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Abstract 

 

Histone methylation changes and formation of chromatin loops involving 

enhancers, promoters and 3' end regions of genes have been variously associated 

with active transcription in eukaryotes. It is not known if these events are 

mechanistically linked and their specific role in transcription initiation. We have 

studied the effect of activation of the Retinoic A receptor, at the RARE-promoter 

chromatin of CASP9 and CYP26A1 genes, at 15 and 45 min following RA 

exposure, and we found that histone H3 lysine 4 and 9 are demethylated by the 

lysinespecific demethylase, LSD1 and by the JMJ-domain containing 

demethylase, D2A. The action of the oxidase (LSD1) and a dioxygenase 

(JMJD2A) in the presence of Fe++ elicits an oxidation wave that locally modifies 

the DNA locally and recruits the enzymes involved in base and nucleotide 

excision repair (BER and NER). These events are essential for the formation of 

chromatin loop(s) that juxtapose the RARE element with the 5' transcription start 

site and the 3' end of the genes. The RARE bound-receptor governs the 5' and 3' 

end selection and directs the productive transcription cycle of RNA polymerase. 

This is the first demonstration that chromatin loops, histone methylation changes 

and localized DNA repair are mechanistically linked.
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The chromatin structure 

DNA consists of four nucleotide bases [adenine (A), guanine (G), cytosine (C), 

and thymine (T)] that are paired together (A-T and C-G) to give DNA its double 

helical shape. Nucleotide base sequences are the genetic code or instructions for 

protein synthesis. The associated DNA and histone proteins are collectively called 

chromatin (Fig. 1); the complex is tightly bonded by attraction of the negatively 

charged DNA to the positively charged histones. Genetic information encoded in 

DNA is largely identical in every cell of a eukaryote. However, cells in different 

tissues and organs can have widely different gene expression patterns and can 

exhibit specialized functions. 

Gene expression in different cell 

types needs to be appropriately 

induced and maintained and also 

has to respond to developmental 

and environmental changes; 

inappropriate expression patterns 

lead to disease. Chromatin is not 

simply a packaging tool; it is also 

a dynamically entity that contains 

the regulatory signals necessary 

to program appropriate cellular 

pathways and is believed to 

contribute to the control of gene 

expression. 

 

Epigenetics 

Epigenetics is defined today as the study of changes in gene function that are 

transmitted through both mitotis and meiosis without involving any change in the 

DNA sequence (Wu C. & Morris J. R., 2001). The term is made of two parts: 

Greek prefix “epi”, which means upon or over and “genetics”, which is the 

science of genes, heredity, and variation in living organisms. This word was first 

defined by Conrad Waddington as the branch of biology which studies the causal 

Figure 1 Schematic representation of 

chromatin structure. The chromatin fiber that 

makes up chromosomes is composed of 

nucleosome units, each consisting of DNA 

wrapped around histone proteins. 
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interactions between genes and their environment that create the phenotype 

(Waddington C. H., 2012). It is driven by specialized mechanisms that include 

DNA methylation, small non-coding regulatory RNAs, histone variants and 

histone post-translational modifications (Margueron R. & Reinberg D., 2010). 

The interaction between different epigenetic mechanisms controls the accessibility 

of genes by the transcriptional machinery. 

 

Histone post-translational modifications 

In eukaryotes, 147 bp of DNA is wrapped around an octamer of histones 

consisting of two copies of H2A, H2B, H3 and H4 with one molecule of histone 

H1 bound to the DNA as it enters the nucleosome core particle (Fig. 2). The 

resulting nucleosomes are further compacted to form higher-order chromatin 

structures, which remain poorly understood. The 

core histones (H2A, H2B, H3 and H4) have two 

domains: a histone fold domain, which is 

involved in interactions with other histones and 

in wrapping DNA around the nucleosome core 

particle, and an amino-terminal tail domain, 

which protrudes from the nucleosome (Luger K. 

et al., 1997) and can be subject to post-

translational modifications (Fig. 3), such as 

acetylation, methylation, phosphorylation and 

monoubiquitylation, as well as other modifications that are less well studied 

(Kouzarides T., 2007; Vaquero A. et al., 2003; Strahl  B. D. and Allis C. D., 

2000). These modifications are thought to contribute to the control of gene 

expression through influencing chromatin compaction or signaling to other 

protein complexes. Therefore, an appropriate balance of stability and dynamics in 

histone post-translational modifications is necessary for accurate gene expression. 

Chromatin structure or landscape is a composite of various domains characterized 

by the local enrichment of a specific combination of histone post-translational 

modifications, histone variants, nucleosome occupancy, DNA methylation 

patterns and nuclear localization.  

Figure 2 Structure of a 

nucleosome, with the DNA 

wrapped around an octameric 

histone core. 

 



Introduction 

8 

 

 

 

Although some proteins that regulate chromatin structure are well defined, exactly 

how the histone-modifying enzymes, histone modifications and modification-

recognizing proteins are localized and restricted to specific loci is currently 

unclear. Genome-wide profiling (using chromatin immunoprecipitation followed 

by microarray (ChIP–chip) or sequencing (ChIP–seq)) has provided a partial 

picture of the chromatin landscape, including the localization of histone post-

translational modifications and histone variants, DNA methylation patterns and 

nucleosome occupancy. Moreover, the discovery of protein domains — including 

chromodomains, bromodomains, plant homeodomains (PHDs), tudor domains and 

malignant brain tumour (MBT) domains — that specifically recognize a defined 

histone modification has advanced the understanding of the role of histone post-

translational modifications (Ruthenburg A. J. et al. 2007; Campos E. I. and 

Reinberg D., 2009). Some of them contribute to the transmission of epigenetic 

information or participate in the process of transcription (the so-called “active 

marks”), and others are probably restricted to “structural functions” (Berger S.L. 

et al., 2009; Trojer P. and Reinberg D., 2006). Although specific histone post-

translational modifications have been correlated with defined functions, such as 

gene regulation, it is clear that a single type of histone post-translational 

Figure 3 Histone modifications involved in chromatin 

reorganization. Histone N-tails are post-translationally modified, 

and certain combinations of histone modifications appear to 

generate a “histone code”. 
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modification does not originate a single outcome. For example, histone 3 lysine 9 

trimethylation (H3K9me3) is found both in silent heterochromatin and at some 

active genes (Campos E. I. & Reinberg D., 2009). 

 

Histone methylation 

Histone methylation occurs on all basic residues: arginines (Byvoet P. et al., 

1972), lysines (Murray K., 1964) and histidines (Fischle W. et al., 2008). Lysines 

can be monomethylated (me1) (Murray K., 1964), dimethylated (me2) (Paik W. 

K. & Kim S., 1967) or trimethylated (me3) (Haempel K. et al., 1968) on their ε-

amine group (Fig. 4); arginines can be monomethylated, symmetrically 

dimethylated or asymmetrically dimethylated on their guanidinyl group (Borun T. 

W. et al., 1972), and histidines have been reported to be monomethylated (Borun 

T. W. et al., 1972; Gershey E. L. et al., 1969), although this methylation seems to 

be rare and has not been further characterized. The most extensively studied 

histone methylation sites include histone H3 lysine 4 (H3K4), 9, 27, 36, 79 (Fig. 

5) and histone H4 lysine 20. Sites of arginine (R) methylation include H3R2, 

H3R8, H3R17, H3R26 and H4R3. However, many other basic residues 

throughout the histone 

proteins have also 

recently been identified 

as methylated by mass 

spectrometry and 

quantitative proteomic 

analyses (reviewed in 

Young N. L. et al., 2010). 

The functional effects and 

the regulation of the newly identified methylation events remain to be determined. 

In general, methyl groups are believed to turn over more slowly than many other 

post-translational modifications, and histone methylation was originally thought 

to be irreversible (Byvoet P. et al., 1972). The discovery of an H3K4 demethylase, 

lysine-specific demethylase 1A (KDM1A; also known as LSD1), revealed that 

histone methylation is, in fact, reversible and dynamic (Shi Y. et al., 2004). Three 

Figure 4 Lysine mono-, di- and trimethylation. The 

diversity of chemical states obtained by selective and 

sequential methylation of lysine residues. 
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families of enzymes have been identified thus far that catalyse the addition of 

methyl groups donated from S-adenosylmethionine to histones. The SET-domain-

containing proteins (Rea S. et al., 2000) and DOT1-like proteins (Feng Q. et al., 

2002) have been shown to 

methylate lysines, and members 

of the protein arginine N-

methyltransferase (PRMT) 

family have been shown to 

methylate arginines (Bannister A. 

J. & Kouzarides T., 2011). These 

histone methyltransferases have 

been shown to methylate histones 

that are incorporated into 

chromatin and also free histones 

and non-histone proteins (Huang 

J. & Berger S. L., 2008).  

Two families of demethylases have been identified thus far that mediate the 

removal of methyl groups from different lysine residues on histones. These are the 

amine oxidases (Shi et al., 2004) and jumonji C (JmjC)-domain-containing, iron-

dependent dioxygenases (Tsukada Y. et al., 2006; Whetstine J. R. et al., 2006) 

(Fig. 6). These enzymes are highly conserved from yeast to humans and 

demethylate histone and non-histone substrates. Arginine demethylases remain 

more elusive. Although an initial report suggested that one of the JmjC domain 

proteins, JMJD6, demethylates arginines (Chang B. et al., 2007), a more recent 

study indicates that the main function of JMJD6 is to hydroxylate an RNA-

splicing factor (Webby C. J. et al., 2009). Monomethyl arginines have also been 

shown to be converted by protein arginine deiminase type 4 (PADI4) to citrulline. 

However, PADI4 is not an arginine demethylase, as it works on both methylated 

and unmethylated arginine (Cuthbert G. L. et al., 2004). 

Figure 5 Methylation of different lysine 

residues in the "tail" of histone H3 has 

different effects on gene transcription. 
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Variation in patterns of methylations of histone tails are essential components of 

epigenetic regulation, as they reflect and modulate chromatin structure and 

function. In contrast to DNA CpG methylation, which is only prominent in some 

higher eukaryotes, histone methylation is present in organisms such as C. elegans 

and D. melanogaster, in which DNA methylation is largely absent. Depending on 

the biological context, some methylation events may have to be stably maintained 

(for example, in terminal differentiation) whereas others may need to be available 

to change (for example, in response to stimuli). Indeed, methylation at different 

lysine residues on histones has been shown to 

display differential turnover rates (Zee B. M. 

et al., 2010). An appropriate balance between 

stable and dynamic histone methylation is thus 

necessary to maintain normal biological 

function (Fig. 7). Methyl-modifying enzymes 

have a crucial role in almost every aspect of 

biology, and disruption of their function leads 

to developmental defects, diseases or ageing. 

Figure 6 Structure and mechanism of action of the demethylases LSD1 (a) and 

JMJD2A (b). (a) Removal of methyl group(s) from mono- and dimethylated lysine 

residues is an oxidative process catalyzed by flavin-dependent amine oxidases from 

the LSD1 family. The substrate is oxidized by FAD to generate an imin intermediate, 

which is then hydrolyzed. This mechanism requires a protonated nitrogen and 

therefore precludes the use of trimethylated lysines as a substrate. (b) Histone 

demethylation catalyzed by JmjC domain–containing proteins. The oxidative 

demethylation mechanism used by these metalloenzymes requires Fe(II) and alpha-

ketoglutarate as cofactors. No chemical restriction exists for JmjC domain–mediated 

demethylation. 

Figure 7 Model of dynamic 

interplay of enzymes mediating 

methylation of histone lysines. 

Methylases are shown in pink and 

demethylases are shown in red. 
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A current model suggests that methylated histones are recognized by chromatin 

effector molecules (“readers”), causing the recruitment of other molecules to alter 

the chromatin and/or transcription states (Taverna S. D. et al., 2007). The location 

of the methyl-lysine residue on a histone tail and the degree of methylation 

(whether me1, me2 or me3) have been associated with differential gene 

expression status. For example, H3K4me3 is generally associated with active 

transcription (Bernstein B. E. et al., 2002; Santos-Rosa H. et al., 2002), or with 

genes that are poised for activation, whereas H3K27me3 is associated with 

repressed chromatin. H3K4me1 is often associated with enhancer function 

(Heintzman N. D. et al., 2007), whereas H3K4me3 is linked to promoter activity. 

H3K79me2 is important for cell cycle regulation, whereas H3K79me3 is linked to 

the WNT-signalling pathway (Mohan M. et al., 2010). However, there are 

instances in which the same modifications can be associated with opposing 

activities, such as transcriptional activation and repression. This is the case for 

example of H3K4me2 and H3K4me3. Probably, the change in activity is due to 

different effector proteins. For instance, when H3K4me2 or H3K4me3 marks are 

bound by the PHD-domain containing co-repressor protein inhibitor of growth 

family member 2 (ING2), they are associated with transcriptional repression (Shi 

X. et al., 2006) through the stabilization of a histone deacetylase complex. 

Combined marks can also have different roles to the same marks appearing in 

isolation. Although H3K4me3 and H3K27me3 are marks associated with active 

and repressive transcription, respectively, when they are present together, they 

appear to have a role in poising genes for transcription (Bernstein B. E. et al., 

2006). Combinatorial histone modifications are efficiently recognized by proteins 

with multiple domains to effect specific outcomes. For instance, the chromatin 

regulator TRIM24 has a PHD domain and a bromodomain, which recognize 

unmethylated H3K4 and acetylated H3K23 on the same histone tail (Tsai W. W. 

et al., 2010): this binding leads to estrogen-dependent gene activation. 

Combinatorial action of methyl-modifying enzymes is also context-specific. 

Histone methylation dynamics are known to have important roles in many 

biological processes, including cell-cycle regulation, DNA damage and stress 

response, development and differentiation (Eissenberg J. C. & Shilatifard A., 
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2010). The importance of the tight regulation of histone methylation is 

demonstrated by emerging links of histone methylation to disease and ageing. 

Several studies have begun to address the role of histone modifications at specific 

stages of transcription. Most of the associations between histone methylation 

status and transcription are based on correlations between gene expression level 

and genome-wide or locus-specific chromatin immunoprecipitation (ChIP) 

studies. It appears that histone methylation has a role in many levels of 

transcriptional regulation from chromatin architecture to specific loci regulation 

through the recruitment of cell-specific transcription factors (Fig. 8) and 

interaction with initiation and elongation factors. In addition, histone methylation 

influences RNA processing. 

 

 

An interesting and untested hypothesis is that histone methylation could influence 

transcription by bringing physically separate regions of chromatin close together 

through chromosomal looping. This could include enhancer and promoter regions 

Figure 8 Chromatin state and gene transcription. Model for chromatin factors 

interacting with transcription factors to regulate transcription of a gene. Histone 

modifications and DNA methylation are important factors in regulating the 

chromatin from active to repressed and vice versa. Histone H3 acetylation and 

histone H3 methylation and lysine 4, are both associated with an active chromatin 

state. In contrast, histone H3 methylation at lysine 9 or lysine 27 as well as DNA 

methylation are associated with repressive chromatin state. Chromatin is in a 

dynamic equilibrium between the two states. 
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or, in the case of repressive interactions, it could include insulator elements (Deng 

W. & Blobel G. A., 2010). However, whether chromosomal looping is a cause or 

a consequence of transcriptional regulation remains to be determined. Histone 

modifications can affect the higher-order chromatin structure directly (Shogren-

Knaak M. et al., 2006) or indirectly by recruiting chromatin-remodelling 

complexes (Suganuma T. & Workman J. L., (2011; Bell O. et al., 2011). 

Inaccessible chromatin domains can be ‘opened’ by so-called pioneering factors 

(Cirillo L. A. et al., 2002), which are sequence-specific DNA-binding 

transcription factors (such as forkhead box protein A1, FOXA1, and GATA4). 

After binding of the pioneering factors, DNA methylation and histone 

modifications could participate in making the chromatin more accessible for other 

transcription factors, the pre-initiation complex (PIC) and RNA polymerase II 

(RNAPII) (Serandour A. A. et al., 2011). Certain histone methylation patterns 

(such as stretches of chromatin that are marked by a high density of H3K4 and 

H3K79 methylation) also appear to be necessary for binding of transcription 

factors, presumably by providing a euchromatic environment, which facilitates 

sequence-specific binding. It is still unclear whether the recruitment of chromatin-

remodelling machinery to sites of transcription (Fuda N. J. et al., 2009) enables 

more efficient transcription and/or is necessary for elongation to begin. Despite 

advancements in understanding the role of histone methylation in transcriptional 

control, there is still a lot of uncertainty regarding the order of events. 

Histone methylation has been implicated also in the control of RNA splicing. 

Interestingly, the average exon length of many eukaryotic species is similar to the 

length of DNA wrapped around one nucleosome (Zhu L. et al., 2009), whereas 

intron length varies greatly. The association of the splicing factor U2 small 

nuclear ribonucleoprotein (snRNP) with chromatin is enhanced by histone H3 

lysine 4 trimethylation (H3K4me3) (Vermeulen M. et al., 2010; Sims R. J. et al., 

2007). Moreover, recent global chromatin immunoprecipitation followed by 

sequencing (ChIP–seq) analyses in C. elegans, mice and humans show that exons 

are enriched for H3K36me3 compared to introns and that alternatively spliced 

exons have lower levels of H3K36me3 than constitutively spliced exons 

(Kolasinska-Zwierz P. et al., 2009). In vitro assays have shown that the rate of 
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transcriptional elongation can affect splicing. As H3K36me3 can recruit a histone 

deacetylase complex (Guccione E. et al., 2006), which represses transcription, a 

kinetic model for splicing has been proposed in which the histone methylation can 

affect the rate of transcription and thus can influence splicing (Luco R. F. et al., 

2011).  

 

DNA methylation 

DNA methylation is the covalent modification of the cytosine residues by the 

addition of a methyl group at the 5’-carbon position. In mammals, DNA is 

methylated specifically at the C's that precede G's in the DNA chain (CpG 

dinucleotides). In normal somatic cells, most (over 50%) CpG islands are 

unmethylated. DNA methylation is important for the regulation of non-CpG 

islands, CpG islands promoters, and repetitive sequences to maintain genome 

stability. This covalent modification is correlated with reduced transcriptional 

activity of genes that contain high frequencies of CpG dinucleotides in the vicinity 

of their promoters (Bird A. P. & Wolffe A. P., 1999) and it has been implicated in 

development and differentiation (Li E. et al., 1992), imprinting (Li E. et al., 1993), 

X chromosome inactivation (Panning B. & Jaenisch R., 1998), and cancer (Laird 

P. W. et al., 1995; Baylin S. B. & Ohm J. E., 2006). Aberrant methylation has 

been found in cancer cells (Cho Y. H. et al., 2010) and it was shown that DNA 

methylation is associated with DNA damage and repair (Cuozzo C. et al., 2007) 

and that methylation is reduced by transcription of the repaired regions as a 

mechanism of adaptation to environmental challenges (Morano A. et al., 2014). 

The enzymes that catalyze this modification are called DNA methyltransferases 

(DNMTs), and are well characterized and conserved in mammals and plants (Law 

J. A. et al., 2010). There are two categories of DNMTs: de novo and maintenance 

(Goll M. G. & Bestor T. H., 2005). Patterns of DNA methylation are initially 

established by the de novo DNA methyltransferases DNMT3A and DNMT3B 

during the blastocyst stage of embryonic development (Okano M. et al., 1999). 

These methyl marks are then faithfully maintained during cell divisions through 

the action of the maintenance methyltransferase, DNMT1, which has a preference 

for hemi-methylated DNA (Hermann A. et al., 2004). Both the establishment and 
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maintenance of DNA methylation patterns are crucial for development. The 

methylation of DNA is a general mechanism by which control of transcription in 

vertebrates is linked to chromatin structure (Fig. 9).  

 

 

Methylation inhibits transcription through the action of a protein, MeCP2, that 

specifically binds to methylated DNA and represses transcription (Lewis J. D. et 

al., 1992). Interestingly, MeCP2 functions as a complex with histone deacetylase, 

Figure 9 Mechanism of epigenetic modifications. (a) Epigenetic modifications of 

chromatin structure. Modifications of histones and DNA methylation provide a unique 

epigenetic signature that regulates chromatin organization and gene expression. (b) 

Epigenetic changes associated with disease states. In normal healthy tissues, promoter 

regions of actively transcribed genes are without DNA methylation at CpG 

dinucleotides (open circles) within CpG islands, and histones are modified with 

predominantly active marks (lysine 4 methylation and acetylation of lysine 9). The 

transcriptional start site is open and free of nucleosomes. This state is maintained by 

enzymes that modify the histone tails (histone acetyltransferases and histone 

demethylases). Intra- and intergenic regions have predominately methylated CpGs and 

inactive histone modifications (lysine 9 and lysine 27 methylation). In diseased states, 

methylation of CpG sites within CpG islands is associated with repressive chromatin 

marks, with these changes resulting from the presence of histone deacetylases 

(HDACs) and histone methyltranserferases. Repressive chromatin marks lead to 

compaction of chromatin and nucleosome occupancy at the transcriptional start site, 

preventing gene transcription. 
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linking DNA methylation to alterations in histone acetylation and nucleosome 

structure. 

DNA methylation also seems to have a role in directing histone methylation 

(Bartke T. et al., 2010). It was shown that H3K4me3 and DNA methylation are 

inversely correlated (Meissner A. et al., 2008) and, at least in plants, DNA 

methylation and H2A.Z are mutually exclusive (Zilberman D. et al., 2008) and 

H3K9me2, H3K9me3 and DNA methylation are highly coincident 

(Bernatavichute Y. V. et al., 2008). The example of H3K9me has been examined 

in several organisms. Knockdown of DNMT1 in mammals resulted in decreased 

levels of H3K9me2 and H3K9me3 (Espada J. et al., 2004). The exact mechanisms 

connecting replication to DNA methylation and H3K9me are not completely 

elucidated and might depend on the genomic locus and time of replication. 

However they seem to be tightly associated to replication through PCNA. Histone 

post-translational modifications can play an important role in the recruiting for 

methyl-modifying enzymes to specific genomic locations and, in some cases, in 

the determination of their substrate specificity (Kouzarides T., 2007). 

 

Transcription 

Transcription is the process by which the information in DNA is copied into 

RNA. It is performed by RNA polymerase. In the nucleus of eukaryotes, 

transcription is carried out by three different RNA polymerases, RNA polymerase 

I, II and III (Pol I, II and III) that transcribe distinct classes of genes: Pol I is 

responsible for the transcription of the large ribosomal RNA genes (28S, 18S and 

5.8S), Pol II for the transcription of the protein-coding genes and some small 

nuclear RNAs and Pol III transcribes some structural and catalytic RNAs, 

including most small nuclear RNAs, tRNAs and 5S rRNA (Sentenac A., 1985). 

All three of the nuclear RNA polymerases are complex enzymes, consisting of 8 

to 14 different subunits each. Transcription has three main steps: initiation, 

elongation and termination. Initiation consists in the binding of RNA polymerase 

to double-stranded DNA; this step involves a transition to single-strandedness in 

the region of binding; RNA polymerase binds to the DNA at a specific area called 

the promoter region. This region contains binding sites for RNA polymerase and 
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the transcription factors (TFs) necessary for normal transcription: RNA 

polymerase II cannot bind to promoters in eukaryotic DNA without the help of 

transcription factors (Struhl K., 1999). In many eukaryotic organisms, the 

promoter contains a conserved gene sequence called the TATA box. Various other 

consensus sequences also exist and are recognized by the different TF families. 

Transcription is initiated when one TF binds to one of these promoter sequences, 

initiating a series of interactions between multiple proteins (activators, mediators 

and repressors) at the same 

site, or other promoter, 

regulator, and enhancer 

sequences (Fig. 10). 

Ultimately, a transcription 

complex is formed at the 

promoter that facilitates 

binding and transcription 

by RNA polymerase. 

During the elongation the 

covalent addition of 

nucleotides to the 3' end of 

the growing polynucleotide 

chain occurs; this involves 

the development of a short 

stretch of DNA that is transiently single-stranded. The termination is the final 

step: RNA polymerase recognizes the terminator sequence and detaches from the 

DNA.  

 

Transcription factors 

RNA Pol II needs to interact with specific proteins (called transcription factors, 

TFs) to initiate transcription. Two general types of transcription factors have been 

defined. General transcription factors are involved in transcription from all 

polymerase II promoters and therefore constitute part of the basic transcription 

machinery. Additional transcription factors bind to DNA sequences that control 

Figure 10 Assembly of the transcription initiation 

complex on a promoter. The basal machinery (RNA 

pol II and the general initiation factors (GIFs) 

assembles on the core promoter elements. The 

function of the general initiation factors is modulated 

by regulatory factors which recognize gene specific 

promoter proximal and distal enhancer elements. 

Proteins bound at the enhancer element interact with 

proteins bound at the promoter region to form a 

transcription initiation complex and to initiate 

transcription at a high rate. 
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the expression of individual genes and are thus responsible for regulating gene 

expression. Transcription factors are regulatory proteins whose function is to 

activate (or more rarely, to inhibit) transcription of DNA by binding to specific 

DNA sequences. TFs have defined DNA-binding domains with up to 106-fold 

higher affinity for their target sequences than for the remainder of the DNA 

strand. These highly conserved sequences have been used to categorize the known 

TFs into various "families," such as the MADS box-containing proteins, SOX 

proteins, and POU factors (Reményi A. et al., 2004). Transcription factors can 

also be classified by their three-dimensional protein structure, including basic 

helix-turn-helix, helix-loop-

helix, and zinc finger 

proteins. These different 

structural motifs result in 

transcription factor 

specificity for the 

consensus sequences to 

which they bind. These 

proteins unwind the DNA 

strand and allow RNA 

polymerase to transcribe 

Figure 11 The transcription process. RNA synthesis 

involves separation of the DNA strands and synthesis 

of an RNA molecule in the 5' to 3' direction by RNA 

polymerase, using one of the DNA strands as a 

template. 
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only a single strand of DNA into a single stranded RNA polymer called 

messenger RNA (mRNA). The strand that serves as the template is called the 

antisense strand. The strand that is not 

transcribed is called the sense strand (Fig. 

11). RNA polymerase and the group of 

protein that directly interact with it 

(general factors) are called the basal 

transcription apparatus (Fig 12). This is 

the apparatus that is directly responsible 

for transcription. Five general transcription 

factors are required for initiation of 

transcription by RNA polymerase II in 

reconstituted in vitro systems. The first 

step in formation of a transcription 

complex is the binding of a general 

transcription factor called TFIID to the 

TATA box. TFIID is itself composed of 

multiple subunits, including the TATA-

binding protein (TBP), which binds 

specifically to the TATAA consensus 

sequence, and 10-12 other polypeptides, 

called TBP-associated factors (TAFs). TBP then binds a second general 

transcription factor (TFIIB) forming a TBP-TFIIB complex at the promoter. 

TFIIB in turn serves as a bridge to RNA polymerase, which binds to the TBP-

TFIIB complex in association with a third factor, TFIIF. Following recruitment of 

RNA polymerase II to the promoter, the binding of two additional factors (TFIIE 

and TFIIH) is required for initiation of transcription. TFIIH is a multisubunit 

factor that appears to play at least two important roles. First, two subunits of 

TFIIH are helicases, which may unwind DNA around the initiation site. Another 

subunit of TFIIH is a protein kinase that phosphorylates repeated sequences 

present in the C-terminal domain (CTD) of the largest subunit of RNA 

polymerase II. Phosphorylation of these sequences is thought to release the 

Figure 12 Schematic model of the 

assembly of the general transcription 

factors and RNA polymerase II on 

the promoter and beginning of the 

transcription. 
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polymerase from its association with the initiation complex, allowing it to proceed 

along the template as it elongates the growing RNA chain. After Pol II leaves the 

promoter, TFIIB and TFIIF are released, whereas other factors such as activators, 

TBP, Mediator, TFIIH and TFIIE remain largely promoter-associated and form 

what is termed a reinitiation intermediate or scaffold, to facilitate subsequent 

rounds of transcription (Yudkovsky N. et al., 2000). 

In addition to a TATA box, the promoters of many genes transcribed by RNA 

polymerase II contain a second important sequence element (an initiator, or Inr, 

sequence) that spans the transcription start site. Moreover, some RNA polymerase 

II promoters contain only an Inr element, with no TATA box. Initiation at these 

promoters still requires TFIID (and TBP), even though TBP obviously does not 

recognize these promoters by binding directly to the TATA sequence. Instead, 

other subunits of TFIID (TAFs) appear to bind to the Inr sequences. This binding 

recruits TBP to the promoter, and TFIIB, polymerase II, and additional 

transcription factors then assemble as already described. TBP thus plays a central 

role in initiating polymerase II transcription, even on promoters that lack a TATA 

box. 

Other factors, those that interact directly or through a coactivator with the proteins 

of the basal transcription apparatus, are also important for transcription. These 

generally have a positive effect on transcription, but occasionally they can repress 

gene expression through transcription. These factors are called upstream factors 

and they are unique to each promoter. Finally, some factors are turned in a 

temporal or spatial manner, or directly in response to the environment. These 

factors provide the final link in controlling gene expression. These are termed 

inducible factors. Histone post-translational modifications, DNA methylation and 

nucleosome occupancy are pivotal to determining which response elements will 

be bound by a particular transcription factor either directly, by regulating the 

affinity of a transcription factor for its binding site, or indirectly, through factors 

that recognize a defined chromatin environment. However, the relationship 

between transcription factors and chromatin can also work another way: 

transcription factors can form regulatory loops (including positive-feedback 

loops) that impose epigenetic regulation (Ptashne M., 2007). The importance of 



Introduction 

22 

 

transcription factors in the chromatin landscape has been shown by 

reprogramming experiments. Transforming cells from their fully differentiated 

state into pluripotent ES cells requires the transient expression of only a few 

transcription factors, which initiate a dramatic restructuring of the chromatin 

landscape (Wernig M. et al., 2007). Despite the development of in vitro systems 

and the characterization of several general transcription factors, much remains to 

be learned concerning the mechanism of polymerase II transcription in eukaryotic 

cells. 

 

Transcriptional regulation 

Transcription is regulated at all steps by a variety of mechanisms. In eukaryotic 

cells it is controlled by proteins that bind to specific regulatory sequences and 

modulate the activity of RNA polymerase. In eukaryotes, regulation of gene 

expression requires the coordinated interactions of multiple proteins. The so-

called housekeeping genes, are needed by almost every type of cell and appear to 

be unregulated or constitutive. But the regulation of gene expression in a tissue-

specific manner is essential for cellular differentiation. Genes that regulate cell 

identity are turned on under very specific temporal, spatial, and environmental 

conditions to ensure that a cell is able to perform its designated function. 

Gene expression is controlled on two levels. First, transcription is controlled by 

limiting the amount of mRNA that is produced from a particular gene. The second 

level of control is through post-transcriptional events that regulate the translation 

of mRNA into proteins. Even after a protein is made, post-translational 

modifications can affect its activity.  

The state of chromatin structure at a specific region in eukaryotic DNA, along 

with the presence of specific transcription factors, works to regulate gene 

expression in eukaryotes. Sequence-specific TFs are considered an important 

mechanism of gene regulation in both prokaryotic and eukaryotic cells. Many 

activating TFs are generally bound to DNA until removed by a signal molecule, 

while others might only bind to DNA once influenced by a signal molecule. The 

binding of one type of TF can influence the binding of others, as well. Thus, gene 

expression in eukaryotes is highly variable, depending on the type of activators 
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involved and what signals are present to control binding. Even when transcription 

factors are present in a cell, transcription does not always occur, because often the 

TFs cannot reach their target sequences. The association of the DNA molecule 

with proteins is the first step in its silencing. The state of chromatin can limit 

access of transcription factors and RNA polymerase to DNA promoters, 

contributing to the restrictive ground state of gene expression. In order for gene 

transcription to occur, the chromatin structure must be unwound (Fig. 13). It 

allows simultaneous regulation of functionally or structurally related genes that 

tend to be present in widely spaced clusters or domains on eukaryotic DNA 

(Sproul D. et al., 2005). 

 

 

Interactions of chromatin with activators and repressors can result in domains of 

chromatin that are open, closed, or poised for activation. Chromatin domains have 

various sizes and different extents of stability. These variations allow for 

phenomena found solely in eukaryotes, such as transcription at various stages of 

development and epigenetic memory throughout cell division cycles. They also 

allow for the maintenance of differentiated cellular states, which is crucial to the 

survival of multicellular organisms (Struhl K., 1999). Besides the chromatin 

structure and the presence of specific transcription factors there are other control 

activities in the cell, such as epigenetic mechanisms, including DNA methylation 

Figure 13 Representation of histone acetylation and transcription activation. 

Acetylated core histone proteins or unmethylated cytosines lead to a more open 

chromatin conformation resulting in a transcriptionally active state. On the other hand, 

removal of acetyl group by HDAC or DNA cytosines methylation repress the 

transcription and chromatin becomes more condensate. 
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and imprinting, noncoding RNA and histone post-translational modifications 

(Phillips T., 2008). 

Many genes in mammalian cells are controlled by regulatory sequences located 

farther away (sometimes more than 10 kilobases) from the transcription start site. 

These sequences, called enhancers, were first identified by Walter Schaffner in 

1981 during studies of the promoter of another virus, SV40 (Banerji J. et al., 

1981). In addition to a TATA box and a set of six GC boxes, two 72-base-pair 

repeats located farther upstream are required for efficient transcription from this 

promoter. These sequences were found to stimulate transcription from other 

promoters as well as from that of SV40, and, surprisingly, their activity depended 

on neither their distance nor their orientation with respect to the transcription 

initiation site. They could stimulate transcription when placed either upstream or 

downstream of the promoter, in either a forward or backward orientation.  

Enhancers, like promoters, function by binding transcription factors that then 

regulate RNA polymerase, even when separated by long distances from 

transcription initiation sites. This is possible because of DNA looping, which 

allows a transcription factor bound to a distant enhancer to interact with RNA 

polymerase or general transcription factors at the promoter. Transcription factors 

bound to distant enhancers can thus work by the same mechanisms as those bound 

adjacent to promoters, so there is no fundamental difference between the actions 

of enhancers and those of cis-acting regulatory sequences adjacent to transcription 

start sites. Interestingly, although enhancers were first identified in mammalian 

cells, they have subsequently been found in bacteria—an unusual instance in 

which studies of eukaryotes served as a model for the simpler prokaryotic systems 

(Cooper G. M., 2000).  

Transcription by RNA polymerase II is coupled to RNA processing, including 

capping, splicing and cleavage/ polyadenylation. The C-terminal repeat (CTD) of 

RNA pol II orchestrates both processes by recruiting RNA processing factors. 

Indeed, CTD directly binds polyadenylation factors and its truncation inhibits 

transcript cleavage in vivo. A protein phosphatase that catalyzes the 

dephosphorylation of the C-terminal domain of RNA polymerase II is Ssu72. 

Genetic and physical interactions between Ssu72 and RNAP II have been 

http://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A3391/
http://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A3041/
http://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A3376/
http://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A3330/
http://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A3010/
http://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A3390/
http://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A3041/
http://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A3084/
http://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A3283/
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demonstrated and it has been hypothesized a role for Ssu72 in basal (noninduced) 

transcription by RNAP II (Pappas D. L. Jr & Hampsey M., 2000) (Fig. 14). Ssu72 

was initially identified in a screen for suppressors of sua7-1, a cold-sensitive 

mutation in yeast TFIIB, hence Ssu72 (Suppressor of sua7-1 clone 2) (Sun Z.W. 

& Hampsey M., 1996). Recent analysis revealed that Ssu72 dephosphorylates Ser-

5 in the CTD of RNA pol II and regenerates initiation competent hypo-

phosphorylated RNA pol II (Krishnamurthy S. et al., 2004). Large-scale analysis 

of protein complexes in yeast identified Ssu72 as a component of a cleavage and 

polyadenylation factor (CPF) complex, it interacts directly with the Pta1 subunit 

of CPF and is implicated in transcript cleavage and termination (Dichtl B. et al., 

2002). Alternatively, Ssu72 may exert two independent functions: 

transcription/RNA processing in the nucleus and as yet to be defined activity in 

the cytoplasm (St-Pierre B. et al., 2005). Interestingly, there are no apparent 

Ssu72 homologs in bacterial or archaeal genomes, implying that Ssu72 function is 

specific to eukaryotes.  

 

 

 

Figure 14 A model illustrating how Ssu72 might function at different points 

in the transcription cycle through interactions with TFIIB, RNAP II, 

cleavage/polyadenylation factor (CPF), and CF I. In the initiation stage, 

Ssu72 helps to correctly position RNAP II at the promoter through direct 

interactions with TFIIB and RNAP II. Ssu72 also recruits CPF to the 

promoter through its Pta1 partner and/or the weaker interactions with other 

CPF subunits. Ssu72 and Sub1 act as positive elongation factors. 

Recognition of processing signals by CPF and CF I triggers transcription 

termination. The inset depicts the mutually exclusive interaction of Ssu72 

and Sub1 with Pta1 during the transcription cycle. The blue line represent 

pre-mRNA, capped at the 5′ end and the 3′ processing site shown by p(A). 
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Nuclear receptors 

Nuclear hormone receptors are ligand-activated transcription factors that bind 

lipophilic molecules and regulate gene expression by interacting with specific 

DNA sequences of their target genes. Nuclear receptor ligands are chemically 

diverse, including hydrophobic molecules such as steroid hormones (e.g. 

estrogens, glucocorticoids, progesterone, mineralocorticoids, androgens, vitamin 

D3, ecdysone, oxysterols and bile acids), retinoic acids (all-trans and 9-cis 

isoforms), thyroid hormones, fatty acids, leukotrienes and prostaglandins (Escriva 

et al., 2000; Laudet and Gronemeyer, 2002). Because ligands are nonpolar, they 

can just diffuse across the plasma membrane. There are a total of 48 nuclear 

receptor family members in the human genome (Robinson-Rechavi et al., 2001). 

For some of these receptors, the physiological function and endogenous natural 

ligand are not known: these are termed orphan receptors.  Some of the original 

orphan receptors have now had their endogenous ligands identified ("adopted 

orphans"). As early as 1968 a two-step mechanism of action was proposed for 

these receptors based upon the observation of an inactive and an active state of the 

receptors. The first step involves activation through binding of the hormone; the 

second step consists of receptor binding to DNA and regulation of transcription. 

Genes that are regulated by nuclear receptors contain particular DNA sequences 

(response elements) in their promoters, where the nuclear receptor binds. A 

hormone response element (HRE) is a specific DNA sequence that a receptor 

recognizes with markedly increased affinity and typically contains two consensus 

hexameric half-sites. Thus each receptor protein dimer that binds the DNA has to 

recognize the sequence, spacing and orientation of the half-sites within their 

response element. For dimeric HREs, the half-sites can be configured as 

palindromes, inverted palindromes, or direct repeats. There are two main classes 

of nuclear receptors. Steroids like testosterone, estrogens, cortisols are type I 

ligands and bind to inactive cytosolic receptors bound to heat shock proteins. 

Binding of the hormones activate them by dissociating heat shock proteins from 

the receptors. These activated receptors move into the nucleus and bind as 

homodimers to their specific hormone response elements (HRE), which are 

mostly located in the enhancer region of the gene promoter/regulatory regions. 
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Vitamin D, thyroid hormones and retinoids are type II ligands: receptors are 

retained in the nucleus bound to DNA as heterodimers regardless of the ligand 

binding status. In the absence of ligand, the receptors are complexed with 

corepressor proteins. Hormone binding causes the dissociation of corepressor and 

the recruitment of coactivator proteins, which recruit additional proteins to 

activate transcription. 

Nuclear receptors share a common structural organization (Fig 15). 

 

 

The N-terminal region (A/B domain) is highly variable, and contains at least one 

constitutionally active transactivation region (AF-1) and several autonomous 

transactivation domains (AD); A/B domains are variable in length, from less than 

50 to more than 500 amino acids, and their 3D structure is not known. The most 

conserved region is the DNA-binding domain (DBD, C domain), which notably 

contains the P-box, a short motif responsible for DNA-binding specificity on 

sequences typically containing the AGGTCA motif, and is involved in 

dimerization of nuclear receptors. This dimerization includes homodimers as well 

as heterodimers. The 3D structure of the DBD has been resolved for a number of 

nuclear receptors and contains two highly conserved zinc fingers, the four 

cysteines of each finger chelating one Zn
2+

 ion. Between the DNA-binding and 

ligand-binding domains is a less conserved region (D domain) that behaves as a 

flexible hinge between the C and E domains, and contains the nuclear localization 

signal (NLS), which may overlap on the C domain. The largest domain is the 

moderately conserved ligand-binding domain (LBD, E domain), whose secondary 

structure of 12 a-helixes is better conserved than the primary sequence. The 

central DBD is responsible for targeting the receptors to their hormone response 

elements (HRE). The DBD binds as a dimer with each monomer recognizing a six 

Figure 15 Structure of nuclear receptors. Schematic diagram for a common domain 

structure of NRs which include N-terminal activation function 1 (AF-1), DNA binding 

domain (DBD) consisting of two zinc fingers, hinge region (Hinge), ligand binding 

domain (LBD), and C-terminal AF-2.  
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base pair sequence of DNA. The reading helix of each monomer makes sequence 

specific contacts in the major groove of the DNA at each half-site. These contacts 

allow the dimer to read the sequence, spacing and orientation of the half-sites 

within its response element, and thus discriminate between sequences. These 

proteins exhibit, however, a flexibility in recognizing DNA sequences and also 

accept a variety of amino-acid substitutions in their reading helix without 

abolishing binding. The LBD participates in several activities including hormone 

binding, homo- and/or heterodimerization, formation of the heat-shock protein 

complex and transcriptional activation and repression. The binding of the 

hormone induces conformational changes that seem to control these properties 

and influence gene expression. The conformational changes that accompany the 

transition between the liganded and unliganded forms of the nuclear hormone 

receptors affect dramatically their affinity for other proteins. The proteins that 

associate with the receptor may be activators or repressors of transcription. The 

general term for this type of protein is coregulator. A particular receptor may 

associate with different groups of coregulators in different cell types. In the 

absence of ligand, an inhibitory complex associates with the ligand-binding 

domain. Ligand binding causes a conformational change so that the inhibitory 

complex dissociates. This allows the receptor to travel to the nucleus, bind to 

DNA, and associate with the coactivator protein complex (Fig.16). 

 

Figure 16 Regulation of transcription induced by nuclear receptors through 

the dimerization and the interaction with co-regulators proteins. 
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Retinoic acid and receptors 

Retinoic acid (RA) is a lipophilic molecule and an active metabolite of vitamin-

A (all-trans-Retinol), which belongs to the retinoids, a class of chemical 

compounds each composed of three basic parts: a trimethylated cyclohexene ring 

that is a bulky hydrophobic group, a conjugated tetraene side chain that functions 

as a linker unit, and a polar carbon-oxygen functional group. Biochemical 

conversion of carotenoid or other retinoids to retinoic acid (RA) is essential for 

normal regulation of a wide variety of biological processes like cell proliferation, 

development, differentiation and apoptosis. RA exerts its action by the 

transcriptional regulation of specific genes via a family of nuclear receptors called 

retinoic acid receptors, RARs, and retinoid X receptors, RXRs. The RAR family 

is activated both by all-trans-RA and by 9-cis-RA, whereas the RXR family is 

activated exclusively by 9-cis-RA. The RXRs play a central role in dimerization 

of nuclear receptors and in nuclear receptor signaling, as they are partners for 

different receptors that bind as heterodimers to DNA (Zhang X. K. et al., 1992). A 

two-step model for heterodimeric binding to DNA has been proposed. First, RXR 

would form heterodimers in solution with its partner through their dimerization 

interfaces contained in the LBDs, and in a second step, the DBDs would be able 

to bind with affinity to the DNA (Mangelsdorf D. J. & Evans R. M., 1995). 

According to a current model of transcriptional activation, in the absence of 

ligand, RAR/RXR heterodimers are bound to DNA, and they recruit co-repressors 

with HDAC (histone deacetylase) activity, resulting in chromatin condensation 

and gene silencing (Dilworth F. J. & Chambon P., 2001). Upon ligand binding, 

RAR and RXR undergo conformational changes that favor the dissociation of co-

repressors and the recruitment of other proteins with histone acetylase activity, 

which opens up the chromatin, making it accessible to transcriptional machinery 

to initiate transcription (Fig. 17). Experiments with knock-out mice have clearly 

shown that the RXR/RAR heterodimer is responsible for different biological 

effects of retinoids on development (Kastner P. et al., 1997).  

 



Introduction 

30 

 

 

Three distinct but highly homologous RAR isotypes have been described termed 

RARα, RARβ and RARγ, encoded by three separate genes. In addition, several 

isoforms of each RAR isotype, which vary in both the length and amino acid 

sequence of the N-terminal A domain, have been identified, generated by 

alternative promoters and differential splicing. The targets of RA include a 

multitude of structural genes, oncogenes, transcription factors and cytokines 

(Balmer J. E. & Blomhoff R., 2002). Like all nuclear receptors RARs also have a 

conserved modular structure consisting of an AF-1 or A/B (Amino-Terminal 

Activating Factor-1 Transcriptional Activation) Domain; a zinc-finger DBD or C 

(DNA-Binding Domain); a CoR or D (Hinge/Corepressor Binding) Domain; a 

LBD or AF-2 or E (Ligand-Binding/Transcriptional Activation) Domain; and a 

Figure 17 Summary of the RA signalling pathway. RA, synthesized intracellularly 

from circulating retinol or diffusing from an adjacent cells, eventually reaches the 

nucleus. Cellular retinoic acid-binding proteins (CRABPs) may be involved in this 

transfer. Cellular retinol-binding proteins (CRBPs) may help present retinol to retinol 

dehydrogenases (RDHs). Dimers of RA receptors (RARs) and retinoid X receptors 

(RXRs) are able to bind to RA-response elements (RAREs) in their target genes in the 

absence of ligand, interacting with protein complexes (co-repressors) that stabilise the 

chromatin nucleosomal structure and prevent access to the promoter. Upon RA 

binding, a conformational change in the helicoidal structure of the RAR ligand-

binding domain changes its protein-protein interaction properties, releasing the co-

repressors and recruiting co-activator complexes that destabilise the nucleosomes 

and/or facilitate assembly of the transcription pre-initiation complex, which contains 

RNA polymerase II (Pol II), TATA-binding protein (TBP) and TBP-associated factors 

(TAFs). 
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variable F (Carboxyl-Terminal) Domain. In general, the RARs contain six regions 

from A-F. The binding site for RAR/RXR heterodimers DBD is a specific DNA 

sequence known as a RARE (RA response element). RAREs consist of a direct 

repeat of a core hexameric sequence, PuG(G/T)-TCA, separated by 1, 2 or 5 base-

pairs (DR1, DR2 and DR5) (Chambon P., 1996). In addition to RAR, two other 

proteins, termed cellular retinoic acid-binding proteins (CRABP-I and CRABP-

II), bind RA with high affinity and specificity (Dong D. et al., 1999). CRABPs are 

small (~ 14 kDa) soluble proteins that are members of the family of intracellular 

lipid binding proteins. It is generally believed that CRABPs function to solubilize 

and protect RA in the aqueous space of the cytosol, but accumulating evidence 

suggests that they also play more specific roles in modulating signaling by RA. In 

regard to the biological functions of CRABP-II, it has been showed that this 

protein transports RA from the cytosol to the nucleus where it directly associates 

with RAR and that the resulting complex mediates ‘‘channeling’’ of RA to the 

receptor, thereby facilitating its ligation and enhancing its transcriptional activity 

(Budhu A. et al., 2001). More than 500 genes with diverse functions are regulated 

by RA, and RAREs have been localized in many of these genes including RAR, 

CRABPI, CRABPII and members of the Hox and HNF gene families (Balmer J. 

E. & Blomhoff R., 2002). It was showed that after hormone binding, an active 

receptor complex induces covalent modifications at the N-terminal tails of 

nucleosomal histones and assembles an active transcription complex on chromatin 

(Shahhoseini M., 2013). 

 

Caspase 9 

Human CASP9 (apoptosis-related cysteine peptidase) is located on chromosome 

1 (1p36.1-1p36.3). It is approximately 35 Kb long and has 9 exons and 8 introns 

(Hadano S. et al., 1999). Alternative splicing results in multiple transcript 

variants. This gene encodes a member of the cysteine-aspartic acid protease 

(caspase) family, which is thought to play a central role in apoptosis and to be a 

tumor suppressor. The mammalian caspase family consists of 14 members 

(Earnshaw W.C. et al., 1999). Caspases are involved in the signal transduction 

pathways of apoptosis, necrosis and inflammation. They have been implicated in 



Introduction 

32 

 

the pathogenesis of many disorders including stroke, Alzheimer's disease, 

myocardial infarction, cancer, and inflammatory disease. These enzymes can be 

divided into two major classes - initiators and effectors (Fig. 18). The initiator 

isoforms (caspases-1,-4,-5,-8,-

9,-10,-11,-12) are activated by, 

and interact with, upstream 

adaptor molecules through 

protein-protein interaction 

domains known as CARD and 

DED. Effector caspases (-3,-6,-

7) are responsible for cleaving 

downstream substrates and are 

sometimes referred to as the 

executioner caspases. More 

than 400 caspase substrates 

have so far been identified. 

Caspases exist as inactive proenzymes which undergo proteolytic processing at 

conserved aspartic residues to produce two subunits, large (20 kDa) and small (10 

kDa), that dimerize to form the active enzyme (Kuida K., 2000). They can also be 

found intracellularly as part of large multiprotein complexes. Caspase 9 can 

undergo autoproteolytic processing and activation by the apoptosome, a protein 

complex of cytochrome c and the apoptotic peptidase activating factor 1 (Apaf-1); 

this step is thought to be one of the earliest in the caspase activation cascade(Li P. 

et al., 1997). Binding of caspase-9 to Apaf-1 leads to activation of the protease 

which then cleaves and activates caspase-3. Caspases are regulated by inhibitors 

of apoptosis and by dominant negative isoforms. CASP9 contains within a stretch 

of 8 kb upstream of the start site (1p36.3), a potential RARE composed of the 

noncanonical DR-2 sequence AGGTCAgcAGTTCG at position -1690, but this 

element does not function as a RARE. An additional potential RARE, composed 

of the consensus DR-2 sequence AGGTCAggAGTTCA, was found in the second 

intron of the gene, 9.461 bp downstream of the start site. It was demonstrated that 

caspase 9 is a direct target for RAR signaling, and that the RARE responsible for 

Figure 18 Schematic representation of caspases 

main domains: a prodomain and large (p20) and 

small (p10) catalytic subunits. The large domain 

contains the active site Cys residue. Activation of 

caspases involves removal of the prodomain and 

separation of the p20 and p10 subunits. The 

prodomains of activator and inflammatory 

caspases contain protein–protein-interaction 

domains, such as the caspase-recruitment domain 

(CARD) and the death-effector domain (DED). 
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this response is likely to be this DR-2 element located in the second intron of the 

gene (Donato L. J. & Noy N., 2005). 

 

CYP26A1 

CYP26A1 encodes a member of the cytochrome P450 superfamily of enzymes, 

which include CYP26A1, CYP26B1, and CYP26C1. The cytochrome P450 

proteins are monooxygenases which catalyze many reactions involved in drug 

metabolism and synthesis of cholesterol, steroids and other lipids. This 

endoplasmic reticulum protein acts on retinoids, including all-trans-retinoic acid 

(RA), and converts it to more polar metabolites through 4-oxidation, 4-

hydroxylation, 18-hydroxylation and 5,6-epoxydation activities (White J. A. et al., 

1996; Fujii H. et al., 1997) (Fig. 19). CYP26A1 was first isolated from zebrafish 

as a gene product induced by RA during regeneration of adult caudal fin (White J. 

A. et al., 1996). Subsequently, 

homologs have been isolated from 

human, mouse, chick, and Xenopus 

with all the genes exhibiting a high 

degree of sequence conservation. 

CYP26A1 metabolizes all-trans RA 

but not the 9-cis or 13-cis RA 

isomers and regulates the cellular 

level of retinoic acid, which is 

involved in regulation of gene expression in both embryonic and adult tissues. 

Two alternatively spliced transcript variants of CYP26A1 gene, which encode the 

distinct isoforms, have been reported. Analysis of CYP26A1 expression in 

cultured human cells shows that exogenous RA can strongly induce the 

expression of this gene indicating that regulation of RA catabolism may include a 

positive feedback loop (Sonneveld E. et al., 1998). Some of the RA inducibility of 

CYP26A1 is due to regulation at the transcriptional level, mediated by a highly 

conserved RARE. Analysis of human, mouse, and zebrafish proximal regions of 

the CYP26A1 promoter allowed to determine the presence of a canonical RARE 

(R1) within a conserved 32-bp sequence (in the first 200 bp of the CYP26A1 

Figure 19 Control of RA distribution regulated 

by the CYP26A1 enzyme, which converts it to 

4-oxo-retinoic acid. 
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promoter), which was shown to be recognized by the RAR/RXR heterodimer 

(Loudig O. et al., 2000). Subsequently, it was uncovered a conserved second 

RARE (R2) occurring 2 kb upstream of the transcription start site, which appears 

to function synergistically with the R1 element to provide maximal induction of 

CYP26A1 in response to RA, but it was unable to support transcription in the 

absence of R1 and its surrounding sequences, so it was proposed that the 

CYP26A1 gene contains a single promoter that includes R1 and that R2 is an 

upstream enhancer element that is necessary for complete RA inducibility, but is 

not by itself sufficient for transcription (Loudig O. et al., 2005). 

 

DNA Base Excision Repair and Nucleotide Excision 

Repair 

Normal metabolic processes generate reactive oxygen species (ROS), which 

modify bases by oxidation. Both purine and pyrimidine bases are subject to 

oxidation. The most common mutation is guanine oxidized to 8-oxo-7,8-

dihydroguanine, resulting in the nucleotide 8-oxo-deoxy-guanosine (8-oxo-dG). 

The 8-oxo-dG is capable of base pairing with deoxyadenosine, instead of pairing 

with deoxycytotidine as expected. If this error is not detected and corrected by 

mismatch repair enzymes, the DNA subsequently replicated will contain a C→A 

point mutation. ROS may also cause depurination, depyrimidination, and single-

strand or double strand breaks in the DNA.  

Oxygen radicals generate mostly non-bulky DNA lesions, most of them are 

substrates for Base Excision Repair (BER). This repair system involves multiple 

enzymes to excise and replace a single damaged nucleotide base (Fig. 20). Key 

enzymes of the BER pathway are DNA-glycosylases: a DNA glycosylase cleaves 

the bond between the nucleotide base and ribose, leaving the ribose phosphate 

chain of the DNA intact but resulting in an apurinic or apyrimidinic (AP) site. 8-

Oxoguanine DNA glycosylase I (OGG1) removes 7,8-dihydro-8-oxoguanine (8-

oxoG), one of the base mutations generated by reactive oxygen species. 

Polymorphism in the human OGG1 gene is associated with the risk of various 

cancers such as lung and prostate cancer. Uracil DNA glycosylase, another BER 

enzyme, excises the uracil that is the product of cytosine deamination, thereby 
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preventing the subsequent C→T point mutation. N-Methylpurine DNA 

glycosylase (MPG) is able to remove a variety of modified purine bases. The AP 

sites in the DNA that result from the action of BER enzymes, as well as those that 

result from depyrimidination and depurination actions, are repaired by the action 

of AP-endonuclease 1 (APE1). APE1 cleaves the phosphodiester chain 5’ to the 

AP site. The DNA strand then contains a 3’-hydroxyl group and a 5’-abasic 

deoxyribose phosphate. DNA polymerase β (Polβ) inserts the correct nucleotide 

and removes the deoxyribose phosphate through its associated AP-lyase activity. 

The presence of X-ray repair cross-complementing group 1 (XRCC1) is necessary 

to form a heterodimer with DNA ligase III (LIG3). XRCC1 acts as a scaffold 

protein to present a non-reactive binding site for Polβ, and bring the Polβ and 

LIG3 enzymes together at the site of repair (Lindahl T. & Wood R. D., 1999). 

Poly(ADP-ribose) polymerase (PARP-1) interacts with XRCC1 and Polβ and is a 

necessary component of the BER pathway (Caldecott K.W. et al., 1996; Dantzer 

F. et al., 2000). The final step in the repair is performed by LIG3, which connects 

the deoxyribose of the replacement nucleotide to the deoxyribosylphosphate 

backbone. This pathway has been named “short-patch BER” (Srivastava D. K. et 

al., 1998). An alternative pathway called “long-patch BER” replaces a strand of 

nucleotides with a minimum length of 2 nucleotides. Repair lengths of 10 to 12 

nucleotides have been reported (Ranalli T. A. et al., 2002; Sattler U. et al., 2003). 

Longpatch BER requires the presence of proliferation cell nuclear antigen 

(PCNA), which acts as a scaffold protein for the restructuring enzymes (Fortini P. 

et al., 1998). Other DNA polymerases, possibly Polδ and Polε (Klungland A. & 

Lindahl T., 1997), are used to generate an oligonucleotide flap. The existing 

nucleotide sequence is removed by flap endonuclease-1 (FEN1). The 

oligonucleotide is then ligated to the DNA by DNA ligase I (LIG1), sealing the 

break and completing the repair. The process used to determine the selection of 

short-patch versus long patch BER pathways is still under investigation (Sung J. 

S. & Demple B., 2006). 
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While BER may replace multiple nucleotides via the long-patch pathway, the 

initiating event for both short-patch and long-patch BER is damage to a single 

nucleotide, resulting in minimal impact on the structure of the DNA double helix. 

Nucleotide Excision Repair (NER) repairs damage to a nucleotide strand 

containing at least 2 bases and creating a structural distortion of the DNA. NER 

acts to repair single strand breaks in addition to serial damage from exogenous 

sources such as bulky DNA adducts and UV radiation (Balajee A. S. & Bohr V. 

A., 2000). The same pathway may be used to repair damage from oxidative stress 

(Gros L. et al., 2002). 

Figure 20 Scheme of base excision repair showing the two subpathways: (A) the 'short-

patch' or single-nucleotide pathway, and (B) the 'long-patch' pathway. Crossing over of 

the pathways can occur at points (3) and (9). There are essentially four steps in the base 

excision repair pathway. First, when an altered base is detected (1) the surveillance 

glycosylases remove that base (2). Next, the endonuclease that is specific for an apurinic 

or apyrimidinic site cleaves the strand on the 5' side of the abasic site (3). This is followed 

by filling in of the gap with a correct nucleotide by DNA pol β, and at the same time 

releasing the dRP (4). Finally, DNA ligase III ligates the newly introduced nucleotide with 

the downstream sequence (5), thereby restoring the repaired DNA (6). Sometimes, other 

DNA polymerases such as DNA polymerase δ or ε, along with PCNA, are involved in 

filling larger sized gaps, also in a strand-displacement manner (long-patch repair [B]; 

steps 7–12). (Rao K. S., 2007). 
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Over 20 proteins are involved in the NER pathway in mammalian cells (Fig. 21): 

the XPA protein (and possibly also XPC) initiates repair by recognizing damaged 

DNA and forming complexes with other proteins involved in the repair process. 

These include the XPB and XPD proteins, which act as helicases that unwind the 

damaged DNA. In addition, the binding of XPA to damaged DNA leads to the 

recruitment of XPF (as a heterodimer with ERCC1) and XPG to the repair 

complex. The XPA protein binds to replication protein A (RPA) which enhances 

the affinity of XPA for damaged DNA and is essential for NER. XPF/ERCC1 and 

XPG are endonucleases, which cleave DNA on the 5′ and 3′ sides of the damaged 

site, respectively. This cleavage excises an oligonucleotide consisting of 

approximately 30 bases. The resulting gap then appears to be filled in by DNA 

Figure 21 A model of the nucleotide excision repair pathway, which includes global 

genomic repair (1B) and transcription-coupled repair (1A). The damaged base in the 

DNA is indicated by a green star. In global genomic repair, the damage is recognized 

by the heterotrimeric complex of XPC, RD23B and centrin 2, whereas when the 

damage is in a gene that is being actively transcribed by RNA pol II, ERCC8 and 

ERCC6 have a crucial role in stalling the transcription process so that repair of the 

transcribed gene can be initiated. From this point onwards, the repair pathway is 

common to both mechanisms, and it proceeds by recruiting several other factors, as 

shown in (2), to effect unwinding, bubble formation of the strand harboring the 

damage, incision of the strand at discrete points on the 5' and 3' sides, and excision of 

the fragment containing the damage. In step (3), the gap created by the excision of the 

damaged strand is resynthesized by DNA pol δ/ε, with the help of auxiliary factors 

such as PCNA and RPA–RFC. Finally, DNA ligase I ligates the newly synthesized 

fragment to the downstream strand to complete the repair process and yield the 

repaired product (4). (Rao K. S., 2007). 
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polymerase δ or ε (in association with replication factor C and PCNA) and sealed 

by ligase (You J. S. et al., 2003). Global genomic NER (GGR) repairs damage 

throughout the genome, while a specific NER pathway called Transcription 

Coupled Repair (TCR) repairs genes during active RNA polymerase transcription 

(Hanawalt P. C., 2002). 

A connection between transcription and repair was first suggested by experiments 

showing that transcribed strands of DNA are repaired more rapidly than 

nontranscribed strands in both E. coli and mammalian cells (Mellon I. & 

Hanawalt P. C., 1989; Mellon I. et al., 1987). Since DNA damage blocks 

transcription, this transcription-repair coupling is thought to be advantageous by 

allowing the cell to preferentially repair damage to actively expressed genes. 

Although the molecular mechanism of transcription-repair coupling in 

mammalian cells is not yet known, it is noteworthy that the XPB and XPD 

helicases are components of a multisubunit transcription factor (called TFIIH) that 

is required to initiate the transcription of eukaryotic genes. Thus, these helicases 

appear to be required for the unwinding of DNA during both transcription and 

nucleotide-excision repair, providing a direct biochemical link between these two 

processes.
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Retinoic acid (RA), an active derivative of vitamin A, plays a role in regulation of 

embryonic development, homeostasis and differentiation of adult tissues. RA 

metabolites, collectively known as retinoids, are well-characterized inhibitors of 

cancer cell proliferation or inducers of stem cell differentiation. It was 

demonstrated that retinoids potently inhibit the growth of breast cancer cell lines 

and can inhibit mammary carcinogenesis in animals models. Among the 

mechanisms proposed to explain the inhibition of breast cancer cell growth by 

retinoids there are cyclin D degradation, RAR induction, inhibition of AP-1 

activity and alterations in specific downstream IGF signaling elements. In fact, 

RA regulates the PI 3-kinase/Akt pathway reducing IRS-1 protein levels and 

tyrosine phosphorylation (del Rincón S. V. et al., 2003). In breast cancer cell line 

MCF7 it has been found that RA signaling regulates the expression of many genes 

that have been implicated in breast carcinogenesis and/or whose expression is 

indicative for the clinical outcome of breast cancer. Interestingly, RAR/RAR 

exhibit extensive colocalization of their genomic binding regions with ER in the 

vicinity of genes that are antagonistically regulated by estrogen and RA and in 

breast tumor samples, the expression of RAR targets identified in MCF-7 cells 

predicts a positive clinical outcome (Hua S. et al., 2009). 

Despite extensive studies on RA-induced transcription, it is not known if there is a 

common set of histone modifications or how the initiation transcription complex 

is assembled on regulatory regions. The H3 methylation changes reported so far 

that are associated with activation of the receptor(s) by RA, may be secondary to 

repression of transcription (Angrisano T. et al., 2011) or induced by the 

establishment of complex phenotypes, such as stem cell differentiation 

(Shahhoseini M. et al., 2012; Compe E. & Egly J. M.., 2012). Although large 

DNA domains have been studied and histone modifications have been recorded 

during development, the mechanism used by RA to activate transcription still 

remains elusive. To address this issue, we studied two prototypic genes induced 

by RA: caspase 9 (CASP9) and Cyp26A1 (CYP26A1). CASP9 contains a 

functional RARE located 9.5 Kb downstream of the transcription start site 

(Donato L. J. & Noy N., 2005), whereas the RA-induced CYP26A1 expression is 

driven by a compact RARE-promoter (Balmer J. E. & Blomhoff R., 2002). We 



Aim of the study 

41 

 

first analyzed recruitment of RA receptor and RNA polymerase II to the promoter 

and RARE sites. Second, we studied the changes of methylation of lysine 4 (K4) 

and lysine 9 (K9), following the recruitment on the chromatin sites of 2 

demethylating enzymes, LSD1 (KDM1A) and JMJD2A (KDM4A). It is proposed 

that LSD1 demethylates H3K4me2 or K9me2 and JMJD2A demethylates H3K4-

K9 me3 (Kooistra S. M. & Helin K., 2012). Third, we analyzed the formation 

after RA exposure of specific chromatin-DNA domains that connect the 5’ end-

promoter-RARE and the 3’ end site of the RA-target gene.  
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Cells and transfections 

Human breast cancer MCF-7 cells were grown at 37°C in 5% CO2 in Dulbecco’s 

modified Eagle’s medium (DMEM) supplemented with phenol red, L-glutamine 

(2 mM), insulin (10 µg/ml), hydrocortisone (3.75 ng/ml), and 10% fetal bovine 

serum (FBS, South America origin, Brazil, Invitrogen, Rockville, MD, USA). 

Cells were provided with fresh medium every 3 days. To evaluate the effect of 

retinoic acid challenge, cells were grown in phenol red-free DMEM containing 

10% dextran–charcoal-stripped FBS for 1 to 3 days, before being challenged with 

300 nM retinoic acid for different times according to the experimental needs. 

To obtain LSD1 knock down with siRNA, cells were transiently transfected, using 

a Neon® Transfection System, with siRNA GS23028 (Qiagen Inc., USA) in 

medium without serum to a final concentration of 10 nM and incubation was 

continued for 48 h. Scrambled RNA, at the same concentration, was used as 

negative control. The same procedure was used to get JMJD2A, OGG1 and APE1 

knock down with the specific siRNAs (JMJD2A, SR306452C; OGG1, SR303282; 

APE1, SR300230; OriGene Technologies, Inc., USA). To determine rescue of 

LSD1 activity in knock down experiments with siRNAs, LSD1 full-length cDNA 

was inserted into the CMV 3xFLAG expression vector (Sigma-Aldrich, St. Louis, 

MO, USA). To obtain rescue of JMJD2A activity, cells were transfected with 

pCMV6-AC-GFP plasmid containing JMJD2A full-length (RG200574, OriGene 

Technologies, Inc., USA). To asses the transfection efficiency at single cell level, 

all transfections were traced with pEGFP Vector (Clontech) or with BLOCK-iT 

Alexa Fluor® Red Fluorescent Control and analysed by FACS. 

 

RNA extraction and qRT-PCR and qPCR 

Total RNA was extracted using Triazol (Gibco/Invitrogen). cDNA was 

synthesized in a 20 µl reaction volume containing 1 µg of total RNA, 100 units of 

Superscript III Reverse Transcriptase (Invitrogen), and 2 µl random hexamer (20 

ng/µl) (Invitrogen). mRNA was reverse-transcribed for 1 h at 50 °C, and the 

reaction was heat inactivated for 15 min at 70 °C. The products were stored at -20 

°C until use. Quantitative reverse Transcription Polymerase Chain Reaction (qRT-
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PCR) and Quantitative Polymerase Chain Reaction (qPCR) were performed three 

times in six replicates on a 7500 Real Time PCR System (Applied Biosystems) 

using the SYBR Green-detection system (FS Universal SYBR Green 

MasterRox/Roche Applied Science). The complete list of oligonucleotides used is 

reported in Table 1. 

 

Chromatin Immuno-Precipitation (ChIP) 

Cells were transfected and/or treated as indicated in the legends of the figures. 

The cells (~2.5 x 10
6
 for each antibody) were fixed for 10 minutes at room 

temperature by adding 1 volume of 2% formaldehyde to a final concentration of 

1%, the reaction was quenched by the addition of glycine to a final concentration 

of 125 mM. Fixed cells were harvested and the pellet was resuspended in 1 ml of 

Lysis Buffer (10 mM Tris-HCl pH 8.0, 10 mM NaCl, 0.2 % NP40) containing 1X 

protease inhibitor cocktail (Roche Applied Science). The lysates were sonicated in 

order to have DNA fragments from 300 to 600 bp. Sonicated samples were 

centrifuged and supernatants diluted 2 fold in the ChIP Buffer (1% Triton X-100, 

2 mM EDTA, 150 mM NaCl, 20 mM Tris-HCl pH 8.0). An aliquot (1/10) of 

sheared chromatin was further treated with proteinase K (4U every 1 x 10
6
 

nuclei), extracted with 1 volume of phenol/chloroform/isoamyl alcohol (25:24:1) 

and precipitated in LiCl 0,4 M/ ethanol 75% to determine DNA concentration and 

shearing efficiency (input DNA). The ChIP reaction was set up according to the 

manufacturer’s instructions. Briefly, the sheared chromatin was precleared for 2 h 

with 1 µg of non-immune IgG (Santa Cruz Biotechnology, Santa Cruz, CA, USA) 

and 20 µl of Protein A/G PLUS-Agarose (Santa Cruz Biotechnology) saturated 

with salmon sperm (1 mg/ml). Precleared chromatin was divided in aliquots and 

incubated at 4 °C for 16 h with 1 µg of the specific antibody (for the codes, see 

below) and non-immune IgG respectively. The immuno-complexes were 

recovered by incubation for 3 h at 4 °C with 20 µl of protein-A/G PLUS agarose, 

beads were washed with wash buffers according to the manufacturer’s instructions 

and immunoprecipitated DNA was recovered through phenol/chloroform/isoamyl 

alcohol extraction and ethanol precipitation and redissolved in TE buffer (10 mM 

Tris-HCl, 1mM EDTA, pH 8,0). Samples were subjected to qPCR using the 
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primers indicated in the legend of the specific figures, primers sequences are 

reported in Table 1. Real Time-qPCRs were performed using FastStart Universal 

SYBR Green Master (Rox) (Roche Applied Science) with cycle conditions as 

follows: 

 

CASP9 Promoter: 95 °C 10 min; 5x (95 °C 45 sec, 68 °C 30 sec, 72 °C 30 sec); 

40x (95 °C 45 sec, 65 °C 30 sec, 72 °C 30 sec); 72 °C 10 min. 

CASP9 Other regions: 95 °C 10 min; 5x (95 °C 45 sec, 59 °C 30 sec, 72 °C 30 

sec); 40x (95 °C 45 sec, 56 °C 30 sec, 72 °C 30 sec); 72 °C 10 min. 

CYP26A1 RARE/Promoter region: 95 °C 10 min; 45x (95 °C 45 sec, 56 °C 30 

sec, 72 °C 35 sec); 72 °C 10 min. 

 

8-Oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxo-dG) DNA Assay 

For 8-oxodG detection, 10
6
 MCF-7 cells were seeded onto glass slides and 

treated with 200 or 500 nM RA for 15 or 30 min. Control cultures were treated 

with equivalent vehicle volumes and concentrations. After treatments, the cells 

were fixed 15 min with 4% paraformaldehyde in PBS. The slides were then 

washed with TBS/Tween-20 and permeabilized by serial washes in methanol 

solutions, prior to be washed with TBS/Tween-20, blocked for 1 h at 37°C and 

incubated with FITC-labeled protein, that binds 8-oxo-dG, for 15 h at 4°C (Biotrin 

OxyDNA Test, Biotrin, UK). Cover slips were mounted in Moviol and viewed by 

fluorescence. To obtain LSD1 knock down, cells were transfected with specific or 

control siRNAs. After 48 h, cells were subjected to different treatments, according 

to experimental needs, and processed for fluorescence microscopy. For single cell 

transfection assays, cells were co-transfected with BLOCK-iT Alexa Fluor® Red 

Fluorescent Control. The efficiency of transfection was 65%+10. All images were 

captured with Axiocam microscopy (Zeiss) with a 63x objective in the same 

conditions of brightness and contrast. 
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Chromosome conformation capture (3C) 

The 3C assay was performed as described previously (Dekker J. et al., 2002) 

with minor adaptations. Briefly: the NcoI restriction enzyme was used (Roche 

Applied Science). The cells (2.5 x 10
6
) were crosslinked in 12 ml of PBS with 1% 

formaldehyde for 10 min at room temperature. The reaction was quenched by the 

addition of glycine to a final concentration of 125 mM. Fixed cells were harvested 

and the pellet resuspended in 1 ml of ice-cold lysis buffer (the same used for ChIP 

experiments). Nuclei were washed with 0.5 ml of restriction enzyme buffer (100 

mM NaCl, 50 mM Tris-HCl, 10 mM MgCl2, 1mM Dithioerythritol, pH 7,5 at 37 

°C), centrifuged and resuspended in 100 µl of restriction enzyme buffer. SDS was 

added to a final concentration of 0.1%, and nuclei were incubated at 37 °C for 15 

min. Triton X-100 was added to the final concentration of 1% to sequester SDS. 

Digestion was performed with 100 U of the restriction enzyme at 37 °C for 16 h. 

The restriction enzyme was inactivated by the addition of SDS to 2% and 

incubation at 65 °C for 30 min. The reaction was diluted into 1 ml ligation 

reaction buffer (66 mM Tris-HCl, 5 mM MgCl2, 5 mM DTT, 1 mM ATP, pH 7,5) 

and incubated at 16 °C for 18 h with 50 U of T4 DNA Ligase (Roche Applied 

Science). EDTA (10 mM) was added to stop the reactions. Samples were treated 

with Proteinase K (200 µg/ml) and incubated for 5 h at 55 °C, and then overnight 

at 65 °C to reverse the formaldehyde crosslinks. The following day, the DNA was 

purified by phenol/chloroform/isoamyl alcohol extraction and ethanol 

precipitation. Samples were redissolved in 20 μl of TE buffer. To prepare a 

control template, we used a pool of plasmids containing an equimolar amount of 

the CASP9 or CYP26A1 inserts spanning the genomic regions of interest. Five 

micrograms of plasmid DNA were digested with NcoI in 50 µl of 1x buffer for 8 h 

at 37 °C and then ligated in 20 µl with 5 U of T4 Ligase at 16 °C for 4 h. The 

efficiency of digestion at the end of 3C treatment was quantified by real time 

PCR, amplifying a fragment spanning two NcoI (uncut) in different 3C DNA 

preparations. Primer sequences are reported in Table 1. PCR were performed 

using FastStart Taq DNA Polymerase (Roche Applied Science) with cycle 

conditions as follows: 
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CASP9 oligo A-F1, F1-L, F2-L, A-L: 95 °C 5 min; 5x (95 °C 45 sec, 55 °C 30 

sec, 72 °C 30 sec); 30x (95 °C 45 sec, 52 °C 30 sec, 72 °C 30 sec); 72 °C 10 min. 

CASP9 oligo F2-L: 95 °C 5 min; 5x (95 °C 45 sec, 54 °C 30 sec, 72 °C 35 sec); 

30x (95 °C 45 sec, 51 °C 30 sec, 72 °C 35 sec); 72 °C 10 min. 

PCR products were run on 1.2% agarose gels, stained with ethidium bromide 

and quantified with the imageJ program (Rasband WS, ImageJ, National Institutes 

of Health, Bethesda, Maryland, USA, http: //rsb.info.nih.gov/ij/). The amplified 

fragments at the end of the procedure were verified by DNA sequence analysis. 

 

Antibodies used for the experiments 

RAR sc-551 (Santa Cruz Biotechnology); PolII 05-623 (Upstate) ; P-Pol II 04-

1572 (Upstate); H3K4me2 ab32356 (Abcam); H3K4me3 ab1012 (Abcam); 

H3K9me2 ab1220 (Abcam); H3K9me3 ab8898 (Abcam); Total H3 ab1791 

(Abcam); LSD1 sc-271720 and sc-67272 (Santa Cruz Biotechnology); JMJD2A 

sc-135065 (Santa Cruz Biotechnology); Anti-FLAG F7425 (Sigma-Aldrich); 

OGG1 sc-33181 (Santa Cruz Biotechnology); TDG sc-22845 (Santa Cruz 

Biotechnology); UNG sc-28719 (Santa Cruz Biotechnology); APE1 ab-194 

(Abcam); RPA sc-14691 (Santa Cruz Biotechnology); XPG sc-73274 (Santa Cruz 

Biotechnology); SSU72 sc-69613 (Santa Cruz Biotechnology); RXRsc-553 

(Santa Cruz Biotechnology); Normal rabbit IgG sc-2027 (Santa Cruz 

Biotechnology); Normal mouse IgG sc-2025 (Santa Cruz Biotechnology). 

 

LSD1 Activity/Inhibition Assay 

MCF-7 cells were serum starved for 2 days and treated with RA for the indicated 

times. Untreated or treated MCF-7 cells were washed three times with ice-cold 

PBS pH 7.4, scraped and lysed in buffer 1 containing 20 mM Tris pH 7.5, 10 mM 

KCl, 2 mM EDTA, 2 mM MgCl2. After 10 seconds at 12,000 xg at 4 °C, the 

pellets were resuspended in a buffer 2 containing 20 mM Tris pH 7.5, 400 mM 

NaCl, 2 mM EDTA, 1 mM MgCl2. After 10 minutes at 12,000 x g at 4 °C, the 

supernatants were assayed for LSD1 activity. The activity was measured by the 
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EpiQuik™ Histone Demethylase (H3K4 Specific) Activity/Inhibition Assay Kit, 

according to the manufacturer’s instructions (Epigentek, P -3017; USA). 

 

Statistical analysis 

All data are presented as mean ± standard deviation in at least three experiments 

in triplicate (n≥9). Statistical significance between groups was determined using 

Student’s t test (matched pairs test or unmatched test were used as indicated in 

figure legends). All tests was performed using the JMP Statistical Discovery™ 

software by SAS, Statistical Analysis Software. 
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Table S1 
 PRIMERS FOR mRNA Locus 

mRNA Fw 5’-CCATATGATCGAGGACATCCA-3’ CASP9 

mRNA Rev 5’-GACTCCCTCGAGTCTCCAGAT-3’ CASP9 

mRNA Fw 5’-GCAGCCACATCTCTGATCACT-3’ CYP26A1 

mRNA Rev 5’-TGTTGTCTTGATTGCTCTTGC-3’ CYP26A1 

mRNA Fw 5’-ATGGAAGGGGTGGAGGAT-3’ JMJD2A 

mRNA Rev 5’-TTTGTCCCTATTCGGTGCTT-3’ JMJD2A 

18SF 5’-TCCCCATGAACGAGGAATTC-3’ h18S 

18SR 5’-GGCCTCACTAAACCATCCAA-3’ h18S 

mRNA Fw 5’-CGTCATGGTCTTATCAACTTCG-3’ LSD1 

mRNA Rev 5’-CAGCTACATAGTTTCCTTTGCG-3’ LSD1 

mRNA Fw 5’-TTTGATGACCCGCAAAGG-3’ OGG1 

mRNA Rev 5’-AACAACCTTCCCTGTTTCACTT-3’ OGG1 

mRNA Fw 5’-ACACTCAAGATCTGCTCTTGG-3’ APE1 

mRNA Rev 5’-TGCCGTAAGAAACTTTGAGTGG-3’ APE1 

 PRIMERS FOR ChIP Locus 
ChIP Prom Fw 5’-CGCGCCGCCCCAGAACACG-3’ CASP9 

ChIP Prom Rv 5’-GCGGGCGGGACGGTAACG-3’ CASP9 

ChIP RARE Fw 5’-GGAGGCTGAGGCGGGTTTATC-3’ CASP9 

ChIP RARE Rev 5’-GGTGGAGTGCGGTGGTGTG-3’ CASP9 

ChIP RARE 5’ Fw 5’-TTTTTCTTGCCGCTTTTTCTCATC-3’ CASP9 

ChIP RARE 5’ Rev 5’-TGTCTCAGCCTCCCCAGTAGC-3’ CASP9 

ChIP PolyA1 Fw 5’-CTAGTAGGCCCCGGTTTGCTGAT-3’ CASP9 

ChIP PolyA1 Rev 5’-AGTAACGCGTCTTCCTGAGTGGTG-3’ CASP9 

ChIP PolyA2 Fw 5’-GTTCTCACCCTTGTTGCCTTCCT-3’ CASP9 

ChIP PolyA2 Rev 5’-TTGCCTATTTCTTCCCTCATTTTG-3’ CASP9 

Intron 2 Fw/CasF1 5’-GCAAGTACTCAATAATGTTCACC-3’ CASP9 

Intron 2 Rev/CasE2 5’-TCAACAAAAATTCACCAAAACTCA-3’ CASP9 

Exon 13 Fw 5’-CCTCCTTGACCAGGCTAATTAC-3’ TGFBI 

Exon 13 Rev 5’-GGCTGCAACTTGAAGGTTGTG-3’ TGFBI 

ChIP RARE Fw 5’-GCGGAACAAACGGTTAAAGA-3’ CYP26A1 

ChIP RARE Rev/C 5’-TGATCGCAGCCAGGAAGA-3’ CYP26A1 

 PRIMERS FOR 3C Locus 
Cas A 5’-GTCTGTACATGTTCAGTACAATGC-3’ CASP9 

Cas B 5’-CCACCTGCAGCTCTTCCA-3’ CASP9 

Cas C 5’-CAGTCATCCGGAGACCTAAACC-3’ CASP9 

Cas D 5’-AGATGCCCAGCACTATGCTAAG-3’ CASP9 

Cas E1 5’-GGTGCCTGGCAAATAGCAAT-3’ CASP9 

Cas E2 5’-TCAACAAAAATTCACCAAAACTCA-3’ CASP9 

Cas F1 5’-GCAAGTACTCAATAATGTTCACC-3’ CASP9 

Cas F2 5’-GGGGTGATTCCAGCATAGGTTC-3’ CASP9 

Cas G 5’-CTTCTGCGTCTGAACTTGAACC-3’ CASP9 

Cas H 5’-CTGAAAGAAAGAAGGCTGGATGC-3’ CASP9 

Cas I 5’-AGGAAGGAAACTACCGCTTGCT-3’ CASP9 

Cas L 5’-TCCCTTTCACCGAAACAGCA-3’ CASP9 

A 5’-TCACCACTGGACATATTCTTACC-3’ CYP26A1 

B 5’-GTGGGGTTTGAAGCGCTGG-3’ CYP26A1 

C 5’-TGATCGCAGCCAGGAAGA-3’ CYP26A1 

D 5’-TATTTACAGTGGAGCTGGCC-3’ CYP26A1 

E 5’- CTCAGGTTTGAACATTCAAGC -3’ CYP26A1 

F 5’-TGTTTGCCAAAGTTTTCAACC-3’ CYP26A1 
Supplementary Table S1. Complete list of DNA oligonucleotides used for PCR. On the left is shown the primer 

identification tag; on the centre is shown the DNA sequence; on the right are shown the specific genes or loci 

corresponding to the specific primers. 
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Recruitment of RA receptor and activation of RNA polymerase II 

at RA-target promoters 

Transcription allows the DNA to be copied into an RNA molecule, to transmit 

its genetic information and it is regulated by many transcriptional factors that bind 

to the regulatory regions of genes. It can be induced by nuclear receptors, a group 

of transcriptional factors activated by lipophilic substances. We used a model of 

transcription induced by retinoic acid. 

The biological activity of RA is mediated by its binding to retinoic acid receptors 

(RARα, RARβ and RARγ). These belong to the type II group of nuclear receptors: 

the receptor is already in the nucleus and after binding to RA it detaches itself 

from co-repressors and function as heterodimers with retinoid X receptors 

(RXRs), targeting specific sites on DNA known as retinoic acid responsive 

elements (RAREs). In CASP9, a RARE element is localized in intron II, 9.5 Kb 

downstream to the transcription start site (Fig. 22); 2. At CYP26A1, RARE is 

contiguous with the promoter (-150 bp from the TSS) (Fig. 22). These sites are 

essential for RA induction of transcription of the two genes (Donato L. J. & Noy 

N., 2005; Ray W. J. et al., 1997).  

 

                   

 

Figure 22 Structure of CASP9 and CYP26A1 genes. The direction of transcription is 

indicated by a green arrow. The green boxes indicate exons; the red, blue and yellow 

elements indicate the promoters, PolyA and RARE sequences respectively; the black 

arrows indicate the primers used for ChIP and mRNA experiments. 
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We studied induction by RA of CASP9 and CYP26A1 genes (Fig. 22) by 

exposing MCF-7 cells to RA and measuring mRNA levels at different times 

following stimulation. Fig 23 shows that both mRNAs accumulate 30 min after 

RA exposure. After a transient reduction at 60 min their levels reached a 

maximum 4-6 h after RA exposure. 

 

 

Figure 23 RA induction of CASP9 and CYP26A1 mRNA. Total RNA was prepared 

from MCF-7 hormone-starved or stimulated with 300 nM retinoic acid for 15, 30, 60 and 

240 minutes and analyzed by qPCR with specific primers (Fig.1) to CASP9 and CYP26A1 

mRNA normalized to 18s RNA levels. The statistical analysis derived from at least 3 

experiments in triplicate (n ≥9; Mean±SD); *p <0.01 (matched pairs t test) compared to 

RA-unstimulated sample, **p<0.01 (matched pairs t test) comparing 30 to 60 min. of RA 

exposure. 

 

To monitor recruitment of the retinoic acid receptor to the promoter and RARE 

elements after RA stimulation, we assessed the timing of association of retinoic 

acid receptor to the chromatin of CASP9 and CYP26A1 by ChIP. We included in 

our analysis very early times after RA induction (min) to detect the earliest 

chromatin changes induced by the hormone. Figure 24 shows that RAR is 

rapidly (15 min) recruited  to the RARE element and to the upstream promoter of 

CASP9. We noticed that the levels of RAR recruited at the promoter and RARE 

chromatin were not stable, but oscillated between 15 and 60 min after RA 

exposure and stabilize after 4 hours. 
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Figure 24 RA induction of RAR accumulation on retinoic responsive elements 

(RARE) and promoter of CASP9 gene. qChip analysis of RA dependent occupancy of 

retinoic acid receptor alpha (RAR) on the promoter and retinoic responsive elements 

(RARE) of CASP9. MCF7 cells were stimulated with 300 nM retinoic acid (RA) for 15, 

30, 60 and 240 minutes. The chromatin was immunoprecipitated with antibodies directed 

against RAR. The black, horizontal, line indicates the percent of input from a control 

ChIP (Ab: non immune serum). The statistical analysis derived from at least 3 

experiments in triplicate (n ≥9; Mean±SD); *p <0.01 (matched pairs t test) compared to 

RA-unstimulated sample; °°p<0.01 (matched pairs t test) comparing 15 to 30 min. 

 

 

The RAR and RXR were also recruited to the RARE/promoter of CYP26A1 

(Fig. 25). RAR accumulates on RARE/Promoter of CYP26A1 with a peak after 

30 min from induction and a subsequent oscillation up to 4 hours. RXR 

recruitment instead remains stable until 90 minutes after hormone exposure. 

Recruitment of RAR and RXR was associated with accumulation of total and 

ser5-phosphorylated RNA polymerase II (Pol II and P-Pol II, respectively) at the 

RARE and promoter regions of CASP9 and CYP26A1 (Figs. 25, 26 and 27). 
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Figure 25 A, B, C. RA induction of accumulation of RARα and RXR on retinoic 

responsive elements (RARE) and promoter of CYP26A1 gene. qChip analysis of RA 

dependent occupancy of RARα and RXRα on the promoter/RARE of CYP26A1 gene. 

MCF7 cells were stimulated with 300 nM retinoic acid (RA) for 15, 30, 60 and 240 

minutes. The chromatin was immunoprecipitated with antibodies directed against RARα 

or RXRα. The panel B represents a semiquantitative PCR assay of the ChIP, the panel C 

the qPCR in an independent ChIP experiment. The black, horizontal, line in A and C 

indicates the percent of input from a control ChIP (Ab: non immune serum). The 

statistical analysis derived from at least 3 experiments in triplicate (n=≥9); *p <0.01 

(matched pairs t test) compared to RA-unstimulated sample; **p<0.01 (matched pairs t 

test) comparing 30 to 60 min. 

 

Figure 5 shows the results of a ChIP experiment to evaluate the levels of Pol II 

and P-Pol II on promoter and RARE regions of CASP9. As expected, Pol II and P-

Pol II accumulated preferentially at the promoter relative to the RARE. Note that 

recruitment of total Pol II and P-Pol II to RARE oscillated synchronously with the 

recruitment of RAR. P-Pol II progressively accumulated at the CASP9 promoter 

with the time of RA stimulation. The levels of P-Pol II at the CASP9 RARE 

dipped at 30 min and then increased over the next 210 min.  
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Figure 26 RA induction of accumulation of RNA polymerase II on retinoic 

responsive elements (RARE) and promoter of CASP9 gene. qChip analysis of RA 

dependent occupancy of RNA polymerase II (Pol II) and phosphorylated RNA 

polymerase II (P-Pol II) on the promoter and retinoic responsive elements (RARE) of 

CASP9. MCF7 cells were stimulated with 300 nM retinoic acid (RA) for 15, 30, 60 and 

240 minutes. The chromatin was immunoprecipitated with antibodies directed against Pol 

II or P-Pol II. The black, horizontal, lines indicate the percent of input from a control 

ChIP (Ab: non immune serum). The statistical analysis derived from at least 3 

experiments in triplicate (n ≥9; Mean±SD); *p <0.01 (matched pairs t test) compared to 

RA-unstimulated sample; °°p<0.01 (matched pairs t test) comparing 15 to 30 min. 

 

ChIP analysis of Pol II and P-Pol II recruitment on RARE/Promoter chromatin 

of CYP26A1 showed that Pol II and P-Pol II accumulates between 30 and 60 

minutes after RA induction. Their levels tend to decrease at 90 min (Fig. 27). 
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Figure 27 RA induction of accumulation of RNA polymerase II on retinoic 

responsive elements (RARE) and promoter of CYP26A1 gene. ChIP analysis of RA 

dependent occupancy of RNA polymerase II (Pol II) and phosphorylated RNA 

polymerase II (P-Pol II) on the promoter/RARE of CYP26A1 gene. MCF7 cells were 

stimulated with 300 nM retinoic acid (RA) for 30, 60 and 90 minutes. The chromatin was 

immunoprecipitated with antibodies directed against the large subunit of RNA 

polymerase II (Pol II and phosphorylated P-Pol II). The left panel represents a 

semiquantitative PCR assay of the ChIP, the right panel is the qPCR in an independent 

ChIP experiment. The black, horizontal, line indicates the percent of input from a control 

ChIP (Ab: non immune serum). The statistical analysis derived from at least 3 

experiments in triplicate (n=≥9); *p <0.01 (matched pairs t test) compared to RA-

unstimulated sample. 
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Histone H3 K4 and K9 methylation marks induced by RA  

Histone methylation is an important type of chromatin modification that 

contributes to the control of gene expression through influencing chromatin 

compaction or signalling to other protein complexes. Histone lysine residues can 

be mono-, di-, or trimethylated, and different degrees of methylation on one 

particular site could be linked to different functional outcomes. Histone lysine 

methylation seems to be a quite stable modification and stably methylated histone 

lysine residues sustain the establishment and propagation of different patterns of 

gene expression in the same genome. Thus, methylated histone lysine residues 

have been considered “epigenetic marks” (Jenuwein T. & Allis C. D., 2001). 

Methylation of lysine 4 in histone H3 (H3K4) marks transcribed loci, whereas 

dimethyl-lysine 9 in the same histone (H3K9me2) is associated with transcription 

silencing (Loh Y. H. et al., 2007; Vaute O. et al., 2002; Wang H. et al., 2001). To 

find the histone marks modified by RA exposure on chromatin, we analyzed the 

methylation profiles of lysines 4 (K4) and 9 (K9) in histone H3 in cells after 

treatment with RA. ChIP analysis was performed with H3 mK9- and mK4- 

specific antibodies at the promoter-start site, the RARE element, two polyA 

addition sites located at the 3’end of the CASP9 and segments of the gene 2Kb 

distant from the TSS. As a result of methylation and de-methylation events 

induced by RA, the levels of methylated K9 or K4, normalized to total histone 

H3, were selectively modified shortly after RA exposure. Fig. 28 shows that 

promoter-associated H3K4 me2 and me3 were transiently de-methylated 15 min 

after RA challenge and then progressively re-methylated (Fig. 28A and B). Rapid 

de-methylation of H3K4 at RARE was also observed, but the rate of re-

methylation was slower than at the promoter. RA induced a transient loss of 

H3K9me2 and H3K9me3, followed by accumulation of H3K9me2 but not of 

K3K9me3 (Fig. 28C and D). These cyclical methylation-demethylation events 

were strikingly synchronous on the RARE and promoter regions of CASP9. In 

contrast, H3 methylation was unaffected by RA at a site 2Kb downstream to 

RARE  in intron II or in a non-RA induced gene, TGFB1 (Fig. 28E). 
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Figure 28 Methylation-demethylation cycles of histone H3K4/K9 induced by RA on 

CASP9 promoter-RARE chromatin. MCF7 cells were serum starved and exposed to 

300 nM RA at the indicated times (0, 15, 30, 60 and 240 min). qChIP was carried out 

using specific antibodies recognizing H3K4me3, H3K4me2, H3K9me3 and H3K9me2. 

A, B. H3K4me2 and H3K4me3 occupancy on CASP9 promoter and RARE. C, D. 

H3K9me2 and H3K9me3 occupancy on CASP9 promoter and RARE. H3K4me2 and 

H3K4me3 were transiently de-methylated 15 min upon RA (black arrows) and 

progressively methylated 30-60 min later. H3K9 was selectively demethylated as shown 

by loss of H3K9me3 and accumulation of H3-K9me2. The statistical analysis derived 

from at least 3 experiments in triplicate (n ≥9; Mean±SD); *p <0.01 (matched pairs t 

test): compared to the RA-unstimulated sample; **p<0.01 (student t test): comparison 

between each regions at same time. E. ChIP analysis of CASP9 II intron and of TGFBI 

exon 13 (non RA-induced gene), in cells exposed to RA for 15, 30 and 60 minutes.  
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A similar methylation-de-methylation cycle was observed at the CYP26A1 

promoter–RARE chromatin (Fig. 29). The levels of H3K4m2 and H3K4m3 show 

an oscillation at 15 min from RA induction and a progressive increase up to 4 

hours, while the levels of H3K9m2 and H3K9m3 have a peak at 30 min and then 

a strong reduction. 

 

 

Figure 29 Methylation-demethylation cycles of histone H3K4/K9 induced by RA on 

CYP26A1 promoter/RARE chromatin. MCF7 cells were serum starved and exposed to 

300 nM RA at the indicated times (15, 30, 45, 60 and 240 min). qChIP was carried out 

using specific antibodies recognizing H3K4me3, H3K4me2, H3K9me3 and H3K9me2. 

The statistical analysis derived from at least 3 experiments in triplicate (n≥9); *p <0.01 

(matched pairs t test): compared to the RA-unstimulated sample. 

 

 

We also probed the 3’ end of CASP9 gene, where two major polyA addition sites 

are located. H3K4me2 and me3 and H3K9me2 at the polyA1 and polyA2 sites 

also underwent transient de-methylation. H3K9me3 was permanently de-

methylated at the polyA2 site, but was essentially unchanged at the polyA1 site 

(Fig. 30). We conclude that the polyA1 and polyA2 sites undergo methylation 

changes similar to those seen on the promoter and RARE, raising the possibility 

that these regions are functionally and physically associated in a unique chromatin 

domain. 
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Figure 30 Methylation-demethylation cycles of histone H3K4/K9 induced by RA on 

CASP9 polyA1 and polyA2 chromatin. MCF7 cells were serum starved and exposed to 

300 nM RA at the indicated times (15, 30, 45, 60 and 240 min). qChIP was carried out 

using specific antibodies recognizing H3K4me3, H3K4me2, H3K9me3 and H3K9me2. 

The upper panels show the H3K4me2 and H3K4me3 occupancy on polyA1 and polyA2 

of CASP9 gene. The lower panels show the H3K9me2 and H3K9me3 occupancy on 

polyA1 and polyA2 of CASP9 gene. The statistical analysis derived from at least 3 

experiments in triplicate (n≥9); *p <0.01 (matched pairs t test): compared to the RA-

unstimulated sample; **p<0.01 (student t test): comparison between each region at same 

time. 

 

These dynamic methylation changes of K4 and K9 induced by RA exposure 

suggest that K4 and K9 de-methylation enzymes are also recruited to CASP9 and 

CYP26A1 chromatin. H3K9me3 and H3K4me3 can be de-methylated by enzymes 

of the Jumonji C (JMJC) family (Loh Y. H. et al., 2007; Wissmann M. et al., 

2007), whereas H3K9me2 and H3K4me2 are de-methylated by LSD1 (Forneris F. 

et al., 2005; Metzger E. et al., 2005). Figure 31A and B shows recruitment of both 

LSD1 and JMJD2A histone de-methylases to the RARE elements and promoters 

of CASP9 and CYP26A1 following RA treatment. Notably, the kinetics of 
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recruitment of LSD1 and JMJD2A parallels the kinetics of loss of the H3K4 and 

H3K9 methyl groups. The methylation changes (H3K9me2/3) and the kinetics of 

LSD1 and JMJD2A recruitment on CYP26A1 chromatin are very similar to those 

seen at RARE. We believe that this similarity is due to the fact that the promoter 

and RARE are physically contiguous in the CYP26A1 but are dissociated in 

CASP9.  

 

Figure 31 Recruitment of LSD1 and JMJD2A to the promoter and RARE of CASP9 

and CYP26A1 genes. MCF7 cells were serum starved and exposed to 300 nM RA at the 

indicated times (15, 30, 60 and 240 min). qChIP was carried out using specific antibodies 

recognizing LSD1 and JMJD2A. The panel A shows the time course of the recruitment of 

LSD1 and JMJD2A on RARE and on the promoter sequences of CASP9 while the panel 

B shows the recruitment of LSD1 (white) and JMJD2A (black) on the promoter/RARE 

sequence of CYP26A1 analyzed by qPCR. The black, horizontal, line in each plot 

indicates the percent of input from a control ChIP (Ab: non immune serum). The 

statistical analysis derives from at least 3 experiments in triplicate (n≥9; Mean±SD); *p 

<0.01 (matched pairs t test) compared to RA-unstimulated sample; °°p<0.01 (student t 

test): comparison between Promoter and RARE regions. 
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To demonstrate that both lysine de-methylases were necessary for RA-induced 

transcription, we knocked down LSD1 and JMJD2A with specific siRNAs, and 

induced the cells with RA (Fig. 32). Knock down of either demethylase 

significantly reduced expression of CASP9 (Fig. 32B) and CYP26A1 (Fig. 32C). 

Expression of the de-methylases in silenced cells restored CASP9 and CYP26A1 

expression, indicating that RA induction of transcription requires the concerted 

action of both LSD1 and JMJ-domain containing de-methylases. 

 

 

Figure 32 Depletion of the histone demethylases, LSD1 and JMJD2A blocks RA-

induced transcription. MCF7 were transiently transfected with LSD1 siRNA or 

JMJD2A siRNA with or without the wild type protein expressing vectors. The efficiency 

of siRNA treatments was measured by qPCR using primers for LSD1 and JMJD2A 
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mRNAs (panel A). Transfection efficiency was monitored by FACS (Alexa Fluor or co-

transfected pEGFP Vector). After 48 h, total RNA was prepared from control cells 

(starved) or RA induced cells (300 nM RA for 45 min) and analyzed by qPCR with 

specific primers to CASP9 (panel B) or CYP26A1 (panel C) mRNA. The statistical 

analysis derives from at least 3 experiments in triplicate(n=≥9); *p <0.01 (matched pairs t 

test) compared to RA-unstimulated sample; **p<0.01 (student t test): comparison 

between siSCR and specific siRNA. 

 

Importantly, silencing of either LSD1 or JMJD2A inhibited RA-induced de-

methylation, as shown by retention of di- and tri-methylated H3K4 and H3K9 at 

the CASP9 promoter (Fig. 33). Thus we do not find different substrate 

specificities for LSD1 and JMJD2A. Instead, our data indicate that the two 

enzymes cooperate to de-methylate H3K4 and H3K9. 

 

 

Figure 33 Depletion of LSD1 or JMJ2DA inhibits the methylation changes induced 

by RA. qChIP was performed on cells transfected with LSD1 siRNA or JMJD2A siRNA 

and induced with 300 nM RA for 15 minutes. qChIP was carried out using specific 

antibodies recognizing H3K4me3, H3K4me2, H3K9me3 and H3K9me2. The statistical 

analysis derived from at least 3 experiments in triplicate (n≥9; Mean±SD); *p <0.01 

(matched pairs t test) compared to RA-unstimulated sample; **p<0.01 (student t test): 

comparison between SCR and specific siRNAs. Transfection efficiency was monitored by 

FACS (Alexa Fluor or co-transfected pEGFP Vector). 



Results 

64 

 

To explore further the relationship between H3K9 and H3K4 methylation and 

LSD1, we over-expressed an N-terminal dominant-negative mutant (T110A) of 

LSD1 (LSD1ALA). This mutant is still enzymatically active, but is unable to 

target transcription factors (Ambrosio R. et al., 2013; Amente S. et al., 2010a). 

The LSD1ALA mutant protein was defective in binding to the promoter or RARE 

elements of CASP9 or CYP26A1 (Fig. 34): In basal conditions, the amount of 

bound LSD1ALA is lower than LSD1WT and 30 min after RA induction 

LSD1WT is recruited on RARE/promoter regions of the two genes, while 

LSD1ALA is not. 

 

 

 

Figure 34 Recruitment of wild type and mutant LSD1 (LSD1ALA) to the CASP9 

and CYP26A1 RARE/promoter. MCF7 were transiently transfected with LSD1 vectors 

(WT or mutant), starved (Basal) or treated with 300 nM RA for 30 minutes and were 

analyzed by qChIP using Anti-FLAG antibodies to recognize the recombinant LSD1. The 

panel A shows the recruitment of the flagged LSD1WT and LSD1ALA on RARE and on 

the promoter sequences of CASP9. The black, horizontal line indicates the percent of 

input from a control ChIP (Ab: non immune serum). The panel B shows the recruitment 

of the flagged LSD1 WT and LSD1ALA on promoter/RARE chromatin of CYP26A1. 

The statistical analysis derives from at least 3 experiments in triplicate(n=≥9); *p <0.01 

(matched pairs t test) compared to RA-unstimulated sample; **p<0.01 (student t test): 

comparison between LSD1WT and LSD1ALA. 
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LSD1ALA also inhibited activation of CASP9 or CYP26A1 transcription upon 

RA induction (Fig. 35): the transcriptional response in the presence of LSD1ALA 

is strongly reduced. 

 

 

Figure 35 Targeted demethylation by LSD1 is essential for RA-dependent 

transcription. LSD1ALA inhibits RA induced CASP9 and CYP26A1 transcription. Total 

RNA was prepared from MCF7 transiently transfected with LSD1WT or LSD1ALA. 

After 48 h, mRNAs from control cells (starved) or RA induced cells (300 nM RA for 45 

min) were analyzed by qPCR with specific primers to CASP9 (A) and CYP26A1 (B) 

mRNA.  

 

The methylation levels both H3K4 and H3K9 me2/3 were already low in the 

absence of RA (Fig. 36) because LSD1ALA was constitutively active and not 

inducible by RA (Fig. 37). Although the basal methylation levels of H3K4 and 

H3K9 (me2/3) were high in LSD1 and JMJD2A depleted cells (Fig. 33) and low 

in LSD1ALA expressing cells (Fig. 36), the methylation-demethylation cycle was 

abolished in both cases. We do note that in LSD1ALA expressing cells late 

remethylation of H3K4 and H3K9 (me2/3) occurs (Fig. 36). 
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Figure 36 LSD1ALA inhibits H3K4 and H3K9 demethylation. H3K4m2, H3K4m3, 

H3K9m2 and H3K9m3 occupancy on promoter and RARE of CASP9 in LSD1ALA 

expressing cells. The statistical analysis derived from at least 3 experiments in triplicate 

(n≥9; Mean±SD); *p <0.01 (matched pairs t test): compared to the RA-unstimulated 

sample; **p<0.01 (student t test): comparison between control and the LSD1ALA 

expressing cells at same time. 

 

The H3K4 and H3K9 methylation marks are very similar to those found in RA-

exposed cells depleted of LSD1 or JMJD2A exposed to RA (Fig. 33). We noticed 

that both depletion of wild-type LSD1 and expression of the LSD1ALA 

eliminated H3K9 and H3K4 massive demethylation at the very early times of RA-

induced transcription and inhibited mRNA accumulation, although the LSD1ALA 

mutant was still catalytically active (Fig. 37A). Note that the LSD1ALA mutant 

did not respond to RA (Fig. 37A). 
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Figure 37 Activity of the LSD1ALA mutant. Cells transfected with LSD1WT-FLAG or 

the LSD1ALA-FLAG mutant were exposed to RA for 30 min in the presence or absence 

of parnate (1 μM), a monoaminooxidase inhibitor. Total cell extracts were prepared and 

analyzed for LSD1 activity with a fluorescent H3K4me2 substrate (EpiQuik™ Histone 

Demethylase Activity/Inhibition Assay Kit). A standard curve was generated by diluting 

the purified enzyme (B). The statistical analysis derives from at least 3 experiments in 

triplicate(n=≥9); *p <0.01 (matched pairs t test) compared to RA-unstimulated sample; 

**p<0.01 (student t test): comparison between LSD1WT and LSD1ALA. 

 

We also measured the H3K4 and H3K9 methylation changes on the polyA1 and 

polyA2 chromatin in cells expressing LSD1ALA. Fig. 38 shows that, although the 

basal levels of H3K4 and H3K9 me2 and me3 were lower in LSD1ALA 

expressing cells exposed to RA, demethylation of H3K4me3 and K9me2 and me3 

was significantly inhibited similarly to the RARE promoter chromatins (Fig. 28). 

It is notably that methylation changes at the polyA2 site were mostly affected by 

expression of LSD1ALA. 
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Figure 38 Expression of the LSD1ALA mutant inhibits H3K4 and H3K9 

methylation cycles on CASP9 polyA1 and polyA2 chromatin sites. Cells transfected 

with the LSD1WT-FLAG or the LSD1ALA-FLAG mutant were analyzed 36 h later by 

ChIP with specific antibodies to H3K4me2 (A), H3K4me3 (B) and H3K9me2 (C) and 

H3K9me3 (D). The statistical analysis derived from at least 3 experiments in triplicate  

(n≥9); *p <0.01 (matched pairs t test): compared to the RA-unstimulated sample; 

**p<0.01 (student t test): comparison between control and the LSD1ALA expressing 

cells. 

 

Collectively, these data indicate that the recruitment of both LSD1 and JMJD2A 

to the chromatin of CASP9 and CYP26A1 leads to demethylation of H3K4 and 

H3K9 me2 and me3 at the RARE, promoter and polyA2 sites (Figs. 28 and 30) in 

cells exposed to RA. These localized demethylation events by both demethylases 

are essential for the induction of transcription of CASP9 and CYP26A1 by RA 

(Fig. 35). 
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Recruitment of base (BER) or nucleotide (NER) excision repair 

enzymes to the RARE-promoter chromatin following RA 

induction 

Transcription process exposes the DNA template to damage by genotoxic agents 

and generates potentially harmful DNA structures that are prone to mutagenesis 

and recombination. Gene activation sometimes also requires transient and 

localized DNA damage at promoters that must be repaired. It was recently 

reported that NER enzymes are recruited to promoter and RARE elements. NER 

is essential for the formation of discrete chromatin loops 6 h after RA exposure 

and RA-induced of transcription (Le May N. et al., 2012). Similarly, transcription-

induced recruitment of BER enzymes (such as 8-oxoguanine-glycosylase, OGG1) 

to MYC E box target DNA or to estrogen responsive elements has been described 

(Amente S. et al., 2010b). Activation of a Fe++ dioxygenase (JMJD2A) and a 

FAD oxidase (LSD1) at the same chromatin sites (ERE or E box-promoters) 

triggers local oxidation. Oxidized guanine (8-oxo-dG) is recognized by OGG1 

(Amente S. et al., 2010a; Perillo B. et al., 2008). Therefore, we have searched for 

appearance of  8-oxo-G foci and recruitment of OGG1 on RARE chromatin after 

RA addition. That oxidation of guanine also occurs after RA induction of 

transcription is shown in Fig. 39A. We observed a rapid (15 min) nuclear 

accumulation of 8-oxo-G in discrete foci in MCF7 cells exposed to RA, 

demonstrating that RA can induce guanine oxidation in chromatin of target cells. 

As predicted, production of 8-oxo-G foci was inhibited by LSD1 knockdown (Fig. 

39B). 
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Figure 39 RA induces 8-oxo-dG foci through LSD1-dependent mechanism. A. Time 

course of 8-oxo-dG staining in cells exposed to RA. MCF7 cells seeded onto glass slides, 

were starved and treated with 200 nM or 500 nM RA for 15 and 30 min, fixed, and 

analyzed for the presence of 8-oxo-dG. The 8-oxo-dG signal (green fluorescence) was 

quantified by ImageJ 1.43 (NIH). Positive cells, containing a signal 2 S.D. higher than 

controls (CTRL), were 42 and 57% after 15 minutes and 67 and 72 % after 30 minutes of 

200 or 500 nM of RA respectively. B. LSD1 knockdown inhibits RA-induced 8-oxo-dG 

accumulation. Treatment with 200 or 500 nM of RA for 30 minutes induce 8-oxo-dG foci 

only in the cells transfected with the control siRNA (right panels). Transfection efficiency 

was monitored using Alexa Fluor Red Fluorescent Control. 

 

ChIP analysis showed that OGG1 was recruited to the promoter and RARE 

elements of CASP9 (Fig. 40) 15 min following RA treatment. At 30 min, 

occupancy of these sites by OGG1 markedly decreased. At 240 min, OGG1 was 

detected at the RARE element but not at the promoter. 
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Figure 40 Recruitment of OGG1 to CASP9 chromatin following RA induction. 

MCF7 cells, starved or treated with RA for 15, 30 and 240 min, were analyzed by qChIP 

using specific antibodies recognizing the 8-oxoguanine–DNA glycosylase-1 (OGG1). It 

is shown the recruitment of OGG1 to the CASP9 promoter, and RARE sequences. The 

statistical analysis derived from at least 3 experiments in triplicate (n≥9; Mean±SD); *p 

<0.01 (matched pairs t test) compared to RA-unstimulated sample; °°p<0.01 (student t 

test): comparison between two amplicons. 

 

Similar oscillations of OGG1 binding to the promoter/RARE of CYP26A1 was 

also seen (Fig. 43). Complexes enucleated by OGG1 may be important not only 

for the repair of oxidized lesions but also for assembly of transcription initiation 

complexes at RA-, estrogen- or Myc-dependent promoters (Huffman J. L. et al., 

2005; Perillo B. et al., 2008; Amente S. et al., 2010a; Fong Y. W. et al., 2013). To 

dissect the components of the OGG1 complex that could link repair and RA-

induced transcription, we probed for other BER enzymes that associate with a 

RARE element or its cognate promoter after RA induction. Specifically, we 

monitored the recruitment of: 1. the APurinic site Endonuclease1, APE1, which 

recognizes the apurinic site generated by OGG1 and cleaves the phosphodiester 

backbone, immediately 5’ to the site; 2. thymine DNA glycosylase (TDG), which 

is required for base excision repair of deaminated methylcytosine, a frequent 

product of base oxidation; and 3. Uracil Glycosylase (UNG), which removes 

uracil or oxidized cytosine. Figures 41 and 43 show that all these enzymes are 

recruited to the promoter and to RARE chromatin 15 min following RA induction 
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similar to the recruitment of RAR and Pol II (compare Figs. 40 and 41 with Fig. 

22).  

 

Figure 41 Recruitment of BER enzymes to CASP9 chromatin following RA 

induction. MCF7 cells, starved or treated with RA for 15, 30 and 240 min, were analyzed 

by qChIP using specific antibodies recognizing the AP endonuclease (APE1), Thymine-

DNA glycosylase (TDG), Uracil-DNA glycosylase (UNG). A, B, C show the recruitment 

of APE1, TDG and UNG to the CASP9 promoter, and RARE sequences. The black, 

horizontal, line in each plot, indicates the percent of input from a control ChIP (Ab: non 

immune serum). The statistical analysis derived from at least 3 experiments in triplicate 

(n≥9; Mean±SD); *p <0.01 (matched pairs t test) compared to RA-unstimulated sample; 

°°p<0.01 (student t test): comparison between two amplicons. 

 

We knocked down two of these enzymes (OGG1 and APE1; Fig. 42 A and B) 

and asked if this impacted on RA-induced transcription. Figs. 42 C, D, E and F 

summarize of these experiments. Our results clearly indicate that depletion of 

these BER enzymes significantly reduced RA-induced transcription. 
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Figure 42 Knockdown of OGG1 and APE1 inhibits RA-induced transcription. 

Panels A and B show the levels of OGG1 and APE1 mRNAs in cells exposed to specific 

targeting siRNAs, respectively. C, D, E, F. Serum-deprived MCF7 cells were treated for 

45 minutes with 300 nM RA and specific siRNA targeting OGG1 or APE1; CASP9 and 

CYP26A1 expression levels were quantified by qPCR. To asses the transfection efficiency 

cells were co-transfected with pEGFP Vector (Clontech) and analyzed by FACS. The 

statistical analysis derived from at least 3 experiments in triplicate (n≥9; Mean±SD); *p 

<0.01 (matched pairs t test) compared to RA-unstimulated sample; **p<0.01 (student t 

test): comparison between siSCR and specific siRNA. 
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Also for CYP26A1 we evaluated the recruitment of BER and NER enzymes and 

we found that all enzymes were selectively recruited on CYP26A1 

promoter/RARE chromatin after 30 min from RA induction. Next there is an 

accumulation of NER enzymes XPG and RPA. 

 

 

Figure 43 Recruitment of BER and NER enzymes to CYP26A1 chromatin induced 

by RA. MCF7 cells, starved or treated with RA for 15, 30 and 240 min, were analyzed by 

qChIP using specific antibodies recognizing the 8-oxoguanine–DNA glycosylase-1 

(OGG1), AP endonuclease (APE1), Thymine-DNA glycosylase (TDG), Uracil-DNA 

glycosylase (UNG), XPG and RPA. The black, horizontal, line indicates the percent of 

input from a control ChIP (Ab: non immune serum). The statistical analysis derived from 

at least 3 experiments in triplicate (n≥9); *p <0.01 (matched pairs t test) compared to RA-

unstimulated sample.  

 

We also probed for a NER enzyme (XPG) and for Replication Protein A (RPA) 

on RARE by ChIP (Fig. 44). As previously shown by others (Le May N. et al., 

2012) XPG and RPA selectively accumulated at RARE chromatin following 15 

min of RA stimulation. These authors reported recruitment of NER and BER 

enzymes to the RARE or other inducible promoters 3 to 4 hours after hormonal 

induction, a period corresponding to maximal accumulation of specific mRNA 

levels (Le May et al., 2012). Our results show that BER and NER accumulate 

early at the RARE and promoter, shortly before we could detect mRNA 
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accumulation (Fig. 23). The modifications we describe mark the first productive 

transcription cycle of CASP9 and CYP26A1 induced by RA. 

 

 

 

Figure 44 Recruitment of NER enzymes to CASP9 chromatin following RA 

induction. A, B. MCF7 cells, starved or treated with RA for 15, 30 and 240 min, were 

analyzed by qChIP using specific antibodies recognizing XPG and RPA. C shows the 

ChIP analysis of CASP9, II intron, in cells exposed to RA for various periods with 

specific antibodies to OGG1, TDG (i); UNG , APE1 (ii); XPG, RPA (iii); LSD1, 

JMJD2A (iv).The statistical analysis derived from at least 3 experiments in triplicate 

(n≥9; Mean±SD); *p <0.01 (matched pairs t test) compared to RA-unstimulated sample; 

°°p<0.01 (student t test): comparison between two amplicons. 
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Formation of dynamic chromatin loops governing the selection of 

5’ and 3’ borders of RA-induced transcription units 

The data shown above indicate that the CASP9 and CYP26A1 promoter, RARE 

and polyA addition sites undergo similar changes in histone H3 K4-K9 

methylation changes and accumulate BER and NER enzymes after RA treatment. 

This coordination is consistent with the idea that these regions are physically 

associated after induction. Note that the CASP9 RARE and 5’start sites are 9.5 Kb 

apart and the polyA site is 22 Kb to the 3’ end of RARE (Fig. 22). Recall that the 

methylation status H3K4 and H3K9 was not modified at chromatin neighboring 

these sites (2 Kb at the 5' and 3’ end); BER enzymes were not recruited to these 

sites in RA-treated cells (Figs. 28E and 44C). These data suggest that RA induces 

early changes of specific chromatin domains that bring the promoter transcription 

start site, the RARE and the polyA addition sites into close proximity. 

To understand how the gene structure is organized during transcription reducing 

the complexity of the system it was necessary to work on synchronized 

transcriptions. To find the relevant chromatin domains assembled in response to 

RA, we systematically analyzed the structure of CASP9 (Fig. 45) and CYP26A1 

(Fig. 46) chromatin by the 3C technique (see Methods). Briefly, fixed chromatin 

DNA was cleaved with a restriction enzyme (NcoI) and ligated after dilution. In 

these conditions the ligation between intra-molecular fragments is favoured 

respect to that between inter-molecular ones. Real Time-qPCR was then used to 

detect the ligated DNA segments. Fig. 45A shows the summary of such analysis 

by using several probes and “baits” centered on the transcription start site, RARE 

and 3’ end of CASP9. 
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Figure 45 Formation of dynamic chromatin loops during early RA-induced 

transcription. 3C analysis of CASP9 chromatin in MCF7 cells exposed to 300 nM of RA 

for various periods of time. A. The histograms show the frequency of ligation of the 

CASP9 NcoI fragments amplified with primers indicated below the NcoI restriction map. 

All the combinations of primers indicated, were performed on ligated chromatin; the 
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histogram shows qPCR amplifications above 1%, relative to the control. Each loop was 

detected with different primers pairs and the two histograms show the analysis by using 

several probes and “baits” centered on the transcription start site, RARE and 3’ end of the 

CASP9. Differences between recombinant, Basal and RA treated chromatin were tested 

for statistical significance using Student’s t test: *p<0.01 as compared to untreated 

control. B, C, D. Time course of chromatin looping during RA induction. 3C analysis 

was carried out as described in Methods and the loops shown in panels B, C and D were 

quantified by qPCR (left panels) and verified by gel electrophoresis (right panels) and 

DNA sequencing (data not shown). The results shown derive from a least 3 experiments 

in triplicate (n≥9; Mean±SD). *p<0.01 as compared to untreated samples. E. The panel 

shows the time course of loop formation; data were collected from Real Time qPCR and 

from semi-quantitative, nested PCR experiments. 

 

RA enhanced formation of two loops connecting the 5’ and the 3’ ends of the 

gene with the RARE element. Extensive quantitative analysis of these loops 

revealed: 1. a 5’ end loop connecting the RARE to the promoter (A-F1, A-F2) was 

induced by RA (Fig. 45B); 2. a loop (F1-L, F2-L) connecting the RARE region to 

the 3’ end of CASP9, where three different polyA addition sites generate 3 mRNA 

ends (NM_001229.2; CR613097; CN290432). Assembly of this loop was almost 

entirely dependent on RA treatment (Fig. 45C); 3. a loop connecting the 5' and the 

3’ ends of the gene, bridging the above mentioned loops (A-L) (Fig. 45D). 

Transcription of CASP9 is promoted by many different stimuli. Thus the loops 

formed in the absence of RA may nevertheless reflect activated genes. 

Strikingly, formation of all of these loops is cyclical. They first appear 15 min 

following RA exposure, disappear at 30 min, and reform by 60 min. This 

oscillation resembles that displayed in previous figures showing CASP9 mRNA 

synthesis, promoter and RARE occupancy by protein factors, and histone 

modification. The CYP26A1 gene also formed chromatin loops upon RA 

treatment. Since RARE and promoter are contiguous in CYP26A1 we detected 

essentially one major loop connecting the 5’ (promoter-RARE) with the 3’ end of 

the gene (polyA). This loop peaked 15 min after RA and slowly disappeared 

(Figs. 46B and C) similar to the early loop induced by RA on CASP9 chromatin 

(Fig. 45E). The physical association of the 5' and 3’ ends of CASP9 and CYP26A1 
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genes induced by RA implies that the same proteins are present on the chromatin 

of the promoter, RARE and 3’ end sites. The physical contiguity (620 bp) of the 2 

polyA sites (1 and 2) does not discriminate which polyA1 or 2 is included in the 

RA-induced loop of CASP9 gene.  

 

Figure 46 CYP26A1 DNA chromatin loops induced by RA. A. Schematic diagram of 

CYP26A1 gene regions. The curved lines indicate the 5’ and 3’ of the loops detected by 

3C technique. The histograms show the frequency of the ligated fragments compared to 

ligation of the same cloned fragments from genomic DNA. The primers are indicated by 

arrows. B. Time course of loop formation following RA treatment. Semiquantitative 

nested PCR after digestion with NcoI and ligation of chromatin of cells exposed to RA 

for various periods of time. The specific products detected with forward B-F and reverse 

A-E primers are indicated by arrows. C. qPCR analysis of the 3C products in chromatin 

of cells exposed to RA for various periods of time. The results shown derive from a least 

3 experiments in triplicate (n≥9). *p<0.01 as compared to untreated samples. 
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To find a 3’ end specific RA-dependent marker of CASP9, we investigated the 

localization on CASP9 chromatin of SSU72, a protein which marks the 3’ end of 

genes and interacts with the general transcription initiation factor, TFIIB (He X. et 

al., 2003). Recently it has been showed that the loss of gene-loop formation by 

inactivation of SSU72 leads to increased synthesis of promoter-associated 

divergent ncRNAs, thus SSU72 enforces promoter directionality (Tan-Wong S. 

M. et al., 2012). Figures 47A, B and C show that SSU72 binds the promoter and 

RARE with the same kinetics seen with RAR and Pol II following RA exposure 

i.e. a peak at 15 min corresponding to the early RA induced loop (Fig. 45E). At 15 

min after RA, SSU72 disappeared from the polyA2 and concentrated at the 

promoter and RARE (Figs. 47 A and B). Apparently, SSU72 was always present 

at the polyA2 site of CASP9 gene except at 15’ min when the receptor and the 

promoter were recruiting Pol II and RAR. 
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Figure 47 Recruitment of the termination protein SSU72 to the promoter, RARE, 

polyA1 and poly2 of CASP9 gene. Cells were exposed to RA for various periods of time 

and subjected to ChIP analysis with specific antibodies to SSU72 protein. A, B indicate 

the fraction of SSU72 bound to the promoter and RARE or to the polyA1 and polyA2 of 

CASP9 gene, respectively. C. The panel shows the time course of SSU72 recruitment. 

The statistical analysis derive from at least 3 experiments in triplicate (n≥9); *p <0.01 

(matched pairs t test): compared to the RA-unstimulated sample; °°p<0.01 (student t test): 

comparison between two amplicons.  

 

How relevant are these loops to RA-induced transcription? To address this 

question we measured the loops involving RARE in cells expressing the 

LSD1ALA mutant. Expression of LSD1ALA inhibited RA-induced de-

methylation (Fig. 36) and RA-induced transcription (Fig. 35). Figure 48 shows 

that the formation of the 15 min loops connecting RARE to the polyA1/2 site or to 

the promoter upon RA exposure were inhibited: some were delayed (RARE-

polyA1/2) and some others were completely eliminated (RARE-promoter). 

We conclude that the ordered formation of the loops induced by RA is essential 

for the assembly of transcription initiation complex induced by RA. 

 

 

Figure 48 3C analysis of CASP9 chromatin in the presence of LSD1ALA. MCF7 cells 

were transfected with the LSD1ALA mutant and exposed to 300 nM of RA for various 

periods of time; the figure shows the time course of loop formation; data were collected 

from Real Time qPCR and from semi-quantitative, nested PCR experiments. 
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The data reported here show for the first time that the methylation changes of K4 

and K9 of histone H3 are linked to the recruitment of repair enzymes and, most 

importantly, to the formation of chromatin-DNA loops that juxtapose the 5’ end 

transcription start site, the enhancer (RARE) and the 3’ end of the transcribed 

gene (Figs. 45-48). Histone methylation-demethylation cycles (Shi L. et al., 2011) 

and the formation of loops connecting the 5’ gene ends, 3’ ends and enhancers 

have been described extensively in many genes induced by nuclear receptors (Li 

W. et al., 2013; Le May N. et al., 2012), but insofar these chromatin features, 

although all required for transcription induction by nuclear hormones, have never 

been mechanistically and temporally linked. Also, recruitment of NER enzymes to 

RA induced promoter(s) and the formation of loops bridging the 5’, the RARE 

and the 3’ end have been shown upon exposure to RA. In fact, depletion of these 

enzymes seriously compromises transcription and chromatin looping induced by 

RA (Le May N. et al., 2012). However, notwithstanding the plethora of data, the 

mechanism used by RA or other inducers to trigger the recruitment of NER 

enzymes and formation of chromatin loops is still not known. Our experiments 

show that demethylation of H3K4 and K9 (Fig. 28) on the RARE, promoter and 

3’end (Fig. 30) is the primary event induced by the RA-RAR complex recruited 

to the RARE. The timing and the kinetics of demethylation of H3K4 and K9 are 

similar on the promoter, RARE (Fig. 45D) and on the 3’ end of the gene, 

suggesting that these sites, although not contiguous in the DNA, are included in 

the same complex, driven by active RAR-RA. Inhibition of demethylation of 

H3K4 and H3K9 by depleting the demethylating enzymes (LSD1 or JMJD2A) or 

by expressing a dominant negative LSD1 variant (Amente S. et al., 2010a; 

Ambrosio R. et al., 2013) inhibits RA-induced transcription (Figs. 32B-C), 

nuclear dG oxidation (Fig. 39B), the recruitment of BER (Perillo B. et al., 2008) 

and NER enzymes and formation of loops induced by RA (Fig. 48). The 

formation of the chromatin loops with discrete 5’ and 3’borders is facilitated by 

local DNA oxidation following demethylation by LSD1, which presumably 

releases supercoiling and rigidity of the helix and targets BER and NER enzymes 

to oxidized bases (Parlanti E. et al., 2012; Pezone A & A.P.; manuscript in 

preparation). In all cases, BER and NER enzymes are instrumental to localize and 
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repair DNA nicks and altered bases produced by dG and mdC oxidation (Perillo 

B. et al., 2008; Lin C. et al., 2009; Fong Y. W. et al., 2013).  

A further complication in the comparative analysis of the data published thus far, 

is represented by the different temporal frames used in various studies to describe 

the molecular events induced by transcriptional activators. The majority of studies 

have been carried out at 1 h (Li W. et al., 2013) to several hours or days (Le May 

N. et al., 2012) after hormonal induction. At this time, synchronization is lost. 

Each cell is starting and restarting the transcription cycle and only the mature 

RNA accumulates exponentially and can be easily detected even in asynchronous 

transcribing cell populations. The H3 (K4-K9) methylation code hours and days 

after the initial RA induction is not informative since does not change in control 

and chronically stimulated cells: high of H3K4me2/3 and low H3K9me2/3 

content (Shi L. et al., 2011). 

An important feature of RA-induced transcription reported here is the timing and 

synchronous oscillation with a period of ca. 30 min of chromatin bound RAR, 

Pol II, H3K4- H3K9 demethylation and looping involving the RARE and the 5’ 

and 3’ of CASP9 and CYP26A1 genes (Fig. 45). Also, RA-induced mRNA levels 

of CASP9, CYP26A1 and 5 other genes (A. Pezone, unpublished observations) 

oscillate with a period of 60 min (30 later than chromatin markers reported in Fig. 

45). With the time (2-4 h) this periodic oscillation is lost (Fig. 45). We do not 

know if this loss of synchrony with the time is due to our inability to track these 

chromatin changes in non-synchronized cell populations or whether the oscillation 

we observe is limited to the first transcription cycle. An early and similar cycle of 

transcription induced by estrogens has been reported to be unproductive in terms 

of RNA accumulation. This cycle is suggested to prepare the promoter for 

subsequent transcription followed by two different transcriptionally productive 

cycles (Métivier R. et al., 2003; Métivier R. et al., 2006; Gao H. & Dahlman-

Wright K., 2011). However, our data suggest that: 1. the first cycle (unproductive 

in Métivier R. et al., 2003; Métivier R. et al., 2006; Gao H. & Dahlman-Wright 

K., 2011) is indeed the cycle (15-30 min) that sets and defines the physical 

borders of the transcription unit induced by the hormone (in our case RA); and 2. 

the oscillations in RAR recruitment, H3K4 and H3K9 demethylation and 
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chromatin looping are caused by the physical interference with transcription 

complexes travelling on the same DNA molecule induced by other (non-RA) 

stimuli. Why the definition of the physical borders of a transcription unit should 

be important? Each gene in eukaryotes is indeed the target of many stimuli, which 

can independently induce transcription. The protein SSU72 has been identified in 

yeast as an element required for marking the 3’ end of the chromatin loops and 

their stabilization (Hampsey M. et al., 2011). The accumulation of SSU72 in the 

various sites of CASP9 gene before and after RA induction may indicate the 

changes of chromatin engaged in RA and non-RA induced transcription. This 

protein is present on 3' end of CASP9 before RA induction, disappears from this 

site at 15 min and re-appears 30 min after RA treatment (Fig. 47). Fifteen minutes 

after RA stimulation, SSU72 moves from the 3’ end to the TSS and RARE of 

CASP9 gene (Fig. 47), where its concentration oscillates synchronously with 

methylation-demethylation cycles and recruitment of BER and NER enzymes. 

These data indicate that SSU72 specifies the 3’ end of both RA dependent and 

independent transcription units (Fig. 47C), which are also marked by end- and 

time-selective specific chromatin loops. In fact, the loops connecting promoter-

RARE and 3’ end of CASP9 gene are formed and stabilized by RA in a precise 

temporal window (15 and 60 min post RA exposure) (Fig. 45B). The synchrony 

of loop formation by RA is lost in cells expressing the LSD1ALA mutant and 

some loops are lost (promoter-RARE) or delayed (promoter-polyA or RARE-

polyA) and resemble loops formed in the absence of RA (Fig. 48). It is worth 

noting that LSD1 has been recently shown to control the rhythmicity and the 

circadian clock and that a mutant in the residue adjacent (aa 111) to that of 

LSD1ALA (aa 110) is unable to reset the clock oscillations (Nam H. J. et al., 

2014). We suggest that RA-induced synchronous demethylation-methylation 

cycles trigger the recruitment of BER and NER enzymes to the chromatin of 

promoter-RARE-3’end of CASP9 gene and synchronize the formation of 

chromatin 5’end-3’end with RARE-driven transcriptional loops (Figs. 45-48). We 

believe that RA-induced synchronization of DNA chromatin loops is required for 

calibration and rapid re-induction of transcription, rather than for high levels of 

transcription. The massive accumulation of RA-specific mRNAs in fact, occurs 
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hours after the initial RA exposure (Okuno M. et al., 1995). This efficient re-

induction of transcription may represent a “transcription memory”, which has 

been noted before and requires gene looping and SSU72 in yeast (Brickner J. H., 

2010; Lainé J. P. et al., 2009). 

The periodic variation of recruited receptor on the enhancer represents a simple 

mechanism to titrate and calibrate the concentration of RA molecules present in 

the environment, because any drop in the inducer levels reduces the concentration 

of active receptor on the enhancer leading to dissolution of the chromatin DNA 

loop enucleated initially by the active receptor (RARE-Promoter). Conversely, a 

rise or constant levels of the inducer rapidly reactivate transcription by stabilizing 

the dissolved loops (transcription memory). 
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