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Introduction

Network data can describe social contexts and a social context can influence

the emerging of relationships [47]. The measurement of attitudes, behav-

iors, human features and structural characteristic of a context are retained

in classical statistical variables (attributes data). A number of statistical

models have been developed for network structure analyses. The most part

of them arise from geographical connection models developed by Cliff and

Ord [26] and assume that for a given actor in a network the value of an

outcome is directly influenced by the values of the actors’ neighbors out-

comes.

The Network Effects Model (NEM) by Doreian [42] introduces this idea

in the framework of auto-regressive models. This class of models allows

accounting for dependence among actors in classical regression models, i.e.

by assuming that all the variables are directly observed. This call for an

extensive approach that will exploit the capability of the NEM to model

the dependence structure among the units and the possibility to manage

observed variables as well as latent constructs. Recently, Doreian et al.

[48] have presented a method extending the Structural Equation Modeling

(SEM) [7] to network data.

In Structural Equation Modeling (SEM) framework, real complex phenom-



Introduction

ena can be studied taking into account causal relationships among a number

of latent concepts (i.e. the Latent Variables - LV) each measured by several

observed indicators defined as Manifest Variables (MV).

The inclusion of the relational data structure (adjacency matrix) in a SEM

will offer the opportunity to model classical issues of Social Sciences, Eco-

nomics and Marketing such as Social Influence and Homophily, for example.

The advantage can be envisaged in the different specification of the path

diagram.

This model specification offers higher flexibility, it allows to consider i) sep-

arate or joint effect of intrinsic opinions of the social actors, ii) the extent to

which they are influenced by their alters, and iii) how people with similar

characteristics are more likely to form ties.

Two complimentary methods emerged in the field of SEM: the so-called

covariance-based SEM (also referred as LISREL models) and the more re-

cent component-based SEM.

The goal of covariance-based approach is to reproduce the sample covari-

ance matrix of the manifest variables by means of the model parameters.

By contrast, the aim of the component-based SEM is to obtain score val-

ues of latent variables as linear combinations of their associated manifest

variables.

The component-based approach is also referred to as a prediction-oriented

SEM compared to the classical SEM that is a confirmatory approach.

Among the component-based approaches the PLS Path Modeling (Wold

[161] ; Tenenhaus et al. [149] ) is the most widely used.

The PLS Path Modeling (PLS-PM) has the advantage that involves no as-

sumptions regarding the population and the scale of measurement [60], so

it works without distributional assumptions.

2
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This kind of modeling is known as soft-modeling [161] in contrast with

hard-modeling (i.e. maximum-likelihood estimation procedures) typical of

covariance based SEM.

For this reason that a component-based approach to network data through

Partial Least Squares path model algorithms is proposed in this thesis.

Thesis outline

This work is divided into four chapters.

In Chapter 1, the basic elements about networks and their representa-

tion, measurement and characterization, useful for the statistical modeling

in the context of social networks research, are described. Then a brief re-

view about the development of several statistical models for network data

is given.

Chapter 2 is dedicated to presenting an overview of the historical develop-

ment path modeling, the conceptual background and foundations of Partial

Least Squares Path Modeling. Then a description of PLS-PM algorithm

step by step is proposed.

In Chapter 3, we present a statistical soft-modeling framework to network

data. The PLS-PM is extended to the analysis of network data by intro-

ducing the adjacency matrix in the model. A simulation study comparing

this proposal to the classical network effects model is presented.

In Chapter 4, a feasible substantive interpretation in the scope of Social

Science of this new approach is discussed. The sociological foundations of

the social relations that provide a basis for the alteration of an attitude or

behaviour by one network actor in response to another, labelled social influ-

ence or contagion in literature, are described. Then mathematical models

of influence processes involving networks and related statistical models used

in data analysis are reviewed.

3





Chapter 1

The analysis of social
networks

Social network analysis has been used since the mid-1930s to advance re-

search in the social and behavioral sciences, progressing slowly and linearly,

until the end of century.

In 1990s, interest in social network analysis and use of the wide-ranging

collection of social network methodology began to grow at a much more

rapid rate.

The problem of how single individuals can combine in order to create en-

during and functional societies, i.e. the problem of social order of Plato,

has been solved through social network theory.

One of the most important notions in the social sciences is that individuals

are embedded in thick webs of social relations and interactions.

Social network analysis offers the methodology to study structures of rela-

tionships linking individuals or other types of social units, such as organi-

zations and countries. It is assumed that social ties are important because
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they transmit behavior, attitudes, information, or goods.

The focus of the social sciences is to understand the social structure con-

ceptualized as a network of social ties, considering two elements: i) social

structure, i.e. a system of social relations tying distinct social entities to

one another; ii) interest in understanding how social structure form and

evolve.

The starting point has been the Durkheimian vision that dependence must

be seen as central element to the idea of sociality and it has to be used to

reconstruct the idea of social space.

In this space the units are not individuals but the ties that connect them.

The variety of ties that enter into the construction of these social spaces

can been modelized through dependence models.

Two distinct types of network models are common respectively: individual

and relational-level models.

In the individual level models, the analysis focuses on outcome of a

single actor and the network data are used to define explanatory vari-

ables.

By contrast, the relational level models use the relationships among

individuals in a network, treating it as a multivariate dependent vari-

able with individual linkages (or ties) as its elements [127].

Thus, the first type of models makes inference about attributes of the in-

dividuals, while the second ones about the ties linking the individuals.

In both models, a big problem is accounting for a complex correlation struc-

ture among outcomes due to the network.

If there are n individuals in a data set, this is of order n× n in an individual-

level analysis and of order n2 × n2 in a relational-level analysis [127].

The next section reviews some foundations of social network analysis: i)

6
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the numerical and visual representation of network data sets; ii) the in-

troduction of some basic network statistics; iii) the detection of subgroups

within networks.

These measures are very important for network typology, because they can

be used to develop models.

The last part of this chapter introduces a brief history of the statistical

models for network data.

1.1 Definition of social networks

A social network consists of one or more sets of units - also known as

nodes, actors, or vertices - together with the relationships or social ties

among them [127].

The key concepts of network analysis are: nodes, relational tie, dyad, triad,

sub-group and group.

The units or nodes that can be objects of study are people, groups, or

organizations but also texts, artifacts, or concepts.

These elements, which form the network, are distinct from one another, can

be uniquely identified, and are finite in number.

The most common representation of relationships employed in network ties

can be: i) evaluation of one person with another (i.e. friendship, liking

or respect); ii) transfers of material resources (i.e. business transaction);

iii) behavioral interaction (i.e. talking together or sending messages); iv)

biological relationship (kinship or descent [155]).

Most social network studies also include attribute data describing the ac-

tors, the relationships, or both.

7



The analysis of social networks

The measurement of actor attributes (i.e. gender, race, socioeconomic sta-

tus, revenues, purpose of business, etc...) is verified through composition

variables.

Some sub-networks are interesting in this field as: dyad, triad, star or ego-

centric networks.

A dyad consists of a pair of actors and the tie between them, while a triad

is a subset of three actors and the tie or ties among them.

A star consists of an actor and all relationships incident to it.

An egocentric network consists of an actor, i.e. ego, and the other ac-

tors in its immediate neighborhood, i.e. alters, and the relationships among

them.

Another important type of variables that can be included in a network data

set are structural variables, that are measured on pairs of actors.

Most social applications are centered on relationships that link elements

within a single set of actors.

In this case we have a network that is known as one-mode network. There

are also networks that may involve two sets of actors or one set of actors

and one set of events. These types of networks are defined two-mode net-

works or affiliation networks, that will be described in another section.

1.1.1 Network study designs

There are many ways in which social network data can be gathered [155].

For example there are: i) questionnaires; ii) personal interviews; iii) direct

observations [65]; iv) archival records [15] (e.g. based on administrative

records or computer-mediated communication systems [114]); v) experi-

ments (e.g. [151]; [72]); vi) other tecniques (e.g. small world [151] and

diaries [35]).

8



1.1. Definition of social networks

When archival measures do not exist or do not include information about

the relationships of interest, or when other methods of collecting network

data are not feasible [115], surveys are required. There are two types of

network surveys depending on type of network: ‘whole’ networks or ‘ego-

centric’ networks.

Whole-network studies seek to assemble data on ties linking all actors

within some bounded social collective, where boundaries or rules of inclu-

sion for actors are specified [104].

In this case, surveys can collect either one-mode network data, based on

relationships among elements of a single set of actors, or two-mode net-

work data, based on relationships among actors in two distinct sets.

By contrast, egocentric network studies have the objective of describing

local social environments, limiting the measurement of the relationships in

the vicinity of one or more focal units or actors [115].

In many studies, it is possible to integrate network data with other in-

formation, about attributes of actors or dyadic ties, or about group-level

attributes in studies with two or more groups.

Among the most common instruments used for whole - network data, are:

• The sociometric test [123], where each actor identifies, within a

network, the other people, i.e. alters, with whom he has a relation-

ships;

• Cognitive social structure task [100], where respondents are used

as informants about social ties between alters and their own relation-

ships;

• Socio cognitive mapping [19], where respondents are asked to re-

port sets of people who ‘hang around together a lot’ via free recall;

9
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• Pile sorts [66], where each respondent is asked to sort a deck of

cards, containing the names of the actors in a network, into mutu-

ally exclusive piles considering subsets of actors who are close to one

another or who interact frequently.

Among instruments for egocentric networks, the most important are name

generator instruments. In surveys, by using these instruments, e.g. tele-

phone interviews [99] mail questionnaires [112] and web-based instruments

[153], respondents are treated as informants to whom is asked information

about:

• Attributes of particular alters in a network (e.g. race, age or ethnic-

ity);

• Properties of alter-ego ties (e.g. emotional closeness or frequency of

contact);

• Relationships among the alters themselves, in order to measure many

different aspects of social network structure [113].

In these cases the alters are not surveyed or interviewed.

1.2 Representations of networks

The mathematical origins of network analysis permit to manipulate, calcu-

late and visualize social networks.

Network data can be represented in a number of ways, depending on the

type of the application.

In order to describe social network data mathematically, specific notations

deriving from graph theory, as graphs, and algebraic notations, as for ex-

ample adjacency matrices, are used [64] .

10
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1.2.1 Representing networks with graphs

Networks are often represented by using graphs.

A graph is a relational structure consisting of two elements: a set of enti-

ties, called vertices or nodes, and a set of entity pairs indicating ties, called

edges.

Formally, we represent such an object as G = (N , E), where N is the vertex

set and E is the line set [17].

A line can be directed or undirected.

A directed line is called an arc , whereas an undirected line is an edge.

Specific types of graphs may be identified via the constraints satisfied by

E .

1

2

3

4

5

Figure 1.1: An example of directed graph

11



The analysis of social networks

Graphs that represent dyadic relations, where there is no distinction

between the ‘sender’ and the ‘receiver’ of the relation, are said undirected

(or non-directed), and have edge sets which consist of unordered pairs of

vertices.

1
2

3

4

5

Figure 1.2: An example of indirected graph

For these relations, this principle can be defined formally as {n, n′} ∈ E
iff vertex n is tied (or adjacent) to vertex n′ where n , n′ ∈ N .

On the other hand, graphs, which represent relationships where ‘sender’

and ‘receiver’ roles are distinct and they have edges that are ordered multi-

sets, are said directed graphs (or digraphs). Formally, the requirement

is that (n, n′) ∈ E iff n sends a tie to n′.

It is possible to use arrow notation to denote ties, such that n → n′ should

12
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be read as n sends a tie to n′, which is close to visualization of social net-

works.

A graph, independently if ordered or not, is said simple if it has no loops,

i.e. when it has an edge going from a vertex to itself, if there is no edge

having multiplicity greater than one.

Finally, when in a graph there is a value associated with each line or each

arc, it can be called a valued graph.

Figure 1.3: Several elements of graph. Source: Batagelj, 2 - 4 May 2012,
Naples.

13
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1.2.2 Path, cycle, walk and geodesic distance

There are also other properties describing graphs.

Actors in networks are connected to one another indirectly via intermedi-

aries as well as directly.

An example is if a vertex can reach another by traversing a series of edges

within the network.

It is called path a sequence of distinct but adjacent vertices n,. . . , n′ to-

gether with their included edges.

This implies that the two vertices n and n′ are connected, in an undirected

graph, when there exists some n , n′ path in G.

In directed graphs, by contrast, there are some conditions, such as the

existence of either a directed path from n to n′ or a path from n′ to n.

This requires a sequence of vertices that can be traversed, in order to get

from one end of the path to the other, but this condition is not required to

hold in both directions [17].

Another most stringent condition is that these paths cross the same inter-

mediate vertices.

Vertices pairs satisfying this reciprocal condition are said to be recur-

sively connected.

Among path-related concepts, there is an important network-based mea-

sure of the social distance separating actors: geodesic distance.

A geodesic path is a minimal length path between a given pair of actors

and geodesic distance is its length.

A particular type of path, when the start and end-points are the same, is

called cycle.

Both the path and the cycle are special cases of the walk, which is simply

14
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a sequence of serially adjacent vertices together with their included edges.

Unlike a path, a walk can be of any length, while the length of a path is

n− 1.

Figure 1.4: A walk in a graph. Source: Batagelj, 2 - 4 May 2012, Naples.

1.2.3 Representing networks through matrices

It is possible to record who is connected to whom on a given social relation

via matrix too.

The information in a graph G may also be expressed in a matrix form.

There are two such matrices that are especially useful:

• the affiliation matrix;

• the adjacency matrix.

15
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The affiliation matrix is a rectangular matrix I = n × E, that has

nodes in rows and events in columns, such that iij = 1 if i is an end-point

of edge j and 0 otherwise.

Figure 1.5: Affiliation matrix

Affiliation matrices are not often used in network research but they

can be used in order to represent hypergraphs, i.e. graphs for affiliation

network data, and two-mode data, i.e. networks about relations between

two disjoint types of entities.

It is possible to obtain from an affiliation matrix an adjacency matrix.

To get the one-mode representation of ties between rows (i.e. actors), it is

necessary to multiply the affiliation matrix by its transpose.

By contrast, to get the one-mode matrix formed by the column entities

(i.e. the number of people partecipating in each event), it is necessary to

16
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pre-multiply the affiliation matrix by its transpose.

Figure 1.6: Matrices for social networks

If we dichotomize the matrix, obtained from one of the trasformations

described above, with all elements of the diagonal are 0, we can obtain an

another type of adjacency matrix .

The most part of social studies rely on the actor by actor adjacency matrix

A a binary-valued n × n matrix, where its rows and columns refer to the

same set of entities : a single mode.

For node set N :

aij =

{
1 if there is a tie from node i to node j,

0 if there is no tie from i to j.
(1.1)

17
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The adjacency matrix A is symmetric, where aij = aji, and it repre-

sents an undirected graph G.

This is not true if G is a digraph.

When all elements of the diagonal of A are 0, G is a simple graph.

Otherwise, aii = 1 iff vertex i has a loop, both for directed and undirected

graphs.

In presence of valued edges, the same above representation is used with the

only difference that aij is the value of the (i, j) edge. It will be 0 when no

edge is present.

1.3 Descriptive properties of networks

This paragraph reviews the most important network descriptive statistics

and measures.

Upon obtaining network data, it is necessary to extract interpretable and

useful information from a large and complex social structure.

Visualization of network data can be useful, but it is not sufficient for sci-

entific work.

It is necessary to examine particular structural properties, quantifying them

and comparing them against some baseline models or null hypothesis.

The structural index approach is a paradigm, whose basis is the devel-

opment of descriptive indices, which quantify the presence or absence of

particular structural features.

Properties of social networks can be defined at different levels of aggrega-

tion:

• local measures for individual nodes or small subsets;

• global measures requiring simultaneous information about the entire

18
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graph.

We use centrality to refer to positions of individual vertices within the

network, whereas we use centralization to characterize an entire network.

A network is highly centralized if there is a clear boundary between the

center and the periphery.

In this network, information spreads easily but the center is indispensable

for the transmission of information.

1.3.1 Local and global measures

The very simplest property of a network is its number of actors N, known

as its order.

For binary-valued networks, the corresponding relation-level statistic is the

number of ties, known as size:

L =
∑
i,j

aij (1.2)

Properties of nodes and graphs can be defined using the concepts of adja-

cency and affiliation for the nodes and lines in a graph.

The three most widely used centrality measures are grounded in graph

theory [63] and are: i) degree; ii) closeness; iii) betweenness.

Another important index, not belonging to the three Freeman’s classic mea-

sures, is the eigenvector centrality [10].

While local measures describe local structure of a particular vertex,

global measures quantify structural properties of the network as a whole.

Such measures are useful when comparing networks and determining the

large-scale structural context in which behaviour occurs.

19
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The centralization of any network is a measure of how central its most

central node is in relation to how central all the other nodes are.

The index of centralization has the property that the larger it is, the more

likely it is that a single actor is quite central, with the remaining actors

considerably less central [155]. The less central actors reside in the periph-

ery of a centralized system.

In 1979 Freeman [63] has proposed the general mathematical definition of

centralization for non-weighted networks.

Recall that CA(ni) is the centrality index of actor i.

Define CA(n∗) as the largest value of the particular index that occurs across

the n actors in the network; that is, CA(n∗) = maxiCA(ni).

n∑
i=1

[CA(n∗)− CA(ni)] (1.3)

is the sum of the differences between the most central node in a network

and all other nodes, while

max
n∑
i=1

[CA(n∗)− CA(ni)] (1.4)

is the theoretical maximum possible sum of differences in actor central-

ity, where the differences are taken pairwise between actors.

CA =

∑n
i=1[CA(n∗)− CA(ni)]

[max
∑n

i=1[CA(n∗)− CA(ni)]
(1.5)

This index is dimensionless, and varies between 0, in the case of a graph

in which all vertices have the same centrality scores, that being CA(n∗) and

1, in the case of a graph of maximum concentration.

20
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There is an index of network centralization for each measure of centrality

but some centralization measures need special networks: degree centraliza-

tion is applicable only to networks without multiple lines and loops, and

closeness centralization requires a (strongly) connected network.

1.3.2 Density of a network

In the case of considering a network as a whole, the simplest structural

characteristic is density that involves the number (and the proportion) of

the edges in the whole graph.

The density is defined as size relative to the number of possible ties and

equal to L/(n(n− 1)) for directed networks.

Let L be the number of edges present in a graph which can take on any

integer value from 0 to n(n− 1). In the case of undirected networks, we

define the density of a graph ∆ as the proportion of the number of edges

present, L, to the maximum possible number of edges in a graph.

It can be calculated as:

∆ = 2L/n(n− 1) (1.6)

The density of a network keeps track of the relative fraction of links that

are present in a network, and because the average degree equals 2L/n the

density is simply the average degree divided by (n− 1).

This average degree, divided by n − 1, is exactly the density of the

graph:

∑
CD(ni)/n(n− 1) =

∑
C ′D(ni)/n = ∆ (1.7)
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Thus, mathematically, the density is also the average standardized de-

gree.

1.3.3 Sub-structures of networks

One of the most common interests of structural analysts is in the sub-

structures that may be present in a network.

Divisions of actors into groups and sub-structures can be a very important

aspect of social structure.

As above, the unit of analysis in network analysis is an entity consisting

of a collection of individuals and the linkages among them : i) individual

actor level of analysis; ii) dyads level of analysis (two actors and their ties);

iii) triad level of analysis (three actors and their ties); iv) subgroup level

of analysis (e.g. clique ([111]; [83]; [155]) or components); v) global level of

analysis.

When two actors have a tie, they form a group.

One approach of thinking about the group structure of a network begins

with this most basic group, and seeks to see how far this kind of close

relationship can be extended.

This is a useful way of thinking, because sometimes more complex social

structures evolve, or emerge, from very simple ones.

There are three types of dyadic relationships in directed networks:

• mutual dyads, in which a tie from i to j is accompanied by one from

j to i;

• asymmetric dyads in which there is a relationship between i and j in

one direction, but not the other;

• null dyads in which there is no tie in either direction.
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1.4. A brief history of statistical network models

If all ties in a binary network are either mutual or null, the network is

said to be symmetric, so the adjacency matrix A and its transpose A′ are

identical.

In undirected and binary networks, triads may include 0, 1, 2, or 3 relation-

ships.

In the case of three relationships, triads are said to be closed or transi-

tive.

In the first case, each pair of actors are linked by a direct tie.

By contrast, each pair of actors are linked by an indirect path through the

third actor.

1.4 A brief history of statistical network models

In this paragraph an overview of the historical development of statistical

network modeling is presented.

The subsequent discussion focuses on a number of prominent static and

dynamic network models and their interconnections.

The development of statistical methods for social networks has been verified

in the last eighty years.

Three generations of research about statistical models in social network

analysis can be distinguished.

This difference among models depends on the substantive research questions

and the nature of the available data.
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1.4.1 The first generation

Beginning in the late 1930’s, the first generation of research dealt with the

distributions of various network statistics.

A hundred years before Moreno, the French sociologist Durkheim has ar-

gued that human societies are more than simply a sum of various parts

and, like biological systems, they are made up of interrelated components.

In particular, he argues that any social phenomenon can only be under-

stood in relation to others and to wider social context.

As such, the reasons for social regularities are to be found not in the inten-

tions of individuals but in the structure of the social environments in which

they were embedded.

In his famous study on suicide (1897), he states that one social phenomenon,

i.e. suicide, can only be understood by looking at how individuals are em-

bedded within a larger social system.

This abstract social structure becomes tangible, through Moreno and Jen-

ning’s sociometry, presenting one of the first statistical analysis of social

network.

It has been the mathematical study of psychological properties of popula-

tions, the experimental technique and the results obtained by application of

quantitative methods [123].

The approach also has made use of sociograms - diagrams of points and

lines used to represent relations among people - which are visual depictions

of individuals and their relationships to others in a group, representing a

precursor to the graph representation for networks.

They have simulated a random network process by randomly assigning pro-

cess to individual actors, obtaining the first simulation of a random digraph
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1.4. A brief history of statistical network models

distribution [155].

Later, many researchers have experienced the difficulty in using sociograms,

once the network in question reached beyond a certain size.

So the introduction of using matrices has been necessary for structuring

and analysing network data (e.g. [61]).

In the 1940s and 1950s, research in social networks has advanced along

several directions.

One of the latter has been the development of a mathematical structure

with Moreno’s sociograms using matrix algebra and graph theory, in order

to make it possible to discover emergent groups in network data [111].

Another direction has been de Sola Pool and Kochen’s work [35] which

have analysed the “small world” problem, i.e short paths of connections

linking most people in social spheres, developing a program of laboratory

experimentation on networks.

Twenty years later, Stanley Milgram had tested their propositions empir-

ically, leading to the now popular notion of “six degrees of separation”,

i.e. the shortest path between any two people for completed chains has a

median length of around six [35].

By the 1960s, the anthropologists begin to see societies as a pattern or net-

work (or system) of relationships obtaining among actors in their capacity

of playing roles relative to one another [124].

In the 1970s, the center of gravity of network search has shifted to soci-

ology with White and other researchers, which focused attention to the

importance of multiple relations, moving the term social networks from a

metaphor to an analytical concept.

The anthropologists’ attention is directed to ego networks highlighting is-

sues of multiple relations and how such relations enabled or constrained
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individuals.

By contrast, the attention of White and other researchers is directed to

complete networks enabling the analysis of individuals within the context

of the overall social network, increasing the range of analytical possibili-

ties.

They have placed their work alongside the balance theory, because they

have used the position balance theory as one of the structural hypotheses

that block modelling could test for.

The goal of blockmodelling is to uncover a number of structural features of

networks, by using matrices and matrix algebra.

In particular, the matrices are restructured in such a way so that actors

who share a similar set of incoming or outgoing ties to others were grouped

together into one block within a matrix, in which the nodes represented

structural positions rather than individuals. This similarity is defined as

structural equivalence.

Another key contribution is the influential strength of weak ties theory de-

veloped by Granovetter [78]. Granovetter states that social ties could be

distinguished according to their strength, i.e. in weak and strong ties. Tie

strength is a combination of an amount of time, the emotional intensity,

intimacy and the reciprocal services that characterize the tie [78].

1.4.2 The second generation

The social science network research community, i.e. the second generation,

begins in the 1970’s and continues into the 1980’s.

It is built upon earlier efforts, in particular the Erdös Rényi-Gilbert model,

engendering the field of random graph theory.

Two mathematicians, Pál Erdös and Alfréd Rényi, have played an impor-
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tant role in understanding the properties of random networks, merging

probability theory and combinatorics with graph theory, establishing ran-

dom graph theory, a new branch of mathematics [9].

They have introduced the independence digraph [53], sometimes called a

Poisson random graph or Binomial random graph, in which all edges are in-

dependent and identically distributed but the graph is conditioned to have

a specific degree sequence.

This model is typically denoted G (n, p), where n represents the number of

vertices and p the probability that an edge (i, j) exists, for all i, j.

The presence of each possible tie is independent with Yij ∼ Bernoulli(pij)
where µij = log(pij) denotes the logarithm of the probability of a tie from

i to j.

Enforcing a homogeneity assumption µij = µ for all i and j, this is simpli-

fied to a single-parameter model, under which the probability distribution

of possible networks:

Pr(Y = y;µ) = exp (µt1(y))(1− exp(µ))n(n−1)t1(y) (1.8)

depends only on the network statistic t1(y) =
∑

i;j yij , that represents the

total number of ties [127].

The random network model was introduced by Gilbert [76] the same

year in which Erdös and Rényi have published their first paper on the sub-

ject.

In those years it had been possible to see an increasing interest in devel-

oping statistical models for the analysis of social network data. The most

famous of these was the family of models, referred to as exponential random

graph models (ERGMs) that include the p1, p2 and p∗ models.

The social network, in these models, is treated as the dependent variable
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and thus the analyst wants to explain the network structure.

The exponential random graph family, given the issue of interdependence

among network actors, addresses it by making use of an exponential func-

tion of a linear set of parameters, because it is impossible to make use of

theoretical distributions (e.g. normal curve).

The p1 model is created by Holland and Leinhardt. It is an extention of

the Erdös-Rényi - Gilbert model to permit looking at the role of sender and

receiver effects, including reciprocity.

They make the assumption that all pairs of actors are independent of one

another, in order to allow easy computation of maximum likelihood esti-

mates using a contingency table formulation of the model [58].

This model includes parameters for tie density, the propensity for reci-

procity of ties, and individuals’ tendencies to express and receive ties.

They introduces the p1 probability density by including the homogeneity

conditions µij = µ and ρij = ρ for all i and j, and treating the sets of

parameters αi and Υj as fixed effects:

p1(y) = Pr(Y = y) = exp {(µt1(y) +

n∑
i

αit2i(y) +

n∑
j

Υjt3j(y) + ρt4(y)}/κ(θ)

(1.9)

where network statistics t2i(y), t3i(y), and t4(y) respectively refer to the

outdegree of actor i, the indegree of actor j, and the number of mutual

dyads and κ(θ) is a normalizing constant.

It is restrictive because they consider only network statistics corresponding

to configurations of one or two actors, when in reality, other types of rela-
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tions exist, such as multiple dyads, i.e. transitivity or closure.

In addition, in the mid 1970’s there is a big growth of the triadic analyses

in order to study structural balance (for more details see [85]; [125]) and

transitivity theory (or more details see [90]).

The first social network methodology is represented by the researches of

Davis, Holland and Leinhard, that provided strong statistical evidence

about transitivity that is a very important structural tendency in social

network ([91]; [32]).

Davis shows that a basic feature of many social networks is the tendency

towards transitivity (friends of my friends are my friends), so that Holland,

Leinhardt and Johnsen substain that it is very important to test it by ex-

amining triads and the triples that they contain.

This model also allows various generalizations to multidimensional network

structures [152] and stochastic blockmodels([92]; [154]).

The p2 model [152] can be seen as an extension of the well-known p, tak-

ing into account the dependent nature of the data and the relation with

explanatory variables.

This extension to a Generalized Linear Mixed Model (GLMM) allows the

inclusion of covariates, and models the remaining variability by random

effects.

In specific, it is a random effects model with covariates for the analysis of

binary dyadic data that represent a social network or directed graph, using

nodal and/or dyadic attributes as covariates.

Like the p1 model, the p2 model does not explain the network structure

very much, i.e. it is very limited. The model tries to explain how the num-

ber of ties found in a network and how the actor and dyadic covariates can

explain outdegree, indegree and reciprocity.
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It is controlled by checking the differences between actors’ degree scores

and reciprocity.

One social network at a time is analyzed in this model, but analyzing multi-

ple networks simultaneously, can provide greater generalizability of research

results compared to analyses of single-network data.

The multilevel p2 model estimates the parameters more efficiently respect

to p2 model and quantifies the differences between networks by modeling

the variability of parameters over networks [166].

In the p2 model [152], the tie variables are regressed on explanatory vari-

ables, while the dependence of ties from and to the same actor are modeled

using random effects.

The multilevel p2 model defines an identically specified p2 model with vary-

ing parameters for multiple independent social networks.

By the 1980s, social network analysis has become an established field within

the social sciences, with a professional organization (INSNA, International

Network for Social Network Analysis), an annual conference (Sunbelt), spe-

cialized software (e.g., UCINET), and its own journal (Social Networks).

1.4.3 The third generation

The third generation begins with Exponential Random Graph Models (ERGMs),

so called because they have an exponential term on the right hand side.

They are also commonly called the p∗ class of models ([62];[130]; [134];[156]).

The distinctive feature of ERGMs is that the assumption of independence

among network tie variables may be relaxed, allowing different assumptions

on the dependencies among network variables to be incorporated [30].

Frank and Strauss [62] introduce the Markov dependence, in which a pos-

sible tie from i to j is assumed to be contingent on any other possible ties
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involving i or j, even if, the status of all other ties in the network is known.

Markov dependence can be characterized as the assumption that two pos-

sible network ties are conditionally dependent when they have a common

actor.

In the specific, a random undirected graph is a Markov graph iff its proba-

bility distribution can be written as:

Pr(Y = y; θ) = κ(θ)−1 exp (

(n−1)∑
(k−1)

θkS3:k(y) + τS4(y)) (1.10)

where S3:k(y) are the number of k-stars and S4(y) is the number of trian-

gles.

Using appropriate network statistics recognizing directionality, this model

is generalized to directed networks [127].

This vision is more restrictive because the effects of a given configuration

do not depend on only network isomorphism but it can vary with charac-

teristics of actors.

The Markov dependence has inspired Wasserman and Pattison [156], which

further have extended this class of models, describing them as p∗ models.

They make a general formula that can allow a wider array of network statis-

tics in the equation, than those specified by Frank and Strauss [62], such

as reciprocity, the presence of edges, the number of closed triads and the

number of two-paths or two-stars.

They have showed how a Markov parametric assumption provides just one

of many possible sets of parameters.

Most initial investigations focus on undirected and directed single, dichoto-

mous relations.

Robins et al. [134] Koehly and Pattison [98] propose the generalization of
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p∗ models to valued relations and to more than one relation.

Frank and Strauss’ approach is more restrictive because the effects of a

given configuration do not depend on only isomorphism within the network

but it could vary with the characteristics of actors.

This type of dependence is called Markov attribute dependence [136] where

a configuration’s effect may depend only on attributes of those actors in-

volved in it, so that, the parameter for the density configuration yij might

depend on attributes of actors i and j, but not on those of actors k 6= i, j.

The effect of any network configuration may depend on actor attributes,

but applications focus on the density effect [127].

Markov dependence seems unrealistic for large networks, where individual

actors may not even be aware of each other, and have no means to come

into contact, yet their possible tie is still taken to influence other possible

ties.

When in an ERGM there is at least one pair of ties that do not share an

actor, this model becomes non - Markovian.

This is verified when there are configurations involving four or more actors,

for example a k-path (indirect path of length k) and k-cycle (k > 3), in

which a sequence of k ties involving k distinct actors begins and ends with

the same actor.

Or, in according to Pattison and Robins [131], there are non-Markov depen-

dencies among ties that do not share an actor but may be interdependent

through third party links.

For instance, Yij may be conditionally dependent on Yrs for four distinct

actors if there is an observed tie between i or j or r or s.

These realization-dependent models can be developed through what Pat-

tison and Robins (2002) describe as partial dependence structures. These
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models also permit the introduction of more complex configurations involv-

ing attribute effects.

An other important approach is Social Influence Model Approach ([135];

[68]).

This approach generalizes the p∗ class of models for social network data to

predict individual-level attributes from network ties.

The p∗ model for social networks permits the modeling of social relation-

ships in terms of particular local relational or network configurations.

Through these models, attribute variables are included in a directed depen-

dence graph and the Hammersley-Clifford theorem is employed to derive

probability models whose parameters can be estimated using maximum

pseudo-likelihood.

In the 1990s, the development of statistical methods for social networks

make consistent progress towards the last decades.

This development depends on the substantive research questions and the

nature of the available data.

For instance, in the last decade there has been a big increase of more

complex statistical models of network data, considering, for example, the

dynamic nature of social networks or the relationship between networks

data, attribute data and behavioral or attitude data.

Several works can witness the paradigm change.

Stochastic actor-based models for network dynamics ([93]; [139]; [143]) are

developed in this framework to analyze longitudinal data on social networks

while changing actors’ attribute data.

For example, Snjiders et al. [142] have studied the co-evolution of network

dynamics of friendship and delinquency using such models while Steglich et

al. [144] have studied the co-evolution of friendship networks and smoking
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behavior.

When a social network emerges in presence of a hierarchical structure, i.e.

when the units are nested in clusters, a proper modelization can be repre-

sented by the Multilevel Modeling approach.

Multilevel models ([141]; [34]) are very useful for investigating the nature of

connections in ego networks when there is the assumption that one’s alters

do not overlap with alters of an other ego.

A clear evolution of this paradigm can be envisaged through the collection

of essays edited by Patrick Doreian and Frans Stokman ([146], [147], [49])

devoted to network dynamics.

An important distinction among the different models is the possibility to

use (or not) inferential procedures to evaluate statistical significant effects.

1.4.4 A focus on Network Autocorrelation Models

A general representation of dependencies in data is the latent space model

of Lazarsfeld and Henry [105], where the goal is to parsimoniously represent

dependencies between multiple variables within individuals.

In this category, we can find the stochastic block-model by Holland et al.

[92], Snijders and Nowicki [140], Nowicki and Snijders [126] and Daudin et

al. [31].

Other types of models are the latent class clustering models (Hoff et al.,

[88]) in which the probability of a link between pairs of actors depends on

the distance between them and on their observed characteristics.

Extensions are in Hoff [87] and Handcock et al. [82].

Considering our peculiar research interest, we focus on Network Autocor-

relation Models ([40]; Leenders [108]), developed from the geographical
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connections models by Cliff and Ord and other authors ([26]; [5]; [28]).

These models can be extended to settings in which the autocorrelation

stems from social, not physical, proximity [158].

Autocorrelation across units is not a nuisance to be removed but a substan-

tive effect to be measured and tested [41].

There are two types of Network Autocorrelation Models: the Network Ef-

fects Model [42] and the Network Disturbances Model [44].

The Network Effects Model assumes that the dependent variable, for a

given individual, is a function of the exogenous variables and the values of

the same dependent variable observed on other individuals.

In particular, Doreian [43] defines the Network Effects Model where social

dependence is incorporated through the addition of a lagged dependent

variable on the right-hand side of the regression equation.

The outcomes for actors are not statistically independent as assumed by

many regression models, leading to a complex correlation structure.

These models use a n× n network matrix of interdependencies, that is an

adjacency matrix, to model this correlation structure [127].

Furthermore, attributes data may induce similarities among units and can

be used as explanatory variables in the regression model as well.

Thus, it seems that autocorrelation models of contextual effects are best

suited to theories of specific network processes [50].

This is the model:

y = ρAy +Xβ + ε ε ∼ N(0, σ2I) (1.11)

where ε denotes a vector of stochastic errors, under usual assumptions,

ρ is a scalar that measures the magnitude of the network effects, and β is

a vector of regression coefficients ([4]; [41]; [79]; [80]; [121]; [159]).
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In this type of model the actor outcome can depend directly on the out-

comes of its own alters.

The vector Ay containes, for each focal actor, the value of the outcome sum

for all its alters, as such, alters’ outcome contributes to y in proportion to

the influence on ego.

Thus, Ay is a network effects dependent variable.

In the case of Network Disturbances Model [44] the specification of the

linear equation is

y = Xβ + ε (1.12)

but the disturbance is specified as:

ε = ρAε+ ν (1.13)

with ν ∼ N(0, σ2I) representing the white noise disturbance terms and

parameter ρ measures the strength of the network autocorrelation.

In this case, the errors ε, rather than the outcomes y themselves, may be

interdependent and the network autocorrelation can be modeled via inclu-

sion of a term ε̄A = Aε in the specification of the distribution of the error

term.

The vector ε̄A containes, for each focal actor, the (weighted) average stochas-

tic errors for the alters.

Under the common assumption that the errors ε are stochastically indepen-

dent by the explanatory variables X, the network autocorrelation term ε̄A

is likewise independent by X.

The implied mean vector and covariance matrix of ε are respectively 0 and

var(ν){(I–ρA′)(I–ρA)}−1.
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The model, in this case, may be rewritten as:

y = ρAy +Xβ–ρAXβ + ν (1.14)

This differes from precedents only by the addition of the network lagged

covariate term ρAXβ+ν, which measures the effect of other actors’ covari-

ates on the outcome for an actor.

A natural generalization combining Network Effects and Network Distur-

bances Models can be constructed as well as models with multiple autocor-

relation regimes [45], i.e. models may also be specified using both Ay and

Aε.

The following regression model containes both autoregressive outcomes and

network autocorrelation [5]; [16], allowing for different adjacency matrices

for the two:

y = ρ1A1y +Xβ + ε ε = ρ2A2ε+ ν (1.15)

where A1 and A2 are the adjacency matrices for the network effects and

network autocorrelation effects, respectively.

This model includes two sources of correlation in y and in Xβ.

The substantive choice between modeling “contagion” through either au-

tocorrelating the dependent term or the disturbance term reflectes a theo-

retical difference of how contagion was supposed to take place.

Furthermore, social dependence is analyzed in the structural equations

modeling framework.

This alternative approach, introduced by Folmer and Oud [129], considers

the presence of latent variables.

This approach illustrates social dependence through the network lagged

variables as latent variables in the structural model, while relationships
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among network lagged variables and observed attribute data are repre-

sented in the measurement model [109].

A recent approach is present in Doreian et al. [48] considering the covari-

ance based SEM method.

In this thesis we deal with network data and structural equation models

looking at the component based SEM method, i.e. Partial Least Squares-

Path Modeling.
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Chapter 2

Partial Least Squares Path
Modeling: Notations and
Definitions

2.1 A brief review of PLS - Path Modeling

The first work of the Partial Least Squares (PLS) approach to path models

with latent variables (LVs) was published by Wold in 1979.

It was proposed as a component-based estimation procedure different from

the classical covariance-based LISREL approach (SEM-ML).

Thus, Herman Wold opposes SEM-ML [96] “hard modeling” to PLS “soft

modeling” [149].

Partial Least Squares-Path Modeling (PLS-PM) is considered as a soft mod-

eling approach, where it involves no assumptions about the population or

scale of measurement ([60]; [54]) and consequently works without distri-

butional assumptions and with nominal, ordinal, and interval scaled vari-

ables, but some assumptions must be fulfilled, i.e. Gaussian classical linear
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ordinary least squares and predictor specification [25]. This specification

required that the systematic part of the linear regression must be equal

to the conditional expectation of the dependent variable. PLS Path Mod-

eling aims to estimate the relationships among Q(q = 1, . . . , Q) blocks of

manifest variables (MVs) which are indicators of unobservable constructs,

usually called LVs.

Let be P variables (p = 1, . . . , P ) observed on n units.

The resulting data are collected in a partitioned data table X:

X = [X1, . . . , Xq, . . . , XQ] (2.1)

where Xq is the generic q-th block made of Pq variables.

These types of variables are also known as indicators or items that assume

as manifest variables containing information, reflecting one aspect of the

construct; hence, we use the information contained in the indicators to ob-

tain an approximate representation of the latent variable.

In PLS - Path Modeling an iterative procedure permits to estimate the

outer weights (w) and the latent variable scores (ξ̂) solved through alter-

nating single and multiple linear regressions.

At a later stage the path coefficients (β) are estimated by means of a reg-

ular regression between the estimated latent variable scores in accordance

with specific structural relations.

The PLS-Path Modeling follows the SEM notations and symbols, includ-

ing the use of a path-diagram to picture the relations among the latent

variables and between each manifest variable and the corresponding latent

variable. Namely, the p manifest variables are pictured by rectangles or

squares, while circles represent the q latent variables.

Arrows define the relations among latent and/or manifest variables.
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As in SEM, even in the PLS-PM, the overall relations among manifest and

latent variables are modeled through a system of equations.

The goal of PLS-PM is not the reproduction of the sample covariance ma-

trix, unlike the classical covariance-based approach.

For this reason, PLS - Path Modeling is considered as an exploratory ap-

proach more than as a confirmatory one [54].

This involves that the classical parametric inferential framework is replaced

by resampling methods such as jackknife and bootstrap through empirical

confidence intervals and hypothesis testing procedures ([24]; [149]; [54]).

There is a lack of important statistical properties for the estimates, i.e.

coefficients are known to be biased but consistent at large ([22];[23]; [54]).

2.2 The PLS path model

Two sub-models compose a Structural Equation Model:

1. The measurement model or outer model;

2. The structural model or inner model.

The first one analyses the relationships between each latent variable and

its manifest variables, while the structural model analyses the relationships

among the latent variables.

A latent variable (LV) is called endogenous, if it is supposed to depend

on other LVs and exogenous one otherwise.

Another important element is represented by the weight relations, that

are used to estimate case values for the latent variables [25].

The crucial part of a PLS-PM is the estimation of the weight relations

by using a two-step algorithm to determine them: an outside and inside
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approximation.

The description of both these two steps is presented in the next section.

2.2.1 Structural Model

In the PLS Path Modeling framework, the structural model can be writ-

ten as:

ξj =
∑

(q:ξq→ξj)

βqjξq + ζj (2.2)

where ξj is an endogenous latent variable, βqj is the path coefficient linking

the exogenous q-th latent variable to the j-th endogenous one and ζj is the

error in the inner relation.

β
13 

β 23 

ξ1 

ξ3 

ξ2 

ζ3 

Figure 2.1: Structural model in a path diagram

The only hypothesis of this model is what Wold named predictor speci-

fication hypothesis [162]:

E(ξj |ξq) =
∑

(q:ξq→ξj)

(βqjξq) (2.3)

which implies that cov(ξq, ζj) = 0 and E(ζj) = 0
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2.2.2 Measurement Model

The measurement model formulation depends on the direction of the

relationships between the latent variables and the corresponding manifest

variables ([60]; [54]).

There are three types of measurement model that relate the MVs to

their LVs:

1. Reflective model (or outwards directed model);

2. Formative model (or inwards directed model);

3. MIMIC model (a mixture of the two previous models).

- Reflective model

In the reflective model, each manifest variable reflects the corresponding

latent variable.

In this case, it assumes that the block of manifest variables related to a

latent variable measures a unique underlying concept and the indicators

linked to the same latent variable should covary: changes in one indicator

imply changes in the others [54].

For this reason the internal consistency has to be checked, i.e. each block

has to be homogeneous and unidimensional, in order to reflect a unique

latent construct [54].

The measurement model reproduces the factor analysis model so in the

reflective model each variable is a function of the underlying factor.

In a reflective model, using formal terms, each relation between each

manifest variable (MV) xpq(p = 1, . . . , Pq) and the corresponding LV is

generally modeled as a simple regression model, i.e. :
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Figure 2.2: Reflective model in a path diagram

xpq = λpqξq + εpq (2.4)

where λpq is the loading associated to the p-th manifest variable in the

q-th block and εpq represents the imprecision in the measurement process

with the predictor specification hypothesis:

E(xpq|ξq) = λpqξq (2.5)

In addition to these two equations in PLS-PM each latent variable is

defined as a linear combination of the corresponding manifest variables.

Thus, each latent variable is obtained as:

ξq =
∑
p

wpqxpq (2.6)

where wpq is the outer weight associated to the generic manifest variable

xpq. This equation is referred as weight relation [55].

There are several tools for checking homogeneity and unidimensionality

of a block:
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1. Cronbach’s α;

2. Dillon-Goldstein’s (or Joreskög’s ) ρ ;

3. Principal component analysis of a block.

Cronbach’s α is a measure of internal consistency that quantifies uni-

dimensionality of a block of variables. This index can be expressed as:

α =

∑
(p6=p′) cor(xpq, xp′q)

Pq +
∑

(p6=p′) cor(xpq, xp′q)
× Pq
Pq − 1

(2.7)

where Pq is the number of manifest variables in the q-th block.

The larger is the
∑

(p 6=p′) cor(xpq, xp′q) the more the block is unidimensional

[149]. A block is considered unidimensional if this index is larger than 0.7

for confirmatory studies.

Dillon-Goldstein’s (or Joreskog’s) ρ [157] is better known as com-

posite reliability.

It supposes that the correlation between each MV xq and its LV ξq is pos-

itive.

For this reason the block is considered as homogenous as
∑Pq

(p=1) λpq is large.

The Goldstein- Dillon’s ρ is defined by:

ρ =
(
∑Pq

(p=1) λpq)
2∑Pq

(p=1) λpq)
2 + (

∑Pq
(p=1)(1− λ2pq)

(2.8)

A block is considered unidimensional when the Dillon-Goldstein’s ρ is

larger than 0.7. According to Chin [24], this statistic is considered to be a

better indicator of the unidimensionality of a block than the Cronbach’s α.
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The first statistic assumes that each manifest variable is equally important

in defining the latent variable.

In Dillon-Goldstein’s ρ, by contrast, this assumption does not hold because

it is based on the loadings of the model rather than the correlations ob-

served between the manifest variables in the dataset. With a Principal

component analysis of a block, a block may be considered unidimen-

sional if, according Kaiser’s rule, the first eigenvalue of its correlation matrix

is higher than 1, and the second one smaller than 1, or at least very far from

the first one [149]. In order to assess whether the eigenvalue structure is sig-

nificant or rather is due to sampling fluctuations a bootstrap procedure can

be implemented. In case the hypothesis of unidimensionality is rejected, it

is possible to identify some groups of unidimensional sub-blocks by consid-

ering the variable-factor correlations displayed on the loading plots. PLS

path modeling is a mixture of a priori knowledge and data analysis. In the

reflective way, the a priori knowledge concerns the unidimensionality of the

block and the signs of the loadings and the data have to fit this model. If

they do not, they can be modified by removing some MVs that are far from

the model. Another solution is to change the model and use the formative

way.

- Formative Model

In the formative model, the LV is supposed to be generated by its own MVs,

i.e each manifest variable or every set of manifest variables represents a

different level of the underlying latent concept. This model does not assume

homogeneity nor unidimensionality of the block, for this reason the block

of MVs can be multidimensional and the indicators need not to co-vary.

Thus the measurement model could be expressed as:

46



2.2. The PLS path model

Figure 2.3: Formative model in a path diagram

ξq =

Pq∑
p=1

wpqxpq + δq (2.9)

where wpq is the coefficient linking each manifest variable to the cor-

responding latent variable and δq is the error that represents the part of

the latent variable not explained by the block of manifest variables. The

assumption behind this model is the following predictor specification:

E(ξq|xpq) =

Pq∑
p=1

wpqxpq (2.10)

which implies that residual vector E(δq) = 0 and is uncorrelated with

the MVs.

- MIMIC Model

The MIMIC model is a mixture of the reflective and formative models.

The scores of the standardized latent variable ξ̂q associated to the q-th

latent variable ξq are computed as a linear combination of its own block of

manifest variables by means of the weight relation defined as:
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ξ̂q =

Pq∑
p=1

wpqxpq (2.11)

where the variables xpq are centred and wpq are the outer weights.

2.3 The Partial Least Squares Algorithm

The PLS algorithm includes the following three stages:

1. iterative approximation of latent variable scores;

2. estimation of latent variable scores;

3. estimation of path coefficients.

The debate of convergence of the PLS algorithm focuses on the core of

the PLS algorithm, i.e. the first stage.

2.3.1 The first stage: Iterative process

The first stage of the PLS path modeling algorithm consists of four steps

[149]:

• Step 0: Initial arbitrary outer weights;

• Step 1: Compute the external approximation of latent variables;

• Step 2: Obtain inner weights;

• Step 3: Compute the internal approximation of latent variables;
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• Step 4: Calculate new outer weights;

• Repeat step 1 to step 4 until convergence of outer weights.

Step 0: Initial arbitrary outer weights

We start the iterative process by assigning any arbitrary non-trivial

linear combination of indicators can serve as an outer proxy of a latent

variable [86].

Step 1: Outer approximation of the latent variable scores

Outer proxies of the latent variables are estimated as a linear combina-

tion of its own manifest variables.

νq ∝ ±
Pq∑
p=1

wpqxpq = ±Xqwq (2.12)

where νq is the standardized outer estimate of the q-th latent variable

ξq; the xpq are centred MVs, the symbol ∝ means that the left side of the

equation corresponds to the standardized right side and the “±” sign shows

the sign ambiguity.

This ambiguity is solved by choosing the sign making νq positively corre-

lated to a majority of xpq.

Step 2: Estimation of the inner weights

Two LVs are adjacent if exists a link between the two variables: an

arrow goes from one variable to the other in the causality path-diagram.

Inner weights are calculated for each latent variable in order to reflect

how strongly the other latent variables are connected to it, considering the

existing links with the other Q′ adjacent latent variables:
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zq ∝
Q∑
q′=1

dqq′eqq′νq′ (2.13)

Let dqq′ be the generic element of the square matrix D of order Q, where

dqq′ = 1 if the LV ξq is connected to ξq′ in the path diagram and dqq′ = 0

otherwise.

The inner weights eqq′ can be determined through one of three different

schemes available:

1. the centroid scheme, i.e. Wold original scheme, where

eqq′ = sign cor(νq, νq′) (2.14)

2. the factorial scheme, i.e. the Lohmöller scheme, where

eqq′ = cor(νq, νq′) (2.15)

3. the path weighting scheme or structural scheme, where LVs con-

nected to ξq are divided into two groups:

eqq′ = cor(νq, νq′) if νq′ predicts νq (2.16)

eqq′ = the regression coefficient if νq′ is predicted by νq (2.17)
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They are described in details in the next section.

Step 3: Inner approximation of the latent variable scores

Inner proxies of the latent variables are calculated as linear combinations

of the outer proxies of their respective adjacent latent variables, using the

inner weights previously determined.

Step 4: Estimation of the outer weights

The calculation of outer weights depends on the type of relation existing

between a block of MVs and the underlying LV. Estimation of the outer

weights wpq depends on the chosen model.

In the reflective model, they are calculated as the covariances between

the inner proxy of each latent variable and its indicators. In the outer esti-

mate of the LV, it is the regression coefficient of the simple linear regression

of each MV on the inner estimate of the corresponding LV:

wpq = cov(xpq; zq) (2.18)

taking into account that zq is standardized.

This outer estimation is named Mode A in PLS-PM literature [149].

The regression coefficient reduces to the covariance between each manifest

variable and the corresponding inner estimate of the latent variable.

In case the manifest variables have been also standardized, such a covariance

becomes a correlation.

In the formative model, they are the regression coefficients in the

multiple regression of the inner estimate zq on its MVs Xq, i.e., the elements

of the vector:

wq = (X ′qXq)
−1X ′qzq (2.19)
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where Xq comprises the Pq manifest variables xpq previously centred

and scaled by
√

( 1
N ) . This scheme is called Mode B.

These four steps are repeated until the change in outer weights between two

iterations drops below a predefined limit, i.e. the convergence is measured

in terms of stability of the numerical values over two successive iterations.

Convergence algorithm

The convergence of the iterative PLS Path Modeling algorithm is verified

according to a stopping rule, most often defined as

max(|w(s)
pq − w(s−1)

pq |) < 10−5 (2.20)

where s refers to the s-th iteration. It is stated that “convergence is

always verified in practice” [81] and is “guaranteed only for the two-block

case, but practically always encountered in practice even with more than

two blocks” [149]. Even though the PLS path modeling algorithm may con-

verge in practice, there is concern about the missing proof of its convergence

[95], inspiring researchers to search for this proof [86].

2.3.2 The second stage: Computation of the latent variable
scores

Upon convergence, the estimates of the latent variable scores are obtained

as:

ξ̂q ∝ Xqwq (2.21)

2.3.3 The third stage: Computation of path coefficients

In the last stage of the PLS-PM algorithm path coefficients are estimated

through OLS multiple regressions among the scores of estimated latent
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variable:

β̂j = (Ξ̂′→j Ξ̂→j)
−1 Ξ̂′→j ξ̂q (2.22)

where ξj is the generic endogenous LV score vector and Ξ̂→j is the matrix

of the corresponding latent variable scores.

2.4 Model validation

Through validation process of the PLS-PM it is possible to calculate suit-

able indexes to measure its predictivity performances and fitting. According

to PLS-PM structure, a path model can be validated at three levels [149]:

1. the quality of the measurement model;

2. the quality of the structural model;

3. each structural regression equation.

That is why, PLS Path Modeling provides three different fit indices:

1. the communality index;

2. the redundancy index;

3. the Goodness of Fit (GoF) index.

The communality index measures the quality of the measurement

model for each block. It is defined, for block q, as:

Comq =
1

Pq

Pq∑
p=1

cor2(xpq, ξ̂q)∀q : Pq > 1 (2.23)
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The average communality is the average of all the cor2(xpq, ξ̂q) where

Pq is total number of MVs in all blocks.

The redundancy index measures the quality of the structural model for

each endogenous block, taking into account the measurement model.

It is defined, for an endogenous block , as:

Com =
1∑

q:Pq>1 Pq

∑
q:Pq>1

Pq∑
p=1

cor2(xpq, ξ̂q) (2.24)

where Pq is total number of MVs in all blocks.

The redundancy index measures the quality of the structural model for

each endogenous block, taking into account the measurement model. It is

defined, for an endogenous block, as:

Redj = Comj ×R2(ξ̂j , ξ̂q:ξq→ξj ) (2.25)

The average redundancy for all endogenous blocks can also be com-

puted.

Red =
1

J

J∑
j=1

Redj (2.26)

A global criterion of goodness-of-fit (GoF) can be proposed [3] as the

geometric mean of the average communality and the average R2 :

GoF =

√
Com×R2 (2.27)

where the average R2 value is obtained as:

R2 =
1

J
R2(ξ̂j , ξ̂q:ξq→ξj ) (2.28)
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As a matter of fact, differently from SEM-ML, PLS path modeling does not

optimize any global scalar function so that it naturally lacks of an index

that can provide the user with a global validation of the model (as it is

instead the case with R2 and related measures in SEM-ML).

The GoF represents an operational solution to this problem as it may be

meant as an index for validating the PLS model globally. Since PLS Path

Modeling has not distributional assumptions, its inferential tools are usually

based on resampling techniques, i.e. cross-validation methods like jack-knife

and bootstrap [52]. It is possible to build a cross-validated version of three

fit indices by means of a blindfolding procedure ([24]; [110]; for more details

see [149]).

2.5 New Approaches of PLS-PM

2.5.1 Mode PLS

In the last years, PLS Path Modeling (PLS-PM) has been reinterpreted.

In the classical approach, in order to estimate the outer weights, which are

very important for building the latent variable scores, we use two different

estimation procedures based on OLS regression, i.e. Mode A and Mode B.

These two modes assume a unique latent variable behind each block of

manifest variables. An intermediate mode between Mode A and Mode B,

i.e. Mode PLS, has been proposed in order to:

• estimate multidimensional latent variables;

• overcome multicollinearity problems that may lead to nonsignificant

regression coefficients;
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• have interpretable weights because of the difference in sign between

the regression coefficient of an MV and its correlation with the LV.

It verifies when running a PLS regression and retaining a number for each

block of significant PLS components [54].

PLS regression can nicely replace OLS regression for estimating path coef-

ficients [54] whenever one or more of the following problems occur:

1. missing latent variable scores;

2. strongly correlated latent variables;

3. a limited number of units as compared to the number of predictors

in the most complex structural equation.

With Mode PLS we search for m orthogonal PLS-R components,

tkq(k = 1, . . . ,m) which are as correlated as possible to zq and also ex-

planatory of their own block Xq.

The number m of retained orthogonal components is either chosen by the

cross-validation methods or defined by the user.

In the specific, two new modes have been proposed, which integrate a PLS

Regression as an estimation technique, in order to estimate outer weights

in PLS-PM:

1. the PLScore;

2. the PLScow.

In both procedures PLS Regression replaces OLS regression but there are

some differences.

The PLScore Mode is oriented to maximizing correlations among latent
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variables (LVs) and the PLS Regression is run under the classical PLS-PM

constraint of unitary variance for the latent variable score.

The first PLS component t1q, if xpq are standardized variables, is defined

with this formula (Esposito Vinzi et al., 2010b):

t1q = Xqw1q =
1√

(
∑

p cor
2(zq, xpq)

×
∑
p

cor(zq, xpq) (2.29)

When xpq are not standardized variables, instead, the correlation is sub-

stituted by the covariance, the vector w1q is normalized and a regression of

zq on t1q is run. So the residuals zq1 and Xq1 of the regressions of zq on t1q

are calculated as:

zq1 = zq–c1qt1q (2.30)

and

Xq1 = Xq–t1qp
′
1q (2.31)

where c1q is the regression coefficient from the regression of zq on t1q and p1q

is the vector of regression coefficients from the regression of the variables

in Xq on t1q. It is possible to define the second component as:

t2q = Xq2w2q = Xqw
∗
2q (2.32)

where w∗2q is different from w2q because the former refers to the origi-

nal variables in Xq, while the latter refers to the residuals and would be

very difficult to interpret. The next orthogonal components are defined

by iterating the procedure described above on residuals from the previous

component.
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The PLScow Mode, by contrast, is oriented to maximizing covariances

between LVs and the outer weights with the constraint of unitary norm ac-

cording to classical normalization constraints of PLS Regression.

We have the same solution of the New Mode A (described in the next sec-

tion) if we normalize the outer weights to unitary variance at each step of

the algorithm PLScore Mode and we use a one-component PLS regression

as the outer estimation mode.

If more components are considered, keeping the normalization constraint

on the outer weights, PLScow Mode gives solutions between New Mode A

(one PLS component) and a New Mode B (as many PLS components as

there are MVs in a block).

These new modes are linked to the standard Mode A and Mode B outer es-

timates in PLS-PM as well as to the New Mode A proposed in a criterion-

based approach by Tenenhaus and Tenenhaus [150].

2.5.2 The optimization criteria

Recent works by Hanafi [81], Kramer [100] and Tenenhaus and Tenenhaus

[150] prove that the PLS-PM iterative algorithm optimizes different statis-

tical criteria according to the different options chosen for the computation

of the outer and inner proxies of the latent variables.

The outer proxies of the latent variables can be traditionally obtained

through the choice of two different scheme: the Mode A (also referred as

reflective model) and the Mode B (also referred as formative model) [149].

In particular, Hanafi [81] proved that the outer weights obtained through

the PLS-PM algorithm maximize the following criteria when the mode B

option is chosen for outer proxy computation:
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arg max
wq

∑
q 6=q′

cqq′ · g
(
Corr(Xqwq; Xq′wq′)

) st ‖Xqwq‖ = 1 (2.33)

In 2007 Kramer showed that the PLS-PM algorithm was not based on

a stationary equation related to the optimization of a twice differentiable

function when Mode A was used for all the blocks in the model.

In the same work, Kramer proposed a slight modified version of the classical

Mode A outer scheme in which a normalization constraint is put on outer

weights rather than latent variable scores.

If this new scheme (also referred as New Mode A) was used for all the blocks

in the model, Kramer [100] proved that the PLS-PM iterative algorithm was

monotonically convergent to the criterion:

arg max
∀wq

{∑
q

cqq′ · g
(
Cov(Xqwq; Xq′wq′)

)}
st ‖wq‖ = 1 (2.34)

These recent works are very interesting from a theoretical point of view

because they reduce the cases where the PLS-PM algorithm seems to be

an heuristic approach at the case when the inner estimation takes explic-

itly into account the direction of the path weighting scheme [56]. Hence,

PLS-PM algorithm seems to be an heuristic approach only when the path

weighting scheme is used [55].

2.5.3 New Mode A Model

Tenenhaus and Tenenhaus [150] have slightly adjusted Mode A in which a

normalization constraint is put on outer weights rather than on LV scores.
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They showed that Wold’s procedure, with the use of the new Mode A

in all the blocks and the centroid scheme for the inner estimation of the

LVs, monotonically converges to the criterion:

arg max
‖wq‖=1

∑
(q 6=q′)

|cov(Xqwq, Xq′wq′)| (2.35)

Instead, when the factorial scheme is used for the inner estimation of

the LVs, Wold’s procedure converges to the criterion:

arg max
‖wq‖=1

∑
q 6=q′

cqq′cov
2(Xqwq, Xq′wq′) (2.36)

In the classical mode A the outer weights are computed with the formula

wq =
(X′qzq)

‖X′qzq‖
, but normalized so that the outer component is standardized.

The new mode A shrinks the intra-block covariance matrix to the identity.

This shrinkage is probably too strong, but is useful for very high-dimensional

data because it avoids the inversion of the intra-block covariance matrix.

When we use in the same model both new Mode A and Mode B and the

centroid scheme, Wold’s procedure is shown to converge to the criterion:

arg max
‖wq‖=1

∑
(q 6=q′)

cqq′ |cor(Xqwq, Xq′wq′)×
√
var(Xq′wq′)

τq′
√
var(Xqwq)τq |

(2.37)

While, when the factorial scheme is used, it converges to the criterion:

arg max
‖wq‖=1

∑
(q 6=q′)

cqq′ cor
2(Xqwq, Xq′wq′)×var(Xq′wq′)

τq′var(Xqwq)
τq (2.38)

In these equations we have:
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• τq = 1, i.e. using outer weights with unitary variance, when the

block q is estimated by new Mode A, leading to criteria based on

maximizing covariances among adjacent LVs;

• τq = 0, i.e. using standardized LV scores, when the block q is esti-

mated by Mode B, leading to criteria based on maximizing correla-

tions among adjacent LVs.

This new estimation mode has the major advantage, as compared to clas-

sical Mode A, to maximize a known criterion.

Due to the good proprieties of the New Mode A, it is used in develop-

ing the component-based approach to network data through Partial Least

Squares algorithms.

In the rest of this work, when referring to PLS-PM algorithm it always

refers to the solutions obtained using the New Mode A for the outer prox-

ies computation and the centroid scheme for the inner proxies computation.
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Chapter 3

Modelling Network Data
through Partial Least
Squares Methodology

3.1 Theoretical background

Man is by nature a social animal; an individual who is unsocial naturally

and not accidentally is either beneath our notice or more than human. So-

ciety is something that precedes the individual.

Anyone who either cannot lead the common life or is so self-sufficient as

not to need to, and therefore does not partake of society, is either a beast

or a god (Aristotle, Politics 350 B.C.).

Most people, usually, live in groups because it is rare that the lone individ-

ual has no connection to other men and women. Virtually all the activities

of their lives - working, learning, worshiping, relaxing, playing, and even

sleeping - occur in groups rather than isolated from others.

For this reason, actors adapt their behaviour, attitude, or belief, to the
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behaviours, attitudes, or beliefs of other actors with whom are in contact

[108].

The framework underlying this work is constitued by the relations in which

individuals socially interact and like each other, involving a need for shared

mutual understanding, which is expressed in similarities between two peo-

ple ([18]; [78]; [94]; [101]; [164]).

Social researchers sought to understand which are the causes of similarity

in these relations among people.

Laumann, in 1979, took to be the hallmark of a network analysis...to ex-

plain, at least in part, the behaviour of network elements...by appeal to

specific features of the interconnections among the elements [103] .

It is necessary to consider that it is not possible to de-contextualize the

social relationships because context can influence the emerging of relation-

ships [47] .

This is verified because the social context of a social network is made up

of the human and symbolic features that are intrinsic to situations where

social network data are collected.

The focus here is on examining the impact of social context on social net-

work structure.

The measurement of attitudes, behaviors, human features and structural

characteristic of a context are retained in classical statistical variables (at-

tributes data).

Roughly speaking, social network analysis often does not take into account

actor’s attributes. It wants to examine contemporarily both the social net-

work and attributes of actors.

In social and behavioral sciences (e.g., psychology, sociology, economy),

there are many concepts of theoretical nature, i.e. any variable that does
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not correspond directly to anything observable must be considered as un-

observable [39] or latent and that can not be obtained by means of a

real-world sampling experiment [117].

For example, sociologists refer in these terms to social structure, social

stratification and social status.

When we work with these two types of variables (i.e., developing theories

and models) we tend to conceive expected causal relationships on them.

An alternative used by researchers is Structural Equation Modelling (SEM)

([7]; [97]; [12]).

The basic idea is that complexity inside a system can be studied taking

into account a whole of causal relationships among latent concepts, called

Latent Variables (LV), each measured by several observed indicators usu-

ally defined as Manifest Variables (MV).

Structural equation models typically do not take into account the network

effects that appear as an important determinant of individuals’ actions.

Some researches have dealt with methods of estimating the causal impact

of network effects, once such a network has been made a part of a causal

model. A mathematical formalization of the effects of social network on

behaviors is given by the Network Effects Model (see par. 1.4.4.).

From an empirical point of view, these models are far from being directly

observable. It still remains the possibility of measuring them as latent

factors depending from multidimensional constructs. Putting all together,

we propose a component-based approach to network data through Partial

Least Squares-path model algorithms.

A simulation study is presented in order to compare the Network Effects

Model with the proposed approach by examining coefficients estimated from

the two methods while controlling for specific attributes: network size, net-
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work density, autocorrelation coefficients and standard deviation of distur-

bances. Results will be discussed.

3.2 The effects of social networks on outcomes

In general, a social network represents any pattern of relationships between

actors. Some examples can be friendship among adolescents, coauthorship

among scientists, trade between countries and so on.

Recently, in many disciplines, a new theoretical vision tries to understand

how social networks can influence outcomes.

We assume that the network is binary and observed at one point in time.

In this case we consider an adjacency matrix A (see par. 1.2.3.). On the

other hand, willing to assume the absence of transitivity in the network, e.g.

in a friendship network, some friends of i’s friends are not i’s friends, their

attributes will affect i’s outcome only through their effect on i’s friends’

outcomes.

The common feature linking all of these examples is that the units of

analysis are interdependent.

If we want to analyze the dependence of a variable from one or more in-

dependent or explanatory variables, we can try to describe the relation

existing among them. A statistical tool useful to describe this type of rela-

tion is represented by regression models.

Regression models are particularly vulnerable, when there are interdepen-

dent units embedded within social structures, i.e. network effects ([44];

[70]).

If the interdependencies can be represented in the form of a network au-

tocorrelation model, it is then possible to incorporate them into regression
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type analyses.

In 1996, Doreian [44] proposed the re-examination of structural equation

models whenever network autocorrelation is present.

Oud and Folmer [129] reclaimed this approach in 2008, within geographical

framework, in order to represent spatial dependence.

One of the main issue of this thesis is to deal with dependence when A

represents social distance and network data can be enter in a SEM model

through an autocorrelation term.

The autocorrelation effect is represented through a scalar, i.e. ρ, estimating

the extent to which an actor’s outcome is affected by the behavior of those

to whom is socially close.

In this approach, latent variables representing social dependence, have as

indicators the observed values of the neighbouring social units.

A component-based approach to network data through Partial Least Squares-

path model algorithms is proposed.

This model specification offers higher flexibility, it allows to consider i) sep-

arate or joint effect of intrinsic opinions of the social actors, ii) the extent

to which they are influenced by their alters, and iii) how people with sim-

ilar characteristics are more likely to form ties. This can be envisaged by

different specifications of the path diagram.

3.3 Model specifications

The PLS Path Modeling will be now specified to include the Network Effects

Model, defined in matrix notation as:
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Y = ρAY +Xβ + ε ε ∼ N(0, σ2I) (3.1)

Let’s assume that we have t variables (X and Y ) measured on n observa-

tions and that - in the more general form - these variables can be divided

in different blocks each associated with a well defined latent concept.

We will use the following notation in the paragraph:

• C(n,t) is the data set containing n observations and t variables about

attributes and outcomes;

• A(n,n) is an adjacency matrix;

• C can be divided in Q (mutually exclusive) blocks C1,C2, . . . ,CQ;

• Each block Cq (q = 1, . . . , Q) has pq variables;

• In the CQ block there are the pQ outcome variables (Y);

• Each block Cq is associated with a different latent variable ξq.

Following Doreian et al. [48] we include the network-lagged variables

AY as indicator of a latent variable in the measurement model, representing

a bridge between statistical analysis and social theories.

Then we use this latent variable as an exogenous latent variable in the

structural model.

In particular, we transform each outcome in CQ through Ỹ = ACQ, and

we denote C̃Q the block of the dataset C that contains the network effects

dependent variables.

The measurement model related to a generic network effects depen-

dent variable Ỹh (h = 1, . . . , pQ) can be written in matrix notation as:
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Ỹh = λhξQ + εh (3.2)

where:

• λh is the loading associated to the generic network effects dependent

variables;

• ξQ is the latent variable measuring the network effects, i.e. the la-

tent variable associated to the network effects dependent variables,

including in the Q - th block;

• εh is the error term that represents the imprecision in the measure-

ment process.

The model in eq. 3.1 is modified in order to include the effects of the

network effects dependent variables.

We refer to this new formulation of the structural model as the Network

Effects Structural Model :

ξj =
∑

q: ξq→ξj

βqjξq + ρQξQ + ζj (3.3)

where:

• ξj is the endogenous latent variable;

• βq∈(1:Q−1) are the path coefficients linking the exogenous latent vari-

ables, associated to the 1, . . . , (Q − 1) blocks, to the j endogenous

one;
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• ρQ is the path coefficient linking the exogenous latent variable, asso-

ciated to the block Q (i.e. to the network effects dependent variables

Ỹ), to the endogenous latent variable ξj ;

• ζj is the error term in the inner relation.

We can notice that in the standard network effects model ( 3.1) only the

average effect ρAY shows up. By contrast, in this new specification the

social dependence is captured by two kinds of parameters:

• ρQ in the structural model;

• λh in the case of reflective mode of the measurement model.

We may argue that the latent variable approach offers a much richer repre-

sentation of the social network structure than the standard network effects

approach since it allows to analyze the relationship between the observed

variables and the corresponding latent construct and further obtaining the

latent variables scores.

3.4 The Partial Least Squares algorithm with Net-
work Effects

There are two main procedures [81] of the PLS path modeling algorithm:

the original and less known procedure invented by Wold ([162], [163]), and

a modified procedure developed by Lohmöller [110].

The PLS Path Modeling algorithm by Lohmöller is the best-known

procedure because computes the latent variable scores of each latent vari-

able ξ
(s+1)
q (q = 1, . . . , Q) at iteration s + 1 as a function of all the latent

variable scores ξ
(s)
q obtained during the previous iteration s. The advantage
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Figure 3.1: An example of a path diagram of PLS-PM with network data
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of Lohmöller’s procedure is that it can be calculated by means of matrix

algebra and it is easier to implement.

By contrast, Wold’s procedure relies always on the information available

in the last iteration. As shown by Hanafi [81], the Wold’s procedure seems

to be more interesting for its monotony properties.

According to Kramer [102] and Tenenhaus and Tenenhaus [150] in this

thesis we use the PLS path modelling algorithm, following rules hold:

1. Wold’s procedure is used;

2. New Mode A is applied to all measurement models;

3. The centroid scheme is used as inner weighting scheme.

As described in the chapter 2, the PLS algorithm includes the following

three stages:

1. iterative approximation of latent variable scores;

2. estimation of latent variable scores;

3. estimation of path coefficients.

The core of PLS algorithm is the first stage, consisting of four steps

[149] that we describe considering the introduction of adjacency matrix in

the model.

3.4.1 The first stage: Iterative process

Step 0: Initial arbitrary outer weights

72



3.4. The Partial Least Squares algorithm with Network Effects

We start the iterative process by assigning any arbitrary non-trivial lin-

ear combination of indicators can serve as an outer proxy of a latent variable

[86].

Step 1 - Outer approximation of the latent variable scores

Outer proxies of the latent variables are estimated as a linear combina-

tion of their own manifest variables:

νq ∝ ±Cqwq (3.4)

where:

• νq is the standardized outer estimate of the q - th latent variable ξq;

• Cq is the matrix that contains the manifest variables about actors’ at-

tributes and outcomes (i.e. our network effects dependent variables);

• the “±” sign shows the sign ambiguity that is solved by choosing

the sign making νq positively correlated to a majority of manifest

variables.

Step 2 - Estimation of the inner weights

Inner weights are calculated for each latent variable in order to reflect

how strongly the other latent variables are connected to it, considering the

existing links with the other Q′ adjacent latent variables:

zq ∝
Q∑
q′=1

dqq′eqq′νq′ (3.5)
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Let be:

• dqq′ is the generic element of the indicator matrix D of order Q, where

dqq′ = 1 if LV ξq is connected to ξq′ in the path diagram and dqq′ = 0

otherwise;

• the inner weights eqq′ are determined through the Wold original scheme,

i.e. the centroid scheme, where eqq′ is equal to the sign of the corre-

lation between vq and vq′ .

Step 3 - Inner approximation of the latent variable scores

Inner proxies of the latent variables are calculated as linear combina-

tions of the outer proxies of their respective adjacent latent variables, using

the inner weights previously determined.

Step 4 - Estimation of the outer weights

The calculation of outer weights depends on the type of relation existing

between a block of MVs and the underlying LV.

For the estimation of the outer weights wpq we use a specific mode of the

reflective model, i.e. the New mode A:

wq =
C ′qzq∥∥C ′qzq∥∥ (3.6)

where wq is a vector of outer weights wq = (w1q, . . . , wpq)
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3.4.2 The second stage: Computation of the latent variable
scores

Upon convergence, the estimates of the latent variable scores are obtained

as:

ξ̂q ∝ Cqwq (3.7)

where the Q-th score is associated to the latent variable linking our

network effects dependent variables.

3.4.3 The third stage: Computation of path coefficients

In the last stage of the PLS-PM algorithm path coefficients are estimated

through OLS multiple regressions among the scores of estimated latent

variable:

β̂j = (Ξ̂′→j Ξ̂→j)
−1 Ξ̂′→j ξ̂j (3.8)

where ξj is the generic endogenous LV score vector and Ξ̂→j is the ma-

trix of the corresponding latent variable scores, containing the information

derived from attribute data and network data.

3.5 A Simulation Study to compare NEM and
PLS-PM coefficients

The specification of the Network Effects Structural Model will be now an-

alyzed in order to highlight some properties of the derived estimates and

then, to compare results obtained within the specification of the Network

Effects Model.
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The idea is to set-up a simulation scheme where population parameters

are predefined and used in determining a population variance - covariance

matrix.

The equations, within this matrix, show the variance and covariance of the

observed variables as functions of the model parameters. They are suffi-

ciently general in order to capture most SEMs with continuous variables

[8].

Then, resampling from the population a large number of datasets coherent

with the specified covariance structure but for some random disturbances,

the two methods (PLS-PM and NEM) will be carried out and correspond-

ing estimates will be compared.

In this way, we are able to analyze some statistical properties of the esti-

mators in terms of bias and consistency.

The simulated data should be consistent both for the network effects and

for the structural equation model.

At this aim we have implemented an ad-hoc procedure by using the R soft-

ware and related packages.

Namely, we use well known theoretic results as the model-implied variance-

covariance matrix definition for the SEM structure and the QR decom-

position for generating the network effects outcomes and attribute data

variables as defined in NEM.

3.5.1 The simulation scheme

In the simulation scheme, we consider the i) network density and ii) the

sample size (n) as factors that can influence the network structure.

According to a simulation study of Mizruchi and Neuman [122], the esti-
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mate of network effects autocorrelation parameter ρ, i.e. estimated ρ̂ tends

to be lower than the population ρ.

This tendency becomes more pronounced with higher density in random

graphs also in well-known structures.

One argument, consistent with the work of Festinger et al. [57], suggests

that the extent to which actors are affected by that of their peers will be

especially pronounced in highly cohesive groups.

Furthermore, we control for the network autocorrelation coefficient ρ and

for the standard deviations of disturbances (σε).

These 4 factors take two level each, giving raise to 24 possible run schemes

(see tab. 3.1).

Also, we need to fix (in step 0) all population parameters to be used in

the specification of the structural model.

Indeed, we need a data structure made of exogenous and endogenous vari-

ables that produce corresponding latent variables coherent with SEM and

with NEM.

3.5.2 The simulation procedure

The simulation procedure is organized as follows:

Step 0 - Initialization phase

Let be:

• P the number of exogenous variables Xp;

• Q the number of endogenous variable Yq;
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Run ρ(∗) Net Density Net Size σ
(∗)
ε

1 0.25 0.2 300 0.1
2 0.25 0.2 300 0.5
3 0.25 0.2 100 0.1
4 0.25 0.2 100 0.5
5 0.25 0.5 300 0.1
6 0.25 0.5 300 0.5
7 0.25 0.5 100 0.1
8 0.25 0.5 100 0.5
9 0.75 0.2 300 0.1
10 0.75 0.2 300 0.5
11 0.75 0.2 100 0.1
12 0.75 0.2 100 0.5
13 0.75 0.5 300 0.1
14 0.75 0.5 300 0.5
15 0.75 0.5 100 0.1
16 0.75 0.5 100 0.5

Table 3.1: The 16 Factor-levels combinations used in simulations. (*) The
actual values of ρ and σε will be slightly modified by the numerical proce-
dure.
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• Λx the loadings associated to manifest exogenous variables, by choos-

ing and fixing the population parameters of a SEM;

• Λy the loadings associated to manifest endogenous variables, by choos-

ing and fixing the population parameters of a SEM;

• Φ the variance-covariance matrix of the latent variables ;

• B path-coefficients of the endogenous variables;

• Γ path-coefficients among the endogenous and exogenous variables.

These population quantities are fixed and used to build the model-

implied variance-covariance Σ(Ω) matrix according to the usual SEM defi-

nition.

It is used to write variance and covariance terms of manifest variables as a

function of SEM coefficients (for more details see Bollen, 1989 [7]).

Let Σ be the matrix of variance - covariance of the population

Σ =

[
Σxx

Σyx Σyy

]
(3.9)

where:

• Σxx is the variance covariance matrix of manifest variables X;

• Σyx is the intercovariance matrix between the endogenous and exoge-

nous manifest variables;

• Σyy is the variance covariance matrix of manifest variables Y .
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The three matrices within matrix Σ can be rewritten in function of the

parameters of the model. So the matrix of the exogenous manifest variables,

in terms of the parameters of the model, is:

Σxx(Ω) = E(xx′) = E[(Λxξ+δ)(Λxξ+δ)
′] = ΛxE(ξξ′)Λ′x+ΛxE(δξ′)Λ′x+E(δδ′)

(3.10)

with the assumptions that E(ξξ′) = Φ and E(δδ′) = Θδ, the new equa-

tion is:

Σxx(Ω) = ΛxΦΛ′x + Θδ (3.11)

The matrix of the endogenous manifest variables is:

Σyy(Ω) = E(yy′) = E[(Λyη+ε)(Λyη+ε)′] = ΛyE(ηη′)Λ′y+ΛyE(εη′)Λ′y+E(εε′)

(3.12)

with the assumption that E(εε′) = Θε the new equation is:

Σyy(Ω) = ΛyE(εε′)Λ′y + Θε (3.13)

By considering the structural model, the endogenous variables can be

expressed also as:

η = (I −B)−1(Γξ + ζ) (3.14)

with the assumption that E(ζζ ′) = Ψ the matrix Σyy becomes:

Σyy(Ω) = Λy[(I −B)−1(ΓΦΓ′ + Ψ)(I −B)−1′]Λ′y + Θε (3.15)

80



3.5. A Simulation Study to compare NEM and PLS-PM coefficients

The matrix of inter-covariance can be written as:

Σyx(Ω) = E(XY ′) = E[(Λxξ + δ)(Λyη + ε)′] = (3.16)

= ΛxE(ξη′)Λ′y + ΛxE(ξε′) + E(δη′) + E(δε′) (3.17)

with the assumption that the errors are uncorrelated, the new equation

is:

Σyx = Σ′yx = Λy(I −B)−1ΓΦ′Λ′x (3.18)

By substituting these three new equation in the Σ we have the implied

variance covariance matrix C = Σ(Ω) described as:

Σ(Ω) =

[
ΛxΦΛ′x + Θδ

Λy(I −B)−1ΓΦ′Λ′x Λy[(I −B)−1(ΓΦΓ′ + Ψ)(I −B)−1′]Λ′y + Θε

]
(3.19)

Step 1 - Data structure

In the first step of our simulation process, we generate one adjacency

data matrix A, with given density and number of nodes (according to the

simulation scheme).

We also derive X and Y as multinormal random variates with covariance

structure assigned according to the population Σ by using the mvrnorm

routine in R.

These data-sets are used to compute the population network coefficients,
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i.e. ρ and the coefficients β in terms of the elements in Σ, so they are

coherent both with the true SEM data structure and with the true NEM

specification.

Step 2 - Resampling from population

In the second step we fine-tune the data to be best suited for a Network

Effects Model (according to equation 3.1) and SEM specification (equation

3.3 ).

At this aim, we generate a random vector of disturbance ε with standard

deviation specified according to the simulation scheme.

Then we use a solving strategy to find the solution of the inverse regression

model as implemented in the qr.solve function in R, having fixed the NEM

coefficients.

At the end of this second step, we have for each of the 16 schemes the

following constants and variables.

Constants to be held in all iterations:

• Population parameters for SEM and NEM.

• Adjacency data A.

Variables depending from random disturbance in each iteration:

• The Y outcome as a function of the NEM coefficients (β and ρ) but

for a random disturbance with given variance.

• The Y- network effects outcome, that is AY .
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• The X attribute data (or indicators in the SEM terminology) to define

the latent construct in SEM and the explicative variable in the NEM.

About PLS-PM algorithm, in this simulation study, we use:

1. Wold’s procedure, summarized step by step below, for its monotony

properties (major details see the precedent chapter);

2. New Mode A applied to all measurement models;

3. The centroid scheme as inner weighting scheme.

Reiterating the procedure for S = 500 times, having fixed the values

according to the 16 factor-level combinations, we obtain random fluctu-

ations in the data structures and can estimate the coefficients’ sampling

distribution by carrying out both NEM and PLS-PM on the data.

3.5.3 Results

For sake of comparison with a typical NEM, we set Q = 1 (one outcome),

then we consider P = 3 (attribute data on the nodes).

The results are illustrated in the following.

In Figure 3.2 we compare the distributions of the 500 random replications

of estimated coefficients obtained for the NEM and for the PLS-PM under

the 16 controlling conditions of the simulation scheme.

The obtained results are very rich and allow to analyze the different effect,

the factor may have on bias, efficiency and consistency of the two kinds of

estimators.

In this work, we concentrate only on the coefficients that are common to

the two methods, that is the exogenous coefficients βp(p = 1, . . . , 3) and

the ρ correlation coefficients.
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The distribution are showed as paired box plots, for each of the 16 runs.

Since, we find some degenerate solutions in the data generation process,

we need to trimmer the empirical distributions and decided to show only

non-trivial results.

This could lead to drop out some true outlier for both the two methods,

but we expect they should randomly appears in both methods.

In the PLS-PM, there are some datasets with problems, i.e. they do not

converge or converge to improper solutions. These type of datsets are called

“imperfect”.

When the object of interest is not represented by non-converged samples,

they can be eliminated by the analysis, because they provide irrelevant in-

formation and threaten external validity [132].

In our simulations, in average, less than 3% of the runs in each diagram

(about 10 - 15 samples) give outliers. In this case we have decided to elim-

inate them.

In a further study, we plan to check for such degeneracies.

In Figure 3.2, for all three coefficients, we show two-paired box-plots of the

attribute coefficients’ empirical distributions of the NEM (dark line) and

of the PLS-PM (gray line) in the 16 schemes.

The paired labels aid to recover the 16 conditions of our experiment, ac-

cording to Table 3.1.

Then, we show analog results for the ρ coefficients estimated with the two

methods, where dark are NEM coefficients and gray are PLS-PM coeffi-

cients. In Figure 3.3 we may appreciate how systematic patterns appear

when changing the factor-level combination under control.

Changes in the disturbances’ variance seem to affect the relative efficiency

of the NEM coefficients (runs 2, 4, 10, 12 in both Figure 3.2 and Figure 3.3),
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Figure 3.2: Boxplots of the attribute coefficients’ empirical distributions in
the 16 simulation schemes: dark are NEM coefficients, gray are PLS-PM
coefficients.
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Figure 3.3: Boxplots of the ρ coefficients’ empirical distributions in the 16
simulation schemes: dark are NEM coefficients, gray are PLS-PM coeffi-
cients.
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while a proper significative changes when changing simulation conditions

seem affect also network size.

Deepen analysis is provided to give reliable results, even if it appears that

NEM coefficients’ distributions show larger fluctuations around the ex-

pected values. We use the pooled mean squared errors of the β’s empirical

distributions as a response variable in an Anova model. The effects of the

controlling factors on the simulation results are analyzed.

Table 3.2: Simulation Effects

Net Size Net Density ρ σε
NEM -0.27615 -0.00468 -0.01215 0.50416

(0.257303) (0.257303) (0.257303) (0.257303)
0.3061 0.9858 0.9632 0.0759

PLS-PM 0.54803 -0.38818 0.89048 -0.09149
(0.37899) (0.37899) (0.37899) (0.37899)

0.1760 0.3277 0.0385 0.08137

In Table 3.2 there are the simulation effects and their significance (p-

value).

We may observe that the bias actually increases when variance of distur-

bances increases in the NEM model (although p-value is 0.0759).

The ρ coefficient appears to show significative effect only for the PLS-PM

method; indeed, bias of estimates increases when the network autocorrela-

tion coefficient is larger (p-value is 0.0385).

The size of the network in the considered range (100-300 nodes) and the

network density do not seem to affect the mean squared error of estimates.
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Chapter 4

An innovative contribution
in the sociological field:
Modelling Social Influence
through Component based
Models

When actors adapt their behaviour, attitude, or belief, to the behaviours,

attitudes, or beliefs of other actors with whom they are in contact, this pro-

cess can be defined as social influence or contagion ([106]; [107]; [108]).

In the last years, different studies have analysed social behaviour and in-

stitutions by reference to relations among such concrete social entities as

people, organizations and nations.

Relational analysis contrasts on the one hand with reductionist method-

ological individualism and on the other hand, with macro-level determin-

ism, whether based on technology, material conditions, economic conflict,
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adaptive evolution or functional imperatives.

In this more intellectually flexible structural middle ground, analysts situ-

ate actors and their relations in a variety of contexts.

In terms of quantitative analysis, conventional data sets are usually viewed

in terms of units of analysis and variables that reflect a variable-centered

approach [1]. This can be characterized as a merely statistics approach.

Based on the prospect of revolutionizing social science via networks, many

special social network tools have been created to analyse network data [45].

This is considered a network-only approach.

Recently, statistical tools have been used to analyse network data for net-

work concerns (e.g. Wasserman and Pattison, [156]) and some of the net-

work tools have been used on conventional attribute data.

The study of social influence is a crucial field because it permits to work

with both network and attribute data.

4.1 Theoretical background and hypotheses

Some authors (Simon[138]; Cartwright[20]) state that influence is a special

instance of causality, that is, the modification of one person’s responses by

the actions of another.

The processes that underlie influence are different and include relations of

authority, identification, expertise and competition.

Through the network approach to social influence one needs:

• elucidating the substantive processes that underlie that there should

be structural effects in the attitudes and behaviours of actors;

• defining interpersonal proximity in a network, in an appropriate

manner given these processes;
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• assessing the predictive success of the approach using available

mathematical and statistical models of social influence processes.

4.2 Social influence from a sociological point of
view

In line with an early position of Durkheim [51], sociological theories of ac-

tion tended to focus on the exterior constraining influences of individuals’

social environments, including their stable definitions of situations and the

antecedents of such definitions.

Hence, there was a heavy concentration of interest on social facts as race,

gender, family background, population ecology and demography. The an-

alysts so described the social differentiation of groups, communities and

organizations through nominal classifications of actors (based on gender,

race, ethnicity, religion or occupation among other variables).

Through the idea that networks of social relations define social differentia-

tion, the positions of actors are revealed by their patterns of relations with

other actors, and a differentiated social structure is defined by the existence

of actors who occupy different positions in network of social relations.

According to Mead [120], the social control depends on the degree to which

individuals in society are able to assume attitudes of others who are in-

volved with them in common endeavors.

An element that creates a bridge between these two approaches is the in-

terpersonal influence.

Interpersonal influence is a foundation of actors’ effects to control their

social environment by modifying the attitudes and opinions of the others

with whom they interact. It also has an effect on the actors’ attitudes and
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opinions and is, therefore, a foundation of actors’ socialization, identity and

decisions.

In networks like groups, communities and organizations, this influence pro-

cess can produce agreements that define the culture of the group and that

frame the collective activities of its members.

In this vein, social network analysis provides two broad approaches to in-

dicating environments in which the influence between particular pairs of

actors is more or less likely.

4.2.1 Two Perspectives on Social Influence

In literature (Friedkin [67], [68], [70]; Leenders [106], [107], [108]) there are

different theories of social influence and in order to find ways to determine

the effects of contextual structures, several solutions have been tried.

According to these theories, some attitudes and opinions of significant oth-

ers influence the way in which a person comes to view a situation. The

opinions of alters are seen as an appropriate standard against which ego

evaluates his own opinion.

When forming his own opinion, ego uses other actors as his frame of refer-

ence and takes their opinions into account becoming more similar to others.

Within the social influence theory, according to Leenders [108], the notion

of a frame of reference has crystallized around two processes:

1. Communication, i.e. actors use actors with whom they are directly

tied to as their frame of reference.

2. Comparison, i.e. actors use actors they feel similar to as their frame

of reference.
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The most frequent and likely type of influence is social influence through

direct contact between ego and alter, i.e. through communication.

In this process, through discussing matters with alter, ego comes to an

understanding of an issue, because he accepts information from alter and

adds new information to his own.

The other process of contagion is social comparison.

Ego, in order to search for his social identity, compares himself to those

alters whom he considers similar to him in relevant respects, perceiving or

assessing alter’s behaviour. In this case, ego changes his behaviour, because

ego wants to be like alter. This influence process resembles the mimetic iso-

morphism, discussed by DiMaggio and Powell [38].

These two types of social influences are empirically hard to distinguish

[106].

Since individuals have multiple relations in their networks and are poten-

tially influenced by all of them, it is necessary to extend the definition.

Following Friedkin’s [67] definition of social influence, social influence oc-

curs when ego assimilates his attribute to become similar to all the friends

in his network. As a result having more relations increases the level to

which someone is influenced [33].

This approach, which is predominantly interpersonally oriented, ignores the

vast amount of research which focuses on intergroup processes ([89]; [33]).

Social influence research should take into consideration both perspectives,

since most natural settings are a mix of these two extremes ([14]; [148];

[145]; [36]; [33]).

According to Deaux and Martin [36], because social groups and the process

of social identification are originated from the interpersonal network, the

interpersonal influence will be more important.
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4.2.2 Social influence network theory

The network of interpersonal influence, however, has a special theoretical

status: if it is acknowledged as a noteworthy determinant of the actions

under examination, it must be made part of a causal model [72].

Social influence network theory (for more details see Friedkin and Johnsen

works) represented, in the late 1950s, a mathematical formalization of the

social process of attitude change when it unfolds in a social network of in-

terpersonal influences.

This theory advanced the hypothesis that networks of interpersonal influ-

ence were more important into the formation of interpersonal agreements

and group consensus.

In 1956, Cartwright and Harary [21] with the theory of structural balance,

create a link among social cognitions and social networks, and French, with

the theory of social power create a link among social networks and group

members’ positions on issues [75].

These initial formulations describe the formation of group consensus and

they do not provide an adequate account of settled patterns in case of

disagreements. This limit was overcome in 1990 through Friedkin and

Johnsen’s generalization (Friedkin [68], [69]; Friedkin and Johnsen [72],

[73], [74]).

The goal of a formal network theory of social influence is to try what is

appropriate or correct under specific circumstances through a process of

interpersonal influence, reducing uncertainty and conflict by the develop-

ment of a shared attitude.

There is not a formal specification of mechanism that shows how interac-

tions among group members operate to transform people’ s uncertainty and
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conflict into the interpersonal agreement that appears to be fundamental

to the development of a norm.

For this reason, one assumes that a norm is a special case of an attitude

for which the positive or negative evaluation of a feeling, thought or action

becomes a shared normative evaluation, creating a link between the norm

formation process and the theory of the formation of attitudes and the de-

velopment of consensus.

The formal theory involves a two-stage weighted averaging of influential

opinions. Actors start out with their own initial opinions on some matter.

At each stage, then, actors form a “norm” opinion, which is a weighted

average of the other opinions in the group. Actors then modify their own

opinion in response to this norm, forming a new opinion, which is a weighted

average of their initial opinion and the network norm.

This theory uses mathematical models and quantifications to measure the

process of social influence.

4.3 The network effects model in social influence

Network theorists discovered that the network effects model could be mod-

eled with the autocorrelation stemming from social proximity [158].

In such cases, A becomes a matrix of social distances and ρ is a substantive

parameter estimating the extent to which an actor’s outcome is affected by

the behavior of those to whom he is socially proximate [42].

The network autocorrelation model allows the investigator to model an

outcome variable for a single actor as a simultaneous consequence of both

network and individual-level variables. This is a considerably clearer and

more straightforward approach.
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Two equations can describe the social influence network theory.

One of these concerns the origins of actors’ initial opinions on an issue:

y = Xβ + ε (4.1)

E[ε] = 0, E[ε′ε] = σ2I (4.2)

The other equation concerns the transformation of these initial opinions

through interactions among people.

We refer to it as the Network Effects Model, specifying it as follows:

y = ρAy +Xβ + ε (4.3)

As discussed by Leenders [108] and Marsden and Friedkin [116], the

network effects term Ay can be interpreted as a form of social influence,

and thus provides a clear bridge between statistical analysis and social

theories where comparison and reference processes are important.

This model is appealing because it integrates covariate or attribute effects

of variables in X on the outcome y with network or interdependence effects

of Ay.

4.4 Substantive interpretation of the Network Ef-
fects Structural Model

In order to give a substantive reading of the proposed approach in a specific

application field, we consider the phenomenon of social influence that is a

crucial issue for social network research, because it links the structure of
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social relations to attitudes and behaviors of the actors in a network. In a

statistical context, the specification of:

y = ρAy +Xβ + ε (4.4)

represents the construction of opinion of an actor, considering both his in-

trinsic opinion, in absence of social influence [106], and the opinion of his

alters.

In the specific, the intrinsic opinion of the actor (ego) is represented by Xβ,

when ρ is equal to zero, but it also verifies that, in determining his opinion,

ego takes into account the opinions of his significant alters representing his

frame of reference.

The significance of ego’s alters is delineated by nearness, i.e. how the alters’

opinions and beliefs are emulated by ego, represented by Ay.

If we denote with the subscript i the elements of ego, while the elements

of ego’s alters with i’, then, yi is related to a weighted combination of the

yi′ , where the weights are given by the n × n matrix A, then y is related

to Ay.

For instance, ego’s political preference [108] can be represented in our ap-

proach by the endogenous Latent Variable ξj .

It could be a function of two elements:

i) ego’s socio-economic status, education, and income, i.e. attribute data

represented by manifest variables of the exogenous LV ξ1,...,Q−1;

ii) the political views expressed by ego’s family, neighbours, and colleagues,

represented by the exogenous LV ξQ, i.e. the latent variable associated to

the network effects dependent variables.

Together, these effects then simultaneously determine ego’s political stance.

In this case the Network Effects Structural Model (eq. 3.3): can be
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interpreted as follows:

• ξj is ego’s political preference;

• βq∈(1,...,Q−1) are the path-coefficients linking the exogenous latent

variables associated to attribute data (e.g. ego’s socio-economic sta-

tus, education, and income) to ego’s political preference;

• ρQ is the path coefficient linking the exogenous latent variable asso-

ciated to network effects dependent variable, e.g. the political views

expressed by ego’s family, neighbours, and colleagues, to ego’s politi-

cal preference; ρQ measures the magnitude of the network effects;

• ζj is the part of ego’s political preference that is not explained by the

model.

It is possible to represent the process of social influence through a path

diagram in a Network Effects Structural Model, as described in the Fig-

ure 4.1.

4.5 Further developments

In this work we have been interested in understanding how the social rela-

tionships influence people’s choices, opinions and behaviors.

The substantive argument is that individuals modify their actions in re-

sponse to other individuals’ actions, therefore the networks of interpersonal

influence that form these responses are a potentially noteworthy part of this

work.

We have examined the nature and role of the social influence exerted by

the network on its members ([2]; [133]; [37]), combining the elements of the
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SES's ego

Others' views

ego's political stance

x1 x2 x3

Ay1

Ay2

Ay3 y1

y2

y3

Figure 4.1: Social influence in the PLS-PM model

99



Modelling Social Influence through Component based Models

social network analysis and those of the PLS Path hypotheses.

The methodological argument is that controlling the social network effects

is essential for understanding of individual actions, because an important

kind of social structure emerges from the individuals’ responses to other

individuals’ action.

In order to frame our discussion we use the study of Bagozzi and Dholakia

[6] to start with.

Bagozzi and Dholakia [6] have modeled people’s intentions as a function of

individual-level and group-level variables that act separately to influence

the people’s attitudes.

There are two hypotheses whic are fundamental in socially targeted mar-

keting on why people interact with others, they are:

• People want to get and share information in the network in order to

know what others think or to validate on a decision already made or

to buy a product (e.g., [84]; [118]);

• People want to understand and deepen salient aspects of one’s self in

order to obtain access to social resources and facilitate the attainment

of one’s future goals [118], i.e they may help one to form, clearly define

and elaborate on one’s own preference, taste and value.

4.5.1 Multiple networks

Analyzing the behavior of these individuals, such as their purchasing or

technology adoption tendencies, requires statistical techniques that can

handle both the scope and the complexity of the data.

One aspect of this complexity is the social network.
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A popular approach to study this phenomenon is to use a model with

explicit autocorrelation between individual outcomes, i.e. Network Auto-

correlation Models, described above.

But this approach is defined with a single network structure term, ignoring

the possibility that an individual may belong to two or more groups.

The advent of the Information Age has opened new possibilities in the field

of social network analysis by making very large repositories of data avail-

able to researchers [77].

The depth of data now available, through phone calls, electronic commu-

nication via email, social networking services, blog-providers, etc provides

researchers with a rich and publicly observable data to use in the analysis

of social interactions.

An actor can be a member of multiple distinct but overlapping networks,

such as a friend network, a work colleague network, a family network, and

so forth, and each of these networks may have some connection to the out-

come of interest, so a model that condenses all networks into one relation

will be insufficient [165].

4.5.2 Homophily

It is necessary to consider the possibility that the network autocorrelation,

due to some direct influence of an individual’s neighbours on his behavior,

can be opposed to the effect of homophily, in which social ties form among

individuals with similar antecedent characteristics, who may then behave

similarly as a result.

A pervasive feature of social and economic networks is that contacts tend

to be more frequent among similar agents than among dissimilar ones.

The presence of homophily has important implications on how agents’ char-
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acteristics - genders, races, ethnicities, ages, class backgrounds, educational

attainment, etc. - impinge on the information they receive, the attitudes

they form, and the interactions they experience.

The result is that people’s personal networks are homogeneous with regard

to many sociodemographic, behavioral, and intrapersonal characteristics.

Homophily therefore implies that distance in terms of social characteristics

is translated into network distance [119].

It is therefore important to understand the generative process of homophilous

social networks, and how the agents’ preferences and their meeting oppor-

tunities concur in determining the observed mix of social ties [29]. Through

the study of homophily it is possible to note how the network’s surrounding

contexts can drive the formation of its links.

One looks beyond the network to understand where the link comes from,

in the specific, one looks at some social environments, e.g. schools and

companies, to which the nodes belong. Therefore, in the same network it

is necessary to consider both intrinsic effects and contextual effects on the

formation of any single link.

If we want to represent this phenomenon in our model, through a path

diagram, we can represent it as in the Figure 4.2.
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Figure 4.2: Homophily in the PLS-PM model
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Conclusions

This thesis stems from the idea to draw a statistical soft-modeling frame-

work to network data.

Network data arise in very different and multidisciplinary fields in order to

study relational ties among units. The different fields highlighted in recent

years the necessity to collect relational and attribute data, as well as meta-

data describing the actors in the network.

Since usual relational datasets are characterized by i) very different amount

of units (from very few units to huge networks), ii) biased sampling (for

instance, people with more social connections may have a higher chance

of selection) and iii) a kind of heterogeneous information attached to both

nodes and ties; these facets highlight the peculiarity for classical statistical

tools and models to be applied.

In the specific, we are interested in processes where social relations provide

a basis for the alteration of an attitude or behavior by one actor in response

to another one.

This social process of attitude change, that appears in a social network, is

known as social influence or contagion.

A mathematical formalization of the effects of social network on behaviors

is given by the Network Effects Model.
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Conclusions

From an empirical point of view, these models are far from being directly

observable.

The possibility of measuring them as latent factors depending from multi-

dimensional constructs still remains.

All together, a component-based approach to network data through Partial

Least Squares-path model algorithms is proposed.

A simulation study is presented in order to compare the Network Effects

Model with the proposed approach by examining coefficients estimated from

the two methods while controlling for specific attributes: network size, net-

work density, autocorrelation coefficients and standard deviation of distur-

bances.

Numerical simulation seems to show significant results with more robust

results of the proposed approach with respect to traditional Network Effect

Model.

Anyway, further insight is due to assess some degeneracies that appeared

in the Monte Carlo simulations in order to establish conclusive results.

The new approach proposed in this thesis can be considered a powerful tool

because, through it, we can analyse the research hypotheses from several

points of view, by means of different methodologies.

From the Social Network Analysis point of view, we can analyse Network

Effect Models ([5]; [43]) through PLS approach.

From the Structural Equation Modeling point of view we can extend the

Partial Least Squares - Path Modeling ([160]; [149]) to network data.

From the Sociological point of view, we can operationalize the social influ-

ence ([106]; [107]; [108]).

From the Statistical point of view, we can assess reliability of estimated

coefficients, i.e. weights of PLS-path model.
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Conclusions

This is the beginning of a new approach and a new vision within Partial

Least Squares methodology.
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Appendix A

Routines in R Language

A.1 Simulation data

Function useful in order to simulate data

MySim.data_2step <- function(k,n,p,q,lambdax,lambday,phi,tetax,Beta, Gamma,

nettuno,tetay,densita,var.e) {

e <- list()

x <- list()

y.sem <- list()

y <- list()

y_lagged.sem <- list()

w1 <- list()

w1_unica <- rgraph(n,,densita)

num.VLend <- nrow(as.matrix(Beta))

num.VMeso <- p+q

sigmaX <- lambdax%*%phi%*%t(lambdax) + tetax

sigmaY <- (lambday%*%

(

(solve(diag(num.VLend)-as.matrix(Beta)))

%*%

((Gamma%*%phi%*%t(Gamma))+nettuno)
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%*%

(t(solve(diag(num.VLend)-as.matrix(Beta))))

)

%*% t(lambday)

)

+ tetay

sigmaYX <- lambday%*% (solve(diag(num.VLend)-as.matrix(Beta))) %*%

Gamma %*% t(phi) %*% t(lambdax)

# prima parte di sigma --> colonne di sigmaX e sigmaYX

pezzo1.sigma <- rbind(sigmaX,sigmaYX)

# seconda parte di sigma --> colonne di sigmaY e sigmaXY

pezzo2.sigma <- rbind(t(sigmaYX),sigmaY)

sigma <- cbind(pezzo1.sigma,pezzo2.sigma)

nomi <-c(paste("x_",c(1:(num.VMeso -1)),sep=""),"y_lagged","y")

colnames(sigma)<- nomi

rownames(sigma) <- nomi

true_beta <- (solve(sigma[1:num.VMeso,1:num.VMeso])%*%

sigma[1:num.VMeso,(num.VMeso+1)])[1:(num.VMeso -1),]

true_rho <- (solve(sigma[1:num.VMeso,1:num.VMeso])%*%

sigma[1:num.VMeso,(num.VMeso+1)])[num.VMeso,]

for (kk in 1:k) {

# Generate p+q multinormal variables with above defined covariance structure

xy <- mvrnorm(n, mu=rep(0,num.VMeso+q), sigma, empirical=F)

colnames(xy) <- nomi

x[[kk]] <- xy[,1:(num.VMeso-q)]

y_lagged.sem[[kk]] <- as.matrix(xy[,(num.VMeso-q+1):num.VMeso])

colnames(y_lagged.sem[[kk]]) <- c("y.lagged")

y.sem[[kk]] <- as.matrix(xy[,(num.VMeso+1):(num.VMeso+q)])

colnames(y.sem[[kk]]) <- c("y.sem")

#Assemble y from its components:

e[[kk]]<- mvrnorm(n,0,(var.e)^2,empirical=T)
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y[[kk]]<-qr.solve(diag(n)-true_rho*w1_unica,x[[kk]]%*%true_beta+e[[kk]])

colnames(y[[kk]]) <- c("y")

w1[[kk]] <- w1_unica

}

list(x=x,y=y,w1=w1,y_lagged.sem=y_lagged.sem,y.sem=y.sem,beta=true_beta,

rho=true_rho,sigma=sigma,densita=densita,var.e=var.e,e=e)

}
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A.2 The PLS - PM Algorithm

The PLS-PM algorithm used in this work

myPLSPM_all_Wold<-function(X, p_blocchi, path, scaling=NA, outer.mode=NA, PLScomp=NA, inner.scheme=NA){

if (is.na(scaling)==T) {

scaling<-vector("list", length(p_blocchi))

for (i in 1:length(scaling)) {

scaling[[i]]<-c(rep("NUM",p_blocchi[i]))

}

}

#REFLECTIVE WAY

if (is.na(outer.mode)==T) {

outer.mode<-vector("list", length(p_blocchi))

for (i in 1:length(outer.mode)) {

outer.mode[[i]]<-c("RIF")

}

}

if (is.na(PLScomp)==T) {

PLScomp<-array(1, length(p_blocchi))

}

#CENTROID SCHEME

if (is.na(inner.scheme)==T) {

inner.scheme<-c("CEN")

}

X <- as.matrix(X)

path <- as.matrix(path)

link <- t(path)+path

N <- nrow(X)

P<- ncol(X)

blocchi<-list()

mean_X <-list()

var_X <- list()

correzione<-(sqrt(N/(N-1)))

QQ <- list()

p_blocchi<-c(1,p_blocchi)

for (q in 1:(length(p_blocchi)-1)) {

blocchi[[q]]<-as.matrix(X[,(sum(p_blocchi[1:q])):(sum(p_blocchi[1:q])+p_blocchi[q+1]-1)])

QQ[[q]] <- blocchi[[q]]
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}

p_blocchi<-p_blocchi[2:length(p_blocchi)]

nbloc<-length(p_blocchi)

w <- vector("list", nbloc)

z <- vector("list", nbloc)

y <- vector("list", nbloc)

e <- matrix(,nbloc,nbloc)

converg<-numeric()

ncicli<-0

z_temp<-matrix(0,N,1)

###############################################################

# data pre-handling #

###############################################################

for (q in 1:(nbloc)) {

for (p in 1:(p_blocchi[q])) {

if (scaling[[q]][p]=="NUM") {

QQ[[q]][,p]<-scale(QQ[[q]][,p])*correzione

}

if (scaling[[q]][p]=="RAW") {

QQ[[q]][,p]<-QQ[[q]][,p]

}

}

}

###############################################################

# initialization #

###############################################################

for (q in 1:nbloc) {

w[[q]]<-svd(scale(blocchi[[q]]))$v[,1]

w[[q]]<-w[[q]]/sqrt(as.numeric(t(w[[q]])%*%w[[q]]))

y[[q]]<-QQ[[q]] %*% w[[q]]

#y[[q]]<-QQ[[1]][,1]

}

###############################################################

# iterative cycle #

###############################################################

repeat {

ncicli<-ncicli+1
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y_old <- y[[nbloc]]

for (q in 1:nbloc) {

################################################################

# --- updating the weights ["e"] ---- ##########################

################################################################

# --- updating the weights ["e"]: CENTROID scheme ---- #

if (inner.scheme=="CEN") {

z[[q]] <- z_temp

for (k in 1:nbloc) {

e[q,k]<-cor(y[[q]],y[[k]])

if (e[q,k]>0) {e[q,k]<-1}

else {e[q,k]<- -1}

z[[q]]<-(z[[q]])+(link[q,k]*e[q,k]*y[[k]])

}

}

# --- updating the weights ["e"]: FACTORIAL scheme ---- #

if (inner.scheme=="FAC") {

z[[q]] <- z_temp

for (k in 1:nbloc) {

e[q,k]<-cor(y[[q]],y[[k]])

z[[q]]<-(z[[q]])+(link[q,k]*e[q,k]*y[[k]])

}

}

# --- standardize inner estimates if PLScore mode ---- #

if (outer.mode[q]!="PLScow") {

z[[q]]<-scale(z[[q]])*correzione

}

###########################################################

# ---- updating the weights ["w"] ---- ####################

###########################################################

# --- updating the weights ["w"]: REFLECTIVE WAY ---- #

if (outer.mode[q]=="RIF") {

w[[q]]<-(1/N)*(t(QQ[[q]]) %*% z[[q]])

}

# --- updating the weights ["w"]:FORMATIVE WAY ---- #
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if (outer.mode[q]=="FOR") {

w[[q]]<-solve(t(QQ[[q]]) %*% QQ[[q]]) %*% t(QQ[[q]]) %*% z[[q]]

}

# --- updating the weights ["w"]:PLScore WAY ---- #

if (outer.mode[q]=="PLScore") {

w[[q]]<-myPLSRdoubleQ(z[[q]],,QQ[[q]],,PLScomp[q])$B

}

# --- updating the weights ["w"]:PLScow WAY ---- #

if (outer.mode[q]=="PLScow") {

w[[q]]<-myPLSRdoubleQ(z[[q]],,QQ[[q]],,PLScomp[q])$B

w[[q]]<-w[[q]]/sqrt(as.numeric(t(w[[q]])%*%w[[q]]))

}

# --- outer estimations ["y"] ---- #

y[[q]] <- QQ[[q]] %*% w[[q]]

if (outer.mode[q]!="PLScow") {

y[[q]] <- scale(y[[q]])*correzione

}

}

#print(e)

#num_converg <- sum((y_old-z[[nbloc]])^2)

#den_converg <- sum(y_old^2)

#num_converg <- sum((w_old-w[[nbloc]])^2)

#den_converg <- sum(w_old^2)

#converg <- num_converg/den_converg

converg <- sum((abs(y_old)-abs(y[[nbloc]]))^2)

print("converg")

print(converg)

print("ncicli")

print(ncicli)

if (converg<0.0000001 | ncicli>101) {break}

}

##############################################################

# computation of the LVs using the outer weigts w #
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##############################################################

VL <- list()

sqm_VL <- array(, nbloc)

w_tilde <- list()

abs_w_tilde<-list()

VLS <- list()

somma_w_tilde<-array(,nbloc)

w_tilde_normal <- list()

for (q in 1:nbloc)

{

VL[[q]] <- QQ[[q]] %*% w[[q]]

sqm_VL[q] <- sd(VL[[q]])/sqrt(N/(N-1))

#cat("stDev di VL[q]: ")

#print(sd(VL[[q]]))

w_tilde[[q]] <- w[[q]]/as.numeric(sqm_VL[q])

#cat("w_tilde: ")

#print(w_tilde[[q]])

VLS[[q]] <- QQ[[q]] %*% w_tilde[[q]]

abs_w_tilde[[q]] <- abs(w_tilde[[q]])

somma_w_tilde[[q]] <- sum(abs_w_tilde[[q]])

w_tilde_normal[[q]] <- w_tilde[[q]]/somma_w_tilde[[q]]

}

# ----- the LVs are standardized ----- #

############################################################################

# computation of the correlation between each LV and the corresponding MVs #

############################################################################

CORR_VL <- list()

COMM_vm <- list()

COMM <- list()

for (q in 1:nbloc) {

#CORR_VL[[q]] <- (t(QQ[[q]])) %*% VLS[[q]]/N

CORR_VL[[q]] <-cor(VLS[[q]],QQ[[q]])

# ----- computation of the Communality and Redundancy indexes ------ #

COMM_vm[[q]] <- CORR_VL[[q]]^2

COMM[[q]] <- sum(COMM_vm[[q]])/p_blocchi[[q]]

}

##############################################################################

# AVERAGE COMMUNALITY #

# #

# (the average communality is obatined taking into account all the #

# comunality indexes, i.e. one per block) #
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##############################################################################

COMM_M <-0

for (i in 1:nbloc) {

if (p_blocchi[i]>1) {

COMM_M<-COMM_M+(p_blocchi[[i]]*COMM[[i]])

}

}

COMM_M<-COMM_M/sum( p_blocchi[which(p_blocchi>1)] )

###################################################################

# computation of the parameters of the inner model by regressing #

#each endo on own predictors #

###################################################################

n_eso<-0

repeat {

n_eso<-n_eso+1

if (length(grep(1, path[n_eso,])) > 0) {break}

#if (path[n_eso,1]==1) {break}

}

n_eso<-n_eso-1

n_endo<-nbloc-n_eso

#print(n_endo)

pred<-vector("list",n_endo)

inn_regr<-vector("list",n_endo)

R2<-array(,n_endo)

RED_blocco<-array(,n_endo)

RED_vm<-vector("list", n_endo)

for (i in 1:n_endo) {

pred[[i]]<-matrix(,N,sum(path[n_eso+i,]))

count<-0

for (j in 1:ncol(pred[[i]])) {

repeat {

count<-count+1

if (sum(path[n_eso+i,1:count])==j) {break}

}

pred[[i]][,j]<-VLS[[count]]

}

inn_regr[[i]]<-lm(VLS[[n_eso+i]]~pred[[i]])

R2[i]<-(var(VLS[[n_eso+i]])-(var(residuals(inn_regr[[i]]))))/var(VLS[[n_eso+i]])

RED_blocco[i]<-R2[i]*COMM[[n_eso+i]]

RED_vm[[i]]<-R2[i]*COMM_vm[[n_eso+i]]

}

R2_M<-mean(R2)
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GOF<-sqrt(R2_M*COMM_M)

list(QQ=QQ, w=w,pred=pred,ncicli=ncicli,VLS=VLS,VL=VL,

CORR_VL=CORR_VL, w_tilde=w_tilde,w_tilde_normal=w_tilde_normal,

COMM=COMM, COMM_M=COMM_M,COMM_vm=COMM_vm,

blocchi=blocchi,N=N, inn_regr=inn_regr, GOF=GOF,R2=R2,

R2_M=R2_M, RED_blocco=RED_blocco ,RED_vm=RED_vm)

}
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A.3 Application of SNA, OLS and PLS-PM

Function useful to apply SNA, OLS and PLS-PM on simulated data

MyFit.simulation <- function(k,p,q=1,data,SNA=TRUE,OLS=TRUE,PLSnew=TRUE) {

results<-matrix(,k,(5*p+13))

weights.X<-matrix(,k,p)

weights.Y<-matrix(,k,q)

weights.lagged<-matrix(,k,q)

colnames(results) <- c(paste("True_beta",c(1:p),sep=" "),"True_rho",

paste("beta_LNAM",c(1:p),sep=" "), "rho_LNAM","R2_LNAM", "AIC_LNAM",

paste("beta_OLS",c(1:p),sep=" "), "rho_OLS","R2_OLS",

"beta_PLSnew", "rho_PLSnew","R2_PLSnew","GoFnew","True_Sigma",

paste("cor_y_x",c(1:p),sep=" "),"cor_y_ylag","Density",

paste("beta_PLSnew_X",c(1:p),sep=""))

colnames(weights.X) <- paste("PLS_w_x",c(1:p),sep=" ")

colnames(weights.Y) <- paste("PLS_w_y",c(1:q),sep=" ")

colnames(weights.lagged) <- paste("PLS_w_lag",c(1:q),sep=" ")

if (PLSnew == TRUE) {

inner_matrix<-matrix(c(0,0,0,0,0,0,1,1,0),3,3,byrow=T)

colnames(inner_matrix)<-c("x","y_lag","y")

rownames(inner_matrix)<-c("x","y_lag","y")

}

for (kk in 1:k) {

results [kk, 1:p] <- data$beta

results [kk, p+1] <- data$rho

results [kk, 3*p+11] <- data$var.e

results [kk, 4*p+13] <- data$densita

y_lagged<-data$w1[[kk]]%*%data$y[[kk]]

results[kk,(3*p+12):(4*p+11)] <- cor(data$y[[kk]], data$x[[kk]])

results[kk,4*p+12] <- cor(data$y[[kk]],y_lagged)

if (OLS == TRUE) {

LM <- lm(data$y[[kk]] ~ 0+ y_lagged+ data$x[[kk]])

results[kk,(2*p+5):(3*p+4)] <- LM$coefficients[2:(p+1)]
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results[kk,(3*p+5)] <- LM$coefficients[1]

results[kk,(3*p+6)] <- summary(LM)$r.squared

}

if (SNA == TRUE) {

LNAM <-lnam(data$y[[kk]],data$x[[kk]],data$w1[[kk]])

rss <- sum(LNAM$residuals^2)

mss <- sum((LNAM$fitted - mean(LNAM$fitted))^2)

results[kk,(p+2):(2*p+1)] <-t(LNAM$beta)

results[kk,(2*p+2)] <-LNAM$rho1

results[kk,(2*p+3)] <-mss/(mss + rss)

results[kk,(2*p+4)] <-round(-2 * LNAM$lnlik.model + 2 * LNAM$df.model,2)

}

#fit PLS new A

if (PLSnew == TRUE) {

t<-cbind(data$x[[kk]],y_lagged,data$y[[kk]])

colnames(t)<- c(paste("x",c(1:p),sep="_"),"y_lag","y")

t <- scale(t,T,F)

PMnew <- myPLSPM_all_Wold(t,c(p,1,1),inner_matrix,scaling=

list(rep(c("RAW"),p),rep(c("RAW"),q),rep(c("RAW"),q)),outer.mode=

list(c("PLScow"),c("PLScow"),c("PLScow")),PLScomp= c(1,1,1),

inner.scheme= c("CEN"))

path.model <- lm(PMnew$QQ[[3]] %*% PMnew$w[[3]]~PMnew$QQ[[1]]

%*%PMnew$w[[1]] + PMnew$QQ[[2]] %*%PMnew$w[[2]])

results[kk,(3*p+7)] <- path.model$coefficients[2]

results[kk,(3*p+8)] <- path.model$coefficients[3]

results[kk,(3*p+9)] <- summary(path.model)$r.squared

results[kk,(3*p+10)] <- PMnew$GOF

weights.X[kk,]<- unlist(PMnew$w)[1:p]

weights.lagged[kk,]<- unlist(PMnew$w)[(p+1):(p+q)]

weights.Y[kk,]<- unlist(PMnew$w)[(p+q+1):(p+q+q)]

results[kk,(4*p+14):(5*p+13)] <- ((unlist(PMnew$w)[1:p])*

path.model$coefficients[2])

}

}

list(results=results,weights.X=weights.X,weights.lagged=weights.lagged,

weights.Y=weights.Y)

}

120



A.4. Results of three methods

A.4 Results of three methods

Function useful to obtain the results of SNA, OLS and PLS-PM on simulated data

MySim.fit.data<-function (k,n,p,q=1,var.e,densita,sem){

dataset <- list()

risultati <-list()

i<-0

time.sim <- system.time(

for (t in 1:length(densita)){

for (s in 1:length(var.e)){

i<-i+1

print("Results for simulation scheme number:")

print(i)

dataset[[i]] <-MySim.data_2step(k,n,p,q,lambdax=sem[[1]],

lambday=sem[[2]],phi=sem[[3]],tetax=sem[[4]],Beta=sem[[5]],

Gamma=sem[[6]],nettuno=sem[[7]],tetay=sem[[8]],densita[t],var.e[s])

risultati[[i]] <- MyFit.simulation(k,p,q,dataset[[i]],SNA=TRUE,OLS=TRUE,PLSnew=TRUE)

}

}

)

print (time.sim[1])

list(dataset=dataset, risultati=risultati)

}
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