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1
INTRODUCTION

The main objective of this dissertation is the study of the theory of Lie–Jordan

Banach algebras, their role in the framework of classical and quantum mechanics,

and their applications to different aspects of quantum systems.

The algebraic approach was started by W. Heisenberg and his positivistc attitude

to use only observable quantities which he identified with transition frequencies

in spectroscopy.

In the usual interpretation of quantum mechanics (the “Copenhagen interpreta-

tion”), the physical observables are represented by self-adjoint operators on a Hil-

bert space or Hermitian matrices. The basic operations on operators are multiplic-

ation by a complex scalar, addition, multiplication of operators, and forming the

adjoint operator. But these underlying operations are not “observable”: the scalar

multiple of a Hermitian matrix is not again Hermitian unless the scalar is real, the

product is not Hermitian in general unless the factors happen to commute, and the

adjoint is just the identity map on Hermitian matrices.

In 1933 the physicist Pascual Jordan proposed a program to discover a new
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algebraic setting for quantum mechanics [Jor33], which would be free from the

matrix structure but still enjoy all the same algebraic benefits as the Copenhagen

model. He wished to study the intrinsic algebraic properties of Hermitian matrices

and recast them in formal algebraic properties in order to see what other possible

non-matrix systems satisfied these axioms.

Jordan decided that the fundamental observable operation was the symmetric

product

a ◦ b ≡ 1

2
(ab+ ba), (1.0.1)

now called Jordan product [HOS84],[McC04]. The key law governing this product,

besides its obvious commutativity, is the weak associativity

a2 ◦ (b ◦ a) = (a2 ◦ b) ◦ a. (1.0.2)

A real commutative algebra satisfying the property (1.0.2) is called Jordan al-

gebra, and is called special if it can be realized as the Jordan algebra of an asso-

ciative algebra as in Eq. (1.0.1), otherwise it is called exceptional.

Jordan’s hopes were that by studying finite-dimensional algebras he could find

families of simple exceptional algebras parameterized by natural numbers, so that

in the infinite limit this would provide a suitable infinite-dimensional exceptional

generalization for quantum mechanics.

In a fundamental paper in 1934 [JvNW34], Jordan, von Neumann and Wigner

showed that there are only five basic types of simple finite-dimensional Jordan

algebras: four types of Hermitian n × n matrix algebras Mn×n(K) where K can

be the field of real numbers, complex numbers, quaternions and octonions (but for

octonions only n ≤ 3 is allowed), and the spin factors. The spin factors turn out

to be realized as a subspace of Hermitian matrices, whereas the 27–dimensional

Jordan algebra of 3 × 3 matrices with octonion entries, M3×3(O), is an excep-

tional Jordan algebra, now called Albert algebra.

This result was quite disappointing to physicists since the only exceptional al-

gebra M3×3(O) was too tiny to provide an arena for quantum mechanics and the

possible existence of infinite-dimensional exceptional algebras.

In 1979 the mathematician Zelmanov finally showed that even in infinite dimen-

sions there are no simple exceptional Jordan algebras other than the Albert algebra
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[Zel79]: it is an unavoidable fact of mathematical nature that simple algebraic sys-

tems obeying the basic Jordan identity (1.0.2) must (except in dimension 27) be

derived from an associative structure.

However, the Jordan structure allows to recover most of the mathematical

basis for the description of quantum systems, like the concept of compatible ob-

servables and the joint probability distribution for them [Emc84]. Eventually, the

mathematical language becomes easier if one makes the technical assumption that

the Jordan algebra L can be embedded in a complex extension A = L ⊕ iL gen-

erated by complex linear combinations of elements of L. This led Segal to the

foundations of the theory of C∗–algebras [Seg47], which have had a profound in-

fluence on both the foundations and applications of quantum physics and quantum

field theory [Haa96].

From the above discussion it is clear that special Jordan algebras admit such an ex-

tension. One of the main results of this thesis is the novel proof of a theorem which

characterizes the Jordan (-Banach) algebras that are in a unique correspondence

with C∗–algebras. As explained in Chapter 2, the novelty lies in the introduction

of a Lie structure [·, ·] on the algebra, which is required to be compatible with the

Jordan one [FFIM13c]. This means that the Leibniz identity is verified:

[a, b ◦ c] = [a, b] ◦ c+ b ◦ [a, c] , (1.0.3)

and the associator of the Jordan product is related to the Lie associator by

(a ◦ b) ◦ c− a ◦ (b ◦ c) = κ [b, [c, a]] , (1.0.4)

where κ is a positive real number. This leads us to the study of Lie–Jordan Banach

algebras [Emc84], [Lan98].

This problem of when a given Jordan–Banach algebra is the real part of a C∗–

algebra had already been faced in the past by A. Connes on one side [Con74] and

Alfsen and Shultz on the other [AS98]. In particular the characterization obtained

by Alfsen and Schultz in terms of the existence of a dynamical correspondence on

the Jordan–Banach algebra amounts to state that the relevant structure to discuss

the properties of the state space of a quantum system is exactly that of a Lie–

Jordan Banach algebra. By making explicit this connection with the Lie struc-

ture also the physical interpretation becomes clear since it reflects the dual role
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played by the observables: they are measurable quantities but also the generators

of motions of the state space. For example, one and the same variable plays the

role of an observable, called the energy, and of a generator, called the Hamilto-

nian. The fundamental significance of this pointwise identification of two sets

of conceptually different objects manifests itself in the description of the meas-

urement process. In fact, the observable-generator duality is at the root of the

Bohr-Heisenberg principle of equivalence between definability and measurability

in physics, a principle which has played a fundamental role in the discussions of

the foundations of quantum mechanics.

One of the merits of Lie–Jordan algebras is that they also provide a neat algeb-

raic framework common to classical and quantum mechanics. In the Hamiltonian

picture of classical mechanics, one is naturally lead to the Lie algebraic structure

of the Poisson brackets, which provide the equations of motion of the classical

system. This algebraic unification could eventually help us to shed light on the in-

triguing problem of the classical limit of quantum mechanics and the quantization

procedures.

There have been various ways in the literature of constructing quantum systems

out of classical ones. All of them rely on a certain geometrical structure already

present in the classical system, for example the Weyl quantization, the geomet-

rical quantization and the deformation quantization. Following the previous ideas

we would arrive to various descriptions of quantum systems, mainly of their al-

gebra of observables, but the geometry that we used originally has faded out.

However not all descriptions of quantum systems hide so thoroughly its geomet-

rical structure. Because of a theorem by Kadison [Kad51] it is well-known that

the C∗–algebra of observables of a given quantum system is isomorphic to the

space of affine continuous functions on the convex space of states of the system.

Thus, it would be convenient to identify the geometrical structures on the state

space of a quantum system that will make Kadison correspondence more trans-

parent. Such programme has been successfully developed along the last twenty

years providing a consistent decription of the fundamental geometrical structures

of quantum systems [CL84], [AS99], [CCGM07]. Moreover, a geometrical de-

scription of dynamical systems provides a natural setting to describe symmetries,

and/or constraints. For instance, if the system carries a symplectic or Poisson
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structure, several procedures were introduced along the years to cope with them,

like Marsden–Weinstein reduction, symplectic reduction, Poisson reduction, re-

duction of contact structures, etc. However, it was soon realized that the algebraic

approach to reduction provided a convenient setting to deal with the reduction of

classical systems [GLMV94], [IdLM97].

Whenever constraints are imposed on a quantum system or symmetries are

present, both dynamical or gauge, some reduction on the state space must be con-

sidered either because not all states are physical and/or because families of states

are equivalent. In the standard approach to quantum mechanics, constraints are

imposed on the system by selecting subspaces determined by the quantum oper-

ators corresponding to the constraints of the theory, called Dirac states, and equi-

valence of quantum states was dealt with by using the representation theory of the

corresponding group of symmetries. However many difficulties emerge when im-

plementing this analysis for arbitrary singular Lagrangian systems or other singu-

larities arise (like singular level sets of momentum maps for instance) or quantum

anomalies.

Taking as a departing point the algebraic approach to quantum mechanics and

quantum field theory the problem of reduction of the quantum system becomes

the problem of reducing the C∗–algebra of the system. Such programme was suc-

cessfully developed for some gauge theories and was called T–reduction [GH85].

Another one of the main objectives of this thesis is to address the fundamental

problem of reducing classical and quantum degenerate systems by using the the-

ory of Lie–Jordan Banach algebras. It is the task of the physicist to extract the

relevant physical (sub)system from such a degenerate one. Reduction means ex-

actly the procedure aiming to identify this physical algebra. In Chapter 3 we

develop the algebraic framework for reducing systems in classical and quantum

mechanics. This is done by identifying the ideal generated by the constraints

and quotienting its Lie normalizer with respect to it. This procedure turns out to

be free from the problems of gauge anomalies which is often encountered in a

heuristic approach to the quantization of constraints. We then prove that our re-

duction procedure is equivalent to the T–reduction developed by Grundling et al.

for C∗–algebras.

One of the main outstanding problems of mathematical physics is to construct
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a C∗–algebra which describes a nonlinear field theory (higher than quadratic).

An interesting feature of the reduced system in the classical realm is that it may

turn out to be non-linear even if the starting one was linear. Motivated by this

consideration, the quantum algebraic reduction theory could be very valuable in

understanding how to provide mathematical descriptions of non-linear field theor-

ies.

In Chapter 4, we study the composition of physical systems from an algebraic

point of view. By using LJB–algebras we obtain the general expression for the

composition of both classical and quantum systems and in particular we derive the

restrictions on the possible composable systems. This is, we find that two (clas-

sical or quantum) systems can be composed if and only if their defining constants

κ, appearing in Eq. (1.0.4), are equal. Then, from the correspondence principle

we know that κ is an homogeneous polynomial function of the Planck’s constant ~

and hence we get that classical systems can only be composed with other classical

systems, and quantum systems can only be composed if the Planck’s constant is

unique. This is a strong result since, from algebraic considerations only, we are

able to prove the uniqueness of the Planck’s constant. As shown further, the exist-

ence of multiple ~ would lead to violations of basic space-time conservation laws,

which are not observed experimentally.

Finally, in Chapter 5, we give an algebraic characterization of commutative

algebras, which is useful in order to find quantumness tests which are model-

independent and refer to the most fundamental mathematical differences between

classical and quantum theory. This problem, which goes back to the foundations

of quantum mechanics, has become particularly relevant for the field of quantum

information and quantum computation. A useful quantum computer should be

a rather macroscopic machine which nevertheless preserves certain fundamental

quantum properties. Moreover there are a number of tasks in computation and

communication that can be performed only if quantum resources are available.

By using the Jordan product we are able to provide a general definition of clas-

sical states and the associated quantumness witness which is suitable to infinite-

dimensional systems.

Then we propose a measure of nonclassicality based on the incompatibility of
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states relative to each other, rather than on correlations. Surprisingly, this new

measure turns out to be experimentally suitable to a direct estimation by using a

quantun circuit based on an interference experiment. In the last part we describe

this experiment which is feasible with current technology.

The main message we tried to convey in this thesis work is that Lie–Jordan

algebras provide not only an interesting mathematical framework for classical and

quantum physics, but also open new horizons to groundbreaking works in the

foundations and tests of the quantum theory.





2
STATES AND OBSERVABLES IN CLASSICAL AND

QUANTUM SYSTEMS: C∗–ALGEBRAS AND LIE–JORDAN

BANACH ALGEBRAS

2.1. The emergence of the algebraic approach in the quantum theory

The idea of an algebraic approach to quantum mechanics was already present

in the matrix formulation developed by Heisenberg, Born, Jordan, Dirac and oth-

ers. At this stage von Neumann formulated the quantum theory as an eigenvalue

problem in a Hilbert space [vN96] and analyzed the concept of state from the point

of view of the theory of probability. The reader is assumed to be familiar with the

usual mathematical formulation of quantum mechanics which we will review in

this section in the form of three postulates.

Postulate 2.1.1. To each observable A on a given physical system there cor-

responds a linear self-adjoint operator π(A) acting on a Hilbert space Hπ and

conversely.
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Notice that the converse part of the postulate is now known to be untenable due

to the existence of superselection rules [SS78]. However we will not be concerned

with this possibility in the following.

If we denote by L the set of all observables on the physical system considered, we

can already observe that the first postulate equips L with the structure of a real

vector space.

Notice also that if A and B are two arbitrary elements of L, π(A)π(B) in general

does not belong to π(L), whereas the combinations π(A)π(B) + π(B)π(A) and

i(π(A)π(B) − π(B)π(A)) do.1

The symmetrized product

a ◦ b = 1

2
(ab+ ba), ∀ a, b ∈ L, (2.1.1)

satisfies a number of interesting properties. It is commutative and bilinear and

its introduction does not require the knowledge of the ordinary product of two

noncompatible observables (i.e., two observables such that the corresponding op-

erators do not commute in the ordinary sense). By defining a2 = a ◦ a, we have

indeed

a ◦ b = 1

2
((a+ b)2 − a2 − b2), (2.1.2)

which involves only operations like (2.1.1). This symmetrized product is not as-

sociative in general, that is

(a ◦ b) ◦ c− a ◦ (b ◦ c) 6= 0 (2.1.3)

for arbitrary a, b, c ∈ L, as can be seen by simple inspection. The product (2.1.1)

is called the Jordan product [Jor33],[JvNW34] and will be further examined in

Section 2.2 where we will give the axiomatic algebraic formulation of quantum

mechanics motivated by the previous considerations.

The state of a physical system is understood intuitively as a way to express the

maximal simultaneous knowledge of the expectation values of all observables on

1In the following we will indicate, for brevity, the operators π(A), π(B), . . . with lower case

letters a, b, . . ., and commit the sin of denoting π(L) with L itself.
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the physical system considered. From the standard theory of quantum mechanics

we know that to each state is associated a density matrix:

Postulate 2.1.2. To each state ψ of the physical system considered corresponds

a positive self-adjoint operator ρ of trace 1, acting on the Hilbert space Hπ of

Postulate 2.1.1, and such that the expectation values ψ(a) of the observable a in

the state ψ, are given by ψ(a) = Tr (ρa).

Let us stress some properties of states that follow immediately from Postulate

2.1.2. For any linear combination of elements ai ∈ L

ψ
(∑

i

ciai

)
= Tr

(
ρ
∑

i

ciai

)
=
∑

i

ciTr (ρai) =
∑

i

ciψ(a), (2.1.4)

i.e. states act linearly on observables.

Finally concerning the dynamics we have the third postulate

Postulate 2.1.3. The dynamical evolution of a closed quantum system described

by a density state ρ is given by von Neumann’s equation

i~
∂ρ

∂t
= [H, ρ], (2.1.5)

where H is the Hamiltonian (observable) operator of the system.

This is Schrödinger’s equation in the space of density states. If we require that

the states do not evolve in time, then we can equivalently describe the dynamics by

letting the observables evolve and obtaining the Heisenberg equation of motion:

d

dt
a(t) =

i

~
[H, a(t)] +

∂a(t)

∂t
. (2.1.6)

Remark. Observe that the above dynamical equations are valid only for closed

quantum systems, i.e. systems which do not interact with any external environ-

ment and do not have dissipative behaviour.
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The commutator

[H, ρ] = Hρ− ρH (2.1.7)

which arises here because of Postulate 2.1.3, endows the physical observables

with the role of generators of the motion on state space and satisfies a number of

remarkable properties. Thus it is immediate to check that it is bilinear, antisym-

metric and satisfies the Jacobi identity:

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0, (2.1.8)

for all a, b, c ∈ L. The antisymmetry of the bracket ensures that time-independent

Hamiltonians are conserved [CS99]. The linearity guarantess that if a(t) and b(t)
are two observables which only have dynamical evolution (i.e. without intrinsic

time dependence), and λ1, λ2 two real constants, the observable c1(t) = λ1a(t)+
λ2b(t) is also free of intrinsic time dependence. The Jacobi identity ensures that

the observable c2(t) = [a(t), b(t)] also evolves dynamically:

dc2
dt

=
[da
dt
, b
]
+
[
a,
db

dt

]
(2.1.9)

= [[a,H], b] + [a, [b,H]] (2.1.10)

= [[a, b],H] = [c2,H]. (2.1.11)

In particular this property also ensures the preservation of the canonical relations

among canonical variables during time evolution.

2.1.1. Topological structure of the algebra of observables

With the wealth of information contained in their paper [JvNW34], Jordan,

von Neumann, and Wigner demonstrated the power of a purely algebraic approach

to quantum theories. However, there is a major weakness in their pioneering work,

namely that they assumed that L has a finite linear basis. This had to be correc-

ted by the introduction of an appropriate topological structure before the claim

could be made that the theory provides a formalism general enough for the need

of quantum problems. The aim would be to imitate the weak topology of operat-

ors acting on Hilbert spaces. Before proceeding to an axiomatic presentation of
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LJB–algebras in Section 2.2 we show how to endow L with a natural topology in

which the concept of state plays a significant role.

If we denote by S(L) the space of states associated to the quantum system,

and define ‖a‖ ≡ sup
φ∈S(L)

|φ(a)|, it follows immediately that for all λ ∈ R, all a

and b in L, ‖λa‖ = |λ|‖a‖, ‖a + b‖ ≤ ‖a‖ + ‖b‖ and that the vanishing of ‖a‖
occurs only when a = 0. Therefore ‖ · ‖ is a norm for L and φ(a) ≤ ‖a‖ for all

a ∈ L, φ ∈ S(L).
As a result of these considerations, L is now equipped with the structure of a real

Banach space relative to the natural norm introduced above, and the states φ in

S are continuous (positive linear) functionals on L with respect to the topology

induced by this norm.

From a phenomenological point of view we might remark at this point that

one actually never deals in the laboratory with any observable a for which φ(a)
is not finite; it is current practice nevertheless to consider in the theory “idealized

observables” that are unbounded. There are probably novel approaches to get rid

of this troubles by relaxing the Banach structure in favour of the more flexible

structures like Frechet or Riesz structures.

2.1.2. The algebra of observables in classical mechanics

In classical mechanics one is usually introduced to the Newtonian formalism

whose laws are generically shown to be equivalent to the more mathematically

convenient Hamiltonian formalism. In Hamiltonian mechanics, we describe the

state of a system by a point (q, p) in a symplectic manifold P , known as phase

space. In all real physical systems, the position q and momentum p of the particle

must remain bounded, but not uniformly. In general it will be identified with a

cotangent bundle.

It is an experimental fact that we can never measure something with infinite pre-

cision. There are however quantities that we can, in principle, measure to an

arbitrary precision. We call such quantities classical observables.

We would like to come up with a mathematically precise, physically motivated
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way to characterize classical observables. A first natural requirement is that ob-

servables depend on the state of the system, that is, observables are functions of

q and p. Moreover these functions must be real valued since we cannot measure

complex quantities. Let us assume, as an experimental fact, that in the classical

realm we can always measure q and p with arbitrary precision. Assume now that

we want to measure the function f with error less than some ǫ > 0. Since we can

make the error in q and p arbitrarily small, there exist errors δq and δp such that

∀ q ∈ (q0 − δq, q0 + δq) and p ∈ (p0 − δp, p0 + δp), the experimental value of

f(q, p) satisfies

f(q0, p0)− ǫ < f(q, p) < f(q0, p0) + ǫ.

But this is just the definition of a continuous function. We are then naturally lead

to the characterization of observables in classical mechanics as the continuous

real-valued functions on the phase space P .

We shall introduce in the algebra of observables one more operation, which is

connected with the evolution of the mechanical system and we also require differ-

entiability. For simplicity the discussion to follow is conducted using the example

of a system with one degree of freedom.

The equations of motion are given by Hamilton’s equations which have the form:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
, H = H(q, p), (2.1.12)

with solutions q(t) and p(t). The equations above generate a one-parameter group

of transformations of the phase space into itself and in turn they generate a family

of transformations of the algebra of observables:

f(q, p, t) = f(q(t), p(t)). (2.1.13)

The function f(q, p, t) satisfies the differential equation

df

dt
=
∂H

∂p

∂f

∂q
− ∂H

∂q

∂f

∂p
+
∂f

∂t
= {H, f}+ ∂f

∂t
, (2.1.14)

where {·, ·} is the Poisson bracket, which makes the classical observables a Pois-

son algebra. That is, it satisfies
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i) {f, g} = −{f, g},

ii) {f, {g, h}} + {h, {f, g}} + {g, {h, f}} = 0,

iii) {f, gh} = g{f, h} + {f, g}h,

for all f, g, h ∈ C∞(P ). It is interesting to point it out that the Poisson bracket

is not defined on the full algebra of classical observables C0(P ) but only on a

dense subalgebra, its smooth part C∞(P ). Notice again that the smooth part is

determined by the choice of a smooth structure on the phase space P .

2.2. Lie–Jordan Banach algebras

Motivated by the previous considerations, we are ready to define in this section

the abstract algebraic properties describing classical and quantum observables.

Let L be a real vector space on which it is defined a symmetric bilinear dis-

tributive product ◦, called Jordan product which satisfies the generalized associ-

ative law:

(a2 ◦ b) ◦ a = a2 ◦ (b ◦ a), ∀ a, b ∈ L, (2.2.1)

which is the usual replacement for associativity for Jordan algebras; and an anti-

symmetric Lie product [·, ·] satisfying the Jacobi identity

[[a, b] , c] + [[c, a] , b] + [[b, c] , a] = 0, ∀ a, b, c ∈ L. (2.2.2)

We require these two operations to be compatible in the sense that Leibniz

identity is verified:

[a, b ◦ c] = [a, b] ◦ c+ b ◦ [a, c] , (2.2.3)

or, in other words, the linear map Da(·) ≡ [a, ·] is a derivation of the Jordan

product ◦.

By abstracting the previous properties, one says in general that a vector space

with a symmetric operation ◦ and an antisymmetric one [·, ·] satisfying the proper-

ties (2.2.1),(2.2.2),(2.2.3), is called “unlocked” Lie–Jordan algebra. The com-

plete definition of a (“locked”) Lie–Jordan algebra requires that the associator
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of the structure product is related to the Lie product by:

(a ◦ b) ◦ c− a ◦ (b ◦ c) = κ [b, [c, a]] , (2.2.4)

κ being a positive real number. Then we will call (L, ◦, [·, ·]) satisfying (2.2.4)

a Lie–Jordan algebra with constant κ. The rational behind axiom (2.2.4) comes

from the example discussed in the previous section on physical observables as

self-adjoint operators on a Hilbert space and that we will discuss again from this

perspective. Thus if we consider for instance the real vector space of bounded

self-adjoint operators on a Hilbert space H, and the Jordan product ◦ defined by

a ◦ b = 1

2
(ab+ ba), (2.2.5)

and the Lie product given by the scaled commutator

[a, b] = iλ(ab− ba), (2.2.6)

with λ ∈ R, we obtain that (2.2.4) requires:

κλ2 =
1

4
, (2.2.7)

if κ 6= 0. We have introduced an additional factor iλ in (2.2.6) with respect to

the familiar definition of commutator (2.1.7). In this way the space of observables

actually acquires the structure of a Lie algebra and also takes into account the

freedom of a scale factor λ. Moreover we insert the constant ~ for dimensional

reasons and we actually see that the Lie–Jordan algebras thus defined depend on

the physical constant ~.

Notice that if the Jordan product is associative and κ 6= 0 then, as it is

proved in the next Theorem, the Lie structure becomes commutative, i.e. [a, b] =
0 ∀ a, b ∈ L.

Theorem 2.2.1. A Lie–Jordan algebra L with constant κ 6= 0 is commutative if

and only if the Jordan product is associative.
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Proof. Assume first that L is commutative. Then, trivially, from the associator

identity (2.2.4) it follows that the Jordan algebra L is associative. Conversely,

if the Jordan product is associative, then any triple commutator vanishes, so that

∀ a, b ∈ L

0 = [a, [b2, a]]

= [a, 2b ◦ [b, a]]
= 2b ◦ [a, [b, a]] + [a, 2b] ◦ [b, a]
= 2b ◦ [a, [b, a]] − 2[a, b]2

= −2[a, b]2,

where we used the Leibnitz identity in the second and the third equality. In con-

clusion [a, b] = 0, ∀ a, b ∈ L.

If we consider a classical carrier space, for instance a Poisson manifold, the

algebra of smooth functions on the manifold becomes a Lie–Jordan algebra with

constant κ = 0 when equipped with the (associative) pointwise product f◦g (x) =
f(x)g(x), and Lie bracket [f, g] = {f, g}, with {·, ·} being the Poisson bracket

defined on the manifold. Thus it follows that from an algebraic point of view it is

quite appropriate to consider a Poisson algebra as a Lie–Jordan algebra with κ =
0. From this perspective we may consider the parameter κ a sort of deformation

parameter between the classical and the quantum picture. With this intuition in

mind we may call Lie–Jordan algebras with κ = 0 classical. Notice that as we

mentioned already there is no Lie–Jordan algebra structure on C0(P ), however it

could be a good idea to call them unbounded Lie–Jordan algebras.

In order to accomodate infinite dimensional systems in this formalism, we need to

define a topological structure on the algebra.

Definition 2.2.2. A Lie–Jordan Banach algebra (or LJB–algebra for short) is Lie-

Jordan algebra (L, ◦, [·, ·]) such that it carries a complete norm ‖ · ‖ verifying:

i) ‖a ◦ b‖ ≤ ‖a‖ ‖b‖,

ii) ‖a2‖ = ‖a‖2,

iii) ‖a2‖ ≤ ‖a2 + b2‖,
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∀ a, b ∈ L.

In particular a LJB–algebra is a Jordan–Banach algebra (or JB–algebra) when

considered with the Jordan product alone. On the other hand, if we are given

a LJB–algebra L, by taking combinations of the two products we can define an

associative product on the complexification LC = L⊕iL. Specifically, we define:

ab = a ◦ b− i
√
κ [a, b] , ∀ a, b ∈ L,

and extend it by linearity to LC. Then LC becomes an associative ∗–algebra,

where (a + ib)∗ = a − ib. Such associative algebra equipped with the norm

‖x‖ = ‖x∗x‖1/2 where x = a + ib, is the unique C∗–algebra whose real part is

precisely L (see Section 2.3).

Notice that if the LJB–algebra L is classical, i.e. κ = 0, its associated

C∗–algebra is isomorphic to the space of continuous functions on a compact to-

pological space with the supremum norm, hence if such space carries a differen-

tiable structure the Lie bracket will define a family of unbounded derivations on

the dense subspace of smooth functions, otherwise trivial. In other words we will

need weaker topologies to accomodate classical LJB–algebras in the same picture.

Then, from now on, we will just consider non–classical LJB–algebras, i.e., κ 6= 0.

We must point out here that the study of unbounded LJB–algebras has never been

started.

2.2.1. Spectrum and states of Lie–Jordan Banach algebras

The concept of spectrum of an observable is very important since it provides

the possible outcomes of a measurement of the observable on the physical system.

In this subsection we explore the definition of spectrum and states in algebraic

terms.

Definition 2.2.3. Let L be a unital LJB–algebra. The spectrum σ(a) of a ∈ L is

defined as the set of those λ ∈ R for which a− λ1 has no inverse in L.

Note that a LJB–algebra L is a complete order unit space with respect to the

positive cone [HOS84]:

L+ = { a2 | a ∈ L} (2.2.8)
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or equivalently an element is positive if and only if its spectrum is positive.2

We shall in this section prove some useful properties of the spectrum and then the

Cauchy–Schwarz like inequalities.

Lemma 2.2.4.

σ(a21 + a22 + µ[a1, a2]) ∪ {0} = σ(a21 + a22 − µ[a1, a2]) ∪ {0} (2.2.9)

∀ a1, a2 ∈ L and ∀µ ∈ R.

Proof. For λ 6= 0 the invertibility of a21 + a22 + µ[a1, a2]− λ1 implies the invert-

ibility of a21 + a22 − µ[a1, a2]− λ1. Namely, one computes that

(a21 + a22 + µ[a1, a2]− λ1)−1 = λ−1{2a1 ◦ (b ◦ a1)− a21 ◦ b+ 2a2 ◦ (b ◦ a2) +
−a22 ◦ b+ 2[a1, b ◦ a2] + 2a1 ◦ [b, a2]− 1}

with b = {a21 + a22 + µ[a1, a2]− λ1}−1.

Lemma 2.2.5.

σ(a21 + a22 + µ[a1, a2]) ⊂ R− ⇒ a21 + a22 + µ[a1, a2] = 0 (2.2.10)

∀ a1, a2 ∈ L and ∀µ ∈ R.

Proof. Note that a21+a
2
2−µ[a1, a2] = 2a21+2a22− (a21+a

2
2+µ[a1, a2]) and then

under the assumptions of the lemma σ(a21 + a22 − µ[a1, a2]) ⊂ R+. This implies,

by the previous lemma, that σ(a21 + a22 − µ[a1, a2]) = {0}.

Theorem 2.2.6.

X = a21 + a22 − µ[a1, a2] ∈ L+ (2.2.11)

∀ a1, a2 ∈ L and ∀µ ∈ R.

2An alternative way to express this would be: an element a ∈ L is positive if σ(a) ⊂ R+. It is

possible to show that the cone of positive elements is given by L+ = { a2 | a ∈ L}. Moreover it is

a consequence of the completeness of a LJB–algebra to show that it is a complete order unit space.
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Proof. Every X ∈ L has the decomposition [Lan98] X = X+ + X−, where

X+,X− ∈ L+ and X+ ◦ X− = [X+,X−] = 0. It follows that X3
− = −(b21 +

b22−µ[b1, b2]) ≥ 0 with b1 = a1 ◦X−+µ[a2,X−] and b2 = µ[a1,X−]+a2 ◦X−.

But X3
− = −2b21 − 2b22 + (b21 + b22 + µ[b1, b2]) which is a negative quantity and

then in turn implies that X− = 0 and then X = X+ ≥ 0.

Motivated by the considerations of Section 2.1, we can define the space of

states S(L) of a LJB–algebra as the set of all real normalized positive linear

functionals on L, i.e.

ρ : L → R (2.2.12)

such that ρ(1) = 1 and ρ(a2) ≥ 0, ∀ a ∈ L. The state space is convex and

compact with respect to the w∗–topology.

We shall now prove the Lie–Jordan algebra version of the Cauchy–Schwarz

inequalities. These are a very important “ingredient” for many subsequent proofs.

Theorem 2.2.7. Let L be a unital LJB–algebra with constant ~2 and ρ a state on

L. Then if a, b ∈ L we have

ρ(a ◦ b)2 ≤ ρ(a2)ρ(b2), (2.2.13)

and

ρ([a, b])2 ≤ 1

~2
ρ(a2)ρ(b2). (2.2.14)

Proof. Let λ ∈ R, then we have

0 ≤ ρ(λa+ b)2) = λ2ρ(a2) + 2λρ(a ◦ b) + ρ(b2). (2.2.15)

If ρ(a2) = 0 then ρ(a ◦ b) = 0 since λ is arbitrary. If ρ(a2) 6= 0, let λ =
−ρ(a ◦ b)ρ(a2)−1, and the first proof is immediate.

The second inequality is proved similarly by using the positivity of a21 + a22 +
2~[a1, a2] as stated in Thm. (2.2.6).

Example 2.2.8. As we have discussed before the self-adjoint subalgebra Bsa =
L(H) of the algebra B(H) of bounded linear operators on a Hilbert space H with
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the operator norm is a Lie–Jordan Banach algebra and the states are the positive

linear functional on Bsa. Let ρ be a continuous state with respect to the ultrastrong

topology on B(H) [vN36], i.e. the topology on B(H) given by the open neigh-

bourhood base

N(a; (xi)
∞
1 , ǫ) = { b ∈ B(H) :

∞∑

i=1

‖(a− b)xi‖2 < ǫ }, (2.2.16)

for a ∈ B(H), ǫ > 0 and any sequence (xi) ∈ H satisfying
∑∞

i=1 ‖xi‖2 < ∞.

Then there is a positive linear trace class operator ρ̃ ∈ Bsa such that

ρ(a) = Tr(ρ̃a) (2.2.17)

for all a ∈ Bsa.

Conversely, if ρ is a positive trace class operator, then the functional a 7→ Tr(ρ̃a)
defines an ultrastrongly continuous positive linear functional on Bsa.

We have shown that the algebra of observables of a quantum mechanical sys-

tem is a LJB–algebra and described the quantum states as positive linear function-

als on the algebra. As it is evident from the previous example not all the states on

the algebra can be realized as density matrices. Those states realized as density

matrices are called normal. It is nevertheless recognized the important of non-

normal states in the mathematical approaches to quantum statistical mechanics

[BR03].

A natural question may now arise. That is, can the algebraic framework accomod-

ate something more general than the standard quantum theory we have seen? Is it

possible to provide realizations of a LJB–algebra (or equivalently a C∗–algebra)

different from the usual quantum mechanics? The answer to this question gives

actually a solid background to the algebraic theory since it can be proved that

LJB–algebras and C∗–algebras can always be represented as algebras of operat-

ors on a Hilbert space.

Theorem 2.2.9 (Gelfand, Naimark, Segal). Let L be a unital LJB–algebra. A

representation of L on a complex Hilbert space H, is a strongly continuous Lie–

Jordan homomorphism π of L into the self-adjoint bounded operators on H, i.e.
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∀ a, b ∈ L
π(a ◦ b) = π(a) ◦ π(b) (2.2.18)

[π(a), π(b)] = π([a, b]). (2.2.19)

Moreover given a state ω of L there exists a Hilbert space Hω and a representation

πω : L → Bsa(Hω) and a unit vector |0〉 ∈ Hω such that for all a ∈ L, ω(a) =
〈0|πω(a)|0〉.

We will say that the representation π is nondegenerate if span{π(a)|φ〉 | a ∈
L, |φ〉 ∈ H} is dense in H.

Given two representations (π1,H1) and (π2,H2) of L, we say that they are equi-

valent if there exists a unitary map U : H1 → H2 such that U ◦π1(a) = π2(a)◦U ,

∀ a ∈ L.

Remark. If we replace the LJB–algebra by a Jordan–Banach algebra, as it was

originally proposed by P. Jordan, then the above theorem is not true. It is in fact

known (as discussed in the Introduction) that there is an “exceptional” Jordan

algebras (i.e. a Jordan algebra which do not arise from an associative product)

which cannot represented as an algebra of operators on a Hilbert space. This is

the so called Albert algebra of 3× 3 matrices with values in the Octonions.

2.3. C∗–algebras and dynamical correspondence

In this section we study the identification of observables and generators from

an algebraic point of view. Each of the sets of observables and generators is an

algebra, and the observable-generator duality manifests itself as a map from the

space of observables to the space of generators. This map interraltes the two algeb-

ras, imposing restrictions on their structures. Our purpose is to investigate these

restrictions. The background for our approach is to consider a quantum system

as described by a C∗–algebra A whose real part are the observables of the sys-

tem, and its quantum states ω are normalized positive complex functionals on it.

However the state space S of the quantum system does not determine univocally

the C∗–algebra structure of the system but only its Jordan–Banach real algebra

part [JvNW34]–[Seg47]. In fact as Kadison’s theorem shows [Kad51], the real
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(or self-adjoint) part of a C∗–algebra A, is isometrically isomorphic to the space

of all w∗– continuous affine functions on the state space of A. A. Connes on one

side [Con74] and Alfsen and Shultz on the other [AS98], solved the problem of

when a given Jordan–Banach algebra is the real part of a C∗–algebra. The charac-

terization obtained by Alfsen and Schultz in terms of the existence of a dynamical

correspondence on a Jordan–Banach algebra amounts to state that the relevant

structure to discuss the properties of the state space of a quantum system is that

of a LJB–algebra [Emc84]–[Lan98]. In fact the topological properties of the state

space are completely captured by the Jordan–Banach algebra structure and the Lie

algebra structure allows to construct the C∗–algebra setting for them, their GNS

representations, etc.

We are now going to prove one of the main results in the theory of LJB–algebras,

which we already anticipated in the previous sections. Namely, the equivalence

between the category of C∗–algebras and the category of LJB–algebras. We will

prove that a C∗–algebra is always the complexification of a LJB–algebra. In or-

der to do this, we briefly give few definitions on C∗–algebras and derivations of

LJB–algebras.

Definition 2.3.1. A C∗–algebra A is a Banach algebra over the field of complex

numbers, together with an antilinear map ∗ : A → A called involution, which

satisfies (x∗)∗ = x and

‖x∗x‖ = ‖x‖‖x∗‖, ∀x ∈ A. (2.3.1)

Following [AS98] we will define a derivation of a JB–algebra L by focusing

first only on the order structure with respect to the positive cone L∗ defined be-

fore, ignoring for the moment the algebraic multiplicative aspect. All the proofs

contained in [AS98] will be omitted.

Definition 2.3.2. A bounded linear operator δ on a JB–algebra L is called an

order derivation if etδ(L+) ⊂ L+, ∀ t ∈ R.

We denote the Jordan multiplier determined by an element b ∈ L by δb. Thus

for all a ∈ L
δb(a) = b ◦ a.
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Notice that etδb is the multiplier associated to etb = (e
tb
2 )2 ∈ L+. Then Jordan

multipliers δb are order derivations ∀ b ∈ L.

Definition 2.3.3. An order derivation δ on a unital JB–algebra L is self-adjoint

if there exists a ∈ L such that δ = δa and is skew-adjoint if δ(1) = 0.

Again, it can be shown that if δ is an order derivation, then δ is skew if and

only if δ is a Jordan derivation, i.e., it is a derivation with respect to the Jordan

product:

δ(a ◦ b) = δa ◦ b+ a ◦ δb, ∀ a, b ∈ L. (2.3.2)

We will establish now the main notion in [AS98].

Definition 2.3.4. A dynamical correspondence [AS98] on a unital JB–algebra

L is a linear map

ψ : a→ ψa (2.3.3)

from L into the set of skew order derivations ψa : L → L which satisfies:

i) there exists κ ∈ R such that κ [ψa, ψb] = − [δa, δb] , ∀ a, b ∈ L, and3

ii) ψaa = 0, ∀ a ∈ L.

It follows immediately from the definitions that:

ψab = −ψba, ∀ a, b ∈ L. (2.3.4)

The dynamical correspondence then assigns a “skew order derivation” ψa to

each element a of the given algebra L. The skew order derivations are generat-

ors of one-parameter groups of unital order automorphisms of L [AS98], and by

duality also of one-parameter groups of motions on the state space of L. Thus a

dynamical correspondence gives the elements of L a double identity, which re-

flects the dual role of physical variables as observables and as generators of a

one-parameter group of motions of the state space.

3The notations [ψa, ψb] and [δa, δb] are not related to any Lie bracket and stand for the com-

mutator of the operators in the arguments, i.e. [ψa, ψb] = ψaψb − ψbψa, [δa, δb] = δaδb − δbδa.
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Definition 2.3.5. Let L be a unital JB–algebra. A C∗–product compatible with L
is an associative product on the complex linear space L ⊕ iL which induces the

given Jordan product on L and makes L ⊕ iL into a C∗–algebra with involution

(a+ ib)∗ = a− ib and norm ‖x‖ = ‖x∗x‖1/2 where x = a+ ib.

Note that if a JB–algebra L is the self-adjoint part of a C∗–algebra A, then

there are a natural product and a norm induced in L ⊕ iL by using the represent-

ation A = a + ib with A ∈ A and a, b ∈ L. Such product and norm organize

L⊕ iL into a C∗–algebra. It follows that a JB–algebra is the self-adjoint part of a

C∗–algebra if and only if there exists a C∗–product compatible with L on L⊕ iL.

Yhe main result in [AS98] provides an explicit relation between JB–algebras and

C∗–algebras provided that the former are equipped with a dynamical correspond-

ence.

Theorem 2.3.6 ([AS98]). A unital JB–algebra L is Jordan isomorphic to the self-

adjoint part of a C∗–algebra if and only if there exists a dynamical correspond-

ence on L. Each dynamical correspondence ψ on L determines a unique associ-

ative C∗–product compatible with L defined as

ab = a ◦ b− i
√
κ ψab (2.3.5)

and each C∗–product compatible with L arises in this way from a unique dynam-

ical correspondence ψ on L.

We will now show that the existence of a dynamical correspondence on L is

equivalent to the existence of a Lie product organizing L into a LJB–algebra. First

we need the following lemmas:

Lemma 2.3.7. Let (L, [·, ·]L , ◦) be a LJB–algebra. Then there exists an associat-

ive bilinear product on L × L defined as

a · b = a ◦ b− i
√
κ [a, b]L , ∀ a, b ∈ L, (2.3.6)

and extended linearly to L ⊕ iL.

Proof. Bilinearity of the product follows directly from the bilinearity of the Jordan

and Lie products. We have to prove the associativity, i.e.:

a · (b · c) = (a · b) · c, ∀ a, b, c ∈ L. (2.3.7)
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The l.h.s. of the previous equation leads to:

a·(b·c) = a◦(b◦c)−i√κ a◦[b, c]L−i
√
κ [a, b]L◦c−i

√
κ b◦[a, c]L−κ [a, [b, c]L]L ,

and the r.h.s.:

(a·b)·c = (a◦b)◦c−i√κ b◦[a, c]L−i
√
κ a◦[b, c]L−i

√
κ [a, b]L◦c−κ [ [ a, b ]L , c ]L ,

Then

a · (b · c)− (a · b) · c = a ◦ (b ◦ c)− (a ◦ b) ◦ c− κ [a, [b, c]L]L − κ [c, [a, b]L]L
= κ

(
[b, [c, a]L]L + [a, [b, c]L]L + [c, [a, b]L]L

)

= 0.

where we have used (2.2.2),(2.2.3) and (2.2.4).

Note that the Jordan and Lie products can be obviously expressed in terms of

the associative product as:

a ◦ b = 1

2
(a · b+ b · a), (2.3.8)

[a, b]L =
i

2
√
κ
(a · b− b · a). (2.3.9)

Lemma 2.3.8. Let (L, [·, ·]L , ◦) be a LJB–algebra. Then e[a,·]L is a Jordan auto-

morphism ∀ a ∈ L.

Proof. We have to prove that

e[a,·]L (b ◦ c) = (e[a,·]L b) ◦ (e[a,·]L c). (2.3.10)

By Hadamard’s formula [Ser65], the l.h.s. of the previous equation is:

e[a,·]L (b ◦ c) = ea ·(b ◦ c) · e−a .
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By using formula (2.3.8), the r.h.s. of (2.3.10) becomes:

(e[a,·]L b) ◦ (e[a,·]L c) = (ea ·b · e−a) ◦ (ea ·c · e−a)

=
1

2
ea ·(b · c) · e−a+

1

2
ea ·(c · b) · e−a

= ea ·(b ◦ c) · e−a .

Lemma 2.3.9. Let (L, [·, ·]L , ◦) be a LJB–algebra. Then [a, ·]L is an order deriv-

ation on L ∀ a ∈ L.

Proof. From Definition 2.3.2, we have to prove that et[a,·]L (L+) ⊂ L+, ∀ a ∈ L
and ∀ t ∈ R. Since et[a,·]L is a Jordan automorphism (Lemma 2.3.8), we have:

et[a,·]L(b ◦ b) = (et[a,·]L b) ◦ (et[a,·]L b),

∀ a, b ∈ L and ∀ t ∈ R, i.e. et[a,·]L preserves the positive cone (2.2.8) L+.

Then we can finally conclude:

Theorem 2.3.10 ([FFIM13c]). Let L be a unital JB–algebra. There exists a dy-

namical correspondence ψ on L if and only if L is a LJB–algebra with Lie product

[·, ·]L such that

[a, b]L = ψab (2.3.11)

Proof. First assume that L is a LJB–algebra. From Definition 2.3.4 we have to

check that ∀ a, b ∈ L
κ [ψa, ψb] = − [δa, δb]

that is

κ([a, [b, c]L]L − [b, [a, c]L]L) = b ◦ (a ◦ c)− a ◦ (b ◦ c)
which is an easy computation once the Jordan and Lie products are expressed as

in (2.3.9) and (2.3.8). From the antisymmetry of the Lie product it is also true

that ψaa = [a, a]L = 0 ∀ a ∈ L. Hence the linear map a → [a, ·]L from the

LJB–algebra L to the skew-order derivations on L is a dynamical correspond-

ence.
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Conversely, assume L is a JB–algebra with a dynamical correspondence ψ. Then

from (2.3.4) ψab = [a, b]L is antisymmetric. The Jacobi property (2.2.2) fol-

lows from the defining property i) of the dynamical correspondence (Definition

2.3.4), the Leibniz identity (2.2.3) follows from (2.3.2) and also the compatibility

condition (2.2.4) is easy to check with a simple computation using the properties

of the dynamical correspondence (Definition 2.3.4). Hence a JB–algebra with a

dynamical correspondence is a LJB–algebra.

Corollary 2.3.11. A unital JB–algebra L is Jordan isomorphic to the self-adjoint

part of a C∗–algebra if and only if it is a LJB–algebra.

Proof. This is an obvious consequence of Theorems 2.3.6 and 2.3.10.

This finally proves the equivalence between the category of C∗–algebras and

that of LJB–algebras. We conclude with

Corollary 2.3.12. Let (L, ◦, [·, ·]L) be a LJB–algebra and A = LC the natural

C∗–algebra defined by the complexification of L. Then there is a natural iden-

tification between the states S(L) of L and the states S(A) of the C∗–algebra

A.

Proof. Given a state ω of L, we define a linear functional ω̃ of A by extending it

linearly. The linear functional ω̃ is positive and normalized because ω is positive

and normalized. Notice that if x = a+ ib ∈ LC, then x∗x = a2 + b2, then if ω̃ is

a functional extending ω (chosen continuous by the Hahn–Banach theorem), then

ω̃(x∗x) = ω̃(a2 + b2) = ω(a2 + b2) ≥ 0, (2.3.12)

because ω is positive. The converse is trivial.

Notice in addition that if α : A → B is a morphism of C∗–algebras, then

α(a∗) = α(a)∗, thus α restricts to a morphism αsa : Asa → Bsa. Now let

σ : L1 → L2 be a morphism of Lie–Jordan algebras, i.e. ∀ a, b ∈ L1

σ(a ◦ b) = σ(a) ◦ σ(b) (2.3.13)

σ([a, b]) = [σ(a), σ(b)] (2.3.14)
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then we can define σ̃ : LC1 → LC2 as

σ̃(a+ ib) = σ(a) + iσ(b). (2.3.15)

Then we have for all a, b ∈ L1

σ̃(a · b) = σ̃(a ◦ b− i
√
κ[a, b]) = σ(a ◦ b)− i

√
κσ([a, b]) (2.3.16)

= σ(a) ◦ σ(b)− i
√
κ[σ(a), σ(b)] (2.3.17)

= σ̃(a) · σ̃(b). (2.3.18)

Therefore we have proved

Theorem 2.3.13. Given a morphism σ : L1 → L2 of LJB–algebras, there is a

unique extension σ̃ of σ to a morphism of the corresponding C∗–algebras σ̃ =
A1 : LC1 → A2 = LC2 and 1̃L = 1LC . Moreover the functors from the category

LJB of Lie–Jordan Banach algebras in the category C∗A of C∗–algebras is an

isomorphism of categories.





3
REDUCTION OF LIE–JORDAN BANACH ALGEBRAS

By a degenerate system we mean a physical system that when described math-

ematically possesses extra, nonphysical degrees of freedom. Then a complete

description of it is usually attained by adding supplementary conditions, by the

action of a gauge group on it or by any other mean that allows to identify the

true degrees of freedom of the theory. The task of the physicist is to extract

the relevant physical subsystem from such a degenerate one. Indeed, physical

information such as boundary conditions or constraints is often injected into a

theory through the use of supplementary constraints. The treament of degenerate

systems in classical mechanics was developed by Dirac [Dir01] who provided an

algorithmic procedure and has now reached a high degree of mathematical ma-

turity. It was formalized first by P. Bergmann [Ber61] and later on M. Gotay

et al. set its geometrical foundation, being known as the presymplectic con-

straints algorithm [GNH78], [GN79], [GN80]. Later on Marmo, Mendella and

Tulczyjew established its simplest geometrical structure by considering it as a

consistency condition for implicit differential equations [MMT95]. As for the

quantum setting, these systems still remain within heuristic formulations without
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earning much from their classical rigor, due to the dubious nature of quantization.

The aim of this chapter is to review first the classical treatment of constraints

in the language of differential geometry and translate it in the more abstract algeb-

raic framework, which turns out to be appropriate for both classical and quantum

constraints. We then provide a quantum mechanical procedure for eliminating

the degeneracy in a mathematically consistent way, by focusing on the algebra of

observables and comparing this approach with the T-procedure in the C∗–algebra

framework, developed along the years by Grundling and collaborators [GH85],

[GH88], [GL00].

3.1. Symplectic reduction and Dirac’s theory of constraints

In this section we rephrase Dirac’s theory of constraints in the modern lan-

guage of symplectic geometry. We start discussing the symplectic reduction with

respect to a coisotropic submanifold of a symplectic submanifold. Then the par-

allel with Dirac’s theory of constraints is naturally elucidated.

3.1.1. Symplectic reduction

Let (M,Ω) be a symplectic manifold, that is, Ω is a closed non-degenerate

2-form. Fix a point p ∈M and consider the vector space TpM of tangent vectors

to M at p. The symplectic form determines a non-degenerate antisymmetric form

on TpM , making it into a symplectic vector space. In a symplectic vector space

V , we can define four kind of subspaces. Let W be a subspace of V , and denote

by W⊥ its symplectic complement relative to the symplectic form Ω:

W⊥ = {X ∈ V | Ω(X,Y ) = 0 ∀Y ∈W}. (3.1.1)

Subspaces W obeying W ⊆ W⊥ are called isotropic and they necessarily obey

dimW ≤ 1
2dimV . On the other hand, if W ⊇ W⊥ , W is called coisotropic

and it must obey dimW ≥ 1
2dimV . If W is both isotropic and coisotropic, then

it is its own symplectic complement, it obeys dimW = 1
2dimV and it is called a

lagrangian subspace. Finally, if W ∩W⊥ = 0, W is called symplectic.
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Notice that if W is lagrangian, the restriction of Ω to W is identically zero;

whereas if W is symplectic, Ω restricts to a symplectic form. In particular, sym-

plectic subspaces are even dimensional. If W is coisotropic, Ω restricts to a non-

zero antisymmetric bilinear form on W which, nevertheless, is degenerate since

any vector in W⊥ ⊆ W is symplectically orthogonal to all of W . But it then fol-

lows that the quotient W/W⊥ inherits a well defined symplectic form and hence

becomes a symplectic vector space. The passage from V to W/W⊥ (which is a

subquotient) is known as the symplectic reduction of V relative to the coisotropic

subspace W . In the following we will make this procedure global by generalizing

it to symplectic manifolds.

We similarly define a submanifold M0 to be isotropic, coisotropic, lagrangian,

or symplectic according to whetever at all points p ∈ M0, the tangent spaces

TpM0 are isotropic, coisotropic, lagrangian or symplectic subspaces of TpM re-

spectively.

Suppose now that a submanifold M0 is a coisotropic submanifold of M , let

ι : M0 →֒M denote the immersion and Ω0 = i∗Ω the pull back of the symplectic

form of M onto M0. This defines a distribution which we denote by TM⊥
0 , as

follows. For p ∈M0 we let (TM⊥
0 )p := (TpM0)

⊥. This distribution is involutive:

let X,Y ∈ TM⊥
0 , for all vector fields Z tangent to M0, we have that

0 = dΩ0(X,Y,Z) (3.1.2)

= XΩ0(Y,Z)− Y Ω0(X,Z) + ZΩ0(X,Y ) (3.1.3)

−Ω0([X,Y ], Z) + Ω0([X,Z], Y )− Ω0([Y,Z],X). (3.1.4)

But all terms except the fourth are automatically zero since they involve Ω0 con-

tractions between TM0 and TM⊥
0 . Therefore the fourth term is also zero and

this implies [X,Y ] ∈ TM⊥
0 ∀X,Y ∈ TM⊥

0 . Therefore, by Frobenius’ the-

orem, TM⊥
0 are the tangent space to the leaves of a foliation and we denote by

π : M0 → M̃ the natural surjection mapping the points of M0 to the unique con-

nected leaf they belong to. Then if M̃ is a smooth manifold, whose tangent space

at a leaf would be isomorphic to TpM0/TpM
⊥
0 for any point p lying in that leaf.

We can therefore give M̃ a symplectic structure Ω̃ by demanding that π∗Ω̃ = Ω0.
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In other words, let X̃, Ỹ be vectors tangent to M̃ at a leaf. To compute Ω̃(X̃, Ỹ )
we merely lift X̃ and Ỹ to vectors X0 and Y0 tangent to M0 at a point p in the leaf

and then compute Ω0(X0, Y0). The result is clearly independent of the particular

lift since the difference of any two lifts belongs to TM⊥
0 and is independent of the

particular chosen point p of the leaf since, if Z is a tangent vector to the leaf, the

Lie derivative of Ω0 along Z

LZΩ0 = diZΩ0 + iZdΩ0 = 0. (3.1.5)

Therefore (M̃ , Ω̃) becomes a symplectic manifold and it is called the symplectic

reduction of (M,Ω) relative to the coisotropic submanifold (M0,Ω0).

Suppose now thatM0 is a symplectic submanifold ofM and let i : M0 →֒M
denote its inclusion. We can give M0 a symplectic structure merely by pulling

back Ω to M0. Hence (M0,Ω0), Ω0 = i∗Ω, becomes a symplectic manifold,

called the symplectic restriction of M onto M0. In this case we can obtain ex-

plicitly the Poisson bracket of M0 in terms of the Poisson bracket of M, as we are

going to show in the following.

Let f and g be smooth functions on M0, and let us extend them to smooth

functions onM , and we will use the abuse of notation of still calling them f and g.

Let Xf and Xg be their respective hamiltonian vector fields on M (see Appendix

A). Since M0 is symplectic, the tangent space of M at every point p ∈M0 can be

decomposed in the following direct sum

TpM = TpM0 ⊕ (TpM0)
⊥, (3.1.6)

according to which a vector fieldX can be decomposed as the sum of two vectors:

XT , tangent to M0, and X⊥ symplectically perpendicular to M0. The Poisson

bracket of the two functions f and g on M0 is simply given by

{f, g}0 = Ω(Xf −X⊥
f ,Xg −X⊥

g ). (3.1.7)

Now suppose that {Zα} is a local basis for TM⊥
0 . Then the normal part X⊥ of

any vector X can be written

X⊥ =
∑

α

λαZα. (3.1.8)
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Then we notice that

Ω(X,Zα) = Ω(X⊥, Zα) =
∑

β

λβΩ(Zβ, Zα) (3.1.9)

and define the square matrix M whose entries are Mαβ = Ω(Zα, Zβ), which is

invertible since M0 is a symplectic submanifold. Hence we call the inverse Mαβ

which satisfies ∑

β

MαβM
βγ = δγα. (3.1.10)

It follows that the coefficients λα are given by

λβ =
∑

α

Ω(X,Zα)M
αβ . (3.1.11)

Then by putting Eq. (3.1.11) into Eqs. (3.1.8) and (3.1.7) we obtain

{f, g}0 = {f, g} −
∑

α,β

Ω(Xf , Zα)M
αβΩ(Zβ ,Xg). (3.1.12)

If we further assume that the vector fields Zα are hamiltonian vector fields asso-

ciated (via Ω) to the funcions χα, then

{f, g}0 = {f, g} −
∑

α,β

{f, χα}Mαβ{χβ , g}. (3.1.13)

Therefore {·, ·}0 is nothing but the Dirac bracket associated to the constraints

χα.

3.1.2. First and second class constraints

In this subsection we will show that the submanifold defined by a set of

first/second class constraints is respectively coisotropic/symplectic.

Let (M,Ω) be a symplectic manifold on which it is defined a set of smooth func-

tions {ψa} which are called constraints. This means that the allowed “phase

space” of the relevant dynamical system is the zero locus of the constraints

{p ∈M | ψa(p) = 0 ∀ a}. (3.1.14)
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Any other set of functions with the same zero locus gives an equivalent description

of the physics. This fact will be crucial in the algebraic description of constraints

of the subsequent sections.

Following Dirac [Dir01] let us denote by Ψ the linear subspace generated by

the {ψa}, and by J the ideal of C∞(M) they generate, i.e. linear combinations

of the {ψa} whose coefficients are arbitrary smooth functions. Then let F be a

maximal subspace of Ψ with the property that

{F,Ψ} ⊂ J . (3.1.15)

Let {ϕi} be a basis of F : Dirac defines this functions as first class constraints.

Let now define the subspace S ⊂ Ψ complementary to F to be spanned by the

functions {χα}: Dirac calls these functions second class constraints.

Dirac proves that the matrix of functions {χα, χβ} is nowhere degenerate, which

is equivalent to the statment that the submanifold defined by the second class

constraints is symplectic. In fact, let us define the function χ : M → Rk whose

components are the second class constraints, i.e.

χ(m) = (χ1(m), . . . , χk(m)) (3.1.16)

and assume that the submanifold N = χ−1(0) is a closed imbedded submanifold

of M . Then the vectors tangent to N are precisely those vectors which are per-

pendicular to the gradients of the constraints. That is, X is a tangent vector to

N if and only if dχα(X) = 0 for all α = 1, . . . k. By definition of hamiltonian

vector fields Zα associated to the constraints, the above condition is

X ∈ TN ⇐⇒ Ω(X,Zα) = 0 ∀α. (3.1.17)

It follows that the Zα span the symplectic complement of TN . Therefore we can

restrict ourselves to the symplectic manifold N with the Poisson bracket given by

(3.1.13).

We now restrict the first class constraints {ϕi} to N where they are still first

class constraints and we will denote them again by {ϕi}, with a little abuse of

notation. We again put them together by defining the function ϕ : N → Rl and
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assume that N0 ≡ ϕ−1(0) is a closed imbedded submanifold. We will now show

that N0 is a coisotropic submanifold of N .

The tangent space to N0 is again characterized by those vectors which are anni-

hilated by the gradients of the constraints

X ∈ TN0 ⇐⇒ dϕi(X) = 0 ∀ i (3.1.18)

which, by using the definition of the hamiltonian vector fieldsXi associated to the

constraints {ϕi}, it translates into

TN0 = 〈Xi〉⊥, (3.1.19)

where 〈Xi〉 is the linear span of the Xis. Since the constraints now are first class,

it follows

dϕi(Xj) = {ϕi, ϕj} = ckijϕk, (3.1.20)

which is zero on N0. Therefore the Xi are tangent to N0. This is equivalent to

TN⊥
0 ⊂ TN0 (3.1.21)

and hence N0 is a coisotropic submanifold of N .

There is a slightly more geometrical version of the previous picture. It can be

done by combining Gotay’s presymplectic embedding theorem [GS81] with the

previous discussion. This is, according to the presymplectic embedding theorem,

given any presymplectic manifold (C,ω) where exists an essentially unique, sym-

plectic manifold (S, Ω̃) such that C is embedded in S, ι : C →֒ S and ω = ι∗Ω̃.

Then given a symplectic manifold (M,Ω) and a submanifold C ⊂ M , provided

that the restriction ω of Ω to C is presymplectic (here we assume constant value of

ω), then there exists a symplectic manifold (S, Ω̃) and a symplectic map j : S →֒
M such that j∗Ω = Ω̃ and ι∗Ω̃ = ω. Notice that S is defined as a submanifold

of M by the ideal JS of functions vanishing at S. Because S is symplectic the

ideal is generated by second class constraints. Moreover C is defined inside S
by another ideal JC and because C is coisotropic in S, this ideal consists of first

class constraints.
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3.2. Reduction of Poisson algebras

The power of the algebraic formalism is that it continues to make sense in

situations where the geometry might be singular. The aim of this section is to

show how it is possible to recast the symplectic and coisotropic reduction purely

in the category of Poisson algebras.

Dual to a manifoldM we have the commutative algebra C∞(M) of its smooth

functions which characterize it completely. To every point p ∈ M there corres-

ponds a closed maximal ideal I(p) of C∞(M) consisting of those functions van-

ishing at p. It turns out that these are all the maximal closed ideals. So that as a

set, the manifold M is the set of maximal closed ideals of C∞(M).

Similarly, if ι : M0 →֒ M is a submanifold, it can be described by an ideal

I(M0) consisting of the smooth functions vanishing on M0. Clearly I(M0) =⋂
p∈M0

I(p). For the submanifolds described by the regular zero locus of a set of

smooth functions, the ideal I(M0) is generated by the constraints on the manifold.

We have the following isomorphism:

C∞(M0) ∼= C∞(M)/I(M0). (3.2.1)

If (M,Ω) is a symplectic manifold and M0 →֒ M is a symplectic submanifold

then I(M0) is generated by the second class constraints.

We now provide an algebraic description of the case in which M0 is coisotropic.

Recall that vector fields are derivations of the algebra of functions: X(M) =
DerC∞(M). From the above isomorphism, a derivation of C∞(M) gives ries to

a derivation of C∞(M0) if and only if it preserves the ideal I(M0):

DerC∞(M0) = {X ∈ DerC∞(M) | X(I(M0)) ⊂ I(M0)}. (3.2.2)

As we have seen in the previous subsection, the vector fields in TM⊥
0 are pre-

cisely the hamiltonian vector fields which arise from functions if I(M0), whence

the coisotropy condition TM⊥
0 ⊂ TM0 becomes the condition that the vanishing

ideal is closed under the Poisson bracket: {J ,J } ⊂ J .
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If we denote by Ω0 the restriction of Ω to M0, then kerΩ0 is an integrable distri-

bution (we assume that the rank of Ω0 is constant). Then the quotient space M̃ of

M0 with respect to the connected leaves of ker Ω0, inherits a symplectic structure

provided it is a manifold. Finally the functions on M̃ are those functions on M0

which are constant on the leaves of the foliation defined by ker Ω0. Since the tan-

gent vectors to the leaves are the hamiltonian vector fields of functions in I(M0),
we have an isomorphism

C∞(M̃ ) = {f ∈ C∞(M0) | {f, I(M0)} = 0}, (3.2.3)

where {f, I(M0)} = 0 on M0. Extending f to a function on M , the isomorphism

becomes

C∞(M̃ ) = {f ∈ C∞(M) | {f, I(M0)} ⊂ I(M0)}/I(M0). (3.2.4)

By generalizing these constructions, if we have a Poisson algebra (i.e. an as-

sociative Lie–Jordan algebra) (L, {·, ·}) and an ideal J with respect to the Jordan

product, we can work out the algebraic reduction by taking the normalizer NJ

with respect to the ideal J
NJ = {x ∈ L | {x,J } ⊂ J } (3.2.5)

which is a Poisson subalgebra, and a straightforward computation shows NJ ∩J
is its Poisson ideal. Therefore L̃ = NJ /(NJ ∩ J ) inherits the structure of a

Poisson algebra.

The example in which (M,Ω) is a symplectic manifold, L = C∞(M) and J
is the ideal

J = {f ∈ C∞(M) | f |M0
= 0} (3.2.6)

shows the connection with the discussion before. By using the second isomorph-

ism theorem for vector spaces

N/(N ∩ J ) ≃ (N + J )/J (3.2.7)

and taking into account that the quotient by J can be identified with the restriction

to the submanifold M0, the right hand side can be described as the restriction

to M0 of the functions in NJ + J , but NJ + J = C∞(M) for second class

constraints.
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3.2.1. Reduction by symmetries

Suppose that we have a Lie group G acting on a symplectic manifold M and

we want to restrict our Poisson algebra to functions that are invariant under the

action of the group.

The infinitesimal action of the group induces a family of vector fields E ⊂
X(M) that are an integrable distribution and actually the action ofG onM induces

a map ρ̂ : g → DerC∞(M) = X(M) which is a Lie algebra homomorphism.

Then E = ρ̂(g). If the action of G on M is faithful then E ∼= ρ̂(g). With these

geometric data we introduce the subspace

E = {f ∈ C∞(M) | Xf = 0, ∀X ∈ E} (3.2.8)

that is a Jordan subalgebra (E ◦ E ⊂ E), but not necessarily a Lie subalgebra.

When this is the case, i.e. if

{E , E} ⊂ E , (3.2.9)

the restrictions of the operations to E endows it with the structure of a Poisson

subalgebra.

From the algebraic point of view the action of vector fields on functions is a

derivation of the Jordan algebra product ◦:

X(f ◦ g) = Xf ◦ g + f ◦Xg, (3.2.10)

and if this derivation is also a Lie derivation:

X{f, g} = {Xf, g}+ {f,Xg}, (3.2.11)

then one easily sees that E is a Lie subalgebra.

An example of the previous situation happens when E is a family of Hamilto-

nian vector fields, i.e. there exists a Lie subalgebra G ⊂ C∞(M) such that X ∈ E
if and only if there is a g ∈ G with Xf = {g, f} for any f ∈ C∞(M). This kind

of derivations, defined through the Lie product, are called inner derivations, they

are always Lie derivations and therefore they define a Lie-Jordan subalgebra with

the procedure described above.

Then if J : M → g∗ denotes the momentum map of the action, for any ξ ∈ g,



3.3. More general Poisson reductions 41

Xξ ∈ E = ρ̂(g) is a Hamiltonian vector field with Hamiltonian Jξ = 〈J, ξ〉. Thus

we have Xξ(f) = {Jξ , f} and in this case

Xξ{f, g} = {Jξ , {f, g}} = {{Jξ , f}, g} + {f, {Jξ , g}}
= {Xξf, g}+ {f,Xξg}. (3.2.12)

The submanifold J−1(0) (provided that 0 is a regular value of J) is coisotropic

and the corresponding reduction is called Marsden–Weinstein reduction [MW74].

Actually Marsden–Weinstein reduction corresponds to reduce with respect to the

manifold J−1(µ), µ ∈ g∗ which now is not coisotropic in general. As a particular

instance of this situation consider a symplectic manifold (M,Ω) with a strongly

Hamiltonian action of the connected Lie group G.

3.3. More general Poisson reductions

One attempt to combine the previous reductions (by constraints and by sym-

metries) to define a more general one is contained in [MR86]. We shall rephrase

here in algebraic terms the original construction that was presented in geometric

language.

The data are an embedded submanifold ι : N → M of a Poisson manifold

and a subbundle B ⊂ TNM := ι∗(TM). With these data we define the Jordan

ideal I = {f ∈ C∞(M) | f |N = 0} as before, and the Jordan subalgebra

B = {f ∈ C∞(M) | Xf = 0 ∀X ∈ Γ(B)}. The goal is to define an associative

Lie-Jordan structure in B/(B ∩ I).
Following [MR86] we assume that B is also a Lie subalgebra, then if B ∩ I is

a Lie ideal of B the sought reduction is possible.

However, the condition that B is a subalgebra is a rather strong one [FZ08]

and, consequently, the reduction procedure is much less general than initially ex-

pected. Actually, as we will show, it consists on a succesive application of the

reductions introduced in the previous section. One can prove the following result.

Theorem 3.3.1 ([FZ08]). With the previous definitions, if B is the proper subal-

gebra of C∞(M) then the following statements hold:
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a) B ⊂ N := {g ∈ C∞(M) | {I, g} ⊂ I}.

b) B ∩ I is Poisson ideal of B.

c) B/(B ∩ I) always inherits a Poisson bracket.

d) Take another 0 6= B′ ⊂ TN (M) and define B′ accordingly. If B ∩ TN =
B′ ∩ TN ⇔B + I = B′ + I by the second isomorphism theorem we have

B/(B ∩ I) ≃ (B + I)/I ≃ B′/(B′ ∩ I) (3.3.1)

and the two Poisson brackets induced on (B + I)/I coincide.

Proof. We prove a) by contradiction. Assume that B 6⊂ N then there exist func-

tions f ∈ B, g ∈ I and an open set U ⊂ N , such that

{g, f}(p) 6= 0, for any p ∈ U. (3.3.2)

But certainly g2 ∈ B as a simple consequence of the Leibniz rule for the action of

vector fields. Therefore, using that B is a Lie subalgebra we have

{g2, f} = 2g{g, f} ∈ B (3.3.3)

and due to the fact that g ∈ I and {g, f}(p) 6= 0 this implies g ∈ BU , where

BU is the set of functions whose restriction to U coincide with the restriction of

someone in B.

So far we know that g ∈ BU ∩ I and therefore hg ∈ BU ∩ I for any h ∈
C∞(M). But using that BU is a Lie subalgebra as it is B (due to the local character

of the Poisson bracket) we have

{hg, f} = h{g, f} + g{h, f} ∈ BU ⇒ h{g, f} ∈ BU ⇒ h ∈ BU . (3.3.4)

But h is any function, then BU = C∞(M) and B|U = 0 which implies B = 0 as

we assumed that it is a subbundle. This contradicts the hypothesis of the theorem

and a) is proved.

b) follows immediately from a). Actually if B ⊂ N we have {I,B} ⊂ I and

moreover {B,B} ⊂ B. Then {I ∩ B,B} ⊂ I ∩ B.
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c) is a simple consequence of the fact that B is a Lie-Jordan subalgebra and

B ∩ I its Lie-Jordan ideal.

To prove d) take fi ∈ B and f ′i ∈ B′, i = 1, 2, such that fi + I = f ′i + I . The

Poisson bracket in (B + I)/I is given by

{f1 + I, f2 + I} = {f1, f2}+ I ∈ (B + I)/I, (3.3.5)

where for simplicity we use the same notation for the Poisson bracket in the

different spaces, which should not lead to confusion. We compute now the al-

ternative expression {f ′i + I, f ′2 + I} = {f ′1,+f ′2} + I . We assumed f ′i =
fi + gi with gi ∈ I ∩ (B + B′) and therefore, as a consequence of a), we have

{f1, g2}, {g1, f2}, {g1, g2} ∈ I , which implies

{f ′1,+f ′2}+ I = {f1, f2}+ I (3.3.6)

and the proof is completed.

Last property implies that the reduction process does not depend effectively

on B but only on B ∩ TN . Actually one can show that this procedure is simply

a successive application of the two previous reductions presented before: first

we reduce the Poisson bracket by constraints to N and then by symmetries with

E = B ∩ TN .

For completeness we would like to comment on the situation when B = 0. In

this case B = C∞(M) and, of course, it is always a Lie subalgebra. Under these

premises the reduction is not possible unless I is a Lie ideal which is not the case

in general. Anyhow, if the conditions to perform the reduction are met and we

consider some B′ 6= 0 such that B′∩TN = 0 and B′ is a Lie subalgebra, then we

obtain again property d) of the theorem: the Poisson brackets induced by B = 0
and B′ on B/I are the same.

The question that arises here actually is, is this reduction the most general one

that can be performed using N and B? Or, in other words, if we are given N and B
does there exists a more general way to obtain the desired associative Lie-Jordan

structure in B/(B ∩ I) where B and I are defined as before?

To answer this question we will rephrase the problem in purely algebraic

terms. We shall assume that together with an associative Lie-Jordan algebra we
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are given a Jordan ideal I and a Jordan subalgebra B. Of course, a particular

example of this is the geometric scenario discussed before. Under these premises

B∩I is a Jordan ideal of B and B+I is a Jordan subalgebra, then it is immediate

to define Jordan structures on B/(B ∩ I) and on (B + I)/I such that the corres-

ponding projections πB and π are Jordan homomorphisms. Moreover, the natural

isomorphism between both spaces is also a Jordan isomorphism. The problem

is whether or not we can also induce a Poisson bracket in the quotient spaces

compatible with the Jordan product. One first step to carry out this program is

contained in the following theorem.

Theorem 3.3.2 ([FFIM13a]). Given an associative Lie-Jordan algebra, (L, ◦, { , }),
a Jordan ideal I and a Jordan subalgebra B, assume

a) {B,B} ⊂ B + I, b) {B,B ∩ I} ⊂ I, (3.3.7)

then the following commutative diagram

B × B B + I

B/(B ∩ I)× B/(B ∩ I) B/(B ∩ I) (B + I)/I

{ , }

ππB×πB

≃
(3.3.8)

defines a unique bilinear, antisymmetric operation in B/(B ∩ I) that satisfies the

Leibniz rule.

Proof. In order to show that we define uniquely an operation we have to check that

πB is onto and that ker (πB)×B and B × ker (πB) are mapped into ker (π) = I .

But first property holds because πB is a projection and the second one is a con-

sequence of (3.3.7,b). The bilinearity of the induced operation follows form the

linearity or bilinearity of all the maps involved in the diagram and its antisym-

metry derives form that of { , }. Finally Leibniz rule is a consequence of the

same property for the original Poisson bracket and the fact that π and πB are

Jordan homomorphisms.

The problem with this construction is that, in general, the bilinear operation

does not satisfy the Jacobi identity as shown in the following example.
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Example 3.3.3. Consider M = R3 × R3, with coordinates (x,y) and Poisson

bracket given by the bivector Π =
∑3

i=1
∂
∂xi

∧ ∂
∂yi

. Take N = {(0, 0, x3,y)} and

for a given λ ∈ C∞(N) define B = span{∂x1
, ∂x2

− λ∂y1} ⊂ TNM and

B = {f ∈ C∞(M), | Xf |N = 0,∀X ∈ Γ(B)}. (3.3.9)

Notice that TNM is a direct sum of B and TN , therefore we immediately get

{B,B} ⊂ B + I = C∞(M) and {B,B ∩ I} ⊂ I, (3.3.10)

and we meet all the requirements to define a bilinear, antisymmetric operation on

B/(B ∩ I) ≃ C∞(N).
Using coordinates (x3,y) for N the bivector field is

ΠN =
∂

∂x3

∧ ∂

∂y3
+ λ

∂

∂y1
∧ ∂

∂y2
(3.3.11)

that does not satisfy the Jacobi identity unless ∂x3
λ = ∂y3λ = 0.

Now the problem is to supplement (3.3.7) with more conditions to guarantee

that the induced operation satisfies all the requirements for a Poisson bracket. We

do not know a simple description of the minimal necessary assumption but a rather

general scenario is the following proposition:

Proposition 3.3.4 ([FFIM13a]). Suppose that in addition to the conditions of the-

orem 3.3.2 we have two Jordan subalgebras B+, B−

B− ⊂ B ⊂ B+ and B± + I = B + I, (3.3.12)

such that

a) {B−,B−} ⊂ B+, b) {B−,B+ ∩ I} ⊂ I. (3.3.13)

Then the antisymmetric, bilinear operation induced by (3.3.8) is a Poisson bracket,

i.e. it fulfils the Jacobi identity.

Proof. To prove this statement consider any two functions f1, f2 ∈ B and, for

i = 1, 2, denote by fi,− a function in B− such that fi + I = fi,− + I ⊂ B + I .

Due to (3.3.7) we know that

{f1,−, f2,−}+ I = {f1, f2}+ I, (3.3.14)
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but if (3.3.13,a) also holds,

{f1,−, f2,−} ∈ B+, (3.3.15)

in addition we have that

{f1,−, f2,−}− − {f1,−, f2,−} ∈ B+ ∩ I, (3.3.16)

and using (3.3.13,b)

{{f1,−, f2,−}−, f3,−}+ I = {{f1,−, f2,−}, f3,−}+ I. (3.3.17)

Therefore the Jacobi identity for the reduced antisymmetric product derives from

that of the original Poisson bracket.

Notice that the whole construction has been made in algebraic terms and there-

fore it will have an immediate translation to the quantum realm. But before going

to that scenario we reexamine the example before, Ex. 3.3.3, to show how it fits

into the general result.

Example 3.3.5. We take definitions and notations from example 3.3.3. Now let λ̃
be an arbitrary smooth extension of λ to M , i.e. λ̃ ∈ C∞(M) such that λ̃|N = λ,

we define E = span{∂x1
, ∂x2

− λ̃∂y1} ⊂ TM and B− = {f ∈ C∞(M) | Xf =
0, ∀X ∈ Γ(E)}.

If we define B+ = B, it is clear that B− ⊂ B ⊂ B+, B± + I = B + I and

{B−,B+ ∩ I} ⊂ I . But {B−,B−} ⊂ B+ if and only if ∂x3
λ = ∂y3λ = 0.

Therefore, in our construction we can accommodate the most general situation

in which the example provides a Poisson bracket. We believe that this is not

always the case, but we do not have any further counterexamples.

We want to end this section with a comment on the possible application of the

reduction described in this section to quantum systems. In this case the Lie-Jordan

algebra is non-associative and due to the associator identity there is a deeper con-

nection between the Jordan and Lie products. As a result the different treatment

between the Jordan and the Lie part, that we considered in the case of associative

algebras, is not useful any more and the natural thing to do is to consider a more

symmetric prescription.
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3.3.1. Generalized reduction of Lie–Jordan algebras

We propose in this subsection a generalisation of the standard reduction pro-

cedure (the quotient of subalgebras by ideals) for Lie–Jordan algebras along sim-

ilar lines to those followed in the associative case.

The statement of the problem is the following: given a Lie-Jordan algebra L
and two subspaces B, S the goal is to induce a Lie-Jordan structure in the quotient

space B/(B ∩ S).
If we assume the following conditions:

B ◦ B ⊂ B + S, [B,B] ⊂ B + S, (3.3.18a)

B ◦ (B ∩ S) ⊂ S, [B,B ∩ S] ⊂ S, (3.3.18b)

then a diagram similar to the one in Theorem 3.3.2 allows to induce commutat-

ive and antisymmetric bilinear operations in the quotient. Now, in order to ful-

fil the ternary properties (Jacobi, Leibniz and associator identity) we need more

conditions. We can show that, again, it is enough to have two more subspaces

B− ⊂ B ⊂ B+ such that B± + S = B + S and moreover we get the conditions

substituting (3.3.18a) and (3.3.18b):

B− ◦ B− ⊂ B+, [B−,B−] ⊂ B+, (3.3.19a)

B− ◦ (B+ ∩ S) ⊂ S, [B−, (B+ ∩ S)] ⊂ S. (3.3.19b)

Then, under these conditions, one can correctly induce a Lie-Jordan structure in

the quotient. Conditions (3.3.19a) constitute a weaker version of the notion of

Lie–Jordan subalgebra. Actually if B− = B = B+, then we are just claiming that

B− is a Lie–Jordan subalgebra. On the other hand conditions (3.3.19b) constitute

a weaker version of the notion of ideal. If B− = B = B+ then (3.3.19b) just

implies that S is an ideal of B. Because of this we will say that the pair B−, B+

is a weak Lie–Jordan subalgebra, and that S is a weak Lie–Jordan ideal of

(B−,B+). Then we have proved:

Theorem 3.3.6. Let L be a Lie–Jordan algebra and B− ⊂ B ⊂ B+ a weak Lie–

Jordan subalgebra and S a weak Lie–Jordan ideal of (B−,B+). Then B/B ∩ S
inherits a canonical Lie–Jordan structure
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There are at least two aspects of this construction that need more work. The

first one is to find examples in which this reduction procedure is relevant, similarly

to what we did for the classical case in the previous section. The second problem

is of topological nature: given a Banach space structure in the big algebra L,

compatible with its operations, we can correctly induce a norm in the quotient

provided B and S are closed subspaces. However, the induced operations need

not to be continuous in general; though they are, if B is a subalgebra and S an

ideal. The study of more general conditions for continuity and compatibility of

the norm will be the subject of further research.

3.4. Quantum constraints and reduction of Lie–Jordan Banach algebras

In this section we show how to deal with quantum constraints in the setting

of LJB–algebras [FFIM13c]. We assume for simplicity that there are no second-

class constraints, otherwise one could introduce the Dirac bracket and treat the

problem with first-class constraints only, as described in Sec. 3.1. In the Dirac

quantization method, one assumes that it is possible to quantize the classical con-

straints ci, by associating them the operators ĉi acting on some Hilbert space H
and require that every physical state should remain unchanged if one performs a

transformation generated by the constratins. Hence the constraints form the set

{C, ĉi ∈ C} and the selection condition

ĉi|ψ〉 = 0, ∀ ĉi ∈ C, (3.4.1)

identifies the subspace of physical states:

HC ≡ {|ψ〉 | ĉi|ψ〉 = 0 ∀ ĉi ∈ C}. (3.4.2)

The first-class classical constraints ci satisfy:

[ci, cj ] = fkijck. (3.4.3)

This relation is not always preserved at the quantum level, and it may be spoiled

by extra terms of quantum mechanical origin,

[ĉi, ĉj ] = f̂kij ĉk + D̂ab. (3.4.4)
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If this is the case, the physical states |ψ〉 should also obey the extra conditions

D̂ab|ψ〉 = 0. (3.4.5)

This last condition has no classical analog and may restrict the physical subspace

too much. When D̂ab 6= 0 one says that gauge invariance is broken at the

quantum level, and the operator D̂ab is called a gauge anomaly [HT92]. But if

gauge invariance is broken by quantum effects, it is meaningless to search for

gauge-invariant states, i.e. to impose the conditions (3.4.1). Thus, one sees that

the Dirac method is not directly applicable when there is a gauge anomaly. By

using the algebraic reduction procedure described in this section, we will be able

to identify the algebraic restrictions such that the physical subspace will not suffer

the gauge anomaly problem.

In the LJB–algebra framework, one starts with an algebra L containing all

physical observables, and assume that the constraints should appear in L as a

subset C. This assumption is justified by the fact that ker ĉi = ker ĉ∗i ĉi, hence

we can assume the constraint algebra to be self-adjoint, this is it belongs to the

LJB–algebra L.

Remark. Note that in physical relevant situations the operators ĉi are not bounded.

Then, by following the seminal works of Grundling et al. [GH85], [GL00] some

possibilities may arise which we can handle within the algebraic framework:

1. if the ĉi are unbounded but essentially selfadjoint, we can take the unitaries

U ≡ {exp(itĉi) | t ∈ R} and identify the constraint set with C = {U −1 |
U ∈ U}sa, i.e. taking the selfadjoint part defined by those unitaries.

2. If the ĉi are unbounded and normal, we can identify C with {f(ĉi) | j ∈ I},

where f is a bounded real valued Borel function with f−1(0) = {0}.

3. If the ĉi are unbounded, closable and not normal, we can replace each ĉi
with the essentially selfadjoint operator ĉ∗i ĉi, which is justified by the fact

that as mentioned above ker ĉi = ker ĉ∗i ĉi, reducing then to the case of

essentially selfadjoint constraints.
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The constraint set C select the physical state space, also called Dirac states

SD = {ω ∈ S(L) | ω(c2) = 0, ∀ c ∈ C }

where S(L) is the state space of L. This is analogous to selecting the constraint

submanifold in the classical reduction and to the quantum condition (3.4.1). Now,

in our algebraic setting, we are able to define a “generalized” constraint subal-

gebra, which is a constraint subalgebra of L which gives rise to the same set of

Dirac states. Hence we define the vanishing subalgebra V as:

V = { a ∈ L | ω(a2) = 0, ∀ω ∈ SD }.

Proposition 3.4.1. V is a non-unital LJB–subalgebra.

Proof. Let a, b ∈ V . From (2.2.4) it follows:

(a ◦ b)2 = κ [b, [a ◦ b, a] ] + a ◦ (b ◦ (a ◦ b) ). (3.4.6)

If we introduce c = [a ◦ b, a] and d = b ◦ (a ◦ b), Eq. (3.4.6) becomes:

(a ◦ b)2 = κ [b, c ] + (a ◦ d ). (3.4.7)

From the inequalities (2.2.13)(2.2.14) it is easy to show that if ω(a2) = 0 then

ω(a ◦ b) = 0 = ω([a, b]) ∀ b ∈ L. (3.4.8)

Then if we apply the state ω to the expression (3.4.7), from (3.4.8) it follows:

ω( (a ◦ b)2 ) = κ ω([b, c ]) + ω(a ◦ d ) = 0. (3.4.9)

By definition of V , this means that ∀ a, b ∈ V , a ◦ b ∈ V .

By applying the state ω to the relation

(a ◦ b)2 − κ [a, b]2 = a ◦ (b ◦ (a ◦ b))− κ a ◦ [b, [a, b] ],

we obtain ω( [a, b]2 ) = ω((a ◦ b)2) = 0, that is ∀ a, b ∈ V , [a, b] ∈ V . Hence V is

a Lie–Jordan subalgebra.

V also inherits the Banach structure since it is defined as the intersection of closed

subspaces.
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The Prop. 3.4.1 tells us that the right requirement for overcoming the problems

with gauge anomalies is to use the vanishing subalgebra V as constraint algebra.

Since it is a Lie-subalgebra, if ci, cj ∈ V , then also [ci, cj ] ∈ V .

We can also use the vanishing subalgebra to provide an alternative description of

the Dirac states that will be useful later.

Proposition 3.4.2. With the previous definitions we have

SD = {ω ∈ S(L) | ω(a) = 0, ∀a ∈ V}

Proof. As V is a subalgebra and it contains C it is clear that the right hand side is

included into SD.

To see the other inclusion it is enough to consider that for any state ω(a)2 ≤
ω(a2), therefore any Dirac state should vanish on V .

Define now the Lie normalizer as

NV = { a ∈ L | [a,V] ⊂ V } (3.4.10)

which corresponds roughly to Dirac’s concept of “first class variables” [Dir01],

i.e. the set of physical observables which preserve the constraints.

Proposition 3.4.3. NV is a unital LJB–algebra and V is a Lie–Jordan ideal of

NV .

Proof. Let a, b ∈ NV and v ∈ V . Then by definition of normalizer it immediately

follows:

[[a, b], v] = [[a, v], b] + [[v, b], a] ∈ V. (3.4.11)

Let us now prove that ∀ v ∈ V, v ◦ a ∈ V , this is V is a Jordan ideal of NV :

ω((v ◦ a)2) = κ ω([a, [v ◦ a, v]]) + ω(v ◦ (a ◦ (a ◦ v))) (3.4.12)

which gives zero by repeated use of properties (2.2.13) and (2.2.14).

Then it becomes easy to prove that NV is a Jordan subalgebra:

[a ◦ b, v] = [a, v] ◦ b+ a ◦ [b, v] ∈ V. (3.4.13)

Finally, since the Lie bracket is continuous with respect to the Banach structure,

it also follows that NV inherits the Banach structure by completeness.
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In the spirit of Dirac, the physical algebra of observables in the presence of

the constraint set C is represented by the LJB–algebra NV which can be reduced

by the closed Lie–Jordan ideal V which induces a canonical Lie–Jordan algebra

structure in the quotient:

L̃ = NV
/
V . (3.4.14)

We will denote in the following the elements of L̃ by ã.

The quotient Lie-Jordan algebra L̃ carries the quotient norm,

‖ã‖ = ‖ [a] ‖ = inf
b∈V

‖a+ b‖,

where a ∈ NV is an element of the equivalence class [a] of NV with respect to the

ideal V . The quotient norm provides a LJB–algebra structure to L̃.

Hence the reduction of the Lie–Jordan algebra L with respect to the constraint

set C is given by the short exact sequence

0 → V → NV → L̃ → 0. (3.4.15)

In the Subsection 3.4.2 we will prove that the states on the reduced LJB–algebra

L̃ are exactly the Dirac states restricted to the physical algebra of observables NV .

3.4.1. Reduction of Lie–Jordan Banach algebras and constraints inC∗–algebras

Following [GH85], [GL00] we briefly recall how to deal with quantum con-

straints in a C∗–algebra setting. The aim of this section is to prove that the reduc-

tion procedure of C∗–algebras used to analyze quantum constraints, also called

T–reduction, can be equivalently described by using the theory of reduction of

LJB–algebras discussed above.

A quantum system with constraints is a pair (F , C) where now the field algebra

F is a unital C∗–algebra containing the self–adjoint constraint set C, i.e. C =
C∗ ∀C ∈ C. The constraints select the Dirac states

SD ≡ {ω ∈ S(F) | ω(C2) = 0, ∀C ∈ C }

where S(F) is the state space of F .
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Define D = [FC]∩ [CF ] where the notation [·] denotes the closed linear space

generated by its argument and satisfies the following

Theorem 3.4.4. D is the largest non-unital C∗–algebra in
⋂

ω∈SD

ker ω.

For any set Ω ⊂ F , define as before its normalizer or “weak commutant” as

ΩW = {F ∈ F | [F,H] ⊂ Ω, ∀H ∈ Ω }. (3.4.16)

Consider now the multiplier algebra of Ω as

M(Ω) = {F ∈ F | FH ∈ Ω and HF ∈ Ω, ∀H ∈ Ω } (3.4.17)

i.e. the largest set for which Ω is a bilateral ideal. M(Ω) is clearly a unital

C∗–algebra and we have the following

Theorem 3.4.5. O ≡ DW = M(D).

That is, the weak commutant of D is also the largest set for which D is a

bilateral ideal and it will be denoted by O. It follows that the maximal (and unital)

C∗–algebra of physical observables determined by the constraints C is given by:

F̃ = O/D. (3.4.18)

To show that this procedure is equivalent to the reduction of the corresponding

LJB–algebra (as discussed in Section 3.4), we need to prove some simple state-

ments.

Lemma 3.4.6. Let Z and I be two Lie-Jordan subalgebras of a LJB–algebra L.

Then ZC = Z ⊕ iZ is the weak commutant (or Lie normalizer) of IC = I ⊕ iI if

and only if Z is the Lie normalizer of I , i.e. Z = NI .

Proof. Assume first ZC is the weak commutant of IC and let a + ib ∈ ZC with

a, b ∈ Z . By definition

[a+ ib,I ⊕ iI] ⊂ I ⊕ iI
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that is

[a+ b,I] ⊂ I and [a− b,I] ⊂ I.
Since the normalizer is a vector space, this implies

[a,I] ⊂ I and [b,I] ⊂ I, ∀ a, b ∈ Z,

that is Z is the Lie normalizer of I . Conversely assume Z is the Lie normalizer

of I:

[a,I] ⊂ I, ∀ a ∈ Z,
then it follows

[a+ ib, x+ iy] ∈ I, ∀ a, b ∈ Z and ∀x, y ∈ I,

that is ZC is the weak commutant (or Lie normalizer) of IC.

Lemma 3.4.7. Let Z and I be two Lie-Jordan subalgebras of L. Then I is a

Lie–Jordan ideal of Z if and only if IC = I ⊕ iI is an associative bilateral ideal

of ZC = Z ⊕ iZ .

Proof. Using the expressions provided by eqs. (2.3.8) and (2.3.9), the statement

becomes an easy computation.

Let us define L and L̃ such that F = L⊕ iL and F̃ = L̃⊕ iL̃, i.e. they are the

self-adjoint part of F and F̃ respectively. From Corollary 2.3.11 it follows that L
and L̃ are unital LJB–algebras. Similarly define the LJB–algebras NJ and J as

the self-adjoint parts of O and D respectively, i.e. O = NJ ⊕ iNJ , D = J ⊕ iJ .

Theorem 3.4.8. With the notations above, let F = L⊕ iL be the field algebra of

the quantum system and C a real constraint set. Let D = [FC] ∩ [CF ], O = DW

be as in Thm. 3.4.5, and F̃ = O/D = L̃⊕ iL̃ be the reduced field algebra. Then:

L̃ = NV/V,

with V and NV being the vanishing subalgebra of L and its Lie normalizer re-

spectively.
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Proof. Observe that the space of states on F is the space of states on L extended

linearly by complexification and conversely S(L) = S(F)|L. Then from Thm.

3.4.4 it follows that D is exactly the vanishing subalgebra for SD, that is D =
V ⊕ iV . Then from the Lemmas 3.4.6 and 3.4.7 everything goes straightforward

and the two procedures are clearly equivalent.

The equivalence of the two approaches can be illustrated pictorially by the

following “functorial” diagramme:

L

J , NJ

F = L ⊕ iL

D, O

L̃ F̃ = L̃ ⊕ iL̃

3.4.2. The space of states of the reduced LJB–algebra

The purpose of the remaining two sections is to discuss the structure of the

space of states and the GNS construction of reduced states for reduced LJB–algebras

with respect to the space of states of the unreduced one.

As it was discussed in the previous section, let A be a C∗–algebra, L = Asa

its real part and V the vanishing subalgebra of L with respect to a constraint set C
and let NV be the Lie normalizer of V . Then we will denote as before by L̃ the

reduced Lie–Jordan Banach algebra NV/V and its elements by ã.

Let S̃ = S(L̃) be the state space of the reduced LJB–algebra L̃, i.e. ω̃ ∈ S̃
means that ω̃(ã2) ≥ 0 ∀ ã ∈ L̃, and ω̃ is normalized. Notice that if L is unital,

then 1 ∈ NV and 1+ V is the unit element of L̃. We will denote it by 1̃.

We have the following:

Lemma 3.4.9. There is a one-to-one correspondence between normalized pos-

itive linear functionals on L̃ and normalized positive linear functionals on NV

vanishing on V .
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Proof. Let ω′ : NV → R be positive. The positive cone on L̃ consists of elements

of the form ã2 = (a+ V)2 = a2 + V , i.e.

K+

L̃
= { a2 + V | a ∈ NV } = K+

NV
+ V.

Thus if ω′ is positive on NV , ω′(a2) ≥ 0, hence:

ω′(a2 + V) = ω′(a2) + ω′(V)

and if ω′ vanishes on the closed ideal V , then ω′ induces a positive linear functional

on L̃. Clearly ω′ is normalized then the induced functional is normalized too

because 1̃ = 1+ V .

Conversely, if ω̃ : L̃ → R is positive and we define

ω′(a) = ω̃(a+ V)

then ω′ is well-defined, positive, normalized and ω′|V = 0.

Notice also that given a positive linear functional on NV there exists an exten-

sion of it to L which is positive too.

Lemma 3.4.10. Given a closed Jordan subalgebra Z of a LJB–algebra L such

that 1 ∈ Z and ω′ is a normalized positive linear functional on Z , then there

exists ω : L → R such that ω(a) = ω′(a), ∀ a ∈ Z and ω ≥ 0.

Proof. Since L is a JB–algebra, it is also a Banach space. Due to the Hahn–

Banach extension theorem, there exists a continuous extension ω of ω′, i.e. ω(a) =
ω′(a), ∀ a ∈ Z , and moreover ‖ω‖ = ‖ω′‖.

From the equality of norms and the fact that ω′ is positive we have ‖ω‖ =
ω′(1), but ω is an extension of ω′ then ‖ω‖ = ω(1), which implies that ω is a

positive functional and satisfies all the requirements stated in the lemma.

We can now prove the following:

Theorem 3.4.11. The set SD(NV) of Dirac states on L restricted to NV is in

one-to-one correspondence with the space of states of the reduced LJB–algebra

L̃.
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Proof. In Prop. 3.4.2 we characterised the Dirac states as those that vanish on V .

Combining this result with that of Lemma 3.4.9 the proof follows.

3.4.3. The GNS representation of reduced states

Finally, we will describe the GNS representation of a reduced state in terms

of data from the unreduced LJB–algebra. Let L̃ be, as before, the reduced LJB–

algebra of L with respect to the constraint set C. Denote by Ã = L̃ ⊕ iL̃ the

corresponding C∗–algebra and by S̃ its state space. Let ω̃ ∈ S̃ be a normalized

state on Ã. The GNS representation of Ã associated to the state ω̃, denoted by

πω̃ : Ã → B(Hω̃),

is defined as

πω̃(Ã)(B̃ + Jω̃) = ÃB̃ + Jω̃, ∀ Ã, B̃ ∈ Ã,
where the Hilbert space Hω̃ is the completion of the pre–Hilbert space defined on

Ã/Jω̃ by the inner product

〈Ã+ Jω̃, B̃ + Jω̃〉 ≡ ω̃(Ã∗B̃)

and Jω̃ = {Ã ∈ Ã | ω̃(Ã∗Ã) = 0} is the Gelfand left-ideal of ω̃. Let ω be a

state on A = L ⊕ iL that extends the state ω′ on NC
V induced by ω̃ according to

Lemmas 3.4.9 and 3.4.10. Notice that ω vanishes on V , thus the Gelfand ideal Jω

of ω contains V . We will have then:

Theorem 3.4.12. There is a unitary equivalence between Hω̃ and the completion

of the pre–Hilbert space:

H′ = NC
V

/
NC

V ∩ Jω

with the inner product defined by

〈A+NC
V ∩ Jω, B +NC

V ∩ Jω〉′ ≡ ω(A∗B), ∀A,B ∈ NC
V .



58 REDUCTION OF LIE–JORDAN BANACH ALGEBRAS

Proof. Notice first that 〈·, ·〉′ is well defined because of the properties of the Gel-

fand ideal Jω. Morover we have that

Hω̃ = Ã/Jω̃

and from Thm. 3.4.8, Ã = NC
V /VC and Jω̃ = Jω′/

(
Jω′ ∩ VC

)
.

Hence because Jω′ = NC
V ∩ Jω and VC ⊂ Jω′ , we have:

Hω̃ = Ã/Jω̃ =

(
NC

V

/
VC

)/(
NC

V ∩ Jω

/
VC

)

∼= NC
V

/
NC

V ∩ Jω .

Notice that

H′ = NC
V

/
NC

V ∩ Jω
∼=
(
N C

J + Jω

)/
Jω .

Thus the reduced GNS construction corresponding to the state ω̃ is the GNS con-

struction of any extension ω of ω̃ restricted to NC
V + Jω. Notice that ω̃ will be

a pure state if and only if πω̃ is irreducible, i.e. if the representation of πω of ω
restricted to NC

V +Jω is irreducible. Then if NC
V +Jω = A, πω will be irreducible

if ω is a pure state. If NC
V + Jω  A, then the state ω extending ω̃ might be non

pure.



4
ALGEBRAIC IMPLICATIONS OF COMPOSABILITY OF

PHYSICAL SYSTEMS

4.1. Composition of classical and quantum systems: state space

The state spaces of systems in classical mechanics compose according to the

Cartesian product. Namely, letX,Y be two such systems, each with the respective

state spaces given by the manifolds M,N , then the state space of the composite

system X and Y is the Cartesian product M × N . Here one can note that com-

posing two classical systems need not necessarily mean that the two systems shall

interact, or that the states of the two systems may enter into a correlation. And

if they do not, then the state space will be the whole M × N . However, if they

interact, and certain states of the component systems become correlated, then the

state space of “X and Y ” can be a strict subset of E × F .

If X,Y are two quantum systems, with the respective state space associ-

ated with the Hilbert spaces HX and HY , then the state space of the composite

quantum system will be associated with the tensor product HX⊗HY . The novelty
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in the quantum way of composing systems is that the resulting quantum compos-

ite state space is significantly larger than the classical composite state space. For

istance, if HX and HY are finite dimensional Hilbert spaces, with respective di-

mension n and m, then the dimension of HX⊗HY is nm, whereas the dimension

of HX ×HY is only n+m. Furthermore, one has the injective mapping

HX ×HY → HX ⊗HY (4.1.1)

(x, y) 7→ x⊗ y. (4.1.2)

The composite states in

(HX ⊗HY ) \ (HX ×HY ) (4.1.3)

do not correspond to any pair of component states x ∈ HX , y ∈ HY , and thus

provide a quantum feature that does not exist in classicl mechanics. The states

z ∈ (HX ⊗HY ) \ (HX ×HY ) are called entangled (see Sec. 4.4 for an algebraic

treatment of entangled states).

4.2. Composition of classical and quantum systems: algebra of observables

From an algebraic point of view the composition of classical and quantum

systems admits a unified picture because in both cases the relevant algebras of

observables are composed via tensor product. In fact, in the classical case, if

M and N are two manifolds, then the space of smooth functions (with compact

support) C∞(M ×N) ∼= C∞(M)⊗̄ C∞(N) [Trè06].

In the following we will denote a generic algebraic physical system as U =
(L, ◦, [, ]) where L is the associated Lie–Jordan Banach algebra with products ◦
and [, ]. Inspired by Grgin and Petersen [GP76] we introduce the composability

category U composed by the algebraic systems U , equipped with a product ©
satisfying the following properties:

(i) if U1,U2 ∈ U and U12 = U1 ©U2, then L12 = L1 ⊗ L2,

i.e. the underlying algebra is the tensor product algebra of the component

algebras.
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(ii) Associativity:

(U1 ©U2)©U3 = U1 © (U2 ©U3). (4.2.1)

(iii) Existence of a unit.

The underlying field of real numbers R is a unit for the composition product:

R©U = U = U © R, (4.2.2)

for all U ∈ U.

With these conditions on the composition product ©, the composition category U

is a semigroup with a unit.

Let U1 and U2 be two algebras belonging to the category U, with Lie–Jordan

algebras (L1, ◦, [·, ·], κ1) and (L1, ◦, [·, ·], κ2). The most general way to endow the

tensor product L1⊗L2 with a Lie–Jordan structure with constant κ is by defining

the products:

(a1⊗ b1) ◦ (a2 ⊗ b2) := (a1 ◦a2)⊗ (b1 ◦ b2)+
√
κ1κ2 [a1, a2]⊗ [b1, b2], (4.2.3)

[a1⊗ b1, a2⊗ b2] =
√
κ2
κ

(a1 ◦a2)⊗ [b1, b2]+

√
κ1
κ

[a1, a2]⊗ (b1 ◦ b2), (4.2.4)

where a1, a2 ∈ L1 and b1, b2 ∈ L2. It can be checked by simple inspection that

these products 4.2.3 and 4.2.4 satisfy all the axioms 2.2.1-2.2.4. Regarding the

Banach structure, we know from the theory of tensor products ofC∗–algebras (see

the Appendix B) that is always possible to define a compatible Banach structure

on the tensor product algebra.

Remark. Notice that the above definitions satisfy the associativity condition (ii)

of the compsability category, i.e.:

{(a1⊗b1)⊗c1}◦{(a2⊗b2)⊗c2}−{a1⊗(b1⊗c1)}◦{a2⊗(b2⊗c2)} = 0 (4.2.5)

and

[(a1 ⊗ b1)⊗ c1, (a2 ⊗ b2)⊗ c2]− [a1 ⊗ (b1 ⊗ c1), a2 ⊗ (b2 ⊗ c2)] = 0. (4.2.6)
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Remark. Notice that from our Theorem 2.3.6 we know we can obtain the associ-

ative ∗–product on A1 ⊗A2 = (L1 ⊕ iL1)⊗ (L2 ⊗ L2) by

(x1 ⊗ y1) · (x2 ⊗ y2) = (x1 ⊗ y1) ◦ (x2 ⊗ y2)− i
√
κ [x1 ⊗ y1, x2 ⊗ y2], (4.2.7)

where x1, x2 ∈ A1 and y1, y2 ∈ A2. As one would expect, it follows

(x1 ⊗ y1) · (x2 ⊗ y2) = (x1 · x2)⊗ (y1 · y2), (4.2.8)

where (x1 ⊗ y1) = x1 ◦ y1 − i
√
κ1 [x1, y1] according to Eq. (2.3.6) and the same

holds for the second subsystem. We then choose an appropriate norm on A1⊗A2

as to make it a C∗–algebra, as explained in the Appendix B.

4.3. Algebraic proof of the uniqueness of the Planck’s constant ~

The concept of a universal quantization constant has been central to modern

physics since its introduction by Planck in 1900. As accustomed as we have be-

come to thinking of Planck’s constant ~ = h
2π , in terms of which both angular

momentum and action are measured, it cannot be logically excluded that different

realms of physics are in fact described by distinct quantization constants. In order

to understand that such a possibility is meaningful phenomenologically, it is use-

ful to recall the classical experiment of Beth [Bet36] on the measure of the angular

momentum of the photon. By passing circularly polarized light of known intensity

through a quartz retardation plate suspended from a torsion fiber, Beth was able to

determine the angular momentum transmitted to the plate by a single photon. His

result was consistent with the theoretical expectation J = ~. The Beth experiment

can, in principle, be adapted to measure the intrinsic angular momentum of any

particle citefischbach1991new.

The existence of a multiplicity of quantization constants has important implica-

tions when one goes beyond the single-particle quantum mechanics. This follows

from the realization that the introduction of multiple Planck’s constants in a sys-

tem with two or more particles leads to apparent violations of space-time conser-

vation laws. To see this, consider two particles having a common mass m, whose
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coordinates q1, q2 and momenta p1, p2 satisfy1

[q1, p1] = i~1, (4.3.1)

[q2, p2] = i~2, (4.3.2)

[q1, q2] = [p1, p2] = 0. (4.3.3)

We assume that the Hamiltonian H of the system is given by

H =
p21
2m

+
p22
2m

+ V (q1 − q2), (4.3.4)

where the interaction potential V depends only on the separation of the two particles,

and hence is translationally invariant. If we introduce the relative and center-of-

mass coordinates in the usual way,

u = q1 − q2, k =
1

2
(p1 − p2), (4.3.5)

R =
1

2
(q1 + q2), P = p1 + p2, (4.3.6)

then H can be written in the conventional form

H =
P 2

2M
+
k2

2µ
+ V (u), (4.3.7)

where M = 2m = 4µ. The new coordinates satisfy:

[u,R] = [k, P ] = 0, (4.3.8)

[u, k] = [R,P ] = 1
2 i(~1 + ~2), (4.3.9)

[u, P ] = 4[R, k] = i(~1 − ~2). (4.3.10)

From Eq. (4.3.10) it follows that

[H,P ] = [V (u), P ] 6= 0. (4.3.11)

Hence in this very simple model the center-of-mass momentum P is not a constant

of the motion. Due to these implications, it is then significant to understand the

1Here we stick to the usual definition of commutator [a, b] = ab− ba.
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possibility for the existence of multiple Planck’s constants. Using the theory of

Lie–Jordan algebras and the results of the previous section on the composition of

two such algebras, we will be able to prove, from algebraic considerations only,

that the Planck’s constant is unique.

Remember that a Lie–Jordan algebra is defined with a “free” parameter, κ,

which links the Jordan with the Lie associator, Eq. (2.2.4):

(a ◦ b) ◦ c− a ◦ (b ◦ c) = κ [b, [c, a]] , (4.3.12)

and it is in turn linked to the extension to the associative ∗–product, Eq. (2.3.6):

ab = a ◦ b− i
√
κ [a, b]. (4.3.13)

This freedom reflects also in the Lie product, which can be expressed in terms of

the associative product as in Eq. (2.2.6), i.e. it is a scaled commutator:

[a, b] = iλ(ab− ba), (4.3.14)

where

κλ2 =
1

4
. (4.3.15)

κ can take any positive value, but for the correspondence principle, we would like

to require that in the limit ~ → 0, the Jordan product becomes associative, that

is κ → 0. Hence, the simplest expression of κ must be a linear homogeneous

function of ~ or at most a quadratic homogeneous function in ~. This means that

if we are able to prove the uniqueness of the parameter κ, we have proved the

uniqueness of ~.

In the previous section, given two Lie–Jordan algebras L1 and L2, we have

obtained the explicit expression for the definition of a Lie–Jordan structure on

the tensor product L1 ⊗ L2, given by Eqs. (4.2.3), (4.2.4). We will now require

another natural property on L = L1 ⊗ L2, i.e. that the restriction of the products

on L to the two subalgebras L1 and L2 must be compatible. From the subalgebra

immersions

L1 →֒ L1 ⊗ 1, L2 →֒ 1⊗ L2, (4.3.16)
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the restriction requirement means that

(a1 ⊗ 1) ◦ (a2 ⊗ 1) = (a1 ◦ a2)⊗ 1 (4.3.17)

and

[a1 ⊗ 1, a2 ⊗ 1] = [a1, a2]⊗ 1, (4.3.18)

for all a1, a2 ∈ L1 and the same for b1, b2 ∈ L2. In particular the Eqs. 4.3.18 and

4.2.4 imply that

κ1 = κ2 = κ, (4.3.19)

that is all the Lie–Jordan algebras must have the same defining constant κ in order

to be composed. Since κ is an homogeneous polynomial function of ~, this implies

the uniqueness of the Planck’s constant ~.

Remark. Note that Eq. (4.3.19) also implies that we cannot compose a classical

with a quantum system, since for the latter κ 6= 0 and for the former κ = 0. This

is in agreement with the results of [CS99], which essentially mean that we cannot

compose a classical with a quantum algebra without relaxing some of the axioms

2.2.1-2.2.4 defining Lie–Jordan algebras.

4.4. Algebraic aspects of quantum entanglement

To describe subsystems of the quantum system, we choose some subalgebras

of the total algebra L. In the context of separability of quantum states, we consider

a pair (LA, LB) of isomorphic subalgebras of L with the following properties:

(i) the subalgebras LA and LB are statistically independent, in the sense that

for all a ∈ LA and b ∈ LB, [a, b] = 0,

(ii) the subalgebras LA and LB generate the total algebra i.e. L = LA ∨ LB.

Any pair of subalgebras satisfying the above conditions will be called a Bell pair

of subalgebras of the total algebra L.
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Definition 4.4.1. Let (LA, LB) be a Bell pair of subalgebras of L. The pure state

ω on L is (LA, LB)–separable if

ω(ab) = ω(a)ω(b), a ∈ LA, b ∈ LB . (4.4.1)

A mixed state is (LA, LB)–separable if it can be expressed as a convex combina-

tion of pure (LA, LB)–separable states.

The state ω is (LA, LB)–correlated or non-separable if it is not (LA, LB)–
separable. To indicate how much a given pure state ω differs from the separable

one for a fixed choice of Bell pair of subalgebras, we may introduce a quantity

which measures the total correlations in the state ω. It is defined as

Cω(LA, LB) = sup
a,b

|ω(ab)− ω(a)ω(b)|, (4.4.2)

where the supremum is taken over all normalized elements a ∈ LA and b ∈ LB.

It follows that

0 ≤ Cω(LA, LB) ≤ 1. (4.4.3)

In the next subsection we apply the idea of algebraic non-separability to the case

of two qubits.

4.4.1. Two qubits

Consider the four-level quantum system given by the Hilbert space H = C△

with the canonical basis e1, e2, e3 and e4. The total algebra L can be considered

as generated by the identity 1 and the elements λ1, . . . ,λ15, where

λi = 1⊗ σi, λ3+i = σi ⊗ 1, i = 1, 2, 3 (4.4.4)

and λj, j = 7, . . . , 15 are given by the tensor products of the Pauli matrices σi
taken in the lexicographical order. In the following we will write

L = [1,λ1, . . . ,λ15 ] . (4.4.5)
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An arbitrary element a ∈ L has the form

a = c01+
15∑

j=1

cjλj, c0, cj ∈ C, (4.4.6)

so every state is defined by formula

ω(a) = c0 +

15∑

j=1

cjwj , (4.4.7)

where

wj = ω(λj), j = 1, . . . , 15 (4.4.8)

are the real numbers.

In the case of two qubits, it is convenient to take subalgebras LA and LB

defined in the following way. Let a1, a2, a3 and b1, b2, b3 be the linearly inde-

pendent hermitian elements of L, which satisfy

a2i = b2i = 1, [ai, bj ] = 0, i, j = 1, 2, 3 (4.4.9)

and

ai ◦ aj = bi ◦ bj = 0, i 6= j, i, j,= 1, 2, 3 (4.4.10)

We put

La = [1, a1, a2, a3 ] , Lb = [1, b1, b2, b3 ] . (4.4.11)

Consider the elements a ∈ LA, b ∈ LB defined as

a = µ1a1 + µ2a2 + µ3a3, b = ν1b1 + ν2b2 + ν3b3. (4.4.12)

where ~µ = (µ1, µ2, µ3), ~ν = (ν1, ν2, ν3) are the real vectors. From the Eqs.

(4.4.9) and (4.4.10)

a2 = ‖~µ‖2 1, b2 = ‖~ν‖2 1, (4.4.13)
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so if the vectors ~µ and ~ν are normalized, a2 = 1 and b2 = 1. From now on we

will always assume that ‖~µ‖ = ‖~ν‖ = 1. Let ω be an arbitrary pure state on L.

Notice that for a and b defined by (4.4.12)

ω(ab)− ω(a)ω(b) = 〈 ~µ, Q~ν 〉, (4.4.14)

where the correlation matrix Q = (qij) has the matrix elements

qij = ω(aibj)− ω(ai)ω(bj). (4.4.15)

Thus

Cω(LA, LB) = sup
~µ,~ν

|〈~a, Q~b 〉| = ‖Q‖, (4.4.16)

where the supremum is taken over all normalized vectors ~µ, ~ν ∈ R3. Thus in the

case of two qubits, the total correlation in the pure state ω can be computed by

finding the matrix norm of the corresponding correlation matrix Q i.e. the largest

singular value of Q.

4.4.2. Bell pairs and entanglement

The most natural choice of Bell pair is obtained by considering the subalgebras

LA0
= [1, λ1, λ2, λ3 ] , LB0

= [1, λ4, λ5, λ6 ] . (4.4.17)

All conditions defining a Bell pair are trivially satisfied. Notice also that (LA0
, LB0

)–
correlated states can be identified with standard entangled states with respect to

the partition C4 = C2 ⊗ C2, therefore the Bell pair given by (4.4.17) will be

called canonical Bell pair of subalgebras. An interesting link between the algeb-

raic theory of non-separability and standard theory of entanglement is given by

the following result [VPC04], [DGJ12]:

Theorem 4.4.2. Let (LA0
, LB0

) be the canonical Bell pair of subalgebras of the

total algebra of two-qubit system. For an arbitrary pure state ω

Cω(LA0
, LB0

) = C(ω), (4.4.18)

where C(ω) is the concurrence of ω.
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We are going to show by considering an explicit example that the notion of

entanglement is highly non-unique. Non-separability of a state is always relative

to the measurement setup, which fixes the specific choice of observables, forming

statistically independent subalgebras L : A and LB.

We start the discussion of this point considering the states which are obvi-

ously separable with respect to the canonical subalgebras LA0
and LB0

4.4.17.

Take the vector states defined by the basic vectors e1, e2, e3 and e4, but consider

observables belonging to different subalgebras of L. In this case, let LA and LB

be defined as follows [DGJ12]

LA =

[
1,

1√
2
(λ4 + λ11),

1√
2
(λ10 − λ12), −

1

2
(λ1 + λ3 − λ13 + λ15)

]
,

LB =

[
1,

1√
2
(λ7 + λ9), −

1√
2
(λ5 + λ8),

1

2
(λ1 − λ3 − λ13 − λ15)

]
.

Using the relations between the generators λj , one can easily check that (LA, LB)
is a Bell pair. The states e1 and e2 have correlation matrices with all zero elements,

but the correlation matrices corresponding to e3 and e4 are given by

Qe3
= diag (1, 1,−1), Qe4

= diag (−1,−1,−1),

and

‖Qe3
‖ = ‖Qe4

‖ = 1.

Thus the states e1 and e2 are (LA, LB)–separable, whereas the states e3 and e4
are maximally (LA, LB)–entangled.

Consider now the family of states which are maximally entangled with respect

to canonical subalgebras LA0
and LB0

. As it is known [BJO01], such property

have the states ωδ,ϕ,ϑ, defined by vectors

Ψδ,ϕ,ϑ = α e1 + β eiϕ e2 + β eiϑe3 − α ei(ϕ+ϑ) e4, (4.4.19)

where

α =
δ√
2
, β =

√
1− δ2

2
,
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and δ ∈ [0, 1], ϕ, ϑ ∈ [0, 2π]. This time we ask about entanglement properties

of ωδ,ϕ,ϑ but with respect to the experimental setup given by the pair (L′
A, L′

B)
defined below

L′
A =

[
1, −1

2
(λ3 − λ6 − λ7 + λ11), −λ10, −

1

2
(λ3 + λ6 − λ7 − λ11)

]
,

L′
B =

[
1,

1√
2
(λ1 − λ9),−

1√
2
(λ5 − λ14), λ15

]
.

The corresponding correlation matrix is

Cωδ,ϕ,ϑ
= ‖Q‖ =

√
δ2(1− δ2) (2 + cos 2ϕ − cos 2ϑ), (4.4.20)

and we see that all states ωδ,ϕ,ϑ with δ = 0 or δ = 1 and ϕ, ϑ arbitrary, are

(L′
A,L′

B)–separable. The same property have the states with ϕ = π/2, ϑ = 0
and any δ ∈ (0, 1). On the other hand, the state defined by the vector

Ψ 1√
2
, 0, π

2

=
1

2
(e1 + e2 + i e3 − i e4 )

gives the maximal value of the norm (4.4.20), so it is not only maximally correl-

ated with respect to the canonical Bell pair (LA0
, LB0

) but also with respect to

the pair (L′
A, L′

B). So we see that depending on the experimental setup, separable

states can be maximally entangled and vice versa: maximally entangled states can

be separable.

To avoid ambiguities in deciding if a given state is separable or entangled,

we should always specify which statistically independent subalgebras of the total

algebra of observables are considered. In the Sec. 5.7, we propose a measure of

entanglement which overcomes these problems by focusing on the noncommut-

ativity of the algebra.
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QUANTUMNESS AND CLASSICALITY

Classical mechanics is the crystallization of our everyday experience of matter

and motion. However, we have found that to deal with matter in the microscopic

world we must use quantum mechanics. A fundamental aspect of modern phys-

ics is to characterize the crossover between the quantum world and the classical

world. There are many different approaches to answer this question, yet no single

approach captures the whole breath of physics. It is clear that for some systems

classical physics arises from quantum physics in the large number limit, as for-

mulated in the Bohr correspondence principle. Yet it is not fully understood how

the many-particle limit gives rise to classical physics, and how much of quantum

physics still remains. The validity of this principle and the range of its application

still remains open. It seems however that with the improved experimental tech-

niques the actual border between quantum and classical worlds has been moved

into larger and larger systems [GJK+03]. The most daring challenge to the cor-

respondence principle remains the idea of macroscopic quantum systems. For

example, there exists quite convincing evidence that certain macroscopic systems,

like Josephson junctions, Bose-Einstein condensates or Rydberg atoms, preserve
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fundamental quantum properties. On the other hand, these arguments are strongly

model-dependent and do not completely exclude the existence of an approximate

classical description. There are many operational tasks that give sufficient con-

ditions for the quantumness of a system. For instance, quantumness is revealed

in the form of nonlocality by the violation of Bell’s inequality. Therefore it is

desirable to have a broad notion of quantumness that encompasses all (or many)

other notions of quantumness. This problem, which goes back to the foundations

of quantum mechanics, has become particularly relevant for the field of quantum

information and quantum computation. A useful quantum computer should be

a rather macroscopic machine which nevertheless preserves certain fundamental

quantum properties. Moreover there are a number of tasks in computation and

communication that can be performed only if quantum resources are available.

This is the case, for example, when nonclassical states of light are employed in

communication or metrology [Gla63], or when mathematical models can be sim-

plified beyond classical limits by tailored quantum systems [GWRV12]. It is also

believed that some examples of macroscopic quantum systems can provide prom-

ising implementations of quantum information processing.

5.1. Commutative algebras

Quantum mechanics has many points of similarity with classical mechanics

and these aided in developing quantum mechanics; but there are also many essen-

tial points of difference. The most important is that not all dynamical variables

can be measured at the same time. The dynamical variables constitute a noncom-

muting algebra from which a commuting subalgebra is selected by any possible

measurement. In other words, some properties of quantum systems cannot be spe-

cified simultaneously. Well-known examples are the position and the momentum

of any quantum particle, or the spin components of a spin particle.

Our aim is to find the quantumness tests which are model-independent but still

operational and refer to the most fundamental mathematical differences between

classical and quantum theory. In light of this, we present in this section a theorem

characterizing commutative (i.e. classical) algebras. We will use a Lie–Jordan

algebra L or its associated C∗–algebra A = L ⊕ iL without any ambiguity when
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it will be more useful.

Theorem 5.1.1. Given a LJB–algebra (L, ◦, [·, ·]) with positive cone L+, the fol-

lowing statements are equivalent:

(i) (L, [, ]) is commutative;

(ii) (L, ◦) is associative;

(iii) L is isomorphic to C(X,R), for some locally compact Hausdorff space X;

if L has a unit, X is compact;

(iv) if a, b ∈ L+ such that a− b ∈ L+, then a2 − b2 ∈ L+;

(v) if a, b ∈ L+, then a ◦ b ∈ L+.

Proof. The equivalence between (i) and (ii) is the content of Thm. (2.2.1).

The equivalence of (i) and (iii) is essentially a rephrase of the famous Gelfand-

Naimark theorem for commutative algebras [BR03]. The equivalence between (i)
and (iv) has been proved in [Oga55] and generalized in [Ped79]. Finally the proof

of the equivalence between (iv) and (v) can be found in [APVR08].

5.2. Classical states and Quantumness Witnesses

As a consequence of Thm. 5.1.1, for a quantum system one can always find

pairs of observables a, b ∈ L+ or x, y ∈ L+, x−y ∈ L+ such that the observables

qAVR = a ◦ b (5.2.1)

or

qV = x2 − y2 (5.2.2)

are not positive semidefinite. Thus qAVR, qV ∈ L are witnessing the quantum-

ness (i.e. noncommutativity) of the algebra L [APVR08], [FPVY12]. In order to

provide a rigorous definition of quantumness witness we first make rigorous the

intuitive definition of classical states [FPVY12].
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Definition 5.2.1 (Classical states). We say that a state ρ ∈ S(L) is classical if

ρ([a, b]) = 0, for any pair a, b ∈ L. (5.2.3)

A state that is not classical is quantum.

Notice that we can have classical states even when the algebra is noncom-

mutative (namely, even when there exist a and a such that [a, b] 6= 0). In words,

classical states are trasparent to commutators, they do not “perceive” nonvanish-

ing commutators. Moreover, the Def. 5.2.1 of classical state is weaker than the

notion of classicality that emerges from Thm. 5.1.1. Indeed, L is commutative (or

associative) if and only if every state ρ ∈ S(L) is classical.

Remark. Let us notice that, in general, mixtures are not classical states. For ex-

ample, a qubit state ρ = p|0〉〈0|+q|1〉〈1| is not classical, since it possesses coher-

ence, e.g. 〈−|ρ|+〉 = c0c1(p−q) for |+〉 = c0|0〉+c1|1〉 and |−〉 = c∗1|0〉−c∗0|1〉,
which is nonvanishing provided p 6= q and c0, c1 6= 0. On the other hand, the com-

pletely mixed state ρ = 1/2 is classical, in that it does not possess any coherence,

〈−|ρ|+〉 = 0 for any c0 and c1.

Let us now define Quantumness Witnesses (QW).

Definition 5.2.2. We say that an observable Q ∈ L is a QW if

(i) for any classical state ρ ∈ S(L) one gets ρ(Q) ≥ 0,

(ii) there exists a (quantum) state σ ∈ S(L) such that σ(Q) < 0.

The fact that the particular observables qAVR in (5.2.1) are QWs follows from

the following lemma proved in [FPVY12]. In the following two lemmas we con-

fine ourselves to finite-dimensional systems and use the ciclicity property of states

inherited by its representation as density matrices, according to Eq. (2.2.17). We

will discuss the infinite dimensional case in the next section.

Lemma 5.2.3. For any classical state ρ ∈ S(L) and for any pair a, b ∈ L with

a, b ∈ L+ it happens that

ρ(a ◦ b) ≥ 0. (5.2.4)
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We now prove that also the observables qV defined in (5.2.2) are QWs.

Lemma 5.2.4. For any classical state ρ ∈ S(L) and for any pair x, y ∈ L with

x, y ∈ L+ and y ≥ x, it happens that

ρ(y2 − x2) ≥ 0. (5.2.5)

Proof. Consider the quantity

(y + x)(y − x) = y2 − x2 − 2i[y, x]. (5.2.6)

Since both (y + x) and (y − x) are positive operators by assumption, there exists

a, b ∈ L such that

(y + x)(y − x) = a∗ab∗b. (5.2.7)

By evaluating the classical state we get

ρ((y + x)(y − x)) = ρ(a∗ab∗b) = ρ(ba∗ab∗) = ρ(c∗c) ≥ 0, (5.2.8)

where c = ab∗ ∈ L. From Eq. (5.2.6) we conclude that for any classical state ρ

ρ(c∗c) = ρ(y2 − x2) ≥ 0. (5.2.9)

Remark. In words, classical states do not even perceive the possible negativity of

the operators a ◦ b and y2 − x2.

5.3. More on classical states and QWs in infinite dimensional systems

As emphasized in the previous section, classical states are defined to be “trans-

parent” to all commutators in the algebra so that they do not “detect” the non-

commutativity of the operators, which is the main algebraic property distinguish-

ing quantum from classical systems. Observe however that the Def. 5.2.1 would

not be suitable in the infinite-dimensional case. Think for example to the situation
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in which we impose the canonical commutation relations (CCR) [x̂, p̂] = i~11,

which would imply ρ([x̂, p̂]) = i~, i.e. the non-existence of classical states.

In this section we provide a more general definition of classical states by an in-

telligent use of the Jordan product which coincides with the previous one in fi-

nite dimensions and avoids the problems related to the CCRs and is applicable to

infinite-dimensional systems [FFMP14].

Definition 5.3.1. We say that a state ρ ∈ S(L) is classical if

ρ((a ◦ b) ◦ c− a ◦ (b ◦ c)) = 0, ∀ a, b, c ∈ L (5.3.1)

In other words, classical states do not “detect” the lack of associativity of the

algebra and therefore (nonvanishing) triple commutators.

Remark. Observe that the above definition of classical states is applicable also to

algebras of unbounded operators.

As a consequence of Thm. 2.2.1 for a quantum (i.e. non-commutative) system,

it is always possible to find a triple of observables a, b, c such that the observable

q = (a ◦ b) ◦ c− a ◦ (b ◦ c) (5.3.2)

is non-vanishing. Moreover, classical states (5.3.1) vanish on q-observables. Thus

q ∈ L is a candidate “witness” for the quantum nature of the algebra of observ-

ables. Notice that, unlike the quantumness witnesses introduced in the previous

section, q detects quantumness as soon as q 6= 0. However, if one wants to con-

sider only positive witnesses, one can always use q2 instead of q.

Let us now prove that the Def. 5.3.1 is equivalent to Def. 5.2.1 for normal

states, i.e. states that can be realized as density matrices as defined in Eq. (2.2.17).

In this case we will commit the sin of not distinguishing between states ρ and

density matrices ρ̃.

Definition 5.3.2. Given a Lie algebra g, the derived algebra is [g, g], i.e. the sub-

algebra generated by taking all possible Lie commutators.

1We use here the standard definition of commutator [x̂, p̂] = x̂p̂− p̂x̂ , different from (2.2.6).
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Remark. In many relevant cases the derived algebra is the whole algebra, and

is called “perfect algebra”. A more stringent result also holds true, that is all

semisimple Lie algebras can be generated by repeated commutators of only two

elements [Kur51]. This is true, e.g. for the algebras su(n).

Lemma 5.3.3. A normal state ρ ∈ S(L) is classical if and only if its density

matrix ρ̃ belongs to the center of the derived algebra [L,L].

Proof. By using the the compatibility condition (2.2.4), the Leibniz identity (2.2.3)

and the properties of the trace we have:

ρ((a ◦ b) ◦ c− a ◦ (b ◦ c)) = Tr(ρ̃ ◦ [b, [c, a]])
= Tr([ρ̃ ◦ b, [c, a]]) − Tr(b ◦ [ρ̃, [c, a]])
= Tr(b ◦ [ρ̃, [a, c]]). (5.3.3)

Hence ρ((a ◦ b) ◦ c− a ◦ (b ◦ c)) = 0 for all a, b, c ∈ L implies [ρ̃, [a, c]] = 0 for

all a, c ∈ L, i.e. ρ̃ is in the center of [L,L]. The converse is obviously true from

Eq. (5.3.3).

Lemma 5.3.4. A density matrix ρ̃ is in the center of the algebra L if and only if

the corresponding state ρ satisfies

ρ([a, b]) = 0, (5.3.4)

for all a, b ∈ L.

Proof. If ρ̃ is in the center Z(L) then

Tr(ρ̃ ◦ [a, b]) = Tr([ρ̃ ◦ a, b]) = 0, (5.3.5)

for all a, b ∈ L.

Conversely, if ρ([a, b]) = 0 ∀ a, b ∈ L then

Tr(ρ̃ ◦ [a, b]) = Tr([ρ̃ ◦ a, b]) − Tr(a ◦ [ρ̃, b]) = −Tr(a ◦ [ρ̃, b]) = 0, (5.3.6)

implies [ρ̃, b] = 0 ∀ b ∈ L, i.e. ρ̃ ∈ Z(L).
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From these lemmas it immediately follows the following

Theorem 5.3.5. A normal state ρ on a LJB–algebra of observables L is classical

if and only if

ρ([a, b]) = 0, (5.3.7)

for all a, b ∈ L.

5.3.1. Generating the algebra of observables with Jordan products

The strategy adopted in this section, hinging upon the identity (2.2.4), makes

use of commutators and anticommutators that involve three operators. If one aims

at an operational approach, towards experiments, one must make careful use of

resources. For example, (traces of) anticommutators involving n operators are re-

lated to nth-order interference experiments and increasingly complicated quantum

circuits [FMP+13]. See the Sec. 5.1 for an experimental measure of the quantum-

ness.

In light of this observation it is interesting to understand how one can generate the

whole algebra by making use of a small set of generators via the Jordan product

[FFMP14]. We are going to prove in Thm. 5.3.9 that under suitable hypotheses,

three generators are enough.

Definition 5.3.6. A set of elements a1, . . . , ak is said to generate an algebra L if

every element of L is linearly dependent on products of a1, . . . , ak; the elements

a1, . . . , ak are then called generators of L.

Kuranishi proved a sufficient condition for Lie algebras to be generated by

two elements [Kur51]:

Theorem 5.3.7. Let g be a semisimple Lie algebra over the real or complex num-

bers. Then there exist two elements a and b which generate g.

Definition 5.3.8. A non-unital Lie–Jordan algebra (L, ◦, [·, ·]) is called semisimple

if the Lie algebra (L, [·, ·]) (i.e. the full algebra considered with the Lie product

alone) is semisimple.
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Remark. Observe that the unit cannot be generated by Lie products, and hence it

will be “added by hand” whenever necessary.

The analogous for Lie–Jordan algebras of Kuranishi’s theorem is the follow-

ing

Theorem 5.3.9. Let (L, ◦, [·, ·]) be a semisimple Lie–Jordan algebra. Then the

Jordan algebra (L, ◦) (i.e. the full algebra considered with the Jordan product

alone) is generated by the Jordan products of three elements, plus the identity. In

particular, one can use two generators a, b of the Lie algebra (L, [·, ·]), and their

commutator c = [a, b].

Proof. For simplicity assume, without loss of generality, that the algebra is non-

unital. Since the Lie algebra (L, [·, ·]) is semisimple it can be generated by re-

peated Lie products of two elements a and b. Then starting from a and b we

generate with a first Lie bracket:

c = [a, b] (5.3.8)

then

[a, c] = [a, [a, b]], [b, c] = [b, [a, b]] (5.3.9)

and repeating

[a, [a, c]], [a, [b, c]], [b, [a, c]], [b, [a, c]], [b, [b, c]], [c, [a, c]], [c, [b, c]] (5.3.10)

and so on. We see that all the elements generated by a, b and c are of the form of

a triple commutator. Recalling the associator identity (2.2.4)

(a ◦ b) ◦ c− a ◦ (b ◦ c) = [b, [c, a]] , (5.3.11)

it follows that every element can be expressed as a linear combination of triple

Jordan products, that is generated by Jordan products of a, b and c = [a, b].

For finite-dimensional quantum systems, the space of quantum states can be

immersed into the semisimple Lie–Jordan algebra u(N), which can be Jordan-

generated by three elements. This means that one could witness the properties
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of a system by repeated measures of anticommutators of appropriate elements of

the algebra, which is in principle experimentally feasible. Further investigation is

required to check if the elements generating the algebra correspond to realization

of states as projectors in the algebra.

5.4. QWs and Entanglement witnesses

Let our system be made up of two subsystems, that will conventionally be

sent to Alice and Bob, whose observations are independent. The notion of inde-

pendence is reflected in the fact that the total algebra of observables is assumed to

factorize in two subalgebras

C = A⊗ B. (5.4.1)

Namely, the two subalgebras commute with each other, but each subalgebra can

be noncommutative.

Definition 5.4.1. A state ρ ∈ S(C) is said to be separable (with respect to the

given bipartition A ⊗ B) if it can be written as a convex combination of product

states, namely,

ρ =
∑

k

pkρk ⊗ σk, pk > 0,
∑

k

pk = 1, (5.4.2)

where ρk ∈ S(A) and σk ∈ S(B) are states of A and B, respectively. A state that

is not separable is said to be entangled (with respect to the given bipartition).

Remark. The definition of separability depends on the algebra C of the composed

system, that in general can be reducible, i.e. the matrices C ∈ C are block-

diagonal, C =
⊕

k Ck. If states are identified with density matrices belonging

to the algebra, then they inherit the block-diagonal form of the latter.

Definition 5.4.2 ([HHHH09]). We say that an observable E ∈ C is an entangle-

ment witness (EW) if

(i) for any separable state ρ ∈ S(C) one gets ρ(E) ≥ 0,
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(ii) there exists a (entangled) state σ ∈ S(C) such that σ(E) < 0.

By following [FPVY12] we now show that every EW is also a QW. We first

consider a preliminary lemma.

Lemma 5.4.3. Any classical state is separable.

Proof. Notice first that if the algebra C = A⊗ B is the full algebra of operators

C = B(Cn)⊗B(Cm), (5.4.3)

then the only classical state is the totally mixed state,

ρ = 1nm/nm = 1n/n⊗ 1m/m, (5.4.4)

which is obviously separable. In general, however, the (sub)algebras A and B are

reducible (i.e. they are proper subalgebras of the full matrix algebra) and one has

C =
(⊕

k

B(Cnk)
)
⊗
(⊕

l

B(Cml)
)
=
⊕

k,l

B(Cnk)⊗B(Cml) =:
⊕

k,l

Ckl,

(5.4.5)

where each Ckl is an irreducible algebra of dimension nkml. All observables are

block-diagonal and the classical states have the form

ρ =
⊕

k,l

pkl1nk
/nk ⊗ 1ml

/ml, (5.4.6)

with pkl ≥ 0 and
∑

kl pkl = 1, i.e. they are separable.

Remark. Notice that if the two subalgebras are reducible, states inherit their block-

diagonal structure. See Remark after Eq. (5.4.2).

Our main theorem is now an easy consequence of the lemma just proved.

Proposition 5.4.4. Any EW is a QW.

Proof. Consider an EW E ∈ C. By definition ρ(E) ≥ 0 for any separable ρ ∈
S . But by the previous lemma all classical states are separable. It follows that

ρ(E) ≥ 0 for any classical state ρ. Moreover, by definition, σ(E) < 0 for some

entangled state σ, which by the previous lemma must be a quantum state. Thus,

E is a QW.
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Remark. The converse is, of course, not true. If the algebra A is noncommutative,

and Q ∈ A is a QW of the quantum state σ ∈ S(A), then

Q̃ = Q⊗ 1 ∈ C (5.4.7)

is also a QW (of the total algebra), but it is not an EW. Indeed, it is negative on

separable states of the form σ ⊗ ω [for any ω ∈ S(B)], namely,

(σ ⊗ ω)(Q̃) < 0. (5.4.8)

5.5. QWs and Bell inequality

In the previous section we have shown that an EW is always a QW. In view

of that, among all QWs, those of the simple form (5.2.1), that we shall call anti-

commutator QWs, are quite interesting for possible applications, for example for

efficiently generating EWs out of anticommutators. Therefore, here we shall in-

vestigate whether an EW E can be written in the particular form (5.2.1), namely,

whether there exists a pair of positive operators a and b such that E = a ◦ b
[FPVY12].

An example of EW for a d× d system is the swap operator [HHHH09]

S =

d−1∑

i,j=0

|i〉〈j| ⊗ |j〉〈i|. (5.5.1)

Here the algebra is the full algebra of matrices B(Cd) ⊗ B(Cd), and {|j〉}j is a

chosen orthonormal basis of Cd (computational basis). S is nonnegative, ρ(S) ≥
0, for all separable states ρ, but it possesses an eigenvalue equal to −1.

Another interesting example of EW is the Bell-CHSH observable

EBell = 2± (A1 ⊗B1 +A1 ⊗B2 +A2 ⊗B1 −A2 ⊗B2), (5.5.2)

where A1,2 ∈ A and B1,2 ∈ B are dichotomic observables (with eigenvalues ±1)

of Alice and Bob, respectively, and A2
1,2 = 1, B2

1,2 = 1. If ρ(EBell) < 0, EBell

witnesses the violation of the Bell-CHSH inequality in the entangled state ρ.
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For instance, if we take

A1 = σx, B1 =
1√
2
(σx + σy),

A2 = σy, B2 =
1√
2
(σx − σy), (5.5.3)

where σx,y,z are Pauli operators

σx = |0〉〈1| + |1〉〈0|, σy = −i|0〉〈1| + i|1〉〈0|, σz = |0〉〈0| − |1〉〈1|, (5.5.4)

then

EBell = 2±
√
2(σx ⊗ σx + σy ⊗ σy). (5.5.5)

Observe now that the swap operator (5.5.1) and the Bell-CHSH observable (5.5.5)

are related by

S = P00 + P11 ±
1

2
√
2
(EBell − 2), (5.5.6)

where

Pij = |i〉〈i| ⊗ |j〉〈j| (i, j = 0, 1) (5.5.7)

are projections.

Due to the negative shift −2 in (5.5.6), S is more efficient at witnessing en-

tanglement than EBell: S can actually detect entangled states that do not violate

the Bell inequality. For instance, let |±〉 = (|0〉± |1〉)/
√
2, then the entanglement

of the vector state

|χ〉 = a|+〉 ⊗ |−〉+ b|−〉 ⊗ |+〉 (5.5.8)

is witnessed by S if Re(a∗b) < 0, while EBell in Eq. (5.5.5) (with the + sign) is

negative only for Re(a∗b) < −(
√
2− 1)/2.

By following [FPVY12], let us define

a = 2± (A1 ⊗B1 −A2 ⊗B2) ≥ 0,

b = 2± (A1 ⊗B2 +A2 ⊗B1) ≥ 0, (5.5.9)
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with dichotomic observables A1,2 ∈ A, B1,2 ∈ B. The operators a and b are

symmetric under the exchange A↔ B. Then,

ab = 2EBell + [A1, A2]⊗ 1+ 1⊗ [B1, B2],

ba = 2EBell − [A1, A2]⊗ 1− 1⊗ [B1, B2], (5.5.10)

so that

qAVR = a ◦ b = 4EBell. (5.5.11)

This shows that the EW EBell is also an anticommutator QW: if the Bell-CHSH

inequality is violated by an entangled state ρ, then ρ(QAVR) < 0.

An interesting remark is the following one: assume you have two particles,

on which Alice and Bob measure dichotomic observables. They put together their

results and find that a state ρ exists such that ρ(EBell) < 0. Then they can conclude

that their local observables do not commute.2 In this sense, one can say that the

Bell inequality is testing quantumness, and not simply entanglement: by looking

only at the correlations of the two subsystems, one can check whether the two

local (sub)algebras are noncommutative.

5.6. Direct estimation of linear and nonlinear functionals of quantum states

Certain properties of a quantum state ρ, such as its purity, degree of entan-

glement, or its spectrum, are of significant importance in quantum information

science. They can be quantified in terms of linear or non-linear functionals of ρ.

Linear functionals, such as average values of observables {A}, given by TrAρ,

are quite common as they correspond to directly measurable quantities. Non-

linear functionals of state, such as the von Neumann entropy −Tr ρ ln ρ, eigenval-

ues, or a measure of purity Tr ρ2, are usually extracted from ρ by classical means

i.e. ρ is first estimated and once a sufficiently precise classical description of ρ is

available, classical evaluations of the required functionals can be made. However,

2In this case both algebras A and B are noncommutative. Indeed, it is easy to prove that if one

of the two algebras were classical then any state ρ of the composed system would necessarily be

separable. See e.g. Prop. 2.5 in [Key02].
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if only a limited supply of physical objects in state ρ is available, then a direct es-

timation of a specific quantity may be both more efficient and more desirable. For

example, the estimation of purity of ρ does not require knowledge of all matrix

elements of ρ, thus any prior state estimation procedure followed by classical cal-

culations is, in this case, inefficient. However, in order to bypass tomography and

to estimate non-linear functionals of ρ more directly, we need quantum networks

performing quantum computations that supersede classical evaluations.

In this section, we describe a simple quantum network which can be used as a

basic building block for direct quantum estimations of both linear and non-linear

functionals of any ρ [EAO+02]. The network can be realized as multiparticle in-

terferometry. While conventional quantum measurements allow the estimation of

TrAρ for some observable A, this quantum circuit can also provide a direct estim-

ation of the overlap of any two unknown quantum states ρa and ρb, i.e. Tr ρaρb.
Here, and in the following, we use terminology developed in quantum information

science. For a comprehensive overview of this terminology, including quantum

logic gates and quantum networks see, for example, [NC10].

Consider a typical interferometric setup: Hadamard gate which serves as beam

splitter, phase shift ϕ, mirrors, Hadamard gate, followed by a measurement in

the computatinal basis. The beam pair spans a two dimensional Hilbert space

H = {|0〉, |1〉}. The state vectors |0〉, |1〉 can be taken as wave packets that

move in two given directions defined by the geometry of the interferometer. In

this basis, we may represent mirrors, beam-splitters (Hadamard gate) and relative

U(1) phase shifts by the unitary operators

UM =

(
0 1
1 0

)
, UH =

1√
2

(
1 1
1 −1

)
,

Uϕ =

(
eiϕ 0
0 1

)
, (5.6.1)

respectively. An input pure state ρin = |0〉〈0| of the interferometer transforms into
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the output state

ρout = UHUMUϕUHρinU
†
BU

†
ϕU

†
MU

†
H (5.6.2)

=
1

2

(
1− cosϕ −i sinϕ
i sinχ 1 + cosϕ

)
(5.6.3)

that yields the intensity along |1〉 as

I ∝ 1 + cosϕ. (5.6.4)

Thus the relative U(1) phase ϕ could be observed in the output signal of the

interferometer [SPE+00].

Now assume that the particles carry additional internal degrees of freedom,

e.g., spin. This internal spin space Hi
∼= CN is spanned by the vectors |k〉, k =

1, 2, . . . N , chosen so that the associated density operator is initially diagonal

ρ =
∑

k

wk|k〉〈k| (5.6.5)

with wk the classical probability to find a member of the ensemble in the pure

state |k〉. The density operator could be made to change inside the interferometer

ρ −→ UiρU
†
i (5.6.6)

with Ui a unitary transformation acting only on the internal degrees of freedom.

Mirrors and beam-splitters are assumed to leave the internal state unchanged so

that we may replace UM and UH by ŨM = UM ⊗ 1i and ŨB = UB ⊗ 1i,

respectively, 1i being the internal unit operator. Furthermore, we introduce the

unitary transformation

Ũ =

(
0 0
0 1

)
⊗ Ui +

(
eiϕ 0
0 0

)
⊗ 1i. (5.6.7)

The operators ŨM , ŨB , and Ũ act on the full Hilbert space H⊗Hi. Ũ correponds

to the application ofUi along the |1〉 path and the U(1) phase ϕ similarly along |0〉.
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Let an incoming state given by the density matrix ρ̃in = ρin ⊗ ρ = |0̃〉〈0̃| ⊗ ρ
be split coherently by a beam-splitter and recombine at a second beam-splitter

after being reflected by two mirrors. Suppose that Ũ is applied between the first

beam-splitter and the mirror pair. The incoming state transforms into the output

state

ρ̃out = ŨHŨM Ũ ŨH ρ̃inŨ
†
H Ũ

†Ũ †
M Ũ

†
H , (5.6.8)

as shown in Fig. 5.1:

Figure 5.1: Both the visibility and the shift of the interference patterns of a single

qubit (top line) are affected by the controlled-U operation on a general state ρ.

Inserting Eqs. (5.6.1) and (5.6.7) into Eq. (5.6.8) yields

ρ̃out =
1

4

[(
1 1
1 1

)
⊗ UiρU

†
i +

(
1 −1

−1 1

)
⊗ ρ

+eiϕ
(

−1 −1
1 1

)
⊗ ρU †

i

+e−iϕ

(
− 1 1
−1 1

)
⊗ Uiρ

]
. (5.6.9)

The output intensity along |1〉 is

I ∝ Tr
(
UiρU

†
i + ρ+ e−iϕUiρ+ eiϕρU †

i

)

∝ 1 + |Tr (Uiρ) | cos [ϕ− argTr (Uiρ)] , (5.6.10)
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where we have used Tr(ρU †
i ) = [Tr (Uiρ)]

∗
.

The important observation from Eq. (5.6.10) is that the interference oscilla-

tions produced by the variable U(1) phase ϕ is shifted by φ = arg Tr (Uiρ) for any

internal input state ρ, be it mixed or pure. Moreover the visibility of the interfer-

ence pattern is ν = |Tr (Uiρ) | ≥ 0, which reduces to the expected ν = |〈ψ|Ui|ψ〉|
for pure states ρ = |ψ〉〈ψ|.

The output intensity in Eq. (5.6.10) may be understood as an incoherent weighted

average of pure state interference profiles as follows. The state k gives rise to the

interference profile

Ik ∝ 1 + νk cos [ϕ− φk] , (5.6.11)

where νk = |〈k|Ui|k〉| and φk = arg〈k|Ui|k〉. This yields the total output intensity

I =
∑

k

wkIk ∝ 1 +
∑

k

wkνk cos [ϕ− φk] , (5.6.12)

which is the incoherent classical average of the above single-state interference

profiles weighted by the corresponding probabilities wk. Eq. (5.6.12) may be

written in the desired form 1 + ν̃ cos(ϕ− φ̃) by making the identifications

φ̃ = arg

(
∑

k

wkνke
iφk

)
= argTr (Uiρ) = φ,

ν̃ =

∣∣∣∣∣
∑

k

wkνke
iφk

∣∣∣∣∣ = |Tr (Uiρ) | = ν. (5.6.13)

Let us now consider a quantum state ρ of two separable subsystems, such

that ρ = ρa ⊗ ρb. We choose our controlled-U to be the controlled-V , where

V is the swap operator, defined as, V |α〉A|β〉B = |β〉A|α〉B , for any pure states

|α〉A and |β〉B . In this case, the modification of the interference pattern given by

Eq. (5.6.13) can be written as,

ν = TrV (ρa ⊗ ρb) = Tr ρaρb. (5.6.14)

which is easily proved using the spectral decomposition of ρa and ρb [EAO+02].

Since Tr ρaρb is real, we can fix ϕ = 0 and the probability of finding the qubit in
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state |0〉 at the output, P0, is related to the visibility by ν = 2P0 − 1, as explained

before. This construction, shown in Fig. (5.2), provides a direct way to measure

Tr ρaρb:

· ·
Va

b

·
·

a b

Figure 5.2: A quantum network for direct estimations of both linear and non-

linear functions of state. The probability of finding the control (top line) qubit

in state |0〉 at the output depends on the overlap of the two target states (two

bottom lines). Thus estimation of this probability leads directly to an estimation

of Tr ρaρb = ν = 2P0 − 1.

There are many possible ways of utilizing this result. For pure states ρa =
|α〉〈α| and ρb = |β〉〈β| the formula above gives Tr ρaρb = | 〈α |β 〉 |2 i.e. a

direct measure of orthogonality of |α〉 and |β〉. If we put ρa = ρb = ρ then we

obtain an estimation of Tr ρ2. In the single qubit case, this measurement allows

us to estimate the length of the Bloch vector, leaving its direction completely

undetermined. For qubits Tr ρ2 gives the sum of squares of the two eigenvalues

which allows to estimate the spectrum of ρ.

In general, in order to evaluate the spectrum of any d × d density matrix ρ
we need to estimate d − 1 parameters Trρ2, Trρ3,... Trρd. For this we need the

controlled-shift operation, which is a generalization of the controlled-swap gate.

Given k systems of dimension d we define the shift V (k) as

V (k)|φ1〉|φ2〉...|φk〉 = |φk〉|φ1〉...|φk−1〉, (5.6.15)

for any pure states |φ〉. Such an operation can be easily constructed by cascading

k − 1 swaps V . If we extend the network and prepare ρ = ρ⊗k at the input then
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the interference will be modified by the visibility factor,

ν = TrV (k)ρ⊗k = Tr ρk =

m∑

i=1

λi
k. (5.6.16)

Thus measuring the average values of V (k) for k = 2, 3...d allows us to evaluate

the spectrum of ρ. Although we have not eliminated classical evaluations, we have

reduced them by a significant amount. The average values of V (k) for k = 2, 3...d
provide just enough information to evaluate the spectrum of ρ but certainly not

enough to estimate the whole density matrix.

5.7. Measure of quantumness via commutators

The macroworld is essentially classical because the accessible states all com-

mute with each other, being positional eigenstates. The main idea of this chapter

has been to extend this approach further to any system and define it to be classical

precisely if all the admissable states are mutually compatible. What is advant-

ageous in this approach is that references to the dynamics and correlations are

removed. Correlations are always defined relatively to a particular set of experi-

mental capabilities. As an illustration, maximal entangled states may be repres-

ented as product states and vice versa, simply by a suitable choice of the degrees

of freedom, as the physical bipartition of the composite system considered (see

[ZLL04] and Sec. 4.4).

As one way to overcome this problem, we propose here a measure of nonclas-

sicality based on the incompatibility of states relative to each other, rather than

on correlations. This approach can be helpful in studying the quantumness of

complex processes, such as those encountered in photosynthetic systems, where it

may be computationally unfeasible to compute measures of nonclassicality based

on correlations. The fact that the experiments in photosynthesis show quantum

effects [NBT11], while rivaling classical explanations for exciton transport also

exist, suggests that our approach could find fruitful applications here.

The Hilbert-Schmidt norm of a bounded operator A is given by

‖a‖2HS = Tr (a∗a). (5.7.1)
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Given two states ρ1 and ρ2 (regarded as density matrices), we propose the meas-

ure of their mutual incompatibility to be twice the Hilbert-Schmidt norm of their

commutator:

Q(ρ1, ρ2) = 2‖[ρ1, ρ2]‖2HS , (5.7.2)

where the numerical pre-factor is put for normalization. Q so defined is a con-

venient measure of state incompatibility. It is symmetric in both arguments, and

its interpretation as such is conceptually transparent.

Lemma 5.7.1. Q(ρ1, ρ2) ≥ 0 and the equality is satisfied if and only if [ρ1, ρ2] =
0.

Proof. The theorem is actually slightly more general, i.e. it is true also when ρ1
and ρ2 are observables. We know that in the Lie–Jordan algebra of observables

there are no nilpotent elements, that is a2 = 0 ⇒ a = 0.

In finite dimension this is trivial, in infinite dimensions one just uses the Banach

property

‖a2‖ = ‖a‖. (5.7.3)

The nilpotent elements arise only in the associated C∗–algebra obtained by com-

plexification. Hence, given two observables a and b, if the commutator [a, b] 6= 0
then the square [a, b] ◦ [a, b] = [a, b]2 6= 0. Moreover [a, b]2 is a positive operator,

hence it follows that Tr([a, b]2) > 0 if and only if [a, b] 6= 0. In other words, the

operators a and b commute if and only if Tr([a, b]2) = 0.

The following has been proved in [ICS13]:

Theorem 5.7.2. 0 ≤ Q(ρ1, ρ2) ≤ 1.

As shown in [FMP+13], the noncommutativity of two states can be witnessed

by using the Jordan product (i.e. the anticommutator) of the states, and the process

can be realized experimentally by using an interferometer (as the one described

in the previous section), but unfortunately only an indefinite iterative procedure

is available, that is for some states it requires an indefinite number of copies in

order to bring to light the quantumness. As we will show in the next section, the
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measure of Q is experimentally feasible with a precise quantum circuit which is

independent on the input states [FFF+14].

5.8. Direct estimation of the quantumness measure

In the previous section we have introduced the measure of quantumness

Q(ρ1, ρ2) = 2‖[ρ1, ρ2]‖2HS . (5.8.1)

By simple algebraic computation we have in terms of the standard associative

product:

Q(ρ1, ρ2) ≡
1

2
Tr([ρ1, ρ2]

2) = Tr(ρ21ρ
2
2 − ρ1ρ2ρ1ρ2). (5.8.2)

Given the states ρ1 and ρ2, from (5.8.2) is evident that we can measureQ(ρ1, ρ2)
by using the interferometric setup displayed in Figure 5.3, where we control the

unitary operation U on the quantum system, as described in Sec. 5.6.

|0〉 H • • H

ρ1

U

ρ1

ρ2

ρ2

Figure 5.3: Controlled-U operation

The action of the controlled-U on the system modifies the interference pattern

by the factor

Tr (ρU) = v eiα, (5.8.3)
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where v is the new visibility and α is the shift of the interference fringes. The

observed modification of the visibility gives an estimate of Tr (Uρ), i.e. the ex-

pectation value of the unitary operator U on the state ρ. In order to perform our

experiment, we need to measure the quantities

Tr (ρ1ρ2ρ1ρ2) (5.8.4)

and

Tr (ρ21ρ
2
2) (5.8.5)

in two separate experiments, or in the same interferometer by using two control

qubits. Such operations can be easily constructed by cascading different swaps

operators. We define the unitary operator Sij as

Sij|φ1〉|φ2〉 · · · |φi〉 · · · |φj〉 · · · = |φ1〉|φ2〉 · · · |φj〉 · · · |φi〉 · · · (5.8.6)

i.e. it exchanges the ket i with the ket j. If we denote by A,B,C,D the four

parties of our state ρ = ρA1 ⊗ ρB2 ⊗ ρC3 ⊗ ρD4 then we have

Tr (ρ1ρ2ρ1ρ2) = Tr (SBCSCDSABSBCSAB ρ1 ⊗ ρ1 ⊗ ρ2 ⊗ ρ2) (5.8.7)

and

Tr (ρ21ρ
2
2) = Tr (SBCSCDSAB ρ1 ⊗ ρ1 ⊗ ρ2 ⊗ ρ2) (5.8.8a)

= Tr (SABSBCSCD ρ1 ⊗ ρ1 ⊗ ρ2 ⊗ ρ2). (5.8.8b)

Eq. (5.8.7) is depicted in Figure 5.4(a), and Eqs. (5.8.8a) and (5.8.8b) in Figures

5.4(b) and 5.4(c) respectively.
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ρ1
ρ1
ρ2
ρ2

(a) Tr(ρ1ρ2ρ1ρ2)

ρ1
ρ1
ρ2
ρ2

(b) Tr(ρ21ρ
2
2)

ρ1
ρ1
ρ2
ρ2

(c) Tr(ρ21ρ
2
2)

Figure 5.4: Quantum circuits measuring Q(ρ1, ρ2)



A
DIFFERENTIABLE AND SYMPLECTIC GROUP ACTIONS

Let G be a connected Lie group and g its Lie algebra. Suppose G acts

smoothly on a differentiable manifold M , i.e. there is a smooth map ρ : G×M →
M such that ρ(g,m) ≡ g ·m, and g · (h ·m) = (gh) ·m, ∀ g, h ∈ G, m ∈M and

e ·m = m ∀m ∈M , with e being the identity element of the group.

Let X(M) denote the Lie algebra of vector fields on M. Given the action ρ we

have a map

ρ̂ : g → X(M) (A.0.1)

ξ 7→ Xξ

associating to each ξ ∈ g a vector field Xξ on M , called fundamental vector

field defined by its action on the functions f ∈ C∞(M):

Xξf(m) =
d

dt
f(e−tξm) |t=0 . (A.0.2)
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The map (A.0.1) is a Lie algebra homomorphism

X[ξ,ζ] = [Xξ ,Xζ ], (A.0.3)

where in the rhs we have the Lie bracket of vector fields.

If G = R, then an action of R on M provides a one-parameter family of diffeo-

morphisms φS : M →M , which we call an autonomous dynamical system. Such

terminology can be extended to a general action of G on M , however this is only

done in the setting of C∗–algebras.

If Y ∈ X(M), then g acts on it via the Lie bracket [Xξ, Y ].
Similarly, if θ ∈ Ω1(M) is a one-form, then for all ξ ∈ g we have the action of ξ
on θ given by:

LXξ
θ(Y ) = Xξθ(Y )− θ([Xξ, Y ]). (A.0.4)

In general if ω ∈ Ωp(M) is a p-form, we define:

LXξ
ω ≡ (diXξ

+ iXξ
d)ω, (A.0.5)

where d is the exterior derivative and iXξ
is the contraction operator defined by

(iXξ
ω)(Y1, . . . , Yp−1) = ω(Xξ , Y1, . . . , Yp−1). (A.0.6)

By simple inspection, notice that its action agrees on functions and on one-forms

(recall that the operator LX = diX + iXd is called the Lie derivative).

Now let (M,Ω) be a symplectic manifold, that is, Ω is a closed non-degenerate

2-form. In other words, dΩ = 0 and the natural map Ω̂ : TM → T ∗M is an

isomorphism. Thus on a symplectic manifold there is a natural map between

vector fields and one-forms:

β : X → Ω1(M) (A.0.7)

X 7→ iXΩ = Ω̂(X), (A.0.8)

which is an isomorphism with inverse β−1 : Ω1(M) → X(M). In local coordin-

ates,

Ω =
1

2
Ωijdx

i ∧ dxj , (A.0.9)
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and nondegeneracy of Ω implies that det(Ωij) 6= 0.

We now take a connected Lie group G acting on M via symplectomorphisms,

i.e. diffeomorphisms which preserve Ω. Infinitesimally, this means that if ξ ∈ g

then

0 = LXΩ (A.0.10)

= diXΩ+ iXdΩ (A.0.11)

= diXΩ, (A.0.12)

where X is the vector field associated to ξ. The one-form iXΩ is closed. A vector

field X such that iXΩ is closed is said to be a symplectic vector field. It is clear

that the symplectic vector fields are the image of closed forms under β−1.

If β(X) is exact, we say that X is a Hamiltonian vector field. This means that

there exists fX ∈ C∞(M) such that

β(X) + dfX = 0. (A.0.13)

This function is not unique because we can add to it a locally-constant function

and still satisfy the above equation. We have that the Hamiltonian vector fields are

the images of exact form under β−1. A G-action on M said to be Hamiltonian if

to every ξ ∈ g we can assign an Hamiltonian vector field Xξ .

In a symplectic manifold, the functions define a Poisson algebra. If f, g ∈
C∞(M), we define the Poisson bracket by

{f, g} ≡ Ω(Xf ,Xg), (A.0.14)

where Xf is the Hamiltonian vector field such that β(Xf ) + df = 0. The Poisson

bracket is clearly skew-symmetric and obeys the Jacobi identity (since dΩ = 0),

and is a derivation on functions. Hence it gives C∞(M) the structure of a Lie

algebra. A Hamiltonian action is said to be Poisson or strongly Hamiltonian if

there is a Lie algebra homomorphism g → C∞(M) sending X to fX in such a

way that β(X)+dfX = 0 and that f[X,Y ] = {fX , fY }. In such case we can define

the momentum map J : M → g∗ of the action by:

〈J, ξ〉 = fXξ
. (A.0.15)
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The map

a : g → C∞(M) (A.0.16)

ξ 7→ fξ

is sometimes called the comomentum map.



B
TENSOR PRODUCTS OF C∗–ALGEBRAS

Let A1 and A2 be C∗–algebras. We can define their ∗–algebra tensor product

as the standard algebraic tensor product of algebras A1 ⊗ A2 with product (a ⊗
b)(a′ ⊗ b′) = aa′ ⊗ bb′ and involution (a⊗ b)∗ = a∗ ⊗ b∗.

The norm of a C∗–algebra is unique in the sense that on a given ∗–algebra A
there is at most one norm which makes A into a C∗–algebra. Still, on a ∗–algebra

A there may exist different norms satisfying the C∗–property. The completion

with respect to any of such norms results in a C∗–algebra which contains A as

a dense subalgebra. This is precisely what happens when the tensor product of

C∗–algebras is considered: in the general case there are many different norms on

the algebraic tensor product A1⊗A2 (which is a ∗–algebra) with the C∗–property.

For example we may define

∥∥∥
∑

ai ⊗ bi

∥∥∥
∧
=
∑

‖ai‖‖bi‖. (B.0.1)

This seminorm becomes a norm on A1 ⊗A2 on an appropriate subspace, and
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its completion is denoted A1⊗̂A2 and called the projective tensor product of A1

and A2. We also have

∥∥∥
(∑

ai ⊗ bi

)∗∥∥∥
∧

=
∥∥∥
∑

a∗i ⊗ b∗i

∥∥∥
∧
=
∑

‖a∗i ‖‖b∗i ‖

=
∑

‖ai‖‖bi‖ =
∥∥∥
∑

ai ⊗ bi

∥∥∥ , (B.0.2)

so A1⊗̂A2 is a Banach ∗–algebra. But it fails to satisfy theC∗–axiom (‖x∗x‖ =
‖x‖2):

‖(∑ ai ⊗ bi)
∗ (
∑
ai ⊗ bi)‖ = ‖(∑ a∗i ⊗ b∗i ) (

∑
ai ⊗ bi)‖

= ‖∑ a∗i aj ⊗ b∗i bj‖
=

∑ ‖a∗i aj‖‖b∗i bj‖
≤ ∑ ‖ai‖‖aj‖‖bi‖‖bj‖
= (

∑ ‖ai‖‖bi‖)2
= ‖∑ ai ⊗ bi‖2

. (B.0.3)

It turns out that representations on A1 and A2 allow us to define norms on

A1 ⊗A2 that make it a C∗–algebra.

Definition B.0.1. Let ρA1
: A1 → B(H1) and ρA2

: A2 → B(H2) be represent-

ations on A2 and A2. We define the product representation ρ = ρA1
⊗ ρA2

on

H1 ⊗H2 as

ρ(a⊗ b) = ρA1
(a)⊗ ρA2

(b) ∈ B(H1)⊗ B(H2). (B.0.4)

Since we always have the trivial representations, the set of representationsap-

pendixTensor of A1 on H1 and A2 on H2 are never empty.

Definition B.0.2. We define the minimal C∗–norm on A1 ⊗A2 by
∥∥∥
∑

ai ⊗ bi

∥∥∥
min

= sup
ρA,ρB

∥∥∥ρ
(∑

ai ⊗ bi

)∥∥∥

= sup
ρA,ρB

∥∥∥
∑

ρA(ai)⊗ ρB(bi)
∥∥∥

(B.0.5)

where the two norms on the right are operator norms.
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This is clearly finite (hence a norm) and satisfies the C∗–axiom. The comple-

tion of A1 ⊗ A2 with this norm is a C∗–algebra called the minimal (or spatial)

tensor product of A1 and A2 and will be denoted by A1 ⊗min A2.

Definition B.0.3. appendixTensor

Let ρA : A → B(H) be a representation and N ⊆ H be the largest subspace

of H such that ρ(a)(x) = 0 for all a ∈ A and x ∈ N . Then N⊥ is called the

essential subspace of H, and we will denote it E(H). If E(H) = H, then ρA is

said to be nondegenerate.

Proposition B.0.4. If ρA1
: A1 → B(H) is a nondegenerate representation,

then there are unique nondegenerate representations ρA1
: A1 → B(H) and

ρA2
: A2 → B(H) such that ρ(a⊗ b) = ρA1

(a)ρA2
(b) = ρA2

(b)ρA1
(a).

But arbitrary representations of the tensor product of algebras cannot be broken

into pieces. This gives us the following.

Definition B.0.5. Let H be a Hilbert space and A1 ,A2 be C∗–algebra. We define

the maximal C∗–norm on A1 ⊗A2 as

∥∥∥
∑

ai ⊗ bi

∥∥∥
max

= sup
ρ

∥∥∥ρ
(∑

ai ⊗ bi

)∥∥∥ (B.0.6)

where ρ : A1 ⊗A2 → B(H). This is also a C∗–norm, and the completion of

A1 ⊗ A2 under this norm is a C∗–algebra called the maximal tensor product of

A1 and A2 and will be denoted by A1 ⊗max A2.

An important result [Bla06] is that

‖ · ‖min ≤ ‖ · ‖∗ ≤ ‖ · ‖max ≤ ‖ · ‖∧ (B.0.7)

where ‖ · ‖∗ is any C∗–norm. It follows that ‖(a ⊗ b)‖∗ = ‖a‖‖b‖. Then clearly

the natural map A1 ⊗max A2 → A1 ⊗min A2 is continuous.

We conclude by defining nuclear C∗–algebras.

Definition B.0.6. A C∗–algebra A1 is nuclear if for every C∗–algebra A2, there

is a unique C∗–norm on A1 ⊗A2, i.e. A1 ⊗max A2 = A1 ⊗min A2.
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For instance if G is discrete, C∗(G) is nuclear if and only if G is amenable

(however this is not true if G is not discrete). Examples of non-nuclear algebras

for discrete groups are given for instance by C∗
r (F2), the reduced C∗–algebra of

the free group generated by two elements [Tak64].
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