcome the decreasing of the sensing efficiency (η(Ts));
however, after a certain value, the MSC(Ts) starts to decrease since the
CAPsens(Ts) slowly approaches to its maximum value (CAP) and the
decreasing of η(Ts) is predominant. Thus, this trade-off implies the ex-
istence of a single optimal sensing time that maximizes the MSC(Ts),
as proved in the Theorem 8. In particular, when γ(R) increases, the
MSC(Ts) also increases and varies more rapidly with Ts, whereas the
optimal sensing time decreases. Furthermore, we observe that, in the
RWM case, the MSC(Ts) is higher than the RWPM case. In fact, in the

7It is possible to show that, in the cases where the condition (c) is not verified,
the condition (d) holds when the sensing time is sufficiently large.
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RWM case, not only the CAPsens(Ts) but also η(Ts) is greater than the
RWPM case, since the maximum transmission time (Tmax

x ) satisfying
the PU interference constraint (β), given in (3.19), is higher than the
RWPM case. This is because, as stated before, in the RWM case the
probability that the CU is located inside the protection range (P (I)) is
lower than the RWPM case. Specifically, for the considered parameters,
we have that: Tmax

x = 99 ms in the RWM case, Tmax
x = 84 ms in the

RWPM case. Finally, in the AWGN scenario, we observe that the opti-
mal sensing time is almost the same for both the mobility models.

Experiment 2. In this example, first of all, we prove the existence of
the single optimal sensing time that maximizes the mobility-aware sens-
ing enabled capacity in a more realistic channel propagation scenario,
i.e., when both the effects of multipath and shadow fading are taken
into account. Then, we provide several experiments that highlight how
the optimal sensing time, which depend on the adopted mobility model,
should be set according to the radio environment conditions, such as
the SNR, the protection range, the PU temporal activity statistics; the
trend of the maximum transmission capacity achieved by the CU is also
shown.

We use the following set of parameters: the detection constraint is
α = 0.9, the interference probability constraint is β = 10−2, the PU ar-
rival rate is λoff = 0.5, the sampling frequency is fs = 106, the path-loss
exponent is ρ = 4, the standard deviation of the shadowing is σdB = 5.
In particular, the decision threshold in (3.16), that satisfies the detection
constraint, is calculated numerically.

In Fig. 3.5, left-side plot, it is shown the MSC versus Ts, for both
the adopted mobility models. The results confirm the existence of a
single optimal sensing time that maximizes the MSC, while satisfying
the PU interference constraints. In particular, the optimal sensing time
decreases with γ(R), and, contrarily to the AWGN scenario, it is differ-
ent for the two mobility models. Moreover, as well known, we observe
that, the presence of fading causes a severe performance degradation
compared to the AWGN channel scenario.

In Fig. 3.5, right-side plot, it is plotted the optimal sensing time
(T opt
s ) versus γ(R), for both the adopted mobility models. We observe

that, the T opt
s decreases with γ(R), and, in the RWM case, it is greater

than the RWPM case. In particular, the T opt
s is higher when the protec-
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shown the optimal sensing time (T opt

s ) versus the SNR at the distance R (γ(R)), for
both the mobility models (RWM, RWPM), in the Fading scenario.
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Figure 3.6: Experiment 2: On the left-side plot, it is shown the maximum value of
MSC(Ts) versus the SNR at the distance R (γ(R)), whereas, on the right-side plot, it
is shown the optimal sensing time (T opt

s ) versus the protection range normalized to
the network side (R/a), for both the mobility models (RWM, RWPM), in the Fading
scenario.

tion radius R is lower, due to the following two reasons: (i) more spatial
opportunities are available and can be discovered, thus the CAPsens(Ts)
is higher; (ii) the maximum transmission time (Tmax

x ), given in (3.19),
is greater since P (I) is lower, thus the sensing efficiency is higher. In
particular, when R = 0.3 a, we have that: Tmax

x = 161 ms in the RWM
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case, Tmax
x = 138 ms in the RWPM case. Furthermore, the maximum

MSC (MSCmax), that is shown in Fig. 3.6, left-side plot, increases with
γ(R), and also increases when R decreases. In particular, in the RWM
case, it is greater than the RWPM case, for the same reasons explained
in the Experiment 1.

In Fig. 3.6, right-side plot, it is shown the T opt
s versus R/a, for both

the adopted mobility models. We observe that, the T opt
s decreases with

R for the same reasons expressed before, where the difference between
the RWM and RWPM model vanishes when R is very large, since P (I)
converges to one for both the mobility models. In particular, the T opt

s

is lower when Poff is higher, since the maximum transmission time Tmax
x

is lower, as shown in Fig. 3.7, left-side-plot, and so the decreasing rate
of the sensing efficiency is higher and prevails over the increasing rate
of CAPsens. Furthermore, the maximum MSC (MSCmax), that is shown
in Fig. 3.7, right-side plot, decreases with R, and also the difference
between the RWM and RWPM model vanishes when R is very large,
for the same reason expressed before. However, it increases when Poff

is higher, since more temporal opportunities are available and can be
discovered.

Experiment 3. As expressed throughout the thesis, an effective way
to counteract the fading effect and improve the sensing accuracy is to
exploit the spatial diversity through the cooperation of spatially dis-
tributed CUs [19]. Here, we design a simple scenario to show how the
cooperative sensing performance behaves in the presence of PU mobil-
ity. More specifically, we consider a set of M cooperative users that send
their local sensing decisions to a common CU, that acts as a decision
maker, through ideals reporting channels. The decision maker combines
these sensing decisions by using the OR fusion-rule, that gives better
performance than other decision rules in many cases of practical inter-
est [101], [102], and finally takes the decision about the presence/absence
of a spectrum opportunity. For the sake of simplicity, we assume that
the cooperative users are approximatively at the same distance from the
PU, and experience uncorrelated shadowing effects. The set of parame-
ters is the same used in the previous example.

In Fig. 3.8, left-side plot, it is shown T opt
s versus the number of

cooperative users (M), for both the adopted mobility models. We ob-
serve that, the T opt

s decreases with M and the difference between the
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Figure 3.7: Experiment 2: On the left-side plot, it is shown the maximum Trans-
mission time (Tmax

x ), whereas, on the right-side plot, it is shown the maximum value
of MSC, versus the protection range normalized to the network side (R/a), for both
the mobility models (RWM, RWPM), in the Fading scenario.
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Figure 3.8: Experiment 3: On the left-side plot, it is shown the optimal sensing
time T opt

s , whereas, on the right-side plot, it is shown the maximum value of MSC,
versus the number of cooperative users (M), for both the mobility models (RWM,
RWPM), in the Fading scenario. It is considered the OR-fusion rule for taking the
cooperative decision.

RWM and RWPM vanishes when M is sufficiently large. Furthermore,
the T opt

s increases when R is lower, for the same reasons expressed be-
fore. Instead, as shown in Fig. 3.8, right-side plot, the maximum MSC
(MSCmax) increases with M and approaches to its maximum value when
M is sufficiently large, since the CAPsens(Ts) approaches to its maximum
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value. In particular, the MSCmax, in the RWM case, is higher than the
RWPM case, for the same reasons expressed before. Finally, it is higher
when the protection radius R is lower.

3.6 Conclusions

In this chapter, the spatio-temporal spectrum sensing design problem
in the presence of Primary-User (PU) mobility has been addressed. More
specifically, a new performance metric, named mobility-aware sensing
enabled capacity has been introduced, that measures the actual trans-
mission capacity achieved by the Cognitive User (CU) with a limited
sensing accuracy, namely by taking into account both the missed tem-
poral and spatial opportunities. Then, a theoretical analysis has been
developed to prove the existence of a single optimal sensing time that
maximizes the mobility-aware sensing enabled capacity, while satisfy-
ing the PU interference constraints. The theoretical results have been
validated by simulations when two widely adopted mobility models are
considered, i.e., the Random Walk mobility Model (RWM) and the Ran-
dom Way-Point mobility model (RWPM). Then, several experiments,
that constitute the guidelines for spectrum sensing design, have been
provided that show how the optimal sensing time, which depend on the
adopted mobility model, should be set in according to the radio environ-
ment conditions. In particular, it has been shown that the optimal sens-
ing time is higher in the RWM case, but the corresponding maximum
transmission capacity is even more higher, since the mobility pattern
influences differently the percentage of discovered spatial opportunities
that is higher in the RWM case. The future developments concern the
analysis of the proposed framework in the presence of multiple mobile
PUs transmitting on a given channel, and by proposing effective coop-
erative sensing decision approaches.



Conclusions

In this thesis, the role of the cooperative paradigm in wireless net-
works has been studied with the aim to demonstrate that it is an effective
way to counteract the impairments of wireless channels caused by the
fading effects, through the exploitation of the spatial diversity, and so to
guarantee satisfactory performance that otherwise would not be achiev-
able through an individual action. More specifically, the advantages of
the cooperative paradigm has been shown with reference to both tradi-
tional relay networks, for cooperative transmission, and cognitive radio
networks, for cooperative spectrum sensing, and three different problems
on these research topics have been presented.

With reference to Cooperative Relay Networks, we studied the per-
formance of distributed Space-Time Block Coding (STBC) schemes in-
volving multiple decode-and-forward (D&F) relays in the presence of
impulsive noise, modeled in according to the Middleton Class-A (MCA)
distribution, by considering both optimal (ML, IML) and suboptimal
(MD) detecting structures at the destination, and both centralized and
decentralized cooperative strategies. We proved analytically that, with
respect to Gaussian noise, the major effect of the impulse noise on the
performance of the IML and MD detectors concerns the finite signal-
to-noise ratio (SNR) diversity order, which does not monotonously in-
crease as the SNR rises, but instead oscillates between a maximum and
a minimum before to reach its asymptotic (i.e., in the high SNR region)
value. The same behavior is shown for both centralized and decentral-
ized schemes, and also when the number of active relays is random. In
particular, independently from the detecting structure employed at the
destination, decentralized scheme pays a performance degradation with
respect to its centralized counterpart, that becomes slight by increasing
the number of relays. Moreover, we showed that in the case of complex
orthogonal STBC, this oscillating behavior tends to completely disap-
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pear in the case of the IML detector for sufficiently large values of the
asymptotic diversity order; contrary, the performances of the MD detec-
tor, both in terms of finite-SNR diversity order and coding gain, become
worsen.

With reference to Cognitive Radio (CR) Networks, we focus the at-
tention on the two objectives of spectrum sensing functionality: (i) to
guarantee an high detection accuracy for avoiding harmful interference
against Primary-User (PU) networks, (ii) to efficiently identify and ex-
ploit the spectrum holes for enhancing the transmission capacity of CR
networks.

Regarding the first spectrum sensing objective, we studied the per-
formance of different cooperative spectrum sensing techniques for two
different decision approaches, namely the Combining Decision (CD) ap-
proach, where the decision maker does not participate in sensing, and
the Sensing & Combining Decision (SCD) approach, where the decision
maker participates in sensing and uses its sensing statistics in place of
one another Cognitive User (CU). In particular, by accounting for the
multipath fading effects of both sensing and reporting channels, we first
design the proposed cooperative sensing techniques in according to both
the decision approaches, then we proved that the detection accuracy
exhibits a threshold behavior as a function of the adopted decision ap-
proach, independently on the considered cooperative sensing technique,
namely on the left side of the threshold the higher detection accuracy is
assured by the CD approach, whereas on the right side of the threshold
it is guaranteed by the SCD approach. Moreover, we derived analyti-
cally the closed-form expression of the threshold value, which depends
on sensing and reporting channel parameters.

Finally, regarding the second spectrum sensing objective, we ad-
dressed the spatio-temporal spectrum sensing design problem in the
presence of PU mobility with the goal to optimize the sensing time
that maximizes the actual transmission capacity achieved by the CU
with a limited sensing accuracy, while satisfying the PU interference
constraints. More specifically, for the considered scenario, we first in-
troduced the Mobility-aware Sensing enabled Capacity (MSC), that is a
new performance metric for CR networks that measures the actual trans-
mission capacity achieved by the CU with a limited sensing accuracy,
namely by taking into account both the missed temporal and spatial
opportunities. Then, it is analytically proven the existence of a single
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optimal sensing time that maximizes the MSC, while satisfying the PU
interference constraints. Interesting guidelines for spectrum sensing de-
sign are also provided that show how the optimal sensing time, which
depends on the adopted mobility model, should be set in according to
the radio environment conditions. For example, we proved that the opti-
mal sensing time is higher for the Random Walk mobility Model (RWM)
than the Random Way-Point mobility Model (RWPM), but the corre-
sponding maximum transmission capacity is even more higher, since the
percentage of discovered spatial opportunities is higher in the RWM
case. In particular, it is proven through simulations that the transmis-
sion capacity can be largely improved by means of cooperative spectrum
sensing, and a reduced optimal sensing time can be also achieved.





Appendix A

Proof of Theorem 1

Accounting for (1.10), using the result [103] that E[exp (−g̃HA g̃)] =
det−1(IN + Σg̃ A), for A ∈ C(Nmax+1)×(Nmax+1), and remembering that
det(IN+B C) = det(IP+C B), for B ∈ C(Nmax+1)×P and C ∈ CP×(Nmax+1),
one has

Eg̃ | m̃=m,s̃=s,R̃=R

[
PEPiml(h̃, m̃)

]
=

1

π

∫ π/2

0
Eg̃ | m̃=m,s̃=s,R̃=R

[
exp

(
−

g̃HSRHCHk,` Σ−1
m Ck,`RS g̃

4σ2 sin2 θ

)]
dθ

=
1

π

∫ π/2

0
det−1

(
IP + γ

Σ−1
m Φk,`(s)

4 sin2 θ

)
dθ (A.1)

where γ , 1/σ2 and Φk,`(s) , Ck,`RS Σg̃ SRHCHk,` ∈ CP×P is a
given matrix. Since the diagonal matrix Σg̃ is nonsingular and the
rank of a matrix is unchanged upon left or right multiplication by a
nonsingular matrix [61], it follows that rank(Φk,`(s)) = rank(Ck,`RS).
Moreover, since rank(Ck,`) = min(P,L) (rank criterion) and R(s) =
rank(RS) = min(L,N(s)+1), it results [61] that min(P,L)+R(s)−L ≤
rank(Ck,`RS) ≤ min(min(P,L), R(s)). Hence, in the case of P ≥ L,
one has rank(Ck,`RS) = R(s) and, consequently, because the matrix
Σm is nonsingular, one obtains rank(Σ−1

m Φk,`(s)) = rank(Φk,`(s)) =
R(s) ≤ P . Then, since Φk,`(s) is a positive semidefinite Hermitian
matrix, i.e., its eigenvalues are nonnegative real numbers, and the eigen-
values of the diagonal matrix Σm are simply equal to its diagonal entries
(which are positive and are assumed to be arranged in increasing order,
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i.e., σ2
m1
≤ σ2

m2
≤ · · · ≤ σ2

mP
), one gets

det

(
IP + γ

Σ−1
m Φk,`(s)

4 sin2 θ

)
=

P∏
r=1

[
1 + γ

µr(Σ
−1
m Φk,`(s))

4 sin2 θ

]

≥
( γ

4 sin2 θ

)R(s)
R(s)∏
r=1

µr(Σ
−1
m Φk,`(s))

≥
( γ

4 sin2 θ

)R(s)

 P∏
p=P−R(s)+1

1

σ2
mp

 R(s)∏
r=1

µr(Φk,`(s))

 . (A.2)

Therefore, by substituting (A.2) in (A.1) and accounting for (1.4), one
has

Em̃ | s̃=s,R̃=R

{
Eg̃ | m̃,s̃=s,R̃=R

[
PEPiml(h̃, m̃)

]}
≤ Θ

γR(s)

 P∏
p=P−R(s)+1

E[m̃p]λ
−1 + Γ

1 + Γ


·

R(s)∏
r=1

µr(Φk,`(s))

−1

=
Θ

γR(s)

R(s)∏
r=1

µ−1
r (Φk,`(s)) (A.3)

with Θ , 4R(s)

π

∫ π/2
0 (sin2 θ)R(s) dθ, where we have also used the fact

that the Poisson RVs m̃1, m̃2, . . . , m̃P are statistically independent and
E[m̃p] = λ. Let RS Σg̃ SRH = U Ω UH be the economy-size eigen-
value decomposition of RS Σg̃ SRH , with U ∈ CL×R(s) satisfying
UH U = IR(s) and

Ω = diag[µ1(RS Σg̃ SRH), µ2(RS Σg̃ SRH), . . . ,

µR(RS Σg̃ SRH)] ∈ RR(s)×R(s) (A.4)
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one has µr(Φk,`(s)) = µr(Ck,` U Ω UHCHk,`) = µr(Ω UHCHk,` Ck,` U), for
r ∈ {1, 2, . . . , R(s)}. Moreover, it can be shown (see, e.g., [104]) that

R(s)∏
r=1

µr(Φk,`(s)) =

R(s)∏
r=1

µr(Ω UHCHk,` Ck,` U)

≥

R(s)∏
r=1

µr(RS Σg̃ SRH)

 L∏
r=L−R(s)+1

µr(U
HCHk,` Ck,` U)


≥

R(s)∏
r=1

µr(RS Σg̃ SRH)

  L∏
r=L−R(s)+1

µr(CHk,` Ck,`)

 . (A.5)

Similarly, it can be seen that

R(s)∏
r=1

µr(RS Σg̃ SRH) =

R(s)∏
r=1

µr(Σg̃ SRHRS)

≥

 N(s)∏
r=N(s)−R(s)+1

σ2
g̃r

R(s)∏
r=1

µr(SRHRS)

 . (A.6)

The expression (1.12) comes from by substituting (A.5) and (A.6) in
(A.3), and accounting for (1.11).
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Appendix B

Proof of Lemma 1

Let us study the solution of (1.20). The eigenvalues µr(RHR) are
necessarily positive for r ∈ {1, 2, . . . , Rmax}, whereas µr(RHR) = 0
for r ∈ {Rmax + 1, Rmax + 2, . . . , Nmax + 1}. Thus, application of the
arithmetic-geometric mean inequality for nonnegative real numbers [61]
leads to

Rmax∏
r=1

µr(RHR) ≤

[
1

Rmax

Rmax∑
r=1

µr(RHR)

]Rmax

=

[
1

Rmax
trace(RHR)

]Rmax

=

(
ρ

Rmax

)Rmax

(B.1)

where we have also applied the constraint trace(RHR) = ρ. In (B.1),
equality holds if and only if

µr(RHR) =
ρ

Rmax
for r ∈ {1, 2, . . . , Rmax} . (B.2)

When L < Nmax + 1, i.e., Rmax = L, one has that µr(RHR) =
µr(RRH), for r ∈ {1, 2, . . . , L}, and RRH is positive definite. In
this case, condition (B.2) is fulfilled if and only if Ropt RH

opt = (ρ/L) IL.

Let us now derive the solution of (1.21). The eigenvalues given by
µr(SRHRS) are necessarily positive for r ∈ {1, 2, . . . , R(s)}, whereas
µr(SRHRS) = 0 for r ∈ {R(s) + 1, R(s) + 2, . . . , N(s) + 1}. Thus,
applying again the arithmetic-geometric mean inequality, using the con-
straint trace(SRHRS) = ρR(s)/Rmax, and reasoning as done above,
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one has that
∏R(s)
r=1 µr(SRHRS) is maximized when

µr(SRHRS) =
ρ

Rmax
for r ∈ {1, 2, . . . , R(s)} (B.3)

and the corresponding maximum value is (ρ/Rmax)R(s). Since L ≥
Nmax + 1, it follows that Rmax = Nmax + 1 and R(s) = N(s) + 1.
Let R(s) ∈ CL×(N(s)+1) denote the matrix RS deprived of all its
zero columns, then µr(SRHRS) = µr(RH(s)R(s)). Consequently
RH(s)R(s) is positive definite and, hence, condition (B.3) is fulfilled for
each realization s of s̃ if and only if RH

opt Ropt = [ρ/(Nmax +1)] INmax+1.



Appendix C

Proof of Theorem 2

Accounting for (A.1), using (1.4), and remembering that the Poisson
RVs m̃1, m̃2, . . . , m̃P are statistically independent, one obtains

APEP(γ) = Em̃ | s̃=1Nmax ,R̃=R

{
Eg̃ | m̃,s̃=1Nmax ,R̃=R

[
PEPiml(h̃, m̃)

]}
=

1

π

+∞∑
m1=0

+∞∑
m2=0

. . .
+∞∑
mP =0

 P∏
p=1

pm̃p
(mp)


·
∫ π/2

0
det−1

(
IP + γ

Σ−1
m Φk,`

4 sin2 θ

)
dθ (C.1)

with Φk,` , Φk,`(1max) (see Appendix A). It is convenient to observe
that, by virtue of (1.4), one can write

P∏
p=1

pm̃p
(mp) = exp(−λP )

P∏
p=1

λmp

mp!
= exp(−λP ) det(Λm) (C.2)

where Λm , diag(λm1/m1!, λm2/m2!, . . . , λmP /mP !). According to (1.1),
we have to evaluate the derivative of APEP(γ) with respect to the SNR.
By invoking the Leibnitz’s rule, one gets

d APEP(γ)

dγ
=

exp(−λP )

π

+∞∑
m1=0

+∞∑
m2=0

. . .

+∞∑
mP =0

det(Λm)

·
∫ π/2

0

∂

∂γ
det−1

(
IP + γ

Σ−1
m Φk,`

4 sin2 θ

)
dθ (C.3)
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where, by observing that

∂ det(A)

∂γ
= det(A) trace

(
A−1 ∂A

∂γ

)
where A is an arbitrary nonsingular square matrix depending on γ, it
follows that

∂

∂γ
det−1

(
IP + γ

Σ−1
m Φk,`

4 sin2 θ

)
= −det−1

(
IP + γ

Σ−1
m Φk,`

4 sin2 θ

)
· trace

[(
IP + γ

Σ−1
m Φk,`

4 sin2 θ

)−1
Σ−1

m Φk,`

4 sin2 θ

]
. (C.4)

After simple rearrangements, eq. (1.23) comes from by substituting
(C.1), (C.2), (C.3), and (C.4) in (1.1), and accounting for (1.22). The
rank of the matrix Σ−1

m Φk,` can be obtained by the discussion in Ap-
pendix A.



Appendix D

Proof of Theorem 3

Starting from (1.41) and reasoning as done for obtaining (A.1), one
gets

Eg̃ | m̃=m,s̃=s,,R̃=R

[
PEPmd(h̃, m̃)

]
≤ 1

π

∫ π/2

0
Eg̃ | m̃=m,s̃=s,R̃=R

[
exp

(
−

g̃H SRH CHk,` Ck,`RS g̃

4σ2 µ1(Σm) sin2 θ

)]
dθ

=
1

π

∫ π/2

0
det−1

[
IP + γ

Φk,`(s)

4µ1(Σm) sin2 θ

]
dθ (D.1)

where γ and Φk,`(s) have been defined in Appendix A. Using (D.1) and
following the same steps that leaded to (A.2), one has

Eg̃ | m̃=m,s̃=s,R̃=R

[
PEPmd(h̃, m̃)

]
≤ [µ1(Σm)]R(s) Θ

γR(s)

R(s)∏
r=1

µ−1
r (Φk,`(s)) (D.2)

where Θ has been defined in Appendix A. Therefore, by observing that
µ1(Σm) = max(σ2

m1
, σ2

m2
, . . . , σ2

mP
) and accounting for (1.4), one has

Em̃ | s̃=s,R̃=R

{
Eg̃ | m̃,s̃=s,R̃=R,

[
PEPmd(h̃, m̃)

]}
≤ E

[(
m̃ λ−1 + Γ

1 + Γ

)R(s)
]

Θ

γR(s)

R(s)∏
r=1

µ−1
r (Φk,`(s)) (D.3)
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where m̃ , max{m̃1, m̃2, . . . , m̃P }. Since the maximum of P quantities
is less than or equal to any number m ∈ N if and only if all of these
quantities are less than or equal to m, and m̃1, m̃2, . . . , m̃P are i.i.d. RVs,
it follows that P (m̃ ≤ m) = [F (m)]P and P (m̃ ≥ m) = 1− [F (m−1)]P ,
where F (m) , Fm̃p

(m) =
∑m

i=0 pm̃p
(i) is the cumulative distribution

function (CDF) of m̃p, which does not depend on p. Consequently, one
has

P (m̃ = m) = P ({m̃ ≤ m} ∩ {m̃ ≥ m})
= [F (m)]P − [F (m− 1)]P

≤ P [F (m)− F (m− 1)] = P pm̃p
(m) (D.4)

where the inequality comes from the Ruffini’s rule and from the fact that
the CDF of a RV is a positive number less than or equal to one. Thus,
one has

E

[(
m̃ λ−1 + Γ

1 + Γ

)R(s)
]

=
+∞∑
m=0

(
mλ−1 + Γ

1 + Γ

)R(s)

P (m̃ = m)

≤ P E

[(
m̃p λ

−1 + Γ

1 + Γ

)R(s)
]
. (D.5)

Inequality (1.42) comes from by substituting (A.5), (A.6), and (D.5) in
(D.3).



Appendix E

Proof of Proposition 1

By exploiting (2.25), Cysc,a|Hj
results rank-deficient, since 2Le rows

(equivalently 2Le columns) are equal. In fact, the first Le rows (Le
columns) of both Cysc|Hj

in (2.10) and Cy∗sc|Hj
in (2.13) are equal to

the real matrix Cy0|Hj
in (2.11). By accounting for footnote 7, after

some algebraic manipulations, it is easy to show that Cysc,a|Hj
admits

the full-rank factorization [78]: Cysc,a|Hj
= F Ψ, i.e., it can be rewritten

as product of a full-column rank matrix F ∈ C(2M Le)×(2M−1)Le and a
full-row rank matrix Ψ ∈ R(2M−1)Le×2MLe , given by, respectively,

F ,


0Le×(M−1)Le

Cy0|Hj
0Le×(M−1)Le

Cy|Hj
0(M−1)Le×Le

Cy∗|Hj

0Le×(M−1)Le
Cy0|Hj

0Le×(M−1)Le

C∗y∗|Hj
0(M−1)Le×Le

C∗y|Hj
,

 (E.1)

Ψ ,

0(M−1)Le×Le
I(M−1)Le

0(M−1)Le×Le
0(M−1)Le×(M−1)Le

ILe
0Le×(M−1)Le

ILe
0Le×(M−1)Le

0(M−1)Le×Le
0(M−1)Le×(M−1)Le

0(M−1)Le×Le
I(M−1)Le


(E.2)

Hence, the Moore-Penrose inverse of Cysc,a|Hj
is equal [78] to: C†ysc,a|Hj

=

(F Ψ)† = ΨH(ΨΨH)−1(FHF)−1FH . Since one has that rank(Cysc,a|Hj
) =

rank(C†ysc,a|Hj
Cysc,a|Hj

) = trace(C†ysc,a|Hj
Cysc,a|Hj

), being C†ysc,a|Hj
Cysc,a|Hj

idempotent [78], it results that: rank(Cysc,a|Hj
) = trace((ΨΨH)−1ΨΨH) =

trace(I(2M−1)Le
) = (2M − 1)Le.
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Appendix F

Proof of Theorem 5

Since the solution of (2.30) belongs to R(Cysc,a|H1
) (Proposition 2), and

C†ysc,a|H1
Cysc,a|H1

= PR(Cysc,a|H1
), with PR(Cysc,a|H1

) the orthogonal projector

on R(Cya|H1
) [78], it results:

C†ysc,a|H1
Cysc,a|H1

fsc = fsc ⇔ fsc ∈ R(Cysc,a|H1
) (F.1)

Hence, by using (F.1) and the Cauchy-Schwartz’s inequality in the DC expres-
sion one obtains

m2
wl(fsc) =

|(C1/2
ysc,a|H1

fsc)
HC

1/2
ysc,a|H1

C†ysc,a|H1
(µ̃sc|H1

− µ̃sc|H0
)|2

fHsc Cysc,a|H1
fsc

≤ (µ̃sc|H1
− µ̃sc|H0

)HC†ysc,a|H1
(µ̃sc|H1

− µ̃sc|H0
) (F.2)

where the equality holds if C
1/2
ysc,a|H1

fsc = ξC
1/2
ysc,a|H1

C†ysc,a|H1
(µ̃sc|H1

−µ̃sc|H0
)⇔

fsc = fwl-sc = ξC†ysc,a|H1
(µ̃sc|H1

− µ̃sc|H0
). The constraint fHsc fsc = 1 is satisfied

by ξ = 1/||C†ysc,a|H1
(µ̃sc|H1

− µ̃sc|H0
)||22, which is real to assure the conjugate

symmetric property of fsc.
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Appendix G

Proof of Proposition 3

Sensing & Combining Decision approach case: For Proposition 1, Cysc,a|H1

has at least one non-singular submatrix X11 ∈ C(2M − 1)Le×(2M − 1)Le such

that: P Cysc,a|H1
Q =

[
X11 X12

X21 X22

]
, where P and Q are permutation matrices,

[78]. By defining P ,

[
0(2M−1)Le×Le

I(2M−1)Le

ILe 0Le×(2M−1)Le

]
∈ R2M Le×2M Le and

Q , PT , it results:

X11 =


[

Cy|H1
0(M−1)Le×Le

0Le×(M−1)Le
Cy0|H1

] [
Cy∗|H1

0Le×(M−1)Le

]
[
C∗y∗|H1

0(M−1)Le×Le

] [
C∗y|H1

]
 (G.1)

X21 =
[
0Le×(M−1)Le

Cy0|H1
0Le×(M−1)Le

]
= XT

12

X22 = Cy0|H1
. (G.2)

By substituting (G.1) and (G.2) in the Noble’s equality [78], and by denoting

with C†ysc,a|H1
,

[
Φ11 Φ12

Φ21 Φ22

]
, after some algebraic manipulations, we obtain:

Φ11 = Φ∗22 =

[ 1
4C−1y0|H1

0Le×(M−1)Le

0(M−1)Le×Le
Ω

]
(G.3)

Φ12 = Φ∗21 =

[
1
4C−1y0|H1

0Le×(M−1)Le

0(M−1)Le×Le
−C−1y|H1

Cy∗|H1
Ω
∗

]
(G.4)

with Ω given in (2.44). By exploiting (2.31), the WL subvector twl-sc is ex-
pressed as:

twl-sc =
(Φ11Hsc + Φ12H

∗
sc)(ηsc|H1

− ηsc|H0
)

√
2 ||(Φ11Hsc + Φ12H∗sc)(ηsc|H1

− ηsc|H0
)||22

(G.5)
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The proof is achieved by substituting Φ11 and Φ12 in (G.5) and by using the
expression of Hsc.

Combining Decision approach case: By exploiting (2.28), and by denoting

with C−1yc,a|H1
,

[
A11 A12

A21 A22

]
, the WL subvector twl-c can be expressed as:

twl-c =
[A11 Hc + A12 H∗c ] (ηc|H1

− ηc|H0
)

√
2 ||[A11 Hc + A12 H∗c ] (ηc|H1

− ηc|H0
)||22

(G.6)

By accounting for the inverse of a partitioned matrix [61], it results: A11 =
[Cyc|H1

− Cy∗c |H1
(C∗yc|H1

)−1C∗y∗c |H1
]−1 and A12 = −C−1yc|H1

Cy∗c |H1
A∗11. By

substituting (2.18), (2.20), A11, A12 in (G.6), the proof is achieved.



Appendix H

Proof of Theorem 6

The proof is carried out by comparing the WL deflection coefficients (2.29)
and (2.32) assured by the CD and the SCD approach, respectively, since, under
the gaussian hypothesis, a larger deflection coefficient corresponds to a major
detection accuracy [72,76,81]. To this aim, (2.29) and (2.32) can be rewritten,
respectively, as:

m2
wl-c(fwl-c) = 2

√
2 ||Σwl-c (ηc|H1

− ηc|H0
)||22Re

[
(µc|H1

− µc|H0
)H twl-c

]
m2

wl-sc(fwl-sc) = 2
√

2 ||Σwl-sc (ηsc|H1
− ηsc|H0

)||22Re
[
(µsc|H1

− µsc|H0
)H twl-sc

]
.

By substituting (2.45) in these expressions, after some manipulations, one ob-
tains:

m2
wl-c(fwl-c) = 2

(
ν1|H1

− ν1|H0

)2
· 1T
{Le+Lg−1}Re

[
HH

1

(
Ωc H1 −C−1y1|H1

Cy∗1 |H1
Ω∗c H∗1

)]
1{Le+Lg−1}

+ 2 Re
{

(ηH1
− ηH0

)T H
H

(Ω H−C−1y|H1
Cy∗|H1

Ω
∗
H
∗
)(ηH1

− ηH0
)
}
(H.1)

m2
wl-sc(fwl-sc) =

(
ν0|H1

− ν0|H0

)2
ζ−10|H1

Le

+ 2 Re
{

(ηH1
− ηH0

)T H
H

(Ω H−C−1y|H1
Cy∗|H1

Ω
∗
H
∗
)(ηH1

− ηH0
)
}

(H.2)

where, the positive common term, i.e., 2Re{. . .}, depends on the (M − 1) SUs
different from SU0 and SU1. Consequently,

m2
wl-sc R m2

wl-c ⇔(
ν0|H1

− ν0|H0

)2
ζ−10|H1

Le R 2
(
ν1|H1

− ν1|H0

)2
1T
{Le+Lg−1}

Re
[
HH

1

(
Ωc H1 −C−1y1|H1

Cy∗1 |H1
Ω∗c H∗1

)]
1{Le+Lg−1}

(H.3)
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where both the members are positive, due to the DC definition. From (H.3),
it results:

m2
wl-sc R m2

wl-c ⇔ (
ν0|H1

− ν0|H0

)2
ζ−1
0|H1

Le

2
(
ν1|H1

− ν1|H0

)2
1T
{Le+Lg−1}Re

[
HH

1

(
Ωc H1 −C−1

y1|H1
Cy∗1 |H1

Ω∗c H∗1

)]
1{Le+Lg−1}

R 1

(H.4)

Hence, by denoting with θwl the positive quantity defined in (2.48), (H.4)
is equivalent to m2

wl-sc R m2
wl-c ⇔ θwl R 1.
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Proof of Proposition 5

From (3.23) we have that:

dPf,t(Ts)

dTs
= − 1√

2π

γ(R)
√
fs

2
√
Ts

exp

(
−
A2
f,t(Ts)

2

)
(I.1)

where Af,t(Ts) = Q−1(α)
√

1 + 2γ(R) + γ(R)
√
Tsfs is the Q-function

argument of Pf,t(Ts) in (3.23). In particular, from (I.1), after simple
mathematical manipulations, we have:

d2 Pf,t(Ts)

dT 2
s

=
γ(R)

√
fs

4
√

2π Ts

(
1√
Ts

+ γ(R)
√
fsAf,t(Ts)

)
exp

(
−
A2
f,t(Ts)

2

)
(I.2)

To prove the convexity of Pf,t(Ts), we have to single-out the conditions
under which (I.2) is positive. Thus, by accounting for the expression of
Af,t(Ts), we have:(

γ(R)2 fs
)
Ts −

(
γ(R)

√
fs |Q−1(α)|

√
1 + 2γ(R)

)√
Ts + 1 > 0 (I.3)

and, by substituting
√
Ts = t, we have that (I.3) is satisfied under the

condition (a) otherwise (b) in (3.24), where:

t1 =
|Q−1(α)|

√
1 + 2γ(R)−

√
|Q−1(α)|2 (1 + 2γ(R))− 4

2γ(R)
√
fs

(I.4)

t2 =
|Q−1(α)|

√
1 + 2γ(R) +

√
|Q−1(α)|2 (1 + 2γ(R))− 4

2γ(R)
√
fs

(I.5)
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In particular, since t2 < |Q−1(α)|
√

1 + 2γ(R)/(γ(R)
√
fs), then the con-

dition (b) is also satisfied when
√
Ts > |Q−1(α)|

√
1 + 2γ(R)/(γ(R)

√
fs),

that is equivalent to the condition: Af,t(Ts) > 0 ⇔ Pf,t(Ts) < 0.5.
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Proof of Proposition 6

To prove the convexity of Pf,s(Ts) in (3.11), we have to prove the
convexity of Pd(s, Ts) in (3.26) when s > R. Thus, similarly to the
Proposition 5, we have that:

∂ Pd(s, Ts)

∂Ts
= − 1√

2π

(γ(R)− γ(s))√
1 + 2γ(s)

√
fs

2
√
Ts

exp

(
−
A2
d(s, Ts)

2

)
(J.1)

where Ad(s, Ts) is the Q-function argument of Pd(s, Ts) in (3.26). In par-
ticular, from (J.1), after simple mathematical manipulations, we have:

∂2 Pd(s, Ts)

∂ T 2
s

=
(γ(R)− γ(s))√

1 + 2γ(s)

√
fs

4
√

2π Ts
·

·

(
1√
Ts
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(γ(R)− γ(s))√

1 + 2γ(s)

√
fsAd(s, Ts)

)
exp

(
−
A2
d(s, Ts)

2

)
(J.2)

To prove the convexity of Pd(s, Ts), we have to single-out the conditions
under which (J.2) is positive. Thus, by accounting for the expression of
Ad(s, Ts), we have:(

(γ(R)− γ(s))2 fs
1 + 2γ(s)

)
Ts

−
(

(γ(R)− γ(s))

1 + 2γ(s)

√
fs |Q−1(α)|

√
1 + 2γ(R)

)√
Ts + 1 > 0 (J.3)

119



120 Appendix

and, by substituting
√
Ts = t, we have that (J.3) is satisfied under the

condition (c) otherwise (d) in (3.27), where:

t3 =
|Q−1(α)|

√
1 + 2γ(R)−

√
|Q−1(α)|2 (1 + 2γ(R))− 4 (1 + 2γ(s))

2 (γ(R)− γ(s))
√
fs

(J.4)

t4 =
|Q−1(α)|

√
1 + 2γ(R) +

√
|Q−1(α)|2 (1 + 2γ(R))− 4 (1 + 2γ(s))

2 (γ(R)− γ(s))
√
fs

(J.5)
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