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Introduction

The term robot derives from the term robota which means executive labour in

Slav languages. As well, robotics is commonly defined as the science studying the

intelligent connection between perception and action [104]. The first definition of

robot was established by Asimov. He was inspired by science fiction and it was

defined as the science which is based on three fundamental laws

• A robot may not injure a human being or, through inaction, allow a human

being to come to harm.

• A robot must obey the orders given by human beings, except when such

orders would conflict with the first law.

• A robot must protect its own existence, as long as such protection does not

conflict with the first and the second law.

Human have always tried to build new machines to help themselves in the ex-

ecution of several tasks, and then to completely replace themselves, especially in

the most dangerous works. Moreover, the idea to have machines just able to solve

simple human tasks was a limitation. Thus, the idea to have machines with a high

degree of autonomy and able to make decisions matured. Nowadays, robots are

widely used in industrial applications for such works where there could be more risk

for human life, more cost per hour and more stress for his body. The connotation

of a robot for industrial applications is that of operating in a structured environ-

ment whose geometrical characteristics are mostly known a priori. Past Robotic

research has been dominated by the use of industrial robots. However, the world’s

complexity and different applications require a high degree of autonomy to solve

advanced robotics tasks. The use of new robots, able to operate in unstructured

environments – where the geometrical characteristics are not known a priori –,

even with or in cooperation with humans and move between different locations,

is needed. Recent years have seen a huge development of the aerial robotics field.

Flying vehicles such as quadrotors, could solve tasks like helping humans in dan-

gerous activities such as inspection, rescue and mapping. Compared to industrial

robots, these vehicles, have a limited payload and sensing system setup. Gener-

ally, they carry a camera, an IMU and a GPS, which is not available in indoor
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environments. Thus, IMU and vision measurements can be combined producing

algorithms to solve in a robust way localization, navigation and mapping prob-

lems. Then, aerial robots play an important role and have already become really

popular for their applicability in different domains like autonomous navigation,

3D environment reconstruction and interaction.

AIRobots

The goal of the AIRobots project is to develop a new generation of aerial service

robots capable to support human beings in all those activities which require the

ability to interact actively and safely with environments not constrained on ground

but, indeed, freely in air, improving the autonomy of aerial robots in unstructured

environments. The goal is to overcome the ”classical” field of aerial robotics by

realizing aerial vehicles able to accomplish a large variety of applications, such

as inspection of buildings and large infrastructures, sample picking, aerial remote

manipulation.

The starting point is an aerial platform whose mechanical configuration allows

the vehicle to interact with the environment in a non-destructive way and to hover

close to operating points. Rotary-wing aerial vehicles with shrouded propellers

represent the basic airframes which are then equipped with appropriate robotic

end-effectors and sensors in order to transform the aerial platform into an aerial

service robot, a system able to fly and to achieve robotic tasks.

Advanced automatic control algorithms govern the aerial platform which are

remotely supervised by the operator with the use of haptic devices. Particular em-

phasis is given to develop advanced human-in-the-loop and autonomous navigation

control strategies relying upon a cooperative and adaptive interaction between the

on-board automatic control and the remote operator. Force and visual feedback

strategies are investigated too in order to transform the aerial platform in a ”flying

hand” suitable for aerial manipulation.

The key aspects of the project are

• Aerial service robotics best practice and performance measures. The first

goal is to define a series of performance measures both for general aerial

service robotic applications and for the robotic inspections scenarios of in-

terest for the end-user. In this respect the system has to be designed to be

robust, flexible, adaptable, portable, safe, intelligent, effective and economic

in achieving the desired operations.

• System design and control strategies for aerial robots physically interacting

with the human world. The service robotics explicitly requires the ability to

interact with the environment in terms of contact between the aircraft and

objects, e.g. docking and un-docking operations required to put sensors in
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contact with the object to be inspected, takeoff and landing. This feature

requires the design of innovative robust control strategies.

• New contribution to human-robot interaction and communication developing

an advanced human-robot interface for the purpose of endowing the system

with advanced action capabilities. Ideally the aerial service robot represents

a ”flying hand” that allows the human to act as if he/she were directly on the

site, allowing a level of interaction between the human and the environment

that has never been reached before in the field of aerial robotics.

• Aerial navigation in loosely structured and cluttered environments. During

the inspection of the desired infrastructure the robot is required to fly in

an environment which is uncertain and only partially structured because,

usually, no reliable layouts and drawings of the surroundings are available.

To support these features, advanced cognitive capabilities are required, and

in particular the role played by vision is of paramount importance.

Outline

This work investigates the research topics included in the last key aspect. The use

of vision and other onboard sensors such as IMU and GPS play a fundamental to

provide high level degree of autonomy to flying vehicles. In detail, the outline of

this thesis is organized as follows

• Chapter 1 is a general introduction of the aerial robotic field, the quadrotor

platform, the use of onboard sensors like cameras and IMU for autonomous

navigation. A discussion about camera modeling, current state of art on vi-

sion based control, navigation, environment reconstruction and sensor fusion

is presented.

• Chapter 2 presents vision based control algorithms useful for reactive control

like collision avoidance, perching and grasping tasks. Two main contribu-

tions are presented based on relative depth map and image based visual

servoing respectively.

• Chapter 3 discusses the use of vision algorithms for localization and mapping.

Compared to the previous chapter, the vision algorithm is more complex

involving vehicle’s poses estimation and environment reconstruction. An al-

gorithm based on RGB-D sensors for localization, extendable to localization

of multiple vehicles, is presented. Moreover, an environment representation

for planning purposes, applied to industrial environments, is introduced.

• Chapter 4 introduces the possibility to combine vision measurements and

IMU to estimate the motion of the vehicle. A new contribution based on
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Pareto Optimization, which overcome classical Kalman filtering techniques,

is presented.

• Chapter 5 contains conclusion, remarks and proposals for possible develop-

ments.

A collection of all videos related to this thesis work is available online 1.

1

wpage.unina.it/giuseppe.loianno/videos/phd_thesis_videos.

wpage.unina.it/giuseppe.loianno/videos/phd_thesis_videos
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Chapter 1

State of the Art

1.1 Aerial Robots: The Quadrotor Platform

UAVs have gained enormous commercial potential especially due to recent re-

search progresses. Recent developments in term of electronic components have

contributed to high density power storage, integrated miniature actuators and

MEMS4 technology sensors, giving the possibility to realize small autonomous ve-

hicles in both military and civilian applications. Military applications currently

represent the most important part of the unmanned flying vehicle market, and this

industrial sector is growing strongly. A good classification of the different available

platforms based on flying principle and propulsion mode is provided in [15] and

summarized in fig.(1.1). In the motorized heavier-than-air category, a new gener-

ation of MAV5 (Micro Aerial Vehicle) with a wingspan less than 15 cm and less

than 100 grams in mass has emerged. Most of these vehicles include stabilization

sensors and small cameras. The Black Widow6 MAV is a 15 cm span, fixed-wing

aircraft with an embedded color camera flying at 48 km/h for around 30 minutes,

and a maximum communication range of 2 km. In the same category, birdlInsect-

like MAVs seem to be the perfect solution for fast navigation in narrow spaces

and perhaps the best approach to miniaturization. The class of VTOL (Vertical

Take Off and Landing) systems have specific characteristics which allow the ex-

ecution of task difficult to accomplish with other flying models as mentioned in

[15]. The main advantage is the ability to vertical, stationary and low speed flight.

This class of vehicles with different configurations probably represent currently the

most promising flying concept seen in terms of miniaturization. The quadrotor

configuration is the most interesting and used solution, in this class of vehicles.

Main disadvantages are space and energy requirements. However this vehicle con-

cept offers a better payload and it is easy to build and to control. Moreover,

the costs have contributed to locate this platform in the consumer-grade range

technology. It is made by four identical propellers located at vertices of a square.
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Figure 1.1: UAV classification.

Each propeller j is able to generate a force fj along its main axis. Considering an

inertial reference frame and a frame centered in the center of mass of the vehicle,

the quadrotor model is described in the inertial reference frame, as the position

and orientation of the body frame respect to the inertial one. The motion model

of the MAV according to [113] is

mẍ = −Rτe3 +mge3,

Ṙ =RΩ̂,

JΩ̇i +Ω× JΩ =M,

(1.1)

where x ∈ R
3 is the Cartesian position of the vehicle expressed in the inertial

frame, m ∈ R is the mass, Ω ∈ R
3 is the angular velocity in the body-fixed frame

and J ∈ R
3 is the inertia matrix with respect to the body frame. The hat symbolˆ

is defined by the condition x̂y = x×y for all x, y ∈ R
3, g is the gravity acceleration

and e3 = [0 0 1]T . The total moment Mi ∈ R
3 along all axes of the body-fixed

frame and the thrust τ ∈ R are control inputs of the plant. The total thrust,

τ =
4∑
j=1

fj, acts in the direction of the z axis of the body-fixed frame, which is

orthogonal to the plane defined by the centers of the four propellers.

1.2 Vision for Aerial Robotics

The recent years have seen a growing interest on MAVs applications in several

environments. The capabilities of Micro Aerial Vehicles (MAVs) are rapidly ex-

panding to include surveillance [84], construction [66], manipulation of slung loads

[107], collaborative transportation [85, 106], and mapping of unknown environ-

ments using aerodynamic effects [25]. For indoor autonomous navigation the ob-

stacle avoidance is one of the most relevant drawback, due to unavailability of the

GPS signal and of a detailed environment map. A number of control strategies have

been developed based on other on-board sensors like cameras, radar, lasers, sonars

and IMU. However, the most promising approaches make use of visual sensors.

For environment interaction and manipulation, Aerial vehicles’ flight duration are
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1.2 Vision for Aerial Robotics

limited by the energy density of batteries and the speed of aerial manipulation

is restricted to quasi-static interactions with the environment. An aerial vehicle

endowed with capabilities traditionally ascribed to raptors, such as perching and

dynamic grasping, would be instrumental towards mitigating the energy-density

restriction and speeding-up interaction with the environment. In this context, a

vision sensor, due to its limited payload, can be a useful device to detect object,

control robot motion and speed up interaction with the environment.

1.2.1 Camera Sensor

The task of the camera as a vision sensor is to measure the intensity of light re-

flected by an object. To this end, a photosite element named pixel is employed

to transform light energy in electric energy. Different types of sensors are avail-

able based on the principle exploited to realize the energy transformation. The

most used are CCD (Charge Coupled Device) and CMOS (Complementary Metal

Oxide Semiconductor) sensors based on photoelectric effect of semiconductors. A

CCD sensor consists of a rectangular array of photosites. Due to photoelectric

effect, when a photon hits the semiconductor surface, a number of free electrons

are created, so that each element accumulates a charge depending on the time in-

tegral of the incident illumination over the photosensitive element. The charge is

then passed to the output amplifier and the element discharged. A CMOS sensor

consists of a rectangular array of photodiodes. The junction of each photodiode is

precharged and it is discharged when hits by photons. An amplifier integrated in

each pixel can transform this charge into a voltage. The main different between

the two sensors is that CMOS, respect to CCD sensors, are non integrating de-

vices, measuring the throughput and not the volume. In this way the influence

of neighboring pixels is prevented, avoiding blooming which is a typical problem

with CCD sensors. Several reasons motivating the use of vision sensors in the

MAV field

• They are typically inexpensive sensors

• They are useful like human eyes to obtain an idea of the environment struc-

ture while flying

• The frame rate of vision algorithm is generally compatible for control pur-

poses

• Vision algorithms are reliable and precise

• Camera is a lightweight sensor so it can easily be mounted onboard the

vehicles

• Camera sensor can be used for different scopes

3
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Figure 1.2: Camera sensor

(a) Classical lens. (b) Fisheye lens.

Figure 1.3: Two different type of lenses.

Figure 1.2 shows a typical camera, while 1.3 shows two camera lenses, with dif-

ferent fields of view. The lens is generally responsible to direct the incoming light

controlling the direction of propagation. Generally this is obtained by diffraction,

refraction and reflection. In this work different camera are applied to the MAV

domain. In particular in the first part the attention focus on the use of monocular

system for reactive control, while in the second part RGB-D sensors and stereo

camera configurations are used with the purpose to obtain a high level environment

map.
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Figure 1.4: Pinhole camera model.

1.2.2 Camera Model

In this part, an overview of the vision system and the adopted camera model,

is presented. The following nomenclature will be used. Let T ∈ SE(3) be the

homogeneous transformation matrix from the camera frame to the world frame,

f denote a focal length, sα indicates the pixel coordinate transformation in the α

direction, cα be the center image pixel in the α direction, and λ be an arbitrary

scaling factor. In the presented work, the camera is modeled using a standard

pinhole perspective camera model as shown in 1.4 so that a generic point in the

world, p = [X, Y, Z, 1]T , is projected onto the image plane, [x′, y′, 1]T , according

to [75] such that

λ



x′

y′

1


 = KP0T

−1




X
Y
Z
1


 , K =



fsx 0 cx
0 fsy cy
0 0 1


 , P0 =

[
I3×3 03×1

]
.

(1.2)

The calibrated image coordinates are defined as,



x
y
1


 = K−1



x′

y′

1


 , (1.3)

which are equivalent to the transformation and projection of points in the world

to an image plane with unity focal length and a centered image coordinate system.

Other camera models exist, more suitable for other cameras typology like omnidi-
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rectional cameras [98]. However in this context only the perspective camera model

has been presented due to its general use and simplicity.

1.2.3 Vision for Reactive Control

One of the primary objectives in aerial robotics, is the possibility, when the robot

flies from an initial position to a final one, to avoid possible obstacles during the

path. Several methods based on visual collision avoidance have been proposed.

When a stereo camera system is available, an image couple can be employed as

in [55] to compute distances towards detected objects based on triangulation. How-

ever, stereo systems require a high payload and onboard computational capacity.

Several biologically inspired approach have also been presented. In [114] it is

shown that fruit flies avoid obstacles when they turn away from the region with a

high level of Optical Flow (OF). On the other hand, in [109] it is found out that

honeybees try balancing the amount of lateral OF in order to stay equidistant

from the flanking walls.

Different studies in the last years have concerned with the use of Optical Flow

for obstacle avoidance. In some approaches the average intensity of the left and

right OF vectors is balanced, according to the fact that if the left optical flow is

larger than the right one, it means that the object is closer to the left side than

the right one, and viceversa. A nonlinear control strategy for obstacle avoidance

based on the OF is presented in [60], while autopilots for lateral obstacle avoidance

of an hovercraft using two one-dimensional sensors pointing at ±90◦ have been

developed in [109] and [100]. A single-camera frontal collision-avoidance strategy

computing the divergence of the OF is proposed in [128], where an increase of the

OF divergence indicate the presence of a frontal obstacle.

The optical flow has also been used for implementing altitude control for MAVs,

e.g regulating the altitude of a helicopter using two downward optical flow sensors

as in [96]. In this last, constant speed obtained by a constant pitch angle implies

that the amount of OF is constant so that the vehicle stays at a constant height

above ground [128, 48].

In [99] two different strategies, with and without the adoption of the OF, based

on the Time to Contact –time needed to obtain a collision between the obstacle

and the vehicle, while it is moving with a translational speed– have been proposed.

The Depth Map (DM) of the environment can be computed using the OF and

GPS measurements. In [27, 26] an intuitive 3D map providing obstacle locations is

provided using only OF and GPS data. A lateral obstacle avoidance algorithm for

a wheeled robot has been proposed in [124], where a depth map obtained from the

OF evaluated with an omnidirectional camera has been used. In [82] a real-time

algorithm to compute the Relative Depth Map (RDM) from the OF independently

of the performed motion, while in [126] the RDP is employed for the navigation

through indoor corridors in the case of linear motion.
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1.2 Vision for Aerial Robotics

The challenge in the MAV field, is not only avoid obstacles, but give the vehicle

the capability to interact with the environment enabling autonomous grasping or

perching. Acquiring, transporting and deploying payloads while maintaining a

significant velocity are important since they would save MAVs time and energy

by minimizing required flight time. Nature provides many examples of energy and

time efficient creatures that provide inspiration for the field of robotics. Raptors

are excellent aerial hunters and are able to conserve energy by perching on a wide

variety of objects while colugos use their ability to glide in order to save time [19].

Further, perching can conserve energy that would have otherwise been expended

hovering. Beyond energy-efficiency, high-speed grasping would be particularly

useful if a MAV was needed to quickly acquire or deploy sensors, materials, or

robots. The robot must be able to detect the object of interest and use visual

feedback to control the robot’s motion. However, to maintain agility, the robot

must have low inertia (i.e. minimal sensor payload) and consider the dynamics

of the system. Another limitation is the poor understanding of the perception-

action loops required for agile flight and manipulation. One can observe that

visual feedback is used to close the control loop while dynamically grasping prey

(see Figure 1.5). In scenarios like this, a monocular camera is an ideal sensor,

especially when combined with an IMU [88, 122], and motivates either Position

Based Visual Servoing (PBVS) or Image Based Visual Servoing (IBVS) [57]. PBVS

requires an explicit estimation of the pose of the robot in the inertial frame while

IBVS acts directly using feedback from the image coordinates. In particular, a

single monocular camera is sufficient for visual servoing when there is some known

geometry or structure in the environment.

It is natural to look to nature for inspiration when approaching such design

challenges. From video footage it is clear that raptors sweep their legs and claws

backwards while capturing prey, thereby reducing the relative velocity between

the claws and the prey [13]. This allows the bird, without slowing down, to have a

near-zero relative velocity between the claw and the prey. This method can inspire

how to enable high-speed aerial grasping and manipulation for MAVs.

There are many excellent tutorials on visual servoing [40, 57, 29, 30]; however,

most approaches assume first-order or fully-actuated systems. For example, [115]

demonstrated robustness to camera calibration, but only considered a first-order

system. Stability was proven for second order systems, but assumed full actuation

[34]. More recently, [52] and [51] leveraged a spherical camera model and utilized

backstepping to design non-linear controllers for a specific class of underactuated

second-order systems. As is typical in backstepping, however, it is necessary to

assume that the inner control loops are significantly faster than the outer ones.

There have been some preliminary efforts towards autonomous landing, but an

estimate of velocity in the inertial frame is obtained using an external motion

capture system [64]. Thus, there is a lack of IBVS controllers which can handle

the dynamic motion required for aggressive grasping and perching.
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Figure 1.5: A Red Kite swoops down and uses visual feedback to approach, grasp,
and retrieve food on the ground [116] (top). A bald eagle uses a similar strategy
to hunt prey in the water [13] (bottom).

Therefore, the major goal is to ascribe to aerial vehicles the ability to au-

tonomously and dynamically fly above, grasp, or perch on a target. In particular,

a quadrotor platform is considered, which is appealing, as mentioned, due to its

mechanical simplicity, its agility, its ability to hover, and its well-understood dy-

namics [107]. The system is underactuated; however, it is possible to design con-

trollers that guarantee convergence from almost any point on SE(3), the Euclidean

motion group in three dimensions [65]. Similar controllers have been derived for

a quadrotor carrying a cable-suspended payload [107]. However, both of these

approaches require full knowledge of the state. In order to achieve these goals, the

dynamics of the system directly will be expressed in the image plane (rather than

in the Cartesian space) to develop an IBVS controller based on visual features of

a cylinder [117, 118].

1.2.4 Vision for Pose Estimation and 3D Reconstruction

In previously mentioned works, the visual feedback is used to obtain a reactive

control in term of obstacle avoidance and environment interaction. However, vision

sensors can are employed to map the surrounding environment. Eventually, the

information they provide can fused with the IMU to obtain autonomous control. In

this context, vision algorithms are more complex, they are addressed for high level

tasks like environment reconstruction and planning. They give a more detailed

environment representation, but a less reactive behavior, needed in the previous

8
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described domains. The attention, in this work, is mainly focused on the use of

low-cost range sensors for single and multiple platform localization tasks.

These sensors are an attractive alternative to expensive laser scanners or 3D

cameras for applications such as indoor navigation and mapping, surveillance, and

autonomous robotics. Consumer-grade range sensing technology has led to many

devices becoming available on the market like Microsoft Kinect sensor and the

ASUS Xtion sensor (PrimeSense, 2010 see Fig. 1.6). The richness of the provided

data and the low cost of the sensor have attracted many researchers from the

fields of mapping, 3D modeling, and reconstruction. The ASUS Xtion sensor1

boasts a lower weight than the first generation of RGB-D cameras (around 70g

without the external casing), it does not need external power other than the USB

connection, and it is very compact. These properties give this device some unique

characteristics suitable, for example, for environment mapping and monitoring

with UAVs.

There are a number of Simultaneous Localization and Mapping (SLAM) ap-

proaches for Micro Aerial Vehicles (MAVs). Good results have been obtained using

monocular cameras and IMUs [62], stereo camera configurations [121] and RGB-D

sensor systems [102, 101, 53, 39, 11, 91].

In [102, 101], a Kinect and on-board vehicle sensors are used to perform state

estimation through Kalman filtering, while in [62], the same filter is used to com-

bine monocular visual information with inertial sensor data solving the scale fac-

tor problem. All of these approaches show the feasibility of 3-D SLAM on a

computationally-constrained aerial platform. In [53] an RGB-D 3D mapping sys-

tem utilizes a novel joint optimization algorithm combining visual features and

shape-based alignment. In [11] a direct 3D tracking approach is proposed such

that an error is based directly on the intensity of pixels. Other algorithms are

based on fusing depth maps to a coherent 3D model [91]

Most previous approaches are slow and designed for use on a single platform.

However, in some cases, to map large environments and to help the vehicle which

is already mapping the environment at that time, it may be necessary to deploy

new vehicles which can cooperate in the mapping task. If multiple MAVs can

collaborate in mapping tasks, they can cover the same environment in a faster

and more reliable way compared to a single vehicle. Moreover, the fused map

information can be exploited by every vehicle in order to make decisions on steps

and task allocations.

In collaborative mapping, different vehicles can be launched from different ini-

tial positions and orientations. In general, any kind of prior knowledge can be

considered on the relative pose of vehicles. Thus, the relative pose information

should be inferred from different measurements (that may or may not be inde-

pendent) of the external scene by different vehicles. This problem is addressed in

1While this specific sensor is no longer available, there are others under development that
are likely to be available in the future.
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Figure 1.6: Asus Xtion Pro Live Sensor.

[42] where two MAVs map the same environment. Loop closure detection between

different cameras, map merging, and concurrent map access are performed on a

ground station where maps are replicated. The advantage of this approach is that

each vehicle starts its own map. However, the ground station is responsible for

map merging and must manage redundant information like the maps built by the

individual vehicles, including the overlap in the mapping data. Further, because

the maps are based only on monocular vision, the process is not likely to be robust

to sudden changes in depth.

There is also work using range sensors with ground robots in 2-D environ-

ments [43, 94, 54, 120]. The use of bearing measurements from monocular cam-

eras coupled with IMU has been exploited in [32]. An interesting approach is

presented in [127] where 3 synchronous cameras are able to perform localization

even in dynamic environments. However, the images are required to be synchro-

nized. Therefore, this approach is difficult to apply in the field of MAVs. In [105],

a stochastic approach is presented for cooperative mapping with a Kalman Filter

fusing different camera poses and observed landmarks. In chapter 3 a new solu-

tion combining monocular SLAM and depth data [73] enabling the localization at

30 Hz is proposed. Moreover this solution is extended to a partially distributed

architecture for cooperative localization and mapping, avoiding the map merging

problem.

However, the main problem involving general environment reconstruction is the

sparsity of the point cloud data representing the environment. This environment

representation is unsuitable if it has to be managed by a high-level supervisory

control. The world is simply modeled as a set of 3D point clouds presenting the

disadvantage of outliers which can affect planning performances. Moreover the

sparsity of the representation, due to computational algorithms, would require un-

acceptable planning time. Thus, a different environment representation strategy
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has to be chosen in case of a high-level control system designed for an ASV oper-

ating in close interaction with the external environment, like the one presented for

the AIRobots project [2, 79, 81] where unmanned service helicopters are equipped

with sensors and end-effectors, and capable not only to fly, but also to achieve

robotic tasks in proximity and in contact with the surface (e.g. site inspections,

simple manipulations, probe testing, etc.).

This application domain is challenging and novel and has not been investigated

in depth in the UAV literature, which is mainly focused on free flight tasks an

simultaneous localization, mapping, and path planning problems [14, 55, 110, 67,

70, 68]. High-level architectures for UAVs have been proposed in literature [36,

46, 37], but none of these addresses the challenges of the ASV domain proposed

in this paper. The aim in this work, is mainly to present an onverview of the

architecture adopted in this novel scenario along with the vision based solutions

adopted for high level tasks in the AIRobots project, which requirements have

been widely discussed in different works [79, 80, 21, 23]. A discretization of the

vehicle’s workspace with elementary cubes is proposed, in the chapter 3, to model

the environment for the proposed high level control architecture.

1.2.5 Sensor Fusion

As previously mentioned, information provided by a vision algorithm can be fused

with different sensors like lasers scanners and IMU. In general, the goal is to

increase robustness and speed of previous visual localization algorithms. The use

of filters combining different sensor data, which are generally provided at different

sampling rates, is highly appealing.

Different methods have been studied to combine heterogeneous information

sources such as Global Navigation System (GNS), inertial navigation systems,

odometry and local radio technologies [49, 93]. Nevertheless, this remains an

open research field in robotics and especially in Micro Aerial Vehicles (MAVs)

applications, where low cost IMUs have to be combined with one or more cameras

information, as well as with the Global Positioning System (GPS) available data.

Due to unbounded accumulation of integration errors, position and velocity can

be only estimated for no more than few seconds by using only IMU data. On

the other side, vision sensors are able to provide positional information with no

drift with respect to fixed observed environments. However, the main drawback

of this sensors is the huge amount of data to be transmitted and/or elaborated

on-line to extract positional information, that generates at least a time delay in

the estimation update and a low measurement rate (e.g. 10 Hz) compared to IMU

sensors (e.g. 100-200 Hz).

Unequal periodicity of the sampling times of the measurement devices rises sig-

nificant challenges. A known solution consists in adopting multi-rate filters [10].

Further, the delay that characterizes visual measurements can be addressed by
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adopting different techniques based on Kalman filters or its variants [71, 63].

Specifically, in this latter work the authors extrapolate the delayed measurement

forward into the present time, and calculates an optimal gain. However, the delay

compensation is often achieved by a state augmentation depending on the given

delay [56]. In [87] the general Kalman filter formulation is extended by considering

both the relative measurements update and the correlation between two consecu-

tive displacements, while a solution to choose the initial state covariance matrix is

addressed in [62]. The solution proposed in [10] has been employed in [17] by com-

pensating the delay due to the wireless data communication and image processing

to stabilize a MAV with a standard PID controller.

The adoption of a mono-camera system in an unknown environment determines

the capability to estimate the egomotion of the vehicle up to a scale factor. By

using a sensor fusion techniques combining inertial and visual data, the global scale

factor can be estimated achieving an absolute egomotion estimation. The solutions

proposed in [61, 67, 69], which are not based on the Kalman filter, combine inertial

measurements and consecutive feature matchings to obtain a closed-form solution

for scale-factor estimation.

Optimal sensor fusion techniques based on second order moment minimiza-

tion [8] and Pareto Optimization [9] try to couple heterogeneous sensors such

as Ultra-Wideband radio measurements with speed and absolute orientation in-

formation. Other works rely on the use of complementary filters and nonlinear

estimators as in [50] and [31]. In these latter cases, the vehicle position, velocity

and attitude estimation is obtained using a nonlinear dynamic system, where the

proof of stability is obtained using the Lyapunov stability theory.

In this work, a new optimal sensor fusion algorithm [72] based on Pareto opti-

mization techniques is proposed in Chapter 4 to combine IMU and camera visual

measurements to estimate a vehicle motion. Results show, respect to a Kalman

filter approach, an improved estimation at the price of a limited increased compu-

tational complexity.
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Chapter 2

Vision for Reactive Control

In this chapter two main contributions are presented. First, a new vision-based

obstacle avoidance technique [67, 68] for indoor navigation is presented for MAVs

applications. The vehicle trajectory is modified according to a repulsive force field

generating from the DM of the surrounding environment computed online using

the OF. A single onboard omnidirectional camera is assumed to be available. In

particular, a new formulation for a closed-form solution for the absolute-scale ve-

locity estimation problem, which are required for the DM estimation, is presented.

Starting from the solution proposed in [61], where in addition to inertial measure-

ments the correspondences of an image feature between three image frames (here

referred as visual station) are required, a new compact formulation is adopted

also generalizing to the case of multiple visual station and image features. A dy-

namic region-of-interest for image feature extraction and a navigation velocity self-

limitation control are considered to improve safety during navigation in view of the

estimated vehicle velocity. Second, in the image space, a controller for the robot

that relies on visual feedback from a monocular camera is proposed [117, 118].

Following this, a description of the hardware used in experiments, particularly

the camera system, is provided. Experimental results, which include high-speed

vision-based control, are then proposed. For visual control, IBVS and geometric-

control literature is proposed, generalizing from a first-order fully actuated system

to a higher-order underactuated system. Further,methods to guarantee dynami-

cally feasible trajectory generation in the image space by utilizing the differential

flatness property, are demonstrated. Finally, the proposed trajectory generation

methods and control laws are verified in simulation and experimentation.

2.1 Optical Flow and Depth Map

The Optical Flow can be defined as the apparent motion of a image features

(objects, surfaces, etc.) between two consecutive camera frames caused by the
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relative motion between the camera and the scene. It is known that the motion

of obstacles observed in an image sequence depends on the distance of the object

with respect to the camera, and thus the OF can be profitably exploited estimating

the distances of surrounding obstacles. For this reason, OF is often employed

in non-stereo visual based obstacle avoidance. However, the estimation of the

absolute distance of an obstacle requires the knowledge of the vehicle translational

velocity, which is here evaluated with a new closed-form solution based on image

correspondences and IMU measurements.

2.1.1 Depth map construction with Optical Flow

In the case of a purely translational motion of the vehicle, assuming that all the

objects in the scene are stationary, the translational Optical Flow ωT of an image

feature of an observed object depends on the relative velocity between the camera

and the object itself v and on the angle between the direction of motion and the

observed feature α, as shown in Fig. 2.1, with the following rule:

d =
‖v‖

ωT
sin(α), (2.1)

where d is the distance between the object feature and the camera. Therefore, if

the vehicle velocity is available, the distance and so the position of the observed

obstacle can be estimated. However, in a general case, the motion of the vehicle

is composed of a translational part and of a rotational part, namely ωT and ωR,

each of which produces a rate of the OF.

The computation of the ωT component can be performed applying a compen-

sation of the rotational effect as described in [126]. With reference to Fig. 2.2, the

inertial and the camera reference frames are denoted with I−xIyIzI and O−xyz,

respectively. Without loss of generality, it is supposed that the camera and the

vehicle frames are coincident. The camera velocity v and acceleration a, this last

provided by the onboard IMU system with a period T , are expressed in camera

frame. The orientation of the camera frame, also extracted using the IMU mea-

surements, is referred to the inertial frame and expressed using the well-known

Tait-Bryan (Euler) angles roll, pitch, and yaw φφφ = (ϕ, θ, ψ).

Adopting a classical pin-hole camera model (other models can be considered

in view of the available hardware, e.g. see [98] for the case of fisheye lens) and

assuming known the camera calibration parameters, the image feature vector f =[
x y z

]T
, i.e. the position of the observed feature with respect to the camera,

can be expressed using the normalized image coordinates X and Y as follows

f = z



X
Y
1


 = d · f̂̂f̂f , (2.2)
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OF

d

v

a

Image feature
motion

Obstacle

Figure 2.1: Optical flow during a translational motion.

where d = ‖f‖ is the distance of the feature and f̂̂f̂f is the unit feature vector

depending only on visual measurements X and Y .

The image features considered in this paper are corner extracted using the

well known Shi-Tomasi corner detector, while the Pyramidal Lucas-Kanade al-

gorithm [74, 16] has been employed to find correspondences between consecutive

image frames. Denote with f̂̂f̂f1
1 and f̂̂f̂f2

2 the unit feature vectors of a correspon-

dence between two consecutive images, both represented in the respective reference

frames –conventionally, for vectors and matrices the reference frame is indicated as

superscript– and with φφφ12 the corresponding angular changes for the camera ori-

entation. Then, the unit feature vector f̂̂f̂f1
2 representing the position of the image

feature measured in frame 2 reported in frame 1 can be evaluated as follows

f̂̂f̂f12 = R1
2f̂̂f̂f

2
2, (2.3)

where R1
2 = R(φφφ12) is the rotational matrix representing the rotation performed

by the camera in the form

R(φφφ) =



cϕcθ cφsθsψ − sφcψ cϕsθcψ + sφsψ
sϕcθ sφsθsψ + cφcψ sϕsθcψ − cφcψ
−sθ −cθsψ cθcψ


 .

The corresponding ωT can be estimated as the angular velocity of the feature

vector evaluated in the interval ∆t12, between the image frames 1 and 2, given by

ωT =
cos−1

(
f̂̂f̂f1
1 · f̂̂f̂f

1
2

)

∆t12
. (2.4)
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Figure 2.2: Inertial and camera reference frames.

Figure 2.3 shows the ωT computed in a real indoor scene with an omnidirec-

tional fisheye camera.

For a given vehicle translational velocity v, substituting (2.4) in (2.1) and the

result in (2.2), the set of all feature vectors f of the available image correspon-

dences can be evaluated, constituting the instant Depth Map of the surrounding

environment at the time of the image frame acquisition.

2.1.2 Velocity estimation

In this section a generalization of the method proposed in [61] is presented with a

more compact analytical formulation, where the extension to a multi-frame multi-

feature correspondence is explicitly considered. Without loss of generality, it is

assumed that the period of the visual system is N times the period of the IMU

system T . This means that between two consecutive images there are N available

measures provided by the IMU. Moreover, it is assumed that the IMU and the

camera reference frames are coincident –if both are calibrated it is easy to refer

IMU data to the camera frame– and that the IMU is ideal, i.e. it provides gravity

and bias-free acceleration and gyroscopic measurements. Therefore, only the cam-

era frame will be considered in the rest of the section. Finally, the acceleration a

is always expressed in the current camera frame (e.g. aj = a
j
j , where j refers to

the camera frame at the time instant tj).

Considering a camera motion as shown in Fig. 2.4 and assuming that tk is the

last sample time with available visual data, the previous available visual measure-

ments are referred to the sample times tk−sN , with s ∈ N (s identifies each visual

station). By denoting with r
j
i the relative displacement of the frame i with respect

and referred to the frame j and considering a single image feature match between
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Figure 2.3: Optical Flow estimated in a real scene.

frames k and ks = k − sN , the following relation can be written

dks f̂̂f̂f
ks
ks

=
(
Rk
ks

)T (
dkf̂̂f̂f

k
k − rkks

)
, (2.5)

where Rk
ks

=
[
rx ry rz

]k
ks

is the rotational matrix representing the orienta-

tion of frame ks with respect to frame k, and rx, ry, and rz are the its column

vectors. This relative displacement can be expressed in terms of the current veloc-

ity, with respect to the current camera frame k, and the integration of acceleration

samples between tk−sN and tk. Let us consider the relative displacement and ve-

locity between two consecutive frames:

r
j−1
j = v

j−1
j−1T +

1

2
aj−1T

2 (2.6)

v
j−1
j = v

j−1
j−1 + aj−1T (2.7)

r
j
j−1 = −R

j
j−1r

j−1
j = −vj−1T −

1

2
R
j
j−1aj−1T

2 (2.8)

vj = R
j
j−1v

j−1
j = vj−1 +R

j
j−1aj−1T. (2.9)

Replacing (2.9) in (2.8) yelds

r
j
j−1 = −vjT +

1

2
R
j
j−1aj−1T

2. (2.10)

The whole displacement between two consecutive visual frames can be achieved

adding all the displacements corresponding to the intermediate time intervals

where only IMU data are available, obtaining

rkks = −sNTvk +
1

2
ākksT

2, (2.11)
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Figure 2.4: Camera (blu) and IMU measurement reference frames.

with

ākks =

sN∑

j=1

(2(sN − j) + 1)Rk
k−jak−j , (2.12)

which can also be expressed in a recursive formulation, here omitted for brevity.

By plugging (2.11) in (2.5) and considering (2.2), the following system of equa-

tions for a one-point image correspondence between frames k and ks is derived

Xks =

(
rkx,ks

)T (
dkf̂̂f̂f

k
k + sNTvk −

1
2 ā

k
ks
T 2
)

(
rkz,ks

)T (
dkf̂̂f̂fkk + sNTvk −

1
2 ā

k
ks
T 2
) (2.13)

Yks =

(
rky,ks

)T (
dkf̂̂f̂f

k
k + sNTvk −

1
2 ā

k
ks
T 2
)

(
rkz,ks

)T (
dkf̂̂f̂fkk + sNTvk −

1
2 ā

k
ks
T 2
) . (2.14)

In the general case, by considering ns ≥ 2 visual stations and nf image features,

a system of 2nsnf equation with 3 + nf unknowns vk and dk, where dk is the nf
vector of distances of each image feature, is achieved. This linear system can be

easily arranged in the classical form

A

[
vk
dk

]
= b, (2.15)

that for ns = 2 and nf = 1 becomes a square system of 4 equations in 4 un-

knowns. However, by increasing ns and/or nf , a least-squares solution can be

achieved, which is robust to noise, but with some limitations. If ns is increased,

the number of unknowns do not change, i.e. the complexity of the system solution

remains the same, and the baseline employed for the triangulation considered in
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Figure 2.5: A comparison of several cases for the absolute-scale velocity estimation:
true value (dark dashed line), case with ns = 2 and nf = 1 (red line), case with
ns = 2 and nf = 2 (green line), and case with ns = 3 and nf = 1 (blue line).

the equation system is enlarged. resulting in a well numerical conditioned prob-

lem. However, in this case more IMU samples will be integrated, resulting in a bad

solution is the quality of the IMU system is poor, as the typical case of MAVs. On

the other hand, increasing nf the same number of IMU data is employed but the

number of unknowns increases linearly: the matrix A assumes a sparse conforma-

tion and the solution of the system becomes quickly inefficient; the complexity of

the image feature matching algorithm increase and becomes less robust (increase

the probability of outliers).

Taking into account these considerations, a tradeoff is required (e.g. ns = 3

or 4 is a good IMU system is available, nf ≤ 3). A comparison between several

cases is showed in Fig. 2.5, where the ideal case with T = 10 ms, N = 10 is con-

sidered. Obviously, best results are achieved when the number of image features

are increased, while at the beginning of the trajectory it is noticeable a bad nu-

merical solution for the minimum system case. This last condition happens with

a significant frequency for a number of tested trajectories, then this choice it is

inadvisable for a real case.

Notice that the proposed solution becomes singular when the velocity of the

camera is constant, i.e. when the acceleration value remains zero over the last three

camera observation points, and hence the motion remain unobservable. However,

this case can be easily detected at runtime monitoring the result of the IMU

integration.

2.2 Navigation control

Once estimated the vehicle velocity, the distance of each feature observed in the

scene and associated to an OF element can be evaluated and collected together
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v

Figure 2.6: Dynamic region of interest.

with the corresponding optical rays. The result is a temporary environmental map,

namely Depth Map, which can be fully exploited for lateral obstacle avoidance

during the navigation.

2.2.1 Dynamic region-of-interest

The OF computation requires, as explained before, an image feature extraction

algorithm and a matching algorithm, that can be computational expensive for the

typical processor units available on a MAV. In the case of an omnidirectional cam-

era, the adoption of region-of-interest (RoI) for the image elaboration processes

may provide a large benefit in terms of computational requirement, while the main

drawback is that the systems becomes “blind” outside the RoI. However, the adop-

tion od a dynamic RoI that is smartly adapted online to the real environmental

and navigation conditions may reduce the risk of an unpredicted impact. Observ-

ing that, due to the inertial of the system, an obstacle can be avoided only if it

is detected as early as possible with respect to the vehicle velocity, the solution

proposed is to adopt a RoI that “looks” more forward as the vehicle is moving

quickly.

In this paper the RoI is composed of two regions, namely left and right RoI,

which are symmetric with respect to the direction of motion. Both regions have

a fixed total extension around the vertical axis, but they are rotated in view of

an angular offset θof with respect to the navigation velocity (see Fig. 2.6). Notice

that the forward region in the direction of motion is discarded due to numerical

inconsistency of the OF along this direction. By denoting with θM the maximum

offset angle for the RoI, an exponential adaptation law is considered for an offset
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angle with respect to the motion direction as follows

θof =




θM

(
1− e

−4 ‖vvv‖−vm
vM−vm

)
if ‖v‖ > vm

0 if ‖v‖ ≤ vm,
(2.16)

where vm and vM are the minimum and maximum values which can be assumed

from the cruise velocity.

Also the vertical extension of the RoI is shaped in view of the offset, symmet-

rically reducing its range with the increase of θof . This behavior is required for

omnidirectional cameras, that compresses objects extension in the image as far as

they are along the direction of motion.

2.2.2 Lateral obstacle avoidance control

The safety of the vehicle during navigation within an indoor environment depends

on its capability to avoid unplanned lateral obstacles.

With respect to the dynamic left and right RoI presented above and for each

available DM, the distances of the vehicle with respect to the left and right side

of the surrounding environment are computed with the following procedure. By

denoting with v̂̂v̂v = v/‖v‖ the unit vector pointing along the motion direction, the

distances of each detected feature, which is characterized by its feature estimated

vector f , along the motion direction sv̂̂v̂v(f) = f
T ·v̂̂v̂v and with respect to the forward

axis dv̂̂v̂v(f ) = ‖xv̂̂v̂v(f )v̂̂v̂v− f‖ are computed. Then, the vectors of distances from the

left dLv̂̂v̂v and the right dRv̂̂v̂v sides of the navigation direction are composed using

increasing values of sv̂̂v̂v as a sort criteria. Finally the minimum of each distance

vector is found and a local spacial average is applied resulting in the minimum

mean distances d̄Lv̂̂v̂v and d̄Rv̂̂v̂v . Depending on the application, a LP-filter can be

considered to reduce discontinuities due to the changing of the observed features.

Assuming dls as a safety lateral distance, a course correction is obtained

through a PD controller acting on the following error

el =





d̄Lv̂̂v̂v−d̄
R
v̂̂v̂v

dls
if d̄Lv̂̂v̂v + d̄Rv̂̂v̂v < 2dls

1−
d̄Rv̂̂v̂v
dls

if d̄Lv̂̂v̂v ≥ dls, d̄
R
v̂̂v̂v < dls

d̄Lv̂̂v̂v
dls

− 1 if d̄Lv̂̂v̂v < dls, d̄
R
v̂̂v̂v ≥ dls

0 otherwise.

(2.17)

Notice that d̄Lv̂̂v̂v + d̄Rv̂̂v̂v < 2dls means that the vehicle is navigating in a narrow

environment, e.g. a corridor, and in this case the previous control tries keeping the

vehicle in the middle of the free space, while the following cruise control reduces

the vehicle velocity.
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2.2.3 Cruise control

The proposed navigation control considers a cruise velocity of the vehicle vc along

the direction of motion in the case of free space. However, for the safety of the

vehicle, when an obstacle is detected or when the dimension of the space that is

free for the motion is reduced, i.e. the minimum distance with respect to the en-

vironment d becomes less than a safety distance ds, a reduction of the navigation

velocity is commanded. The module of the navigation velocity is generated apply-

ing a virtual control force fv in the desired direction of motion, which is generated

with an exponential law as follows

fv =fp

(
1− e−4 ‖vvv‖

vc

)
− (2.18)

fsM

(
1− e−4ds−d

γvds

)(
1− e−4‖vvv‖−vm

vc−vm

)
, (2.19)

with

fsM =

{
Fs if ‖v‖ > vm, d < ds

0 otherwise,

where γv ∈ (0, 1) determines the rate of reduction of the velocity when the distance

d becomes less than ds, vm is the minimum cruise velocity that has to be assured,

and Fs is the maximum braking force.

Eventually, to avoid an obstacles without penalizing excessively the velocity

also the motion direction has to be locally corrected. For this purpose, a correction

of the planned motion direction is achieved taking into account the presence of

lateral obstacles. By denoting with f lf and f rf the positions of the most advanced

feature points, i.e. obstacles, which have been detected on the left and right side

of the environment, respectively. To reduce noise effects, these vectors can be

computed performing a spatial mean of a certain number of the most advanced

feature points. Hence, the vector which points toward a free space direction is

computed as follows

pf =
1

2

(
frf − f lf

)
. (2.20)

Finally the angular correction of the current motion direction ∆ψ is computed as

the angle required to align the current velocity vector v to vf

∆ψ = arccos

(
pT
f v

‖pf‖ · ‖v‖

)
. (2.21)

2.3 Simulation results

The performance of the proposed DM construction algorithm and of the navigation

control has been tested with simulations using the MATLAB/Simulink environ-

ment in two different cases, with and without the correction of the planned motion

direction.
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Figure 2.7: Simulated indoor environment.

In Fig. 2.7 a sketch of the employed simulator is showed. The considered

indoor environment is similar to a corridor of a total length of 25 m and with a

longitudinal shape that changes along the path. In particular the width of the free

navigable space varies several times from 2 to 1 m, and vice versa, also changing

in its middle line position.

A random occurrence of image features has been considered on both sides of

the environment without outliers. Gaussian white noise has been added on image

and IMU measurements. For the velocity estimation, the case ns = 2 and nf = 2

has been considered with T = 0.01 s and N = 10.

The adopted dynamic model of the vehicle can be found in eq.(1.1) and in

[14]. The control inputs are the two tilt angles, the angular velocity around the

vertical axis and the thrust, while the outputs are the position and the yaw angle.

In particular, the vehicle is modeled in the inertial frame as a simple point-mass

model using the second Newton’s law. The forces acting on the system are the

controlled thrust τ and the gravity g, as shown in the first expression in eq.(1.1).

The m = 0.5 kg is the vehicle mass and R(ϕ, θ, ψ) is the rotation matrix of the

vehicle frame with respect to the inertial frame where angular dependency of the

roll, pitch and yaw angles, has been specified. The delay acting on the control

angles due to the internal controller action can be modeled as a second order

system:

L(s) =
ω2

s2 + 2 · d · ω · s+ ω2
, (2.22)

where ω = 15.92 rad/s and d = 1.22. Supposing that the controller is fast enough

and smooth, it is possible to consider the delay acting on forces and not on the

angles, so to obtain four linear and decoupled systems respect to the forces as in
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Figure 2.8: Course correction during navigation in view of the detected obstacles.
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Figure 2.9: Navigation velocity modified in view of the detected obstacles and of
the current free space (blue line) and adopted vc (red dashed line).

in [14]. With respect to these parameters, the PD controller of the lateral obstacle

avoidance control has been designed in the frequency domain with the following

transfer function:

C(s) =
0.008(100s+ 1)

0.001s+ 1
. (2.23)

Some of the most significant adopted parameters are as follows: θM = 30◦ for a

total lateral angle of view of 80◦, vc = 2.44 m/s, vm = vc/4, dls = ds = 1.0 m,

γv = γl = 0.25.

The course correction achieved during the navigation is shown in Fig. 2.8,

where also the shape of the environment has been reported. The vehicle starts

from the home position that is near to the left side of the environment. The path

followed by the vehicle is almost centered in the middle of the available free space

left to the vehicle as desired.

In Fig. 2.9 the navigation velocity modified in view of the detected obstacles

and of the current free space is shown. As expected, the velocity is reduced when

the vehicle is near to obstacles or in a restricted area. The cruise velocity in the

narrow part of the environment is decreased, in view of the adopted parameters,

to about 1 m/s, while when the available space increases also the velocity increases
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Figure 2.10: Course correction during navigation, with (red dashed line) and with-
out (green dotted line) the motion direction correction, in view of the detected
obstacles and of the path deviations (gray lines).
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Figure 2.11: Navigation velocity modified in view of the detected obstacles and
of the current free space, with (blue line) and without (green line) the motion
direction correction, and adopted vc (gray dashed line).

tending to vc.

In the second case, a more complex and narrow environment is considered.

The course correction achieved during the navigation is shown in Fig. 2.10, where

also the shape of the environment has been reported. The vehicle starts from the

home position that is near to the left side of the environment. The path followed

by the vehicle is almost centered in the middle of the available free space left to

the vehicle as desired.

In Fig. 2.11 the navigation velocity, modified in view of the detected obstacles

and of the available free space, is shown. As expected, the velocity is reduced

when the vehicle is near to obstacles or in a small area. In turn, the velocity in the

narrow part of the environment is decreased depending on the chosen parameters,

to about 1 m/s. When the available free space increases also the velocity increases

towards vc. The motion direction correction is useful for the vehicle to keep a

higher velocity in the narrow part as shown in fig. 2.11, respect to the lateral

control approach only.

25



CHAPTER 2. Vision for Reactive Control

0 5 10 15 20 25 30
0

5

10

15

20

m

de
g

Figure 2.12: Motion direction correction during navigation in view of the detected
obstacles and of the path deviations.

Finally, in Fig. 2.12 the motion direction correction which is applied during

the navigation is shown. Clearly, the presence of lateral obstacles and an un-

expected corridor deviation require suitable corrections to keep the vehicle in the

middle of the available space without reducing drastically the velocity. Figures 2.10

and Figure 2.11 show the improvements provided by the adoption of the proposed

approach.

2.4 Image based Visual Servoing

The challenge, in this second part, is not to avoid obstacles, but to provide to the

vehicle the capability to interact with the environment through the use of vision

sensors. The primary contribution is to enable high-speed grasping maneuvers by

developing a dynamical model directly in the image space, showing that this is

a differentially-flat system with the image features serving as flat outputs, devel-

oping a geometric visual controller that considers the second order dynamics (in

contrast to most visual servoing controllers that assume first order dynamics), and

presenting validation of the methods through both simulations and experiments1.

2.4.1 Geometry

Let the image features be the points whose rays are tangent to the cylinder and

lie in the vertical plane. In contrast to typical visual servoing approaches, these

points are now a function of the position of the robot. Therefore, the standard

image Jacobian, which assumes the target points are stationary in the inertial

frame [29], cannot be used.

1It must be noted that grasping maneuvers are predominanty in the sagittal plane and thus
developed models and algorithms for motion planning and control are based on a planar model
(x − z plane). However, since the experimental system is 3D, a Vicon-based motion capture
system will be used to ensure stability for the yaw and the y-axis dynamics. The x− z dynamics
will be stabilized through the developed IBVS controller.
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Figure 2.13: It is assumed that the target is located at the origin and the quadrotor
is located at (xq, zq).The focal length of the camera, fx, defines the location of
the image plane relative to the quadrotor and the image coordinates are given by
v1 and v2. The optical ray tangent to the target intersects the target at (xt, zt).
The coordinate system of the camera is indicated by xc and zc.

In order to formulate the mapping between the image plane and the robot

pose, let the target cylinder be centered at the origin, Rt denote the radius of the

target cylinder, and rt be a tangent point on it as shown in Figure 2.13. With the

camera at the same position as the quadrotor, there are two geometric constraints

in the inertial frame,

‖rt‖2 = Rt (2.24)

‖rq‖
2
2 = ‖rq − rt‖

2
2 +R2

t (2.25)

where ‖·‖2 is the 2-norm in the Euclidean space. These equations have two solu-

tions which represent the two tangent points,

rt,i =
R2
t

‖rq‖
2



[
xq
zq

]
±

[
−zq
xq

]√
‖rq‖

2

R2
t

− 1


 . (2.26)

Unfortunately, the features in the image plane are coupled with the attitude.

Thus, the image features would not allow for the necessary attitude-decoupled

mapping between the position of the robot and the image features as required for

the features to be flat outputs as outlined in section 2.5.1. Similarly to [58], the

calibrated image coordinates are mapped to coordinates on a level virtual image

plane by rotating the camera coordinate system to a virtual frame where θ = 0.

Then, the virtual calibrated coordinates of the features can be computed using
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the position of the quadrotor, (2.26), and

λ



vi
0
1


 = P0T

−1




xt,i
0
zt,i
1


 (2.27)

with the appropriate transformation, T , and independent of the pitch, θ. The

virtual coordinates, v = [v1, v2]
T , in (2.27) provide two equations which can be

solved to determine the robot and camera position as a function of the virtual

image coordinates.

The space S = {rq ∈ R
2 | 2Rt ≤ ‖rq‖ ≤ Br, zq > Rt}, is defined such that the

quadrotor’s position is bounded below by 2Rt and bounded above by Br, and the

quadrotor is always above the cylinder. Then, there exists V ⊂ R
2 and a smooth

global diffeomorphism Γ : S −→ V such that

v =
fx

z2q −R2
t


 xqzq +R2

t

√
‖rq‖

2

R2
t

− 1

xqzq −R2
t

√
‖rq‖

2

R2
t

− 1


 ≡ Γ (rq) , (2.28)

v̇ =
dΓ (rq)

dt
=

∂

∂ṙq

(
dΓ (rq)

dt

)
ṙq ≡ J ṙq, (2.29)

where J is the image Jacobian [125]. Note that J can be expressed as a function

of either the image coordinates or the position of the robot by using (2.28) and

the fact that Γ is invertible. Having established a mapping between the Cartesian

coordinates and the image coordinates, a dynamic model of the quadrotor system

directly in the image coordinates is developed.

2.4.2 Dynamics in the Image Plane

The dynamics of this quadrotor system are well known in literature. For simplicity,

the robot is restricted to the vertical (x−z) plane, (See [108] for the complete 3-D

dynamic model and 1.1)

rq =

[
xq
zq

]
, wq =

[
rq
θ

]

where rq is the position of the quadrotor and θ is the pitch angle. Then, the

dynamics in the inertial frame take the form

Dẅq + Cẇq +G = F (2.30)

where D ∈ R
3×3 is a diagonal inertial tensor because the robot frame is aligned

with the principal axes of the inertia. In this case, centripetal and Coriolis terms,

C ∈ R
3×3, are zero. Gravity appears in G ∈ R

3×1, and F ∈ R
3×1 is

F =

[
fRe2
M

]
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where R ∈ SO(2), f ∈ R is the total thrust, e2 =
[
0 1

]T
, and M is the

pitch moment generated from the difference of thrusts between the front and rear

rotors. Since the system has three degrees of freedom, given by wq, and only two

control inputs that appear in F, the system is underactuated. Now, ṙq and r̈q can

be expressed as functions of the image coordinates using the inverse of the image

Jacobian, J . Then, the dynamics in (2.30) can be expressed in terms of the image

coordinates using

ṙq = J−1v̇ (2.31)

r̈q = J−1v̈ − J−1J̇J−1v̇ (2.32)

so that the dynamics in the image coordinates are:

v̈ =
1

m
J [fRe2 −G1:2] + J̇J−1v̇ (2.33)

Jq θ̈ =M (2.34)

where G1:2 denotes the first two elements of G. Equation (2.33) presents the

translational dynamics directly in the image coordinates. In the next section, it is

demonstrated that v forms a set of flat outputs for the system, enabling trajectory

design directly in the image space.

2.5 Dynamically Feasible Trajectories

2.5.1 Differential Flatness

A system is differentially flat if there exists a change of coordinates which allows

the state, (q, q̇), and control inputs, u, to be written as functions of the flat outputs

and their derivatives (yi, ẏi, ÿi, ...) [89]. If the change of coordinates is a diffeomor-

phism, trajectories can be planned using the flat outputs and their derivatives in

the flat space since there is a unique mapping to the full state space of the dy-

namic system. A proposed set of flat outputs, in the image space, are the image

coordinates, v. These would be convenient since planning dynamically feasible

trajectories in the image space, V , would be as simple as planning a sufficiently

smooth trajectory in the image coordinates. First, there exists a diffeomorphism

between the image coordinates and the position of the robot, namely Γ as defined

in (2.28). From (2.33)

fRe2 = mqJ
−1
(
v̈ − J̇J−1v̇

)
+G1:2 (2.35)

and defining

F1:2 = mqJ
−1
(
v̈ − J̇J−1v̇

)
+G1:2, (2.36)
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it can be concluded that

f = ‖F1:2‖ , θ = arctan

(
F1

F2

)
. (2.37)

The derivative of (2.35) reveals that

ḟ = eT2 R
T Ḟ1:2 (2.38)

and

θ̇ =
1

f
eT1 R

T Ḟ1:2. (2.39)

The next derivative provides

θ̈ =
1

f

(
eT1 R

T F̈1:2 − 2ḟ θ̇
)

(2.40)

and, using (2.34), the pitch moment is

M = Jq
1

f

(
eT1 R

T F̈1:2 − 2ḟ θ̇
)
. (2.41)

Upon inspection, it can be noticed that the 4th derivative of the image coor-

dinates appears in (2.41) through the F̈1:2 term, which means that trajectories in

the image plane must be at least 4 times differentiable, or C4.

2.6 Trajectory generation

The differential flatness analysis in the Euclidean space and further examination

of the control inputs reveals that the snap (4th derivative) of the position of the

quadrotor appears in the M term through θ̈. In addition, β(4) appears in M

through the r
(4)
s term in θ̈. In the image plane case, the snap of the image coor-

dinates appears in M .

Then, to minimize the norm of the input vector, it is appealing to minimize

the following cost functional constructed from the snap of the trajectory:

Ji =

tf∫

t0

∥∥∥y(4)i (t)
∥∥∥
2

dt ∀ i (2.42)

where yi denotes the ith flat output. Accordingly, minimum-snap trajectories

in the image space is considered. The minimization problem can be solved by

choosing a finite dimensional basis for the trajectories and numerically solving a

quadratic program (QP) [83]. If only equality constraints are needed, the QP can

be solved by a single matrix inversion, and in practice, even the inequality case

can be solved fast enough for real-time integration. In the implementation, the
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2.7 Vision Based Control

trajectories are precomputed and the robot is controlled (using Vicon) to start

at the appropriate starting point in the trajectory. The choice for this approach

was motivated by ease-of-implementation and the fact that this allows the same

trajectory to be flown numerous times.

The boundary conditions on the trajectories are the same as the observed

boundary conditions of the trajectories of the raptors. In particular, a start and

finish location are defined, and the position at pickup is defined by the target’s

location.

See Figure 2.18 for the inertial-frame trajectories that result from planning in

the image space.

Having shown that the system is differentially flat with two sets of flat outputs

in the image space, and having used the differential flatness property to generate

dynamically feasible trajectories, a controller that uses vision to track features in

the image space is developed.

2.7 Vision Based Control

Attitude Controller

First, let Rd ∈ SO(2) denote the desired rotation matrix defined by a desired

attitude, θd, and recall that R is the rotation matrix defining the current attitude.

The angular rate of the robot is Ω, which, in the planar case, is equivalent to θ̇,

and the desired angular rate is Ωd, or θ̇d. Then, attitude errors are defined

eR =
1

2

(
RTdR−RTRd

)∨
= sin(θ − θd) (2.43)

eΩ = Ω−RTRdΩd = θ̇ − θ̇d. (2.44)

where ∨ is the “vee” map as defined in [65]. These errors are similar to [65] but

simplified for the planar case. Also, the configuration error function is defined as

Ψ (R,Rd) =
1

2

T [
I −RTdR

]
. (2.45)

The attitude controller is then given as below.

Proposition 1. [65, Prop. 1] (Exponential Stability of Attitude Controlled Flight

Mode) Consider the control moment defined as

M = −KReR −KΩeΩ + Jqθ̈d, (2.46)

where KR and KΩ are positive scalars. Further, suppose the initial conditions

satisfy

Ψ(R(0), Rd(0)) < 2 (2.47)
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‖eΩ(0)‖
2 <

2

Jq
kR (2−Ψ(R(0), Rd(0))) . (2.48)

Then, (eR, eΩ) = (0, 0) is exponentially stable for the closed-loop system.

Proof. Follows from [65, Prop. 1]. See Section A.1.1 for more details.

Position Control

Let errors in the image plane be defined by

ev = v − vd (2.49)

where, as mentioned v is a vector of the image feature coordinates. Similarly, vd
is a vector of the desired image feature coordinates. Then, using (2.33), the image

space error dynamics are

mqëv = fJRe2 − JG1:2 +mqJ̇J
−1v̇ −mqv̈d. (2.50)

where J is the image Jacobian and G1:2 is the first two components of G. The

visual servoing controller is then given as below.

Proposition 2. (Exponential Stability of Visual Feature Controlled Flight Mode)

Consider the total thrust component along the current body frame vertical axis

defined by

f = A ·Re2. (2.51)

where

A = G1:2 +mqJ
−1 [−Kpev −Kdėv + v̈d] , (2.52)

Kp > 0, Kd > 0, and the commanded attitude is given by

Rce2 =
A

‖A‖
. (2.53)

Finally, if the assumptions stated in Section A.1 is respected, then the zero equi-

librium (ev, ėv, eR, eΩ) = (0,0, 0, 0) is locally exponentially stable.

Proof. See Section A.1.2.

2.8 Vision System

The quadrotor is equipped with a global shutter CaspaTM VL camera and Com-

puter on Module from Gumstix [3]. The automatic detection and tracking of

the cylinder runs onboard the robot, is based on contour detection using Freeman

chain coding, and is obtained using the C++ Visp library [33]. When the object is

in the image and rq ∈ S, the measured image points from the camera are mapped
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Figure 2.14: The measured image feature points, vi,m,which are affected by θ, are
projected onto a virtual level image plane to decouple the motion from the attitude
of the robot and determine the coordinates vi.

to the virtual image plane using feedback from the IMU and the transformation

shown in Figure 2.14, which is mathematically equivalent to

vi = tan (arctan (vi,m) + θ) (2.54)

where vi,m is the boundary of the cylinder as measured in the calibrated image.

The points in the virtual plane are filtered to improve the estimate of the image

features and their derivatives to compute J and J̇ . A block diagram of the system

is shown in Figure 2.15. Since the visual controller is only designed for motion in

the vertical plane, in experimentation, an external motion capture system is used

as feedback to stabilize the yaw and out of plane motion. Note that the vision

based controller stabilizes motion in the vertical plane as designed.

Having briefly described the experimental platform that’s being used, next sec-

tion presents experimental results to validate the proposed methods of trajectory

generation and tracking to achieve dynamic grasping.

2.9 Simulation Results

Using the trajectory generation method outlined in Section 2.6, sample trajecto-

ries can be generated directly in the image coordinates, representing a swooping

maneuver. It is reasonable to specify a limit on the attitude, which enables the

incorporation of linear visibility constraints, rather than requiring non-linear vis-

ibility constraints when planning in the Cartesian space. A sample trajectory is

shown in Fig. 2.16 (top), where the boundary conditions and intermediate way-

point were computed using Γ, and with the derivatives in the intermediate way-

point left unconstrained. Next, using the generated desired trajectory in the image
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Figure 2.15: A camera captures images of the cylinder, which are sent to the
Gumstix Overo Computer on Module (COM) and processed at 65 Hz using blob
tracking. The boundaries of the cylinder are undistorted, calibrated, and sent back
to a ground station along with the pitch as measured from the IMU. Then, the
ground station maps the points to the virtual plane and computes desired control
inputs using the IBVS controller. Simultaneously, Vicon feedback is used to close
the loop on the roll and yaw of the robot. Then, the desired attitude is sent to
the onboard controller, which uses the IMU to control the attitude at 1 kHz.

plane, the controller from Section 2.7 is simulated on the dynamic model given by

(2.33)-(2.34). The simulation is started with an initial image coordinate error of

0.10m, and the resulting trajectory and error are plotted in Fig. 2.16.x

2.10 Experimental Results

The stability of the proposed visual controller is demonstrated through several dif-

ferent experiments including hovering, vertical trajectories, “swooping” trajecto-

ries, and hovering above a moving cylinder. Here a sample “swooping” trajectory,

which includes components from several of the previously mentioned trajectories,

is presented. See Figure 2.17 for the planned and actual trajectories in the virtual

image plane, Figure 2.18 for the corresponding estimated and actual position in the

inertial frame, Figure 2.19 for a sequence of still images from a sample experiment,

and the supplementary video for footage of sample trajectories.

The results of the vision based control are shown in Figures 2.17 and 2.18.

In these, a “swooping” trajectory is executed with a variation of 1 m in the z

direction and 50 cm in the x direction. The system is stable, and it is possible

to notice that the swooping trajectory in the Cartesian space, as shown in Fig-

ure 2.18, corresponds to a desired planned and executed trajectory in the image

space Figure 2.17. This is an experimental demonstration of the success of the

proposed theoretical approach. In the Cartesian space, the error is quite small in

the z direction, which presents a larger spatial change compared to x direction.
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Figure 2.16: A sample trajectory in simulation. The simulated image coordinates,
vi, and the desired coordinates, vi,d, are in the top graph where there is an initial
error of 0.1m in each coordinate. The feature errors and error velocities are in the
bottom graph.
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Figure 2.17: Experimental results of the feature coordinates in the virtual plane
for a “swooping” trajectory. The feature coordinates are denoted by vi and the
desired trajectory is given by vi,d.

Moreover, the z direction is the most challenging from a vision control point of

view since the only source of information to recover the scale is the cylinder size.
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Figure 2.18: Positions in the inertial frame for the experiment in Figure 2.17. The
vision estimates of the position (using Γ) are denoted by the “v” subscript. The
ground truth only has the “q” subscript.

Figure 2.19: mages from a sample “swooping” trajectory using the vision-based
controller developed in this paper.

Limitations and Future Challenges

It is also important to recognize that the experimental trajectories for the vision-

based control (Figures 2.17 and 2.18) are not as fast as the trajectories with control

feedback in the inertial space, which demonstrated aggressive grasping at speeds

up to 3 m/s, shown in [119]. There are several reasons: the feedback is only from

sensors onboard the robot (in contrast with an external motion capture system),

the rate of feedback is nearly half in the vision-based case since a space, weight,

and power constrained camera and computer are used, the position feedback loop

is now closed using the onboard IMU, and the camera has a limited field of view.

Although high speed visual control has been demonstrated earlier [103], it has not

been achieved on space, weight, and computationally-constrained platforms. Thus,

it is natural to expect trajectories that are not as aggressive. The main goal is to

show the feasibility of the proposed approach with a minimal sensor suite. Further,

it can be noticed that trajectory tracking is not perfect and attribute this to

modeling errors such as distortion from the camera lens and external disturbances
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such as ground effect and the disturbed aerodynamics after the target is captured.

Future work and the advancement of technology will help to reduce the limitations

with the goal of eventually achieving similar performance to the experiments in a

structured environment.

In the vision-based case, currently effort are concentrated to stabilize the lateral

dynamics. This is mainly because the lateral velocity is not observable from the

features selected. In future work, the feedback will be augmented with optical flow

for velocity estimates, and perhaps extend the feature points to be tangent lines

(parallel to the axis of the cylinder), which would help provide an estimate of the

roll of the robot.

The current vision approach requires the radius of the cylinder to be known

a priori. In many cases, however, proper identification of the cylinder may lead

to a good estimate of the size. For example, there are many common cylinders of

similar or standard size such as railings and pipes. Additionally, once there is one

successful grasp, the desired location of image features can be recorded to enable

future grasping without needing to determine the size of the cylinder. Thus, this

approach will not be difficult to generalize to grasping of unknown cylinders.

Perching

As researchers continue to develop quadrotors, the added ability to perch will be

critical in extending mission time. Unlike grasping and perching using fixed wing

vehicles, the two tasks are very similar for quadrotors. The only difference for a

quadrotor is that the planned trajectory would stop at the bottom of the swooping

behavior in order to perch. Using the proposed trajectory methods and control

schemes, this task would be a simple extension of the current work.
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Chapter 3

Vision for Pose Estimation

and 3D Reconstruction

The combination of synchronized data between the RGB and the depth sensors

for multiple robots is exploited to create a complete framework for localization

and mapping. The central idea is to decompose the problem into (a) a centralized

monocular SLAM problem with sparse representation involving features that are

tracked by individual vehicles avoiding map merging scaling issues like in [42]; and

(b) the problem of associating robot poses and depths with features to creates a

dense 3-D map, a problem that can be solved in a distributed way. By decomposing

the problem in this way, the computational bottleneck of 3-D RGB-D cooperative

SLAM is avoided and an increased robustness to noise in depth which is typical

in outdoor or brightly lit environments is achieved. Specifically, the algorithm is

fast, robust, and lends itself to real-time computation with 30 Hz pose estimates

for feedback for control. Second, it allows dense 3-D mapping. Third, it allows

multiple robots to localize to the same coordinate system. It provides a more

efficient way of sharing a common high-resolution RGB map of the environment,

avoiding redundancy. The framework has been developed under ROS [6] and is

available online1 Finally, in the last part of this chapter a different environment

representation is introduced for a high-level supervisory control, to solve the prob-

lem of large amount of data and sparsity related to a point cloud representation.

3.1 Visual Egomotion

The ASUS Xtion sensor is employed to localize the vehicle in the environment

by coupling the monocular multi-map visual odometry algorithm proposed in [28]

1

https://github.com/loiannog/PTAMM_RGBD_cooperative.
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Figure 3.1: Framework representation. The software that runs on robots (shaded
pink) is based on a distributed algorithm while all other modules are centralized.

with depth data provided by the Infrared (IR) camera obtaining a real-time vi-

sual SLAM algorithm and a dense colored map. A multi-threaded programming

approach allows fast localization and cooperative mapping at an average rate of

30 Hz suitable for real-time applications. A schematic representation of the ap-

proach is given in Fig. 3.1. A brief description of the monocular algorithm and its

improvements are given in the following.

3.1.1 Visual Framework

The SLAM task is split into two parallel tasks, namely the tracking task and the

mapping task, which are executed in parallel threads.

The tracking task (shaded pink and labeled “robots” in Fig. 3.1) is responsible

for the tracking of salient features in the camera image determining camera posi-

tion. This is done with the following steps: first, a simple motion model (using

constant velocity in the experiments) is applied to predict the new pose of the

camera. Then, the stored map points are projected into the camera frame, and

the corresponding features’ FAST corners [95] are searched to solve the data asso-

ciation problem. The orientation and position of the camera is refined such that

the total error between the observed point features and the projection of the map

points into the actual frame is minimized.

In parallel, the mapping task (blue box in Fig. 3.1) uses a subset of all camera

images called keyframes to build a 3D point map of the environment. After adding

a new keyframe, a batch optimization is applied to refine both the map points

and the keyframe poses. The main goal is the so-called bundle adjustment which

involves the minimization of the total back-projected map error.
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The adopted algorithm, to reduce computational effort, does not use an EKF

based state estimation and does not consider any uncertainties, both for the cam-

era and the feature location. As demonstrated in [111], the keyframe SLAM out-

performs the classical filter-based SLAM approach in [35]. The lack of modeling

uncertainties is compensated by the use of a large number of features and the

global batch optimization. The algorithm is fast and reliable, and the map is very

accurate. This version of the framework provides enhancements to the original

version of PTAM, allowing users to save the state of a map and corresponding

keyframes to disk, as well as initialize a new map.

3.1.2 Visual Framework Extensions

In addition to enhancements to the interface, new extensions have been developed

Scale factor estimation

The missing scale factor in monocular visual odometry has been estimated as

shown in Fig. 3.1 using the procedure mentioned in the next section to obtain a

coherent absolute pose and compensate for the odometry drift.

Depth Initialization

The user can decide to initialize the map associating each extracted feature to the

corresponding depth, without performing a planar motion required by the visual

SLAM.

User interface

The user can use a simple interface to visualize mapping results, setup parameters,

and remotely control the algorithm’s behavior from a ground-station. Moreover,

the 6 DoF pose is published as a pose with a covariance estimation calculated from

bundle adjustment.

Features

While the lowest level features are included for tracking, the user can choose to

omit them in map-handling, storing features only in the highest 3 pyramidal levels.

This is useful in similar-structured environments since features extracted at higher

pyramidal levels are more robust to scene. Moreover, this speeds up the keyframe

insertion. Finally, corner extraction utilizes the AGAST corner detector [78], which

is faster than the original FAST [95].
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3.1.3 Cooperative Mapping

The user can define multiple trackers, which allow the possibility to carry multi-

camera pose estimation. Each tracker is a boost thread2 running in parallel with all

other trackers (see Fig. 3.1). The relocalizer function, based on [123], identifies the

pose of extra-cameras in the actual map. When a new camera is introduced, the

keyframe descriptors, extracted from subsampled images (80×60), are compared to

the current camera image descriptor (each comparison takes around 0.016 ms on a

single core machine) to find the one which minimizes the sum of square differences.

This keyframe is accepted as a match, and the camera position is resumed to that

of the keyframe. The rotation of the camera is estimated using a direct second

order minimization. Naturally, the new cameras start in a confined location, the

subset for searching can be reduced. Then, all cameras can cooperate to build

the same map. The employed locking strategy uses shared and upgradable locks

which allows other threads to simultaneously read the data except for the negligible

time when the map is updated. The only requirement is that subsequent trackers

must register their camera poses to the maps established coordinate system. This

registration is exactly what is required to relocalize by a lost camera during the

normal run of single camera tracking. The registration is made using appearance,

not structure, so that a camera can be localized without first building its own

map. The presented strategy is useful in case different vehicles should contribute

to an existing map. A new thread is instantiated for every new vehicle. Finally,

it should be pointed out that if dedicated data structures are implemented, the

mapping part could be placed on a ground station while the tracking could run

on-board the vehicle providing a distributed characteristic to the framework.

3.2 Scale Factor Estimation

The monocular SLAM framework can provide the translational motion of the

sensor in the environment up to a scale factor, since a single camera is employed.

The scale factor parameter is estimated through the combination of depth data and

visual data since the RGB and the depth images can be hardware synchronized.

An analysis, based on public datasets, is provided to validate the effectiveness of

the proposed estimation approach.

3.2.1 3D Point Cloud Generation

The measurement of the depth data is achieved by a triangulation process [45],

during which the IR projector and the IR camera (see Fig. 3.2) generate a disparity

image. For each pixel, the distance to the sensor can then be retrieved from the

corresponding disparity. In the following, a depth coordinate system, which has an

2Boost library: www.boost.org
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Figure 3.2: Geometry of IR Camera. When a speckle is projected on an object
whose distance to the sensor is smaller or larger than the one of the reference plane,
the position of the speckle in the infrared image will be shifted in the direction of
the baseline between the laser projector and the perspective center of the infrared
camera (red).These shifts are measured for all speckles by an image correlation
procedure, which yields a disparity image.

origin at the perspective center of the infrared camera sketched in red in Fig. (1.6)

and in Fig. (3.2), is considered. The Y axis is orthogonal to X and Z axis making

a right-handed reference system. The RGB coordinate system is aligned with the

infrared reference system.

Suppose that an object is on the reference plane at distance Zf with respect

to the sensor, and the corresponding speckle is captured on the image plane of the

infrared camera as shown in Fig. 3.2. If the object is shifted with respect to the

sensor, the i-th speckle on the image plane is displaced in the X direction, which

corresponds to a disparity d in the image space. The disparity di is strictly related

to Di, the displacement of a generic point i on the image, to Zf representing the

distance from the reference plane, and to Zi (depth), which denotes the distance

of a point i with the following relations

Di

b
=
Zf − Zi
Zf

(3.1)

Di

f
=
di
Zi
. (3.2)

By solving for D in (3.2) and substituting into (3.1), the following relation is

obtained

Zi =
Zf

1 +
Zf
fb
di
, (3.3)

43



CHAPTER 3. Vision for Pose Estimation and 3D Reconstruction

where b represents the base length between the IR projector and the infrared

camera, and f is the focal length. All these parameters can be determined with

a suitable sensor calibration procedure. The other two coordinates of the object’s

3D position can be determined by the classical perspective projection model as

follows

Xi = −
Zi
f
(xi − xc + δx), Yi = −

Zi
f
(yi − yc + δy), (3.4)

where xc, yc represent the coordinates of the principal point, δx, δy the lens dis-

tortion correction parameters, and xi, yi the corresponding normalized image co-

ordinates.

3.2.2 Scale factor computation

The intrinsic and the extrinsic calibration parameters are supposed to be available

for both the IR and for the RGB camera. Let pIRi be the i-th point, expressed in

the IR frame, which belongs to the point cloud set

PIR =
[
pIR1 , · · · ,pIRn

]T
, (3.5)

where pIRi = [Xi Yi Zi]
T . The previous point cloud can be represented in the

RGB frame as follows

pRGBi = tRGB
IR

+RRGB

IR
pIRi , (3.6)

where RRGB

IR
, tRGB

IR
are the rotation matrix and the translation vector of the IR

camera with respect to the RGB camera, respectively, which are provided by the

camera calibration procedure.

The depth values corresponding to each feature extracted within the visual

framework have to be identified to evaluate the 3D point cloud using eqs. (3.3)

and (3.4). The ratio between the Euclidean distance of each 3D point, generated

in the visual framework

∆pRGBi = ‖pRGBi ‖ (3.7)

and the same distance computed for the depth points

∆pv,i = ‖pv,i‖ (3.8)

with i = 1, . . . , n, gives a set of scale factors

s =
[
s1, · · · , sn

]T
, si =

∆pRGBi

∆pv,i
. (3.9)

The current estimation of the scale factor corresponds to the mean value of s.

Then, a recursive procedure (see bottom part in Algorithm 1), deletes scale factors

that are far away from the mean by more than twice the standard deviation. A

schematic representation of the estimation process for a sample frame is given in

Algorithm 1.
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Algorithm 1 Scale Factor Estimation(RGBimage,Depthimage)

extract image features set(RGBimage)→ F =
[

f1, · · · , fn
]T

;
compute 3D points(RGBimage , f) → pkinectschemav,i;
compute depth points(Depthimage) pIRi ;

rotate and translate(Depthimage) → pRGB
i = tRGBIR +RRGB

IR pIRi ;
for ∀fi do

fi → depthi;
∆pRGBi = ‖pRGBi ‖;
∆pv,i = ‖pv,i‖;

si =
∆pRGBi
∆pv,i

;

end for

s =
[

s1, · · · , sn
]T

;
is deleted = true;
while is deleted do

is deleted = false;
sf = mean(s);
σ = std(s);
for ∀i do

if abs(si − sf ) ≥ 2σ then

delete si;
is deleted = true;

end if

end for

end while

return sf

Notice that the combination of the depth and visual data is strictly required

only for the first frame. Moreover, si values could be computed only for the ex-

tracted features. However, since visual odometry algorithms compute the camera

path incrementally, the errors introduced by each new frame-to-frame motion ac-

cumulate over time. The scale computation at each frame, as shown later, strongly

reduces the odometry drift, helping the bundle adjustment procedure. The pro-

posed solution is computationally inexpensive, the scale factor estimation requires

an average of 7 ms/frame to be computed, and it allows the evaluation of the

environment map directly from the cloud points given by the IR/depth image.

3.2.3 Scale factor performance analysis

The performance of the previous procedure to compute the scale factor has been

tested using a third party RGB-D dataset [112]. The dataset provides synchronized

images and the ground truth for each trajectory from a motion capture system.

Given a set of estimated poses, Pe = {Pei ∈ SE (3) , i = 1, · · ·n} and ground truth

poses, provided by a motion capture system, Pmc = {Pmci ∈ SE (3) , i = 1, · · ·n},

where n is the total number of samples, the root mean square error (RMSE) of the

translation relative pose error (RPE) and the RMSE of the translation absolute
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trajectory error (ATE) with respect to the motion capture system are evaluated.

The RMSE of the translation RPE is defined as

RMSERPE :=

√√√√ 1

m

m∑

i=1

∥∥∥trans
((
P−1
mciPmci+∆

)−1 (
P−1
ei Pei+∆

))∥∥∥
2

(3.10)

where ∆ is generally chosen as 1 in order to obtain an estimation of the drift per

frame, trans is the translation component of the error, and m = n − ∆. This

metric essentially evaluates an error position increment with respect to a ground

truth. It allows us to compare the RGB visual SLAM (without absolute scale)

with the proposed approach. It can be considered as a direct measurement of how

the depth affects the RGB SLAM. The RMSE of the translation ATE is defined

as

RMSEATE :=

√√√√ 1

n

n∑

i=1

‖∆Pit‖
2

(3.11)

where ∆Pit represent the translation part of the error ∆Pi = Pei − Pmci , suppos-

ing that both sequences are synchronized and defined in the same reference frame.

Table 3.1 summarizes the RMSE of the translation RPE for RGB only and RGB

with the estimated scale factor in different textured scenes. The result is a large

error reduction of around 75%, which confirms the validity of the presented ap-

proach to overcome the scaling problem. Table 3.2 summarizes the RMSE of the

Table 3.1: Comparison of the RMSE translation drift (RPE) (m/s) between the
RGB only and the proposed RGB+Depth approach.

Dataset Distance RGB RGB+Depth

fr1/xyz mixed 0.095986 0.037778
fr1/floor mixed 0.144712 0.049756
fr2/xyz mixed 0.078383 0.011542

fr3/nostruct/text near 0.138694 0.027775
fr3/nostruct/text far 0.107612 0.028689
fr3/struct/text near 0.254303 0.023267
fr3/struct/text far 0.120925 0.017481

avg.improvement – 75%

translation of ATE for RGB+Depth in different textured scenes in two different

cases. In the first column, the scale factor is estimated only at the first frame,

keeping it constant along the whole motion, while in the second, it is estimated

frame by frame. The final error is of the same magnitude of the one presented in

Table 3.1. As expected, the estimation frame by frame contributes to an average

error reduction of 30%. It is worthwhile to have a complete idea of the system

performances comapred to the current literature, even if out of the scope of this
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3.2 Scale Factor Estimation

work. Thus, the last column in Table 3.2 provides some results from one of the

most used open source RGB-D SLAM algorithms [39] based on the online datasets.

The results show the competitiveness of the presented approach obtaining compa-

rable errors, but with a higher speed, since the presented approach can work at

the frame-rate. The presented analysis shows benefits in terms of RPE and ATE

Table 3.2: RMSE of the ATE (m) for the RGB+Depth algorithm in the two
mentioned cases and comparison with RGBD-SLAM.

Dataset Distance RGB+D 1 fr. RGB+Depth RGBD-SLAM

fr1/xyz mixed 0.031556 0.026185 0.013473
fr1/floor mixed 0.035546 0.02561 0.035169
fr2/xyz mixed 0.029919 0.027226 0.026112

fr3/nostruct/text near 0.032 0.028351 0.087121
fr3/nostruct/text far 0.060984 0.025456 0.014108
fr3/struct/text near 0.024541 0.022574 0.034389
fr3/struct/text far 0.064303 0.014131 0.013496

avg.improvement – 30% –

helping the local-global bundle adjustment to reduce the drift. Fig. 3.3 shows that

the matching between 3D points of the monocular algorithm and corresponding

depth points in a sample frame using the estimated scale factor is reliable. In

Fig. 3.4, the full scale factor’s variation for the fourth experiment is represented.
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Figure 3.3: Correspondences between 3D points of the monocular algorithm (red
points) and corresponding depth points (blue crosses), with the estimated scale
factor, in a sample frame in the fourth dataset.
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Figure 3.4: A representative plot showing the history of estimated scale factors
obtained from the fourth dataset.

3.3 3D Mapping and Reconstruction

The environment map can be generated either using the depth values, suitably

synchronized with respect to the tracker pose (see Fig. 3.1 for a representation),

or using the sparse map provided by the visual odometry framework. Both maps

and pose estimator run in separate threads improving the reliability of the pro-

posed algorithm on a multi-core platform. In the case of a distributed use of the

framework, the sparse map is centralized, while the dense map is distributed and

defined on the tracker side.

3.3.1 Dense mapping

During the algorithm initialization, when the scale factor estimation is performed,

the absolute position and orientation are computed and an appropriate synchro-

nization is performed to associate them to the point clouds generated from the IR

sensor. The result is a colored map given by a combination of the RGB image pixel

colors and the depth values. Generally, if a depth image resolution 640 × 480 pixels

is considered, 300, 000 points are generated. To avoid an excessive memory allo-

cation, which can affect computation performance, without reducing the spatial

accuracy of the environment map, a new multi-resolution approach is proposed for

point cloud sampling avoid unnecessary memory allocation in the case of a large

environment. As shown in Section 3.2, the disparity is directly related to the point

cloud data. The disparity image is subsampled using a virtual image grid, which

is composed of rectangles of size DR × DC pixels (see Fig. 3.5). In particular,

for each rectangle of the grid, a spatial sampling with a step ∆R ×∆C is chosen

accordingly to the following law

∆i = ∆i,min +
∆i,max −∆i,min

Zmax − Zmin
(Zmax − ZC) (3.12)
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3.3 3D Mapping and Reconstruction

Figure 3.5: Disparity image subsampled. Grey regions are subsampled with a
smaller interval compared to white ones, since a higher grey level indicates a closer
object in the camera frame.

with i = R,C, where ZC is chosen as the average distance between the rectangle

and the environment expressed into the IR frame. The terms ∆i,min and ∆i,max,

represent the minimum and maximum values for the spatial sampling distance,

respectively. For each rectangle, the number of points added to the global map

varies as shown with a linear law between a maximum distance Zmax and the

minimum distance Zmin, which the sensor is able to detect.

Moreover, time sampling is also adopted depending on the sensor’s linear and

angular velocity in order to avoid explicit useless points added when the platform is

almost fixed. In detail, the map publishing thread takes care of the map streaming

and pose visualization in real-time, while the map data storage is updated with

new points according to the following time laws

F = Fmax − (Fmax − Fmin) ·max

(
v

vmax
,

ω

ωmax

)
(3.13)

where F is the map update frequency, Fmax and Fmin are the maximum and

minimum publication update frequencies, v and ω are the mean linear and angular

velocity norms, respectively, performed on the last k time instants

v =
1

k

k∑

i=1

1

∆T
(pi − pi−1), ω =

1

k

k∑

i=1

1

∆T
θii−1, (3.14)

where ∆T is the time interval between two consecutive measurements, pi is the

position norm at time instant i, while θ is obtained from the axis-angle orientation

representation of two consecutive time rotations.
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3.3.2 Sparse mapping

A problem with these sensors is their efficiency in outdoor environments, where

depth generation is compromised due to outside light intensity. For this reason,

the presented framework gives the opportunity to use, instead of IR camera points,

3D points in the fixed frame generated by the visual SLAM algorithm [28]. All

the points create, in this case an absolute environment map.

3.4 Experimental Results

The OpenNI driver [4] has been employed for the sensor interfacing, which pro-

vides the capability of choosing between different configurations in terms of image

resolution and update frequency. In the considered experimental case study, the

RGB and depth data are streamed synchronized with a frequency of 30 Hz and

a maximum resolution of 640 × 480 pixels. The proposed framework has been

encapsulated in a ROS [6] node and the time synchronization between RGB image

and depth is realized via the ROS message synchronization mechanism.

3.4.1 Hand held performance evaluation

To show the effectiveness of the proposed approach the PRISMA Lab has been

reconstructed. Figure 3.6 shows the original room (on the top) and the correspond-

ing dense colored map (on the bottom), while the sensor trajectory is depicted with

a blue line inside the map environment.

Moreover, to evaluate the effectiveness of the proposed scale factor estimation

method, the sensor has been moved along a trajectory of about 8 m long, which is

shown in Fig. 3.7, estimating the scale only at the first frame. In order to provide

a ground truth for the proposed egomotion estimation algorithm, an OptiTrack

motion capture system [5] composed of ten S250e cameras has been employed to

track the sensor during its motion at 250 Hz.

The time history of the norm of the motion estimation error with respect to

the ground truth shown in Fig. 3.8 highlights a 15 cm peak over a mean of about

3.8 cm, which confirms the effectiveness of the proposed approach. In fact, the

sensor accuracy for the depth measurement at 4 m of distance is declared in 3 cm,

and thus the performance of the proposed approach is in line with the sensor

intrinsic performance. The positional norm error is decreasing after 30 seconds

since the camera is back to previous mapped positions, where keyframes have

already been instantiated. The results can be seen in a video available at the link

mentioned in the Introduction.
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Figure 3.6: Dense colored map reconstruction: on the top the real environment;
on the bottom the achieved map. The blue line indicates the sensor motion within
the environment as measured by the visual egomotion estimation algorithm with
the proposed scale factor computation. The map can be published up to 20 Hz
(Fmax = 20 Hz and Fmin = 10 Hz), with ∆R,max = 10, ∆R,min = 5, ∆C,max = 20,
∆C,min = 10.

3.4.2 Flying performance evaluation

In this section, system setup and experimental results are provided based on dif-

ferent flying trials. The platform is the Asctec [1] Hummingbird (see Fig. 3.9),

equipped with an Intel i5, 1.8 GHz computer and a downward facing ASUS Xtion,

mounted in the ventral part of the vehicle. The sensor case has been removed,

and the USB cable was shortened to reduce weight. The experimental results, are

based on data collected at the GRASP Lab at the University of Pennsylvania [86].

The vehicle was controlled to fly in the x− y direction of Vicon’s reference frame,

within a 2.5 × 2 m area. The altitude varies from 0.5 m, which represents the

landing altitude, to 2.5 m. The maximum speed was set to 0.6 m/s and the maxi-

mum acceleration at 0.8 m/s due to safety reasons. The variation in altitude was

performed in order to verify the robustness of the scale factor estimation on a fly-

ing vehicle platform. Different waypoint trajectories, relying on the Vicon motion

capture system [7] for control feedback, are performed. The collected dataset is
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Figure 3.7: Path trajectory of the sensor (in red) and the corresponding ground-
truth (in blue) provided by the Optitrack motion capture system.
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Figure 3.8: Time history of the positional norm error for the path of Fig. 3.7.

running, using Ubuntu operating system, on a Mac-Book Pro i7 2.8 GHz.

In all the experiments reported here, a vehicle starts the map and a second one

is introduced at the occurrence. It re-localizes using the existing sparse map and

contributes to map’s expansion. Absolute error positions are provided in Table 3.3.

The results show again, an error improvement when the scale is continuously es-

timated. Moreover, the error presents the same magnitude error compared to

the datasets analyzed in Section 3.2, despite the vehicles’ vibrations, which can
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Figure 3.9: An Asctec Hummingbird equipped with an Intel i5, 1.8 GHz and a
downward pointing ASUS Xtion.

increase depth noise. The results confirm the applicability of the proposed local-

ization algorithm and scale factor estimation. Even in the case of fast altitude

changes, like in the third experiment and in the landing phase, the estimation of

the scale factor is still reliable. As seen from the experimental results, the average

RMSE error for both vehicles is about 0.07 m which makes it feasible for use for

autonomous flight and for feedback control. In the second and third experiments,

a higher error for the first vehicle can be noticed, which is the result of very quick

motions from abrupt direction changes in the trajectory. The reader can eas-

ily notice the behavior in the attached video submission. Finally, in Fig. (3.11)

trajectories and two different environment representations, provided by the user

interface, are shown for the third experiment.

Table 3.3: RMSE of the ATE (m) for the RGB+Depth during flight mapping,
estimating depth only at first frame (first column) and continuously (second col-
umn).

Experiment number Vehicle num. RGB+D 1 fr. RGB+Depth

1 1 0.070783 0.057762
1 2 0.058007 0.048910
2 1 0.086844 0.084125
2 2 0.07817 0.056320
3 1 0.091035 0.080299
3 2 0.107347 0.086656
4 1 0.0710701 0.053526
4 2 0.073651 0.063978

avg.improvement – 20%
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(a) In this experiment, the second vehicle
starts and lands from a different position
with respect to the first one, and it follows
part of the first vehicle’s trajectory.
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(b) In this experiment, both vehicles start
from the same position. The first one is
mapping one side of the room while the sec-
ond vehicle is mapping the opposite side.
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(c) The first vehicle is mapping one side of
the room while the second one is mapping
the opposite side with the additional diffi-
culty that during its motion, the second ve-
hicle quickly reduces its altitude by about
0.8 m and raises back up to 0.8 m before
landing around 4 s.
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(d) The second vehicle starts when the first
vehicle approaches the landing position. In
this case, the relocalization acts in the part
where the grid is not visible. This experi-
ment demonstrates the effectiveness of the
relocalizer and the scale recovery with the
proposed sensor in a generic mapped envi-
ronment.

Figure 3.10: Trajectories performed during the four experiments. First vehicle
(blue line), corresponding ground truth (black line), second vehicle (green dashed
line), and its ground truth (black dashed line). The average absolute error is 0.05
m except for the second and third experiments where a slight increased error is
noticeable in the blue trajectory due to loss of vehicle control. Respect to the
ground truth both vehicles present good performances estimating the scale in case
of abrupt change in altitude.
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(a) Trajectories, keyframes, and sparse map
from two vehicles.

(b) Dense map made by one vehicle in pre-
vious experiments with DR = 2, DC = 4,
∆R,max = 10, ∆C,max = 10, ∆R,min = 5,
∆C,min = 5, Zmax = 3 m, Zmin = 0.5 m,
Fmax = 20 Hz, Fmin = 10 Hz.

Figure 3.11: Trajectories and environment representations.

3.5 High Level Environment Representation

The maps previously described are an unsuitable representation of an environment

to be managed by a high-level supervisory control. The real-time constraint of a

flight control requires that the environment has to be represented with aggregate

data to reduce the elaboration time, i.e., to maximize control system reactivity as

mentioned in Section 1.2.4.

3.5.1 High level Architecture

Figure 3.12: Robotic Platform: ducted-fan ASV

Moreover, in the proposed scenario, beyond classical UAV tasks (take off, land,

hovering, flyTo), the autonomous system should orchestrate a new set of opera-

tions like wall approach, docking, undocking, wall scanning etc.. These operations

represent different operative modes, each associated with a different controller

55



CHAPTER 3. Vision for Pose Estimation and 3D Reconstruction

with specific control laws and performance the high-level control system should be

aware of. Each switch from one operative mode to the other should be suitably

prepared and planned to keep smooth control trajectories. Since the system flies

close to the obstacles in cluttered and unknown environments, fast planning en-

gines are required to generate (or to adjust) trajectories in real-time. On the other

hand, the system should be able to regulate the trade off between fast planning

and accurateness of the generated trajectories depending on the operative mode

and the context. The planning/executive system should be able to manage slid-

ing autonomy, from autonomous to teleoperated mode, depending on the humans’

interventions, since the system operates with the man in the loop.

The proposed approaches are validated by means of real experiments employing

different platforms to interact and inspect the surrounding environment. A short

overview of the proposed architecture is provided in the following. For more details,

the reader can refer to [20, 22, 24]. In this context the aim is to present a general

overview of the high level architecture emphasizing the role of visual environment

representation and showing the experimental tasks that can be accomplished.

3.5.2 System Requirements and Architecture

The applicative scenario described so far requires a high-level control system with

the following features:

• The air vehicle operates in close interaction with the environment, hence

reactive, adaptive, and flexible planning/replanning capabilities are needed

• Both autonomous and human-in-the-loop control modalities should be sup-

ported to allow human interventions and teleoperation

• High-level control strategies should be defined taking into account the low-

level operative modes and constraints

In particular, the high-level system should orchestrate the activations of a set of

low-level controllers, modeled as hybrid automata [90], switching to the appro-

priate controller according to the operative mode and the task (see Figure 3.13)

feeding the selected controller with suitable data (e.g. state and references).

The layered architecture depicted in Figure 3.13 is proposed to match these re-

quirements. Two layers are distinguished: the high-level supervisory system is

responsible for user interaction, task planning, path planning, execution monitor-

ing; the low-level supervisory system manages the low-level execution of control

primitives setting the controllers and providing control references. The architec-

ture is detailed in Figure 3.14.

The robot activities are represented at different levels of abstraction: mission-

level tasks representing mission goals; macro-actions representing primitive tasks
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Figure 3.13: Interaction between the high level system and the low-level controllers

(left); the high level control system is composed of high-level and low-level supervisory

systems.

Figure 3.14: High Level Architecture: high level, low level, and reactive level modules

are respectively in blue, green, and gray

(e.g. TakeOff). At a lower level of abstraction the set of commands (micro-

actions) that can be sent to the low-level supervisory system, i.e. to the Primitive

Supervisory (PR), is introduced. The Task Planner (TP) provides a plan composed

of macro-actions (see Table 1). The User module (US) allows us to specify high-

level goals (e.g. Inspect(p)) or lower level tasks (e.g. TakeOff) or to directly

teleoperate. That is, the user can continuously interact with the system both by

providing new high-level tasks/actions and by adjusting the low-level execution

in a mixed-initiative control modality. Each task/goal is delivered to the TP

which expands a task into an abstract plan composed of macro-actions. This plan

is then sent to the Plan Supervisor (PS) for high-level execution. Each task or

macro-action can be interrupted and preempted by new tasks provided by the user,

provoking task replanning. That is, high-level mixed-initiative control is managed

trough mixed-initiative planning [41].

The PS generates, for each macro-action in the high-level plan, a set of micro-

actions to be executed by the PR. Each macro-action is further decomposed into

a sequence of micro-actions which are endowed with detailed information about
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TakeOff(Pos) Take off from the current pose and hover in the pose Pos
Land(Pos) Land from the current position to Pos
Hover(Pos) Keep the pose Pos
MoveTo(Pos) Move from the current pose to Pos
MoveCircular(Pos, I) Circular movement around P with radius in I
Scan(Srf) Scan the surface Srf
Inspect(Obj, P ) Observe the object Obj in position P
Brake(C) Execute a hard brake from the current position
Approach(P ) Approach the target position P
Dock(P ) Dock to a target position P
UnDock(C) Undock from the current position
Manipulate(Obj, P ) Manipulate an object Obj in position P

Table 3.4: Macro actions considered in the operative domain.

the associated geometrical paths. The PR exploits the Control Manager (CM)

to select the low-level controller responsible for the micro-action execution. This

module is the main responsible for the high-level/low-level control integration:

given the operative constraints provided by the high-level supervisor and given

the low-level controller features, the CM is to decide the best controller for the

execution. Finally, the PR generates the control trajectory passing it to the Tra-

jectory Supervisor (TS) to generate control references at a suitable frequency.

The PR exploits concatenations of fifth-order polynomials to provide smooth

trajectories between waypoints [76] while ensuring the velocity and tolerance con-

straints as explained further below in this section. Depending on the required

reactivity, the PS regulates the number of geometric waypoints to be processed

by the PR. When a micro-action fails, the PS can either call the PP to generate

an alternative path or call the TP to generate a different plan of macro-actions.

Furthermore, it can be interrupted by the Path Monitor (PM) which checks for

trajectory deviations and unexpected obstacles. Finally, the operator can always

switch to a manual control mode, in this case the TS should monitor the trajectory

provided by the Teleman. Once the autonomous control is restored, a replanning

process is needed to recover the execution of the current task.

3.5.3 3D Mapping

The data environment for mapping and path planning is a 3D occupancy grid-map

of cells which is run-time generated given the robot pose and the 3D point clouds

extracted from the vision system. The pose estimation, which is a fundamental

pre-requisite to generate the high-level map for the high-level control architecture,

is recovered differently according to the type of platform used, as it will be better

explained in next sections. Given the pose, the associated point cloud map should

be suitably processed into a 3D occupancy grid. This is obtained by discretizing the

vehicle’s workspace with elementary cubes of equal size. A vehicle of 50×50×20 cm

is employed, and cubes of 10 cm are used. The number of points into a cube is
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a direct measure of the probability that an object is located in that region. Two

goals are simultaneously achieved:

• the dimension of data that the supervisory control has to elaborate online

remains limited

• the presence of outliers do not affect the reliability of the system, thanks to

the adoption of suitable thresholds for the occupancy detection

For each cube it is stored: the number of inliers (3D triangulated points) fell

into the cube volume, the last camera position which an inlier had been collected,

and the state of the cube. The number of inliers represents the number of dif-

ferent points from which the same obstacle has been detected. Each cell can be

associated with one of the following values: free, occupied, obstacle, target, ignored

or unknown. Initially, each cube is set to free. When a 3D point is detected to

belong to a given cube, the value of the corresponding cube is set to occupied.

When the number of points inside a cube reaches a given threshold, the state is

set to obstacle. On the other hand, when a target is identified, the corresponding

cube is set to target. Moreover, from each position that had generated a valid

target view point, all the cubes laying along the optical rays are set to ignored.

For wide environments, a sparse representation of the occupancy grid map is

associated with a spatial/temporal vanishing criterion. This determines whether

an occupancy cube is still reliable or if it has to be discarded (depending on

the distance traveled by the vehicle and/or on the time last after its previous

update). In fact, due to the drift of the vehicle pose estimation, obstacles which

have been observed a long time before or far from the current position cannot

be considered reliable anymore in the current map representation, therefore they

should be refreshed. With these solutions the reliability and scalability of the map

representation can be suitably tuned.

3.6 Case Studies

In this section, experimental results on planning, replanning, and obstacle avoid-

ance, both in real-world scenarios and in simulated environments are presented.

In particular, the system at work is described in two case studies representing,

respectively, a physical inspection task, where docking and manipulation activi-

ties are necessary, and a visual inspection task, where a scan of an unknown wall

is deployed avoiding a physical obstacle(s) placed on the wall with unknown size,

number, and position.

3.6.1 Experimental Setting

In order to validate the presented architecture have been deployed in two different

scenarios. In the first scenario two experiments are introduced. In the former, a
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single-module ducted-fan vehicle [79] should avoid an unknown obstacle to per-

form the inspection task, which consists in keeping a fixed the distance from the

unknown wall while a superficial scanning path is executed. In the latter, two

connected ducted-fan modules, which have been connected to increase the overall

vehicle’s payload and controllability along the approaching direction, should move

towards a wall, dock on it, and perform a manipulation task (e.g. writing some

worlds on the wall). For this goal, a small delta-parallel manipulator is mounted

on the dual-module version of the vehicle to enable docking and interaction oper-

ations.

Both the vehicles are equipped with a visual sensor and an ATOM board

1.6GHz, which gives the possibility to stream the data on an INTEL Core i7

platform, 1.6GHz, 4GB RAM, UBUNTU 10.04. This architecture enables us to

stream compressed images on a ground station at 15Hz or elaborate all onboard

at 5Hz.

In the second scenario a quadrotor platform from ETH Zurich [92] is employed

to perform the visual inspection of an industrial-boiler texturized wall with the

added difficulty to avoid a unknown obstacle placed on it. The platform is equipped

with a stereo camera and embedded IMU. An onboard FPGA module enables

the system to speed up some basic operations like feature extractions and sensor

fusion. The remaining operations are executed on a ground station INTEL Core

i5 platform 2.8GHz, 4GB RAM, Ubuntu 10.04.

In both scenarios, the low-level and the high-level supervisors are connected

with the robotic platform exploiting the ROS framework.

3.6.2 Obstacle Avoidance and Interaction with the Environ-

ment

Two scenarios are considered. In the first scenario, planning, replanning on-the-

fly, and obstacle avoidance are introduced, while in the second scenario physical

interaction with the environment (i.e. docking/undocking and manipulation) is

tested. Notice that, for each of these scenarios, take off and landing are manually

managed, hence the operator switches from teleoperation to autonomous mode

and viceversa to, respectively, start and end the mission. Moreover, the vision

plays in this tasks a fundamental role in all the previus mentioned scenarios to

identify obstacles, provide information on the surface to inspect and interact.

Obstacle Avoidance The architecture has been tested in a real environment

of 4 × 4 × 3 m sizeconsidering the two environments depicted in Figure 3.15 (up

and down). The base reference frame is located in the bottom-left part of the

environment depicted in the Figure 3.15. In the two testing scenarios, the task

was to inspect a target point from the initial pose. In the first test the target point

is at (250, 100, 75) cm, with 90 deg of orientation, from the pose (25, 100, 50) cm,
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with 0 deg of orientation; in the second test the target point is at (250, 325, 75) cm,

with 90 deg of orientation, from the pose (25, 70, 50) cm, with 0 deg of orientation.

The maximum speed was set to 0.3 m/s for the two tests. For each test, an

unknown obstacles is placed along the initial planned path, but not visible due to

the initial orientation of the camera. In this way, the obstacles can be detected

during the motion provoking task/path replanning, escape, or brake, depending

on the vehicle state (distance from the obstacles and current velocity).

Figure 3.15: Planning and replanning: initially, the system generates the green
path, once the obstacle is detected a new path is generated on the fly (left); shot
of the real platform during the plan execution (right).

For each scenario, each test is exectued 10 times collecting mean, max, min,

and standard deviation (STD) of: time spent during planning (Tp), time spent in

replanning (Tr), number of replanning episodes (Nr), length of the executed path

(Lp), and total time for execution (including replanning time) (Te).

Table 2 reports the results for the two scenarios (Test 1 and Test 2). For both

these settings, initially, the obstacles are not visible, hence the generated plan is

simple and planning time is low (see the left side of Figure 3.15). The control

pose feedback of the vehicle is either obtained by using LIBVISIO2 [47, 38] cou-

pled with a Kalman filter or, alternatively, by directly deploying an OptiTrack [5]

motion capture system. Once the obstacles are discovered on the fly, replanning

is invoked to adjust on-line the trajectory (i.e. without hovering during the re-

planning phase). Replanning and execution time are slightly higher in the first

scenario which is more complex. Instead, Tr seems negligible when compared with

Te. The final trajectory length (Te) is similar in both the settings and comparable

with the distance between the starting and target point, hence the final trajectory

seems not affected by the continuous replanning process. In these tests, Tp and

Tr are mainly due to path and trajectory planning (while task decomposition is

negligible). During these tests, experienced brake or escape episodes were never

happened.
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Test 1 Test 2

Mean STD Max Min Mean STD Max Min

Tp 0.075 0.014 0.08 0.04 0.017 0.002 0.03 0.01
Tr 0.614 0.41 1.20 0.01 0.067 0.04 0.11 0.005
Te 60.5 10.12 75 42 49.9 8.18 60 40
Lp 14.4 1.54 18 12 13.18 1.11 15 11

Table 3.5: Planning and execution results (in seconds) in the real scenario.

(a) (b)

(c) (d)

Figure 3.16: Physical inspection: (a) the robot flies towards the target; (b) docking
maneuver; (c) manipulation; (d) undocking maneuver.

Interaction with the Environment In the second experiment, the architec-

ture has been tested in docking and manipulation maneuvers. In this setting, the

goal is to execute a simple manipulation (i.e. write a couple of letters) on a target

wall located in a given position. The initial experimental setting is depicted in

Figure 3.17. Here, the target wall is positioned at (150,180, 50) cm at 0 deg of

orientation from the robot initial pose. Also in this case, the maximum speed

is set to 0.3 m/s. The experiments starts with a teleoperated take-off, then the

autonomous mode is enabled and the user provides the robot with a manipulation

task associated with the relative position of the target panel. The abstract manip-

ulation task is decomposed into a sequence of macro actions: MoveTo(Approach),

Dock(Target), Manipulate(), Undock(Target) to be autonomously executed and
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monitored by the PS. TheMoveTo(Approach) action should bring the vehicle at a

close distance form the target wall to enable the docking maneuver Dock(Target).

Initially, since some obstacles are not visible, the approach operation is associated

with a simple first path and trajectory. This planning step is fast (0.05 seconds),

however, as soon as the environment has been reconstructed by the mapping pro-

cess a new path is needed to avoid the obstacles and this is on-line generated by

adjusting the first path (see Figure 3.16(a)). In this setting, during our tests,

at least one replanning steps is needed to adjust the trajectory (with Tr aligned

with the one in Table 1 and 2). Once the approach position has been reached

(this phase takes about 25 seconds in our tests), the path monitor communicates

that the approach position has been reached, hence the PS can start the docking

operation. This maneuver is managed by a specialized controller till the wall con-

tact is not reached and stabilized (see Figure 3.16(b)). Once the vehicle reaches

a stable contact with the vertical surface of the panel, the manipulation task can

be executed by the PS. In this case the manipulator was endowed with a pen and

the task was to write ”Hi” on the docking panel. Finally, after the Manipulate()

action, the PS can switch to the undocking phase (see Figure 3.16(d)). At this

point the mission has been accomplished, then the operator can finally switch to

the teleoperated mode to land.

This scenario illustrates the strict connection needed between different con-

trol layers and the smooth control switching behavior between different operative

modes. Overall, the system task/path planning/replanning performance shows to

be compatible with the operative scenario requirements.

3.6.3 Visual Inspection

A second testing scenario concerns a visual inspection task (see Figure 3.18). In

this case the system is to detect a wall in the environment and then generate an

inspection path that allows to scan the surface of the wall. The inspection task

exploits a fast incremental clustering algorithm of the 3D point cloud sequence

provided by the stereo vision system [38].

The inspection task is based on three scanning steps. In the first stage, a

preliminary, low-resolution, scan is performed by observing the wall that must be

inspected from a far position (see Figure 3.19(a)). This preliminary phase allow

us to detect a possible wall surface obtaining a rough shape and extension of the

wall. This approximate shape of the a wall is obtained once a sufficient number

of points are collected by the mapping process described in Section 3.5.3. That is,

the 3D grid-map of cells, acquired during this first step, is employed to estimate

the wall pose with respect to the vehicle.

Once the approximate position of the wall has been defined, the PP can gen-

erate a first inspection path that allows us to gather a more detailed and accurate

scan of the observed structure. The planned trajectory is a serpentine that is
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(a)

(b)

Figure 3.17: Physical inspection: environment and robot initial position (a), robot
position and target wall (b).

shaped with respect to the estimated wall. During this second scan action, the

wall structure, shape, position, and size are updated, as shown in Figure 3.19(b).

Moreover, obstacles which are present on the wall are detected by using an affinity

test with respect to the current statistics of the estimated wall.

Finally, a third planning step is required to generate the inspection trajectory

that keeps a constant distance with respect to wall avoiding obstacles which have

been detected during the previous step or during the motion (a replanning action

will be activated in this case).
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Figure 3.18: Wall to be inspected w5th a boiler-like texture.

(a)

(b)

Figure 3.19: Main phases of the inspection task.

Different experiments at different speeds in the range 0.1− 0.4 m/s have been

performed with a full success ratio. The goal was the scan of a 2.5×1.5m2 surface

with path steps of 0.5 m distant in the first inspection phase and 0.25 m in the

second inspection phase from the wall (see Figure 3.18). Figure 3.20 shows two

different trajectories generated during the performed experiments.
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Figure 3.20: Paths performed during inspection task experiments of the environ-
ment shown in Figure 3.18. On the left: shot of the path planning interface where
both the performed (blue) and the planned path (green) are shown. On the right:
executed trajectory with metric scale indication.

Res/Env LL LH HL HH

Mean STD Mean STD Mean STD Mean STD

Tp 0.21 0.11 0.39 0.03 0.25 0.10 0.31 0.14
Tr 0.12 0.03 0.07 0.01 0.20 0.04 0.23 0.03
Te 308.39 3.1 211.88 2.4 718.57 5.2 720.45 7.6
Lp 79.09 13.76 78.04 9.63 86.79 12.65 85.24 13.12
Nr 0.9 0.21 0.3 0.12 3.4 1.71 2.5 1.10

Table 3.6: Planning and execution results(time in seconds, length in meters)

3.6.4 Planning and execution

The planning and execution system has been tested in simulated environments.

To test continuous replanning, a larger space of dimension 100 × 100 × 50 m3 is

considered with 4 and 9 obstacles. To decouple replanning from map building, a

known map associated with a visibility horizon (not visible obstacles are detected

on the fly causing replanning), is assumed. For each test, the task was to inspect

a target point in pose (90, 90, 5, 90) starting from hovering in the pose (5, 5, 5, 0)

(in meters); the robot maximum and minimum velocity was set at 0.5m/s and

0.1m/s respectively. By changing the visibility horizon (green cells in Fig. 3.15) of

the planner (15 or 25 m) and the complexity of the environment (4 or 9 obstacles)

4 scenarios were obtained. Table 2 collects means and STD of 10 tests for each

entry (time and length are in sec. and m, LL, HL, etc. are for Low complexity

and Low visibility, High complexity and Low visibility). Here, it is noticeable

that Tp increases with the obstacles (HL,HH) and decreases with short visibility

(LL,HL). Indeed, in these cases the planning problem is simpler. However, short

visibility is associated with additional replanning time which, in turn, decreases

with the number of obstacles. The lower the replanning time, the lower is the

execution time and the shorter the executed path. A similar effect is due to

visibility: short visibility causes frequent replanning events (Nr) and longer paths
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(Lp) and execution times (Te). Furthermore, the variance is enhanced with short

visibility that enhances the uncertainty. In these tests, the task planning time is

usually negligible (Tp and Tr mainly due to path and trajectory). Also in this

case, brakes or escapes were never experienced.
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Chapter 4

Sensor Fusion of Visual and

Inertial Measurements

In this chapter, a new optimal sensor fusion algorithm based on Pareto optimiza-

tion techniques is proposed to combine IMU and camera visual measurements to

estimate a vehicle motion. Advantages of the proposed method are that no-prior

assumption about robot motion model is required, and that the proposed formu-

lation allows a multi-rate sensor fusion. A comparison of the proposed technique

with respect to a Kalman filter approach shows an improved estimation at the

price of a limited increased computational complexity.

4.1 Problem Formulation

It is supposed that the orientation of the camera reference frame with respect

to the inertial unit frame is known. Without loss of generality, the base refer-

ence frame is assumed coincident with the first IMU frame. The differential vision

system provides the position displacement with respect to the previous vehicle po-

sition, i.e., only a differential positional measurement is available, with a sampling

rate TV . On the other hand, the IMU provides the linear acceleration and attitude

of the vehicle with a sampling time Ti ≤ TV . The latter can be recovered by fusing

the accelerometer and rate gyro measurements in a standard complementary at-

titude filter, similarly to what presented [12], by using a gradient descent method

as in [77]. The orientation of the vehicle is represented with the well-known Tait-

Bryan (Euler) angles of roll, pitch, and yaw φφφ = (ϕ, θ, ψ), which yields to the

rotation matrix R, i.e.

R(φφφ) =



cϕcθ cϕsθsψ − sϕcψ sϕsψ + cϕsθcψ
sϕcθ sϕsθsψ + cϕcψ sϕsθcψ − cϕsψ
−sθ cθsψ cθcψ


 ,
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where sx = sin(x) and cx = cos(x). Moreover, the measurement of the Euler

angles

φ̃φφ =
(
ϕ̃, θ̃, ψ̃

)
(4.1)

can be modeled as

ϕ̃ = ϕ+ ωϕ

θ̃ = θ + ωθ

ψ̃ = ψ + ωψ,

(4.2)

where ωϕ, ωθ, and ωψ represent angle Gaussian white noises with zero mean and

variance σ2
φ, σ

2
θ , and σ

2
ψ , respectively.

Finally, the linear acceleration of the vehicle ã with respect to the fixed frame

is given by

ã = R(φ̃φφ)ãI = R(φ̃φφ) (aI + ωai)− g, (4.3)

where aI = [ aI,x aI,y aI,z ]T is the acceleration provided by the IMU and

expressed in the current robot frame, ωaI = [ ωaI ,x ωaI ,y ωaI ,z ]T is a Gaus-

sian white noise with known variance σ2
aI

= [ σ2
aI ,x

σ2
aI ,y

σ2
aI ,z ]T and g =

[ 0 0 9.81 ]T is the gravity vector that can be subtracted from the inertial

measurement given that the absolute orientation is known.

The measurement δ̃pV = δp + ωV , that is provided by the vision system,

represents the robot displacement performed during the last sampling period TV ,

expressed in the fixed frame with respect to last visual frame, where δp is the effec-

tive unknown displacement and ωV = [ ωV,x ωV,y ωV,z ]T is white noise with

known variance σ2
V = [ σ2

V,x σ2
V,y σ2

V,z ]T and bias bV = [ bVx bVy bVz ]T.

Well-known visual odometry techniques (e.g. see [97] and [44]) can be considered

to compute δ̃pV .

With the proposed approach, the estimation of the vehicle displacement δ̂p =

[ δ̂x δ̂y δ̂z ]T, as performed between the sampling times k − 1 and k, is evalu-

ated by a convex combination of the visual measurement and the inertial displace-

ment estimation as:

δ̂x(k) = (1− βx,k)δ̃xV (k) + βx,kδ̂xa(k) (4.4)

δ̂y(k) = (1− βy,k)δ̃yV (k) + βy,k δ̂ya(k) (4.5)

δ̂z(k) = (1− βz,k)δ̃zV (k) + βz,k δ̂za(k), (4.6)

The term δ̂pa = [ δ̂xa δ̂ya δ̂za ]T is the estimation of the position displace-

ment obtained from the inertial data, which will be characterized both in the

synchronous and asynchronous case in the following sections. The weight factors

βx,k, βy,k, and βz,k are the unknown parameters that have to be (optimally) chosen

at each sampling time by a Pareto optimization, as described in the following.
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Figure 4.1: Working schema of the proposed Pareto optimization algorithm.

Accordingly, the absolute position estimation of the vehicle at the time instant

k can be computed as

p̂(k) = p̂(k −N) + δ̂p(k), (4.7)

where N = 1 in case of synchronous measurements.

Without loss of generality, only the estimation of the x component will be

described. Analogous results can be achieved for the y and z motion components.

Figure 4.1 shows the working principle of the sensor fusion algorithm valid both

in synchronous and asynchronous measurements cases. The difference between two

cases relies on the correction on inertial position estimation that, as it will shown

in next subsections, in the synchronous case is done at every step time, while in

the asynchronous case only where there is visual measurement availability.

4.1.1 Synchronous measurements

Consider the case of synchronous measurements, T = TV = Ti. Then the IMU

measurements are used at the same frequency of the vision system. By starting

from the inertial measurements, the estimation of the positional displacement by

a forward Euler integration is obtained

v̂x (k) = v̂x (k − 1) + T ãx (k) (4.8)

δ̂xa (k) = T v̂x (k) . (4.9)

By plugging (4.8) into (4.9) and approximating v̂x(k − 1) ∼= δ̂x(k − 1)/T , the

estimation of the position displacement obtained by the inertial measurement is

δ̂xa (k) = δ̂x (k − 1) + T 2ãx (k) . (4.10)

Thus, the estimated position depends on the estimated position at time k− 1 and

on the acceleration measurement.
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4.1.2 Asynchronous measurements

In the asynchronous case, it is assumed that the vision system provides the vehicle

pose estimation at lower frequency with respect to the inertial system, TV = NTi,

with N ∈ N being the scale factor relating the IMU and vision frequencies.

Exploiting classical Taylor expansion the position at time k can be written as a

function of the acceleration ax at time k − 1 as

x(k) = x(k − 1) + Tiδvx (k − 1) +
T 2
i

2
ax(k − 1), (4.11)

where δvx represents the velocity at instant time k − 1.

Thus, the absolute position estimation obtained by the inertial sensor at time

instant k can be expressed as a function of the optimal position estimation at time

k −N as

x̂a(k) = x̂(k −N) + Ti

k−1∑

j=k−N

δ̂vx (j) +
T 2
i

2

k−1∑

j=k−N

ax(j), (4.12)

with the velocity estimation δ̂vx given by Euler integration formula

δ̂vx (j) = δ̂vx(j − 1) + Tiãx(j − 1)

The differential displacement from inertial measurement between two consecutive

optimization time instants is given subtracting x̂a(k−N) to Eq. (4.12) obtaining:

δ̂xa(k) =δ̂x(k −N) + Ti

k−1∑

j=k−N

δ̂vx (j) +
T 2
i

2

k−1∑

j=k−N

ax(j)

− Ti

k−N−1∑

j=k−2N

δ̂vx (j)−
T 2
i

2

k−N−1∑

j=k−2N

ax(j),

(4.13)

The state estimation δ̂x(k) will be performed as soon the visual measurement is

available, according to (4.4).

On the other hand, the differential position estimation provided by the vision

system is assumed coincident with the measurement itself

δ̃xV (k) = δ̂xV (k) = δxV (k) + ωxV (k), (4.14)

where δxV (k) is the ground-truth position displacement.

4.1.3 Pareto optimization problem

The estimator (4.4) can be modeled as follows

δ̂x(k) = δx(k) + ωx(k), (4.15)
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where ωx(k) is the error position, which is estimated as described in equation (4.3).

The estimator bias is denoted by

P1 = E{ωx(k)}, (4.16)

and the estimation variance is defined by

P2 = E{(δ̂x(k)− E{δ̂x(k)})2}, (4.17)

where the operator E{·} is the expected value of a random variable.

Then a Pareto optimization problem can be posed as

min
βx,k

(1− ρx,k)P2 + ρx,kP
2
1

s.t. βx,k ∈ (−1, 1),
(4.18)

With this choice, the bias and the variance of the estimation error will be mini-

mized simultaneously. The Pareto weighting factor ρx,k has to be chosen at each

step so to trade-off the high variance and bias of sensors. The constraint on βx,k
is required because the bias may become unstable with time when the statistical

modeling of the bias is computed, as shown later. The solution of the optimiza-

tion problem requires first the evaluation of the quantities P1 and P2, that will be

discussed in the following sections.

4.2 Error Estimation Bias and Variance

In this section an analytical recursive expression for equations (4.16) and (4.17)

is provided. The computation of the bias and of the variance will be differentiated

according to the types of signals to be fused and the sensor timing condition, i.e.

synchronous/asynchronous cases.

4.2.1 Synchronous measurements

By considering (4.4) and (4.15), the error ωx(k) can be expressed as follow

ωx(k) = (1− βx,k)ωV (k) + βx,k

(
δ̂xa(k)− δxa(k)

)

= (1− βx,k)ωV (k) + βx,k
(
ωx(k − 1) + T 2ωax(k − 1)

)
.

(4.19)

Consequently, (4.16) can be rewritten as

P1 =E{ωx(k)} = (1− βx,k)E{ωVx(k)} + βx,kE{ωx(k − 1))}+

βx,kT
2
E{ωax(k − 1)},

(4.20)
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where

E{ωax(k)} = aI,x(k)cϕcθe
−σ2ϕ

2 e
−σ2

θ
2 + aI,y(k)

(cϕsθsψe
−σ2ϕ

2 e
−σ2

θ
2 e

−σ2
ψ

2 − sϕcψe
−σ2ϕ

2 e
−σ2

ψ
2 ) + aI,z(k)

(sϕsψe
−σ2ϕ

2 e
−σ2

ψ
2 + cϕsθcψe

−σ2ϕ
2 e

−σ2
θ

2 e
−σ2

ψ
2 )− aI,x(k)cϕcθ

− aI,y(k)(cϕsθsψ − sϕcψ)− aI,z(k)(sϕsψ + cϕsθcψ).

The term E{ωax(k)} has been derived by using the following result [8, 9]

E{ã(k) cos(ϕ̃(k))} = a(k) cos(ϕ(k))e
−σ2ϕ

2

E{ã(k) sin(ϕ̃(k))} = a(k) sin(ϕ(k))e
−σ2ϕ

2 ,

where φ̃(k) has been considered Gaussian and statistically independent in its own

components and with respect to the acceleration measurements aI . The proof for

the sine term is provided in the Lemma A.2.1.

In the proposed formulation the bias baI
= [ baI,x baI,y baI,z ]T on the sin-

gle acceleration measurement has been neglected for simplicity. In fact, since it

is generally constant, it can be estimated and subtracted from the measurement

itself, as done in [61]. An alternative approach can be to keep the bias in the mea-

surement and consider it as a penalty in P1 for the acceleration pose estimation,

thus obtaining a formulation similar to the one presented above.

Notice that (4.20) is a discrete time recursive expression, where the value of

velocity bias at time k is related to that one at time k− 1 trough βx,k coefficient.

This can be directly interpreted as a discrete time differential equation. To avoid

a blow up of the bias, all the eigenvalues should be in the circle of radius 1. Hence,

it is necessary that |βx,k| ∈ (0, 1) and thus βx,k ∈ (−1, 1) so as it has been required

in (4.18).

By substituting (4.20) in (4.17), the quantity P2 can be rewritten as

P2 =E{(δ̂x(k)− E{δ̂x(k)})2}

=E {((1− βx,k)vVx(k) + βx,kvx(k − 1) +βx,kvax(k − 1))
2
}
,

(4.21)

where

vVx (k) , ωVx (k)− E{ωVx (k)}

vx (k) , ωx (k)− E{ωx (k)}

vax (k) , ωax (k)− E{ωax (k)}

vvx (k) , ωvx (k)− E{ωvx (k)},

(4.22)

with σ2
Vx
, σ2

x, σ
2
ax

and σ2
vx

the corresponding variances. Since vVx , vx, vax and vvx
are statistically independent and E{vax} = E{vx} = 0, (4.21) yields

P2 =(1− βx,k)
2σ2
Vx
(k) + β2

x,kσ
2
x(k − 1) + β2

x,kT
4σ2
ax
(k − 1), (4.23)
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where

σ2
ax

(k) =E{(ωax (k)− E{ωax (k)})
2} = E{ω2

ax
(k)+

E
2{ωax (k)} − 2ωax (k)E{ωax (k)}}

=E{ω2
ax

(k)} − E
2{ωax}.

The second order moment E{ω2
ax
(k)} could be characterized using the following

properties [8, 9]:

E{ã2(k) cos2(ϕ̃(k))} = σ2
a

(
1

2
+

1

2
c2ϕe

−2σ2
ϕ

)

E{ã2(k) sin2(ϕ̃(k))} = σ2
a

(
1

2
−

1

2
c2ϕe

−2σ2
ϕ

)
,

where σ2
a is the acceleration variance. The proof for the sine term is provided in

the Lemma A.2.2.

4.2.2 Asynchronous measurements

By considering equation (4.4), (4.13), and (4.15) the quantity ωx(k) can be ex-

pressed as follows

ωx(k) = (1 − βx,k)ωV (k) + βx,kωxa(k), (4.24)

where ωxa(k) represents the position differential error of the inertial measurements

in (4.13). Hence, (4.16) can be written as

P1 = E{ωx(k)} = (1− βx,k)E{ωV (k)}+ βx,kE{ωx (k −N)}

+ βx,kTi




k−1∑

j=k−N

E{ωvx (j)}+

k−N−1∑

j=k−2N

E{ωvx (j)}




+ βx,k
T 2
i

2




k−1∑

j=k−N

E{ωax (j)}+

k−N−1∑

j=k−2N

E{ωax (j)}


 ,

(4.25)

where the evaluation of E{ωvx(j)} is presented in Appendix A.2, while E{ωax(k)}

can be computed in a similar way as in the previous subsection.

Notice that (4.25) is similar to (4.20) then the same constraint βx,k ∈ (−1, 1)

is required.

Finally, P2 can be derived from (4.22) by substituting the expression of the

error bias (4.25) in (4.17), that yields to the following expression for the error
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variance

P2 =E{(δ̂x(k)− E{δ̂x(k)})2}

=E {((1− βx,k)vV (k) + βx,kvx(k −N)+

+βx,k

k−1∑

j=k−N

(
Tivvx(j) +

T 2
i

2
vax(j)

)
+

−βx,k

k−N−1∑

j=k−2N

(
Tivvx(j) +

T 2
i

2
vax(j)

)


2



.

(4.26)

Since vVx , vx, vax and vvx are statistically independent and E{vax} = E{vx} = 0,

(4.26) yields

P2 = σ2
x(k) = (1 − βx,k)

2σ2
V (k) + β2

x,kσ
2
x(k −N)

+ β2
x,k




k−1∑

j=k−N

T 2
i σ

2
vx
(j) +

k−1∑

j=k−N

T 4
i

4
σ2
ax
(j)


+

− β2
x,k



k−N−1∑

j=k−2N

T 2
i σ

2
vx
(j) +

k−N−1∑

j=k−2N

T 4
i

4
σ2
ax
(j)


 .

(4.27)

4.3 Solution of the Pareto Optimization Problem

The optimization problem (4.18) is convex and it can been proven just taking the

derivative of the objective function respect to βx,k. Thus the optimal value of βx,k
for a fixed ρx,k is

β∗
x,k = max (−1,min (ξ, 1)) , (4.28)

with

ξ =
2(1− ρx,k)σ

2
Vx
(k + 1)− 2ρx,kγx,kE{ωVx(k + 1)}

2(1− ρx,k)ηx,k + 2ρx,kγ2x,k
.

The best value of the parameter ρx,k is found by building a Pareto trade-off curve

as in Fig. 4.2, and selecting the knee-point on this curve [18]. Thus, the optimal

value ρ∗x,k is chosen such that P1 and P2 computed in β∗
x,k(ρ

∗
x,k) give P2 ≃ P 2

1 ,

that is given by the solution of the following optimization problem

ρ∗x,k = argmin
ρx,k

(
P2

(
β∗
x,k (ρx,k)

)
− P 2

1

(
β∗
x,k (ρx,k)

))
. (4.29)

This problem being non-linear a numerical procedures based on the discrimination

of ρx,k can be employed [18].

It is important to highlight that the analytical recursive expressions of ηx,k and

γx,k are different for the synchronous and the asynchronous sensor fusion cases. In
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Figure 4.2: Pareto tradeoff curve. Each point on the curve is computed considering
a different value of ρx,k.

the case of synchronous measurements, the expressions of these parameters depend

on the estimation of the state bias and variance at the current step time, i.e.

ηx,k =σ2
Vx
(k) + σ2

x(k − 1) + T 4σ2
ax
(k − 1),

γx,k =− E{ωVx(k)}+ E{ωx(k − 1)}+ T 2
E{ωax(k − 1)}.

The solution for the asynchronous case depends on the state bias and variance at

current step time, i.e.

ηx,k =σ2
Vx
(k) + σ2

x(k − 1)+

+T 2
i




k−1∑

j=k−N

σ2
vv
(j)−

k−N−1∑

j=k−2N

σ2
vv
(j)


+

+
T 4
i

4




k−1∑

j=k−N

σ2
ax
(j)−

k−N−1∑

j=k−2N

σ2
ax
(j)


 ,

γx,k =− E{ωVx(k)}+ E{ωx(k − 1)}+

+ T 2
i




k−1∑

j=k−N

E{ωvx (j)}+

k−N−1∑

j=k−2N

E{ωvx (j)}




+
T 4
i

4




k−1∑

j=k−N

E{ωax (j)} −

k−N−1∑

j=k−2N

E{ωax (j)}


 .
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Figure 4.3: Trajectory paths in the synchronous case: ground true (blu), vision
based estimation (green), and Pareto estimation (red), with T = 0.1 s, σ2

ax
=

σ2
ay

= σ2
az

= 0.22 m2/s4, σV (d) ∈ [1, 4] mm, E{ωVx} = 0.3 mm, σ2
φ = 0.022, σ2

θ =

0.032, σ2
ψ = 0.012 rad/s2. The path is performed in 30s considering a pitch rotation

θ = π/6.

Remark 1. The solution of the optimization problem (4.18) is equivalent to an

optimization respect to both βx,k and ρx,k parameters. In fact, imposing first order

optimality condition respect to ρx,k giving P2 ≃ P 2
1 .

Then, imposing the first order optimality condition respect to βx,k

(1− ρx,k)
∂P2

∂βx,k
+ 2ρx,kP1

∂P1

∂βx,k
= 0

which should be solved numerically chosing βx,k depending on ρx,k such the first

enounced condition P2 ≃ P 2
1 is verified. The term Pareto is derived from the

classical game theory where the goal of two players is to choose a given strategy

such to maximize(minimize) their utility, in the presented problem represented by

P2 and P 2
1 respectively.

4.4 Simulations

The proposed method has been tested on simulated trajectories both for the syn-

chronous and the asynchronous case. The considered path is a 3D circle generated

according to different time law profiles emulating different operating conditions

(see Figs. 4.3 and 4.4).
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Figure 4.4: Trajectory paths in the asynchronous case: ground true (blue dashed
line), vision based estimation (green point dashed line), and Pareto estimation
(red continuous line), with Ti = 0.01s, TV = 0.1s, σ2

ax
= σ2

ay
= σ2

az
= 0.32 m2/s4,

σV (d) ∈ [0.1, 0.4] mm, E{ωVx} = 0.3 mm σ2
φ = 0.022, σ2

θ = 0.032, σ2
ψ =

0.012 rad/s2. The path is performed in 30s considering a roll, pitch and yaw
rotation φ = −π/4, θ = π/8, ψ = −π/6.

4.4.1 System Characterization

The variance for the vision measurement is chosen so as to model a variable

distance d with respect to the observed target, i.e.

σ2
V (k) = σ2

Vmin +
σ2
Vmax − σ2

Vmin

dmax − dmin
(d(k)− dmin),

where dmin and dmax represent the minimum and the maximum distance, respec-

tively.

The trajectory estimation error of the proposed optimization technique has

been compared with the case when only vision data are employed. In both the

synchronous and the asynchronous cases, the estimation error benefits of the pro-

posed approach, as it is shown in Figs. 4.5 and 4.6. Tables 4.1 and 4.2 show the

robustness of this method in different working conditions, by considering different

time laws.

4.4.2 System Performances

The proposed method has been compared to a Stochastic Cloning Kalman filtering

(SC-KF) [87] using possible IMU noise values. A Second order dynamic model has
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Figure 4.5: Synchronous case: time history of the norm of the trajectory estimation
error with respect to the ground true by using only vision data (blue dashed line)
and with the Pareto optimization (red continous line).

Table 4.1: Average error norm in the synchronous case

Case Trapez. Velocity Cubic Poly 5thorder Poly

Vision error [m] 0.0676 0.0671 0.0665
Estimation error [m] 0.0568 0.0586 0.0549

been used, where the state is increased by the old visual system position, such to

consider differential visual position measurements.

Differently from the proposed approach, Kalman filtering techniques rely on

the state and measurement covariance matrices, which are typically constant in

classic Kalman-filter implementations. The proposed approach, instead, takes into

account the variance and the bias on the system state at each instant of time, thus

producing a significant benefit.

To compare the two different approaches, the same time varying law estimated

variance, as employed in the proposed method, is used in the SC-KF implemen-

tation. Moreover, the bias is modeled as a constant parameter causing a state

augmentation. With reference to the synchronous case, Table 4.1 show the com-

parison between the two different mentioned approaches. whereas, Table 4.3 and

Fig. 4.7 show the comparison for the asynchronous case. In both cases the pro-

posed problem formulation is able to reduce the error norm of about 30%. In the

asynchronous case, it can be noticed an increasing of oscillations in the error norm,

which is caused by the presence of significant noise on acceleration measurements

typical on aerial platforms.
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Figure 4.6: Asynchronous case: time history of the norm of the trajectory estima-
tion error with respect to the ground true by using only vision data (blue dashed
line) and with the Pareto optimization (red continuous line).

Table 4.2: Average error norm in the asynchronous case

Case Trapez. Velocity Cubic Poly 5thorder Poly

Vision error [m] 0.0770 0.0769 0.0760
Estimation error [m] 0.0574 0.0544 0.0497

Notice that, when the vision measurement is not available only acceleration

is used for few seconds to perform system position identification. By starting

the estimation from an optimal position value, as shown in (4.12), it is possible

to prevent estimation divergence due to acceleration measurements. The bias

E{ωax(k)} and its corresponding variance in case of too noisy acceleration, can be

computed from filtered acceleration data obtained using a classical first order low

pass filter.

The index (4.18) minimizes a combination of state bias and variance, while

through a KF approach the covariance state matrix is minimized. Being a com-

bination of bias and variance, it can be directly interpreted as a measure of the

Mean Square Error (MSE) of the unknown scalar parameter ωx, similarly to the

biased estimation in [59]. This is even confirmed by the analysis of the average

covariance values.

The computational complexity of the proposed solution is O (n1n2) with n1 =

t/T , n2 = 1/Tρ, where t is the current time, T = Ti and Tρ is the step time used

to search the ρ value such that P2 ≃ P 2
1 , while for KF approaches it is just O (n1).

The difference is confirmed by the average computational time, of both methods
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Figure 4.7: Asynchronous case: comparison between SC-KF (black point dashed
line) and the proposed method (red continuous line).

Table 4.3: Average error norm

Case Trapez. Velocity Cubic Poly 5thorder Poly

Proposed method [m] 0.0574 0.0544 0.0497
Sto. Clo. KF [m] 0.0799 0.0798 0.0792

shown in Table 4.4 for two different hardware platforms.

Table 4.4: Computational time

Case Intel Core i2 Intel Core i7

Proposed method [ms] 2.3 1.6
Sto. Clo. KF [ms] 0.4 0.18
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Chapter 5

Conclusion and Future

Research Directions

A brief digest of the methods presented in this thesis and the achieved results will

be the object of the current chapter. Proposals for future research directions will

be discussed as well.

5.1 Main results

Different vision based algorithms have been proposed in this work, showing how

cameras, due to the characteristics mentioned in Section 1.2.1, can be used for

reactive control, environment reconstruction, eventually combined with other sen-

sors like IMU to increase robustness and motion estimation rate. The thesis has

been obviously split in three different parts, which are namely:

• Feedback Reactive control based on visual information

• 3D Environment Reconstruction

• Vision and IMU sensor fusion.

For each of the previous items, new contributions have been presented and vali-

dated through simulations and experimental results.

5.2 Conclusion

In this thesis, the main purpose was to show how vision algorithms can be used

for reactive control, environment reconstruction and combined with other sensors

to increase robustness and motion estimation rate. In particular, a new vision-

based obstacle avoidance technique for indoor navigation of Micro Aerial Vehicles
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has been presented. The Depth Map of the surrounding environment has been

constructed using only visual and inertial measurements. An existing closed-form

solution for the absolute-scale velocity estimation based on visual correspondences

and inertial measurements has been generalized and employed for the velocity es-

timation. This last has been used for the evaluation of the absolute-scaled Optical

Flow, which allows the construction of the desired Depth Map. Relying on this

map, a safe navigation control has been proposed, which able to avoid lateral

obstacles, to self-limit the cruise velocity in view of the available free space, and

to dynamically set the regions of interest for image features extraction. Simula-

tions have been carried out to prove the effectiveness of the proposed solution. To

conclude the first part, this work demonstrates a first step towards autonomous

dynamic grasping and manipulation for micro aerial vehicles in unstructured envi-

ronments. A quadrotor system equipped with a monocular camera is considered,

formulating the dynamics of the underactuated system directly in the virtual im-

age plane. The system has been demonstrated to be differential flat, with the

image coordinates being the set of flat outputs. The trajectory generation method

guarantees dynamic feasibility and enables incorporating visual constraints as lin-

ear constraints. A non-linear vision-based controller for trajectory tracking in the

image space is presented. A proof of stability is given and a validation of the

controller both in simulation and in experimentation on a quadrotor has been

provided.

In the second part, a framework for real-time pose estimation for autonomous

flight and cooperative mapping is proposed. By decomposing the problem into a

monocular SLAM problem with sparse representation and the problem of associ-

ating robot poses and depths with features create a dense 3-D map, avoiding the

computational bottleneck of 3-D RGB-D cooperative SLAM, distributing a large

fraction of the computations and achieve increased robustness to noise in depth

which is typical in outdoor or brightly lit environments. The localization perfor-

mance is comparable to one of the most used RGB-D SLAM frameworks [39]. In

particular, the approach allows pose estimation at frame rates and yields global

position estimates even if the depth is not available at every frame. Further the pre-

sented approach approach yields a sparse map in addition to the dense map. The

sparse map is particularly useful for computationally limited platform or when the

scale factor, due to environmental constraints, cannot be estimated. Experimental

results based on camera datasets [112] and aerial vehicles’ data in Section 3.4 sub-

stantiate these claims. In the same field, a different environment representation

has been proposed, in case of planning and high level. The system at work in

two real challenging scenarios where the Aerial Service Vehicle is involved, respec-

tively, in a physical and visual inspection task. Moreover, the point cloud data is

generated by different sensors, showing the general applicability of the presented

environment reconstruction approach.

In the last part, a new sensor fusion technique for motion estimation which
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combines visual and inertial measurements via a Pareto optimization process has

been introduced. The proposed method minimizes a combination of state bias

and variance by balancing available data input in an optimal way. Only the

measurements statistical characterization is required, without any prior knowledge

of the motion model. The effectiveness of the proposed theoretical approach, in

terms of accuracy, computational requirements, and robustness was tested with

simulation case studies and compared to a Kalman-filter based approach. It is

shown that the proposed method gives a benefit in terms of estimation accuracy

with a limited increase of the computational complexity.

5.3 Proposals for the future

Likewise in section 5.1, where three main research topics can be identified, the

directions for future researches can be also split in three parts.

Concerning visual reactive control, a next step would be to validate the optical

flow approach with experimental results and generalize the control law to full three

dimensions and considering the yaw of the robot by using image moments to detect

the primary axis of the cylinder.

Clearly, the integration of an IMU into the 3D reconstruction framework, will

increase the performance for aggressive flight maneuvers. In future work real-time

control loops at 100 Hz. or higher for autonomous flight will be developed. Future

work will also focus on additional real-world experiments and on the extension to

the case of cooperative vehicles [80].

For the sensor fusion part, obviously a validation based on real experiments is

the natural extension of the proposed method. Moreover another extension would

be to consider to incorporate the possibility to estimate 6 DOF pose. Finally,

an extended analysis on the optimization index can be useful to prove from a

theoretical point of view, the benefit of this approach with respect to classical

Kalman filtering techniques.
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Appendix

A.1 Image based Visual Servoing

This section contains the additional material related to section 2.4.

A.1.1 Stability of Attitude Dynamics

For the attitude controller, the Lyapunov candidate is

VR =
Jq
2
eΩ · eΩ +KRΨ(R,Rd) + c2eR · eΩ, (A.1)

with c2 being a positive scalar, such that,

zTθMθzθ ≤ VR ≤ zTθMΘzθ, (A.2)

V̇R ≤ −zTθWθzθ, (A.3)

where zθ = [‖eR‖ , ‖eΩ‖]
T
, and Mθ,MΘ, and Wθ are positive definite.

A.1.2 Stability of Translational Dynamics in the Image Co-

ordinates

We take an approach very similar to [65] to show that the controller is exponentially

stable. First, define K ′
p,K

′
d, B, α ∈ R as,

K ′
p = mq ‖J‖

∥∥J−1
∥∥Kp (A.4)

K ′
d = ‖J‖

(
mq

∥∥J−1
∥∥Kd +

∥∥∥ ˙J−1
∥∥∥
)

(A.5)

B = ‖J‖
(
‖GA‖+mq

∥∥J−1
∥∥ ∥∥v̈d

∥∥+
∥∥∥ ˙J−1

∥∥∥
∥∥v̇d

∥∥
)

(A.6)

α = ‖eR‖ (A.7)
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and define Wv1 ,Wv2 ,Wvθ,Wv ∈ R
2×2 as

Wv1 =

[
c1Kp
mq

c1Kd
2mq

c1Kd
2mq

Kd − c1

]
,Wvθ =

[ c1
mq
B 0

B 0

]
(A.8)

Wv2 =




c1αK
′
p

mq

α
2

(
c1
mq
K ′
d +K ′

p

)

α
2

(
c1
mq
K ′
d +K ′

p

)
αK ′

d


 (A.9)

Wv =Wv1 −Wv2 . (A.10)

Suppose we choose positive constants c1,Kp,Kd,KR,KΩ such that,

Kp >
c21
mq

(A.11)

λmin(Wθ) >
4 ‖Wvθ‖

2

λmin(Wv)
(A.12)

Then, there exists positive constants γ1, γ2, γ3, such that ‖J‖ ≤ γ1,
∥∥J−1

∥∥ ≤ γ2,∥∥∥ ˙J−1
∥∥∥ ≤ γ3, and if initial conditions and the desired trajectory satisfy

α <
1

mqγ1γ2
, (A.13)

dist(vd(t), V
c) < ‖ev(0)‖ , (A.14)

where V c is the complement of V , and dist(vd(t), V
c) = inft∈[0,∞),w∈V c ‖vd(t)− w‖

is the smallest distance between a trajectory and a set, then the zero equilibrium

(ev, ėv, eR, eΩ) = (0,0, 0, 0) is locally exponentially stable.

Proof. Using (2.33), we can determine the image errors

ëv = v̈ − v̈d =
1

m
J [fRe2 −GA] + J̇J−1v̇ − v̈d (A.15)

so that

mëv = fJRe2 − JGA +mJ̇J−1v̇ −mv̈d. (A.16)

Defining

X = J
f

eT2 R
T
c Re2

((
eT2 R

T
c Re2

)
Re2 −Rce2

)
, (A.17)

the error dynamics become

mëv = J

(
f

eT2 R
T
c Re2

Rce2

)
+X− JGA +mJ̇J−1v̇ −mv̈d. (A.18)

Next, let

f = A ·Re2 (A.19)
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and the commanded attitude be defined by

Rce2 =
A

‖A‖
. (A.20)

Then, from the previous two equations, we have

f = ‖A‖ eT2 R
T
c Re2. (A.21)

Substituting this into (A.18) and using A, we have

mëv = J

(
‖A‖ eT2 R

T
c Re2

eT2 R
T
c Re2

Rce2

)
+X− JGA +mJ̇J−1v̇ −mv̈d (A.22)

= J (‖A‖Rce2) +X− JGA +mJ̇J−1v̇ −mv̈d (A.23)

= JA+X− JGA +mJ̇J−1v̇ −mv̈d (A.24)

= −Kpev −Kdėv +X (A.25)

which has the same form as (83) in [65]. We use the same Lyapunov candidate,

but in our image coordinates,

Vv =
1

2
Kp ‖ev‖

2
+

1

2
m ‖ėv‖

2
+ c1ev · ėv. (A.26)

Now, let zv =
[
‖ev‖ , ‖ėv‖

]T
, then it follows that the Lyapunov function Vv is

bounded as

zTvMvzv ≤ Vv ≤ zTvMV zv, (A.27)

where Mv,MV ∈ R
2×2 are defined as,

Mv =
1

2

[
Kp −c1
−c1 m

]
, MV =

1

2

[
Kp c1
c1 m

]
. (A.28)

Then,

V̇v = Kp (ėv · ev) +m (ëv · ėv) + c1 (ev · ëv + ėv · ėv) , (A.29)

and incorporating (A.25),

V̇v = −
c1Kp

m
‖ev‖

2
− (Kd − c1) ‖ėv‖

2

−c1
Kd
m

(ev · ėv) +X ·
(
c1
m
ev + ėv

)
. (A.30)

Now, we establish a bound on X. From (A.17),

X = J
f

eT2 R
T
c Re2

((
eT2 R

T
c Re2

)
Re2 −Rce2

)
(A.31)

‖X‖ ≤ ‖J‖

∥∥∥∥
‖A‖Rce2 ·Re2
Rce2 · Re2

∥∥∥∥ ‖eR‖ (A.32)

≤ ‖J‖ ‖A‖ ‖eR‖ (A.33)

≤ ‖J‖
∥∥∥GA +mJ−1 [−Kpev −Kdėv + v̈d] + ˙J−1 [ėv + v̇d]

∥∥∥ ‖eR‖ (A.34)

≤
(
K ′
p ‖ev‖+K ′

d ‖ėv‖+B
)
‖eR‖ (A.35)
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where K ′
p,K

′
d, B are as defined in (A.4)-(A.6), and from [65], 0 ≤ ‖eR‖ ≤ 1.

Next we will show that there exists positive constants γ1, γ2, γ3 s.t., ‖J‖ ≤

γ1,
∥∥J−1

∥∥ ≤ γ2, and
∥∥∥ ˙J−1

∥∥∥ ≤ γ3. Since Γ is smooth (we only require C2 here),

J is smooth on the closed set S. This implies J is bounded on S, i.e., ∃γ1 > 0,

s.t. ‖J‖ < γ1. Next, since J is smooth and nonsingular on S, the inverse is well

defined and is smooth on S, which implies J−1 is bounded on S, i.e., ∃γ2 > 0,

s.t.
∥∥J−1

∥∥ < γ2. Next, observe that d
dt
J−1(rq) =

∂
∂rq

J−1(rq)ṙq is a composition

of smooth functions on S, implying that it is bounded on S, i.e., ∃γ3 > 0, s.t.∥∥∥ ˙J−1
∥∥∥ < γ3.

Then, similar to [107], we can express V̇v as

V̇v = −
[
eTv ėTv

]
Wv1

[
ev
ėv

]
+X ·

(c1
m
ev + ėv

)
(A.36)

≤ −
[
eTv ėTv

]
Wv1

[
ev
ėv

]

+K ′
p ‖ev‖ ‖eR‖

(
c1
m

‖ev‖+ ‖ėv‖
)

+K ′
d ‖ėv‖ ‖eR‖

(
c1
m

‖ev‖+ ‖ėv‖
)

+B ‖eR‖
(
c1
m

‖ev‖+ ‖ėv‖
)
. (A.37)

This can be written as,

V̇v ≤ −zTvWvzv + zTvWvθzθ (A.38)

whereWvθ,Wv are as defined in (A.8), (A.10). SinceWv = (Wv)
T
andWv ∈ R

2×2,

it is sufficient to show that det(Wv) > 0 and Wv(1, 1) > 0 in order to claim that

Wv > 0. Then, from the assumption on α in (A.13), we have w11 > 0. This is

reasonable since α is a functional on the attitude error such that α ∈ [0, 1]. Thus,

the assumption in (A.13) is simply a bound on the attitude error. The determinant

can be expressed as a quadratic function of Kd such that

det(Wv) = β0 + β1Kd + β2K
2
d (A.39)

and βi is a function of c1, Kp, γ1, γ2, γ3, andm. The critical point of the quadratic

occurs when

Kd =
Kpm

c1
+
Kpm+ αc1γ1γ3
c1 (1− αγ1γ2m)

(A.40)

and has a value of

det(Wv) =
Kp (1− αγ1γ2m)

(
Kpm− c21

)

m
. (A.41)

In both equations, (1− αγ1γ2m) > 0 as a result of the assumption in (A.13).

Thus (A.40) is positive, and by (A.11), (A.41) is positive and W ′
v > 0. Now, we
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consider the combined Lyapunov candidate for the translational and rotational

error dynamics, V = Vv + VR. From (A.2) and (A.27), we have,

zTvMvzv + zTθMθzθ ≤ V ≤ zTθMΘzθ + zTvMV zv. (A.42)

Further, we see that

V̇ ≤ − zTvWvzv + zTvWvθzθ − zTθWθzθ, (A.43)

≤− λmin(Wv) ‖zv‖
2
+ ‖Wvθ‖ ‖zv‖ ‖zθ‖

− λmin(Wθ) ‖zθ‖
2
, (A.44)

and from (A.12), we have V̇ to be negative definite, and the zero equilibrium of

the closed-loop system is locally exponentially stable.

A.2 Sensor Fusion

By developing the third term of (4.25) we have

k−1∑

j=k−N

E{ωvx (j)} = E{ωvx(k −N)}

+ E{ωvx(k −N + 1)}+ · · ·+ E{ωvx(k − 1)},

where every single term can be written as

E{ωvx (k −N + 1)} =

E{ωvx (k −N)}+ TiE{ωax (k −N)}

E{ωvx (k −N + 2)} = E{ωvx (k −N + 1)}

+ TiE{ωax (k −N + 1)} = E{ωvx (k −N)}

+ TiE{ωax (k −N)}+ TiE{ωax (k −N + 1)}

E{ωvx (k − 1))} = E{ωvx (k −N)}

+ TiE{ωax (k −N)}+ · · ·+ TiE{ωax (k − 2)}.

Thus it gives

k−1∑

j=k−N

TiE{ωvx (j)} = (N − 1)E{ωvx (k −N)}

+ Ti

k−1∑

j=k−N

(k − j)E{ωax (j)}.
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This results shows how the recursive expression of the velocity bias is obtained.

The same approach can be used to derive the velocity variance σvx .

In the following the symbol σi for the variance associated to i will be employed.

Lemma A.2.1. Let ϕ̃(k) be Gaussian and independent respect to the acceleration

component ã(k) then

E{ã(k) sin(ϕ̃(k))} = a(k) sin(ϕ(k))e
−σ2ϕ

2 .

Proof. Using sine properties, since ã(k) and ϕ̃(k) are statistically independent we

obtain that

E{ã(k) sin(ϕ̃(k))} = E{a(k)}E{sin(ϕ̃(k))} =

a(k)E{sin(ϕ(k))}E{cos(ωϕ(k))}+

a(k)E{cos(ϕ(k))}E{sin(ωϕ(k))}.

As shown in [8, 9]

E{cos(ωϕ(k))} = e
−σ2ϕ

2

E{sin(ωϕ(k))} = 0,

that leads

E{ã(k) sin(ϕ̃(k))} = a(k) sin(ϕ(k))e
−σ2ϕ

2 .

Lemma A.2.2. Let ϕ̃(k) be Gaussian and independent with respect to the accel-

eration component ã(k) then

E{ã2(k) sin2(ϕ̃(k))} = σ2
a

(
1

2
−

1

2
cos(2ϕ)

)
e−2σ2

ϕ .

Proof. Since ã(k) and ϕ̃(k) are statistically independent we obtain that

E{ã2(k) sin2(ϕ̃(k))} = E{ã2(k)}E{sin2(ϕ̃(k))}.

Then using sine properties

E{sin2(ϕ̃(k))} = E

{
1

2
−

1

2
cos(2ϕ̃(k))

}
=

E

{
1

2
−

1

2
cos(2(ϕ(k) + ωϕ(k))

}
=

1

2
−

1

2
E {cos(2(ϕ(k)) cos(2ωϕ(k))+

− sin(2(ϕ(k)) sin(2ωϕ(k))} .
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As shown in [8, 9]

E{cos(2ωφ(k))} = e−2σ2
ϕ .

The result can be extended to the sin term considering its series

E{sin(2ωϕ(k))} = E {2ωϕ(k) + · · ·+

+(−1)n
2ωϕ(k)

2n+1

(2n+ 1)!

}
= 0.

So the initial expression becomes

E{sin2(ϕ̃(k))} =

(
1

2
−

1

2
cos(2ϕ)

)
e−2σ2

ϕ .

Then the final result is that

E{ã2(k) sin2(ϕ̃(k))} = σ2
a

(
1

2
−

1

2
cos(2ϕ)

)
e−2σ2

ϕ .
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