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ABSTRACT 

 

Non-small cell lung cancer (NSCLC) is the main cause of cancer-

related deaths worldwide and new therapeutic approaches for NSCLC 

are urgently needed. 

The role of CCDC6 in cancer induction and progression still 

remains largely unexplored, despite its emerging role as a tumour 

suppressor and its involvement in apoptosis and DNA damage 

response.  

In this study we have characterized a panel of nine NSC lung 

cancer cell lines for CCDC6 expression in order to evaluate their 

response to conventional treatments. In the NCI-H460 cells, a weak 

response to DNA damage and a low number of Rad51 positive foci are 

associated to low levels of the CCDC6 protein. Moreover, CCDC6 

deficient lung cancer cells show defects in DNA repair via homologous 

recombination. 

The CCDC6 attenuation while conferring resistance to cisplatinum 

sensitizes these cells to the small molecule inhibitors of PARP1/2, such 

as olaparib. The combination of the two drugs is more effective than 

each agent individually, according to the combination index (CI < 1). 

Stable silencing of CCDC6 in the profoundly olaparib-resistant H1975 

lung adenocarcinoma cell line increases sensitivity to olaparib alone 

and in combination with cisplatin, showing the relationship between 

CCDC6 and PARP1/2 inhibitor sensitivity.  

Besides the low penetrance of CCDC6 somatic mutations or the 

CCDC6-RET rearrangements, TMA immunostaining for CCDC6 

revealed a low expression in about 30% of the NSCL tumours analyzed 

(45 out of 138). Compared to the stroma, the weak CCDC6 protein 

staining significantly correlated with the presence of lymph node 

metastasis (chi-squared test: p ≤ 0,02). Moreover, the CCDC6 low 

phenotype was negatively correlated to the Disease Free Survival (p ≤ 

0.01) and the Overall Survival  (p ≤ 0.05). 

We believe that the inclusion of CCDC6 in NSCLC clinical studies 

should provide an additional prognostic biomarker for the overall 

survival (OS) with also a predictive value for the resistance to 

conventional treatments in NSCLC patients. 
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CHAPTER 1–INTRODUCTION 

 

1.1 Lung Cancer 

Lung cancer is the leading cause of cancer deaths world-wide for 

men and women. The population segment most likely to develop lung 

cancer is people aged over 50, with a history of smoking (Jemal et al. 

2008). Eastern Europe has the highest lung cancer mortality among 

men, while northern Europe and the US have the highest mortality for 

both men and women.  

The most common cause of lung cancer is long-term exposure to 

tobacco smoke, which causes 80–90% of lung cancers. Nonsmokers 

account for 10–15% of lung cancer cases (Thun et al. 2008), often 

attributed to genetic factors combined to environmental dangers such 

as air pollution and radon gas.  

Epithelial lung cancers are generally divided into two 

histopathological groups, the small cell lung cancer (SCLC), including 

the 15% of lung cancers and the non-small cell lung cancer (NSCLC), 

which account for approximately 85% of all lung cancers (Walker S. 

2008). The classification is also based on different genetic variations, 

since EGFR (10%), K-Ras (20–30%) and p16ink4 (50%) mutations 

have been reported in NSCLC, whereas Rb (90%) and p14arf (65%) 

mutations are recurrent in SCLC (Ye et al. 2009; Jonson et al. 2012). 

 NSCLC is the most common lung cancer and is among the main 

cause of death. Despite advances in early detection and standard 

treatment, NSCLC is often diagnosed at an advanced, metastatic stage 

and less than 15% of patients survive 5 years beyond diagnosis (Jemal 

et al. 2009). The median overall survival in the metastatic setting is only 

10–12 months, despite aggressive treatments (Minna and Schillerer 

2008).  

NSCLC is further subdivided into adenocarcinoma (ADC), 

squamous cell carcinoma (SCC), and large cell cancer (LCC). 

Chemotherapy is recognized as an important component of 

treatment for all stages of the disease, including patients with 

completely resected early stage disease, who benefit, with improved 

survival rates, when adjuvant platinum–based chemotherapy is given 

(Chang A. 2011) 
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1.2 Molecular basis of NSCLC and therapeutic approaches 

The recent advances in genome analysis have identified a number 

of genetic alterations in NSCLC that could be therapeutically exploited 

as predictive biomarkers for guiding treatment decision and customizing 

therapy eventually improving patient outcomes.  

In NSCLC the expression of a number of tumor suppressor genes 

is lost, through a variety of mechanism, including deletion, mutations, 

and hypermetilation. 

 For example the expression of the PTEN protein is often lost or 

reduced while the gene is rarely mutated (Sos et al. 2009). Driver 

mutations in oncogenes like EGFR, HER2, KRAS, ALK, BRAF, 

PIK3CA, AKT1, ROS1, NRAS and MAP2K1 have been detected in 

NSCLC resulting in constitutively active mutant signaling proteins. 

 Interestingly, never smokers patients harbour mutations  in either 

EGFR and HER2 or fusions involving ALK and ROS1. Remarkably, 

these driver mutations are associated with differential sensitivity to 

various targeted therapies. For example, lung tumours harbouring 

specific driver mutations in the kinase domain of EGFR are sensitive to 

epidermal growth factor receptor tyrosine kinase inhibitors (TKIs), 

gefitinib and erlotinib, but are resistant to crizotinib, the anaplastic 

lymphoma receptor tyrosine kinase (ALK) inhibitor. Conversely, 

NSCLCs with oncogenic ALK or c-Ros oncogene 1 receptor tyrosine 

kinase (ROS1) fusions are sensitive to crizotinib and resistant to 

erlotinib and gefitinib (Pao and Hutchinson  2012).  

Recently, in lung adenocarcinoma, novel gene fusions involving 

the RET protooncogene, which rearranges either with the kinesin family 

member 5B (KIF5B-RET) or with the Coiled-Coil Containing 6 protein 

(CCDC6–RET) have been identified (Takeuchi et al. 2012). 

Results from preclinical studies and the mutual exclusivity of these 

novel RET gene fusions with the mutations in EGFR, KRAS and ALK 

genes, suggest that they are novel driver oncogenes in NSC lung 

adenocarcinoma and that new therapeutic approaches could be 

envisaged by the use of the multi-tyrosine kinase inhibitors against RET 

tyrosine kinase (Okamoto et al. 2013).   

Unfortunately, the vast majority of NSCLC do not carry the 

described alterations and therefore the management of patients with 

lung cancer continues to pose a considerable challenge to today‟s 

oncologist.  
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As lung cancer cells acquire resistance to the chemotherapeutic 

agents, future management may lie in individualizing therapy through 

the careful selection of appropriate agents based on the likelihood of 

response and the development of resistance.  

Platinum salts are the corner stone of NSCLC treatment, exerting 

their antineoplastic effect through direct binding to DNA resulting in       

cross-linking and ultimately apoptotic cell death. Unfortunately, their 

administration is limited because of cumulative haemato– and neuro-

toxicities and by drug resistance. In recent  studies on NSCLC patients, 

extreme or intermediate resistance to carboplatin was documented in 

68% of samples and cisplatin resistance was documented in 63% of 

samples (Chang A. 2011).  

Several mechanisms have been proposed to account for 

resistance to platinum agents including de-toxification, intracellular 

accumulation, and increased DNA repair capacity. Moreover, enhanced 

DNA repair capacity has been found to be associated also to 

radiotherapy  resistance and poor survival in NSCLC patients.  Over the 

past few decades, trials have evaluated the benefits of double 

chemotherapy by combination of cisplatin with other non platinum 

drugs. 

 The Poly (ADP–ribose) polymerase (PARP) inhibitor is one of the 

most promising new therapeutic approaches to NSCLC, either as a 

single agent or in combination with  DNA-damaging agents like 

cisplatinum.  

PARP1 is an abundant nuclear protein that has been specifically 

shown to bind DNA strand breaks formed by ionizing radiation or 

chemical DNA damaging agents, to facilitate the DNA repair (Satoh et 

al. 1993). PARP2 although less abundant, contribute to 5%-10% of the 

total PARP activity. The rapid binding of PARP1 to DNA strand breaks 

is critical for the resealing of DNA single–strand breaks (SSBs) during 

base excision repair (BER) and for the repair of topoisomerase I 

cleavage complexes (Murai et al. 2012). 

 When PARP is inhibited, SSBs degenerate to more lethal double 

strand breaks (DSBs) that, in absence of repair by homologous 

recombination (HR), can induce cell apoptosis. Therefore cells that are 

deficient in HR are highly susceptible to PARP–inhibitors in combination 

with platinum salts.  
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This finding has been clinically validated in breast cancer 

harboring genetic alterations in genes involved in homologous 

recombination, like BRCA1 and BRCA2  (Figure 1). 

 

 
Fig.1: Mechanism of sensitivity to PARP inhibition in BRCA-deficient cells. Cells 

acquire DNA damage through environmental exposures or chemotherapy agents. 

Repair of single-strand breaks relies on PARP; repair of double-strand breaks 

depends on BRCA. With PARP inhibition, single-strand breaks progress to double-

strand breaks. In the absence of functional BRCA, the accumulation of double-strand 

breaks leads to cell apoptosis or to error prone repair pathway. 

 

Also in patients with sporadic high-grade serous ovarian cancer, 

PARP inhibitors efficacy reflects the high prevalence of dysfunction in 

key genes of HR pathway (Loveday et al. 2011). 

 Many other sporadic cancers have underlying defects in DNA 

repair pathway that could be targeted with PARP inhibitors, such as 

NSC lung tumours with low protein levels of ERCC1 (Postel-Vinay et al. 

2013) and PTEN deficient NSCL tumours (Minami et al. 2012).  Indeed, 

inhibiting  PARP-1 activity has been established as an effective means 

of sensitizing tumours cells to platinum salts or other DNA-damaging 

agents. 
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1.3 PARP inhibitors in clinical use 

A number of PARP inhibitors are under clinical development: 

rucaparib, iniparib (BSI-201), olaparib (AZD-2281; oral), veliparib (ABT-

888; oral),  niriparib (MK-4827), BMN-673, CEP-9722 (oral) and E7016 

(GPI 21016, oral) (Kummar et al. 2012).  

Olaparib has demonstrated single agent activity in women with 

BRCA1 or BRCA2 germline mutations with an advanced metastatic 

breast cancer resistant to conventional chemotherapy (Tutt et al. 2010). 

Over 40% of response rate has been reported in ovarian cancer 

patients carrying germline BRCA mutations and a platinum sensitive 

disease (Fong et al. 2010). 

 Impairments of HR pathways suggest the possibility of further 

treatment by the use of small molecule inhibitors of Parp1/2 in 

additional tumours. Similar abnormalities in DNA repair pathways have 

also been reported in primary peritoneal cancers patients, and in 

patients with Triple Negative Breast Cancer (TNB), representing the 

basis for recent clinical trials that have been exploring the use of PARP 

inhibitors in such patients population (Gelmon et al. 2011). Despite the 

use of PARP inhibitor in a number of clinical trials, the degree and 

duration of inhibition required for optimal clinical benefit has yet to be 

established (Kummar et al. 2009).  

In NSCLC, clinical trials including PARP inhibitors as single agents 

or in combination with other chemotherapeutic drugs have been 

reported (Sandhu et al. 2013). Veliparib is currently included in a phase 

II multicenter first-line randomized trial in patient with NSCLC, 

associated or not associated with carboplatin/paclitaxel. The trial 

primary endpoint is the progression free survival (PFS) (Spigel  2012).   

 

1.4 DNA damage response 

Maintenance of genomic integrity is an essential part of cellular 

physiology. Insults that induce DNA breaks must be repaired in order to 

prevent the propagation of mutations that can contribute to malignant 

transformation. DNA damage is continuously generated by a variety of 

mechanism including cell metabolism, exogenous genotoxic agents and 

the collapse of replication forks. Amongst the many types of DNA 
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lesions, DNA double strand breaks (DSBs) are especially lethal if left 

unrepaired (Sonoda et al. 2006).  

The process by which cells repair DNA damage and coordinate 

the repair with the cell cycle, are known as DNA damage response 

(DDR) (Zhou and Elledge 2000). DNA damage is recognized by sensor 

proteins that initiate the activation of the DDR pathway. The sensors 

include two key protein complexes: Mre11–Rad50–Nbs1 (MRN) and 

Rad9–Rad1–Hus1 (9-1-1), that localize on the regions of the DSBs or 

on the regions of replication stress and single strand breaks (Lee and 

Paull 2007).  

Focusing on the MRN complex: Mre11 is a protein with DNA 

exonuclease and endonuclease activities; Rad50 keep the broken ends 

of the DNA together while Nbs1 recruit signal transducing kinases to the 

break site and mediates the DDR signal. The structure of 9-1-1 

resembles the structure of the proliferating cell nuclear antigen (PCNA) 

sliding clamp loaded onto DNA at point of replication.  

The localization of the MRN and 9-1-1 complexes to the sites of 

DNA damage activate the signal transducing kinases Ataxia – 

telangiectasia mutated (ATM), the ATM and Rad3 – related  

kinase(ATR), and the DNA – dependent protein kinase (DNAPK), which 

are member of the phosphoinositide 3-kinase related kinase family 

(Freeman and Monteiro 2010).  

The first event is the activation of ATM by autophosphorilation at 

S1981 that caused dissociation from inactive dimers into active 

monomers (Bakkenist CJ and Kastan MB 2003); next ATM 

phosphorylates Nbs1 in S343. At the same time, Nbs1 and the MRN 

complex are required for full activation of ATM. Along similar lines, the 

localization of ATR to the break site and its subsequent activation is 

dependent upon then 9-1-1 complex, binding between ATR and      

ATR–interacting protein (ATRIP), and replication protein A (RPA). RPA 

is a protein constitute by three subunits (RPA70, RPA32, and RPA14) 

that  coats single – strand DNA after phosphorylation by ATM, ATR and 

DNA-PK on T21 and S33 of RPA32 (Freeman and Monteiro 2010). 

The signal transduction by ATM and ATR proceed through the 

effector kinases Checkpoint kinase-1 and Checkpoint kinase-2 (CHK1 

and CHK2). CHK2 is activated in response to DSB through the 

phosphorilation of T68 by ATM and subsequent oligomerization and 

autophosphorilation at T383 and T387. CHK1 is active even in 

unperturbed cells, but is further activated through phosphorylation of 
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S317 and S345 by ATR, primarily in response to single stranded breaks 

and replication stress (Bartek J and Lukas J 2003); its major regulator is 

the protein Claspin (Kumagai and Dunphy 2000).  

Several mediator proteins such as BRCA1, MDC1, 53BP1, and 

H2AX, work to coordinate the localization of various factors in the DDR, 

promote their activation, and regulate substrate accessibility.  

The amminoacids S1387 and S1423 of BRCA1 are targets of 

phosphorylations by ATM and these phosphorylations are required for 

the intra-S and G2/M checkpoints, respectively.  

MDC1 functions as molecular scaffold to mediate parts of the DDR 

downstream foci formation (Mohammad DH and Yaffe  2009) (Figure2). 

 

 

 
 

Fig. 2: A simplified view of the cellular response to DNA damage. Single and double 

stranded DNA breaks signal through the sensors (MRN and 9-1-1), mediators (H2AX, 

BRCA1, MDC1, 53BP1), signal transducing kinases (ATM, ATR), effector kinases 

(CHK2, CHK1), and effector proteins (E2F1, p53, Cdc25), leading to gene 

transcription, apoptosis, and cell cycle arrest.  
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There is an intricate connection between the DDR and the cell 

cycle; indeed, to manage the DNA damage, cells activate powerful DNA 

damage–induced cell cycle checkpoints that coordinate cell cycle arrest 

with recruitment and activation of DNA repair machinery. If the DNA 

damage cannot be repaired, the prolonged cell cycle arrest can lead to 

senescence or to apoptosis.  

The overall importance of these cell cycle checkpoints in 

maintaining genomic integrity is highlighted by the observation that the 

loss, mutation, or epigenetic silencing of checkpoint genes is frequently 

observed in cancer (Hoeijmakers 2001).  

One of the key component involved in the connection between cell 

cycle and DDR is the protein H2AX. H2AX is a member of the histone 

H2A family, one of the five families of histone that package and 

organize eukaryotic DNA into chromatin. The phosphorylation of H2AX 

(γH2AX) is among the earliest response to DNA damage, and controls 

the widespread accumulation of checkpoint response proteins to large 

chromatin regions surrounding the break sites (Rogakou et al. 1998).  

H2AX is phosphorylated by ATM in the C-terminal tail on Ser139 

over a region of megabases surrounding a DSB (Burma et al. 2001). In 

similar way, ATR phosphorylates H2AX after replicational stress.  

After the repair of the DNA lesion, dephosphorilation of γH2AX, 

thanks to the activity of PP4 Serine/threonine phosphatase (Nakada et 

al. 2008), and its exclusion from chromatin regions distal to the break 

site are crucial passage to escape from the checkpoint and resume the 

cell cycle (Fernandez–Capetillo et al. 2004). 
 

1.5 DNA Double Strand Breaks: “Two repair pathways”  

The two major pathways for the repair of DNA DSBs are Non 

Homologous End Joining (NHEJ) and Homologous Recombination 

(HR). There are several types of homologous repair: gene conversion, 

break-induced replication and single-strand annealing. Similarly, there 

are also several alternative end-joining mechanisms (Haber 2000).  

HR is repressed in G1, and becomes activated during S and G2 

phases, while NHEJ is constitutively active throughout the cell cycle 

(Mao et al. 2008).  

The nature of DSBs caused by replication block is quite different 

from that caused by ionizing radiation. DNA lesions associated with 

DNA replication can be readily repaired by homologous recombination 
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by using the other intact sister–chromatids as a template, because they 

are localized in close proximity.  

On the other hand, ionizing radiation or genotoxic agents results in 

“accidental” DSB at packed chromatin structure. Moreover, such DSB 

could hardly interact with intact homologous sequences either in 

homologous chromosomes or even sister-chromatids, because after 

replication, extensive condensation packs replicated DNA sequences in 

a highly ordered chromatin structure and thereby significantly separates 

the two sisters. Due to the difficulty of homology search, vertebrate cells 

have to use NHEJ to simply re-ligate the broken ends, even though 

NHEJ frequently results in errors in the form of sequence deletions.  

Collectively, the nature of DSBs determines the usage of DSB 

repair pathways; if the DSB is caused by replication blockage, usually it 

will be repaired by homologous recombination, whereas “accidental” 

DSB in packed chromosomes are frequently repaired by NHEJ (Sonoda 

et al. 2006).  

Like most DNA repair processes, there are three enzymatic 

activities required for repair of DSBs by the NHEJ pathway: nucleases 

to remove damaged DNA, polymerases to aid in the repair, and a ligase 

to restore the phosphodiester backbone.  

When a DSB occurs, during G0 or G1 phases, following ionizing 

radiation or genotoxic agents exposure, some small fragments of DNA 

can be lost and the Ku heterodimer (Ku70/Ku80) appears likely to be 

the first protein to bind the DNA ends on the break site. Ku must change 

conformation once it binds DNA because its interactions with other 

proteins such as DNA-PKcs are much stronger once the Ku-DNA 

complex has formed. Ku is capable of interacting with: the nuclease 

Artemis–DNA-PKcs, the polymerases µ and , and the DNA ligase IV. 

When Ku moves internally along the DNA filament, permits DNA-PKcs 

to contact the DNA end, which then activates the serine/threonine 

kinase activity of DNA-PKcs.  

Activation of the kinase activity represents one of the simplest 

signal transduction systems because it permits DNA-PKcs to 

phosphorylate itself and Artemis. The Phosphorilated Artemis changes 

its confrmation and starts its 5‟–or 3‟-endonuclease activity.  

Polymerase µ or can fill in the gaps synthetizing a short DNA 

product also in a template independent manner. The end of the process 

is the ligation step, accomplished by the DNA ligase IV that can ligate 

double strand DNA molecules with compatible ends or with blunt ends.  



15 
 

With this kind of repair, original nucleotide sequence has been lost 

at the moment of the break, and additional nucleotide lost can occur 

during the process, with the important consequences of not restoring 

the original chromosomal integrity (Lieber 2008).  

In contrast to NHEJ, HR operates with slower kinetics and requires 

a homologous template to not only repair the DSB, but to also restore 

the sequence around the break.  

Initial step in HR is DNA nucleolytic end resection by the MRN 

complex along with other accessory protein such as CtIP and the tumor 

suppressor protein BRCA1. An eminent role for the long range 

resection has the Bloom helicase (BLM), Exonuclease 1 (EXO1) and 

DNA2 helicase/nuclease. Thereby, terminal nucleotides in the 5‟ ends 

are removed generating long 3‟ single–stranded DNA (ssDNA) 

overhangs on both sites of the breaks. The 3‟–ssDNA tails, representing 

the substrate for HR repair machinery, are coated and stabilized by 

RPA (Dueva and Iliakis 2013), and subsequently associate with Rad52 

and with Rad51, a recombinase that generate nucleoprotein filament 

also known as nuclear foci that marks the sites of DSBs.  

Rad51 plays an important role, not only in HR, but also in mitotic 

and meiotic recombination. The complex of Rad51 and ssDNA invades 

intact homologous sequences to form heteroduplexes with the 

contribute of Rad54 protein (Sonoda et al. 2006).  

After these steps a polymerase catalyzes DNA synthesis until 

finally the Holliday junctions become resolved, resulting in a crossover 

or non-crossover product (San Filippo et al. 2008).  

 

1.6 CCDC6 gene and its products 

The CCDC6 gene (Coiled Coil Containing 6) has been identified 

upon its frequent rearrangement with the RET proto–oncogene in 

papillary thyroid carcinomas (Fusco et al. 1987; Grieco et al. 1990), and 

with genes other than RET in solid and not solid tumours (Drechsler et 

al. 2007). Recently, by using an integrated molecular– and 

histopathology–based screening, the fusion CCDC6-RET has been 

detected in lung adenocarcinoma, even at low frequency (Takeuchi et 

al. 2012).  

The CCDC6 gene is located on the long arm of chromosome 10 

(10q21), and contains 9 exons that encode a transcript of 3 Kb showing 

an open reading frame (ORF) of 475 aa.  The CCDC6 gene promoter, 
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localized within 259 bp upstream of the ATG site, drives the gene 

expression ubiquitously in various human tissues (Tong et al. 1995).  

In tumours harbouring the RET/PTC1 rearrangement, the 

activation of RET involves chromosomal inversion of the long arm of 

chromosome 10 that juxtaposes the tyrosine kinase-encoding domain of 

RET, mapped at 10q11.2, to the promoter and the first exon of the 

CCDC6 gene (Pierotti et al. 1992) (Figure 3).  

 

 

  
 

Fig. 3: Schematic view of the paracentric inversion of chromosome 10q generating the 

transforming sequence RET/PTC1. 

 

Sequencing analysis of CCDC6 cDNA shows that CCDC6 has not 

significant homology to know genes; its predicted amino–acid (aa) 

sequence contains a long coiled-coil region and a putative binding 

domain for SH3–proteins, suggesting its possible involvement in 

protein–protein interactions (Grieco et al. 1994).  

CCDC6 gene product shows extensive regions of alpha helices 

which have a high potential to adopt a coiled-coil conformation. Coiled–

coils are formed by two or three alpha–helices that are strongly 
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amphipathic and supercoil around each other, crossing at an angle of 

about 20° (Lupas et al. 1991). It has been demonstrate that such region 

can be involved in protein dimerization or oligomerization.  

The 60 amino acid fragment of the CCDC6 coiled-coil domain 

included in the RET/PTC1 gene product rearrangement, has been 

shown to be necessary for homodimerization, constitutive activation and 

transforming ability of the oncoprotein (Tong et al. 1997 Jhiang, 2000).  

In some cases of atypical chronic myelogeneous leukaemia 

(aCML) the first 368 aa of CCDC6 has been found fused to the tyrosine 

kinase domain of the PDGFRβ. The chromosomal event is a t(5;10) 

translocation. In the cases of atypical CML in which the CCDC6-

PDGFRβ rearrangement has been identified, the fusion product is a 

protein of 948 aa containing most of the coiled–coil domain of CCDC6 

and the transmembrane and the tyrosine kinase domains of the 

PDGFRβ. The reciprocal product of the translocation has not been 

found (Kulkarni et al. 2000; Schwaller et al. 2001).  

Moreover, CCDC6-PTEN rearrangements have also been 

identified in irradiated thyroid cell lines. Sequencing analysis revealed a 

transcript consisting of exon 1 and 2 of CCDC6 fused with exon 3 and 6 

of PTEN (Puxeddu et al. 2005) (Figure 4). 

 

 

 
 
Fig.4: CCDC6 rearrangements. The red arrow shows the RET/PTC1 and the black 
one shows the CCDC6/PDGFRβ breakpoint.  

 



18 
 

Notably, in most cancer harbouring CCDC6 gene rearrangements, 

the product of the normal allele is absent or functionally inactivated by a 

dominant negative mechanism (Celetti et al. 2004).   

CCDC6 protein is an ubiquitously expressed 65 KDa nuclear and 

cytosolic protein phosphorylated by ERK1/2 at serine 244 upon serum 

induction (Grieco et al. 1994; Celetti et al. 2004).  

Overexpression of CCDC6 in cells induces apoptosis while a 

CCDC6 protein truncated at the carboxiterminal, such as in the fusion 

with different oncogenes, acts as dominant negative on nuclear 

localization and on the wild–type protein–induced apoptosis (Celetti et 

al. 2004).  

Moreover, in response to DNA damage CCDC6 is phosphorylated 

at T434 by the ATM kinase that stabilizes the protein in the nucleus. 

The loss of the CCDC6 region substrate of ATM or protein deficiency 

determines an increase in cell survival, allows for DNA synthesis and 

permits cell to progress into mitosis, following the exposure to genotoxic 

stress (Merolla et al. 2007).  

CCDC6 gene product undergoes multiple post-translational 

modifications such as sumoylation (Luise et al. 2012), ubiquitination 

(Povlsen et al. 2012), and phosphorylation (Celetti et al. 2004; 

Beausoleil et al. 2004; Brill et al. 2004), suggesting that CCDC6 protein 

activity is highly regulated.  

It has been reported that CCDC6 interacts with CREB1 and 

inhibits its cAMP-dependent transcriptional activity (Leone et al. 2010) 

in a SUMO-dependent manner (Luise et al. 2012), these results support 

a role of CCDC6 in control of cell proliferation and sustain the 

hypothesis that CCDC6 acts as a tumour suppressor.  

High–throughput proteomic screening predicted the interaction 

between CCDC6 and the catalytic subunit of Protein Phosphatase 4 

(PP4c) (Ewing et al. 2007) that we have confirmed in vitro and in vivo 

(Merolla et al. 2012). Moreover, it has been demonstrate that cells 

depleted of CCDC6 have an enhanced phosphatase activity directed 

toward the phosphorylation of the H2AX protein in response to ionizing 

radiation (IR).  

Loss of CCDC6 affects the DNA damage induced G2 arrest, 

overcoming the G2/M checkpoint. Furthermore, loss of CCDC6 affects 

the DSBs DNA repair mechanism in G2 increasing the levels of the 

error prone, Non Homologous End Joining repair pathway (Merolla et 

al. 2012).  
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In recent studies it has been also reported that the E3 ubiquitin 

ligase FBXW7 specifically interacts with CCDC6 driving its degradation 

in a proteasomal dependent manner (Zhao et al. 2012). Moreover, 

CCDC6 degradation is impaired in response to DNA damage.  

The post translational events that regulate the phosphorylation 

status and the abundance of CCDC6 during the cell cycle have been 

also investigated in our laboratory.  

Interestingly CCDC6 sporadic mutations have been reported in 

primary NSCL tumours (N394Y, T462A, S351Y, E227K), in ovary 

cancer (CCDC6 L217P, A226S/T, P442S); in gastrointestinal tumours 

(110*, 139*, 229*, P243S, E285, Q450*); in endometrious carcinomas 

(M287I); in breast cancer (CCDC6 E300D, T452M, R425W), 

(www.sanger.ac.uk/genetics/CGP/cosmic).  

Thus, CCDC6 is an attractive candidate marker whose loss or 

inactivation could enhance tumour progression by impairing apoptotic 

response and by overcoming a DNA damage response-dependent 

barrier.  

It has been recently reported that the loss of CCDC6 in the 

Testicular Germ Cell Tumours (TGCTs) aids the spermatogonial cells to 

benefit from a pro-survival pathway in order to evade the toxic effects of 

endogenous oxidants and finally promoting testicular neoplastic growth 

(Staibano et al. 2013).  

In this dissertation we have evaluated the CCDC6 role in NSCLC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.sanger.ac.uk/genetics/CGP/cosmic
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CHAPTER 2–AIMS OF THE STUDY 

 

The purpose of the present dissertation has been to evaluate the 

CCDC6 expression in a wide panel of NSCLC cell lines.  

Depending on the expression levels of CCDC6 in NSCLC cell lines 

we have verified: 

1) The formation of Rad51 foci and the DNA damage response 
2) The proficiency of the homology-directed repair. 
3) The response to standard treatments and to PARP1/2 inhibitors. 

Next, we have assessed the CCDC6 expression in a wide 

range of early resected or locally advanced NSCLC primary tumours 

and we have investigated 

4) The statistical significance of the correlation between CCDC6 

immunostaining and the presence of lymph node metastasis. 
5) The statistical significance of the correlation between the CCDC6 

immunostaining, the Disease free survival (DFS) and the Overall 

survival.    

Our final goal is to highlight CCDC6 as a prognostic marker for the 

overall survival with also a predictive value for the resistance to 

conventional treatments in NSCLC.   

The possibility that CCDC6 could be a predictive biomarkers of 

sensitivity to the PARP1/2 inhibitors has been also investigated. 
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CHAPTER 3-MATERIALS AND METHODS 

 

3.1 Cell  Culture 

Human Non Small cell lung cancer cell lines, with different genetic 

backgrounds (EGF-R, RAS, PKI3CA, TP53, and CDKN2A mutations) 

(www.sanger.ac.uk/genetics/CGP/cosmic), have been kindly obtained 

by Professor  Giuseppe Viglietto: ADC (NCI – H1975, A549, NCI-H23, 

NCI-H522, NCI-H1299, NCI-Calu3, NCI-Sw1573), SCC (NCI-H292) and 

LCC (NCI–H460). Cells were maintained in RPMI (Gibco, Paisley, UK), 

supplemented with 10% fetal bovine serum, 100 U/ml of L- Glutamine 

and 100 U/ml of penicillin – streptomycin (Gibco, Paisley, UK). 

 

3.2  Plasmids and Transfection  

The silencing of CCDC6 were from Sigma-Aldrich, Inc. For stable 

transfection assays the H1975 cells were transfected with the plasmid 

pool (shCCDC6, NM_005436) or a pool of non-targeting vectors 

(shcontrol) by the Nucleofector transfection system. Lipofectamin 2000 

was used accordingly to the manufacturer (Invitrogen), for transient 

transfection with the DR-GFP and the I-SceI plasmids. The DR-GFP 

reporter plasmid has been developed by M.Jasin (Pierce et al. 1999). 

PcDNA4ToA-CCDC6 plasmid has been transfected with FuGene HD 

(Promega) and it has been described elsewhere (Celetti  et al.  2004). 

 

3.3  Protein Extraction and Western Blot Analysis 

Total cell extracts (TCE) were obtained by  Ripa buffer (50 mM 

Tris–HCl pH 7.5, 150 mM NaCl, 1% Triton X-100, 0.5% Na 

Deoxycholate, 0.1% SDS) or Lysis buffer (20mM Tris-HCL pH7.5, 

150mM NaCl, 1% Triton X-100) and a mix of protease inhibitors. Protein 

concentration was estimated by a modified Bradford assay (Bio-Rad). 

Membranes were blocked with 5% TBS-BSA proteins and incubated 

with the primary antibodies.  

http://www.sanger.ac.uk/genetics/CGP/cosmic
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Immunoblotting and immunoprecipitation experiments were carried 

out according to standard procedures and visualized using the ECL 

chemiluminescence system (Amersham/Pharmacia Biotech). 

 

3.4  Real Time PCR 

PCR reactions were performed on RNA isolated, from cell lines 

and from primary tissue using RNeasy Mini Kit (Quiagen). RNA (1 μg) 

was reverse-transcribed using a mixture of poly-dT and random 

exonucleotides as primers and MuLV RT (Invitrogen). PCR reverse 

transcription was performed according to standard procedures 

(Invitrogen).  

qRT-PCR analysis was performed with Syber Green           

(Agilent), using the follows primers annealing at CCDC6 amino-

terminus: Forward GGAGAAAGAAACCCTTGCTG and Reverse 

TCTTCATCAGTTTGTTGACCTGA.   Primers for GAPDH were used for 

normalization of qRT-PCR data. To calculate the relative expression 

levels we used the 2−ΔΔCT method. 

 

3.5  TMA 

Tissue Micro-Array (TMA) was built using the most representative 

areas from each single case. Tissue cylinders with a diameter of 0.3 

mm were punched from morphologically representative tissue areas of 

each „donor‟ tissue block and brought into one recipient paraffin block 

(3×2.5 cm) using a semiautomated tissue arrayer (Galileo TMA, Milan, 

Italy).  

 

3.6  IHC Analysis  

For light microscopy, tissues were fixed by immersion in 10% 

formalin and embedded in paraffin by standard procedures; 4 μm 

sections were stained with haematoxylin and eosin (H&E) or processed 

for immunohistochemistry. The sections were incubated overnight with 

antibodies against CCDC6, HPA-019051 (Sigma-Aldrich, Co. LLC) at 1: 

200 dilution. The following controls were performed: (a) omission of the 

primary antibody; (b) substitution of the primary antiserum with non-
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immune serum diluted 1: 500 in blocking buffer; (c) addition of the target 

peptide used to produce the antibody (10−6 M); no immunostaining was 

observed after any of the control procedures.  

The immunohistochemical staining of CCDC6 will be evaluated 

semiquantitatively as the percentage of positive cells (with either 

nuclear or cytoplasmic localization) among the total number of cells and 

classified as: low staining [including 0(<5%) and +(5-25%)] and high 

staining [including ++(26-50%) and +++(>50%)].  

 

3.7 Statistical Analysis 

Student‟s T test or chi-squared test have been performed to     

assess the statistical significance of correlation between                                                                                          

clinicopathologic characteristics of tumours, platinum response and 

CCDC6 expression. Disease free survival (DFS) and overall survival 

(OS) curves of the patients have been calculated using Kaplan-Meier 

method and analysis have been done by the log-rank test.  

 

3.8  Immunofluorescence Staining  

Cells were permeabilized 18h after exposure to 5Gy IR, in 

phosphate–buffered saline (PBS)–0.25% Triton X–100, and fixed with 

4% PFA. After staining with primary antibodies for 1h at room 

temperature, cells were washed in PBS and incubated for 30 min at 

room temperature with secondary antibodies. Nuclei were visualized by 

staining with DAPI. Cells with a number of Foci between 5 and 10 were 

scored as positive. 

 

3.9  Clonogenic Assay 

Cell lines were plated at limiting dilutions into 6-well plates, 

incubated for 24 h, and then treated with different doses of olaparib or 

cisplatinum followed by incubation for ten days. Prior to counting 

colonies, cells were stained with crystal violet. A population of more 

than 50 cells was counted as one survived colony. The mean colony 

counts +/- standard errors are reported. 
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3.10  Sensitivity Test and Design for Drug Combination  

Antiproliferative activity was determined by the CellTiter 96 

AQueous One Solution assay (Promega), in term of 50% inhibitory 

concentration (IC50) values. Briefly, cells were plated in quintuplicate in 

96-well plates at a density of 1,000-3,000 cells per well, and 

continuously exposed to each drug for 144h. Each assay was 

performed in quintuplicate and IC50 values were expressed as mean +/- 

standard deviation.  

The results of the combined treatment were analysed according to 

the method of Chou and Talaly by using the CalcuSyn software 

program (Chou and, Talaly 1984). The resulting combination index (CI) 

is a quantitative measure of the degree of interaction between different 

drugs. If CI = 1, it denotes additivity; if CI > I, it denotes antagonism; 

and if CI < 1, it denotes synergism. 

 

3.11  Reagents and Antibodies 

Anti Rad51 (H92) Sc8349, anti-PARP (H250) Sc7150, were from 

Santa Cruz Biotechnology, Inc; Anti CCDC6 was from Abcam; Anti 

pS139_H2AX (05-636), anti Rad51 (07-1782) was from Millipore; Anti-

H2AX, anti-pT68Chk1 and anti-Chk1 antibodies were from Cell 

Signaling Technology, Inc. The secondary antibodies were from Biorad. 

Alexa Fluor Secondary antibodies for immunofluorescence were from 

Invitrogen, Inc. Olaparib (AZD2281) was provided by Selleck Chemicals 

(Huston, TX, USA) and Cisplatin was from Sigma Chemical Co. 

 

3.12 HR Transient Assays 

H1975, H460, H1975ShCCDC6 and H460 CCDC6+ cells were 

plated in a 12 wells plate and transfected with the DR-GFP reporter 

alone (as negative control), together with the plasmid expressing the I-

SceI. Wilde Type GFP was used as control of transfection. After 48h of 

transfections cells have been collected and analyzed by FACS analysis 

with Accury C6 Flow Cytometer. 



25 
 

 

3.13 HR Reporter Cell Assays  

The HeLa HR-I reporter cells are based on a GFP gene with an 

artificially engineered 3 kb intron from the Pem1 gene (GFP-Pem1).   

In the HR reporter, the first exon of GFP-Pem1 contains a 22 bp 

deletion combined with the insertion of three restriction sites, I-SceI-

HindIII-I-SceI, which are used for inducing DSBs. The deletion ensures 

that GFP can not be reconstituted by an NHEJ event. The two I-SceI 

sites are in an inverted orientation, so that I-SceI digestion leaves 

incompatible ends. The first copy of GFP-Pem1 is followed by a 

promoter-less/ATG-less first exon and intron of GFP-Pem1. The intact 

construct is GFP-negative (Mao et al. 2008).    

To create the I-Sce1 inducible cell reporter, a stable HeLa cell line 

containing a single integrated copy of the HR-I reporter was first 

selected and characterized. Two lentiviruses (pLV-TetO-HA-SceI and 

rtTA) were used to co-infect this stable cell line and screening was 

performed to identify a single clone that could be induced by 

Doxycycline to produce GFP+ cells in a Tet-on format.  

After transient silencing for CCDC6 and induction of DSB with 

Doxycyclin (1µg/ml) the percentage of GFP positive cells were 

determined by immunofluorescence microscopy.  

293AJ2 Cells bearing the stably integrated HR repair substrate 

DR1Bsd were silenced for CCDC6 and plated in the presence of 5μg/ml 

blasticidin (Invitrogen) or without antibiotic. The construct DR1Bsd 

consist of two tandem copies of the blasticidin resistance gene (Bsd). 

 The insertion of an I-SceI restriction site, which also encodes two 

in-frame stop codons, into the upstream copy of the blasticidin-

resistance gene prevents its expression. The downstream copy of the 

gene is promoterless, and hence non – functional. Expression of the I-

SceI enzyme induces DSB. The repair of this lesion by NHEJ will mostly 

leave the S1Bsd gene not-functional, whereas HR mechanism, using 

the 5‟ΔBsd copy as a repair template, generates a functional gene and 

cell resistance to blasticidin (Tutt et al. 2001). After 21 days, cells were 

fixed and stained with crystal violet.  
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3.14 Tumors Samples 

Patients underwent surgery at the Surgery Departments of 

Ospedale Cardarelli, Naples and NCI “Fondazione G. Pascale”, Naples, 

between 2005 and 2010. The patients age ranged between 47 and 80 

years, with a mean of 63.5 years. Patients underwent radiological 

evaluation and were treated by surgery alone, except for patients with 

locally advanced tumors (T4), who received adjuvant therapy. The 

patients underwent a median of 48 months follow-up. After surgical 

resection, tissues were fixed in 10% neutral buffered formalin and 

embedded in paraffin blocks. Sections (4 mm thick) were stained with 

H&E.  

Histologic grading and tumor-node–metastasis classification were 

done according to the recommendations of the International Union 

Against Cancer.  

For six patients, a 10-mm-thick section was processed for 

dissection. Paraffin was removed by treatment with xylene for 3 hours 

at room temperature followed by tissue rehydratation through multiple 

graded ethanol solutions and distilled water. The cancerous region was 

identified microscopically; normal and tumor tissues were dissected with 

a sterile 30-gauge hypodermic needle. The collected samples (120000 

cells) were placed into 1.5-mL microcentrifuge tubes and processed for 

RNA extraction. 
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CHAPTER 4-RESULTS  

 

4.1 Low levels of CCDC6 in NSCLC impair Rad51 focus formation 

In the present study we have investigated the CCDC6 expression 

in a wide panel of NSCLC cell lines observing that different NSC lung 

cells show different levels of CCDC6 protein at immunoblot (Figure 5).  

 

 
Fig.5: CCDC6 protein levels in NSCLC cell lines. 

 

In particular, we pointed our attention on the NCI-H460 cells that 

exhibit barely detectable levels of CCDC6 compared to the NCI-H1975 

that show a good amount of the CCDC6 protein. The real time PCR 

showed no significant differences in the CCDC6 mRNA expression 

levels between the different NSC lung cell lines suggesting that the 

CCDC6 protein levels in the NSC lung cancer cells were dependent on 

post-translational mechanisms (Figure 6).  
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Fig. 6:  CCDC6 mRNA levels in NSCLC cell lines. No variations have been found in 

the transcript levels. 

 

Next, in order to investigate if in NSCLC the CCDC6 low levels 

could affect the DNA damage response, after 5Gy ionizing radiation 

exposure we investigated Chk1 activity in CCDC6-depleted lung cancer 

cells, compared to control. We observed that pS345 Chk1 was weakly 

activated 1 hour post DNA damage in CCDC6 deficient H460 cells 

compared to CCDC6 proficient H1975 lung cancer cells. pS139H2AX 

was barely activated in CCDC6 null lung cancer cells, as well.  

As expected, CCDC6 protein is stabilized in H1975 cells upon IR 

exposure. (Figure 7).   
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Fig. 7: CCDC6 loss in NSCLC cell lines induces a weak checkpoint and tolerance to 

DNA Damage. 

 

These data suggested that loss of CCDC6 in lung cancer cells can 

induce a weak checkpoint response and may introduce a cellular 

tolerance to DNA damage, as we have previously reported in HeLa 

cells (Merolla F et al, 2012).  

We observed that low protein levels of CCDC6 are associated to 

reduced protein levels of the Rad51 DNA recombinase at western blot 

(Figure 8).  

 
Fig. 8: Low CCDC6 protein levels in NSCLC cell lines associate to reduced Rad51 

protein levels. 
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The Rad51 localization in DNA-damage-induced foci is likely to 

reflect HR repair events. The localization of these foci, after damage, 

most likely represents the loading of the Rad51 DNA recombinase onto 

damaged DNA, as an essential part of the HR process known to be 

controlled by other HR proteins such as BRCA1 and BRCA2.  

In order to investigate the potential effect of CCDC6 on HR, we 

examined the formation of nuclear RAD51 foci after DNA damage in 

NSCLC cell lines.   In the tumourigenic NSC lung cancer cells, NCI-

H460, the CCDC6 attenuation causes an efficient elimination of the 

Rad51 foci following gamma-irradiation at 4 hours recovery, compared 

to the NSC NCI-H1975 cells that express good levels of the CCDC6 

protein. This effect is even more evident after 18 hours recovery (Figure 

9). 

 
Fig. 9: CCDC6 deficiency in NSCLC cells affects Rad51 foci formation following 5Gy 

IR. The same result is evident also H2AX foci formation. 

 

Interestingly, the stable depletion of CCDC6 in the H1975 cells 

(H1975 ShCCDC6 Cl4) (Figure 10), reduced the formation of Rad51 

foci at different recovery times (Figure 11). 
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Fig. 10: Stably CCDC6 depleted NSCLC H1975 clones.  

 

 

 
Fig.11: CCDC6 depletion in NSCLC H1975 cells affects Rad51 foci formation 

following 5Gy IR. The same result is evident also for H2AX foci formation. 

 

The observations that in naturally CCDC6-depleted NSC lung 

H460 cells the Rad51 focus induction was impaired suggested a 

potential effect of CCDC6 on HR.  

In conclusion, our data suggest that CCDC6 is important for the 

focal accumulation of Rad51 after DNA damage from ionizing radiation. 
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In CCDC6 deficient NSC lung cells a few -H2AX foci were also 

appreciated (Figure 9 and 11), as we have already reported in HeLa 

cells (Merolla et al.2012). 

 

4.2  CCDC6 loss inhibits homology-directed repair (HR) 

In order to check the proficiency of the HR repair machinery in 

CCDC6 deficient cells we have pursued several approaches. First, we 

used a validated synthetic DSB repair substrate stably introduced into 

the 293 AJ2 cells (Tutt et al. 2001). This model is based on the 

induction of a DSB by the restriction enzyme I-SceI at a single 

chromosome locus (Figure 12).  

 

 
Fig. 12: Schematic representation of the mechanism of DR1Bsd reporter plasmid. 

 

When this lesion is repaired by a homology-directed mechanism, a 

functional blasticidin resistance gene is generated.  

We have transiently silenced CCDC6 in 293AJ2 cells 

(supplementary figure) and we have observed that fewer blasticidin 

resistant 293 cells were generated when CCDC6 was depleted, using 

colony formation assay to estimate blasticidin resistance. These data 

suggested that HR is repressed by the CCDC6 loss in this model.  

These results pointed to a role of CCDC6 in the control of HR. 

Therefore, CCDC6 activity might have a stimulating effect on DNA 

repair by HR (Figure 13). 
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Fig. 13: CCDC6 silencing affects HR in 293AJ2 cell lines. 

 

To examine the overall efficiency of a specific DSB repair 

pathway, we have also utilized a different system to quantify HR in 

CCDC6 proficient (shCTRL) and depleted (shCCDC6) HeLa cells. In 

this system, a single GFP cassette is mutated by introducing two 

inverted I-Sce1 homing endonuclease sites. This reporter cassette 

(GFP minus) was used to create a stable cell line containing a single 

integrated copy of the HR-I cassette (Mao et al. 2008) In the same cells, 

the Tet-on system was engineered to control I-SceI gene expression; 

therefore, in the absence of doxycycline, I-Sce1 is not present. Within a 

few hours after doxycycline addition, the I-Sce1 gene is robustly 

expressed, which introduces a unique DS DNA break in GFP followed 

by HR repair and the appearance of GFP positive cells, evaluated by 

counting them at a fluorescence microscope (Figure 14).  
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Fig. 14: CCDC6 silencing affects HR in HeLa cell lines. 

 

The data obtained from two different assays suggested that HR, 

that usually is an error free pathway for DSBs repair, operates with a 

lower efficiency when CCDC6 is depleted in 293AJ2 cells and in Hela 

cells. The number of GFP+ cells reflects the overall efficiency of a 

specific DS repair pathway, HR. With this reporter, we observed a clear 

decrease in the GFP-positive cells when CCDC6 was depleted. The 

data obtained by two different assays suggest that HR, thought to be an 

error free pathway for DS break repair in animal cells, operates less 

effectively when CCDC6 is depleted in 293 AJ2 and HeLa cells. 

Finally, in order to check the proficiency of the HR repair 

machinery in the NSCLC CCDC6 naturally depleted H460 and in the 

CCDC6 proficient H1975 cell lines, we have utilized the twin reporter 

DR-GFP plasmid developed by M.Jasin (Figure 15), transiently co-

transfected with the plasmid encoding for the restriction enzyme  I-SceI.  
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Fig. 15: Schematic representation of the DR-GFP reporter plasmid. 

 

The reporter DR-GFP has twin cassettes (GFP-I, GFP-II) that are 

mutated and GFP minus. Adjacent to the cassette I there is a unique I-

SceI site. The expression of I-SceI induces DSB in the 5‟ cassette; this 

lesion can be repaired by HR using as the linked donor, the GFP gene 

in the cassette II restoring the GFP expression (Pierce et al., 1999).  

H460 and H1975 cells have been co-transfected with the plasmids 

containing the reporter DR-GFP and the I-SceI gene. After 48 hr of 

transfection, the HR frequency has been measured by FACS analysis 

and reported as the percentage of GFP positive cells. When I-SceI is 

transfected together with the reporter DR-GFP we can observe a lower 

number of GFP positive cells in the H460 cells compared to the H1975 

cells, suggesting that low levels of the CCDC6 protein correlate with low 

levels of HR.  

After the CCDC6 reconstitution in the H460 cells (H460-

mycCCDC6), we could see an increase of GFP positive cells compared 

to the empty vector transfected cells (Figure 16).  

The stable depletion of CCDC6 in the H1975 cells (H1975 

ShCCDC6 CL1 and CL4) affects HR supporting the relationship 

between the low levels of the CCDC6 protein and the low levels of HR 

(Figure 16).   
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Fig. 16: CCDC6 loss affects HR in NSCLC cell lines 

 

The myc-CCDC6 expression in H460 cells is shown (Figure 17).  
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Fig. 17:  Transfection efficiency of DR-GFP and I-SceI in NSCLC cell lines and myc-

CCDC6 overexpression in H460 cells. 

 

4.3  Platinum salts sensitivity in NSCLC H460 and H1975 cells 

We hypothesized that low levels of CCDC6 in H460 cells could 

lead to the sensitivity to the PARP inhibitors, like in tumours leading 

alteration of key genes involved in Homologous-directed repair, such as 

BRCA1, also enhancing the sensitivity to the association of  PARP-

inhibitors with platinum salts.  

We first assessed cellular toxicity for different concentration of 

cisplatinum in CCDC6 deficient and CCDC6 proficient lung cells by 

clonogenic survival assays. We observed that the CCDC6 deficient lung 

cancer cells, H460, were mostly resistant to platinum salts  in all the 

ranges of the doses we utilized (Figure 18 top) compared to the NSCLC 

H1975 cells, CCDC6 proficient, that showed a high sensitivity at the 

same doses (Figure 18 bottom). 
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Fig. 18: Colony forming assay to evaluate the response to cisplatinum in H460 and 

H1975 NSC lung cancer cell lines. 

 

We then hypothesized that low levels of CCDC6, combined to HR 

defects, could lead to the sensitivity to the PARP1/2 inhibitors, such as 

olaparib. To test this, we assessed the olaparib sensitivity in the H460 

cells and also in the H1975 CCDC6 proficient NSCLC cell line, using 

the Cell Titer growth assay (Figure 19 and 22).  
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Fig. 19: Cell titer growth assay in NCI-H460 cells treated with different doses of 

olaparib or cisplatinum. The restoration of CCDC6 in H460 deficient cells recovered 

cisplatinum sensitivity and decreased sensitivity to olaparib. 

 

Remarkably, no RET/PTC1 fusion or CCDC6 mutations have been 

reported in these cell lines (Matsubara D, 2012). We observed that in 

H460 NSC lung cancer cells the CCDC6 attenuation showed quite an 

elevated sensitivity to high doses of Olaparib, while a weak 

antiproliferative activity was evident at the lower doses of the Parp 

inhibitor drug (Figure 19 and 20).  

By restoring CCDC6 expression in the H460 cells, we observed 

that the ectopic expression of CCDC6 significantly recovered 

cisplatinum sensitivity while decreasing sensitivity to olaparib (Figure 19 

and 20). 
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Fig. 20: IC50 values of cisplatinum and olaparib in H460 and H460CCDC6. 

 

Next, H460 cells were treated with both the drugs in association, 

as we expected that the combination of cis-platinum with olaparib might 

show a synergistic effect in the CCDC6 deficient lung cancer cell lines.  

The concentration ratio of Cisplatinum and Olaparib were 

designed to be molar ratios of 1:2. We observed an enhanced 

sensitivity to the drugs, when used in association. Olaparib specifically 

improved cis-platinum sensitivity on CCDC6 low H460 cells (Figure 21 

bottom), as the combination of the two drugs showed a synergistic 

effect according to the CI in the H460 cells (Figure 21 top). 
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Fig. 21: Cisplatinum and Olaparib show synergism when utilized in association in 

H460. 

 

Finally, to directly assess the relationship between CCDC6 

deficiency and PARP1/2 inhibitor sensitivity, we stably silenced CCDC6 

in the profoundly olaparib resistant H1975 NSC lung cancer cell line 

and assessed olaparib sensitivity (Figure 22 and 23). 
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Fig. 22: Cell titer growth assay in NCI-H1975 cells, CCDC6 proficient, treated with 

different doses of olaparib or cisplatinum. The silencing of CCDC6 in H1975 decrease 

cisplatinum sensitivity and increase sensitivity to olaparib. 

 

 
Fig. 23: IC50 values of cisplatinum and olaparib in H1975shCTRL and 

H1975shCCDC6. 
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Two different clones (H1975ShCCDC6 CL1 and CL4) were tested 

and a significant increase  in olaparib sensitivity was achieved (data not 

shown). The ablation of CCDC6 in the NCI-H1975 cells 

(H1975shCCDC6 CL4) increased the sensitivity to olaparib (Figure 24 

bottom) and the combination of olaparib with cisplatinum showed 

synergism (CI<1) (Figure 24 top). 

 

 
Fig. 24: Cisplatinum and Olaparib show synergism in H1975shCCDC6 when utilized 

in association. 

 

4.4 CCDC6 expression in NSC lung tumors 

For the purpose of assessing CCDC6 expression in a large series 

of human NSC lung tumour samples, we have analysed 138 primary 

tumours, at different stage, which underwent surgical tumour resection 

without any previous neoadjuvant treatment (Table 1).  
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Table 1. Characteristic of  the patients 

Characteristc Patients with  
CCDC6 Low 

Patients with 
CCDC6 High  

All Patients    
 (N=138) 

Pathologic TNM  
stage 

Stage IA 9    (29%)    22   (71%) 31 (100%)    

Stage IB 20 (33.8%) 39 (66.2%) 59 (100%) 

Stage IIA      1    (25%)     3    (75%) 4 (100%) 

Stage IIB   8 (44.5%) 10 (55.5%) 18 (100%) 

Stage IIIA   10 (62.5%) 6 (37.5%) 16 (100%)  

Stage IIIB           4  (100%) 4 (100%) 

Stage IV   1  (100%) 1 (100%) 

Not Detected 3    (60%) 2    (40%) 5 (100%) 

Tumour 

T1 10 (27.7%) 26 (72.3%) 36 (100%) 

T2 33 (40.3%)       49 (59.7%) 82 (100%) 

T3 4    (57%) 3    (43%) 7 (100%) 

T4  4  (100%) 4 (100%) 

Not Detected 4 (44.5%) 5 (55.5%) 9 (100%) 

Lymph Node 

N+     5  (100%) 5 (100%) 

N0 33 (31.4%) 72 (68.6%) 105 (100%) 

N1 7 (63.6%) 4 (36.4%) 11 (100%) 

N2 8 (72.7%) 3 (27.3%) 11 (100%) 

NX    1  (100%) 1 (100%) 

Not Detected 3    (60%) 2    (40%) 5 (100%) 

Histologic Type 

ADC 23 (32.8%) 47 (67.2%) 70 (100%) 

ASC 1  (100%)        1 (100%) 

SCC 20 (42.5%) 27 (57.5%) 47 (100%) 

Other 1    (10%) 9    (90%) 10 (100%) 

Not Detected  6    (60%) 4    (40%) 10 (100%) 
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Table 2. N positivity distribution in different TNM stage 

  Patients with 
CCDC6 Low 

Patients with 
CCDC6 High 

Grand Total 

Low stage  
(IA-IIB) 

N+ 5 (41.7%) 7 (58.3%) 12 (100%) 

N0 33    (33%)   67    (67%) 100 (100%) 

High stage  
(IIIA) 

N+ 10 (66.7%) 5 (33.3%) 15 (100%) 

N0  5  (100%) 5 (100%) 

Nx  1  (100%) 1 (100%) 

Not Detected    5 (100%) 

 

We performed the IHC analysis by taking advantage of the TMA 

technique that provides a great opportunity to easily analyze, store and 

share IHC data of all the selected patients. TMA immunostaining 

investigations of CCDC6 expression demonstrated that CCDC6 is 

barely detectable in about 30% of the NSCL tumours analyzed (45 out 

of 138).  

Interestingly, the weak CCDC6 protein staining was significantly 

associated with the lymphonodal positivity (p ≤ 0,02) (Table 2 and 3).  

 

Table 3. Correlation between CCDC6 levels and lymph node  positivity 

CCDC6 low/high CCDC6  CCDC6   

N      Low High Grand Total 

N + 15 (57.7%) 11 (42.3%)         26 (100%)    

N0 33 (31.4%) 72 (68.6%)       105 (100%) 

Grand Total 48 (36.6%) 83 (63.4%)         13 (100%)   
 

Student t Test p ≤ 0.05 

 

 

Moreover, we observed that this association was even stronger in 

the high stage group of tumours (p ≤ 0,01) (Table 4), mainly 

represented by NSCLC of adenocarcinoma histotype. 
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Table 4. Correlation between CCDC6 levels and lymph node positivity in     

high stage 

 

High  
stage 

 
  

  
  

  
CCDC6 low/high CCDC6  CCDC6   

N Low        High Grand Total 

N + 10 (71.4%)    4 (28.6%)                14 (100%)  

N0 
 
5  (100%)                  5 (100%) 

Grand Total 10 (52.6%) 9 (47.4%)                19 (100%)  
 

Chi square test p ≤ 0.05 

 

 

Interestingly, a 10% occurrence of EGFR mutations was reported 

in a selected group of patients (7 out of 69). The EGFR mutations 

negatively correlated with the CCDC6 low staining phenotype (p ≤ 0,03 

Fisher Exact Test) (Table 5).  

 

Table 5. EGFR correlation with CCDC6 staining (Fisher's exact test) 

Classification X EGFR status 

Classification Y CCDC6 low /high 
  

  Classification X   

Classification Y MUT WT   

HIGH 7 35 42 (60,9%) 

LOW 0 27 27 (39,1%) 

  7 
(10,1%) 

62 
(89,9%) 

69  (100%) 

  

p = 0,03 

 

 

Most importantly, a low CCDC6 staining was negatively correlated 

to the  60 months Disease Free Survival (DFS) and the Overall Survival 

rates for the NSCLC patients as shown by the Kaplan-Meier survival 

curves (Figure 25 and 26)  (DFS p ≤ 0.01, and OS p ≤ 0.05, two-side 

log-rank test). 
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Fig. 25: Kaplan-Meier PDS plots, expressing disease free survival rate, for NSCLC 

patients grouped by the CCDC6 level of expression. 

 
Fig. 26:  Kaplan-Meier PDS plots, expressing overall survival rate, for NSCLC patients 

grouped by the CCDC6 level of expression. 
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Immunohistochemical stainings showing the analysis of whole 

sections of representative CCDC6 negative and positive samples are 

shown (Figure 27 and 28).  

 

 
 
Fig. 27: CCDC6 IHC detection in NSCLC. The image is representative of CCDC6 low 

(0/+) tumour samples.  

 

 

 
 

Fig. 28: CCDC6 IHC detection in NSCLC. The image is representative of CCDC6 high 

(+++) samples.  
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Finally, we analyzed CCDC6 mRNA levels in purified dissected 

cells from six representative NSCLC samples by RT-PCR; the mRNA 

analysis indicated that CCDC6 transcript levels did not show significant 

difference between the CCDC6-negative  (Low) and CCDC6 positive 

(High) NSCLC representative samples suggesting that the different 

amount of the CCDC6 protein was mostly dependent on post-

translational mechanisms (Figure 29 ). 

 

 
Fig. 29: CCDC6 mRNA expression in primary tumours.  
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CHAPTER 5–DISCUSSION AND CONCLUSIONS 

 

Despite years of research and hundreds of reports on tumour 

markers in oncology, the number of those that have emerged as 

clinically useful is relatively restricted. Thus the assessment of new and 

reliable markers that can help clinicians to better diagnose human 

tumours and to predict the response to standard therapies and their 

outcome is of great relevance. 

We here present some evidence suggesting that CCDC6 might be 

dowregulated on account of different genetic mechanisms affecting the 

repair of the damaged DNA and the sensitivity to different drugs, in 

human NSCLC. 

The reasons which led us to choose NSCLC to study the CCDC6 

expression levels include: (i) the occurrence of CCDC6 inactivation due 

to fusions with RET and the record of few CCDC6 somatic mutations in 

NSCLC (www.sanger.ac.uk/genetics/CGP/cosmic) (ii) the observation 

that, in the same tissue, CCDC6 is predicted as downregulated (by the 

analysis of the ArrayExpress Archive database), (iii) the high frequency 

of programmed DSBs as an essential part of genetic recombination 

during meiosis or in response to standard treatments  in NSCLC and 

(iv) that CCDC6 depleted cells repair damaged DNA in a shorter time 

compared to controls (Merolla F et al, 2012). 

In this study, we report the detection of a CCDC6 low staining at 

IHC in 30% of NSCLC, with no particular differences between adeno- 

and epidermoid carcinoma histotypes. The low intensity of CCDC6 

staining significantly associates with aggressiveness, in a group of 

completely resected NSCLC patients (stage I – IIIA). Interestingly, in a 

selected group of patients (N = 69) we detected a 10% occurrence of 

EGFR mutations that negatively correlated with the CCDC6 low 

phenotype (p ≤ 0.03) suggesting the mutual exclusivity of the two 

events.  

Notably, the low CCDC6 expression negatively correlated with the 

disease free survival rate (log rank test p ≤ 0,01) and the overall 

survival rate (log rank test p ≤ 0,05). These results suggest that the 

inclusion of CCDC6 in NSCLC clinical studies should provide an 

additional prognostic marker for the overall survival.  

Multivariate analyses to assess survival with respect to CCDC6 

togheter with already validated biomarkers need to be performed, in 
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order to estimate the impact of these factors on overall survival and on 

disease free survival. Moreover, the data obtained by the in vitro cell 

lines treatment suggest that the low CCDC6 staining should have a 

predictive value for the resistance to conventional treatments in NSCLC 

patients. Therefore, retrospective analysis on archival samples of locally 

advanced tumours from treated patients who received chemio adjuvant 

therapy and perspective studies on diagnostic samples  from elderly 

NSCLC patients  with advanced metastatic disease are ongoing  to the 

aim of evaluate the cisplatinum response with the objective to 

ameliorate the customized therapy in a near future.  

The CCDC6 mRNA analysis of representative FFPE primary 

samples as well as the CCDC6 mRNA evaluation of NSCLC cell lines, 

which exhibit different CCDC6 protein levels, did not show any 

difference in terms of mRNA transcript levels. This suggests that the 

different amount of the CCDC6 protein, between different samples, was 

likely to be dependent on post-translational mechanisms on account of 

the activities of the CCDC6 modifier enzymes, which affect the CCDC6 

protein stability  and that are currently under investigation (Cerrato A et 

al, in preparation). These findings should also indicate novel therapeutic 

opportunities in NSCLC, in a near future.  

We have recently reported that CCDC6 is important for the 

maintenance of the genome stability as its loss impairs the H2AX, Chk1 

and RPA2 phosphorylation  increasing a NHEJ-mediated repair, in 

response to genotoxic stress (Merolla F, 2012).  

In CCDC6 lung deficient cells, Chk1 activation was attenuated 

after irradiation. Chk1 has a critical role in maintaining genome stability 

by delaying S- and G2-phase progression after DNA damage to allow 

time to the cells for repair before mitosis. Moreover, Chk1 depleted cells 

failed to form Rad51 nuclear foci after exposure to genotoxic stress, as 

reported.  

Following IR exposure, in CCDC6 deficient NSC lung cancer cells 

we also observed a few gH2AX and Rad51 foci, associated to the 

impairment of HR evaluated by specific assays.  The HR defects, 

caused by the CCDC6 deficiency, sensitized tumour cells to potent 

inhibitors of the DNA repair enzymes in vitro.  

In fact, in the CCDC6 deficient H460 NSCLC tumourigenic cell line 

we observed an increase of sensitivity to olaparib and to the 

combination of olaparib with the platinum salts, that resulted in a 

synergistic effect (CI<1). These results suggested that CCDC6 might be 
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used as a biomarker of PARP1 inhibitor first line treatment. A few phase 

II trials that include PARP1 inhibitors are ongoing in NSCLC 

(www.cancer.gov/clinical trials) and in the near future it might be 

relevant to correlate the CCDC6 expression levels with the response to 

PARP1 inhibitors. The relevance of CCDC6 staining to predict 

resistance to cisplatinum salts should also be considered and extended 

to other tumours that are routinely treated with cisplatinum. As most of 

these tumours also carry DSB defects, on account of different sporadic 

genetic alterations, besides the BRCA1/2 germinal mutations, the 

relevance of the predictive value of CCDC6 to indicate sensitivity to the 

PARP inhibitors should also be taken into consideration.   

Finally, we suggest that immunostaining quantification and the 

intracellular localization of CCDC6 in tumours could help to identify the 

more aggressive intratumoural clones, guiding therapeutic strategies 

and predicting tumours outcomes, as the intratumoural cell 

heterogeneity still represents a great challenge in terms of tumour 

aggressiveness and therapy resistance.  

    

http://www.cancer.gov/clinical
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