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ABSTRACT 
 

 

   Germline and somatic point mutations of RET receptor tyrosine kinase cause 

multiple endocrine neoplasia (MEN) type 2 syndromes and sporadic medullary 

thyroid carcinoma (MTC). Moreover, RET gene rearrangements are associated 

to papillary thyroid carcinoma (PTC), lung adenocarcinoma (ADC) and 

chronic myelomonocytic leukemia (CMML). Recently Vandetanib (ZD6474), 

a multiple kinase inhibitor (KI) targeting RET, has been approved for MTC 

treatment. We tested 22 novel KIs with different structure and specificity for 

their ability to inhibit RET activity in NIH3T3 fibroblasts expressing MTC-

associated RET C634R and M918T oncogenic mutants. Among them, we 

selected three structurally similar type II tyrosine kinase inhibitors, ALW-II-

41-27, HG-6-63-01 and XMD15-44, that were able to significantly reduce RET 

phosphorylation at 10 nM dose.   

ALW-II-41-27, HG-6-63-01 and XMD15-44 blocked RET-mediated signaling 

and proliferation with a half maximal inhibitory concentration  (IC50) of less 

than 50 nM in rat fibroblasts transformed by RET/C634R and RET/M918T, 

while they were poorly effective on parental RAT1 cells (IC50 >200nM). 

Although with different efficacy, the three compounds inhibited various MTC-

associated RET intracellular mutants (RET E768D, L790F, Y791F, S891A, 

V804L/M and A883F) and RET chimeric oncogenes (RET/PTC1, RET/PTC3, 

KIF5B-RET  and FGFR1OP-RET).  

In addition, ALW-II-41-27, HG-6-63-01 and XMD15-44 inhibited RET 

activity and signaling in human cell lines (TT, MZCRC1 and TPC1) carrying 

oncogenic RET alleles (C634W, M918T and RET/PTC1, respectively) and 

blocked the growth of TT and MZCRC1 cells with an IC50 of 1-5 nM and of 

TPC1 cells with an IC50 of 10-50 nM. Proliferation of non-tumoral human 

thyroid follicular cells (Nthy-ori 3-1) growth was virtually unaffected (IC50 

350-1000 nM). Finally, in nude mice, ALW-II-41-27 (40 mg/kg i.p once per 

day) reduced growth of RET/C634Y-fibroblast xenografts by more than 50% 

(1,280 mm
3
 drug-treated vs 2,810 mm

3
 vehicle-treated). 

In conclusion, we have identified a pharmacophore (3-triflouromethyl-4-

methylpiperazinepheny), shared by ALW-II-41-27, HG-6-63-01 and XMD15-

44, that may be optimized in order to develop potent and selective RET 

inhibitors for the treatment of human cancers sustaining oncogenic activation 

of RET.  
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1.0 BACKGROUND 
 

 

1.1 Thyroid cancer 

    

   Thyroid cancer accounts for 95% of all endocrine cancers and is the most 

prevalent endocrine malignancy accounting for 1% of cancer worldwide. There 

are several histological types and subtypes of thyroid cancer with different 

cellular origins, characteristics and prognoses. Human thyroid tumors are 

derived either from epithelial follicular cells, that synthesize and secrete 

thyroid hormones, or from neuroendocrine parafollicular C-cells, that secrete 

calcitonin. Follicular cell-derived tumors represent a wide spectrum of lesions, 

ranging from benign adenomas to well differentiated thyroid cancers (WDTC), 

including follicular (FTC) and papillary (PTC) carcinomas,  poorly 

differentiated (PDTC) and undifferentiated (anaplastic ATC) carcinomas. 

Parafollicular C cell-derived medullary thyroid cancer (MTC) accounts for a 

small proportion of thyroid malignancies (5%) and it may occur in sporadic as 

well as hereditary forms (Xing 2013) (Figure 1). 

 

 
 

Figure 1. Follicular cell- and C-cell-derived thyroid tumors. 

 

PTC represents the most common thyroid malignancy (80-85%) and is defined 

as a malignant epithelial tumor that shows evidence of follicular cell 

differentiation and presents characteristic nuclear features (Kondo et al. 2006). 

Several PTC variants are recognized, including solid-follicular, follicular, tall-

cell and hurthle cell with different pathological and clinical features (DeLellis 

2006). 

FTC comprises less than 10% of thyroid malignancies and is defined as a 

malignant epithelial tumor with evidence of follicular cell differentiation in the 

absence of the diagnostic nuclear features of PTC. In general, FTC is 

encapsulated and composed of follicles or follicular cells arranged in follicular, 

solid or trabecular patterns (DeLellis 2006). 
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ATC account for 2% of cases and is morphologically defined as a malignant 

tumor composed entirely or partially of undifferentiated cells exhibiting 

evidence of epithelial differentiation by immunohistochemistry or electron 

microscopy. At least in some cases, ATC may derive from a pre-existing well 

differentiated carcinoma, as suggested by the coincidental detection of WDTC 

tissue in more than 25% of ATC patients (Patel and Shasha 2006).  

ATCs are rapid growing unencapsulated tumors that infiltrate the surrounding 

soft tissues of the neck and into the respiratory tract. Microscopically three 

histologic variants are observed including spindle, giant cell and squamoid cell 

pattern; these tumors are characterized by frequent mitoses, large areas of 

necrosis, hemorrhagic areas and vascular invasion (Patel and Shasha 2006).   

PDTC is considered, morphologically and clinically, as an intermediate lesion 

between WDTC and ATC; it is defined as a neoplasm of follicular origin, with 

limited evidence of follicular cell differentiation. PDTCs are characterized by 

increased mitotic activity, tumor necrosis, capsular and vascular invasion (Patel 

and Shasha 2006).  

Follicular cell-derived tumors differ noticeably in aggressiveness, ranging from 

the generally indolent behavior of FTC and PTC to more aggressive PDTC and 

the most aggressive thyroid cancer ATC. The majority of WDTCs are slowly 

progressive, and, when identified at an early stage, frequently cured with 

adequate surgical management and radioactive iodine 131-I ablation therapy 

(RAI). Metastatic WDTC that has become inoperable or refractory to 

radioactive iodine therapy, however, is associated with a poor survival. 

Undifferentiated carcinoma (ATC) is very rare and ranks among the most 

lethal human malignancies, with a median survival from diagnosis of less than 

one year. ATCs metastasize in up to 50% of patients, thus giving an even 

worse prognosis (Patel and Shasha 2006). 

Familial forms of MTC are tipically bilateral and multicentric whilst patients 

with sporadic MTC usually present a single tumor involving one lobe only. 

Microscopically these tumors are composed of spindle-shaped, round or 

polygonal cells separated by fibrous stroma that may contain amyloid. 

Metastases to regional lymph nodes are common; distant metastases occur in 

20% of patients and then to the liver, lung and skeleton (DeLellis et al. 2004). 

 

 

1.2 Molecular basis of thyroid cancer 

 

   A significant increase in our understanding of thyroid tumorigenesis at the 

molecular level has been obtained in the past three decades. Numerous genetic 

alterations that have a fundamental role in the tumorigenesis of various thyroid 

tumours have been identified. 

Tyrosine kinase receptors/RAS/RAF/MAPK and RAS/PI3K/Akt/mTOR are 

the major signaling pathways involved in cell proliferation, protein synthesis 

and cell survival. Thyroid cancer is characterized by several genetic alterations 

along these two pathways (Xing 2013) (Table 1).  



13 
 

Genetic alterations associated with PTC, rarely overlapping in the same tumor, 

include chromosomal rearrangements targeting the RET or NTRK1 genes and 

point mutations in the BRAF or RAS genes (Xing 2013). RET mutations in 

thyroid cancers will be discussed subsequently. 

NTRK1 gene is located on chromosome 1q21-22 and encodes a tyrosine kinase 

receptor that binds Nerve Growth Factor (NGF); in PTC, NTRK1 undergoes 

chromosomal rearrangements leading to its oncogenic activation (Greco et al. 

2010). Such rearrangements involve principally three fusion partners (TPR, 

TPM3 and TFG) (Greco et al. 1993; Greco et al. 1995; Greco et al. 1997). 

BRAF mutations are the most common genetic abnormalities in PTC, 

accounting for 29-69% of cases (Xing 2005). The BRAF gene is located on 

chromosome 7 and it encoded protein is a member of the RAF family of serine-

threonine kinases, involved in the MAPK (mitogen-activated protein kinases) 

signaling cascade. 

BRAF is frequently mutated in a variety of different human cancers such as 

melanomas, ovarian cancer and colorectal cancer. It can be activated by point 

mutations within the kinase domain, the most frequent (approximately 90% of 

all mutations) being a transversion from thymine to adenine at nucleotide 1799 

(T1779A), resulting in the substitution of a glutamic acid for a valine at 

position 600 (V600E). This substitution has been reported in approximately 

45% of PTCs, thus making it the most common genetic abnormality in this 

tumors. Furthermore, V600E mutation has also been found in approximately 

10% of PDTCs and a third of ATCs (Xing 2005).  

Thus, BRAF mutations correlate with tumor recurrence, reduced radioiodine 

concentration and decreased overall survival (Xing 2013). 

Point mutations in RAS genes are commonly observed in FTCs (50%), in 

PDTCs (18-27%) and in ATCs (20-60%) while in PTCs are less frequent with 

the exception of PTC of follicular variant (10-20%) (Kondo et al. 2006). The 

normal function of RAS is to convey signals from membrane-bound tyrosine 

kinase receptors to the MAPK cascade. RAS mutations are tipically missense 

alterations that affect two different locations in the gene including exon 1 

(codons 12 or 13) or exon 2 (codon 61) of the GTP-binding domain (Xing 

2013).  

Finally, point mutation or gene amplification of PI3KCA have been reported in 

a small fraction of PTCs (García-Rostán et al. 2005; Wu et al. 2005).   

FTC develops through two main different pathways, involving either RAS or 

PPARγ (Peroxisome Proliferator-Activated Receptor gamma). PPARγ is a 

member of the nuclear-hormone-receptor superfamily and forms heterodimers 

with the retinoid X receptor. Some FTCs (30%) harbour the t(2:3)(q12-13;p24-

25) chromosomal translocation, which causes the fusion of the region encoding 

the DNA binding domains of the thyroid transcription factor PAX8 to the 

encoding domains A-F of PPARγ receptor; the resultant fusion protein has a 

dominant negative activity on wild-type PPARγ and displays oncogenic 

properties (Kroll et al. 2000; Castro et al. 2006). 
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As in PTCs, point mutation or gene amplification of PI3KCA have been 

reported in some FTC cases (García-Rostán et al. 2005; Wu et al. 2005). 

ATC is the product of the accumulation of genetic alterations due to genetic 

instability. As previously mentioned, PDTCs and ATCs share genetic lesions 

with WDTCs including BRAF and RAS mutations as well as amplifications or 

point mutations of PI3KCA (Garcia-Rostan et al. 2005; Liu et al. 2008). 

However, differently from WDTCs, around 70% of ATCs and a significant 

fraction of PDTCs shows point mutations of TP53 (Nikiforov 2004, Kondo et 

al. 2006) or p53 disfunction induced by other mechanisms, including 

upregulation of negative p53 regulators like HMGA1, ΔNp73 or HDM2 

(Pierantoni et al. 2007; Malaguarnera et al. 2007). Furthermore, ATC and to a 

lesser extent PDTC are associated with point mutations in exon 3 of the 

CTNNB1 gene encoding β-catenin (Garcia-Rostan et al. 2001), suggesting a 

role for this gene in the loss of differentiation of thyroid tumors. 

Activating mutations of the RET proto-oncogene are identified in almost all 

familial cases and in about 40% of sporadic forms of MTC. Therefore, nearly 

45% of cases are not associated with an oncogenic RET mutation. As 

previously mentioned, oncogenic mutations in the RAS genes are frequently 

detected in follicular thyroid tumors. Recently, mutations 

in HRAS and KRAS genes were found in a significant proportion of non-RET-

mutated MTC, suggesting that RAS mutations could represent alternative 

genetic events in sporadic MTC tumorigenesis (Moura et al. 2011; Schulten et 

al. 2011; Boichard et al. 2012; Agrawal et al. 2013; Ciampi et al. 2013). 
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Table 1. Genetic alterations in thyroid cancers. 

 
CTNNB1, β-catenin; NTRK1, neurotrophic tyrosine kinase receptor type 1; PPARγ, 

peroxisome-proliferator-activated-receptor- γ. 

 

 

1.3 RET structure and functions 

 

   The human RET (REarranged during Transfection) gene was first identified 

in 1985 by transfection of NIH3T3 cells with human lymphoma DNA; it maps 

on chromosome 10q11.2, is approximately 55,000 bp in size and contains 21 

exons (de Groot et al. 2006). 

RET gene encodes a single-pass transmembrane protein that belongs to 

receptor tyrosine kinase (RTK) family; it is composed of three domains: an 

extracellular ligand-binding domain with four Ca
2+

-dependent cell adhesion 

cadherin-like repeats (to induce and stabilize conformational changes needed 

for interaction with the ligands and coreceptors) and a juxtamembrane 

cysteine-rich domain (responsible for the tertiary structure and formation of 

dimers), a hydrophobic transmembrane region, and a cytoplasmic domain with 

a conserved TK domain split by the insertion of 27 amino acids. The 

extracellular domain also contains a number of glycosylation sites (de Groot et 

al 2006) (figure 2). 

 

 
 

Figure 2. Schematic representation of the RET tyrosine kinase structure  
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RET protein migrates as a 170 kDa and 150 kDa doublet. Only the fully 

glycosylated protein of 170 kDa, representing the mature form of RET, is 

present on the cell membrane whilst the immature form of 150 kDa is present 

in the endoplasmic reticulum and in the cytoplasm. 

RET gene is subject to alternative splicing of the 3’-region generating three 

protein isoforms that contain 9 (RET9), 43 (RET43) and 51 (RET51) amino 

acids in the carboxy-terminal tail downstream from glycine 1063. RET9 and 

RET51, consisting of 1072 and 1114 amino acids, respectively, are the main 

isoforms in vivo (de Groot et al. 2006). 

RET51- and RET9-associated signalling complexes are markedly different, 

suggesting that distinct isoforms can exert different roles in the physiological 

functions of RET. Mice lacking the long RET isoform (RET51) are normal, 

whereas mice lacking the short isoform (RET9) have renal malformations and 

enteric aganglionosis. Only RET9 is able to rescue the phenotype of the RET-

null mice. On the other hand, only RET51 but not RET9 promotes the survival 

and tubulogenesis of mouse inner-medullary collecting duct cells, suggesting 

that RET51 signalling may contribute to the differentiation during late kidney 

morphogenesis (de Graaff et al. 2001). 

RET differs from other receptor tyrosine kinases as it requires a 

multicomponent complex, rather than a single ligand, to initiate signaling. 

Activation of RET is a multistep process, involving interaction with a soluble 

ligand and a non-signaling cell surface bound molecule. RET’s soluble ligands 

belong to the glial cell line-derived neurotrophic factor (GDNF) family of 

ligands (GFLs), which includes GDNF, neurturin, persefin and artemin. The 

cell surface bound molecules belong to the GDNF family receptor alpha 

(GFRα1-4) proteins and are attached to the cell membrane by a glycosyl-

phosphatidyl-inositol linkage (de Groot et al. 2006). 

The GFLs first form a high-affinity complex with one of the four GFRα 

proteins; the complex, containing GFL and GFRα homodimers, then brings 

two molecules of RET together, triggering transphosphorylation of specific 

tyrosine residues in their tyrosine kinase domains, and the consequent 

activation of the intracellular signalling which regulates cell survival, 

differentiation, proliferation and migration (de Groot et al. 2006). 

RET activation can take place in two ways: in cis and in trans. The first 

mechanism of activation occurs predominately in cells coexpressing RET and 

GFRα; the GFL binds to membrane-bound GFRα (localized in the lipid rafts), 

and subsequently, the GFRα/GFL complex brings together two RET molecules 

resulting in recruitment of inactive RET to the lipid rafts and the subsequent 

activation of the receptor. Lipid rafts are signalling compartments within the 

cell membrane, characterised by high-levels of cholesterol and sphingolipids, 

and allow compartmentalization of signaling molecules associated with the cell 

membrane (de Groot et al. 2006) (Figure 3 A). 

GFRαs are usually bound to the plasma membrane, but alternative splicing or 

cleavage by an unknown phospholipase or protease can produce soluble forms 

of these co-receptors. Soluble GFRα may capture and loosen GFLs from the 
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extracellular matrix space and then present these factors to RET-expressing 

cells. Activation of RET in trans also results in the mobilization of RET to 

lipid rafts  but in this mechanism RET may first be activated outside rafts and 

then recruited into the raft membrane compartments (de Groot et al. 2006) 

(Figure 3 B). 

 

 
 

Figure 3. Different mechanisms of ligand-mediated RET activation. A) Cis activation; B) 

Trans activation 
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Upon RET activation, specific tyrosine residues, which serve as docking sites 

for various SRC-homology 2 (SH2) and phosphotyrosine binding domain 

containing (PTB) adaptor proteins, are phosphorylated. At least 18 of these 

specific phosphorylation sites have been identified, including tyrosine 687 

(Y687), Y752, Y791, Y806, Y809, Y826, Y864, Y900, Y905, Y928, Y952, 

Y981, Y1015, Y1029, Y1062, Y1090, and Y1096. RET9 has only 16 tyrosines 

in the intracellular domain, whereas Y1090 and Y1096 are present only in the 

long RET 51 isoform (de Groot et al. 2006). 

Phosphorylated tyrosine residues Tyr905, Tyr981, Tyr1015, and Tyr1096 have 

been identified as docking sites for Grb7/Grb10, Src, phospholipase C-γ (PLC-

γ), and Grb2, respectively. Tyr1062 acts as a docking site for many adaptor or 

effector proteins: Shc, ShcC, FRS2, IRS1/2, Dok1, Dok4/5, Dok6, Enigma, and 

PKC-α. Phosphorylation of Y1062 is crucial for activation of major 

intracellular signaling pathways, and ablation of Y1062 leads to a considerable 

decrease in the transforming activity of RET. Upon ligand stimulation, at least 

two distinct protein complexes assemble on phosphorylated Tyr1062 via Shc, 

one leading to activation of the RAS/MAPK pathway through recruitment of 

Grb2/Sos and another to the PI3K/Akt pathway through recruitment of 

Grb2/GAB. The RAS/ERK and PI3K pathways via Tyr1062 are important for 

activation of CREB and NFκB transcription factors, respectively (de Groot et 

al. 2006) (Figure 4).  

 

 

 
 

Figure 4. Signaling pathways activated by RET 
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RET plays a crucial role in the development of the enteric nervous system, the 

kidney and spermatogenesis; it is expressed in brain, thymus, C-cells of the 

thyroid, adrenal medulla, kidney, peripheral enteric, sympathetic and sensory 

neurons, and testis (Mulligan 2014). 

The critical role of RET during development is illustrated by the observation 

that mice expressing null mutations in RET lack superior cervical ganglia and 

the entire enteric nervous system, have agenesis or dysgenesis of the kidney, 

impaired spermatogenesis, fewer thyroid C-cells and die shortly after birth 

(Manie et al. 2001). 

Accordingly, individuals with germline loss-of function mutations of RET are 

affected by intestinal aganglionosis causing congenital megacolon 

(Hirschsprung’s disease). RET loss-of function mutations have also been 

identified in congenital anomalies of kidney and urinary tract (CAKUT), either 

isolated or in combination with Hirshsprung’s disease (Mulligan 2014). 

 

 

1.4 RET in human cancers 

 

1.4.1 RET/PTC in Papillary Thyroid Carcinoma 

 

   RET has been associated with a number of diseases; gain-of-function 

mutations, aberrant expression or gene fusions/translocations can cause or 

promote tumorigenesis (Mulligan 2014). 

The clinical relevance of RET in human diseases was first recognized in PTC. 

Somatic chromosomal rearrangements involving the RET gene represent one 

of the most frequent genetic alteration in PTC, although variations of 

frequency, ranging from 20 to 40%, have been observed among different 

geographic areas (Mulligan 2014). Ionising radiation can induce RET/PTC 

rearrangements, and thyroid cancer is the most common solid neoplasm 

associated with radiation exposure. Accordingly, a dramatic increase in the 

incidence of pediatric papillary carcinoma was reported after the Chernobyl 

nuclear accident of April 26, 1986 (Williams 2002). 

The chromosomal aberrations identified in PTC are the result of double-

stranded DNA breaks (mostly radiation-induced), which lead to erroneous 

reparative fusion of the coding region for the RET tyrosine kinase domain to 

the promoter and coding region of the 5’-terminus of a constitutively expressed 

unrelated gene by virtue of their physical proximity; these rearrangements 

generate chimeric oncogenes designated as RET/PTC. Almost exclusively, the 

breakpoints in RET occur at sites distributed across intron 11, giving rise to 

proteins without a transmembrane domain (de Groot et al. 2006). 

To date, 12 different fusion partner genes are reported to form (because of 

variable breakpoints) at least 17 different RET hybrid oncogenes. The most 

prevalent variants of these chimeric oncogenes, generated through a paracentric 

inversion of the long arm of chromosome 10 where RET and the fusion partner 

genes map, are RET/PTC1 (60 to 70%) and RET/PTC3 (20 to 30%) involving 
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genes CCDC6 (Grieco et al. 1990), and NCOA4 (also known as 

RFG/ELE1/ARA70) (Santoro et al. 1994) respectively (Figure 5 A). 

RET/PTC rearrangements activate the transforming potential of RET by 

multiple mechanisms. First, the 5’-terminal domains of RET fusion partner 

proteins all contain homodimerization motives that allow constitutive RET 

kinase dimerization, leading to ligand indipendent activation and 

autophosphorylation followed by continous activation of downstream signaling 

pathway (Santoro et al. 2004) (Figure 5 B).  

 

 
 
Figure 5. RET gene rearrangements in papillary thyroid carcinoma. A) RET/PTC fusion 

proteins; B) Mechanism of constitutive activation of RET/PTC oncoproteins. 

 

 

In addition, by substituting its transcriptional promoter with those of the fusion 

partners genes ubiquitously expressed, RET results to be expressed in the 

epithelial follicular thyroid cells where it is normally transcriptionally silent. 

The expression of a constitutively active RET kinase leads to chronic exposure 

of thyroid follicular cells to the activation of intracellular signaling, such as 

RAS/MAPK pathway, responsible for neoplastic transformation (Santoro et al. 

2004). 

 

 

1.4.2 RET in Medullary Thyroid Carcinoma  

 

   MTC occurs sporadically (75% of cases) or as a component of the familial 

cancer syndrome, Multiple Endocrine Neoplasia type 2 (MEN 2) (25% of 

cases). MEN 2 is divided into three different clinical variants: MEN 2A, MEN 

2B, and familial medullary thyroid carcinoma (FMTC), all inherited by 

autosomal dominant fashion (de Groot et al. 2006; Mulligan 2014). 

MEN 2A accounts for over 90% of MEN 2 and it is characterized by MTC, 

pheochromocytoma in about 50% of cases, and parathyroid hyperplasia or 
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adenoma and/or the skin condition lichen planus amyloidosis in about 20-30% 

of cases. 

MEN 2B is the most aggressive of the MEN 2 variants and it is characterized 

by an earlier age of MTC onset associated with pheochromocytoma (about 

50% of cases) and more rarely by developmental abnormalities which include 

mucosal neuromas, intestinal ganglioneuromatosis, ocular and skeletal 

abnormalities (the so called marfanoid habitus). 

FMTC is considered the least aggressive of the three MEN 2 subtypes, 

characterized only by MTC. More recently, FMTC is regarded as a phenotypic 

variant of MEN 2A with decreased penetrance (Mulligan 2014). 

Specific germline missense mutations of RET gene cause the MEN 2 

syndromes. Although all MEN 2 subtypes arise from mutations of RET, there 

are strong genotype/phenotype associations with specific mutations identified 

in each disease subtype. 

MEN 2A and FMTC mutations are primarily substitutions of one of several 

cysteine residues in the RET extracellular domain. In MEN 2A, codon 634 is 

most frequently affected (85%), mostly by a C634R substitution (which has 

never been found in FMTC), whereas in FMTC the mutations are more evenly 

distributed among the various codons (609, 611, 618, 620, 630). Mutations of 

residues 768, 790, 791, 804 or 891 of the RET tyrosine kinase domain have 

also been found in FMTC patients (Mulligan 2014) (Table 2). 

More than 95% of MEN 2B cases are caused by a single germline mutation 

that results in substitution of a methionine with a threonine at residue 918 

(M918T) in the RET kinase domain. The same mutation occurs somatically in 

40-50% of sporadic MTC, where it can be associated with more aggressive 

disease and poor prognosis, whereas only a small fraction of them harbor the 

A883F substitution (Table 2). 

Very rarely the MEN 2B phenotype is sustained by double mutations targeting 

either the same or two different RET alleles (Mulligan 2014). 

All these point mutations of RET have a “gain of function” effect. Constitutive 

dimerization is the molecular mechanism of the activation of RET molecules 

carrying mutations affecting extracellular cysteines; these cysteines form 

intramolecular disulfide bonds in the wild-type receptor, and the mutation 

results in an unpaired cysteine, which forms an activating intermolecular 

bridge leading to the formation of covalent RET dimers with constitutive 

kinase and signaling activity (Santoro et al. 1995; Mulligan 2014).  

Kinase and oncogenic activities of RET mutant proteins associated with FMTC 

are lower than those of the MEN 2A proteins because of their weak ability to 

induce formation of RET dimers (Carlomagno et al. 1997). No reliable data are 

yet available on the mechanisms of activation of FMTC mutations occurring in 

RET tyrosine kinase domain. Although the mutations are spread out along the 

linear protein sequence, they appear to cluster on either the ATP-binding face 

or substrate-binding/autoinhibitory face of the protein tertiary structure, 

suggesting some common themes in their functional effects (Wagner et al. 

2012). The precise mechanisms by which these intracellular mutations activate 
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RET have not been clearly clarified, but it is suggested that they all do so 

through destabilizing the inactive form of RET, and shifting the equilibrium of 

RET receptor towards the active state (Wagner et al. 2012). 

The M918T mutation has been predicted either to induce a conformational 

change in the kinase catalytic core, leading to the activation of RET without 

ligand-induced dimerization, or to alter the substrate specificity of RET, so that 

it preferentially binds substrates of cytoplasmic tyrosine kinases, such as Src, 

or both (Santoro et al. 1995; Mulligan 2014). Previous studies have 

demonstrated that the M918T mutation leads to a pattern of RET tyrosine 

phosphorylation, adaptor protein binding, and downstream signaling that 

differs from those associated with wild-type RET (Santoro et al. 1995; 

Salvatore et al. 2001). 

Moreover, X-ray crystallographic analysis of RET tyrosine kinase domain has 

shown that wild-type RET kinase adopts a head-to-tail autoinhibited dimeric 

state and that this inactive conformation is destabilized by M918T mutation 

(Knowles et al. 2006). 

Given the position of alanine 883 in RET kinase, located between the 

activation and catalytic loops of the kinase, the A883F mutation would be 

predicted to increase the flexibility of these domains, so destabilizing the 

inactive form of the protein and promoting its activation (Wagner at al. 2012). 

As previously described, double mutations in MEN 2B have also been 

reported: V804M/E805K, V804M/Y806C and V804M/S904C. It appears that 

the combination of two mild intracellular mutations can cooperate to produce a 

more severe mutant. Each mutation alone (V804M, E805K, Y806C, S904C) 

has low or no transforming ability, consistent with the observation that V804M 

generally leads to FMTC, but when coupled together, they exert a synergistic 

effect on the transforming ability of mutated RET (Wagner et al. 2012). 
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Table 2. Molecular effects of RET mutations in sporadic and familial 

medullary thyroid carcinomas. 

 
MEN 2, Multiple Endocrine Neoplasia type 2; FMTC, Familial Medullary Thyroid Carcinoma. 

 

 

1.4.3 RET in cancers other than thyroid carcinoma 

 

   In addition to its role in thyroid tumorigenesis, aberrant expression or 

activation of RET has been recently associated with other  types of cancer. The 

role of RET in these tumors is relatively new and certainly not as well 

characterized as that in MTC and PTC. However, recent experimental and 

clinical data strongly support an important regulatory role for RET and its 

ligands in the biology of these human cancers (Mulligan 2014) (Table 3). 

Although the pathogenic mechanism of newly identified RET mutations 

remains unknown, rare somatic RET sequence variants have be found in a set 

of colon cancers (Wood et al. 2007) and some RET polymorphisms have been 

correlated to specific tumor types; RET G691S polymorphism significantly 

cosegregates with MTC, pancreatic cancer and desmoplastic subtype of 

cutaneous malignant melanoma (Barr et al. 2012). 
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As in PTC, activation of RET through chromosomal rearrangement has been 

identified in Non-Small Cell Lung Cancers (NSCLC), leukemia and in Spitz 

tumors and spitzoid melanomas. In particular, KIF5B-RET fusion proteins 

have been identified in 1-2% of lung adenocarcinomas (ADC) using massively 

parallel sequencing technologies and to date have been found to be mutually 

exclusive of other driver mutations involving EGFR, KRAS or ALK (Lipson et 

al. 2012; Kohno et al. 2012).   

Chromosomal inversion led to the fusion of the RET tyrosine kinase (TK) 

domain to different 5’-terminal exons (15, 16, 22, 23, or 24 exons in different 

rearrangement variants) of KIF5B (kinesin family member 5B) gene (located 

on chromosome 10) containing a coiled-coil domain that allows constitutive 

RET kinase dimerization, leading to ligand indipendent activation (Ju et al. 

2012; Lipson et al. 2012; Tacheuki et al. 2012; Li et al. 2012; Kohno et al. 

2012). Less commonly, the RET-encoded TK domain was found to be fused to 

the first exon of CCDC6 or NCOA4 gene (as in RET/PTC1 and RET/PTC3 

respectively) (Li et al. 2012; Wang et al. 2012). 

Fusions of RET involved the 5’-terminal exons of KIF5B (1–16) and GOLGA5 

(1–7) genes, on chromosome 14q32, have been described in Spitz naevi 

(2,7%), atypical Spitz tumours (3,1%) and in spitzoid melanomas (3%) 

(Wiesner et al. 2013). 

Two novel fusion genes BCR-RET and FGFR1OP-RET v1, in wich the RET-

encoded TK domain is fused with the first 5’-terminal four exons of BCR 

(Breakpoint Cluster Region) and with the first 5’-terminal twelve exons of 

FGFR1OP (Fibroblast Growth Factor Receptor 1 (FGFR1) Oncogene Partner) 

genes respectively, have been recently cloned from two chronic 

myelomonocytic leukemia (CMML) cases. The two RET fusion genes leading 

to the aberrant activation of RET, are able to transform hematopoietic cells and 

skew the hematopoietic differentiation program towards the 

monocytic/macrophage lineage (Ballerini et al. 2012).  

More recently, a novel FGFR1OP (exon 11)-RET (exon 11) gene fusion event 

(named FGFR1OP-RET v2) has been identified in a patient affected by 

primary myelofibrosis (PMF) with secondary acute myeloid leukemia (AML); 

in vivo experiments have been demonstrated that this chimeric oncogene is 

endowed with leukemogenic potential and associated to myeloid neoplasms 

(CMML and PMF/AML) (Bossi et al. 2014). 

The overexpression of RET, GFRα1 or GDNF, may also lead to pathological 

RET overactivation.  One of the more aggressive and lethal pancreatic cancers 

is the RET-associated pancreatic ductal adenocarcinoma (PDAC) (Bardeesy et 

al. 2002). Several studies have shown high levels, or increased expression of 

RET, its GFLs and coreceptors in human PDACs versus normal tissues; in 

PDAC patients, strong GDNF and RET expression is correlated with invasion 

and reduced patient survival after surgical resection suggesting an important 

regulatory role for RET and its ligands in PDAC (Veit et al. 2004). 

RET was discovered as an outlier kinase in breast cancer, with unexpectedly 

high expression levels detected in many breast tumours (Boulay et al. 2008; 
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Esseghir et al. 2007; Plaza‐Menacho et al. 2010). Unlike thyroid or lung 

tumours that carry oncogenic RET, as fusion proteins or with activating 

mutations, RET appears to be wild type in breast cancer. The mechanisms that 

contribute to elevated RET levels in breast cancer are not known. RET copy 

number gains have been described (Nikolsky et al. 2008) and might play a role. 

Moreover, RET is an estrogen receptor (ER) target gene (Boulay et al. 2008; 

Tozlu et al. 2006) and a significant association between RET RNA levels and 

ER positivity has been demonstrated (Esseghir et al. 2007).  

Finally, overactivation of RET protein has also been observed in glioblastoma 

multiforme and it correlates with limited efficacy of therapies with kinase 

inhibitors (Stommel et al. 2007). 

 

Table 3. Alterations of RET in cancers other than thyroid carcinomas 

 
 

 

1.5 Targeted therapy 

 

   Conventional chemotherapeutical agents act by creating toxic effects on all 

dividing cells, frequently resulting in severe damage of normal tissues leading 

to numerous side effects. The optimum goal is to find a treatment modality that 

specifically kills malignant cells and minimizes side effects.  

Development of molecular targeted therapies (measures that interfere with 

specific proteins involved in disease) finds its rationale in the “oncogene 

addiction” hypothesis according to which some cancers depend on one or a few 

genes to drive cell transformation and maintain the malignant phenotype. 

Therefore, in cancer cells, a given oncogene may play a more essential and 

qualitatively different role in a given pathway compared with its role in normal 

cells (Weinstein and Joe 2008); thus, it is expected that inhibition of this 

oncogene leads to either tumor stabilization or regression. 

Evidence that supports this concept has been obtained in genetically engineered 

mouse models of human cancer, studies in human cancer cell lines and clinical 

trials involving specific molecular targeted agents. Prominent examples include 

imatinib, which targets the BCR-ABL oncogene in Chronic Myeloid Leukemia 

(CML) and the c-KIT oncogene in Gastrointestinal Stromal Tumors (GIST), 

and gefitinib and erlotinib, which target the Epidermal Growth Factor Receptor 

(EGFR) in non–small cell lung carcinomas (NSCLC), pancreatic cancer, and 

glioblastoma. It is of interest that the clinical responses in NSCLC are mainly 

confined to the subset of cancers that have mutations or amplification in the 

EGFR gene (Weinstein and Joe 2008); this could be explained by the fact that 

mutant EGFR variants are more efficently inhibited than wild-type protein by 
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the EGFR targeting agents but also by the observation that only EGFR-mutant 

NSCLC cells were addicted to EGFR signaling (Yun et al. 2007). 

It is clear that the successful development of targeted therapies for cancer 

requires several key factors: 1) identification of biologically validated targets 

critical to development and maintenance of the malignant phenotype; 2) 

development of potent inhibitors of the targets, with broad therapeutic index 

separating efficacy from toxicity; 3) recognition of patient and tumor 

characteristics that can optimize the selection of patients for therapy; 4) 

identification of biomarkers predictive of patient outcome and that permit 

optimization of drug dosing. 

The overall goal of developing new therapies is to extend the duration of life 

without unduly harming the quality of that life. Toxicities of many of these 

new treatments, although less life-threatening than cytotoxic chemotherapies, 

are common and can be dose limiting. Finally, the low rate of partial response, 

the absence of complete responses, and emergence of resistance (due to 

activation of alternative signaling pathways or to development of de novo 

mutation in the target which blocks the inhibitory activity of drug) in various 

monotherapy trials identify the need to develop either more effective single 

agents or to identify rational combinations of therapeutic targets (including 

cytotoxic chemotherapies) that have synergistic effectiveness without enhanced 

cross-toxicities. 

There are 518 kinases encoded in the human genome, and they have been 

demonstrated to play pivotal roles in virtually all aspects of cellular 

physiology. Dysregulation of kinase activity has been implicated in 

pathological conditions ranging from neuronal disorders to cellular 

transformation. It is currently estimated that over a quarter of all 

pharmaceutical drug targets are protein kinases, an assessment that drives an 

eager search for new chemical scaffolds that have the potential to become 

drugs (Liu and Gray 2006). 

Today, there are two main mechanisms to block the activation of a tyrosine 

kinase (TK): small molecules tyrosine kinase inhibitors, that bind the catalytic 

pocket of tyrosine kinases and block ATP access, and humanized antibodies, 

that bind to specific membrane tyrosine kinase receptors and impair their 

functions (Romagnoli et al. 2009). 

 

 

1.6 Tyrosine Kinase Inhibitors (TKI) 

 

   The highly conserved kinase domain consists of a bilobed structure, with 

Mg-ATP situated in a deep cleft located between the N- and C-terminal lobes. 

The majority of small-molecule kinase inhibitors that have been developed so 

far, the so called type I inhibitors, target the ATP binding site, with the kinase 

adopting the active conformation. These inhibitors bind to the ATP binding site 

through the formation of hydrogen bonds to the kinase ‘hinge’ residues (that 

link the N- and C-terminal kinase domains) and through hydrophobic 
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interactions in and around the region occupied by the adenine ring of ATP (Liu 

and Gray 2006) (Figure 6 A).  

Serendipity combined with structure-activity relationship (SAR)–guided 

medicinal chemistry has allowed the identification of a second class of kinase 

inhibitors, type II inhibitors, which preferentially bind to an inactive 

conformation of the kinase, thereby preventing activation (Liu and Gray 2006). 

Type II inhibitors typically use the ATP binding site, but they also occupy a 

hydrophobic site (named “allosteric site”), that is directly adjacent to the ATP 

binding pocket. In such site type II inhibitors exploit unique hydrogen bonding 

and hydrophobic interactions made possible by the DFG residues of the 

activation loop being folded away from the conformation required for ATP 

phosphate transfer (inactive “DFG-out” conformation) (Figure 6B). Because 

the amino acids surrounding this pocket are less conserved relative to those in 

the ATP binding pocket, it has been proposed that it may be easier to achieve 

kinase selectivity with type II inhibitors (Liu and Gray 2006). 

Structurally, type II kinase inhibitors can be broken down into a “head”, which 

extends to the adenine region and a “tail”, that interacts with the allosteric site,  

separated by a linker (Liu and Gray 2006) (Figure 6 C). 

 

 
  

 

Figure 6. Schematic representation of kinase conformations and type II kinase inhibitors. A) 

Ribbon diagram of ATP binding site with a DFG-in activation-loop conformation (active 

conformation). B) Ribbon diagram of a representative of type II binding mode showing the 

DFG-out activation-loop conformation (inactive conformation). C) Type II kinase inhibitors 

model: A, hydrogen bond acceptor; D, hydrogen bond donor; HRB, hinge-region binding; HM, 

hydrophobic motif. 

 

 

 



28 
 

1.7 RET as a therapeutic target 

 

   RET plays a critical role in the initiation and progression of multiple tumor 

types, especially in MTC. Therapeutic options for the management of these 

diseases are frequently limited and small-molecule TKIs able to inhibit RET 

oncogenic activity represent one of the most promising agents for treatment of 

cancers in which RET is involved. 

MTC usually has a favorable prognosis, with a 10-year survival rate of 70%- 

80%, if it is diagnosed and treated at an early stage when the tumor is confined 

to the thyroid. Patients with metastatic MTC have a 10-year over-all survival 

rate of 40%, and metastasis is the main cause of death in patients with MTC. 

Locally advanced and distant metastatic diseases are incurable, as surgical 

resection and conventional radio- and cytotoxic chemotherapies are not 

effective against metastatic MTC. Clinical trials of various combinations of 

chemotherapeutic drugs have yielded unsatisfactory results (Ferreira et al. 

2013). 

Small-molecule tyrosine kinase inhibitors (TKI), developed over the past 

decade, typically affect multiple signaling pathways. Currently, an inhibitor 

specific only for RET is not available, but several multikinase inhibitors have 

significant activity against RET, including vandetanib (ZD6474), sorafenib 

(BAY 43-9006), sunitinib (SU11248) and cabozantinib (XL184) (Phay and 

Shah 2010).  

Preclinical studies have shown that MTC cell lines are addicted to RET 

oncogenic signaling and that RET inhibitors are able to block MTC cell 

proliferation (Schlumberger et al. 2008). Moreover, in vivo experiments have 

demonstrated that these drugs are able to inhibit RET-driven tumor growth in 

mice (Carlomagno et al. 2002; Carlomagno et al. 2006). 

Most of these inhibitors have been or are being evaluated in clinical trials for 

MTC treatment (Schlumberger et al. 2008). 

In particular, Vandetanib, a type I inhibitor that targets RET, vascular 

endothelial growth factor receptors (VEGFRs), and epidermal growth factor 

receptor (EGFR), has been the first agent to be approved by FDA (and 

subsequently by EMA) for MTC treatment based on significant progression-

free survival prolongation in the phase III ZETA trial (Wells et al. 2012). 

Meanwhile, it is important to note that preclinical studies have evidenced that 

RET-activating mutations at codon 804 and 806 (V804L/M and Y806C) cause 

resistance to vandetanib and would require alternative inhibitors (Carlomagno 

et al. 2004; Carlomagno et al. 2009). 

Cabozantinib (XL184) is a potent inhibitor of MET, VEGFR2, and RET. Data 

about a phase III study with this inhibitor in metastatic MTC, demonstrated 

that the cabozantinib treatment resulted in prolongation of progression-free 

survival when compared with placebo (11.2 vs 4.0 months, respectively); it 

was also recently approved by the FDA for the treatment of MTC (Elisei et al. 

2013; Ferreira et al. 2013). 
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Given the recent discovery of RET gain of function in lung adenocarcinoma 

and CMML, it is feasible that RET inhibitors may found application also in 

these cancers. Consistently, KIF5B-RET transformed fibroblasts growth was 

inhibited by vandetanib (Kohno et al. 2012) and treatment with sorafenib 

induced cytological and clinical remission in a patient carrying the BCR-RET 

fusion (Ballarini et al. 2012).  

Phase II clinical trials to asses the efficacy of both approved RET inhibitors, 

vandetanib and cabozantinib, in non small cell lung cancer harbouring KIF5B-

RET rearrangements are currently recruiting patients (Mulligan 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 
 

2.0 AIM OF THE STUDY 
 

 

   Preclinical and clinical studies have demonstrated that targeted therapy based 

on RET inhibition may be a very promising strategy for the treatment of 

cancers in which this oncogene is involved. Over the last several years, some 

small molecules of various chemical classes have been reported to exert RET 

inhibition. Among them, vandetanib and cabozantinib have been recently 

approved for locally advanced or metastatic medullary thyroid carcinoma 

treatment (Ferreira et al. 2013). The absence of complete response, molecular 

resistance and toxicity are the major limits of targeted therapies using these two 

inhibitors. Thus, it would be important to identify more effective and less toxic 

anti-RET inhibitors. 

  

Aim of our study has been to characterize potential RET targeting agents in 

order to identify novel inhibitors of this kinase. For this purpose we: 

 

 

 tested ability of 22 multiple kinase inhibitors to inhibit RET enzymatic 

activity at low concentration in NIH3T3 mouse fibroblasts transformed 

by MTC-associated RET mutants (RET/C634Y and RET/M918T); 

 selected three compound for their high inhibitory activity toward RET 

kinase and confirmed their efficacy in RAT1 fibroblasts transformed by 

RET/C634R and RET/M918T; 

 studied the effects of the three compounds on proliferation of RAT1 

RET/C634R- and RET/M918T-transformed fibroblasts; 

 evaluated their efficacy to inhibit several MTC-associated RET 

intracellular mutants and RET chimeric oncogenes; 

 evaluated their ability to inhibit RET activity in human cell lines 

carrying oncogenic RET alleles (TT, MZCRC1 and TPC1) and studied 

their effects on proliferation of these cell lines; 

 tested the ability of one compound to inhibit growth of tumors induced 

by NIH3T3-RET/C634Y cells. 
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3.0 MATERIALS AND METHODS 
 

 

3.1 Compounds  

 
   Compounds were synthesized in the Gray laboratory according to published 

procedures (Choi et al. 2009; Deng et al. 2010). For in vitro experiments, 

compounds were dissolved in dimethyl sulfoxide (DMSO) at 10 mM 

concentration and stored at -80°C. For in vivo experiments the drug was 

dissolved in 10% ethanol, 20% PEG200 and 70% water and stored at 4°C. 

 

 

3.2 Molecule modeling 

 

   Though currently there are seven available X-ray structures of RET kinase in 

the public domain, all of them exhibit the ‘DFG-in’ active conformation of the 

activation loop and would not accommodate type II inhibitors. Therefore, here 

we first built the DFG-out model of RET kinase using the homology modelling 

method based on the RET sequence and the highhomology structure (PDB ID: 

3DZQ) as the template with Swiss-model web server (23-25). Then we used 

the autodock4.0 software to dock each ligand into the modeled DFG-out 

conformation of RET. The ligands were constructed by the online-tool: 

CORINA (http://www.molecular-networks.com). Lamarckian genetic 

algorithm with the default parameters was performed to get the candidate 

compounds. Then the docked compounds were clustered and sorted based on 

the binding free energy. The compound with the lowest binding free energy 

was shown as the binding mode. 

 

 

3.3 Selectivity profiling 

 

   DiscoveRx 442 kinome-wide selectivity profiling was conducted by 

DiscoveRx Bioscience with KinomeScanTM Technology. 

 

 

3.4 Cell cultures  

 
   Parental and RET-transformed NIH3T3 cells (RET/C634R or RET/M918T) 

(Santoro et al. 1995) were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 5% calf serum, 2 mM L-glutamine and 100 

units/ml penicillin-streptomycin (GIBCO, Paisley, PA). Parental RAT1 

fibroblasts and RAT1 cells transformed by RET/C634R, RET/E768D, 

RET/L790F, RET/Y791F, RET/V804L, RET/V804M, RET/A883F, 

RET/S891A and RET/M918T (Pasini et al. 1997) were cultured in DMEM 

with 10% fetal calf serum, 2 mM L-glutamine and 100 units/ml penicillin-
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streptomycin (GIBCO). HEK 293 cells were from American Type Culture 

Collection (ATCC, Manassas, VA) and were grown in DMEM supplemented 

with 10% fetal calf serum, 2 mM L-glutamine, and 100 units/ml penicillin-

streptomycin (GIBCO). KIF5B/RET cDNA (variant 2) was cloned in pBABE 

by fusing the 5’- terminal portion of KIF5B cDNA fragment (exons 1-16: 

encoding residues 1-638) to the 3’-terminal portion of RET cDNA (exons 12-

20: encoding residues 713-1072, including the tyrosine kinase domain). 

FGFR1OP/RET was cloned according to published procedures (Bossi et al. 

2014).  

Transient transfections of pBABE-RET/PTC1, -RET/PTC3, -KIF5B/RET and 

–FGFR1OP/RET vectors, all encoding the short isoform of the RET protein 

(RET-9), were carried-out with the lipofectamine reagent according to 

manufacturer's instructions (GIBCO).  

TT cell line was obtained in 2002 from ATCC and authenticated by RET 

genotyping; it was derived from a MTC and harbors a cysteine 634 to 

tryptophan (C634W) RET mutation (Carlomagno et al. 1995). TT cells were 

grown in RPMI 1640 supplemented with 16% fetal calf serum (GIBCO). 

MZCRC1 cells were kindly provided in 2009 by Robert F. Gagel (MD 

Anderson, Houston, TX) and authenticated by RET genotyping. MZCRC1 

cells were derived from a malignant pleural effusion from a patient with 

metastatic MTC and were found to bear a heterozygous (ATG to ACG) 

transition in RET resulting in the MEN2B-associated substitution of threonine 

918 for methionine (M918T) (Vitagliano et al. 2010). MZCRC1 cells were 

grown in DMEM supplemented with 10% fetal calf serum (GIBCO). Nthy-ori 

3-1, a human thyroid follicular epithelial cell line immortalized by the SV40 

large T gene, was obtained from European Collection of Cell Cultures 

(ECACC) (Wiltshire, UK) in 2010. Nthyori 3-1 was tested by ECACC by 

DNA profiling of short tandem repeat sequences and grown in RPMI 

supplemented with 10% fetal calf serum (GIBCO). TPC1 cells were obtained 

in 1990 from M. Nagao (National Cancer Center Research Institute, Tokyo, 

Japan) and DNA profiled by short tandem repeat analysis in 2009 (Ishizaka et 

al. 1990; Salerno et al. 2010). 

 

 

3.5 Immunoblotting 

 

   Protein lysates were prepared according to standard procedures. Briefly, cells 

were lysed in a buffer containing 50 mM N-2- hydroxyethylpiperazine-N'-2-

ethanesulfonic acid (HEPES; pH 7.5), 1% (vol/vol) Triton X-100, 150 mM 

NaCl, 5 mM EGTA, 50 mM NaF, 20 mM sodium pyrophosphate, 1 mM 

sodium vanadate, 2 mM phenylmethylsulphonyl fluoride (PMSF) and 1 μg/ml 

aprotinin and clarified by centrifugation at 10,000 Xg for 15 min.  

Protein concentration was estimated with a modified Bradford assay (Bio-Rad, 

Munich, Germany) and lysates were subjected to Western blot. Immune 

complexes were detected with the enhanced chemiluminescence kit 
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(Amersham Pharmacia Biotech, Little Chalfort, UK). Signal intensity was 

analyzed at the Phosphorimager (Typhoon 8600, Amersham Pharmacia 

Biotech) interfaced with the ImageQuant software.  

 

 

3.6 Antibody 

 

   Anti-phospho-SHC (#Y317), that recognizes SHC proteins when 

phosphorylated on Y317, was from Upstate Biotechnology Inc. (Lake Placid, 

NY). Anti-SHC (H-108) was from Santa Cruz Biotechnology (Santa Cruz, 

CA). Anti-MAPK (#9101) and anti-phospho-MAPK (#9102), specific for 

p44/42MAPK (ERK1/2) phosphorylated on Thr202/Tyr204, were from Cell 

Signaling (Beverly, MA). Anti-RET is a polyclonal antibody raised against the 

tyrosine kinase protein fragment of human RET (Santoro et al. 1995). Anti-

phospho905 is a phospho-specific polyclonal antibody recognizing RET 

proteins phosphorylated at Y905 and antiphospho1062 is a phospho-specific 

polyclonal antibody recognizing RET proteins phosphorylated at Y1062 

(Carlomagno et al. 2002). Secondary antibodies coupled to horseradish 

peroxidase were from Santa Cruz Biotechnology. 

 

 

3.7 Growth Curves 

 

   RAT1, RAT RET/C634R and RAT RET/M918T cells (10,000/dish), Nthy-

ory-3-1 (50,000/dish), TPC1 (35,000/dish), and MZ-CRC1 and TT 

(90,000/dish) were seeded in 60-mm dishes. Fibroblasts were kept in medium 

supplemented with 2.5% fetal calf serum. Human cells were kept in 2% (TPC1 

and Nthy-ori-3-1) or 10% (TT and MZ-CRC-1) fetal calf serum. The day after 

plating, different concentrations of ALW-II-41-27, XMD15-44 and HG- 6-63-

01 or vehicle were added to the medium and refreshed every 2-3 days. Cells 

were counted every 1-2 (fibroblasts) or 2-3 (human cell lines) days.  

 

 

3.8 Mouse xenograft experiment 

 

   Animals were housed in barrier facilities at the Dipartimento di Medicina 

Molecolare e Biotecnologie Mediche Animal Facility. 

NIH3T3-RET C634Y (250,000/mouse) were inoculated subcutaneously 

bilaterally into dorsal portion of 6-week-old male BALB/c nu/nu mice (n. 16 

mice) (Jackson Laboratories, Bar Harbor, Maine). When tumors reached 

approximately 100 mm3, the animals were treated with ALW-II-41-27 (40 

mg/Kg/day) or vehicle by intraperitoneal injection for ten consecutive days. 

Tumor diameters were measured with calipers every 2-3 days and tumor 

volumes (V) were calculated by the rotational ellipsoid formula: V=AxB
2
/2 (A 

= axial diameter; B = rotational diameter).   
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All manipulations were performed while the animals were under isoflurane gas 

anesthesia. Animal studies were conducted in accordance with Italian 

regulations for experimentation on animals. 

 

 

3.9 Statistical analysis 

 

   Unpaired Student’s t test using the Instat software program (Graphpad 

Software Inc) were performed to compare cell growth. All P values were two-

sided, and differences were considered statistically significant at P <.02. IC50 

doses were calculated through a curve fitting analysis from last day values 

using the PRISM software program (Graphpad Software Inc). To compare 

tumour growth we used an unpaired t-student test (InStat program, GraphPad 

software). P values were statistically significant at P <.02. 
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4.0 RESULTS 

 

 
4.1 Identification of three novel type II RET tyrosine kinase receptor 

inhibitors 

 

   In order to identify new powerful inhibitors of RET kinase, we tested 22 

structurally diverse multiple tyrosine kinases inhibitors, provided us by Dr 

Gray (Dana Farber Cancer Institute), for their ability to block RET 

autophosphorylation in NIH3T3 mouse fibroblasts stably expressing the MTC-

associated mutants RET/C634Y and RET/M918T. For this purpose, we  treated 

the cells for 2 hours with 10, 100 and 1000 nM doses of these drugs and we 

determined phosphorylation status and intracellular signaling of RET by 

Western Blotting with phospho-specific RET antibodies able to recognize RET 

proteins only when phosphorylated on tyrosine 1062 (anti-pY1062) or tyrosine 

905 (anti-pY905), and phospho-MAPK antibodies (pMAPK).  

Three compounds, ALW-II-41-27, HG-6-63-01 and XMD-15-44, displayed 

strong (> 30%) inhibition at 10 nM dose of both RET/C634Y and RET/M918T 

proteins and were selected for further studies (data not shown). 

Unlike the approved RET inhibitor Vandetanib, ALW-II-41-27, HG-6-63-01 

and XMD15-44 are all typical type II inhibitors with a very similar chemical 

structure. Indeed, the three compounds possessed the same “linkers” (para-

methyl benzylamide) and “ tails” (ethyl piperazine) but differ in the “head” 

binding area:  ALW-II-47 (nicotinamide), HG-6-63-01 ( pyrolopyridine), 

XMD15-44  (pyridine) (Figure 7). 

 

 

 
 
Figure 7. Chemical Structure of ALW-II-41-27, HG-6-63-01 and XMD15-44. Red colour 

indicates a “ tail” part in the binding, a black colour indicates “linker” , pink colour indicates a 

“head” part in the binding. 

 

 

Molecular modelling showed that these three drugs bind to the inactive 

conformation of RET kinase (the so called DFG-out conformation, in which 

the DFG motif, located in the activation loop, sterically interferes with ATP 

binding domain) in a typical type II inhibitors mode: the tail and the linker 

interacted with the hydrophobic site created by DFG-out conformation of the 
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activation loop, whereas the head extends in the ATP-binding domain (Figure 

8).  

 

 

 
 

Figure 8. Modelling results of RET kinase in association with the three inhibitors: ALW-II-41-

27 (A), HG-6-63-01 (B) and XMD15-44 (C) 

 

 

To determine the potency and specificity of these inhibitors, ALW-II-41-27, 

HG-6-63-01 and XMD-15-44 were subjected to binding assays at a screening 

concentration of 10 µM using the KinomeScanTM approach, which tests for 

association with 442 distinct kinases covering >80% of the human catalytic 

protein kinome. All the three compounds bound effectively RET and various 

other kinases; ALW-II-41-27 resulted to be the most specific towards RET 

kinase (Figure 9). 
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Figure 9. Kinome wide selectivity profiling of RET inhibitors. Figures were generated with 

DiscoverRx Treespot Version 4. Red dots indicate more than 99% inhibition at 10 μM 

concentration of drugs compared to DMSO control. S-score (1) indicated the selectivity when 

threshold was set at ≥99% inhibition. The size of the red circles is proportional to the strength 

of the binding, e.g. large circles imply high affinity. 

 

 

 

4.2 Inhibition of RET signaling and cell proliferation in RET-transformed 

RAT1 fibroblasts by ALW-II-41-27, HG-6-63-01 and XMD-15-44 

 

   To confirm the ability of ALW-II-41-27, HG-6-63-01 and XMD-15-44 to 

inhibit RET kinase activity, the same experiment performed in NIH3T3 cell 

line was repeated in RAT1 cells stably expressing RETC634R and 

RET/M918T oncoproteins. As in NIH3T3 cell lines, 10 nM concentration 

reduced both RET mutants autophosphorylation of more than 30%. Consonant 

with these data, RET-dependent activation of the RAS/MAPK pathway 

through SHC adaptor protein recruitment and phosphorylation was also 

inhibited, as demonstrated by decreased levels of SHC and MAP Kinases 

ERK1/2 protein phosphorylation. By contrast, ALW-II-41-27, HG-6-63-01 and 

XMD15-44 did not affect SHC and MAPK phosphorylation in parental RAT1 

cells (Figure 10). 
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Figure 10. Serum-starved RAT RET/C634R, RAT RET/M918T and RAT1 cells were treated 

for 2 hr with indicated concentrations of ALW-II-41-27, HG-6-63-01 and XMD-15-44. 50 g 

of total cell lysates were subjected to immunoblotting with anti-phospho-1062 (p1062), anti-

phospho-905 (p905), anti-phospho-MAPK (pMAPK) and anti-phospho-SHC (pSHC) 

antibodies. The blots were normalized using anti-RET (RET), anti-MAPK (MAPK) and 

anti-SHC (SHC) antibodies. 
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We next studied the effects exerted by ALW-II-41-27, HG-6-63-01 and 

XMD15-44 on the proliferation of RAT1 cells transformed by RET/C634R and 

RET/M918T oncoproteins. All the three compounds were able to reduce 

proliferation of RAT RET/C634R and RAT RET/M918T cells at low doses but 

not parental cells. In particular, XMD-15-44 was the most effective compound, 

inhibiting RET-transformed RAT1 cell proliferation with an IC50 of about 10 

nM, while HG-6-63-01 was the least effective one with an IC50 of about 50 

nM. ALW-II-41-27 displayed an intermediate efficacy, with an IC50 of about 

20 nM (Figure 11). 
 

 

 
 

 

Figure 11. Top) RAT RET/C634R, RAT RET/M918T and RAT1 cells were incubated with 

DMSO or with increasing concentrations of ALW-II-41-27, HG-6-63-01 and XMD15-44 in 

5% fetal bovine serum and the cells were counted at different time points. Data are the mean ± 

SD of two experiments performed in triplicate. Bottom) Growth inhibition IC50 of ALW-II-

41-27, XMD15-44 and HG-6-63-01 for the different cell lines. 95% confidence intervals (CI) 

are indicated in brackets. 

 

 

In MEN 2A syndrome, codon 634 is most frequently mutated, mostly by a 

C634R substitution  while M918T is the most frequent mutation in MEN 2B 

and sporadic MTC. 
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Although these mutations are the most common in familial and sporadic MTC, 

many other rare mutations in the tyrosine kinase domain of RET have been 

described in these diseases. Some of them, in particular the substitution of the 

gatekeeper residue valine 804 (T315 in ABL) with a leucine or methionine, 

confers resistance to several RET inhibitors (Carlomagno et al. 2004). 

In order to evaluate the activity of ALW-II-41-27, HG-6-63-01 and XMD-15-

44 towards MTC-associated RET intracellular mutants, we treated RAT1 cells 

exogenously expressing various kinase domain-mutated RET oncoproteins 

with increasing concentration of the three compounds and we detected RET 

phosphorylation by Western blotting using specific anti phospho-RET 

antibodies (αpY905 and αpY1062). 

RET/L790F, RET/V804M and RET/S891A showed a sensitivity to ALW-II-

41-27, HG-6-63-01 and XMD-15-44 very similar to RET/C634R and 

RET/M918T proteins. E768D, Y791F, A883F and V804L RET mutants 

resulted to be less sensitive to three compounds since 10 nM concentration did 

not exert detectable inhibition for any of them; in addition, while RET/Y791F 

and RET/E768D proteins were almost completely inhibited at 100 nM (≥ 

90%), RET/A883F and RET/V804L mutants were only partially (≤ 70%) 

inhibited at the same concentration (Figure 12).  

Of note, A883 and V804 residues are located respectively in the VI Hanks 

domain, adjacent the activation loop and in the ATP-binding domain, two sites 

recognized by ALW-II-41-27, HG-6-63-01 and XMD-15-44 to bind the kinase. 

The different sensitivity of the two gatekeeper mutants RET/V804M and 

RET/V804L to three drugs can be explained by the different structure of the 

two aminoacids (leucine and methionine); leucine has a bulky side chain that 

may interfere with the binding of the inhibitors to the kinase and render these 

compounds less effective to inhibit RET activity.   
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Figure 12. Serum-starved RAT1 cells exogenously expressing indicated kinase domain-

mutated RET proteins  were treated for 2 hr with increasing concentration of ALW-II-41-27, 

HG-6-63-01 and XMD-15-44. 50 g of total cell lysates were subjected to immunoblotting 

with anti-phospho-1062 (p1062) and anti-phospho-905 (p905) antibodies. The blots were 

normalized using anti-RET (RET) antibody. 

 

 

4.3 Inhibition of enzymatic activity of RET-derived chimeric oncoproteins 

by ALW-II-41-27, HG-6-63-01 and XMD-15-44 

 

   We next tested the effects exerted by ALW-II-41-27, HG-6-63-01 and XMD-

15-44 on RET autophosphorylation in HEK293 cells transiently transfected 

with pBABE-based vectors encoding oncogenic RET rearrangements 

RET/PTC1 (CCDC6-RET), RET/PTC3 (NCOA4-RET), KIF5B-RET and 

FGFR1OP-RET, associated to papillary thyroid carcinoma, lung 

adenocarcinoma and chronic myelomonocytic leukemia (CMML). 48 hours 

after transfection, we treated cells for 2 hours with increasing concentrations of 

drugs and we determined RET phosphorylation status by western blotting with 

phospho-specific anti-RET antibodies (anti-pY1062 and anti-pY905).  

100nM dose of ALW-II-41-27, HG-6-63-01 and XMD-15-44 almost 

completely inhibited phosphorylation of RET-derived chimeric proteins 

(Figure 13). 
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Figure 13. Protein extracts from HEK293 cells transiently transfected with the indicated 

constructs and treated for 2 h with vehicle, ALW-II-41-27, HG-6-63-01 and XMD-15-44  (10, 

100, 1000 nM) were immunoblotted with phospho-specific anti-pY1062 and anti-pY905 RET 

antibodies. Anti-RET antibody were used for normalization. 

 

 

4.4 Effects of ALW-II-41-27, HG-6-63-01 and XMD-15-44 on human 

carcinoma cell lines harboring constitutively active RET oncogenes 

 

   Next we investigated the effects of ALW-II-41-27, HG-6-63-01 and XMD-

15-44 on human carcinoma cell lines endogenously harbouring RET activating 

mutations. Specifically, we used papillary thyroid carcinoma-derived TPC1 

(RET/PTC1 rearrangement), medullary thyroid carcinoma-derived MZCRC1 

(RET/M918T mutation) and TT (RET/C634W mutation) cell lines. As 

comparison, we used non-malignant human thyroid follicular cell line, Nthy-

ori-3-1. 

Thus, we treated cells for 2 hours with the three compounds at 10, 100 and 

1000 nM concentration and analysed RET, MAPK and SHC phosphorylation. 

Also in human cells, 10 nM concentration of the three drugs is able to partially 

block RET autophosphorylation and RET-mediated SHC and MAPK 
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activation. By contrast, ALW-II-41-27, HG-6-63-01 and XMD15-44 did not 

affect SHC and MAPK phosphorylation in the Nthy-ori-3-1 cells (Figure 14). 

 

 
 

Figure 14. Inhibition of RET mutants phosphorylation and signaling by ALW-II-41-27, HG-6-

63-01 and XMD15-44 in human cells. The indicated cell lines were serum-starved for 12 hours 

and then treated with vehicle (DMSO) or increasing concentrations (10, 100 and 1000 nM) of 

three drugs. Cell lysates (50 μg) were immunoblotted with phospho-specific anti-pY1062 

(αp1062) and anti-pY905 (αp905) RET antibodies, anti-phospho-MAPK  (αpMAPK) and anti-

phospho-SHC (pSHC) antibodies. The blots were normalized using anti-RET (RET), anti-

MAPK (MAPK) and anti-SHC (SHC) antibodies.   

 

 

We next measured the growth rates of TT, MZCRC1 and TPC1 cells treated 

with three concentrations of ALW-II-41-27, HG-6-63-01 and XMD15-44 

compared to control Nthy-ori-3-1 cells.  

ALW-II-41-27, HG-6-63-01 and XMD15-44 inhibited the proliferation of all 

RET-mutated/rearranged cell lines with an IC50 of 1-5 nM for MTC cells and 
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10-20 nM for PTC cells. No effect was observed on NThy-ori-3-1 cells growth 

at the same doses (Figure 15). 

 

 
 
 

Figure 15. Top) The indicated cell lines were incubated with DMSO (NT: not treated) or with 

the indicated concentration of ALW-II-41-27, HG-6-63-01 or XMD-15-44 in low serum and 

counted at different time points. Each point represents the mean value ± SD for two 

experiments performed in triplicate. Bottom) Growth inhibition IC50 of ALW-II-41-27, HG-6-

63-01 and XMD-15-44 for the different cell lines. 95% CI are indicated in brackets.  

 

 

In order to evaluate whether inhibition of other tyrosine kinase receptors 

expressed and phosphorylated in thyroid cancer cell lines (including EGFR, 

VEGFR2, INSR and IGF1R in TT and MZCRC1 cells and EGFR and MET in 

TPC1 cells) can account for compound-mediated cell growth inhibition, we 

treated TT and TPC1 cells for 2 hours with increasing concentrations of drugs 

and we analyzed the phosphorylation status of these receptors by Western- 
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blotting. Our results indicated that none of the additional receptors were 

inhibited by ALW-II-41-27, HG-6-63-01 and XMD-15-44 with the exception 

of VEGFR2 (Figure 16). Therefore, it is possible that the inhibitory effects of 

the three compounds on MTC-derived cells proliferation are due to inhibition 

of both RET and VEGFR2 receptors. 

 

 
 

Figure 16. TT and TPC1 cells were serum-starved for 12 hours and then  treated for 2 hr with 

indicated concentrations of ALW-II-41-27, HG-6-63-01 and XMD-15-44. Cell lysates (50 g) 

were subjected to immunoblotting with anti-phospho-EGFR (pEGFR), anti-phospho-

VEGFR2 (pVEGFR2), anti-phospho-InsR/IGF1R (pIGF1R) and anti-phospho-MET 

(pMET) antibodies. The blots were normalized using anti-EGFR (EGFR), anti-VEGFR2 

(VEGFR2), anti-IGF1R (IGF1R), anti InsR (InsR) and anti-MET (MET) antibodies. 
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4.5 Inhibition of RET/C634Y-induced tumor growth in nude mice by 

ALW-II-41-27 

 

   Based on our results, we decided to test the ability of ALW-II-41-27 to 

inhibit RET-driven cancer in vivo. As a model system we used NIH3T3 

fibroblasts transformed by RET-derived oncogenes after confirming that ALW-

II-41-27 inhibited RET/C634Y protein phosphorylation and signaling (Figure 

17 A) and proliferation of these cells (Figure 17 B).  

 

 
 

Figure 17. A) Serum -starved NIH3T3 RET/C634Y cells were treated for 2 hr with the 

indicated concentrations of ALW-II-41-27. 50 g of total cell lysates were subjected to 

immunoblotting with phospho-Y1062 (pY1062), phospho-Y905 (p905) RET antibodies, 

anti-phospho-MAPK (pMAPK) and anti-phospho-SHC (pSHC) antibodies. The blots were 

normalized using anti-RET (RET), anti-MAPK (MAPK) and anti-SHC (SHC) antibodies. 

B) The NIH3T3 RET/C634Y cells were incubated with DMSO or with increasing 

concentrations of ALW-II-41-27 in 2% calf serum and the cells were counted at different time 

points. Each point represents the mean value ± SD for two experiments performed in triplicate. 

Growth inhibition IC50 with 95% CI is indicated in brackets. 

 

 

For this purpose, we injected bilaterally nude mice with 2,5x10
5
 NIH3T3 RET/ 

C634Y cells and when tumors had reached about 100 mm
3
, animals (8 for each 

group, 12 tumors) were treated i.p. with 40 mg/kg/day of ALW-II-41-27 or 

with vehicle for 10 days. 
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Treatment with ALW-II-41-27 reduced tumor growth of more than 50%. After 

10 days, the mean volume of tumors in untreated mice was 2810 mm
3 

whereas 

that of treated 
 
mice was 1280 mm

3 
(P<0,02) (Figure 18). 

 

 
 

Figure 18. NIH3T3 RET/C634Y cells (2.5 x 105/mouse) were injected subcutaneously into 

BALB/c nude mice. When tumors measured 100 mm3, treatment (i.p.) was started with 40 

mg/kg/day of ALW-II-41-27 or vehicle alone. After 10 days, tumor diameters were measured 

with calipers and tumor volumes were calculated. Error bars represent 95% CI. Statistical 

significance was determined by unpaired Student’s T test (P<0,02). 
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5.0 DISCUSSION 
 

 

   Molecular targeting of protein kinases is a new paradigm in the treatment of 

cancer. Selective small-molecule kinase inhibitors have emerged over the past 

decade as an important class of anti-cancer agents, and have demonstrated 

impressive clinical efficacy in several different diseases.  

Development of potent and selective kinase inhibitors has rapidly evolved from 

creating analogues of natural products to sophisticated structure-based design 

approach facilitated by protein crystallography and nuclear magnetic resonance 

(NMR) spectroscopy. 

To date, at least 10 different multiple kinase inhibitors have been approved by 

the FDA for the treatment of specific types of cancer. In addition to these, there 

are hundreds of unique chemical structures with a range of selective inhibitory 

activity against a variety of kinases. The vast majority of these inhibitors target 

the ATP-binding site (type I inhibitor) but a growing number of non-ATP 

competitive kinase inhibitors target unique allosteric site of the kinases (type II 

inhibitors) (Zhang et al. 2009).   

Given the causative role of RET oncogene in several human cancers, including 

papillary and medullary thyroid carcinoma, lung adenocarcinoma and chronic 

myelomonocytic leukemia, it appears to be an excellent target for the 

molecular therapy of the tumors in which RET is involved.  

Over the last years, numerous RET inhibitors have been identified including 

vandetanib (ZD6474), sorafenib (BAY 43-9006), sunitinib (SU11248), 

cabozantinib (XL184) (Phay and Shah 2010); all the compounds are 

multitarget kinase inhibitors able to inhibit several kinases other than RET. 

Among them, vandetanib and cabozantinib have been recently approved for 

locally advanced or metastatic medullary thyroid carcinoma treatment (Ferreira 

et al. 2013). 

Clinical trials with these two drugs have shown a partial response with a 

significant prolongation of progression-free survival when compared with 

placebo. The two drugs have a similar toxicity profile, common to other TKI 

therapies, due to inhibition of other targets in addition to RET (Ferreira et al. 

2013). 

Clinical benefit of targeted therapy is typically limited to a fraction of treated 

patients, mostly depending by the type of oncogene mutations in the tumor. 

Molecular resistance (primary or secondary) is the major obstacle to cancer 

therapy with small molecule kinase inhibitors. Owing to the rapid proliferation 

of cancer cells, the acquisition of mutations conferring drug resistance has 

become a recurring theme in the clinic. Additional mechanisms to acquire drug 

resistance are amplification of the targeted gene and upregulation of alternative 

signaling pathways (Zhang et al. 2009). 

Inhibitor resistance conferred by mutation of the gatekeeper residue (so called 

because the size of the amino acid side chain at this position determines the 

accessibility of a hydrophobic pocket located adjacent to the ATP binding site) 
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appears to be a common feature for several kinases; examples are BCR-ABL 

T315I and EGFR T790M mutations that induce resistance to imatinib and 

gefitinib and erlotinib inhibitors respectively (Zhang et al. 2009).  

In this scenario, it is well established the importance of having available 

second line compounds in cancer patients progressing under treatment with the 

first line inhibitor.  

Of note, preclinical studies have evidenced that RET-activating mutations at 

gatekeeper residue 804 and at residue 806 (V804L/M and Y806C) cause 

resistance to vandetanib and cabozantinib (Carlomagno et al.2004; Carlomagno 

et al. 2009; Mologni et al. 2013). 

V804 mutations are found in about 2% of MEN 2 cases as well as in sporadic 

MTC (Machens et al. 2003); V804 mutation positive tumors are expected to 

display resistance to vandetanib. In addition, it is also conceivable that, upon 

treatment, a tumor originally negative for this mutation can select clones 

carrying the RET/V804 substitution and therefore no longer respond to the 

therapy.  

Most of the current kinase inhibitors have been developed with the goal of 

achieving the greatest selectivity towards a specific kinase of interest and 

overcoming oncogene mutation-based resistance. Several strategies are being 

investigated to overcome kinase inhibitor resistance mutants: one approach is 

to develop inhibitors that can tolerate diverse amino acid at the gatekeeper 

position or, alternatively, to generate inhibitors that recognize alternative 

binding site, such as substrate binding site (Zhang et al. 2009). 

Ponatinib (AP24534), a potent type II multiple kinase BCR-ABL inhibitor, is a 

prominent example of the first strategy. Using structure-based drug design, this 

compound was rationally developed to address the limitations of currently 

available CML-directed tyrosine kinase inhibitors. It was designed for high-

affinity, optimized binding to the active site of BCR-ABL, with an emphasis on 

very high potency and the ability to overcome gatekeeper BCR-ABL mutation-

based resistance (O’Hare et al. 2009). 

All the clinically approved kinase inhibitors target multiple kinases. Such off-

target activity can prove advantageous as they offer the opportunities to use a 

single drug for the treatment of multiple clinical indications that are associated 

with the activation of these various kinases. In addition, multi-target inhibitors 

have the potential to target multiple distinct processes associated with tumor 

growth, such as angiogenesis.   

Conversely, since targeted therapies toxicity is mainly due to inhibition of 

other targets, truly selective inhibitors might be less toxic than multikinase 

inhibitors. 

In the case of RET-targeted therapies for the treatment of MTC, it is unknown 

if observed responses are mainly related to RET kinase inhibition alone or to 

simultaneous inhibition of other kinases. Considering that both approved RET 

inhibitors, vandetanib and cabozantinib, are able to inhibit effectively also 

VEGFR and that this receptor plays a crucial role in the angiogenesis, it is 
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conceivable that VEGFR inhibition may be important in inducing anti-tumor 

responses. 

Here, we applied a structure-guided screen in order to identify novel RET 

TKIs. This screening resulted in the identification of ALW-II-41-27, HG-6-63-

01 and XMD15 44 as potent type II RET TKIs.  

We demonstrated that ALW-II-41-27, HG-6-63-01 and XMD15-44 inhibited 

phosphorylation and signaling of various RET oncogenic mutants at nanomolar 

concentrations. In addition to RET, as almost all RET inhibitors, they were 

able to effectively inhibit also VEGFR2. 

The three compounds efficiently blocked proliferation of RET/C634R- and 

RET/M918T-transformed fibroblasts and of human thyroid cancer cell lines 

carrying oncogenic RET alleles. Finally, ALW-II-41-27 impaired growth of 

xenografts induced by fibroblasts transformed by RET.  

Consistent with type II inhibitors structure of these molecules and with their 

binding mode to RET inactive  conformation, the three compounds were able 

to inhibit, although with lower efficacy, also the two RET gatekeeper mutants 

V804L/M. Sorafenib, another type II RET inhibitor, was also effective against 

V804 mutant RET kinases, suggesting that, differently from type I inhibitor 

vandetanib, type II TKIs binding mode in the case of RET is only partially 

affected by gatekeeper residue (Carlomagno et al. 2006).  

Conversely, ALW-II-41-27, HG-6-63-01 and XMD15-44 were less effective 

toward RET/A883F in which the mutation is located in the activation loop, a 

site recognized by three compounds. 

Notewhorty, the newly identified RET TKIs shared a common structure with 

same “linkers” (para-methyl benzylamide) and “tails” (3-trifluoromethyl-4- 

methylpiperazinephenyl) that is the same of the type II inhibitor Ponatinib, able 

to inhibit also RET gate-keeper mutants (De Falco et al. 2013; Zhou et al. 

2011), suggesting that this structure is determinant for the inhibitory activity of 

the compounds toward RET kinase. 
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6.0 CONCLUSION 
 

 

   Here, we describe three novel type II RET tyrosine kinase inhibitors, ALW-

II-41-27, HG-6-63-01 and XMD15-44 that shared a common pharmacophore  

(3-triflouromethyl-4-methylpiperazinephenyl) that stabilizes the ‘DFG-out’ 

inactive conformation of RET activation loop.  

Briefly, ALW-II-41-27, HG-6-63-01 and XMD15-44 display strong (>30%) 

inhibition at 10 nM concentration of MTC-associated RET mutants and inhibit 

proliferation of RET/C634R- and RET/M918T-transformed fibroblasts with an 

IC50 of 8.3-56 nM and of RET mutant thyroid cancer cells with an IC50 of 1.0-

20 nM. ALW-II-41-27 impaired growth of xenografts induced by fibroblasts 

transformed by RET.  

Noteworthy, ALW-II-41-27, HG-6-63-01 and XMD15-44 are able to inhibit 

the two gatekeeper mutants RET/V804M and RET/V804L which have been 

found to be resistant to approved RET inhibitors vandetanib and cabozantinib. 

Our findings suggest that the common moiety shared by the three compounds 

represents the structural feature essential for inhibition of RET activity; based 

on this evidence, it is feasible that this structure can be further optimized to 

develop clinically-relevant agents against RET and its TKI-resistant variants. 
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