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Introduction.  
 

Schizophrenia is a complex disorder affecting nearly 1% of the general population. A 

large amount of evidence suggests that schizophrenia is caused by aberrant synaptic 

plasticity and metaplasticity. Perturbation of regular dendritic spines architecture and 

function has been described in the disease [1,2] [3]. Multiple neurotransmitter systems 

have been implicated in schizophrenia pathophysiology, and strong evidence points out 

abnormalities in dopamine, glutamate, and serotonin neurotransmission [4,5]. Signaling 

pathways activated by these neurotransmitters converge on the postsynaptic density 

(PSD), which is considered as a structural and functional multi-protein crossroad. PSD 

is an electron-dense thickening localized under postsynaptic membranes, which 

comprises several hundred proteins and particularly characterizes large excitatory 

glutamatergic synapses [6]. PSD proteins are distributed in highly organized 

macromolecular complexes that process, integrate, and converge synaptic signals to the 

nucleus [7]. Overall, PSD proteins are involved in synaptic plasticity and dendritic 

spines architecture. Rearrangements in PSD protein multimers at synaptic spines, 

occurring with precise stimulus-related spatiotemporal patterns, are currently supposed 

to underlie synaptic plasticity-related events, such as long-term potentiation (LTP) and 

long term depression (LTD) [8,9].  

According to the biological functions of PSD in humans, a recent study demonstrated 

that mutations in 199 human PSD genes (the 14% of all PSD genes) are implicated in 

more than two hundred diseases [10]. The 50% of these diseases are primary nervous 

system disorders, including neurological, psychiatric, and developmental disorders [10]. 

Moreover, a large part of those mutations may principally affect cognitive and learning 

processes, as well as emotion/affective behaviors and social interaction. Therefore, 

according to this view, emerging evidence is accumulating that implicates PSD proteins 
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dysfunctions in major psychiatric disorders in which cognitive/behavioral and social 

processes are impaired, such as schizophrenia and autism spectrum disorders. Based on 

the NMDA receptor hypofunction hypothesis of schizophrenia [11], several studies 

have found abnormalities in PSD proteins in brain regions where NMDA receptors are 

localized, as well as gene-association studies have revealed increased risk for 

schizophrenia in patients with mutations in genes affecting NMDA functions (for a 

review, see [12]). Moreover, several molecular defects in PSD components and in PSD-

related proteins have been found in postmortem brains of schizophrenia patients, mostly 

in regions implicated in the pathophysiology of the disease [13,14]. Thus, PSD 

alterations may contribute to the synaptic derangements in schizophrenia [9].  

Consistent with the putative role of PSD proteins in schizophrenia, several studies have 

implicated glutamatergic PSD components in the molecular mechanisms of action of 

antipsychotic drugs. Though primarily acting on dopamine transmission, evidence 

exists that antipsychotics may also modulate glutamate-related targets, in particular the 

N-Methyl-D-Aspartate receptor (NMDAR)-interacting molecules of the PSD [15,16]. 

Indeed, different antipsychotic drugs have been shown to modulate glutamate-related 

molecules in PSD [17-19,15,20,21]. Therefore, PSD proteins have been proposed as a 

target for antipsychotic action [22]. Antipsychotics may affect glutamatergic 

neurotransmission at multiple levels, and they may regulate dendritic spines formation 

and synaptogenesis [23,24], as well as the expression, trafficking, and functioning of 

PSD-related molecules [20,25-27]. 
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I. Dopamine and glutamate circuitries nexus: a pathophysiology integrated model 

of psychosis 

Dopamine and glutamate systems are the most important neurotransmission circuitries 

implicated in the pathogenesis of psychosis. Their manifold interconnections, even with 

the other neurotransmission systems, control cognitive, behavioral and motor processes. 

Thus, from the loss of balance in the complex interplay among these systems could 

originate the variety of expression of psychotic disorders, such as schizophrenia or 

bipolar disorder.  

In specific brain areas, which have been implicated in the pathophysiology of psychosis 

(i.e prefrontal cortex, corpus striatum, and nucleus accumbens), dopamine and 

glutamate signaling pathways converge on responsive neural populations, such as the 

striatal medium-sized spiny GABAergic neurons (MSNs) or the cortical GABAergic 

interneurons, where they interact at postsynaptic level. Deciphering the molecular 

mechanisms that control the postsynaptic dopamine-glutamate interplay may be crucial 

to our understanding of the dysfunctions implicated in psychosis, as well as for the 

development of new therapeutic strategies.  

The diverse actions of dopamine are mediated by at least five distinct subtypes of 

dopamine receptors (DARs), which belong to the G-proteins coupled receptors 

(GPCRs). Two D1-like receptor subtypes (D1 and D5 receptors) couple to the G protein 

Gs and activate adenylyl cyclase. The D2-like receptors (D2, D3, and D4 receptors) 

inhibit adenylyl cyclase and activate K+ channels [28]. 

On the other hand, glutamate functions are mediated by both ionotropic and 

metabotropic receptors. The widely distributed ionotropic glutamate receptors are ion 

channels activated by glutamate and may be divided in subtypes according to 

postsynaptic currents: N-Methyl-D-Aspartate Receptors (NMDARs), 2-amino-3-(5-
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methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid receptors (AMPARs) and kainate 

receptors (reviewed in [29]). 

Metabotropic Glutamate Receptors (mGlu receptors) belong to the seven 

transmembrane passages receptors superfamily and exert their cellular effects by 

activating G-protein-dependent pathways [30,31].  According to their transductional 

pathways, mGlu Receptors can be divided in three groups: group I (mGlu1 and mGlu5 

receptors subtypes), whose stimulation leads to Phospholipase C – inositol 1,4,5-

trisphosphate (PLC-IP3)-Ca2+ pathway activation and increases intracellular calcium; 

group II (mGlu2 and mGlu3 receptors subtypes) and group III (mGlu4, mGlu6, mGlu7, 

and mGlu8 receptors subtypes), whose stimulation decreases intracellular calcium 

concentrations by inhibiting adenylyl cyclase.  

Both dopamine and glutamate receptors, indeed, may impact calcium-dependent 

intracellular signals (reviewed in [32-34]) that are key triggers of the molecular 

mechanisms underpinning synaptic plasticity, which include both activity dependent 

gene transcription and long-term neural adaptations [35].  

Amongst the wide variety of postsynaptic effectors that control calcium intracellular 

signals are the postsynaptic density (PSD) scaffolding proteins, which play a crucial 

role in the complex postsynaptic architecture of excitatory synapses (for a review, see 

[36]), where the most part of signal transduction events take part that lead to the 

dopamine-glutamate-mediated synaptic plasticity. 

 

 

I.1. Dopamine-glutamate hypothesis of psychosis 

Over thirty years in psychotic disorders basic investigation have moved the attention 

from unidirectional models of pathogenesis to multidirectional and integrated ones. 
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Abnormal dopamine and glutamate functions, as well as abnormal development of 

dopaminergic and glutamatergic neurons, have been implicated in the pathophysiology 

of the major psychotic disorders, such as schizophrenia and bipolar disorder [37-

39,22,40,41], but the underlying mechanisms are still elusive. Both prefrontal cortex 

(PFC) and striatum—which have been reported as dysfunctional in psychosis—receive 

dopaminergic and glutamatergic inputs converging on specific neural populations. The 

MSNs of striatum, indeed, receive dopaminergic projections from the substantia nigra 

and ventral tegmental area (VTA) of the midbrain, as well as they receive glutamatergic 

projections from the PFC [42]. On the other hand, dopamine afferents arising from 

VTA and glutamate afferents arising from hippocampus, thalamus, amygdala and other 

cortical areas commonly target both the pyramidal neurons and the GABA interneurons 

of prefrontal cortex (reviewed in [43]).  

Several studies demonstrated that manipulations of both dopamine and glutamate 

systems may mimic several symptoms of psychotic disorders [44-46]. For instance, 

drugs affecting glutamatergic system may reproduce negative and cognitive symptoms 

of schizophrenia, whereas dopamine agonists principally reproduce certain positive 

symptoms, such as delusions and hallucinations [45].  

Based on the evidence that NMDAR-blocking drugs (such as phencyclidine) could 

induce psychotic manifestations by impacting dopamine neurotransmission, some 

authors have proposed that a NMDAR dysfunction could be a primary step in the 

pathogenesis of psychotic disorders, leading to a subsequent—or concurrent—

dopaminergic dysfunction (Figure 1) [47-49]. 
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Figure 1. NMDA receptor hypofunction hypothesis of schizophrenia.  
NMDA receptors may be pathologically hypofunctional in schizophrenia. Glutamate projections from 
cortex to VTA normally control mesolimbic dopamine release by tonic inhibition. The hypoactivity of 
NMDA receptors on VTA neurons would cause mesolimbic dopamine hyperactivity, which is correlated 
to positive symptoms. Moreover, cortical glutamaetrgic projections also normally boost dopamine 
mesocortical secretion, via intermediate GABA striatal interneurons. The NMDA dysfunction would 
reduce the tonic mesocortical dopoamine release, thereby determining cortical dopamine hypoactivity and 
subsequent negative and cognitive symptoms of schizophrenia. 
 

 

 

I.2. Dopamine and glutamate signaling pathways converge on responsive GABAergic 

neurons in both cortex and striatum 

Several  studies demonstrated that dopamine and glutamate receptors co-localize on the 

same neurons in PFC and striatum, thus posing the basis for their molecular 

postsynaptic interactions. In the PFC, glutamatergic and dopaminergic afferents have 

been described to converge on the same dendritic spines of excitatory pyramidal 

neurons, principally in layer V, forming the so-called “synaptic triads” [50]. D1-like 

dopamine receptors have been shown to localize, with prevalent postsynaptic 

distribution,  at dendritic synapses, [51] where also D2-like dopamine receptors are 



 8 

located, the D2 receptor subtypes (D2Rs) having a preferential localization at layer V, 

whereas the D4 receptor subtypes (D4Rs) being broadly distributed [52]. NMDARs and 

dopamine receptors (DARs) have been described to co-localize in the same postsynaptic 

spines, providing the base for their subcellular interaction at synapses (Fig. 1) [53]. The 

dendritic spines of PFC pyramidal neurons are also enriched with group I and group II 

mGlu receptors, which have essential roles both in controlling dopamine release as well 

as in modulating glutamate influences [54-56]. Nonetheless, both dopamine and 

glutamate receptors have been reported to co-distribute in GABAergic cortical 

interneurons [52,54,57].  

In the striatum, D1-like receptors localize mostly on GABAergic MSNs (i.e. the striatal 

output neurons), preferentially at postsynaptic level, whereas D2-like receptors are 

located both at presynaptic level—acting as autoreceptors on dopaminergic terminals 

and as regulators on glutamatergic afferents—and at postsynaptic level on MSNs (for a 

review, see [58]). Ionotropic glutamate receptors (NMDARs, AMPARs and kainate 

receptors) largely co-localize with dopamine receptors in striatum, both at presynaptic 

level on dopaminergic and glutamatergic afferents and at postsynaptic level on MSNs, 

where they control excitatory currents [59-62]. On the other hand, there is a growing 

interest for metabotropic glutamate receptors distribution in the striatum in recent years, 

because of their close interaction with dopamine receptors. The two group I mGlu 

receptors, indeed, have different localizations in dopaminergic striatal synapses, the 

mGlu1a receptors being primarily presynaptic with regulatory effects, whereas the 

mGlu5 receptors being essentially postsynaptic with prominent synaptic plasticity 

functions [63]. Moreover, mGlu1 receptors seem to segregate principally in striatonigral 

MSNs, which are enriched with D1-like dopamine receptors (the “direct” pathway), 

whereas mGlu5 receptors are mostly located on striatopallidal MSNs, which are 

characteristically enriched with D2-like receptors (the “indirect” pathway) [64].  Group 



 9 

II and III mGlu receptors share no less importat roles than group I mGlu receptors. They 

are, indeed, broadly distributed in dopaminergic and glutamatergic striatal terminals, 

and contribute to regulate dopamine receptors function. Nonetheless, they are largely 

present on GABAergic and cholinergic striatal interneurons [32]. 

Therefore, glutamate and dopamine systems interact at multiple levels and their 

signaling interplays both in cortical and subcortical structures, thus generating an 

entangled modulatory system that likely is the neuroanatomical substrate for the 

pathophysiology of psychotic disorders (Figure 2). However, the reciprocal influence of 

dopamine and glutamate signaling in the neurons where their transductional pathways 

respectively interact relies on a complex interconnection of intracellular calcium-

dependent networks, whose molecular components are still largely elusive.  

 

 
Figure 2. GABA interneurons elaborate multiple neurotransmission signals through a complex 
subsynaptic ultrastructure called Postsynaptic Density.   
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II. Dopamine-glutamate post-synaptic crossroads: the calcium-dependent synaptic 

plasticity network 

As aforementioned, in specific cerebral regions, such as prefrontal cortex and corpus 

striatum, dopamine and glutamate projections converge at GABAergic responsive 

neurons. These neurons integrate, through sophisticated intracellular mechanisms, the 

information originated by the activation of dopamine and glutamate receptors. Thus, 

dopamine and glutamate interact in PFC and striatum in order to influence neural 

excitability and to promote synaptic plasticity (Figure 3). The complex modulation of 

Ca2+ intracellular levels as well as the activation of calcium-dependent signaling 

molecules represent the key substrates for the establishment of synaptic plasticity 

induced by dopamine-glutamate interplay in both PFC and striatum [65,66]. Indeed, 

dopamine D1 and D2 receptors have opposite effects on excitability and calcium levels 

in neurons. D1 receptors (D1Rs) activate adenylyl cyclase and promote cyclic 

Adenosine Monophosphate (cAMP)-dependent protein kinase A (PKA) mechanisms, 

such as calcium-channels activation, whereas D2Rs reduce cAMP formation and PKA 

activity, thus having the final effect of inhibiting neural excitability (extensively 

reviewed in [67]). On the other hand, the stimulation of NMDARs leads to direct and 

indirect activation Ca2+-dependent signaling proteins—such as the calcium-calmodulin-

dependent kinase (CaMK) and the PKA—which are essential to synaptic 

rearrangements [68]. Likewise, mGlu receptors promote calcium-dependent processes 

through the PLC-IP3 pathway, which modulates intracellular calcium levels (reviewed 

in [32]). 

Besides the differences existing between the molecular mechanisms that underlie 

calcium-dependent synaptic plasticity in cortical and striatal areas, several studies agree 

that dopamine signaling is critical to modulate glutamate-induced calcium oscillations 
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in order to promote a correct set up of synaptic plasticity mechanisms, such as in long-

term depression (LTD) and long-term potentiation (LTP) [69,70].  

Although a large part of the signaling cascades involved in calcium-dependent synaptic 

modulation of cortical and striatal dopamine-glutamate synapses have been extensively 

studied (e.g. adenylyl cyclase, cAMP, PKA, PLC-IP3 etc.), a great deal of evidence 

suggests a role for PSD scaffolding proteins, which appear as key determinants of the 

cross-talk between dopamine and glutamate postsynaptic pathways. 

Figure 3. Complex interactions among transductional pathways in the PSD. PSD proteins elaborate 
and integrate multiple transductional pathways starting at different membrane receptors (i.e. glutamate, 
dopamine). Scaffolding proteins (Homer, Shank, PSD-95) provide physical connections among different 
receptors, such as ionotropic and metabotropic glutamate receptors, as well as they link these receptors to 
intracellular calcium stores. Dopamine receptors activate transductional pathways that tightly intermingle 
with glutamatergic ones, through the action of key PSD proteins, such as GSK3, which may participates 
in the elaboration of diverse signals (dopamine, glutamate, Wnt) and regulates neuronal survival and 
differentiation. All these transductional pathways converge in the end on appropriate nuclear targets via 
specific effectors, such as CaMK, MAPKs or Erk, in order to fine modulate long-term activity dependent 
neuronal rearrangements. NMDAR, N-methyl-D-aspartate glutamate receptor; AMPAR, α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptor; mGluR1a/5, metabotropic glutamate 
receptor type 1a/5; TARP, transmembrane AMPA receptors regulating protein or stargazin; PSD-95, 
postsynaptic density protein 95kD; DISC1, disrupted in schizophrenia 1; GSK3, glycogen synthase kinase 
3; PDE4, phosphodiesterase 4; GKAP, guanylate kinase associated protein; H1a, Homer1a immediate-
early inducible protein; PIP2, phosphatydilinositol bisphosphate; DAG, diacylglycerol; IP3, inositol 
1,4,5-trisphosphate; cAMP, cyclic adenosine monophosphate; ER, endoplasmic reticulum; PLC, 
phospholipase C; PKC, protein kinase C; PKA, protein kinase A; CAMK, calcium-calmodulin regulated 
kinase; MAPKs, mitogen-activated protein kinases; Erk, extracellular signal-regulated kinase; MEK, 
MAPK/Erk kinase; Rac1, Ras-related C3 botulinum toxin substrate 1.  
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II.1. Post-Synaptic Density Scaffolding Proteins 

Post-Synaptic Density (PSD) is a specialized structure localized under the postsynaptic 

membrane at excitatory synapses with an approximate thickness of 30-60 nm and a 

diameter of 200-500 nm, and a complex structural anatomy [71]. Many proteins, such as 

ionotropic and metabotropic receptors, receptors-interacting proteins, enzymes, 

scaffolding and cytoskeletal proteins, constitute the complex lattice of the PSD [72]. 

PSD represents a powerful “triage center” where every message reaching the synapse is 

received, elaborated and routed to its own final destination. PSD proteins, indeed, seem 

to be involved in multiple processes, such as synaptic development and plasticity 

[73,74] and control of transductional pathways [75]. Thus, according to several 

observations, each molecular process putatively involved in postsynaptic dopamine-

glutamate interplay should take necessarily place in the PSD, and thereby is controlled 

by PSD proteins [76]. Many PSD proteins (such as the dopamine- and adenosine 3’,5’ 

monophosphate (cAMP)-regulated phosphoprotein pf 32 kD (DARPP-32), CaMKII, 

Neuronal Calcium Sensor-1 (NCS-1), and calcyon) have essential roles in controlling 

and routing both dopamine and glutamate signalings. However, recent attention is 

focused on the so-called “scaffolding” proteins, which constitute an eclectic class of 

PSD proteins with multiple functions (Figure 4) [72]. 

A large number of studies pointed out the possible role of these proteins in the 

dopamine-glutamate intracellular crosslinking, and their implication in the 

pathophysiology of neuropsychiatric disorders originating from dysfunctions in these 

intricate connections [7,77-79]. Moreover, PSD scaffolding proteins seem to be 

essential for calcium-dependent plasticity at excitatory synapses [80]. 

Hereafter, we will describe the main PSD scaffolding proteins that have been implicated 

in dopamine-glutamate calcium-dependent plasticity, because of their direct connection 

with glutamate receptor functions in dopaminergic synapses: Homer, PSD95 and Shank. 
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Figure 4. Postsynaptic scaffolding proteins dynamically organize calcium signaling network in 
neurons. Through multiple protein-protein interactions Homer long isoforms, PSD95 and Shank may 
crosslink transduction pathways starting at both ionotropic (NMDAR, AMPAR) and metabotropic 
(mGlu1a/5) glutamate receptors. Scaffolding proteins also provide complex interactions between  
membrane cation channels—such as voltage-gated calcium channels (VGCC) and transient receptor 
cation channels (TRPC)—with intracellular calcium stores. This network provides the fine-tuning of 
intracellular calcium signaling. Homer1a, the inducible short form of Homer1 proteins, may be induced 
by several stimuli. It acts as dominant negative by disassembling long Homers clusters, thereby 
rearranging the synaptic architecture. Thus, scaffolding proteins may reorganize postsynaptic structure in 
response to synaptic activity in order to establish short- and long-term neuroplastic changes. 
EphR=Ephrin receptor; GRIP=glutamate receptor interacting protein; GKAP=guanylate kinase associated 
protein; CaMKII=calcium/calmodulin dependent kinase II; PKA=protein kinase A; 
TARP=transmembrane AMPA receptors regulating protein; IP3=inositol 1,4,5-trisphosphate; IP3R= IP3 
receptor; DAG=diacylglicerol; PIP2=phosphatidyl-inositol bisphosphate. 
 

 

II.1.a. Homer family of proteins: multimodal adaptors at excitatory synapses 

Homer proteins belong to the class of PSD scaffolding proteins, being mainly localized 

at glutamatergic excitatory synapses [81]. 

The Homer family comprises three principal members (Homer1, 2 and 3) and several 

isoforms and splicing variants, encoded by 12 known genes [82,83].  

The multiple isoforms of Homer may be grouped in “long” (Homer1b/c, 2a/b, 3) and 

“short” proteins (Homer1a and Ania-3), according to the presence of a carboxy-terminal 

coiled-coil tail, which is absent in the short isoforms (for a review see: [36]). 
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Differently from long isoforms, which are constitutively expressed [82,84,83], Homer1a 

and Ania-3 are expressed in an immediate-early gene (IEG)-like fashion and induced by 

several synaptic activating stimuli [81,85]. 

Homer long isoforms may self-associate in multimeric complexes [86] by means of 

their coiled-coil terminals. Conversely, Homer1a and Ania-3 cannot multimerize and, 

when induced, they provide to disrupt the other complexes, acting as “dominant 

negative” thereby influencing synaptic plasticity  [87-89]. 

Homer proteins can interact with many PSD proteins (Fig. 2), such as mGlu receptors, 

IP3 receptors, ryanodine receptors, transient receptor potential channels (TRPC), 

cytoskeletal proteins and the NMDAR-linked protein Shank [81,90,91,82,92,93,83,94]. 

Moreover, Homer long isoforms multimerization is involved in the control of 

glutamate-mediated postsynaptic adjustments [95,96] and in glutamatergic synapses 

development [97]. 

Conversely, Homer1a is induced by stimuli that modify the synaptic architecture, such 

as seizure, neurodevelopment, long-term potentiation, psychostimulant drugs 

[85,73,98,99]. 

The multimodal adaptor properties of Homer proteins implicate them in the multiple 

calcium-dependent processes underpinning synaptic plasticity at excitatory synapses 

[100]. Indeed, Homer proteins binding may allow the cross-talk between intracellular 

proteins that belong to the Ca2+ signaling network, comprising both ionotropic and 

metabotropic glutamate receptors as well as Ca2+-modulators at intracellular stores, such 

as inositol 1,4,5-trisphosphate receptors (IP3Rs) and Ryanodine receptors (RyRs), in 

addition to calcium plasmamembrane channels [101-103]. Through this action of 

clustering, scaffolding and trafficking the most part of the core molecules belonging to 

the Ca2+-dependent intracellular network, Homer proteins have a crucial role in 
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transducing extracellular stimuli to the nucleus as well as in producing concerted 

postsynaptic temporal and spatial patterns for efficient functional outputs (see [104]). 

Finally, recent evidence suggests that Homer long isoforms are implicated in an 

additional Ca2+-independent pathway, which is triggered by the combined activation of 

NMDARs and mGlu receptors and involves the crosstalk between the NMDA receptor-

associated protein PSD-95 and the mGlu1/5 receptors-associated protein Homer1b/c 

[105]. Therefore, given their multifunctional adaptor functions, it is conceivable that 

Homer proteins may have a significant role in the intracellular cross-linking between 

dopamine and glutamate pathways. 

 

 

II.1.b. PSD95: the main PDZ scaffolding protein 

PSD95 belongs to the membrane-associated guanylate kinases (MAGUKs), which are 

modular proteins composed of three N-terminal PDZ domains, followed by a src 

homology 3 (SH3) domain and a guanylate kinase (GK)-like region. The PDZ domain 

of PSD95 allows interaction with specific C-terminal Glu-(Ser/Thr)-Xxx-(Val/Ile) 

recognition motifs, which allow coupling of PSD95 with other signaling molecules 

(Fig. 2), such as Shank [106], as well as with both G-protein coupled receptors [74] and 

NMDA ionotropic glutamate receptors [107]. PSD95 interactions mediate stabilization 

and activity-dependent trafficking of NMDARs [108]. Indeed, early studies reported 

that, although showing a normal NMDARs localization, PSD95 mutant mice exhibit 

deficits in LTP, LTD and spatial learning, suggesting that PSD95 may play a crucial 

role in linking NMDARs to downstream effectors [109].  

PSD95 is also indirectly linked to AMPARs though the interaction with another PSD 

protein, stargazin [110]. The bidirectional interconnection between PSD95 and 

stargazin mediates AMPARs targeting to synaptic membrane. Thus, it is possible that a 
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functional linking between NMDARs and AMPARs may occur through PSD95-

stargazin complex.  

PSD95 may target the phosphokinase A (PKA) to AMPARs via the interaction with the 

A-kinase anchoring protein (AKAP79). This linkage is necessary for the modulation of 

AMPA currents by PKA phosphorylation [111]. Moreover, PSD95 has been 

demonstrated to control also AMPARs surface expression through its own 

palmitoylation cycles [112].  

All the latest studies agree that PSD95 plays a central role in the control of the Ca2+-

dependent network that is downstream of glutamate receptors [113,114], as well as in 

the signaling of Ca2+ and K+ channels that are responsible for synaptic excitability 

[115].  

 

 

II.1.c. ProSAP/Shank family of proteins: major docking stations at PSD 

The three members of the ProSAP/Shank family play a master role at the excitatory 

synapses. Shank proteins possess multiple  domains that allow protein-protein 

interactions, such as ankyrin repeats, SH3, PDZ and SAM (sterile alpha motif) [116]. 

When Shank is efficiently targeted at synaptic sites through a PDZ-dependent 

mechanism, it may promote a regulation of synaptic shape and functions, via the 

interaction with Homer proteins [117]. Moreover, Shank proteins may bridge NMDARs 

and mGlu receptors via the interaction with GKAP (guanylate kinase-associated 

protein), and PSD95, thus likely integrating the signaling pathways starting at those two 

receptors (for review, see [9]. 

The docking functions of Shank may putatively allow an entangled coordination of 

calcium intracellular signaling by glutamate ionotropic and metabotropic receptors (Fig. 

2), through the formation of a platform for the assembly of the other PSD protein 
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complexes [118]. Recent evidence, indeed, suggests that the huge homomultimeric 

sheets formed by Shank proteins may cluster with IP3Rs via Homer interaction, thereby 

controlling Ca2+ intracellular homeostasis [101,88].  

 

 

 

III. Targeting the dopamine-glutamate interaction: role of PSD scaffold proteins in 

antipsychotic mechanisms of action, focus on Homer family 

Among the wide range of molecular dysfunctions reported in psychosis, the unifying 

element seems to be the pervasive underlying calcium signaling abnormalities 

[119,120]. Dysfunctions in calcium homeostasis largely depends upon disruption of 

intracellular networks that provide connections among the principal signaling pathways 

implicated in schizophrenia—i.e. dopamine and glutamate. A major role in these 

interactions is played by PSD scaffolding proteins, which have been extensively 

implicated in the pathophysiology of psychotic disorders as well as in the mechanisms 

of action of antipsychotics, and that could represent valuable candidates for new 

therapeutic strategies based on a dopamine-glutamate integrated targeting. 

Particular attention is being payed to Homer family proteins, which perform master 

organizing functions in the PSD network, by interconnecting the downstream pathways 

starting at both ionotropic and metabotropic glutamate receptors, as well as by linking 

these pathways to the intracellular machinery that controls Ca2+ oscillations.  

 

 

III.1. Homer proteins modulation by dopaminergic and glutamatergic stimuli 

Several studies have demonstrated that the expression of transcript encoding for both 

long and short Homer isoforms may be affected by psychotomimetic drugs modulating 
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either dopaminergic or glutamatergic receptors (Figure 5). Both acute 

methamphetamine and cocaine administration may induce Homer1a mRNA in the 

neocortex of saline-pretreated rats [121]. Also, increased long Homer protein amount in 

the nucleus accumbens has been described after acute cocaine administration [122]. 

Consistent with the role of Homers as scaffold proteins at the crossroad of dopamine 

and glutamate system, drugs acting at NMDARs, such as the non-competitive inhibitor 

PCP, may increase Homer1a mRNA expression in rat PFC prelimbic region and in 

primary auditory cortex two hours after treatment, as well as it may decrease Homer1a 

mRNA expression in retrosplenial cortex and dentate gyrus twenty-four hours after 

treatment [123]. Similarly to PCP, the NMDAR non-competitive antagonist ketamine 

may induce Homer1a mRNA in the ventral striatum and in the core and the shell of the 

nucleus accumbens when acutely administered at subanaesthetic doses [124]. Both PCP 

and ketamine are NMDAR non-competitive antagonists known to cause psychotic 

symptoms in humans and to exacerbate psychotic symptoms in schizophrenia patients 

[125,126]. Moreover, PCP and ketamine are believed to mimic NMDARs hypofunction 

(NRH), which is considered a valuable and heuristic pharmacological model of 

schizophrenic symptoms [14].  
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Figure 5. Dopamine-glutamate postsynaptic interaction. Dopamine and glutamate receptors  may 
activate calcium-dependent and calcium-independent pathways that interact at multiple levels in the 
postsynaptic density.  Postsynaptic scaffolding proteins (Homer, Shank, PSD95) represent key 
components of this cross-talk, as well as they may modulate both calcium-dependent and calcium-
independent downstream cascades. The transductional pathways converge on effector molecules (MAPK-
Erk1/2-CREB) that activate the transcription of genes responsible for synaptic plasticity (e.g c-fos, 
homer1a, zif-268). GKAP=guanylate kinase associated protein; CaMKIV=calcium/calmodulin dependent 
kinase IV; PKA=protein kinase A; PLC=phospholipase C; PKC=protein kinase C; IP3R=inositol 1,4,5-
trisphosphate receptor; MAPK=mitogen-activated kinases; Erk1/2=extracellular signal-regulated kinase; 
cAMP=cyclic adenosine monophosphate; pDARPP-32=dopamine- and cyclic AMP-regulated 
phophoprotein of 32kD; CREB=cyclic AMP response element-binding. 
 

 

III.2. Homer in the pathophysiology of psychotic disorders 

Given its role in activity-dependent synaptic rearrangements, Homer gene and protein 

expression changes in response to dopaminergic and glutamatergic stimuli have been 

considered as fine-tuned mechanisms to preserve synaptic homeostasis [127]. Thus, 

growing evidence has been provided that Homer proteins dysfunctions might be 

involved in the pathophysiology of neuropsychiatric disorders implicating defects in 

synaptic platicity, such as schizophrenia [128,129] (Table 1). The deletion of Homer1 

gene has been demonstrated to induce behavioral and neurochemical abnormalities 
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relevant to animal models of schizophrenia, including altered performances in sensory, 

motor, social, and learning/memory tests [130,79]. Homer1 knockout (KO) mice show 

altered food reward and reinforcement, altered antipsychotic-sensible sensorimotor 

gating, increased motor activation and attenuated habituation of motor activity when 

exposed to a novel environment. These mice also have increased sensitivity to the 

locomotor-activating effects of MK-801 or methamphetamine, decreased extracellular 

glutamate content in the nucleus accumbens and increased content in the PFC, as well 

as blunted increase in PFC extracellular glutamate after cocaine stimulation [79].  

However, long and short Homer1 variants are differently involved in PFC glutamate 

neurotransmission and in development of behaviors relevant to schizophrenia. Actually, 

a recent study demonstrated that the adeno-associated virus (AAV)-mediated restoration 

of either Homer1a or Homer1c in Homer1 KO mice may differently affect synaptic 

functions and consequent behaviors [131]. Homer1c restoration in the PFC of Homer1 

KO mouse reverses aberrant working memory and sensorimotor function, locomotor 

hyperactivity in response to a novel environment, sensitivity to cocaine, and PFC 

glutamate content [131]. By contrast, the AAV-mediated restoration of Homer1a has 

been demonstrated to only reverse alterations in emotional reactivity in mutant animals 

[131]. Notably, these behavioral and neurochemical alterations have been found 

worsened by dopamine-function enhancers, such as cocaine and methamphetamine, and 

were prevented or attenuated by D2 receptor antagonist agents, such as haloperidol.  

Consistent with preclinical findings, several clinical studies have implicated Homer 

genes in schizophrenia pathophysiology. An early study found a significant association 

between a Single Nucleotide Polymorphism (SNP) within intron 4 of Homer1 gene and 

schizophrenia [132]. However, this result was not replicated in an extended sample by 

the same authors [132].   
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More recently, an association between Homer1 gene polymorphisms and clinical 

psychopathology assessments in schizophrenia has been demonstrated. Two Homer1 

polymorphisms (rs2290639, which is an intronic polymorphism, and rs4704560, which 

is a mutation in the 5’-flanking region of Homer1 gene, and could be considered as a 

potential promoter polymorphism) have been associated with scores on Positive and 

Negative Syndrome Scale (PANSS, a rating scale for symptoms severity assessment in 

schizophrenia) subscales at baseline. Namely, the rs2290639 variant was significantly 

associated with scores on PANSS total, positive, and global psychopathology subscales, 

whereas the rs4704560 variant was significantly associated with scores on PANSS 

negative subscale [133]. 

Also, a putative role for Homer2 gene in schizophrenia susceptibility has been 

suggested. Actually, the rs2306428 polymorphic variant has been strongly associated 

with the disease [134].  

The role of Homer proteins in synaptic plasticity has stimulated further studies on their 

involvement in neuropsychiatric diseases in which molecular processes underlying 

cognition are considered dysfunctional, such as ASD. Homer1 gene has been 

recognized as a novel autism-risk gene in a single nucleotide variant (SNV) analysis of 

blood samples from 290 unrelated non-syndromic autism cases and 300 ethnically-

matched controls [135]. Several rare and potentially damaging variants have been 

identified in the autism population that co-segregate with the disorder and affect 

functionally relevant protein regions or regulatory sequences [135]. Intriguingly, the 

interaction between long Homer isoforms and mGluR5 is strongly diminished in Fmr1 

KO mice, a model of Fragile X Syndrome (an inherited cause of intellectual disability 

and autism) [136]. In this model, the genetic deletion of Homer1a may restore the long 

Homer-mGluR5 interaction and correct altered phenotypes, thus suggesting a potential 

Homer-related mechanism of mGluR5 dysfunction in this autism-related disease [137]. 
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In summary, Homer proteins are key proteins of the PSD, involved in postsynaptic 

glutamatergic signaling and in dopamine-glutamate cross-talk. Long Homers act as 

scaffolding proteins, bridging glutamate receptors with their intracellular effectors. 

Short Homers disrupt these clusters in a space- and time-controlled fashion. This 

balance contributes to finely regulate multiple biological functions, such as Ca2+ 

dynamics in dendritic spine microdomains, whose disruption may concur to 

dysfunctions of synaptic plasticity and aberrant behavioral manifestations [138].      
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III.3.  Homer modulation by antipsychotic drugs 

Among Homer genes, the inducible immediate-early gene isoform Homer1a is known 

to respond to dopaminergic manipulations [139]. A number of preclinical studies have 

shown that Homer1a expression may be induced by acute antipsychotic administration 

in brain regions relevant to schizophrenia pathophysiology, and may be differently 

modulated by typical and atypical antipsychotics, potentially according to their 

dopaminergic receptor profile. The high D2R-blocking antipsychotic haloperidol has 

been shown to induce Homer1a in all striatal subregions, with prominent impact on the 

dorsal and lateral regions, and in both the core and the shell of the nucleus accumbens 

[85,17,140]. Another antipsychotic with high D2R affinity, (-)-sulpiride, may induce 

Homer1a in the ventrolateral subregion of the caudate-putamen and in the core of the 

accumbens [20]. Differently from typical antipsychotics, atypical antipsychotics have 

been demonstrated to induce a Homer1a region-specific expression depending also on 

their affinity to receptors other than the dopaminergic ones, such as the serotonergic 

receptors, as well as on the dose administered.  Risperidone, which has elevated D2R 

affinity but lower maximal binding effect compared to haloperidol [141], may induce 

Homer1a expression in the lateral regions of the caudate-putamen only [20]. 

Olanzapine-induced expression of Homer1a gene has been reported in the core of the 

nucleus accumbens only [85], although high doses of the compound may also elicit 

Homer1a expression in the lateral regions of the caudate-putamen [20]. Ziprasidone, a 

high D2R affinity atypical antipsychotic, differentially impacts Homer1a expression, 

according to dosage. At low doses, ziprasidone may produce a striatum-specific 

Homer1a induction, while a wider gene induction, spreading also to the cortex and the 

nucleus accumbens, has been found at high doses, probably depending on higher 

involvement of serotonergic receptors [15]. Moreover, the expression of Homer1a in 

the striatum by ziprasidone is significantly higher at high doses, which are correlated to 
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the liability to extrapyramidal side effects in animal models [142].  Also the dopamine 

partial agonist aripiprazole has been demonstrated to differentially modulate Homer1a 

expression depending on the dose. A strong induction of Homer1a expression has been 

observed in all caudate-putamen subregions by acute administration of low aripiprazole 

doses [17]. High aripiprazole doses have no significant effects in the striatum but may 

induce Homer1a expression in the cingulate cortex and in the inner and outer layers of 

the frontal cortex [17]. These dose-dependent effects may be likely due to aripiprazole 

mixed agonist/antagonist activity at pre- and postsynaptic D2Rs. Basically, low 

aripiprazole doses are supposed to exert a prevalent antagonist activity at postsynaptic 

D2Rs, thus directly inducing Homer1a striatal expression [143], whereas high doses 

may exert a prevalent agonist activity at presynaptic D2 autoreceptors, thereby having 

scarce effects on Homer1a expression [17]. 

Atypical antipsychotics with low D2R affinity, such as clozapine, or with unique D2R 

dissociation kinetics, such as quetiapine and sertindole, have been observed to modulate 

Homer1a expression with specific patterns in striatum. Indeed, clozapine has been 

shown to acutely induce Homer1a expression in the nucleus accumbens only [17,15]. 

Acute clozapine may also induce Homer1a expression in the cortex (in the anterior 

cingulate, medial agranular, somatosensory and insular cortices), probably due to its 

impact on serotonergic receptors [17,15]. Quetiapine, a fast dissociating D2R antagonist, 

has been found to slightly induce Homer1a striatal expression [140]. However, 

quetiapine may induce a robust Homer1a expression in the cortex when acutely 

administered, whereas significantly decreasing  it in chronic paradigms [19]. This 

feature may strengthen the hypothesis of a combined dopaminergic-serotonergic control 

of Homer1a expression in the cortex. Indeed, acute administration of the serotonergic-

selective antipsychotic sertindole has been found to reduce Homer1a expression in the 

somatosensory and insular cortices [20]. 
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Taken together, these lines of evidence support the view that Homer1a could represent a 

molecular sensor of glutamatergic postsynaptic involvement in the mechanism of action 

of antipsychotics. Moreover, since the above-mentioned findings suggest that Homer1a 

induction by antipsychotics may be related to their propensity to perturb dopamine 

transmission, the pattern of Homer1a expression may be considered as a predictor of the 

liability of each antipsychotic to induce extrapyramidal side effects [140]. 

Homer1a has been demonstrated to preserve its expression profile in the striatum after 

chronic antipsychotic administration, and it seems to be unaffected by the tolerance or 

desensitization phenomena observed for other immediate-early genes, such as c-fos 

[144,145]. Indeed, haloperidol has been demonstrated to modulate Homer1a expression 

with similar patterns in both acute and chronic paradigms [17,21]. Nonetheless, some 

adaptive changes should not be ruled out after chronic antipsychotic administration. 

Chronic clozapine treatment, as opposed to acute treatment, has been reported to 

produce no significant Homer1a changes in the caudate-putamen, whereas it may 

decrease Homer1a expression in the cingulate cortex and in the inner layers of both 

frontal and parietal cortices.  

In opposition to what observed after acute treatment, chronic ziprasidone may induce 

Homer1a expression only in the lateral regions of the caudate-putamen and in the core 

of the nucleus accumbens [15]. Lastly, chronic aripiprazole, differently from acute 

administration, has been demonstrated to induce Homer1a in the lateral regions of the 

caudate-putamen while reducing it in the cingulate and in the inner layers of the frontal 

cortex [17]. These effects might be part of an adaptive response of the glutamatergic 

system to chronic antipsychotic treatment [17]. Overall, despite Homer1a modulation 

by antipsychotics appears to be not susceptible of tolerance, acute or chronic treatment 

may result in different patterns of gene expression, probably accounting for neuroplastic 

adaptations triggered by prolonged treatments. 
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Besides the inducible isoform Homer1a, dopaminergic drugs have also been 

demonstrated to modulate the expression of the constitutive isoforms of Homer1 gene, 

thus putatively inducing direct rearrangements in synaptic architecture. The acute 

administration of selective antagonists at D2Rs and D4Rs, as well as of a D2R partial 

agonist (i.e. terguride), has been demonstrated to reduce Homer1b/c expression in the 

striatum and in cortical subregions [143]. Nevertheless, the D1R selective antagonist 

SCH-23390 has been described to increase Homer1b/c expression in the core of the 

nucleus accumbens, while reducing it in the motor cortex [143]. However, the 

evaluation of Homer1b/c modulation after acute or chronic antipsychotic administration 

has provided contrasting results. Acute haloperidol treatment, indeed, has been 

observed to reduce Homer1b/c expression in the ventrolateral caudate-putamen, in the 

shell of the nucleus accumbens and in the motor, somatosensory and insular cortices 

[143], whereas no significant differences in expression have been found after a 16-day 

chronic treatment by haloperidol or quetiapine [146]. However, treatment duration may 

be a critical factor to cause changes in Homer1b/c expression, which has been found to 

increase in both striatum and cortex following a 21-day haloperidol or sertindole 

treatment [21].  

Taken together, these data suggest that Homer1 genes might be crucial in the 

pathogenesis and in the severity of psychotic symptoms, as well as in determining the 

efficacy of antipsychotic drugs. 

 

 

IV. Intracellular pathways of antipsychotic combined therapies: dissecting the 

molecular correlates of real world psychopharmacotherapy 

As discussed before, dysfunctions in the interplay among multiple neurotransmitter 

systems have been implicated in the pathophysiology of major psychiatric disorders, 
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such as schizophrenia, bipolar disorder or major depression, which display a wide range 

of behavioral, emotional and cognitive alterations [147]. Particularly, schizophrenia is a 

highly complex and multidimensional disorder, which shows a large number of unmet 

needs in terms of positive, negative and cognitive symptoms control in patients by 

current available pharmacotherapy. Indeed, an extimated 30% of patients do not 

satisfactorily respond to present treatments [148], and only a small percentage of 

responding patients is able to restart a normal working life.  

Thus, the complex clusters of symptoms showed by schizophrenic patients often need 

more than one psychiatric drug from the same or a different pharmacological class, 

particularly under the following conditions: 1) when monotherapy provides insufficient 

improvement of the core symptoms; 2) when there are concurrent additional symptoms 

requiring more than one class of medications; 3) to improve tolerability, by using two 

compounds under dose thresholds to limit side effects [149].  

Currently, the choice of antipsychotic combinations is based on empirical paradigms 

guided by clinical responses [147]. Some empirically-supported antipsychotic 

combination therapies include the following: 1) the combination of atypical 

antipsychotics with other atypical or typical antipsychotics in clozapine-refractory 

schizophrenia [150]; 2) the addition of antipsychotics to mood stabilizers for acute 

mania [151] or for maintenance in bipolar disorder [152]; 3) the addition of 

antipsychotics to antidepressants in treatment-resistant major depression or in psychotic 

depression [153], as well as the addition of antidepressants to antipsychotics to control 

prominent negative symptoms in chronic schizophrenia [154].  
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IV.1. Indications and clinical efficacy of common antipsychotic combination 

strategies 

 

IV.1.a. Antipsychotics and antidepressants 

First and second generation antipsychotics (FGAs, SGAs, respectively) are the mainstay 

treatment of schizophrenia, but increasing evidence suggests that their efficacy in the 

control of negative symptoms (such as apathy, anhedonia, avolition, affective flattening 

and social withdrawal) is limited [155]. The co-administration of SSRIs with typical or 

atypical antipsychotics has been considered a potential  useful option for chronic 

schizophrenic patients with persistent negative symptoms. Two meta-analyses 

[156,157] showed increased efficacy of fluoxetine when combined with typical 

antipsychotics. Moreover, also ritanserin and trazodone have been considered useful as 

add-on therapies for treating negative symptoms in schizophrenia [157]. Clinical 

benefits, mostly on negative symptoms, were found in small trials combining ritanserin 

with risperidone [158] and in trials assessing the combination of mirtazapine with either 

FGAs [159,160] or risperidone [161] or clozapine [162]. Besides its use is accepted as 

add-on antidepressant therapy to olanzapine in schizophrenia [163], fluvoxamine has 

recently gained interest also due to its ability to enhance efficacy and reduce side effects 

in clozapine-treated schizophrenic patients, probably by the inhibition of clozapine 

oxidative metabolism by CYP1A2 with the subsequent decrease in plasma levels of the 

clozapine metabolite norclozapine, which is considered responsible for most adverse 

effects related to clozapine treatment [164].  

Antipsychotic-antidepressant combinations have been also studied in depressive 

diseases. Although SSRI antidepressants are first-line treatment for major depression, 

they are reported to significantly reduce depressive symptoms in only 40-60% of 

patients when administered in monotherapy [165]. Second generation antipsychotics 
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have been proposed as potentially helpful augmenting agents in treatment-resistant 

depression or in psychotic depression [166] [153], and have become the second most 

used add-on strategy despite the lower number of studies as compared to other 

treatment options, such as lithium [167]. However, the most recent meta-analyses warn 

clinicians to be cautious in choosing antipsychotic medications as adjunctive strategies 

in depressive disorders, mainly because of the actual moderate efficacy on  symptoms, 

the lack of benefits with regard to quality of life, as well as the increase in treatment-

related adverse events [168]. Three atypical antipsychotics (i.e. aripiprazole, quetiapine, 

and olanzapine) in the USA and one (i.e. quetiapine, extended release formulation) in 

Europe have received regulatory approval for combined use with antidepressants for 

treatment-resistant major depression in adults [169]. However, early studies on 

antipsychotics-antidepressants combination in major depression reported that the 

combination of fluoxetine and olanzapine might be more rapid and effective in 

treatment-resistant unipolar depression as compared to each agent alone [170]. Despite 

a negative result from a larger clinical sample [171], other large randomized clinical 

trials provided evidence of greater effects, in terms of both clinical efficacy and rapidity 

of action, for this combination treatment [172]. Therefore, in 2009 the olanzapine-

fluoxetine combination has been approved by FDA for the treatment of resistant 

unipolar and bipolar depression, even if it was reported to induce an increased risk of 

weight gain and metabolic alterations [173].  

The efficacy of olanzapine-fluoxetine combination has also been tested in the treatment 

of major depression with psychotic features. Indeed, olanzapine plus fluoxetine 

combination shows greater efficacy as compared to fluoxetine alone in patients with 

psychotic depression [174]. Recently, the potential efficacy and safety of aripiprazole 

augmentation in treatment-resistant psychotic major depressive disorder has been 
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reported [175] at both high and low dosages, either when combined with escitalopram 

[176] or with sertraline [177]. 

 

 

IV.1.b. Antipsychotics and mood stabilizers 

As suggested by international guidelines [178], monotherapy with mood stabilizers or 

antipsychotics represents the first choice in the treatment of manic phase of bipolar 

disorder (mild and moderate mania). Combined therapies (lithium or valproate plus 

short-term atypical antipsychotics) are indicated for severe mania (in order to gain a 

more rapid control of euphoric, dysphoric, mixed or psychotic symptomatology) or as a 

second line in mild and moderate mania after switching medication.  

With respect to acute mania treatment, some studies reported a shorter time to remission 

and a higher remission rates in bipolar patients when treated with olanzapine in 

combination with either valproate or lithium, as compared with valproate or lithium 

alone [179]. Greater efficacy as compared to monotherapies have been described in 

manic or mixed episodes also for the combined treatments with risperidone or 

quetiapine plus lithium or valproate [180-182].  

Recent evidence suggests that antipsychotic medications, in addition to their action on 

acute manic symptoms, may also have a role in treating other phases of bipolar disorder 

[183]. Clinical trials in depressed bipolar patients demonstrated the efficacy and safety 

of monotherapy with SGAs (such as aripiprazole, olanzapine, and quetiapine) in the 

management of bipolar depression [184-186]. FDA and EMEA have registered 

quetiapine and olanzapine also for this indication, either in monotherapy or in 

combination with mood stabilizers. FDA also approved risperidone, quetiapine, 

olanzapine and ziprasidone (quetiapine, aripiprazole, and olanzapine in Europe), alone 

or in combination with mood stabilizers, for the maintenance treatment in bipolar 
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disorder [187,188]. These antipsychotics are believed to be able in treating euphoric or 

depressive phases with a low risk of inducing mood transitions, therefore acting as long-

term mood stabilizers [189].    

In addition to their well-established use for the treatment of bipolar disorder, in the last 

30 years the mood stabilizers lithium and valproate have been empirically used as an 

augmentation strategy in schizophrenia, in order to improve the outcome of treatment-

resistant schizophrenia or schizophrenia with persistent symptoms of hostility and 

anxiety [190].  

Earlier studies on acute exacerbation of chronic schizophrenia demonstrated that the 

addition of valproate to haloperidol may result in greater improvements from baseline at 

the Clinical Global Impression Scale for Schizophrenia (CGI-S) and at the Brief 

Psychiatric Rating Scale (BPRS) than those observed with haloperidol monotherapy 

[191]. However, results from clinical studies on combined antipsychotic-mood 

stabilizing treatment in acute episodes of schizophrenia are often non conclusive. 

Valproate added to risperidone or olanzapine has been demonstrated to induce earlier 

improvement in the Positive and Negative Syndrome Scale (PANSS) total score and 

PANSS positive symptoms scale scores as compared to antipsychotic treatment alone 

[192]. However, in a subsequent study, a prolonged treatment with combined 

risperidone or olanzapine plus valproate treatment in acute schizophrenic exacerbations 

failed to demonstrate an advantage over antipsychotic monotherapy, and no differences 

were displayed also in the onset of side effects [193]. Thus, at present there are no 

clinical data that effectively support, but also contest, the use of valproate as add-on 

therapy in schizophrenia [194]. However, some evidence supports the view that 

valproate may be used to treat specific and rare effects that may onset during 

antipsychotic therapy, such as functional hallucinations [195] or to impact 
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schizophrenia-like symptoms derived from brain damage, such as in cerebellar 

hemorrhage, which may be resistant to antipsychotic treatment [196].  

In schizophrenic inpatients with persistent aggressive behavior, the addition of 

valproate or topiramate to standard antipsychotic medication has been showed to 

significantly reduce average scores on the Overt Aggression Scale (OAS), with 

valproate add-on being more effective than topiramate add-on in decreasing the 

intensity of agitation episodes and the number of psychotic disorganization episodes 

[197].  

Although lithium has been used in the past as an augmentation strategy in schizophrenia 

treatment, at present there is no trial-based evidence that lithium add-on strategies may 

be more effective than antipsychotic monotherapies in schizophrenic patients. Indeed, a 

recent systematic review evaluated 11 studies assessing the efficacy and safety of 

lithium in addition to typical or atypical antipsychotics versus antipsychotics alone in 

schizophrenia, schizophrenia-like psychoses and schizoaffective psychoses. Although 

the participants who received lithium augmentation had a clinically significant higher 

response, when participants with schizoaffective disorders were excluded from the 

analysis the advantage of lithium augmentation in schizophrenic patients became not 

significant [190]. Furthermore, a significant number of participants receiving lithium 

augmentation left the studies before completion, suggesting a lower compliance to 

lithium augmentation compared to those receiving antipsychotics alone [190]. 

Even if lithium add-on strategy to antipsychotics lacks compelling evidence, emerging 

interest is focusing on the use of lithium in particular subsets of schizophrenic patients. 

For instance, provided the beneficial effects of lithium treatment in keeping stable white 

blood cells levels in patients, the add-on treatment with lithium has been regarded as 

useful in order to enable clozapine administration in schizophrenic patients with pre-

existent neutropenia [198,199], or in children-onset treatment resistant schizophrenic 
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patients, in which clozapine treatment has been demonstrated to induce high rates of 

neutropenia [200]. However, high caution should be taken into account when 

considering these therapeutic strategies, evaluating the potential hematological risks of 

lithium add-on to clozapine. 

 

 

IV.1.c. Antipsychotics and bendodiazepines  

In clinical practice in psychiatry, benzodiazepines are traditionally used to treat anxiety 

and sleep disorders [201]. However, benzodiazepines are usually prescribed in addition 

to antipsychotics early in a psychotic episode for a rapid relief of agitation and 

disruptive behaviors [202], and may be administered subchronically to control anxiety 

or motor disturbances in psychotic patients [203]. In this view, several studies have 

pointed out that aggressive behaviors and schizophrenia are tightly related [204]. 

However, matter of debate is whether aggression and anxiety might be originated by the 

onset of psychotic symptoms (above all “positive” ones, such as paranoid delusions or 

hallucinations), which may act as stressors by increasing anxiety levels and making 

patients “violence-prone” [205], or if aggression may derive from the underlying 

personality dysfunctions of psychotic patients, thereby being not a “symptom” of 

schizophrenia, but a premeditated behavior depending on pre-existent aggressive 

temperament [206]. 

A recent Cochrane review evaluating the global evidence from 13 placebo-controlled 

randomized clinical trials stated that, in terms of efficacy and safety, adding a 

benzodiazepine to antipsychotics may be as acceptable as antipsychotic monotherapy 

for schizophrenic patients, at least in clinical trials [207]. In particular, in the very short 

term, the addition of benzodiazepines to antipsychotics has been described to improve 

the global state of people with schizophrenia in several studies. This finding, likely 
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associated to the anxiolytic properties of denzodiazepines, is statistically significant at 

30 minutes after administration, but the difference diminishes over time, with only a 

trend at 60 minutes and no difference occurring at 12 hours or 3 weeks. Therefore, the 

therapeutic advantage of benzodiazepines add-on may be helpful in the early acute 

phases of a psychotic episode, taking cautiously into account the dosages, in order to 

avoid too pronounced sedation. 

 

 

IV.1.d. Antipsychotics plus antipsychotics 

In agreement with schizophrenia evidence-based guidelines, combination of two or 

more antipsychotic drugs is currently recommended only as a “last-resort” therapeutic 

option for schizophrenia unresponsive to an optimized clozapine monotherapy [208]. 

However, combined antipsychotic treatment for schizophrenia patients is relatively 

frequent in routine clinical practice, with an increasing prevalence in recent years 

[209,210,149].  

A second antipsychotic may be added to the first one based on the following clinical 

rationales: 1) to manage particular symptoms refractory to antipsychotic monotherapy 

[150]; 2) to avoid high-dose prescribing of an individual antipsychotic that would 

expose the patient to a higher risk of adverse effects [150]; 3) to counteract a particular 

adverse effect caused by the first antipsychotic—i.e. the addition of aripiprazole has 

been evaluated to reduce hyperprolactinemia in patients initially treated by high D2 

receptor blocking drugs, such as haloperidol or risperidone [211-213]—; 4) multiple 

antipsychotic treatments may result from an incomplete switch from one antipsychotic 

to another, if clinical improvement was found during the period of cross-tapering [214]. 

The most frequent case of antipsychotic-antipsychotic add-on strategy is the 

augmentation of clozapine with a second antipsychotic in treatment-refractory 
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schizophrenia not fully responding to clozapine [215]. The theoretical basis for 

augmentation of clozapine rely on the attempt to enforce its pleiotropic receptor effects 

with agents provided of relatively more selective D2 receptor antagonism [216-218]. 

However, the augmentation of clozapine with a second antipsychotic is modestly 

superior to placebo, although equally well tolerated [215]. Converging evidence 

indicate sulpiride, amisulpiride and aripiprazole as favorable options for clozapine 

augmentation [219,218] ì, with the latter showing the best impact on metabolic 

parameters when combined with clozapine [209,220-222].  

Overall, clinical evidence for the efficacy of antipsychotic polytherapy in refractory 

schizophrenia or in other clinical conditions remains limited. Only a few open label 

studies and case-series reports have focused on the attempt to combine different 

antipsychotics by virtue of their different receptor profiles. Combinations of olanzapine 

with risperidone [223] or sulpiride [224] and quetiapine with risperidone [225] or 

amisulpride [226] have been described to provide some clinical benefits. In an open-

label 8-week trial, the combined olanzapine-risperidone treatment in schizophrenia 

patients unresponsive to sequential trials of monotherapy with olanzapine, quetiapine 

and risperidone showed a therapeutic response (post-treatment BPRS total score <70% 

of the pre-treatment value), but also higher rates of hyperprolactinemia, and increase in 

total cholesterol and weight gain [227].  

The addition of aripiprazole to either quetiapine or risperidone in schizophrenic and 

schizoaffective patients unresponsive to monotherapy, although not associated with 

improvement of overall psychopathology, has been reported to be generally safe, well 

tolerated and potentially useful in particular patients subpopulation, for example in 

cases of hyperprolactinemia [212]. Moreover, aripiprazole add-on has been 

demonstrated to improve obsessive-compulsive symptoms in clozapine-treated and 

olanzapine-treated schizophrenic patients [228,229].  
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However, the real efficacy on symptoms, as well as the risks associated to such SGA 

combination-strategies remain to be further evaluated in larger and longer-term 

controlled clinical trials. 

 

 

IV.1.d. Multitargeting antipsychotics 

Combination therapies are a highly valid tool to counteract the complex cortege of 

symptoms belonging to major psychiatric diseases. However, combining drugs often 

means combining side effects, and sometimes generating new side effects due to 

pharmacokinetic or pharmacodynamics interactions amongst the drugs we are 

combining. Thus, recent research on novel antipsychotics has tried to move the attention 

on the development of drugs acting on multiple selected targets. In theory, these agents 

should provide a more effective approach in the treatment the complex symptoms of 

schizophrenia, as well as bipolar disorder [230,231]. These studies are based on the 

increased efficacy of atypical antipsychotics as compared to typical ones in treating 

negative symptoms, likely due to the ability of these drugs to act on serotonergic, 

noradrenergic and glutamatergic targets [232]. However, despite the diversity in 

pharmacological profiles of current antipsychotics, the differences in 

pharmacodynamics seem to be primarily translated in reduced liability to induce side 

effects and in ameliored tolerability, rather than in increased treatment efficacy 

[233,234]. Moreover, the reduced risk of hyperprolactinemia or motor side effects by 

new antipsychotics is often counterbalanced by increased cardiovascular risk by weight 

gain or metabolic dysfunctions [235]. Thus, new drugs should be virtually devoided of 

metabolic and motor side effects, while having increased efficacy in treating negative 

and cognitive symptoms and maintaining relief of positive symptoms. 
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The prototypical antipsychotic which responds to these newly developed 

“multitargeting” strategies is asenapine. Asenapine shows a broad multi-receptorial 

binding affinity for all serotonergic and dopaminergic receptors, with equal affinity for 

D2 and D1 dopamine receptors, as well as for alpha adrenergic receptors, and no 

affinity for muscarinic receptors [236].  It has been demonstrated to promote dopamine, 

serotonin and noradrenaline release in cortex and dopamine release in nucleus 

accumbens at doses that have antipsychotic activity in animal behavioral studies [237].  

Moreover, thanks to its unique multi-receptor profile, asenapine may differentially 

impact glutamatergic and dopaminergic systems in cortical and subcortical regions: it, 

in fact, enhances glutamate NMDA-mediated currents in pyramidal cortical neurons, 

while it decreases NMDA receptor activity in caudate-putamen and nucleus accumbens; 

moreover, the chronic treatment with potentiates AMPA receptor activity in 

hippocampus [238]. On the other hand, asenapine may specifically enhance the 

dopamine bursts from VTA to the medial prefrontal cortex and the nucleus accumbens, 

and of noradrenaline from locus coeruleus to the cortex [237]. Recent studies have 

demonstrated that asenapine may exert brain region-specific differential effects on 

dopamine, serotonin and glutamate receptors depending on the dose administered [239-

241].  

Recent studies demonstrated a good efficacy and safety of asenapine in treating both 

schizophrenia and bipolar disorder [242,243], although literature metanalyses suggested 

that asenapine and the other new multitargeting antipsychotics on the market (i.e. 

lurasidone) display no significant differences in treatment efficacy as compared to 

“older” antipsychotics [244]. However, significant impact on cognitive and negative 

symptoms have been reported by patient’s outcome interviews, as compared to other 

antipsychotics [245].  
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V. Aims of the research 

Although still dearth at present, data from preclinical studies suggest that combined 

therapies may induce molecular changes that are sharply different, and often 

synergistic, as compared to those induced by individually administered drugs.  

For instance, several studies describe a specific impact of antipsychotic-SSRI 

combination treatment on the expression of immediate-early genes and neurotrophic 

factors, different from that obtained by the administration of each drug alone [246,247]. 

Moreover, preclinical studies have also demonstrated that both mood stabilizers and 

antipsychotics may impact common intracellular target molecules that are involved in 

the transductional pathways of dopamine signaling (i.e. AKT/GSK-3 pathway, MAP 

kinases pathway, postsynaptic density proteins) [138]. Finally, new multitargeting 

drugs, such as asenapine, have been demonstrated to concurrently impact different 

neurotransmission systems [248], which may crosslink at crucial steps along neural 

transductional pathways, thereby synergistically reinforce downstream signaling in 

selected brain areas deputed to control cognitive and behavioral functions. 

These observations support the hypothesis that convergence at crucial steps of 

intracellular dopaminergic pathways could be responsible for synergistic effects 

obtained by the co-administration of apparently heterogeneous compounds [249].  

Understanding the biological mechanisms by which combined and multitargeting 

treatments act could enable a targeted selection of drugs, as well as provide further 

insights into the pathophysiology of neuropsychiatric symptoms [147].  

Here we provide a set of preclinical studies whose aim was to investigate the 

postsynaptic molecular responses to either combined treatment strategies or novel 

multitargeting agents currently used in psychiatric clinical practice.  

First aim was to evaluate whether combined treatments may impact differentially 

postsynaptic genes/proteins as compared to treatments individually administered. With 
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regards to multitargeting agents, we compared them to “older” antipsychotics in order 

to evaluate the different impact on postsynaptic molecules. Second goal was to 

determine whether combined strategies or multitargeting agents may activate 

postsynaptic transcripts in brain areas that are different from that elicited by standard 

therapies, and that may suggest better clinical efficacy on some cluster symptoms, or 

possibly some new adverse effects. Through topographic analysis, we aimed at 

providing imagines of this differential region-specific brain gene expression by the 

distinct compounds evaluated. 

Finally, we aimed at investigating if the different gene/protein modulation by agents 

administered was elicited in functionally correlated brain areas and whether animal 

behavior responses may relate to such a selective cortical-subcortical integrated 

postsynaptic molecules modulation. 
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VI. Study n.1: acute and chronic effects of combined antipsychotic-mood 

stabilizing treatment on the expression of cortical and striatal postsynaptic density 

genes 

 

The frequent use of antipsychotics/mood stabilizer combination prompted us to 

investigate the effect of such co-administration on the expression of brain genes that 

have been putatively implicated in synaptic remodeling. Moreover, in order to resemble 

more closely the treatment conditions of bipolar disorder in clinical practice, we also 

compared the effects on gene expression of an antidepressant agent widely used in 

bipolar depression (citalopram) with a low dose of quetiapine, which has been 

suggested to display antidepressant actions [250]. Indeed, as recently reviewed [251], 

the use of antidepressants in bipolar depression is common in clinical practice, but is 

rarely countenanced, preferring the initial prescription of a mood stabilizer or an 

antipsychotic, such as quetiapine, which yields a well-established effect on dopamine 

and serotonin systems, both strongly implicated in the pathogenesis of bipolar disorder 

[252]. The detection of changes in brain gene expression after the administration of 

mood stabilizers, alone or in combination with antipsychotics, and of antidepressants in 

animal models of drug treatment, may represent a valuable strategy to explore their key 

molecular targets in a pharmacological paradigm that closely resemble the real world of 

the pharmacotherapy of bipolar disorder.  

Thus we investigated, in both acute and chronic paradigms, the expression of specific 

postsynaptic density genes (Homer1a, Homer1b/c, PSD95, GSK3b, and ERK) after the 

administration of haloperidol, quetiapine (both at high and low dosages), valproate, a 

combination of haloperidol plus valproate or quetiapine plus valproate, and citalopram.  

However, the genes selected for the study are a small subset of genes whose function 

has been correlated to the mechanisms of action of antipsychotics, antidepressants, and 
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mood stabilizers and that, due to their specific intracellular interactions, may represent a 

putative crossroad between the molecular pathways activated by the drugs investigated. 

Homer genes encode for a family of scaffolding proteins located at the postsynaptic 

density (PSD) of glutamatergic synapses that act as multimodal adaptors along different 

transduction pathways, above all the dopaminergic and the glutamatergic [36,253]. 

Changes in gene expression of PSD molecules, as Homers, are predicted to underlie 

changes in the composition and function of this ultra-structure.  

Homers are subdivided in constitutive (Homer1b/c, Homer2, Homer3) and inducible 

isoforms (Homer1a, and its splice variant ania-3). Constitutive Homers interact with 

multiple PSD targets and are able to multimerize [93,83], while inducible isoforms act 

as “dominant negative”, disrupting long-Homers clusters. Long Homers have been 

described to physically bridge metabotropic glutamate receptors type I (mGluRsI) to 

inositol 1,4,5-trisphosphate receptors (IP3Rs) (Tu et al., 1998). Moreover, the 

multimeric Homer clusters may link the N-methyl-D-aspartate glutamate receptors 

(NMDARs) with mGluRsI through a Shank-GKAP-PSD95 complex [92]. The 

induction of Homer1a has been shown to transiently and directly modify several 

biological functions involved in transduction of synaptic signal [254,255]. We have 

demonstrated that Homer1a is selectively induced by antagonists at dopamine D2 

receptors in striatal regions [143]. Consistently with this finding, our early studies have 

shown that Homer1a is differentially induced in striatum by typical and atypical 

antipsychotics [85,99,140,17]. Homer has been involved in several neuropsychiatric 

disorders [136,128,79] and has been implicated in cognition as well as in motor 

dysfunction [256]. Thus, Homers may be candidate genes for behavioral diseases and 

for their pharmacotherapy.  

GSK3b is an ubiquitous kinase which has been found in both neurons and glia, where it 

is constitutively active and component of diverse signaling pathways [257], with 
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multiple targets [258]. The best studied pathways in which GSK3b has been involved 

are: the insulin/insulin like growth factor signaling, the neurotrophic factor signaling, 

and the Wnt signaling. Among these, the PI3 kinase-Akt pathway, which could 

modulate GSK3b functions, has been well established in mediating neurotrophic and 

neuroprotective effects. Recent evidence reported a direct regulation of GSK3b function 

by mood stabilizing agents, such as lithium and valproate (see [259] for a review), and a 

possible implication of GSK3b gene in the pathogenesis of bipolar disorder and in the 

response to antimanic agents [260-262]. Furthermore, GSK3b may be modulated by 

several antipsychotics, such as clozapine, haloperidol and risperidone [263-265], and by 

antidepressants [266,267]. Finally, more recent studies have implicated the Akt-GSK3b 

signaling in behavioral changes induced by drugs which may impact both dopaminergic 

and serotonergic systems, with strong implications in clinical practice [249]. 

Erk (Extracellular signal-regulated kinase) 1 and 2 are involved in the regulation of 

multiple cellular activities, including inducible gene expression [268]. Several stimuli, 

including glutamate stimulation, have been demonstrated to modulate Erk1/2 

phosphorylation/dephosphorylation status [269]. It is believed that Erk has unique 

implications in the regulation of neuronal signal transduction, being considered a crucial 

integrator of multiple signaling pathways converging on the modulation of important 

transcription factors (i.e. Elk1, CREB), that regulate the expression of essential cellular 

genes, such as c-fos [269,270]. 

Recent studies have demonstrated a significant increase in Erk activity by the 

synergistic activation of ionotropic and metabotropic glutamate receptors, depending on 

the crosstalk between the NMDAR-associated protein PSD95 and the mGluR5-linked 

adaptor Homer 1b/c [105]. Furthermore, the mood stabilizers lithium and valproate 

have been shown to stimulate the Erk pathway in rat hippocampus and frontal cortex, so 

inducing neuronal growth and neurogenesis [271,272]. Antidepressant drugs seem to 
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differently modulate Erk activation status, being this regulation probably associated 

with their therapeutic effects on the treatment of depression [273]. Also, it has been 

proposed a crucial role of the Erk pathway in the mechanism of action of both typical 

and atypical antipsychotic drugs [105,274]. Finally, altered levels of Erk signaling 

proteins have been reported in postmortem brains of patients affected by mood 

disorders and schizophrenia [275].  

Through exploring changes in the expression of these postsynaptic density genes, we 

aimed at dissecting the involvement of dopaminergic and glutamatergic systems in the 

action of drugs used in bipolar disorder and to describe the topographical patterns of 

this action. Therefore, we evaluated expression of the genes in specific regions of the rat 

forebrain that have been considered dysfunctional in several psychiatric disorders [276-

278] and that could likely represent the site of action of psychoactive compounds [279-

281]. Moreover, the assessment of PSD genes modulation by compounds with different 

receptor profile may provide information on the interplay between the glutamatergic 

and other neurotransmitter systems, above all the dopaminergic and the serotonergic. 

 

 

Experimental procedures 

 

Rats housing and handling 

Male Sprague-Dawley rats (mean weight 250g) were obtained from Charles-River 

Labs. (Lecco, Italy). The animals were housed and let to adapt to human handling in a 

temperature and humidity controlled colony room with 12/12 h light–dark cycle (lights 

on from 6:00 a.m. to 6:00 p.m.) with ad libitum access to laboratory chow and water. 

All procedures were conducted in accordance with the NIH Guide for Care and Use of 

Laboratory Animals (NIH Publication No. 85-23, revised 1996) and were approved by 
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local Animal Care and Use Committee. All efforts were made to minimize animal 

number and suffering. 

 

Drugs preparation and injection 

Quetiapine fumarate powder (Astra-Zeneca, Italy), Valproate sodium salt powder 

(Sigma-Aldrich, Italy), Citalopram hydrobromide powder (Sequoia Research Products, 

UK), and Haloperidol injectable solution (Lusofarmaco, Italy) were dissolved in a 

vehicle composed by saline solution (NaCl 0.9%) and a few drops of Acetic Acid 1%. 

All solutions were adjusted to physiological pH value and injected i.p. at a final volume 

of 1 ml/kg. 

Rats were randomly assigned to one of the following treatment groups (n=7 animals for 

each treatment group): Vehicle (SAL); Citalopram 14 mg/kg (CIT); Quetiapine 15 

mg/kg (QUE15); Quetiapine 30 mg/kg (QUE30); Haloperidol 0.8 mg/kg (HAL); 

Valproate 500 mg/kg (VAL); Haloperidol 0.8 mg/kg + Valproate 500 mg/kg 

(HAL+VAL); Quetiapine 30mg/kg + Valproate 500 mg/kg (QUE30+VAL).  

Valproate, in association with haloperidol or quetiapine was not merged in a single 

injection, because of the high risk of precipitation and toxic reaction. Thus, animals 

were treated by two subsequent injections. In order to avoid biases, rats assigned to the 

other groups, with one drug treatment, were also exposed to an adjunctive injection by 

vehicle.     

All drugs were given in a dose-range known to elicit changes in gene expression 

[247,17,140,282]. Since some controversy may arise over the appropriateness of drug 

dosages in animal studies [283], above all regarding the major differences in 

pharmacodynamics and pharmacokinetics between human and rodents, we chose 

specific dosages which have been previously evaluated in gene expression and behavior 

studies, trying to achieve a patient-equivalent effect in the brain of experimental 
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animals. Haloperidol and quetiapine were administered at doses known to elicit rat 

behaviors related to antagonism on D2 receptors and to provide substantial striatal D2 

receptor occupancy [284-287]. The dose of haloperidol we used (0.8 mg/kg) is 20% 

lower than that (1 mg/kg) most commonly used in gene expression studies and lied in 

the range of 0.25-1 mg/kg used in more recent studies [288-290]. Quetiapine was 

administered at two dosages that have been demonstrated to reach a dopamine D2 

receptors occupancy which could elicit behavioral responses in rats that are highly 

related to clinical efficacy in humans [291]. Finally, doses of valproate and citalopram 

were chosen based on previous studies in which these drugs evoked a well-established 

pharmacologic effect (i.e. dopamine release in cortical and subcortical structures) that 

may predict clinical effects in humans [292-294]. 

In the acute paradigm animals were injected intraperitoneally (i.p.), and killed 90 

minutes after administration. In the chronic paradigm animals received daily treatments 

for 16 days and then sacrificed 90 minutes after the last administration. In both 

paradigms rats were mildly anaesthetized by chloral hydrate just before killing. 

 

Tissue preparation and sectioning 

After killing, the brains were rapidly removed, quickly frozen on powdered dry ice and 

stored at -70°C prior to sectioning. Serial coronal sections of 12 µm were cut on a 

cryostat at -18°C through the forebrain at the level of the middle-rostral striatum 

(approx. from Bregma 1.20mm to 1.00mm), using the rat brain atlas by Paxinos and 

Watson [295] as an anatomical reference. Care was taken to select identical anatomical 

levels of treated and control sections. Sections were thaw-mounted onto gelatin-coated 

slides, and stored at -70ºC for subsequent analysis. 

 

Probes 
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Details of all the probes are listed in Table 2. 

 

Homer 1a, PSD-95 and Homer1b/c probes were oligodeoxyribonucleotides derived 

from identical probes used in previous hybridization studies [85,17]. All the other 

probes were designed from GenBank sequences and checked with BLAST in order to 

avoid cross-hybridization. All the oligodeoxyribonucleotides were purchased from 

MWG Biotech (Firenze, Italy). 

 

Probe radiolabeling and purification 

For each probe a 50µl labeling reaction mix was prepared on ice using DEPC treated 

water, 1X tailing buffer, 7.5pmol/µl of oligo, 125 Units of TdT and 100mCi 35S-dATP. 

The mix was incubated 20 min at 37°C. The unincorporated nucleotides were separated 

from radiolabeled DNA using ProbeQuant G-50 Micro Columns (Amersham-GE 

Healthcare Biosciences; Milano, Italy). As an assessment of the probe specificity, the 

autoradiographic signal distribution was compared and found to be consistent with 

previous in situ hybridization studies [81,99]. The specificity of each probe was also 

tested by pilot control experiment using the corresponding sense 

oligodeoxyribonucleotide. 
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In situ hybridization 

Sections were processed for radioactive in situ hybridization according to previously 

published protocols [296]. All solutions were prepared with sterile double-distilled 

water. The sections were fixed in 4% formaldehyde in 0.12 M phosphate buffered saline 

(PBS, pH 7.4), quickly rinsed three times with 1X PBS, and placed in 0.25% acetic 

anhydride in 0.1 M triethanolamine/0.9% NaCl, pH 8.0, for 10 minutes. Next, the 

sections were dehydrated in 70%, 80%, 95% and 100% ethanol, delipidated in 

chloroform for 5 minutes, rinsed again in 100% and 95% ethanol and air dried. 

Sections were hybridized with 0.4-0.6x106 cpm of radiolabeled oligonucleotide in 

buffer containing 50% formamide, 600mM NaCl, 80mM Tris-HCl (pH 7.5), 4mM 

EDTA, 0.1% pyrophosphate, 0.2mg/ml heparin sulfate, and 10% dextran sulfate. Slides 

were covered with coverslips and incubated at 37oC in a humid chamber for 22-24 

hours. After hybridization the coverslips were removed in 1X SSC (saline sodium 

citrate solution) and the sections were washed 4x15 minutes in 2X SSC/50% formamide 

at 43-44oC, followed by two 30 min washes with 1X SSC at room temperature. The 

slides were rapidly rinsed in distilled water and then in 70% ethanol. 

 

Autoradiography 

The sections were dried and exposed to Kodak-Biomax MR Autoradiographic film 

(Sigma-Aldrich, Milano, Italy). A slide containing a scale of 16 known amounts of 14C 

standards (ARC-146C, American Radiolabeled Chemical, Inc., St. Louis, MO, USA) 

was co-exposed with the samples. The autoradiographic films were exposed in a time 

range of 14-30 days. The optimal time of exposure was chosen to maximize signal-to-

noise ratio but to prevent optical density from approaching the limits of saturation. Film 

development protocol included a 1.5 min dip in the developer solution and 3 min in the 

fixer. 



 49 

 

Image analysis 

The quantitation of the autoradiographic signal was performed using a computerized 

image analysis system including: a transparency film scanner (Microtek Europe B. V., 

Rotterdam, The Netherlands), an Apple iMac, and ImageJ software (v. 1.47, Rasband, 

W.S., http://rsb.info.nih.gov/ij/). Sections on film were captured individually. The 

original characteristics of the scanned images (i.e. contrast, brightness, resolution) were 

preserved. Each experimental group contained 4-6 slides. Each slide contained 3 

adjacent sections of a single animal. All hybridized sections were exposed on the same 

sheet of X-ray film. Signal intensity analysis was carried out on digitized 

autoradiograms measuring mean optical density within outlined Regions of Interest 

(ROIs) in correspondence of the cortex, caudate-putamen and nucleus accumbens 

(Figure 6). These cortical and striatal subregions are structurally and functionally 

interconnected through projections from the cortex, which targets specific striatal 

sectors. ROIs in the cortex were selected based on recent data describing functional and 

anatomical correlation between cortical and striatal subregions [297] ROIs in the 

striatum have been chosen according to classical subdivision of this region [298].  

An oval template, proportional to the dimensions of the anatomical subregion, was used 

for computerized quantitations in each one of the ROIs depicted.   

Sections were quantitated blind to the treatment conditions. In order to test for inter-

observer reliability, an independent quantitation was performed by a second 

investigator. Results obtained by the first investigator were considered reliable, and then 

reported, only when they were quantitatively comparable, in terms of consistency of the 

statistically significant effects found, to that obtained by the second investigator. 
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Figure 6. Panel a. Diagram of regions of interest (ROIs) quantitated on autoradiographic film images in 
rat forebrain (section coordinates are approximately from Bregma 1.20 mm to 1.00 mm). 1 = anterior 
cingulate cortex (AC); 2 = medial agranular/premotor cortex (M2); 3 = motor cortex (M1); 4 = 
somatosensory cortex (SS); 5 = insular cortex (I); 6 = dorsomedial caudate-putamen (CPDM); 7 = 
dorsolateral caudate-putamen (CPDL); 8 = ventrolateral caudate-putamen (CPVL); 9 = ventromedial 
caudate-putamen (CPVM); 10 = core of accumbens (AcCo); 11 = shell of accumbens (AcSh). Modified 
from Paxinos and Watson (1997).  
Panel b. Illustration of cortico-striatal projections among the ROIs in which gene expression induced by 
mood stabilizers was measured. PL/IL = prelimbic/infralimbic cortices (not shown). 
 

 

Data processing 

Measurements of mean optical density within ROIs were converted using a calibration 

curve based on the standard scale co-exposed to the sections. 14C standard values from 4 

through 12 were previously cross-calibrated to 35S brain paste standards, in order to 

assign a dpm/mg tissue wet weight value to each optical density measurement through a 

calibration curve. For this purpose a “best fit” 3rd degree polynomial was used. For each 

animal, measurements from the 3 adjacent sections were averaged and the final data 

were reported in relative dpm as mean ± S.E.M. A One-Way Analysis of Variance 

(ANOVA) was used to analyze treatment effects. To minimize standard error within 

groups, outlier values were not taken in account when analyzing treatment effect. The 

Student-Neumann-Keuls (SNK) post hoc test was used to determine the locus of effects 

in any significant ANOVA. 

 

 

 

 

 



 51 

Results  

 

Acute paradigm  

The acute impact on glutamatergic and dopaminergic systems of the various drugs 

administered was assessed through exploring the changes in gene expression of 

Homer1a, ERK, PSD95, GSK3b and Homer1b/c in specific cortical and striatal 

subregions which have been considered the site of action of psychoactive compounds 

and which may be directly related to the pathophysiology of major psychiatric diseases 

(Figure 6).  

 

Homer1a  

(results, with respective ANOVA values, are detailed in Table 3; autoradiographic 

images are shown in Figure 7)  

 

Figure 7.  Representative autoradiographic film images of Homer 1a mRNA detected by means of in situ 
hybridization histochemistry (ISHH) in coronal brain sections after acute treatment with vehicle (SAL), 
quetiapine 30mg/kg (QUE30), haloperidol 0.8mg/kg (HAL), valproate 500mg/kg (VAL), 



 52 

haloperidol+valproate (HAL+VAL), quetiapine 30mg/kg + valproate (QUE30+VAL), quetiapine 
15mg/kg (QUE15), citalopram 14mg/kg (CIT). Brain areas in which significant changes in gene 
expression occurred with respect to vehicle are pointed out with black arrows for increases and white 
arrows for decreases. 
 
 
 

Table 3. The table summarizes significant changes vs. controls of Homer1a expression in cortex and 
striatum after acute (upper side) and chronic (lower side) treatment by quetiapine 30mg/kg (QUE30), 
haloperidol 0.8mg/kg (HAL), valproate 500mg/kg (VAL), haloperidol+valproate (HAL+VAL), 
quetiapine 30mg/kg + valproate (QUE30+VAL), quetiapine 15mg/kg (QUE15), citalopram 14mg/kg 
(CIT). Data are expressed as a percentage of vehicle (SAL) relative dpm. mean value ± S.E.M. and listed 
by brain region analyzed, along with the relative ANOVA p and F(df) values. Increases in gene 
expression are shaded in dark grey and decreases in light grey. 
 
 
 
 
A significant induction of Homer1a gene expression was observed in anterior cingulate 

cortex (AC, p=0.0002; F(7,26)=7.7918), premotor cortex (M2, p=0.0002; F(7,26)=7.9059) 

and motor cortex (M1, p<0.0001; F(7,26)=10.0459) following the treatment with 

quetiapine 30 mg/kg, as compared to the vehicle (Figure 8, panel a). Notably, the signal 

induction by the high dosage of quetiapine was significantly more pronounced than that 

by the low dosage in all subregions.  
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As opposed, the treatment with citalopram 14 mg/kg significantly decreased Homer1a 

expression as compared to all the other treatments in M1 (p<0.0001; F(7,26)=10.0459), 

somatosensory cortex (SS, p=0.0018; F(7,26)=5.2770), and insular cortex (I, p<0.0001; 

F(7,27)=8.7503) (Figure 3, panel a).  

In the caudate-putamen, Homer1a was significantly induced in all subregions 

(dorsomedial, CPDM, p<0.0001; F(7,26)=15.4234; dorsolateral, CPDL, p<0.0001; 

F(7,26)=40.5786; ventromedial, CPVM, p<0.0001; F(7,26)=21.0805; ventrolateral, CPVL, 

p<0.0001; F(7,26)=10.1481) following the treatment with haloperidol 0.8 mg/kg and 

haloperidol+valproate, as compared to all the other treatments (Figure 8, panel b). 

Notably, the administration of haloperidol alone induced Homer1a gene expression at a 

significantly higher extent than the co-administration of haloperidol+valproate in all 

subregions, with the exclusion of CPVM.  

Both haloperidol and haloperidol+valproate treatments induced a significant Homer1a 

signal elevation in the nucleus accumbens core (AcCo, p<0.0001; F(7,28)=19.6507) as 

compared to all the other treatments (Figure 8, panel b).  

In the shell (AcSh, p=0.0004; F(7,28)=6.4996), the gene was significantly induced by 

haloperidol as compared to all the other treatments excepted for the combinations of 

haloperidol+valproate and quetiapine 30mg/kg+valproate (Figure 8, panel b). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 54 

Figure 8. Homer 1a mRNA levels after acute (panels a and b) and chronic (panels c and d) treatment in 
cortex, caudate-putamen and nucleus accumbens. Data are reported in relative dpm as mean ± S.E.M.  
SAL=vehicle; QUE15=quetiapine 15mg/kg; QUE30=quetiapine 30mg/kg; HAL=haloperidol 0.8mg/kg; 
VAL=valproate 500mg/kg; HAL+VAL=haloperidol + valproate; QUE+VAL=quetiapine 30mg/kg + 
valproate; CIT=citalopram 14mg/kg. 
SNK post hoc test: * = vs. SAL (p<0.05); # = QUE30 vs. QUE15 (p<0.05); § = HAL vs. HAL+VAL 
(p<0.05) 
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ERK  

(results, with respective ANOVA values, are detailed in Table 4; autoradiographic 

images are shown in Figure 9) 

Figure 9. Representative autoradiographic film images of ERK mRNA detected by means of in situ 
hybridization histochemistry (ISHH) in coronal brain sections after acute treatment with vehicle (SAL), 
quetiapine 30mg/kg (QUE30), haloperidol 0.8mg/kg (HAL), valproate 500mg/kg (VAL), 
haloperidol+valproate (HAL+VAL), quetiapine 30mg/kg + valproate (QUE30+VAL), quetiapine 
15mg/kg (QUE15), citalopram 14mg/kg (CIT). Brain areas in which significant changes in gene 
expression occurred with respect to vehicle are pointed out with black arrows for increases and white 
arrows for decreases. 
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Table 4. The table summarizes significant changes vs. controls of PSD95 and ERK expression in cortex 
and striatum after acute treatment by quetiapine 30mg/kg (QUE30), haloperidol 0.8mg/kg (HAL), 
valproate 500mg/kg (VAL), haloperidol+valproate (HAL+VAL), quetiapine 30mg/kg + valproate 
(QUE30+VAL), quetiapine 15mg/kg (QUE15), citalopram 14mg/kg (CIT). Data are expressed as a 
percentage of vehicle (SAL) relative dpm. mean value ± S.E.M. and listed by brain region analyzed, 
along with the relative ANOVA p and F(df) values. Increases in gene expression are shaded in dark grey 
and decreases in light grey 
 

The treatment with valproate 500mg/kg, alone (VAL) or in association with either 

quetiapine 30mg/kg (QUE30+VAL) or haloperidol 0.8 mg/kg (HAL+VAL), elicited a 

significant upregulation of ERK gene expression in all cortical subregions analysed with 

respect to all the other treatments administered (Figure 10, panel a; AC, p=0.0005 

F(7,29)=6.0215; M2, p=0.0003 F(7,29)=6.702; M1, p=0.0009 F(7,29)=5.5293; SS, p=0.0105 

F(7,29)=3.551; I, p=0.036 F(7,29)=2.6836) 

Moreover, VAL, HAL+VAL and QUE30+VAL induced the overexpression of ERK in 

CPDM (p=0.0068; F(7,29)=3.8757), CPDL (p=0.0016; F(7,29)=5.0539) and CPVM 

(p=0.0061; F(7,29)=3.9541) as compared to all the other treatments (Figure 10, panel b).  

In CPVL, valproate and haloperidol+valproate treatments significantly upregulated the 

gene as compared to SAL, HAL, QUE30 and QUE15 (p=0.0149; F(7,29)=3.2995). 
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Finally, in the AcCo valproate, both alone or in association with quetiapine 30mg/kg, 

significantly increased ERK gene expression as compared to all the other treatments 

(Figure 10, panel b; p=0.0177; F(7,29)=3.1738) 

 
 

Figure 10. ERK mRNA levels after acute treatment in cortex, caudate-putamen and nucleus accumbens. 
Data are reported in relative dpm as mean ± S.E.M.  
SAL=vehicle; QUE15=quetiapine 15mg/kg; QUE30=quetiapine 30mg/kg; HAL=haloperidol 0.8mg/kg; 
VAL=valproate 500mg/kg; HAL+VAL=haloperidol + valproate; QUE+VAL=quetiapine 30mg/kg + 
valproate; CIT=citalopram 14mg/kg.SNK post hoc test: * = vs. SAL (p<0.05) 
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PSD95 

(results, with respective ANOVA values, are detailed in Table 4; autoradiographic 

images are shown in Figure 11) 

 

Figure 11.  Representative autoradiographic film images of PSD95 mRNA detected by means of in situ 
hybridization histochemistry (ISHH) in coronal brain sections after acute treatment with vehicle (SAL), 
quetiapine 30mg/kg (QUE30), haloperidol 0.8mg/kg (HAL), valproate 500mg/kg (VAL), 
haloperidol+valproate (HAL+VAL), quetiapine 30mg/kg + valproate (QUE30+VAL), quetiapine 
15mg/kg (QUE15), citalopram 14mg/kg (CIT). Brain areas in which significant changes in gene 
expression occurred with respect to vehicle are pointed out with black arrows for increases and white 
arrows for decreases. 
 

 

The acute administration of citalopram 14mg/kg significantly upregulated PSD95 gene 

expression in AC (p=0.0001; F(7,39)=6.1728), M2 (p=0.0001; F(7,39)=6.1259), SS 

(p=0.0004; F(7,39)=5.3201) and I (p=0.0004; F(7,39)=5.4647) subregions of the cortex, 

with respect to all the other treatments (Figure 12, panel a).  

Also the co-administration of haloperidol and valproate increased PSD95 signal in AC 

(p=0.0001; F(7,39)=6.1728) and SS (p=0.0004; F(7,39)=5.3201) as compared to vehicle.  
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Oppositely, in both M2 (p=0.0001; F(7,39)=6.1259) and M1 (p=0.0006; F(7,39)=5.0817) 

the expression of PSD95 was found decreased with respect to the vehicle, following the 

administration of haloperidol alone or quetiapine 15mg/kg.  

PSD95 gene expression was significantly upregulated in all striatal subregions  by CIT 

as compared to all the other treatments (Figure 5, panel a; CPDM, p=0.0002 

F(7,38)=5.8089; CPDL, p=0.0007 F(7,39)=5.0029; CPVL, p=0.0006 F(7,38)=5.0935; CPVM, 

p=0.0002 F(7,38)=5.8798; AcCo, p=0.0001 F(7,39)=6.3589; AcSh, p=0.0314  

F(7,39)=2.5812).   

Interestingly, the association of haloperidol+valproate induced the acute overexpression 

of PSD95 in the dorsomedial caudate-putamen (p=0.0002 F(7,38)=5.8089), whereas the 

treatment with haloperidol alone significantly reduced PSD95 expression in the AcCo 

with respect to all the other treatments (p=0.0001 F(7,39)=6.3589) 
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Figure 12. PSD95 mRNA levels after acute treatment in cortex, caudate-putamen and nucleus 
accumbens. Data are reported in relative dpm as mean ± S.E.M. 
SAL=vehicle; QUE15=quetiapine 15mg/kg; QUE30=quetiapine 30mg/kg; HAL=haloperidol 0.8mg/kg; 
VAL=valproate 500mg/kg; HAL+VAL=haloperidol + valproate; QUE+VAL=quetiapine 30mg/kg + 
valproate; CIT=citalopram 14mg/kg.SNK post hoc test: * = vs. SAL (p<0.05) 
 

 

 

GSK3b, Homer1b/c 

ANOVA did not reveal any significant difference among groups in both cortical and 

subcortical regions (p<0.05). 
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Chronic paradigm  

We evaluated the impact on the postsynaptic density of the prolonged administration of 

quetiapine (15 mg/kg and 30 mg/kg), haloperidol, valproate, citalopram and the 

association of valproate with quetiapine 30mg/kg or haloperidol, by assessing the 

expression of Homer1a, ERK, PSD95, GSK3b and Homer1b/c after daily administration 

of the drugs over a period of 16 days.   

 

 

Homer1a  

(results, with respective ANOVA values, are detailed in Table 4, autoradiographic 

images are shown in Figure 13) 

Figure 13. Representative autoradiographic film images of Homer1a mRNA detected by means of in situ 
hybridization histochemistry (ISHH) in coronal brain sections after chronic treatment with vehicle (SAL), 
quetiapine 30mg/kg (QUE30), haloperidol 0.8mg/kg (HAL), valproate 500mg/kg (VAL), 
haloperidol+valproate (HAL+VAL), quetiapine 30mg/kg + valproate (QUE30+VAL), quetiapine 
15mg/kg (QUE15), citalopram 14mg/kg (CIT). Brain areas in which significant changes in gene 
expression occurred with respect to vehicle are pointed out with black arrows for increases and white 
arrows for decreases. 
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The chronic treatment with haloperidol 0.8mg/kg, quetiapine 15 mg/kg and quetiapine 

30mg/kg significantly decreased the Homer1a signal in premotor cortex (M2, p=0.0075; 

F(7,30)=3.7434) and motor cortex (M1, p= 0.0065; F(7,30)=3.8519) with respect to vehicle. 

Also, both the low and the high dosage of quetiapine reduced  Homer1a expression in 

SS (p=0.0085; F(7,30)=3.6566) as compared to SAL (Figure 8, panel c).  

As described in previous works [85,99], the expression of Homer1a was significantly 

induced by chronic haloperidol treatment in all caudate-putamen subregions and in the 

nucleus accumbens core as compared to all the other treatments (Figure 3, panel d; 

CPDM, p=0.0037 F(7,30)=4.2776; CPDL, p=0.0211 F(7,30)=3.0164; CPVL, p=0.0015 

F(7,30)=5.0167; CPVM, p=0.0089 F(7,30)=3.6240; AcCo, p=0.0473 F(6,26)=2.6411). No 

statistically significant differences were noticed in AcSh subregion (p>0.05). 

Notably, in ventral striatal regions (CPVM, CPVL), the increase in Homer1a signal by 

QUE30 was significantly higher than QUE15 (Figure 8, panel d). 

 

 

 

ERK, PSD95, GSK3b, Homer1b/c 

ANOVA did not reveal any statistically significant change for these genes either in 

cortical or subcortical subregions analysed (p>0.05).  

 

 

Discussion 

 

Results showed that, in the acute paradigm, the combined treatment with haloperidol 

plus valproate induced striatal Homer1a expression at a lesser extent as compared to 

that induced by haloperidol alone. In fact, as already described in our previous studies 
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[99,85,140,17,247], in caudate-putamen Homer1a expression was strongly induced by 

haloperidol compared to all the other treatments. Indeed, haloperidol plus valproate 

association also robustly induced the gene, but demonstrated a significant reduction in 

the extent of the increase of Homer1a signal as compared to haloperidol alone. Since 

several clinical and preclinical studies demonstrated that haloperidol and valproate do 

not interfere with each other with regard to their plasma concentrations [299] and that 

haloperidol does not potentiate valproate action on DNA methylation and histone 

deacetylase activity [300,301], we could hypothesize that the reduced extent in 

Homer1a induction may depend upon a direct interaction between the intracellular 

pathways activated by the two different drugs. This view might be supported by the 

recent evidence that valproate may modulate the Akt-GSK3b and ERK signaling 

[272,259], which could be also regulated by antipsychotics (Beaulieu et al., 2009; [302]. 

Acute haloperidol administration is known to increase dopamine release in the striatum 

[303], and to induce immediate-early genes expression [304]; Polese et al., 2002) 

through a mechanism involving NMDAR activation [305]. Little is known about the 

intracellular pathway implicated in this action. It is possible that haloperidol increases 

the release of dopamine by blocking the negative feedback mechanism of nigrostriatal 

dopamine system and the released dopamine stimulates D1 receptors, which in turn may 

directly impact NMDA currents in striatum [306]. Recent observations stated that 

NMDA-D1 interaction may lead to a synergistic enhancement of ERK1/2 pathway 

activation [307], which has been demonstrated to promote Homer1a transduction [308]. 

Alternatively, haloperidol might stimulate Homer1a expression through promoting 

directly ERK activation via a D2-mediated mechanism in specific striatal neurons [302]. 

Moreover, recent studies found that GSK3b seems to be specifically required in 

NMDA-D2 receptors subcellular interaction [309]. Thus, we could hypothesize that the 

reduction in the extent of Homer1a striatal expression when valproate is associated to 
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haloperidol may be due to a direct modulation by valproate of the Akt-GSK3b/ERK 

transductional pathway stimulated by haloperidol, which controls Homer1a 

transcription.  

Nevertheless, no significant differences among treatments were detected with regard to 

GSK3b expression, in both acute and chronic paradigm of our study. This finding may 

apparently diverge from results of recent literature that implicates GSK3b in the 

mechanisms of action of mood stabilizers [310]. On the other hand, recent observations 

demonstrated that valproate may impact GSK3b phosphorylation, thus reducing 

functions of this protein, but it is not able to modify GSK3b mRNA levels [311]. 

Therefore, it is possible that valproate (and some other mood stabilizers), might be able 

to regulate GSK3b activity without impact its gene expression.  

In the chronic paradigm, haloperidol induced Homer1a expression in all the subregions 

of the caudate-putamen and in the nucleus accumbens core. These results closely 

resemble those of our previous works, confirming the correlation between Homer 

expression and the degree of dopamine D2 receptors blockade in specific regions of the 

striatum and remarking that Homer1a may respond to prolonged dopaminergic stimuli 

without displaying tolerance phenomena. Moreover, it is notable that the combined 

treatment with haloperidol plus valproate did not elicit any significant change in 

Homer1a expression in the chronic protocol. This may strengthen the hypothesis that 

valproate could perturb the transductional pathways eventually stimulated by 

haloperidol, thus impacting the downstream leading to Homer1a expression. Obviously, 

more studies are warranted on this hypothesis. Recently, several animal models have 

been proposed [312] that mimic the behavioral phenotype of bipolar disorder, although 

this is yet a challenging field of study. Nevertheless, the fact that some of these models 

originate from genetic manipulations just in the genes which have been the subjects of 
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our work (i.e. GSK3b), might help to clarify the impact of mood stabilizers and 

antipsychotics, as well as of their combination, on these transductional pathways.  

The present data also demonstrated that quetiapine and haloperidol have divergent 

effects in corticostriatal regions with regard to Homer1a induction. In previous works 

[143] we hypothesized that Homer1a expression may be region-specific and directly 

correlated to the dopaminergic neurotransmission in both cortical and subcortical 

regions. Moreover, this gene may respond to drugs impacting serotonergic 

neurotransmission in cortical subregions [17,247]. Results showed, in fact, that 

Homer1a gene expression was decreased in motor, somatosensory and insular cortices 

by citalopram acute administration. Indeed, recent studies identified both secondary 

motor and somatosensory cortices as primary targets of citalopram anxiolytic effects 

[313]. Furthermore, the high dose of quetiapine strongly induced Homer1a expression 

in anterior cingulate, premotor and motor subregions of the cortex, resulting in a 

statistically significant increase as compared to the lower dose. This would strengthen 

the hypothesis that the serotonergic neurotransmission might exert an essential role in 

controlling the transductional pathways in which Homer is involved in the cortex. 

Nevertheless, the substantial opposite direction of Homer1a expression by citalopram 

and quetiapine in the cortex may be explained by the different mechanisms of action of 

the two drugs. Quetiapine has multiple binding profiles, with stronger affinities to 

5HT1a and 5HT2a serotonin receptors than to dopamine D2 receptors [314], exerting 

partial agonism at 5HT1a, antagonism at 5HT2a and antagonism at D2 receptors. 

Several studies described that high doses, but not low doses, of quetiapine may induce 

dopamine release in the cortex, without affecting serotonin [315,316,286]. Moreover, 

neither the sole D2 antagonism, nor the 5HT2a antagonism, may affect dopamine or 

serotonin cortical release [317,318], while combined 5HT2a-D2 antagonism may 

strongly increase dopamine release in prefrontal cortex [319]. Citalopram alone has 
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been demonstrated not to affect dopamine release in the cortex, whereas it stimulates a 

strong serotonin release and potentiates dopamine release induced by antipsychotic 

agents [293]. The hypothesis of a combined serotonergic-dopaminergic control of 

Homer expression in the cortex may explain the lack of effect by acute haloperidol 

alone in this region and is consistent with findings of our previous work [247]. 

Furthermore, the fact that the citalopram-induced Homer1a down-regulation was found 

only in acute administration, whereas we found that haloperidol and quetiapine 

decreased the gene in the chronic paradigm, may confirm the prominent dopaminergic 

control of Homer expression after long-term stimulation [140,17].  

Taken together, our data seem consistent with recent evidence of the downregulation of 

Homer1 gene in animal models of depression [320] and a modulation of this gene by 

quetiapine administration [321], further reinforcing the hypothesis of a potential 

antidepressant-like action of this antipsychotic drug.  

ERK gene was upregulated in both cortical and striatal regions by acute administration 

of valproate and valproate plus haloperidol or quetiapine, while neither haloperidol nor 

quetiapine alone significantly impacted the expression of the gene. These results are in 

agreement with recent evidence that valproate may promote Erk-dependent pathways 

(Hao et al., 2004). As discussed above, it is possible that both haloperidol and 

quetiapine, when administered in combination with valproate, might lead to a 

synergistic activation of intracellular pathways that could in turn enforce specific 

downstream cascades. Since no significant changes were noticed in the chronic 

paradigm, we could hypothesize that molecular modifications induced by valproate 

might occur with a peculiar time-course, as observed for Homer1a. 

PSD95 showed a significant upregulation by acute citalopram and by haloperidol plus 

valproate in the cortical subregions analysed, as well as in the nucleus accumbens. 

Haloperidol and quetiapine 30mg/kg, oppositely, significantly reduced the expression of 
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the gene. Furthermore, in the caudate-putamen, citalopram induced increase in PSD95 

expression, in the acute paradigm.  

PSD95 is a postsynaptic scaffold protein, which could interact with Homer long 

isoforms in order to form clusters that physically connect mGluRs with NMDAR 

downstream pathways (NMDAR-PSD95-GKAP-Shank-Homer cluster) [322]. Actually, 

there is a substantial dearth of data on PSD95 modulation by psychotropic drugs, 

therefore our findings stimulate further investigations about this issue. However, our 

results show that changes in PSD95 expression were found only after acute 

administration. It is likely to hypothesize that some PSD elements may display 

tolerance phenomena during prolonged administration, because of synaptic 

rearrangements. This view seems to be consistent with recent findings that PSD95 

modifications in psychostimulants self-administration protocols are shown only during 

the first phases of cocaine extinction, and they are not more noticeable after some days 

[323,324].  

It could be hypothesized that changes in gene expression described in this study may 

correlate with possible toxic effects of the drugs administered, triggered by high doses. 

However, drugs were used here in doses known to elicit biological and behavioral 

effects related to the interaction with their primary target rather than with secondary 

non-specific targets [285-287,284]. Nonetheless, the possibility remains that high drug 

doses may cause toxic effects for excessive interaction with their primary target. 

According to this consideration, a strong suggestion has been previously made by us 

[325] that increased Homer1a expression may be related to motor side effects of 

antipsychotic drugs, which become more evident with increasing doses of these 

compounds. Indeed, overexpression of striatal Homer1a has been associated to the 

impairment of locomotor activity [256]. A future dose-response study will help 

clarifying this intriguing issue.  
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With regard to the differential regional impact of the distinct drugs administered in this 

study, it is noteworthy that they affected the expression of the diverse PSD genes in 

brain regions that have specifically been implicated in the pathophysiology of bipolar 

disorder (for a review, see [277]). Indeed, several studies have demonstrated that 

functionally distinct cortical subregions project to specific striatal areas, and that 

analyzing gene expression changes induced by psychotropic drugs may elucidate the 

functional domains affected by these drugs [298,297]. For instance, both quetiapine and 

valproate (alone or in association) modified the expression of Homer1a in cortical 

regions that are functionally involved in motor control (medial agranular and motor 

cortices) and in monitoring cognitive and behavioral aspects of emotion (cingulate and 

insular cortices). The cortical premotor and motor areas project specifically to the 

dorsolateral regions of the striatum, which specifically control somatomotor inputs; 

cingulate and insular cortices project to the ventral striatum, mostly implicated in 

behavioral control. Both motor and behavioral aspects have been specifically 

considered as primary characteristics of the symptomatology of bipolar disorder. Thus, 

albeit preliminary, our data about the different response pattern of PSD genes to the 

different drugs commonly used in clinical practice to treat bipolar disorder may provide 

an additional avenue of investigation in clarifying their action in specific brain areas 

involved in mood modulation. 
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VII. Study n.2: Chronic treatment with lithium or valproate modulates the 

expression of Homer1b/c and its related genes Shank and Inositol 1,4,5–

trisphosphate receptor 

 

As previously discussed, the combined administration of antipsychotics and valproate 

(VPA) may induce differential modulation of PSD genes—particularly Homer-related 

genes—compared to the effects observed when these drugs were administered 

individually [146]. However, to the best of our knowledge, no study to date has 

investigated the manner in which the mood stabilizers lithium and VPA regulate Homer 

genes. This is unexpected, given that clinical [326] and preclinical [327] evidence have 

implicated glutamate in the pathophysiology of bipolar disorder, and that dopamine 

neurotransmission is believed to play a role in the mechanism of action of mood 

stabilizers [249]. In addition, recent studies have directly implicated Homer1 in the 

etiology of mood disorders [328]. This dearth of information is even more surprising 

considering that Homer proteins modulate the phosphoinositide (PI) signaling pathway 

[329], one of the most extensively studied targets of lithium, and which has also 

recently been studied as a putative target of VPA [330,331]. Furthermore, Homer has 

been implicated in the modulation of the phosphatidylinositol-3-kinase – Akt (PI3K-

Akt) pathway [332], which, in turn, was shown to directly regulate the function of 

glycogen synthase kinase 3β (GSK-3β), a well-recognized molecular target of mood 

stabilizers [259].  

An intriguing connection also appears to exist between the Homer proteins, the 

mGluRs, intracellular calcium concentrations, and the enzyme protein kinase C (PKC) 

[88], whose protein levels are also affected by chronic in vivo administration of lithium 

and VPA [333]. In addition, recent observations suggest that Homers play a major role 

in modulating the complex signaling machinery that routes signals from postsynaptic 
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receptors (mGluRs and N-methyl-D-aspartate receptors (NMDARs)) to the Mitogen 

activated protein kinase – Extracellular signal-regulate kinase1/2 (MAPK-ERK1/2) 

pathway [334], which has been putatively implicated in mood modulation and in the 

mechanism of action of mood stabilizers [271,335].  

The present study investigated the manner in which chronic administration of lithium 

and VPA, at therapeutic doses, modulates the inducible and constitutive transcripts of 

Homer1. We evaluated the expression of Homer genes by means of in situ hybridization 

histochemistry, focusing on the cortex, caudate-putamen, and nucleus accumbens; all of 

these areas are believed to be involved in the pathophysiology of bipolar disorder [277] 

and in the mechanism of action of mood stabilizers [336].  

We chose to explore both inducible and constitutive Homer isoforms (i.e. Homer1a and 

Homer 1b/c respectively) based on previous studies (Tomasetti et al., 2007; Iasevoli et 

al., 2010) showing that chronic administration of antipsychotics may affect both 

transcripts. A recent study from our laboratory (Tomasetti et al., 2011) analyzed 

Homer1a following the administration of VPA—alone or in association with 

antipsychotic drugs—in both acute and chronic paradigm of injected administration; 

building on that work, the present study compared the effects of both lithium and VPA 

on Homer1 transcripts in a chronic paradigm of oral administration. This model was 

chosen in order to more closely approximate the conditions necessary to obtain 

pharmacological effects with mood stabilizers in clinical practice, and to assess the 

impact of prolonged oral drug administration on Homer expression. 

We also evaluated the possible involvement of Shank and Inositol 1,4,5 trisphosphate 

receptor (IP3R), two genes tightly related to Homer function, and which share a 

prominent role in synaptic plasticity.  
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Experimental Procedures 

 

Animals, drug treatments, and tissue preparation  

Adult male Wistar-Kyoto (WKY) rats (weight 175–200g) were housed in a 

temperature- and humidity-controlled colony room with access to water and food ad 

libitum, maintained under a 12-hour light/dark cycle, and allowed a one-week 

accommodation period before initiation of experiments. All experimental procedures 

were carried out in accordance with the guidelines published in the National Research 

Council (NRC) Guide for the Care and Use of Laboratory Animals (NIH Publication 

N.85-23, revised 1996), and were approved by the National Institute of Mental Health 

(NIMH) Animal Care and Use Committee. All efforts were made to minimize the 

number of animals used and their suffering.  

Rats (n=5 for each experimental group) were randomly assigned to a treatment group 

and fed either: 1) regular rodent chow (control), 2) lithium carbonate-containing chow 

(2.4 g/kg), or 3) VPA-containing chow (20 g/kg) (custom produced by Bio-Serv, 

Frenchtown, NJ, USA) for four weeks. In addition to tap water, a bottle of saline was 

available to rats in order to minimize any electrochemical imbalance that might occur 

during the treatment. At the end of treatment, rats were killed by decapitation between 

9:00 A.M. and 12:00 P.M., trunk blood samples were collected in order to monitor drug 

concentrations, and the whole brain was rapidly removed, quickly frozen on powdered 

dry ice, and stored at -80°C. Serum drug concentrations were confirmed to be within the 

therapeutic range (lithium 0.5~1.0mEq/l, VPA 50~100µg/ml).  

Serial coronal sections of 12µm were cut on a cryostat at -18°C at the level of the 

striatum (approx. from Bregma -1.20mm to -1.00mm), using the rat brain atlas of 



 72 

Paxinos and Watson [295] as an anatomical reference. Sections were stored at -80°C for 

subsequent analysis. 

 

Radiolabeling  

Details for all the probes are listed in Table 5.  

Homer 1a, ania-3, and Homer1b/c probes were oligodeoxyribonucleotides derived from 

identical probes used in previous hybridization studies [99,17]. All other probes were 

designed from GenBank sequences and checked with BLAST to avoid cross-

hybridization. All oligodeoxyribonucleotides were purchased from MWG Biotech 

(Firenze, Italy). 

For each probe, a 50µl labeling reaction mix was prepared on ice using DEPC-treated 

water, 1X tailing buffer, 7.5pmol/µl of oligodeoxyribonucleotide, 125 Units of Terminal 

deoxynucleotidyl Transferase (TdT) and 100mCi 35S-dATP. The mix was incubated for 

20 minutes at 37°C. The unincorporated nucleotides were separated from radiolabeled 

DNA using ProbeQuant G-50 Micro Columns (Amersham-GE Healthcare Biosciences, 

Milano, Italy). To assess probe specificity, the autoradiographic signal distribution was 

compared and found to be consistent with previous in situ hybridization studies [81,99].  

 



 73 

In Situ Hybridization Histochemistry 

Sections were processed for radioactive in situ hybridization [296]. All solutions were 

prepared with sterile double-distilled water. The sections were fixed in 4% 

formaldehyde in 0.12 M phosphate buffered saline (PBS, pH 7.4), quickly rinsed three 

times with 1X PBS, and placed in 0.25% acetic anhydride in 0.1 M 

triethanolamine/0.9% NaCl, pH 8.0 for 10 minutes. Next, the sections were dehydrated 

in 70%, 80%, 95%, and 100% ethanol, delipidated in chloroform for five minutes, 

rinsed again in 100% and 95% ethanol, and air-dried. 

Sections were hybridized with 0.4-0.6x106 cpm of radiolabeled oligonucleotide in 

buffer containing 50% formamide, 600mM NaCl, 80mM Tris-HCl (pH 7.5), 4mM 

EDTA, 0.1% pyrophosphate, 0.2mg/ml heparin sulfate, and 10% dextran sulfate. Slides 

were covered with coverslips and incubated at 37°C in a humid chamber for 22-24 

hours. After hybridization, the coverslips were removed in 1X saline sodium citrate 

solution (SSC) and the sections were washed 4x15 minutes in 2X SSC/50% formamide 

at 43-44°C, followed by two 30-minute washes with 1X SSC at room temperature. The 

slides were rapidly rinsed in distilled water and then in 70% ethanol. 

 

Autoradiography and Image Analysis  

The sections were dried and exposed to Kodak-Biomax MR Autoradiographic film 

(Sigma-Aldrich, Milano, Italy). A slide containing a scale of 16 known amounts of 14C 

standards (American Radiolabeled Chemicals, St. Louis, US) was co-exposed with the 

samples. The autoradiographic films were exposed over 14-30 days. The optimal time 

of exposure was chosen to maximize signal-to-noise ratio but to prevent optical density 

from approaching saturation limits. Film development protocol included a 1.5-minute 

dip in the developer solution and three minutes in the fixer. The quantitation of the 

autoradiographic signal was performed using a computerized image analysis system, 
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including: a transparency film scanner (Microtek Europe B. V., Rotterdam, The 

Netherlands), an Apple iMac, and ImageJ software (v. 1.40, Rasband, W.S., 

http://rsb.info.nih.gov/ij/). Brain sections on film were captured individually. Scanned 

images were showed in inverted look-up table (LUT) color, although all the other 

original characteristics (i.e. contrast, brightness, resolution) were preserved. Each 

experimental group contained five animals. Each slide contained three adjacent sections 

of a single animal. All hybridized sections were exposed on the same sheet of X-ray 

film. Signal intensity analysis was carried out on digitized autoradiograms measuring 

mean optical density within outlined Regions of Interest (ROIs) corresponding to 

subregions of the cortex, caudate-putamen, and nucleus accumbens (Figure 14). These 

cortical and striatal subregions are structurally and functionally interconnected through 

projections from the cortex, which targets specific striatal sectors. Thus, ROIs were 

chosen based on functional mapping studies of gene expression [297] and other studies 

analyzing Homer expression in response to drugs [146]. Sections were quantitated blind 

to the treatment conditions. To test for inter-observer reliability an independent 

quantitation was performed by a second investigator. Results were considered reliable 

only when the statistical significance of effects obtained by the second investigator was 

quantitatively consistent with the results obtained by the first investigator. 
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Figure 14.  Panel a. Diagram of regions of interest (ROIs) quantitated on autoradiographic film images 
in rat forebrain (section coordinates are approximate from Bregma 1.20 mm to 1.00 mm). 1 = cingulate 
cortex (Cg); 2 = medial agranular cortex (M2); 3 = motor cortex (M1); 4 = somatosensory cortex (SS); 5 
= insular cortex (I); 6 = dorsomedial caudate-putamen (CPDM); 7 = dorsolateral caudate-putamen 
(CPDL); 8 = ventrolateral caudate-putamen (CPVL); 9 = ventromedial caudate-putamen (CPVM); 10 = 
core of nucleus accumbens (AcCo); 11 = shell of nucleus accumbens (AcSh). Modified from Paxinos and 
Watson (1997).  
Panel b. Illustration of cortico-striatal projections among the ROIs in which gene expression induced by 
mood stabilizers was measured. PL/IL = prelimbic/infralimbic cortices (not shown). 
 

 

 

Data processing  

Measurements of mean optical density within ROIs were converted using a calibration 

curve based on the standard scale co-exposed to the sections. 14C standard values were 

previously cross-calibrated to 35S brain paste standards, in order to assign a dpm/mg 

tissue wet weight value to each optical density measurement through a calibration 

curve. For this purpose, a “best fit” 3rd degree polynomial was used. For each animal, 

measurements from the three adjacent sections were averaged and the final data were 

reported in relative disintegrations per minute (rel d.p.m.) as mean ± the standard error 

of the mean (S.E.M.). A one-way ANOVA was used to analyze treatment effects. 

Statistical significance was established at p<0.05. The Tukey’s post hoc test was used to 

determine the locus of effects for significant ANOVA results.  
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Results 

The effects of chronic administration of lithium or VPA on Homer1b/c, Shank, IP3R 

Homer1a, and ania-3 gene expression in each forebrain subregion analyzed are 

presented in Table 6.  
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Table 6. mRNA levels of Homer1b/c, Shank, IP3, Homer1a and ania-3 after chronic administration of 
lithium or valproate. Data are expressed as a percentage of control (CTR) relative dpm mean value ± 
S.E.M and listed by brain region analyzed along with the relative ANOVA values (p<0.05). Cg= 
cingulate cortex; M2= medial agranular cortex; M1= motor cortex; SS= somatosensory cortex; I= insular 
cortex; CPDM= dorsomedial caudate-putamen; CPDL= dorsolateral caudate-putamen; CPVL= 
ventrolateral caudate-putamen; CPVM= ventromedial caudate-putamen; AcCo = nucleus accumbens 
core; AcSh = nucleus accumbens shell.  
* = significant differences from CTR at the Tukey’s post hoc test 
 

 

 

Homer1b/c (Figure 15) 

We analyzed the autoradiographic signal of Homer1b/c mRNA in the cortex, caudate-

putamen, nucleus accumbens core, and nucleus accumbens shell. In the cortex, the 

Homer1b/c signal was significantly reduced in cingulate (Cg; p=0.0137; 

F(dl)=5.491(2,18)), medial agranular (M2; p=0.016; F(dl)=5.249(2,18)), motor (M1; 

p=0.0337; F(dl)=4.115(2,18)), and insular (I; p=0.0158; F(dl)=5.265(2,18)) areas by VPA 

treatment compared to control. The lithium-treated group displayed a similar pattern of 

Homer1b/c signal reduction in cortical subregions as the VPA-treated group, but these 

results did not reach statistical significance. 

In the striatum, the ANOVA analysis revealed that both lithium and VPA significantly 

decreased the Homer1b/c signal compared to control in the dorsolateral caudate-

putamen (CPDL; p=0.0001; F(dl)=15.552(2,18)). In all the other subregions of the caudate-

putamen, Homer1b/c expression was significantly reduced only by VPA compared to 

control  (dorsomedial (CPDM; p=0.004; F(dl)=7.398(2,18)), ventrolateral (CPVL; 

p=0.002; F(dl)=8.536(2,18)), and ventromedial (CPVM; p=0.009; F(dl)=6.108(2,18)).  

In the core of the nucleus accumbens, the densitometric analysis of autoradiographic 

images showed a statistically significant decrease in Homer1b/c expression after 

chronic treatment with VPA compared to control (p=0.015; F(dl)=5.432(2,18)). No 

significant results were found in the nucleus accumbens shell.  
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Figure 15. Panel a: autoradiographic film images of Homer 1b/c mRNA detected by means of in situ 
hybridization histochemistry in coronal brain sections after chronic treatment with control (CTR), lithium 
(Li), or valproate (VPA).  
Panel b: Homer 1b/c mRNA levels in subregions of the cortex, caudate-putamen, and nucleus 
accumbens. Data are reported in relative d.p.m. as mean ± S.E.M. Tukey’s post hoc test: * = vs. CTR 
(p<0.05) 
 

 

Shank (Figure 16, panels a and c) 

Shank mRNA was detected in the frontal and parietal cortices, and a lower signal was 

detected in the caudate-putamen and nucleus accumbens. The densitometric analysis of 

autoradiographic images showed a significant decrease of Shank signal in M2 with VPA 

treatment compared to control and lithium (p=0.0107; F(dl)=5.993(2,17)), and in M1 

compared to control (p=0.034; F(dl)=4.153(2,17)). In Cg (p=0.0047; F(dl)=7.466(2,18)), SS 

(somatosensory cortex; p=0.0157; F(dl)=5.359(2,17)) and I (p=0.0178; F(dl)=5.155(2,17)), 
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VPA significantly reduced Shank expression compared to lithium. No significant 

differences were noted in striatal subregions. 

   

IP3R (Figure 16, panel b and d) 

The IP3R mRNA autoradiographic signal was distributed in both cortical and striatal 

regions. Significant differences between groups were detected in all subregions of both 

frontal and parietal cortices. Post-hoc tests showed that lithium significantly reduced the 

IP3R signal in Cg (p=0.0456; F(dl)=4.038(2,12)), M1 (p=0.048; F(dl)=3.952(2,12)), SS 

(p=0.0181; F(dl)=5.712(2,12)), and I (p=0.0346; F(dl)=4.510(2,12)) compared to control. In 

the striatum, chronic treatment with VPA significantly decreased the IP3R signal in 

CPDL compared to control (p=0.0265; F(dl)=4.863(2,13)).  

Figure 16. Panels a and b: Autoradiographic film images of IP3 and Shank mRNA detected by means of 
in situ hybridization histochemistry in coronal brain sections after acute treatment with control (CTR), 
lithium (Li), or valproate (VPA).  
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Panels b and c: IP3 and Shank mRNA levels after chronic treatment in the subregions of the cortex, 
caudate-putamen, and nucleus accumbens. Data are reported in relative d.p.m. as mean ± S.E.M. Tukey’s 
post hoc test: * = vs. CTR (p<0.05). 
 

 

Homer1a and ania-3 

Homer1a and ania-3 gene expression was detected in several cortical and subcortical 

brain regions of the control group, with a signal distribution similar to that obtained in 

previous studies [99,17]; however, no significant differences between treatment groups 

were noted for either gene in all analyzed areas.  

 

 

Discussion 

Lithium and VPA affect Homer1b/c expression in brain areas involved in mood 

modulation 

Several lines of evidence suggest that Homer proteins may be involved in multiple 

signal transduction pathways—including PI3K-Akt, IP3R, and MAPK-ERK1/2—all of 

which have also been implicated in the putative mechanism of action of mood 

stabilizers and in the pathophysiology of mood disorders. This study is the first to 

demonstrate that chronic in vivo treatment with therapeutically relevant doses of lithium 

or VPA decreases the transcription of Homer1b/c, the constitutive isoform of the 

Homer1 gene; notably, this gene has been implicated in the pathophysiology of 

psychiatric disorders [36,128]. We found that Homer1b/c expression was significantly 

reduced in the cingulate, medial agranular, motor, and insular subregions of the cortex 

by chronic treatment with VPA. In the striatum, both lithium and VPA downregulated 

Homer1b/c in the dorsolateral caudate-putamen, but only VPA administration reduced 

expression of the gene in other striatal subregions (dorsomedial, ventrolateral, and 

ventromedial) and in the nucleus accumbens core.  
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Although distinct differences exist between VPA and lithium, the direction of the 

effects of both these mood stabilizers on Homer expression in cortical and subcortical 

regions is consistent with these compounds having a potential common transductional 

pathway; this feature, in turn, has been considered pivotal in elucidating the mechanism 

of action of these drugs, which both act as mood stabilizers despite their structural 

differences. Nevertheless, it is noteworthy that both of these mood stabilizers affected 

Homer1b/c expression in brain regions that have specifically been implicated in the 

pathophysiology of bipolar disorder (for a review, see [277]). Indeed, several studies 

have demonstrated that functionally distinct cortical subregions project to specific 

striatal areas, and that analyzing gene expression changes induced by psychotropic 

drugs may elucidate the functional domains affected by these drugs [297]. In the present 

study, VPA modified the expression of Homer1b/c in cortical regions critical to motor 

control (medial agranular and motor cortices) and to cognitive and behavioral aspects of 

emotion (cingulate and insular cortices). The cortical premotor and motor areas project 

specifically to the dorsolateral regions of the striatum, which specifically control 

somatomotor inputs; cingulate and insular cortices project to the ventral striatum, which 

is mostly implicated in behavioral control. Albeit preliminary, these data describing the 

different response pattern of constitutive Homer genes to different mood stabilizers may 

provide an additional avenue of investigation for clarifying their mechanism of action in 

specific brain areas involved in mood modulation.  

  

 

Functional implications of Homer1 modulation by mood stabilizers 

Given the multifunctional role of Homers as scaffolding and adaptor proteins, the 

effects of lithium and VPA on Homer1b/c expression suggest a direct impact on 

postsynaptic remodeling. The reduced transcription of Homer1b/c in cortical and 
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subcortical regions might involve the putative modulation of signal transduction 

pathways starting at mGluR1/5. For instance, decreased Homer1b/c function may 

impair the coupling of mGluRs1/5 to IP3Rs mediated by Homer clusters [88], thereby 

lowering calcium-dependent signal transduction. This might thus constitute an 

additional mechanism of action for lithium and VPA; both agents have already been 

shown to reduce IP3 and diacylglycerol signaling, which comprises a crucial pathway 

for synaptic plasticity [331,330]. 

Moreover, Homer proteins are known to organize the distribution of mGluRs1/5 in 

specific neuronal sectors. In particular, Homer1b/c expression appears to be essential 

for arranging mGluRs1/5 in membrane clusters on dendritic spines in order to facilitate 

excitatory neuronal responses [337]. Therefore, it is possible that Homer1b/c 

downregulation, induced by both lithium and VPA, might lead to lowered sensitivity of 

the postsynaptic neuron to excitatory stimuli via the rearranging of mGluR1/5 

localization. 

Finally, Homer1b/c has been reported to play a major role in linking mGluRs1/5 with 

the postsynaptic effectors MAPK-ERK1/2 in a calcium-independent manner, generating 

a signaling pathway that acts in parallel to and coordinates with the conventional IP3R-

calcium pathway [338]. Thus, a decrease in Homer1b/c function by chronic treatment 

with lithium or VPA might affect ERK1/2 activation and, consequently, its impact on 

gene transcription. 

Furthermore, these effects of lithium and VPA on Homer1b/c-mediated mGluR 

signaling may contribute to the overall ability of these two mood stabilizers to treat the 

elevated glutamatergic activity found in specific brain areas of patients with bipolar 

disorder [339]. This is consistent with the evidence that both lithium and VPA may also 

reduce brain NMDA-mediated calcium signaling in distinct regions of the forebrain 

[340,341]. 
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Is Homer1 a possible link between dopamine and mood stabilizers? 

Several studies implicated Homer genes in transductional pathways specifically 

correlated to dopaminergic function, and downstream of dopaminergic receptors [143]. 

Our previous work [17,99] described a peculiar pattern of Homer gene induction in the 

rat forebrain following the acute or chronic administration of typical and atypical 

antipsychotics. In particular, the expression of the inducible isoforms of Homer1 seems 

to be correlated with the degree of dopamine D2 receptor blockade induced by various 

antipsychotics. Recent evidence suggests that both lithium and VPA may affect 

dopaminergic function in multiple ways; for instance, both mood stabilizers can reverse 

the abnormal behaviors induced by indirect agonists (e.g., apomorphine or 

amphetamine) [342,343]. Other studies noted that VPA may potentiate dopamine efflux 

by antipsychotics in cortical regions [344]. Recent work from our laboratory 

demonstrated that VPA, when co-administered with a typical or atypical antipsychotic, 

may modify the impact on Homer-related postsynaptic gene expression exerted by 

individual administration of these drugs [146]; interestingly, this evidence is highly 

consistent with recent observations that both mood stabilizers might directly act on 

dopaminergic transductional pathways, such as the Akt-GSK3b cascade [249]. Given 

the putative role of Homer proteins in the signaling cascade of dopamine receptors in 

cortical and striatal regions, our finding that lithium and VPA modulate Homer1b/c may 

provide additional information regarding the possible impact of these two agents on 

dopaminergic signaling. 
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Lithium and VPA modulate Shank and IP3R expression: possible differential regional 

impact on calcium-dependent synaptic plasticity  

Shank and IP3R—the two Homer-related genes analyzed—were both found to be 

affected in cortical regions after chronic administration of either lithium or VPA, 

although some differences in their modulation exist. Indeed, Shank expression was 

mildly impacted by chronic lithium in the cortex, while VPA significantly 

downregulated gene expression in motor and insular cortices. It is important to note that 

although both mood stabilizers promoted IP3R cortical downregulation, only lithium 

treatment significantly decreased IP3R expression in almost all cortical subregions. In 

contrast, in the dorsolateral caudate-putamen, IP3R was downregulated by VPA, while 

lithium slightly—and non-significantly—decreased gene expression.  

 Shank proteins are known to dually interact with NMDARs through a PSD95-GKAP 

(postsynaptic density 95/guanylate kinase-associated protein) complex, and with 

mGluRs1/5 by linking Homer1b/c, which interacts with IP3Rs to connect this 

machinery to the intracellular calcium stores [345]. Notably, recent studies 

demonstrated that Shank and Homer1b/c play a major role in regulating calcium 

intracellular oscillations by interacting directly with each other and with IP3Rs 

localized on calcium cisterns [88]. Therefore, the impact on Shank and IP3R transcripts 

following chronic administration of either lithium or VPA in both cortex and striatum 

may reflect the overall regulation of calcium-dependent glutamatergic activity exerted 

by these two mood stabilizers in cortical and subcortical regions. However, the 

differences in the expression patterns of Shank and IP3R by the two distinct mood 

stabilizers may suggest a differential regulation of calcium intracellular networks with a 

possible neuroanatomical specificity. Indeed, although lithium and VPA share common 

mechanisms of action with respect to the intracellular pathways activated (e.g. 

Akt/GSK3b signaling; phosphoinositide pathway) [259,346], several reports have 
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demonstrated that the effects of the two mood stabilizers may diverge depending upon 

neural cell type [347]. Moreover, lithium and VPA have also been reported to impact 

gene expression with differential regional specificity [281]. The present findings 

contribute additional data regarding this issue, thereby stimulating further investigation 

to elucidate the mechanisms by which lithium and VPA may differentially trigger 

calcium-dependent pathways in a region-specific manner. 

In addition, the fact that both Shank and IP3R—like Homer1b/c— were modulated in 

brain regions specifically involved in cognitive-behavioral and motor aspects of 

emotion may further confirm the essential role that these PSD proteins play in the 

transductional pathways implicated in the mechanism of action of mood stabilizers.  

  

 

Lithium and VPA did not impact Homer1 inducible transcripts: new ways to synaptic 

rearrangements by mood stabilizers? 

In contrast to the constitutive isoform of the Homer1 gene, neither the inducible form 

Homer1a nor its splice variant ania-3 were affected by chronic administration of 

lithium or VPA. These results are consistent with other reports showing a negligible 

induction of IEGs (i.e. c-fos) following the chronic administration of lithium or VPA 

[281]. Moreover, the present findings support our previous work in this area[146], 

which found that neither acute nor chronic VPA administration modulated Homer1a 

expression, even though the co-administration of VPA with an antipsychotic induced 

changes in gene expression that differed from those elicited by the individually-

administered compounds. These findings suggest that chronic treatment with mood 

stabilizers—although they impact Homer-dependent signalling—may not affect the 

Homer constitutive/inducible forms ratio, as seen in our previous study of 
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antipsychotics [21]. Thus, it is more likely that they have a direct impact on structural 

constituents of the postsynaptic network, such as Homer long forms, Shank, and IP3Rs.  

Taken together, these results provide the first evidence that chronic administration of 

the mood stabilizers lithium and VPA modulate Homer1b/c and its related postsynaptic 

genes Shank and IP3R. Notably, all of these genes encode multifunctional proteins that 

interact with well-known targets of mood stabilizers, and all have been implicated in 

long-term synaptic changes. Therefore, Homer genes may represent a new molecular 

substrate for the mechanism of action of mood stabilizers, a finding that clearly 

warrants further investigation. 
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VIII. Study n.3: Progressive recruitment of cortical and subcortical brain regions 

by inducible and constitutive postsynaptic density transcripts after increasing 

doses of antipsychotics with different receptor profiles.  

 

Our previous studies suggest that PSD genes expression can be modulated by 

psychotropic drugs that mainly, albeit not exclusively, impact dopaminergic, 

serotonergic and glutamatergic neurotransmission [85,99,140,17]. In particular, Homer 

transcripts show a specific pattern of expression in cortical and subcortical regions 

depending on both the degree of dopamine D2 receptors blockade and the ratio of 

serotonergic/dopaminergic activity by the antipsychotic drugs administered 

[85,99,140,17], as well as Homer shows peculiar responses in cortical regions by drugs 

impacting selectively the serotonergic neurotransmission, such as antidepressants, alone 

or in combination with antipsychotics [247]. Last, PSD genes, in particular inducible 

Homer1a, have been demonstrated to display differential patterns of expression in 

selected rat brain regions by combined administration of antipsychotics and mood 

stabilizers (an add-on strategy tightly resembling the real world of clinical 

pharmacotherapy of psychosis), as compared to each drug class when individually 

administered [146].  

A large amount of studies have tried to map the brain regions affected by antipsychotics 

administration, both by functional MRI in humans and by gene expression patterning in 

animal models, in order to better define the mechanisms of action by which these drugs 

exert their clinical effects. To this purpose, measurement of immediate-early genes 

(IEG) expression in response to drug exposure has proven useful in defining brain 

regions recruited by antipsychotic action. [348]. Indeed, drug-related IEG patterns of 

expression may provide both spatial and temporal profile of antipsychotic brain 

responses. For instance, haloperidol has been demonstrated to increase brain activity in 
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striatal regions at functional MRI,  as well as to concurrently reduce prefrontal cortex 

glucose utilization [349]. Moreover, a recent study reported that haloperidol may reduce 

connectivity between basal ganglia and prefrontal cortex, and impair coupling between 

substantia nigra and cortical motor areas, putatively reflecting the liability of 

haloperidol to induce motor side effects in psychotic patients [350]. These findings 

tightly resemble preclinical data reporting a preferential pattern of striatal genes 

expression by haloperidol acute and chronic administration in rat forebrain [17,146]. By 

contrast, atypical antipsychotics preferentially activate prefrontal cortical brain areas 

and ventral striatum in humans [349]  corresponding to a selective pattern of gene 

expression in medial agranular and somatosensory cortices, as well as in ventral 

striatum and nucleus accumbens, in the rat forebrain [20,21]. 

However, despite being a potential translational issue, a few studies have been 

performed on the differential activation of brain areas following increasing doses of 

antipsychotics, which is the most widely used therapeutic titration protocol in clinical 

practice to start (or even to switch) antipsychotic medications in patients. Indeed, 

understanding which brain region or sub-region is progressively activated by increasing 

doses of antipsychotic and how antipsychotics with different receptor profile may 

impact on such activation is  potentially relevant to better correlate the mechanism of 

action of antipsychotics bot with their efficacy and side effects.  

Thus, in the present study we addressed the following questions: 

1. How different cortical  and striatal subregions are progressively “recruited” by  

increasing doses of antipsychotic resembling clinical titration protocols 

2. Whether different receptor profile may influence the recruitment of new brain 

regions beyond dopamine receptor blockade 

3. Whether cortical and subcortical regions activated by the same doses of 

antipsychotic are functionally correlated. 
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To this purpose, we analyzed the differential expression of postsynaptic density 

transcripts induced by different doses of two antipsychotics: haloperidol, the 

prototypical first generation antipsychotic with prevalent dopamine D2 receptor 

blocking action, and asenapine, a novel antipsychotics characterized also by multiple 

receptor occupancy and with an equal ratio of D1 and D2 receptors blockade. We also 

compared the pattern of gene expression by increasing haloperidol and asenapine with 

that of a fixed dose of the atypical antipsychotic olanzapine, as a further touchstone. 

The new atypical antipsychotic asenapine shows a broad multi-receptorial binding 

affinity and has been demonstrated to promote dopamine, serotonin and noradrenaline 

release in cortex and dopamine release in nucleus accumbens at doses that have 

antipsychotic activity in animal behavioral studies [237].  Moreover, thanks to its 

unique multi-receptor profile, asenapine may differentially impact glutamatergic and 

dopaminergic systems in cortical and subcortical regions: it, in fact, enhances glutamate 

NMDA-mediated currents in pyramidal cortical neurons, while it decreases NMDA 

receptor activity in caudate-putamen and nucleus accumbens; moreover, the chronic 

treatment with potentiates AMPA receptor activity in hippocampus [238]. On the other 

hand, asenapine may specifically enhance the dopamine bursts from VTA to the medial 

prefrontal cortex and the nucleus accumbens, and of noradrenaline from locus coeruleus 

to the cortex [237]. Recent studies have demonstrated that asenapine may exert brain 

region-specific differential effects on dopamine, serotonin and glutamate receptors 

depending on the dose administered [239-241]. 

In order to explore the topography of transcript distribution after different doses of 

antipsychotic we chose to investigate the expression of postsynaptic density genes that 

have been demonstrated to be responsive to typical and atypical antipsychotics 

treatment and to be involved in synaptic plasticity process believed to be relevant for 

schizophrenia and other psychosis pathophysiology. Specifically we studied the cortical 
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and subcortical topography of Homer-related IEG transcripts, Homer1a, c-fos, Arc and 

Zif268, together with the related interacting constitutive genes Homer1b/c and PSD95 

under incremental doses of antipsychotics. Moreover, we paralleled Homer1a patterns 

of gene expression to the corresponding Homer1a protein expression in striatal regions. 

Lastly, we performed a behavioral locomotor analysis of experimental animals to test 

different responses to increasing doses.  

 

 

Materials and Methods. 

 

Animals. 

Male Sprague-Dawley rats (mean weight 250g) were obtained from Charles-River Labs 

(Lecco, Italy). The animals were housed and let to adapt to human handling in a 

temperature and humidity controlled colony room with 12/12 h light–dark cycle (lights 

on from 6:00 a.m. to 6:00 p.m.) with ad libitum access to laboratory chow and water. 

All procedures were conducted in accordance with the NIH Guide for Care and Use of 

Laboratory Animals (NIH Publication No. 85-23, revised 1996) and were approved by 

local Animal Care and Use Committee. All efforts were made to minimize animal 

number and suffering. 

 

Drug treatment. 

Asenapine powder (gently supplied by H. Lundbeck A/S, Copenaghen, Denmark), 

ketamine hydrochloride powder powder (Sigma-Aldrich, St. Louis, MO, USA), and 

haloperidol injectable solution (Lusofarmaco, Italy) were all dissolved in saline solution 

(NaCl 0.9%). All solutions were adjusted to physiological pH value and injected i.p. at a 

final volume of 1 ml/kg. 
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Rats were randomly assigned to one of the following treatment groups (n=7 for each 

treatment group): Saline solution (NaCl 0.9%, SAL); haloperidol 0.25 mg/kg 

(HAL0.25); haloperidol 0.5 mg/kg (HAL0.5); haloperidol 0.8 mg/kg (HAL0.8); 

asenapine 0.05 mg/kg (ASE0.05); asenapine 0.1 mg/kg (ASE0.1); asenapine 0.3 mg/kg 

(ASE0.3); olanzapine 2.5mg/kg (OLA).  

All drugs were given at behaviorally active doses, based on previous works. Animals 

were killed by decapitation 90 minutes after administration, the brains were rapidly 

removed, quickly frozen on powdered dry ice and stored at -70°C prior to sectioning. 

Serial coronal sections of 12 µm were cut on a cryostat at -18°C through the forebrain at 

the level of the middle-rostral striatum (approx. from Bregma 1.20mm to 1.00mm), 

using the rat brain atlas by Paxinos and Watson [295] as an anatomical reference. Care 

was taken to select identical anatomical levels of treated and control sections using 

thionin-stained brain sections. Sections were thaw-mounted onto gelatin-coated slides, 

and stored at -70ºC for subsequent analysis. 

 

 

 

In Situ Hybridization Histochemistry 

 

Probes 

Probes used for radioactive in situ hybridization were oligodeoxyribonucleotides 

complementary to bases sequence of target genes mRNAs. The Homer1a probe is 

complementary to bases 2527-2574 (GenBank #U92079; MWG Biotech, Firenze). The 

Arc probe is complementary to bases 789-833 (GenBank #NM019361; MWG Biotech, 

Firenze). The c-fos probe is complementary to bases 111-158 (GenBank #AY780203; 

MWG Biotech, Firenze). The Zif-268 probe is complementary to bases 
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352–399 (GenBank#M18416; MWG Biotech, Firenze). The Homer1b/c probe is 

complementary to bases 1306-1354 (GenBank#AF093267; MWG Biotech, Firenze). 

The PSD95 probe is complementary to bases 225–269 (GenBank#M96853; MWG 

Biotech, Firenze).   All probes were designed from GenBank sequences and checked 

with BLAST in order to avoid cross-hybridization.  

 

Probe radiolabeling 

For each probe a 50µl labeling reaction mix was prepared on ice using DEPC treated 

water, 1X tailing buffer, 7.5pmol/µl of oligo, 125 Units of TdT and 100mCi 35S-dATP. 

The mix was incubated 20 min at 37°C. The unincorporated nucleotides were separated 

from radiolabeled DNA using ProbeQuant G-50 Micro Columns (Amersham-GE 

Healthcare Biosciences; Milano, Italy). As an assessment of the probe specificity, the 

autoradiographic signal distribution was compared and found to be consistent with 

previous in situ hybridization studies [17]. The specificity of each probe was also tested 

by pilot control experiment using the corresponding oligodeoxyribonucleotide. 

 

In situ hybridization 

Sections were processed for radioactive in situ hybridization according to previously 

published protocols [296]. All solutions were prepared with sterile double-distilled 

water. The sections were fixed in 4% formaldehyde in 0.12 M PBS (pH 7.4), quickly 

rinsed three times with 1X PBS, and placed in 0.25% acetic anhydride in 0.1 M 

triethanolamine/0.9% NaCl, pH 8.0, for 10 minutes. Next, the sections were dehydrated 

in 70%, 80%, 95% and 100% ethanol, delipidated in chloroform for 5 minutes, rinsed 

again in 100% and 95% ethanol and air-dried. 

Sections were hybridized with 0.4-0.6x106 cpm of radiolabeled oligonucleotide in 

buffer containing 50% formamide, 600mM NaCl, 80mM Tris-HCl (pH 7.5), 4mM 
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EDTA, 0.1% pyrophosphate, 0.2mg/ml heparin sulfate, and 10% dextran sulfate. Slides 

were covered with coverslips and incubated at 37oC in a humid chamber for 22-24 

hours. After hybridization the coverslips were removed in 1X SSC and the sections 

were washed 4x15 minutes in 2X SSC/50% formamide at 43o-44oC, followed by two 30 

min washes with 1X SSC at room temperature. The slides were rapidly rinsed in 

distilled water and then in 70% ethanol. 

The sections were dried and exposed to Kodak-Biomax MR Autoradiographic film 

(Sigma-Aldrich, Milano, Italy). A slide containing a scale of 16 known amounts of 14C 

standards (ARC-146C, American Radiolabeled Chemical, Inc., St. Louis, MO, USA) 

was co-exposed with the samples. The autoradiographic films were exposed in a time 

range of 14-30 days. The optimal time of exposure was chosen to maximize signal-to-

noise ratio but to prevent optical density from approaching the limits of saturation. Film 

development protocol included a 1.5 min dip in the developer solution and 3 min in the 

fixer. 

 

 

Image analysis 

The quantitation of the autoradiographic signal was performed using a computerized 

image analysis system including: a transparency film scanner (Microtek Europe B. V., 

Rotterdam, The Netherlands), an iMac computer, and ImageJ software (v. 1.47, 

Rasband, W.S., http://rsb.info.nih.gov/ij/). The original characteristics of the scanned 

images (i.e. contrast, brightness, resolution) were preserved. Each slide contained 3 

adjacent sections of a single animal. All hybridized sections used for comparative 

statistical analysis were exposed on the same sheet of X-ray film. Signal intensity 

analysis was carried out on digitized autoradiograms measuring mean optical density 

within outlined ROIs in correspondence of the cortex, caudate putamen and nucleus 
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accumbens (Figure 17). These cortical and striatal subregions are structurally and 

functionally interconnected through projections from the cortex, which targets specific 

striatal sectors. Thus, ROIs were chosen based on functional mapping studies 

of gene expression [297] and other studies analyzing Homer expression in response to 

drugs [17,146]. A template, proportional to the dimensions of the anatomical subregion, 

was used for computerized quantitations in each one of the ROIs depicted.   

Sections were quantitated blind to the treatment conditions. In order to test for inter-

observer reliability an independent quantitation was performed by a second investigator. 

Results obtained by the first investigator were considered reliable, and then reported, 

only when they were quantitatively comparable, in terms of consistency of the 

statistically significant effects found, to that obtained by the second investigator. 
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Figure 17.  Upper panel. Diagram of regions of interest (ROIs) quantitated on autoradiographic film 
images in rat forebrain (section coordinates are approximate from Bregma 1.20 mm to 1.00 mm) and 
illustration of cortico-striatal projections among the ROIs in which gene expression induced by mood 
stabilizers was measured. AC =  anterior cingulate cortex; M2 = medial agranular cortex; M1 = motor 
cortex; SS = somatosensory cortex; I = insular cortex; dmCP = dorsomedial caudate-putamen; dlCP = 
dorsolateral caudate-putamen; vlCP = ventrolateral caudate-putamen; vmCP = ventromedial caudate-
putamen; core = core of nucleus accumbens; shell = shell of nucleus accumbens. Modified from Paxinos 
and Watson (1997). Lower panel. Schematic diagram of experimental timeline. ISHH = In Situ 
Hybridization Histochemistry. WB = Western Blot. 
 

 

Data processing 

Measurements of mean optical density within ROIs were converted using a calibration 

curve based on the standard scale co-exposed to the sections. 14C standard values from 4 

through 12 were previously cross-calibrated to 35S brain paste standards, in order to 

assign a dpm/mg tissue wet weight value to each optical density measurement through a 

calibration curve. For this purpose a “best fit” 3rd degree polynomial was used. For each 

animal, measurements from the 3 adjacent sections were averaged and the final data 

were reported in relative dpm as mean ± S.E.M. ANOVA was used to analyze treatment 
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effects. The Tukey’s post hoc test was used to determine the locus of effects in any 

significant ANOVA.  

Signal distribution and brain areas correlations were assessed considering the 

measurements from each treatment group as the dependent variable, and the ROIs in 

which expression was measured as the independent variable (i.e.: measurements were 

analyzed per region effect). Kruskal-Wallis test was used to investigate the null 

hypothesis that no significant differences can be found in mRNA expression throughout 

cortical or striatal subregions. Significant differences among groups were analyzed by 

the Wilcoxon test for multiple comparisons. 

 

 

Western Blot Analysis  

After fresh-frozen collection, rat brains were dissected to isolate the prefrontal cortical 

area, the caudate-putamen, the nucleus accumbens and the hippocampus. Dissected 

region specimens were placed on ice in 1.5ml tubes and treated with Thermoscientific 

SynPER Synaptic Protein Reagent ™ (10ml per gram of tissue), with protease inhibitors 

added immediately before use, and then homogenated with Dounce. Homogenates were 

rapidly transferred to appropriate centrifuge tubes and centrifuged at 1200g for 10 

minutes at 4°C. The pellet was discarded and supernatant was transferred to new tubes 

and centrifuged at 15000g for 20 minutes at 4°C. Thus, we obtained two fractions in 

which supernatant formed cytosolic component and the pellet formed the synaptic 

component. Protein amount was measured by Bradford sampling and then 2ml SynPER 

Reagent per gram of tissue was added for storage at -80°C in 5% (v/v) DMSO for 

subsequent analyses.  

4µg/µl protein was run in wells per each experimental group using Bio-Rad Mini-

PROTEAN® system, mixed to equal amount v/v of Laemmli ™ buffer for visualization 
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and separated on SDS-PAGE 10% polyacrylamide gel. Proteins were transferred to 

nitrocellulose membranes (Amersham Hybond-ECL, GE Healthcare) and blocked in 

blocking buffer (5% nonfat dry milk in PBS and 0.1% Tween 20) for 1 h. The blots 

were incubated in primary rabbit polyclonal antibody for rat Homer1 (Merck Millipore) 

1:1000 and mouse β-Actin 1:5000 (Sigma-Aldrich) at 4°C overnight. This was followed 

by appropriate washes in TBS and 1 h incubation in a goat horseradish peroxidase-

linked anti-rabbit  and  rabbit anti-mouse secondary antibodies respectively (Sigma-

Aldrich). Blots were developed with LiteABlot® Extended chemiluminescent substrate 

(EuroClone) and exposed on Fujifilm® western blot films.  

Three different rats for each experimental group were analysed with WB analysis, in 

order to grant statistical significance. 

The quantitation of the blot signal was performed using a computerized image analysis 

system including: a transparency film scanner (Microtek Europe B. V., Rotterdam, The 

Netherlands), an iMac computer, and ImageJ software (v. 1.47, Rasband, W.S., 

http://rsb.info.nih.gov/ij/).  

Signal intensity by each band (corresponding to each experimental group) was 

relativized by dividing for the corresponding standard band (the β-Actin band), thus 

obtaining a relative signal density standardized per protein total amount (which is 

usually considered as the intensity of β-Actin signal by each specimen). For each animal 

(i.e. band), measurements from the 3 different rats blotted were averaged and the final 

data were reported in relative intensity as mean ± S.E.M. ANOVA was used to analyze 

treatment effects. The Student-Neumann-Keuls’s post hoc test was used to determine 

the locus of effects in any significant ANOVA. 

 

 

 



 98 

Behavioral Activity Monitoring 

 

Rats were placed three in each cage which corresponded to a specific treatment group. 

Activity was evaluated in transparent (210 square inches floor) plastic enclosures using 

a computerized photocamera system (Apple computer ™) and it was measured by using 

a motion capture system, which simultaneously labeled and tracked movements by each 

rat in the cage  (Kinovea®). Motion was calculated using centimeters walked through in 

continuous shot as the dependent variable for total activity. Locomotor activity 

monitoring following each treatment administration was for a period of 5 minutes. 

Distance walked though by each rat was averaged with the others belonging to the same 

treatment group and expressed as centimeters ± S.E.M. ANOVA was used to analyze 

treatment effects comparing measurements both before and after treatments 

administration. The Student-Neumann-Keuls’s post hoc test was used to determine the 

locus of effects in any significant ANOVA. 

 

 

Results 

 

I. Haloperidol and asenapine dose-dependently induce IEGs, but not constitutive genes, 

expression in distinct cortical and subcortical brain regions 

 

a) Homer1a 

Homer1a  gene expression was analyzed in several cortical and subcortical regions of 

rat forebrain. Results are summarized in Figure 18. As in previous works [17], 

haloperidol administration induced a robust Homer1a expression in striatal regions. 

Specifically, HAL0.25 treatment significantly induced Homer1a expression in dmCP 
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(F(7,36)=4.2876; p=0.0023), dlCP (F(7,36)=4.9198; p=0.0009) and vlCP (F(7.36)=4.3211; 

p=0.0022) as compared to controls. HAL0.5 significantly induced Homer1a in all 

caudate-putamen subregions (dmCP [F(7,36)=4.2876; p=0.0023], dlCP [F(7,36)=4.9198; 

p=0.0009], vlCP [F(7,36)=4.3211; p=0.0022] , and vmCP [F(7,36)=3.7519; p=0.0052]). 

The most robust induction of Homer1a gene expression was achieved by HAL0.8 

treatment, which elicited significant signal induction in all caudate-putamen subregions 

(dmCP [F(7,36)=4.2876; p=0.0023], dlCP [F(7,36)=4.9198; p=0.0009], vlCP 

[F(7,36)=4.3211; p=0.0022] , and vmCP [F(7,36)=3.7519; p=0.0052]), as well as in both 

core (F(7,36)=4.5485; p=0.0016) and shell (F(7,36)=4.6606; p=0.0013) of the nucleus 

accumbens, as compared to control. Moreover, as in previous works (Polese et al., 

2002; Iasevoli et al., 2010), olanzapine induced Homer1a significant gene expression in 

all the striatum (dmCP [F(7,36)=4.2876; p=0.0023], dlCP [F(7,36)=4.9198; p=0.0009], 

vlCP [F(7,36)=4.3211; p=0.0022], vmCP [F(7,36)=3.7519; p=0.0052], core [F(7,36)=4.5485; 

p=0.0016], and shell [F(7,36)=4.6606; p=0.0013]), as compared to controls, as well as in 

AC (F(7,36)=3.8010; p=0.0048), M2 (F(7,36)=3.7359; p=0.0053), M1 (F(7,36)=3.9105; 

p=0.0041) and I (F(7,36)=43.6924; p=0.0057) cortical subregions.  

Differently from both haloperidol and olanzapine, a unique Homer1a gene modulation 

was induced by asenapine. Indeed, both ASE0.05 and ASE0.1 induced a robust 

Homer1a signal expression in cortical and subcortical regions. Specifically, ASE0.05 

stimulated Homer1a significant expression as compared to controls in AC 

(F(7,36)=3.8010; p=0.0048) , M2 (F(7,36)=3.7359; p=0.0053), M1 (F(7,36)=3.9105; 

p=0.0041), and SS (F(7,36)=3.6220; p=0.0063) cortical regions, as well as in dmCP 

(F(7,36)=4.2876; p=0.0023), dlCP (F(7,36)=4.9198; p=0.0009), vlCP (F(7,36)=4.3211; 

p=0.0022) and vmCP (F(7,36)=3.7519; p=0.0052) and in the nucleus accumbens core 

(F(7,36)=4.5485; p=0.0016). ASE0.1 induced a wider Homer1a gene expression than 

ASE0.05, thus stimulating the gene signal expression in all cortical and subcortical 
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subregions, and in all the nucleus accumbens. By contrast, the highest asenapine dose, 

ASE0.3, stimulated no Homer1a signal induction in the cortex, but induced a robust 

gene expression in all the caudate-putamen, as well as in both core and shell of the 

nucleus accumbens. Notably, the expression of Homer1a by ASE0.3 in lateral striatal 

subregions was significantly higher than that induced by haloperidol (all the dosages) 

and olanzapine.  

 

b) Arc 

Arc gene expression was significantly reduced as compared to controls in all cortical 

subregions (Figure 18) with the exception of AC (M2 [F(7,38)=1.7428; p=0.0128], M1  

[F(7,38)=1.4556; p=0.0358], SS [F(7,38)=1.6088; p=0.0299], and I [F(7,38)=1.48396; 

p=0.0425]) , by HAL0.25 treatment, whereas the same treatment significantly induced 

expression of the gene in both nucleus accumbens core (F(7,38)=2.4165; p=0.0426) and 

shell (F(7,38)=2.7214; p=0.0254). By contrast, no cortical impact was noticed by HAL0.5 

treatment, while it significantly induced Arc expression in lateral caudate-putamen 

subregions (dlCP [F(7,38)=2.6917; p=0.0267] and vlCP [F(7,38)=3.0320; p=0.0151), as 

well as in both core (F(7,38)=2.4165; p=0.0426) and shell (F(7,38)=2.7214; p=0.0254). The 

highest dose of haloperidol, HAL0.8, significantly stimulated Arc gene expression in 

dmCP (F(7,38)=1.5939; p=0.0439), dlCP (F(7,38)=2.6917; p=0.0267), vlCP (F(7,38)=3.0320; 

p=0.0151) and in all the nucleus accumbens (core [F(7,38)=2.4165; p=0.0426] and shell 

[F(7,38)=2.7214; p=0.0254]), as compared to controls. Moreover, HAL0.8 also 

significantly reduced Arc expression in all cortical subregions (AC [F(7,38)=1.3788; 

p=0.0329], M2 [F(7,38)=1.7428; p=0.0128], SS [F(7,38)=1.6088; p=0.0299], and I 

[F(7,38)=1.48396; p=0.0425]), with the exception of the motor cortex (M1).  

The lowest dose of asenapine, ASE0.05, as well as olanzapine, showed a Arc signal 

distribution similar to the controls, whereas ASE0.1 significantly reduced expression of 
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the gene in AC (F(7,38)=1.3788; p=0.0329), M2 (F(7,38)=1.7428; p=0.0128) and M1 

(F(7,38)=1.4556; p=0.0358) cortical regions. ASE0.3 showed no Arc gene modulation in 

the cortex, but significantly induced the gene expression in lateral caudate-putamen 

(dlCP [F(7,38)=2.6917; p=0.0267] and vlCP [F(7,38)=3.0320; p=0.0151]) and in the 

nucleus accumbens core (F(7,38)=2.4165; p=0.0426).  

 

Figure 8. Panel a and d. Autoradiographic film images respectively of Homer1a  and Arc mRNA 
detected by means of in situ hybridization histochemistry in coronal brain sections after acute treatment 
with vehicle (SAL), haloperidol 0.25mg/kg (HAL0.25), haloperidol 0.5mg/kg (HAL0.5), haloperidol 
0.8mg/kg (HAL0.8), asenapine 0.05mg/kg (ASE0.05), asenapine 0.1mg/kg (ASE0.1), asenapine 
0.3mg/kg (ASE0.3), olanzapine 2.5mg/kg (OLA).  Panel b and c: Homer 1a mRNA levels in subregions 
of the cortex, caudate-putamen, and nucleus accumbens. Data are reported in relative d.p.m. as mean ± 
S.E.M. Tukey’s post hoc test: * = vs. SAL (p<0.05). Panel e and f: Arc mRNA levels in subregions of the 
cortex, caudate-putamen, and nucleus accumbens. Data are reported in relative d.p.m. as mean ± S.E.M. 
Tukey’s post hoc test: * = vs. SAL (p<0.05).  
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c) c-fos 

Similarly to Homer1a, c-fos gene expression was differentially modulated by the 

distinct doses of haloperidol in the striatum (Figure 19). HAL0.25, indeed, significantly 

stimulated c-fos expression in dlCP (F(7,36)=5.3869; p=0.0005) and vmCP 

(F(7,36)=5.4120; p=0.0005), as well as in the shell (F(7,36)=7.1069; p<0.0001), as 

compared to controls. HAL0.5 induced c-fos in dlCP (F(7,36)=5.3869; p=0.0005), vlCP 

(F(7,36)=7.6394; p<0.0001), vmCP (F(7,36)=5.4120; p=0.0005) and in the shell 

(F(7,36)=7.1069; p<0.0001) as compared to controls. The widest c-fos induction was 

obtained by HAL0.8 treatment, which significantly stimulated expression of the gene in 

all the caudate-putamen subregions, as well as in both nucleus accumbens core and shell 

(dmCP [F(7,36)=2.8064; p=0.0233], dlCP [F(7,36)=5.3869; p=0.0005], vlCP 

[F(7,36)=7.6394; p<0.0001] , vmCP [F(7,36)=5.4120; p=0.0005], core [F(7,36)=2.9124; 

p=0.0196], and shell [F(7,36)=7.1069; p<0.0001]).  

No signal induction was noticed in ASE0.05 and in ASE0.1 subgroups, whereas 

ASE0.3 dose induced significant c-fos expression in all the striatum and the nucleus 

accumbens as compared to controls, resembling the signal distribution by HAL0.8 

treatment. Olanzapine, by contrast, induced c-fos expression only in ventral caudate-

putamen subregions (vlCP [F(7,36)=7.6394; p<0.0001] and vmCP [F(7,36)=5.4120; 

p=0.0005]).  

 

d) Zif268 

Similar Zif268 gene signal induction was noticed for all the doses of haloperidol (Figure 

9), which induced significant expression of this gene in all the striatum and the nucleus 

accumbens shell (dmCP [F(7,37)=8.2153; p<0.0001], dlCP [F(7,37)=14.0835; p<0.0001], 

vlCP [F(7,37)=11.4395; p<0.0001] , vmCP [F(7,37)=24.1296; p<0.0001], core 
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[F(7,37)=5.4012; p=0.0004], and Ha [F(7,37)=7.0829; p<0.0001]) as compared to controls, 

with the exception of HAL0.25, in which no core signal was observed. 

All three doses of asenapine induced a similar pattern of Zif268 gene expression, with 

significant signal distribution in all caudate-putamen subregions (dmCP [F(7,37)=8.2153; 

p<0.0001], dlCP [F(7,37)=14.0835; p<0.0001], vlCP [F(7,37)=11.4395; p<0.0001] and 

vmCP[F(7,37)=24.1296; p<0.0001]) and in the nucleus accumbens shell (F(7,37)=7.0829; 

p<0.0001).  

Olanzapine significantly stimulated Zif268 gene expression in dlCP (F(7,37)=14.0835; 

p<0.0001) and vlCP (F(7,37)=11.4395; p<0.0001), as well as in the nucleus accumbens 

shell (F(7,37)=7.0829; p<0.0001).  
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Figure 19. Panel a and d. Autoradiographic film images respectively of c-fos  and Zif268 mRNA 
detected by means of in situ hybridization histochemistry in coronal brain sections after acute treatment 
with vehicle (SAL), haloperidol 0.25mg/kg (HAL0.25), haloperidol 0.5mg/kg (HAL0.5), haloperidol 
0.8mg/kg (HAL0.8), asenapine 0.05mg/kg (ASE0.05), asenapine 0.1mg/kg (ASE0.1), asenapine 
0.3mg/kg (ASE0.3), olanzapine 2.5mg/kg (OLA).  Panel b and c: c-fos mRNA levels in subregions of the 
cortex, caudate-putamen, and nucleus accumbens. Data are reported in relative d.p.m. as mean ± S.E.M. 
Tukey’s post hoc test: * = vs. SAL (p<0.05). Panel e and f: Zif268 mRNA levels in subregions of the 
cortex, caudate-putamen, and nucleus accumbens. Data are reported in relative d.p.m. as mean ± S.E.M. 
Tukey’s post hoc test: * = vs. SAL (p<0.05). 
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e) Homer1b/c 

The long isoform of Homer1 gene was robustly induced in AC (F(7,38)=2.7438; 

p=0,0244), M2 (F(7,38)=2.5434; p=0.0343) and M1 (F(7,38)=3.1902; p=0.0116) cortical 

subregions by HAL0.8, ASE0.1, ASE0.3, and OLA treatments as compared to SAL 

(Figure 4). HAL0.5 only stimulated Homer1b/c expression in motor cortical subregion 

(M1, F(7,38)=3.1902; p=0.0116). All treatments, with the exception of ASE0.05 induced 

nucleus accumbens core overexpression of Homer1b/c (F(7,38)=2.7532; p=0.0240). No 

other significant signal changes in both cortical and subcortical regions were noticed by 

treatments.  

 

f) PSD95 

A strong increase in signal intensity was noticed in both cortex and striatum, as well as 

in the nucleus accumbens, by all asenapine dosages and by olanzapine treatments (AC: 

F(7,34)=4.4175; p=0.0022; M2: F(7,34)=3.6184; p=0.0071; M1: F(7,34)=4.6418; p=0.0016; 

SS: F(7,34)=4.7392; p=0.0014; I: F(7,34)=7.4855; p<0,0001; dmCP: F(7,34)=4.2978; 

p=0.0026; dlCP: F(7,34)=4.8850; p=0.0012; vlCP F(7,34)=4.6296; p=0.0016; vmCP: 

F(7,34)=5.5809; p=0.0005; AcCo: F(7,34)=4.3186; p=0.0025; AcSh: F(7,34)=4.2426; 

p=0.0028).  HAL0.5 induced PSD95 overexpression only in AC and M1 cortex 

subregions, whereas HAL0.8 overexpressed the gene in AC, M2, M1 and I, as well as in 

dmCP, dlCP, vmCP, AcCo and AcSh (Figure 20).  
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Figure 20. Panel a and d. Autoradiographic film images respectively of Homer1b/c  and PSD95 mRNA 
detected by means of in situ hybridization histochemistry in coronal brain sections after acute treatment 
with vehicle (SAL), haloperidol 0.25mg/kg (HAL0.25), haloperidol 0.5mg/kg (HAL0.5), haloperidol 
0.8mg/kg (HAL0.8), asenapine 0.05mg/kg (ASE0.05), asenapine 0.1mg/kg (ASE0.1), asenapine 
0.3mg/kg (ASE0.3), olanzapine 2.5mg/kg (OLA).  Panel b and c: Homer1b/c mRNA levels in subregions 
of the cortex, caudate-putamen, and nucleus accumbens. Data are reported in relative d.p.m. as mean ± 
S.E.M. Tukey’s post hoc test: * = vs. SAL (p<0.05). Panel e and f: PSD95 mRNA levels in subregions of 
the cortex, caudate-putamen, and nucleus accumbens. Data are reported in relative d.p.m. as mean ± 
S.E.M. Tukey’s post hoc test: * = vs. SAL (p<0.05). 
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II. Haloperidol and asenapine dose-dependently recruit progressive postsynaptic IEGs 

expression in cortical and subcortical areas  

 

Signal distribution analysis was performed in order to address the issue whether 

increasing doses of antipsychotics may differentially impact IEGs and constitutive 

genes expression in selected rat forebrain areas that are functionally connected.  

 

a) Homer1a 

Kruskal-Wallis non-parametric test revealed that haloperidol acute administration dose-

dependently induced Homer1a expression with a dorsal-to-ventral progressive 

subregions recruitment (Figure 21). Indeed, Wilcoxon post-hoc comparison showed that 

HAL0.25 increased Homer1a expression significantly in dorsomedial, dorsolateral and 

ventromedial caudate-putamen, as compared to other striatal subregions 

(χ2=55.4510(df=10); p<0.0001). The higher dose HAL0.5, on the other hand, showed a 

significant signal increase in all the caudate-putamen, as compared to other subregions 

(χ2=32.2663(df=10); p=0.0004). Finally, the highest dose HAL0.8 induced Homer1a 

signal in the whole striatum, with no significant differences amongst striatal areas 

(χ2=17.2611(df=10); p=0.0688). 

On the other hand, the lowest dose of asenapine, ASE0.05, significantly induced 

Homer1a signal in AC, M2, M1 and SS, as compared to I, as well as in all the caudate-

putamen and in the core as compared to the shell (χ2=50.1667(df=10); p<0.0001). The 

intermediate dose ASE0.1 induced a widely distributed Homer1a expression overall the 

cortex and the striatum, without any significant difference amongst subregions 

(χ2=15.7408(df=10); p=0.1073). Last, the highest dose ASE0.3 induced a strong Homer1a 

expression in the caudate-putamen and in the whole nucleus accumbens as compared to 
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the cortex, being the dorsal regions of caudate-putamen significantly hyperactivated as 

compared to the other subregions (χ2=26.5679(df=10); p=0.0030). 

 

 

b) Arc 

Arc gene expression distribution by Kruskal-Wallis analysis showed a progressive 

recruitment of striatal areas by increasing doses of haloperidol, which occurred 

concurrently to a signal decrease in cortical subregions (Figure 21). HAL0.5, indeed, 

induced significant Arc signal enhancement in both core and shell of the nucleus 

accumbens as compared to the all the rest of the striatum (χ2=91.3984(df=10); p<0.0001). 

HAL0.5 showed significant Arc signal induction in the dorsal areas of striatum and in 

the whole nucleus accumbens as compared to ventral caudate-putamen, as well as there 

was no gene modulation in the cortex (χ2=100.5614(df=10); p<0.0001). HAL0.8 promoted 

the widest Arc distribution, located in dlCP, dmCp and vlCP, as well as in the nucleus 

accumbens, and a significant signal reduction in AC, M2 an SS as compared to all the 

other brain areas (χ2=84.3869(df=10); p<0.0001). 

No significant differences in brain signal distribution were noticed in Arc gene 

expression by ASE0.05 treatment (χ2=19.4017(df=10); p=0.0554). ASE0.1, instead, 

significantly reduced Arc signal in AC, M2 and M1 cortical subregions as compared to 

all the other brain areas (χ2=21.3817(df=10); p=0.0186). Last, ASE0.3 significantly 

induced Arc signal in the dorsal caudate-putamen and in the nucleus accumbens core as 

compared to the other striatal regions (χ2=85.3798(df=10); p<0.0001) 
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Figure 21. Panel a and d. Schematic depiction respectively of Homer1a and Arc gene expression 
recruitment in cortical and subcortical regions by the different treatments administered: vehicle (SAL), 
haloperidol 0.25mg/kg (HAL0.25), haloperidol 0.5mg/kg (HAL0.5), haloperidol 0.8mg/kg (HAL0.8), 
asenapine 0.05mg/kg (ASE0.05), asenapine 0.1mg/kg (ASE0.1), asenapine 0.3mg/kg (ASE0.3), 
olanzapine 2.5mg/kg (OLA). Red label: increased expression vs. other regions at Wilcoxon multiple 
comparison test (p<0.05). Blue label: decreased expression vs. other regions at Wilcoxon multiple 
comparison test (p<0.05). Dark red label: increased expression vs. other regions at Wilcoxon multiple 
comparison test (p<0.05). Panel b and c. Graphical representation of Homer1a gene expression 
distribution respectively by haloperidol or asenapine incremental dosages in the ROIs analyzed. Panel e 
and f. Graphical representation of Arc gene expression distribution respectively by haloperidol or 
asenapine incremental dosages in the ROIs analyzed. Data are expressed in relative d.p.m as mean ± 
S.E.M. considering the measurements from each treatment group as the dependent variable, and the ROIs 
in which expression was measured as the independent variable. 
 

 

 

 

 



 110 

c) c-fos 

Similarly to Homer1a gene expression, c-fos signal was progressively recruited in 

striatal areas by increasing haloperidol dosages (Figure 22). The low dose HAL0.25 

induced c-fos significant signal in dlCP and vmCP, as well as in the shell, as compared 

to all the other striatal subregions (χ2=43.2130(df=10); p<0.0001). By increasing the dose 

to HAL0.5, c-fos gene expression was induced also in vlCP, besides dlCP, dmCP and 

shell, as compared to all the rest of the striatum (χ2=33.7414(df=10); p=0.0002). Finally, 

the highest dose HAL0.8 induce a strong c-fos expression throughout the striatum, 

which was significantly higher than the other brain regions (χ2=50.1200(df=10); 

p<0.0001). 

Both the low and the intermediate dosages of asenapine induced a c-fos brain signal 

distribution which was no significantly different amongst brain areas (ASE0.05 

χ2=15.3797(df=10); p=0.0504; ASE0.1 χ2=17.5439(df=10); p=0.0521). Oppositely, ASE0.3 

strongly induced c-fos gene expression in the whole striatum, as compared to the other 

brain regions (χ2=47.0056(df=10); p<0.0001). 

 

d) Zif268 

Zif268 signal distribution was revealed by Kruskal-Wallis as progressively recruited by 

the intermediate and the high haloperidol dosages, as compared to the lowest dose 

(Figure 22). HAL0.25 induced significant Zif268 signal distribution in the whole 

caudate-putamen and in the shell, as compared to the core (χ2=77.7060(df=10); p<0.0001). 

Both HAL0.5 and HAL0.8 induced a wide striatal distribution of Zif268 gene 

expression significantly higher as compared to the other brain regions (HAL0.5 

χ2=53.2013(df=10); p<0.0001; HAL0.8 χ2=51.3852(df=10); p<0.0001). 

All the dosages of asenapine, in the other hand, induced the same Zif268 gene 

expression distribution in the whole caudate-putamen and in the shell, as compared to 
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the rest of the forebrain (ASE0.05 χ2=52.7305(df=10); p<0.0001; ASE0.1 

χ2=43.3033(df=10); p<0.0001; ASE0.3 χ2=73.2122(df=10); p<0.0001) 

 

Figure 22. Panel a and d. Schematic depiction respectively of c-fos and Zif268 gene expression 
recruitment in cortical and subcortical regions by the different treatments administered: vehicle (SAL), 
haloperidol 0.25mg/kg (HAL0.25), haloperidol 0.5mg/kg (HAL0.5), haloperidol 0.8mg/kg (HAL0.8), 
asenapine 0.05mg/kg (ASE0.05), asenapine 0.1mg/kg (ASE0.1), asenapine 0.3mg/kg (ASE0.3), 
olanzapine 2.5mg/kg (OLA). Red label: increased expression vs. other regions at Wilcoxon multiple 
comparison test (p<0.05). Blue label: decreased expression vs. other regions at Wilcoxon multiple 
comparison test (p<0.05). Dark red label: increased expression vs. other regions at Wilcoxon multiple 
comparison test (p<0.05). Panel b and c. Graphical representation of c-fos gene expression distribution 
respectively by haloperidol or asenapine incremental dosages in the ROIs analyzed. Panel e and f. 
Graphical representation of Zif268 gene expression distribution respectively by haloperidol or asenapine 
incremental dosages in the ROIs analyzed. Data are expressed in relative d.p.m as mean ± S.E.M. 
considering the measurements from each treatment group as the dependent variable, and the ROIs in 
which expression was measured as the independent variable. 
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Western Blot Analysis 

 

No significant differences in Homer1a protein expression were noticed amongst all 

treatment groups. However, a trend of reduction in protein expression was detected 

corresponding to both HAL or ASE increasing dosages (Figure 23).  

 

Figure 23. Homer1a protein expression in striatum following acute treatments. Vehicle (SAL), 
haloperidol 0.25mg/kg (HAL0.25), haloperidol 0.5mg/kg (HAL0.5), haloperidol 0.8mg/kg (HAL0.8), 
asenapine 0.05mg/kg (ASE0.05), asenapine 0.1mg/kg (ASE0.1), asenapine 0.3mg/kg (ASE0.3), 
olanzapine 2.5mg/kg (OLA). Data are reported in relative intensity as mean ± S.E.M. 
 

 

 

Behavioral Activity Monitoring 

 

ANOVA analysis on locomotor activity of rats from each experimental group (Figure 

24) revealed a significant reduction of motion in rats administered with the three 
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dosages of haloperidol (HAL0.25, HAL0.5, HAL0.8) as well as with OLA 

(F(7,23)=25.5140; p<0.0001). Oppositely, a trend in locomotor activity increase was 

recognized in asenapine-treated rats, although only ASE0.1 group showed a statistical 

significant locomotion enhancement after treatment (F(7,23)=25.5140; p<0.0001).  

Figure 24. Behavior locomotor activity measurement following each treatment. Vehicle (SAL), 
haloperidol 0.25mg/kg (HAL0.25), haloperidol 0.5mg/kg (HAL0.5), haloperidol 0.8mg/kg (HAL0.8), 
asenapine 0.05mg/kg (ASE0.05), asenapine 0.1mg/kg (ASE0.1), asenapine 0.3mg/kg (ASE0.3), 
olanzapine 2.5mg/kg (OLA). Blue columns: distance walked before treatment administration. Red 
columns: distance walked after treatment administration. Data are reported in centimeters as mean ± 
S.E.M. Student-Neumann-Keuls’s post hoc test: * = vs. before the corresponding treatment (p<0.05). 
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Discussion 

Although being a relevant translational issue, the possibility that increasing dosages of 

the same antipsychotic may activate IEGs in progressively recruited brain areas (rather 

than increase signal intensity in the same regions) has been scarcely explored at present. 

Here we demonstrated for the first time that increasing doses of haloperidol may induce 

IEGs (but not constitutive genes) expression in different striatal areas, which are 

progressively recruited by incremental dosages with a dorsal-to-ventral gradient of 

expression. Particularly, our results demonstrated that a low dosage of haloperidol 

(0.25mg/kg) may specifically activate Homer1a gene expression program in the dorsal 

striatum. The progressive increase of haloperidol dosage seems to promote a gradual 

recruitment of ventral striatal subregions by Homer1a gene expression, until reaching 

the maximum signal at the highest dose of 0.8mg/kg, which activates Homer1a in the 

whole striatum and in the nucleus accumbens. Notably, no significant differences were 

noticed in Homer1a gene expression signal intensity in striatal subregions amongst the 

distinct dosages.  

Similarly to Homer1a, all the other IEGs (Arc, c-fos and Zif268) analyzed displayed a 

progressive recruitment in striatal subregions by increasing dosages of haloperidol, even 

if with no specific dorsal-to-ventral gradient, as in the case of Homer1a. For instance, 

Arc expression was equally induced in the nucleus accumbens (both core and shell 

subregions) by all dosages of haloperidol. However, the progressive raising of doses 

seemed to recruit specifically caudate-putamen regions, starting from dorsal areas and 

gradually involving the dorsomedial subregion at the maximum haloperidol dose. 

Remarkably, only the lowest and the highest dosages of haloperidol, but not the 

intermediate one, promoted significant Arc expression decrease in the cortex.  

C-fos expression was induced only in dorsolateral and ventromedial caudate-putamen, 

as well as in the nucleus accumbens shell, by the lowest haloperidol dosage. By 
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increasing the dose, c-fos expression was recruited in a “chessboard” fashion in striatal 

subregions, with haloperidol 0.5mg/kg inducing also ventrolateral caudate-putamen 

gene expression as compared to haloperidol 0.25mg/kg, and haloperidol 0.8mg/kg 

reaching the widest striatal c-fos induction, which was overexpressed in all the caudate-

putamen and the nucleus accumbens. 

Less sensitive than the other IEGs analyzed, Zif268 showed a broad induction in the 

caudate-putamen by the lowest dose of haloperidol, and increasing doses only recruited 

gene expression specifically in the nucleus accumbens core.  

A large amount of studies have demonstrated specific patterns of IEGs expression in 

response to haloperidol treatment [296,247,99,289,279,17,146]. Moreover, recent work 

from our laboratory has directly linked the peculiar striatal pattern of Homer1a gene 

expression by haloperidol to the selective dopamine D2 receptors blockade by this 

typical antipsychotic [20]. Present results further confirm our previous results on the 

differential impact on IEGs expression by typical antipsychotics, such as haloperidol, 

and atypical antipsychotics, such as olanzapine [21,99]. 

However, the abovementioned studies always used fixed doses of haloperidol, in order 

to achieve behavioral cut-offs (e.g. catalepsy), thereby comparing changes in animal 

behaviors obtained by haloperidol administration to the specific pattern of IEGs 

expression induced.  

A recent work by Natesan et al. [351] tested increasing doses of haloperidol on multiple 

concurrent behavioral (i.e. locomotor activity, catalepsy, conditioned avoidance 

response) and biochemical (D2 dopamine and 5HT2a serotonin receptors occupancy, 

CFOS striatal expression) parameters, and compared haloperidol to risperidone and 

aripiprazole. The authors demonstrated that haloperidol may reach more than 80% of 

D2 receptors occupancy already at the dose of 0.1mg/kg. Increasing doses, till 1mg/kg, 

progressively achieved a D2 receptors occupancy plateau of about 90%. Oppositely, 
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even at maximum dosages, the occupancy of 5HT2 cortical receptors by haloperidol 

never reached values higher than 50%. However, behavioral tasks, in the same study, 

revealed that, although reaching the D2 receptors occupancy plateau at 0.1mg/kg, 

catalepsy gradually onsets between 0.1mg/kg and 1mg/kg. Similarly, locomotor activity 

is progressively reduced between 0.1mg/kg and 1mg/kg. Strikingly, with regards to 

CFOS striatal induction by haloperidol, it starts at the dose of 0.05mg/kg, but reaches a 

plateau of expression in the dorsal striatum at 0.5mg/kg, with no further variations by 

higher doses. Oppositely, nucleus accumbens CFOS expression seems to increase 

progressively with incremental doses of haloperidol. Remarkably, these findings tightly 

resemble our present gene expression results, even if Natesan et al. only analyzed two 

striatal macro-regions, compared to our subregions division of striatum. Moreover, our 

behavior locomotor activity analysis showed a progressive significant reduction in rat 

movements 20 minutes following haloperidol injection. To note, the higher is 

haloperidol dosage, the more this hypolocomotion is pronounced, even without reaching 

statistical significance amongst treatment groups.  

Therefore, in the light of our results, we can hypothesize that the progressive reduction 

in locomotor behavior by incremental haloperidol dosages might depend on the gradual 

involvement of striatal subregions, as demonstrated by the progressive recruitment of 

IEGs expression in these areas, rather than an increase in dopamine D2 receptors 

blockade, which reaches a plateau already at doses lower than those used in the present 

study. Moreover, the lack of cortical IEGs induction by haloperidol is likely depending 

upon the scarce affinity to serotonergic receptors by this typical antipsychotic, as also 

suggested in our previous works [17]. 

We compared the effects of increasing doses of haloperidol on PSD genes expression to 

those of asenapine, a recently marketed antipsychotic with a broad multireceptor 
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profile, and of olanzapine, here used as a touchstone of atypical antipsychotic whose 

gene expression effects we have well studies in previous works [21,99].  

As compared to the other atypical antipsychotics at present used in clinical practice, 

asenapine holds high affinity to multiple serotonin receptors (5HT1a-b, 5HT2a-c, 

5HT5, 5HT6, 5HT7), to adrenaline receptors (alpha1, alpha2a-c) and to dopamine D1, 

D2, D3 and D4 receptors [236], with antagonist activity. Asenapine has been 

demonstrated to promote dopamine, serotonin and noradrenaline release in cortex and 

dopamine release in the nucleus accumbens at doses that have antipsychotic activity in 

animal behavioral studies [237]. Thanks to its unique multireceptorial profile, asenapine 

may differentially impact glutamatergic and dopaminergic systems in cortical and 

subcortical regions. Indeed, it enhances glutamate NMDA-mediated currents in 

pyramidal cortical neurons, while it decreases NMDA receptor activity in caudate-

putamen and nucleus accumbens; moreover, the chronic treatment with asenapine 

potentiates AMPA receptor activity in hippocampus [241]. On the other hand, 

asenapine may specifically enhance the dopamine bursts from VTA to the medial 

prefrontal cortex and the nucleus accumbens, and of noradrenaline from locus coeruleus 

to the cortex [248]. 

Present results showed that asenapine may induce a peculiar pattern of PSD genes 

expression in both cortex and striatum. Paralleling the experiment with haloperidol, we 

used three incremental dosages of asenapine, based on previous studies analyzing 

biochemical and behavioral effects of this antipsychotic [352,353,239-241,354].  

We found that Homer1a expression was strongly induced in both cortex and striatum 

(both caudate-putamen and nucleus accumbens) when animals were administered with 

low doses of asenapine (0.05 mg/kg and 0.1 mg/kg). Raising doses promoted a peculiar 

de-recruiting of Homer1a  cortical gene expression and the maximum dosage of 

0.3mg/kg showed a preferential striatal induction of the IEG. Moreover, differently 
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from haloperidol, incremental doses of asenapine induced a strong increase also in the 

signal intensity of Homer1a striatal gene expression, which resulted significantly higher 

in the dorsal striatum as compared to the ventral areas at the maximum dose we used. 

The other IEGs we analyzed displayed less sensitive response to asenapine treatment 

than Homer1a. However, increasing doses of the compound promoted differential 

patterns of gene expression. C-fos induction, for instance, was only apparent at the 

highest dose of asenapine, whereas the other dosages showed no impact on gene 

expression. Notably, the pattern of c-fos expression by asenapine 0.3mg/kg tightly 

resembled that by the highest dose of haloperidol (0.8mg/kg), causing c-fos transcript 

activation in the whole caudate-putamen and in the nucleus accumbens.  

Arc gene expression was not impacted by the lowest dose of asenapine, but increasing 

dosages promoted a clearly different pattern of induction. Asenapine 0.1mg/kg, indeed, 

significantly induced Arc expression selectively in cingulate, motor and agranular 

cortex, whereas asenapine 0.3mg/kg had no impact on cortical gene expression but 

induced Arc in the dorsal caudate-putamen and in the nucleus accumbens core, with a 

pattern that was very similar to that promoted by haloperidol. 

Zif268 displayed no variations in gene expression by increasing doses of asenapine. 

However, all the three dosages induced Zif268 gene expression in the whole caudate-

putamen and the nucleus accumbens shell, a pattern that resulted clearly similar to that 

described following haloperidol administration. Finally, asenapine administration 

resulted in a more pronounced impact on constitutive PSD genes expression as 

compared to haloperidol. Homer1b/c, indeed, was directly overexpressed in motor, 

agranular and cingulate cortices by the intermediate and the highest dosages of 

asenapine, as well as in the nucleus accumbens core. PSD95, in the other hand, was 

strongly upregulated by all the three doses of asenapine in both the cortex and the 
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striatum, with a pattern of gene modulation very similar to that induced by olanzapine, 

differently from haloperidol.  

Although scarce data at present exist in literature on gene expression modulation by 

asenapine, our results seem consistent with a recent finding of FOS activation by 

asenapine 0.075mg/kg in medial prefrontal cortex lesioned rats [355], even in this study 

no modulation was induced in control animals. 

As above mentioned, asenapine shows a broad multireceptor affinity for serotonin, 

adrenaline and dopamine receptors. Recent studies have demonstrated that asenapine, 

when administered at increasing doses as in our experiment, may progressively 

stimulate dopamine, noradrenaline and serotonin efflux in prefrontal cortex and nucleus 

accumbens [248]. These effects are strictly dependent on both 5HT2a serotonin 

receptors and alpha2 adrenoreceptors blockade by asenapine [353] and appear maximal 

at intermediate dose of 0.1mg/kg. This dose, indeed, may maximally elevate dopamine 

release in both prefrontal cortex and nucleus accumbens, as well as it increases cortical 

noradrenaline [248]. It appears that higher dosages than 0.1mg/kg may reach a plateau 

in stimulating monoamines efflux in cortical regions. However, only high dosages, such 

as 0.2mg/kg, specifically elicit cortical serotonin efflux, differently from lower doses 

[248]. Thus, it is possible that our findings of a differential impact on IEGs expression 

by increasing doses of asenapine may reflect their different effects on monoamines 

cortical and subcortical release. Indeed, we observed a wide Homer1a cortical 

expression when asenapine is administered at 0.1mg/kg, as well as Arc gene expression 

was only induced in cortical subregions by the same dose. These effects may putatively 

depend upon the maximal dopamine and serotonin efflux reached by asenapine at this 

dose. Moreover, the higher cortical activation achieved at this dose is probably mirrored 

by the significant increase in locomotor behavior we observed in rats treated with 

0.1mg/kg asenapine. 
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The progressive de-recruitment of IEGs expression in cortical areas and the 

corresponding increase in striatal genes activation and signal intensity in striatum by 

incremental doses of asenapine might putatively be explained by a gradual increase in 

dopamine D2 receptors occupancy, which has been recently observed in a PET study on 

humans administered with increasing asenapine dosages [356]. A prominent role in 

these effects might be played by the balanced affinity, an probably occupancy, exerted 

by asenapine on dopamine D1 and D2 receptors, which tightly resembles that of 

clozapine, which we have previously demonstrated having no effects on cortical IEGs 

expression [17]. The increasing activity on dopamine D1 receptors at incremental doses 

by asenapine has been also recently correlated to a progressive improvement in 

phencyclidine-induced object recognition deficits in rats [354], as well as to a 

clozapine-like facilitation of NMDA receptors-mediated prefrontal cortical currents 

[352]. 

However, the remarkable differences in IEGs modulation in striatum by asenapine at 

high dosages (which shares large similarities with haloperidol) and clozapine might 

probably depend on the broad multireceptor affinity of asenapine as compared to 

clozapine, and need further specific investigations. Furthermore, asenapine has been 

demonstrated to have high affinity for both 5HT6 and 5HT7 serotonin receptors, which 

have been both correlated to pro-cognitive effects of novel antipsychotic compounds 

[357,358]. Our recent works identified a peculiar Homer1a gene cortical modulation as 

a pro-cognitive target in psychosis by compounds that have been proposed in add-on to 

antipsychotic therapies in schizophrenia, such as memantine [359]. It is possible that 

Homer1a peculiar cortical pattern of expression may reflect cognitive improving 

performances by asenapine due to its unique receptor profile.  

In conclusion, our results demonstrated that antipsychotics may progressively recruit 

IEGs expression in cortical and subcortical areas when administered at incremental 
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doses. These effects may reflect a fine-tuned dose-dependent modulation of PSD genes 

by antipsychotics, which is strictly influenced by balancing in receptor affinities exerted 

at different dosages, thereby stimulating further investigation on postsynaptic 

mechanisms underlying antipsychotics clinical efficacy. 

 

 

Concluding remarks 

These studies represent a path following the logical thread of demonstrating that the 

PSD networks may specifically respond to multireceptorial stimuli. Indeed, our present 

findings not only confirm that PSD genes may differentially be induced by diverse 

antipsychotic drugs with regards to their degree of dopamine D2 receptors binding, but 

they shed light on the fact that these genes are differentially impacted by drug 

associations as compared to each drug when administered alone. Above all, Homer1a, 

which is induced in a IEG-like fashion withouth carrying a signaling per se, rapidly 

responds to multireceptorial stimuli with a specific topographic pattern in brain areas 

that have been implicated in the pathophysiology of psychotic disorders. Following the 

works by other laboratories, we have demonstrated that combined therapies 

substantially act on common intracellular pathways, elaborated and routed by PSD 

networks, and by which they can induce synergistic downstream messages to the 

nucleus. Homer family proteins, and related PSD proteins, represent a crucial signaling 

network for the integration and elaboration of multiple concurrent starting at diverse 

membrane receptors, such as dopamine, glutamate and serotonin, thereby acting as a 

functional protein crossroads. We also demonstrated that the increased efficacy of 

combined therapeutic strategies may putatively rely on the possibile synergistic 

intracellular effects on these common crossroads. For instance, mood stabilizers might 

act by facilitating the achievement of nuclear targets by downstream signaling activated 
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by antipsychotic that have been concurrently administered. Finally, multireceptorial 

agents seem a promising therapeutic strategy for psychosis. Our preclinical studies, 

indeed, demonstrated that they may induce peculiar IEG induction in cortical and 

subcortical areas that is highly different from that induced by common antipsychotics 

and include the progressive recruitment of brain areas depending on doses. All these 

experiments, although stating some concluding findings, aim at opening new avenues of 

investigation that will further deepen our knowledge on both antipsychotic mechanisms 

of action and the pathophysiology of psychotic disorders, thereby stimulating the future 

development of “molecular targeted” therapies that will increase efficacy and reduce 

side-effects in psychotic patients.  
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