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Abbreviations 

Abbreviations used for amino acids and designation of peptides follow the rules of the 

IUPAC-IUB Commission of Biochemical Nomenclature in J. Biol. Chem. 1972, 247, 977-

983. Amino acid symbols denote L-configuration unless indicated otherwise.  

The following additional abbreviations are used: 

3D Three-dimensional 

Aic 2-Aminoindan-2-carboxylic acid 

Alloc Allyloxycarbonyl group 

Bip Biphenylalanine 

BTPP tert-Butylimino-tri(pyrrolidino)-phosphorane 

Btz Benzothiazolylalanine 

Cha Cyclohexylalanine 

Cin (4-Cl)-(trans)-cinnamoyl 

Cpa 4-Chlorophenylalanine 

CNS  Central Nervous System 

Dab 2,4-Diaminobutyric acid 

DBU 1,8-Diazabicycloundec-7-ene 

DCM Dichloromethane 

DIC N,N’-Diisopropylcarbodiimide 

DIEA N,N-Diisopropylethylamine 

DMAP 4-Dimethylaminopyridine 

DMF Dimethylformamide 

DMSO Dimethyl sulfoxide 

DQF-COSY Double Quantum Filtered Correlated Spectroscopy 

ESI Electrospray ionization 

Fpa 4-Fluorophenylalanine 

HATU 2-(7-Aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 
hexafluorophosphate 

HBTU 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate 

HOAt 1-Hydroxy-7-azabenzotriazole 
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HOBt 1-Hhydroxybenzotriazole 

HPLC High-Performance Liquid Chromatography 

HTS High-throughput screening 

hU-II Human Urotensin-II 

IBC Isobutylchloroformate 

LC Liquid Chromatography 

MeCN Acetonitrile 

MS Mass Spectrometry 

Nal Naphthylalanine 

NBS 2-Nitrobenzenesulfonyl 

NDMBA 1,3-Dimethylbarbituric acid 

NMM 4-Methylmorpholine 

NMP N-Methyl-2-pyrrolidone 

NMR Nuclear Magnetic Resonance 

NOE Nuclear Overhauser Effect 

NOESY Nuclear Overhauser Enhancement Spectroscopy 

Pal 3-Pyridylalanine 

Pen Penicillamine 

Phg Phenylglycine 

Orn Ornithine 

RP-HPLC Reversed-Phase High-Performance Liquid Chromatography 

SAR Structure-activity relationship 

SDS Sodium-dodecyl-sulfate 

SMC Smooth Muscle Cell 

TFA Trifluoroacetic acid 

THF Tetrahydrofuran 

Tic Tetrahydro-isoquinoline-3-carboxylic acid 

TIS Triisopropylsilane 

Tle tert-Leucine 

TOCSY Total Correlated Spectroscopy 

Tpi 1,2,3,4-tetrahydro-β’-carboline-3-carboxylic acid 
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U-II Urotensin-II peptide 

URP Urotensin Related Peptide 

UT Urotensin receptor 
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1.1 The features of Urotensin-II 

Urotensin II (U-II) belongs to a series of regulatory neuropeptides first isolated from the 

urophysis of the teleost fish Gillichthys mirabilis by the groups of Karl Lederis and Howard 

Bern in the 1960s. This cyclic dodecapeptide, H-Ala-Gly-Thr-Ala-Asp-c[Cys-Phe-Trp-Lys-

Tyr-Cys]-Val-OH, was originally characterized on the basis of its interesting smooth muscle 

contracting and hypertensive effects. It has been long considered that U-II was exclusively 

produced by the fish urophysis [1]. However, the identification of U-II from frog brain [2] 

demonstrated that the cDNA encoding prepro-U-II existed in several species. In fact, 

Urotensin-II isopeptides are present in several species of vertebrates. Moreover, the gene is 

expressed not only in the caudal portion of the spinal cord but also in brain neurones, from 

frogs to humans [3]. Although the amino acid sequence in the N-terminus of urotensin 

peptides diverges across species, the cyclic hexapeptide sequence, c[Cys-Phe-Trp-Lys-Tyr-

Cys], is conserved in all isoforms (Figure 1.1).  

 

 

 

 

 

 

Figure 1.1. U-II isopeptides are present in several non-mammalian (snails, fish and frogs) and 
mammalian (human, monkey, pig, rat and mouse) species. Although the amino terminus of U-
II diverges across species, all isoforms share a conserved, cyclic hexapeptide, core sequence 
motif of Cys-Phe-Trp-Lys-Tyr-Cys (black residues).  
 
 
 
The length of the isoforms of the Urotensin-II peptide is variable across species and ranges 

from 17 amino acid residues in mice to 11 in humans, depending on proteolytic cleavages of 

precursors. Although the N-terminus region of U-II is highly variable among animal species 

From ‘gills to pills’: urotensin-II as a
regulator of mammalian cardiorenal
function
Stephen A. Douglas1, Dashyant Dhanak2 and Douglas G. Johns1

1Department of Vascular Biology, Cardiovascular and Urogenital Centre of Excellence for Drug Discovery, GlaxoSmithKline,
PO Box 1539, 709 Swedeland Road, King of Prussia PA 19406-0939, USA
2Department of Oncology Chemistry, Microbial, Musculoskeletal and Proliferative Diseases Centre of Excellence for Drug Discovery,
GlaxoSmithKline, Collegeville, PA 19426, USA

The identification of a human homolog of uroten-
sin-II (U-II) and a novel, specific G-protein-coupled
receptor by Ames et al. in 1999 changed the per-
ception that the U-II isopeptide family was an eso-
teric collection of ‘somatostatin-like neuropeptides’
present only in the nervous systems of an eclectic
array of aquatic invertebrates, fish and amphibians.
In this article, we review recent developments in
the pharmacology of human U-II, focusing on the
actions of this peptide in the mammalian cardiorenal
system. The putative role of U-II in the etiology
of hypertension, heart failure, renal dysfunction and
diabetes is discussed, as are novel U-II receptor
antagonists.

Urotensin-II (U-II) was first characterized in the 1960s
as an extract from Gillichthys mirabilis, a marine goby
that is indigenous to the mud flats and estuaries of the
Californian coastline. This fish is calledmirabilis (miracle)
because it can survive prolonged periods of hypoxia and
withstand extreme fluctuations in salinity and tempera-
ture. The subsequent demonstration that U-II isopeptides
are conserved over a wide range of evolutionary levels,
from invertebrate gastropods and cartilaginous and bony
fish to anuran amphibians and, ultimately, mammals
(Figure 1), indicates that this cyclic peptide has a role in
the physiological and pathophysiological regulation of
major organ systems, including the heart and vasculature
in mammals [1].

Figure 1. Originally isolated in the 1960s from the longjawed mudsucker (Gillichthys mirabilis), a marine goby that is indigenous to the inter-tidal flats, coastal sloughs and
estuaries of Northern California, the Baja peninsula and the Gulf of California, urotensin-II (U-II) isopeptides are present in several non-mammalian (snails, fish and frogs)
and mammalian (human, monkey, pig, rat and mouse) species. Although the amino terminus of U-II diverges between species, all isoforms share a conserved, cyclic hexa-
peptide, core-sequence motif of CFWKYC (black residues). Relative to human U-II, conserved residues outside this hexapeptide core are in red and divergent residues in
green. All U-II isopeptides contain a disulfide bridge between the two cysteine residues that cyclizes the peptide into its biologically active confirmation. The cyclic hexapep-
tide core is preceded by an acidic residue [aspartic (red) or glutamic acid (orange)] and followed by a neutral residue [valine (red) or isoleucine (orange)]. The core octapep-
tide fragment retains full biological activity as a UT receptor ligand and a spasmogen in isolated vascular tissue. Accordingly, the pharmacological properties of U-II
isopeptides are indistinguishable by either binding or functional studies in different species. Thus, the UT receptor does not distinguish between fish, frog and mammalian
isopeptides, and the IC50, Ki and EC50 values are ,1 nM in cell-based and tissue-based binding assays and functional assays of Ca2þ-mobilization and arachidonate-metab-
olite release.

TRENDS in Pharmacological Sciences 
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[4], the C-terminal amino acids, organized in a disulphide-linked cyclic array, c[Cys-Phe-Trp-

Lys-Tyr-Cys], are stringently conserved from species to species, suggesting their important 

role in the peptide’s biological activity [5]. In addition, the goby isoform of U-II exhibits 

some structural similarities with somatostatin-14, H-Ala-Gly-c[Cys-Lys-Asn-Phe-Phe-Trp-

Lys-Thr-Phe-Thr-Ser-Cys]-OH, both containing the presence of a disulphide-linked cyclic 

core at their C-terminus portion with the biologically active domain Phe-Trp-Lys [6].  

The human U-II (hU-II) is a cyclic undecapeptide, H-Glu-Thr-Pro-Asp-c[Cys-Phe-Trp-Lys-

Tyr-Cys]-Val-OH, recognized as the natural ligand of an orphan G-protein coupled receptor, 

first characterized in rat, which possess a receptor with high affinity for U-II, GPR14 [7]. 

Subsequently, a human G-protein coupled receptor showing 75% similarity to the orphan rat 

receptor was cloned and renamed UT receptor by IUPHAR [8] (Figure 1.2).  

 

 

 

 

 

 

 

Figure 1.2. The hU-II(4-11) is the minimal sequence needed for maintaining biological 
activity. The exacyclic portion of this peptide (red) is responsible of interaction with its G-
protein coupled receptor, named UT receptor. 
 
 
 
1.2 Urotensin-II receptor (UT) 

Investigation of the role of the UT receptor has shown that it is widely distributed in the CNS 

and in different peripheral tissues including cardiovascular system [9], kidney, bladder and 

adrenal gland [10]. This extensive expression has also suggested implication in multiple 

pathophysiological effects mediated by the hU-II/UT receptor, such as cardiovascular 

H2N
O

H
N

O

S

N
H

O

HN

O NHHN

O

NH2

H
N

O

N
HO

S
H
N

HO

O

OH

OH

O

hU-II(4-11) 

hUT-II 



	  
11 

disorders (heart failure, cardiac remodelling, atherosclerosis), smooth muscle cell 

proliferation, renal disease, diabetes [11], and tumor growth. The UT receptor is especially 

expressed in vascular smooth muscle, endothelium and myocardium, and plays a key role in 

the regulation of the cardiovascular homeostasis. Furthermore, this receptor has structural 

homology to members of the somatostatin receptor family and may be activated by 

somatostatin-14 and cortistatin at micromolar doses [7]. The gene coding for the UT receptor 

has been located on chromosome 17q25.3 [12]. 

The hU-II peptide binds with high affinity to the UT receptor, resulting in intracellular 

calcium mobilization via phospholipase C-dependent increase in inositol phosphate (Figure 

1.3).  

 

 

 

 

 

 

 

 

 

Figure 1.3. hUT receptor model complexed with hU-II. Receptor backbones are represented 
in gray and labeled.  
 
 
 
In isolated rat thoracic aorta fragments hU-II induces contraction mediated by two distinct 

tonic and phasic components. The vasoconstrictor activity of hU-II is also observed in primate 

arteries, in which it causes a concentration-dependent contraction of isolated arterial rings 

with an EC50 value <1 nM, meaning a >10-fold potency than endothelin-1. Moreover, the in 
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vivo effects of hU-II may depend on species, blood vassel type, U-II concentration, 

administration route, tissue and species. Contradictory, the peptide has also elicited 

vasodilatory effects on the small arteries of rats and on the resistance arteries of humans, 

probably due to the release of endothelium-derived hyperpolarising factor and nitric oxide 

[13]. In a healthy human, U-II behaves as a chronic regulator of vascular tone rather than 

influencing tissues in a phasic manner [14]. U-II binds to its receptor in a ‘pseudo-

irreversible’ manner. Its slow dissociation from the UT receptor leads to prolonged activation 

of the receptor and a functionally silent system [15]. This state of homeostasis is altered since 

pathogenesis of several cardiovascular disorders provokes an upregulation of UT receptor and 

U-II resulting in vasoconstriction. 

 

1.3 Functional relationships between U-II and somatostatin 

Somatostatin was originally discovered around 40 years ago as an inhibitor of growth 

hormone release from the pituitary gland [6,16], and was later shown to play an important 

role in the regulation and release of insulin, as well as a variety of other hormones and 

enzymes. In addition to expression in nervous, neuroendocrine, and gastrointestinal cells, 

somatostatin is expressed in cancer cells [17]. Most neuroendocrine tumors display strong 

overexpression of somatostatin receptors. Currently five somatostatin receptor subtypes are 

known (sst1-5), and the subtype receptor sst2 is mainly expressed in tumor, whereas the 

density of these receptors is highly variable in non-tumor tissues.  

Somatostatin-14 is structurally similar to U-II (Figure 1.4) and, originally, U-II was suspected 

to be a somatostatin analog because of the peptide sequences analogies and the sharing of 

some biological properties (particularly in the context of the metabolic syndrome, diabetes, 

and cardiovascular disease). However, the functional correlation between hU-II and 

somatostatin has been discerned, including their roles in cancer cells. U-II may act on tumor 

cells as an autocrine/paracrine factor affecting cancer cell growth [18] and U-II mRNA has 
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been detected in tumor cell lines of neural origin; U-II stimulates significantly proliferation of 

human adrenocortical carcinoma SW-13 and human renal cell carcinoma VMRC-RCW cell 

lines [19]. In 2011, Grieco et al. [20] performed bio-pharmacological studies to assess the role 

of U-II in human carcinogenesis. In particular, they evaluated UT receptor expression in in 

vivo samples collected from patients affected by prostate adenocarcinoma, and found that the 

UT receptor was highly expressed in well-differentiated human prostate cancer and 

moderately expressed in prostate hyperplasia. Moreover, the UT receptor is also expressed in 

colon cancer cells; recent studies have demonstrated that urotensin agonists and antagonists 

could modulate colon cancer cell growth, motility and invasion [21]. 

 

 

 

 

 
 
 

 
 

 
 
Figure 1.4. Representation of human U-II (hU-II) and somatostatin-14 peptides. The common 
sequence Phe-Trp-Lys shared between these two peptides is in red. 
 
 
 
The characterization of cDNA encoding carp pro-U-II has shown that the U-II and 

somatostatin-14 precursors share a common structural organization, because the active 

peptides are both located at the C-terminal portion of the precursors [22]. After the UT 

receptor was identified as a member of somatostatin receptor family, some somatostatin-like 

peptides containing a disulphide bridge, such as human melanin-concentrating hormone, 

somatostatin-14, cortistatin-14 and octreotide, were screened on the UT receptor to compare 

their biological activities with that of endogenous U-II [23]. These comparisons have 
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established that U-II is the only endogenous ligand with high-affinity for the somatostatin-like 

receptor named the UT receptor. 

 

1.4 Patho-physiological role of U-II 

U-II binds to the the Gq protein urotensin-II receptor (UT) which has been identified in 

several tissues, such as cardiac myocytes, vascular smooth muscle cells (SMC), endothelial 

cells, spinal cord, central nervous system (CNS), and kidneys. On the other hand, U-II is 

expressed in blood vessels from the heart, pancreas, kidney, placenta, thyroid, adrenal gland, 

and umbilical cord. Thus, both U-II and the UT receptor seem to be ubiquitously expressed in 

human tissues [24] (Figure 1.5). 

 

 

 

 

 

 

 

 

 

Figure 1.5. U-II has diverse biological actions in mammals and might influence several major 
organ systems in humans. However, U-II seems to be primarly involved in the cardiorenal 
system where evidences indicates that blood pressure might be regulated by direct effects on 
heart, kidney, and peripheral vasculature and by indirect central mechanisms and secondary 
endocrine actions. Abbreviations: A1, area of the medulla; BP, blood pressure; EDHF, 
endothelial-derived hyperpolarization factor; HR, heart rate; NO, nitric oxide; PGI2, 
prostacyclin; SMC, smooth muscle cell; TSH, thyroid-stimulating hormone.  
 
 
 
U-II is generally considered to be the most potent endogenous vasoconstrictor discovered to 

date [10]. Stimulation of UT can trigger the release of nitric oxide (NO), prostacyclin, 
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prostaglandin E2, and endothelium-derived hyperpolarizing factors to balance contractile 

effects on SMCs [13]. In a healthy human, U-II modulates vascular tone as a chronic 

regulator and its “pseudo-irreversible” binding properties and slow dissociation rate from the 

UT receptor leads to prolonged activation of UT and to a functionally silent system [24,25]. 

In patients with cardiovascular diseases, this homeostasis is disturbed with evidences of 

upregulation of UT and U-II in atherosclerotic lesions resulting in vasoconstriction (Figure 

1.6).  

 

 

 

 

 

 

 
Figure 1.6. Schematic view of consequences related to elevated levels of U-II and UT 
receptor. U-II is known to inhibit insulin release and may contribute to the development of 
metabolic syndrome. The resulting inflammation and endothelial damage leads to kidney 
injury, which increases blood pressure. Cardiovascular disease is also provoked by the 
formation of atherosclerotic plaques.  
 
 
 
The high-fat diet associated with a Western lifestyle can contribute to the upregulation of U-II 

and UT receptor expression. U-II is known to inhibit insulin release and may be implicated in 

the development of metabolic syndrome. Both U-II and UT receptor are present in the human 

pancreas and seem to inhibit directly β-cell function, thus inhibiting insulin release evoking 

type II diabetes mellitus [26]. Elevated U-II plasma concentrations in metabolic syndrome 

may be a result of damaged endothelial cells resulting in kidney injury and, thus, increased 

blood pressure. Indeed, the kidney plays an important role in regulating cardiovascular 

homeostasis, influencing both cardiac preload and afterload volume, and vasomotor tone. U-II 
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and possibly urotensin-related protein bind UT in renal tubule cells leading to decreased urine 

flow. In addition, U-II acting at the glomerulus decreases directly glomerular filtration rate. 

These effects impair normal cardiovascular homeostasis, increasing blood pressure, and 

promoting cardiovascular disease (Figure 1.7). 

 

 

 

 

 

 

 

 

Figure 1.7. Urotensin-II and possibly urotensin-related peptide (URP) binding to UT receptor 
in renal tubule cells promote decreased urine flow. U-II acting at the glomerulus directly 
decreases glomerular filtration rate. These effects impair normal cardiovascular homeostasis, 
increasing blood pressure, and promoting cardiovascular disease. 
 
 
 
In conclusion, elevated plasma levels of U-II have been found in patients with heart failure, 

congestive heart failure, carotid atherosclerosis, renal failure, renal dysfunction, portal 

hypertension-cirrhosis, diabetes mellitus, and essential hypertension. Moreover, the use of UT 

antagonists to treat cardiovascular diseases has revealed improvements in hemodynamics and 

cardiovascular remodeling, suggesting that U-II is involved in the development of diseases 

[26].  
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2 Structure-Activity Relationship Studies (SARs) 
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2.1 Backgroung to Urotensin-II 

As mentioned above, the human U-II peptide is involved in several pathophysiological 

pathways related to the cardiovascular system. The interaction of U-II with the UT receptor 

has been observed to regulate the contractility and growth of cardiac and peripheral vascular 

vessels facilitating identification of selective ligands. Selective compounds are intriguing, 

because modulation of the U-II system offers great potential for therapeutic strategies in the 

treatment of cardiovascular diseases. To define the roles of U-II and its receptor in 

cardiovascular homeostasis and pathophysiology, as well as in the aetiology of related 

disorders, the design of suitable tools of peptide or nonpeptide nature would be of significant 

utility [27]. New molecules may assist in determining these roles by serving as selective UT 

receptor antagonists.  

With the aim to investigate the role played by the exocyclic region of the peptide in receptor 

interactions, a series of modifications on hU-II have been performed to elucidate the relations 

between structure and biological activity. One of the first studies involved synthesis of a 

series of abridged hU-II peptides, because truncation studies can detect the minimal sequence 

for biological activity. The effect of sequential deletion of exocyclic residues from the N- and 

C-termini of the hU-II sequence did not appear to be significant for the calcium-mobilizing 

potency and efficacy; however, removal of any residue within the cyclic region reduced or 

total abolished biological activity. The shortest, fully potent sequence of U-II was the 

octapeptide U-II(4-11), H-Asp-c[Cys-Phe-Trp-Lys-Tyr-Cys]Val-OH, which exhibited 

potency at the human UT receptor similar to somatostatin-14. 

The importance of a free amino group at the N-terminal of the octapeptide U-II(4-11) was 

evaluated in 2002 by modification using a succinoyl derivative [28]. Introduction of 

additional carboxylate residues by substitution of Asp4 showed similar results. Furthermore, 

the replacement of this amino acid with the corresponding Asn gave a fully potent analog in 

all three assays, suggesting that a negative charge in the side chain was not required for 
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activity. These results were confirmed subsequently by the discovery of a second endogenous 

peptide named URP (urotenisn related peptide, H-Ala-c[Cys-Phe-Trp-Lys-Tyr-Cys]-Val-

OH). The Nle4 analog lacked potency indicating that the -CH2COX carbonyl group present in 

both the Asp and Asn side chains is important probably because of its possibility to act as an 

acceptor for hydrogen-bond with the UT receptor. The side chain can also contain an aromatic 

ring substituted with polar groups such as -OH and -NO2, which is of great interest in the 

development of antagonists based on the previously identified somatostatin antagonist 

octapeptides.  

The cyclic structure is essential for hU-II. McMaster et al. in 1986 [29] reported a lack of 

biological activity for the corresponding ‘ring-opened’ analogue. In 2002, Grieco et al. [30] 

considered the replacement of the disulphide bridge by a side chain-to-side chain lactam 

bridge in accordance with observations on active analogs of several biologically relevant 

peptides, such as the conotoxins, endothelin-1 and somatostatin. Starting from the minimum 

active fragment U-II(4-11), introduction of a lactam bridge led to peptides that maintained 

bioactivity, albeit with reduced potency, suggesting that the size of the lactam bridge was a 

crucial parameter. Peptide analogues synthesized in this study were characterized by rings 

that ranged from 20 to 24 atoms; the smallest peptide sequence having the same length as the 

native peptide containing the disulphide bridge did not show any biological activity. In 

contrast, the analogue corresponding to the larger ring, containing Orn and Asp as residues in 

the 22 atom lactam bridge, behaved as a full agonist with approximately 100-fold less potency 

than hU-II. Replacement of the Cys-Cys cyclic motif could thus be well tolerated by an 

appropriately longer lactam bridge with partial loss of activity, probably due to the different 

orientation of the key amino acid side chains. Subsequently, Foister et al. in 2006 [31] made a 

cyclic ‘cysteine-free’ hexapeptide derivative of U-II, in which Tyr9 was replaced with a β-

naphthylalanine residue, c[Ala-Phe-Trp-Lys-(2’)Nal-Ala], and found it bound at the human 

UT receptor with higher affinity than the corresponding disulphide-bridged truncated 
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hexapeptide U-II(5-10). Modifications of the Cys5-Cys10 disulfide bridge, such as the 

macrocyclcic lactam and the penicillamine-derived disulphide moiety, have also been pursued 

to chemically stabilize and restrict the conformational flexibility of the biologically active 

cyclic hexapeptide core sequence. Replacement of Cys5 with penicillamine resulted in a 

potent agonist, [Pen5]hU-II(4-11), subsequently renamed P5U [30], which was later studied 

by NMR spectroscopy in DMSO [32]. An alanine scan of truncated goby U-II peptide 

demonstrated that the Trp, Lys and Tyr residues were crucial for biological activity [33]. The 

sequence Trp-Lys-Tyr within Urotensin-II peptide is essential for binding and activation of 

the receptor. The hydrophobic side chains of Trp7 and Tyr9 and the positive charge of Lys8 

represent key pharmacophoric elements. Moreover, NMR studies performed by Flohr et al. in 

2002 [34] revealed the importance of the distances between these pharmacophoric points. 

Accordingly, the first NMR studies applied to the receptor-unbound hU-II in water were used 

to provide a putative agonist pharmacophore. Flohr et al. studied D-isomer substitution of the 

amino acids in the hexacyclic part of hU-II. This led to dramatic decrease of the agonist 

activity, suggesting the importance of the configuration of the side chains of these amino 

acids and their spatial orientation for interaction with the UT receptor. Stereoinversion of the 

L-Trp residue gave a D-Trp analog, which did not exhibit a significant change of EC50 value 

relative to the endogenous ligand. The role of Lys8 was also investigated by replacement with 

lipophilic amino acids and hydrophilic non-basic amino acids that produced inactive peptides 

[35], indicating that the positive charge of the primary aliphatic amine is essential for 

biological activity. Reducing the distance of the primary aliphatic amine from the peptide 

backbone led to a progressive decrease of both potency and efficacy. [Orn8]U-II caused weak 

contractions of rat aorta strips corresponding to about 20% of the U-II maximal effect at 

micromolar concentrations. In position 9 the phenol hydroxyl group of tyrosine was replaced 

with -OCH3, -NO2, -CH3, -F, -H, and -NH2 without improvement in potency or efficacy at the 
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rat UT receptor. The 3-iodo-Tyr analog exhibited 6-fold greater UT receptor agonism than the 

natural peptide.  

The introduction of non-natural amino acids into the U-II sequence has also been pursued to 

alter potency and efficacy at the UT receptor [33]. Replacement of the Tyr residue with the 

bulkier (2-naphthyl)-L-alanine [(2’)Nal] in the goby U-II sequence gave an analog with 

similar agonist potency in the functional assay and a 6-fold improvement in binding affinity, 

presumably due to enhanced hydrophobic interactions at the tyrosine-binding pocket. In 

contrast, replacement of Tyr with a Bip [(2-biphenyl)-L-alanine] residue did not give an equal 

result, confirming that larger side chain groups are not well accommodated.  

 

2.2 Peptidic urotensin analogues 

The potential therapeutic applications of urotensin-II system have driven structure-activity 

relationship (SAR) studies to discover new agonists and antagonists, and to elucidate features 

responsible for the function of the hU-II hormone. Early observations of shared sequence 

homologies between hU-II and somatostatin, gave rise to analogues such as PRL-2903 {H-

Fpa-c[Cys-Pal-DTrp-Lys-Tle-Cys]-(2’)Nal-NH2}, which blocked hU-II-induced rat aorta ring 

contractions at micromolar concentrations, albeit with low species selectivity [37]. Another 

peptide somatostatin analogue, SB-710411 {H-Cpa-c[DCys-Pal-DTrp-Lys-Val-Cys]-Cpa-

NH2} exhibited moderate affinity for UT receptor and inhibited U-II induced contractions in 

rat isolated thoracic aorta in a surmountable manner [37].  

A cyclo-somatostatin octapeptide analogue that shares structural similarity with SB-710411, 

the peptide neuromedin B receptor antagonist BIM-23127 {D(2’)Nal-c[Cys-Tyr-DTrp-Orn-

Val-Cys]-(2’)Nal-NH2} [38] was investigated for functional activity at recombinant and 

native UT receptors [39]. Increasing concentrations of BIM-23127 antagonized competitively 

hU-II-induced intracellular calcium mobilization in HEK293 cell lines expressing human and 

rat UT receptor. Moreover, BIM-23127 showed about a 0.5 log unit lower affinity in 
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competition binding experiments to human and rat UT receptors, suppressing significantly the 

maximum contractile response to hU-II. In isolated rat aorta, BIM-23127 exhibited non-

competitive antagonism of U-II and inhibited competitively calcium mobilization in human 

embryonic kidney 293 cells. A related neuromedin B receptor antagonist, BIM-23042 {D-

(2’)Nal-c[Cys-Tyr-DTrp-Lys-Val-Cys]-(2’)Nal-NH2} displayed different functional activities 

at several UT receptor orthologs. It behaved as a full agonist at the human and monkey UT 

receptors, as partial agonist at the mouse UT receptor, and as a competitive antagonist at rat 

UT receptor [39].  

Among the most potent compounds, [Orn8]U-II was introduced by Camarda et al. in 2002 

[40], characterized in vitro as a novel peptide ligand for the UT receptor, and behaved as a 

full agonist in the calcium functional assay in HEK293 human and rat UT cells, inducing 

similar maximal effects as U-II. However, the potency of [Orn8]U-II at both receptors was 3-

fold lower than U-II. In contrast, different results were obtained in the rat aorta bioassay, in 

which the compound behaved as a competitive antagonist, showing only in highest 

concentrations (10 µM) a weak residual agonist activity (25% compared to the maximal effect 

of U-II). The variance between results obtained in the cell and tissue assays could be 

interpreted assuming that [Orn8]hU-II is a partial agonist.  

In 2002 Grieco et al. [30] generated a novel peptide UT receptor agonist by introduction of 

β,β-dimethyl-substituted cysteine (penicillamine) at the disulphide bridge of hUT-II(4-11). 

The resulting analogue P5U {[Pen5]hU-II(4-11)} was rigid, potent and exhibited a 3-fold 

higher affinity for the UT receptor then the endogenous ligand in competition with iodinated 

radioligand. In functional experiments on the rat aorta, P5U was 20-fold more potent than hU-

II and 10-fold more potent than hU-II(4-11), being the most potent U-II analogue in the rat 

thoracic aorta bioassay described so far. Interestingly, conformational analysis by 1H nuclear 

magnetic resonance (NMR) spectroscopy combined with molecular modelling on this peptide 

also indicated further details about structure-activity relationships since the putative 
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pharmacophoric Trp-Lys-Tyr sequence of the cyclic portion of P5U maintains the same 

spatial orientation as in the native peptide. Initial structural studies on U-II by NMR 

spectroscopy revealed no classical secondary structure for the preferred conformer of the 

peptide in DMSO and water; however, hU-II and some analogues folded into a defined 

secondary structure in the membrane mimetic environment of SDS solution. Analogues 

retaining high affinity for the UT receptor, such as P5U, all possessed a type II’ β-hairpin 

conformation regardless of their agonist or antagonist activity, indicating that such backbone 

conformation is necessary for UT recognition [41] (Figure 2.1). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. P5U (a) and urantide (b) peptides represent the most potent agonist and 
antagonist, respectively, to date. The uncoded amino acids which differ from hU-II(4-11) 
sequence are in red. On the right, superimposition of representative structures of P5U (blue) 
and urantide (yellow).  
 

The chemical modification induced by penicillamine influences mainly the proximal Phe6 

position and leaves the conformation unaffected about the Trp, Lys and Tyr residue. The 

enhanced pharmacological properties observed in the case of P5U can be assigned to this 

in good accordance with those found above using the
rotational isomeric state approximation.

Peptide 7 (Figure 1d) possesses a less defined struc-
ture. It loses the !-hairpin structure characteristic of
high-affinity ligands. In particular, the N- and C-
terminal residues show very different orientations when
compared to the other analogues, which is due to the
inversion of the configuration at the Pen5 CR atom. The
!-II! turn structure is still observable, but the Orn8 and
Tyr9 side chain orientations are poorly defined, and the
D-Trp7 side chain, which shows a preferred trans
orientation, occupies a different spatial position com-
pared to the agonist P5U, mainly as consequence of the
different value of the "2 angle (-81 ( 30° in 7 vs +30 (
10 in P5U).

Discussion

We have synthesized, biologically evaluated, and
studied the conformational properties of various ana-
logues of U-II (Table 1). SAR studies indicate that the
replacement of the Trp7 residue with the corresponding
D-isomer switches the activity from agonist to partial
agonist.14,17-19,28 Similarly, partial agonists are obtained
by replacement of the Lys8 residue with Orn; however,
in this case a weak antagonist activity is also ob-
served.19,29 The simultaneous presence of a D-Trp resi-
due in position 7 and an Orn residue in position 8 leads
to a potent antagonist devoid of any residual agonist
activity (urantide, 5).12 The substitution of the Cys5 with
Pen enhances the agonist potency (hU-II(4-11)/P5U)11

in the analogues bearing the L-Trp residue in position
7 while bringing about only minor effects, if any, on
partial agonists and antagonists, thus indicating that
the stabilization of the type II! !-hairpin structure is
important for triggering the biological response upon
occupation of the receptor.

The partial agonist 1, the partial agonist/antagonist
3, the pure antagonist 5, and the inactive compound 7
were subjected to extensive conformational analysis.
The NMR analyses were performed in a membrane
mimetic environment (SDS solution), since we have
previously succeeded in correlating the micelle-bound
structure of UT agonists to their activity.16

The analyzed analogues that retain high affinity for
UT receptor (i.e., 1, 3, and 5) all possess a type II!
!-hairpin backbone conformation as P5U,16 regardless
of their agonist or antagonist activity, indicating that
such backbone conformation is necessary for the UT
recognition. The inactive compound 7 did not show any
propensity to hairpin formation. This result, together
with a different orientation of the pharmacophoric side
chains, can explain the inactivity of the peptide.

The main conformational difference observed in the
structures of the antagonists 5 and 3 and the agonists
P5U16 and 1 consists of a different orientation of the
(D/L)-Trp7 side chain. In particular, while in P5U and 1
(Table 2 and Figure 1) the side chain of (D/L)-Trp7 adopts
a well-defined trans orientation ("1 ≈ 180°), in 3 and 5
the (D/L)-Trp7 side chain is more flexible with an
increased amount of the gauche population. For both 3
and 5, two families of structures can be defined (3g and
3t for 3; 5g and 5t for 5) based on the different
orientation of the (D/L)-Trp7 side chain. In Table 3, the
distances among the putative pharmacophoric points

according to Fhlor et al.14 are reported. The different
conformational behavior of UT antagonists vs agonists
prompted us to hypothesize that the different side chain
orientation of the (D/L)-Trp7, together with the Lys/Orn
substitution at position 8, represents the structural
basis for the agonist/antagonist activity switching ob-
served in our compounds. In Figure 2, a superposition
of representative structures of P5U and urantide 5g
family is shown. Clearly, while in the agonist a tight
contact among the Trp7, Lys8, and Tyr9 side chains is
observed in the antagonist, the D-Trp indole moiety is
far from the Orn8 and Tyr9 side chains. As consequence
of our structural hypothesis, pharmacophoric distances
observed in the 5g family (Table 3) can be considered
as a model for the UT antagonist queries.

The distances between the putative pharmacophoric
points were already reported by Flohr et al.14 for U-II
and [D-Trp7]U-II. These distances were used as input
for a virtual screening of a proprietary database. The
search performed with the U-II pharmacophoric dis-
tances allowed the discovery of new non-peptide an-
tagonists. Interestingly, the U-II pharmacophoric dis-
tances found by Flohr are similar to those found in our
antagonist model (Table 3).

Table 3. UT-II Receptor Ligand Pharmacophoric Distances (Å)

peptide Trp7 b-Lys8 c Nϵ Trp7 b-Tyr9 b Lys8Nϵ-Tyr9 b

P5U 5.6 6.1 6.2
1 6.5 8.9 6.3
3g 8.5 10.4 5.0
3t 4.7 7.9 4.8
5g 9.1d 11.5 5.4
5t 5.6 9.4 7.1
7 7.2 11.2 9.0
U-IIe 11.3 12.2 6.4
a Reported distances were measured as the mean of the 20

calculated structures of P5U, 1, and 7, while for 3 and 5 two
subfamilies of structures (3g and 3t for 3; 5g and 5t for 5) were
considered (see text). b Aryl ring centroids. c Orn8 in 3, 5, and 7.
d Distances of the hypothesized antagonist model are evidenced.
e Distances reported in ref 14.

Figure 2. Superposition of representative structures of P5U
(blue) and urantide (yellow). Structures were superimposed
using the backbone heavy atoms of residues 5-10. Hydrogen
atoms are not shown for clarity.
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conformational restriction revealing the importance of the exploration of specific orientations 

in the three-dimensional space by which amino acid side chains can interact with the receptor.   

Subsequent attempts were challenged to develop more potent and selective UT receptor 

antagonists, because antagonist peptides such as SB-710411 and [Orn8]U-II, BIM-23127 

exhibited weak potency at the UT receptor with concomitant antagonist activities at different 

receptor types, as well as partial agonist activity at UT, Patacchini et al. in 2003 [42] 

described the pharmacological activities of two compounds: [Pen5, Orn8]hU-II(4-11) and 

[Pen5, DTrp7, Orn8]hU-II(4-11), named urantide (Urotensin-II antagonist peptide). Both 

peptides derived from the hU-II(4-11) fragment, previously reported as the minimal active 

sequence of hU-II, included replacement of Cys5 by penicillamine (β,β-dimethylcysteine) to 

enhance conformational rigidity and stabilize the putative bioactive conformation. In 

functional experiments both peptides showed no agonist effect in the range 0.1 nM to 10 µM. 

Urantide exhibited no agonist effects even when administered at a single concentration. In 

contrast, [Pen5, Orn8]hU-II(4-11) exhibited a desensitization that affected UT receptor-

mediated responses in this preparation. As the most potent UT receptor antagonist yet to be 

reported, urantide has high affinity for human and rat UT receptors. Conformational studies 

on urantide performed in 2005 by Grieco et al. [41] showed that the distance between Trp7 

and Tyr9 side chains was greater than that observed in the peptide agonist P5U because of the 

inversion of L-Trp7 into the corresponding D-isomer in urantide. Urantide is a relatively 

potent UT receptor antagonist exhibiting about 50- to 100-fold greater potency than any other 

compounds tested in the rat-isolated aorta. In spite of its potent UT receptor antagonist 

activity in the rat aorta bioassay, urantide showed residual agonist activity in a human 

recombinant cell calcium mobilization assay [43]. In order to develop a selective antagonist, 

chemical modifications led to UFP-803 {[Pen5, DTrp7, Dab8]U-II(4-11)}, which is closely 

related [44], but exhibits less residual agonist activity than urantide. In the rat aorta bioassay, 
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UFP-803 competitively antagonizes U-II contractile action behaving as a selective UT 

receptor antagonist.  

In 2003 a report from Sugo et al. [45] demonstrated the existence of a paralogue of U-II 

named U-II related peptide (URP, H-Ala-c[Cys-Phe-Trp-Lys-Tyr-Cys]-Val-OH), a novel 

peptide first isolated from the extract of rat brain and subsequently observed as the 

endogenous ligand for the UT receptor in rat, mouse and possibly in human. URP exhibits 

high binding affinity for the human UT receptor in transfected cell lines and high contractile 

potency in the rat aortic ring assay, suggesting that some physiological effects could be not 

completely attributed to U-II. In spite of the structural homology between U-II and URP, and 

their concurrent expression in several human tissues, recent studies have reported different 

actions for these two peptides such as cell proliferation [46] and distinctive myocardial 

contractile activities [47]. Therefore, the identification of more selective ligands should be 

helpful for clarifying the roles of U-II and URP in the urotensinergic system.   

In order to evaluate the correct orientation of amino acid side chains belonging to the cyclic 

region of URP in the activity of the peptide, each amino acid has been replaced with the 

corresponding stereoisomer in a D-amino acid scan analysis [48]. Substitution of D-isomers 

within the cyclic region residues Phe3, Lys5 and Tyr6 reduced binding affinity and contractile 

activity, confirming the primary role of this portion in receptor recognition. In contrast, the 

[DTrp4]URP analogue retained important binding affinity, suggesting a relative tolerance in 

the interaction with the receptor by stereoinversion at the 4-position. With reduced efficacy, 

[DTrp4]URP appeared to behave as a partial agonist with moderate potency and a full 

antagonist with low potency, indicating that substitution at the Trp residue in U-II and URP 

sequence could lead to antagonists. Subsequently, Chatenet et al. in 2012 [49] replaced the 

indole moiety of Trp in URP to obtain promising antagonists. For example, urocontrin, 

{[Bip4]URP} was a novel antagonist with the selective ability to specifically reduce the 

maximal efficacy of hU-II but not URP-associated vasoconstriction in a rat aorta assay. Based 
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on this atypical behavior, a recent study by Chatenet et al. (2012) [50] identified urocontrin A 

([Pep4]URP), which exhibited no agonistic activity, and behaved as an allosteric modulator of 

the urotensinergic system. Urocontrin A reduced the efficacy of hU-II but not URP-induced 

vasoconstriction. By acting at a purported allosteric binding site, urocontrin A is suggested to 

modify UT receptor topography in a way that prevents interaction with the hU-II(1-11) N-

terminal region leading to reduced efficacy. On the other hand, such conformational alteration 

of the UT receptor has no effect upon URP-mediated action (Figure 2.2).  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Allosteric modulation mechanism proposed for urocontrin A. 
 
 
 
Antagonist peptides, such as urantide, [Orn8]U-II, UFP-803, BIM-23042 and SB-710411, all 

exhibit contradictory actions in selected assay systems. For example, they have shown 

antagonist properties in rat-isolated aorta, and partial agonist action by mobilization of 

intracellular calcium in specific recombinant UT receptor HEK/CHO cell systems. Similar 
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observations of residual agonist activity made by Kenakin in 2002 [51] and Camarda et al. in 

2002 [40] have led to the proposal of ‘assay-dependent’ agonism- and antagonism-activity 

from different amounts of UT receptor expression and signal transduction-coupling 

efficiency. For example, activity may change depending on the receptor density and the 

efficiency of receptor couplings. For this reason, identification of a novel and selective 

antagonist was achieved by examining ligand-evoked UT receptor agonism under conditions 

of both low and high receptor density and efficient coupling and amplification. In 2006 Behm 

et al. [52] described GSK248451 {H-(4-Cl)-(trans)-cinnamoyl-c[DCys-Pal-DTrp-Orn-Val-

Cys]-His-NH2} [53], which is a potent UT receptor antagonist in all native mammalian 

isolated tissues retaining an extremely low level of relative intrinsic activity in recombinant 

HEK cells (4-5 fold less than observed for urantide). Furthermore, GSK248451 became a 

suitable tool compound for further investigations concerning the role of U-II in the aetiology 

of mammalian cardiometabolic diseases, because it represents a selective UT receptor 

antagonist that blocks the systemic vasopressor actions of exogenous U-II. 

 

Name Peptide Sequence 
PRL-2903 H-Fpa-c[Cys-Pal-DTrp-Lys-Tle-Cys]-(2’)Nal-NH2 
SB-710411 H-Cpa-c[DCys-Pal-DTrp-Lys-Val-Cys]-Cpa-NH2 
BIM-23127 H-D(2’)Nal-c[Cys-Tyr-DTrp-Orn-Val-Cys]-(2’)Nal-NH2 
BIM-23042 H-D(2’)Nal-c[Cys-Tyr-DTrp-Lys-Val-Cys]-(2’)Nal-NH2 
[Orn8]U-II H-Glu-Thr-Pro-Asp-c[Cys-Phe-Trp-Orn-Tyr-Cys]-Val-OH 

P5U H- Asp-c[Pen-Phe-Trp-Orn-Tyr-Cys]-Val-OH 
urantide H- Asp-c[Pen-Phe-DTrp-Orn-Tyr-Cys]-Val-OH 
UFP-803 H- Asp-c[Pen-Phe-DTrp-Dab-Tyr-Cys]-Val-OH 

URP H-Ala-c[Cys-Phe-Trp-Lys-Tys-Cys]-Val-OH 
urocontrin H-Ala-c[Cys-Phe-Bip-Lys-Tys-Cys]-Val-OH 

GSK248451 H-Cin-c[DCys-Pal-DTrp-Orn-Val-Cys]-His-NH2 
 

Table 2.1. Peptidic urotensin analogues. 
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2.3 Non-peptidic urotensin analogues 

The use of peptides as drugs in a therapeutic approach is often problematic, because of their 

poor oral and tissue absorption, and their low stability due to rapid proteolytic cleavage by 

enzymes. The pharmacokinetic limits of peptides may be overcome by the development of 

non-peptide moleules, which mimic the sequence and specific secondary structure responsible 

for the parent peptide’s biological activity. In the challenge to design nonpeptide ligands, 

mimicry of the conformation and shape of the peptide backbone may be achieved using 

organic molecules as scaffolds onto which substituents may be attached possessing 

hydrophobic, steric and electronic properties to generate and optimize the affinity and 

selectivity of potentially active compounds. Non-peptide agonists and antagonists of the 

human UT receptor could be important tools for determining the role of U-II and its 

derivatives in the urotensin system, and have been developed in several studies. Specifically, 

the design and synthesis of selective receptor antagonists may clarify the roles of human U-II 

as a multifunctional peptide in mammalian patho-physiological functions. Stable non-peptide 

antagonists could be administered in vivo to provide alternative pharmacological strategies for 

treating different diseases. 

Many approaches to discover non-peptide ligands of GPCRs have employed high-throughput 

screening (HTS) combined with knowledge of the 3D structure adopted by the natural ligand. 

Virtual screening based on the pharmacophore model and key residues of U-II was performed 

using the Aventis compound database in 2002 by Flohr et al. [34], who identified functional 

antagonists of U-II.  Screening was performed based on two agonist pharmacophore models: 

associated respectively with the human U-II peptide and Ac-[Cys-Phe-DTrp-Lys-Tyr-Cys]-

NH2. From 500 compounds that matched the U-II pharmacophore, the most notable 

compound, S7616 {1-(3-carbamimidoyl-benzyl)-4-methyl-1H-indole-2-carboxylic acid 

(naphthalene-1-ylmethyl)amide) exhibited an IC50 of 400 nM (Figure 2.3).  
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Figure 2.3. Molecular structure of S7616. 
 
 
The phenyl ring of the indole and the naphthalenemethylamine side chain are localized onto 

the two aromatic features of the pharmacophore. The basic benzamidine group in S6716 was 

shown to form a charged interaction with Asp130 within TM3 of the human UT receptor. The 

basic amino group was considered crucial for designing antagonists. Croston et al. [54] in 

2002 employed a functional mammalian cell-based R-SAT assay for high-throughput 

screening to identify small molecule UT receptor agonists. In this assay the UT receptor was 

multiplexed with vectors for the expression of additional receptor targets, such as the 

muscarinic M3 receptor and some orphan GPCRs to increase the number of drug-target 

interactions tested without altering the response and sensitivity characteristics of potential 

ligands. From screening a library of 180000 small diverse organic molecules, AC-7954 {3-(4-

chlorophenyl)-3-(2-(dimethylamino)ethyl)isochroman-1-one} was identified as a novel non-

peptide agonist with a potency of 300nM at the human UT receptor (Figure 2.4).  

 

 

 

 

 

Figure 2.4. Structures of AC-7954 and its optimized derivative FL68. 
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This low molecular weight bicyclic isochromane activated selectively the UT receptor and 

posessed druglike lipophilicity, a basic amino function (pKa=8.7), and limited conformation 

flexibility. Resolution of the racemic mixture and testing of both enantiomers in R-SAT 

revealed (+)-AC-7954 to be a more potent agonist at the stereoselective UT receptor, as 

clarified later by docking studies [32].  

As the first non-peptide agonist AC-7954 was employed as a lead compound to develop more 

potent non-peptide ligands for the human UT receptor [55]. In accordance with this study, the 

isochromanone core was kept intact, and bulkier amino groups and hydrophobic aromatic ring 

substituents were investigated on AC-7954 to provide knowledge about the interaction 

between U-II and the UT receptor. Beneficial effects were obtained when substituents were 

introduced on the aromatic part of the isochromanone ring system; however, sterically 

demanding amino groups deminished activity. The 6,7-dimethyl derivative of AC-7954 

exhibited the best potency in the series and on resolution of the racemate, the (+)-enantiomer 

FL-68 (Figure 2.4) was active at the UT receptor without activity at the closely related 

somatostatin receptors.  

Although the isocromanone-based agonists so far described were interesting for their 

druglikeness properties and their high selectivity for the UT receptor, in 2005, Lehmann et al. 

[56] found a path to obtain active molecules by breaking the C3-C4 bond of the isocromanone 

scaffold. Employing different linkers between the two aromatic rings, a series of ether, ester, 

amide, sulfonamide, carbamate, and urea derivatives was prepared, and furnished molecules 

retaining activity and efficacy comparable to AC-7954, except for the ether and sulfonamide 

analogs probably due to the absence of conformational effects induced by the pharmacophoric 

carbonyl group.  Biphenylamide (+)-FL-104 was shown to be considerably more active than 

its enantiomer and identified as one of the most potent non-peptide agonists known (pEC50 = 

7.49 ± 0.03, Figure 2.5). 
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Figure 2.5. Structure of FL-104. 

 

Palosuran (ACT-058362, Figure 2.6) is a specific and potent inhibitor of the human UT 

receptor reported in 2004 by Clozel et al. [57], who have used it as a pharmacological tool in 

determining the physiological and pathological roles of endogenous U-II in kidney disease. 

 

 

 

 

Figure 2.6. Structure of palosuran (ACT-058362). 
 
 
 
The 4-ureido-quinoline core in the structure of palosuran may a promising template for 

antagonists as indicated in several patent applications. 4-Ureido-quinoline derivatives in 

which 1,2,3,4-tetrahydroisoquinole, piperidine, piperazine and pyrrolidine moieties were 

introduced have been tested for ability to displace human [125I]U-II. Other non-peptide 

molecules reported in patent applications were based on 4-aminoquinoline [58], 2-

aminoquinoline and 2-aminoalkylquinolin-4-one derivatives [59] (Figure 2.7). 
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Figure 2.7. Structures of non-peptide Urotensin-II antagonists reported in the patent 
literature. 
 
 
 
Researchers at GlaxoSmithKline conducted extensive biological studies leading to a series of 

arylsulfonamide derivatives identified from high-throughput screening: SB-611812 exhibited 

potent binding at the rat UT receptor and was proposed as useful pharmacological tool based 

on its antagonist activity in rat aortic tissue and interesting pharmacokinetic properties such as 

high bioavailability (~100%) and half-life (~5h). The related analogs SB-706375 and SB-

657510 [60, 61] were also potent antagonists. Substituted diarylsulfonamides reported in 

other patent applications possessed significant affinity for UT receptors. 

Aminoalkoxybenzylpyrrolidine derivatives reported by GlaxoSmithKline to be identified by 

a HTS protocol involving hU-II-mediated calcium mobilization in hUT-expressing HEK293 
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cells included SB-436811 which exhibited moderate affinity for the human UT receptor but 

weak rat UT binding [62].  

Biphenylcarboxamide and benzazepine scaffolds were also reported in patent applications 

claiming high UT receptor antagonism [63]. In particular, most structurally different from 

other UT receptor antagonists, the benzazepines represent one of the most potent antagonists 

at the human UT receptor so far described.  
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3 Design of New Urotensin-II Derivatives  
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3.1 Leads optimization of U-II(4-11), P5U and Urantide 

The aim of my Ph.D. research has been to investigate the structure-activity relationships of 

Urotensin-II sequences: U-II(4-11), P5U and urantide, the latter two recognized as the most 

potent agonist and antagonist, respectively. Optimization of lead peptides was aimed to 

stabilize specific conformations and to improve pharmacokinetic profiles. The latter goal was 

designed to surmount unfavourable properties of peptides such as low stability, poor 

absorption, and short half-life. Different synthetic strategies were considered to address such 

pharmacokinetic issues, such as incorporation of uncoded amino acids, head to tail and side-

chain to side-chain cyclization, modification of peptide bonds, introduction of 

peptidomimetics, and termini protections and modifications. In the case of U-II(4-11), P5U 

and urantide, such chemical modifications were pursued to provide more potent and useful 

analogues. In particular, site-specific incorporation of uncoded amino acids, N-methylation of 

amide bonds and peptidometics development were examined to improve pharmacokinetic 

properties, to evaluate effects on conformation, and to provide structure-activity relationship 

information. Ideally, these studies will furnish information on the physiological and 

pathological pathways of this important peptide hormone.  

 

3.1.1 Trp-constrained analogues 

The main conformational difference observed in the structures of antagonists and agonists 

implicate the orientation of the (D/L)-Trp7 side chain. In particular, in models of agonists and 

antagonists, the (D/L)-Trp7 indole moiety is respectively close to the Lys8 side chain, or more 

flexible and distant from the Orn8 side chain. Based on these considerations, the Trp residue 

in position 7 was replaced with the constrained uncoded amino acids. Specifically, 1,2,3,4-

tetrahydro-β’-carboline-3-carboxylic acid residue (Tpi), in both configurations was employed 

to replace Trp7 to examine conformation-activity relationships of agonists and antagonists of 

the UT receptor [64] (Figure 3.1).  
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Figure 3.1. The Trp7 residue in P5U (n = 4) and urantide (n = 3) sequences has been replaced 
with the uncoded Tpi residue, 1,2,3,4-tetrahydro-β’-carboline-3-carboxylic acid.  
 
 
 
The Tpi amino acid arises from a condensation between L-tryptophan and formaldehyde. This 

reaction occurs in food and it is temperature and pH dependent [65]. The replacement of the 

Trp7 with Tpi led to active analogues and solution NMR analysis gave insight on 

conformation-activity relationships of earlier reported urotensin ligands. Accordingly, all 

highly potent analogues of hU-II possess a type II’ β-hairpin backbone conformation 

regardless of their agonist or antagonist activity, indicating that such a backbone 

conformation is necessary for the UT recognition [41,66].  

The Tpi residue can only adopt either gauche (+) or gauche (–) side chain rotamer populations 

because the indole moiety is cyclized to the peptide backbone nitrogen [67]. Hence, the Tpi7 

indole moiety is held away from the Lys8 side chain. Moreover, both L-Tpi and D-Tpi were 

used because L-Trp and D-Trp residues are both compatible with UT receptor binding mode. 

Finally, Lys/Orn replacement was shown to modulate the urotensin analogues activity 

because the Orn residue promotes antagonist activity [40]. Hence, four analogues 1-4 were 

designed (Table 3.1). 
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General formula: Asp-c[Pen-Phe-Xaa-Yaa-Tyr-Cys]-Val-OH Compound Xaa7 Yaa8 

 
1 Tpi Lys 

2 DTpi Lys 

3 Tpi Orn 

4 DTpi Orn 

 
Table 3.1. Compounds 1-4 have been designed by insertion of (D/L)-Tpi residues in P5U and 
urantide sequences. 
 
 
 
3.1.2 Tyr9-selective uncoded amino acids incorporation 

To optimize the activity of P5U and urantide, we designed and synthesized several analogues 

featuring replacement of the Tyr9 residue with uncoded amino acids [68] to improve the 

potency and stability of urotensin ligands [69].  

A SAR study on Tyr9 was prompted by recent finding that the side chain orientation of this 

residue influences the activity of P5U and urantide constrained analogues [64]. For this 

reason, the Tyr9 was replaced with non-coded amino acids, which were chosen in an attempt 

to improve the serum stability (Table 3.2). Substitutions included bulky electron-rich aromatic 

moieties (e.g., 5-10), phenyl rings substituted with bulky chlorine atoms (e.g., 11-14), and 

replacement of the electron donating hydroxyl group of Tyr9 with electron withdrawing 

groups, such as cyano (e.g., 15-16) and nitro (e.g., 17-18) groups, and with primary amino 

groups (e.g., 19-20). In addition, non-aromatic residues (e.g., peptides 21-22), as well as 

conformationally constrained unnatural amino acids (e.g., peptides 23-28) were evaluated in 

this specific position. 
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Compound Peptide Sequence 
5 H-Asp-c[Pen-Phe-Trp-Lys-(2)Nal-Cys]-Val-OH 
6 H-Asp-c[Pen-Phe-DTrp-Orn-(2)Nal-Cys]-Val-OH 
7 H-Asp-c[Pen-Phe-Trp-Lys-(1)Nal-Cys]-Val-OH 
8 H-Asp-c[Pen-Phe-DTrp-Orn-(1)Nal-Cys]-Val-OH 
9 H-Asp-c[Pen-Phe-Trp-Lys-Btz-Cys]-Val-OH 

10 H-Asp-c[Pen-Phe-DTrp-Orn-Btz-Cys]-Val-OH 
11 H-Asp-c[Pen-Phe-Trp-Lys-(pCl)Phe-Cys]-Val-OH 
12 H-Asp-c[Pen-Phe-DTrp-Orn-(pCl)Phe-Cys]-Val-OH 
13 H-Asp-c[Pen-Phe-Trp-Lys-(3,4-Cl)Phe-Cys]-Val-OH 
14 H-Asp-c[Pen-Phe-DTrp-Orn-(3,4-Cl)Phe-Cys]-Val-OH 
15 H-Asp-c[Pen-Phe-Trp-Lys-(pCN)Phe-Cys]-Val-OH 
16 H-Asp-c[Pen-Phe-DTrp-Orn-(pCN)Phe-Cys]-Val-OH 
17 H-Asp-c[Pen-Phe-Trp-Lys-(pNO2)Phe-Cys]-Val-OH 
18 H-Asp-c[Pen-Phe-DTrp-Orn-(pNO2)Phe-Cys]-Val-OH 
19 H-Asp-c[Pen-Phe-Trp-Lys-(pNH2)Phe-Cys]-Val-OH 
20 H-Asp-c[Pen-Phe-DTrp-Orn-(pNH2)Phe-Cys]-Val-OH 
21 H-Asp-c[Pen-Phe-Trp-Lys-Cha-Cys]-Val-OH 
22 H-Asp-c[Pen-Phe-DTrp-Orn-Cha-Cys]-Val-OH 
23 H-Asp-c[Pen-Phe-Trp-Lys-Phg-Cys]-Val-OH 
24 H-Asp-c[Pen-Phe-DTrp-Orn-Phg-Cys]-Val-OH 
25 H-Asp-c[Pen-Phe-Trp-Lys-Tic-Cys]-Val-OH 
26 H-Asp-c[Pen-Phe-DTrp-Orn-Tic-Cys]-Val-OH 
27 H-Asp-c[Pen-Phe-Trp-Lys-Aic-Cys]-Val-OH 
28 H-Asp-c[Pen-Phe-DTrp-Orn-Aic-Cys]-Val-OH 

 
Table 3.2. Tyr9-modified series. 
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Novel analogues were found with improved agonist activity compared to the parent P5U and 

antagonist activity similar to urantide. Some new ligands showed good stability in a serum 

proteolytic assay, indicative of enhanced peptide bioavailability. 

 

3.2 N-Methylation of Urotensin-II  

With a minimal sequence required for the biological activity in hand, conformational analysis 

of the peptide is usually performed in the next step to examine SARs [70]. Active sequences 

may be constrained to a specific conformation to stabilize particular secondary structures and 

improve activity and selectivity. Conformational flexibility is usually an undesired property of 

a ligand for a G-protein coupled receptor. Peptides are in general flexible due to their low 

rotational barriers about the bond between N and Cα, determined by the Φ dihedral angle, and 

the bond between Cα and CO, given by the ψ dihedral angle (Figure 3.2). Such flexibility 

hampers peptides as drugs in a therapeutic applications, because it renders them susceptible to 

parasitic receptors such as proteolytic enzymes, leading to unfavorable pharmacokinetic 

properties such as poor oral and tissue absorption. 

 

 

 

 

Figure 3.2. Peptide bond geometry. 
 
 
 
Among different synthetic strategies that are available to address such pharmacokinetic 

issues, N-methylation of select peptide bonds has become as attractive tool for investigating 

conformation and biological properties. N-Methylation can increase steric hindrance between 

the N-methylated amide bond [71] and the adjacent amino acid side chain and modify the 

amide bond cis-trans isomer equilibrium by enhancing the population of the cis isomer [72]. 
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Cyclic peptides can be strongly influenced from this kind of modification, which may disrupt 

secondary structure due to the long-range steric interactions caused by mono- and multiple-N-

methylated amide bonds. Additionally, the replacement of hydrogen by methyl on the amide 

may break-up intramolecular and intermolecular hydrogen-bonds [73], essential for 

interaction with the receptor (Figure 3.3). Examples of N-methylated peptides occurring in 

nature in various microorganisms and vegetables, include cyclosporine A and omphalotin, 

[74] which exhibit remarkable biological and pharmacological profiles. The wide-ranging 

biological activity of N-methylated peptides includes antibiotic [75], antitumoral [76], and 

immunosuppressive [77] effects. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Features of N-methylation as chemical modification, and its impact upon 
pharmacokinetic and pharmacodinamic properties of peptides. 
 
 
 
In recent years, the development of more conformationally constrained urotensin analogues 

has suggested investigation of the spatial orientation of amino acids belonging to the cyclic 

portion [41,64,66]. For example, modifications induced by penicillamine residues in P5U, 

urantide and other derivatives have revealed the importance of the spacial orientation of 
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amino acid side chains for interacting with the receptor. The introduction of a methyl group 

into the cyclic portion of U-II(4-11) may thus result in conformational alteration of the 

peptide backbone and subsequent interaction with the receptor counterpart. Application of N-

methylation for modifying peptide bonds has had success in developing peptide ligands [78], 

improving subtype selectivity, and pharmacological properties [79], such as metabolic 

stability, lipophylicity, potency, and bioavailability [80]. Such N-methylation may also switch 

agonists to antagonists [81]. Suppression of proton-donating N-H groups capable of hydrogen 

bonding may also contribute to understanding of their relevance in the bioactive conformation 

[82]. Moreover, as mentioned above, Urotensin-II is widely expressed in several organs in 

human diseases, and its role is still under investigation. The prediction of biologically active 

conformers remains speculative and necessitates analogs to distinguish conformational 

requirements for agonism and antagonism, as well as for selective patho-physiological 

pathways involved in urotensin systems. 

 

3.2.1 Mono- and multiple-N-methylated series 

Mono-N-methylation has been used for years to change pharmacological properties of 

peptides. The introduction of a methyl group on a single amide bond into an active peptide 

sequence can discriminate which hydrogen bond is essential for maintaining the biological 

activity. Hence, the amino acids of the bioactive hexapeptide sequence of U-II(4-11) and 

urantide have been exchanged in a systematic manner with their corresponding Nα-methylated 

analogs to provide U-II derivatives. Multiple N-methylations were also considered to 

elucidate conformational effects imparted by steric constraints in the peptide backbone and to 

improve the pharmacokinetic profile of the peptides for use as drug prototypes [83].  

The influence of N-methylation on the conformation of the pharmacophore Cys5-Phe6-Trp7-

Lys8-Tyr9-Cys10 was performed on the cyclic portion of U-II(4-11) and urantide by synthesis 

of the following peptides: 
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29 H-Asp-c[(NMe)Cys-Phe-Trp-Lys-Tyr-Cys]-Val-OH 
 

30 H-Asp-c[Cys-(NMe)Phe-Trp-Lys-Tyr-Cys]-Val-OH 

31 H-Asp-c[Cys-Phe-(NMe)Trp-Lys-Tyr-Cys]-Val-OH 

32 H-Asp-c[Cys-Phe-Trp-(NMe)Lys-Tyr-Cys]-Val-OH 

33 H-Asp-c[Cys-Phe-Trp-Lys-(NMe)Tyr-Cys]-Val-OH 

34 H-Asp-c[Cys-Phe-Trp-Lys-Tyr-(NMe)Cys]-Val-OH 
 

 

 

 

39 H-Asp-c[(NMe)Cys-(NMe)Phe-Trp-Lys-Tyr-Cys]-Val-OH 
 

40 H-Asp-c[(NMe)Cys-Phe-(NMe)Trp-Lys-Tyr-Cys]-Val-OH 
 

41 H-Asp-c[(NMe)Cys-Phe-Trp-(NMe)Lys-Tyr-Cys]-Val-OH 
 

42 H-Asp-c[(NMe)Cys-Phe-Trp-Lys-(NMe)Tyr-Cys]-Val-OH 
 

43 H-Asp-c[(NMe)Cys-Phe-Trp-Lys-Tyr-(NMe)Cys]-Val-OH 
 

44 H-Asp-c[Cys-(NMe)Phe-(NMe)Trp-Lys-Tyr-Cys]-Val-OH 

45 H-Asp-c[Cys-(NMe)Phe-Trp-(NMe)Lys-Tyr-Cys]-Val-OH 

46 H-Asp-c[Cys-(NMe)Phe-Trp-Lys-(NMe)Tyr-Cys]-Val-OH 

47 H-Asp-c[Cys-(NMe)Phe-Trp-Lys-Tyr-(NMe)Cys]-Val-OH 

48 H-Asp-c[Cys-Phe-(NMe)Trp-(NMe)Lys-Tyr-Cys]-Val-OH 

49 H-Asp-c[Cys-Phe-(NMe)Trp-Lys-(NMe)Tyr-Cys]-Val-OH 

50 H-Asp-c[Cys-Phe-(NMe)Trp-Lys-Tyr-(NMe)Cys]-Val-OH 

51 H-Asp-c[Cys-Phe-Trp-(NMe)Lys-(NMe)Tyr-Cys]-Val-OH 

52 H-Asp-c[Cys-Phe-Trp-(NMe)Lys-Tyr-(NMe)Cys]-Val-OH 

53 H-Asp-c[Cys-Phe-Trp-Lys-(NMe)Tyr-(NMe)Cys]-Val-OH 
 

Table 3.3. Mono- and multiple-N-Methylated series. 

 

35 H-Asp-c[Pen-Phe-(NMe)DTrp-Orn-Tyr-Cys]-Val-OH 
36 H-Asp-c[Pen-Phe-DTrp-(NMe)Orn-Tyr-Cys]-Val-OH 

37 H-Asp-c[Pen-Phe-DTrp-Orn-(NMe)Tyr-Cys]-Val-OH 

38 H-Asp-c[Pen-Phe-DTrp-Orn-Tyr-(NMe)Cys]-Val-OH 
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3.3 Aza-sulfuryl peptides mimics of urotensin-II 

The biological activity and physical properties of peptides are related to their backbone 

geometry and side chain functionality. Attempts to modulate the activity of natural peptides 

by the introduction of chemical modifications represent a valid strategic approach in 

designing and developing new analogues.   

N-Aminosulfamides are peptidomimetics in which the CαH and the carbonyl of an amino acid 

residue are respectively replaced by a nitrogen atom and a sulfonyl group (Figure 3.4).  

 

 

 

 

Figure 3.4. N-aminosulfamide moiety. 
 
 
 
Examples of aza-sulfurylpeptides reported in the literature include an inhibitor of the human 

immunodeficiency virus-1 proteinase, in which this moiety serves effectively as a tetrahedral 

transition state mimic of enzyme-catalyzed amide hydrolysis [84]. Aza-sulfuryl peptide 

analogues combine characteristics of aza- and α-sulfonamido-peptides [85], albeit with firmer 

and more stable structures, potentially relevant for modification of backbone geometry. The 

sulfonyl group possesses a tetrahedral sulfur, which adopts ω torsion angle values around 

±60° and ±100° (instead of amide cis-(E) and trans-(Z) conformations at respectively 0° and 

±180°) separated by a lower S-N rotational barrier (ΔG‡ ≈ 35 kJ/mol), relative to the amide C-

N (ΔG‡ ≈ 75 kJ/mol) [86]. Furthermore, the S-N bond length is longer than the C-N, due to 

lack of an amide bond resonance and greater sp3 versus sp2 character of the sulfonamide 

nitrogen (Figure 3.5).   
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Figure 3.5. Sulfonamide and amide bond lengths and angles. 
 
 
 
The type of structure modification generated by aza-sulfonamido residues could influence 

secondary structure and biological activity. Indeed, this moiety offers more inter- and intra-

molecular hydrogen bond interactions and conformational distortion depending on the 

position of insertion. In the case of urotensin-II, aza-sulfuryl amino acids were targeted for 

insertion into the cyclic portion of the U-II(4-11) sequence by replacement of the Trp7 and 

Lys8 amino acid residues, according to observations from N-methylation studies previously 

reported. In fact, the N-methylation of amide bonds of Trp7 and Lys8 residues gave interesting 

results since the specific suppression of a proton donating N-H in these two positions led to 

opposite affinity versus the UT receptor. In particular, they resulted to be the most and less 

tolerant positions, respectively, for the introduction of methyl groups at the Nα of the amide 

bond. Therefore, new analogues were designed to improve hydrogen-bonding capability in 

positions originally located at Trp7 and Lys8 expecting different affinity at UT receptor. The 

conformation of such analogues could play a key role in the investigation of SAR about 

urotensin-II, because the aza-sulfonamide motif may generate constrained cyclic analogues.  

Chemoselective alkylation of an aza-sulfuryl amino acid residue provided analogues with 

different alkyl groups to mimics the side chains of the native ligands.  

Aza-sulfuryl peptide analogues were thus designed and successfully synthesized to evaluate 

effects produced by this modification (Figure 3.6).  
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Figure 3.6. Aza-sulfuryltripeptides have been designed as mimics of Trp7 and Lys8 residues, 
for insertion into the core sequence of U-II(4-11). Functional groups of tripeptides have to be 
protected by protecting groups compatible with solid phase peptide synthesis; PG: protecting 
group.      
 

 

 

 

 

 

 

 

 

 

 

 

H
N N

H

O
N S
O O

H
N

R

O

O

PGPG

N
O

O

O

H
N N

H

O
N S
O O

H
N

R

HN

O

O

O

O

PGPG

H2N
O

H
N

O

S

N
H

O

HN

O NHHN

O

NH2

H
N

O

N
HO

S
H
N

HO

O

OH

OH

O

PG-Phe-asX-Lys(Boc)-PG 

PG-Trp(Boc)-asX-Tyr(tBu)-PG 



	  
46 

 

 

 

 

 

 

 

 

 

 

 

 

4 Synthetic Strategies 
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4.1 General method for peptide synthesis 

The synthesis of hU-II(4-11) analogues cointaining uncoded amino acid replacements for Trp, 

Lys and Tyr at positions 7, 8 and 9 was respectively performed in a stepwise fashion on solid-

phase using a Fmoc/tBu strategy and Wang linker resin as solid support. The first amino acid 

Na-Fmoc-Val-OH (4 equiv) was coupled to the resin in the presence of HBTU (4 equiv), 

HOBt (4 equiv), DIEA (8 equiv) and a catalytic amount of DMAP to facilitate ester formation 

in DMF for 3 h at rt. After the reaction went to completion, the resin was washed with DMF 

(3x) and DCM (3x), and was capped with acetic anhydride (1.2 equiv) and DIEA (2.4 equiv) 

in DMF for 30 min at rt to avoid potential parallel synthesis of side products. The resin was 

washed with DMF (3x) and DCM (3x). The Nα-Fmoc protecting group was removed from the 

Val residue by the treatement with piperidine (25% in DMF; 1 x 5 min and 1 x 25 min). The 

resin was washed with DMF (3x). A positive Kaiser ninhydrine test was observed. The 

following protected amino acids were added stepwise to synthesize the desired sequences for 

peptides 1-18: Nα-Fmoc-Cys(Trt)-OH, Nα-Fmoc-Zaa-OH, (Zaa = Tyr(tBu), (1’)Nal, (2’)Nal, 

Btz, (pCl)Phe, (3,4-Cl)Phe, (pCN)Phe, (pNO2)Phe), Na -Fmoc-Yaa(Nε/δ-Boc)-OH (Yaa: Lys, 

Orn), Nα-Fmoc-Xaa(Nin-Boc)-OH (Xaa: Trp, DTrp, Tpi, DTpi), Nα-Fmoc-Phe-OH, Nα-Fmoc-

Pen(Trt)-OH and Nα-Fmoc-Asp(OtBu)-OH, to provide the general sequence Asp-c[Pen-Phe-

Xaa-Yaa-Zaa-Cys]-Val-OH.  Each coupling reaction was accomplished using a 4-fold excess 

of amino acid with HBTU (4 equiv) and HOBt (4 equiv) in the presence of DIEA (8 equiv). 

The peptide resin was washed with DCM (3x) and DMF (3x). The Fmoc deprotection 

protocol described above was repeated and the next coupling step was initiated in a stepwise 

manner. The Kaiser test was used as cholorimetric test to confirm every coupling/deprotection 

step occurred in the peptide sequence elongation. Analytical HPLC and MS spectrometry 

monitored the achievement of linear sequences for the compounds 1-18. 
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After construction of linear peptides, the S-Trt protecting groups from Pen5 and Cys10 were 

removed using 1% TFA in DCM (5 x 2 min). Release of free thiol was monitored by an 

Elmann’s test [87]. The resin was washed with DCM (3x) and DMF (3x). Oxidation of the 

thiols was carried out using I2 (10 equiv) and DIEA (5 equiv) in DCM for 30 min at rt. After 

reaction completion, no significant amount of linear peptide was detected by HPLC.  

The N-terminal Fmoc group was removed as described above. The resin was washed with 

DMF (3x) and DCM (3x) and dried in vacuo. The peptide was released from the solid support 

and all protecting groups were cleaved using a cocktail of TFA/TIS/H2O (95:2.5:2.5, v/v/v) 

for 3 h. The resin was removed by filtration. Crude peptide was recovered by precipitation 

from the filtrate using chilled ether to give a powder, which was purified by RP-HPLC using 

a semi-preparative C18-bonded silica column (Phenomenex, Jupiter 4µ Proteo 90Å, 1.0 x 25 

cm) with a gradient of MeCN and water containing 0.1% TFA (from 10 to 90% over 40 min) 

at a flow rate of 5.0 mL/min. The product was obtained by lyophilization of the appropriate 

fractions after removal of the MeCN by rotary evaporation under reduced pressure. Analytical 

RP-HPLC indicated >98% purity and the correct molecular ions were confirmed by LC/ESI-

MS.   

 

4.2 N-methylation on solid phase 

N-methylated amino acids are commercially available, but expensive. The synthesis of a 

combinatorial library of N-methylated peptides has been described in the literature by several 

methods including the use of N-methylated amino acid building blocks prepared in solution 

[88] and by solid-phase methods [89]. The choice of introducing N-methylated amino acids as 

building blocks was dismissed in favor of a solid-phase N-methylation procedure to enhance 

flexibility in library design. The method employed was described by Scanlan and Miller [90], 

optimized by Biron et al. in 2006 [89], and proven compatible with many amino acids [79]. 

The procedure consists of three fundamental steps: i) amine protection with o-
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nitrobenzenesulfonyl group (o-NBS); ii) amine alkylation and, iii) selective removal of the o-

NBS group on solid support (Scheme 4.1).  

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4.1. General N-methylation strategy on solid phase during costruction of peptides. (i) 
o-NBS-Cl (4 equiv), 2,4,6-Collidine (10 equiv), NMP, 15 min; (ii) 1. DBU (3 equiv), NMP, 3 
min; 2. (CH3)2SO4 (10 equiv), NMP, 2 min; 3. Repeat 1 and 2; (iii) 2-mercaptoethanol (10 
equiv), DBU (5 equiv), NMP, 2 x 5 min; (iv) Fmoc-AA-OH (4 equiv), HATU (4 equiv), 
HOAt (4 equiv), DIEA (8 equiv), NMP, overnight. 
 
 
 
To introduce N-methyl groups during the peptide synthesis on solid support, the liberated 

primary amine was first reacted with o-NBS chloride and DBU in NMP as polar solvent to 

accelerate amine protection without any racemization. The methylation step was normally 

carried out with DBU and dimethylsulfate in NMP which gave alkylation of the relatively 

acidic sulfonamide in only 5 min. Amino acids with Trt protected side chains exhibited 

however loss of trityl group and low conversion to product. In these cases, a Mitsunobu 

procedure was used successfully [79]. Subsequently, resin treatment with mercaptoethanol 

and DBU removed the o-NBS group by way of a Meisenheimer intermediate. This reaction is 
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reported to be selective for N-methylated derivatives and does not occur when the protected 

amine is not alkylated. Couplings on Nα-methylamino acids are known to be more challenging 

due to steric hindrance. For this reason, these couplings were performed with HATU and 

HOAt instead of HBTU and HOBt using DIEA as base in NMP, which yielded complete 

couplings after reaction overnight at rt. The evolution of the procedure was monitored by the 

observation of cholorimetric tests such as Kaiser test for primary amine and p-chloranilin test 

for secondary amine, and by HPLC and ESI-MS systems.   

This method gave an efficient solution to synthesize libraries of N-methyl U-II(4-11) and 

urantide sequences poseessing mono- and multiple-N-methylated analogues 29-53. 

 

4.3 Synthesis of protected aza-sulfuryl tripeptides 

On the basis of their interesting conformational and biological properties, N-aminosulfamide 

analogues were designed by respective replacements of two amino acids belonging to the core 

sequence of the peptide U-II(4-11). Initially, aza-sulfuryl tripeptide building blocks were 

synthesized by modification of the approach of Turcotte et al. in 2012 [91] featuring 

chemoselective alkylation of an aza-sulfurylglycine intermediate. The choice of protecting 

groups was critical, because of the functionalized side chains related to the target tripeptides. 

The synthesis of aza-sulfonamide peptides consisted of two phases: first, the synthesis of the 

aza-sulfuryl tripeptide building block by solution phase reactions with protected functional 

groups compatible with solid phase peptide synthesis; followed by incorporation into the 

peptide sequence on solid support using a Fmoc/tBu orthogonal protection strategy.   

4-Nitrophenyl chlorosulfate 54 [106], Nα-(alloc)-L-phenylalanine 60, and Nα-(alloc)-Nin-(Boc)-

L-tryptophan 69 [107,108], all were synthesized according to literature methods. Nε-(Alloc)-

L-lysine and O-(t-Bu)-L-tyrosine benzyl ester 55-56 were synthesized from their 

corresponding Fmoc-amino acids using benzyl bromide and cesium carbonate in DMF, and 

free-based by treating with 20% piperidine in DMF solution. 
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The first step for the synthesis of the building blocks 64-67 involved the reaction between 4-

nitrophenyl chlorosulfate 54 and the amino esters 55-56 to give the corresponding 

sulfamidates 57-58 (Scheme 4.2). Two equivalents of 4-nitrophenol was necessary as an 

additive to avoid formation of symmetric sulfamide. Low yield of 58 was probably related to 

purification by column chromatography on silica gel, and trace amounts of 4-nitrophenol 

were detected by NMR spectroscopy. 

 

 

 

 

 

 

 

 

 

Scheme 4.2. Synthesis of p-nitrophenylsulfamidate benzyl esters 57-58.  

 

 

 

 

 

 

 

 

 

 

O
S
H
NO2N

R
O

O

O O

O2N

O S Cl

O O

H2N O
R

O

O
S
H
NO2N

O

O

O O

O

O
S
H
NO2N

HN

O

O

O

O

O O

54!
+!

55-56!

4-nitrophenol, NEt3

DCM, –78 °C, 3.5 h

57-58!

57 (68%)! 58 (37%)!



	  
52 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Scheme 4.3. (i) Alloc-Cl (1.5 equiv), 1M NaOH, 3 h; (ii) 1. IBC (1.2 equiv); 2. NMM (1.5 
equiv), 15 min; 3. tert-butyl carbazate (1 equiv), THF, 2 h, –15 °C; (iii) TFA/DCM 1:1, 1 h; 
(iv) Net3 (1.1 equiv), µW, solvent, 60 °C, 2.5 h. 
 
 
 

 

 

 

 

 

 

 

 

 

Scheme 4.4. Chemoselective alkylation of the aza-sulfurylglycinyl tripeptides was used to 
add side-chain diversity. 
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Nα-(Alloc)-L-phenylalanine hydrazide 62 was prepared starting from L-phenylalanine 59 by 

amine acylation with allylchloroformate, reaction with tert-buthylcarbazate to form the 

protected hydrazide, and removal of the Boc protection using a solution of 50% of TFA 

(Scheme 4.3). N-aminosulfamide 63 was synthesized by the reaction of sulfamidate 57 with 

Nα-(Alloc)-L-phenylalanine hydrazide 62 employing microwave irradiation.  Moreover, the 

choice of the solvent used for this reaction proved important in terms of yield due to the better 

absorption of microwave irradiation by solvents like MeCN (yield=74%) and THF 

(yield=72%) and better dissolution of the precursor in more polar solvents than DCE 

(yield=43%) reported in earlier protocols.  

Chemoselective alkylation of the aza-sulfurylglycinyl tripeptide 63 was performed by using 

the phosphazane base, tert-butylimino-tri(pyrrolidino)-phosphorane (BTPP), and different 

alkyl bromides to add diverse side-chains and furnish various aza-sulfuryl amino acid 

residues 64-67. The risk of bis-alkylation was minimized by employing stoichiometric 

amounts of base and alkylating reagent. The position of alkylation was ascertained by NMR 

experiments [91]. 

The tryptophan hydrazide 71 was prepared by a modification of the above protocol, because 

the indole group of L-Trp (68) was already protected with Boc (Scheme 4.5). After amine 

acylation with allylchloroformate, the hydrazide was introduced with benzophenone 

protection (e.g., 70), which could be orthogonally cleaved using hydroxylamine hydrochloride 

in pyridine to afford hydrazide 71. Reaction of hydrazide 71 with sulfamidate 58 gave aza-

sulfurylglycinyl tripeptide 72, which was subjected to alkylation using 1-bromo-4-

chlorobutane to give chloride 73, which was displaced with azide ion to provide a protected 

form of the primary amine. 
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Scheme 4.5. (i) Alloc-Cl (1.5 equiv), 1M NaOH, 3.5 h; (ii) 1. IBC (1 equiv); 2. NMM (1.3 
equiv), 15 min; 3. Benzophenone hydrazone (1 equiv), THF, –15 °C, 3 h; (iii) NH2OH 
hydrochloride (5 equiv), pyridine, 60 °C, overnight; (iv) Net3 (1.1 equiv), MeCN, µW, 60 °C. 
2.5 h; (v) 1-bromo-4-chlorobutane (1.2 equiv), BTPP (1.2 equiv), THF, 0 °C, 4.5 h; (vi) NaN3 
(3 equiv), DMF, 60 °C, overnight.   
 
 
 
Orthogonally protected building blocks 64-67 and 74  (Figure 4.1) were thus synthesized and 

introduced into N-aminosulfamide peptide sequences of U-II(4-11) on solid phase.  
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Figure 4.1. Aza-sulfurylglycinyl tripeptides 64-67 and 74 with their corresponding yields 
from chemoselective alkylation. 
 
 
 
4.4 Aza-sulfuryl peptide synthesis  

Aza-sulfuryl peptides were synthesized on 2-chlorotrityl chloride resin using a Fmoc/tBu 

protocol. The resin was swollen in DCM for 30 min, agitated on a shaker with the first amino 

acid (1 equiv) and DIEA (1 equiv) at rt for 10 min, treated with additional DIEA (1.5 equiv), 

and shaken for 1 h. The loaded resin was washed with DCM (2 mL x 3) and DMF (2 mL x 3). 

Fmoc deprotection was performed using a 20% solution of piperidine in DMF (5 min x 1, 25 

min x 1). Couplings of Fmoc amino acids (3 equiv) were performed according to general 

solid-phase peptide synthesis protocols using HBTU (3 equiv) and HOBt (3 equiv) as 

coupling reagents and DIEA (6 equiv) as base in DCM/DMF 1:1 at rt for 2 h. The resin was 

washed after each coupling and deprotection step with DMF (2 mL x 3) and DCM (2 mL x 3). 

Incorporation of the aza-sulfuryl tripeptide (1.5 equiv) into the peptide sequence was achieved 

using DIC (1.5 equiv) and HOBt (1.5 equiv) at rt overnight (Scheme 4.6). Complete coupling 
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was confirmed by LC-MS analysis of the residue from cleavage of an aliquot of resin (5 mg) 

by treatement with a cocktail of 45:40:2.5:2.5 TFA/DCM/TIS/H2O at rt for 1.5 h.  

 

 

 

 

 

 

Scheme 4.6. The aza-sulfuryltripeptide building block benzyl ester was first hydrolyzed with 
LiOH then coupled to the primary amine of the peptide sequence on solid support. 
 
 
 
Alloc protected aza-sulfuryl peptide resin was washed with DCM (2 ml x 3), treated with a 

solution of Pd(PPh3)4 (0.15 equiv) and NDMBA (7 equiv) in dry DCM/DMF 3:2 and agitated 

gently for 2 h under argon. The resin was filtered, washed with DMF (2 mL x 3), and DCM (2 

mL x 3), and the deprotection procedure was repeated. The resin was filtered, washed with 

DMF (2 mL x 3), 0.5% solution of sodium diethylthiocarbamate in DMF (30 min x 2) and 

DCM (2 mL x 3). Complete removal of the Alloc group was evaluated by LC-MS of the 

residue from cleavage of an aliquot of resin. The peptide sequence was then completed using 

standard protocols. As described above, the final Fmoc group was removed, the trityl side 

chain protection was removed, the disulphide bridge formed and the peptide was cleaved from 

the solid support by treating the resin with a solution of TFA/DMSO/anisole (89:10:1, v/v/v) 

at rt for 3h. The resin was filtered, and washed with small amount of TFA. Evaporation of the 

volatiles from the combined filtrate and washings resulted in a residue which was precipitated 

in diethyl ether, chilled in an ice bath and centrifugated to yield a pellet which was separated 
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by decantation of the solution, dissolved in water, freeze-dried, and purified by HPLC to yield 

peptides 75-78 as white powders (Figure 4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Aza-sulfuryl peptides 75-78. 
 
 
 
4.5 Analysis and purification of aza-sulfuryl peptides 

Analytical LC-MS analyses were performed on a Gemini reverse-phase column from 

Phenomenex (4.6 mm x 150 mm, 5 µm, C18) or a SunFireTM reverse-phase column from 

Waters (2.1 mm x 50 mm, 3.5 µm, C18) with a flow rate of 0.5 mL/min using a gradient of 

acetonitrile (0.1% formic acid) or methanol (0.1% formic acid) in water (0.1% formic acid). 

Purification of aza-sulfuryl peptides was performed on a preparative column (Gemini C18 

column, 21.2 mm x 250 mm, particle size 5 µm) using specified linear gradients of 

acetonitrile (0.1% formic acid) in water (0.1% formic acid) with a flow rate of 10.6 mL/min 

and UV detection at 214 nm and 254 nm.  
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The purity of aza-sulfuryl peptides was ascertained using analytical HPLC performed on a 

Gemini reverse-phase column from Phenomenex (4.6 mm x 150 mm, 5 µm, C18) or a 

SunFireTM reverse-phase column from Waters (2.1 mm x 50 mm, 3.5 µm, C18) with a flow rate 

of 0.5 mL/min using gradients of acetonitrile (0.1% formic acid) or methanol (0.1% formic 

acid) in water (0.1% formic acid). Aza-sulfuryl peptides examined for biological activity were 

purified to >99%. 
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5 Results and Discussion 
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5.1 Trp-constrained analogues: results and discussion  

5.1.1 Biological data 

Receptor affinity at human UT receptor and biological activity (rat aorta bioassay) of the 

synthesized compounds are reported in Table 5.1. In the same table, P5U and Urantide 

activities are reported for comparison. From the data, it can be inferred that peptides 1 and 2, 

carrying the Lys8 residue, show an agonist activity as the lead compound P5U. Compared 

with P5U, about 1.5 log reduction of the affinity and 2 log reduction of the activity, 

respectively, can be observed. Conversely, peptides 3 and 4, carrying the Orn8 residue, show 

an antagonist activity as Urantide, resulting in 1.8 log reduction of the affinity and 2 log 

reduction of the activity, respectively, when compared with the urantide. Finally, the effect of 

the L-Tpi versus D-Tpi replacement is almost negligible both in the affinity and in the activity 

values (Table 5.1).  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Table 5.1. Receptor affinity and biological activity of P5U and urantide analogues of general 
formula: H-Asp-c[Pen-Phe-Xaa-Yaa-Tyr-Cys]-Val-OH. Each value in the table means ± 
standard error of at least four determinations. 
apKi: –log Ki affinity values are from [125I]Urotensin-II binding inhibition experiments at the 
human urotensin receptor. 
bpEC50: –log EC50 and  
cpKB (–log KB) values are from experiments in the rat thoracic aorta. 

Peptide Xaa Yaa pEC50 pKB PKi 

P5U Trp Lys 9.6±0.07 - 9.7±0.07 

Urantide DTrp Orn IN 8.3±0.09 8.3±0.04 

1 Tpi Lys 7.92±0.07 - 8.16±0.05 

2 DTpi Lys 7.68±0.07 - 8.26±0.04 

3 Tpi Orn IN 6.30 7.61±0.04 

4 DTpi Orn IN 6.28 7.43±0.12 
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5.1.2 NMR analysis  

NMR experiments were performed in collaboration with the group of Prof. Carotenuto in 

order to analyze conformational aspects referred to peptides 2 and 4, which differ only for the 

Lys to Orn residue at position 8, although they showed different activity (agonist vs 

antagonist, respectively). A whole set of 1D and 2D NMR spectra in 200 mM aqueous 

solution of SDS were collected for compounds 2 and 4. 

Micelle solution was employed because we have reported the NMR structure of UT agonists 

(among which P5U) [66] and antagonist (among which Urantide) [41] in this medium. 

Complete 1H NMR chemical shift assignments were effectively achieved for the two peptides 

according to the Wüthrich procedure [92] via the usual systematic application of DQF-COSY 

[93], TOCSY [94], and NOESY [95] experiments with the support of the XEASY software 

package [96]. Peptides 2 and 4 differ from P5U and urantide, respectively, only for the Trp7 to 

D-Tpi residue substitution, but they show NMR parameters different from those observed in 

the parent peptides.  

NMR-derived constraints obtained for the analyzed peptides were used as the input data for a 

simulated annealing structure calculation. For each peptide, 20 calculated structures satisfying 

the NMR-derived constraints (violations smaller than 0.40 Å) were chosen (Figure 5.1).  

 

 

 

 

 

 

 

Figure 5.1. Lowest energy conformers of compound 2 (A) and compound 4 (B). Backbone is 
evidenced as a ribbon. Side chains of the 10 lowest energy conformers are also shown as 
mesh surface. 
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Both peptides 2 and 4 show a distorted type II’ β-turn structure encompassing residues 6–9. In 

contrast, the N-terminal and C-terminal residues were more flexible. Considering the side 

chains orientation, Lys8 and Tyr9 side chains showed a large preference for g- rotamer in 

peptide 2; Orn8 shows also a g- orientation in peptide 4, whereas Tyr9 side chain is found both 

in trans and g- conformations in this peptide. Therefore, Tyr9 phenolic ring is close to Lys8 in 

peptide 2, and it points toward Val11 in peptide 4. 

 

5.1.3 Discussion 

In previous studies, it has been demonstrated that hU-II analogues, which retain high affinity 

for UT receptor, all possess a type II’ β-hairpin backbone conformation regardless their 

agonist or antagonist activity, indicating that such backbone conformation is necessary for the 

UT recognition [41,66]. The main conformational difference observed in the structures of the 

antagonists and the agonists was established in different orientation of the (D/L)-Trp7 side 

chain. In particular, whereas in the agonists, the (D/L)-Trp7 indole moiety were found close to 

the Lys/Orn8 side chain, in the antagonists, (D/L)-Trp7 side chain were more flexible and 

further from the Lys/Orn8 side chain. To corroborate that hypothesis, the Trp7 residue was 

replaced with a highly constrained Trp analogue, the Tpi residue. In fact, Tpi can only possess 

either gauche (+) or gauche (–) side chain rotamer populations because the indole moiety is 

cyclized to the peptide backbone Nα [65]. According to the pharmacophore model [41,66], 

this indole orientation should be only compatible with the antagonist conformation because 

the Tpi7 indole moiety is kept far from the Lys8 side chain. Moreover, both L-Tpi and D-Tpi 

were used because L-Trp and D-Trp residues are both compatible with UT receptor binding 

mode. Finally, Lys/Orn switch was shown to modulate the urotensin analogues activity 

because the Orn residue promotes the antagonist activity. Hence, four analogues (1-4) were 

designed as reported in Table 5.1. Biological data showed that Lys8 containing peptides (1 and 
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2) are agonists, and peptides carrying the Orn8 (3 and 4) are antagonists. All the affinities and 

activities are reduced of at least one order of magnitude. Furthermore, L-Tpi versus D-Tpi 

replacement is almost negligible both in the affinity and activity values. The agonist activity 

of peptides 1 and 2 is quite unexpected because in our model, D-Tpi side chain orientation 

should be compatible only with an antagonist activity. Trying to understand this apparent 

contradiction, a conformational analysis was performed for selected peptides by solution 

NMR. Peptides 2 and 4, which chemically differ only for the Lys to Orn substitution, were 

chosen but the activity switches from agonist to antagonist. NMR study was performed in 

SDS micelle solution. The use of SDS micelles to study the conformational properties of hU-

II analogues is motivated on the basis of their interaction with a membrane receptor. For 

peptides acting as ligands of membrane receptors (such as G-protein-coupled receptor), the 

use of membrane mimetic media is suggested, hypothesizing a membrane-assisted mechanism 

of interactions between the peptides and their receptors [97]. According to this model, the 

membrane surface plays a key role in facilitating the transition of the peptide from a random 

coil conformation adopted in the extracellular environment to a conformation that is 

recognized by the receptor. The increase of the local concentration of the peptide and the 

reduction of the rotational and translational freedom of the neuropeptide are membrane- 

mediated events acting as determinant steps for the conformational transition of the peptide 

[98]. Indeed, micelle solutions are largely used for the conformation analysis of peptide 

hormones [99]. In this context, the correlation between the SDS-bound conformation of hU-II 

analogues and their biological activity succeded [41,66,69]. Conformational analysis 

indicated that both the peptides 2 and 4 show a distorted type II’ β-turn structure 

encompassing residues 6–9. Therefore, the turn structure peculiar of the active peptides P5U 

and urantide is kept in these derivatives. In contrast, the N-terminal and C-terminal residues 

of peptides 2 and 4 are highly flexible losing the short antiparallel β-sheet found in P5U and 

urantide. Considering the side chains orientation of pharmacophoric residues (i.e. D-Tpi7, 
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Lys8, and Tyr9) [33,34] of peptide 2, side chains of Lys8 and Tyr9 show a large preference for 

g- rotamer, hence they are spatially close, whereas indole ring of D-Tpi7 is locked to a g- 

conformation. According to the design, the distance between D-Tpi7 and Lys8 is greater than 

that observed in P5U. Notably, this distance is shorter than that observed in urantide. 

Unexpected residual agonist activity of peptide 2 indicates that its pharmacophoric distances 

still fit the agonist model although not in an ideal way. Considering peptide 4, it was designed 

to fulfil the antagonist pharmacophore of UT receptor blocking the side chain of Trp7. The 

distance between D-Tpi7 and Orn8 is shorter than that observed in the reference antagonist 

urantide and is similar to the distance observed in peptide 2. Since these peptides are endowed 

with opposite activities, the distance between the positively charged nitrogen and the indole 

ring seems to be not relevant for the agonist/antagonist activity switching. Moreover, Tyr9 

side chain is preferentially trans orientated, and consequently, phenol ring is far from Orn8, 

and the relevant pharmacophoric distance does not fit that of urantide. Tyr9 side chain 

orientation is mainly defined by an intense NOE with Val11 methyl groups. To note, this NOE 

could not be observed in the NOESY spectrum of urantide because of signal overlapping [41]. 

Hence, the correct orientation of Tyr9 for antagonist/UT recptor interaction needs to be further 

investigated. Studies on urantide analogues containing tyrosine-constrained derivatives are 

currently in progress. 
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5.2 Tyr9-modified series  

5.2.1 Biological data 

Sequences, receptor binding affinity at hUT and biological activity (rat aorta bioassay) of the 

designed compounds are reported in Table 5.2. As above described, to evaluate the suitable 

features of the aromatic residue in position 9 and, in particular, the contribution of the 

phenolic group, we replaced Tyr9 with several aromatic uncoded amino acids, in both 

sequences of P5U and urantide (compounds 5-28).  
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Peptide Xaa Yaa R pKi b pEC50
c Emax

d pKB 
e 

hU-IIf Trp Lys Tyr 9.10 ±0.08 8.50±0.06 100 - 

hU-II(4-11) Trp Lys Tyr 9.60±0.07 8.437 100 - 

P5U Trp Lys Tyr 9.70±0.070 9.36±0.20 § 95±7 - 
Urantide DTrp Orn Tyr 8.30±0.04 - - 8.32±0.10 

5 Trp Lys (2’)Nal 8.70±0.08 9.14±0.06 § 85±16 - 

6 DTrp Orn (2’)Nal 9.14±0.08 8.42±0.17 13±5 † - 

7 Trp Lys (1’)Nal 9.40±0.07 8.30±0.20 ¥ 86±5 - 
8 DTrp Orn (1’)Nal 8.19±0.14 7.74±0.10 § 37±9 † - 

9 Trp Lys Btz 8.76±0.11 10.71±0.04 ¥, § 89±16 - 

10 DTrp Orn Btz 7.89±0.13 7.47±0.11 § 57±2 † - 

11 Trp Lys (pCl)Phe 8.91±0.07 9.09±0.12 § 85±10 - 
12 DTrp Orn (pCl)Phe 8.98±0.05 8.57±0.18 13±3 † - 

13 Trp Lys (3,4-Cl)Phe 9.11±0.06 10.91±0.14 ¥, § 102±8 - 

14 DTrp Orn (3,4-Cl)Phe 8.65±0.09 7.89±0.17 § 26±7 † - 

15 Trp Lys (pCN)Phe 8.74±0.10 8.97±0.15 79±1 † - 
16 DTrp Orn (pCN)Phe 7.92±0.07 - 0.0 8.15±0.05 

17 Trp Lys (pNO2)Phe 8.75±0.05 9.20±0.08 § 95±20 - 

18 DTrp Orn (pNO2)Phe 7.77±0.08 - 0.0 8.12±0.07 

19 Trp Lys (pNH2)Phe 8.57±0.08 10.040 83±10 - 
20 DTrp Orn (pNH2)Phe 7.87±0.01 - 0.0 7.86 

21 Trp Lys Cha 6.59±0.11 5.782 76±12 - 

22 DTrp Orn Cha 7.73±0.08 8.769 79±9 - 

23 Trp Lys Phg 7.01±0.09 6.161 68±6 - 
24 DTrp Orn Phg 7.15±0.10 7.527 76±6 - 

25 Trp Lys Tic 6.34±0.07 6.286 27±6 - 

26 DTrp Orn Tic 6.05±0.08 6.698 12±5 - 

27 Trp Lys Aic 5.62±0.06 6.234 68±15 - 
28 DTrp Orn Aic 5.62±0.05 6.036 89±6 - 

 
Table 5.2. Rceptor affinity and biological activity of P5U and urantide analogues of geneal 
formula: H-Asp-c[Pena-Phe-Xaa-Yaa-R-Cys]-Val-OH. a Cys in hU-II and hU-II(4-11); b pKi: -
log Ki; c pEC50: -log EC50; d percent versus hU-II; e pKB: log(CR-1)-log[B]. Each value in the 
table is mean ± S.E.M. of at least 3-4 determinations. f For hU-II, N-terminus  = H-Glu-Thr-
Pro-Asp. † p<0.05 vs. hU-II Emax (Two-tail Student’s t-test for paired data). ¥ p<0.05 vs. P5U 
(ANOVA and Dunnett’s post hoc test). § p<0.05 vs. hU-II (Two-tail Student's t-test for paired 
data).  
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First of all, we used amino acids with a bulkier aromatic group, that is, (1’)Nal, (2’)Nal and 

Btz. The substitution of the native Tyr9 residue in P5U by a (2’)Nal residue (compound 5), 

generated an analogue of similar contractile potency (pEC50=9.14±0.06) and a reduced 

binding affinity of about 1 log unity (pKi=8.70±0.08). Similar modification in urantide 

sequence produced compound 6 with improved binding affinity when compared to urantide 

(pKi=9.14±0.08). Anyway, this compound retains a small residual agonist activity 

(Emax=13±5%). Compound 7 [(1’)Nal/Tyr replacement in P5U] proved an agonist less potent 

than P5U (pEC50=8.30±0.20, Emax=86±5%) although it shows a good receptor affinity 

(pKi=9.40). The same substitution in urantide sequence, compound 8, generated a partial 

agonist (pEC50=7.74±0.10, Emax=37±9%). Then, in compound 9, we replaced Tyr9 with a 

residue of benzothiazolylalanine (Btz), that is, an analogue of Trp in which the indole group is 

replaced by a benzothiazolyl moiety which is a highly electron-rich system. Compound 9, 

showed to be significantly (p<0.05) more potent agonist compared to P5U 

(pEC50=10.71±0.04, Emax=89±16%). In parallel, compound 10 (Btz9 derivative of urantide) 

showed an increased partial agonist activity (Emax=57±2%) compared to analogues 6 and 8. 

Then, Tyr9 residue was replaced with some aromatic amino acids containing an isoster of 

phenolic group in para position. Replacing the Tyr9 residue in P5U with the amino acid 

(pCl)Phe led to a compound with similar activity to the parent peptide. In fact, compound 11 

resulted to have a comparable potency in functional assay (pEC50=9.09±0.12, Emax=85±10%) 

albeit with a slight reduction in binding affinity at UT receptor (pKi=8.91±0.07). Instead, 

compound 12 resulted in a weak partial agonist (Emax=13±3%) with an improved binding 

affinity profile (pKi=8.98±0.05). 

Interestingly, replacing the Tyr9 residue with the amino acid (3,4-Cl)Phe generated the 

compound 13 with a high agonist activity (pEC50=10.91±0.14, p<0.05 compared to P5U; 

Emax=102±8%) resulting a superagonist. In fact, this compound is about 1.6 log more potent 

than P5U and represents the most potent peptide agonist at UT receptor discovered to date. 
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Compound 14, (3,4-Cl)Phe9 derivative of urantide, similarly to compound 12 resulted in a 

partial agonist with increased efficacy compared to the last (Emax=26±7% vs 13±3%). 

Phenolic -OH group was then replaced by electron withdrawing groups in compounds 15-18. 

Compound 15, in which Tyr9 was replaced with a (pCN)Phe residue resulted to be less potent 

as agonist compared to P5U (pEC50=8.97, Emax=79±1%) and with a reduced binding affinity 

(pKi=8.74±0.10). Interestingly, compound 16, (pCN)Phe9 derivative of Urantide, showed a 

behaviour as an antagonist producing a parallel rightward shift of the agonist response curves 

without depressing the agonist Emax. Schild-plot analysis was consistent with competitive 

antagonism and a pKB value of 8.15±0.05 was calculated comparable to that of urantide [68]. 

Finally, replacing the Tyr9 residue with the amino acid (pNO2)Phe, led to compounds with 

similar activity compared to the respective parent peptides. In fact, compound 17 was shown 

to have agonist activity comparable to P5U (pKi=8.75±0.05, pEC50=9.20±0.08, Emax=95±20%) 

and compound 18 showed behaviour as an antagonist comparable to urantide producing a 

parallel rightward shift of the agonist response curves. Also for this compound Schild-plot 

analysis was consistent with competitive antagonism and a pKB value of 8.12±0.07 was 

calculated [68].  

In compounds 19-20, where the OH group was replaced with a primary amine group, showed 

interesting results. In fact, the compound 19, analogue of P5U, showed moderate affinity for 

UT receptor (pKi 8.57±0.08; around 1 log less than that compared to the parent compound, 

pKi 9.70±0.07) and pEC50 value (pEC50=10.04 compared to 9.34 of P5U) resulting a potent 

agonist. In contrast, same modification in urantide sequence led to discover to a potent 

antagonist although less potent when compared to the urantide (pKB=7.86). The replacement 

with non-aromatic residue of Cha in the same position, compound 21 and 22, has allowed to 

get two partial agonist analogues (pEC50= 5.78, Emax=76±12% for compound 21; and 

pEC50=8.77, Emax=79±9 for compound 22), although compound 22 exhibited higher affinity in 

binding experiments (pKi=7.73±0.08). The Phg residue in compounds 23-24 have proved to 
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be important in understanding the importance of the distance between peptide backbone and 

aromatic residue in position 9; indeed, a weak partial agonism is preserved only in compound 

24 (pEC50=7.53, Emax=76±6%), albeit with less binding affinity (pKi=7.15±0.10) compared to 

urantide (pKi=8.30±0.04). Uncoded amino acids such as Tic and Aic were used to fix the 

position of aromatic residue and reduce conformation flexibility in specific position of cyclic 

portion of P5U and urantide. All analogues showed weak binding at UT receptor, at least 2 

log less than parent peptides. In this last series only compound 28, with Aic residue in 

replacement of Tyr in urantide sequence, is able to induce significant activity (pEC50=6.04, 

Emax=89±6%) but low affinity (pKi=5.62±0.05).	  

 

5.2.2 Peptide stability 

To investigate the effects of the modifications of peptides on proteolytic susceptibility, the 

disappearance of the intact peptides incubated in diluted serum at 37 °C was followed by RP-

HPLC [100]; peptides hU-II(4-11), Urantide, 13, and 16 were assayed (Figure 5.2). 

 

 

 

 

 

 

 

 

Figure 5.2. The resistance to enzyme degradation of hU-II(4-11), Urantide, 13 and 16 was 
assessed by incubation in 25% FCS for 36 h. Residual peptide quantity, expressed as the 
percentage of the initial amount versus time (h), was plotted. The results represent the average 
of three independent experiments. 
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Overall results, shown in Figure 5.2, display the course of degradation up to 36 h to highlight 

the differences in the profiles of the degraded peptides. After 16 h of treatment, hU-II(4-11) 

had a residual concentration lower than 50%, while for other compounds it is higher than 70% 

of the initial concentration. After 36 h, Urantide, compounds 13, and 16 showed a residual 

concentration higher than 50%. Clearly, developed peptides are very stable in 25% FCS.  

 

5.2.3 NMR analysis 

NMR experiments were performed in collaboration with the group of Prof. Carotenuto.	   A 

whole set of 1D and 2D NMR spectra in 200 mM aqueous solution of SDS were collected for 

compounds 13, and 16. These peptides were chosen since 13 behaves as a superagonist 

compared to P5U while 16 is a potent antagonist devoid of agonist activity. SDS micelle 

solutions were used since they are membrane mimetic environments and are largely used for 

conformational studies of peptide hormones and antimicrobial peptides [99].  

Complete 1H NMR chemical shift assignments were effectively achieved for the two peptides 

according to the Wüthrich [92] procedure via the usual systematic application of DQF-COSY 

[93], TOCSY [94], and NOESY [95] experiments with the support of the XEASY software 

package [96]. Peptide 13 differs from P5U only for the (3,4-Cl)Phe/Tyr9 substitution and 

peptide 16 differs from Urantide only for the (pCN)Phe/Tyr9 substitution.  

All the data obtained from NMR experiments indicated the preservation, in 13 and 16, of the 

β-hairpin structure.  
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NMR-derived constraints obtained for the analyzed peptides were used as the input data for a 

simulated annealing structure calculation. For each peptide, 20 calculated structures satisfying 

the NMR-derived constraints (violations smaller than 0.20 Å) were chosen (Figure 5.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Stereoview of the superposition of the 10 lowest energy conformers of 13 (a), 16 
(b). Structures were superimposed using the backbone heavy atoms of residues 5-10. Heavy 
atoms are shown with different colours (carbon, green; nitrogen, blue; oxygen, red; sulfur, 
yellow; chlorine, magenta). Hydrogen atoms are not shown for clarity. 
 
 
 
As shown, both the peptides 13, and 16 show a well defined type II’ β-hairpin structure 

encompassing residue 5-10. In contrast, the N- and C-terminal residues were more flexible.  

Considering the side chains orientation, Phe6, D-Trp7, and Orn8 χ1 angles showed a large 

preference for trans, trans, and g- rotamers, respectively. In Urantide, dihedral angle χ2 of 
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DTrp7 was about 125° or -70°. Finally, side chain of residue 9 is found preferentially in g- and 

in trans orientation in peptide 13 and 16, respectively.  

 

5.2.4 Discussion 

As part of the ongoing efforts in improving the potency and stability of urotensin analogues 

and in elucidating the knowledge about their SARs, a series of analogues of P5U and Urantide 

in which the Tyr9 residue was replaced with aromatic non-coded amino acids have been 

designed and synthesized. Tyr9 belongs to the Trp-Lys-Tyr pharmacophoric sequence of U-II, 

crucial for interaction with its receptor as demonstrated by earlier studies. In fact, the 

replacement of Trp, Lys, and Tyr cause large changes in biological activity, suggesting the 

importance of the side chain of these residues for binding and activation of the UT receptor 

[33,34,101]. In this study the phenol moiety of P5U and Urantide was replaced with bulky 

electron-rich aromatic moieties in compounds 5-10 or phenyl ring substituted with bulky 

chlorine atoms (11-14). Alternatively, electron donating hydroxyl group of the Tyr9 was 

replaced by withdrawing groups as cyano (15-16) or nitro (17-18). All synthesized 

compounds were tested for their binding affinity on hUT-transfected CHO cells and for their 

contractile activity on de-endothelialized rat aortic rings [40]. Overall, bioactivity results 

indicate that in the P5U derivatives the substitution of Tyr9 with other aromatic-based 

moieties is well tolerated. In fact, all these compounds gave a rat aorta contraction of, at least, 

70%. These SARs are in accordance with previous results [33,48], which demonstrated that 

Tyr9 in hU-II or hU-II(4-11) can be replaced by various aromatic residues preserving most of 

the agonist activity, at least when the flexibility of Tyr9 side chain is kept [102]. The best 

results in the P5U derivatives were obtained replacing tyrosine with bulky Btz (9) or (3,4-

Cl)Phe (13) residues significantly improving in both cases the potency of more than one log 

(pEC50=10.71 and 10.91, respectively, p<0.05 vs. P5U) compared to P5U (pEC50=9.36±0.20), 

and more than two logs compared to the endogenous agonist hU-II (pEC50=8.50±0.06). The 
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peptide 13 is particularly notable as the most potent UT agonist discovered to date. Bulky 

aromatic amino acids may increase the binding affinity and the biological activity of the U-II 

agonists through an enhancement of the hydrophobic interactions within a putative Tyr 

binding pocket of UT.  

Considering the Urantide derivatives, SAR studies at position 9 are unprecedented. As for 

P5U, also Urantide seems to tolerate aromatic substitutions at position 9; in fact, all 

derivatives bind to UT receptor with pKi≥7.77. The main result obtained in this series is the 

finding of two antagonists (compounds 16, and 18). Despite a slight loss of affinity, these 

compounds behave as pure antagonists in the rat aorta bioassay as the parent Urantide. SAR 

data clearly indicate that small polar groups (pCN, pNO2 and the original OH) are requested 

for pure antagonist activity. In contrast, bulky lipophilic moieties [(1’)Nal, (3,4-Cl)Phe, Btz] 

increase the agonist activity (efficacy) of Urantide derivatives.  

As widely discussed elsewhere [41], Urantide behaves as a partial agonist in a calcium 

mobilization assay performed in CHO cells expressing the hUT [102]. The same behaviour 

was shown by compounds 16 and 18, i.e. pure antagonist in the aorta assay and partial agonist 

in a calcium mobilization assay, although with slightly higher efficacy compared to Urantide 

(Table 5.3).  

Peptide Ca++ efflux efficacy in %a 
1 µM 10 µM 

Urantide 43.3 46.2 
16 61.4 61.7 
18 56.5 61.2 

 
Table 5.3. Intracellular calcium efficacy. 
aEfficacy is expressed as % of the maximum response to hU-II. 
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Nevertheless, it is well known that urantide has been used by several groups as reference 

antagonist compound in studies of the urotensinergic system [103,104]. These novel ligands 

can be useful to discriminate the partial agonism/antagonism effects at the UT receptor in 

different cell lines/tissues. Also, the availability of novel agonists and antagonists as 

pharmacological tools to investigate the urotensinergic system is very important since subtle 

pharmacokinetic differences can differentiate their effects in vivo. In this respect, stability 

tests were performed on peptide hU-II(4-11), urantide and on the novel derivatives 13 and 16. 

These studies demonstrated that urantide and peptides 13, and 16 are highly stable showing a 

residual concentration higher than 50% in fetal calf serum even after 36 h. The higher level of 

stability shown by urantide, 13 and 16 compared to hU-II may be tentatively ascribed to the 

presence of a Pen residue, which can hinder the reduction of the disulfide bridge. In contrast, 

comparing the serum stability of Urantide and peptide 16, it comes out that aromatic non-

coded amino acid (pCN)Phe doesn’t improve peptide stability.  

A conformational analysis by solution NMR of the most interesting derivatives 13 and 16 was 

also carried out. In previous works [41,66], it has been showed that hU-II analogues, which 

retain high affinity for UT receptor, all possess a type II’ β-hairpin backbone conformation 

regardless their agonist or antagonist activity, indicating that such backbone conformation is 

necessary for the UT recognition. Indeed, such backbone conformation is observed also in the 

novel derivatives confirming the above outcome. The main conformational difference 

observed in the structures of peptide 9 (agonist activity) and peptide 12 (antagonist activity) is 

established in a different orientation of the (3,4-Cl)Phe or (pCN)Phe side chain, respectively. 

In particular, while in the agonist 9 the (3,4-Cl)Phe9 residue is close to the Lys8 side chain, in 

the antagonist 12 (pCN)Phe9 side chain is close to the Val11 side chain and further from the 

Orn8 side chain. This result is in accordance with that obtained studying constrained 

analogues of P5U and urantide [64] and with a revision of the conformational preferences of 

Urantide performed using DPC micelles [105].  
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Preliminary results obtained for peptides 19-28 proved relevant evidences about replacement 

of Tyr9 residue with other substituents. Compounds 19-20 represented the more interesting in 

this series as analogues of P5U and urantide. Indeed the primary amino group in para position 

may mimic effects of the original –OH giving compounds, which are closely related to parent 

peptides. Compound 19 is agonist and compound 20 is a full antagonist toward UT receptor. 

The only non-aromatic residue Cha in analogues 21-22 does not influence significantly 

binding and activation and both compounds behave as partial agonist. In compounds 23-24 

the distance between Cα and the aromatic ring was reduced, although agonist/antagonist 

activity is not discriminated and both compounds showed less affinity and partial activity at 

UT receptor, probably due to the lack of polar groups which may contribute to the interaction 

with UT receptor. Thus, the only aromatic moiety is not necessary to promise significant 

activity, even fixed in a specific position as evaluated for peptides 25-28. These peptides are 

characterized by weak affinity, losing in great part the biological activity.   

 

5.3 N-methylation: biological data and discussion  

The N-methylation as tool to investigate the conformational and biological aspects related to 

urotensin-II, a series of mono and multiple N-methylated analogues have been synthesized. 

The amino acids included into the cyclic exapeptide sequence Cys5-Cys10, recognized as the 

pharmacophoric sequence due to the maintainance of biological activity, have been 

exchanged in a systematic manner giving mono- and di-methylated peptides 29-53. 

Competitive binding assays with the radioligand [125I]Urotenisn-II were performed for the 

peptide series 29-53 (Table 5.4). 
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Peptide Sequence pEC50 pKD/pKi 

hU-II(4-11) H-Asp-c[Cys-Phe-Trp-Lys-Tyr-Cys]-Val-OH 8.20±0.01 8.34±0.04 

29 H-Asp-c[(NMe)Cys-Phe-Trp-Lys-Tyr-Cys]-Val-OH 8.26±0.03 8.53±0.08 

30 H-Asp-c[Cys-(NMe)Phe-Trp-Lys-Tyr-Cys]-Val-OH 6.36±0.04 6.64±0.10 

31 H-Asp-c[Cys-Phe-(NMe)Trp-Lys-Tyr-Cys]-Val-OH 8.50±0.05 8.76±0.07 

32 H-Asp-c[Cys-Phe-Trp-(NMe)Lys-Tyr-Cys]-Val-OH 4.91±0.18 =5 

33 H-Asp-c[Cys-Phe-Trp-Lys-(NMe)Tyr-Cys]-Val-OH 5.25±0.07 =5 

34 H-Asp-c[Cys-Phe-Trp-Lys-Tyr-(NMe)Cys]-Val-OH 8.31±0.08 8.45±0.05 

35 H-Asp-c[Pen-Phe-(NMe)DTrp-Orn-Tyr-Cys]-Val-OH d.n.a. 6.71±0.04 

36 H-Asp-c[Pen-Phe-DTrp-(NMe)Orn-Tyr-Cys]-Val-OH d.n.a. 6.40±0.06 

37 H-Asp-c[Pen-Phe-DTrp-Orn-(NMe)Tyr-Cys]-Val-OH d.n.a. 5.37±0.10 

38 H-Asp-c[Cys-Phe-DTrp-Orn-Tyr-(NMe)Cys]-Val-OH d.n.a. 7.57±0.07 

 

Peptide Sequence pKD/pKi 

hU-II(4-11) H-Asp-c[Cys-Phe-Trp-Lys-Tyr-Cys]-Val-OH 8.56±0.03 

39 H-Asp-c[(NMe)Cys-(NMe)Phe-Trp-Lys-Tyr-Cys]-Val-OH 6.86±0.06 

40 H-Asp-c[(NMe)Cys-Phe-(NMe)Trp-Lys-Tyr-Cys]-Val-OH 8.68±0.04 

41 H-Asp-c[(NMe)Cys-Phe-Trp-(NMe)Lys-Tyr-Cys]-Val-OH 5.73±0.05 

42 H-Asp-c[(NMe)Cys-Phe-Trp-Lys-(NMe)Tyr-Cys]-Val-OH 5.34±0.06 

43 H-Asp-c[(NMe)Cys-Phe-Trp-Lys-Tyr-(NMe)Cys]-Val-OH 8.62±0.05 

44 H-Asp-c[Cys-(NMe)Phe-(NMe)Trp-Lys-Tyr-Cys]-Val-OH 6.39±0.05 

45 H-Asp-c[Cys-(NMe)Phe-Trp-(NMe)Lys-Tyr-Cys]-Val-OH <5 

46 H-Asp-c[Cys-(NMe)Phe-Trp-Lys-(NMe)Tyr-Cys]-Val-OH 5.93±0.06 

47 H-Asp-c[Cys-(NMe)Phe-Trp-Lys-Tyr-(NMe)Cys]-Val-OH 7.53±0.06 

48 H-Asp-c[Cys-Phe-(NMe)Trp-(NMe)Lys-Tyr-Cys]-Val-OH 6.09±0.06 

49 H-Asp-c[Cys-Phe-(NMe)Trp-Lys-(NMe)Tyr-Cys]-Val-OH 6.07±0.28 

50 H-Asp-c[Cys-Phe-(NMe)Trp-Lys-Tyr-(NMe)Cys]-Val-OH 8.96±0.04 

51 H-Asp-c[Cys-Phe-Trp-(NMe)Lys-(NMe)Tyr-Cys]-Val-OH <5 

52 H-Asp-c[Cys-Phe-Trp-(NMe)Lys-Tyr-(NMe)Cys]-Val-OH 5.82±0.07 

53 H-Asp-c[Cys-Phe-Trp-Lys-(NMe)Tyr-(NMe)Cys]-Val-OH 5.85±0.07 

 
Table 5.4. Preliminary results of mono- and multiple-N-methylated derivatives. 
pEC50: -log EC50 
pKD: -logKD 
pKi: -logKi 
d.n.a.: data not available.  
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All peptides showed binding at the recombinant human UT receptor expressed on membranes 

obtained from stable CHO-K1 cell line, albeit with various intensity. As for the mono-

methylated of U-II(4-11) (peptides 29-34), they were also tested for their ability to induce 

efficacious contractions in the rat isolated thoracic aorta (Figure 5.4). In contrast, functional 

assays for the other compounds are still in progress. 

 

 

 

 

 

 

 

Figure 5.4. Peptides 29-34 were tested for their ability to induce efficacious contractions in 
the rat isolated thoracic aorta. 
 

In the first series of peptides with the single N-methylation screen in the U-II(4-11) sequence 

(peptides 29-34), it is evident that the amide bonds in positions 8 and 9, normally occupied by 

Lys/Orn and Tyr residues, are less tolerant versus N-methyl groups on the basis of significant 

decrase of binding affinity and consequently reduction of vasoconstriction on the rat thoracic 

aorta showed for peptide 32 and 33. The N-Me-Tyr in position 9 gave the corresponding 

peptide 33, which is already reported in literature [102]. In this study different chemical 

modifications occurred in position 9 of hU-II sequence and among these compounds N-

methylated derivative is present. Thus, in agreemen with Batuwangala et al. the single N-

methylation in position 9 produced a dramatic reduction of peptide potency. For the rest of the 

core sequence (peptides 29, 30, 31 and 34), the single N-methylation does not cause any 

drastic reduction in binding activity, although the conformational constriction induced by the 

introduction of methyl groups in the positions 5, 7 and 10 led to the more active compounds 
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of this series due to their ability to preserve the capability in binding and activating toward the 

UT receptor. In particular, peptide 31 resulted to be even more active compared to the native 

hU-II(4-11), suggesting that Trp7 and its side chain orientation are critical into the cyclic 

portion for binding mode of the peptide. This observation parallels earlier studies that have 

shown the primary role of Trp in position 7 which contributes significantly to the interaction 

between U-II/UT receptor, as well as its orientation represents important element for 

agonism/antagonism discrimination. The N-Me-Phe in compound 30 decreased of about 2 log 

both binding and efficacy values proving no relevant modification for development of more 

potent analogues. Also, the N-Me-Tyr in peptide 33 showed negligible potency at the UT 

receptor, as reported in previous works. Molecular modeling studies and NMR investigations 

suggested that the NH of Tyr9 may be involved in hydrogen bonding with the CO of Trp7 

stabilizing a preferential conformation centered on the Trp7-Cys10 sequence which could 

predict similar observations for the other compounds, relevant for U-II activity. The 

methylation of Tyr9 might prevent the formation of such hydrogen bonding and this could be 

the reason of the reduced activity of this analogue. However, it can’t be excluded that the 

introduction of a methyl group on Tyr9 could produce steric hindrance that prevents UT 

receptor binding.  

On the basis of results of mono-methylated derivatives of U-II(4-11) sequence, similar 

observations have been formulated for mono-methylated urantide analogues, although the 

series is not complete and further considerations are still under discussion. 

The second group of peptides are di-methylated in the exacyclic sequence of U-II(4-11), 

where each couple of amino acids was replaced with the corresponding N-methylated 

derivatives in all possible combination giving the peptides 39-53. Examining effects on 

binding affinity of combined N-methylated amide bonds, some exciting resuls were observed. 

First of all it has been demonstrated that site of N-methylation combined with N-Me-Phe, N-

Me-Lys or N-Me-Tyr reduced the binding at UT receptor. Instead, any combination of N-
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methylated residues in positions 5, 7 and 10  (peptides 40, 43 and 50) led to increase in 

binding affinity confirming the results from mono-methylation. Indeed, the selective 

suppression of a proton-donating N-H group due to methyl groups introduction in positions 5, 

7 and 10 occurred in both mono- and di-methylated peptides increased binding at UT 

receptor. According to the continuous research of urotensin analogues with more constrained 

motif that can stabilize a preferential conformation, the specific N-methylation upon Cys5, 

Trp7 and Cys10 residues may promote a type II’ β-hairpin secondary structure possessed by all 

potent ligands so far described.   

Therefore, these two series of compounds gave interesting results, which contribute to 

structure-activity relationship studies. Alteration of N-H of amide bonds into the peptide 

sequence of U-II(4-11) influences necessarily the proton-donating capability of specific sites. 

These effects reflect upon the potential intra- and inter- molecular hydrogen bonds that 

establish the bioactive conformation and, thus, the interaction with the UT receptor.  

The synthesis of a third series of tri-methylated compounds has been postponed. Earlier 

results about mono- and di-methylated compounds are adequately in agreement each other 

suggesting selective positions more tolerant to methyl groups accommodation and the 

preference of one backbone conformation.  

 

5.4 Aza-sulfuryl peptides: biological data 

N-aminosulfamide analogues of U-II(4-11) sequence, peptides 75-78, have been successfully 

synthesized featuring the synthetic strategy described above. The replacement of conventional 

peptide amide by aza-sulfuryl amino acid residues led to innovative urotensin analogues. Aza-

sulfuryl moiety into a peptide sequence has already reported in literature revealing its 

capability to mimic tetrahedral transition states common in enzyme-catalyzed reactions. 

However, conformational features of this motif could be appropriate in stabilizing such 

secondary structures that improve binding affinity versus G protein-coupled receptors. 



	  
80 

Therefore, the peptidomimetics obtained were tested for their ability to diplace [125I]U-II in 

the binding interaction with the UT receptor and results are showed in Table 5.5.  

 

Compound Sequence [ ] n % hU-II-125I 

75 Asp-c[Cys-Phe-asPhe-Lys-Tyr-Cys]-Val-OH 
1E-06 4 64,39 

1E-05 3 52,2 

76 Asp-c[Cys-Phe-asBip-Lys-Tyr-Cys]-Val-OH 
1E-06 4 76,8 

1E-05 d.n.a. d.n.a. 

77 Asp-c[Cys-Phe-as(2)Nal-Lys-Tyr-Cys]-Val-OH 
1E-06 4 73,4 

1E-05 3 46,8 

78 Asp-c[Cys-Phe-as(1)Nal-Lys-Tyr-Cys]-Val-OH 
1E-06 4 60,8 

1E-05 3 25,7 

 

Table 5.5. Binding affinity at UT receptor for compounds 75-78. 
d.n.a.: data not available. 
 
 
 
Binding and functional assays are still in progress, in parallel with the enlargement of aza-

sulfuryl peptide library, under the supervision of Prof. Lubell.  

An overview of preliminary results for affinity at UT receptor is presented in Table 5.5. In 

general, peptides 75-78 exhibited weak binding affinity at the UT receptor, with limited 

capacity to displace iodinated Urotensin-II from the receptor at micromolar concentrations. 

The different side chains used to mimic the aromatic residue of the triptophan indole group 

had limited influence on affinity.   

In accordance with earlier observations, the development of an aza-sulfuryl amino acid 

derivative as a replacement of the Trp residue in position 7 led to decreased binding affinity. 

In the N-methylation studies the suppression of the N-H proton at the same position gave 

compounds with higher affinity. Indeed, Trp7 is crucial for the interaction with receptor 
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counterpart and, hence, chemical modifications occurred in this position confirmed that the 

residue is tolerant versus Nα-methyl group incorporation, whereas the potential for improved 

hydrogen bonding by the N-aminosulfamide moiety may reduce affinity.  

Among this series, compound 78, characterized by α-naphtyl group in replacement of indole, 

seems to be the most interesting in terms of affinity probably due to the similar orientation of 

aromatic residue with the native ligand.   

This study is still under progress and proposed considerations recommend deeper 

investigation by enlargement of peptide library and conformational analysis, which could help 

to understand the importance of such modification of the urotensin peptide sequence. 

Preliminary results support the importance of hydrogen bond interactions and conformation 

for receptor interaction and biological activity. Moreover, the potential agonism/antagonism 

modulation of urotensin system by chemical modifications such as incorporation of aza-

sulfuryl amino acids could contribute to elucidate key elements in the development of further 

analogues.    

 

5.5 Future perspectives 

On the basis of information obtained from N-methylation and N-aminosulfamide studies, it’s 

evident that we need to perform a deep and detailed analysis to have a complete view about 

the effects induced by these modifications upon the U-II sequence. The congruence between 

partial results obtained for N-methylated and N-aminosulfamide derivatives described above 

gives way to examine in depth the apparent correlation for hydrogen-bonding modulation in 

specific positions of Urotensin-II sequence. Indeed, suppression of N-H proton-dontaing 

effects by alkylation with methyl group influence positively the interaction with the UT 

receptor when it occurs in Trp position. In contrast, improvement of hydrogen-bond 

interactions due to N-aminosulfamide residue in the same position led to opposite 

observations.  
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In light of the properties of aza-sulfonamido moieties, and their related possibility to facilitate 

inter- and intra-molecular hydrogen bonds, it could be intriguing a three-dimensional 

structural analysis by NMR, as well as for more interesting N-methylated compounds. It’s 

well established that the conformation play a key role in determining biological activity since 

all Urotensin-II analogues possesss a type II’ β-hairpin secondary structure such as P5U and 

urantide.  

For this reason, further perspectives are currently under investigation in order to accomplish 

structure-activity relationships study related to these new urotensin analogues and their 

impact in the urotensinergic system.  
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6 Conclusions  
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In summary, new Urotensin-II analogues have been designed and developed by application of 

synthetic strategies available to modify peptide properties, such as incorporation of non-

natural amino acids and modification of peptide bonds. 

Using Trp-constrained analogues of P5U and urantide, new insight on the binding mode of 

agonists and antagonists at the UT receptor has been defined. In particular, Lys8/Orn8 

replacement proved a key substitution for the agonist to antagonist switching. 

Conformationally, a type II’ β-turn structure encompassing residues 6–9 was confirmed as 

structural element of active compounds. Considering the three-point pharmacophore model, 

the distance between the positively charged nitrogen and the indole ring seems to be not 

relevant for the agonist/antagonist activity switching. In contrast, a different orientation of the 

side chain of Tyr9 present in the analogues investigated in this study could be a factor that 

plays a crucial role in agonist/antagonist activity. In particular, the long distance between the 

phenol ring and the Orn8 nitrogen atom, observed in the antagonist peptide 4, is 

unprecedented in earlier studies. This result needed to be examined by further studies by 

synthesizing additional and appropriate analogues modified in position 9. For this reason, 

analogues of P5U and Urantide modified at Tyr9 position were developed. Two of them (9 

and 13) showed increased potency compared to the parent peptide P5U, the last being the 

most potent UT peptide agonist discovered to date. Two Urantide analogues (16 and 18) 

turned out to be pure antagonists in the rat aorta bioassay likewise parent urantide. 

Compounds 13 and 16 showed also a good stability in serum proteolytic assay, suggesting 

that these peptides may be stable enough to give them an additional opportunity in drug 

delivery. Furthermore, these novel analogues allowed improving the knowledge on structure- 

and conformation-activity relationships on UT receptor ligands, which can help in the design 

of improved compounds.  

Ultimately, these novel ligands, notably the superagonist 13, the most potent agonist 

discovered to date, could be useful pharmacological tools for in vitro and particularly in vivo 
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studies aimed at clarifying the role played by the U-II/UT system in patho-physiological 

conditions. 

Alternatively, N-methylation studies were used to change pharmacological properties of 

peptides. Introduction of a methyl group on Nα of amide bonds surely has an important 

impact on the secondary structure influencing interaction with UT receptor. Mono and 

multiple N-methylated analogues of U-II(4-11) and urantide, peptides 29-53, were achieved 

by synthetic strategy compatible with solid support. On the basis of first mono-methylated 

series of peptides 29-38, it is evident that single N-methylation occurred in Lys8 and Tyr9 

positions reduces binding affinity and consequently reduction of vasoconstriction on the rat 

thoracic aorta. In contrast, for remaining amino acids of the core sequence, N-methylation 

does not cause any drastic reduction in binding activity, in fact the introduction of methyl 

groups in the positions 5, 7 and 10 led to the more active compounds of this series. In 

particular, the N-Me-Trp led to peptide 31, which resulted to be even more active compared 

to the native hU-II(4-11), suggesting its primary role into the cyclic portion for U-II/UT 

receptor interaction. 

Multiple N-methylation of U-II(4-11) sequence led to derivatives in which the affinity for UT 

receptor is mostly retained. According to observations formulated for the mono-methylated 

series, it has been demonstrated that site of N-methylation combined with N-Me-Phe, N-Me-

Lys or N-Me-Tyr reduced the binding at UT receptor; instead, any combination of N-

methylated amide bonds between residues in positions 5, 7 and 10  (peptides 40, 43 and 50) 

led to increase in binding affinity. Indeed, it has been demonstrated that specific site for N-

methylation may influence binding affinity versus the UT receptor generating compounds 

more potent and stable due to favourable pharmacokinetic properties of N-methylated 

derivatives. Additionally, the conformational alteration produced by methyl groups might 

promote a type II’ β-hairpin secondary structure, possessed by all potent Urotensin-II 

analogues such as P5U and urantide. 
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As for the aza-sulfuryl peptides, the study can’t be completely evaluated since poor 

information about binding and functional assays doesn’t allow expressing critical 

examinations. The aza-sulfonamide residue has been inserted into the U-II(4-11) sequence to 

evaluate the effects generated by this structural modification on the conformation and 

hydrogen bonding capability. In particular, new N-aminosulfamide analogues have been 

developed by the replacement of Trp7 with the aza-sulfuryil amino acids carrying side chains 

mimics of the native indole moiety.  

Thus, based on the preliminary information in hand, a hypothesis has been formulated to 

explain the trend of N-sulfamidate derivatives. The four compounds 75-78 realized and their 

corresponding values related to their ability to displace [125I]U-II in the interaction with UT 

recptor, suggested that introduction of aza-sulfuryl residues in this position led in principle to 

decrease affinity at UT receptor. However, these results are in accordance with N-methylation 

studies since the suppression of a proton-donating N-H in the same position gave compounds 

with more affinity. Indeed, Trp7 is crucial for the interaction with receptor counterpart and, 

hence, chemical modifications occurred in this position can influence biological activity. In 

particular, the Trp7 residue is tolerant versus Nα-methyl group incorporation, whereas 

improvement of hydrogen bonding possibility by N-aminosulfamide moiety reduces binding 

affinity. 
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7 Experimental Section 
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7.1 Materials and general procedures 

Unless specified, 4-nitrophenyl chlorosulfate [106], as well as Nα-(Alloc)-L-phenylalanine, Nα-

(Alloc)-Nin-(Boc)-L-tryptophan [107,108], all were synthesized according to literature 

methods. Nε-(Alloc)-L-lysine and O-(t-Bu)-L-tyrosine benzyl ester were synthesized from 

their corresponding Fmoc-amino acids using benzyl bromide and cesium carbonate in DMF 

[109], and free-based by treating with 20% piperidine in DMF solution. L-phenylalanine, allyl 

chloroformate, isobutyl chloroformate (IBC), tert-butyl carbazate, benzophenone hydrazone, 

4-methylmorpholine (NMM), hydroxylamine hydrochloride, 4-nitrophenol, triethylamine, 

and 1,3-dimethylbarbituric acid (NDMBA), all were purchased from Aldrich and used as 

received. Nin-(Boc)-L-tryptophan, pyridine, 4-(bromomethyl)biphenyl, 1-

(bromomethyl)naphthalene, lithium hydroxide (LiOH),  all were purchased from Alfa Aesar, 

Acros, or Chem-Impex. Benzyl bromide was purchased from Aldrich and filtered through a 

small plug of silica gel prior to use. Phosphazene base (tert-butylimino-

tri(pyrrolidino)phosphorane, BTPP), and 2-(bromomethyl)naphthalene were purchased from 

Fluka and used as received. Tetrakis(triphenylphosphine)palladium, was purchased from 

Aldrich and washed with ethanol prior to use. Anhydrous solvents [tetrahydrofuran (THF), 

N,N-dimethylformamide (DMF), acetonitrile, and dichloromethane (DCM)] were obtained by 

passage through a solvent-filtration system (GlassContour, Irvine, CA). Amino acids, Fmoc-

Asp(OtBu), Fmoc-Cys(Trt), Fmoc-Phe, Fmoc-Lys(Boc), Fmoc-Tyr(tBu), Fmoc-Val and 

coupling reagents such as HBTU and HOBt, all were purchased from GL BiochemTM, and 

used as received. The rest of Na-Fmoc-protected amino acids, HBTU and HOBt were 

purchased from Inbios (Naples, Italy), and used as received. N,N’-Diisopropylcarbodiimide 

(DIC) was purchased from Aldrich and used as received. 2-Chlorotrityl chloride resin (0.65 

and 0.79 mmol/g loading) were purchased from Chem-Impex, and the manufacturer’s 

reported loading of the resin was used in the calculation of final product yields.  Wang resin 

was purchased from Advanced ChemTech (Louisville, KY). Protected Penicillamine was 
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purchased from Bachem (Basel, Switzerland). Microwave irradiation was performed on a 300 

MW Biotage apparatus on the high absorption level; temperature was monitored 

automatically. Flash chromatography [110] was on 230-400 mesh silica gel. Thin layer 

chromatography was performed on silica gel 60 F254 plates from MerckTM.  Melting points 

were made on a Gallankamp apparatus and are uncorrected. Specific rotations, [α]D values, 

were calculated from optical rotations measured at 20 °C in THF at the specified 

concentration (c in g/100 mL) and a 1-dm cell length (l) on a PerkinElmer Polarimeter 341, 

using the general formula: [α]20
D = (100 x α)/(l x c). Accurate mass measurements were 

performed on a LC-MSD instrument from Agilent technologies in positive electrospray 

ionisation (ESI) mode at the Université de Montréal Mass Spectrometry facility or by 6110 

Quadrupole, Agilent Technologies. Sodium adducts [M+Na]+ were used for empirical 

formula confirmation. 1H NMR and 13C NMR spectra were recorded either on a Bruker 

AV300, AMX300, or AV400, and measured in CDCl3 (7.26/77.16 ppm), acetone-d6 

(2.05/29.84 ppm), or pyridine-d5 (7.22 ppm).  Multiplicities are abbreviated: s = singlet, d = 

doublet, t = triplet, q = quadruplet, m = multiplet, and br = broad. Coupling constant J values 

are measured in Herts (Hz) and chemical shift values in parts per million (ppm). Infrared 

spectra were recorded in the neat on an ATR Bruker apparatus. 

 

7.2 Binding Experiments 

All experiments were performed on membranes obtained from stable CHO-K1 cells 

expressing the recombinant human UT receptor (ES-440-M, lots 564-915-A and 613-577-A, 

Perkin Elmer, Boston, MA, USA). Assay conditions were: TRIS-buffer (20 mM, pH 7.4 at 37 

°C) added with MgCl2 (5 mM) and 0.5% BSA. Final assay volume was 0.1 ml, containing 1 

or 20 µg membrane proteins depending on the lot of provided membranes. The radioligand 

used for competition experiments was [125I]Urotensin-II (specific activity 2200 Ci/mmol; 

NEX379, Perkin Elmer) in the range 0.07–1.4 nM (as recommended by the lot of provided 
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membranes). Non-specific binding was determined in the presence of 1 µM of unlabelled hU-

II, and ranged between 10–20% of total binding. Competing ligands were tested in a wide 

range of concentrations (1 pM – 10 µM). The incubation period (120 min at 37 °C) was 

terminated by rapid filtration through UniFilter-96 plates (Packard Instrument Company), pre-

soaked for at least 2 h in BSA 0.5%, and using a MicroMate 96 Cell Harvester (Packard 

Instrument Company). The filters were then washed 4 times with 0.2 ml aliquots of Tris-HCl 

buffer (20 mM, pH 7.4, 4°C). Filters were dried and soaked in Microscint 40 (50 µl in each 

well, Packard Instrument Company), and bound radioactivity was counted by a TopCount 

Microplate Scintillation Counter (Packard Instrument Company). Determinations were 

performed in duplicate. All binding data were fitted by using GraphPad Prism 4.0 in order to 

determine the equilibrium dissociation constant (Kd) from homologous competition 

experiments, the ligand concentration inhibiting the radioligand binding of the 50% (IC50) 

from heterologous competition experiments. Ki values were calculated from IC50 using the 

Cheng-Prusoff equation (Ki=IC50/(1+[radioligand]/Kd) according to the concentration and Kd 

of the radioligand [111]. In each experimental section one homologous competition curve to 

urotensin was run and the calculated Kd and the used radioligand concentration were used for 

the determination of ligand Ki values. The determine Kd value was 2.23 nM (1.09–3.38 nM, 

95% c.l., n=5, each experiment performed in duplicate). 

 

7.3 Intracellular calcium assay 

PathHunter β-arrestin UT-CHO–K1 cells were transfected with a chimeric Gαq-i5 G protein 

subunit plasmid [112] using lipofectamine (Life Technologies) and incubated overnight at 37 

°C. Cells were then re-seeded in complete growth medium at 10,000 cells per well in 384-

well black, clear bottom microplates and incubated overnight at 37 °C. Cells were loaded with 

Fluo-4 direct calcium assay reagent (Life Technologies, Paisley, UK)) for 45 minutes at 37 °C 



	  
91 

+ 15 minutes at rt in the presence of probenecid (5 mM). Compound addition and calcium 

mobilization were monitored on a Flex Station (Molecular Devices, Sunnyvale, CA). 

 

7.4 Serum peptide stability 

Peptide stabilities were assayed in diluted serum as previously described [113]. 25% fetal calf 

serum was centrifuged at 13,000 rpm for 10 min to remove lipids and the supernatant was 

collected and incubated at 37 °C for at least 15 min. The assay was initiated upon the addition 

of peptides to the serum for a final peptide concentration of 80 µM. 80 µL aliquots of the 

incubations were taken for the following time points: 0, 4, 16, 20, 24, 36 h. The aliquots were 

mixed with 40 µL of 15% trichloroacetic acid (TCA) and incubated at 2 °C for at least 15 min 

to precipitate serum proteins.  

The supernatant was collected for each sample after centrifugation at 13,000 rpm for 10 min. 

These assays were performed in triplicate. Reverse phase high performance liquid 

chromatography (RP-HPLC) was carried out with Agilent Technologies 1200 series HPLC 

equipped with UV detector using a C18 column from ThermoFisher (Milan, Italy). Gradient 

elution was performed at 25°C (monitoring at 210 nm) in a gradient starting with buffer A 

(0.1 % TFA in water) and applying buffer B (0.1 % TFA in acetonitrile) from 5 to 70 % in 15 

min. 

 

7.5 Organ Bath Experiments 

The experimental procedures employed in this study were approved by Institutional Animal 

Care and Use Committee and carried out in accordance with the legislation of Italian 

authorities (D.L. 116 27/01/1992), which complies with European Community guidelines 

(CEE Directive 86/609) for the care and use of experimental animals. 

Male albino rats (Wistar strain, 275–350 g; Harlan Laboratories, UD, Italy) were euthanized 

by cervical dislocation, under ether anesthesia. The thoracic aorta was cleared of surrounding 



	  
92 

tissue and excised from the aortic arch to the diaphragm. From each vessel, a helically cut 

strip was prepared, and then it was cut into two parallel strips. The endothelium was removed 

by gently rubbing the vessel intimal surface with a cotton-tip applicator; the effectiveness of 

this maneuver was assessed by the loss of relaxation response to acetylcholine (1 µM) in 

noradrenaline (1 µM) precontracted preparations. All preparations were placed in 5 ml organ 

baths filled with normal Krebs solution of the following composition (mmol/l): NaCl 119; 

NaHCO3 25; KH2PO4 1.2; MgSO4 1.5; CaCl2 2.5; KCl 4.7 and glucose 11, warmed at 37 °C 

and oxygenated with 95% O2, 5% CO2. The tissues were connected to isotonic force 

transducers (Ugo Basile, VA, Italy) under a constant load of 5 mN and motor activity was 

digitally recorded by an Octal Bridge Amplifier connected to PowerLab/8sp hardware system 

and analyzed using the Chart 4.2 software (ADInstruments Ltd, Oxford, UK). After 60 min 

equilibration, tissue responsiveness was assessed by the addition of 1 µM noradrenaline 

followed by a further equilibration of 60 min. 

To assess the agonist activity cumulative concentration-response curves to hU-II and to the 

agonist peptide under examination were constructed in paired aortic strips and responses 

obtained were normalized towards the control hU-II maximal contractile effect (Emax). 

To assess the antagonist activity concentration–response curves to hU-II were constructed 

cumulatively in paired aortic strips. One strip was pretreated with vehicle (DMSO; 1-3 µl/ml) 

and used as a control, while the other strip was pretreated with the antagonist peptide under 

examination and, after a 30 min incubation period, hU-II was administered cumulatively to 

both preparations. 

In each preparation only one cumulative concentration-response curve to hU-II was carried 

out and only one concentration of antagonist was tested. Concentration-response curves were 

analyzed by sigmoidal nonlinear regression fit using the GraphPad Prism 4.0 program (San 

Diego, CA, U.S.A.) to determine the molar concentration of the agonist producing the 50% 

(EC50) of its maximal effect. Agonist activity of all compounds was expressed as pD2 (−log 
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EC50). The antagonist potency was expressed in terms of pKB estimated as the mean of the 

individual values obtained with the Gaddum equation: pKB=log(CR-1)-log[B] were CR is the 

concentration-ratio calculated from equieffective concentrations of agonist (EC50) obtained in 

the presence and in the absence of antagonist and B is the used antagonist concentration.45 

Competitive antagonism was checked by the Schild regression analysis by plotting the 

estimates of log(CR-1) against log[B] to determine the slopes of linear regression: a plot with 

linear regression line and slope not significantly different from unity was considered as proof 

of competitive antagonism [111]. 

Results were compared for significant differences using two-tail Student’s t-test for paired 

data or one-way analysis of variance (ANOVA) followed by Dunnett’s post hoc test. A p 

value <0.05 was considered statistically significant. 
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8 Characterization 
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Peptide Structure 
HPLCa MS (M+H) 

k’ Found Calcd 

1 H-Asp-c[Pen-Phe-Tpi-Lys-Tyr-Cys]-Val-OH 5.15 1099.5 1099.38 

2 H-Asp-c[Pen-Phe-DTpi-Lys-Tyr-Cys]-Val-OH 4.88 1099.3 1099.38 

3 H-Asp-c[Pen-Phe-Tpi-Orn-Tyr-Cys]-Val-OH 5.03 1085.6 1085.41 

4 H-Asp-c[Pen-Phe-DTpi-Orn-Tyr-Cys]-Val-OH 4.70 1085.3 1085.41 

5 H-Asp-c[Pen-Phe-Trp-Lys-(2)Nal-Cys]-Val-OH 8.21 1023.41 1023.37 

6 H-Asp-c[Pen-Phe-DTrp-Orn-(2)Nal-Cys]-Val-OH 8.15 1109.39 1109.34 

7 H-Asp-c[Pen-Phe-Trp-Lys-(1)Nal-Cys]-Val-OH 8.31 1023.40 1023.37 

8 H-Asp-c[Pen-Phe-DTrp-Orn-(1)Nal-Cys]-Val-OH 8.26 1109.34 1109.34 

9 H-Asp-c[Pen-Phe-Trp-Lys-Btz-Cys]-Val-OH 7.61 1130.25 1130.24 

10 H-Asp-c[Pen-Phe-DTrp-Orn-Btz-Cys]-Val-OH 7.30 1116.27 1116.21 

11 H-Asp-[Pen-Phe-Trp-Lys-(pCl)Phe-Cys]-Val-OH 8.18 1107.79 1107.75 

12 H-Asp-c[Pen-Phe-DTrp-Orn-(pCl)Phe-Cys]-Val-OH 8.03 1093.78 1093.73 

13 H-Asp-c[Pen-Phe-Trp-Lys-(3,4-Cl)Phe-Cys]-Val-OH 8.32 1142.21 1142.20 

14 H-Asp-c[Pen-Phe-DTrp-Orn-(3,4-Cl)Phe-Cys]-Val-OH 8.41 1128.19 1128.17 

15 H-Asp-c[Pen-Phe-Trp-Lys-(pCN)Phe-Cys]-Val-OH 8.02 1098.31 1098.32 

16 H-Asp-c[Pen-Phe-DTrp-Orn-(pCN)Phe-Cys]-Val-OH 7.90 1084.33 1084.29 

17 H-Asp-c[Pen-Phe-Trp-Lys-(pNO2)Phe-Cys]-Val-OH 7.51 1118.32 1118.31 

18 H-Asp-c[Pen-Phe-DTrp-Orn-(pNO2)Phe-Cys]-Val-OH 7.44 1104.30 1104.28 

19 H-Asp-c[Pen-Phe-Trp-Lys-(pNH2)Phe-Cys]-Val-OH 7.78 1088.47 1088.32 

20 H-Asp-c[Pen-Phe-DTrp-Orn-(pNH2)Phe -Cys]-Val-OH 7.61 1074.45 1074.29 

21 H-Asp-c[Pen-Phe-Trp-Lys-Cha-Cys]-Val-OH 7.45 1079.50 1079.36 

22 H-Asp-c[Pen-Phe-DTrp-Orn-Cha-Cys]-Val-OH 7.32 1065.49 1065.33 

23 H-Asp-[Pen-Phe-Trp-Lys-Phg-Cys]-Val-OH 7.92 1059.44 1059.28 

24 H-Asp-c[Pen-Phe-DTrp-Orn-Phg-Cys]-Val-OH 7.88 1045.42 1045.25 

25 H-Asp-c[Pen-Phe-Trp-Lys-Tic-Cys]-Val-OH 8.18 1085.45 1085.30 

26 H-Asp-c[Pen-Phe-DTrp-Orn-Tic-Cys]-Val-OH 8.04 1071.44 1071.27 
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27 H-Asp-c[Pen-Phe-Trp-Lys-Aic-Cys]-Val-OH 7.98 1085.45 1085.30 

28 H-Asp-c[Pen-Phe-DTrp-Orn-Aic-Cys]-Val-OH 7.87 1071.44 1071.27 
                  

Table 8.1. Characterization data for peptides 1-28. 
ak’ = [(peptide retention time – solvent retention time)/solvent retention time]. 
 
 
 
Peptide 29: crude purity: 80%, tR: 10.9 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 35 min, flow rate of 1.0 mL/min), molecular formula: C51H67N10O12S2, 

calculated mass; 1075.44, found: 1075.9. 

Peptide 30: crude purity: 62%, tR: 10.6 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 35 min, flow rate of 1.0 mL/min), molecular formula: C51H67N10O12S2, 

calculated mass; 1075.44, found: 1075.4. 

Peptide 31: crude purity: 85%, tR: 11.9 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 35 min, flow rate of 1.0 mL/min), molecular formula: C51H67N10O12S2, 

calculated mass; 1075.44, found: 1075.3. 

Peptide 32: crude purity: 74%, tR: 17.9 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 20 min, flow rate of 1.0 mL/min), molecular formula: C51H67N10O12S2, 

calculated mass; 1075.44, found: 1075.3. 

Peptide 33: crude purity: 78%, tR: 10.3 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 35 min, flow rate of 1.0 mL/min), molecular formula: C51H67N10O12S2, 

calculated mass; 1075.44, found: 1075.4. 

Peptide 34: crude purity: 67%, tR: 11.2 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 35 min, flow rate of 1.0 mL/min), molecular formula: C51H67N10O12S2, 

calculated mass; 1075.44, found: 1075.9. 

Peptide 35: crude purity: 90%, tR: 11.9 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 35 min, flow rate of 1.0 mL/min), molecular formula: C52H69N10O12S2, 

calculated mass; 1089.45, found: 1088.9. 
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Peptide 36: crude purity: 92%, tR: 15.8 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 20 min, flow rate of 1.0 mL/min), molecular formula: C52H69N10O12S2, 

calculated mass; 1089.45, found: 1089.1. 

Peptide 37: crude purity: 63%, tR: 16.1 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 20 min, flow rate of 1.0 mL/min), molecular formula: C52H69N10O12S2, 

calculated mass; 1089.45, found: 1089.0. 

Peptide 38: crude purity: 74%, tR: 14.9 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 20 min, flow rate of 1.0 mL/min), molecular formula: C52H69N10O12S2, 

calculated mass; 1089.45, found: 1089.3. 

Peptide 39: crude purity: 55%, tR: 10.2 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 35 min, flow rate of 1.0 mL/min), molecular formula: C52H69N10O12S2, 

calculated mass; 1089.45, found: 1089.3. 

Peptide 40: crude purity: 58%, tR: 12.2 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 35 min, flow rate of 1.0 mL/min), molecular formula: C52H69N10O12S2, 

calculated mass; 1089.45, found: 1089.7. 

Peptide 41: crude purity: 77%, tR: 14.0 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 20 min, flow rate of 1.0 mL/min), molecular formula: C52H69N10O12S2, 

calculated mass; 1089.45, found: 1089.1. 

Peptide 42: crude purity: 56%, tR: 15.3 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 35 min, flow rate of 1.0 mL/min), molecular formula: C52H69N10O12S2, 

calculated mass; 1089.45, found: 1088.8. 

Peptide 43: crude purity: 41%, tR: 11.0 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 35 min, flow rate of 1.0 mL/min), molecular formula: C52H69N10O12S2, 

calculated mass; 1089.45, found: 1089.8. 
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Peptide 44: crude purity: 67%, tR: 11.0 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 35 min, flow rate of 1.0 mL/min), molecular formula: C52H69N10O12S2, 

calculated mass; 1089.45, found: 1089.7. 

Peptide 45: crude purity: 61%, tR: 14.1 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 20 min, flow rate of 1.0 mL/min), molecular formula: C52H69N10O12S2, 

calculated mass; 1089.45, found: 1089.2. 

Peptide 46: crude purity: 80%, tR: 9.6 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 35 min, flow rate of 1.0 mL/min), molecular formula: C52H69N10O12S2, 

calculated mass; 1089.45, found: 1089.2. 

Peptide 47: crude purity: 47%, tR: 14.2 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 20 min, flow rate of 1.0 mL/min), molecular formula: C52H69N10O12S2, 

calculated mass; 1089.45, found: 1089.4. 

Peptide 48: crude purity: 77%, tR: 11.0 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 35 min, flow rate of 1.0 mL/min), molecular formula: C52H69N10O12S2, 

calculated mass; 1089.45, found: 1089.8. 

Peptide 49: crude purity: 61%, tR: 11.4 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 35 min, flow rate of 1.0 mL/min), molecular formula: C52H69N10O12S2, 

calculated mass; 1089.45, found: 1089.9. 

Peptide 50: crude purity: 78%, tR: 15.6 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 20 min, flow rate of 1.0 mL/min), molecular formula: C52H69N10O12S2, 

calculated mass; 1089.45, found: 1089.1. 

Peptide 51: crude purity: 58%, tR: 11.6 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 35 min, flow rate of 1.0 mL/min), molecular formula: C52H69N10O12S2, 

calculated mass; 1089.45, found: 1089.9. 
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Peptide 52: crude purity: 72%, tR: 14.4 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 20 min, flow rate of 1.0 mL/min), molecular formula: C52H69N10O12S2, 

calculated mass; 1089.45, found: 1089.2. 

Peptide 53: crude purity: 46%, tR: 13.8 min (analytical HPLC, 10 to 90% acetonitrile in water 

(0.1% TFA) over 20 min, flow rate of 1.0 mL/min), molecular formula: C52H69N10O12S2, 

calculated mass; 1089.45, found: 1089.4. 

 

 

 

Nα-(Alloc)-N’-Boc-L-phenylalanine hydrazide (61) Nα-(Alloc)-L-phenylalanine (4.29 g, 
17.21 mmol) was dissolved in dry THF (93 mL), cooled to –15° C, treated with IBC (2.23 
mL, 17.21 mmol) followed by NMM (2.37 mL, 21.51 mmol), stirred for 15 min, and treated 
drop-wise with a solution of tert-butyl carbazate in dry THF (21 mL). After stirring at –15 °C 
for 2 h, the reaction mixture was treated with water (150 mL), transferred to a separatory 
funnel, and the phases were separated. The aqueous layer was extracted with EtOAc (2 x 250 
mL). The combined organic phase was washed with brine, dried over MgSO4, filtered and 
evaporated under reduced pressure. The residue was purified by flash chromatography by 
eluting with 75:25 hexanes/EtOAc. Evaporation of the collected fractions afforded the 
hydrazide 61 (4.07 g; 78% yield) as white solid: Rf 0.22 (75:25 hexanes:EtOAc); mp 57-60 
°C; [α]20

D –9.1° (THF, c 0.96); 1H NMR (CDCl3, 300 MHz) δ 1.47 (9H, s), 3.03 (1H, dd, J = 
8.0, 14.0 Hz), 3.20 (1H, dd, J = 6.0, 14.0 Hz), 4.50 (2H, dd, J = 1.4, 5.6 Hz), 4.55 (1H, d, J = 
5.7 Hz), 5.18 (1H, dd, J = 1.17, 10.5 Hz), 5.23 (1H, dd, J = 1.17, 18.5 Hz), 5.54 (1H, d, J = 
8.0 Hz), 5.78-5.91 (1H, m), 6.64-6.75 (1H, br), 7.22-7.33 (5H, m), 8.28-8.39 (1H, br); 13C 
NMR (CDCl3, 75 MHz) δ 170.9, 156.2, 155.3, 136.3, 132.5, 129.5, 128.8, 127.2, 118.1, 82.0, 
66.2, 54.6, 38.2, 28.3; IR (neat) νmax/cm-1 3280, 1682, 1500, 1370, 1238, 1157, 1045; HRMS 
(ESI) m/z calculated for C18H25N3NaO5 [M+Na]+ 386.1686; found 386.1691. 
 

 

 

 

 

Nα-(Alloc)-Nin-(Boc)-N’-(diphenylmethylene)-L-tryptophan hydrazide (70) Employing the 
procedure used for the synthesis of Nα-(Alloc)-N’-(Boc)-L-phenylalanine (61), Nα-(Alloc)-Nin-
(Boc)-L-tryptophan (1.91 g, 4.92 mmol) was treated with IBC (639 µL, 4.92 mmol) and 
NMM (700 µL, 6.39 mmol), followed by benzophenone hydrazone (966 mg, 4.92 mmol). The 
residue was purified by flash chromatography by eluting with 80:20 hexanes/EtOAc to afford 
hydrazide 70 (1.42 g; 51% yield) as white solid: Rf 0.27 (80:20 hexanes:EtOAc); mp 68-71 
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°C; [α]20
D 46.4° (THF, c 1.04); 1H NMR (CDCl3, 400 MHz) δ 1.61 (9H, s), 3.27-3.38 (2H, 

br), 4.54 (1H, d, J = 4.6 Hz), 4.59 (1H, d, J = 5.1 Hz), 5.21 (1H, d, J = 10.6 Hz), 5.30 (1H, d, 
J = 17.4 Hz), 5.67-5.73 (1H, br), 5.87-5.96 (1H, m), 7.02-7.62 (15H, m), 7.93-8.07 (1H, br), 
8.27-8.36 (1H, br); 13C NMR (CDCl3, 100 MHz) δ 172.8, 155.7, 152.1, 149.6, 136.3, 132.9, 
131.2, 130.1, 130.0, 129.9, 129.5, 128.4, 128.3, 128.2, 127.6, 124.4, 124.3, 122.6, 119.2, 
117.7, 115.5, 115.3, 83.6, 65.8, 52.0, 29.0, 28.3; IR (neat) νmax/cm-1 2979, 1720, 1675, 1451, 
1367, 1254, 1154, 1085; HRMS (ESI) m/z calculated for C33H34N4NaO5 [M+Na]+ 589.2421; 
found 684.2425. 
 

 

 

Nα-(Alloc)-L-phenylalanine hydrazide (62) Nα-(Alloc)-N’-(Boc)-L-phenylalanine hydrazide 
(61, 1.4 g, 3.85 mmol) was dissolved in TFA/DCM (1:1, 12 mL), stirred at room temperature 
for 1 h, and concentrated in vacuo. The residue was partitioned between 5% aqueous NaHCO3 
solution (100 mL) and EtOAc (100 mL), the phases were separated, and the aqueous phase 
was extracted with EtOAc (100 mL x 4). The combined organic layer was dried over MgSO4, 
filtered and evaporated under reduced pressure to afford hydrazide 62 (905 mg; 89% yield): 
Rf 0.17 (70:30 hexanes:EtOAc); mp 131-134 °C; [α]20

D 7.0° (THF, c 0.95); 1H NMR 
(pyridine-d5, 400 MHz) δ 3.30 (1H, dd, J = 7.7, 13.4 Hz), 3.52 (1H, dd, J = 7.0, 13.4 Hz), 
4.60 (1H, dd, J = 5.3, 13.5 Hz), 4.68 (1H, dd, J = 5.3, 13.7 Hz), 5.04 (1H, d, J = 8.0 Hz), 5.08 
(1H, d, J = 10.4 Hz), 5.24 (1H, d, J = 15.9 Hz), 7.16-7.25 (5H, m), 7.36 (2H, d, J = 6.8 Hz), 
8.96 (1H, d, J = 8.4 Hz); 13C NMR (CDCl3, 100 MHz) δ 172.0, 156.1, 136.3, 132.5, 129.3, 
128.8, 127.2, 118.1, 66.1, 55.1, 38.6; IR (neat) νmax/cm-1 3291, 1693, 1656, 1532, 1243, 1046; 
HRMS (ESI) m/z calculated for C13H19N3O3 [M+H]+ 264.1343; found 264.1348. 
 

 

 

 

Nα-(Alloc)-Nin-(Boc)-L-tryptophan hydrazide (71) Nα-(Alloc)-Nin-(Boc)-N’-
(diphenylmethylene)-L-tryptophan hydrazide (1.32 g, 2.32 mmol) was dissolved in 39 mL of 
pyridine, treated with hydroxylamine hydrochloride (807 mg, 11.6 mmol), heated to 60 °C, 
and agitated with sonication overnight. The volatiles were evaporated under reduced pressure. 
The residue was purified by flash chromatography eluting with 98:2 DCM/MeOH to afford 
the hydrazide 71 (721 mg, 77% yield): Rf 0.12 (98:2 DCM:MeOH); mp 82-85 °C; [α]20

D 7.1° 
(THF, c 1.04); 1H NMR (CDCl3, 400 MHz) δ 1.66 (9H, s), 3.14 (1H, dd, J = 8.1, 15.0 Hz), 
3.20 (1H, dd, J = 6.6, 14.8 Hz), 3.57-3.94 (2H, br), 4.48 (1H, dd, J = 7.4, 14.8 Hz), 4.55 (2H, 
d, J = 5.7 Hz), 5.21 (1H, d, J = 10.4 Hz), 5.27 (1H, d, J = 17.2 Hz), 5.42-5.64 (1H, br), 5.83-
5.92 (1H, m), 7.20-7.58 (5H, m), 8.05-8.19 (1H, br); 13C NMR (CDCl3, 100 MHz) 
δ 171.9, 156.0, 149.7, 135.5, 132.5, 130.2, 124.8, 124.4, 122.8, 118.9, 118.2, 115.5, 115.2, 
84.0, 66.2, 53.8, 29.2, 28.3; IR (neat) νmax/cm-1 3290, 1726, 1452, 1367, 1252, 1154, 1085; 
HRMS (ESI) m/z calculated for C20H27N4O5 [M+H]+ 403.1976; found 403.1976.  
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4-Nitrophenyl-Nε-(Boc)-L-lysine benzyl ester sulfamidate (57) Under argon, a solution of 
Nε-(Boc)-L-lysine benzyl ester (1.00 g, 2.97 mmol), 4-nitrophenol (1.24 g, 8.92 mmol) and 
triethylamine (2.49 mL, 17.83 mmol) in dry DCM (30 mL) was added drop-wise to a solution 
of 4-nitrophenyl chlorosulfate (1.41 g, 5.94 mmol) in dry DCM (6 mL) at –78°C. After 
stirring at -78 °C for 2 h, the mixture was allowed to warm up to rt. The organic phase was 
washed with 5% citric acid solution (100 mL x 3), dried over MgSO4, filtered and evaporated. 
The residue was purified by flash chromatography eluting with 70:30 hexane/EtOAc to afford 
sulfamidate 57 as a pale yellow solid (1.09 g; 68% yield) contaminated with 4-nitrophenol, 
and used without further purification in the next step: Rf 0.28 (70:30 hexanes:EtOAc); mp 93-
96 °C; [α]20

D 17.2° (THF, c 1.08); 1H NMR (CDCl3, 400 MHz) δ 1.34-1.50 (4H, m), 1.42 (9H, 
s), 1.80-1.93 (2H, m), 3.07 (2H, d, J = 6.3 Hz), 4.25 (1H, t, J = 5.6 Hz), 4.49-4.59 (1H, br), 
5.19 (1H, d, J = 12.0 Hz), 5.23 (1H, d, J = 12.0 Hz), 5.88-5.98 (1H, br), 7.32-7.40 (7H, m), 
8.18-8.22 (2H, d, J = 9.2 Hz); 13C NMR (CDCl3, 75 MHz) δ 171.2, 156.5, 154.5, 146.0, 
134.9, 129.0, 128.9, 128.8, 125.6, 122.4, 79.6, 68.1, 57.0, 39.8, 32.3, 31.7, 29.6, 28.5; IR 
(neat) νmax/cm-1 3290, 1734, 1682, 1532, 1351, 1253, 1177; HRMS (ESI) m/z calculated for 
C24H31N3NaO9S [M+Na]+ 560.1673; found 560.1676. 
 
 
 

 

 

4-Nitrophenyl-O-(tert-butyl)-L-tyrosine benzyl ester sulfamidate (58) Employing the 
procedure for the synthesis of 4-nitrophenyl-Nε-(Boc)-L-lysine benzyl ester sulfamidate, O-
(tert-butyl)-L-tyrosine benzyl ester (896 mg, 2.97 mmol), 4-nitrophenol (1.14 g, 8.22 mmol) 
and triethylamine (2.292 mL, 16.44 mmol) were reacted with 4-nitrophenyl chlorosulfate (1.3 
g, 5.47 mmol), and sulfamidate 58 was purified by flash chromatography eluting with 80:20 
hexane/EtOAc to afford sulfamidate 58 as a pale yellow solid (535 mg; 37% yield) 
contaminated with traces of 4-nitrophenol, that was used without further purification in the 
next step: Rf 0.34 (n-hexane:EtOAc 80:20); mp 112-115 °C; [α]20

D 4.5° (THF, c 1.02); 1H 
NMR (CDCl3, 400 MHz) δ 1.33 (9H, s), 3.08 (1H, dd, J = 6.0, 15.0 Hz), 3.13 (1H, dd, J = 
5.8, 13.7 Hz), 4.47-4.52 (1H, m), 5.14 (1H, d, J = 11.9 Hz), 5.18 (1H, d, J = 11.9 Hz), 5.47 
(1H, d, J = 8.6 Hz), 6.85-6.96 (4H, m), 7.21-7.40 (7H, m), 8.16 (2H, d, J = 2.1 Hz); 13C NMR 
(CDCl3, 75 MHz) δ 170.3, 155.2, 154.4, 146.1, 134.6, 130.1, 129.1, 129.0, 128.9, 128.8, 
125.6, 124.4, 122.5, 78.8, 68.2, 58.1, 38.4, 29.8, 29.0; IR (neat) νmax/cm-1 3302, 1739, 1524, 
1347, 1154; HRMS (ESI) m/z calculated for C26H28N2NaO8S [M+Na]+ 551.1459; found 
551.1474.  
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Nα-(Alloc)-L-phenylalaninyl-aza-sulfurylglycinyl-Nε-(Boc)-L-lysine benzyl ester (63) Nα-
(Alloc)-L-phenylalanine hydrazide (29 mg, 0.11 mmol) was added to a microwave vessel 
containing a solution of sulfamidate 57 (54 mg, 0.1 mmol) in MeCN (2.5 mL), and treated 
with triethylamine, at which point the solution turned yellow. The vessel was sealed and 
heated to 60 °C using microwave irradiation for 2.5 h. The volatiles were evaporated under 
reduced pressure. The residue was purified by flash chromatography eluting with 65:35 
hexanes/EtOAc to afford aza-sulfurylglycinyl tripeptide 63 as white solid (49 mg; 74% yield): 
Rf 0.26 (65:35 hexanes:EtOAc); mp 119-122 °C; [α]20

D 3.8° (THF, c 1.46); 1H NMR 
(acetone-d6, 400 MHz) δ 1.29-1.51 (4H, m), 1.40 (9H, s), 1.76-1.84 (2H, m), 2.98 (1H, dd, J = 
9.6, 13.9 Hz), 3.05 (2H, dd, J = 6.4, 12.7 Hz), 3.20 (1H, dd, J = 5.1, 14.0 Hz), 4.19 (1H, q, J = 
6.5 Hz), 4.44-4.50 (1H, m), 4.46 (2H, d, J = 8.8 Hz), 5.11 (1H, d, J = 9.2 Hz), 5.18-5.24 (1H, 
m), 5.21 (2H, d, J = 3.0 Hz), 5.79-5.90 (1H, m), 5.90-5.98 (1H, br), 6.54 (1H, d, J = 6.8 Hz), 
6.62 (1H, d, J = 8.7 Hz), 7.19-7.46 (10H, m), 8.16-8.24 (1H, br), 9.36-9.44 (1H, br); 13C NMR 
(acetone-d6, 100 MHz) δ 173.1, 171.6, 156.8, 156.7, 138.3, 137.0, 134.2, 130.2, 129.3, 129.2, 
129.1, 129.0, 127.4, 117.3, 78.4, 67.4, 65.9, 56.9, 56.0, 40.7, 40.5, 38.5, 32.9, 28.7, 22.9; IR 
(neat) νmax/cm-1 3294, 1746, 1684, 1524, 1458, 1327, 1249, 1158; HRMS (ESI) m/z calculated 
for C31H43N5NaO9S [M+Na]+ 684.2674; found 684.2678. 
 
 

 

 

 

Nα-(Alloc)-Nin-(Boc)-L-tryptophanyl-aza-sulfurylglycinyl-O-(tert-butyl)-L-tyrosine benzyl 
ester (72) Employing the same protocol for the synthesis of Nα-(Alloc)-L-phenylalaninyl-aza-
sulfurylglycinyl-Nε-(Boc)-L-lysine benzyl ester Nin-(Alloc)-L-tryptophan hydrazide (88 mg, 
0.22 mmol) was treated with the sulfamidate 58 (105 mg, 0.2 mmol) and triethylamine (31 
µL, 0.22 mmol). The volatiles were evaporated under reduced pressure and the residue was 
purified by flash chromatography by eluting 75:25 hexanes/EtOAc to afford aza-
sulfurylglycinyl tripeptide 72 as a solid (134 mg; 84% yield): Rf 0.22 (70:30 hexanes:EtOAc); 
mp 105-107 °C; [α]20

D –6.4° (THF, c 1.02); 1H NMR (acetone-d6, 400 MHz) δ 1.30 (9H, s), 
1.65 (9H, s), 2.97 (1H, dd, J = 8.6, 13.2 Hz), 3.13 (2H, dd, J = 4.8, 13.4 Hz), 3.30 (1H, dd, J = 
5.6, 14.8 Hz), 4.46 (2H, d, J = 3.9 Hz), 4.52 (1H, dd, J = 7.3, 13.5 Hz), 4.58 (1H, dd, J = 8.4, 
14.1 Hz), 5.09 (1H, d, J = 10.4 Hz), 5.14 (1H, d, J = 12.4 Hz), 5.21 (2H, d, J = 17.6 Hz), 
5.79-5.90 (1H, m), 6.48 (1H, d, J = 6.4 Hz), 6.68 (1H, d, J = 7.9 Hz), 6.85-6.92 (2H, m), 7.11-
7.40 (10H, m), 7.62-7.72 (2H, m), 8.36-8.44 (1H, br), 9.53-9.62 (1H, br); 13C NMR (acetone-
d6, 100 MHz) δ 172.3, 171.8, 156.8, 155.5, 150.3, 136.7, 136.4, 134.2, 131.7, 131.4, 131.0, 
130.8, 129.2, 128.9, 125.4, 125.1, 124.5, 123.3, 120.1, 117.4, 116.9, 115.9, 84.2, 78.4, 67.4, 
66.0, 58.3, 54.5, 38.8, 35.2, 29.1, 28.3; IR (neat) νmax/cm-1 3254, 1728, 1453, 1366, 1255, 
1156, 1086; HRMS (ESI) m/z calculated for C40H49N5NaO10S [M+Na]+ 814.3092; found 
814.3096. 
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Nα-(Alloc)-L-phenylalaninyl-aza-sulfurylphenylalaninyl-Nε-(Boc)-L-lysine benzyl ester 
(64) A 0 °C solution of aza-sulfurylglycinyl tripeptide 63 (271 mg, 0.41 mmol) in THF (8 
mL) was treated with BTPP (138 µL, 0.45 mmol), stirred for 0.5 h, treated with benzyl 
bromide (55 µL, 0.45 mmol) and stirred at 0 °C for 3.5 h. The volatiles were evaporated. The 
residue was purified by flash chromatography by eluting 65:35 hexanes/EtOAc to afford aza-
sulfurylphenylalaninyl tripeptide 64 as a white solid (209 mg; 68% yield): Rf 0.37 (65:35 
hexanes:EtOAc); mp 125-128 °C; [α]20

D –4.3° (THF, c 1.77); 1H NMR (acetone-d6, 400 MHz) 
δ 1.33-1.51 (4H, m), 1.40 (9H, s), 1.72-1.87 (2H, m), 2.78 (1H, dd, J = 10.1, 13.9 Hz), 2.94-
2.98 (1H, br), 3.05 (2H, dd, J = 6.7, 12.7 Hz), 4.30-4.38 (2H, m), 4.42 (2H, d, J = 3.8 Hz), 
4.49 (1H, d, J = 14.6 Hz), 4.58 (1H, d, J = 14.3 Hz), 5.10 (1H, d, J = 10.0 Hz), 5.21 (1H, d, J 
= 17.0 Hz), 5.21 (2H, s), 5.78-5.88 (1H, m), 5.89-5.97 (1H, br), 6.48-6.59 (1H, br), 6.81 (1H, 
d, J = 7.3 Hz), 7.16-7.49 (15H, m), 9.13-9.18 (1H, br); 13C NMR (acetone-d6, 75 MHz) 
δ 172.9, 171.8, 156. 8, 156. 6, 141.1, 138.3, 137.1, 136.6, 134.2, 130.2, 130.0, 129.3, 129.1, 
129.1, 129.0, 128.6, 127.4, 117.3, 78.4, 67.4, 65.9, 57.2, 57.1, 55.9, 55.2, 40.7, 38.3, 33.1, 
28.7, 23.0; IR (neat) νmax/cm-1 3320, 1685, 1601, 1506, 1436, 1392, 1238, 1163; HRMS (ESI) 
m/z calculated for C38H49N5NaO9S [M+Na]+ 774.3143; found 774.3156. 
 
 

 

 

 

 

Nα-(Alloc)-L-phenylalaninyl-aza-sulfuryl-p-phenylphenylalaninyl-Nε-(Boc)-L-lysine 
benzyl ester (65) Employing the protocol described for aza-sulfurylphenylalaninyl tripeptide 
64, 4-(bromomethyl)biphenyl (86 mg, 0.35 mmol) was reacted with aza-sulfurylglycinyl 
tripeptide 63 (210 mg, 0.32 mmol). The residue was purified by flash chromatography eluting 
with 80:20 hexanes/EtOAc to afford aza-sulfuryl-p-phenylphenylalaninyl tripeptide 65 as 
white solid (225 mg; 85% yield): Rf 0.27 (70:30 hexanes:EtOAc); mp 121-126 °C; [α]20

D 4.7° 
(THF, c 1.50); 1H NMR (acetone-d6, 400 MHz) δ 1.35-1.55 (4H, m), 1.40 (9H, s), 1.74-1.88 
(2H, m), 2.76-2.87 (1H, br), 2.95-3.02 (1H, br), 3.04 (2H, t, J = 5.7 Hz), 4.34-4.39 (2H, m), 
4.41 (2H, d, J = 2.2 Hz), 4.54 (1H, d, J = 14.0 Hz), 4.62 (1H, d, J = 14.3 Hz), 5.08 (1H, d J = 
10.8 Hz), 5.13-5.30 (1H, br), 5.22 (2H, s), 5.77-5.87 (1H, m), 5.88-5.97 (1H, br), 6.50-6.60 
(1H, br), 6.77-6.87 (1H, br), 7.16-7.66 (19H, m), 9.12-9.25 (1H, br); 13C NMR (acetone-d6, 
100 MHz) δ 172.9, 171.8, 156.8, 156.7, 141.4, 141.2, 138.2, 137.0, 135.7, 134.2, 130.6, 
130.2, 129.7, 129.3, 129.1, 129.1, 129.0, 128.2, 127.7, 127.6, 127.3, 117.3, 78.4, 67.4, 65.9, 
57.2, 55.9, 55.8, 55.0, 40.7, 38.3, 33.0, 28.7, 23.0; IR (neat) νmax/cm-1 3163, 1601, 1506, 1435, 
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1393, 1222, 1163; HRMS (ESI) m/z calculated for C44H53N5Na09S [M+Na]+ 850.3456; found 
850.3448. 
 

 

 

 

 

 

Nα-(Alloc)-L-phenylalaninyl-aza-sulfuryl-2-naphthylalaninyl-Nε-(Boc)-L-lysine benzyl 
ester (66) Employing the protocol described for aza-phenylsulfurylglycinyl tripeptide 64, 2-
(bromomethyl)naphthalene (90 mg, 0.41 mmol) was reacted with aza-sulfurylglycinyl 
tripeptide (245 mg, 0.37 mmol). The residue was purified by flash chromatography by eluting 
n-hexane/EtOAc 90:10 to afford aza-(2)naphtylsulfurylglycinyl tripeptide 66 as a white solid 
(224 mg; 76% yield): Rf 0.27 (80:20 hexanes:EtOAc); mp 99-101 °C; [α]20

D 7.6° (THF, c 
1.58); 1H NMR (acetone-d6, 400 MHz) δ 1.37-1.52 (4H, m), 1.40 (9H, s), 1.76-1.82 (2H, m), 
2.78-2.82 (1H, m), 2.92-3.01 (1H, br), 3.05 (2H, dd, J = 5.9, 11.6 Hz), 4.33-4.43 (4H, m), 
4.66 (1H, d, J = 14.4 Hz), 4.75 (1H, d, J = 14.4 Hz), 5.09 (1H, d, J = 10.6 Hz), 5.16-5.27 (1H, 
m), 5.21 (2H, s), 5.76-5.85 (1H, m), 5.87-5.96 (1H, br), 6.47-6.56 (1H, br), 6.79-6.89 (1H, 
br), 7.12-7.54 (13H, m), 7.84-7.90 (4H, m), 9.15-9.26 (1H, br); 13C NMR (acetone-d6, 100 
MHz) δ 172.9, 171.9, 156.8, 156.7, 138.2, 137.0, 134.2, 134.2, 134.0, 130.1, 129.3, 129.1, 
129.0, 129.0, 128.8, 128.4, 127.9, 127.3, 126.8, 117.3, 78.4, 67.5, 65.9, 57.2, 55.9, 55.4, 40.7, 
38.3, 30.3, 28.7, 23.0; IR (neat) νmax/cm-1 3259, 1744, 1682, 1520, 1454, 1346, 1249, 1162; 
HRMS (ESI) m/z calculated for C42H51N5NaO9S [M+Na]+ 824.3300; found 824.3315.  
 

 

 

 

 

 

Nα-(Alloc)-L-phenylalaninyl-aza-sulfuryl-1-naphthylalaninyl-Nε-(Boc)-L-lysine benzyl 
ester (67) Employing the protocol described for the synthesis of aza-sulfurylphenylalaninyl 
tripeptide 64, 1-(bromomethyl)naphthalene (24 mg, 0.11 mmol) was reacted with aza-
sulfurylglycinyl tripeptide 63 (66 mg, 0.1 mmol). The residue was purified by flash 
chromatography eluting with 75:25 hexanes/EtOAc to afford aza-sulfuryl-1-naphthylalaninyl 
tripeptide 67 as white solid (52 mg; 65%): Rf 0.28 (75:25 hexanes:EtOAc); mp 145-147 °C; 
[α]20

D –11.7° (THF, c 1.12); 1H NMR (acetone-d6, 400 MHz) δ 1.34-1.47 (4H, m), 1.39 (9H, 
s), 1.72-1.87 (2H, br), 2.69 (1H, dd, J = 10.5, 13.5 Hz), 2.81-2.95 (1H, m), 2.97-3.09 (2H, br), 
4.30 (1H, m), 4.37 (1H, d, J = 6.4 Hz), 4.40 (2H, d, J = 4.6 Hz), 4.95 (1H, d, J = 13.0 Hz), 
5.09 (1H, d, J = 10.5 Hz), 5.15-5.28 (2H, m), 5.20 (2H, d, J = 2.0 Hz), 5.77-5.85 (1H, m), 
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5.86-5.96 (1H, br), 6.38-6.52 (1H, br), 6.81-6.92 (1H, br), 7.14-7.52 (14H, m), 7.72-7.98 (2H, 
m), 8.24-8.38 (1H, m), 9.12-9.33 (1H, br); 13C NMR (acetone-d6, 100 MHz) δ 172.9, 171.9, 
156.7, 138.3, 137.0, 134.8, 134.2, 133.0, 131.8, 130.1, 129.7, 129.5, 129.3, 129.1, 129.0, 
127.3, 127.2, 126.6, 126.0, 125.1, 117.3, 78.4, 67.4, 65.8, 57.3, 55.8, 52.6, 40.7, 38.3, 33.0, 
30.3, 28.7, 23.0; IR (neat) νmax/cm-1 3322, 1601, 1506, 1436, 1393, 1237, 1163, 1033; HRMS 
(ESI) m/z calculated for C42H51N5NaO9S [M+Na]+ 824.3300; found 824.3310.  
 
 

 

 

 

 

Nα-(Alloc)-Nin-(Boc)-L-tryptophanyl-(4-chloro-butyl)aza-sulfurylglycinyl)-O-(tert-butyl)-
L-tyrosine benzyl ester (73) A 0 °C solution of aza-sulfurylglycinyl tripeptide 72 (225 mg, 
0.28 mmol) in THF (2.5 mL) was treated with BTPP (105 µL, 0.34 mmol), stirred for 0.5 h, 
treated with 1-bromo-4-chlorobutane (40 µL, 0.34 mmol) and stirred at 0 °C for 4 h. The 
volatiles were evaporated. The residue was purified by flash chromatography by eluting 80:20 
hexanes/EtOAc to afford the (4-chloro-butyl)aza-sulfuryl tripeptide 73 as a solid (189 mg; 
76% yield): Rf 0.18 (80:20 hexanes:EtOAc); mp 83-85 °C; [α]20

D –5.0° (THF, c 0.88); 1H 
NMR (acetone-d6, 400 MHz) δ 1.30 (9H, s), 1.49-1.56 (2H, m), 1.66 (9H, s), 1.76-1.84 (2H, 
m), 2.97 (1H, dd, J = 8.6, 12.8 Hz), 3.10 (1H, dd, J = 5.2, 13.5 Hz), 3.14 (1H, dd, J = 8.5, 
15.2 Hz), 3.28 (2H, d, J = 6.1 Hz), 3.32 (1H, d, J = 6.2 Hz), 3.52 (2H, t, J = 6.7 Hz), 4.48 (2H, 
d, J = 4.9 Hz), 4.51-4.58 (2H, m), 5.01 (1H, d, J = 12.4 Hz), 5.08-5.14 (2H, m), 5.22 (1H, d, J 
= 15.9 Hz), 5.80-5.89 (1H, m), 6.66-6.73 (1H, br), 6.77-6.84 (1H, br), 6.85-6.92 (2H, m), 
7.11-7.37 (9H, m), 7.65-7.71 (2H, m), 8.09-8.18 (1H, br), 9.11-9.21 (1H, br); 13C NMR 
(acetone-d6, 100 MHz) δ 172.2, 172.1, 157.0, 155.5, 150.3, 136.7, 136.3, 134.1, 131.6, 131.3, 
131.0, 129.3, 129.1, 128.9, 125.5, 125.2, 124.6, 123.3, 120.1, 117.5, 116.8, 115.9, 84.3, 78.5, 
67.4, 66.0, 58.7, 54.7, 50.8, 45.3, 38.7, 29.2, 28.3, 28.0, 25.0; IR (neat) νmax/cm-1 3280, 1727, 
1453, 1366, 1255, 1155, 1087; HRMS (ESI) m/z calculated for C44H56ClN5NaO10S [M+Na]+ 
904.3329; found 904.3334.  
 
 

 

 

 

 

 
Nα-(Alloc)-Nin-(Boc)-L-tryptophanyl-(4-azidobutyl)aza-sulfurylglycinyl-O-(tert-butyl)-L-
tyrosine benzyl ester (74) To a solution of Nα-(Alloc)-Nin-(Boc)-L-tryptophanyl-(4-chloro-
butyl)aza-sulfurylglycinyl)-O-(tert-butyl)-L-tyrosine benzyl ester (33 mg, 0.037 mmol) in 
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DMF (800 µL) sodium azide (8mg, 0.11 mmol) was added and the mixture was stirred 
overnight at 60 °C. The product was precipitated by the addition of water (10 mL) and the 
aqueous phase was extracted with EtOAc (15 mL x 3). The combined organic layer was 
washed with brine (20 mL x 2), treated with MgSO4, filtered and evaporated under reduced 
pressure. The residue was purified by flash chromatography eluting with 75:25 
hexanes/EtOAc to afford (4-azido-butyl)aza-sulfuryl tripeptide 74 as a solid (22 mg; 66% 
yield): Rf 0.31 (75:25 hexanes:EtOAc); mp 118-121 °C; [α]20

D –0.65° (THF, c 0.92); 1H NMR 
(acetone-d6, 400 MHz) δ 1.30 (9H, s), 1.42-1.49 (2H, m), 1.57-1.64 (2H, m), 1.66 (9H, s), 
2.94-3.03 (1H, m), 3.10 (1H, dd, J = 5.0, 13.7 Hz), 3.14 (1H, dd, J = 8.7, 15.2 Hz), 3.23 (2H, 
d, J = 6.8 Hz), 3.28 (2H, dd, J = 6.2, 12.4 Hz), 3.33 (1H, dd, J = 5.8, 10.8 Hz), 4.48 (2H, d, J 
= 4.5 Hz), 4.54 (2H, d, J = 7.0 Hz), 5.03 (1H, t, J = 12.0 Hz), 5.09-5.16 (2H, m), 5.23 (1h, d, J 
= 16.2 Hz), 5.81-5.90 (1H, m), 6.63-6.73 (1h, br), 6.74-6.85 (1H, br), 6.85-6.92 (2H, m), 
7.09-7.37 (9H, m), 7.62-7.74 (2H, m), 8.08-8.18 (1H, br), 9.09-9.21 (1H, br); 13C NMR 
(acetone-d6, 75 MHz) δ 172.2, 172.1, 157.0, 155.5, 150.3, 136.7, 136.3, 134.2, 131.6, 131.4, 
131.0, 129.2, 129.1, 128.9, 125.5, 125.2, 124.6, 123.3, 120.1, 117.4, 116.8, 115.9, 84.3, 78.5, 
67.4, 66.0, 58.8, 54.7, 51.6, 51.0, 38.7, 29.2, 28.3, 28.0, 26.5, 24.8; IR (neat) νmax/cm-1 3282, 
2096, 1727, 1452, 1366, 1255, 1155, 1087; HRMS (ESI) m/z calculated for C44H56N8NaO10S 
[M+Na]+ 911.3732; found 911.3742. 
 
 
 
Peptide 75: crude purity: 43%, tR: 10.91 min (analytical HPLC, 20 to 60% acetonitrile in 

water (0.1% formic acid) over 15 min + 90% acetonitrile in water (0.1% formic acid) over 5 

min, flow rate of 0.5 mL/min), molecular formula: C46H62N10O13S3, calculated mass; 

1059.3733, found: 1059.3706.  

Purity check: Gradient #1 - Purity: >99%, tR: 14.18 min (analytical HPLC, 20 to 80% 

methanol in water (0.1% formic acid) over 15 min + 90% methanol in water (0.1% formic 

acid) over 5 min, flow rate of 0.5 mL/min; Gradient #2 - Purity: >99%, tR: 7.68 min 

(analytical HPLC, 20 to 80% acetonitrile in water (0.1% formic acid) over 15 min + 90% 

acetonitrile in water (0.1% formic acid) over 5 min, flow rate of 0.5 mL/min. 

Peptide 76: crude purity: 78%, tR: 10.54 min (analytical HPLC, 20 to 50% acetonitrile in 

water (0.1% formic acid) over 15 min + 90% acetonitrile in water (0.1% formic acid) over 5 

min, flow rate of 0.5 mL/min), molecular formula: C52H66N10O13S3, calculated mass; 

1135.4046, found: 1135.4064. 

Purity check: Gradient #1 - Purity: >99%, tR: 16.39 min (analytical HPLC, 20 to 80% 

methanol in water (0.1% formic acid) over 15 min + 90% methanol in water (0.1% formic 
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acid) over 5 min, flow rate of 0.5 mL/min; Gradient #2 - Purity: >99%, tR: 12.45 min 

(analytical HPLC, 20 to 80% acetonitrile in water (0.1% formic acid) over 15 min + 90% 

acetonitrile in water (0.1% formic acid) over 5 min, flow rate of 0.5 mL/min. 

Peptide 77: crude purity: 80% tR: 9.39 min (analytical HPLC, 30 to 50% acetonitrile in water 

(0.1% formic acid) over 10 min + 90% acetonitrile in water (0.1% formic acid) over 4 min, 

flow rate of 0.5 mL/min), molecular formula: C50H64N10O13S3, calculated mass; 1109.3889, 

found: 1109.3887. 

Purity check: Gradient #1 - Purity: >99%, tR: 15.54 min (analytical HPLC, 20 to 80% 

methanol in water (0.1% formic acid) over 15 min + 90% methanol in water (0.1% formic 

acid) over 5 min, flow rate of 0.5 mL/min; Gradient #2 - Purity: >99%, tR: 10.28 min 

(analytical HPLC, 20 to 80% acetonitrile in water (0.1% formic acid) over 15 min + 90% 

acetonitrile in water (0.1% formic acid) over 5 min, flow rate of 0.5 mL/min. 

Peptide 78: crude purity: 58%, tR: 4.40 min (analytical HPLC, 20 to 60% acetonitrile in water 

(0.1% formic acid) over 6 min + 90% acetonitrile in water (0.1% formic acid) over 2 min, 

flow rate of 0.5 mL/min), molecular formula: C50H65N10O13S3, calculated mass; 1109.3889, 

found: 1109.3879. 

Purity check: Gradient #1 - Purity: >99%, tR: 7.37 min (analytical HPLC, 20 to 60% methanol 

in water (0.1% formic acid) over 6 min + 90% methanol in water (0.1% formic acid) over 2 

min, flow rate of 0.5 mL/min; Gradient #2 - Purity: >99%, tR: 4.61 min (analytical HPLC, 20 

to 60% acetonitrile in water (0.1% formic acid) over 6 min + 90% acetonitrile in water (0.1% 

formic acid) over 2 min, flow rate of 0.5 mL/min. 
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