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Abstract 

This thesis deals with the o-d estimation problem from indirect measures, addressing 

two main aspects of the problem: the identification of the set of indirect measures that 

provide the maximum information with a resulting reduction of the uncertainty on the 

estimate; once defined the set of measures, the choice of an estimator to identify 

univocally and as much reliable as possible the estimate.  

As regards the former aspect, an innovative and theoretically founded methodology is 

illustrated, explicitly accounting for the reliability of the o-d matrix estimate. The 

proposed approach is based on a specific measure, named Synthetic Dispersion 

Measure (SDM), related to the trace of the dispersion matrix of the posterior demand 

estimate conditioned to a given set of sensors locations. Under the mild assumption of 

multivariate normal distribution for the prior demand estimate, the proposed SDM 

does not depend on the specific values of the counted flows – unknown in the planning 

stage – but just on the locations of such sensors. The proposed approach is applied to 

real contexts, leading to results outperforming the other methods currently available in 

the literature. In addition, the proposed methodology allows setting a formal budget 

allocation problem between surveys and counts in the planning stage, in order to 

maximize the overall quality of the demand estimation process. 

As regard the latter aspect, a “quasi-dynamic” framework is proposed, under the 

assumption that o-d shares are constant across a reference period, whilst total flows 

leaving each origin vary for each sub-period within the reference period. The 

advantage of this approach over conventional within-day dynamic estimators is that of 

reducing drastically the number of unknowns given the same set of observed time-

varying traffic counts. The quasi-dynamic assumption is checked by means of 

empirical and statistical tests and the performances of the quasi-dynamic estimator - 

whose formulation is also given – are compared with other dynamic estimators.  
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Introduction and motivation 

Transport demand estimation is a crucial issue in both planning and management of 

transport systems because the knowledge of the demand is a necessary condition for a 

design of effective policy and operational measures and for a proper evaluation of their 

effects. In practice, transport demand can be estimated through direct methods (e.g., 

surveys or other inference-based statistical methods), indirect methods (e.g., 

mathematical models linking transport demand to a set of explanatory variables related 

to the socioeconomic characteristics of the study area and to the performance of the 

transport system under analysis), or both. In the case of indirect methods, such models 

would require the completion of specific surveys for their calibration and validation. 

Costs for performing surveys, either for direct demand estimation or for calibration 

and validation of demand models, are normally high and often incompatible with the 

budget. Therefore, models previously calibrated in different contexts are usually 

applied in practice, leading to quite unreliable demand estimates and the task of 

improving the quality of such estimates is left to the "o-d flow estimation from traffic 

counts" procedure. For this reason, the transport demand estimation problem based on 

the use of indirect measures has received considerable interest in the literature and its 

fundamental aspects, along with direct and indirect estimation methods, are 

summarized in Chapter 1.    

Unfortunately, the demand flow estimation problem based on link counts is, in 

almost all cases, an underdetermined problem, since in real situations the number of 

measurements – that is the number of available equations – is far less than the number 

of variables to be estimated. Therefore, information provided by the measurements 

should be improved by means of information derived from other sources: generally, 

one can refer to a prior estimate of the demand flows and can correct this estimate by 

forcing it to reproduce the measured flows. In this context, two problems arise: 1) the 

Network Sensor Location Problem (NSLP), that is the identification of the optimal 

locations of traffic counts allowing to get an estimate as much reliable as possible; 2) 

the choice of an estimator that, starting from the observed measures, allows to identify 

univocally and, once again, as much reliable as possible the estimate.  
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As regards the first aspect, in accordance with the existing literature on this 

problem, the proper definition of an NSLP should be based on a rigorous measure of 

the quality – or equivalently of the variability – of the posterior demand vector, i.e. the 

result of the updating of the prior o–d matrix using the flows counted in the optimal 

sensor locations. Formally, this measure should be related to the statistical distribution 

of the posterior demand vector conditional upon the assignment equations related to 

the counted links. In a Bayesian perspective, this means accounting also for the 

statistical distribution of the prior o–d matrix, in turn related to the estimation 

methodology (e.g. direct surveys and/or mathematical models) and/or to the subjective 

judgement of the analyst (e.g. different data sources adopted for prior estimation may 

impact differently on each o–d pair). Furthermore, since the actual link flows in the 

count sections are unknown in the planning stage, a proper NSLP should treat them as 

random variables. Finally, from a practical standpoint, the mathematics underlying the 

NSLP and the corresponding solution algorithms should allow for feasible and 

effective applications to real networks. Starting from those premises, Chapter 2 

proposes an innovative and theoretically founded NSLP formulation, explicitly 

accounting for the variability of the posterior o–d matrix estimate. The problem is 

formulated first in the general case and then particularized to the noteworthy case of 

multivariate normal distribution for the prior demand. Indeed, this assumption allows 

for a substantial simplification of the proposed approach, leading also to the 

implementation of a sequential NSLP solving algorithm applicable to real networks. 

Importantly, the proposed framework can be effectively applied in a context of budget 

allocation problem for demand estimation: that is, since the variability of the posterior 

demand estimate depends both on the variability of the prior demand estimate and on 

the information related to the optimal link count locations, a budget allocation problem 

can be formulated in terms of trade-off between surveys and traffic counts, in order to 

minimize the overall demand variability.  

As regards the second aspect, that is the choice of the estimator, the problem of the 

balance between equations and unknowns is usually solved by introducing additional 

information related to historical (or prior) estimates. Unlike the stationary contexts, 

where this approach appears to be the only adoptable, in dynamic contexts it is 
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possible to formulate several hypotheses about the evolutionary mechanisms of the 

demand between the temporal intervals of interest; in this way, a reduction of the 

number of unknowns in the problem and, in some cases, a balance between equations 

and unknowns can be achieved. Following this approach, a new hypothesis on the 

evolutionary mechanisms of the demand, called "quasi- dynamic" is proposed and 

tested on real data in Chapter 3. 
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1 TRANSPORT DEMAND ESTIMATION 

1.1 Introduction 

Information on the origin-destination (o-d) matrix 1  of a transport network is a 

fundamental requirement in transport systems analysis, planning and managing. Many 

researchers investigated methods for reconstructing, estimating or predicting the o-d 

traffic flows.  

Hazelton (2001) defined the basic concepts of this three problems:  

- Reconstruction. The aim is to estimate the actual number of trips between each o-

d pair that occurred during the observational period. 

- Estimation. The aim is to estimate the expected number of o-d trips. 

- Prediction. The aim is to estimate future o-d traffic flows. 

O-d estimation procedures can be based on surveys of mobility (direct estimation) 

or on mathematical models (indirect estimation) where o-d flows are correlated with a 

series of known explanatory variables related to the study area. Direct estimation 

provides results whose reliability is closely related to the sampling rate and therefore 

to the cost of the surveys. Indirect estimation is cheaper than the direct one, but its 

reliability is generally limited. In particular, the most difficult aspect to reproduce is 

the spatial structure of the trips that depends on variables difficult to observe and on 

aspects which are sometimes random and difficult to include in a model. Nevertheless, 

while direct estimation methods allow to estimate only the present demand, properly 

calibrated models can be used to estimate the present demand and to forecast the 

(hypothetical) future demand.   

The result of these considerations is that researchers and practitioners generally use 

models calibrated and tested in different territorial realities to obtain a prior o-d matrix 

for the working area, and much cheaper indirect measures, i.e. flow counts on some 

                                                           
1 Transport demand of a study area can be spatially represented by an origin-destination (o-d) matrix. 

The generic element ij of the matrix represents the flow of users travelling from origin i to destination 

j, during a reference period. 
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elements of the considered network, to improve/update this available prior o-d matrix, 

that is to get an o-d matrix as closer as possible to the true one.  

Estimation/updating of o-d matrix based on traffic counts is a widely discussed 

problem in literature and its fundamental aspects, along with direct and model 

estimation methods, are summarized in this chapter.    

 

1.2 Direct sample estimation of the transport demand 

“Direct” methods are based on the use of surveys to a sample of system users and on 

statistical techniques which, starting from these surveys, allow getting an estimate 

extended to overall analysis system.  

Sampling surveys for direct estimation of travel demand are usually known as “origin-

destination surveys”. These surveys can be conducted with several techniques 

depending on characteristics of the information that one wants to get from them. “On 

board surveys” are usually conducted to estimate internal-external and external-

internal demand flows with reference to a study area; in this case they are also called 

“cordon surveys”, because of the survey sections locations. Differently, “household 

surveys” are interviews with a sample of families or persons living within the study 

area, conducted at interviewees domicile or by mail, internet, telephone. Interviews at 

travellers homes are usually more expensive; however, more reliable and precise 

information is generally obtained because of the direct interaction between the 

interviewer, conveniently trained, and the interviewee.  

As described in Cascetta (2009), the statistical design of a sampling survey for 

travel demand estimation consists of several standard phases: 

- definition of the sampling unit (person, family, vehicle, etc.) and of the method 

for enumerating the universe (e.g., list of residents or list of telephone 

subscribers);  

- definition of the sampling strategy, that is the method for extracting the sample 

of individuals to be interviewed; 
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- definition of the estimator to be adopted, that is the function used to estimate 

the unknown quantities from the information obtained by the survey; 

- definition of the number of units in the sample (sample size). 

The definition of the sampling unit is largely influenced by the type of survey and the 

availability of information about the universe. In applications, the most commonly 

used probabilistic sampling strategies are the simple random sampling (discussed in 

Section 1.2.1), the stratified random sampling (discussed in Section 1.2.2) and the 

cluster sampling (discussed in Section 1.2.3). The choice of the estimator to be 

adopted and the sample size depend on the sampling strategy considered. 

1.2.1 Simple random sampling 

In the case of simple random sampling, all the elements of the population have an 

equal probability of belonging to the sample.  

Let 𝑛 and N be the sample size and universe size, respectively. The sampling rate is 

denoted by α = 𝑛 /N. Let dod denote the demand flow between the origin o and the 

destination d to be estimated and let  𝑛𝑜𝑑
𝑖  be the number of these trips undertaken by 

the i-th element of the sample. The total of trips obtained from the sample is given by 

𝑛𝑜𝑑 = ∑ 𝑛𝑜𝑑
𝑖

𝑖=1,…,𝑛  and the sample estimate 𝑑̂𝑜𝑑  of the demand flow for the overall 

universe can be obtained as follows: 

𝑑̂𝑜𝑑 =
𝑛𝑜𝑑

𝛼
= 𝑁𝑛̅𝑜𝑑                                                                                                     (1.1) 

where 𝑛̅𝑜𝑑 = 𝑛𝑜𝑑/𝑛  is the average number of trips with the desired characteristics 

undertaken by an element of the sample.  

The variance of 𝑑̂𝑜𝑑 can be estimated as: 

𝑉𝑎𝑟[𝑑̂𝑜𝑑] =
𝑁2

𝑛
𝑠̂2(1 − 𝛼)                                                                                          (1.2) 

where 𝑠̂2 is the sample estimate of the variance of the random variable 𝑛𝑜𝑑
𝑖 : 
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𝑠̂2 =
1

𝑛−1
∑ (𝑛𝑜𝑑

𝑖 − 𝑛̅𝑜𝑑)2
𝑖=1,…,𝑛                                                                                   (1.3) 

(1 − 𝛼) is a correction coefficient which accounts for the fact that the population, over 

which the random variable is defined, has a finite number of units; therefore, if a 

census were conducted, that is if 𝛼 = 1, one could obtain an estimate corresponding to 

the true value with zero variance.    

In some surveys, a sample element undertakes at most one trip with the required 

characteristics. In other surveys, the required information is whether the sample 

element has a given characteristic. In such cases, 𝑛𝑜𝑑
𝑖  is either zero or one, and 𝑛̅𝑜𝑑 is 

the sampling estimate of 𝑃̂𝑜𝑑, that is the percentage of travellers who have undertaken 

a trip with the given characteristics. In this case, the sampling estimate of the variance 

of 𝑛𝑜𝑑
𝑖  can be expressed as the variance of a Bernoulli random variable: 

𝑠̂2 ≅ 𝑃̂𝑜𝑑(1 − 𝑃̂𝑜𝑑)                                                                                                     (1.4) 

From the estimate of the variance, one can evaluate the confidence limits of the 

estimate 𝑑̂𝑜𝑑, that is  the values of the upper bound (𝐿𝑆𝛾) and the lower bound (𝐿𝐼𝛾) of 

the interval which, depending on a predetermined value  𝛾, includes the true value of 

the estimated variable with a probability equal to (1- 𝛾). If the sample is enough 

numerous to be able to apply the central limit theorem2, one can assume that the 

estimator 𝑑̂𝑜𝑑 has a normal distribution and the confidence limits can be obtained as 

follows: 

𝐿𝑆𝛾 = 𝑑̂𝑜𝑑 + 𝑧1−𝛾/2𝑉𝑎𝑟⌊𝑑̂𝑜𝑑⌋
1/2

                                                                               (1.5) 

𝐿𝐼𝛾 = 𝑑̂𝑜𝑑 + 𝑧𝛾/2𝑉𝑎𝑟⌊𝑑̂𝑜𝑑⌋
1/2

                                                                                   (1.6) 

                                                           
2 The central limit theorem states that the sum of n independent and identically distributed random 

variables with mean µ and variance σ2, will tend to a normal distribution with mean nµ and variance 

nσ2, as n increases.  
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𝑧1−𝛾/2 and 𝑧𝛾/2 are respectively the (1 −
𝛾

2
) and 

𝛾

2
 percentiles of the standard normal 

variable. 

The ratio IR(1- 𝛾), between the confidence interval size and the value to be estimated, 

is defined relative confidence interval at (1- 𝛾) percent of the estimate 𝑑̂𝑜𝑑: 

𝐼𝑅(1 − 𝛾) =
𝐿𝑆𝛾−𝐿𝐼𝛾

𝑑𝑜𝑑
                                                                                                   (1.7) 

From a prefixed confidence interval 𝐼𝑅(1 − 𝛾), if the coefficient of variation  

𝑐𝑣 = 𝑠/𝑛̅𝑜𝑑 of the variable 𝑛𝑜𝑑
𝑖  is known, one can obtain beforehand the sample size n 

as follows: 

𝑛 ≈ 4
𝑐𝑣2𝑧1−𝛾

2 (1−𝛼)

𝐼𝑅(1−𝛾)2
                                                                                                      (1.8) 

This is rarely possible because it would be necessary to know the parameters values 

that usually are obtained during the survey and because the size n necessary to obtain 

estimates enough accurate would be too big. Therefore, in order to choose the sample 

size, one can usually refer to surveys with similar characteristics that produced good 

results. 

1.2.2 Stratified random sampling  

Stratified random sampling considers a division of the population into non-

overlapping and exhaustive groups (strata). A simple random sampling is then 

conducted in each stratum, that is a sample of elements is drawn from each stratum 

and elements of a same stratum have an equal probability of  belonging to the sample, 

while elements of different strata can have different probability. In cordon surveys, the 

users passing through the several survey sections represent the strata, while, in 

household surveys, the strata are represented by the families living within each zone.  

Let N and Nk be the universe size and the size of the stratum k, respectively. The ratio 

wk=Nk/N is so the weight of the stratum k with respect to the universe. Let nk denote 

the size of the sample drawn at random from the stratum k and let 𝑛𝑜𝑑
𝑖𝑘  be the number 
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of trips between the origin o and the destination d undertaken by the i-th element in the 

sample of stratum k. The sampling estimate 𝑑̂𝑜𝑑 of the total demand flow between o 

and d can be obtained as follows: 

𝑑̂𝑜𝑑 = 𝑁 ∑ 𝑤𝑘𝑘 ∑ 𝑛𝑜𝑑
𝑖𝑘  /𝑛𝑘𝑖=1,..,𝑛𝑘

= 𝑁 ∑ 𝑤𝑘𝑘 𝑛̅𝑜𝑑
𝑘                                                      (1.9) 

where 𝑛̅𝑜𝑑
𝑘  is the average number of trips observed in the k-th stratum. 

The variance of the stratified sampling estimate can be estimated as follows: 

𝑉𝑎𝑟[𝑑̂𝑜𝑑] ≈ 𝑁2 ∑ 𝑤𝑘
2

𝑘 𝑠̂𝑘
2(1 − 𝛼𝑘)/𝑛𝑘                                                                    (1.10) 

where  𝛼𝑘 is the sampling rate in the k-th stratum and 𝑠̂𝑘
2 is the sample estimate of the 

variance of 𝑛𝑜𝑑
𝑖𝑘 : 

𝑠̂𝑘
2 =

1

𝑛−1
∑ (𝑛𝑜𝑑

𝑖𝑘 − 𝑛̅𝑜𝑑
𝑘 )2

𝑖=1,…,𝑛𝑘
                                                                              (1.11) 

As in the case of simple random sampling, it is possible to calculate the confidence 

limits of the estimate.  

1.2.3 Cluster sampling 

In the case of cluster sampling, sampling units are grouped in clusters, which are then 

extracted randomly with a pre-determined probability of  belonging to the sample 

(simple random cluster sampling) or subdivided into strata and sampled with different 

probabilities in the different strata (stratified random cluster sampling). A further 

possibility is the two-stage cluster sampling, in which a sample of clusters is first 

selected, and then a sample of individuals within each cluster is extracted; in this case, 

the probability that an individual belongs to the sample is the product of the 

probability of selecting the cluster to which he or she belongs and the probability that 

the individual is then extracted within the cluster. 
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With both stratification (Section 1.2.2) and clusters the population is partitioned into 

subgroups (strata or clusters). Nevertheless, in the former case (stratification) the 

sample is drawn from all subgroups, while in the latter case (clusters) all the units are 

sampled from a subset of subgroups.  

Let Nc and nc be the number of clusters in the population and the number of clusters in 

the sample, respectively. Let Nk and nk denote the size of the cluster k and the size of 

the sample drawn at random from the cluster k, respectively. Let 𝑛𝑜𝑑
𝑖𝑘  be the number of 

trips between the origin o and the destination d undertaken by the i-th element in the 

sample of cluster k. In the case of two-stage cluster sampling, the sampling estimate 

𝑑̂𝑜𝑑 of the total demand flow between o and d can be obtained as follows: 

𝑑̂𝑜𝑑 =
𝑁𝑐

𝑛𝑐 ∑ 𝑁𝑘𝑘=1,..,𝑁𝑐

∑
𝑁𝑘

𝑛𝑘
∑ 𝑛𝑜𝑑

𝑖𝑘
𝑖=1,…,𝑛𝑘

 𝑘=1,..,𝑛𝑐
                                                          (1.12)                    

Let 𝑀̅ =
∑ 𝑁𝑘𝑘=1,..,𝑁𝑐

𝑁𝑐
 be the average cluster size. The variance of 𝑑̂𝑜𝑑 can be estimated 

in this case as: 

𝑉𝑎𝑟[𝑑̂𝑜𝑑] =
𝑁𝑐−𝑛𝑐

𝑁𝑐

1

𝑛𝑐𝑁𝑐𝑀̅2
𝑠𝑏

2 +
1

𝑛𝑐𝑁𝑐𝑀̅2
∑ 𝑁𝑘

2 (
𝑁𝑘−𝑛𝑘

𝑁𝑘
)

𝑛𝑐
𝑘=1

𝑠𝑘
2

𝑛𝑘
                                    (1.13)           

where 

𝑠𝑏
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∑ (
𝑁𝑘
𝑛𝑘

∑ 𝑛𝑜𝑑
𝑖𝑘

𝑖=1,…,𝑛𝑘
−𝑀̅𝑑̂𝑜𝑑)

2
𝑛𝑐
𝑘=1

𝑛𝑐−1
  

and 

𝑠𝑘
2 =

∑ (𝑛𝑜𝑑
𝑖𝑘 −

1

𝑛𝑘
∑ 𝑛𝑜𝑑

𝑖𝑘
𝑖=1,…,𝑛𝑘

)
𝑛𝑘
𝑘=1

𝑛𝑘−1
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1.3 Disaggregate estimation of demand models 

Mathematical models, applied to estimate travel demand, have to be properly 

specified, calibrated and validated. Information, resulting from surveys to a sample of 

users, are necessary to proceed in such operations. These surveys can be related to 

behaviour actually observed or demonstrated by the users in a real context (Revealed 

Preference or RP surveys), or to behaviour declared by users in hypothetical contexts 

(Stated Preference or SP surveys).  

Model specification consists in defining its mathematical structure, i.e. the 

functional form of the discrete choice model (Logit, Probit) used, and in identifying 

the explanatory variables to be used in it.  

After the specification stage, the model is calibrated, that is its parameters are 

estimated. The most widely used method to calibrate a disaggregate demand model is 

the Maximum Likelihood (ML) method, which provides the values of the unknown 

parameters by maximizing the sample likelihood, that is the probability of observing 

the choices made by a sample of users, expressed as a function of the unknown 

parameters themselves.  

In the case of simple random sampling of n users, the likelihood function is expressed 

as 

𝐿(𝛃, 𝛉) = ∏ 𝑝𝑖[𝑗(𝑖)](𝐗𝑖 , 𝛃, 𝛉)𝑖=1,…,𝑛                                                                        (1.14) 

where 𝛃 and 𝛉 are the vectors of the model parameters, 𝑝𝑖[𝑗(𝑖)] is the probability that 

each user i chooses j(i), that is the alternative actually chosen by him or her, and 𝐗𝑖 is 

the vector of the explanatory variables for the user i.  

The maximum likelihood estimate [𝛃, 𝛉]ML  of the vectors of parameters 𝛃 and 𝛉 is 

obtained by maximizing (1.14) or, more conveniently, its natural logarithm (the log-

likelihood function): 

[𝛃, 𝛉]ML = arg max ln 𝐿( 𝛃, 𝛉) = arg max ∑ ln 𝑝𝑖[𝑗(𝑖)](𝐗i, 𝛃, 𝛉)𝑖=1,…,𝑛                (1.15) 
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In the case of stratified random sampling, the probability of observing the sample 

choices and therefore the likelihood function, depends on the method used to identify 

the strata. If the population is stratified using, either directly or indirectly, the attributes 

X but not the choices to be modelled, the strategy is known as exogenous stratified 

sampling (e.g. geographical stratification and income stratification). For samples 

obtained through exogenous stratified sampling, considered that for each stratum h  

(h = 1, …, H) the sampling rate is αh = nh/Nh, it can be demonstrated that the log-

likelihood function is: 

ln 𝐿(𝛃, 𝛉) = ∑ ∑ ln 𝑝𝑖[𝑗(𝑖)](𝐗i, 𝛃, 𝛉) + cost𝑖=1,…,𝑛ℎℎ=1,…,𝐻                                     (1.16) 

which, apart from a constant term, coincides with the function (1.15) obtained for a 

simple random sample with size 𝑛 = ∑ 𝑛ℎℎ=1,…,ℎ .  

If the stratification is based on the choices made by the users, the sampling strategy is 

known as choice-based stratified sampling. The exact closed form log-likelihood 

function is rather complex for this sampling strategy. As an approximation, the 

maximum likelihood estimator with exogenous weights can be adopted and the log-

likelihood function is expressed as: 

ln 𝐿(𝛃, 𝛉) = ∑ (
𝑤ℎ

𝛼ℎ
) ∑ ln 𝑝𝑖[𝑗(𝑖)](𝐗i, 𝛃, 𝛉)𝑖=1,…,𝑛ℎℎ=1,…,𝐻                                        (1.17) 

which, apart from the weights 𝑤ℎ  and 𝛼ℎ , coincides with (1.16) and therefore with 

(1.15). 

To apply the maximum likelihood estimator with exogenous weights to a choice-based 

stratified sample, it is therefore necessary to have an estimate of the weight of each 

stratum, that is, of the fraction of the total population choosing each alternative. This 

information can be obtained from official statistics, or estimated from another simple 

random sample with smaller or less detailed questionnaires. 

Under rather general assumptions, maximum likelihood estimators have many 

desirable asymptotic statistical properties such as consistency, efficiency, and 

normality, regardless of the model used to express the probabilities 𝑝𝑖[𝑗].  
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Furthermore, it is possible to obtain approximate estimates of the variances and 

covariances of the components of [𝛃, 𝛉]ML ; the covariance matrix 𝚺𝛃,𝛉  is, in fact, 

asymptotically equal to the negative inverse of the log-likelihood function’s Hessian, 

evaluated at the point [𝛃, 𝛉]ML: 

𝚺𝛃,𝛉 = − [
𝜕2 ln 𝐿(𝛃,𝛉)

𝜕(𝛃,𝛉)𝜕(𝛃,𝛉)𝑇
]

[𝛃,𝛉]ML

−1

                                                                                             (1.18) 

If the sample is sufficiently large, expression (1.18) can be used to estimate variances 

and confidence limits for the coefficients. In addition, how the covariance matrix of 

the coefficients can influence the dispersion of the overall demand estimate could be 

an interesting aspect to be dealt with.   

The specified and calibrated model is then validated. Validation stage consists in 

testing model’s quality by using appropriate informal (that is qualitative) tests and 

formal (that is statistical) tests. The specification-calibration-validation cycle is usually 

repeated several times until a good demand model is obtained.  

 

1.4 Estimation/Updating of o-d demand flows using traffic counts 

Traffic counts are often collected to monitor traffic circulation. They measure the 

number of vehicles passing through a point (or section) during a specified time period. 

They are usually conducted to monitor and describe traffic characteristics such as peak 

hour volume, average daily traffic, average annual daily traffic, etc. In fact, these link 

traffic counts can be efficiently used to estimate an o-d matrix. The information on o-d 

flows contained in traffic counts is represented by the following system of equations: 

𝐲̂ = 𝐌̂𝐝 + 𝛆                                                                                                              (1.18) 

where 𝐲̂ is the vector of measured link flows; 𝐌̂ is the assignment matrix, which maps 

the o-d demand flows to link flows, on the base of the route choice behaviour of the 

trip makers and of the flow propagation relationships; 𝐝 is the “true” vector of demand 
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o-d flows; 𝛆 is the vector which accounts for assignment and measurement errors. 

Even assuming that 𝛆 is null, the number of independent equations of this system is 

usually much less than the number of unknown o-d demand flows to be estimated. 

Indeed, to estimate the unknown o-d flows, information contained in the counts must 

be combined with other sources, that is, in general, a prior o-d matrix. Therefore, 

information contained in the flows observed on a certain number of links in the 

network can be used to update or improve a prior o-d matrix estimate already available 

for the study network. Demand flows estimation using traffic counts can be considered 

as the inverse assignment problem. In fact, by solving an assignment problem, one can 

calculate link flows starting from o-d flows, network topology and characteristics 

(supply system), and path choice models. Conversely, the considered o-d estimation 

problem is that of calculating o-d flows starting from measured link flows, supply 

system and path choice models. This approach is practically attractive, because traffic 

counts are readily available in many urban areas and relatively inexpensive to collect, 

thereby overcoming the more time-consuming and expensive traditional travel 

surveys.   

Cascetta and Nguyen (1988) expressed the problem of estimating o-d flows by 

using traffic counts in general form as: 

𝐝∗ = arg min𝒙≥0 [𝑧1(𝐱, 𝐝̂) + 𝑧2(𝛎(𝐱), 𝐲̂)]                                                                      (1.20) 

where the two functions 𝑧1(𝐱, 𝐝̂) and 𝑧2(𝛎(𝐱), 𝐲̂) can be considered as two “distance” 

measures: 𝑧1 measures the “distance” of the unknown demand vector 𝐱 from a prior 

estimate vector 𝐝̂, 𝑧2  measures the “distance” of the flow vector 𝛎(𝐱)  obtained by 

assigning 𝐱 to the network from the traffic counts vector 𝐲̂. An intuitive interpretation 

of the problem (1.20) is that it searches the vector 𝐝∗  that is closest to the prior 

estimate, and, once it is assigned to the network, produces the flows 𝛎(𝐝∗) closest to 

the counts. In general, the functional form of the two terms 𝑧1(∙) and 𝑧2(∙), depends on 

the type of information available (experimental or non-experimental) and on the 

probability laws associated with such information.  
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The main approaches developed in literature are described in Section 1.4.1. Some 

contributions existing in literature, with reference to congested networks, are then 

recalled in Section 1.4.2.   

1.4.1 Static o-d flow estimators based on traffic counts  

In the static framework, three main static estimators for o-d matrices were proposed: 

 Maximun Likelihood (Maher, 1983; Bell, 1983; Cascetta and Nguyen, 1988); 

 Generalized Least Squares (Cascetta, 1984); 

 Bayesian (Maher, 1983). 

Maximum likelihood (ML) estimator is obtained by maximizing the probability of 

observing both the additional sampling survey results and the counted flows. Under 

the usually acceptable assumption that these two probabilities are independent, the 

maximum likelihood estimator 𝐝ML can be expressed as: 

𝐝ML = arg max𝐱∈S [ln L (𝐧/𝐱) + ln L (𝐲̂/𝐱)]                                                          (1.21) 

where 𝐱 is the “unknown” demand vector; 𝐧 is the vector of o-d demand counts, that is 

the sampling survey results; 𝐲̂  is the vector of link counts; ln L (𝐧/𝐱)  is the log-

likelihood function of demand counts, that is, the logarithm of the probability of 

observing the sampling vector 𝐧 if 𝐱 is the true demand vector; ln L (𝐲̂/𝐱) is the log-

likelihood function of the traffic counts, that is, the logarithm of the probability of 

observing the vector of the counts 𝐲̂ if 𝐱 is the true demand vector; S is the feasibility 

set of the true demand vector.  

Therefore, the formulation of hypotheses on the probability laws of 𝐧/𝐱 and of 𝐲̂/𝐱 is 

required to solve the problem (1.21). It is usually assumed that traffic counts are 

random variables with means given by the flows 𝛎(𝐱)  obtained by assigning the 

demand 𝐱. Furthermore, the probability laws most widely used for count data are the 

Poisson and the multivariate normal. 

The log-likelihood function of o-d demand counts depends on the type of sampling 

adopted. In the case of stratified random sampling by zone of origin, a multinomial 
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distribution is considered.  If the number of trips sampled at each origin is sufficiently 

large (a few dozen or more), the multinomial variable can be closely approximated by 

the product of independent Poisson variables.   

Generalized Least Squares (GLS) or Aitken estimator provides the estimate of the 

unknown o-d demand flow vector 𝐝 , starting from a system of linear stochastic 

equations, which can be obtained by combining the following equations:  

𝐝̂ = 𝐝 + 𝛈                                                                                                                  (1.22) 

𝐲̂ = 𝐌̂𝐝 + 𝛆                                                                                                              (1.23) 

Equations (1.22) and (1.23) represent the information contained in the prior estimate 𝐝̂ 

and in the observed link flows 𝐲̂, respectively. The vector 𝛈 is to take in account of the 

presence of a sampling bias, if 𝐝̂ is a direct sample estimate, or of a bias due to the 

model misspecification, if 𝐝̂ is obtained by applying a demand model calibrated in a 

different situation.  

Under the hypothesis that the random vectors 𝛈 and 𝛆 have zero means, i.e. 𝐸(𝛈) = 𝟎 

and 𝐸(𝛆) = 𝟎 , and being 𝐕  and 𝐖  their covariance matrices, i.e. 𝑉𝑎𝑟[𝛈] = 𝐕  and 

𝑉𝑎𝑟[𝛆] = 𝐖, the GLS estimator of the demand vector can be expressed as:  

𝐝GLS = arg min𝐱ϵS [(𝐝̂ − 𝐱)
T

𝐕−1(𝐝̂ − 𝐱) + (𝐲̂ − 𝐌̂𝐱)
T

𝐖−1(𝐲̂ − 𝐌̂𝐱)]              (1.24) 

Note that, under the hypothesis that the random vectors 𝛈 and 𝛆 have zero means, the 

GLS estimator, is the best linear unbiased estimator (BLUE) of the demand vector 𝐱, 

i.e. the estimator of minimum variance in the class of all unbiased estimators linear in 

the vectors 𝐝̂ and 𝐲̂. Furthermore, if a multivariate normal distributional is assumed for 

the random vectors 𝛈 and 𝛆, the GLS estimator coincides with the ML estimator and 

therefore it is the minimum variance estimator among all unbiased ones.   

Expression (1.24) is often applied assuming that the matrices V and W are diagonal, 

that is ignoring the covariances between the components of vectors 𝛈 and 𝛆. This is 

done because these covariances are difficult to express and also to reduce memory 
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requirements and computing times. Therefore, the solution of the problem (1.24) is the 

demand vector of minimum weighted distance from the prior estimate 𝐝̂, and that, 

once assigned to the network, gives rise to value of link flows of minimum weighted 

distance from the observed link flows 𝐲̂. Furthermore, the distance of a component of 

𝐝̂, or of 𝐌̂𝐱, from the analogous component of 𝐱, or of 𝐲̂, has a weight inversely 

proportional to the variance of its error. This means, for example, that a prior o-d 

component with a higher variance, being far from the analogous true o-d component, 

is weighted less. 

Under the hypothesis of zero assignment and measurement errors, one can obtain the 

Constrained Generalized Least Squares (CGLS) estimator as: 

𝐝GLS = arg min𝐱ϵS [(𝐝̂ − 𝐱)
T

𝐕−1(𝐝̂ − 𝐱)]                                                             (1.25) 

𝐌̂𝐱 = 𝐲̂                                                                                                                    (1.26) 

𝐱 ≥ 𝟎                                                                                                                        (1.27) 

In this case, the solution, that is 𝐝GLS, according to the metrics introduced by 𝐕, is a 

projection of the prior demand estimate 𝐝̂ on the space defined by the constraint (1.26) 

and (1.27).   

Bayesian estimator for o-d demand flows can be found maximizing the posterior 

probability function of the unknown demand vector 𝐱  conditional on a priori 

information 𝐝̂ and on experimental information 𝐲̂. According to Bayes’ theorem, the 

posterior probability is proportional to the product of two factors: the prior probability 

function g(𝐱/𝐝̂), which expresses the distribution of subjective probability attributed 

to the unknown vector given the a priori estimate, and the probability, or likelihood, 

function L(𝐲̂/𝐱) , which expresses the probability of observing the traffic counts  

conditional on the unknown demand vector. Bayesian estimator 𝐝B  is therefore 

expressed as: 

𝐝B = arg max𝐱ϵS [ln g(𝐱/𝐝̂) + ln L(𝐲̂/𝐱)]                                                              (1.28) 
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The tractability of the mathematics here depends on the distributional assumptions 

made for 𝑔(𝐱/𝐝̂) and for the observed flows. 

1.4.2 O-d demand flows updating using traffic counts in congested networks 

Several researchers dealt with the problem of updating an o-d matrix with reference to 

a congested network, where the path proportions are proportional to the path costs, 

which are flow dependent. For this aim, a bi-level programming approach was used, 

integrating the conventional generalized least squares estimation model and an 

equilibrium traffic assignment model into one process. In particular, the upper level 

problem seeks to minimize the sum of error measurements in traffic counts and o-d 

matrix, whereas the lower level problem represents a network equilibrium assignment 

that guarantees that the estimated o-d matrix and the corresponding link flows satisfies 

the user-equilibrium conditions. 

Importantly, be-level programming problem proved to be difficult to solve because of 

their inherent non-convexity and non-differentiability. In addition, the second-level 

problem has to be solved at each step of the optimizing search process of o-d matrix. 

Nevertheless, Yang et al. (1992) showed that the bi-level programming approach could 

be used as an efficient technique to achieve the simultaneous estimation of the o-d 

matrix and the route choice under congested traffic conditions. Florian and Chen 

(1995) developed, then, a Gauss-Seidel type coordinate descendent method for solving 

the considered problem formulated as a bi-level optimization problem, proposing 

again the analysis of Spiess (1990) for the same problem. The difference between 

these two methods concerns only the direction employed for the solution of the upper 

level problem.  

The network equilibrium model adopted by Yang et al. (1992) is concerned only with 

the situation where the link cost functions are independent of each other. Namely, the 

travel time on a given link depends only on the flow through that link and not on the 

flow through any other link. Therefore, Yang (1995) presented an extended model, 

where the network equilibrium problem is formulated as variational inequalities, and 

two computational techniques for solving the bi-level model with link flow interaction. 
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One is an existing heuristic algorithm that solves the o-d matrix estimation problem 

and the equilibrium traffic assignment problem iteratively. The other one is a heuristic 

descent algorithm, in which sensitivity analysis method is used to calculate the 

derivatives of link flows with respect to o-d demand. The two heuristic algorithms are 

similar in the sense that the variations of link flows with respect to o-d matrix 

adjustments are taken into account explicitly in the system optimizing search process 

but differ from each other in the manner in which link flow variations are evaluated, 

that is the changes of link flow pattern in response to o-d matrix adjustments are 

evaluated in different ways. 

Furthermore, Cascetta and Postorino (2001) proposed different fixed-point algorithms, 

namely, Functional Iteration, Method of Successive Averages, and Method of 

Successive Averages with Decreasing Reinitialisation. 
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2 NETWORK SENSOR LOCATION PROBLEM  

2.1     Introduction 

A theoretical issue strictly linked to the o-d matrix estimation problem using traffic 

counts is the Network Sensor Location Problem (NSLP), that is the identification of 

the optimal locations of a given number of link count sections. Optimal locations are 

the ones that provide for maximum information of the underlying o-d matrix given a 

budget constraint (a number of traffic link counts). In other words, the NSLP can be 

stated as the problem of identifying the set of sensors, maximizing the quality – or 

symmetrically minimizing the variability – of the estimated o-d matrix given a budget 

constraint: therefore, it may be formulated straightforwardly as the mathematical 

problem of optimizing a proper measure of quality/variability related to the o-d matrix 

estimation process. 

This chapter first presents a review on the main measures of quality and location 

methods introduced in literature; then, it describes an innovative and theoretically 

founded NSLP formulation, explicitly accounting for the variability of both prior and 

posterior o-d estimates, being the posterior estimate the result of the updating of the 

prior o-d matrix by using the flows measured in the optimal sensor locations. The 

problem is formulated first in the general case and then particularized to the 

noteworthy case of multivariate normal distribution for the prior demand. Indeed, this 

assumption allows for a substantial simplification of the proposed approach, leading to 

the implementation of a sequential NSLP solving algorithm applicable to real 

networks. Importantly, the proposed framework can be effectively applied in the 

context of a budget allocation problem for demand estimation: since the variability of 

the posterior demand estimate depends both on the variability of the prior demand 

estimate and on the information related to the optimal link count locations, a budget 

allocation problem can be formulated in terms of trade-off between surveys and traffic 

counts, in order to minimize the overall demand variability.  



27 
 

2.2     Literature review 

2.2.1 Measures of quality 

A fundamental question arising when one tries to solve the network sensor location 

problem is how to select a measure that can quantify information gain from sensor 

measurements at various locations. In literature, several statistical measures have been 

proposed to evaluate the quality of an o-d demand estimator, such as the root mean 

square error and mean absolute error. These performance indices can be expressed as 

deviations in terms of o-d demand or link flows. Nevertheless, in the sensor location 

problem, the link flow observations are not available before installing the sensors, and 

the true o-d demand matrix is also generally unknown, so sensor location models 

should tend to construct indirect quality measures that do not require knowledge of the 

exact values of flows.  

Yang et al. (1991) introduced the Maximum Possible Relative Error (MPRE) as a 

measure of variability of an estimated o-d trip matrix. In particular, the MPRE is 

defined as the maximum possible relative deviation of the estimated o-d matrix from 

the (unknown) true one, when the traffic counts are error free and the route choice 

proportions are correctly specified, that is also the assignment matrix is error free. The 

MPRE is then formulated as a quadratic programming problem, as briefly explained 

hereafter.  

Let 𝑑̂𝑤 denote the estimated trips between the o-d pair 𝑤, and 𝑑𝑤
∗  the true ones. Let 

𝑝𝑙𝑤 be the proportion of trips between the o-d pair 𝑤 using link 𝑙, and 𝑦̅𝑙  the traffic 

count on link 𝑙 . Thus, the following equations, expressing measured flows as a 

function of o-d matrix entries, must be satisfied: 

∑ 𝑝𝑙𝑤𝑑𝑤
∗

𝑤 = 𝑦𝑙                                                                                                            (2.1) 

∑ 𝑝𝑙𝑤𝑑̂𝑤𝑤 = 𝑦̅𝑙                                                                                                           (2.2) 

Subtracting eq. (2.2) from (2.1), one can obtain the following equation: 
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∑ 𝑝𝑙𝑤(𝑑𝑤
∗ − 𝑑̂𝑤)𝑤 = 0                                                                                               (2.3) 

If 𝜆𝑤 = (𝑑𝑤
∗ − 𝑑̂𝑤)/𝑑̂𝑤 denotes the relative deviation of the estimated trips from the 

true ones for o-d pair 𝑤, eq. (2.3) becomes: 

∑ 𝑝𝑙𝑤𝑑̂𝑤𝜆𝑤𝑤 = 0                                                                                                       (2.4) 

𝑑𝑤
∗ ≥ 0, 𝑑̂𝑤 ≥ 0; thus: 

 𝜆𝑤 ≥ −1                                                                                                                    (2.5) 

Therefore, the MPRE can be formulated as the following optimization problem: 

max Φ(λ) = ∑ (𝜆𝑤)2
𝑤                                                                                                (2.6) 

subject to constraint equations (2.4) and (2.5).   

It is noteworthy that the MPRE does not show how actually reliable an estimated o-d 

matrix is because the estimation also depends on the prior information, that is the 

variability of the prior o-d matrix to be updated.   

Gan et al. (2005) introduced a modified MPRE formulation, termed Expected 

Relative Error (ERE), representing the expected – instead of the maximum – error 

between the (unknown) true o-d matrix and the estimated o-d matrix: its calculation 

requires numerical simulation, under the assumption of uniform demand distribution 

within the feasibility set.  

Importantly, calculation of both MPRE and ERE requires knowledge of an o-d matrix 

estimate consistent with the observed link flows. Therefore, the MPRE cannot be 

adopted as a measure to be optimized within a NSLP, since observed flows are 

unknown in the planning stage, i.e. when the optimal locations of sensors have not yet 

been identified.  

From a theoretical standpoint, proper measures of variability/quality can be defined 

based on the volume of the polytope representing the feasibility set of the problem, i.e. 
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the set containing all o-d matrices consistent with the counted link flows. In practice, 

since the calculation of this volume is unfeasible for large dimensions, Bierlaire (2002) 

introduced the Total Demand Scale (TDS), defined as the difference between the 

maximal and the minimal total demand volume (defined as the sum of the o-d matrix 

entries) consistent with the counted flows.  

Let 𝒅̂ be the estimated o-d matrix and let 𝒇̂ be the link flows vector obtained when 𝒅̂ is 

assigned on the network. The vector 𝒚̂ contains only the entries of 𝒇̂ corresponding to 

links where flow observations are available. M is the assignment matrix and 𝑴̂ is the 

matrix composed of the rows of M corresponding to 𝒚̂ . 

The TDS is calculable by means of two constrained linear programming problems 

under the hypothesis of error-free counts and error-free assignment matrix: 

𝝋𝑚𝑖𝑛 = min𝒅𝒅T𝒆                                                                                                      (2.7) 

𝑴̂𝒅 = 𝒚̂                                                                                                                       

𝒅 ≥ 0                                                                                                          

where 𝒆 is a vector composed only of ones, and 

𝝋𝑚𝑎𝑥 = max𝒅𝒅T𝒆                                                                                                     (2.8) 

𝑴̂𝒅 = 𝒚̂                                                                                                                     

𝒅 ≥ 0                                                                                                        

The TDS 𝛷(𝒅̂, 𝑴̂) was then defines by Bierlaire (2002) as: 

𝛷(𝒅̂, 𝑴̂) = 𝝋𝑚𝑎𝑥 − 𝝋𝑚𝑖𝑛                                                                                         (2.9) 

The interval [𝝋𝑚𝑖𝑛, 𝝋𝑚𝑎𝑥] is the range, or scale, of the total level of demand in the 

network. 
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Chen et al. (2005) used the TDS as one of the quality measures when analysing the 

properties of a path flow estimator.  

2.2.2 Network sensor location methods 

In literature many optimization techniques or heuristics for finding a set of link counts 

have been proposed.  

Yang and Zhou (1998) proposed four basic rules of locating traffic counting points, 

namely the o-d covering, the maximal flow fraction, the maximal flow interception and 

link independence rules, some prototypically introduced by Lam and Lo (1990)3, and 

developed integer linear programming models and heuristic algorithms to determine 

the counting links satisfying these rules.  

In order for the MPRE to be finite (the o-d estimation error has to be bounded), the 

traffic counting sections on the study network must satisfy the o-d covering rule, that 

is they must be located so that a certain portion of the trips between any o-d pair can 

be observed for at least one link of their path. The problem of determining the 

minimum number and locations of traffic counting sections satisfying the o-d covering 

rule was formulated by Yang et al. (1991) as the following integer linear programming 

problem: 

min 𝑍 = ∑ 𝑧𝑙𝑙∈𝐿                                                                                                         (2.10) 

subject to: 

∑ 𝛿𝑤𝑙𝑧𝑙𝑙∈𝐿 ≥ 1                                                                                                         (2.11) 

where 𝑧𝑙 is a binary integer variable, 𝑧𝑙 = 1 if the traffic counting section is located on 

link 𝑙, and 0 if otherwise; 𝛿𝑤𝑙 is a (0, 1) constant, 𝛿𝑤𝑙 = 1 if some trips on one or more 

paths between o-d pair 𝑤 pass over link 𝑙, and 0 otherwise; 𝐿 is the set of the links of 

the network. 

                                                           
3 Lam and Lo (1990) proposed some heuristic procedures for identifying the order in which the links 

should be selected.  
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The maximal flow fraction rule, whose proposition is based again on the theory of 

MPRE, states that, for a particular o-d pair, the traffic counting points on a road 

network should be located at the links so that the flow fraction between this o-d pair 

out of flows on these links is as large as possible. Indeed, if  αlw = plw dw /yl denotes the 

fraction of the flow between o-d pair w in link flow yl, the term (
1

𝛼𝑙𝑤
− 1) is thus the 

upper bound of the relative deviation 𝜆𝑤, and, clearly, the larger the value of 𝛼𝑎𝑤, the 

smaller the upper bound of 𝜆𝑤.  

The maximal flow fraction rule leads to conflicts among different o-d pairs and may 

not always be desirable in selection of counting links. For instance, counting a low 

volume link may be less warranted, although such a link may carry a high fraction of 

trips between a minor o-d pair. However, supposing one wishes to identify the order in 

which the links should be selected from the set of links L for an effective o-d matrix 

estimation, a compromise could be made by setting a threshold value of the o-d flow 

fraction out of flow on a link, beyond which an o-d pair is said to be effectively 

covered by this link. Then one can make a priority list for the links in the set L in such 

a simple way that the candidate links are arranged in a descending order according to 

the number of o-d pairs effectively covered by the relevant links. 

Yang and Zhou (1998), by using a simple example, illustrated the other two location 

rules. The maximal flow interception rule states that, under a certain number of links to 

be observed, the chosen links should intercept as many flows as possible. The link 

independence rule states that the traffic counting points should be located on the 

network so that the resultant traffic counts on all chosen links are not linearly 

dependent. 

Therefore, when the route or link choice proportions of o-d trips are known (which are 

assumed to be given in most existing estimation models), the minimum number and 

locations of counting points can be obtained by solving the above-given problem 

(equations 2.7 and 2.8). Let  𝒒0 and 𝒛𝒒0  denote, respectively, the minimum number 

and the corresponding location vector of traffic counting points. Yang and Zhou 

(1998) proved that 𝒛𝒒0 satisfies the link independence rule. In general, o-d covering 

rule can be considered to be a fundamental rule that should be satisfied. Link 

independence rule can exclude links whose flow does not include any new information 
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(unnecessary links), and should be satisfied too. Therefore, these two rules can be 

treated as constraints in determining traffic counting locations, while the maximal flow 

fraction and the maximal flow interception rules can be incorporated in the objective 

function to be maximized.   

Considering the maximal flow intercepting rule, a criterion to solve the network sensor 

location problem is to maximize the total net flows observed. With reference to the 

path flow pattern associated with the prior o-d matrix, based on Hodgson (1990), this 

problem was formulated by Yang and Zhou (1998) as: 

Maximize 𝐹(𝒛) = ∑ 𝑓𝑟𝑥𝑟𝑟∈𝑅                                                                                    (2.12)                                                                      

subject to: 

∑ 𝑧𝑙 =𝑙∈𝐿 𝑞                                                                                                               (2.13) 

∑ 𝑧𝑙𝑙∈𝑟 ≥ 𝑥𝑟                                                                                                             (2.14)                               

∑ 𝛿𝑙𝑤𝑧𝑙𝑙∈𝐿 ≥ 1                                                                                                         (2.15)   

where 𝑓𝑟 is the path flow associated with the prior o-d matrix, 𝑥𝑟 is a binary variable 

indicating whether path r is observed (𝑥𝑟 = 1) or not (𝑥𝑟 = 0), and q is the prescribed 

number of counting points. Constraints (2.15) imply o-d covering rule. Link 

independence rule can be ensured for the minimum number of counting sites.  

Further refinements were provided, for example, by Chung (2001) and Ehlert et al. 

(2006). Chung (2001) added the cost of purchasing and installing detectors into the 

count location problem, generating two distinct problems; the first one minimises the 

budget subject to complete o-d coverage, and the second problem maximises the 

coverage of o-d pairs subject to budget restrictions. Ehlert et al. (2006) proposed two 

extensions to these formulations. Firstly, the locations of detectors existing beforehand 

is taken into account. Secondly, the information content of the prior o-d flows is 

(optionally) taken into account, by identifying o-d pairs of particular interest and then 

weight these appropriately. The concept of information was applied to the o-d matrix 
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estimation problem by Van Zuylen and Willumsen (1980). The average information 

content of an o-d movement is proportional to 

𝐻𝑤 = − 𝑝𝑤 ln 𝑝𝑤                                                                                                     (2.16)   

where 𝑝𝑤 is the probability of a trip selected at random from the set of all trips passing 

between o-d pair w, as opposed to any other o-d pair. This probability could be 

estimated from the prior o-d matrix as follows: 

𝑝𝑤 =
𝑑𝑤

∑ 𝑑𝑤𝑤
                                                                                                               (2.17)   

being 𝑑𝑤 the traffic between o-d pair w. 

To solve the location problems (2.10-2.11 and 2.12-2.15) different solution methods 

can be used. Generally, solution methods can be divided into “exact” algorithms and 

‘‘heuristic’’ approaches. Exact methods guarantee an optimal result to the problem by 

employing various techniques to search the solution space. Heuristic methods can 

produce near-optimal solutions, but without defining the distance from an unknown 

optimal result. Exact methods include, for example, Branch and Bound algorithm. This 

technique produces an optimal result by applying an implicit enumeration procedure 

which efficiently eliminates infeasible and non-optimal solutions. The major difficulty 

of the Branch and Bound algorithm is that optimality of the solution cannot be 

guaranteed until all possible solutions have been eliminated from consideration, i.e. 

when the enumeration tree has been searched completely.  

As regards the heuristic methods, Yang and Zhou (1998) proposed heuristics to 

solve the location problem (2.12-2.15), whereby the number of count locations is 

increased until all flows in the network are observed at least once, or a prescribed 

number of counting sites has been located. Many researchers discussed other heuristics 

based on a geographical and/or topological disaggregation of link flows, e.g. screen 

lines. In most large urban areas traffic measurement is frequently carried out at 

cordons and screen lines for data collection. Through screen line traffic survey, all 
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traffic movements with the origin on one side of a screen line and the destination on 

the other are intercepted. This is contrasted with the traffic counting location problem 

based on the rules proposed by Yang and Zhou (1998), in which only a certain portion 

of the trips between any o–d pair is required to be observed for at least one link of their 

path. Traditionally, the selection of cordon and screen lines has been primarily based 

on subjective choices, depending on political jurisdictions, census area boundaries, and 

natural boundaries or man-made barriers, such as rivers and railway tracks. 

The screen line based traffic counting location problem can be states as:  

a) how to select the optimal locations for a given number of traffic counting stations to 

separate as many o-d pairs as possible;  

b) how to determine the minimum number of counting stations and their locations 

required for separating all o–d pairs.  

Here an o-d pair is regarded as separated when each of its feasible paths passes 

through at least one of the counting links and hence all trips between any o-d pair are 

observed for at least one link of their path.   

Gan and Yang (2001) made an interesting initial attempt to address the screen line-

based traffic-counting location problems. In particular, they provided an integer 

nonlinear programming model which is hereafter shown.  

Let 𝜏𝑙 be a virtual travel time on link 𝑙 ∈ 𝐿 and suppose 𝜏𝑙 is a function of 𝑧𝑙  that is 

simple defined as 𝜏𝑙(𝑧𝑙) = 𝑧𝑙  for all 𝑙 ∈ 𝐿 . Because each link has a non-negative 

virtual travel time, an appropriate shortest path algorithm such as Dijkstra method can 

be used to find the virtual shortest path and its corresponding virtual travel time 

between each o-d pair.  

Let 𝜇𝑤  be the virtual shortest travel time between o-d pair 𝑤 ∈ 𝑊. Clearly, 𝜇𝑤  is a 

function of the integer decision variables 𝑧 = (𝑧𝑙)𝑙∈𝐿, and one can easily understand 

that, if 𝜇𝑤(𝑧) > 0, then the virtual shortest path between o-d pair 𝑤 ∈ 𝑊 includes at 

least one counting link. Because of the definition of link travel time function, it is 

straightforward to see that, if 𝜇𝑤(𝑧) > 0, then the origin and destination for o-d pair 𝑤 

are separated by at least one screen line. Otherwise, if 𝜇𝑤(𝑧) = 0, there exists at least 

one virtual shorter path with zero virtual travel time from its origin to destination that 

does not go through any counting link or cross any screen line.  
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For a given number of traffic counting stations 𝑞 < 𝐿, the objective is to select their 

locations or counting links that constitute one or more screen lines to separate as many 

o-d pairs as possible; then  the problem of interest can be formulated as: 

max𝒁 ∑ 𝛿(𝜇𝑤(𝑧))𝑤∈𝑊                                                                                              (2.18) 

subject to:  

∑ 𝑧𝑙
𝐿
𝑙=1 ≤ 𝑞;  𝑧𝑙 ∈ {0,1}                                                                                           (2.19) 

where the not linear delta function 𝛿(𝜇) = 1 if 𝜇 > 0 and 0 if 𝜇 = 0. Evidently, the 

objective function is the total number of o-d pairs that are separated, and the double 

counting effect is not accounted for. The integer maximization problem embodies a 

shortest path calculation (calculation of 𝜇𝑤) as an internal procedure. In addition, all o-

d pairs are viewed as equally important in the objective function of eq. (2.18), but a 

weighted objective function according to the relative magnitude of o-d demand 

between each o-d pair (if available) can be used instead. 

The problem of determining the minimum number of counting links to separate all the 

o-d pairs in the network can be formulated as: 

min𝒁φ[𝑞 − ∑ 𝛿(𝜇𝑤(𝑧))𝑤∈𝑊 ] + ∑ 𝑧𝑙
𝐿
𝑙=1                                                                   (2.20) 

where φ is a sufficiently large positive constant. As shown in Gan and Yang (2001), as 

long as φ is selected to be larger than the total number of links in the network, then the 

optimal solution of eq. (2.20) gives exactly the minimum number and locations of 

counting links to separate all o-d pairs in the network.  

Gan and Yang (2001) solved the model (2.20) by applying a genetic algorithm. Yang 

et al. (2006) reformulated the model (2.20) as an equivalent integer linear 

programming model using link-path incidence information and solved it by combining 

a column generation procedure and a branch and bound technique.  

Further contributions for determining optimal screen lines for the purpose of o-d 

matrix estimation were provided by Chootinan et al. (2005) and Chen et al. (2007). In 
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particular Chootinan et al. (2005) extended the two single-objective problems to a bi-

objective binary integer program. Then they developed a distance-based genetic 

algorithm solution procedure to solve the multi-objective screen-line-based traffic 

counting location problem. 

Chen et al. (2007), using the selected traffic counts, estimated the o-d matrix through a 

modified path flow estimator which is capable of handling traffic count inconsistency 

internally. 

 

Bianco et al. (2001) proposed an approach which consists of a two-stage procedure. 

Stage one is intended to solve the network sensor location problem, that is to 

determine how many sensors should be located and where, so as to infer the complete 

set of traffic flows in a transport network at a minimum measurement cost. This is 

interpreted as the cost of installing a set of traffic sensors in a network where no sensor 

has been placed yet. It is assumed that traffic sensors are to be located on the network 

nodes. A sensor located at a given node measures all traffic in- and out-flows. Each 

node is labeled with a weight reflecting the intersection complexity. The weight of 

each node (hence its measurement cost) is simply associated with the number of links 

incident to that node.  

Based on the results of stage one, stage two produces an estimate of the o-d matrix. 

The basic assumption of their approach is that the values of turning coefficients at each 

network node are known. 

It is noteworthy that all the above mentioned approaches do not explicitly take into 

account various error sources in the o-d estimation process. In fact, the quality of 

historical o-d demand estimates could significantly vary, depending on the date and 

size of the original survey conducted to obtain the prior o-d estimate, that is the o-d 

matrix to be updated by means of measurements information. Interestingly, extending 

the traffic state learning framework proposed by Eisenman et al. (2006), Zhou and List 

(2010) adopted an information-theoretic approach to examine the inherent connection 

between the sensor location problem and the o-d estimation problem. In particular, 

they explicitly modelled the mean and variance of the available prior o-d estimate and 

assumed as a measure of variability the trace of the covariance matrix of the posterior 
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o-d estimate. Zhou and List (2010), who adopted a Kalman filter as a posterior demand 

estimator, used so a linear measurement equation to relate the unknown o-d demand 

vector 𝐝 to measurements y: 

𝐲 = 𝐌𝐝 + 𝛆                                                                                                                    

where M is the assignment matrix and 𝛆 is a multivariate normal random vector of 

measurement errors.  

Essentially, the o-d demand estimation problem is to find a new estimate 𝐝+ that can 

combine and use information from a given prior estimate 𝐝−  and sensor 

measurements. Therefore, let 𝐏− be the error covariance matrix of the prior demand 

estimate, a transition equation was defined so as to obtain an updated posterior 

estimate 𝐝+ (with error covariance matrix 𝐏+) expressed by: 

𝐝+ = 𝐝− + 𝐊(𝐌𝐝 + 𝛆 − 𝐌𝚲𝐝−)                                                                             (2.21)                                                                                               

Given 𝐝𝐞𝐫𝐫 = 𝐝 − 𝐝+ , the classic Kalman filter aims to minimize the mean square 

error: 

E‖𝐝𝐞𝐫𝐫
𝟐‖ = E[(𝐝 − 𝐝+)(𝐝 − 𝐝+)T] = Cov(𝐝𝐞𝐫𝐫) = 𝐏+                                        (2.22)                                           

Substitution of (2.21) into (2.22) yields: 

𝐏+ = Cov[𝐝 − 𝐝− − 𝐊(𝐌𝚲𝐝 + 𝛆 − 𝐌𝚲𝐝−)]𝐛                                                        (2.23)                           

Using standard algebra and mild statistical assumptions, Zhou and List (2010) 

reformulated Eq. (2.23) independently of 𝐝 and 𝐝−. This yields both the optimal value 

of the gain matrix 𝐊𝐨𝐩𝐭 which minimizes the trace of the posterior dispersion matrix 

𝐏+, and also a closed-form expression for the posterior demand estimate.  

The NSLP has also been tackled by using pure network-based approaches, i.e. not 

considering any prior o-d matrix. This was proposed for instance by Hu et al. (2009), 

who dealt with a procedure, requiring explicit path enumeration, for the identification 
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of the whole set of link flows starting from a counted subset. Along these lines, Ng 

(2012) achieved the relaxation of the assumption of explicit path enumeration required 

by Hu et al. (2009).  

Furthermore, the matter of finding the set of counting locations allowing for full o-d 

observability was addressed by Castillo et al. (2008a, 2008b, 2010). The problems of 

observability of traffic networks are in general stated as: 

- determine if a subset of available (observed) traffic flows is sufficient to obtain the 

values of another subset of  (observable) traffic flows;  

- obtain a minimum set of observations (o-d and/or link flows) that allow full 

observability, i.e., observability of all network flows; 

- identify observable flows, given a set of observed flows (partial observability). 

Furthermore, three different types of observability problems are distinguished, 

depending on the flows considered: link observability problems, that is based on link 

flows; o-d observability problem, in which o-d flows are estimated in terms of other 

flows; route flow observability problem, aimed to observe all route flows. Due to the 

fact that knowledge of the route flows immediately leads to the knowledge of the o-d 

and link flows, the observability problem of route flows is the most adequate from a 

practical point of view and can be considered as the full observability problem. 

However, it is the most difficult of the observability problems because its solution 

requires the maximum amount of information. 

For a given network, if the assignment matrix is known, the further knowledge of the 

o-d flows is sufficient for the link flows to become known. In this case, it can be said 

that the set of link flows becomes observable if the o-d flows are observed (become 

known). Anyway, if one is interested in determining the o-d flows in terms of a subset 

of observed links, the question consists of determining which subsets of link flows 

allow for this estimation. In this case, the o-d pair flows become the unobserved flows 

and the observed links become the data (observed).  

In order to solve the above problems Castillo et al. (2008b) proposed a topological 

method, thus providing a refinement to a previously shown algebraic method (Castillo, 

2008a), that, basically, is aimed to express the observable flows in terms of the 
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actually observed flows. In this case, two algorithms are shown, aimed to provide two 

sets and one matrix of interest: a set containing the list of a minimum number of 

measurements required for the full observability - these measurements are 

denominated essential measurements; a set containing the list of redundant 

measurements for observability purposes, i.e., even if the measurements are lost, the 

network remains observable; a matrix (which can easily be obtained from the network 

topology) containing the coefficients of the linear combinations of the redundant 

measurements in terms of the required (essential) measurements. 

In addition, Castillo et al. (2010) proposed two theorems, one lemma and one corollary 

providing the bases for optimizing the proposed numerical procedures to solve the 

observability problems. 

2.2.3 Optimal location of plate scanning devices 

The NSLP can also be formulated in the presence of different types of measurements, 

e.g. automatic vehicle identification and plate recognition techniques, as proposed for 

instance by Castillo et al. (2008c) and by Minguez et al. (2010). 

Let (N, L) be a traffic network, where N is the set of nodes and L is the set of links. 

From N one can distinguish two subsets of nodes, O and D, corresponding to origins 

and destinations, respectively. Let Λ ∈  L be the set of nsc ≠ 0 observed links, 

containing information about plate number IK, link lK, and time tK of registration, i.e. 

the information provided consists of the set: 

SP ≡ (IK, lK, tK);   k = 1,…, m;  lK ϵ Λ 

where k is the kth plate scanned, and m is the total number of plates scanned.  

As shown in Castillo et al. (2008c), the plate scanning technique consists of registering 

plate numbers and the corresponding times of the vehicles at some subset of links to 

reconstruct vehicle routes by identifying identical plate numbers at different locations 

and times. Castillo et al. (2008c) also pointed out that the set of links to be scanned 

must be chosen adequately so that all different combinations of scanned links belong 
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to a unique route, which means that the scanning process allows identifying uniquely 

the path of any scanned user. The scanned observation can be thus summarized as: 

𝑓𝑟: 𝑟 ∈ 𝑂𝑅  

where OR is the set of observed routes, OR = 1,…, nr ∈ R; R is the set of all considered 

routes and nr is the number of different Cr sets of scanned links which allows to 

uniquely identify every observed route r. This information is used for route flow 

estimation by means of the following model: 

minimize𝑓𝑟;∀𝑟𝜖𝑅
 ∑ ∑ (𝑓𝑥 − 𝑓𝑥

0)𝛾𝑥𝑦(𝑓𝑦 − 𝑓𝑦
0)∀𝑦𝜖𝑅∀𝑥𝜖𝑅                                               (2.24) 

subject to  𝑓𝑟 = 𝑓𝑟  ∀𝑟𝜖𝑂𝑅;  𝑣𝑙 =  ∑ 𝛿𝑙
𝑟𝑓𝑟  ∀𝑟𝜖𝑅  ∀𝑙𝜖𝛬                                              (2.25) 

where 𝑓𝑟
0 and 𝑓𝑟 are the prior and observed flows through route r, respectively; 𝑣𝑙 is 

the observed flow at link l, and 𝛾𝑥𝑦  are the weights (normally the elements of the 

inverse of the covariance matrix). Constraint (2.25) allows to include in the estimation 

model the total link flows, which are also known from the scanning process; this 

constraint includes redundant information for links where all the passing routes are 

observable, but it improves the prediction of unobservable route flows. The aim of this 

approach consists of identifying uniquely as many routes as possible through scanner 

devices in links.  

Importantly, Castillo et al. (2008c) proposed also a binary linear programming which 

selects the minimum number of links to distinguish the users of any pair of routes. The 

plate number observations over this set of links, supposing that the scanning process is 

error free, allow to have a full identifiability of all path flows. The problem was 

formulated as follows:  

minimize𝑧  𝑛𝑠𝑐 = ∑ 𝑧𝑙𝑙𝜖𝐿                                                                                                                                           (2.26) 

subject to ∑ 𝑧𝑙𝑙𝜖𝐿 𝑑(𝑟, 𝑟1, 𝑙) ≥ 1   ∀(𝑟, 𝑟1)|𝑟 ≠ 𝑟1                                                    (2.27) 
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∑ 𝑧𝑙𝑙𝜖𝐿 𝛿𝑙
𝑟 ≥ 1      ∀𝑟                                                                                                                                                    (2.28) 

Where 𝑧𝑙 is a binary variable such that it takes value 1 if the link l is scanned, and 0, 

otherwise; r and 𝑟1 are paths; 𝛿𝑙
𝑟 are the elements of the incident matrix, 𝛿𝑙

𝑟 = 1 if path 

r contains link l, 𝛿𝑙
𝑟 = 0  otherwise; 𝑑(𝑟, 𝑟1, 𝑙) = 1  if 𝛿𝑙

𝑟 ≠ 𝛿𝑙
𝑟1 , 𝑑(𝑟, 𝑟1, 𝑙) = 0 

otherwise.  

Constraint (2.27) guarantees that the selected subset of scanned links is able to 

distinguish the users of any given pair of paths r and 𝑟1 based on their scanned plate 

numbers, i.e. there exists at least one scanned link which is in path r and not in path 𝑟1 

or vice versa. In addition, constraint (2.28) ensures that any route or path contains at 

least one scanned link, and, therefore, information, not only of all o-d pairs but all the 

routes, becomes available. 

The optimal solution 𝑛𝑠𝑐
∗  is the minimum number of scanning device positions 

provided by model (2.26)–(2.28) that allows estimating the o-d matrix exactly (error 

free) if all possible routes between any o-d pair have been considered. Nevertheless, 

model (2.26)–(2.28) does not include considerations on the budget, so in case the 

number of possible links to be installed is limited or the scanning device costs are 

different between links, this method is not suitable to get the best possible scanner 

locations reproducing as exactly as possible the o-d matrix with minimum cost. 

Minguez et al. (2010) enriched the model proposed by Castillo et al. (2008c), 

considering alternative mathematical programming formulations to take into account 

some practical issues: budget minimization subject to complete route identifiability; 

maximum route identifiability subject to budget constraints; consideration of existing 

plate scanners.   
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2.3   Formulation of the proposed NSLP approach 

2.3.1 Formulation in the general case 

The proposed NSLP approach refers to the static uncongested framework, that is a 

linear relationship is assumed between the demand vector 𝐃 and the link flows vector 

𝐅 by means of the assignment matrix 𝐌: 

𝐅 = 𝐌𝐃                                                                                                                    (2.29) 

𝐌 is assumed known, i.e. its estimate 𝐌̂ is assumed error-free.  

Let Λ be a set of λ counting sections, 𝐘 the corresponding vector of link flows4 and 𝐌𝚲 

the sub-matrix of 𝐌 made up by the rows corresponding to the counting sections Λ. 

Equation (2.29) yields: 

𝐘 = 𝐌𝚲𝐃                                                                                                                  (2.30) 

The prior available o-d estimate 𝐃 is always characterized by an inherent degree of 

variability, quantifiable either formally based on the estimation method or subjectively 

based on the analyst’s expectations. Therefore, 𝐃 should be treated as a multivariate 

random vector, with a known prior density function 𝜑𝐃(𝐝) defined in a feasibility 

domain 𝛀𝐃. In turn, this implies that 𝐘 is a random vector, induced by means of the 

relationship (2.30), with density function 𝜑𝐘(𝐲) defined in a feasibility domain 𝛀𝐘. On 

the other hand, a realization 𝐲 of the random vector 𝐘 (i.e. a set of measurements from 

the sensors within Λ) provides additional information about the random vector 𝐃 , 

which, under the assumption of error-free measurements, is expressed implicitly again 

by (2.30): 

𝐌𝚲𝐃 = 𝐲                                                                                                                  (2.31) 

                                                           
4 The link flows are unknown in the planning stage, in which the approach is applied.  
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Formally, equation (2.31) implies a transition from the unconditional density 𝜑𝐃(𝐝) of 

the demand vector 𝐃 to the density 𝜑𝐃|𝐌𝚲𝐃=𝐲(𝐝) of the random vector 𝐃|𝐌𝚲𝐃 = 𝐲 

conditional upon a specific realization 𝐲  of the link flows vector 𝐘 , defined in a 

feasibility domain 𝛀𝐃|𝐌𝚲𝐃=𝐲 ⊆ 𝛀𝐃. 

In general, the variability related to a random vector 𝐗, fully characterized by its 

distribution φ𝐗(𝐱), can be expressed by means of aggregated measures: for instance, 

following Zhou and List (2010), the trace Tr[𝚺𝐗] of the covariance matrix 𝚺𝐗 of 𝐗 is a 

suitable and practically tractable measure of variability. Therefore, within the proposed 

framework, Tr[𝚺𝐃] may represent a measure of the initial variability of the random 

vector 𝐃  and Tr[𝚺𝐃|𝐌𝚲𝐃=𝐲]the residual demand variability after accounting for the 

information provided by the counted flows 𝐲 through (2.31). In accordance with that, 

since the trace Tr[𝚺𝐃|𝐌𝚲𝐃=𝐲]  generally depends on the vector 𝐲  of counted flows, 

which is a realization of the random variable 𝐘 with density function φ𝐘(𝐲) defined in 

the domain 𝛀𝐘, a synthetic dispersion measure (SDM) of the posterior random vector 

𝐃|𝐌𝚲𝐃 = 𝐲 can be defined straightforwardly as the average of Tr[𝚺𝐃|𝐌𝚲𝐃=𝐲] within 

𝛀𝐘: 

SDM = 𝐸 [Tr[𝚺𝐃|𝐌𝚲𝐃=𝐲]] = ∫ Tr[𝚺𝐃|𝐌𝚲𝐃=𝐲]φ𝐘(𝐲) ∂y
𝛀𝐘

                                        (2.32) 

Notably, the approach underlying equation (2.32) assumes the mean of the posterior 

random vector 𝐃|𝐌𝚲𝐃 = 𝐲 as statistical estimator for the demand vector 𝐃. In this 

respect, apart from a scale factor, the trace Tr[𝚺𝐃|𝐌𝚲𝐃=𝐲]  coincides with the 

corresponding MSE expression for the estimator in question. 

As a result, the proposed NSLP is formulated as the problem of finding the optimal set 

Λ of sensors which minimizes the SDM (2.32), that is the variability associated with 

the posterior random vector 𝐃|𝐌𝚲𝐃 = 𝐲 over 𝛀𝐘, subject to budget constraints: 

Λ∗ = arg min𝑏𝜆≤𝑏𝑚𝑎𝑥
SDM(Λ) = arg min𝑏𝜆≤𝑏𝑚𝑎𝑥

∫ Tr[𝚺𝐃|𝐌𝚲𝐃=𝐲]φ𝐘(𝐲) ∂y
𝛀𝐘

        (2.33) 
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where 𝑏𝜆 is the budget for a single sensor, bmax the overall available budget and 𝜆 the 

cardinality of the set Λ. Mathematically, the set of sensors Λ can be represented in the 

NSLP (2.33) as a Boolean vector with cardinality equal to the number of links in the 

network and entries equal to one for the links included in Λ.  

The trace Tr[𝚺𝐃|𝐌𝚲𝐃=𝐲]  is a function of the covariance matrix 𝚺𝐃  of the prior 

estimate of the random vector 𝐃. Therefore the minimum achieved by the NSLP (2.33) 

depends both on the initial value Tr[𝚺𝐃] (and thus on the budget allocated for the 

surveys leading to the prior o-d direct estimate) and on the information coming from 

the set Λ of sensors (and thus on the budget allocated for the counts): this allows 

formulation of a budget allocation problem between surveys and counts in order to 

minimize the variability of the overall demand estimation process.  

The multidimensional integral over the feasibility domain 𝛀𝐘 of the counted flows 

in the objective function leads to a generally cumbersome application of the NSLP 

(2.33) on real networks. However, a significant simplification can be achieved if the 

random demand vector 𝐃 is multivariate normally distributed, an assumption which 

allows also establishing a formal relationship between the NSLP (2.33) and the 

constrained GLS-based o-d matrix correction.  

With regard to the impacts of possible relaxations of the hypotheses underlying the 

proposed approach, it should be noted that the removal of the error-free link count 

assumption would lead to a modification of equation (2.31), which should include a 

vector 𝛆 of measurement errors. Notably, any specific realization 𝛆𝐢 of the vector 𝛆 can 

be incorporated into the vector of the known terms 𝐲 and, therefore, the corresponding 

residual variability of the posterior demand vector would be still given by 

Tr[𝚺𝐃|𝐌𝚲𝐃=𝐲+𝛆𝐢
]. Formally, this implies that the SDM (2.32) and the NSLP (2.33) 

should be modified by adding an outer integral dimension over the joint distribution 

function of the vector 𝛆. In this respect, the distribution function of 𝛆 can be defined 

either in absolute terms (i.e. all measurements have an absolute intrinsic error not 

depending on the actual counted value) or in relative terms (i.e. the measurement error 

is a percentage of the counted value). The former case can be handled relatively easily, 
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whilst the latter would imply the measurement error to be itself a percentage of a 

random variable. Notably, if measurement errors are defined in absolute terms and 

independently normally distributed, the simplification proposed under the assumption 

of multivariate normal distribution for the prior demand is still likely to hold. With an 

analogous conceptual vehicle, the removal of the assumption of error-free assignment 

matrix 𝐌̂ would lead to a further error source in equation (2.31), which can be treated, 

in principle, with the same mathematical complications related to the presence of 

measurement errors. 

Similarly, different measurement sources may be incorporated provided that they 

can be expressed through additional linear equations to be coupled with equations 

(2.31): this is the case of AVI data. Consistent with the above, the presence of possible 

different error distributions for each measurement source might be incorporated as 

well, but only if they are expressed in absolute terms. 

With the same argument, the proposed procedure might be suitably adapted to a 

dynamic uncongested assignment – i.e. with still linearity between the demand flows 

and link flows – through a proper modification of equation (2.31). Notably, the 

dimension of the problem and its tractability would be in such a case very 

cumbersome, due to the larger number of dimensions (i.e. o-d pair, link, departure time 

slice, link running time slice) of the assignment matrix. 

Finally, extension to congested assignment does not however appear feasible due to 

the non-linearity introduced in the problem, and would in any case not lead to any 

practical gain in the proposed conceptual framework. 

2.3.2 Particularization in the case of multivariate normal distribution for the prior 

demand 

The assumption of multivariate normal distribution for the prior demand allows for a 

substantial analytical simplification of the SDM (2.32) and of the corresponding NSLP 

(2.33). In this respect, it should be noted firstly that the conditional random vector 

𝐃|𝐌𝚲𝐃 = 𝐲 can always be expressed in a canonical form, 𝐃′|𝐃𝚲′ = 𝐲′, by means of a 
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specific rotation 𝐃′ = 𝐑𝐃 of the demand vector 𝐃, based on a proper rotation matrix 

𝐑. The conditional demand vector 𝐃|𝐌𝚲𝐃 = 𝐲 is in fact not in a ‘‘canonical’’ form in 

the sense that the conditioning given by y is expressed in implicit form on the 

components of D, through the system of linear equations 𝐌𝚲𝐃 = 𝐲. Conversely, a 

canonical form 𝐃′|𝐃𝚲′ = 𝐲′  is intended in the sense of expressing explicitly such 

conditioning through equations where a single demand component is encompassed in 

each equation.  

Notably, if 𝐃 is multivariate normally distributed, i.e. 𝐃 ~MVN(𝛍𝐃, 𝚺𝐃), 𝐃′ = 𝐑𝐃 is a 

linear transformation of a multivariate normal random vector and is therefore still a 

multivariate normal random vector, whose covariance matrix 𝚺𝐃′  can be expressed 

easily as a function of the covariance matrix 𝚺𝐃 through the well known formula: 

𝚺𝐃′ = 𝐑𝚺𝐃𝐑𝐓                                                                                            (2.34) 

In addition, the assumption of normality of 𝐃 (and therefore of 𝐃′) allows the Schur 

complement expression to be used for the conditional covariance matrix 𝚺𝐃′|𝐃𝚲′=𝐲′ of 

the conditional vector 𝐃′|𝐃𝚲′ = 𝐲′ (e.g. Eaton, 1983): 

𝚺𝐃′|𝐃𝚲′=𝐲′ = 𝚺𝐃′𝛿−𝜆,𝛿−𝜆 − 𝚺𝐃′𝛿−𝜆,𝜆(𝚺𝐃′𝜆,𝜆)
−𝟏

𝚺𝐃′𝜆,𝛿−𝜆                                            (2.35) 

where 𝛿 and 𝜆 denote the number of o-d pairs and link counts respectively, and the 

elements after the equal sign are the following four blocks of the covariance matrix 

𝚺𝐃′ of the unconditional random vector 𝐃′: 

𝚺𝐃′ = [
𝚺𝐃′𝛿−𝜆,𝛿−𝜆 𝚺𝐃′𝛿−𝜆,𝜆

𝚺𝐃′𝜆,𝛿−𝜆 𝚺𝐃′𝜆,𝜆
]                                                                        (2.36) 
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As a consequence, 𝚺𝐃′|𝐃𝚲′=𝐲′ depends in the new reference system5 only on the blocks, 

defined by (2.36) of the covariance matrix (2.34) of the unconditional distribution of 

the random vector 𝐃′, i.e. it does not depend on the specific values of 𝐲′. Therefore, its 

trace 𝚺𝐃′|𝐃𝚲′=𝐲′ does not depend on the actual value of the counted links, but just on 

which components of the demand vector are conditional to the set λ  of sensors 

corresponding to the random vector 𝐘. Recalling that the trace operator is invariant 

with respect to a change of basis, a substantial simplification of the SDM (2.32) is 

therefore pursued: 

SDM = ∫ Tr[𝚺𝐃|𝐌𝚲𝐃=𝐲]φ𝐘(𝐲) ∂y
𝛀𝐘

= ∫ Tr [𝚺
𝐃′|𝐃𝚲

′ =𝐲′′
′
] φ𝐘(𝐲′) ∂y′

𝛀𝐘
=

 Tr [𝚺𝐃′|𝐃𝚲
′ =𝐲′′] =  

= Tr [𝚺𝐃′𝛿−𝜆,𝛿−𝜆 − 𝚺𝐃′𝛿−𝜆,𝜆(𝚺𝐃′𝜆,𝜆)
−𝟏

𝚺𝐃′𝜆,𝛿−𝜆]                                                     (2.37)   

which in turn leads to a simplified definition of the NSLP (2.33):  

Λ∗ =  arg min𝑏𝜆|𝛬|≤𝑏𝑚𝑎𝑥
Tr [𝚺𝐃′|𝐃𝚲

′ =𝐲′′] =  

= arg min𝑏𝜆|𝛬|≤𝑏𝑚𝑎𝑥
Tr [𝚺𝐃′𝛿−𝜆,𝛿−𝜆 − 𝚺𝐃′𝛿−𝜆,𝜆(𝚺𝐃′𝜆,𝜆)

−𝟏
𝚺𝐃′𝜆,𝛿−𝜆]                       (2.38) 

Zhou and List (2010) also solved an NSLP based on the minimization of the variability 

of the posterior demand vector, measured through the trace of its covariance matrix. 

Importantly, a major difference is that they adopted the Kalman filter as a posterior 

demand estimator, whilst the NSLP (2.38) assumes the mean of the conditional vector 

𝐃|𝐌𝚲𝐃 = 𝐲 as posterior demand estimator. In addition, Zhou and List (2010) dealt 

with only the assumption of prior normal distribution for the demand vector, whilst 

equation (2.38), based on an error-free measurement assumption, is derived as a 

                                                           
5 𝚺𝐃′|𝐃𝚲′=𝐲′ has dimension (δ – λ) (δ – λ), whilst 𝚺𝐃|𝐌𝚲𝐃=𝐲 has dimension (δ ∙ δ) and rank (δ – λ). It 

occurs that 𝚺𝐃|𝐌𝚲𝐃=𝐲 = 𝚺𝐃′|𝐃𝚲′=𝐲′
𝟎 ∙ 𝐑−𝟏  where 𝚺𝐃′|𝐃𝚲′=𝐲′

𝟎 = [
𝚺𝐃′|𝐃𝚲′=𝐲′ 𝟎

𝟎 𝟎
]  is the matrix obtained 

from 𝚺𝐃′|𝐃𝚲′=𝐲′ by adding λ rows and columns of zeros. 



48 
 

particular instance of the more general approach (2.33), which does not require any 

specific distributional assumption on the prior demand vector. 

It is worth pointing out that the solution to the NSLP (2.38) is the same which 

would be obtained by imposing the minimization of the trace of the covariance matrix 

of the constrained GLS estimator (CGLS), i.e. a GLS correction of the prior demand 

estimate 𝐃  wherein equation (2.31) represents a constraint in accordance with the 

assumption of error-free link count measurements. Indeed, as reported by Cascetta 

(1984), the CGLS correction 𝐃CGLS of the prior o-d estimate 𝐃 based on the error-free 

link count measurements y is given by the following estimator: 

𝐃CGLS = 𝐃 + 𝚺𝐃
−𝟏𝐌𝚲

𝐓(𝐌𝚲𝚺𝐃
−𝟏𝐌𝚲

𝐓)
−𝟏

(𝐲 − 𝐌𝚲𝐃)  

 with posterior covariance matrix: 

𝚺𝐃CGLS
= 𝚺𝐃 − 𝚺𝐃𝐌𝚲

𝐓(𝐌𝚲𝚺𝐃𝐌𝚲
𝐓)

−𝟏
𝐌𝚲𝚺𝐃                                                       (2.39) 

Although covariance matrices (2.39) and (2.34) are different, it is easy to recognize 

that they have the same trace. Indeed, this is intuitive: since the GLS estimator is a best 

linear unbiased estimator (BLUE), it necessarily minimizes the errors between the 

posterior estimate and the true o-d matrix, i.e. the trace of the covariance matrix of the 

posterior random demand vector expressed by (2.39). Therefore, in this respect, the 

problem (2.38) can be interpreted as tantamount to the problem of finding the set Λ∗ 

minimizing the trace of the covariance matrix (2.39) of the 𝐃CGLS posterior estimate 

performed with Λ∗.  

From an algorithmic standpoint, the three approaches (i.e. that of Zhou and List 

(2010), the proposed approach (2.38) and the minimization of the trace of the 

covariance matrix (2.39) of the CGLS estimator) share the same asymptotic 

computational complexity, since they basically involve a matrix inversion operation of 

the same order. Importantly, however, it is worth noting that the mathematics 

underlying the proposed approach described above allows for the implementation of 
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an effective algorithm, capable of outperforming the others when the number of 

sensors becomes significant.   

2.3.2.1 Mathematical details on the rotation of the prior demand vector 

The analytical simplification of the SDM (2.32) and of the NSLP (2.33), under the 

assumption of multivariate normal distribution for the prior demand, is based on the 

possibility of expressing the conditional vector 𝐃|𝐌𝚲𝐃 = 𝐲  in a canonical form 

𝐃′|𝐃𝚲′ = 𝐲′, by means of a specific rotation 𝐃′ = 𝐑𝐃 of the demand vector 𝐃. For 

this aim, relationship (2.31) may be regarded as an undetermined linear system with 

𝐌𝚲 as coefficients matrix and 𝐃 and 𝐲 as vectors of the unknowns and of the constant 

terms respectively.  

As known from the algebra (e.g. Shilov (1977), Sheldon (1997), Lay (2005)), the 

whole set of the solutions of such system can be expressed as the sum of the generic 

solution of the associated homogeneous system 𝐌𝚲𝐃 = 𝟎 and of a specific solution of 

the complete system 𝐌𝚲𝐃 = 𝐲. In other words, since the space of the solutions of 

𝐌𝚲𝐃 = 𝟎 is a subspace 𝐾𝑒𝑟(𝐌𝚲) ⊆ 𝑅𝛿  called kernel of 𝐌𝚲, with dimension 𝛿 − 𝜆 (𝛿 

being the number of o-d pairs and 𝜆 the number of counting sections), the space of the 

solutions of the system 𝐌𝚲𝐃 = 𝐲 is a translation of 𝐾𝑒𝑟(𝐌𝚲). This means that all 

vectors 𝐃 solutions of 𝐌𝚲𝐃 = 𝐲 share the same components orthogonal to 𝐾𝑒𝑟(𝐌𝚲), 

and differ among themselves only for components parallel to 𝐾𝑒𝑟(𝐌𝚲).  

Therefore, in order to express 𝐃|𝐌𝚲𝐃 = 𝐲 in a canonical form, it is sufficient to rotate 

the reference system of the space of the demand vectors, so as to find a new reference 

systems with directions respectively parallel and orthogonal to 𝐾𝑒𝑟(𝐌𝚲) : the 

orthogonal components will be those conditional upon the set Λ of sensors. Since the 

components orthogonal to 𝐾𝑒𝑟(𝐌𝚲)  form its image 𝐼𝑚(𝐌𝚲) = 𝑠𝑝𝑎𝑛(𝑟𝑜𝑤𝑠(𝐌𝚲)) 

with dimension 𝜆 , a proper rotation can clearly be performed by means of the 

following rotation matrix: 
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where    )()( ,...,
ΛΛ MM bbB Ker

1

Ker  and  
)(Im)(Im ...

ΛΛ MM iiI
1 are orthonormal bases of the 

subspaces 𝐾𝑒𝑟(𝐌𝚲) and 𝐼𝑚(𝐌𝚲) respectively. As a result, the rotation matrix (2.40) 

leads to a rotated demand vector 𝐃′ = 𝐑𝐃 such that the conditional random vector 

𝐃|𝐌𝚲𝐃 = 𝐲 becomes a canonical conditional random vector 𝐃′|𝐃𝚲′ = 𝐲′.  

Notably, the above translation of 𝐾𝑒𝑟(𝐌𝚲), representing the space of the solutions of 

the system 𝐌𝚲𝐃 = 𝐲, defines the feasibility set of the demand vectors consistent with 

the counted flows 𝐲, which is the same as that considered by Bierlaire (2002) for the 

calculation of the TDS, by Yang et al. (1991) for the MPRE, and Gan et al. (2005) for 

the ERE. In the proposed approach a considerable difference is that a specific 

distribution of the demand is assumed within the feasibility set, based on which an 

aggregate measure of the overall demand variability is established (i.e. the trace of the 

covariance matrix of the posterior demand vector). 

 

2.4     Analysis of the proposed NSLP approach on toy networks 

In order to illustrate the proposed framework and its related mathematics, two toy 

networks are introduced in this section: a 3-link toy network, under the assumptions of 

uniform prior demand distribution and of normal prior distribution; a 5-link toy 

network, mimicking a real situation where the prior demand variability is related to the 

sampling rate of the underlying process of demand estimation. 
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2.4.1 3-link toy network 

The first test network, depicted on the left-hand side of Figure 1, comprises three links 

and two o-d pairs A-C (demand value D1) and B-C (demand value D2).  

 

 

 

 

 

The objective is to find the best location for a single sensor, i.e. 𝜆 = 1. Both the o-d 

covering (whatever weights and thresholds) and the maximum flow fraction rules 

(Yang and Zhou, 1998) indicate link 3 as the best location, allowing also the feasibility 

set 𝛀𝐃|𝐌𝚲𝐃=𝐲  to be bounded. Indeed, link 3 also represents the most reasonable 

subjective choice in the absence of any further prior information. However, in practice, 

prior information on 𝛀𝐃
 and φ𝐃(𝐝) is normally available: for instance, upper bounds 

of the demand generated and attracted by a zone may be defined according to its 

population and workplaces respectively, and the variance of the generic demand value 

may be related to the adopted sampling strategy in the case of survey-based prior 

estimate. In such a situation, link 3 can be proved to be not the most effective choice 

through simple calculations, in line with Zhou and List (2010).  

Firstly, let us consider availability of prior information on the domain 𝛀𝐃 in terms 

of upper bounds on the demand generated, i.e. D1 ≤ d1 max  and D2 ≤ d2 max with 

 d2 

d1 d1max 

d2max 
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f2 

f3>d2max 
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f3=d1max 

f3<d1max 

d1max <f3<d2max 
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3 

Figure 1 - 3-link toy network (left) and feasibility domains 𝜴𝑫|𝑴𝜦𝑫=𝒚  depending on 𝛬 for 𝜆 = 1 (right) 
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d2 max > d1 max  (this assumption is obviously not restrictive), and absence of 

information on the prior distribution φ𝐃(𝐝), which can thus be assumed uniformly 

distributed with independent marginals in the rectangle defined by the bounds d1 max 

and d2 max. Its mean vector 𝛍𝐃 and covariance matrix 𝚺𝐃 are therefore:  











2d

2d

2

1
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/

max

max
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The right-hand side of Figure 1 depicts the feasibility set 𝛀𝐃
 and the corresponding 

sets 𝛀𝐃|𝐌𝚲𝐃=𝐲 given the possible locations of a single sensor (link 1, 2 or 3). Clearly, 

choosing link 1 implies fixing the demand value D1 (i.e. 𝑉𝑎𝑟(D1) = 0 in the error-free 

measurements assumption) and similarly link 2 implies D2 = y2 (i.e. 𝑉𝑎𝑟(D2) = 0). In 

particular, for Λ = {1} the mathematics introduced in Section 2.3 yields: 

YY1;     MD=y → D1=y1;      D|MD=y → 








2

1

D

D
| D1=y1 → 









2

1

D

y
 

][ =| yDMDΣ 
Tr  = Var[D2] = d2max

2/12 

Therefore, the trace ][ =| yDMDΣ 
Tr  is independent of the unknown value of the counted 

flow y1 in this particular situation, leading to the following SDM value from (2.31):  

  12dTrTrSDM 2

21 /][)(][ max=|=|  


 yDMDYyDMD ΣyyΣ

Y


                                 (2.41)    

It is easy to verify that the same occurs for ={2}, yielding:  

  12dSDM 2

12 /max                                                                                                   

(2.42) 

Differently, the choice ={3} yields: 
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YY3;      MD=y → D1+D2=y3;      D|MD=y → 









2

1

D

D
|D1+D2=y3 

 





















                            

 if

 if

                   if

                                                

/

/

/

][
maxmaxmax

                     maxmax

max

maxmax

max

=|

otherwise

ddyd

dyd

dy0

0

6ydd

6d

6y

Tr
2132

231

13

2

321

2

1

2

3

yDMDΣ 
              (2.43) 

that is, the trace ][ =| yDMDΣ 
Tr  depends now on the unknown value of the counted flow 

y3, and an explicit calculation of the integral within (2.32) is required. In this respect, 

the components of the random vector Y are linear combinations of uniform random 

variables D by means of equation (2.30). Hence the density φ𝐘(𝐲) = φY3
(y3) can be 

expressed as the convolution of the two uniform independent variables D1 and D2 

defined respectively in [0,d1max] and [0,d2max], that is: 

 





















                            

 if

 if

                   if

          

                                                

                                       

                              

)(
maxmaxmax

                     maxmax

max

maxmaxmaxmax

max

maxmax

otherwise

ddyd

dyd

dy0

0

dddyd1

d1

ddy

y
2132

231

13

21232

2

213

3Y3
          (2.44) 

In turn, the SDM indicator becomes, by substituting (2.43) and (2.44) into (2.32): 

 
max

maxmax

|=| )(][)(][
maxmax

2

3

1

2

1

33Y

dd

0y

yDD3
d12

d

6

d
yyTrTrSDM

3

21

3

321
 









  DYyDMD ΣyyΣ

Y


 (2.45) 

Table 1 compares the SDM values (2.40), (2.42) and (2.44) for the three possible 

sensor locations for different values of d1max and d2max (and therefore for different 

values of the variances of D1 and D2). Unlike the best location indicated by both the o-

d covering and the maximum flow fraction rules (i.e. link 3), the best location 

indicated by the SDM indicator is always link 2, apart from the case d1max = d2max for 

which the choice is indifferent. This result is consistent with the theoretical principle 

that the link count location allowing for maximal reduction of the variability of the 



54 
 

prior o-d estimate is the one gathering the most information about the demand 

component with maximal variance.  

Table 1 - Best sensor location as a function of the SDM indicator for the Figure 1 network (hypothesis 

of uniform demand) 

 

Let the random vector D now be multivariate normally distributed with covariance 

matrix: 











2

212

12

2

1




DΣ                                                                                                    (2.46) 

As in the previous calculations, the cases ={1} and ={2} are trivial because they 

lead to conditional random vectors already expressed in “canonical” form and, 

therefore, equation (2.35) can be applied without any rotation of the reference system:  

2

1

2

122

212

12

112

2

2yD 11 


  

 )(|DΣ                                                                 (2.47) 

2

2

2

122

112

12

212

2

1yD 22 


  

 )(|DΣ                                                                (2.48) 

yielding the following SDM values: 

  2

1

2

122

2yD1 11
TrSDM




   ][ |DΣ                             (2.49) 

1 2 3

100 100 833 833 833 833 833 1 or 2 or 3

100 110 833 1008 1008 833 909 2

100 120 833 1200 1200 833 972 2

100 130 833 1408 1408 833 1026 2

100 140 833 1633 1633 833 1071 2

100 150 833 1875 1875 833 1111 2

100 160 833 2133 2133 833 1146 2

100 170 833 2408 2408 833 1176 2

100 180 833 2700 2700 833 1204 2

100 190 833 3008 3008 833 1228 2

100 200 833 3333 3333 833 1250 2

d1max d2max Var[D1] Var[D2] best location
SDM
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  2

2

2

122

1yD2 22
TrSDM




   ][ |DΣ                 (2.50) 

Conversely, in order to obtain a conditional random vector in canonical form for the 

case ={3}, the approach described in Section 2.3.2 should be followed, i.e. applying 

a 45° anticlockwise rotation of the reference system in order to obtain two axes d// and 

d respectively parallel and orthogonal to the equation defined by the sensor ={3} 

(right side of Figure 1). The corresponding rotation matrix R can be obtained easily 

from (2.40), yielding, with also an intuitive geometrical interpretation: 

          











2222

2222
R                                                        (2.51) 

The covariance matrix of the demand vector D’ in the new reference system becomes, 

by substituting (2.46) and (2.51) into (2.34): 

 
/)(/)(

/)(/)(

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

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
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

12

2

2

2

1
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1
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2

112

2

2

2

1T

22

22




RRΣΣ DD'

 

and the covariance matrix of the conditional demand vector in the new reference 

system becomes, by applying equation (2.35): 

 
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2

2

2

1

2

12

2

2

2

1
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2

2

2

1
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2
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2

2

1
yD
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2
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1

423 























D'Σ             (2.52) 

which in accordance with (2.37) provides SDM={3}. The following Table 2 reports the 

calculation of the SDM (2.49), (2.50) and (2.52) depending on the position of the 

sensor, for σ1
2 = 1 and for increasing values of σ2

2 and 12.  

Again, location 2 is the best, accordingly with the proposed framework, and increasing 

values of the covariance 12 make count section 3 even worse with respect to section 

2. 
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Table 2 - Best sensor location as a function of the SDM indicator for the network (hypothesis of 

normally distributed demand) 

 

 

2.4.2 5-link toy network 

The 5-link toy network depicted in the left-hand side of Figure 2 has two origins 

(centroids A and B) and two destinations (centroids C and D). Each origin is associated 

with a synthetic population, wherein each individual has specific socio-economic and 

transport characteristics, corresponding to the aggregated values of inhabitants and 

generated trips reported in the right-hand side of Figure 2. In order to mimic a real 

application of the proposed methodology, a sampling estimate of the covariance matrix 

SD of the prior demand vector is obtained by applying the theory of the statistical 

inference to a random sample selected within each origin, accordingly with a prefixed 

sampling rate. In particular, following Cascetta (1984), the sampling variances and 

covariances of the  estimates are expressed as: 

𝑉𝑎𝑟(𝑑̂𝑖𝑗) =
𝑁𝑖

2

𝑛𝑖
𝑃𝑖𝑗(1 − 𝑃𝑖𝑗)                                                                                     (2.53) 

𝐶𝑜𝑣(𝑑̂𝑖𝑗 , 𝑑̂𝑖𝑘) = −
𝑁𝑖

2

𝑛𝑖
𝑃𝑖𝑗𝑃𝑖𝑘                                                                                     (2.54) 

1 2 3

1.00 1.00 0.00 0.0 1.00 1.00 1.00 1 or 2 or 3

1.00 1.00 0.10 0.1 0.99 0.99 1.10 1 or 2

1.00 1.10 0.00 0.0 1.10 1.00 1.05 2

1.00 1.30 0.00 0.0 1.30 1.00 1.13 2

1.00 1.70 0.00 0.0 1.70 1.00 1.26 2

1.00 2.00 0.00 0.0 2.00 1.00 1.33 2

1.00 2.00 0.14 0.1 1.98 0.99 1.46 2

1.00 2.00 0.28 0.2 1.92 0.96 1.58 2

1.00 2.00 0.42 0.3 1.82 0.91 1.69 2

1.00 3.00 0.00 0.0 3.00 1.00 1.50 2

1.00 3.00 0.17 0.1 2.97 0.99 1.63 2

1.00 3.00 0.35 0.2 2.88 0.96 1.74 2

1.00 3.00 0.52 0.3 2.73 0.91 1.84 2

1.00 3.00 0.69 0.4 2.52 0.84 1.93 2

1.00 3.00 0.87 0.5 2.25 0.75 1.98 2

1.00 3.00 1.04 0.6 1.92 0.64 2.00 2

1
2

2
2 SDM

best location12 correlation
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𝐶𝑜𝑣(𝑑̂𝑖𝑗 , 𝑑̂𝑙𝑚) = 0                                                                                                     (2.55) 

where 𝑁𝑖  is the number of potential travellers, that is the synthetic population 

associated with origin i; 𝑛𝑖 the number of travellers independently extracted; 𝑃𝑖𝑗 =
𝑛𝑖𝑗

𝑁𝑖
, 

𝑛𝑖𝑗 being the number of trips between origin i and destination j resulting from the 

sampling experiment.  

 

 

         

Figure 2 - 5-link toy network (left) and setup of the experiment (right) 

 

As in the previous section, the objective is to define the best location for a single 

sensor, under different combinations of sampling rates for each origin. Results are 

reported in the following Table 3 wherein, for different combinations of sampling 

rates, both the corresponding SD estimate – together with its trace – and the SDM 

values for each single possible location are presented. 

Notably, whilst the o-d covering and the maximal flow fraction rules indicate location 

3 as the best choice, the sensor location minimizing the SDM is either link 4 or link 5 

depending on the sampling rate.   

 

 
A 

B 

C 

2 
D 

1 

3 

4 

5 

A B

inhabitants 2000 5000

generated trips 1200 3300

to C 400 1650

to D 800 1650

Centroid of origin
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Table 3 - Best sensor location for the network of Figure 2 under different sampling rates for direct 

estimation of prior demand (optimal locations highlighted in yellow) 

 

 

 

2.5     Applications to real networks 

In this section, two algorithms are introduced: Algorithm 1, which allows the objective 

function (2.37) of the NSPL (2.38) to be calculated without matrix inversion; 

Algorithm 2, which provides an effective sequential heuristic solution of the NSLP 

(2.38) based on Algorithm 1. Then the performances of the proposed method and of 

the most common NSLP approaches in the literature are compared by means of an 

application to a real highway context.  

2.5.1 Algorithms to solve the proposed NSLP 

Calculation of the objective function (2.37) of the proposed NSLP (2.38) first requires 

calculation of the rotation matrix R using expression (2.40), and then calculation of 

D'Σ and 
y'='DD' |Σ  using (2.34) and (2.35) respectively.  

Asymptotically, the computational complexity of such operations is O(3), the same 

exhibited by Zhou and List (2010) and by minimization of the trace of the CGLS 

covariance matrix (2.39).  

zone A zone B σ2
1 σ2

2 σ2
3 σ2

4 σ12 σ13 σ14 σ23 σ24 σ34 ={1} ={2} ={3} ={4} ={5}

10 10 3200 4800 11055 11055 -1600 0 0 0 0 -5445 30110 28511 29786 29404 20819 20949

10 20 3200 4800 5528 5528 -1600 0 0 0 0 -2723 19055 17456 18893 18230 14381 13866

15 10 2133 3200 11055 11055 -1067 0 0 0 0 -5445 27443 26377 27119 26955 17832 18152

15 15 2133 3200 7370 7370 -1067 0 0 0 0 -3630 20073 19007 19858 19603 13879 13966

25 20 2133 3200 5528 5528 -1067 0 0 0 0 -2723 16388 15322 16227 15898 11806 11715

25 30 1280 1920 3685 3685 -640 0 0 0 0 -1815 10570 9931 10463 10282 7506 7490

35 35 914 1371 3159 3159 -457 0 0 0 0 -1556 8603 8146 8511 8402 5949 5986

40 35 800 1200 3159 3159 -400 0 0 0 0 -1556 8317 7918 8225 8142 5636 5698

variances and covariances

Tr[SD]

SDMsampling rate (%)
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In practice the most computationally demanding step in the above calculation of the 

objective function (2.37) is the inversion of the block 
 ,D'Σ  in equation (2.35). 

Interestingly, for =1 (i.e. just one sensor) the matrix   1

 ,D'Σ  in equation (2.35) 

becomes simply the reciprocal of the variance of the term 



,D'

 of the rotated matrix 

D’, leading to a significant simplification of equation (2.35) itself: 











 ,

,

,,=| D'

D'

D'D'y''DD' ΣΣΣΣ
1

                                             (2.56) 

Intuitively, given a set  of >1 sensors, this suggests a stepwise calculation of the 

objective function (2.37), in the form of the following Algorithm 1. 

Algorithm 1 – Stepwise calculation of the objective function (2.37) of the NSLP 

(2.38). 

 initialization: choose any arbitrary link processing order L within  and set D0=D  

 for each i: 

- rotate the random demand vector Di-1 with dimension )( 1i   with respect 

to the single equation defined by link at position i in L, by means of the 

matrix Ri given by (2.40), yielding the rotated vector 11   ii

'

i DRD with 

dimension still equal to )( 1i  ; 

- calculate the corresponding rotated covariance matrix 
T

1 iDiD
RΣRΣ

i
'

1-i 
 by 

means of (2.34); 

- calculate the covariance matrix 
i{i}=Λ1-i1-i y= )(D'|D'Σ (with dimension i ) of the 

conditional random vector D’i-1|(D’i-1)={i}=yi by means of (2.56); 

- set Di = D’i-1|(D’i-1)={i}=yi and 
i{i}=Λ1-i1-ii y= )(D'|D'D ΣΣ  . 
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At each iteration of Algorithm 1 the starting matrix Di-1 has a stepwise reduced 

dimension with respect to the previous iteration. Coupled with the computational 

saving achieved by avoiding matrix inversion, this suggests a parsimonious heuristic 

for solving the NSLP (2.38), based on processing at the generic iteration k a set k of 

sensors obtained by adding just one more sensor to the set k-1 processed in a previous 

iteration. In this way, the objective function at the generic iteration k can be calculated 

through just a single step of Algorithm 1, i.e. through a single one-dimension rotation. 

This approach is synthesized in the following Algorithm 2. 

Algorithm 2 – Sequential heuristic solution of the NSLP (2.38). 

 initialization: define a maximal number of counting sections maxnl (being nl the 

number of links of the network), based for instance on budget constraints. Set 

also 0={}; 

 for each imax: 

- for each candidate link lcand amongst the still available nl – i +1 links, i.e. 

those not belonging to the set i-1 defined at the previous iteration; 

- augment the set i-1 with link lcand, i.e.  cand1icandi l  ; 

- calculate the objective function (2.38) for the set 
candi , by means of a 

rotation of the conditional random vector 
1iD given the set i-1 (available 

from the previous iteration) with respect to the single equation defined by the 

link count location lcand (i.e. a single step of Algorithm 1); 

- define i  as the set amongst all 
candi  which minimizes the objective 

function (2.38).  
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2.5.2 Real case study: A3 Naples-Salerno motorway 

The first application of the proposed approach concerns the A3 Naples-Salerno 

motorway, with 17 junctions over a 52 km length, 176 o-d pairs and 30 links (i.e. 

assignment matrix M with dimensions 30 x 176) corresponding to 29 independent 

measurement equations. A comprehensive survey at all toll stations was carried out in 

2008, leading to the estimation of a prior o-d matrix together with its covariance 

matrix SD. The experiment consists of applying various NSLP methods and then 

performing a GLS o-d matrix correction based on each identified set of optimal count 

locations.  

In detail, the proposed NSLP approach is compared with the most commonly quoted in 

the literature, that is: 

- the maximal flow fraction and the o-d covering rule applied with different 

covering thresholds  (Yang and Zhou, 1998); 

- the o-d weighted covering criterion by Ehlert et al. (2006). 

Results of the different NSLP approaches are presented in Table 4 in terms of 

percentage reduction of the SDM (2.37) with respect to the trace of the prior 

covariance matrix, i.e. assuming the SDM as the correct measure to be optimized in an 

NSLP. For this reason, the benchmark is represented by the results of a branch and 

bound algorithm applied in order to find the global optimum of the NSLP (2.38). In 

detail, at each step a binary branching is performed by partitioning the sets of 

candidate sensors within the current nest into two nests, depending on the presence or 

not of the best link defined for that nest in accordance with a branching criterion. In 

practice, at the i-th step the branching criterion considers the i-th best link in the 

ordering identified by the proposed sequential heuristic. Table 4 also reports the 

percentage of all feasible combinations of sensor locations explored by the branch and 

bound algorithm for reaching the global optimum.  

The o-d covering criterion requires 22 links for full coverage and for >0 the number 

of links effectively contributing to the o-d covering decreases. Furthermore, the branch 
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and bound algorithm was able to recognize the global optimum of the problem (2.38) 

for any number of link count locations. Most importantly, also the proposed Algorithm 

2 almost always achieves this global optimum (or finds a very close solution), 

outperforming the other methods.  

The proposed case study also allows the calculation times of the NSLP approach by 

Zhou and List (2010) to be compared with those of the proposed NSLP approach 

solved by means of Algorithm 2. For this aim, the objective function by Zhou and List 

(2010) is embedded in the sequential heuristic of Algorithm 2 in place of the objective 

function (2.37): this allows proper comparison of the computational effort required by 

the two approaches. Figure 3 below draws the calculation times (performed using an 

Intel Pentium (R)4 CPU 3.06 GHz with 4Gb RAM) for each possible number of 

sensors  in the real case study presented above. Notably, for low  the approach by 

Zhou and List (2010) is slightly more efficient but, as soon as the number of counts 

increases, the proposed NSLP approach leads to a faster response.  
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Table 4 - O-d matrix correction results for different NSLP approaches (% reduction of the SDM with 

respect to the trace of the prior covariance matrix) 

 

 

1 3.93 2.97 0.45 2.74 0.51 3.76 3.76 3.93 -

2 9.07 8.58 4.33 3.11 2.36 8.58 8.46 9.07 39.54

3 13.60 9.81 7.35 3.69 5.45 9.81 13.28 13.60 20.17

4 18.43 14.50 9.36 4.21 5.82 14.50 14.50 18.43 8.40

5 22.49 17.40 9.72 4.53 9.71 17.40 19.04 22.49 3.60

6 26.71 19.25 14.02 8.99 11.03 20.64 23.35 26.71 1.33

7 30.78 22.50 14.54 9.07 11.49 25.79 26.25 30.78 0.46

8 33.82 22.74 15.71 11.70 15.41 29.50 28.12 33.82 0.21

9 36.50 25.44 17.69 13.67 19.11 33.94 31.38 36.50 0.10

10 38.91 30.59 17.76 15.89 20.50 35.82 31.61 38.91 0.05

11 40.89 34.32 22.62 20.78 20.63 40.03 34.32 41.11 0.03

12 42.85 35.27 25.59 21.01 - 41.03 35.27 43.52 0.01

13 44.78 37.00 25.81 21.53 - 41.25 39.71 45.49 0.01

14 45.87 41.44 26.28 - - 43.44 41.44 47.42 0.00

15 47.68 41.80 31.23 - - 46.16 41.80 49.07 0.00

16 49.34 42.17 35.65 - - 46.57 42.17 50.40 0.00

17 50.64 42.25 36.95 - - 48.29 46.46 51.81 0.00

18 51.93 46.55 38.94 - - 50.21 46.55 53.15 0.00

19 53.38 48.76 40.98 - - 50.59 48.76 54.21 0.00

20 54.44 50.68 41.17 - - 50.68 50.68 54.68 0.00

21 54.91 51.20 41.48 - - 51.20 51.20 55.12 0.01

22 55.35 53.03 42.03 - - 53.03 53.03 55.60 0.01

23 55.81 54.46 - - - 54.46 53.45 56.01 0.03

24 56.22 54.52 - - - 54.88 54.88 56.36 0.10

25 56.59 54.94 - - - 54.94 54.94 56.63 0.39

26 56.87 56.33 - - - 56.33 55.48 56.87 1.67

27 57.01 56.37 - - - 56.88 56.88 57.01 10.81

28 57.15 56.91 - - - 56.91 57.15 57.15 -

29 57.19 57.19 - - - 57.19 57.19 57.19 -

Link counts

SDM (percentage reduction)

Proposed 

methodology 

(sequential)

Maximal 

flow 

fraction

o-d coverage o-d weighted coverage Branch and bound 

(global optimum) 

% of solutions explored by 

the branch and bound

=0.00 =0.02 =0.05 variance entropy
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Figure 3 - Comparison of computational times between the proposed sequential algorithm and Zhou 

and List (2010) on the A3 motorway network 

 

 

2.6     Budget allocation problem  

This section deals with the practical instance of a budget allocation problem between 

surveys and traffic counts in the planning stage, mentioned in Section 2.3.1. The 

experiment deals with a common important planning decision in transport engineering, 

i.e. how to allocate a budget bmax between surveys and traffic counts in order to 

minimize the variability of the o-d matrix estimate. Indeed, in accordance with the 

proposed approach, a higher budget allocated to surveys will reduce the variability of 

the sampled covariance matrix SD of the prior estimate, but fewer counts will be 

available for further correction. Vice versa – and this happens more frequently in the 

practice – allocating most of the budget to counts rather than to surveys leads to a 

more variable initial demand estimate but more link counts available for correction. 

Therefore, assuming a cost bsur for a single survey and a cost bcs for a count section, 
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different combinations of the number nsur of surveys and  of link counts can be 

defined such that nsurbsur+bcs=bmax, and for each combination a prior estimate of D 

can be inferred and a subsequent DGLS correction can be performed. Therefore, for 

each pair (nsur, ) the mean coefficient of variation of the posterior demand estimate 

can be calculated, given by: 


i iGLS

d

d

1
iGLS




 

 being the number of o-d pairs and 
iGLSd and 

iGLSd the mean and the standard 

deviation of the i-th component of the vector DGLS respectively. Obviously, when 

performing only surveys, the mean variation coefficient is calculated on the basis of 

the mean and the standard deviation of the components of the vector D. Furthermore, 

the mean variation coefficient was used instead of the trace for a clearer interpretation 

of the results. 

The real test site is the interurban network of the Province of Benevento (Italy), with 

about 300,000 inhabitants over 2000 km2, made up by 1722 o-d pairs, 1800 links and 

766 independent equations. Results are reported in Figure 4 below, where bsur=10€ and 

two different values for b are assumed, i.e. 50€ and 20€ respectively, so as to mimic 

the cases of both a full day of counts and just peak-hour counts. 

The red line in Figure 4 depicts the reduction of the posterior demand variability as a 

function of a budget entirely allocated to surveys (“all-surveys” curve): the shape of 

this curve is convex, that is the marginal gain of a further survey is remarkably 

significant for low budgets (i.e. few surveys) and tends to decrease for higher sampling 

rates. On the contrary, the curves representing the decrease in posterior demand 

variability as a function of the number of available counts exhibit a concave shape, 

that is a significant gain is observed only for substantial network coverage (i.e. a high 

number of counts).  

Interestingly, all count curves tend to fall under the all-surveys curve: therefore, the 

intersection between the all-surveys curve and the “all-counts” curve (i.e. the curve 

corresponding to a minimal budget allocation to surveys and all the remaining counts) 



66 
 

identifies an indifference point where the budget can be allocated equivalently either 

on surveys or on counts, leading to the same posterior variance reduction. 

As a consequence, a first clear outcome is that for low budgets – unable to achieve a 

good network coverage, i.e. before the aforementioned indifference point – a full 

allocation to surveys is preferable. Conversely, a budget overcoming the indifference 

point should be invested entirely on traffic counts up to a full network coverage, after 

which the residual budget, if any, can be allocated to surveys. Importantly, the budget 

threshold corresponding to the indifference point should be evaluated case by case, 

since it depends on specific factors (e.g. network topology, relative cost of surveys and 

counts). The example provided shows the optimal budget allocation between surveys 

and counts to be a non-trivial issue, to be assessed through proper quantitative tools 

and approaches.  

 

 

Figure 4 - Application of the proposed procedure to the network of the Province of Benevento, with 

different allocations of budget between surveys for prior estimates and traffic counts for posterior GLS 

correction. 
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3 DYNAMIC O-D ESTIMATION FROM TRAFFIC 

COUNTS 

3.1     Introduction 

As shown by the laboratory experiments on real-size synthetic networks carried out by 

Marzano et al. (2009), a satisfactory updating – regardless of the quality of the prior 

estimate – can be obtained only when the ratio between the number of equations (i.e. 

independent observed link flows) and the number of unknowns (i.e. o-d flows) is close 

to one. Unfortunately, such unknown/equation balance cannot be achieved in real 

networks under a static assumption, because the number of o-d pairs is always 

structurally larger than the number of counted links. On the other hand, achieving a 

proper unknown/equation balance is not straightforward also in dynamic contexts, 

where o-d estimation problem deals with the estimation of different o-d matrices, each 

corresponding to a time interval. Therefore, given a number of time intervals, the 

number of equations and the number of unknowns increase proportionally in the same 

way. However, under reasonable hypotheses on o-d flow variation across time slices, 

the number of unknowns in within-day dynamic systems can be bound, thus achieving 

unknowns/equations ratios close to one. In fact, in such dynamic contexts it is possible 

to formulate several hypotheses about the temporal evolution of the demand; the most 

commonly used approach consists in modelling the within-day evolution of o-d flows 

across time slices as an autoregressive process.  

Along this research direction, this chapter proposes a “quasi-dynamic” framework 

for estimation of o-d flows, hinted by Marzano et al. (2009), in which o-d shares are 

assumed constant across a reference period, whilst total flows leaving each origin are 

assumed varying for each sub-period within the reference period. In particular, after a 

literature review on some dynamic o-d matrix estimators, this chapter checks whether 

real data confirm the quasi-dynamic assumption from an empirical perspective, and 

then compares the performances of the quasi-dynamic o-d matrix estimation with both 



68 
 

classical off-line dynamic estimators and with other possible evolution rules 

characteristics of on-line dynamic estimation. 

 

3.2     Literature review on dynamic estimation of o-d flows 

In literature, two types of dynamic or time-dependent o-d estimation problems have 

been proposed: on-line (or real-time) and off-line. On-line estimation exploits the 

continuous flow of surveillance information to allow the dynamic updating of model 

inputs for each time interval of interest. Off-line estimation is aimed to determine a set 

of time-dependent o-d matrices given a time-series of link traffic counts (and other 

information such as travel times, historical o-d flows, etc). Off-line estimation is more 

relevant to planning or evaluation studies, while on-line estimation is required to 

provide – rapidly and recursively – o-d estimates for recent time slices together with 

predictions for subsequent time slices, to be used to generate traffic information and 

predictions for ITS applications. 

3.2.1 On-line estimation of o-d flows 

The first extension of the static o-d updating to the within-day dynamic framework – 

i.e. given a time horizon T of duration tT divided into n = tT/t time slices  of duration 

t, estimating n o-d matrices using n vectors of link counts – was provided by 

Cascetta et al. (1993) through the proposition of two estimators: simultaneous and 

sequential.  

While the simultaneous estimator - whose specification is shown in Section 3.2.2 - is 

usually used for off-line estimation, the sequential estimator is suitable for on-line 

estimation problems. Sequential estimator is based on the estimation at each step the o-

d flows for a given time slice  expressed as a function of the traffic counts within  

and (some) of the already estimated previous o-d matrices. This estimator provides 

two advantages: the first is the reduction of computational complexity by breaking 

down a large optimization problem into a number of smaller and more manageable 
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ones; the second is the possibility of using the estimates obtained for a time slice as 

prior estimates for estimations in subsequent time slices.   

The Kalman filter algorithm (Kalman 1960) has been widely used to accommodate 

the on-line requirements. The first approach was proposed by Okutani and 

Stephanades (1984) and subsequently generalized by Ashok and Ben-Akiva (1993 and 

2000) and Ashok (1996), who formulated as a state-space model, modelling the 

within-day evolution of o-d flows across time slices as an autoregressive process and 

using a Kalman filter to predict o-d flows for the time slice +1 based on link flow 

measurements at the time slice .  

In order to develop a state-space model, a “state” should be defined. In particular, 

Ashok (1996) used the vector of deviations of o-d flows from best available historical 

estimates instead of the actual flows themselves as “state”, that is as unknown 

variables. 

A state-space model typically consists of a set of transition equations and measurement 

equations: transition equations describe the evolution of the “state” over time and 

measurement equations, on the other hand, relate the unknown “state” variables to the 

other measured variables. Therefore, once a “state” is defined, one needs to specify 

transition and measurement equations. In this case, the transition equation expresses o-

d flows related to a time slice  as a result of the update of an historical estimate 


odHd  

(typically the outcome of the filtering process at the previous day) by means of a 

within-day autoregressive process of order p based on the deviations from the 

historical estimates observed for the p time slices prior to : 

  1

ododHodod

1

odH

1

od

p

dxdx 



   




 
'

'''       od, T                                             (3.1) 

wherein 
od are the coefficients of the autoregressive process, p the farthest time 

slice included in the autoregressive process (i.e. the number of time slices between p 

and  included equals p) and 
od an error term.   

The measurement equation is instead represented by the dynamic network loading 

equations: 



70 
 

  




  l

n

1od
odHododlHll

l

od

dxmyy  
 '

'''ˆˆ         llc, T                                  (3.2) 

wherein 

lŷ  represents the flow on link l at the time slice  and 

Hlŷ  its historical value; 

 '

odlm  the percentage of users of the o-d pair starting from the origin o at the time slice 

’ and crossing the link l at the time slice ; '

odx  the flow starting from the origin o 

toward the destination d at time slice ’; l a measurement/assignment error; lc the 

set of counted links.  

Equations (3.1) and (3.2) can be coupled and a direct closed form solution found, 

i.e. an optimal demand forecast for the time slice +1 based on traffic counts and prior 

estimates up to time slice . The filter applied at  involves all the demand unknowns 

backward up to l due to the dynamic assignment map in equation (3.2) and to p due 

to the order of the autoregressive process in equation (3.1). Therefore, the filter 

encompasses jointly the demand unknowns for all the time slices between  and the 

farthest between p and l or, equivalently, the o-d flow vector for each time slice is 

corrected a number of times equal to the number of time slices between  and the 

farthest between p and l. 

If a given network has 𝑛𝑜𝑑  o-d pairs, let 𝐗θ+1  be the (𝑛𝑜𝑑 ∗ 1)  vector of all 

deviations in o-d flows at the time slice θ + 1 and 𝐗̂θ+1 its estimate. Denote by 𝐘θ+1 

the vector of all deviations in the observed traffic counts and by 𝐐θ+1 and 𝐑θ+1  the 

covariance matrices of the error terms of the equations (3.1) and (3.2) respectively.  

In addition, consider the matrix 𝚽′θ , including all the coefficients 
od of the 

autoregressive process, and the matrix 𝐌θ+1 , including all the elements  '

odlm of the 

equations (3.2).    

The solution, comprising the Kalman Filter, was provided by Ashok (1996) through 

the following equations: 

𝚺0|0 = 𝐏0                                                                                                                    (3.3) 
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𝚺θ+1|θ = 𝚽θ𝚺θ|θ𝚽′θ + 𝐐θ+1                                                                                     (3.4) 

𝐊θ+1 = 𝚺θ+1|θ𝐌′θ+1(𝐌θ+1𝚺θ+1|θ𝐌′θ+1 + 𝐑θ+1)
−1

                                                (3.5) 

𝚺θ+1|θ+1 = 𝚺θ+1|θ − 𝐊θ+1𝐌θ+1𝚺θ+1|θ                                                                     (3.6) 

𝐗̂0|0 = 𝐗0                                                                                                                   (3.7) 

𝐗̂θ+1|θ = 𝚽θ𝐗̂θ|θ                                                                                                       (3.8) 

𝐗̂θ+1|θ+1 = 𝐗̂θ+1|θ + 𝐊θ+1(𝐘θ+1 − 𝐌θ+1𝐗̂θ+1|θ)                                                    (3.9) 

𝐗̂θ+1|θ represents a one-step prediction of the state 𝐗̂θ+1. It is assumed that the initial 

state of the system 𝐗0  has known mean 𝐗0  and variance 𝐏0 . 𝚺θ+1|θ  and 𝚺θ+1|θ+1 

represent the variances of 𝐗̂θ+1|θ and 𝐗̂θ+1|θ+1. The matrix 𝐊θ+1 is called gain matrix. 

An important aspect concerning the filtering technique is the requirement that 𝐏0, 

Q, R, M, 𝚽 and 𝐗0 be known. For this aim, repeated measurement over several days 

are needed. Since this may be unrealistic in most practical applications, no filter design 

is really optimal. This then raises the question of whether one could deduce non-

optimal behaviour during operation and improve the quality of filter performance. 

Within certain limits, this is possible and is known in literature as Adaptive Filtering.  

The Kalman filter can also be applied to non-linear systems. An algorithm used to 

dealt with the problem of non-linear estimation in dynamic systems is the Extended 

Kalman Filter algorithm, which involves a first-order Taylor linearization of the 

measurement equation about the best available estimate of the “state” vector. In other 

words, the non-linear system can be approximated by linearization during each time 

slice about the latest state estimate. Estimates obtained from the Extended Kalman 

Filter algorithm could be improved by performing successive iterations of 

linearization and re-estimation, leading to an Iterated Extended Kalman Filter 

algorithm.  
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Along this line, in a day-to-day framework, instead of an autoregressive process, 

Zhou and Mahmassani (2007) assumed a polynomial approximation for the structural 

deviation of the demand with respect to the historical estimate and for some of its 

derivatives. In particular, Zhou and Mahmassani (2007) considered the true demand 

partitioned into three components, namely, the regular pattern, structural deviations 

and random fluctuations. Theoretically, only the prior estimate of the regular demand, 

reflecting prior survey data and surveillance information up to the previous day, is 

available before performing real-time estimation on the current day. For this reason, 

the true demand was modelled by Zhou and Mahmassani (2007) as a linear 

combination of the prior estimate, structural deviation and random disturbance; the 

random disturbance term was assumed to follow a Normal distribution with zero mean 

and a polynomial trend model was introduced to describe the structural deviations. 

Computational issues in within-day o-d estimation in large networks were addressed 

by Bierlaire and Crittin (2004), who proposed a least-square formulation of the real-

time dynamic o-d estimation and prediction problem, based on a combination of the 

approaches by Cascetta et al. (1993) and Ashok and Ben-Akiva (1993).  

The issue of dealing with an expanded measurement space, including not only 

traffic counts, was explored for instance by Barcelò et al. (2012), who proposed 

procedures, based on Kalman Filter, that explicitly exploit traffic data available from 

Bluetooth sensors. They assumed: flow counting detectors and ICT (Information and 

Communication Technologies) sensors located in a cordon and at each possible point 

for flow entry (centroids of the study area), and ICT sensors also located at 

intersections in urban networks, covering access and links to/from the intersection; 

flows and travel times available from ICT sensors for any selected time interval length 

higher than one second; trip travel times from origin entry points to sensor locations as 

measures provided by the detection layout. Expansion factors from equipped vehicles 

to total vehicles, in a given interval, could be estimated by using the inverse of the 

proportion of ICT counts to total counts at centroids, and were assumed to be shared 

by all o-d paths and pairs with common origin centroid and initial interval. 
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The linear formulation of the Kalman Filtering approach, proposed by Barcelo et al., 

used deviations of o-d paths flows as state variables, as suggested by Ashok and Ben-

Akiva (1993 and 2000) and Ashok (1996), calculated in respect to DUE-based 

historical o-d path flows for equipped vehicles. Nevertheless, the approach of Barcelo 

at al. differs in that it doesn’t require an assignment matrix, by using, instead, the 

subset of the most likely o-d paths flows identified from a DUE assignment 

(conducted with the historical o-d flows). 

3.2.2 Off-line estimation of o-d flows 

Simultaneous estimator - proposed by Cascetta et al. (1993) - jointly estimates all o-d 

matrices for all time slices using the whole set of traffic counts, assuming the dynamic 

assignment matrix known. Its specification, directly derived from estimator (1.18), is 

 𝐝GLS = arg min𝐱≥𝟎 ∑ (𝐝̂θ𝐱θ)𝐕𝛉
−1(𝐝̂θ − 𝐱𝛉)

Tnθ
θ=1 +  ∑ (𝐲̂θ − 𝐌𝛉𝐱𝛉)𝐖𝛉

−1(𝐲̂θ − 𝐱𝛉)Tnθ
θ=1  

 (3.10) 

This estimator is usually used for off-line estimation problem, even if it can be shown 

to be inefficient for moderate size networks, as reported in Cascetta and Russo (1997) 

and Toledo et al. (2003). 

The Kalman filter can be used also for off-line applications, as proposed by 

Balakrishna et al. (2005) and particularly by Gelb (1974), who suggested a double-step 

off-line estimation approach based firstly on a forward Kalman filter application (as in 

on-line estimation) and then on a backward Kalman smoothing, in order to account for 

the knowledge of link counts for all time slices in off-line contexts. Ashok (1996) 

claimed this double-step approach to provide more robust and reliable results with 

respect to a simple forward Kalman filter. 

Cipriani et al. (2011) also proposed a method suitable for off-line applications. In 

particular, the problem of simultaneous estimation of time-dependent o-d matrices was 

formulated by Cipriani et al. (2011) without assignment matrices, by using measures 

such as traffic counts and speeds and introducing constraints with respect to the 
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generated flows from the origins; a solution algorithm, that is a modification of the 

gradient based SPSA -Simultaneous Perturbation Stochastic Approximation, Spall 

(1998a, 1998b) - path search optimization method, was adopted. This algorithm works 

with a gradient approximation and can find a good solution when the starting point 

(that is the seed matrix) is assumed to be ‘‘near” the optimal one. The modification 

concerned both the step size computation and the gradient estimation and it was 

proposed in order to improve the efficiency of the algorithm.  

Other relevant research directions within this field – not followed in this thesis - 

dealt with joint estimation of demand and supply parameters; this is the case of Liu 

and Fricker (1996) who, indeed, addressed networks with stochastic characteristics 

(that is travelers’ perceptions of link costs vary) and extended the o-d estimation 

model to include the route choice parameters at the same time.  

  

3.3    Quasi-dynamic estimation of o-d flows 

3.3.1 Definition of quasi-dynamic o-d flows 

A satisfactory estimation/updating of o-d flows – independent of the quality of the 

prior estimate – can be obtained only for an unknown/equation ratio close to one, as 

shown by Marzano et al. (2009). It is immediate to recognize that such condition 

cannot be met in static systems, where the number nod of o-d pairs is much larger than 

the number nl of links in the network and therefore even more larger than the number 

nlc of counted links, i.e. nod >>nl  nlc. Also in within-day dynamic contexts the balance 

is clearly always unsatisfactory: indeed, given a time horizon T of duration tT divided 

into n = tT/t time slices of duration t, the number of available link counts is nlc·n and 

the number of o-d unknowns is nod·n. Therefore, from the above, nod >> nlc implies nod 

·n >>nlc·n. 

However, intuitive behavioural considerations may help in achieving a better 

balance between unknowns and equations in a within-day dynamic context. First of all, 
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let the generic o-d flow dod for the time slice  be expressed as the product between 

the demand go generated by zone o during the time slice  and the distribution 

probability pd|o of choosing the destination zone d moving from o within the time 

slice , i.e. dod = go· pd|o . Taking into account the underlying phenomena leading 

to the commonly observed demand patterns, factors affecting go are inherently within-

day time varying (i.e. number of persons leaving from o in ) while factors affecting 

pd|o are more within-day stationary (i.e. localizations of houses and workplaces, 

spatial impedances between pairs of zones). Consequently, given a sub-period T of 

duration ttT within the entire time horizon T encompassing a number n| = t/t of 

subsequent time slices , the distribution probability pd|o of the n| time slices  

within  may be reasonably approximated by its average p()
d|o over , yielding: 

T        dpgpgd qd,

od

)(

o|doo|dood  
                                         (3.11) 

wherein: 
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odo  
                                                            (3.12) 
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(3.13) 

and () maps time slices  and corresponding sub-periods , i.e. () represents the 

specific sub-period  including the time slice . In the following, qd,

odd  will be referred 

to as a “quasi-dynamic” o-d flow, since it comes from the assumption of constant (i.e. 

static) distribution probabilities and variable (i.e. dynamic) generation profiles within 

τ.  

Prior real evidence of this assumption is reported in the literature in the 

contributions by Cascetta et al. (1993) on Italian data, by Ashok (1996) on data related 



76 
 

to the Boston area and by Van der Zijpp (1996) on Dutch data. Notably, both Van der 

Zijpp (1996), who assumed known generation profiles go, and Ashok (1996), who 

modelled two different autoregressive processes for demand generation and 

distribution, seminally contains a quasi-dynamic formulation, but not inspired by the 

explicit purpose of reducing the number of unknowns and thus improving the quality 

of the o-d flows estimation process. 

Interestingly, the quasi-dynamic assumption allows reducing the number of 

unknowns from n·nod  to n·no+n·(nod–no), where n = tT/t represents the number of 

sub-periods  within T. Therefore, the unknown/equation ratio becomes:  

lc

oodo

nn

)nn(nnn







                                                                                              (3.14) 

which approaches the target value of one when the number of counted links becomes: 
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where  T nEn ||    is the average number of time slices  per sub-period .  

Equation (3.15) shows that, thanks to the quasi-dynamic assumption, the number nlc of 

traffic counts needed to balance equations and unknowns should be at least equal to 

the number of origins plus a quantity opportunely limitable through |n . Importantly, 

this is generally possible in standard networks, wherein |n  may be augmented by 

increasing the duration t of the sub-period  and/or by reducing the duration t of the 

time slice . In the first case, this implies assuming the quasi-dynamic hypothesis to 

hold for larger time intervals of duration t, a circumstance which should be checked 

carefully on real data: the following Section 3.5 will be devoted specifically to this 

issue. In the second case, very limited durations t may result in very high correlations 

between measurements across subsequent time slices, therefore limiting the possibility 
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of obtaining further independent equations. In that respect, Marzano et al. (2009) 

already showed, through laboratory experiments, that an acceptable lower bound for t 

is three minutes. 

3.3.2 Formulation of the proposed QD-GLS estimator  

The estimator (1.14) may be easily particularized for the quasi-dynamic assumption 

(3.11), yielding: 
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            (3.16)  

wherein g is the (no·1) vector of the generated demands go for a given time slice , p 

is the (no·nd) matrix of the distribution probabilities pd|o for a given sub-period , 
d̂

the (no·nd) matrix of the prior demand estimates 

odd̂  for the time slice , and 
ŷ the 

(nlc·1) vector of the observed link counts 
lŷ  for the time slice .  

Therefore, the unknowns of the problem (3.16) are the demand generation profiles x 

for each time slice  and the matrices of the distribution shares τ for each sub-period 

, respectively variable in the feasibility sets Sx and S.  

In equation (3.16), the functional forms of z1(·) and z2(·) depend on the general 

estimation approach (i.e. GLS, ML or Bayesian) and on the assumptions on the 

statistical multivariate distribution of the demand and of the counted flows, of which a 

realization is observed. Without loss of generality, a GLS estimation approach will be 

assumed in the following, corresponding to a normal multivariate distribution 

assumption, leading to the following expression of the quasi-dynamic o-d estimator 

(3.16) under the assumption of diagonal dispersion matrices: 
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(3.17) 

wherein  '

odlm  is the generic term of the dynamic assignment map linking time-

dependent o-d flows with time-dependent link flows (i.e. it represents the fraction of o-

d flow generated at the time slice ’ being on link l at the time slice ), 
od and 

l are 

related to the dispersion matrix of the demand and of the counted flows distribution 

respectively, l is the farthest time slice whose generated demand contributes to the 

link flows on , and the constraints follow directly from the quasi-dynamic 

assumption. Although formally present in the QD-GLS estimator (3.17), the last 

constraint on the sum of the distribution shares is in fact not necessary, leading to 

remarkable simplification of the solution algorithm. For this aim, it is sufficient to re-

scale the matrix of the distribution shares unc,*

o|dp  estimated without the last constraint 

and the corresponding generation profiles unc,*

og   in the following way: 

o ,T    
p

p
p

d
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unc),(*
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o
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o pgg 

. 

The proposed quasi-dynamic estimator (3.17), which will be termed in the 

following the QD-GLS estimator, may be seen also as a particularization of the 

simultaneous estimator by Cascetta et al. (1993); however, it should be noted that the 



79 
 

estimator (3.17) is non linear, more specifically it is a bilinear form with respect to the 

unknowns x and τ. 

Importantly, as stated by equation (3.11), the demand flow dod and the 

corresponding quasi-dynamic flow d,qd
od do not coincide: their difference will be 

termed in the following the “intrinsic error” ieod of the quasi-dynamic assumption and 

also, by extension, of the QD-GLS estimator: 

     dd ie qd,

ododod

                                                              (3.18) 

The presence of an intrinsic error has a key practical relevance, since it represents a 

lower bound for the effectiveness of the QD-GLS estimator: in other words, the QD-

GLS estimator will be able at most to provide an o-d estimate differing from the true 

o-d flows of a quantity equal to the intrinsic error. Intuitively, the less reliable is the 

quasi-dynamic assumption (3.11) within , the larger is the intrinsic error: therefore, 

checking the acceptability of the assumption (3.11) on real data is fundamental also in 

the light of the quantification of the intrinsic error.  

 

3.4 The test site for the empirical validation of the QD-GLS estimator 

Both the quasi-dynamic o-d flows assumption and the consistent QD-GLS o-d flows 

estimator introduced in Section 3.3 require a thorough testing on real data: more 

specifically, the validity of the quasi-dynamic assumption needs to be assessed in 

order to quantify the magnitude of the intrinsic error, and the performances of the QD-

GLS need to be compared with respect to other existing dynamic o-d estimators. 

Observing time-varying “true” o-d flows for a significant urban context is still a 

very tricky issue, in spite of the availability of advanced collection methods (e.g. plate 

recognition techniques, Bluetooth, GPS). Therefore, following the literature in the 

field, an experimental field was extracted from the Y-shaped urban/suburban 
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motorway system in the North-East of Italy made by the A23 Palmanova-Tarvisio and 

A4 Venezia Est-Trieste motorways (top of  

Figure 5). The chosen motorway system is characterized by the presence of both 

commuting and long distance trips, representing therefore a challenging test site for 

the quasi-dynamic assumption. This closed system encompasses 17 junctions equipped 

with entrance/exit toll stations, leading to a full test site with 17 origins, 124 links and 

272 o-d pairs, the farthest having a travel time of about 90 minutes. Without any loss 

of generalization, the A4 branch between Palmanova and Trieste was eliminated and 

replaced by a virtual junction close to the A4-A23 intersection, so as to decouple the 

network into two independent closed systems (one per carriageway) made by 13 

origins, 91 o-d pairs and 49 links each (bottom of  

Figure 5). Importantly, such test site does not allow for a proper balance between 

unknowns and equations in the static case, with a ratio of 91/49=1.86. 

Available data consist of entry/exit junctions and times (in hours, minutes and 

seconds) for each vehicle, covering the whole day of four weeks in different seasonal 

periods (i.e. April, June, August and October 2008). Vehicles are disaggregated in five 

toll classes, which can be grouped into two clusters (passenger and freight). The 

entrance/exit toll system allows to obtain the true o-d flows and also a very reliable 

estimate of the dynamic assignment map – with respect to whatever aggregation in 

time slices  and in sub-periods  – based on the observed entry/exit times.  

On average, the test site encompasses about 60.000 trips/day. For a proper 

interpretation of the experiments, it is worth analysing the distribution of the 10-

minutes o-d flows, calculated for each o-d pair and for each time slice as the average 

over the three days 15th-17th April (i.e. weekdays from Tuesday to Thursday). For this 

aim, the overall 144·91 (i.e. nod·n) o-d flows can be sorted in decreasing order and 

partitioned into 10 different clusters, each containing a 10% of the overall demand 

volume (i.e. the sum of all 144·91 o-d flows). The result is reported in  
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Figure 6, which depicts the o-d flows in decreasing order (bleu curve) together with 

the average demand for each cluster (red curve) and the percentage of o-d pairs falling 

within each cluster (green curve). As it can be observed, more than 90% of o-d pairs 

are characterized by an average 10-minutes flow close to zero. 

 

Figure 5 - Overall A4/A23 motorway system in North-Eastern Italy (top) and schematic representation 

of the one-way (eastbound direction) test site (bottom) 
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Figure 6 - Analysis of 10-minutes average o-d flows for the 15th-17th April days 

 

Note: 10-minutes o-d flows are sorted for decreasing values. 

 

 

3.5     Empirical and statistical analysis of the quasi-dynamicity assumption 

A first key aspect of the QD-GLS estimator is the assessment of the magnitude of the 

intrinsic error, thanks to the observability of the o-d flows 

odd  in the test site. For this 

aim, chosen a duration t of the sub-period  and identified the time slices θ included in 

τ, the quasi-dynamic flows qd

odd ,   can be calculated from 

odd  by combining the right-

hand side of equation (3.11) with equations (3.12) and (3.13). This allows comparing 

for any duration t the observed o-d flows 

odd and the quasi-dynamic o-d flows qd

odd ,   by 

means of standard goodness-of-fit measures. In the remaining of the paper, the MSE 

(mean squared error) and the CVRMSE (i.e. a coefficient of variation calculated using 

RMSE, the square root of MSE, in place of the standard deviation) will be adopted: 
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The following Table 5 reports the values of both MSE and CVRMSE for different 

durations t from 30 minutes to 24 hours, disaggregated by vehicle class. Indicators are 

averaged across all days of the 14th-18th April week6: therefore, in order to quantify 

also the dispersion across observed days, Table 5 reports also the standard deviation of 

the MSE across weekdays. 

 

Table 5 - Empirical analysis of the intrinsic error of the quasi-dynamic estimator for different 

durations of the sub-periods τ of constant distribution percentages: disaggregation by vehicle class 

 

 

As expected, the average intrinsic errors increase for larger durations t, with a CVRMSE 

for all vehicles moving from 0.36 (t = 0.5 h) to 0.57 (t = 24 h) and a MSE from 2.42 

(t = 0.5 h) to 6.01 (t = 24 h), with a very limited variability across days. In absolute 

terms, the CVRMSE values presented in Table 5 are affected by the presence of a 

remarkable number of 10-minutes o-d flows close to zero (see  

                                                           
6 Results for the other days/weeks were completely similar. 

0.5 1 2 3 6 12 24

MSE 2.42 3.15 3.80 4.05 4.62 5.15 6.01

MSE (st dvn) 0.27 0.36 0.61 0.65 0.97 1.13 1.34

CVRMSE 0.363 0.415 0.456 0.470 0.503 0.531 0.573

MSE 1.38 1.77 2.11 2.20 2.51 2.66 2.81

MSE (st dvn) 0.16 0.25 0.35 0.38 0.51 0.58 0.71

CVRMSE 0.424 0.481 0.525 0.536 0.573 0.589 0.605

MSE 0.83 1.05 1.23 1.29 1.42 1.67 2.10

MSE (st dvn) 0.10 0.11 0.17 0.16 0.20 0.26 0.41

CVRMSE 0.603 0.679 0.734 0.753 0.789 0.858 0.961

freight

passenger

vehicle 

class
indicator

quasi-dynamic time interval (hours)

all
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Figure 6). In order to overcome this issue, the nodn (i.e. 91144 = 13104) o-d flows can 

be sorted for decreasing o-d flow values, and the CVRMSE can be calculated just with 

reference to the first p-th percentage of the overall demand volume (i.e. with reference 

only to the o-d flows in decreasing order summing up to the p-th percentage of the 

overall demand volume). As a result, the whole distribution of the CVRMSE as a 

function of the percentage p of the overall demand volume can be drawn, as reported 

in Figure 7 for both passenger and freight vehicles for different t durations with 

reference to the 16th April data.  

The CVRMSE values are satisfactory up to a significant percentage of the overall o-d 

flows (e.g. the CVRMSE for the 80% of the overall passenger demand equals 0.20 for 

t=1h and 0.25 for t=24h) and acceptable in practical terms. This provides a first 

evidence of the robustness of the quasi-dynamic assumption. 

Interestingly, appreciable differences may be observed across vehicle classes both 

in Table 5 and in Figure 7 calculations, with a higher intrinsic error in terms of 

CVRMSE for freight vehicles with respect to passenger vehicles. This result can be 

explained with a more stable demand pattern for passenger vehicles, typically 

representing local and commuting demand, with respect to freight vehicles, for which 

the share of non-recurrent trips cannot be discarded normally. From a practical 

standpoint, the presence of different demand distribution patterns for different vehicle 

classes may be accommodated through a multi-class version of the quasi-dynamic 

estimator (3.17), wherein each vehicle class is explicitly treated as a separate demand 

segment with its own quasi-dynamic assumptions. Such generalization does not imply 

any theoretical and/or operational difference with respect to the simple estimator 

(3.17), and will be therefore not considered in the remaining of the thesis. 
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Figure 7 - Distribution of the CVRMSE as a function of the considered percentage of overall demand 

volume for passenger (top) and freight (bottom) vehicles for different tτ durations: data for April 16th 
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In addition to the empirical investigations presented above, formal statistical tests 

may be performed in order to check the hypothesis of existence of quasi-dynamic 

demand patterns within a given sub-period . In more detail, for each time slice  and 

for each origin o, one is interested in testing whether the observed o-d flows 

dod=gopd|o coming from the observed distribution shares pd|o and the corresponding 

expected quasi-dynamic o-d flows d,qd
od = go pτ()

d|o coming from the quasi-dynamic 

distribution shares pτ()
d|o, are statistically different. For this aim, two different 

statistics can be adopted.  

The first is a standard Pearson’s chi-squared test (Kendall and Stuart, 1979), which 

tests formally the null hypothesis H0 that the observed frequencies dod
 and the 

expected frequencies d,qd
od

  come from the same distribution, based on the statistic: 
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with a number of degrees of freedom equal to nd|o–1, being nd|o the number of 

destinations reachable from the origin o. Such test may be repeated n·no times for 

each day: for the sake of brevity, the following Figure 8 reports the distribution of the 

probability of acceptance of the null hypothesis of all tests performed for April 14th 

(being results for all other days remarkably similar) with reference to different tτ 

durations (from 0.5 to 24 hours). Results are generally satisfactory, with a probability 

of acceptance larger than 80% exhibited by almost 60% of tests in the most favourable 

situation (tτ = 0.5 h) and by about 40% of tests in the worst case (tτ = 24 h). 

Interestingly, the test may be used also in order to identify the optimal subdivision of 

the whole day into a proper number nτ of periods  for which the quasi-dynamic 

assumption (3.11) holds.  
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Figure 8 - Distribution of the probability of acceptance of the null hypothesis of the χ2 test for April 

14th, under different tτ durations 

 

 

The second is a likelihood ratio (LR) test (Kendall and Stuart, 1979), testing the null 

hypothesis H0 that the observed distribution shares pd|o and the corresponding quasi-

dynamic distribution shares pτ()
d|o come from the same distribution. In other words, the 

LR statistic may be constructed by considering that the quasi-dynamic distribution 
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with o
 asymptotically distributed as a chi-squared variable with a number of degrees 

of freedom still equal to (nd|o–1). The LR test (3.20) provides very similar results to the 

chi-squared test (3.19): by way of an example, the following Figure 9 compares the 
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distribution of the probability of acceptance of the null hypothesis using the two 

different statistics, for tτ = 1 hour. 

 

Figure 9 - Comparison of the probability of acceptance of the null hypothesis of the χ2 test and of the 

LL test for April 14th (tτ =1 hour) 
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The kernel of the validation of the QD-GLS estimator is the comparison of its 

performances with other o-d estimators available in the literature on real data. For this 
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estimators, Section 3.6.2 describes the experimental setup, and Section 3.6.3 provides 
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3.6.1 Benchmark estimators 

A first natural benchmark estimator for the QD-GLS estimator is the simultaneous 

dynamic estimator proposed by Cascetta et al. (1993), having the following functional 

form:  
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wherein }x ,,...x{
odn


1x T represents the unknown demand vectors, 

}d ,,...d{ *

n

*

od


1*θ

d T the corresponding optimal solutions and the other symbols 

were already introduced. 

A further benchmark estimator is the Kalman filter (Ashok, 1996), typically applied 

in on-line estimation/prediction but suitably adaptable to off-line contexts, whose 

specification encompasses a measurement equation (3.2) and a transition equation 

(3.1).  

Notably, the estimation of  the coefficients 
od and of the dispersion matrix of the 

errors 
od in the transition equation (3.1) requires knowledge of seed o-d flows for 

two consecutive days. In addition, in the off-line application of this estimator a 

backward smoothing of the estimates obtained recursively from the forward 

application of (3.1)-(3.2) over T may be applied, in order to improve the quality of the 

final estimate. 

In the light of the quasi-dynamic assumption, the autoregressive process (3.1) may 

be interpreted as an alternative hypothesis on the within-day evolution of o-d flows 

able to bound the number of unknowns and, therefore, to help achieving an effective 

unknowns/equation balance. However, from the other side, this implies also the 

Kalman filter estimator to be characterized by an intrinsic bias (i.e. an ideal lower 
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bound to its estimation/updating capabilities) due to the structural inability of the 

autoregressive process – or of whatever transition equation (3.1) – to reproduce 

exactly the true o-d flows. In addition, since the true o-d flows are generally not 

available for the estimation of the autoregressive process, the performances of the 

Kalman filter depend also on the quality of the historical estimate of o-d flows used for 

the estimation of the autoregressive process, practically leading to an intrinsic bias 

much higher than the aforementioned ideal lower bound. This is an important 

difference with respect to the QD-GLS estimator, whose evolution rule – differently of 

that assumed by the Kalman filter – does not need to be estimated, apart from the 

duration tτ of the quasi-dynamic assumption. As a consequence, while the intrinsic 

error of the QD-GLS estimator depends only on the inherent approximation of the 

quasi-dynamic assumption, the intrinsic bias of the Kalman filter estimator depends on 

both the inherent approximation of the autoregressive process and on the quality of the 

historical o-d flows used for estimating the coefficients of the autoregressive process7. 

Therefore, since such historical o-d flows are generally provided by a simultaneous 

estimator, it is worth exploring whether using the QD-GLS estimates as historical o-d 

flows may help improving the performances of the Kalman filter (i.e. reaching the 

above mentioned ideal lower bound).  

Finally, it is worth noting that the dynamic o-d matrices d* – provided by any of 

the aforementioned dynamic estimators (i.e. simultaneous, QD-GLS, Kalman filter) 

for each time slice  T – can be aggregated (i.e. summed) over a time interval TsT 

in order to estimate o-d flows over Ts. Such “static” (i.e. resulting from aggregations of 

dynamic o-d matrices in the sense above defined) performances of the dynamic o-d 

estimators may be compared straightforwardly with the outcomes of the static GLS 

estimator proposed by Cascetta (1984) and applied to Ts, i.e.: 

                                                           
7 In that respect, it is important to underline that performing the Kalman filter across a higher number 

of days might help improving the quality of the autoregressive process through repeated estimations. 
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3.6.2 Description of the experiments 

The chosen test site allows: 

1. observation of o-d flows; 

2. calculation of a realistic assignment map inferred from entry/exit times; 

3. calculation of link flows, through the dynamic network loading of the observed 

o-d flows based on the assignment map, which will represent in the following 

the “observed” link flows of the test site. 

The experiments consist firstly of a perturbation of the observed o-d flows (point 1 

above), leading to perturbed o-d flows, which are used as seeds of the 

estimation/updating procedures in order to mimic the unreliability of real historical o-d 

estimates.  

Estimation/updating is then performed starting from these seed o-d flows, on the basis 

of the assignment map (point 2 above) and on a subset of 15 link counts chosen – by 

means of the max flow method proposed by Yang and Zhou (1998) – amongst the 

observed link flows (point 3 above). In other terms, the estimation/updating 

procedures are performed in the most favourable conditions of error-free link counts 

and error-free assignment map8, in line with Marzano et al. (2009), who showed that 

the tested estimators may be affected by significant issues and drawbacks also in these 

ideal conditions. Note that this updating implies the static GLS estimator to work with 

                                                           
8  Nevertheless, measurement and assignment errors may be introduced directly in the proposed 

experimental framework, through proper random perturbations of the true link flows (so as to mimic 

measurement errors) and/or of the dynamic assignment map (so as to mimic assignment errors). 
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an unknowns/equations ratio equal to 91/15=6.07 for each hour. The same ratio applies 

also to the simultaneous estimator (3.21), characterized by 91144 unknowns and 

15144 equations.  

Once performed the estimation/updating, the quality of the tested estimator may be 

measured directly by comparing the updated o-d flows with the observed o-d flows 

through standard goodness-of-fit measures, such those introduced at the beginning of 

Section 3.5.  

In addition, since only a subset of the observed link flows is used for the 

estimation/updating procedures, the remaining observed link flows may be used for a 

further hold-out validation, i.e. comparing them with link flows obtained by assigning 

the updated o-d flows. 

The described experimental framework applies directly to the dynamic estimators 

(3.17), (3.21) and (3.1)-(3.2), but it may be adapted straightforwardly also to the static 

GLS estimator (3.23) and to the static performances of the dynamic estimators (3.17), 

(3.21) and (3.1)-(3.2) over a time interval Ts. For this aim, from one hand, observed o-

d flows, perturbed seed o-d flows and true link flows over Ts should be computed 

(simply by summing observed o-d flows, perturbed seed o-d flows and true link flows 

for each time slice  Ts) in order to perform the static GLS correction (3.22) and to 

compute its performance indicators in terms of both o-d and link flows. From the other 

hand, the updated o-d flows and the corresponding assigned link flows obtained 

through the dynamic estimators (3.17), (3.21) and (3.1)-(3.2) should be summed so as 

to calculate the same performance indicators over Ts. 

In terms of setup of the experiments, without loss of generalization, only o-d flows 

related to passenger vehicles are considered. Furthermore, a 10-minutes time slices 

disaggregation is taken into account, i.e. t=10 minutes and n=144 within the overall 

daily time horizon. The observed o-d flows dod are perturbed by perturbing the 

observed generation profiles go ,o through independent draws from a normal 

distribution (truncated to non-negative values) with mean go and standard deviation 

0.3go (i.e. using a coefficient of variation of 0.3), and assuming uniform distribution 

shares pd|o across all destinations, i.e. pd|o=1/nd|o ,o.  
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Thanks to this “controlled” perturbation, the dispersion matrix of the seed o-d flows – 

required by all estimators described in Section 3.6.1 – is also directly calculable: 

notably, the average coefficient of variation of the seed o-d flows identified by such 

perturbations is very high (about 2).  

Finally, it is important to mention specific setups for each of the tested dynamic 

estimators: 

- for the QD-GLS estimator, a duration t=24 hours is assumed, i.e. the distribution 

shares are kept constant for the whole day; this implies the QD-GLS estimator to 

work with n·no+nod–no=144·13+91–13=1950 unknowns and n·nl=144·15=2160 

equations, i.e. with an unknowns/equations ratio equal to 0.90; 

- for the static GLS estimation, a duration Ts=1 hour is assumed, i.e. 24 daily static 

estimate/updates are performed;  

- for the Kalman filter, three different experiments are carried out depending on the 

type of seed o-d flows. A first ideal experiment, named “true seeds”, consisted of 

using the true o-d flows both for the estimation of the autoregressive process and 

as seeds for the filter. Obviously, this experiment does not correspond to any 

possible real application, but it allows quantifying the intrinsic bias in the Kalman 

filter coming from the autoregressive process in the transition equation (3.1). In 

addition, two more standard experiments are carried out, based on considering as 

historical estimates respectively the simultaneous estimates (“simultaneous seeds” 

scenario) and the quasi-dynamic estimates (“quasi-dynamic” scenario). In all 

scenarios, the estimated autoregressive process leading to the best statistical result 

is a 5-order lagged process and, differently from what observed by Ashok (1996), 

the backward smoothing does not provide any appreciable improvement to the 

forward on-line estimates. 

3.6.3 Experimental results 

A first set of experiments refers to the application of the QD-GLS estimator (3.17), of 

the simultaneous estimator (3.21) and of the Kalman filter (3.1)-(3.2) to a standard 
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within-day dynamic context. Results are reported in the following Table 6, which also 

includes the initial error embedded in the perturbed seed o-d flows, together with the 

intrinsic error of the QD-GLS estimator and the “true seed” scenario of the Kalman 

filter, representing a sort of optimal lower bound for the QD-GLS and the Kalman 

filter estimators respectively in the light of the above discussion.  

In addition to the aggregated values reported in Table 6, a detailed assessment of the 

distribution of the cvRMSE for increasing percentages of the overall demand volume 

(with o-d flows sorted in decreasing order as in Figure 7) may be performed, similarly 

to the analysis provided in the Section 3.5 with reference to the intrinsic error. In more 

detail, the following Figure 10 reports the cvRMSE for each estimator as a function of 

the percentages of the overall o-d volume. Reported data refers to June 5th, which 

provided the worst results in terms of MSE for the QD-GLS estimation in middle 

working weekdays; however, the other observed days exhibit extremely similar 

figures. 
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Table 6 - Results of o-d updating with the QD-GLS, the simultaneous and the Kalman filter 

estimators: tests based on 15 count sections for the weeks April 14-18 (top) and June 3-6 (bottom) 

 

 

 

absolute % reduction absolute % reduction absolute % reduction absolute % reduction

MO April 14
th 32.9 20.9 -37% 2.41 6.40 -81%

TU April 15
th 35.1 21.0 -40% 2.38 7.50 -79%

WE April 16th 36.7 21.6 -41% 2.59 8.16 -78% 3.23 -91% 20.56 -44% 7.56 -79%
TH April 17th 38.7 21.9 -44% 2.74 8.57 -78% 3.45 -91% 21.90 -43% 8.72 -77%
FR April 18th 48.2 23.3 -52% 3.91 14.77 -69% 3.09 -94% 23.65 -51% 10.51 -78%

absolute % reduction absolute % reduction absolute % reduction absolute % reduction

MO April 14th 2.20 1.75 -20% 0.59 0.97 -56%

TU April 15th 2.27 1.76 -23% 0.59 1.05 -54%

WE April 16th 2.24 1.72 -23% 0.60 1.06 -53% 0.66 -70% 1.68 -25% 1.02 -55%
TH April 17th 2.23 1.67 -25% 0.59 1.05 -53% 0.66 -70% 1.67 -25% 1.06 -53%
FR April 18th 2.22 1.55 -30% 0.63 1.23 -45% 0.56 -75% 1.56 -30% 1.04 -53%

absolute % reduction absolute % reduction absolute % reduction absolute % reduction

TU June 3rd 33.93 17.78 -48% 2.69 8.03 -76%

WE June 4th 37.48 21.81 -42% 3.01 8.56 -77%

TH June 5
th 38.27 22.32 -42% 3.50 9.60 -75% 4.30 -89% 23.55 -38% 10.95 -71%

FR June 6
th 50.00 23.64 -53% 4.37 16.80 -66% 4.55 -91% 23.42 -53% 11.89 -76%

absolute % reduction absolute % reduction absolute % reduction absolute % reduction

TU June 3rd 2.12 1.53 -28% 0.60 1.03 -51%

WE June 4
th 2.15 1.64 -24% 0.61 1.03 -52%

TH June 5
th 2.10 1.60 -24% 0.64 1.05 -50% 0.70 -66% 1.65 -22% 1.12 -47%

FR June 6
th 2.09 1.44 -31% 0.62 1.21 -42% 0.63 -70% 1.43 -32% 1.02 -51%
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Figure 10 - Distribution of CVRMSE for the QD-GLS, the simultaneous and the Kalman filter estimators 

as a function of the percentages of the overall o-d flow volume with o-d flows sorted for decreasing 

values (5th June data) 

 

 

The main outcome of this experiment is the effectiveness of the quasi-dynamic o-d 

updating, which is always able to achieve a significant reduction of both MSE (-78% 

on average with respect to the initial perturbed seed o-d flows) and CVRMSE (-53%), 

even in the most unfavourable assumption of constant distribution shares across the 

entire day.  

The performances of the Kalman filter are entirely dependent on the quality of the 

seed o-d flows, as it can be recognized by comparing the “simultaneous” and “quasi-

dynamic” indicators of the estimators (3.21) and (3.17) respectively with the 

“simultaneous seeds” and “quasi-dynamic seeds” indicators of the Kalman filter in 

Table 6. Therefore, the QD-GLS estimator is also very useful in supporting on-line 

applications, since using quasi-dynamic estimates as historical seeds allows the 

Kalman filter to provide good o-d flow estimates, slightly better with respect to those 

obtainable by applying directly the quasi-dynamic estimator.  
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On the contrary, the simultaneous estimator is substantially not effective, with 

estimation results remarkably far from the performances of the QD-GLS estimator and 

of the Kalman filter estimator feed with quasi-dynamic estimates as historical seeds. 

The good results of the QD-GLS are even more positive when looking at the 

distribution chart reported in Figure 10, wherein the CVRMSE is about 0.40 up to the 

60% of the overall o-d flow volume, whilst the simultaneous estimators exhibit much 

higher errors (with CVRMSE0.60). Again, the performances of each Kalman filter 

scenarios are very similar (slightly better) with respect to those of the corresponding 

estimators used to obtain the seed o-d flows. 

A subsequent set of experiments aims at checking the capability of the QD-GLS 

estimator (3.17), of the simultaneous estimator (3.21) and of the Kalman filter (3.1)-

(3.2) to provide reliable o-d flows estimates over a larger period TsT by aggregating 

the corresponding o-d flow estimates for each time slice  over Ts: in that respect, a 

direct comparison may be performed with the classical static estimates obtained 

through the uncongested GLS estimator (3.22). Results are reported in the following 

Table 7 which, as in the previous experiment, reports also the initial error embedded in 

the perturbed seed o-d flows, the intrinsic error of the QD-GLS estimator and the “true 

seeds” scenario within the Kalman filter experiments. Furthermore, in analogy with 

Figure 10, Figure 11 draws the distribution of the cvRMSE indicator for the QD-GLS, 

the simultaneous and the Kalman filter estimators as a function of the percentages of 

the overall o-d flow volume, with o-d flows sorted in decreasing order, with reference 

to the average of the 16th-17th April period (other days/periods provided in general 

very similar results). 
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Table 7 - Results of hourly o-d estimates obtained with the static GLS estimator by Cascetta (1984) 

and by aggregating simultaneous, QD-GLS and Kalman filter estimates: tests based on 15 count 

sections for the weeks April 14-18 (top) and June 3-6 (bottom) 

 

Note: results expressed in terms of hourly aggregation of the corresponding 10-minutes corrected 

matrices for the QD-GLS, the simultaneous and the Kalman filter estimators. The intrinsic error 

estimate reported in the table differs from that in the last column of Table 5 (t=24h) because here is 

calculated on a 1-hour basis rather than on a 10-minute basis. 

 

Results are obviously analogous to those obtained in the dynamic experiments, with 

good performances of the QD-GLS estimator, which outperforms both the static and 

the dynamic (i.e. simultaneous) GLS estimators. Again, the overall quality of the 

Kalman filter is shown to depend almost entirely on the quality of the seed o-d flows. 

This is even clearer in the chart of Figure 11, which evidences the QD-GLS estimates 

(and the related Kalman filter estimates) to provide low absolute values up to 

significant percentages of the overall o-d flow volume.  

absolute % reduction absolute % reduction absolute % reduction absolute % reduction

MO April 14
th 1047 734 -30% 681 -35% 27 155 -85%

TU April 15
th 1101 795 -28% 677 -39% 28 170 -85%

WE April 16th 1151 824 -28% 693 -40% 32 187 -84% 19 -98% 648 -44% 164 -86%

TH April 17th 1221 839 -31% 702 -43% 33 192 -84% 17 -99% 697 -43% 183 -85%

FR April 18th 1539 959 -38% 679 -56% 58 394 -74% 39 -97% 743 -52% 234 -85%

absolute % reduction absolute % reduction absolute % reduction absolute % reduction

MO April 14
th 2.06 1.73 -16% 1.66 -20% 0.33 0.79 -62%

TU April 15
th 2.12 1.80 -15% 1.66 -22% 0.34 0.83 -61%

WE April 16th 2.09 1.77 -15% 1.62 -23% 0.35 0.84 -60% 0.27 -87% 1.57 -25% 0.79 -62%

TH April 17th 2.08 1.73 -17% 1.58 -24% 0.34 0.83 -60% 0.25 -88% 1.57 -24% 0.81 -61%

FR April 18th 2.09 1.65 -21% 1.39 -34% 0.41 1.06 -49% 0.33 -84% 1.46 -30% 0.82 -61%

absolute % reduction absolute % reduction absolute % reduction absolute % reduction

TU June 3rd 1032 719 -30% 537 -48% 29 161 -84%

WE June 4th 1177 857 -27% 696 -41% 39 195 -83%

TH June 5
th 1196 867 -27% 708 -41% 55 225 -81% 49 -96% 745 -38% 233 -80%

FR June 6
th 1606 974 -39% 747 -53% 71 467 -71% 52 -97% 732 -54% 265 -83%

absolute % reduction absolute % reduction absolute % reduction absolute % reduction

TU June 3rd 1.95 1.63 -17% 1.41 -28% 0.33 0.77 -61%

WE June 4
th 2.01 1.72 -15% 1.55 -23% 0.37 0.82 -59%

TH June 5
th 1.96 1.67 -15% 1.51 -23% 0.42 0.85 -57% 0.40 -80% 1.54 -21% 0.86 -56%

FR June 6
th 1.97 1.54 -22% 1.34 -32% 0.42 1.06 -46% 0.36 -82% 1.33 -32% 0.80 -59%
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Figure 11 - Distribution of CVRMSE for static, QD-GLS, simultaneous and Kalman filter estimators as a 

function of the percentages of the overall demand volume with o-d flows sorted in decreasing order 

(16h-17th April average) 

 

 

A final set of experiments helps analyzing how the tested o-d estimators are capable 

to reproduce the observed link flows. In that respect, Table 8 reports the distance 

between the observed 10-minutes link flows and the link flows obtained assigning the 

updated o-d flows. In more detail, the MSE and the CVRMSE are calculated on all the 

49 links of the network, on the 15 counted links and on the remaining 34 unmonitored 

links (hold-out sample). The intrinsic bound for the quasi-dynamic estimator is also 

reported, intended as the distance between the observed link flows and the flows 

obtained assigning the quasi-dynamic o-d flows. The main outcome of Table 8 is that 

the QD-GLS estimator, even if intrinsically not able to reproduce exactly the counted 

links, is characterized by a very high robustness on the hold-out sample, outperforming 

for those links the simultaneous estimator and allowing the Kalman filter to obtain 

very effective results. Notably, referring to the 15 links selected for the 
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estimation/updating, the intrinsic error embedded in the quasi-dynamic assumption is 

always lower than the updating performances of the QD-GLS estimator.  
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Table 8 - Distances between observed and assigned link flows for different updated o-d flows: tests 

based on 15 count sections for the weeks April 14-18 (top) and June 3-6 (bottom) 
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3.7     Research perspectives 

From a theoretical point of view, the study of the properties of the QD-GLS estimator 

might be an interesting future research step. For this aim, in this section, the quadratic 

relations between variables and measures introduced by the QD-GLS estimator are 

described.  

The dynamic relationship between dod, i.e. the flow starting from the origin o toward 

the destination d at the time slice , and the flow on the link l at the time slice 1, 𝑦𝑙
𝜃1

, 

can be expressed through the matrix  𝐀𝑟,𝜃,𝑙,𝜃1
, whose generic element represents the 

percentage of users of the o-d pair r, starting from the origin at , and crossing the link 

l at 1 (zero in many cases, in particular for  > 1 ): 

𝑦𝑙
𝜃1 = ∑ ∑ 𝑎𝑟,𝜃,𝑙,𝜃1

𝑑𝑟
𝜃

𝜃<𝜃1𝑟                                                                                        (3.23) 

Considering the quasi-dynamic hypothesis, Eq. (3.23) becomes: 

𝑦𝑙
𝜃1 = ∑ ∑ 𝑎𝑟,𝜃,𝑙,𝜃1

𝑔𝑜
 𝑝𝑟

𝜏(𝜃)
𝜃<𝜃1𝑟   

Let k indicate the couple made up of l and 1, there are then lcnn  equations, each of 

which can be expressed in vectorial form as: 

𝐱𝐀𝑘𝐱t = 𝐲      

𝐱 is the vector of the variables 𝑥𝑖, which can divided in two groups: the n·no variables 

of generation, 𝑔𝑜
 , and the nτ·nod  variables of distribution 𝑝𝑟

𝜏(𝜃)
, with the following 

characteristics:  

- 𝑥𝑖 ≥ 0  ∀𝑖 𝜖 [1, 𝑛 · 𝑛𝑜 + 𝑛𝜏 · 𝑛𝑜𝑑]   

- only for the distribution variables:  ∑ 𝑥𝑖
𝑛𝜏·𝑛𝑜𝑑
𝑖=𝑛·𝑛𝑜+1 = 1. 

For each equation k, corresponding to one measure (flow at time slice 1 on the link l), 

there is a different matrix 𝐀 𝑘 with the following characteristics: 
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- there are just mixed products, that is 𝑎𝑖𝑖
𝑘 = 0  ∀𝑖, 𝑘;  

- ak
ij = 0 if i,j ϵ [1, n·no] or i,j ϵ [n·no, n·no + nτ·nod]; furthermore ak

ij = 0 if i ϵ [1, 

n·no] represents an origin o and j ϵ [n·no, n·no + nτ·nod] represents an o-d pair 

r=o’d with o’≠ o or a subperiod τ ≠ τ(); 

- in the other cases, ak
ij = 𝑎𝑟,𝜃,𝑙,𝜃1

.  
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Conclusions 

This thesis dealt with the o-d estimation problem from indirect measures, 

addressing two main aspects of the problem: 1) identifying the optimal locations of 

traffic counts providing the maximum information and therefore the maximum 

reduction of the uncertainty on the estimate; 2) choosing an estimator to identify 

univocally and as much reliable as possible the estimate. 

The first issue was addressed with an innovative approach and, in accordance with 

the indications of the literature, in static contexts. Such a choice, however, does not 

affect in any way the application to dynamic contexts where the sensor location 

problem should be related to average conditions. The theoretically founded 

methodology, proposed for addressing the issue of the optimal location of link count 

sections, explicitly accounts for the variability of the o–d matrix estimate. For this aim, 

a specific measure based on the trace of the covariance matrix of the posterior demand 

estimate, conditional upon a given set of count locations, termed SDM (Synthetic 

Dispersion Measure), was introduced, and a corresponding network sensor location 

problem formulated accordingly. Under the mild assumption of multivariate normal 

distribution for the prior demand estimate, the proposed SDM does not depend on the 

specific values of the counted flows but just on the locations of such sections, and 

therefore could be effectively used as an objective function in a Network Sensor 

Location problem. Furthermore, a stepwise algorithm for the calculation of the 

proposed measure, given a set of link counts, was presented, allowing for the 

implementation of an effective sequential heuristic algorithm for the solution of the 

NSLP in real contexts. Some practical examples of the proposed methodology were 

presented as well, first on 3-link and then on 5-link toy networks, in order to show the 

rationale of the approach and to illustrate the underlying mathematics, and then on two 

real networks. The results allowed the proposed NSLP to be compared against the 

most common methods available in the literature. The proposed approach generally 

outperforms the other methods analysed, and the proposed sequential heuristic 

algorithm is almost always able to achieve or to get close to the global optimal 

solution of the proposed approach (which was found by means of a branch and bound 
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algorithm). In addition, a prototypical application of a budget allocation problem 

between surveys and traffic counts was illustrated, showing how the proposed 

framework can help assessing properly a problem whose solution, involving mixed 

integer programming, is generally not trivial.  

Future research developments might focus on the integration, from a modelling point 

of view, of different measures (normal counts, plate scanner, probe vehicles). In 

addition, the problem of the optimal allocation of the budget between surveys and 

counts might also be approached from an algorithmic point of view, looking for more 

efficient procedures to solve such a mixed integer optimization problem. 

The second issue, that is the choice of the estimator, was addressed with reference 

to within-day dynamic contexts, where hypotheses about the demand evolution can 

make the estimation problem less underdetermined. A theoretical formulation of the 

quasi-dynamic o-d flow updating framework was proposed, i.e. assuming constant 

distribution shares across larger time horizons with respect to the within-day variation 

of the generation profiles, leading to an estimator which improves dramatically the 

unknowns/equations ratio. The proposed estimator was tested on a large real dataset 

with a twofold objective: firstly, to check whether real data supports the quasi-

dynamic assumption; secondly, to compare the performances of the quasi-dynamic o-d 

estimator with both classical off-line dynamic estimators and other possible recursive 

estimators typically used for on-line dynamic estimation (e.g. the Kalman filter). 

Experiments were carried out on the real test site of the motorways A4-A23 in North-

East Italy. The analysis of the observed o-d flows supported the assumption of quasi-

dynamic o-d flows pattern, statistically tested using chi-squared and likelihood ratio 

tests, with acceptable goodness-of-fit measures even under the hypothesis of constant 

distribution shares for the whole day. Then, o-d flows updating experiments were 

performed using the proposed QD-GLS estimator, as well as the simultaneous 

estimator proposed by Cascetta et al. (1993) and the Kalman filter approach proposed 

by Ashok (1996). Three main findings may be summarized:  

- the QD-GLS estimator outperforms the simultaneous estimator in reproducing 

dynamic o-d flows estimates;  
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- the quality of the Kalman filter estimates is quite close to the quality of its seed o-

d flows: as a consequence, the QD-GLS estimator is also very useful in supporting 

on-line applications, since using quasi-dynamic estimates as historical seeds 

allows the Kalman filter to provide good o-d flow estimates;  

- aggregating QD-GLS estimates for successive time slices represents also the most 

effective way to reproduce o-d flows estimates for larger time horizons (e.g. 

hourly estimates) for static applications, outperforming in such way estimations 

coming by both using the classical static estimator proposed by Cascetta et al. 

(1984) and by aggregating the simultaneous dynamic o-d estimates of the 

corresponding time slices.  

Importantly, also the validation based on an hold-out sample of link flows (i.e. 

checking the capability of the various estimators to reproduce link flows not used in 

the o-d estimation/updating process) revealed the QD-GLS estimator to be overall 

more robust and effective with respect to the other tested estimators. 

It is noteworthy that, as concerns the quasi-dynamic estimator, results are related to 

applications on a highway system; therefore, it would be interesting checking its 

robustness with respect to a more complex context which is the urban one. Moreover, 

from a theoretical point of view, the study of the properties of this estimator, which 

introduces quadratic relations between variables and measures, might be an interesting 

future research step.   
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